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mort servent à quelque chose”

Aurait-il-dit Prof. Samuel Paty,
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conscience à ses élèves.
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Résumé

Il y a un peu moins de 20 ans, Ehrhard et Regnier, inspirés par la sémantique de la logique
linéaire, ont découvert la possibilité d’effectuer un développement de Taylor d’un programme
dans le cadre du λ-calcul. Même en oubliant les coefficients rationnels, les termes qui apparais-
sent dans le développement de Taylor d’un programme contiennent de l’information quantitative
sur le programme lui-même. Si l’on considère ces termes sensibles aux ressources, on obtient
une théorie de l’approximation qui est plus simple que l’originelle et qui est encore intéressante.
Or, en mathématiques, une notion d’approximation est d’habitude vue comme un outil pour
prouver des propriétés des objets que l’on approxime: ce sera également notre approche dans
ce manuscrit.

Dans la première partie de la thèse, on définit cette théorie de l’approximation par ressources
et on l’applique à des résultats, qui sont déjà connus mais fondamentaux, du λ-calcul. On montre
notamment que, dans une certaine mesure, cela subsume la théorie classique de l’approximation
qui est basée sur les arbres de Böhm et sur la continuité, et on le fait en fournissant des nouvelles
preuves de ces résultats importants. Nos techniques de preuves utilisent toutes les propriétés
cruciales de telles notions d’approximation, notamment la linéarité, la normalisation forte et
la confluence. On obtient ainsi une nouvelle formulation d’une partie importante du λ-calcul,
qui en plus apporte deux avantages: premièrement, même si nos preuves ne sont pas du tout
triviales, elles sont tout de même plus “basiques” que celles traditionnelles, dans le sens où
elles sont basées sur l’induction (à la base de la définition du développement de Taylor) au lieu
de la coinduction (à la base de la définition d’arbre de Böhm); deuxièmement, on peut voir
de cette façon que tous ces résultats, qui sont d’habitude prouvés avec des techniques ad-hoc
et dépendants les uns des autres, sont en réalité indépendants et proviennent tous d’une seule
technique: l’approximation par ressources (et la commutation d’Ehrhard et Regnier entre la
normalisation et le développement).

Cette notion d’approximation, et en général la formule du développement de Taylor, a
un troisième avantage: elle est facilement transportable à d’autres langages de programma-
tion, et cette direction de recherche a été souvent empruntée dans les années récentes. Dans
une deuxième partie de la thèse, on se tourne justement vers cette optique, et on adapte
l’approximation par ressources au λµ-calcul, l’un des habituels langages de programmation
fonctionnels (impurs) qui sont en correspondance de Curry-Howard avec la logique classique.
Même si plusieurs définitions et propriétés sont simples à adapter dans ce nouveau cadre, les
preuves de normalisation forte et de confluence du calcul avec ressources associé ne sont pas
immédiates. Enfin, on s’attaque à la question des applications de ces outils; on montre com-
ment reproduire, dans le λµ-calcul, les preuves données avant pour le λ-calcul pour établir la
propriété de Stabilité et celle des Lignes Perpendiculaires. Ce sont deux nouveaux résultats sur
la structure mathématique du λµ-calcul. On remarquera aussi que la preuve de la propriété de
Stabilité peut être également adaptée dans le cadre du λ-calcul avec appel par valeur.

On conclut le manuscrit avec des réflexions qui ont pour but de lier des méthodes d’homotopie
avec la sémantique dénotationnelle de la logique linéaire, mais aussi avec des réflexions méthodologiques
et philosophiques sur le statut de notre discipline de recherche.

Mot-clés: Lambda-calcul, dev́eloppement de Taylor, lambda-mu-calcul, propriétés syntax-
iques, arbres de Böhm, logique linéaire, topologie, appel par valeur, fondements des mathématiques.
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Riassunto

Poco meno di 20 anni fa Ehrhard e Regnier, grazie alla semantica della logica lineare, hanno
scoperto come sia possibile operare una espansione di Taylor di un programma scritto λ-calcolo.
Anche tralasciando i coefficienti razionali, i termini che popolano tale espansione contengono
dell’informazione quantitativa sul programma stesso. Considerando tali approssimanti per
risorse, si ottiene una teoria dell’approssimazione più semplice di quella orginaria, ma ancora
valida. In matematica, una nozione di approssimazione è tipicamente concepita come uno
strumento per dimostrare delle proprietà degli ogetti approssimati: tale sarà anche il nostro
approccio.

Nella prima parte della tesi, definiamo la teoria della approssimazione per risorse e la ap-
plichiamo a dei risultati, già bene noti ma fondamentali, del λ-calcolo. In particolare mostriamo
che, in un certo senso, questa sussume la classica teoria dell’approssimazione, che è basata sugli
alberi di Böhm e sulla continuità, e lo facciamo fornendo nuove dimostrazioni di questi risultati.
Utilizzeremo tutte gli aspetti cruciali di tale nozione di approssimazione, ovvero la linearità, la
normalizzazione forte e la confluenza. Cos̀ı facendo, otteniamo una riformulazione di una parte
importante del λ-calcolo, guadagnando due vantaggi: innanzitutto, anche se non triviali, le nos-
tre prove sono più “basilari” delle vecchie, nel senso che si basano sull’induzione (che è alla base
della espansione di Taylor) invece che sulla coinduzione (che è alla base degli alberi di Böhm);
inoltre, ci si accorge che tutti questi risultati, che di solito vengono ottenuti con delle tecniche
più ad-hoc e dipendenti l’una dall’altra, sono in realtà indipendenti tra loro, e derivano tutti
un’unica tecnica: l’approssimazione per risorse (utilizzando anche la commutazione di Ehrhard
e Regnier tra normalizzazione ed espansione).

Questa nozione di approssimazione, ed in generale la formula dello sviluppo di Taylor, ha
anche un terzo vantaggio: è facilmente adattabile ad altri linguaggi di programmazione, come
molte ricerche recenti hanno mostrato. Nella seconda parte della tesi ci muoviamo proprio
in questa direzione, adattando la teoria della approssimazione con risorse al λµ-calcolo, uno
dei più tipici linguaggi di programmazione funzionali (impuri) in corrispondenza di Curry-
Howard con la logica classica. Molte definizioni e proprietà sono facilmente trasportabili in
questo nuovo contesto, ma la prova della normalizzazione forte e della confluenza del calcolo
con risorse associato non sono immediate. Infine, ci poniamo la questione della applicazione di
tali strumenti; mostriamo come adattare, in λµ-calcolo, le dimostrazioni fornite per il λ-calcolo
di due dei risultati precedentemente menzionati, la proprietà di stabilità e della proprietà delle
linee perpendicolari. Si tratta di due nuovi risultati sulla struttura matematica del λµ-calcolo.
Inoltre, osserviamo come la proprietà di stabilità possa essere facilmente adattata anche al caso
del λ-calcolo “call-by-value”.

Infine, concludiamo la tesi presentando delle idee in corso di studio, che puntano ad applicare
metodi omotopici alla semantica denotazionale della logica lineare, ma anche presentando delle
considerazioni a carattere metodologico e filosofico sullo statuto della nostra disciplina di ricerca.

Parole chiave: Lambda-calcolo, espansione di Taylor, lambda-mu-calolo, proprietà sintat-
tiche, alberi di Böhm, logica lineare, topologia, call-by-value, fondamenti della matematica.
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Abstract

Almost 20 years ago Ehrhard and Regnier, inspired by the semantics of linear logic, discovered
the possibility of performing the Taylor expansion of a program in the realm of λ-calculus. Even
forgetting the rational coefficients, the terms populating the Taylor expansion of a program
contain quantitative information about the program itself. Simply collecting such resource
sensitive approximants allows to define an approximation theory simpler than the original one,
but still meaningful. Now, in mathematics, a notion of approximation is usually conceived as a
tool for inferring properties of the approximated objects: it is precisely the approach we adopt
in this manuscript.

In the first part of the thesis, we define this resource approximation theory and apply it
to the investigation of some already known, but fundamental, properties of λ-calculus. More
specifically, we show that in some sense it subsumes the classic theory of approximation, based
on Böhm trees and continuity, by providing new proofs of these important results. Our proof-
techniques employ all the crucial aspects of this notion of approximation, i.e., linearity, strong
normalisation and confluence. We obtain in this way a new formulation of an important part
of λ-calculus, presenting two advantages: firstly, even though they are not trivial, our new
proofs are more “basic” than the old ones, in the sense that they are based on induction (at
the base of Taylor expansion) rather than coinduction (at the base of Böhm trees); secondly,
we are able to see that in fact all these results, usually based on ad-hoc, interrelated techniques
are actually independent from each another, and only originate from a unique technique: re-
source approximation (exploiting Ehrhard and Regnier’s commutation between normalisation
and expansion).

This notion of approximation and, more generally, the Taylor expansion formula, has a third
advantage: it scales to other programming languages, and this direction has been often explored
in the recent years. In the second part of the thesis, we add another brick to these works by
adapting the resource approximation to the λµ-calculus, one of the most typical (impure) func-
tional programming language in Curry-Howard correspondence with classical logic. Although
most definitions and properties are straightforward to obtain in the new setting, the proof of
strong normalisation and confluence of the corresponding resource calculus are not immediate.
Finally, we consider the question of the application of the developed tools; we show how one can
easily reproduce, in the λµ-calculus, the proofs given for λ-calculus of two results, namely the
Stability Property and the Perpendicular Lines Property. Those constitute two original results
on the mathematical foundations of λµ-calculus. We also remark that the Stability Property
can be easily adapted to the case of call-by-value λ-calculus.

We conclude the thesis by presenting some work in progress, aiming at relating homotopy
with denotational semantics of linear logic, as well as some methodological and philosophical
considerations about our discipline of research.

Keywords: Lambda-calculus, Taylor expansion, lambda-mu-calculus, syntactical proper-
ties, Böhm trees, linear logic, topology, call-by-value, foundations of mathematics.
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Chapter 1

Introduction

1.1 Brief outline of the thesis

This manuscript is organized in 5 chapters, which can be in turn organized in the three main
parts which follow below. Each chapter, as well as most of the sections, begins with a “plan”
where we detail its content and our contributions; in addition to that, Chapter 3 and Chapter 4
end with some conclusive comments and the main possible future works. We refer the reader
to those explanations for the details. In particular:

- Part 1: Chapter 1 and Chapter 2. These first two chapters are introductory: in the
present Chapter 1 we introduce the main topics which constitute the general framework
of this thesis, and in Chapter 2 we quickly give some basic details about λ-calculus and
Böhm trees. The content of this part is explicitly high level and less formal.

- Part 2: Chapter 3 and Chapter 4. It constitutes the main part of the thesis. In Chapter 3,
whose detailed description can be found at Section 3.1, we first consider the resource ap-
proximation theory for λ-calculus and then we study its relation with the approximation
theory based on Böhm trees. Details about this latter section are given at the beginning
of Section 3.5. We refer to Section 3.6 for the conclusive comments. We also quickly repro-
duce some results in the call-by-value framework; we refer to the beginning of Section 3.4
for the details.

In Chapter 4, we introduce the resource approximation theory for λµ-calculus and show
how one can reproduce some important results of the previous chapter in this framework.
A detailed plan is given at Section 4.1. We also refer to Section 4.5 for the conclusive
comments.

- Part 3: Chapter 5. This chapter is not about approximating programs; instead, it collects
a scratch of a possible research direction (Section 5.2.2), as well as our “meditations”
about some methodological and philosophical issues related to our discipline of research
(Section 5.2.1 and Section 5.3). Its detailed plan is given at Section 5.1.

1.2 The λ-calculus

The λ-calculus was introduced by Alonzo Church around 1930 as a “formal calculus” for manip-
ulating functions in their generality, with the idea of founding mathematics taking the notion
of function as primitive, instead of the more common approach considering sets. The Kleene-
Rosser paradox [KR35], and Curry’s paradox involving its famous “Y fixed point combinator”
[Cur41], show that, from a logical point of view, the theory does not allow to provide a sound

15



16 CHAPTER 1. INTRODUCTION

foundations of mathematics1. But, for a great part thanks to Kleene, it was understood that
this calculus could be used to model the intuitive notion of computable function on integers.
This same notion was being formalized in the same years by Turing with his Turing-machines,
and by Herbrand-Gödel, Kleene and others with the “partial recursive functions”. Gödel was
initially convinced that any intuitively computable function is Turing-computable, but was not
so convinced about the same for partial recursive or lambda-definable ones (see [Dav82], pag.
12). Turing-machines are so convincingly close to the intuitive notion of computation, that
they become the unity of measure for the notion of computable functions, and one calls Turing-
complete any system which is as expressive as Turing-machines. But if Turing-machines are
so intuitive, they are also, mathematically speaking, quite inelegant objects: at the end of the
day, a Turing-machine essentially reduces a program to a mere sequence of instructions on some
hardware2. At the same time, it is exactly thanks to this point of view that in this formalism the
notion of step of computation is clear and elementary. That is why this approach is extremely
fertile if one wants to take into account the temporal and spatial resources that a computation
needs.

But if one cares about developing a real mathematical theory of algorithms (and not of what
is computable), since this means to find in some way the “essence” of what an algorithm is, one
should abstract as much as possible from implementation details, and turn to other formalisms.
One could think that a valid alternative for achieving this goal could be the theory of partial
recursive functions: in fact, they are Turing-complete. The big advantage of that approach is
to completely depart from implementation details, and to have a nice mathematical definition3.
But expressing an algorithm as such a particular kind of functions from N to N means - as in all
mathematics - reducing it to sets. This is not quite satisfying, as Scott in [Sco93] would explain
better than us:

For the purposes of understanding computation, however, set-theoretical formalism
is not too helpful in any direct way. In the first place, too much of set theory concerns
the transfinite, and ordinary computation has rather to do with finite processes. In
the second place the axioms of set theory are meant to capture something essential
of the idea of an arbitrary subset, while computation theory is more interested in the
notion of an algorithmically defined subset (or function). Of course, one can define
in set theory such notions as that of a general recursive function, but such definitions
do not emphasize enough what is special about algorithms. Nor is it generally clear
when a defined function is recursive. So what we want is a “restricted” system that
is specially designed for algorithms.

What is so special about algorithms is. . . the fact that they compute! By reducing an algorithm
to a static set of pairs, one makes the crucial notion of step of computation disappear. So
recursive function have abstracted too many details. Hence, one wants to depart from having
the idea of set as the basic notion, and depart from being static. Quoting again [Sco93]:

[...] The reason is that for algorithms it is more natural to consider functions
rather than sets. We can reduce the notion of function to that of set, but it is not
convenient to do so. A much better plan is to treat sets (and relations) as special
functions (truth-valued) as Church does.

Since in a computation the time is discrete - it is just counting the successive steps of com-
putation - one ends up with a rewriting system of “functions”, which is the lambda-calculus.
This is a great advantage with respect to the aforementioned two models of computations: it is

1More than one century after the birth of mathematical logic this is of course not a surprise...
2We can say that it modelize computation via the imperative paradigm.
3Partial recursive functions model computation via the functional paradigm.
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a “dynamical system”, as Turing-machines, and it abstracts from implementation details4, as
recursive functions, while still having a “clear” notion of step of computation, the β-reduction.
The fact that the integer functions that are representable inside λ-calculus are exactly the
same as the ones computable with a Turing-machine provides (together with the equivalence
with partial recursive functions and other “models of computation”) the major support for the
so-called Church-Turing thesis: the intuitive notion of computable function from integers to
integers is exactly given by any of those equivalent models of computation. The conceptual
price to pay when considering λ-calculus is that we are no longer dealing with algorithms for
themselves but only with one chosen representation5 of them (they will be words respecting
some syntactic constraints); that is, we are dealing with (functional) programs.

It is only many decades after the introduction of λ-calculus, around the 60’s and the 70’s,
that this formalism got much more attention in the academic community, from mathematicians
but in particular from the just born community of (theoretical) computer scientists. Today, we
would say that:

- for a mathematician, λ-calculus is the mathematical theory of functions as algorithms,
which is rich and very different from mainstream mathematics;

- for a computer scientist, λ-calculus provides a mathematical theory of functional pro-
gramming; something that does not exist – at least not in that mathematical strength –
for the other programming paradigms;

- for a logician, λ-calculus is the core of the best suited programming language for studying
the several manifestations of the Curry-Howard correspondence.

Not only the mathematics of λ-calculus is non-trivial and interesting but, if one considers it
together with the whole area of research in “computer science logic”, it has crucial applications
in real life: the birth itself of the mathematical investigation of computation, as well as of
the practical idea of computers, was mainly due to mathematical logic in the first half of the
XXth century, and the abstract study of programming languages (for safety reasons but not
only) is nowadays done, for a great part, via λ-calculus and/or proof theory; consequently, this
places those branches of mathematics among the ones with the most outstanding applications,
contrary to what many usually think.

Let us clarify the point of “functions as algorithms”, which is clear to computer scientists but
less explicit in mathematics, and is at the core of λ-calculus. Consider the following examples:

1. define functions F1, F2 : N4 → N setting, ∀x, y, z, n ∈ N, F1(x, y, z, n) := 0 and

F2(x, y, z, n) :=

{
0 if xyzn = 0 or n = 1 or n = 2 or xn + yn 6= zn

1 otherwise

Thanks to A. Wiles we know that F1 = F2. However, it is clear that the way we defined
them is radically different, independently from the truth of Fermat’s last theorem.

2. let Bool := {0, 1} and let leftOr : Bool2 → Bool, with leftOr(x, y) defined via the
following algorithm: if x = 1 then 1 else y, and let rightOr : Bool2 → Bool, with
rightOr(x, y) defined via the following algorithm: if y = 1 then 1 else x. As functions, we
have: leftOr = rightOr. But, seen as algorithms, then they become different; not only
syntactically, but more interestingly they satisfy different properties: indeed, we can take

4Again, it models computation via the functional paradigm.
5The quest towards a direct definition of an abstract notion of algorithm which is mathematically satisfying

is exciting but not clear.
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as x an argument which loops – call it ⊥ – and obtain that leftOr(⊥, 1) is undefined while
rightOr(⊥, 1) = 1. Since the years ’30 we know that in order to really deal with the notion
of algorithms, one has to consider partial functions. Considered as partial functions from
(Bool ∪ {⊥})2 to Bool, leftOr and rightOr are different.

These examples show that there is an aspect, to which one usually refers by the word inten-
tionality, which is consciously neglected in the mathematical notion of functions; this aspect is
the way a function is given, i.e. the “expression” that defines it. Often, in order to reach the
needed level of abstraction one deals with in mathematics, one has to employ a more abstract
way of defining functions and free themselves from the actual way a function is given – typically
by some “law”; it only counts the relation “input/output”. Whence, the notion of function as a
relation. This way of understanding functions is usually called extensional, since from this point
of view two functions are equal iff the relations defining them have exactly the same points, i.e.
they are equal as sets - and in set theory this property is called axiom of extensionality.
The point of λ-calculus (and of theoretical computer science, really), is not to refuse the way
mathematics treats functions: the point is, on the contrary, to actually render the abstract
notion of “intensional function” the object of a mathematical study.

1.3 Mathematical logic: intuitionistic vs classic

The word Logic comes from the Greek logos, which mainly meant “reason” and “language”.
In fact, Logic was born in Greece by Aristotle, and developed in two main topics: the (philo-
sophical) study of (human) reason and (human) language. After Aristotle, Scolastics used it in
relation to theology, then it went transcendental with Kant and dialectical with Hegel. But the
real breakthrough came at the end of the XIXth, when it became (probably forever?) mathe-
matical. The adjective mathematical is added at two different layers: first, we do not study all
human reason and language anymore, but only the mathematical ones; second, we realize this
study using mathematical tools and from a mathematical point of view. In other words, one
is interested in the mathematical study of mathematics itself, reason for which the discipline is
sometimes called “metamathematics”. Quoting Bourbaki’s introduction to the volume “Théorie
des ensembles” of his “Élements de mathématiques”: Depuis les Grecs qui dit mathématique
dit démonstration. It is clear then that the mathematical reasoning is expressed by the proofs.
For what concerns the mathematical language, we mean more or less “the rest”, namely axioms
and in general mathematical statements. Mathematical logic can be thus divided into two main
areas, which are called respectively “proof theory” and “model theory”. For historical reasons6

the second area is the one which developed faster. Starting from the years ’60 proof theory
knew an incredible development, thanks to computer science.

Historically speaking, mathematical logic was born in the second half of the XIXth mainly
due to the following situation: mathematics was becoming more and more abstract (also in the
Hilbertian sense of “infinitary”), and it was natural to think about an essential unity of all the
discipline, together with some justification of its solid foundation, in particular the absence of
contradictions in it. However, several antinomies - that is, real contradictions - appeared. The
following are the most famous:

1. Berry’s paradox7: consider the number b defined as “the smallest integer not definable in
under than 12 English words”. Does b exist? Either way, we have a contradiction.

6We would say that one of the main reasons is the fact that in order to really understand what proof theory is
about, one needs at the very least a clear notion of “computable”, which was not there until 1936. Furthermore,
a deeper comprehension of the discipline is possible only after the notion of programming was introduced, so at
least after the 50’s.

7Often named as/confused with Richard’s paradox. It was written by Russel but credited to some Berry.
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2. Russel paradox8: consider the set R of all sets that do not belong to themselves. Does R
belong to R? Either way, we have a contradiction.

3. Burali-Forti paradox: consider the set O of all ordinals. It is easily seen that O is an
ordinal. Therefore so is O + 1, i.e. O + 1 ≤ O. So O < O + 1 ≤ O, contradiction.

4. Cantor’s paradox: consider the set U of all sets. So P(U) ⊆ U and thus Card(P(U)) ≤
Card(U). This contradicts Cantor’s cardinality theorem.

We know that, in any case, no contradiction will ever appear in “practical mathematics”, and we
can sleep more than reassured; but there is something we could do: investigate this phenomenon,
maybe coming out with some arguments telling us which parts of mathematics are certainly
free from contradictions, which would be very nice and reassuring. To attack this questions, one
should have a “mathematical copy” of a given part of mathematics to mathematically study,
eventually aiming to construct the “bigger” system possible. This is precisely how mathematical
logic was born, under the influence of three of the major father founders of the discipline: Frege,
Russel and Hilbert.

Even if this manuscript, strictly speaking, is not about mathematical logic, its topics are
tightly related with proof theory, so let us mention some basic ideas of the discipline. One
can begin with the simple remark that every mathematical statement has one of the following
shapes: either it is an “atomic” statement directly expressing a property of some entity, or is
constructed from other statements by means of a conjunction, or disjunction, or implication,
or quantification (existential or universal). In order to distinguish a formal statement from a
mathematical one, one first fixes a series of symbols associated with the properties one wants
to talk about, and then composes formal statements using the symbols ∧,∨,→, ∃, ∀ instead of
the above italics words. Formal statements thus built are known as formulas. The next step is
to decide how to represent proofs as interesting mathematical objects. This is far from being
trivial9. The most common way of representing formal proofs is through sequent calculus or
natural deduction, both introduced by Gentzen in the same years. The idea is to represent a
proof as a tree, called a “derivation”, whose nodes are pairs (Γ,∆) – written “Γ ` ∆” and called
sequent or judgment – of finite multiset of formulas. Derivations are then constructed inductively
by means of rules merging a finite number of inductively defined derivations within a new one,
and they are defined in order to be logically correct : this means that, if we read a sequent as
the implication

∧
Γ →

∨
∆10, then assuming all the hypotheses (the leaves of the derivation

tree) the conclusion (the root of) holds as well. There are two main classes of formal systems
one can construct in this way: intuitionistic and classical ones. The difference is reflected in
two layers: in an intuitionistic framework, the second component of sequents is restricted to
having at most one formula; moreover, one does not include the rule representing the reasoning
by contradiction. The two systems so defined are very different and the intuitionistic one is
strictly included in the classical one, meaning that the former is a subsystem of the latter which
cannot simulate it. Let us give the main rules for a very basic system, known as “propositional
intuitionistic logic” (we only give here the “implicative” framework):

` A→ B ` A
` B

Destructor of an implication
A ` B
` A→ B

Constructor of an implication

8Apparently Zermelo had found in the same year (1902) the same paradox, but did not publish it.
9The first proposal was made by Hilbert but, mathematically speaking, his systems are not rich. Modern

proposals, much more interesting for a number of reasons, can be found especially in Girard’s proof-nets [Gir96],
as well as in “deep inference’s systems” [TS19] and “combinatorial proofs” [Hug06].

10This is the reason why one usually explains that the “intended” meaning of a sequent is as such an implication.
However, as Girard points out, a more interesting look on sequents can be found reading them though a distinction
“explicit/implicit”, on which we will come back in Section 5.3.2.
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to which one adds an “axiom rule” saying that the one leaf tree Γ, A ` A is always a derivation.
In order to pass from this system to “minimal propositional classical logic”, one can add the
following rule:

` ((A→ B)→ A)→ A
Peirce law

Equivalently, one can add a rule representing the reasoning by contradiction or a rule represent-
ing the tertium non datur. The equivalence means that adding any of such rules to minimal
propositional intuitionistic logic, allows to prove the other two rules.

We have to mention another crucial point in proof theory: cut-elimination. Suppose to have
a derivation π1 of ` A, and consider the following derivation of ` A:

π2 :=

A ` A
` A→ A

π1

` A
It is clear that π2 is redundant, since it already contains the “simpler” π1. It is important to
notice that, in order for π2 to be redundant, it has to introduce the implication A → A and,
immediately after, consume it by applying it to π1. Such a configuration is the prototypical
case of a “cut”11 in a derivation. Motivated by coherence-proofs, in the ’30 Gentzen was led
to study the structure of derivations. He made the fundamental discovery of a series of basic
manipulations, each of them transforming a derivation of a sequent in another derivation of the
same sequent, which can be consecutively applied to any starting derivation admitting some
cuts in order to eventually end on a derivation (thus, a derivation of the same sequent as the
first one) which do not contain cuts anymore. This result – called cut-elimination – endows the
set of derivations with a dynamics, and sets the beginning of modern proof theory. In the case
of intuitionistic logic, each rule of cut-elimination defines a function which transforms a given
derivation into exactly another one. That is, intuitionistic derivations obey to a deterministic
cut-elimination, which is in addition strongly normalising, confluent and admits non-trivial
denotational semantics. The case of classical logic is more subtle: in sequent calculus12, there
are derivations such as:

A ` A A ` A
A ∨A ` A,A
A ∨A ` A

A ` A A ` A
A,A ` A ∧A
A ` A ∧A

A ∨A ` A ∧A
which give rise to an infinite cut-elimination reduction sequence, thus making cut-elimination
not strongly normalising. The same derivation can also produce different normal forms. This
aspect is better seen in the following derivation:

π =

π1

Γ ` ∆, A

π2

A,Γ ` ∆

Γ ` ∆

where π1 and π2 are both derivations of the sequent Γ ` ∆. Such a proof π rewrites, by cut-
elimination, both in π1 and in π2, which can be normal and distinct, thus making cut-elimination
not confluent. This example is known as Lafont’s critical pair [GLT89]. Furthermore, this means
that the equivalence induced by cut-elimination identifies all proofs, and thus any denotational
semantics must be trivial. For a long time it was thought that this was it, about cut-elimination
for classical logic. But, mainly thanks to Griffin’s [Gri90], Girard’s LC [Gir91], Parigot’s FD
[Par91] and CD [Par92], and Danos, Joinet, Shellinx’s analysis in [DJS97], it was understood
where the “problems” of classical cut-elimination are, and in which sense one can “construc-
tivize” classical logic by means of better syntaxes.

11Most often called a detour in this precise setting.
12The same phenomenon can be reproduced in natural deduction.
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1.4 The Curry-Howard correspondence: intuitionistic vs classic

Let us go back to λ-calculus, and consider a restriction of it – the simply-typed λ-calculus –,
introduced again by Church, and proved to be consistent by Rosser. From the point of view
of computability this restriction is too strong, because the algorithms representable in it are a
proper class of the always terminating ones, but it is still interesting when related with weaker
notions of computability which are no more Turing-complete. We could say that the main point
in the simply-typed λ-calculus is to “see” a λ-term as an ordinary mathematical function. This
is easily done: if we have a function F : A→ B and an element a : A, we can apply F to a and
get an element F (a) : B. Let us write it as:

` F : A→ B ` a : A

` F (a) : B

Also, let us say we have an expression M = M{x} depending on a variable x; suppose that
when we substitute x in M for an element a : A, we get an M(a) : B. Then we can “see” the
expression M as a function of x, going from A to B. Such a function is denoted by λx.M . Let
us write this fact as:

x : A `M : B

` λx.M : A→ B

In order to compute the application F (a) of a function F = λx.M on an element a of the domain
of F , one has to substitute in the expression M all the occurrences of x by a; this substitution
is written M{a/x}, and the result belongs to the codomain of F . So we have:

(λx.M)(a)→β M{a/x}.

The system we just defined by those “typing rules” is the simply-typed λ-calculus (and by
forgetting the information about types one gets the untyped λ-calculus). One of the main
interests in this restricted calculus is the striking similarity with elementary logical rules. In
particular, if we forget the λ-terms, we recognise the already mentioned rule for introducing
an implication, and the rule for eliminating it. This is the first layer of the so-called Curry-
Howard correspondence, which is also called “formulas-as-types correspondence” for the reason
just explained. Also, one can see that – once we have fixed types for the variables – the λ-
terms in a typing derivation carry all the information of the types one is using; actually, a
typing derivation becomes, when forgetting about the λ-terms, the proof of the formula which
is the type of the final λ-term, and that vice-vera any proof can be written as a typed λ-term
in a given typing-context (corresponding to the hypotheses). This is why one also calls the
correspondence “proofs-as-programs”. Mathematically speaking, all this is quite elementary.
The second layer of the Curry-Howard correspondence is much more interesting, because it
says that this correspondences are not just happy coincidences. The already mentioned cut-
elimination algorithm – discovered by Gentzen years before the birth of programming and with
completely different motivations – corresponds to execution of programs in the following sense:
if a proof π of a sequent Γ ` A rewrites in one step of cut-elimination to a proof π′ (necessarly of
the same sequent Γ ` A), then the λ-term M associated with π in the simply-typed λ-calculus13

β-rewrites in one step to the term N corresponding, in the same sense, to the proof π′. Thus
the correspondence lifts to the dynamics, and this is why it is also known as “Curry-Howard
isomorphism”. This result is, mathematically speaking, less trivial.

If this correspondence is, at a first look, perhaps surprising, one can argue that from a logical
point of view it is very restricted: the logical system that we used only treats implication and,
although being implication at the heart of logic, one cannot prove much in this system; it is the

13The term M s.t. ~x : Γ `M : A, where ~x are the variables of M .
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already mentioned minimal propositional intuitionistic logic. Now, something definitely relevant
in the investigation of the mathematical nature of proofs, is that the same correspondence lifts
to much more complicated systems of interest. We will not dwell on how important, from the
point of view of mathematics, computer science and philosophy, this phenomenon is, but let us
just say that, in a sense, it is the result which motivates the existence itself of a unique discipline
of proofs and programs, which constitutes an important part of theoretical computer science14.

We will consider now a more specific question: extending the correspondence from minimal
propositional intuitionistic logic to classical one, whose possibility was not even clear. The
situation changed at the beginning of the 90’s thanks to Griffin [Gri90], who proposed to type
control operators, such as Scheme’s callcc or Felleisen’s C, with Peirce law. This retrieves
classical logic since we already mentioned that, in intuitionistic logic, adding Peirce’s law is
equivalent to adding the law of excluded middle or the law of contradiction. From this intuition,
several ways of extending the correspondence to classical logic appeared. From our point of view,
the most interesting ones are λµ-calculus [Par92] – that will occupy all Chapter 3 – and, only for
this introduction, Krivine’s classical realizability [Kri09]. In Krivine’s realizability, one extends
the simply typed λ-calculus with a new constant, called callcc (call-with-current-continuation)
having the type of Peirce law, following Griffin. Then, one defines a finer relation than typing
(Γ `M : A), which is the “realizability relation” Γ M : A, to be thought of as the statement
that the program M “computationally justifies” the formula A. Another way of seeing it is
that the program M corresponds to the extraction of the computational content of the formula
A. In this sense – and only in this sense, as we are going to see – one can say that we are
still in the Curry-Howard perspective. Now, the deep difference between this calculus (called
“λc-calculus”) and the usual one is, apart from callcc and the realizability relation, the way one
models the notion of computation: in Krivine’s realizability, programs are executed together
with a stack15 – to be thought of as the execution stack – playing the role of the environment16.
This is the real difference between intuitionistic and classical: the computational content of
the former lies in the internal properties of the programs, while the one of the latter lies in
their interaction with the environment. In fact, the control operators are precisely instructions
dealing with this aspect. The main reason why we are mentioning Krivine’s realizability here is
because in this setting one clearly sees what is the computational behaviour of callcc and, thus,
the one of classical logic: the use of callcc consists in applying it on a term M and launching
it in front of a stack; this “process” executes by, first, freezing the execution stack as a data
in the memory of M , and then by launching M on the same stack; if at a certain moment the
execution will need to make a decision (left/right in Figure 1.4), it can “guess” the right one
(first guessing left in the figure); if this guess was wrong (the star in the figure) – say, it raises
an error – the process can restore the memorized stack, thus backtracking at the moment it
was first launched; now, when it will have to make the same decision again, it knows that the
correct choice is the other one (on the right, in the figure), and it can continue the execution
with (hopefully) no errors17. This is exactly the behaviour of the callcc in “real” programming
languages. We will find the same behaviour also in λµ-calculus, as we will see in Section 4.2.
This backtracking technique can be also stated in the form of the story of the “devil realising
the excluded middle” ([Wad03, Chapter 4]), as well well as in the proof of the famous “drunk
man formula”:

∃x (D{x} → ∀yD{y}).

14We refer here to the vague distinction in “Volume A/Volume B” of theoretical computer science: “Volume
B”, or “European” TCS, mainly deals with programs/verification, while the other half, “Volume A”, or “North
American” TCS, is concerned essentially with algorithmics/complexity. Discussions on it can be found in [Var15].

15And not more “by themselves”, as in usual λ-calculus.
16This notion of computation is also closer to reality.
17This mechanism is also essentially the same as the exception handling in languages like Java.
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left/right?

(callcc)M

X?

Figure 1.1: The typical behaviour of callcc

This is a classically provable formula, but not intuitionnistically provable. It says that if we
place ourselves in the domain of non-empty pubs, and we read D{x} as “x is drunk”, then in
any non-empty pub we can always find someone (x) which is s.t. if he is drunk, then all the
other clients of the pub are drunk too. It may seem a strange property, but the proof is actually
very simple: take one person x0 in the pub (there is at least one since it is non-empty); either
declaring x := x0 works, in which case we are done, or it does not. If it does not, it means that
the environment (the “opponent”, if we think of a proof as a dialogue) has provided us with a
person x1 which is not drunk while our x0 is. Thus, we change our mind and declare x := x1.
Now this choice necessarly works, thanks to the information (x1 is not drunk) the environment
itself gave us.

Anyways, there is a crucial point of fracture between the Curry-Howard perspective and
Krivine’s one: the realizability relation is not defined via typing derivations anymore, but in
a more complex and indirect way; so now one is able to prove that some formulas can be
realized18 even when one does not have a proof in classical logic for that formula. This is a
huge improvement, because now one can extract computational content from axioms, and thus
consider much bigger parts of mathematics, such as those formalizable in ZFC – apparently
Krivine has recently realized the full axiom of choice [Kri20] – which were not in the scope of the
“traditional” Curry-Howard perspective simply because axioms do not have proofs, and hence
cannot be typed! The price to pay is, however, that now the correspondence is not anymore
an isomorphism, in the sense that the very notion of cut-elimination and/or normalization does
not play any role. The notion of computation is only considered with respect to a certain set of
“observable behaviours” one fixes at the beginning – playing the role of a parameter of the whole
construction – and the realizability relation makes the correspondence more between formulas
and programs than between proofs and programs19.

If one wants to stay in a “purely Curry-Howard” perspective, that is, linking cut-elimination
and program execution, the most “basic” framework is maybe Parigot’s λµ-calculus. Of course,
the first problem to deal with in classical logic, is the intrinsic non-determinism of cut-elimination
and the presence of critical pairs, as we already discussed. The solution proposed by Parigot
consists in forcing cut-elimination to be deterministic, by a priori choosing the way to eliminate
the cuts. In order to do so, he modifies the formal system in use to write classical proofs, and
introduces its classical natural deduction (which we will briefly present in Chapter 3) – in turn
a particular case of its more general free deduction. The main difference with sequent calculus
is that now one has two kinds of formulas at the right side of the “`””: at most one active

18When one is lucky, even to exhibit such a realizer; and when one is extra lucky, to actually describe its
programming behaviour – it is what Krivine calls the specification problem.

19But of course proofs still give raise to programs, as the crucial “adequacy” theorem states: any simply-typed
λ-term realizes its type.
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formula, and finitely many passive formulas. The new system enjoys a strongly normalizing
cut-elimination. Once properly defined the typed programming language classical natural de-
duction derivations describe, one can extract the underlying untyped language simply forgetting
types. The problem of course is which program to associate with the new rule of contradiction,
and how to handle the notions of active and passive formulas. Parigot simply adds a new con-
structor to the ones of λ-calculus, involving a new binding operator called the µ-abstraction,
which operates on a new set of variables usually called names. In this way, one can prove that
a Curry-Howard correspondence (or, better said, isomorphism) holds between the λµ-calculus
and the classical natural deduction. Hence, in the same way one can say that the (untyped)
λ-calculus is the Turing-complete programming language in which intuitionistic proofs express
their computational content, one can say as well that the (untyped) λµ-calculus is the Turing-
complete programming language in which classical proofs express their computational content.
The reader can consult [Bon07] for an interesting philosophically-oriented discussion about the
Curry-Howard correspondence for classical logic.

1.5 Linear logic

Let id : x ∈ Bool→ x ∈ Bool and let redundantId : Bool 7→ Bool be defined via the algorithm:
if x = 1 then x else x. Of course id = redundantId but while id uses its argument exactly once,
redundantId uses it exactly twice in the execution: this is a fundamental difference, from both
the point of view of computer science and that of logic. To understand why this is important
from a computational view point, it is enough to see that λ-calculus has a kind of source of
unsatisfactoriness: the notion of step of computation is clear, but it is not really elementary.
In fact in a computation from (λx.M)N to M{x/N}, one has to duplicate the whole term N
– independently from its size – the exact number of times (possibly zero, in which case N is
erased) that x occurs in M . So it is not realistic to consider this step of computation to take
place in constant time. A more “elementary version” of it would substitute N for exactly one
occurrence of x at a time, but in λ-calculus there is no such thing.

To see that the point of duplication is important also from a logical point, let us mention
that Girard found20 that two rules that one usually considers for building derivations21, which
were usually considered “harmless”, are in fact crucial. The rules are the following:

Γ ` ∆, A,A

Γ ` ∆, A
Contraction

Γ ` ∆

Γ ` ∆, A
Weakening

and the analogous rules for the case at the left of the “`”22. Abolishing these two rules one
observes a surprising phenomenon: both the connectives ∧ and ∨ split23 in two different con-
nectives: the multiplicative conjunction ⊗ and the additive one &, and the multiplicative dis-
junction ` and the additive one ⊕. This “hidden structure” of logical connectives is not ad
hoc or chaotic, but is well-structured and deserves its own place as a well-behaved logical sys-
tem, which is “linear logic without exponentials”. Inside it, one finds two main subsystems,
called the additive and the multiplicative system, which are again well-behaved systems. When
we say “well-behaved” we mean that they satisfy all the properties a theory of proofs should
have: namely a semantics and, most importantly, a (terminating and “natural”) cut-elimination

20We are not following an historical order here.
21We did not write them in the previous section.
22Note that in intuitionistic logic the rule of contraction that we wrote is not possible since we cannot have

two formulas at the right of the “`”, and weakening is only possible when ∆ is empty – that is, it represents a
contradiction, and so weakening “at the right of the “`” is simply the principle “ex falso quodlibet”.

23Linear logic is often referred to as a “microscope”, or as a “micrologic” – not in the sense of being “small”,
but in the sense of looking at the internal structure of usual logic.
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procedure. A crucial aspect is that one can define a duality relation (.)⊥, playing the role of
negation, which satisfies non-trivial properties (namely, it is involutive and yet constructive).
This allows to define the linear implication A ( B := A⊥ ` B. Furthermore, and most im-
portantly for us, this system allows to decompose the implication “→” – which corresponds to
λ-abstraction under the Curry-Howard correspondence – in two more elementary and intuitive
operations: in order to produce an output of type B from an input of type A – this corresponds
to the specification “A → B” – one, first, duplicates a certain number of times the input of
type A – this has type !A in linear logic – and then uses exactly once this duplicated inputs
in order to produce the output of type B. Putting things together, we have the fundamental
decomposition: A → B = (!A) ( B. From a logical point of view, the new modality “!”, to-
gether with its dual “?”, correspond to a rehabilitation of the structural rules – weakening and
contraction – in the system, but only in a controlled way. These two fundamental modalities
are called exponentials because they allow to pass from the additive world to the multiplicative
one – just like an exponential function – and vice-versa24. When added to the previous system,
one obtains what is usually called “full linear logic”. Since we will not deal with linear logic by
itself, let us just mention that Girard’s discoveries have literally created a whole new discipline,
bringing a new insight in the foundations of logic, on which we will come back in Chapter 5, as
well as new important mathematics in the realm of proof theory, and have found in theoretical
computer science – especially in the abstract theory of programming languages – considerable
applications. The situation of structural rules is a typical example of how the point of view of
semantical preservation of truth is blind with respect to deeper considerations, that require a
finer point of view.

1.6 The Taylor expansion of a program

If the most naive interpretation of a (simply-typed) λ-term is as a function, one may wonder if
it is possible, as it is often the case for functions, to “approximate” it in some sense. The answer
is positive, and the historically first notion of approximation has not much to do with functions:
it is given by Böhm approximants25. This notion is related with the partial information that a
program, from time to time, may output during its execution; so it is mainly “computer science
driven”. One may thus still wonder if a more “mathematically driven” notion of approximation
exists. The answer is again positive, and was discovered by Ehrhard and Regnier in [ER03].
In this pioneering article, they introduce a derivative operator in the higher-order functional
setting, defining a differential λ-calculus. This new syntax is not ad-hoc, as it finds its root
in the Ehrhard’s work in the semantics of linear logic [Ehr02]. Thus the differential λ-calculus
is another great example of the interesting methodological phenomenon which consists in dis-
covering a notable property in a semantical setting, and then internalising this property via a
new syntax. The most exciting achievement of the differential λ-calculus is the possibility of
defining a Taylor expansion of a λ-term, which has striking similarities with the usual one of
analysis; the similarities are first in the shape: in the same way the Taylor expansion Θ(F ) of
a real function F , near 0, is the series of functions:

Θ(F )(x) =
∑
n

1

n!
(D(n)F · xn)(0)

24Also, they correspond to the exponential power series in the differential λ-calculus, as we will mention
in Section 3.2.

25Also called partial or finite approximants.
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where D(n)F · a is the function y 7→ F (n)(y) · a, the Taylor expansion Θ(Fx) of a term Fx is the
formal series:

Θ(Fx) =
∑
n

1

n!
(D(n)F • xn)0.

where D(n)F •Nn is a term in the syntax. But, more deeply, the similarities are in the role of this
expansion: as each polynomial appearing in the series Θ(F )(x) approximates the function F (x)
(near 0), the “differential terms” occurring in Θ(Fx) provide a valid notion of approximation
for Fx. Furthermore, in the same way a polynomial of degree n is a “simple” function which
uses its argument exactly n times (in the sense of analysis26.), the approximants of Fx given in
Θ(Fx) are “simple” functions that use their arguments exactly n times (in the sense of computer
science). The main intuition behind this notion of approximation is thus the tight connection
which appears between the notion of linearity in analysis and that in programming (to use its
argument exactly once during the computation). The paradigm shift initiated with the work
of Ehrhard and Regnier has originated several different – but interrelated – axes of research,
involving for instance an axiomatic description of differentiation in the categorical setting (see
for instance [BCS09, Ehr16, CL19]) or the production of resource sensitive type systems and
cost models for several functional programming languages (see for instance [Acc17, dC18]), as
well as the adaptation of this kind of approximation to other functional languages (see for
instance [BEM12, LZ12, LL19a, Vau07b, KMP20]).

The two notions of approximation – Böhm’s and Taylor’s – are strictly related by Ehrhard
and Regnier’s fundamental commutation property27:

NF(Θ(M)) = Θ(BT(M)).

One could even say that they give raise to “the same” approximation.
Actually, approximating via “differential terms” is not the only possibility given by the work

of Ehrhard and Regnier. It turns out that even if we drop the rational factorial coefficients,
and move to a much simpler syntax, we still get a valid approximation for λ-calculus. We will
call this approximation the resource approximation, since the terms obtained via the mentioned
restriction of differential λ-terms are called resource terms. The resource approximation can be
also introduced independently from the differential λ-calculus. This kind of approximation is
exactly the object of study of this manuscript.

26We mean that they use n the argument x in order to compute xn = x · · · · · x
27The word “commutation” here is appropriate because the Böhm tree BT(M) of M is a generalized normal

form.



Chapter 2

Preliminaries

We first recall the few and very simple general mathematical notions we need in this manuscript.
Then, we recall the basic notions about λ-calculus we will use. In particular, even if well known,
we believe it is interesting to give some details about the construction of Böhm trees, as well as
the conceptual place such an approximation occupies, because an important part of the thesis
is precisely about the relation between this kind of approximation and the resource one.

2.1 Notations, terminologies and basic facts

Natural numbers The set N of natural numbers start from 0. The power set of a set X is
denoted by P(X); we denote by P∗(X) the set P(X) − ∅; we denote by Pfin(X) the finite
parts of X, and analogously for the other uses of the subscript “fin”. The cardinality of X is
denoted by Card(X).

Multisets and orders A multiset over a set X is a map from X to N. The support of a mul-
tiset A : X → N is the set X−A−1(0). A multiset is finite when its support is finite. We denote
with !X the set of finite multisets over X. Let A be a finite multiset with support {a1, . . . , ak}.
As usual, we write such an A as [a1,

(A(a1)). . . , a1, . . . , ak,
(A(ak)). . . , ak]. In this manuscript, when we

do not need to specify the multiplicities A(ai), we will shorten this notation to [a1, . . . , ak],
meaning that some of the ai might be equal. Moreover, if an operation n± ai is defined for all
i = 1, . . . , k, we will sometimes write n±A for the multiset [n± a1, . . . , n± ak].

We use a multiplicative notation for multisets: this means that the empty multiset is denoted
with 1 and the union of two multisets A,B is denoted with A ∗ B. The set of multisets over a
set X (as well as !X) is a commutative monoid w.r.t. ∗, with neutral element 1.

It is well-known that, if X is a well-founded ordered set, then !X is well-founded as well,
w.r.t. to an order, called the multiset order on X, which is defined by setting: A < B in !X iff
A can be obtained from B by replacing at least one occurrence of an element b of B with an
arbitrary finite number (even 0, which corresponds to erasing b) of elements a1, . . . , an < b.

Let X1, . . . , Xn be ordered sets (let us simply call ≤ the order in each of them). It is well
known that one can define an order on the product X1 × · · · ×Xn, different from the product
order and called the lexicographic order, by setting: (x1, . . . , xn) ≤ (y1, . . . , yn) iff there is
1 ≤ k ≤ n s.t. xi = yi in Xi for i = 1, . . . , k− 1 and xk ≤ yk in Xk. The lexicographic order has
the property that if each Xi is well-founded, then the product (of fixed length) is well-founded.

Syntax We will essentially deal with words on alphabets, so we will work in the free monoid
of some alphabets. In particular, the words of our interest will always raise from inductive

27
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constructions, and so one calls them terms instead. As usual, we make extensive use of “Backus-
Naur-like notations” and do not specify the underlying alphabet, which is inessential and clear
from the context: the “real” way of looking at terms is as (higher-order) abstract-syntax trees.

Rewriting systems Our terms are not just static pieces of information: they will represent
programs, whose principal feature is of course to evaluate. This is well-modelled by appropriate
rewriting systems, that is, simply appropriate setsX equipped with a binary relation→⊆ X×X.

- The reflexive closure of → is the relation → ∪{(x, x) | x ∈ X}, usually denoted by →=.

- The transitive closure of → is the smallest transitive binary relation on X containing →.
I.e., it is the relation {(x, y) | x→ x1 → · · · → xn → y for some x1, . . . , xn ∈ X,n ≥ 0}.

- The reflexive-transitive closure (i.e. the union of the reflexive and of the transitive closure)
of → is denoted with �. It is the smallest transitive and reflexive binary relation on X
containing →.

- The symmetric closure of → is the relation → ∪{(y, x) | x→ y}.

- The symmetric closure of� is the smallest equivalence on X containing→, and is denoted
with ' in this preliminary section. That is, x ' y iff there exist x1, . . . , xn ∈ X s.t.
x� x1 � x2 � · · ·� xn−1 � xn � y.

An element x ∈ X is reducible iff there exist y ∈ X s.t. x → y. Otherwise it is said to be
normal. An element y ∈ X is a normal form of x ∈ X iff y is normal and x� y. An element
x ∈ X is said to be normalizable if it admits a normal form. A reduction sequence starting from
an x ∈ X is a (possibly infinite) sequence x→ x1 → x2 → · · · in X.

A rewriting system (X,→) is said to be:

- strongly normalising iff the are no elements of X admitting an infinite reduction sequence.

- diamond iff for all x, v, w ∈ X s.t. v ← x→ w, there exist y ∈ X s.t. v → y ← w.

- locally confluent iff for all x, v, w ∈ X s.t. v ← x→ w, there exist y ∈ X s.t. v � y � w.

- confluent iff (X,�) is diamond.

- Church-Rosser iff for all v, w ∈ X s.t. v ' w, there exist y ∈ X s.t. v � y � w.

It is well-known that the confluence and the Church-Rosser are equivalent properties. In a
confluent rewriting system (X,→) every x ∈ X admits at most one normal form.

We recall the following general and well-known result:

Lemma 2.1.1 (Newman’s lemma). A strongly normalising rewriting system is confluent iff it
is locally confluent.

We will also mention to the following well-known notion:

Definition 2.1.2 (Commutation of reductions). Two binary relations →1, →2 on X are said
to commute iff for all x, v, w ∈ X s.t. v 2← x→1 w, there exist y ∈ X s.t. v →1 y 2← w.
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Trees We will also encounter finitely branching rooted trees with an order defined on the set
of subtrees of each node. From now on, “tree” is synonymous of such trees. If B is tree, having
R as root and immediate subtrees B0, . . . , Bk ordered following the indices, we represent it via
the writing B = RB0 · · ·Bk.

We mention this kind of trees because Böhm trees (discussed in Section 2.2.2 and in Sec-
tion 3.5) are a special case of them; in this setting there is a one-leaf tree ⊥ (which can thus
appear only as a leaf). We add from now on this constraint in our definition of tree. Moreover,
in the setting of Böhm trees one can decide to “obscure” an entire subtree by contracting it to
⊥; this is why we give the following:

Definition 2.1.3. We define the order v on the set of trees1 by: B v B′ iff B can be obtained
from B′ by contracting any number of subtrees of B′ to ⊥.

Formal sums We describe below a construction which will be constantly used. Consider a
set L (it will be some “resource sensitive language”). We call 2〈L〉 the free module generated
by L over the boolean semiring2, which simply means the quotient set of the formal sums of
finitely many elements of L, quotiented by commutativity, idempotency and associativity of +.
An element of 2〈L〉 will be called a sum. We denote with 0 the empty sum, which is the neutral
element for +. Said differently, a sum T is just a finite subset of L, and the “+” is the union3.

Every operation defined on L, can be extended to 2〈L〉 by linearity, but for the seek of
clarity we will specify that at each time. Of course 0 is also the annihilating element for those
linearly-extended operations.

Definition 2.1.4. If some relation  ⊆ L× 2〈L〉 is defined, we extend it to all 2〈L〉× 2〈L〉 by
setting:

 := {(t+ S,T + S) | S,T ∈ 2〈L〉 with t /∈ S and t T}.

Observe that the condition t /∈ S is crucial if we want to hope for a strongly normalising
reduction  . Indeed, if we defined the extension to sums without bothering for that condition,
we would immediately have: t = t+ t T+ t = T+ t+ t T+T+ t = T+ t and thus we have
created a cycle in the reduction, yielding an infinite  -reduction sequence. With the condition
t /∈ S, both the previous  -reductions are not allowed: in the first, (the term) t belongs to (the
single-element sum) t, and in the second t ∈ t+ T.

However, this condition forces us to pay particular attention to successive reductions. For
instance, if t  u  v, then in order to obtain t + u � u + v (for lack of symbol, let us use
the symbol � for the reflexive transitive closure of  ) one cannot reduce first t, otherwise we
would have t + u  u + u = u. In this case reducing first u, and only then t, yields to the
desired result. But in general, because of the definition of reduction on sums (Definition 2.1.4),
consecutive reductions – and in particular reducing a sum to the sum of the reduct of each
addend – are, in general, not necessary possible.

2.2 The (untyped) λ-calculus

2.2.1 Basic notions and facts

The set of pre-λ-terms is defined inductively as:

M ::= x | λx.M |MM

1We mean the just given definition of tree, thus with the added constraint on ⊥.
2We mean the booleans with the equation 1 + 1 = 1.
3We keep the “sum” notation because it is manageable and reminiscent of the fact that the general case of

coefficients in a ring different from Z2 is important in the setting of λ/λµ-calculus, even if we will not need it.
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where x ∈ Var – a countably infinite set which we fix now and for all the thesis. The sets
FV(M) and BV(M) of free variables and of bound variables of a pre-λ-term M are defined
as always. We also assume Barendregt’s convention4 – that is, all the bound variables in a
pre-λ-term are different. The α-equivalence is the binary relation on pre-λ-terms which equates
M and N whenever there are bound variables x1, . . . , xn (n ≥ 0) of M and variables y1, . . . , yn
not occurring free in N s.t. N can be obtained from M by replacing all the occurrences of xi
by yi. It is clearly an equivalence relation.

The set Λ of λ-terms is the set of pre-λ-terms quotiented by α-equivalence.

Remark that the notion of free variable still makes sense for a λ-term (but not that of bound
variable). We will thus just say that a variable “occurs in a λ-term M”, or that it “does not
occur” (hence omitting the adjective “free”). Except if explicitly stated, when we write a pre-λ-
term we will always mean the associated λ-term, that is, its α-equivalence class. The following
are famous λ-terms which we will happen to use in this manuscript without recalling them:

I := λx.x, ∆ := λx.xx, Ω := ∆∆, True := λxy.x, False := λxy.y.

A k-context (also called a multi-hole context if we do not need to specify k) is a function

C :

k︷ ︸︸ ︷
Λ× · · · × Λ→ Λ inductively defined as:

C ::= ξ1 | · · · | ξk | x | λx.C | CC,

where ξi is the i-th projection (of arity k) and x is the constantly equal to x ∈ Var function (of
arity k). The functions ξi’s occurring in the inductive definition of C are traditionally called
holes. We denote by CL ~M M ∈ Λ the image of ~M under C. Remark that, by definition of contexts
as functions, free occurrences of variables in M may become bound by a “λ” in CLM M, like as
in CLxM = I, where C = λx.ξ. Thus, contrary to terms, contexts do not satisfy α-equivalence;
for instance λx.ξ 6= λy.ξ, since (λx.ξ)LxM = I 6= λy.x = (λy.ξ)LxM.

A single-hole context is a 1-context with exactly one occurrence of its hole (usually denoted
ξ instead of ξ1). The contextual closure of a binary relation R on λ-terms is the binary relation
given by set {(CLM M, CLN M) | MRN, C single-hole context}. Thinking as contexts as defined
on pre-λ-terms (instead of terms), we can give the same definition for a relation of pre-λ-terms.

We denote by M{N/x} the result of replacing the term N for all the free occurrences of
x in M . One properly defines this operation through pre-λ-terms, performing the replacement
only after the usual renaming of bound variables in the pre-λ-term M , to avoid capture of free
variables in N . The α-equivalence coincides then with the relation on pre-λ-terms which is the
contextual closure of the relation equating a pre-λ-term of shape λx.M with a pre-λ-term of
shape λy.M{y/x}, whenever y /∈ FV(M).

Lambda-terms are meant to represent programs, the notion of execution being as usual β-
reduction, which we will call instead λ-reduction and denote by→λ. It is the contextual closure
of the relation (λx.M)N →base M{N/x}. The reflexive, symmetric and transitive closure of
→λ is called λ-equivalence and is denoted by =λ.

One might be interested in equating λ-terms via an equivalence relation different from =λ.
In this case the following are the standard notions to consider: a congruence is a contextual
equivalence5 on Λ; a λ-theory is a congruence containing =λ; the term algebra6 of a λ-theory
R is the quotient Λ/R (endowed with the induced constructors of Λ); a λ-theory R is said to
be non-trivial when its term algebra is not a singleton.

4Appartently, Barendregt in turn attributes it to Ottmann – see the Addenda for the sixth imprinting
of [Bar84].

5An equivalence is said to be contextual when it is the contextual closure of some relation.
6Here the word “algebra” is intended in the sense of universal algebra.
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2.2.2 Böhm approximation

Lambda-terms can be organized in two classes, depending on their behaviour: the solvable ones,
and the unsolvable ones. This is a fundamental distinction and plays a crucial role in Böhm
approximation, so let us give some details. We will use as “running example” the algorithm
known as the “Babylonian method” for the computation of square roots.

A λ-termM is called solvable if there exists a context C of shape7 C = (λx1 . . . xn.ξ)N1 · · ·Nk

such that CLM M =λ I; it is unsolvable otherwise. A solvable term can be sent (mod =λ) to any
other term by means of some appropriate context.

An a priori unrelated notion is the one of head normal form: a λ-term M is called a
head normal form (hnf for short) if it is of shape M = λx1 . . . xn. xM1 · · ·Mk for some
n, k ≥ 0, and the (occurrence of the) variable x (which can be equal to some of the xi’s)
is said to be in head-position for M . The terms that are not hnf’s are necessarily of shape
λx1 . . . xn. (λy.P )QM1 · · ·Mk, that is, in their head-position there is a redex (λy.P )Q instead
of a variable.

One says that a term M has an hnf iff M =λ N with N hnf. The head reduction is the
partial function which is undefined exactly on the hnf’s and, when it is defined, gives the term
obtained by reducing the head-redex of the term it is applied to. We write →h for its graph
relation.

It is well-known that one has the following fundamental characterization: M is solvable iff
M has a hnf iff the head-reduction on M terminates.

The paradigmatic example of an unsolvable term is Ω.

Once a hnf N = λx1 . . . xn. yM1 · · ·Mk of a term M is reached during λ-reduction, pursuing
the reduction will only affect M1, . . . ,Mk but not the “head part” λx1 . . . xn.y of M , nor the
number k of applications of the head variable y. The information given by the pair “(head
part, number of applications)” is thus a partial output of the computation, and the term will
never return working on it. The existence of terms with a hnf – i.e. solvable – but that are not
normalizable appears now very natural: it corresponds to algorithms that, from time to time,
output a part of an ideal “fully computed” output, providing thus an increasing approximation
of it, although never reaching it once and for all. The ancient Babylonians and the ancient
Indians already knew8 the power of such algorithms: they knew a procedure computing each
consecutive digit of

√
2. Compare it to Ω which, in turn, really produces no kind of information,

as it is only capable of reducing to itself.

As first understood by Barendregt, the right way of modelling the notion of “computation-
ally meaningful” is, in λ-calculus, exactly given by “producing partial information”, that is,
solvable terms - and not by normalizable ones as Church originally thought. This is supported
by the “Genericity Property”, on which we will come back at time (Theorem 3.5.29).

In the remaining of this Section, we are going to first give some detail about the approxi-
mation based on the notion of solvable term.

If M is normalising, then the question “what does M compute?” is easily answered: it
computes nfλ(M). But what do solvable terms compute? The Babylonian algorithm producing
1.41421 . . . is computing the ideal object

√
2, which can be thought of as the infinite sequence

of its digits. The idea is then to do the same for solvable terms: we register all outputted
information returned by M when reaching a hnf. The natural way of collecting it is to organize

7Wlog, we can restrict the abstracted variables x1, . . . , xn in C to the free variables of M .
8Apparently there is no certain historical evidence of the fact that those cultures knew exactly what we now

call the “Babylonian method”, but there are reasons to think that they did.



32 CHAPTER 2. PRELIMINARIES

it as a tree, called the Böhm tree of M . So one gets the following:

Definition 2.2.1 (Böhm trees). The Böhm tree BT(M) of a λ-term M is defined coinductively9

as follows:

If M is unsolvable, then BT(M) is the single leaf ⊥ tree;

If M is solvable with M �h λx1 . . . xn.yM1 · · ·Mk, then BT(M) is the finitely branching
rooted tree with10:

– λx1 . . . xn.y as root

– BT(M1), . . . ,BT(Mk) as immediate subtrees, ordered following the indices.

We denote by BΛ the set of all the Böhm trees of some λ-term, and by =B the equivalence on
Λ given by the equality of Böhm trees.

If M is normalizable then BT(M) = nfλ(M), where the equality means that BT(M) is just
the tree representation of the word nfλ(M). Thus, Böhm trees are “generalized normal forms”,
defined for all terms, and they answer to the question “what does M compute?”. So, Böhm
trees form a semantics for λ-terms (if M =λ N then BT(M) = BT(N)), in the same way one
can say that

√
2 is the “semantics” of the Babylonian method – in the sense that no matter

what implementation has the algorithm, the computational meaning will always be to compute√
2.

The analogy with the Babylonian method goes further. This method produces rational
numbers (“truncations” of real numbers, if one thinks them as infinite sequences of digits) that
are approximations of an irrational one. This is expressed by the fact that Q is dense in R
(with their natural topologies) and by the fact that the rationals produced by the Babylonian
method tend to

√
2 – in the topological sense of limit. Now, the same happens in λ-calculus,

as any “truncation” of BT(M) – what we call a “Böhm approximant” (Definition 2.2.3) –
turns out to be an approximation of BT(M) in the following sense: the set BΛ of Böhm trees
carries a canonical topology (its Scott-topology as cpo), with respect to which its subset App
is dense into. Also, the Böhm approximants of M tend to BT(M), in the order-theoretic sense
corresponding to a limit, that is, by taking a sup (Theorem 2.2.9).

As a last parallelism, let us say that in the same way the ideal object
√

2 is of a different
“nature” of its rational approximations – the former is conceived as an infinite object while the
latters are finite – also Böhm approximants are finite while Böhm trees are infinite.

Historically this is the first notion of approximation that has been discovered. Let us give
some details about it.

Definition 2.2.2. The set B of all the Böhm-like trees is the set of trees11 with nodes in the set
{⊥} ∪ {λx1 . . . xn.y | x1, . . . , xn, y ∈ Var} and s.t. the ⊥’s can only appear as leaves. Böhm-like
trees are endowed with the partial order v defined in Section 2.1.

Of course Böhm trees are (possibly infinite) Böhm-like trees.

Definition 2.2.3 (Böhm approximants). The set App of Böhm approximants12 is the set of
finite Böhm-like trees. It can be given the following inductive characterization:

App : P ::= ⊥ | λx1 . . . xn.y

k︷ ︸︸ ︷
P · · ·P (for n, k ≥ 0).

9The interested reader is invited to consult [JR12] for an introduction to coinduction, and [Las99] for a
discussion of the coinduction principles behind this definition.

10The definition makes sense because, as we mentioned, the head part and the number of applications are the
same for all hnf’s of a same term.

11We mean the notion of tree given in Section 2.1.
12Also called “finite approximants” or also “partial approximants”.
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Böhm approximants can be equivalently defined as follows:

Definition 2.2.4. The set Λ⊥ of λ⊥-terms is the set of λ-terms built with an additional
constant ⊥, and quotiented by the equations:

λx.⊥ = ⊥ ⊥M = ⊥.

The λ⊥-terms are endowed with usual λ-reduction.
Now the set of Böhm approximants can be identified with the set of λ-normal forms and,

under this identification, the preorder v they inherit from Böhm-like trees coincides with the
contextual partial preorder on Λ⊥ generated by the clause: ⊥ vM for all M ∈ Λ⊥.

One extends Böhm trees to Λ⊥ trivially setting BT(⊥) := ⊥, so that P = BT(P ) for all
Böhm approximant P .

The map BT : M ∈ Λ⊥ 7→ BT(M) ∈ BΛ endows a preorder (it is not antisymmetric) v on
Λ⊥ (so, in particular, on Λ), defined by M v N iff BT(M) v BT(N). It is clear that =B is the
equivalence induced by the preorder v on Λ⊥ (that is, M =B N iff M v N vM).

We can now give the following:

Definition 2.2.5 (Böhm approximants of a λ-term). Given a λ-term M , the set A(M) of
Böhm approximants of M is defined by:

A(M) = {P ∈ App |M �λ N w P for some N ∈ Λ}.

Definition 2.2.6. 1. One says that P1, P2 ∈ App are compatible if they share a common
upper bound in Λ⊥ w.r.t. v. It is trivial to check that if P2 6= ⊥, then P1, P2 are compatible
iff P1 = λx1 . . . xn.yP11 · · ·P1k and P2 = λx1 . . . xn.yP21 · · ·P2k for (the same) n, k ≥ 0,
with P1j , P2j compatible for all 1 ≤ j ≤ k, and ⊥ being compatible with any term.

2. Given two compatible P1, P2 ∈ App, one can easily see (for example by induction on P1)
that there exist a sup P1 t P2 ∈ App, which can be inductively constructed as:

P1 t P2 =


λ~x.y(P11 t P21) · · · (P1k t P2k), if P1 = λ~x.yP11 · · ·P1k and

P2 = λ~x.yP21 · · ·P2k,

Pi, if P3−i = ⊥ (i = 1, 2 ).

It is easy to see that two upper bounds of a same term must be compatible. It is also easily
seen (for example by induction on P1 ∈ Λ⊥) that t is associative, and thus one defines as
expected a term P1t· · ·tPk ∈ Λ⊥ whenever the finitely many Pi’s are pairwise compatible,
and this is again the sup of the set {P1, . . . , Pk} in Λ⊥.

Proposition 2.2.7. For M ∈ Λ, the set A(M) is an ideal in (B,v), i.e. non-empty, downward
closed and directed 13.

Remark 2.2.8. It is possible to define an operation
⊔
i
Pi := lim

k→∞

k⊔
i=1

Pi ∈ B for countably many

pairwise compatible Pi’s forming a directed set. This operation informally takes the potentially

infinite tree obtained by extending
k⊔
i=1

Pi with the next Pk+1 for all k. One has that
⊔
i
Pi = sup

i
Pi

in (B,v), and it does not depend on the chosen enumeration of the Pi’s.

In particular, there always exists sup
P∈A(M)

P =
⊔

P∈A(M)

P . Actually, this sup is the Böhm tree

of M , as the following known fundamental theorem states:

13A set is directed w.r.t. a preorder whenever any two of its elements share a common upper bound.
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Theorem 2.2.9 (Approximation theorem). Let M ∈ Λ. One has:

BT(M) =
⊔

P∈A(M)

P.

One can also see that: A(M) ⊆ A(N) iff BT(M) v BT(N) iff M v N as well (for M,N ∈
λ⊥).

An issue intrinsic to the definition of Böhm tree and Böhm approximants is the difficulty
of characterising A(MN) in terms of A(M) and A(N). Indeed, not only A(·) is not closed
under application, but applying PQ can give rise to a term without a λ⊥-normal form, like
Ω. The same problem arises for the computation of a Böhm tree. At the heart of those
difficulties one can say that there is the fact that Böhm-trees are a coinductive definition, and
Böhm-approximants are defined via an existential quantification on λ-reductions. Thanks to
the approximation theorem however one can, in a sense, take the best from both worlds: Böhm
trees are generally easy to compute (because one can follow the head reduction), while Böhm
approximants are generally better suited for proving properties.



Chapter 3

The resource approximation for
λ-calculus

Understanding the relation
between the term and its full
Taylor expansion might be the
starting point of a renewing of
the theory of approximations
(usually based on Böhm trees).

Thomas Ehrhard, Laurent
Regnier –[ER03]

3.1 Plan of the Chapter

In this chapter we study the resource approximation for the λ-calculus, and in particular how one
can use it to produce results about the latter. The main parts of it, Section 3.3 and Section 3.5,
are based on our work [BM20]; not only we give all the needed details, but also we reorganize
the matter of the paper, in order to show which are the real dependences between the results
and in order to make it a real alternative formulation of, essentially, Chapter 14 of [Bar84].

Even if resource approximation could be introduced independently from the differential λ-
calculus, it finds its roots in it and so we find it useful to begin with an introduction to the
ideas of the differential λ-calculus Section 3.2). However, we do it in a different way from how
this topic is usually introduced: we do not pretend to be rigorous, but instead we prefer to
explain the ideas with an accent to the relation with mathematical analysis, trying to make
it clear what is the real connection between this “differential calculus” and the usual one in
mathematical analysis. The aim is to give a heuristics of the topic, in the same spirit one often
motivates or derives some modelizations in applyied mathematics and similar fields.

After that, we restrict our attention to the world of the resource approximants: Λr. We
first of all study the properties of the (qualitative1) Taylor expansion map T ( Section 3.3). In
particular, in order to prove some properties, we will have to consider the rigid terms (Definition
3.3.28) – resource terms in which there are lists instead of bags – and prove some basic results
about them ( Section 3.3.1). At that moment we will already be able to prove ( Section 3.3.2)
two main results: Stability property (Theorem 3.3.37, for which we need the rigid terms) and
Perpendicular lines property (Theorem 3.3.40). We express and prove them inside Λ/=τ (the

1We will sometimes omit this adjective since we will only talk about the qualitative version, and not about
the quantitative one.
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term algebra of the λ-theory of the Taylor normal form) and not in the usual Λ/=B , but in the
next sections we will translate them inside the latter.

In Section 3.4 we provide a quick “interlude” about the call-by-value λ-calculus (Definition
3.4.2): in fact, a nice value of our new proof of the Stability is that it is highly “syntax indepen-
dent” and it can be easily adapted to this framework2. The results we need, in order to make
sure the arguments in the proof do hold, are basically all taken by [KMP20].

In Section 3.5 we finally show in which sense, and how, the resource approximation “sub-
sumes” Böhm’s one. The crucial ingredient here is the renowed commutation formula (Theorem
3.5.6), for which we provide a “simpler” proof: by simpler we mean that it basically uses prop-
erties which one has already found when developing the resource approximation. With the
addition of some other quite natural properties (Lemma 3.5.9 and related ones), we can prove
that the λ-theories induced by Taylor and Böhm approximation coincide (Corollary 3.5.13). The
“moral” is that, at least in the qualitative case (no coefficients), this non-trivial result is however
easier to prove than it could appear looking at the original proof in [ER08]. The commutation
formula means that the λ-theories =τ and =B actually coincide (Corollary 3.5.13): this pro-
vides an alternative proof of the Contextuality of Böhm trees, which is essentially reduced to
the Monotonicity of Taylor normal form.

We can do much more: in fact we can already translate the Perpendicular lines and the
Stability property from the realm of Taylor expansion to the one of Böhm trees. For the former,
it is straightforward (Theorem 3.5.14); for the latter (Theorem 3.3.37), we need to prove some
results about intersection of Taylor normal forms (Lemma 3.5.27). As it is well known, these two
results (which express some forms of weak sequentiality) in fact have as immediate consequence
that λ-calculus cannot implement parallel computations; we achieve therefore this important
result entirely “syntactically” (the usual proofs being semantic). Finally, we turn the attention
to two other fundamental results of λ-calculus: the Genericity property (Theorem 3.5.29) –
which motivates the identification “unsolvables = meaningless” – and the Continuity lemma
(Lemma 3.5.33) – which is the crucial ingredient of the proof of the fact that all λ-definable
functions are continuous. As for the Stability and for the Perpendicular Lines property, our
proof technique strongly relies on the linearity of resource terms (if something is erased in the
computation, it did not appear from the beginning), but also on the relation between Böhm
approximants and linear/affine resource terms that we will introduce at time.

We conclude the chapter with some comments (Section 3.6) mainly about the relation be-
tween our techniques and the usual one used in order to prove the above results.

3.2 Interlude: an heuristic for the differential λ-calculus

First intuitions Let us consider a real valued function y := f(x) with x ∈ Rn. Denote with
Rn( R the dual space of Rn. Suppose y is differentiable everywhere. This means, by definition,
that there exists a function (the differential of y, which has no reason to be linear) dy : Rn →
(Rn ( R) s.t. y(x + u) = y(x) + dy(x)(u) + o(‖u‖) for all x and for ‖u‖ small. Moreover,
the differential operator d : y ∈ {differentiable functions} 7→ dy ∈ (Rn ( R)R

n
is linear (sum

of functions is defined pointwise). It a basic known fact that d(y)(x)(u) = Dy(x) • u =
∂y

∂u
(x)

(where • is the scalar product in Rn). Here Dy(x) is the gradient of y in x, and we used this
notation instead of the more common one ∇y(x) because it is the one one finds in differential
λ-calculus. Let us denote with D(.) • (.) the function:

D(.) • (.) : (y, u) ∈ {differentiable functions} × Rn 7→ ∂y

∂u
∈ R(Rn)

2In the next chapter we will see that actually it adapts also to the case of λµ-calculus, which supports the
thesis of a “scalable proof”.
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which is linear in both its arguments.
Since we want to put some λ-calculus into those considerations, it is helpful to remember

that, by currying, we can restrict to the case where all functions have arity 1; so let us consider

the case n = 1. The gradient Dy of y becomes to the derivative
d

dx
y of y and • the product · in

R. Now, remember that y is defined via the “law” y = f(x), so if one wanted to explicit f in
the expression “Dy • u”, one would usually write “Df(x) • u”. In λ-calculus notation one would
instead write “D(λx.f)•u”, since the declaration “y = f(x)” is written “y = λx.f”. Furthermore,
since the explicit dependence of Dy • u w.r.t. the independent variable x is given by the “law”
d

dx
f(x)·u, one would write this fact in λ-calculus notation by “Dy•u = λx.

(
d

dx
f · u

)
”. Putting

this two things together, the fact that “the function Dy • u, with y = f(x), is given by the law
d

dx
f · u”, takes the form:

D(λx.f) • u→ λx.

(
d

dx
f · u

)
. (3.1)

However, what we just did is only some abuse of λ-calculus notation, and has, a priori, no
serious content.

Keeping on with the heuristics The following considerations in fact provide some serious
motivation for continuing the investigation. Taylor expanding f(u) near x0 we get:

f(u) = f(x0) +
d

dx
f(x0) · (u− x0) +

∑
n≥2

1

n!

dn

dxn
f(x0) · (u− x0)n.

Let us read this as saying that if we “force” f to use its argument u exactly once, then (for u close

to x0) f(u) behaves like f(x0)+
d

dx
f(x0) ·(u−x0): in fact, in the other factors of the expansion,

f needs “u” at least twice in order to compute (u−x0)n. But f(x0) +
d

dx
f(x0) · (u−x0) is just

a vertical and horizontal shift of
d

dx
f(x0) · u, so that (for u close to x0) we get the following

“moral equation”:

f forced to use its argument u exactly once =
d

dx
f(x0) · u.

Of course, mathematically speaking, we are saying nothing more than the basic fact that the
derivative of a function gives its best linear approximation; what we are adding here is the
reference to the fact of “being forced” to use its argument exactly once, i.e. the notion of
linearity in computer science.

Rembering equation (3.1), we are tempted to read the “term” D(λx.M) •N precisely as the

“name” of an expression of x, such expression being
d

dx
M ·N , which behaves as λx.M when it

is applied to N under the constraint of using N exactly once. Let us say that D(λx.M) •N is
the name of the function that “linearly applies” λx.M to N , call it the linear application.

On the other hand, to force λx.M to use N exactly once during all the computation, means
to make sure N goes replacing exactly one occurrence (instead of all the occurrences) of x in

M and also to make sure it will be never duplicated nor erased. Thus
d

dx
M ·N can be thought

of as some sort of substitution; call it linear substitution.
Consider this new linear substitution. It is clear that not all the occurrences of x in M can

be used for substituting: take for instance M := (λy.yy)x; then (λx.M)N moves N in exactly
one occurrence of x in M (the only one) but doing so one obtains (λy.yy)N which, during
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the computation, duplicates N . In a sense, this occurrence of x in this M is the prototypical
“non linear” one. Let us call linear the good occurrences of a variable x in M we can use for
the linear substitution we are looking for, that is, the occurrences of x in M which cannot be
duplicated nor erased no matter what use of M one does. Call a constructor C(.) of λ-calculus
linear when for all term S and for all variable x, the linear occurrences of x in C(S) are those
linear in S. One sees that:

1. λx.(·) is linear

2. (·)Q is linear but P (·) need not be linear

3. D(·) • (·) is linear in both arguments.

Remark now a crucial fact:

Remark 3.2.1. The previous constructors in 1,2,3 are linear in the sense of λ-calculus exactly
when, read as a functions, they are linear in the usual sense of commutating with sums. In fact:

1. in the case λy.(·) this simply follows from the fact that summing functions is done point-
wise, and in particular from the definition of function sum: the definition of the func-
tion P + Q is, reading the following λ-terms as real functions, precisely λx.(P + Q) :=
λx.P + λx.Q

2. in the case C = (·)Q this simply follows again from the fact that summing functions
is done pointwise, and in particular from the expression defining the sum function: the
expression defining (P+Q)(x) is, reading the following λ-terms as real functions, precisely
(P + Q)x := Px + Qx. On the contrary, a function P (·) need not be linear in the sense
of commuting with sums.

3. in the case D(·) • (·), this is just the already mentioned linearity in both arguments of
D(·) • (·) seen as a real function.

If we remember that the notion of linearity in programming (and proof theory) is – a priori –
unrelated with the usual notion of analysis, all the coincidences expresses by Remark 3.2.1 are
surprising.

Differential λ-calculus in a nutshell Before quickly presenting the actual syntax of the

differential λ-calculus, let us see how, in addition to the previous considerations,
d

dx
M ·N can

be defined inductively on M .

The “directional derivative”
d

dx
M ·N of the program M = M{x} along N should represent

the linear substitution of N in M for x, that is something which behaves as (λx.M)N where
λx.M is forced to use N exactly once. So the linear application D(λx.M) • N and the linear

substitution
d

dx
M · N are respectively the name and the concrete expression of the algorithm

which non-deterministically chooses exactly one linear occurrence of x in M , declares it not
duplicable nor erasable, and then substitutes N for that occurrence. In order to perform such
a linear substitution we certainly have to substitute N for exactly one linear occurrence x0 of x
in M (such an occurrence is guessed non-deterministically); call S the maximal strict subterm
of M containing this chosen occurrence x0. If M = C(S) and C(.) is a linear constructor, we
say that S is in linear position for M . If S is in linear position for M , we are sure that N will
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not be duplicated nor erased in the future. This happens for sure in the cases 1, 3 above, so for
this cases we have:

d

dx
x ·N := N and

d

dx
y ·N := 0 (for y 6= x)

d

dx
(λy.P ) ·N := λy.

(
d

dx
P ·N

)
d

dx
(DP •Q) ·N := D

(
d

dx
P ·N

)
•Q+ DP •

(
d

dx
Q ·N

) (3.2)

where we added the case for the variables, which is clear. The sum in the case of linear
application is there to non-deterministically guess if S is P or Q.

The only remaining case is case 2 above, i.e. M = PQ and S = P or S = Q. If S = P
then S is in linear position for M , so we are already sure the computation will be linear. But if

S = Q the situation is more subtle: our term
d

dx
M ·N has to behave similarly to P (Q{N/x0})

with the only difference that, among all the times that P calls its argument, exactly one has to
be linearly treated while the others are treated as P commands. Now, by definition of the linear

application D(.)• (.), this effect is precisely obtained by linearly applying P to
d

dx
Q ·N and then

apply the result to Q. That is, via the term

(
DP •

(
d

dx
Q ·N

))
Q. Using again formal sums

to represent the non-deterministic guess of S being P or Q, for case 2 we obtain:

d

dx
(PQ) ·N :=

(
d

dx
P ·N

)
Q+

(
DP •

(
d

dx
Q ·N

))
Q. (3.3)

We can finally concretized all those considerations in the following:

Definition 3.2.2. Fix a commutative semiring R. The set of differential terms is the R-module
given by quotienting the words (modulo α-equivalence) inductively defined as:

M ::= 0 | x | λx.M | MM | (DM) •M | aM + bM (for x variable and a, b ∈ R)

under the equations:

i. commutativity and associativity of +

ii. 0 neutral element for + and annihilating element for all constructors except +

iii. linearity (w.r.t. +) of the constructors3 λx.(.), (.)M and D(.) • (.)

iv. usual module equations4.

Differential terms are endowed with the reduction→ given by the union5 of the usual λ-reduction
and the relation:

D(λx.M) •N →∂ λx.

(
d

dx
M ·N

)
where

d

dx
M ·N is the differential λ-term inductively defined by equations (3.2) and (3.3)6.

3Remark that since an application is not linear in the argument, we didn’t add linearity of M(.).
4That is: a(M +N) = aM + aN , (a+ b)M = aM + bM , (ab)M = a(bM) and 1M = M .
5One has to be careful to define context closure in differential λ-calculus. But we are not concerned with

technical details here.

6Plus the case
d

dx
(aP +bQ) ·N := a

d

dx
P ·N+b

d

dx
Q ·N which comes from the fact that the linear occurrences

of x in aP + bQ are clearly those linear in P and those linear in Q. This corresponds again to the fact that
summing functions is done pointwise.
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The following three lemmas are a confirmation that we are, indeed, doing something related
to analysis.

Lemma 3.2.3. One can easily prove that if x does not occur in M then
d

dx
M ·N = 0. From

the perspective of analysis this read as the fact that the derivative of a constant is null.

Lemma 3.2.4. If x does not occur in λy.P , the definition of linear substitution gives:

d

dx
((λy.P )Q) ·N =

(
D(λy.P ) •

(
d

dx
Q ·N

))
Q.

From the perspective of analysis, since the fact that x does not occur in λy.P entails that (λy.P )Q
can be seen as the composition function “(λy.P ) ◦Q” of the independent variable x, this reads
as:

d

dx
((λy.P ) ◦Q) ·N =

d

dy
P∣∣

y=Q

·
(
d

dx
Q ·N

)
.

It is exactly the chain rule7 for the directional derivative of the composition of two functions8.

Lemma 3.2.5. If y does not occur in Q, one has:

d

dx

(
d

dy
M · P

)
·Q =

d

dy

(
d

dx
M ·Q

)
· P +

d

dy
M ·

(
d

dx
P ·Q

)
In particular, if moreover the second summand of the previous equality is zero, a non trivial
case for it to happen being if x does not occur in P 9, one has:

d

dx

(
d

dy
M · P

)
·Q =

d

dy

(
d

dx
M ·Q

)
· P

From the perspective of analysis, the hypotheses say that P is independent from x and Q is

independent from y, so we get
d

dx

(
d

dy
M

)
· P ·Q =

d

dy

(
d

dx
M

)
·Q · P . Cancelling P and Q,

we recover Schwarz’s theorem on the symmetry of second derivatives.

Ehrhard and Regnier found in [ER03] that all this considerations do in fact make sense. Of
course history is always different from the way one can present the topic years later, and they
were not at all thinking of the above heuristics; they realized that the notion of derivative present
in some denotational models of linear logic, based on vector spaces and built by Ehrhard some
time before [Ehr02], could be internalized in the syntax. Their differential constructions are
more general than the λ-calculus framework we quickly presented here, giving life to differential
linear logic [Ehr16] and differential interaction nets [ER06b]. This calculus is confluent, strongly
normalising on typable terms and admits interesting denotational models.

Taylor expansion Differential λ-calculus is mainly interesting because it provides the crucial
tool of Taylor expansion of a program, which we describe below by carrying on our heuristic.

Put, for brevity, DnM • (N1, . . . , Nn) := D(D · · · (DM • N1) • · · · ) • Nn−1) • Nn and also
DnM • Nn := DnM • (N, . . . , N). So, in DnM • (N1, . . . , Nn), exactly n terms (the Ni’s) are
linearly passed to M , and the whole term is still ready to receive other arguments. Remark
that, by definition of linear application, one has:

7With the notation of the first page: d(f ◦ g)(a) = df(g(a)) ◦ dg(a).
8Or equivalently, but more simply, just cancel N and obtain the usual chain rule for 1-dimensional argument

functions.
9The case y not free in the M is trivial because the equality would become 0 = 0 + 0.
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- if n > degxM then Dn(λx.M) • (N1, . . . , Nn)→ 0;

- if n < degxM then (Dn(λx.M)• (N1, . . . , Nn))P will make degxM −n copies of P and put
those copies in M at the place of the remaining degxM − n occurrences of x;

- if degxM = n then Dn(λx.M) • (N1, . . . , Nn) applied on P will just throw it away.

So if we wanted, for some reason, to force λx.M to use, linearly, exactly degxM times an
argument N , we could simply consider (Dn(λx.M) •Nn)0: the lines above precisely say that, in
order for it to not annihilate to 0, the only possibility is that n = degxM . Remember that we
started our heuristics remarking that, in analysis, this is precisely the behaviour produced by
Taylor expansion: it decomposes a function as the sum of what is obtained by forcing it to use
exactly a fixed number n of times its argument, for all possible n.

The same should hold here: if we knew that in an ordinary application MN , the term M
would use its argument N exactly n times, we could in advance provide n copies of N to M
and now force it to treat them linearly, obtaining necessary the same behaviour of MN . On
the other hand, an M applied to an N will certainly use N a certain number n ∈ N of times,
so it should be the case that the behaviour of MN is a superposition of behaviours where M
uses N exactly n times, for all the possible n ∈ N. Moreover, from the point of view of analysis
– say that M is a function of the independent variable x – we remark that (DnM •Nn)0 reads

as
dn

dxn
M∣∣

x=0

· Nn, which is just, modulo the factorial coefficient 1
n! , the n-th summand of the

Taylor expansion of M(N) in 0.

In conclusion, if all this heuristics really makes sense, we should have:

MN =
∑
n∈N

1

n!
(DnM •Nn)0. (3.4)

A first step in this direction in given in [ER03] where, after having properly defined the
framework of differential λ-calculus, it is proved that:

Proposition 3.2.6. If MN λ-reduces to a variable, then equation (3.4) holds (for =λ∂).

What one would now really hope for, would be on one hand to eliminate the constraint of
MN of reducing to a variable and, on the other hand, to be able to Taylor expand all the
applications in a term: indeed, if the above formula holds for any application one could nest
the expansions in order to get, at the end of the day, only linear applications and proving thus
that any application can be really obtained via a sum of purely differential terms, just like in
analysis. These terms could now be really seen as a kind of approximation.

That is, we are looking for a function Θ – the quantitative (or full) Taylor expansion –
mapping λ-terms in a still to be specified space s.t. Θ(x) = x, Θ(λx.M) = λx.Θ(M) and:

Θ(MN) =
∑
n∈N

1

n!
(DnΘ(M) •Θ(N)n)0.

The difficulty is that since Θ must thus be a (possibly infinite) sum, we have to make the
codomain space able to sum series, multiplicate them, admit the same language’s constructors
etc. In [ER08], Ehrhard and Regnier find such a space to be the module R〈Λr〉∞ of formal
linear combinations, with scalars in a semiring R, of some terms in a language Λr similar to
ordinary λ-calculus but with stronger properties, called resource calculus. It is a very simple
confluent and strongly normalising calculus (also in the untyped case) – with a lot of similarities
to Boudol’s λ-calculus with multiplicities [Bou93] – in which resource consumption is strictly
controlled and the vast majority of its “resource-terms” annihilates for lack or abundance of
resources to be consumed. So the previous recursive equations for Θ do indeed define a function
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Θ : Λ → R〈Λr〉∞, the (qualitative) Taylor expansion and moreover this function satisfies a
direct characterization:

Θ(M) =
∑

t∈T (M)

1

m(t)
t.

Here m(t) ∈ N is a certain number which has to do with the combinatorics of some groups
handling permutation of resources, and T : Λ → P(Λr) is an easily inductively defined func-
tion, called the qualitative Taylor expansion. This function associates a λ-term with the set of
resource-terms which “try to act as it” but in the resource-sensitive world of Λr, and will be the
major object of study in this thesis.

Let us conclude with two final remarks.

First, R〈Λr〉∞ is endowed with a structure of algebra over R by means of a product which
is the natural notion of multiplication of series; one defines then the constructor (Dn(.) • (.)n)0
in R〈Λr〉∞ as: (Dnϑ1 • ϑn2 )0 := ϑ1ϑ

n
2 (we mean that the former ϑn2 is part of the name of the

constructor we are defining, while the latter is the n-th power of ϑ2 via the product of R〈Λr〉∞).
Therefore now one has:

Θ(MN) =
∑
n∈N

1

n!
Θ(M)Θ(N)n.

Since Θ(M) in the above sum does not depend on n, we define the map (.)! : R〈Λr〉∞ → R〈Λr〉∞
given by ϑ! :=

∑
n∈N

ϑn

n! and obtain:

Θ(MN) = Θ(M)Θ(N)!. (3.5)

The map (.)! does not only look like the exponential power series, but it really is an exponential,
as it satisfies in R〈Λr〉∞ the characteristic equations: 0! = 1 and (ϑ1 + ϑ2)! = ϑ!

1ϑ
!
2. Reading

equation (3.5) from a logical point of view, one recovers the fundamental decomposition of linear
logic A → B = (!A) ( B. In fact, the map (.)! corresponds to the promotion rule of linear
logic.

Finally, let us remark that in [ER06a] it is proven a commutation formula:

NF(Θ(M)) = Θ(BT(M))

for a natural definition of the normal form of the full Taylor expansion and the full Taylor
expansion of Böhm trees. The easier “qualitative” version (i.e. without coefficients) of this
formula still holds:

NF(T (M)) = T (BT(M)).

It will be a central tool in Section 3.5 and we will give an alternative proof of it (Theorem 3.5.6).

3.3 The qualitative Taylor expansion for λ-calculus

Notation 3.3.1. From now on, we will simply write M → N instead of M →λ N . We will as
well omit the λ in �λ. On the contrary, for any other reduction rule we will precise it, as for
instance in the head-reduction M →h N .

Definition 3.3.2 (Resource λ-terms). The set Λr of resource λ-terms is defined by induction
as:

t ::= x | λx.t | t[
n︷ ︸︸ ︷

t, . . . , t] for n ∈ N.

Resource terms are subject to all the usual syntactical precautions, namely α-equivalence and
Barendregt convention for the writing. We call bag a multiset of resource terms. We call
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degx(t) the degree of x in t, that is, the number of (free) occurrences of x in t. We define
multi-hole resource contexts as expected.

Remark 3.3.3. In the following it will happen to use the size sz(t) ∈ N≥1 of a resource λ-
term t, which is inductively defined as: sz(x) := 1, sz(λx.t) := 1 + sz(t), sz(t0[t1, . . . , tk]) :=

1 + k +
k∑
i=0

sz(ti).

We consider the extension of this syntax to sums, by means of the free Z2-module 2〈Λr〉
constructed as described in Section 2.1. The application and the λ-abstraction constructors are
extended, by linearity, on all sums. In particular, multihole-resource-contexts are always linear
when seen as functions on 2〈Λr〉.

Definition 3.3.4. 1. For t, t1, . . . , tk ∈ Λr, we define the sum t〈[t1, . . . , tk]/x〉 ∈ 2〈Λr〉, called
the linear substitution, as:

t〈[t1, . . . , tk]/x〉 :=

{ ∑
σ∈Sk

t{tσ(1)/x
1, . . . , tσ(k)/x

k} if k = degx(t)

0 otherwise

where Sn is the symmetric group over n elements, and with xi we denote the ith occurrence
of x in t. This operation is well-defined as the sum makes it independent from the choice
of the enumeration of the occurrences of x in t. An equivalent inductive way of defining
the operation is given by Figure 3.110.

2. This calculus is endowed with the resource λ-reduction →r⊆ Λr × 2〈Λr〉 defined as the
contextual closure of the relation:

(λx.t)[~u]→r t〈[~u]/x〉.

This relation is extended to a relation→r⊆ 2〈Λr〉×2〈Λr〉 as described in the preliminaries.

x〈[v]/x〉 = v y〈1/x〉 = y

x〈1/x〉 = x〈[v, w, ~u]/x〉 = 0 y〈[v, ~u]/x〉 = 0 (λy.t)〈[~u]/x〉 = λy.t〈[~u]/x〉
(t[v1, . . . , vn])〈[~u]/x〉 =

∑
([~w 0],...,[~w n]) w.c. of [~u]

t〈[~w 0]/x〉
[
v1〈[~w 1]/x〉, . . . , vn〈[~w n]/x〉

]

Figure 3.1: Inductive characterisation of linear substitution

The application of function to a bag, as in (λx.s)[t1, . . . , tk], should be understood as follows:
the program s during its execution must perform n “calls” to its argument x, one for each
occurrence of x in s, each time receiving as value a different ti non-deterministically chosen
from the bag (in the reduction we consider a formal sum of all possibilities). In case of a
mismatch n 6= k, s “raises an exception” annihilating the whole term, so the outcome of the
computation is the empty sum 0. This is precisely the meaning of the following reduction →r.

It is well known that:

10In the figure we refer to the notion of “weak composition” (“w.c.” in the figure) of a bag; such notion is
defined in Definition 4.4.3.



44 CHAPTER 3. THE RESOURCE APPROXIMATION FOR λ-CALCULUS

Proposition 3.3.5. The reduction →r⊆ 2〈Λr〉 × 2〈Λr〉 is confluent and strongly normalising.
In particular, every sum T ∈ 2〈Λr〉 admits exactly one normal form nfr(T) ∈ 2〈Λr〉.

The strong normalization is easy, since as there is no duplication and contracting a redex
eliminates exactly one abstraction, the size sz(·) is a strictly decreasing measure. Moreover, one
can check that the resource calculus is actually locally confluent, thus confluence follows from
strong normalization by Newman’s Lemma.

Remark 3.3.6. Resource λ-terms are very similar, in the syntax, to usual λ-terms. They also
have all shape λ~x.s[~u 1] · · · [~un], with s either a r-redex or a variable. In particular, analogously
to λ-normal λ-terms, the r-normal resource terms obey to the following inductive grammar:

λ~x.y | λ~x.y[~u1] · · · [~un] where the uij’s are r-normal.

It will happen (in particular in Section 3.5), to “go by induction on the r-normal structure
of a resource term” (which we already know to be r-normal). By that we simply mean that we
are going by induction on the above inductive grammar of r-normal resource terms. We will
denote the set of all the r-normal resource terms by nfr(Λ

r).

Notation 3.3.7. We will often use the notation above for indices on bags: [~u i] denotes some
bag whose elements are denoted by ui1, . . . , u

i
k (for some k).

Remember that the reduction on sums is not “well-behaved” with respect to + (see last
lines of Section 2.1). The following is a special case in which we can reduce in all the addends,
eliminating the terms which “go to zero”.

Remark 3.3.8. Suppose that T,S ∈ 2〈Λr〉 are s.t. nfr(s) = 0 for all s ∈ S and nfr(t) 6= 0 for
all t ∈ T. Then we have: T + S�r T.

In fact, say S = s0 + S0 (if S = 0 there is nothing to prove). Say s0 →r S′0. Then we are
allowed to reduce s0 in T + S, because s0 is different from all the other addends of the sum (it
is not in S by definition, and it is not in T because nf→r(s0) = 0). So T + S→r T + S′0 + S0 =
T + S̃′0 + S0, where S̃′0 ⊆ S′0 and S̃′0 + S0 does not contain duplicates. This is due to the fact
that in S′0 we may have created elements already in S0, so S̃′0 is taking into account the erasing
of such duplicates. Now we have two cases:

1- either S̃′0 = 0, in which case we have T + s0 + S→r T + S0;
2- or S̃′0 6= 0, say S̃′0 = s1 + S1. In this last case we remark that the size of s1 is strictly

smaller of that of s, and that s1 is different from all the elements of T + S1 + S0. Thus, if
s1 →r S′1, we can reduce T + S̃′0 + S0 = T + s1 + S1 + S0 →r T + S′1 + S1 + S0. Now we can
apply the same argument as before (ereasing the duplicates) and we have again the two cases
1 or 2. However, we cannot stay forever in case 2, because the (well-founded) size is stricly
decreasing. Thus at a certain iteration we must fall into case 1. But if we fall into case 1, then
we are done, since we have “eliminated s0” from S and we can start the proof again11 knowing
that there is only a finite number of elements in S.

The following lemma gives another case in which we can consecutively reduce sums.

Lemma 3.3.9. 1. Let c be a single-hole context.

(a) Let S0 →r S1. Then: cLS0 M→r cLS1 M.
(b) Let S0 �r S1. Then: cLS0 M�r cLS1 M.

2. Let c = cLξ1, ξ2 M be a 2-context s.t. degξ1(c) = degξ2(c) = 1, and T be a sum.

11A more rigorous proof would require an induction on the number of elements of S and on the size of a sum,
but we preferred to leave the argument “non-inductive”.
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(a) Let S0 →r S1. Then: cLT, S0 M�r cLT,S1 M (and the same for cLS0,TM).

(b) Let S0 �r S1. Then: cLT, S0 M�r cLT,S1 M (and the same for cLS0,TM).

(c) Let S0 �r S1 and T�r T1. Then: cLT,S0 M�r cLT1,S1 M.
It is easy to lift this property to the case of more than two holes (but always with
degree 1).

Proof. (1a). If S0 →r S1 then S0 = s+ S̃, S1 = S′ + S̃, with s→r S′ and s /∈ S̃. So cLsM /∈ cL S̃M.
Remark that there may be duplicates in S′ + S̃. Now, since the reduction is contextual,
we have cLsM →r cLS′ M. So cLS0 M = cLsM + cL S̃M →r cLS′ M + cL S̃M = cLS1 M, where the last
equality is easily seen to hold.

(1b). Straightforward induction on the number n ∈ N s.t. S0 →r S′1 →r · · · →r S′n−2 →r S1,
using point (1)(a).

(2a). Since cLt, ξ M is a single-hole context, if S0 →r S1 then by point (1a) we have cLt,S0 M →r

cLt,S1 M for all t ∈ T. Let T =:
k∑
i=0

ti. Since cLt0,S0 M 6= cLti,S0 M for all i 6= 0, we have:

cLT, S0 M =
k∑
i=0

cLti,S0 M →r cLt0, S1 M +
k∑
i=1

cLti, S0 M. But cLt0, S1 M 6= cLt1, S0 M 6= cLti,S0 M

for all i 6= 1, so we have: cLt0,S1 M +
k∑
i=1

cLti,S0 M →r cLt0,S1 M + cLt1,S1 M +
k∑
i=2

cLti, S0 M.

We can keep reducing in this way all the k elements of T, and we obtain as final sum
k∑
i=0

cLti, S1 M = cLT, S1 M, so we are done.

(2b). As in point (1)(b).

(2c). Immediate by point (2b).

We will not explicit the use of the previous lemma.

Definition 3.3.10 (Qualitative Taylor expansion). The (qualitative) Taylor expansion of a
term is the map T : Λ→P∗(Λr) inductively defined as:

T (x) := {x}

T (λx.M) := {λx.t | t ∈ T (M)}

T (MN) := {t[~u] | t ∈ T (M) and [~u] ∈ ! T (N)}.

For M ∈ Λ one defines the (qualitative) Taylor normal form as the possibly empty set:

NFT (M) :=
⋃

t∈T (M)

nfr(t) ⊆P(Λr).

The inclusion of Taylor normal forms endows Λ with a partial preorder ≤, whose induced
equivalence =τ on Λ is given by the equality of Taylor normal forms.

Example 3.3.11. It is well known that NFT (Ω) = ∅. Let us compute it as an example.

For n ∈ N, let us set, in this example, ∆n := λx.x[

n︷ ︸︸ ︷
x, . . . , x]. Now we have: T (Ω) =

{∆n0 [∆n1 , . . . ,∆nk ] | k, n0, . . . , nk ∈ N}, and it is immediate to show, by induction on k ∈ N,
that nfr(∆n0 [∆n1 , . . . ,∆nk ]) = 0 for any generic such term. In fact, by definition of ∆n0, such
element reduces to 0 whenever k 6= n0 + 1, and otherwise, that is if k = n0 + 1 ≥ 1, it reduces
to ∆nσ(1)

[∆nσ(2)
, . . . ,∆nσ(k)

], for some permutation σ on k elements. But now we are done by
the inductive hypothesis on this latter term, which has k − 1 < k elements in the bag.



46 CHAPTER 3. THE RESOURCE APPROXIMATION FOR λ-CALCULUS

Lemma 3.3.12. If λx1 . . . λxn.xM1 · · ·Mk =τ λx1 . . . λxn′ .yN1 · · ·Nk′ then n = n′, k = k′,
x = y and Mi =τ Ni for all i = 1, . . . , k.

Proof. This easily follows from the definitions. Indeed, since:

NFT (λx1 . . . λxn.xM1 · · ·Mk) = λx1 . . . λxn.x ! NFT (M1) · · · ! NFT (Mk)

and the same for λx1 . . . λxn′ .yN1 · · ·Nk′ , one has n = n′, k = k′ and x = y. In order to
show Mi =τ Ni it suffices to show Mi ≤ Ni, the result being symmetrical. To that end, take
t ∈ NFT (Mi), i.e. [t] ∈ ! NFT (Mi). Thus:

λ~x.x1 · · · 1[t]1 · · · 1 ∈ NFT (λ~x.xM1 · · ·Mk) = NFT (λ~x.xN1 · · ·Nk)
= λ~x.x ! NFT (N1) · · · ! NFT (Nk),

whence [t] ∈ ! NFT (Ni), i.e. t ∈ NFT (Ni).

The first important result is the following:

Theorem 3.3.13 (Monotonicity property). Any context C is monotone w.r.t. ≤.

Proof. We have to prove that for allM,N ∈ Λ s.t. NFT (M) ⊆ NFT (N), one has NFT (CLM M) ⊆
NFT (CLN M). We go by induction on C.

If C = ξ then NFT (CLM M) = NFT (M) ⊆ NFT (N) = NFT (CLN M).

If C = x then NFT (CLM M) = {x} = NFT (CLN M).

If C = λx.C ′ then:

NFT (CLM M) = {λx.t | t ∈ NFT (C ′LM M)} ⊆ {λx.t | t ∈ NFT (C ′LN M)} = NFT (CLN M).

If C = C ′C ′′ then:

NFT (CLM M) =
⋃

t∈NFT (C′LM M)

⋃
[~u]∈ ! NFT (C′′LM M)

nfr(t[~u])

⊆
⋃

t∈NFT (C′LN M)

⋃
[~u]∈ ! NFT (C′′LN M)

nfr(t[~u])

= NFT (CLN M).

Monotonicity also holds for multi-hole contexts. That is: if M1 ≤ N1, . . . ,Mn ≤ Nn then
CLM1, . . . ,Mn M ≤ CLN1, . . . , Nn M for all k-context C. This can be directly proved simply by
considering a k-context C and carrying on the exact same proof as above. Or also, by consid-
ering the contexts CiLξ M := CLN1, . . . , Ni−1, ξ,Mi+1, . . . ,Mn M (for i = 1, . . . , n), and remarking
that, by Monotonicity on contexts, one has: CLM1, . . . ,Mn M ≤ CLN1,M2, . . . ,Mn M ≤ · · · ≤
CLN1, . . . , Nn−1,Mn M ≤ CLN1, . . . , Nn M.

Monotonicity immediately implies that CLU M is a minimal element w.r.t ≤, for any U =τ Ω.
But we can say more:

Corollary 3.3.14. 1. The equivalence =τ is contextual. That is, multi-hole contexts are
well defined functions on Λ/=τ .
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2. In Λ/=τ , if Ω ∈ Im(C)12 then Ω is a fixed-point of C.

Proof. 1. It is immediate from Theorem 3.3.13 since =τ is the induced equivalence of ≤.

2. As we already remarked, any U ∈ Λ with NF(T (U)) = ∅ is minimal w.r.t ≤, that is,
NFT (CLM M) ⊇ NFT (CLU M) for all M ∈ Λ. So NFT (CLU M) 6= ∅ entails NFT (CLM M) 6=
∅. Now reading the contrapositive of what we just obtained, we obtain point (2).

Remark 3.3.15. One can easily check that for all M ∈ Λ,

(1) M is normal iff NF(T (M)) = T (M) iff T (M) ⊆ nfr(Λ
r).

(2) T (M) ∩ nfr(Λ
r) ⊆ NF(T (M)).

(3) If M � N then T (M) ∩ nfr(Λ
r) ⊆ T (N).

The following lemma says that Taylor expansion behaves well w.r.t substitutions.

Lemma 3.3.16. Let M,N ∈ Λ and x be a variable. We have:

T (M{N/x}) =
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

t〈[~u]/x〉.

Proof. Case M = x:

T (M{N/x}) = T (N) = {u | u ∈ T (N)} =
⋃

u∈T (N)

x〈[u]/x〉 =
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

t〈[~u]/x〉.

Case M = y 6= x:

T (M{N/x}) = T (M) = {y} = y〈1/x〉 =
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

t〈[~u]/x〉.

Case M = λy.P :

T (M{N/x}) = T (λx. P{N/x})
= {λx.s | s ∈ T (P{N/x})}
=

⋃
p∈T (P )

⋃
[~u]∈ ! T (N)

λx. p〈[~u]/x〉 (by inductive hypothesis)

=
⋃

p∈T (P )

⋃
[~u]∈ ! T (N)

(λx.p)〈[~u]/x〉

=
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

t〈[~u]/x〉.

Case M = PQ:

T (M{N/x}) =
⋃
n∈N

⋃
p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~s0],...,[~sn]∈ ! T (N)

{
v[w1, . . . , wn] | v ∈ p〈[~s0]/x〉, wi ∈ qi〈[~si]/x〉

}
(by inductive hypothesis)

=
⋃
n∈N

⋃
p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~u]∈ ! T (N)

∑
([~s0], . . . , [~sn])

w.c. of [~u]

p〈[~s0]/x〉[q1〈[~s1]/x〉, . . . , qn〈[~sn]/x〉]

=
⋃

p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~u]∈ ! T (N)

(p[~q])〈[~u]/x〉 (by Figure 3.1)

=
⋃

t∈T (M)

⋃
~u∈ ! T (N)

t〈[~u]/x〉.

12As usual, Im(C) means here the image of the context function C.
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The following property is important. Not only one needs it in many proofs, but also it is, in
some sense, the prototypical property a “notion of approximation” should satisfy (see the end
of Section 3.6).

Proposition 3.3.17. Let M,N ∈ Λ. If M → N then the following holds:

1. For all s ∈ T (M), s�r T for some sum T ⊆ T (N).

2. For all s′ ∈ T (N), there exist s ∈ T (M) such that s�r s
′ + T for some sum T ⊆ T (N).

Proof. (1) and (2). We can write M = CL(λx.P )QM and N = CLP{Q/x}M, for some P,Q ∈ Λ,
x variable and C = CLξ M a single-hole context. Now go by induction on C. In the case C = ξ,
both (1) and (2) are straightforward using Lemma 3.3.16. The only interesting case is C = DC ′.

(1). Take s ∈ T (M). Then s = s′[s1, . . . , sk] for some s′ ∈ T (D) and s1, . . . , sk ∈ T (C ′L(λx.P )QM).
By inductive hypothesis we have that for all i = 1, . . . , k, there is a Ti ⊆ T (C ′LP{Q/x}M)
such that si �r Ti. So s = s′[s1, . . . , sk] �r s

′[T1, . . . ,Tk] =
∑
s′i∈Ti

s′[s′1, . . . , s
′
k] =: T, and

since each s′[s′1, . . . , s
′
k] ∈ T (DC ′LP{Q/x}M) = T (N), we are done.

(2). For (2), take s′ ∈ T (N). Then s′ = s′′[s1, . . . , sk] for some s′′ ∈ T (D) and s1, . . . , sk ∈
T (C ′LP{Q/x}M). By inductive hypothesis we have that for all i = 1, . . . , k, there is an
s̃i ∈ T (C ′L(λx.P )QM) such that s̃i �r si + Ti for some sum Ti ⊆ T (C ′LP{Q/x}M). So
T (M) = T (DC ′L(λx.P )QM) 3 s := s′′[s̃1, . . . , s̃k] �r s

′′[s1, . . . , sk] + T = s′ + T for some
sum T ⊆ T (N), and we are done.

Corollary 3.3.18. The equivalence =τ is a λ-theory.

Proof. We already know that it is contextual (Corollary 3.3.14), so it is enough to show that if
M → N then NFT (M) = NFT (N). Let us do the two inclusions.

(⊆). If t ∈ NFT (M) then t ∈ nfr(s), for an s ∈ T (M). By Proposition 3.3.17 there is S ⊆ T (N)
s.t. s �r S. But by confluence and being t normal, it must be t ∈ nfr(S). In particular
this means that t ∈ nfr(t

′) for some t′ ∈ S. Thus, t ∈ NFT (N).

(⊇). If t ∈ NFT (N) then t ∈ nfr(s
′), for an s′ ∈ T (N). By Proposition 3.3.17 there is s ∈ T (M)

s.t. s�r s
′+T for a sum T. But by confluence this means t ∈ nfr(s). Thus, t ∈ NFT (M).

Remark 3.3.19. One can easily check that for all M ∈ Λ normalizable, from remark 3.3.15(1)
and Corollary 3.3.18 we obtain the commutation: T (nfλ(M)) = NF(T (M)). In the Section 3.5
we will generalize this commutation to the case when M is not normalizable.

Let us state here a fundamental result, due to [ER08]. We will quickly comment on it when
we will prove it in the case of λµ-calculus (Theorem 4.4.51). In particular, it will be needed in
Theorem 3.3.37.

Lemma 3.3.20 (Non-interference property). Let M ∈ Λ and s, t ∈ T (M). If nfr(s)∩nfr(t) 6= ∅
then s = t.

Remark that this immediately extends to arbitrary intersections: if ti ∈ T (M) for all i ∈ I
and if

⋂
i∈I

nfr(ti) 6= ∅, then nfr(ti) ∩ nfr(tj) 6= ∅ for all i, j ∈ I, and so ti = tj for all i, j ∈ I.

A first application of Lemma 3.3.20 is given by the following Lemma, which gives a case in
which reducing each addend of a sum is possible.
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Lemma 3.3.21. 1. Let
∑
i
ti ⊆ T (M) be a sum (thus, finite) of distinct terms. Suppose

that for all i we have nfr(ti) 6= 0 and ti →r Ti + Si, with nfr(u) 6= 0 for all u ∈ Ti and
nfr(s) = 0 for all s ∈ Si. Then: ∑

i

ti �r

∑
i

Ti.

2. The same of point 1 still holds without the condition “nfr(ti) 6= 0 for all i”.

Proof. (1). Reducing t0 in
∑
i
ti (if the sum is empty there is nothing to prove), we have:∑

i
ti →r T0 + S0 +

∑
i≥1

ti =: T1. Now, each ti, for i ≥ 1, is not in S0 because it does not

reduce to 0; and it is not in T0 because otherwise 0 6= nfr(ti) ⊆ nfr(T0) = nfr(t0). But
T (M) 3 t0 6= t1 ∈ T (M), so we would have a contradiction with Lemma 3.3.20. Therefore, we
are allowed to reduce t1 in T1. We obtain: T1 = t1 +T0 +S0 +

∑
i≥2

ti →r T1 +S1 +T0 +S0 +
∑
i≥2

ti.

Remark here that we do not care about the presence of eventual duplicates. In fact, all we care
is that now the same argument as before, involving Lemma 3.3.20, shows that we can reduce t2
in the previous sum. In this way, we reduce all the ti’s, and obtain at the end:

∑
i
ti �r

∑
i
Ti+S,

for some sum S s.t. all its element reduce to 0. Thus, by Remark 3.3.8 we are done13.

(2). Let
∑
i
ti =: T + S, with nfr(u) 6= 0 for all u ∈ T and nfr(s) = 0 for all s ∈ S..

Remark 3.3.8 gives
∑
i
ti �r T and T is in the hypotheses of point 1. Whence, the result.

We will not explicit the use of the previous Lemma.

We introduce now a reduction ”⇓” that captures in one (big-)step the notion of r-normal
form (in the sense of Lemma 3.3.24).

Definition 3.3.22 (Big-step reduction). The big-step reduction ⇓ ⊆ Λr × Λr is the contextual
closure of the rules given in Figure 3.2.

t normal

t ⇓ t
t ⇓ t′

λx.t ⇓ λx.t′
t ⇓ x u1

1 ⇓ v1
1 · · · u1

m1
⇓ v1

m1
· · · uk1 ⇓ vk1 · · · ukmk ⇓ v

k
mk

t [u1
1, . . . , u

1
m1

] · · · [uk1, . . . , ukmk ] ⇓ x [v1
1, . . . , v

1
m1

] · · · [vk1 , . . . , vkmk ]

t ⇓ λx.t′ u1 ⇓ v1 · · · uk ⇓ vk w[~s 1] · · · [~sh] ⇓ t′′ w ∈ t′〈[~v]/x〉
t [~u] [~s 1] · · · [~sh] ⇓ t′′

Figure 3.2: Base cases of the big-step reduction for λ-calculus

It is clear that ⇓ is not a function, in that there can be multiple t′ s.t. t ⇓ t′.

Remark 3.3.23. A t′ ∈ Λr is r-normal as soon as t ⇓ t′ for some t ∈ Λr. This is immediate by
induction on a reduction t ⇓ t′.

The next lemma says that, in fact, big-step reduction is simply an inductive characterization
of nfr(·).

13A more formal proof would require to perform an induction, but we preferred to keep the argument non-
inductive.
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Lemma 3.3.24. For all t, t′ ∈ Λr one has: t ⇓ t′ iff t′ ∈ nfr(t).

Proof. (⇒). By induction on a reduction t ⇓ t′ we prove that t�r t
′+T for some sum T. Since t′

r-normal thanks to Remark 3.3.23, this ends the proof. All the cases being immediate, let
us see only the one corresponding to t = p[~u][~s 1] · · · [~sh], that is the one where p ⇓ λx.p′,
ui ⇓ vi for i = 1, . . . , k, and w[~s 1] · · · [~sh] ⇓ t′, with w ∈ p′〈[~v]/x〉. In this case, using the
inductive hypothesis on the bigstep-reductions above, we get:

t = p[~u][~s 1] · · · [~sh] �r (λx.p′)[~v][~s 1] · · · [~sh] + T
→r p′〈[~v]/x〉[~s 1] · · · [~sh] + T
3 w[~s 1] · · · [~sh]
�r t′ + T′.

(⇐). By induction on the size sz(t) ∈ N≥1 of t. If sz(t) = 1 then t = x = t′ is normal and
we are done by the first rule defining ⇓. If sz(t) ≥ 2 then we start recalling that, as
every resource term, t has the shape t = λy1 · · · ym. u[v1, . . . , vn] with u either a variable
or a redex (λx.s0)[s1, . . . , sk]. Now if m 6= 0 then t′ must be of shape t′ = λ~y.t̃ for some
t̃ ∈ nfr(u[~v]). The inductive hypothesis on u[~v] (of strictly smaller size than t because of
the presence of at least “λy1”) gives u[~v] ⇓ t̃, whence t ⇓ t′ by the second rule defining
⇓. So Wlog m = 0. Analogously one treats the case where u = x. In this case t′ must
have shape t′ = x[t1, . . . , tn] for some ti ∈ nfr(vi). If n = 0 the result is immediate, and in
the case n 6= 0 the inductive hypothesis on each vi (of strictly smaller size than t because
of the presence of the bag) gives vi ⇓ ti, whence t ⇓ t′ by the third rule defining ⇓. We
are thus left with the case t = (λx.s0)[~v][~s 1] · · · [~sh]. But t →r s0〈[~v]/x〉[~s 1] · · · [~sh] �r

nfr(s0)〈[nfr(v1), . . . ,nfr(vn)]/x〉[~s 1] · · · [~sh]. By confluence t′ ∈ nfr(s̃[~s
1] · · · [~sh]) for some

s̃ ∈ s′0〈[v′1, . . . , v′n]/x〉, for some s′0 ∈ nfr(s0), v′i ∈ nfr(vi). Also, sz(s̃[~s 1] · · · [~sh]) ≤ sz(t)
and thus the inductive hypothesis on it gives s̃[~s 1] · · · [~sh] ⇓ t′. But we can apply the
inductive hypothesis also on s0 and on each vi since their size is clearly strictly smaller
than that of t, and so we get vi ⇓ v′i as well as s0 ⇓ s′0, whence λx.s0 ⇓ λx.s0. Hence, we
can apply the last rule of the definition of ⇓ and obtain t = (λx.s0)[~v][~s 1] · · · [~sh] ⇓ t′.

Lemma 3.3.25. (1) For all t ∈ T (M) and t′ ∈ nfr(t), there is N ∈ Λ such that M � N and
t′ ∈ T (N).

(2) For all t ∈ T (M), there exist N ∈ Λ such that M � N and nfr(t) ⊆ T (N).

Proof. (1). Thanks to the previous lemma we can prove the result by induction on t ⇓ t′. All
the cases are similar, so let us only show the case for t = p[~u][~s 1] · · · [~sh], that is the one
where p ⇓ λx.p′, ui ⇓ vi for i = 1, . . . , k, and w[~s 1] · · · [~sh] ⇓ t′, with w ∈ p′〈[~v]/x〉. In
this case it must be M = PQ~R, with p ∈ T (P ), [~u] ∈ ! T (Q) and [~s i] ∈ ! T (Ri). By
inductive hypothesis on each ui, for all i = 1, . . . , k there is Qi ∈ Λ s.t. Q � Qi and
vi ∈ T (Qi). By confluence there exist Q′ ∈ Λ such that every Qi � Q′, and since all
the vi are normal, by Remark 3.3.15(3) we have v1, . . . , vk ∈ T (Q′) (if k = 0 just take
Q′ := Q). Also, the inductive hypothesis on p ∈ T (P ) (which is such that p ⇓ λx.p′)
gives a P ′ ∈ Λ such that P � λx.P ′ and p′ ∈ T (P ′). But then by Lemma 3.3.16 we
have w[~s 1] · · · [~sh] ∈ T (P ′{Q′/x}~R), and thus the inductive hypothesis on the fact that it
⇓-reduces to t′ gives an N ∈ Λ such that P ′{Q′/x}~R � N and t′ ∈ T (N). Now we have
M � (λx.P ′)Q′ ~R→ P ′{Q′/x}~R� N and we are done.

(2). By (1) we have that for all s ∈ nfr(t), there exist Ns ∈ Λ such that M � Ns and
s ∈ T (Ns). Now, if nfr(t) = 0 then one can choose N := M ; otherwise, by confluence
there is an N ∈ Λ such that Ns � N for all s ∈ nfr(t), and since every such s is r-normal,
by Remark 3.3.15(3) one has that s ∈ T (N).
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One can immediately lift the previous result to sums. This is done in the next Corol-
lary 3.3.26, which will also be proved again, with a different method, at the end of the next Sec-
tion 3.3.1.

Corollary 3.3.26. For all T ⊆ T (M), there exist N ∈ Λ such that M � N and nfr(T) ⊆ T (N).

Proof. One can reason in the exact same way as for Lemma 3.3.25(2), remembering that by
definition nfr(T) =

⋃
s∈T

nfr(s).

In the following of the thesis the most of the times that we will use Corollary 3.3.26 we could
in fact already use the version for T = t, that is, Lemma 3.3.25(2).

Corollary 3.3.27. If N =τ λ~x.xM1 · · ·Mk then N � λ~x.xN1 · · ·Nk, for some Ni ∈ Λ s.t.
Ni =τ Mi.

Proof. We know that NFT (N) = NFT (λ~x.xM1 · · ·Mk) = λ~x.x ! NFT (M1) · · · ! NFT (Mk) 6= ∅.
Therefore there is an h ∈ T (N) and a λ~x.x[~v 1] · · · [~v k] ∈ nfr(h), with vij ∈ NFT (Mi). By

Corollary 3.3.26, N � N ′ for some N ′ ∈ Λ s.t. λ~x.x[~v 1] · · · [~v k] ∈ nfr(h) ⊆ T (N ′). So it must
be N ′ = λ~x.xN1 · · ·Nk for some Ni ∈ Λ. Now, by Corollary 3.3.18 we get λ~x.xM1 · · ·Mk =τ

λ~x.xN1 · · ·Nk, and applying Remark 3.3.12, Ni =τ Mi for all i = 1, . . . , k.

3.3.1 Rigids of a resource term

We consider in this subsection the notion of rigid term. We are mainly interested in the fact that
rigid terms are canonically associated with a resource term (Definition 3.3.29). Rigid-calculi
have been considered, in various forma, e.g. in [TAO17], [MPV17] and [OA20], in relation to,
respectively, generalized species of structures, intersection types and the combinatorial role of
the factorial coefficients in the full (i.e. quantitative) Taylor expansion of a term.

The reason why we are interested in rigid terms here is double: first, as already mentioned,
it allows us to give an alternative proof of Corollary 3.3.26; we will adapt the same method
in Section 4.3, and it will work also for λµ-calculus. The second reason is that the results we
will prove in this subsection about the rigids associated with a resource term (Lemma 3.3.32
and Proposition 3.3.33) are needed in the remainder of the chapter (in particular, in the proof
of the Stability property – Theorem 3.3.37).

In the following, “〈. . . 〉” denotes a list (and 〈〉 the empty list).

Definition 3.3.28 (Rigids). The set of rigid resource λ-terms is defined by:

t ::= x | λx.t | t〈t, . . . , t〉.

The set of rigid k-context is defined as expected adding the clause “ξ1 | · · · | ξk” for the holes.

Definition 3.3.29. Let c be a resource-k-context. We define a set Rigid(c) of rigid k-contexts,
whose elements are called the rigids of c, by induction on c as follows:

1. Rigid(ξi) = {ξi}

2. Rigid(x) = {x}

3. Rigid(λx.c0) = {λx.c•0 | c•0 ∈ Rigid(c0)}

4. Rigid(c0[c1, . . . , ck]) = {c•0〈c•σ(1), . . . , c
•
σ(k)〉 | c

•
i ∈ Rigid(ci) and σ permutation}.
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Our set Rigid(c) is the preimage F−1(c) of c under the surjection F 14 from rigid contexts to
resource context that forgets the order of the elements in the lists. Its graph relation is what in
[OA20] is called the “representation relation”. In the following definition we precisely operate
such a forgetful operation, but in addition we consider terms filling the holes.

Definition 3.3.30. Let c• be a rigid of a resource-k-context c and, for i = 1, . . . , k, let ~v i :=
〈vi1, . . . , videgξi (c)

〉 be a list15 of resource terms. We define, by induction on c, a resource term

c•L~v1, . . . , ~vk M as follows:

1. If c = ξi then c• = ξi; we set c•L〈〉, . . . , 〈〉, 〈vi1〉, 〈〉, . . . , 〈〉M := vi1.

2. If c = x then c• = x; we set c•L〈〉, . . . , 〈〉M := x.

3. If c = λx.c0 then c• = λx.c•0 where c•0 is a rigid of c0; we set c•L~v1, . . . , ~vk M = λx.c•0L~v
1, . . . , ~vk M.

4. If c = c0[c1, . . . , cn], then c• = c•0〈c•σ(1), . . . , c
•
σ(n)〉 where c•i is a rigid of ci. So each list

~v i factorizes as a concatenation ~w i0 ~w i1 · · · ~w in of lists where ~w i0 has exactly degξi(c0)
elements and ~w ij has exactly degξi(cσ(j)) elements16; we set:

c•L~v1, . . . , ~vk M := c•0L ~w
10, . . . , ~wk0 M[c•σ(1)L ~w

11, . . . , ~w k1 M, . . . , c•σ(n)L ~w
1n, . . . , ~w kn M].

Remark 3.3.31. One has that if v �r V then:

c•L · · · , 〈· · · , v, · · · 〉, · · ·M�r

∑
w∈V

c•L · · · , 〈· · · , w, · · · 〉, · · ·M =: c•L · · · , 〈· · · ,V, · · · 〉, · · ·M.

Let us extend the definition of Taylor expansion to resource k-contexts by adding, in its
definition, the clause:

T (ξi) := {ξi}.

It is clear that is C is a k-context then all elements of T (C) are resource k-contexts.

In the following, if ~v is a list, we denote with [~v] the multiset associated with ~v (same
elements but disordered).

Lemma 3.3.32. Let C be a k-context and c1, c2 ∈ T (C). Let c•1 and c•2 rigids respectively of
c1 and c2. For i = 1 . . . , k, let ~vi = 〈vi1, . . . , videgξi (c1)〉 and ~ui = 〈ui1, . . . , uidegξi (c2)〉 be lists of

resource terms. If c•1L~v
1, . . . , ~vk M = c•2L~u

1, . . . , ~uk M then c1 = c2 and [~v i] = [~u i] for all i.

Proof. Induction on C.

Case C = ξi. Then c1 = ξi = c2, and ~v i = 〈vi1〉, ~u i = 〈ui1〉 and ~v j = 〈〉 = ~u j for j 6= i. So
vi1 = c•1L~v

1, . . . , ~vk M = c•2L~u
1, . . . , ~uk M = ui1.

Case C = x. Trivial.

Case C = λx.C0. Straightforward by inductive hypothesis.

14In [OA20] F is called ‖ . ‖, but here wrote F , for “forgetful”.
15If degξi(c) = 0 we mean the empty list.
16This is just a concise way of saying that we take ~w i1 := 〈vi1, . . . , videgξi

(cσ(1))
〉, ~w i2 :=

〈vi1+degξi
(cσ(1))

, . . . , videgξi
(cσ(2))+degξi

(cσ(1))
〉 etc, and similarly for ~w i0.
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Case C = C ′C ′′. Then, for i = 1, 2, one has ci = ci0[ci1, . . . , cini ] with ci0 ∈ T (C ′) and
cij ∈ T (C ′′) for j ≥ 1. So c•i = c•i0〈c•iσi(1), . . . , c

•
iσi(ni)

〉 where σi is a permutation on ni
elements. So:

c•1L~v
1, . . . , ~vk M = c•10L ~w

110, . . . , ~w1k0 M[ c•1σ1(1)L ~w
111, . . . , ~w1k1 M, . . . , c•1σ1(n1)L ~w

11n1 , . . . , ~w1kn1 M]

c•2L~v
1, . . . , ~vk M = c•20L ~w

210, . . . , ~w2k0 M[ c•2σ2(1)L ~w
211, . . . , ~w2k1 M, . . . , c•2σ2(n2)L ~w

21n2 , . . . , ~w2kn2 M]

where the concatenation ~w1j1 · · · ~w1jn1 equals ~vj and the concatenation ~w2j1 · · · ~w2jn2

equals ~uj . From c•1L~v
1, . . . , ~vk M = c•2L~u

1, . . . , ~uk M we get that n1 = n2 =: n, that:

c•10L ~w
110, . . . , ~w1k0 M = c•20L ~w

210, . . . , ~w2k0 M (3.6)

and that there exist a permutation ρ on n elements which identifies each term of the
written bag of c•1L~v

1, . . . , ~vk M with the respective one of the written bag of c•2L~u
1, . . . , ~uk M.

That is, for all h = 1, . . . , n, one has:

c•1σ1(h)L ~w
1 1h, . . . , ~w 1 k h M = c•2σ2(ρ(h))L ~w

2 1 ρ(h), . . . , ~w 2 k ρ(h) M. (3.7)

Now the inductive hypothesis on (3.6) gives c•10 = c•20 as well as [~w 1 i 0] = [~w 2 i 0], and the
inductive hypothesis on (3.7) gives, after some reindexing, [c•11, . . . , c

•
1n] = [c•21, . . . , c

•
2n] as

well as [~w1j1 · · · ~w1jn] = [~w2j1 · · · ~w2jn] for j ≥ 1. Putting these things together, we have
the desired result.

Lemma 3.3.33. 1. Let C be a k-context. Then:

T (CLM1, . . . ,Mk M) = {c•L~s 1, . . . , ~s k M | c ∈ T (C), c• rigid of c and ~s i list of elements of T (Mi)}.

2. Let c = cLξ M be a single-hole resource context, M ∈ Λ and s0 ∈ Λr. If cLs0 M ∈ T (M), then
there is a context C = CLξ M, an N ∈ Λ, a resource context c̃ ∈ T (C), a rigid c̃ • of c̃ and
s1 . . . , sdegξ c̃−1 ∈ T (N), s.t.:

(a) M = CLN M

(b) s0 ∈ T (N)

(c) cLtM = c̃ •L〈t, s1 . . . , sdegξ(c̃)−1〉M for all t ∈ Λr.

Proof. 1. Straightforward induction on C.

2. Induction on the single-hole resource context c.

Case c = ξ. Take C := ξ, N := M , c̃ := ξ, c̃ • := ξ (there are no si’s since degξ(c̃)−1 = 0).

Case c = λx.c1. Since cLs0 M ∈ T (M) then M = λx.M1 with c1Ls0 M ∈ T (M1). We can
thus take C := λx.C1, c̃ := λx.c̃1, c̃ • := λx.c̃1

•, where C1, N, c̃1, c̃
•
1 and s1, . . . , sdegξ(c̃1)

are given by the inductive hypothesis.

Case c = c′[~u]. Analogous as above.

Case c = u[c′, u1, . . . , un]. Since u[c′Ls0 M, ~u] = cLs0 M ∈ T (M) then M must have shape
M = PQ with u ∈ T (P ) and c′Ls0 M, ui ∈ T (Q). By induction hypothesis, we can
write Q = C0LN M for an appropriate context C0 and N ∈ L s.t. s0 ∈ T (N), and also
there is a resource context c0 ∈ T (C0) and c•0 rigid of c0, together with a list ~s 0 :=
〈s0

1, . . . , s
0
degξ(c0)−1〉 of elements of T (N), such that c′LtM = c•0L〈t, ~s 0〉M for all t ∈ Λr. But

ui ∈ T (Q) = T (C0LN M), so by the point (1), each ui have shape ui = c•i L~s
i M for an

appropriate c•i rigid of some ci ∈ T (C0) and some ~s i list of elements of T (N). Now, we
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have: M = CLN M for C := PC0. Moreover, putting c̃ := u[c0, c1, . . . , cn] ∈ T (C) and
choosing its rigid c̃ • := u•〈c•0, c•1, . . . , c•k〉 (which rigid u• of u one chooses does not matter),
we have: cLtM = u[c′LtM, u1 . . . , un] = u[c•0L〈t, ~s〉M, c•1L~s 1 M, . . . , c•kL~s

k M] = c̃ •L〈t, ~s〉M for all
t ∈ Λr, where the list ~s is the concatenation ~s 0~s 1 · · ·~sn and is made of exactly degξ(c̃)−1
elements of T (N).

Let us notice how, as previously mentioned, using resource contexts one can give an alter-
native proof of Corollary 3.3.26 not using the bigstep argument.

- First prove the following:

Proposition 3.3.34. If T (M) ⊇ T →r T′ then there is N ∈ L and a sum T̃ ⊆ T (N) s.t.
M → N and T′ �r T̃.

Proof. Saying that T→r T′ means that T has shape T =
∑
i
ti + cL(λx.s0)[~u]M and T′ has shape

T′ =
∑
i
ti + cLs0〈[~u]/x〉M, for some single-hole resource context c. So Lemma 3.3.33(2) gives us

a context C0, a term N ′ ∈ Λ, a resource context c0 ∈ T (C0), a rigid c •0 of c0 and resource terms
~s ∈ T (N ′) s.t. M = C0LN ′ M, (λx.s0)[~u] ∈ T (N ′) and cLuM = c •0 Lu,~sM for all u ∈ Λr. Thus N ′ =
(λx.P )Q, with s0 ∈ T (P ) and [~u] ∈ ! T (Q), and so M → CLN ′′ M =: N , with N ′′ := P{Q/x}.
Also, s0〈[~u]/x〉 ∈ T (N ′′) thanks to Lemma 3.3.16. Now: every ti ∈ T (M) = T (C0LN ′ M), so by
Lemma 3.3.33(1) it must have shape ti = c •i L~v i M for some resource terms vij ∈ T (N ′), a context

ci ∈ T (C0) and a rigid c •i of ci. But since N ′ → N ′′ we can apply Proposition 3.3.17 on vij
and obtain that vij �r Vij for some sum Vij ⊆ T (N ′′). So ti �r c

•
i L~V i M =: Ti. Using again

Lemma 3.3.33(1) one has that Ti ⊆ T (N). Now, let’s use again Proposition 3.3.17, this time
on each si ∈ T (N ′). Since N ′ → N ′′ we obtain sums Si ⊆ T (N ′′) s.t. si �r Si. So we have:
cLs0〈[~u]/x〉M = c •0 Ls0〈[~u]/x〉, ~sM �r c

•
0 Ls0〈[~u]/x〉, ~SM =: U. But since s0〈[~u]/x〉 ⊆ T (N ′′) and

every Si ⊆ T (N ′′), again thanks to Lemma 3.3.33(1) one has U ⊆ T (C0LN ′′ M) = T (N). This
ends the proof, since letting T̃ :=

∑
i
Ti + U ⊆ T (N) one has T′ �r T̃.

- and then prove Corollary 3.3.26:

Alternative proof of Corollary 3.3.26. We prove, by induction on ` ∈ N, that if ` is the length
of a maximal reduction (let’s call it φ) from a sum T to its normal form nfr(T), then the
statement of Corollary 3.3.26 holds. If ` = 0 then just take N := M . If ` ≥ 1, then φ factorizes
as T →r T′ �r nfr(T) for some sum T′. Since T ∈ T (M) by hypothesis, by Proposition 3.3.34
there exist N ′ ∈ L and T′′ ⊆ T (N ′) such that M → N ′ and T′ �r T′′. Let k ≥ 0 be the length of
this last reduction. By confluence, we have also T′′ �r nfr(T). Now take the maximal reduction
from T′′ to nfr(T′′) = nfr(T) and let `′ be its length. Due to the maximality of φ, it must be
`′ + k + 1 ≤ `, so `′ < `, and now we can apply the inductive hypothesis to `′ (because it is the
maximal length of a reduction between a sum T′′ and its normal form). Since we already found
that T′′ ⊆ T (N ′), we get an N ∈ L such that M → N ′ � N and nfr(T) = nfr(T′′) ⊆ T (N).

3.3.2 Stability and Perpendicular Lines Property

Let us now apply the developed tools in order to obtain, first, the Stability property and, then,
the Perpendicular Lines Lemma (PLP for short). Both of them are, for now, stated with respect
to the λ-theory =τ .

Stability Let us set up some notations used in the statement of the Stability theorem.
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Definition 3.3.35. Given a non-empty subset X ⊆ Λ, define its T -infimum
⋂
X ⊆ Λr (also

written
⋂
M∈X M) as: ⋂

X :=
⋂
M∈X

NFT (M).

We say that X is T -bounded iff there exists an L ∈ Λ such that M ≤ L for all M ∈ X .

We write M =
⋂
X instead of NFT (M) =

⋂
X .

Example 3.3.36. 1. For all M ∈ Λ, we have
⋂
M = M .

2. I ∩ Ω = ∅ = Ω and λx.xΩ ∩∆ = λx.x1.

3.
⋂
n≥2

λf.fnΩ = {λf.f [f1, . . . , f1︸ ︷︷ ︸
k

] | k ∈ N}.

Observe that the M s.t. M =
⋂
X , in case it exists, need not to be unique; so writing

only
⋂
X does not identify a unique λ-term. The following Stability theorem gives sufficient

conditions for when a context commutes with intersection, in the sense that one informally has
(with abuse of notation):

CL
⋂

N∈X1

N , . . . ,
⋂

N∈Xn

N M =
⋂

N1∈X1

· · ·
⋂

Nn∈Xn

CLN1, . . . , Nn M.

Theorem 3.3.37 (Stability property). Let C be an n-context and fix non-empty T -bounded
X1, . . . ,Xn ⊆ Λ. For all M1, . . . ,Mn ∈ Λ s.t.

Mi =
⋂
Xi (for i = 1, . . . , n)

we have:

CLM1, . . . ,Mn M =
⋂

N1∈X1
...

Nn∈Xn

CLN1, . . . , Nn M.

Proof. Since every Xi is T -bounded, for i = 1, . . . , n there exists Li ∈ Λ s.t.
⋃
N∈Xi NFT (N) ⊆

NFT (Li). Fix now M1, . . . ,Mn ∈ Λ s.t. NFT (Mi) =
⋂

N∈Xi
NFT (N). We have to show that:

NFT (CLM1, . . . ,Mn M) =
⋂

N1∈X1

· · ·
⋂

Nn∈Xn

NFT (CLN1, . . . , Nn M).

(⊆). Clearly, for all i = 1, . . . , n and Ni ∈ Xi, we have NFT (Mi) ⊆ NFT (Ni), therefore
we conclude NFT (CLM1, . . . ,Mn M) ⊆ NFT (CLN1, . . . , Nn M) by Monotonicity (Proposi-
tion 3.3.13).

(⊇). Let t ∈
⋂
~N∈ ~X

NFT (CLN1, . . . , Nn M) (where ~N := (N1, . . . , Nn) and ~X := (X1, . . . ,Xn)).

For every ~N ∈ ~X , by Lemma 3.3.33 there exist an n-resource-context c ~N ∈ T (C) and,

for every i = 1, . . . , n, a list ~v i~N
= 〈vi1~N , . . . , v

idi
~N
〉 (where di := degξi(c ~N )) of elements of

T (Ni) and such that t ∈ nfr(c
•
~N
L~v 1

~N
, . . . , ~v n~N

M), for c•~N
a rigid of c ~N . Fix any reduction

from c•~N
L~v 1

~N
, . . . , ~v n~N

M to its normal form, and confluence allows to factorize it as follows:

c•~N Lnfr(v
11
~N

), . . . ,nfr(v
1d1
~N

), . . . ,nfr(v
n1
~N

), . . . ,nfr(v
ndn
~N

)M �r nfr(c
•
~N
L~v 1

~N
, . . . , ~v n~N M) 3 t.
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So for all i = 1, . . . , n and j = 1, . . . , di, there exist wij~N
∈ nfr(v

ij
~N

) such that:

nfr(c
•
~N
L ~w 1

~N
, . . . , ~w n

~N
M) 3 t (3.8)

and being Ni ∈ Xi which is bounded by Li, we have w ij
~N
∈ nfr(v

ij
~N

) ⊆ NFT (Ni) ⊆
NFT (Li). From each inclusion w ij

~N
∈ NFT (Li) we obtain a resource term u ij~N

∈ T (Li)
such that:

w ij
~N
∈ nfr(u

ij
~N

) (3.9)

By composing thus a reduction from uij~N
to wij~N

with a reduction from c•~N
L ~w 1

~N
, . . . , ~w n

~N
M

to t, we find that t ∈ nfr(c
•
~N
L~u 1

~N
, . . . , ~un~N

M). This holds for all ~N ∈ ~X , i.e.:

t ∈
⋂
~N∈ ~X

nfr(c ~N L~u 1
~N
, . . . , ~un~N M). (3.10)

Now, Lemma 3.3.33 gives c•~N
L~u 1

~N
, . . . , ~un~N

M ∈ T (CLL1, . . . , Ln M). But since the Li’s are in-

dependent from N1, . . . , Nn, and thanks to (3.10), we can apply Lemma 3.3.20, and obtain
that the set {c•~N L~u 1

~N
, . . . , ~un~N

M | ~N ∈ ~X} is actually a singleton. Therefore, Lemma 3.3.32

tells us that also the terms c ~N and the bags [~u i~N
] are independent from ~N ∈ ~X . The

unique element of the previous sigleton has hence shape c•L~u i, . . . , ~un M, with c• a rigid of
a c ∈ T (C), and ~u i a list of elements of T (Li). Recalling now that

∑
j
uij ⊆ T (Li), we can

apply Corollary 3.3.26 in order to obtain, for each i = 1, . . . , n, an L′i ∈ Λ s.t. Li � L′i
and, using (3.9),

∑
j
w ij ⊆ T (L′i). Thus Lemma 3.3.33 tells us that, for every ~N ∈ ~X , we

have:
c•L ~w 1

~N
, . . . , ~wn~N M ∈ T (CLL′1, . . . , L

′
n M). (3.11)

But now thanks to (3.11) and (3.8) (which holds for all ~N ∈ ~X ), we can apply again
Lemma 3.3.20 in order to find that the set {c•L ~w 1

~N
, . . . , ~wn~N

M | ~N ∈ ~X} is a singleton.

Again by Lemma 3.3.32, we have that all the bags [~w 1
~N

], . . . , [~wn~N
] for ~N ∈ ~X , coincide

respectively to some bags [~w 1], . . . , [~wn] which are independent from ~N ∈ ~X . So the only
element of the previous singleton has shape c•L ~w 1, . . . , ~wn M, and (3.8) becomes:

t ∈ nfr(c
•L ~w 1, . . . , ~wn M). (3.12)

Now for all i = 1, . . . , n, we already know that [~w i] = [~w i
~N

] which is a bag of elements of

NFT (N), and this holds for all N ∈ Xi. That is, we have:∑
j

~w ij ⊆
⋂
N∈Xi

NFT (N) = NFT (Mi) (3.13)

where we finally used the hypothesis. From (3.12), (3.13) and Lemma 3.3.33 we finally
conclude that t ∈ nfr(c

•L ~w1, . . . , ~wn M) ⊆ NFT (CLM1, . . . ,Mn M).

We immediately obtain the non implementability of the following parallel-or, where we use
the usual encoding of couples as (M,N) := λz.zMN ∈ Λ.

Corollary 3.3.38. There is no Por ∈ Λ s.t. for all M,N ∈ Λ,{
Por (M,N) =τ True if M 6=τ Ω or N 6=τ Ω
Por (M,N) =τ Ω if M =τ N =τ Ω.

Proof. Otherwise, for the context C := Por ξ, the set X := {(True,Ω), (Ω, True)} ⊆ Λ which is
bounded by (True, True) ∈ Λ, Stability (Theorem 3.3.37) would give the contradiction:

True =τ CL(True,Ω)M ∩ CL(Ω, True)M =τ CL(Ω,Ω)M =τ Ω.
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The Perpendicular Lines Property The perpendicular lines property (PLP, for short)
states that if a term λz1 . . . λzn.F is constant modulo =τ on n perpendicular lines, then it must
be constant modulo =τ everywhere. Let us explain what does this terminology mean:

- When we say a “line” we mean a notion miming, in λ-calculus, the one of line parallel to
the axes in Cartesian geometry: we fix all the coordinates but one. That is, a “λ-calculus
line” l is a subset l = {(M1, . . . ,Mi−1, Z,Mi+1, . . . ,Mn) ∈ Λn | Z ∈ Λ} of Λn (which
corresponds to a line parallel to the i-th axe in geometry). We will denote it is simply by:

l : (M1, . . . ,Mi−1, Z,Mi+1, . . . ,Mn)Z∈Λ.

- Miming again geometry, when we say that two lines l1, l2 are perpendicular, we just mean
that the axis they are parallel to are different, i.e. the free coordinate of l1 is different
from the free coordinate of l2. For example, the line (I, Z)Z∈Λ is perpendicular to the line
(Z, II)Z∈Λ.

- Finally, when we say that λ~z.F is constant modulo =τ on a line l as before, we mean
that the context function (λ~z.F )ξ : (Λ/=τ )n → Λ/=τ is constant on l ⊆ (Λ/=τ )n. That
is, there exist N ∈ Λ s.t. (λ~z.F ) M1 · · · Mi−1 Z Mi+1 · · · Mn =τ N for all Z ∈ Λ.

With this terminology in place, the desired property is expressed exactly as in the statement
of Theorem 3.3.40. It is important, however, to keep in mind that the geometric intuition
mentioned above has a very short life and stops here: in λ-calculus there is no such notion as
scalar product, and the best one can do is to reproduce the notion of perpendicularity but only
in the trivial case of lines parallel to the axes.

As for Stability, we will use in the proof of PLP all the power of the technique of resource
approximation. Indeed, resource terms can never behave too bad, the worst can happen being
reducing to 0, and they must respect the strong constraints of linearity, strong normalization
and confluence. For instance, let us consider how can a function b ∈ ! Λr 7→ nfr((λz.t)b) ∈P(Λr)
be constant. The intuition is that there are few reasons:

1. either because t�r 0 by itself

2. either because z’s did not occur in t at all.

That is, we are left with only the trivial cases. These are the intuitions behind the Lemma 3.3.39
below, which is the crucial ingredient for the proof of PLP.

In the next section we will compare the situation just described with the much more compli-
cated one present when asking the same question in Λ/=B . Thanks to the commutation formula,
the respective PLP are equivalent. The following proof could also be written in a coinductive
fashion for Λ/=B .

Lemma 3.3.39. Let C := (λ~z.F )ξ1 · · · ξn be an n-context and let t ∈ Λr. Suppose that:

i. nfr(t) 6= 0

ii. t ∈ T (F )

iii. there are {Mij}1≤i 6=j≤n ⊆ Λ s.t. C is constant, mod =τ , on the following perpendicular
lines:

l1 = {(Z, M12, . . . . . . , M1n) | Z ∈ Λ}
l2 = {(M21, Z, . . . . . . , M2n) | Z ∈ Λ}

. . .

ln = {(Mn1, . . . , Mn(n−1), Z) | Z ∈ Λ}.

(3.14)
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Then:

degz1(t) = · · · = degzn(t) = 0.

Proof. Induction on the size sz(t) of t ∈ Λr.

Case sz(t) = 1. Then t is a variable. Now if t = zi for some i, then the i-th line of (3.14)
gives the contradiction:

Ni =τ (λ~z.zi)Mi1 · · ·Mi(i−1)ZMi(i+1) · · ·Min =τ Z

for all Z ∈ Λ. Hence, it must be t 6= zi for all i, i.e. degz1(t) = · · · = degzn(t) = 0.

Case sz(t) > 1. By (i) there is u ∈ nfr(t). Being u normal, it has shape u = λ~x.y[~u 1] · · · [~um]
for some m ≥ 0, some variable y, some normal bags [~u j ]. By (ii) t ∈ T (F ), so that by
Corollary 3.3.26 there is Q ∈ Λ s.t. F � Q and u ∈ T (Q). So Q must have shape: Q =
λ~x.yQ1 · · ·Qm for some Qj ’s in Λ s.t. [~u j ] ∈ ! T (Qj) for all j = 1, . . . ,m. Now there are two
possibilities: either y = zi for some i = 1, . . . , n, either y 6= zi for all i. Suppose y = zi. Then,
for ~q := q1, . . . , qm fresh variables, we can chose Z := λ~q.True ∈ Λ (or Z := True if m = 0) in
the i-th line li of (3.14), and since by (iii) λ~z.F is constant (mod =τ ) on li, we can compute its
value as:

(λ~z.F )Mi1 · · ·Mi(i−1) (λ~q.True)Mi(i+1) · · ·Min =τ Q{Mi1/z1, . . . , (λ~q.True)/zi, . . . ,Min/zn}
=τ λ~x.(λ~q.True)Q̃i1 · · · Q̃im
=τ λ~x.True

where we set:

Q̃ij := Qj{Mi1/z1, . . . , (λ~q.True)/zi, . . . ,Min/zn}.

The first equality holds because F � Q and =τ is finer than =λ, and the second equality holds
because y = zi. In the same way, choosing Z := λ~q.False ∈ Λ in li we find that the value (mod
=τ ) of λ~z.F on li is λ~x.False. But this is impossible because True 6=τ False.

Therefore, it must be y 6= zi for all i. Note that wlog m ≥ 1 (indeed if m = 0, from the fact
that y 6= zi for all i we already get degzi(u) = 0 and, as u ∈ nfr(t) and in Λr one cannot erase
non-empty bags, we are done). Now fix i ∈ {1, . . . , n} and Z ′, Z ′′ ∈ Λ. Similarly as before,
choosing Z := Z ′ in li and using what we found so far, putting

Q′ij := Qj{Mi1/z1, . . . , Z
′/zi, . . . ,Min/zn}

since λ~z.F is constant (mod =τ ) on li, we can compute its value as:

(λ~z.F )Mi1 · · ·Mi(i−1)Z
′Mi(i+1) · · ·Min =τ Q{Mi1/z1, . . . , Z

′/zi, . . . ,Min/zn}
=τ λ~x.yQ′i1 · · ·Q′im

where the last equality holds since y is not one of the zi’s. Choosing Z ′′ instead of Z ′ and putting
Q′′ij the same as Q′ij but with Z ′′ instead of Z ′, one has that the value (mod =τ ) of λ~z.F on
li is λ~x.yQ′′i1 · · ·Q′′im. Therefore we have λ~x.yQ′i1 · · ·Q′im = λ~x.yQ′′i1 · · ·Q′′im, and Lemma 3.3.12
entails:

Q′i1 =τ Q
′′
i1

...
Q′im =τ Q

′′
im

But by construction it is:

Q′ij =τ (λ~z.Qj)Mi1 · · ·Mi(i−1)Z
′Mi(i+1) · · ·Min

Q′′ij =τ (λ~z.Qj)Mi1 · · ·Mi(i−1)Z
′′Mi(i+1) · · ·Min.
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So if we remember that Z ′, Z ′′ were generic in Λ, the previous equalities Q′ij = Q′′ij precisely
say that λ~z.Qj is constant on the line li. And since this holds for all i = 1, . . . , n, we have just
found that λ~z.Qj satisfies (iii). And since we have equalities Q′ij = Q′′ij for all j = 1, . . . ,m, we
have that each λ~z.Q1, . . . , λ~z.Qk satisfies (iii). We can now comfortably apply the induction
hypothesis on any s ∈ [~u j ]. In fact, as [~u j ] is normal, nfr(s) 6= 0, i.e. (i); as [~u j ] ∈ ! T (Qj),
we have s ∈ T (Qj), i.e. (ii); and we just found that λ~z.Qj satisfies (iii); finally, s is a strict
subterm of u ∈ nfr(t), thus ms(s) < ms(u) ≤ ms(t). Therefore, the inductive hypothesis gives
degz1(s) = · · · = degzn(s) = 0. Since this is true for all s in all [~u j ], j = 1, . . . ,m, we get
degz1(u) = · · · = degzn(u) = 0. And now u ∈ nfr(t) entails degz1(t) = · · · = degzn(t) = 0.

Now we can safely prove that the term algebra Λ/=τ enjoys the PLP.

Theorem 3.3.40 (Perpendicular lines property). Suppose that for some fixed {Mij}1≤i 6=j≤n,
{Ni}1≤i≤n ⊆ Λ, the system of equations:

(λz1 · · · zn.F ) Z M12 · · · · · · M1n =τ N1

(λz1 · · · zn.F ) M21 Z · · · · · · M2n =τ N2

. . .
...

(λz1 · · · zn.F ) Mn1 · · · Mn(n−1) Z =τ Nn

holds for all Z ∈ Λ. Then:

(λz1 · · · zn.F )Z1 · · ·Zn =τ N1

for all Z1, . . . , Zn ∈ Λ.

Proof. Fix i ∈ {1, . . . , n} and ~Z ∈ Λ×· · ·×Λ, and let us prove that NFT ((λ~z.F )~Z) = NFT (Ni).

(⊆). If s ∈ NFT ((λ~z.F )~Z) then s ∈ nfr(t
′) for some t′ = (λ~z.t)[~u 1] · · · [~un], for some t ∈ T (F )

and bags [~u j ] ∈ ! T (Zj). Since t′ 6�r 0 then nfr(t) 6= 0. Moreover, λ~z.F is constant (mod
=τ ) on n perpendicular lines by hypothesis. Therefore t satisfies all the hypothesis of
Lemma 3.3.39, which gives z1 . . . , zn /∈ t. But the only possibility for that situation to
cohabit with t′ 6�r 0 is that all [~u j ]’s trivialize to the empty bag: [~u 1] = · · · = [~un] = 1.
But then, t′ = (λ~z.t)1 · · · 1 ∈ T ((λ~z.F )Mi1 · · ·Mi(i−1)ZiMi(i+1) · · ·Min) and thus s ∈
NFT ((λ~z.F )Mi1 · · ·Mi(i−1)ZiMi(i+1) · · ·Min) ⊆ NFT (Ni) by the i-th line of the system
of equations of the hypothesis.

(⊇). If s ∈ NFT (Ni) ⊆ NFT ((λ~z.F )Mi1 · · ·Mi(i−1)ZiMi(i+1) · · ·Min) (the inclusion is by the
i-th line of the system of equations of the hypothesis), then s ∈ nfr((λ~z.t)[~u

1] · · · [~un]) for
some t ∈ T (F ), bags [~u j ] ∈ ! T (Mij) for j 6= i and [~u i] ∈ ! T (Zi). In the exact same way
as before Lemma 3.3.39 gives z1 . . . , zn /∈ t, and since (λ~z.t)[~u 1] · · · [~un] 6�r 0, the only
possibility is that [~u 1] = · · · = [~un] = 1. So t′ = (λ~z.t1 · · · 1) ∈ T ((λ~z.F )~Z), from which
s ∈ NFT ((λ~z.F )~Z).

We immediately obtain the non implementability of the following parallel-or:

Corollary 3.3.41. There is no Por′ ∈ Λ s.t. for all M,N ∈ Λ,{
Por′MN =τ True if M 6=τ Ω or N 6=τ Ω
Por′MN =τ Ω if M =τ N =τ Ω.

Proof. Such a Por′ would be such that (λxy.Por′xy) IZ =τ (λxy.Por′xy)Z I =τ I for all Z ∈ Λ
while (λxy.Por′xy) Ω Ω =τ Ω, thus contradicting PLP (Theorem 3.3.40).
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Actually, the existence of this Por′ is equivalent to that of the Por of Corollary 3.3.38. Indeed,
one can take Por := λc.Por′(True c)(False c) and Por′ := λx′y′.Por(x′, y′).

PLP also immediately entails the non implementability of the following other version of the
parallel-or:

Corollary 3.3.42. There is no Por′′ ∈ Λ s.t. for all Z ∈ Λ one has:
Por′′ TrueZ =τ True

Por′′ Z True =τ True

Por′′ False False =τ False.

3.4 Interlude: Call-by-value λ-calculus

In this “interlude” we consider the call-by-value λ-calculus (cbv-λ-calculus, for short), intro-
duced long time ago in [Plo75]. In this section we will sometimes refer, as usual, to the ordinary
λ-calculus as the “cbn” one.

We study the cbv framework via the tool of resource approximation. In fact, it turns out
we can adapt the constructions already presented for the (cbn-)λ-calculus in order to prove the
Stability Property in the cbv-λ-calculus. We refer [KMP20] for the basic definitions and the
construction of the cbv-resource calculus. Their constructions follow the same schema of the
ones we presented in Section 3.3, with some little technical modifications due to the fact that
in the cbv setting one linearises terms in a slightly different way.

We first recall the main properties of cbv-resource-λ-calculus. Then, we show how to adapt
the constructions of rigid terms associated with resource terms and prove the Stability property
(Theorem 3.4.20) in the cbv framework.

Definition 3.4.1 (Cbv-λ-calculus). The set Λcbv of the cbv-λ-terms is the same as the set of
(ordinary call-by-name) λ-terms. The set Val of values is the set containing the variables and
abstractions. Contexts (with multiple holes, one hole and single-hole) are defined as in cbn-
λ-calculus. The reduction →v⊆ Λcbv × Λcbv of cbv-λ-calculus is defined in Definition 1.5 of
[KMP20]. It is known that →v is confluent.

Resource cbV-λ-calculus in a nutshell

Definition 3.4.2 (Resource cbv-λ-calculus). The set Λr
cbv of the resource-cbv-λ-terms is defined

in Definition 3.1 of [KMP20]. We report it here:

Λr
cbv := Valr ∪ Simpr

where the set Valr or resource values and the set Simpr of resource simple terms are defined by
mutual induction by:

Valr ::= x | λx.s for s ∈ Simpr

Simpr ::= s1s2 | [v1, . . . , vn] for si ∈ Simpr and vi ∈ Valr.

The reduction →r of resource-cbv-calculus is defined in Definitions 3.3 and 3.4 of [KMP20].

We do not report the definition of the reduction because we will not need its actual definition
but only the properties it verifies. For instance, it is known that:

Proposition 3.4.3. The reduction →r is confluent and strongly normalising.
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Definition 3.4.4 ((Qualitative) cbv-Taylor expansion). The (qualitative) cbv-Taylor expansion
is the map T : Λcbv → P(Simpr) defined in Definition 3.9 of [KMP20]. We report it here:

T (x) := { [x, (n). . ., x] | n ∈ N}
T (λx.M) := { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ T (M)}
T (M1M2) := {s1s2 | si ∈ T (Mi)}.

One defines as usual the set NFT (M) ⊆ nfr(Simpr). The inclusion NFT (M) ⊆ NFT (N) defines
as usual a partial preorder M ≤ N , as well as the equivalence =τ , which is its symmetric closure.

Remark 3.4.5. One has nfv(MN) = nfv(nfv(M)nfv(N)) and nfv(λx.M) = λx.nfv(M), when-
ever the written normal forms do exist. Also:

1. NFT (λx.M) := { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ NFT (M)}

2. NFT (MN) :=
⋃

si∈NFT (M)

nfr(s1s2).

We can now prove the Monotonicity property for cbv-λ-calculus. It is already proven in
[KMP20] (where it is called “Context Lemma”) but we provide below a more concise proof,
very similar to the one already given in the case of λ-calculus.

Theorem 3.4.6 (Monotonicity property). Any context C : Λcbv → Λcbv is monotone w.r.t. ≤.

Proof. Induction on C.
If C = ξ then NFT (CLM M) = NFT (M) ⊆ NFT (N) = NFT (CLN M).
If C = x then NFT (CLM M) = {x} = NFT (CLN M).
If C = λx.C1 then:

NFT (CLM M) = { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ NFT (C1LM M)}
⊆ { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ NFT (C1LN M)}
= NFT (CLN M).

If C = C1C2 then:
NFT (CLM M) =

⋃
si∈NFT (CiLM M)

nfr(s1s2)

⊆
⋃

si∈NFT (CiLN M)
nfr(s1s2)

= NFT (CLN M).

As always, we can simulate →v via �r.

Proposition 3.4.7 (Resource simulation property). If M →v N then:

1. for all s ∈ T (M) there exist T ⊆ T (N) s.t. s�r T

2. for all s′ ∈ T (N) s.t.17 s′ 6→0 0, there exist s ∈ T (M) s.t. s�r s
′ + T for some sum T.

Proof. See Lemma 4.4 of [KMP20].

17The following condition s′ 6→0 0 refers to a particular reduction →0, which we did not specify, that one
considers in cbv-λ-calculus.
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As in cbn-λ-calculus, we can define a cbv-λ-theory as a congruence which contains the
reflexive symmetric and transitive closure =v of →v.

Corollary 3.4.8 (Taylor normal form cbv-λ-theory). The equivalence =τ is a cbv-λ-theory.

Proof. It is a congruence thanks to the Monotonicity property, and the Simulation property
allows to prove as usual that it contains =v (this last fact is already present as Corollary 4.5 of
[KMP20]).

We state now some useful properties for the proof of Theorem 3.4.20 .

Remark 3.4.9. If V ∈ Val then T (V ) ⊆ ! Valr.

Remark 3.4.10. Let t ∈ Λr
cbv normal and belonging to T (M). If M →v N then t ∈ T (N).

Proposition 3.4.11. If t ∈ NFT (M), there exist N ∈ Λcbv s.t. M �v N and t ∈ T (N).

Proof. See Lemma 4.9(2) of [KMP20].

Call-by-value λ-calculus enjoys the same “non-interference” property we already encoutered
for λ-calculus:

Proposition 3.4.12. For all t, s ∈ T (M) s.t. t 6= s, you have nfr(t) ∩ nfr(s) = ∅.

Proof. See Lemma 4.9(3) of [KMP20].

Rigids

We adapt now the notion of rigid terms associated with a resource term (or, in general, with a
multi-hole context) in the current cbv-setting.

Definition 3.4.13 (Cbv-resource-contexts). The set Cbvr
k of cbv-resource-k-contexts is defined

as follows:
Cbvr

k := Valrk ∪ Simpr
k

where Valrk and Simpr
k are defined by mutual induction by:

Valrk ::= ξ1 | · · · | ξk | x | λx.cs for cs ∈ Simpr
k

Simpr
k ::= cs1c

s
2 | [cv1, . . . , cvn] for csi ∈ Simpr

k and cvj ∈ Valrk.

We extend the definition of Taylor expansion on each Cbvk by setting:

T (ξi) := { [ξi,
(n). . ., ξi] | n ∈ N} ⊆ Simpr

k.

Definition 3.4.14 (Rigid cbv-λ-terms). 1. A rigid-k-context is built as a resource-k-context
but taking lists of rigid terms instead of bags of resource terms. In particular, a rigid term
is a rigid context with no occurrences of the holes. As for cbv-terms, rigid contexts are
divided into rigid-value-contexts and rigid-simple-contexts (and of course this distincion
coincides with that of terms when a context has no holes).

2. Let now c be a resource-k-context. We define a set Rigid(c) of rigid k-contexts associated
with c, whose elements are called the rigids of c, by mutual induction on Valrk and Simpr

k

as follows:

Rigid(ξi) = {ξi}
Rigid(x) = {x}
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Rigid(λx.c0) = {λx.c•0 | c•0 ∈ Rigid(c0)}
Rigid(c0c1) = {c•0c•1 | c•i ∈ Rigid(ci)}
Rigid([c1, . . . , ck]) = {〈c•σ(1) . . . , c

•
σ(k)〉 | σ permutation and c•i ∈ Rigid(ci)}.

The above definition makes sense since one immediately sees that if c is a resource-k-value-
context (resp. resource-k-simple-context) then any of its rigids c• is a rigid-k-value-context (resp.
rigid-k-simple-context).

Definition 3.4.15. Let c• be a rigid of a cbv-resource-k-context c and, for i = 1, . . . , k, let
~v i := 〈vi1, . . . , videgξi (c)

〉 be a list18 of resource values (that is, elements of Valr). We define, by

mutual induction on Valrk and Simpr
k, a resource term c•L~v1, . . . , ~vk M ∈ Λr

cbv s.t. if c ∈ Valrk
(resp. ∈ Simpr

k) then c•L~v1, . . . , ~vk M ∈ Valr (resp. ∈ Simpr). The definition goes as follows:

1. If c = ξi then c• = ξi; we set c•L〈〉, . . . , 〈〉, 〈vi1〉, 〈〉, . . . , 〈〉M := vi1

2. If c = x then c• = x; we set c•L〈〉, . . . , 〈〉M := x

3. If c = λx.c0 then c• = λx.c•0 where c•0 is a rigid of c0; we set c•L~v1, . . . , ~vk M = λx.c•0L~v
1, . . . , ~vk M

4. If c = c1c2, then c• = c•1c
•
2 where c•i is a rigid of ci. So each list ~v i factorizes as a

concatenation ~w i1 ~w i2 of lists where ~w ij has exactly degξi(cj) elements; we set:

c•L~v1, . . . , ~vk M := c•1L ~w
11, . . . , ~wk1 Mc•2L ~w

12, . . . , ~wk2 M.

5. If c = [c1, . . . , cn], then c• = 〈c•σ(1), . . . , c
•
σ(n)〉 where σ is a permutation and c•i is a rigid of

ci. So each list ~v i factorizes as a concatenation ~w i1 · · · ~w in of lists where ~w ij has exactly
degξi(cσ(j)) elements; we set:

c•L~v1, . . . , ~vk M := [c•σ(1)L ~w
11, . . . , ~w k1 M, . . . , c•σ(n)L ~w

1n, . . . , ~w kn M].

Remark 3.4.16. One has that if v �r V then:

c•L · · · , 〈· · · , v, · · · 〉, · · ·M ∈ Λr
cbv �r

∑
w∈V

c•L · · · , 〈· · · , w, · · · 〉, · · ·M.

The following lemma will be used in the proof of Theorem 3.4.20. As always, if ~v is a list
we denote with [~v] the multiset associated with ~v (same elements but disordered).

Lemma 3.4.17. Let C be a k-context and c1, c2 ∈ T (C) (hence, in particular, c1, c2 are
resource-k-contexts). Let c•1 and c•2 rigids respectivly of c1 and c2. For i = 1 . . . , k, let ~vi =
〈vi1, . . . , videgξi (c1)〉 and ~ui = 〈ui1, . . . , uidegξi (c2)〉 be lists of resource values. If c•1L~v

1, . . . , ~vk M =

c•2L~u
1, . . . , ~uk M then c1 = c2 and [~v i] = [~u i] for all i.

Proof. Simple induction on C.

Case C = ξi. Then c1 = [ξi,
(n). . ., ξi], c2 = [ξi,

(m). . ., ξi], ~v
i = 〈vi1, . . . , vin〉, ~u i = 〈ui1, . . . , uim〉

and ~vj = 〈〉 = ~uj for j 6= i. So [vi1, . . . , vin] = c•1L~v
1, . . . , ~vk M = c•2L~u

1, . . . , ~uk M =
[ui1, . . . , uim], thus n = m, i.e. c1 = c2.

Case C = x. Then c1 = [x, (n). . ., x], c2 = [x, (m). . ., x] and ~v i = 〈〉 = ~u i. So [x, (n). . ., x] =

c•1L~v
1, . . . , ~vk M = c•2L~u

1, . . . , ~uk M = [x, (m). . ., x], thus n = m, i.e. c1 = c2.

18If degξi(c) = 0 we mean the empty list.
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Case C = λx.C0. Then, for i = 1, 2, one has ci = [λx.ci1, . . . , λx.cini ] with cij ∈ T (C0) for
all i, j. So c•i = [λx.c•iσi(1), . . . , λx.c

•
iσi(ni)

] where σi is a permutation on ni elements. By
Definition 3.4.15 we have:

c•i L~v
1, . . . , ~vk M = [λx.c•iσ̃i(1)L ~w

i11, . . . , ~wik1 M, . . . , λx.c•iσ̃i(ni)L ~w
i1ni , . . . , ~wikni M]

where σ̃i is some permutation on ni elements and the concatenation ~wij1 · · · ~wijni gives
~vj if i = 1 and gives ~uj if i = 2. From c•1L~v

1, . . . , ~vk M = c•2L~u
1, . . . , ~uk M we get then

n1 = n2 =: n and that there exist a permutation ρ on n elements which identifies each
term of the bag c•1L~v

1, . . . , ~vk M with the respective one of the bag c•2L~u
1, . . . , ~uk M. That is,

for all j = 1, . . . , n, one has:

c•1jL ~w
1 1 σ̃1

−1(j), . . . , ~w 1 k σ̃1
−1(j) M = c•2ρ(j)L ~w

2 1 σ̃2
−1(ρ(j)), . . . , ~w 2 k σ̃2

−1(ρ(j)) M.

The inductive hypothesis gives c•1j = c•2ρ(j) for all j, and, reeumerating the indeces, ~w 1 i j =

~w 2 i σ̃2
−1(ρ(σ̃1(j))) for all i = 1, . . . , k. Now, the former equality gives c•1 = c•2, while the

latter gives [~vj ] = [~w1j1 · · · ~w1jn] = [~w2j1 · · · ~w2jn] = [~uj ].

Case C = C ′C ′′. Analogous and easier than the above case.

Lemma 3.4.18. Let C be a k-context and V1, . . . , Vk ∈ Val. Then:

T (CLV1, . . . , Vk M) = {c•L~v 1, . . . , ~v k M | c ∈ T (C), c• rigid of c, [~v i] ∈ T (Vi)}.

Proof. Induction on C. The base case C = x and the step cases of the induction are straight-
forward. We only show the remaining base case, that is the one for C = ξi. We have:

{c•L~v 1, . . . , ~v k M | c ∈ T (C), c• rigid of c, [vi1, . . . , v
i
degξi (c)

] ∈ T (Vi)}

= {〈ξi, (n). . ., ξi〉L〈〉, (i−1). . . , 〈〉, 〈vi1, . . . , vin〉, 〈〉, (k−i). . . , 〈〉M | n ∈ N, [vi1, . . . , v
i
n] ∈ T (Vi)}

= { [vi1, . . . , v
i
n] | [vi1, . . . , v

i
n] ∈ T (Vi)}

= T (Vi)
= T (CLV1, . . . , Vk M).

Stability

Definition 3.4.19. Given a non-empty subset X ⊆ Λcbv, define its T -infimum
⋂
X ⊆ Λr as:⋂

X :=
⋂
M∈X

NFT (M).

We say that X is bounded iff there exists an L ∈ Λ such that M ≤ L for all M ∈ X .

We write M =τ
⋂
X instead of NFT (M) =

⋂
X .

In the cbv setting, the arguments passed to the functions are values. Since in the Stability
theorem we are intuitively looking at contexts as functions, it makes sense to restrict their
application on values only. Remark that this restriction was already present in the previous
sections (see Definition 3.4.14, Definition 3.4.15, Lemma 3.4.17 and Lemma 3.4.18), and it is
this restriction that makes the previous contructions work.

The proof of the following result is a modification of the proof in the cbn framework. The
fact that one can adapt it in a cbv framework can be seen as an extra strenght of the orginal
proof.
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Theorem 3.4.20 (Stability property). Let C be an n-context and fix non-empty X1, . . . ,Xn ⊆
Val bouded by a value. For all V1, . . . , Vn ∈ Val such that for i = 1, . . . , n one has:

Vi =
⋂
Xi

we have:
CLV1, . . . , Vn M =

⋂
N1∈X1

...
Nn∈Xn

CLN1, . . . , Nn M.

Proof. Since every Xi is T -bounded, for i = 1, . . . , n there exists Li ∈ Val s.t.⋃
N∈Xi

NFT (N) ⊆ NFT (Li).

Fix now V1, . . . , Vn ∈ Val s.t. NFT (Vi) =
⋂

N∈Xi
NFT (N). We have to show that:

NFT (CLV1, . . . , Vn M) =
⋂

N1∈X1

· · ·
⋂

Nn∈Xn

NFT (CLN1, . . . , Nn M).

(⊆). Clearly, for all i = 1, . . . , n and Ni ∈ Xi, we have NFT (Vi) ⊆ NFT (Ni), therefore we
conclude NFT (CLV1, . . . , Vn M) ⊆ NFT (CLN1, . . . , Nn M) by Monotonicity.
(⊇). Let t ∈

⋂
~N∈ ~X

NFT (CLN1, . . . , Nn M) (where ~N := (N1, . . . , Nn) and ~X := (X1, . . . ,Xn)). For

every ~N ∈ ~X , by Lemma 3.4.18 there exist a cbv-n-resource-context c ~N ∈ T (C) and, for every

i = 1, . . . , n, a list ~v i~N
= 〈vi1~N , . . . , v

idi
~N
〉 (where di := degξi(c ~N )) with [~v i~N

] ∈ T (Ni) and such that

t ∈ nf (c•~N
L~v 1

~N
, . . . , ~v n~N

M), for c•~N
a rigid of c ~N . Confluence allows to factorize the reduction from

c•~N
L~v 1

~N
, . . . , ~v n~N

M to t as follows:

c•~N Lnf (v11
~N

), . . . ,nf (v1d1
~N

), . . . ,nf (vn1
~N

), . . . ,nf (vndn~N
)M�r nf (c•~N L~v 1

~N
, . . . , ~v n~N M) 3 t.

So for all i = 1, . . . , n and j = 1, . . . , di, there exist wij~N
∈ nf (vij~N

) such that:

nf (c•~N L ~w 1
~N
, . . . , ~w n

~N
M) 3 t (3.15)

and being Ni ∈ Xi which is bounded by Li, we have [~wi~N
] ∈ nf ([~vi~N

]) ⊆ NFT (Ni) ⊆ NFT (Li).

From the inclusion [~wi~N
] ∈ NFT (Li) we obtain, thanks to Remark 3.4.9 because Li is a value,

a simple term [~u i~N
] ∈ T (Li) such that:

[~wi~N ] ∈ nf ([~ui~N ]) (3.16)

i.e. they have the same number of elements and nf (uij~N
) 3 wij~N

for all i, j, ~N . By composing

thus a reduction from c•~N
L ~w 1

~N
, . . . , ~w n

~N
M to t with a reduction from uij~N

to wij~N
, we find that

t ∈ nf (c•~N
L~u 1

~N
, . . . , ~un~N

M). This holds for all ~N ∈ ~X , i.e.:

t ∈
⋂
~N∈ ~X

nf (c ~N L~u 1
~N
, . . . , ~un~N M). (3.17)

Now, Lemma 3.4.18 gives c•~N
L~u 1

~N
, . . . , ~un~N

M ∈ T (CLL1, . . . , Ln M). But since the Li’s are indepen-

dent from N1, . . . , Nn, and thanks to (3.17), we can apply Proposition 3.4.12, and obtain that
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the set {c•~N L~u 1
~N
, . . . , ~un~N

M | ~N ∈ ~X} is actually a singleton. Therefore, Lemma 3.4.17 tells us that

also the terms c•~N
and the bags [~u i~N

] are independent from ~N ∈ ~X . The unique element of the

previous sigleton has hence shape c•L~u i, . . . , ~un M, with c• a rigid of a c ∈ T (C), and [~u i] ∈ T (Li).
Recalling now that [~w i

~N
] ∈ NFT (Li), we can apply Proposition 3.4.11 in order to obtain, for

each i = 1, . . . , n, an L′
[~w i

~N
]
∈ Λcbv such that Li �v L

′
[~w i

~N
]

and [~w i
~N

] ∈ T (L′
[~w i

~N
]
). Remark that

these L[~w i
~N

]’s must in fact be values, since they are reducts of the values Li. Consider now the

set {[~w i
~N

] | ~N ∈ ~X}, which can be a priori infinite. Since for i fixed, the set {[~u i~N ] | ~N ∈ ~X} is

a singleton {[~u i]}, (3.16) entails that [~wi~N
] ∈ nf ([~ui]), and our set {[~w i

~N
] | ~N ∈ ~X} must thus in

fact be finite. Therefore we can invoke confluence in order to say that the finitely many L′
[~w i

~N
]
’s

share a commond reduct, call it L′i, which as the notation shows is now independent from [~w i
~N

]

(but still depends on i). Of course L′i is also a reduct of Li, and it is still a value. Also, since

each [~w i
~N

] belongs to T (L′
[~w i

~N
]
) and is normal, by Remark 3.4.10 it is {[~w i

~N
] | ~N ∈ ~X} ⊆ T (L′i).

Thus we can apply Lemma 3.4.18 and find that, for every ~N ∈ ~X , we have:

c•L ~w 1
~N
, . . . , ~wn~N M ∈ T (CLL′1, . . . , L

′
n M). (3.18)

But now thanks to (3.15) (which holds for all ~N ∈ ~X ) and (3.18), we can apply again Propo-
sition 3.4.12 in order to find that the set {c•L ~w 1

~N
, . . . , ~wn~N

M | ~N ∈ ~X} is a singleton. Again

by Lemma 3.4.17, we have that all the bags [~w 1
~N

], . . . , [~wn~N
] for ~N ∈ ~X , coincide respectively

to some bags [~w 1], . . . , [~wn] which are independent from ~N ∈ ~X . So the only element of the
previous singleton has shape c•L ~w 1, . . . , ~wn M, and by (3.15) we get:

t ∈ nf (c•L ~w 1, . . . , ~wn M). (3.19)

Now, for all i, remembering what we found already, we have [~w i] = [~w i
~N

] ∈ NFT (N) for all
N ∈ Xi. That is,

[~w i] ∈
⋂
N∈Xi

NFT (N) = NFT (Vi) (3.20)

where we finally used the hypothesis. From (3.20) and Lemma 3.4.18 one can now easily
conclude that t ∈ nf (c•L ~w1, . . . , ~wn M) ⊆ NFT (CLV1, . . . , Vn M).

As usual, one obtains as a Corollary the non-existence of the following parallel-or . We use
the usual encoding of pairs: (M,N) := λz.zMN . Remark that thus a pair is a value.

Corollary 3.4.21 (No parallel-or). There is no Por ∈ Λcbv s.t. for all M,N ∈ Λcbv,{
Por (M,N) =τ True if M 6=τ Ω or N 6=τ Ω
Por (M,N) =τ Ω if M =τ N =τ Ω.

Proof. Otherwise, applying Theorem 3.4.20 for C := Por ξ, X = {(True,Ω), (Ω, True)} which is
bounded by the value (True, True), and the value V := (Ω,Ω) = (True,Ω)∩ (True,Ω), we would
have the contradiction:

True = CL(True,Ω)M ∩ CL(Ω, True)M = CL(Ω,Ω)M =τ Ω.

3.5 Taylor subsumes Böhm

In the present section we show how one can apply the resource approximation in order to obtain
important results of λ-calculus. Those results constitute the core of Chapter 14 in [Bar84] and
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are based on what we have called Böhm’s approximation. Not only our techniques can serve as
“substitute” of the traditional techniques, but they are also “subsume” them in some way, as
better explained in the final comments (see Section 3.6).

The present section is organized as follows:

- First, we consider the relation between Böhm’s approximation (recall Section 2.2.2) and
the resource approximation. As it is well known, the relation between them culminates in the
fact that the relations =τ and =B coincide (Corollary 3.5.13). This is obtained via some results
on some particular classes of resource terms, which we call linearized and affined (see 3.5.8), and
via the commutation formula of [ER06a]. In that paper, it is proved in the general quantitative
case; we will only consider it in the qualitative case, since this is all we need. We give an “easier”
proof of this formula, in the sense that the results of Section 3.3 are basically all one needs in
order to prove it.

- Then we transfer the PLP from the world of Taylor normal form to the world of Böhm
trees (Theorem 3.5.14). This is immediate thanks to the commutation formula. Interestingly,
our proof automatically allows to positively answer to the question: does the PLP hold in the
term algebra of closed terms? This was an open question. We also present some equivalent
ways of stating the PLP.

- We can also transfer the Stability property in the same way (Theorem 3.5.28). This is not
immediate due to the presence of intersections; we thus prove the needed properties about the
intersection of Taylor normal forms and of approximants of a term (Lemma 3.5.27).

- We then turn to the Genericity property (Theorem 3.5.29), for which we provide a proof
based on the property of linearity of resource terms. Compare it to the original proof, which
follows a topological argument.

- Finally, we consider the Continuity Lemma (Lemma 3.5.33). One remarks again how our
proof is different from the original one, and contains the same crucial argument involving the
linearity of the resource terms involved.

The commutation formula

Definition 3.5.1. One extends the Taylor expansion to Λ⊥ (and thus, in particular, to Böhm
approximants) setting:

T (⊥) := ∅.

One extends it also on subsets X ⊆ App simply by setting T (X ) :=
⋃

M∈X
T (M). In particular,

the Taylor expansion T (A(M)) ⊆ Λr of the Böhm approximants of a term is defined.

Remark 3.5.2. Actually, the previous definition lifts to Böhm trees, in the sense that one can
define:

T (BT(M)) :=
⋃

P∈A(M)

T (P ).

This is well defined as a function BΛ −→ P(Λr), because one knows that BT(M) = BT(N)
entails A(M) = A(N), so that T (BT(M)) = T (BT(N)).

Remark also that, by definition and since BT(M) v BT(N) iff A(M) ⊆ A(N), the Taylor
expansion is monotone on BΛ w.r.t. v.

The next Lemma says that the Taylor expansion is monotone also on Λ⊥ w.r.t. v.

Lemma 3.5.3. For M,N ∈ Λ⊥, if M v N then T (M) ⊆ T (N).

Proof. Straightforward induction on M .
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Remark 3.5.4. If P ∈ App then all t ∈ T (P ) are r-normal. This is immediate to see, since
the elements of the Taylor expansion of a term must follow the structure of the syntax tree of
it.

Lemma 3.5.5. Let M ∈ Λ and t ∈ T (M). If t is r-normal, then there exists P ∈ App such
that t ∈ T (P ) and P vM . In particular, one has therefore T (M) ⊆ T (BT(M)).

Proof. Being r-normal, t = λ~x.y[~u 1] · · · [~u k] ∈ T (M) for uij r-normal. So M = λ~x.yM1 · · ·Mk

with [~u i] ∈ ! T (Mi).
We go now by induction on the r-normal structure19 of t.
If k = 0, then P := λ~x.y does the job.
If k ≥ 1, then fix i = {1, . . . , k} and apply the inductive hypothesis on each uij ∈ [~u i],

obtaining a P ij ∈ App s.t. P ij v Mi and uij ∈ T (P ij ). Let Pi :=
⊔
j
P ij . Being it a sup, it must

be Pi vMi and P ij v Pi for every i, j. From the former inequality we have λ~x.yP1 · · ·Pk vM ,

and from the latter (thanks to Lemma 3.5.3) we have uij ∈ T (Pi). Whence, the thesis for
P := λ~x.yP1 · · ·Pk.

Everything is already in place to prove the commutation formula:

Theorem 3.5.6 (Qualitative commutation formula). Let M ∈ Λ. Then:

NFT (M) = T (BT(M)).

Proof. (⊆). If t ∈ NFT (M) then t ∈ nf (t′) for some t′ ∈ T (M), so by Corollary 3.3.26 there
is N ∈ Λ such that M � N and t ⊆ T (N), and Lemma 3.5.5 gives t ∈ T (BT(N)) =
T (BT(M)).

(⊇). If t ∈ T (BT(M)), there is P ∈ App and N ∈ Λ such that M � N w P and t ∈ T (P ).
By Lemma 3.5.3 we get t ∈ T (N), and t is r-normal by Remark 3.5.4. So t ∈ NFT (N) =
NFT (M).

One immediately gets the following consequence:

Corollary 3.5.7 (Characterization of solvability). M is solvable iff NFT (M) 6= ∅.

Proof. M solvable iff BT(M) 6= ⊥ iff there exist P ∈ A(M) − {⊥} iff there exist P ∈ A(M)
such that T (P ) 6= ∅ iff NFT (M) = T (BT(M)) =

⋃
P∈A(M)

T (P ) 6= ∅.

As previously mentioned, let us introduce a class of resource terms that are interesting as
they contain just enough information to easily reconstruct a term in Λ and Λ⊥, respectively.

Definition 3.5.8 (Linearized and affined resource terms). A resource term t is linearised (resp.
affined) if every bag in t has cardinality exactly 1 (resp. at most 1). Let’s call Lin, Aff the set
of linearised and affined resource terms.

Lemma 3.5.9. There is an injection (·) : Aff −→ Λ⊥ defined as:

x = x λx.t = λx.t s[t] = s t s1 = s⊥.

There is an injection (·) : Λ⊥ − {⊥} −→ Aff defined as20:

x = x (λx.M) = λx.M (MN) = M [N ] (M⊥) = M1.

The maps above are bijections between:

19Recall Remark3.3.6.
20Here we are using the fact that there is a canonical bijection between the set Λ⊥ − {⊥} and the inductive

grammar M ::= x | λx.M |M⊥ |MM .
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1. Λ and Lin, and between nfλ(Λ) and nfr(Lin).

2. App− {⊥} and the set nfr(Aff) of r-normal affined resource terms.

Proof. Simple inductions.

The following is an easily checked remark.

Remark 3.5.10. Let M ∈ Λ. Then:

(1) T (M) ∩ Lin = {M}

(2) For all P ∈ App s.t. ⊥ 6= P vM , one has P ∈ T (M).

The following lemma contains the main properties of interest of the linearized and affined
terms.

Lemma 3.5.11. Let M ∈ Λ and P,Q ∈ App with P 6= ⊥. Then:

1. P ∈ T (Q) entails P v Q.

2. P ∈ NFT (M) iff P ∈ A(M).

3. M normalisable iff NFT (M) ∩ Lin 6= ∅ iff NFT (M) ∩ Lin = {nf (M)}.

Proof. (1). Simple induction on P .

(2). (⇒). If P ∈ NFT (M) then P ∈ nfr(t), for some t ∈ T (M). But by Lemma 3.5.5,
t ∈ T (Q) for some Q ∈ A(M), and being thus Q normal, we have T (Q) = NFT (Q) 3 P .
We conclude by Point (1) and the fact that A(M) is downward closed w.r.t. v.

(⇐). If P ∈ A(M), then M � M ′ for some M ′ such that P v M ′, thus P ∈ T (M ′) by
Remark 3.5.10. By Proposition 3.3.17(2), there is t ∈ T (M) such that t �r P + T for
some sum T. But being it r-normal, one has P ∈ nf (t), whence P ∈ NFT (M).

(3). If M has a normal form nfλ(M), then nfλ(M) ∈ A(M) − {⊥}, so by (2) nf (M) ∈
NF(T (M)) and by definition it is linearized.

If t ∈ NFT (M)∩Lin then t ∈ nfλ(Λ) ⊆ App−{⊥}. Moreover t = (t), so that by Point (2)
there is a reduction M � M ′ s.t. t v M ′. Since t is even ⊥-free the only possibility is
that t = M ′, which, being normal, is therefore the normal form nfλ(M) of M .

This proves the first equivalence, as well as the second one.

Remark 3.5.12. From point 2 of the previous Lemma one gets a ways of computing the Böhm
approximants from the resource ones:

A(M) = NFT (M) ∩Aff ∪ {⊥}.

The commutation formula and Lemma 3.5.11(2) immediately allow to prove that in fact v
is nothing more than ≤.

Corollary 3.5.13 (Equivalence between Taylor normal form and Böhm preorders). Let M,N ∈
Λ. Then:

M v N iff M ≤ N

Note that this immediately implies that:

M =B N iff M =τ N.
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Proof. (⇒). NFT (M) = T (BT(M)) ⊆ T (BT(N)) = NFT (N), where we have used the Com-
mutation formula and Remark 3.5.2.

(⇐). If P ∈ A(M), then by Lemma 3.5.11(2) P ∈ NFT (M) ⊆ NFT (N), so P ∈ A(N) by the
same Lemma.

Being =τ contextual (this is the Monotonicity Theorem) – and thus a λ-theory – also B is:

If BT(M) = BT(N) then BT(CLM M) = BT(CLN M).

Of course we know this facts from the 60’s, but this is another way to prove it, by passing only
via resource approximation.

Perpendicular Lines Property We already encountered the Perpendicular Lines Property
(PLP) as Theorem 3.3.40. It is there formulated in Λ/=τ instead of Λ/=B as it is in the literature,
but because the λ-theories of Böhm and Taylor normal form coincide, we automatically obtain
it for the former:

Theorem 3.5.14 (Perpendicular lines property for Böhm trees). If (λz1 . . . zn.F )ξ1 . . . ξn :
Λ/=B × · · · × Λ/=B −→ Λ/=B is constant on n perpendicular lines, then it is constant on all
Λ/=B × · · · × Λ/=B .

Actually, the number n of abstracted variables and the number of arguments need not be
equal. In fact, one can state PLP in a (a priori) more general form considering directly a term
F instead of the abstraction λ~z.F , while keeping the same n, and these two variants of PLP
are equivalent: using the one for λz1 . . . zn.F we can prove the one for F (and the vice-versa is
obvious), as the following proposition shows.

Proposition 3.5.15. Suppose there are {Mij}1≤i 6=j≤n, {Ni}1≤i≤n ⊆ Λ s.t. the system of equa-
tions: 

F Z M12 . . . . . . M1n =B N1

F M21 Z . . . . . . M2n =B N2

. . .
...

F Mn1 . . . Mn(n−1) Z =B Nn.

(3.21)

holds for all Z ∈ Λ. Then for all Z1, . . . , Zn ∈ Λ one has:

F Z1 . . . Zn =B N1.

Proof. Wlog F is solvable, otherwise, the result trivially holds: if F =τ Ω then by Mono-
tonicity we have: F ~Z =τ Ω~Z =τ ∅ for all ~Z. Now let us remark that if F is solvable
and satisfies equations (3.21) then, once called m ∈ N the (necessary unique) integer s.t.
F �h λz1 . . . λzm.yP1 . . . Pk, it must be: m ≥ n. In fact if m < n then we have two cases:
either y = zi for some i ∈ {1, . . . ,m} in which case computing the i-th equation of (3.21) we
find the following contradiction (for fresh variables ~q and the appropriate P̃i):

Ni =B F Mi1 . . .Mi(i−1) (λq1 . . . qk+n−m.Z)Mi(i+1) · · ·Min

=B (λz1 . . . zm. ziP1 · · ·Pk)Mi1 . . .Mi(i−1) (λq1 . . . qk+n−m.Z)Mi(i+1) · · ·Min

=B (λq1 . . . qk+n−m.Z)P̃1 · · · P̃kMi(m+1) · · ·Min

=B Z
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for all Z; either y 6= zi for all i ∈ {1, . . . ,m} and then computing the n-th equation of (3.21)
we find the following contradiction (for fresh variables ~q and the appropriate P̃i):

Nn =B F Mn1 · · ·Mn(n−1) Z

=B (λz1 . . . zm. ziP1 · · ·Pk)Mn1 · · ·Mn(n−1) Z

=B y P̃1 · · · P̃kMn(m+1) · · ·Mn(n−1) Z

for all Z. But now since m ≥ n, for all Zi ∈ Λ we have:

FZ1 · · ·Zn =B (λz1 . . . zm.F
′)Z1 · · ·Zn

=B λzn+1 . . . zm. F
′{Z1/z1, . . . , Zn/zn}

=B λzn+1 . . . zm. (λz1 . . . zn.F
′)Z1 · · ·Zn.

So instantiating the Zi’s by the i perpendicular lines of (3.21) we obtain that each Ni must be
s.t. Ni =B λzn+1 . . . zm.N

′
i for some N ′i satisfying:

(λz1 . . . zn.F
′)Mi1 · · ·Mi(i−1) ZMi(i+1) · · ·Min =B N

′
i .

That is, the term λz1 . . . zn.F
′ is constant (mod =B) on n perpendicular lines, and thus thanks

to the PLP in the already proved version (Theorem 3.5.14) it is constant (mod =B) on all
Λ× · · ·×Λ (n times). Hence, λzn+1 . . . zm. (λz1 . . . zn.F

′)Z1 · · ·Zn also is constant (mod =B) in
Z1 . . . Zn, and the same for FZ1 . . . Zn. This is exactly what we wanted to prove.

The PLP can also be equivalently stated for n-contexts instead of terms. We mean that
the statement of PLP using a term F (or, equivalently, a term λz1 · · · zn.F ) is equivalent to the
following statement:

Let C be an n-context and suppose there are {Mij}1≤i 6=j≤n, {Ni}1≤i≤n ⊆ Λ s.t. the system
of equations: 

CL Z, M12, . . . . . . ,M1n M =B N1

CLM21, Z, . . .. . . . . . ,M2n M =B N2

. . .
...

...
CLMn1, . . . ,Mn(n−1), Z M =B Nn

holds for all Z ∈ Λ. Then for all Z1, . . . , Zn ∈ Λ one has:

CLZ1 . . . Zn M =B N1.

We have:

Proposition 3.5.16. Both for the open term algebra and the closed term algebra of any λ-theory
T , the PLP stated for contexts holds iff PLP stated for terms does.

Proof. One can check that the following argument holds both in the open and in the closed
term algebra.
(⇒). Trivial taking C := Fξ1 . . . ξn.
(⇐). We suppose that for all F ∈ Λ, if F is constant (mod T ) on n perpendicular lines then
F is constant (mod T ) on all Λ × · · · × Λ (n times). We fix a generic n-context C which is
constant (mod T ) on the following n perpendicular lines:

li : (Mi1, . . . ,Mi(i−1), Z,Mi(i+1), . . . ,Min)Z∈Λ

for i = 1, . . . , n. We want to prove that C is constant (mod T ) everywhere. To that end21, for
each i = 1, . . . , k, let ~vi be a list (the order of the elements will not matter) of all the variables

21Intuitively, one would be tempted to immediately conclude by considering F = λx1 . . . λxn.CLx1, . . . , xn M.
However since substitution in a context is may capture variables, in this way we do not necessary have that
F ~Z =T CL ~Z M. So we have to be careful in ”simulating” the capturing variables substitution in contexts with the
capture free substitution in terms.
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bound22 in C that one encounters on all the paths from the root of C to the occurrences of
ξi, that is, the bound variables of C in whose scope there is an occurrence of ξi. To say it
differently, ~vi are the only variables that, when replacing ξi for a term, C can capture. Take
now the term:

F := λz1 . . . zn.CLz1~v1, . . . , zn~vn M ∈ Λ

where z1, . . . , zn are distinct fresh variables. First of all, let us show that F is constant on the
following n perpendicular lines:

li : (λ~v1.Mi1, . . . , λ~vi−1.Mi(i−1), Z, λ~vi+1.Mi(i+1), . . . , λ~vn.Min)Z∈Λ

for i = 1, . . . , n. In fact, remembering that in general (λ~v.P )~v =λ P , we have:

F (λ~v1.Mi1) · · · (λ~vi−1.Mi(i−1)) Z (λ~vi+1.Mi(i+1)) · · · (λ~vn.Min)

=λ CL(λ~v1.Mi1)~v1, . . . , (λ~vi−1.Mi(i−1))~vi−1, Z~vi, (λ~vi+1.Mi(i+1))~vi+1, . . . , (λ~vn.Min)~vn M
=λ CLMi1, . . . ,Mi(i−1), Z~vi, Mi(i+1), . . . ,Min M

which is constant (mod T ) in Z thanks to the hypothesis on C. So thanks to the hypothesis on
PLP for terms, F is constant (mod T ) on all Λ×· · ·×Λ (n times). Now, reasoning analogously
as before, we have:

CLZ1, . . . , Zn M =λ CL(λ~v1.Z1)~v1, . . . , (λ~vn.Zn)~vn M
=λ F (λ~v1.Z1) . . . (λ~vn.Zn)

and so being F constant, C is is constant (mod T ) as well.

It is important to understand the great advantage of using Taylor expansion in order to
prove the PLP: in fact, if we considered it with respect to =B, a context CLξ M can display a
constant behaviour for several reasons:

1. CLξ M does not contain the hole ξ at all (the trivial case);

2. ξ is “erased” during its reduction as in CLξ M = (λxy.y)ξ;

3. ξ is “hidden” behind an unsolvable as in CLξ M = Ω ξ;

4. ξ is pushed into infinity as in CLξ M = Pξ, where P := Y(λyzx.x(yz)) is s.t. Pz =λ λx.x(Pz).

As we already remarked in Section 3.3.2, in Λr we are only left with the trivial case. But
in the case of =B, all the cases are possible. We recognise here the “coinductive” character of
Böhm trees. Speaking of coinduction, our proof could also be written in a “coinductive fashion”,
thus allowing to prove the PLP, using coinduction, while remaining in Λ/=B .

We talked about the PLP in the term algebra Λ/=τ = Λ/=B . One can ask what happens
for other λ-theories, starting with =λ. The fact that Λ/=λ satisfies PLP was only suggested
in [Bar84], and proved later on by Endrullis and de Vrijer [EdV08] that applied van Daalen’s
Reduction under Substitution property [vD80], which is a strengthening of the famous “Baren-
dregt Lemma”. As we are now considering =λ, a constant context CLξ M can only display two
possible behaviours, namely (1) or (2) in the list above. Moreover, the hypotheses of PLP must
hold when taking Z = x and Z = y for x 6= y. This is a strong assumption because x and y
are completely defined different values thus enforcing a “maximal” the distinction among the
terms. These are the main ingredients used in [EdV08] to derive that Λ/=λ satisfies PLP. In

22Remember that contexts are not considered up to renaming of bound variables, contrary to terms, and so
the notion of bound variables occurring in a context is well defined.
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fact, they are crucial: as shown in [SB99], the property fails in the closed term model Λo/=λ

(in which we cannot, thus, take Z = x and Z = y as mentioned above). The last result relies on
the existence of so-called Plotkin terms [Plo74], namely λ-distinct terms M,N ∈ Λo satisfying
ML =λ NL for all L ∈ Λo.

So one sees that in the closed term algebra things may be different. It is thus interesting to
ask whether for our equivalent λ-theories =τ and =B, PLP holds or not when restricting to the
closed term algebra. To the best of our knowledge, that is an open question. Actually, we can
immediate answer it:

Theorem 3.5.17. PLP holds in the closed term algebra Λo/=B = Λo/=τ .

Proof. One can check that the proof of Theorem 3.3.40 work also in the case of closed terms.

Let us resume in Figure 3.5 what we now know about the validity of PLP, the top right case
being new, and the top left case being now proved solely via Taylor expansion and resource
approximation.

PLL Λ Λo

=B = =τ
√ √

=λ
√

×

Figure 3.3: The new PLP validity table

As already remarked, one has that the following “parallel or” is undefinable, and since being
solvable is a recursively enumerable property, it means that in λ-calculus one cannot implement
parallel computations.

Corollary 3.5.18 (No parallel-or). There is no por ∈ Λ which semi-decides the solvability of
any two terms, that is, such that for all M,N ∈ Λ one has:{

porMN =λ True if M or N is solvable

porMN unsolvable otherwise.

Another consequence of PLP is that there is no λ-term which decides whether its input is
=B to a Church numeral or not. That is, if we denote – only in this Corollary (and its proof)
– by n ∈ Λ the Church numeral of n ∈ N, we have:

Corollary 3.5.19. There is no isNum? ∈ Λ s.t. for all M ∈ Λ one has:{
isNum?M =B True, if M =B n for some n ∈ N,
isNum?M =B False, otherwise.

Proof. Suppose there is such isNum? ∈ Λ. Now take f : Nk −→ N a computable function which
is constantly equal to a certain n0 ∈ N on all the k axes while f(~m0) 6= ~n0 for some ~m0 ∈ Nk.
It is clear that such functions do exist. By Church thesis, there is F ∈ Λ representing f . Now
let:

F̃ := λz1 . . . zk. isNum? z1(isNum? z2(. . . isNum? zn(Fz1 · · · zk)n0)n0)n0 ∈ Λ.

That is:

F̃M1 · · ·Mk =B

{
f(n1, . . . , nk), if M1 =B n1, . . . ,Mk =B nk for some ~n ∈ Nk,
n0, otherwise.

Thus, F̃ is constantly equal (mod =B) to n0 on the k perpendicular lines (Z, 0, . . . , 0)Z∈Λ,
(0, Z, 0, . . . , 0)Z∈Λ, . . . , (0, . . . , 0, Z)Z∈Λ. So by PLP it is constant (mod =B) everywhere, but
this is a contradiction with the fact that F̃ ~m0 =B f(~m0) 6=B ~n0 (two different Church numerals
are always =B-distinct, as one immediately sees).
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Stability The theory of stability was developed by Berry, while studying sequential computa-
tions and full abstraction for PCF [Ber78]. We exhibit a new proof of the Stability Theorem as
formulated in [Bar84, Thm. 14.4.10]. The original proof exploits a causality relation capturing
the fact that suitable subtrees of BT(CLM1, . . . ,Mn M) “are caused by” some argument Mi.

We first, we will need some results:

Recall that P1, P2 ∈ App are said to be comparable iff P1 v Q w P2 for some Q ∈ App. This
is the same to say that they have the same structure: either at least one of them is ⊥, either
P1 = λ~x.yP 1

1 · · ·P k1 , P2 = λ~x.yP 1
2 · · ·P k2 , and P j1 , P

j
2 are comparable. Finitely many comparable

Böhm approximants always admit a sup in App, and this operation can be lifted to countably
infinite many pairwise comparable ones by yielding a sup in B. We show below that the same
can be done for the inf, but remaining inside App.

Definition 3.5.20. For comparable P1, P2 ∈ App, we inductively define a term P1 u P2 ∈ Λ⊥
as follows:

P1 u P2 =

{
λ~x.y(P11 u P21) · · · (P1k u P2k) if P1 = λ~x.yP11 · · ·P1k and P2 = λ~x.yP21 · · ·P2k,

⊥ if at least one between P1 and P2 is ⊥.

It is trivial to check by induction that thanks to the compatibility, the definition makes sense
and gives the inf of P1, P2 in App. It is straightforward to check by induction (on P1, for
example) that if countably many Pi’s are compatible with each other, then

d

i∈I
Pi = inf

i∈I
Pi, where

the inf is taken in App (and not in B as for the sup). In particular, in App there exists
inf

P∈A(M)
P =

d

P∈A(M)

P .

Remark 3.5.21. Let Pi ∈ App for i ∈ I. If
⋂
i
T (Pi) 6= ∅, then the Pi’s are pairwise comparable.

Indeed, fix t ∈
⋂
i
T (Pi). Since the Pi’s belong to App, such a t must be r-normal. We go now

by induction on its r-normal structure23: If t = λ~x.y then it is trivial. If t = λ~x.y[~u 1] · · · [~u k]
(with k ≥ 1) then each Pi must has shape Pi = λ~x.yP ′i1 · · ·P ′ik, with umj ∈

⋂
i
T (Pim) for all m, j.

Now one can conclude by the inductive hypothesis.

Lemma 3.5.22. Let X ⊆ Λ and take a family {PN ∈ A(N) | N ∈ X}. If the PN ’s are all
pairwise compatible, one has:

T (
l

N∈X
PN ) ⊆ T (

⋂
N∈X

A(N)).

Proof. Fix N ∈ X . Since
d

N∈X
PN v PN ∈ A(N), one has

d
N∈X PN ∈ A(N) because A(M)

is downward closed. We have proved that
d
N∈X PN ∈

⋂
N∈X

A(N). And this entails24 that

T (
d
N∈X PN ) ⊆ T (

⋂
N∈X

A(N)).

Lemma 3.5.23. Let X ⊆ App. If the elements of X are pairwise compatible, one has:⋂
P∈X
T (P ) ⊆ T (

l

P∈X
P ).

23Recall Remark 3.3.6.
24We are using the trivial fact that if Q ∈ X for a term Q and a set X of terms, then T (X ) =

⋃
P∈X
T (P ) ⊇ T (Q).
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Proof. First remark that if t ∈
⋂
P∈X
T (P ) then for all P ∈ X it must be T (P ) 6= ∅, i.e. P 6= ⊥,

i.e. P = λ~xP .yPQ
1
P · · ·Q

kP
P for some variables ~xP , yP and some QjP ∈ App. But since t is in the

Taylor expansion of all of them, it must be that all ~xP , all yP and all kP coincide, i.e. for all
P ∈ X , P =: λ~x.yQ1

P · · ·QkP . Also, let us remark that since all the P ’s are in App, such a t must
be r-normal. So let us show by induction on the r-normal structure of t, that if t ∈

⋂
P∈X
T (P )

then t ∈ T (
d

P∈X
P ). If t = λ~x.y then all P must coincide with λ~x.y and the result is trivial. If

t = λ~x.y[~u 1] · · · [~u k] (with k ≥ 1) then all P must follow the same shape, and thus in particular
we have:

d

P∈X
P = λ~x.y(

d

P∈X
Q1
P ) · · · (

d

P∈X
QkP ). Now if we show that uij ∈ T (

d

P∈X
QiP ), then we

are done. But uij ∈
⋂
P∈X
T (QiP ) by hypothesis, and thus the inductive hypothesis precisely gives

uij ∈ T (
d

P∈X
QiP ).

Lemma 3.5.24. Let Y a collection of subsets of Λ. One has:

T (
⋂
N∈Y

N ) ⊆
⋂
N∈Y

T (N ).

Proof. Take t ∈ T (
⋂
N∈Y

N ) =
⋃

F∈
⋂
N∈Y

N
T (F ), that is, t ∈ T (F ) for some F s.t. F ∈ N for all

N ∈ Y. But then for all fixed N ∈ Y one has t ∈
⋃

F∈N
T (F ) = T (N ). So t ∈

⋂
N∈Y

T (N ).

The previous inclusion can be strict. For example, take Y := {N1,N2} with N1 := {xy}
and N2 := {xz}. Then T (N1 ∩N2) = T (∅) = ∅ but x1 ∈ T (xy) ∩ T (xz) = T (N1) ∩ T (N1).

However, if the elements of Y are sets of Böhm approximants of terms, then the equality
holds, as the next lemma shows. This particular case is precisely what we will need.

Lemma 3.5.25. Let X ⊆ Λ. One has:

T (
⋂
N∈X

A(N)) =
⋂
N∈X

T (A(N)).

Proof. (⊆). It is Lemma 3.5.24 with Y := {A(N) | N ∈ X}.
(⊇). If t ∈

⋂
N∈X

T (A(N)) =
⋂

N∈X

⋃
P∈A(N)

T (P ) then for all N ∈ X there exist a PN ∈ A(N)

s.t. t ∈ T (PN ). So t ∈
⋂

N∈X
T (PN ) 6= ∅, and by Remark 3.5.21 this implies that the PN ’s

(for N ∈ X ) are pairwise compatible. Hence, Lemma 3.5.22 and Lemma 3.5.23 give: t ∈
T (

d

N∈X
PN ) ⊆ T (

⋂
N∈X

A(N)).

We can now finally set up the notations and prove the Stability property for Böhm trees, in
the same way we already did in the framework of Taylor expansion.

Definition 3.5.26. Given a non-empty subset X ⊆ Λ, define its B-infimum
d
X ⊆ App as:

l
X :=

⋂
M∈X

A(M).

We say that X is bounded iff there exists an L ∈ Λ such that M v L for all M ∈ X .
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By commutation formula we instantly get that A(M) ⊆ A(L) iff NFT (M) ⊆ NFT (L), so
X is bounded iff X is T -bounded.

We write M =
d
X instead of A(M) =

d
X .

As in the case of Taylor normal form, the Stability property gives sufficient conditions for when
a context is “stable” under intersection of Böhm trees.

In order to translate Theorem 3.3.37 to the framework of Böhm trees, we need a last lemma
saying that “

d
X =

⋂
X”, in the sense of the statement.

Lemma 3.5.27. Let M ∈ Λ and X ⊆ Λ. Then:

M =
l
X iff M =

⋂
X .

Proof. (⇒). Applying T (·) on both sides of the hypothesis A(M) =
⋂

N∈X
A(N) one gets:

NFT (M) = T (A(M)) = T (
⋂
N∈X

A(N)) =
⋂
N∈X

T (A(N)) =
⋂
N∈X

NFT (N)

where we have used the Commutation Formula as well as Lemma 3.5.25.

(⇐). (⊆). Let P ∈ A(M). Then:

NFT (P ) = T (P ) ⊆
⋃

Q∈A(M)

T (Q) = T (A(M)) = NFT (M) =
⋂
~N∈ ~X

NFT (N)

where we have used the Commutation Formula and the hypothesis (and NFT (P ) = T (P )
since P is λ⊥-normal). So, for every ~N ∈ ~X , one has P v N , and this means that
P ∈ A(P ) ⊆

⋂
~N∈ ~X
A(N) (where P ∈ A(P ) holds again because P is λ⊥-normal).

(⊇). Let P ∈
⋂
~N∈ ~X
A(N). Then, for all fixed ~N ∈ ~X , via a similar argument as before one

has:

NFT (P ) = T (P ) ⊆
⋃

Q∈A(N)

T (Q) = T (A(N)) = NFT (N).

Thus, NFT (P ) ⊆
⋂
~N∈ ~X

NFT (N) = NFT (M), and this means that P ∈ A(P ) ⊆ A(M).

Theorem 3.5.28 (Stability for Böhm trees). Let C be an n-context, M1, . . . ,Mn ∈ Λ and fix
non-empty bounded X1, . . . ,Xn ⊆ Λ. If for all i ∈ {1, . . . , n} one has:

Mi =
l
Xi

then one has:

CLM1, . . . ,Mn M =
l

N1∈X1
...

Nn∈Xn

CLN1, . . . , Nn M.

Proof. Thanks to the fact that being bounded means being T -bounded, and thanks to the
previous Lemma 3.5.27, the hypotheses and the conclusions are exactly those of the Stability
for =τ (Theorem 3.3.37), so there is nothing more to prove.
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Genericity property of unsolvables Let us start by remarking that Corollary 3.3.14 can
be equivalently formulated saying that if C : Λ −→ Λ is a context, then:

Im(C �Unsol) ⊆ SOL entails Im(C) ⊆ SOL.

Here we mean of course that “Im” is the image of a function, that “�” is the restriction of
a function on a subset of its domain, and that “Unsol” is the set of unsolvable λ-terms.

The Genericity property reinforces the conclusion of the previous statement, under a stronger
hypothesis. Its informal meaning is that if a λ-term M reducing to a completely defined output
(a normal form) contains a subterm U which is unsolvable, then U has no influence on the
computation of this value, in the sense that it may be replaced by any other λ-term and the
computation would yield the exact same result. This is an important result from a conceptual
point of view, because it motivates the equivalence between “meaningless” and unsolvable λ-
terms. Moreover it gives the idea that unsolvable terms should be identified all each other: this
identification forms indeed the λ-theory H, which plays a crucial role in the study of λ-theories.

In the following statement we call “Normalisables” the set of normalisable λ-terms.

Theorem 3.5.29 (Genericity Property). Let C : Λ −→ Λ be a context. If:

Im(C �Unsol) ∩Normalisables 6= ∅

then:
C is constant mod =λ on all Λ.

Proof. Take U unsolvable with CLU M normalisable, and let us show that CLU M =λ CLM M for
all M ∈ Λ. By Lemma 3.5.11(3), there is t ∈ NFT (CLU M) ∩ Lin s.t. t = nfλ(CLU M). As
t ∈ NFT (CLU M), by Lemma 3.3.33(1), there exist c = cLξ M ∈ T (C) and s1, . . . , sk ∈ T (U)
s.t. t ∈ nfr(c

•Ls1, . . . , sk M), where c• is a rigid of c. Since NFT (U) = ∅ (U is unsolvable)
we have nfr(si) = 0 and, by confluence, any reduction from c•Ls1, . . . , sk M to its normal form
nfr(c

•Ls1, . . . , sk M) = t+ T 6= 0 factorizes as:

c•Ls1, . . . , sk M�r c
•L0, . . . , 0M�r t+ T.

Now, if ξ actually occurs in c then c•L0, . . . , 0M = 0, but since the reduction 0 �r t + T is
impossible, it must be that ξ does not occur in c. But this means that c•Ls1, . . . , sk M ∈ T (CLM M)
for all M ∈ Λ, hence t ∈ NFT (CLM M). Since t is linearised, again by Lemma 3.5.11(3) we get
that CLM M is normalisable with nfλ(CLM M) = t. Recalling the second line of this proof, we
have: nfλ(CLU M) = t = nfλ(CLM M).

An interesting fact about this proof is that it does not use Monotonicity (the reader can
check that all the properties we used in the proof, and their proofs, do not use this result).
However, it is also possible to prove it using Monotonicity, and it actually makes it easier,
contracting the second to the penultimate line of the above proof to a trivial invocation of it:

Proof with Monotonicity. By Lemma 3.5.11(3), there is a linearized t ∈ NFT (CLU M) such
that t = nfλ(CLU M). As NFT (U) = ∅, Monotonicity gives t ∈ NFT (CLM M), so that by
Lemma 3.5.11(3) CLM M is normalisable and since t is linearised always Lemma 3.5.11(3) gives
nfλ(CLM M) = t.

Moreover, using Monotonicity of Böhm trees, one immediately remarks that the hypothesis
“Im(C �Unsol) ∩ normalisables 6= ∅” is equivalent to “Im(C �Unsol) ⊆ normalisables”. In fact if
there is an U unsolvable with CLU M normalisable, then by the contextuality of =B, any CLU ′ M
for U ′ unsolvable has the same Böhm tree as CLU M, and hence it is normalisable.

We can give an even shorter proof by passing through Böhm trees (and always using mono-
tonicity):
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Proof with Böhm trees’ Monotonicity. Since BT(U) = ⊥ then U v M so monotonicity yields
CLU M v CLM M, and since BT(CLU M) = BT(nfλ(CLU M)) is ⊥-free it must be CLM M =λ CLU M.

However this last proof is just a ”wrap” for the previous one, in the sense that behind
Monotonicity of Böhm trees there is all the theory of resource approximantion and Taylor
expansion (and in particular Lemma 3.5.11), which already contains the crucial result used in
the previous proof of Lemma 3.5.11; so one might as well directly use them.

Continuity We conclude this section by demonstrating Scott’s syntactic continuity lemma,
as formulated in [Bar84, Prop. 14.3.19]. The meaning of this statement is that for any context
C : Λ/=B −→ Λ/=B , any “finite portion” of its output can always be already generated by an
appropriate “finite portion” of its input. In this setting, a “finite portion” of the input (resp.
output) M (resp. CLM M) of C corresponds of course to a Böhm approximant Q ∈ A(M) (resp.
P ∈ A(CLM M)).

In order to apply our technique based on resource approximation, we are going to associate
a resource term t ∈ T (BT(M)) with an approximant Pt ∈ A(M) by mapping the empty bag 1
to ⊥ and taking the supremum t w.r.t. v.

Definition 3.5.30. We define a partial map P(·) : nfr(Λ
r) −→ App−{⊥}, by induction on the

r-normal structure25 of nfr(Λ
r), as follows:

Pλ~x.y := λ~x.y
Pλ~x.y [~u 1]···[~u k] := λ~x.y (

⊔
j
Pu1

j
) · · · (

⊔
j
Pukj

) if the sups do exist

Pt is undefined otherwise.

where we took
⊔
P∈∅

P := ⊥. It is clear that the definition makes sense.

Lemma 3.5.31. Let M ∈ Λ solvable. For all t ∈ NFT (M), one has that Pt is defined and
Pt ∈ A(M).

Proof. By induction on the r-normal structure of t, remembering that NFT (M) = NFT (nfh(M))
as well as A(M) = A(nfh(M)). If t = λ~x.y then nfh(M) = λ~x.y and the result is immediate. If
t = λ~x.y[~u 1] · · · [~u k] (with k ≥ 1) then nfh(M) = λ~x.yM1 · · ·Mk, with uij ∈ NFT (Mi). Thus Mi

is solvable (Corollary 3.5.7) and by inductive hypothesis Puij
is defined and Puij

∈ A(Mi). Since

A(Mi) is directed, there exist the sup
⊔
j
Puij
∈ A(Mi), and thus Pt = λ~x.y (

⊔
j
Pu1

j
) · · · (

⊔
j
Pukj

) is

defined. But it is immediately seen that A(λ~x.yM1, · · · ,Mk) = λ~x.yA(M1) · · · A(Mk), and so
Pt ∈ A(nfh(M)) = A(M).

If t ∈ NFT (M), by the commutation formula this means that there is some P ∈ A(M) s.t.
t ∈ T (P ). The next Lemma says that Pt is precisely one of such approximants.

Lemma 3.5.32. Let M ∈ Λ solvable. For all t ∈ NFT (M) one has t ∈ T (Pt).

Proof. By induction on the r-normal structure of t. If t = λ~x.y the result is immediate. If
t = λ~x.y[~u 1] · · · [~u k] (with k ≥ 1) then nfh(M) = λ~x.yM1 · · ·Mk, with uij ∈ NFT (Mi). Now the

inductive hypothesis on each uij says that it belongs to T (Puij
). But by Lemma 3.5.3, we have

uij ∈ T (Puij
) ⊆ T (

⊔
j
Puij

), so we conclude t ∈ T (λ~x.y (
⊔

s1∈b1
Ps1) · · · (

⊔
sk∈bk

Psk)).

25Recall Remark 3.3.6.
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Example 1.

1. For all affined t ∈ T (BT(M)) we have Pt = t.

2. P(λx.x[x,x]) = ∆ and P(λx.x1) = λx.x⊥.

3. P(λf.f [f1,f [f1]]) = λf.f(f(f⊥)).

Everything is now in place to prove Scott’s continuity lemma. The scrupulous reader will
notice that we apply to terms in Λ⊥ some definitions and results originally stated for Λ, e.g.,
A(·), vB, Lemma 3.5.11. This should not be troubling, because the constant ⊥ is observationally
indistinguishable from the λ-term Ω, i.e., T (⊥) = NFT (Ω) = ∅.

Lemma 3.5.33 (Continuity lemma). Let M ∈ Λ and C be a context. For all P ∈ A(CLM M),
there exists Q ∈ A(M) such that P v CLQM.

Proof. Let P ∈ A(CLM M). Since P is λ⊥-normal, we have A(P ) = {P ′ ∈ App | P ′ v P},
whence it is a finite set A(P ) = {P1, . . . , Pk}∪{⊥} where k ≥ 0 and Pi 6= ⊥. Since it is clear that
A(P ) ⊆ A(CLM M), by Lemma 3.5.11(2), for all i = 1, . . . , k we have Pi ∈ NFT (CLM M) so that
there exist ti ∈ T (CLM M) s.t. P i ∈ nf (ti). By Lemma 3.3.33(1), there are ci = cLξ M ∈ T (C) and
si1, . . . , s

i
ni ∈ T (M) s.t. ti = c•i L~s

i M, where c•i is a rigid of ci. Hence, any reduction ti �r nfr(ti)
factorizes as:

ti = c•i L~s
i M�r c

•
i Lnfr(s

i
1), . . . ,nfr(s

i
ni)M�r nfr(ti) 3 P i

where nfr(s
i
j) ⊆ NF(T (M)) for all i = 1, . . . , k and 1 ≤ j ≤ ni. Now, if nfr(s

i
j) = 0 for all i, j,

then the only possibility is that ξ does not occur in ci, and thus ti = c•i ∈ T (CLΩM), so that
Pi ∈ NFT (CLΩM) and by Lemma 3.5.11, Pi ∈ A(CLΩM) = A(CL⊥M), which is the thesis. So
Wlog let us assume that nfr(s

i
j) 6= 0 for all i, j. As there are at most kni such sij ’s, and each

nf (sij) is a finite sum, the following set:

Q :=
k⋃
i=1

ni⋃
j=1

nf (sij) ⊆ NFT (M)

is finite. Since by Lemma 3.5.31 Pu ∈ A(M) for all u ∈ Q, and since being A(M) directed it
contains the sup of finitely many of its elements, we can take:

Q :=
⊔
u∈Q

Pu ∈ A(M).

Now, recalling that Pi ∈ nfr(ti) = nfr(c
•
i Lnfr(s

i
1), . . . ,nfr(s

i
ni)M), we get Pi ∈ nfr(c

•
i Lu

i
1, . . . , u

i
ni M)

for some uij ∈ Q (1 ≤ j ≤ ni). But since by Lemmas 3.5.32 and 3.5.3 every uij ∈ T (Puij
) ⊆ T (Q),

using Lemma 3.3.33 we derive that P i ∈ NFT (CLQM). By Lemma 3.5.11(2), we finally conclude
that Pi ∈ A(CLQM). If we remember that the Pi’s are exactly the elements of A(M)−{⊥}, we
just proved that A(P ) ⊆ A(CLQM), i.e. P v CLQM.

The reason why the above result is called “continuity Lemma” is because it is the main
ingredients, together with Monotonicity, of the following theorem, of which we omit the proof
since one finds it in [Bar84, Corollary 14.3.21].

Theorem 3.5.34. All contexts C : Λ −→ Λ are continuous w.r.t. Scott-topology.
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3.6 Conclusive comments

We have seen that approximating the behaviour of a λ-term by calculating its Taylor expansion
allows to abandon proof-techniques based on coinduction in favour of the inductive principle.
Already in [Wad76], Wadsworth defined a labelled λ-calculus to calculate an approximant P ∈
A(M) in an effective way, and this is the historical way the results of Section 3.5 were found.
Let us quickly mention the idea and compare the two approaches.

The idea is to annotate every subterm of M with a certain amount of energy, represented
by a natural number n, which is then decremented along the reduction:

(λx.M)n+1N →β` (M{Nn/x})n
(λx.M)0N →β⊥ (M{⊥/x})0

(Mn)m →` Mmin{m,n}

The labelled λ-calculus Λ` so obtained clearly enjoys strongly normalization, and can be proved
to be confluent as well. One retrieves an approximant P ∈ A(M) starting from a fully annotated
version M ` of M by first computing nfβ`β⊥`⊥(M `) and then removing the labels. By exploiting
the properties above, it is possible to give proofs of Church-Rosser and standardization for λ-
calculus. Moreover, in [Bar84, Ch. 14] the labelled calculus constitutes the base ground on which
are built the results that we, instead, proved in Section 3.5 via resource approximation. From
a semantic perspective, the labelled λ-calculus can be interpreted in well-stratified reflexive
objects D living in cpo-enriched categories [Man09]. It was first used by Hyland [Hyl76] to
prove that Scott’s D∞ and Plotkin’s Pω induce a λ-theory including B. This means that also
labelling is an interesting technique.

Comparing the labelled λ-calculus and the resource calculus we can find a common principle:
in both cases the idea of harness infinite reductions by bounding the availability of subprograms.
However, this idea is applied in different (somewhat dual) ways: in Λ` the bound is on the
contraction of redexes, so it is the λ-abstraction that exhibits a restricted behaviour, while in
Λr the restriction is on the amount of resources a program has available. Another difference
is that the labels of Λ` give an upper bound on the energy that can be consumed by a λ-term
M , while a resource term t ∈ T (M) that does not reduce to 0 must contain the exact number
of resources needed by M in order to compute its outcome. Moreover, while both Λ` and Λr

are confluent and strongly normalising, only the latter enjoys linearity that prevents a resource
term from erasing or duplicating its subterms during its execution — a property that is crucial
in our proofs. A last important difference is that, while the “old” techniques are essentially
based on non-trivial analysis of reductions in the labelled λ-calculus, as well as on the notion
of coinduction, the techniques based on Taylor expansion are completely inductive26.

In conclusion, we believe that the labelled λ-calculus is a valid instrument, but the resource
calculus is arguably more natural because it arises from Girard’s translation (·)• of λ-calculus
into Linear Logic proof-nets sending (MN)• to M•(N•)!. In fact, the resource calculus stands
on the solid ground provided by Differential Linear Logic [ER06b], and this is the reason why
it has been generalized so easily to non-deterministic, probabilistic, algebraic call-by-name and
call-by-value calculi. Also from the semantic perspective, Λr can be naturally interpreted in
every (linear) reflexive object living a (Cartesian closed) differential category [BCS09], and the
Taylor expansion can be used to obtain combinatorial proofs of (denotational) Approximation
Theorems [MR14].

It is interesting to remark that, while following [Bar84] the results are often dependent one
on another, our proofs and our formulation of the matter allows to discover that actually they

26A side effect is, from this perspective, the proliferation of indices in the proofs due to the presence of bags.
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are all independent: in Figure 3.4, the continuous lines indicated the “old” theory (as one
finds it in [Bar84]), and the dashed ones indicate the situation that we find using the resource
approximation/Taylor expansion as we described in the present chapter.

ContinuitySequentiality

Genericity

Contextuality

Stability

Parallel Lemma

Taylor

Figure 3.4: The dependencies between the results of [Bar84, Chapter 14]

Let us end this chapter by what we believe to be a very interesting question for the future
research: we now dispose of two theories of the approximation, and we know (thanks to the
commutation formula) that in a certain sense they give equivalent notions of approximation.
Some questions immediately arise:

� What does it mean, in general, to approximate a programming language (or at least the
λ-calculus)? That is, can we axiomatically define the general notion of approximation?

� Would Böhm’s and Taylor’s be the only two possible instances of such a definition, or are
there other ways of approximating programs?

� Can we find new results about λ-calculus via approximation techniques?

We have no answer to any of these questions at this day, but we believe an investigation of those
would be of a primary interest. To the best of our knowledge, the only current tentative of
attacking this questions has been recently proposed by Mazza in the unpublished note [Maz21].
His suggestion is to consider an approximation theory27 as a certain span of functors enjoying
some properties which are, basically, the translation in a categorical setting of what we called the
Simulation property (Proposition 3.3.17). Of course both the known approximation theories falls
in Mazza’s “definition”, but the framework is still too premature to be any close to satisfaction.
However, we believe that it is a promising starting point.

27Or an approximation system, as he calls it.
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Chapter 4

The resource approximation for
λµ-calculus

Models of the simply typed
λ-calculus, of the untyped
λ-calculus and of the simply
typed λµ-calculus are well
understood, but what about
models of the untyped
λµ-calculus? As far as we know,
this question has been almost
ignored.

Olivier Laurent – [Lau04]

4.1 Plan of the Chapter

Despite the quote above explicitly mentions the models of λµ-calculus, we will not talk about
any denotational semantics for it; the reason of the presence of that quote is because the
task which we attack in the present chapter is (a small step towards) the development of a
mathematical theory of λµ-calculus; if we can say that the long time studied λ-calculus admits
a true mathematical theory, rich and with its own questions, the one of λµ-calculus remains much
less known. Now, when we think of a mathematical theory of a language, we basically mean a
theory of its denotational semantics (and “λ-theories”), but also a theory of its approximation.
Laurent’s quote mentions an “ignorance” with respect to the models; we will attack the question
of the theory of approximation. From a certain point of view, it is quite natural that the study
of λµ-calculus is less developed than the one of λ-calculus: the former is a “canonical” object of
study, since it is at the bases of all the other functional languages, therefore all the other ones are
less canonical, λµ-calculus included. But from a Curry-Howard perspective, one could say that
λµ-calculus does present a sort of canonicity: it is “the simpler” extension of λ-calculus able to
include classical logic in the correspondence. Such a statement is of course arguable, because
there are many other ways of extending the correspondence to classical logic, such as Krivine’s
classical realisability [Kri09] (which however does not relate to the same kind of Curry-Howard
correspondence as the other calculi, as we will briefly mention later), and the reader can find
an interesting discussion of other extensions in [Her95].

The Taylor expansion has been adapted to many languages ([Cho19, Vau19, LL19b, CT20,
KMP20], for example), but to the best of our knowledge not to λµ-calculus. There is a notable

83
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exception which has to be mentioned: in [Vau07b], Vaux defines a full differential λµ-calculus
following the steps of [ER03]. However, he stops right before defining, for instance, the Taylor
expansion. Not because there are difficulties in its definition (one could still follow [ER03]),
but because it seems that the author did not have in mind to directly define an approximation
theory for the calculus, ready to be used. His version takes coefficients into account; our version
is actually qualitative (no coefficients), and we show that this (a priori) simpler case is enough
for our goals. Our goals are to follow [BM20] in order to adapt the qualitative approximation
theory of λ-calculus to λµ-calculus, and apply it. The fact that we see the approximation theory
as a tool is also a difference with the other mentioned works, which usually aim more at showing
that one can in fact define it, and then concentrate on the relations with normalisation.

We start the chapter with a quick introduction on λµ-calculus and its relevance (Section 4.2).

Before moving to the resource approximation of it, we provide a useful “syntactic interlude”
(Section 4.3). The reader can jump to the beginning of that section for an explanation of it
content and its meaning.

In Section 4.4 we finally attack the question of the resource approximation: first of all,
we define the resource λµ-calculus (in particular we define its resource-reduction 4.4.6) and
prove that it is strongly normalizing and confluent (Corollaries 4.4.15 and 4.4.47). In order to
achieve the strong normalisation, we define a multiset measure which is strictly decreasing along
reductions, and which is ordered via a well-founded order. For the confluence, we basically show
that the diagrams of all the critical pairs can be closed. This is not trivial and will take us
many pages.

In Section 4.4.1 we define the qualitative Taylor expansion and prove its main properties.

In Section 4.4.2 we prove that the =τ on (the equality =τ of Taylor normal forms) forms a
sensible “λµ-theory” (Corollary 4.4.61), just as in λ-calculus.

In Section 4.4.3 we apply these approximation tools in order to prove the Stability property
(Theorem 4.4.62) and the Perpendicular lines property (PLP for short, Theorem 4.4.66). We
obtain these results by adapting the new proofs we presented in Chapter 3 for λ-calculus, and
we consider the fact that this adaptation is possible as an added value of our proofs. As a
consequence, we obtain the sequentiality of λµ-calculus (Corollaries 4.4.63 and 4.4.67).

We end the chapter with some comments and some possible future directions of research. In
particular, we briefly discuss the role of Saurin’s Λµ-calculus, a variant of Parigot’s one, which
we are going to quickly mention in the following Section 4.2.

4.2 Introduction to the λµ-calculus

As we already discussed, the celebrated Curry-Howard correspondence states that a class of
programs, written in a suitable programming language, and intuitionistic logic proofs, writ-
ten in an suitable formal system, are the same mathematical objects. The typical suitable
programming language is λ-calculus, and the typical suitable formal system is intuitionistic
natural deduction NJ; under this correspondence, simply typed λ-calculus is identified with
NJ. A natural question is what happens for classical logic proofs, and whether it is possible to
find such a correspondence at all. As we already discussed, in the 90’s several ways for gen-
eralising such a correspondence to this framework appeared, starting from Griffin’s suggestion
(in [Gri90]) to type control operators with Peirce law. In this chapter we are going to consider
the λµ-calculus, introduced by Parigot in [Par92], which has the advantage of allowing the cor-
respondence to take the exact same form as in the intuitionistic case: just like λ-calculus is the
Turing-complete programming language in which intuitionistic logic expresses its computational
content, λµ-calculus is the one expressing the computational content of classical logic.

Definition 4.2.1 (λµ-calculus). Fix a countable set whose elements are called variables and a
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(disjoint) countable set whose elements are called names. The set λµ of λµ-terms is defined by
the following grammar:

M ::= x | λx.M | MM | µα.β|M | (for x a variable and α, β names)

in which, as usual, λ binds x in M as well as µ binds α in β|M |.

The previous definition means that one proceeds as in λ-calculus: first, define pre-λµ-terms
as the words in the above grammar, then define as expected the sets of free variables and free
names in a pre-λµ-term, and finally define a λµ-term as pre-λµ-term up to renaming of bound
variables and bound names1.

Despite not being λµ-terms, words of shape α|M | are traditionally called named terms,
and M is said to be named under α. Historically named terms are written as [α]M (as in
[Par92]). But this notation is not possible for us, since the use of square brackets is already
imperatively taken by the finite multisets, which we will encounter constantly in the following.
Another notation, used in [Sau12] for Λµ-calculus, is to write Mα just like in an application.
However, in our framework, we find this notation not completely clear. Our notation α|M |
should, hopefully, clearly show what is “inside a naming” and what is not.

Definition 4.2.2. Fix a new countable set {ξ1, ξ2, . . . } whose elements are called holes. Define
a k-context C = C{ξ1, . . . , ξk} by:

C ::= x | ξ1 | · · · | ξk | λx.C | CC | µα.β|C|

1-contexts are simply called contexts. A context C = C{ξ} with exactly one occurrence of the
hole is called single-hole, and it can be given the following inductive characterisation:

C ::= ξ | λx.C | CM | MC | µα.β|C| (where M is a λµ-term).

In order to understand where the syntax of the calculus comes from, and what is its relevance,
let us quickly consider its programming and logical interpretation.

From the point of view of programming, a λµ-term is meant to represent a process which
yields more than one result; more precisely, it is able to produce side-effects by redirecting
auxiliary outputs on “channels” different from the standard output, or taking its input from
auxiliary channels different from the standard one. One can think of Unix-like Shells’ “>” or,
better, “>>”, and of “<”. Under this analogy, a named term α|M | corresponds to Shell’s
“M >> channel α”. The coexistence of multiple outputs is then given by the fact that, in a
λµ-term M , the standard output is the term M itself, while an auxiliary output N is a term
appearing inside a naming β|N |, for the channel name β free in M . The, in a certain sense, dual
constructor of the naming α|·|, is the µ-abstraction constructor, and a term of shape CLµα. . . .M
would intuitively correspond to Shell’s “C < channel α”. The way one achieves this behaviour
is through the operational semantics which we will describe in a moment.

But first, let us see what is the logical counterpart of this calculus. As we mentioned in the
introduction, the crucial difference between intuitionistic and classical formalisms for proofs, is
in the fact that in classical derivations one has multiple formulas at the right of “`”, that is
multiple conclusions. This is exactly what the multiple outputs of a λµ-term are about. In
addition, as we mentioned in the introduction, in order to have a well-behaving cut-elimination,
one has to distinguish between an active output and passive ones, which will correspond to
standard and auxiliary outputs in λµ-terms. Let us give the typing rules, in a more convenient
variant of Parigot’s original Classical Natural Deduction, which can be found, e.g., in [Sel03].

1We will avoid calling this an “α-equivalence”, since α is now usually a name, and the two terminologies could
enter in conflict.
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Definition 4.2.3. The simply typed λµ-calculus is given by the following typing rules2:

Γ, x : A ` x : A | ∆
Γ, x : A `M : B | ∆

Γ ` λx.M : A→ B | ∆
Γ `M : A→ B | ∆ Γ ` N : B | ∆

Γ `MN : B | ∆

Γ `M : A | α : A,∆, β : B

Γ ` µβ.α|M | : B | α : A,∆
if α 6= β

Γ `M : A | α : A,∆

Γ ` µα.α|M | : A | ∆

The interesting rules are the last two: if we forget about the terms and about the distinction
active/passive formulas, they are both operating a contraction on the right of the “`” (together
with some exchanges for the rule at the left). Weakenings (on both the sides of “`”) are handled
through the axiom rule. That is, the underlying logical system is the classical system NK. If now
we forget about terms and the distinction active/passive formula, we obtain Parigot’s Classical
Natural Deduction [Par92] (actually, a different version of it, because of the slightly different
syntax we are considering). Furthermore, and most importantly, cut-elimination corresponds
to the operational semantics of λµ-calculus which we describe below:

Definition 4.2.4. The reduction relation → of λµ-calculus3 is the contextual closure of the
union →base of:

(λx.M)N →λ M{N/x}

(µα.β|M |)N →µ µα.(β|M |)αN

µγ.α|µβ.η|M || →ρ µγ. (η|M |{α/β})

where M{N/x} is the usual capture-free substitution of N for all free occurrences of x in M ,
and (M)αN is the substitution (M)αN := M{α|(·)N |/α|·|}.

The notation (M)αN comes from the fact that every subterm (indicated with · ) of M
which is named under α, receives a copy of N . This operation is defined as a substitution:
every named subterm α|·| of M gets substituted with the named term α|(·)N |. Nevertheless,
intuitively speaking, it is an application: one applies all subterms of M which are named under
α to N . Hence, the notation “(M)αN” which is reminiscent of the application of M to N , and
the term (M)αN is called the named application of M to N through α. This notation is due to
Vaux [Vau07b].

Remark 4.2.5. The named application (M)αN can be inductively characterized as:

(x)αN := x (λx.M)αN := λx.(M)αN (MP )αN := ((M)αN)((P )αN)

(µβ.α|M |)αN := µβ.α|((M)αN)N | (µβ.γ |M |)αN := µβ.γ |(M)αN | (if γ 6= α).

The reduction λ is the usual reduction of λ-calculus4. Remark that the renaming {α/β} in
the ρ-reduction cannot be, in general, “taken out” of the parenthesis, because if α = γ then
α is bound. The reduction ρ is just a renaming of names; one could be tempted to consider

2With all the usual conventions: Γ is a variable declaration context, so different variables with possibly equal
types, ∆ is a name declaration context, so different names with possibly equal types, and writing a sequent
“Γ ` M : A | ∆” is just a comfortable way of writing the quadruple (Γ,M,A,∆). Also, remark that when we
write “α : A,∆”, or “α : A,∆, β : B”, we mean that respectively α and α, β are not declared in ∆.

3So we use for the reduction in λµ-calculus the same symbol for the reduction in λ-calculus. This should
not be confusing, since in this chapter we will only talk of λµ-calculus. If we want to specify a base case of a
reduction, we will explicitly write the subscript.

4This is why we denoted it “λ” and not “β” in all the thesis: we want to avoid confusion with the names in
this chapter.
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terms up to that renaming, but this is not possible because µ-reduction is not well defined on
the ρ-equivalence classes. For example (for γ 6= η 6= α):

(µα.α|µγ.η|x||)y →ρ (µα.η|x|)y
↓µ ↓µ

µα.α|(µγ.η|x|)y| 6=ρ µα.η|x|.

This is an important critical pair because it also shows that the ρ-reduction and the µ-reduction
do not commute (Definition 2.1.2): in the bottom-left reduct, the ρ-redex is “blocked” by
an application; it is only via the µ-reduction µα.α|(µγ.η|x|)y| →µ µα.α|µγ.η|x|| that we can
“unblock it” and finally close the diagram by performing the ρ-reduction: µα.α|µγ.η|x|| →ρ

µα.η|x|. We will find the analogue of this example when studying the confluence of the associated
resource calculus.

Witnessing the fact that λµ-calculus is a well-behaved version of classical logic, one has that
the typed-calculus is strongly normalising and confluent. Actually, as it happens for λ-calculus,
the untyped version is also confluent (but of course not strongly normalising).

Theorem 4.2.6. The λµ-calculus (λµ,→) is confluent.

Proof. See proof of Theorem 4.1 of [Py98].

As we already said, from a programming viewpoint the characteristic feature of λµ-calculus
is to allow the encoding of control operators, and one says for that reason that it is a functional
“impure” functional language. The encoding of callcc in λµ-calculus can be found by adding
terms to the usual derivation of Peirce’s law:

y : (A→ B)→ A ` y : (A→ B)→ A | α : A

y : (A→ B)→ A, x : A ` x : A | α : A, δ : B

y : (A→ B)→ A, x : A ` µδ.α|x| : B | α : A

y : (A→ B)→ A ` λx.µδ.α|x| : A→ B | α : A

y : (A→ B)→ A ` y(λx.µδ.α|x|) : A | α : A

y : (A→ B)→ A ` µα.α|y(λx.µδ.α|x|)| : A |
` λy.µα.α|y(λx.µδ.α|x|)| : ((A→ B)→ A)→ A |

So one sets:
callcc := λy.µα.α|y(λx.µδ.α|x|)|.

Let’s verify that it has the expected backtracking behaviour described in the introduction, by
applying it to a non-empty stack “M,N1, . . . , Nk”. One has:

callccM N1 · · ·Nk →λ (µα.α|M (λx.µδ.α|x|)|)N1 . . . Nk

→µ (µα.α|M (λx.µδ.α|xN1|)N1|)N2 . . . Nk

→µ · · · →µ µα.α|M (λx.µδ.α|x ~N |) ~N |.

The term that we just found represents a process sending the output of M(λx.µδ.α|x ~N |) ~N on
the channel α, but immediately after it is sending the content of channel α on the standard
output. That is, it is just sending the output of M(λx.µδ.α|x ~N |) ~N on the standard output.
Now let us see what this latter term does: it represents the term M which is launched in front
of the stack ~N , but in addition to that, it is also provided with the additional term λx.µδ.α|x ~N |
to potentially make use of. This last term allows to take a term and start its execution in front
of the stack ~N , that is, in the exact same “environment” of the initial call of M . Since the term
in last line of the reductions above is a µ-abstraction on α (so the content of the channel α is
the standard output), the two bound occurrences of α in that term can be read as follows: the
process µα.α|M (λx.µδ.α|x ~N |) ~N | can keep the execution of M in front of the original stack ~N
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as long as it wants (and this will thus modify the execution stack), by ignoring the additional
tool “λx.µδ.α|x ~N |”; but, at any moment, it can use this tool in order to pop a new term M ′,
restore the original execution stack ~N , and launch M ′ in front of the restored original stack,
forgetting about the modified current one. That is, it can backtrack and modify its behaviour
after having, potentially, computed some more information, mimicking a sort of “try/catch”
piece of code. This is in fact the same backtracking behaviour of the real callcc command in
the Scheme programming language, as well as Java’s handling of exceptions. One could consider
Felleisen’s C operator in a similar way.

The two new typing rules of simply typed λµ-calculus handle the passage of a formula from
active to passive and vice-versa, but this aspect is not very clear with the particular rules that
we have written. In fact one could perform both those rules via a two step procedure, first
producing a named term and then µ-abstracting it. This is done via the following rules:

Γ `M : A | α : A,∆

Γ ` α|M | : ⊥ | α : A,∆

Γ ` β|M | : ⊥ | α : A,∆

Γ ` µα.β|M | : A | ∆

where we added the constant ⊥ to the formulas. One observes that the left rule is the introduc-
tion rule for ⊥, and performs a contraction, while the right one is the elimination rule for ⊥.
As we already mentioned, these rules show clearly how a formula passes from active to passive
and vice-versa. In fact, one could embed simply-typed λµ-calculus inside Linear Logic. Laurent
showed how to do this by making use of his Polarized proof-nets5 [Lau03], in which the dual-
ity active/passive formula – or standard/auxiliary output – becomes that of positive/negative
formulas, an important notion in Linear Logic, particularly in the study of focalization. In the
framework of polarized proof-nets the above two new rules become constructions of proof-nets,
and show even better how one handles the duality positive/negative.

Let us make a last comment. As we just saw, the more natural rules are the ones which
operate on a named term, constructing it or µ-abstracting it. The same could be said for the
very syntax or λµ-calculus: it is natural to say that the construction of a term M = µα.β|N |
from N is not done in a single step, but via two different constructors: first, one creates β|N |
from N , and then M from β|N |. It is natural to consider thus the following syntax:

M ::= x | λx.M | MM | µα.M | β|M |.

Remark that now a named term is really a term and not just a syntactic word. One can ask
whether the two calculi are “the same or not”. The question has been negatively answered
by Saurin in [Sau12]: while the first syntax (Parigot λµ-calculus) does not satisfy Böhm’s
separation theorem – something which was shown by David and Py in [DP01] – this new syntax
does satisfy it. The new extended syntax in now known as Saurin’s Λµ-calculus (with a big
“λ”). We do not consider it in this thesis, but we will come back on it and make some comments
at the end of this chapter.

4.3 Interlude: A syntactic shortcut

In reproducing the same arguments of the previous chapter for the case of λµ-calculus, we will
often encounter the same kind of proofs. Moreover, many of the properties do not really depend
on the fact that one has a λ-abstraction or a µ-abstraction, but only on the fact that the resource
calculus linearises application while treating the other constructors as linear and that the Taylor
expansion is defined accordingly. Thus, in this interlude, we will forget that a constructor is
called λ-abstraction and takes a variable, and the other is called µ-abstraction and takes two

5Actually, he also gave polarized proof-nets for Girard’s LC, see [Lau99].
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names, and we just consider them instances of a same kind of constructor, called g(v, ·), taking
any possible kind of “variable” – usual variables in the case of λ and pairs of names for µ. We
show what is the skeleton of the constructions we carried on in the last chapter, a skeleton
which is, thus, valid as soon as one can instantiate this constructor and considers a resource
calculus together with a Taylor expansion defined accordingly. Of course the previous case of
λ-calculus falls in this case, and in the next section we will see that λµ-calculus does too. The
value of this approach is to clearly distinguish what is proper to each particular language, and
what can be carried on independently because relying only on the way one treats linearisation.

But a disclaimer must be made: the content of this section must be seen as a “syntactic
shortcut” in order to handle, at the same time for λ and for λµ-calculus, the proofs that do
not depend on their particular syntax, and to show what is the shared path which we are fol-
lowing in the cases of λ/λµ-calculus. But it is not a real generalization; in fact, as it will be
clear from the first definitions, we are really simply mimicking the syntax and the situation of
λ/λµ-calculus. In particular, the “language” we consider here, might not be general enough to
include other interesting programming languages other than the two we are interested in. Also,
and maybe most importantly, we already know how to linearise λ-calculus and λµ-calculus (the
latter will be discussed at the beginning of Section 4.4). So we already know how to define,
for this “general language”, the crucial notions of resource approximants and Taylor expansion.
The way one gets to know this would be by relating the language to linear logic, so a real
generalization would first of all need to consider that.

We fix disjoint non-empty countably infinite sets Var1, . . . ,Varh. Fix h1 ≤ h and h2 ∈ N.
We consider a programming language L with syntax:

M ::= v | gj(vkj ,M0) | @(M1,M2)

where v ∈ Var1 ∪ · · · ∪ Varh1 , j = 1, . . . , h2 and vkj ∈ Varkj for some fixed k1, . . . , kh2 ≤ h, and
@ : L×L→ L and gi : Varki×L→ L some constructors. We ask this constructors to be injective
w.r.t. the equality on L, i.e. gj(vkj ,M) = gj(vkj ,M

′) iff M = M ′ and @(M1,M2) = @(M ′1,M
′
2)

iff M1 = M ′1 and M2 = M ′2. This is the case, for instance, for the equality on λ-calculus or
on λµ-calculus, which is syntactic equality modulo renaming of, respectively, bound variables
and bound variables and names. In the following we will reason by induction on a such terms;
we ask, thus, that the equality allows such reasoning. For example equality being the syntactic
equality, or a quotient which only allows to change the name of the variables, thus maintaining
the same inductive structure.

Example 2. 1. The set L = Λ of λ-terms falls in the syntax above: take h = h1 = h2 = 1
and k1 = 1; take @(M,N) := the word MN ; for x ∈ Var1, take g1(x,M) := the word
λx.M modulo renaming of the variable x.

2. The set L = Λµ of Λµ-terms à la Saurin falls in the syntax above: take h = 2, h1 = 1,
h2 = 3 and k1 = 1, k2 = k3 = 2; take @(M,N) := the word MN ; for x ∈ Var1,
take g1(x,M) := the word λx.M modulo renaming of the variable x; for α ∈ Var2 take
g2(α,M) := the word µα.M modulo renaming of the name α and g3(α,M) the word α|M |.

3. The set L = λµ of λµ-terms à la Parigot falls in the syntax above: take h = 2, h1 = 1, h2 =
2 and k1 = 1, k2 = 2; take Var1 := {x0, x1, . . . } and Var2 := {(αi0 , αj0), (αi1 , αj1), . . . }
(with i0, j0, i1, j1, · · · ∈ N) where {α0, α1, . . . } is a countably infinite set; take @(M,N) :=
the word MN ; for x ∈ Var1, take g1(x,M) as before; for (α, β) ∈ Var2 take g2((α, β),M) :=
the word µα.β|M | modulo renaming of the name α.

Multihole contexts and single-hole contexts are defined as expected, as well as the contextual
closure of a binary relation →base on L.



90 CHAPTER 4. THE RESOURCE APPROXIMATION FOR λµ-CALCULUS

Definition 4.3.1. The resource sensitive version Lr of L is given by the syntax6:

M ::= v | gr
j(vkj , t) | @r(t, [

n︷ ︸︸ ︷
t, . . . , t ])

where n ∈ N (and as usual v ∈ Var1 ∪ · · · ∪Varh1, j = 1, . . . , h2 and vkj ∈ Varkj ). In the exact
same way as before one defines resource multihole-contexts c = cLξ1, . . . , ξk M and single-hole
resource contexts.

We also consider the set 2〈Lr〉 of sums, defined by the free Z2-module construction described
in Section 2.1. By linearity, 2〈Lr〉 inherits from Lr the same constructors gr

j : Varkj
× 2〈Lr〉 →

2〈Lr〉 and @r : 2〈Lr〉× ! 2〈Lr〉 → 2〈Lr〉 by setting as expected:

gr
j

(
v,
∑
i

ti

)
:=
∑
i

gr
j(v, ti)

@r

∑
i∈I0

ti,

∑
i∈I1

ti, . . . ,
∑
i∈In

ti

 :=
∑

(i0,...,in)∈I0×···×In

@r(ti0 , [ti1 , . . . , tin ]).

Given →r⊆ Lr × 2〈Lr〉, one extends it to all 2〈Lr〉 × 2〈Lr〉 as described in Section 2.1.

Remember that if →r is confluent and strongly normalising, all resource terms t have a
unique r-normal form nfr(t) ∈ 2〈L2〉, which can be 0.

Remark that Lemma 3.3.9, that still holds in this framework.

Definition 4.3.2. The qualitative Taylor expansion is the map T : L→ P(Lr) defined by:

1. T (v) := {v}

2. T (gi(v,M)) := {gr
i (v, t) | t ∈ T (M)}

3. T (@(M,N)) := {@r(t, [~u]) | t ∈ T (M) and [~u] ∈ ! T (N)}.

From now on, we suppose that:

Assumption 1. It is fixed a binary relation →base on L. Moreover, its contextual closure
→⊆ L × L is s.t. every term has at most one normal form nf (M), and nf (@(M,N)) =
nf(@(nf (M), nf (N))) and nf (gi(v,M)) = gi(v,nf (M)), whenever the written normal forms do
exist.

Assumption 2. We have fixed a reduction →r⊆ 2〈Lr〉 × 2〈Lr〉 which is confluent and strongly
normalising. We also ask that →r satisfies the clauses in the last line of Assumption 1.

The previous two assumptions hold in λ-calculus.
By assumption 2, for all M ∈ L there always exist NFT (M) :=

⋃
t∈T (M)

nfr(t) ⊆ Lr. This

allows to endow L with the partial order: M ≤ N iff NFT (M) ⊆ NFT (N). It also endows it
with the induced equivalence M =τ N iff NFT (M) = NFT (N).

Remark 4.3.3. 1. NFT (gi(v,M)) = {gr
i (v, t) | t ∈ NFT (M)}

2. NFT (@(M,N)) =
⋃

t∈NFT (M)
[~u]∈ ! NFT (N)

nfr(@
r(t, [~u])).

We can now prove the monotonicity in the exact same way as already done in λ-calculus:

6We take on Lr “the same” equality as in L.
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Theorem 4.3.4 (Monotonicity). Any context C : L→ L is monotone w.r.t. ≤.

Proof. The proof shows, by induction on C, that for all M,N ∈ L s.t. NFT (M) ⊆ NFT (N),
one has NFT (CLM M) ⊆ NFT (CLN M). The proof we gave in λ-calculus (Theorem 3.3.13) can
be immediately adapted to the present framework, simply by treating the variables v as the
variables x, and the constructor g as a “λ”. Let us write this last case for the seek of clarity: If
C = gi(v, C

′) then:

NFT (CLM M) = {gr
i (v, t) | t ∈ NFT (C ′LM M)}

⊆ {gr
i (v, t) | t ∈ NFT (C ′LN M)}

= NFT (CLN M).

As we already remarked in Chapter 3, monotonicity of 1-contexts entails monotonicity of
k-contexts, so the previous theorem can be extended to multihole-contexts.

The following “simulation assumption” is the analogous of Proposition 3.3.17.

Assumption 3. If M →base N then:

1. for all s ∈ T (M) there exist T ⊆ T (N) s.t. s�r T

2. for all s′ ∈ T (N) there exist s ∈ T (M) s.t. s�r s
′ + T for some sum T ⊆ T (N).

We can lift the previous assumption from →base to →:

Proposition 4.3.5. If M → N then point (1) and (2) of the previous assumption both hold.

Proof. By induction on the single-hole context C s.t. M = CLM ′ M, N = CLN ′ M and M ′ →base

N ′.

Case C = ξ. Then M = M ′ and N = N ′, so the result is exactly Assumption 3.

Case C = gCxt(v, C ′).
(1). If s ∈ T (M) then s = gr(v, s0), with s0 ∈ T (C ′LM ′ M). So by induction hypothesis
there is a sum T0 ⊆ T (C ′LN ′ M) s.t. s→r g

r(v,T0) ⊆ T (g(v, C ′LN ′ M)) = T (N).
(2). If s′ ∈ T (N) then s′ = gr(v, s′0), with s′0 ∈ T (C ′LN ′ M). So by induction hypothesis
there is t ∈ T (C ′LM ′ M) and a sum T0 ⊆ T (C ′LN ′ M) s.t. t →r s

′
0 + T0. Hence, T (M) =

T (g(v, C ′LM ′ M)) 3 g(v, t)→r g(v, s′0) + g(v,T0) = s′ + g(v,T0) ⊆ T (CLN ′ M) = T (N).

Case C = @Cxt(C ′, P ). Analogous as above.

Case C = @Cxt(P,C ′).
(1). If s ∈ T (M) then s = @r(p, [s1, . . . , sk]), with p ∈ T (P ) and sj ∈ T (C ′LM ′ M).
So, for all j = 1, . . . , k, by inductive hypothesis there is Tj ⊆ T (C ′LN ′ M) s.t. s �r

@r(p, [T1, . . . ,Tk]) =
∑
tj∈Tj

@r(p, [t1, . . . , tk]) ⊆ T (@r(p, C ′LN ′ M)) = T (N).

(2). If s′ ∈ T (N) then s′ = @r(p, [s′1, . . . , s
′
k]), with p ∈ T (P ) and s′j ∈ T (C ′LN ′ M). So,

for all j = 1, . . . , k, by induction hypothesis there is tj ∈ T (C ′LM ′ M) and a sum Tj ⊆
T (C ′LN ′ M) s.t. tj →r s

′
j + Tj . Hence, T (M) = T (@r(P,C ′LM ′ M)) 3 @r(p, [t1, . . . , tk]) �r

@r(p, [s′1 + T1, . . . , s
′
k + Tk]) = @r(p, [s′1, . . . , s

′
k]) + T = s′ + T, for some sum T ⊆

T (CLN ′ M) = T (N).

Mimicking the definitions for λ-calculus one can give the definition of congruence on L, of
(L,→)-theory and of term algebra.

It is clear that =τ is an equivalence. But also:
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Corollary 4.3.6. The equivalence =τ is an (L,→)-theory.

Proof. The proof is exactly the same of Corollary 3.3.18, using Proposition 4.3.5 instead of
Proposition 3.3.17.

We now reproduce the same arguments of Section 3.3.1.

Definition 4.3.7. The set of rigid resource terms is defined by:

t ::= x | gr
j(vkj , t) | @

r(t, 〈t . . . , t〉).

The set of rigid k-context is defined as expected adding the clause “ξ1 | · · · | ξk” for the holes.

Definition 4.3.8. Let c be a resource-k-context. We define a set Rigid(c) of rigid k-contexts,
whose elements are called the rigids of c, by induction on c as follows:

1. Rigid(ξi) = {ξi}

2. Rigid(x) = {x}

3. Rigid(gr(v, c0)) = {gr(v, c•0) | c•0 ∈ Rigid(c0)}

4. Rigid(@r(c0, [c1, . . . , ck])) = {@r(c•0, 〈c•σ(1), . . . , c
•
σ(k)〉) | c

•
i ∈ Rigid(ci) and σ permutation}.

Definition 4.3.9. Let c• be a rigid of a resource-k-context c and, for i = 1, . . . , k, let ~v i :=
〈vi1, . . . , videgξi (c)

〉 be a list7 of resource terms. We define as expected, by induction on c, a

resource term c•L~v1, . . . , ~vk M following Definition 3.3.30.

Remark 4.3.10. One has that if v �r V then:

c•L . . . , 〈. . . , v, . . . 〉, . . .M�r

∑
w∈V

c•L . . . , 〈. . . , w, . . . 〉, . . .M =: c•L . . . , 〈. . . ,V, . . . 〉, . . .M.

Let us extend the definition of Taylor expansion to resource k-contexts by adding, in its
definition, the clause:

T (ξi) := {ξi}.

It is clear that if C is a k-context then all elements of T (C) are resource k-contexts.
In the following, if ~v is a list, we denote with [~v] the multiset associated with ~v (same

elements but unordered).

Lemma 4.3.11. Let C be a k-context and c1, c2 ∈ T (C). Let c•1 and c•2 rigids respectively of
c1 and c2. For i = 1 . . . , k, let ~vi = 〈vi1, . . . , videgξi (c1)〉 and ~ui = 〈ui1, . . . , uidegξi (c2)〉 be lists of

resource terms. If c•1L~v
1, . . . , ~vk M = c•2L~u

1, . . . , ~uk M then c1 = c2 and [~v i] = [~u i] for all i.

The proof of the previous lemma is a trivial adaptation of the one of Lemma 3.3.32, where
the case of the constructor g corresponds to the case of the λ-abstraction.

Lemma 4.3.12. 1. Let C be a k-context. Then:

T (CLM1, . . . ,Mk M) = {c•L~s 1, . . . , ~s k M | c ∈ T (C), c• rigid of c and ~s i list of elements of T (Mi)}.

2. Let c = cLξ M be a single-hole resource context, M ∈ L and s0 ∈ Lr. If cLs0 M ∈ T (M), then
there is a context C = CLξ M, an N ∈ L, a resource context c̃ ∈ T (C), a rigid c̃ • of c and
s1 . . . , sdegξ c̃−1 ∈ T (N), s.t.:

7If degξi(c) = 0 we mean the empty list.
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(a) M = CLN M

(b) s0 ∈ T (N)

(c) cLtM = c̃ •L〈t, s1 . . . , sdegξ(c̃)−1〉M for all t ∈ λµr.

Proof. The proof is a trivial adaptation of the one of Lemma 3.3.33, where the case of the
constructor g corresponds to the case of the λ-abstraction. Let us write it for the seek of clarity:
Let c = gr(v, c1). Since cLs0 M ∈ T (M) then M = g(v,M1) with c1Ls0 M ∈ T (M1). We can thus
take C := g(v, C1), c̃ := gr(v, c̃1), c̃ • := gr(v, c̃1

•), where C1, N, c̃1, c̃
•
1 and s1, . . . , sdegξ(c̃1) are

given by the inductive hypothesis.

From now on, we suppose the analogous of Ehrhard-Regnier’s “non-interference” property
(Lemma 3.3.20), that is:

Assumption 4. For all t, s ∈ T (M) s.t. t 6= s, you have nfr(t) ∩ nfr(s) = ∅.

Remark that thanks to the previous Assumption 4 and thanks to the strong normalisation
one (Assumption 2), the analogue of Lemma 3.3.21 holds. As usual, we will not explicitly
mention its use.

From now on, we suppose that:

Assumption 5. For all t ∈ T (M), if t →baser T′ then there is N ∈ L s.t. M → N and
T′ ⊆ T (N).

This assumption holds in λ-calculus (it is a particular case of Proposition 3.3.34).
As in λ-calculus, we can prove the following proposition. The proof is almost the same of

the one of Proposition 3.3.34, but we write it for the seek of clarity and because we use here
Assumption 5 where in Proposition 3.3.34 we use Lemma 3.3.16. When we will prove that
this assumption also holds in λµ-calculus (Proposition 4.4.52), we will use the analogous of
Lemma 3.3.16, that is Lemma 4.4.48.

Proposition 4.3.13. If T (M) ⊇ T →r T′ then there is N ∈ L and a sum T̃ ⊆ T (N) s.t.
M → N and T′ �r T̃.

Proof. Saying that T →r T′ means that T has shape T =
∑
i
ti + cLhM and T′ has shape

T′ =
∑
i
ti + cLHM, for some single-hole resource context c, a resource term h and a sum H s.t.

h →base H. But since cLhM ∈ T ⊆ T (M), by Lemma 4.3.12(2) we get a context C0, a term
N ′ ∈ L, a resource context c0 ∈ T (C0), a rigid c •0 of c0 and resource terms ~s ∈ T (N ′) s.t.
M = C0LN ′ M, h ∈ T (N ′) and cLuM = c •0 Lu,~sM for all u ∈ Lr. Now we can apply Assumption 5
to h ∈ T (N ′) obtaining an N ′′ ∈ L s.t. N ′ → N ′′ and H ⊆ T (N ′′). Set N := C0LN ′′ M, so that
M = C0LN ′ M→ N . Now: every ti ∈ T (M) = T (C0LN ′ M), so by Lemma 4.3.12(1) it must have
shape ti = c •i L~v i M for some resource terms vij ∈ T (N ′), a context ci ∈ T (C0) and a rigid c •i of

ci. But since N ′ → N ′′ we can apply Proposition 4.3.5(1) on vij and obtain that vij �r Vij for

some sum Vij ⊆ T (N ′′). So ti �r c
•
i L~V i M =: Ti. Using again Lemma 4.3.12(1) one has that

Ti ⊆ T (N). Now, let’s use again Proposition 4.3.5(1), this time on s ∈ T (N ′). Since N ′ → N ′′

we obtain sums Si ⊆ T (N ′′) s.t. si �r Si. So we have: cLHM = c •0 LH, ~sM �r c
•
0 LH, ~SM =: U.

But since H ⊆ T (N ′′) and every Si ⊆ T (N ′′), again thanks to Lemma 4.3.12(1) one has
U ⊆ T (C0LN ′′ M) = T (N). Now letting T̃ :=

∑
i
Ti + U ⊆ T (N) one has T′ �r T̃ and we are

done.

As a corollary, we obtain the following analogous of Corollary 3.3.26, whose proof can be
immediately adapted from the alternative proof given at page 54.
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Corollary 4.3.14. For all T ⊆ T (M), there exist N ∈ L s.t. M � N and nfr(T) ⊆ T (N).

Exactly as in λ-calculus, we can set the same notions needed for the Stability Property.

Definition 4.3.15. Given a non-empty subset X ⊆ Λ, define its T -infimum
⋂
X ⊆ Lr as:⋂

X :=
⋂
M∈X

NFT (M).

We say that X is bounded iff there exists an L ∈ L such that M ≤T L for all M ∈ X .

Now we have:

Theorem 4.3.16 (Stability). Let C be an n-context and fix non-empty bounded X1, . . . ,Xn ⊆ L.
For all M1, . . . ,Mn ∈ L s.t. (for i = 1, . . . , n)

Mi =
⋂
Xi

we have:
CLM1, . . . ,Mn M =

⋂
N1∈X1

...
Nn∈Xn

CLN1, . . . , Nn M.

Proof. We do not write it again, because it is exactly the same proof as we did for λ-calculus
in Theorem 3.3.37. Remark, in particular, that is uses the “non-interference assumption” (As-
sumption 4) as well as the notion of rigids.

Once all the Assumptions will be proven for λµ-calculus, we will get “for free” the Stability
property (Theorem 4.4.62).

4.4 The resource λµ-calculus

In Example 2 we already remarked that the syntax of λµ-calculus is of the shape of those
considered in the previous Section 4.3. Same for contexts and reduction, which clearly satisfies
Assumption 1. We turn to consider now the resource approximation of this calculus. It is natural
to treat the µ-abstraction constructor as linear, so we only have to linearize applications, just
like one does in resource λ-calculus.

Definition 4.4.1. The set λµr of resource λµ-terms is defined by:

t ::= x | λx.t | t[t, . . . , t] | µα.β|t|

where [t, . . . , t] ∈ !λµr. Resource terms are considered up to renaming of variables and names.
Resource contexts are defined as expected. For ν a variable or a name, the degree degν(t) ∈ N
of ν in t, is defined as the number of (free) occurrences of ν in t.

This definition is of the shape of Definition 4.3.1. Same for resource contexts.
The following is easily proven.

Lemma 4.4.2. Every λµr-term t has the following shape:

t = λ~x1.µα1.β1 |. . . λ~xk.µαk.βk |p[~u
1] · · · [~un]||

where p is either a variable, or a λ-redex or a µ-redex. p is called the head redex of t if it is a λµ-
redex, and it is called the head variable of t otherwise. The sequence λ~x1.µα1.β1 |. . . λ~xk.µαk.βk |∗||
is called the head of t. The same holds for λµ-terms as well.
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We use Definition 4.3.1 in order to get a notion of sums of λµr-terms, and we are going to
define now the reduction in λµr, which is extended to all 2〈λµr〉 following the same Definition.
We want it to satisfy Assumption 2. In order to define such a reduction, we need to be able
to divide a multiset into a certain number of “blocks”. The notion which we want to define
for bags is similar to the combinatorial notion of partition of an integer, and more specifically
to that of weak composition. The extension of these notions from integers to multisets is well
known and studied in the literature of combinatorics (see for example [Ben74]).

Definition 4.4.3 (Weak composition of a multiset). A partition (resp. weak partition) of a
multiset [~u] is a multiset [[~v 1], . . . , [~v k]] of non-empty (resp. possibly empty) multisets, called
blocks, s.t. [~u] = [~v 1] ∗ · · · ∗ [~v k].
A composition (resp. weak composition – w.c. for short) of a multiset [~u] is a tuple ([~v 1], . . . , [~v k])
of multisets s.t. [[~v 1], . . . , [~v k]] is a partition (resp. weak partition) of [~u].

Observe that the empty bag 1 admits no partitions but admits infinite weak partitions: they
are the multisets of shape [1, . . . , 1] (h ≥ 0 times 1). Let us give some other examples: the set
of all the weak partitions of the bag [x] is:

{[[x]], [[x], 1], [[x], 1, 1], . . . }.

The set of all weak partitions of [x, x] is:

{[[x, x]], [[x], [x]], [[x, x], 1], [[x], [x], 1], [[x, x], 1, 1], [[x], [x], 1, 1], . . . }.

The w.c.’s are then simply obtained by choosing an order on the weak partitions.

Definition 4.4.4. Let t ∈ λµr and [~u] = [u1, . . . , uk] ∈ !λµr.

1. We define as usual the linear substitution t〈[u1, . . . , uk]/x〉 ∈ 2〈λµr〉 as t〈[u1, . . . , uk]/x〉 :=
0 if degx(t) 6= k, and t〈[u1, . . . , uk]/x〉 :=

∑
σ∈Sk

t
{
uσ(1)/x

(1), . . . , uσ(k)/x
(k)
}

if degx(t) = k.

Here x(1), . . . , x(k) is any fixed enumeration of the occurrences8 of x in t and Sk is the set
of bijections on k-elements.

2. In order to linearize the µ-reduction we introduce the linear named application 〈t〉α[~u] ∈
2〈λµr〉, defined as:

if degα(t) = 0 then 〈t〉α1 := t and 〈t〉α[v, ~u] := 0

if degα(t) =: d 6= 0 then:

〈t〉α[~u] :=
∑

t
{
α|(·)[~s 1]|/

α|·|(1) , . . . , α|(·)[~s d]|/α|·|(d)
}

where the sum is taken over all ([~s 1], . . . , [~s d]) w.c. of [~u] of length d (which are necessarily
in finite number), and α|·|(1), . . . , α|·|(d) is any fixed enumeration of the occurrences of α
in t. The same exact definition is given also in the case t is a named term.

Remark 4.4.5. The linear substitution and the linear named application are well defined since
they do not depend on the particular enumeration of the chosen occurrences. Another way of
defining them is by induction, as presented in Figure 4.1 and Figure 4.2.

In Definition 4.4.4 we write that “the same exact definition is given also in the case t is
a named term”. This is reflected in the inductive definition of Figure 4.2, where in fact we

8We are of course employing in the usual way the informal notion of “occurrence” in a resource term (due to
the presence of “unordered” bags). The same for the next part of the definition.
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The linear substitution t〈[~u]/x〉 is inductively defined as in Figure 3.1 with the additional clause:

(µα.β|s|)〈[~u]/x〉 = µα.β|s〈[~u]/x〉|

Figure 4.1: Inductive characterisation of linear substitution in λµ-calculus

〈x〉α[v, ~u] = 0 〈x〉α1 = x 〈η|t|〉α[~u] = η|〈t〉α[~u]| (if η 6= α)

〈µγ.η|t|〉α[~u] = µγ.〈η|t|〉α[~u] 〈λy.t〉α[~u] = λy.〈t〉α[~u] 〈α|t|〉α[~u] =
∑

([~w1], [~w2])
w.c. of [~u]

α|
(
〈t〉α[~w 1]

)
[~w 2]|

〈t[v1, . . . , vn]〉α[~u] =
∑

([~w 0],...,[~w n]) w.c. of [~u]

(
〈t〉α[~w 0]

) [
〈v1〉α[~w 1], . . . , 〈vn〉α[~w n]

]
.

Figure 4.2: Inductive characterisation of linear named application

consider also the case 〈η|t|〉α[~u] (for η equal or not to α) of the linear application of a named
term to a bag through a name. That is, we are actually defining the operation 〈·〉α[~u] on Saurin’s
Λµ-calculus9 (but [~u] is still a bag of λµ-terms, because that is enough for us). This raises no
problems, since Parigot’s λµ-calculus is an inductive subsystem of it. But it is important to
notice that many of our definitions do already make sense in Saurin’s calculus and, in order
to get things right in our framework (λµ-calculus), we need sometimes to apply definitions on
Λµ-calculus. An example of this phenomenon is Lemma 4.4.50. In general, as we will mention
in the conclusions, this raises the question of whether it is possible to lift the present work from
λµ-calculus to Λµ-calculus.

Let us now define our reduction for the resource λµ-calculus.

Definition 4.4.6. Define a reduction10 →r⊆ λµr × 2〈λµr〉 as the resource-context closure of
the union →baser of:

(λx.t)[~u]→λr t〈[~u]/x〉

(µα.β|t|)[~u]→µr µα.〈β|t|〉α[~u]

µγ.α|µβ.η|t|| →ρr µγ. (η|t|{α/β}) .

We extend it to all 2〈λµr〉× 2〈λµr〉 as explained in the “formal sums” paragraph of Section 2.1.

Observe that, just like λµ-terms, every r-normal λµr-term t has a head variable, has no
ρ-redexes in its head and its bags contain only r-normal λµr-terms.

The reduction →λr is the usual linearisation of →λ and →ρr simply simulates →ρ. For →µr

we believe it is interesting the following consideration:

Remark 4.4.7. It is known (for instance this is considered in [Sau12]), that one can decompose
→µ introducing a new reduction →fst. The decomposition transforms a µ into a λ, and then
reduces all the complexity of →µ to an appropriate →λ. The reduction →fst is:

µα.β|M | →fst λz.µα.(β|M |)αz
9Whose syntax is M ::= x | λx.M | MM | µα.M | α|M |.

10Here we use again the same symbol as the resource reduction for λ-calculus. See footnote 3.
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(for z fresh), and the decomposition of →µ is as follows:

(µα.β|M |)N →fst (λz.µα.(β|M |)αz)N →λ µα.(β|M |)αN.

One may wonder if our resource reduction →µr is good enough to be compatible with this fine
decomposition. For that, we need to linearise Saurin’s decomposition, and since we already know
what the linearised λ-reduction is, we only need to define a correct linearisation →fstr of fst.
Then, we have to verify whether we can still decompose →µr by first applying →fstr and then
→λr. The natural choice for →fstr is:

µα.β|t| →fstr λz.µα.
∑
m≥0

〈β|t|〉α[

m︷ ︸︸ ︷
z, . . . , z]

(for z fresh). Note that this reduction →fstr gives an infinite sum. Of course to manipulate such
an object one should pay attention; but we will not, because we want to keep this computation
just as an heuristic. Let us now verify that the decomposition “→µr = �λr ◦ →fstr” holds. We
have:

(µα.β|t|)[~u]→fstr

λz.µα.∑
m≥0

〈β|t|〉α[

m︷ ︸︸ ︷
z, . . . , z]

 [~u]�λr µα.
∑
m≥0

(〈β|t|〉α[

m︷ ︸︸ ︷
z, . . . , z])〈[~u]/z〉.

If degα(β|t|) = 0 then, in the last sum, all the addends with m 6= 0 are 0; so we are left
with: µα.(〈β|t|〉α1)〈[~u]/z〉 = µα.〈β|t|〉α[~u] and we are done. And if degα(β|t|) =: d ≥ 1 then by
definition of linear substitution one easily sees that, in the previous sum, all the addends with

m 6= n are 0 (n being the length of [~u]); since the w.c.’s of [

n︷ ︸︸ ︷
z, . . . , z] of length d are the d-uples

([

k1︷ ︸︸ ︷
z, . . . , z], . . . , [

kd︷ ︸︸ ︷
z, . . . , z]) s.t. k1 + · · ·+ kd = n, the last sum becomes:

µα.
∑

k1+···+kd=n

β|t|{α|(·)[
k1︷ ︸︸ ︷

z, . . . , z]|/
α|·|(1) , . . . , α|(·)[

kd︷ ︸︸ ︷
z, . . . , z]|/

α|·|(d)} 〈[~u]/z〉.

It is now easy from it to reconstruct the term µα.〈β|t|〉α[~u] and we are done again.
This remark can be seen as an a posteriori justification of the correctness of our linearisation

→µr of →µ, or as an heuristic to find it.

A resource calculus is useful because, in addition to linearity, resource sensitiveness entails
strong properties such as strong normalization and confluence. This is what we are going to
prove now. Compared with resource λ-calculus in our setting those properties require some
more thinking.

Strong normalization With →λr we erase exactly one λ, and with →ρr we erase exactly
one µ. With →µr however, the situation is more subtle: we are not creating nor erasing λ’s or
µ’s (which remain thus in constant number), but we are eventually making the the reduct grow
by creating an arbitrarily large number of new applications, possibly even creating new (λ or
µ-)redexes. However, these new applications are created “deep inside” the reduct. In fact, in
order to pass from the µ-redex (µα.β|t|)[~u] to a reduct t′ ∈ µα.〈β|t|〉α[~u], we:

- first, decompose [~u] in several blocks

- then, erase [~u]

- finally, put each block inside a certain named subterm of β|t|.
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The idea is thus that we replaced a bag with many new bags which are at a “deeper depth”.
Our aim is to find a decreasing measure, while this intuition of “depth” is increasing. But
as we will see in Remark 4.4.9, it will be immediate to recognize that actually this number is
necessary bounded by the number of µ-occurrences in the term, which is invariant under →µr ,
so the former subtracted from the latter should decrease. Remark that there is one case in
which we do not create new bags and we simply erase one already existing one: it is the case
where [~u] = 1 and degµ(β|t|) = 0, so we have to make sure our measure decreases in this case
as well.

Definition 4.4.8. Let t ∈ λµr and let b be an occurrence of a bag or of a subterm of t. Define
the depth dt(b) ∈ N of b in t as the number of named subterms of t containing b.

Remark 4.4.9. By definition of the grammar of the λµr-calculus there are as many named
subterms of t as µ-abstractions11 in t, which are degµ(t) by definition. So it must always be:

dt(b) ≤ degµ(t).

Definition 4.4.10. Recalling the notation of multisets in Section 2.1, we define the multiset
measure m(t) ∈ !N of a λµr-term t as:

m(t) := degµ(t)− [ dt(b) | b occurrence of bag in t ].

Remark 4.4.9 assures that m(t) ∈ !N (and not in !Z), which is well-founded w.r.t. the multiset
order. We order thus multiset measures w.r.t to this order.

In this chapter we will have to talk about many occurrences of bags in terms. This is why
we will sometimes use the notation “b” for such occurrences, just like we did in the previous
definition, instead of explicitly writing the bag as “[~u]”.

The measure m(·) is “almost” the good one for strong normalization:

Proposition 4.4.11. If t→µr t′ + T then m(t) > m(t′).

Proof. If t →µr t′ + T then t = cL(µα.β|s|)b0 M and t′ = cLhM with h ∈ µα.〈β|s|〉αb0 and c a
single-hole resource context. Call k := degµ(t) = degµ(t′) and consider degα(β|s|) ∈ N. The are
two cases:

Case degα(β|s|) = 0. By definition of →µr this is possible only if b0 = 1 (otherwise
t →µr 0) and h = µα.β|s|. So in t there are the exact same occurrences of bags as in t′

and they are at the same depth, except for b0 which is in t but not in t′. This means that
m(t) = m(t′) ∗ [ k − dt(b0) ] > m(t′).

Case degα(β|s|) =: n ≥ 1. Then: h = µα.β|s|
{
α|(·)b1|/

α|·|(1) , . . . , α|(·)bn|/
α|·|(n)

}
for a w.c.

(b1, . . . , bn) of b0. So m(t′) = k −A′ and m(t) = k −A, with A′ and A the multisets:

A′= [ dt′(b1), . . . , dt′(bn) ] ∗ [ dt′(b) | b in c ] ∗ [ dt′(b) | b in s ] ∗ [ dt′(b) | b in a v ∈ bi for an i ])
A = [ dt(b0) ] ∗ [ dt(b) | b in c ] ∗ [ dt(b) | b in s ] ∗ [ dt(b) | b in a v ∈ b0] ]).

Now for i = 1, . . . , n we have: dt′(bi) = dt′(h) + dh(bi) > dt(b0) since as one sees from the
expression of h, we have dt′(h) = dt(b0) and dh(bi) > 0. Also, it is easily understood that
for all b occurring in c, or occurring in s, we have: dt′(b) = dt(b). Finally, observe that
since (b1, . . . , bn) is a w.c. of b0, then: b occurs in some v ∈ b0 iff b occurs in some v ∈ bi
for some i. And for all such b we have: dt′(b) = dt′(v) +dv(b) > dt(v) +dv(b) = dt(b) since
dt′(v) = dt′(bi) > dt(b0) = dt(v). All these considerations precisely mean m(t) > m(t′).

11Here there is a difference with Saurin’s Λµ-calculus, in which one can have as many named subterms as one
wants, independently from µ-abstractions.
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Proposition 4.4.12. If t→λr t′ + T then m(t) > m(t′).

Proof. If t→λr t′+T then t = cL(λx.s)b0 M and t′ = cLhM with h = s{uσ(1)/x
(1), . . . , uσ(n)/x

(n)} ∈
s〈b0/x〉, for c a single-hole resource context, σ a permutation and b0 = [u1, . . . , un]. Call
k := degµ(t) = degµ(t′). We have:

m(t′) = k − [ dt′(b) | b in c ] ∗ [ dt′(b) | b in s ] ∗ [ dt′(b) | b in some ui in b0 ]

m(t) = k − [ dt(b) | b in c] ∗ [ dt(b) | b in s] ∗ [ dt(b) | b in some ui in b0 ] ∗ [ dt(b0)].

Now, it is easily understood that if b occurs in c, or b occurs in s, then dt′(b) = dt(b). Further-
more, for all b occurrence of bag in some uσ(i) belonging to b0, one has:

dt′(b) = dc(ξ) + ds(x
(i)) + duσ(i)

(b) ≥ dc(ξ) + duσ(i)
(b) = dt(b).

Thus:

m(t) ≥ m(t′) ∗ [ k − dt(b0) ] > m(t′).

However, only m(t) is not enough to prove strong normalization. In fact:

Proposition 4.4.13. If t→ρr t′+T then m(t) ≥ m(t′), and there are cases in which the equality
holds.

Proof. If t→ρr t′+T then t = cLhM and t′ = cLh′ M, with h = µγ.α|µβ.η|s|| and h′ = µγ.η|s|{α/β}
and c a single-hole resource context. Therefore:

m(t′) = [ degµ(t′)− dt′(b) | b in c ] ∗ [ degµ(t′)− dt′(b) | b in s ].

m(t) = [ degµ(t)− dt(b) | b in c] ∗ [ degµ(t)− dt(b) | b in s].

First, remark that degµ(t′) = 1 + degµ(c) + degµ(s) and degµ(t) = 2 + degµ(c) + degµ(s).
Also, notice as usual that if b occurs in c then dt′(b) = dc(b) = dt(b). Putting these things

together we have that, if c contains at least one bag :

[ degµ(t′)−dt′(b) | b in c ] = (1+degµ(s))+m(c) < (2+degµ(s))+m(c) = [ degµ(t)−dt(b) | b in c ].

On the other hand, if c does not contain any bag, the previous multisets are both empty, thus
equal.

Now let’s see what happens if b occurs in s. We have: dt′(b) = 1 + dc(ξ) + ds(b) and
dt(b) = 2 + dc(ξ) + ds(b). Therefore:

[ degµ(t′)− dt′(b) | b in s ] = (degµ(c)− dc(ξ)) + m(s) = [ degµ(t)− dt(b) | b in s ].

These facts immediately imply that m(t) ≥ m(t′) and, to give an example, one has (for β 6= η)
m(µγ.α|µβ.η|x||) = 1 = m(µγ.η|x|) while µγ.α|µβ.η|x|| →ρr µγ.η|x|.

That is why, in order to get a strongly normalising measure, we add another component:

Definition 4.4.14. We define the measure:

m̃(t) := (m(t), degµ(t)) ∈ !N× N

where the couple is ordered by the lexicographic order, which is well-founded.
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Corollary 4.4.15 (Strong normalisation). If t →r t
′ + T then m̃(t) > m̃(t′). Therefore, the

resource reduction →r on sums is strongly normalising.

Proof. The only case in which m(·) may remain constant is along a ρr-reduction, but in this
case degµ(t) strictly decreases, so t→r t

′+T entails m̃(t) > m̃(t′). Now one concludes as usual:
if we associate the multiset [m̃(t) | t ∈ T] with any sum T (in particular, a single element sum),
it is immediate to see that if T→r S, then the multiset associated with T is strictly smaller, in
the multiset order, than the one associated with S (the empty multiset 1 being associated with
the empty sum 0). Therefore the well-foundeness of the multiset order (since the order on m̃(·)
is well-founded) gives the non-existence of infinite (non-trivial) reductions.

Let us see some properties of the measure m(·).

Lemma 4.4.16. Let c = cLξ M be a single-hole context and t a λµ-term. Then: m(cLtM) ≥ m(t).

Proof. One has:
m(cLtM) = A ∗ [ degµ(cLtM)− dcL t M(b) | b in t ]

where A := [ degµ(cLtM) − dcL t M(b) | b in c ]. But degµ(cLtM) = degµ(c) + degµ(t) and, for all
occurrence b in t, we have: dcL t M(b) = dt(b) + dc(ξ) ≤ dt(b) + degµ(c). Thus, for all occurrence
b of bag in t, we have: degµ(cLtM)− dcL t M(b) ≥ degµ(t)− dt(b) and this last integer is exactly a
generic element of m(t) (if it is non-empty). Hence m(cLtM) ≥ A ∗m(t) ≥ m(t).

However, there are cases in which m(cLtM) = m(t) even if c 6= ξ. For example, taking c = λx.ξ
one has m(cLtM) = 1 = m(t) for all t ∈ λµr not containing any bags. This is exactly why, in the
following, we will consider a slightly different size, called ms (defined in Corollary 4.4.19).

Lemma 4.4.17. Let c = cLξ M be a single-hole resource context and t ∈ λµ. Then:

m(cLtM) = (degµ(t) + m(c)) ∗ ((degµ(c)− dc(ξ) + m(t)).

Proof. Easily checked, thanks to the clear fact that if b is the occurrence of a bag in c, then
dcL t M(b) = dc(b).

An immediate consequence of the previous lemma is the following:

Lemma 4.4.18. Let c be a single-hole context and t, s λµ-terms s.t. degµ(s) ≤ degµ(t). If
m(s) < m(t) then m(cLsM) < m(cLtM).

In the following, we will need a strong normalising measure which, in addition, satisfies the
properties of the following Corollary 4.4.19. However, the previous Lemma 4.4.16 shows that
m̃(·) is not adapted for that. This is why we operate a last slight modification.

First, let us consider the size sz(t) ∈ N≥1 of resource λµ-terms. We mean the analogous of
the size of λ-terms, that is, the same of Remark 3.3.3 with the additional clause: sz(µα.β|s|) :=
1+sz(s). Of course sz(t) = 1 iff t is a variable, and for all c single-hole context, sz(cLtM) ≥ sz(t)
where the equality holds iff c = ξ. Now we have:

Corollary 4.4.19. Define a measure ms(·) of λµ-terms as:

ms(t) := (m̃(t), sz(t)) = (m(t),degµ(t), sz(t)) ∈ !N× N× N

ordered lexicographically (and thus well-founded). Then:

1. t is a variable iff ms(t) takes its minimal value (which is (1, 0, 1)).

2. For all single-hole context c = cLξ M, we have ms(cLtM) ≥ms(t), and the equality holds iff
c = ξ.
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3. If t→r t
′ + T then ms(t) >ms(t′).

Proof. Since m̃(t) = (m(t),degµ(t)) is ordered lexicographically, Lemma 4.4.16 and Lemma
4.4.18 immediately hold for m̃(t). The three points are now immediate to check.

This measure satisfies thus the wanted properties, and we will use it when needed.

Confluence Due to the presence of three different reductions, the confluence or our resource
λ-calculus is not easy. Another difficulty is raised from the fact that we placed ourselves in
a qualitative setting, that is, with idempotent sums, so that we cannot always reduce a sum
component-wise. This is why we split the problem of the confluence in two steps: first, we
show that the quantitative resource λµ-calculus (that is, where sum is not idempotent, and
thus coefficients matter) is confluent; second, we show that its confluence implies the confluence
of the calculus with no coefficients. Actually, since our calculus is strongly normalising, we will
be able to just consider the local confluence.

Before attacking the first step, let us give the necessary definitions and make some remarks.

Definition 4.4.20. The quantitative resource λµ-calculus is (with the notations of Defini-
tion 3.2.2) N〈λµr〉. That is, the only difference with usual sums (2〈λµr〉) is that now “+”
is non-idempotent12.

We define the three base-case reductions →+
λr ,→+

µr ,→+
ρr in λµr×N〈λµr〉. The reduction →+

ρr

is defined exactly as in Definition 4.4.6, while →+
λr and →+

µr are defined as in Definition 4.4.6,
except for the fact that the linear substitution and linear named application are replaced with a
modified version of them, which we denote respectively t〈[~u]/x〉+ and 〈t〉+α [~u]. They are defined
in the next Definition 4.4.23.

The contextual union of the base-reductions →+
λr ,→+

µr ,→+
ρr forms a reduction →+

r on λµr ×
N〈λµr〉 which is extended to all N〈λµr〉 × N〈λµr〉 simply by setting t + S →+

r T + S whenever
t→+

r T (that is, we dropped the condition t /∈ S since now coefficients matter).

For the following Definition 4.4.23, we need the following terminology:

Terminology 4.4.21. Fix a function13 W : {1, . . . , k} −→ {0, . . . , n} and a bag [u1, . . . , uk].
Remember that the writing [u1, . . . , uk] means that we have fixed an enumeration u1, . . . , uk of the
k elements (counted with their multiplicity) of the bag. Now, with respect to this enumeration,
we say that the w.c.

([uj | j ∈W−1(0)], . . . , [uj | j ∈W−1(n)])

of [u1, . . . , uk] is the w.c. of [u1, . . . , uk] generated by W . Remark that the cardinality of the bag
[uj | j ∈W−1(i)] is W−1(i).

In order to lighten the notations we will often employ the following notation: when we use
W : {1, . . . , k} −→ {0, . . . , n} in order to generate a w.c. of [u1, . . . , uk] (w.r.t. the written
enumeration), then we denote W by W : (u1, . . . , uk) −→ {0, . . . , n}, by W : (~u) −→ {0, . . . , n}.
when we do not precise the elements of [~u]. In this case, the above defined w.c. of [u1, . . . , uk]
generated by W , is denoted by ([~w 0], . . . , [~w n]). That is, [~w i] stands for the bag [uj | j ∈W−1(i)].
We will also write, as usual, [~w i] =: [wi1, . . . , w

i
hi

] (for some hi ∈ N).

In the case [~u] = 1, we write W : () −→ {0, . . . , n} and we say that there is exactly one w.c.
generated by W , which is (1, . . . , 1).

12Analogously, one can see a sum as a finite multiset of resource terms, where the multiplicity of a term is
given by its coefficient in the sum.

13Attention: in the rest of the thesis, W usually denotes a w.c. of some bag. Since in this confluence section
the sums over the w.c.’s are replaced with sums over such functions, then we use the same letter, but we will
always precise that it is a function and not a w.c.
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Example 4.4.22. Using the notations and terminologies above, we have:

1. The function W : (x, y) −→ {0, 1} defined by W (1) = 1,W (2) = 0, generates the w.c.
([~w 0], [~w 1]) of [x, y] (with the enumeration from left to right) given by: [~w 0] = [y], [~w 1] =
[x].

2. The function D : (y, y) −→ {0, 1} defined by D(1) = 0, D(2) = 1, generates the w.c.
([~d 0], [~d 1]) of [y, y] (with the enumeration from left to right) given by: [~d 0] = [~d 1] = [y].

3. The same identical w.c. of [y, y] (with the enumeration from left to right) as the one above
(that is, ([y], [y])) is also the one generated by the different function P : {1, 2} −→ {0, 1}
defined by P (1) = 1, P (2) = 0.

Definition 4.4.23 (Quantitative linear substitution and quantitative linear named application).
The quantitative version t〈[~u]/x〉+ of the linear substitution is defined exactly as in Figure 4.1
but by replacing, in Figure 3.1, the sum on all the ([~w 0], . . . , [~w n]) w.c. of [~u] with the sum
on all W : (~u) −→ {0, . . . , n}, and by taking the above w.c.’s as the one given by W in the
previously explained sense.

The quantitative version 〈t〉+α [~u] of the linear named application is defined exactly as in Fig-
ure 4.2 but by replacing, in the case of an application, the sum on all the ([~w 0], . . . , [~w n]) w.c. of [~u]
with the sum on all W : (~u) −→ {0, . . . , n}, and by taking the above w.c.’s as the one given by
W in the previously explained sense. Analogously, in the case of a µ-abstraction, we replace the
sum on all the ([~w 1], [~w 2]) w.c. of [~u] with the sum on all W : (~u) −→ {0, 1}, and by taking the
above w.c.’s as the one given by W in the previously explained sense.

Example 4.4.24. For instance, one has:

(µα.α|µη.α|x||)[y, y]→+
r µα.α|(µη.α|x1|)[y, y]|+ 2µα.α|(µη.α|x[y]|)[y]|+ µα.α|(µη.α|x[y, y]|)1|.

The first term of the sum comes from the w.c. (1, [yy]) of [y, y] given by the function W :
(y, y) −→ {0, 1} defined by W (1) = W (2) = 1; the last term of the sum comes from the w.c.
([yy], 1) of [y, y] given by the function W : (y, y) −→ {0, 1} defined by W (1) = W (2) = 0; the
second term of the sum, with coefficient 2, comes from the two identical w.c.’s ([y], [y]) of [y, y]
given by the two different functions W : (y, y) −→ {0, 1} defined by W (1) = 0,W (2) = 1 and
W : (y, y) −→ {0, 1} defined by W (1) = 1,W (2) = 0.

Remark 4.4.25. It is clear by the definitions that if, for t ∈ λµr, one has t→λµr T (in 2〈λµr〉)
and t →+

r S (in N〈λµr〉) by reducing the same redex, then supp(S) = T. That is, the two
reductions only differ for the coefficients.

Remark 4.4.26. Since we already know that the reduction →r is strongly normaling in λµr

(Corollary 4.4.15), then the reduction →+
r is strongly normaling in N〈λµr〉. Indeed, it sufficies

to extend the strongly normalising measure m̃(·) of λµr (Definition 4.4.14) to N〈λµr〉 by setting
m̃(T) := [m̃(t) | t ∈ T] ∈!(!N× N), and use the multiset order.

Remark 4.4.27 (Embedding inside the differential λµ-calculus). One could think of proving the
confluence of→+

r by using the fact that in [Vau07a], Vaux proves the confluence of his differential
λµ-calculus. Let us call it (λµ∂ ,→∂) in this remark. In fact, our resource λµ-calculus 2〈λµr〉, as
well as the quantitative version N〈λµr〉, translates into λµ∂ via the translation (·)∂ : λµr −→ λµ∂

defined as14:
x∂ := x λx.t∂ := λx.t∂ µα.β|t|∂ := µα.β|t∂ |

14Remark that the case (t[u1, . . . , uk])∂ is well-defined since a λµ∂-term of shape Dk Θ′ • (Θ1, . . . ,Θk) does not
depend on the enumeration of the Θi’s (Corollary 6.17 of [Vau07a]).
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(t[u1, . . . , uk])
∂ :=

(
Dk t∂ • (u∂1 , . . . , u

∂
k)
)

0.

We can extend it to sums, both in 2〈λµr〉 and in N〈λµr〉, by linearity. In the qualitative case
(that is, if we consider (·)∂ : 2〈λµr〉 −→ λµ∂), it is not a well-behaved embedding, because it
does not preserve reductions. On the contrary, it does in the quantitative case (that is, if we
consider (·)∂ : N〈λµr〉 −→ λµ∂), as one can prove that: if t →+

λµr T in N〈λµr〉, then t∂ �∂ T∂

in λµ∂. One can now entail the local confluence of →+
λµr from the confluence of →∂. And in

turn, as we are going to see (using the reduction in Definition 4.4.44), this entails that →λµr is
locally confluent as well.

However, as the reader has probably noticed, we only talked about →λµr, and not about the
whole →r = →λµr ∪ →ρr. This is simply because in [Vau07a] the ρ-reduction is not considered,
thus the reduction →∂ for which the confluence is there proven only contains the cases for →λ

and →µ, not for →ρ.

Remark that, even if it is possible to prove the confluence of →ρr by itself, we cannot use
this result in order to entail the confluence of →r = →λµr ∪ →ρr by invoking the well-known
Hindley-Rosen lemma15. This is because →+

ρr and →+
λµr do not commute, as the following

example shows16 (where γ 6= η 6= α):

(µα.α|µγ.η|x||)1 →ρr (µα.η|x|)1y
µr

y
µr

µα.α|(µγ.η|x|)1| 6→ρr µα.η|x|.

We can attack the first of the two steps mentioned some pages above: we will prove the
local confluence of →+

r . We present here a proof which essentially consists in considering all
the possible critical pairs and showing that one can always close the respective diagram17.

Remark 4.4.28. We can extend the definition of linear substitution and linear named applica-
tion to sums by linearity:

µα. 〈T〉+α [U1, . . . ,Uk] :=
∑
t∈T

∑
u1∈U1

· · ·
∑
uk∈Uk

µα. 〈t〉+α [u1, . . . , uk]

and the same for the linear substitution. Analogously, the renaming of a sum T{α/β} is defined
component-wise. With these definitions in place one checks that base-step-reduction lifts to
sums, i.e.:

(µα.β|T|) [~U]�+
µr µα. 〈T〉+α [~U],

(λx.T) [~U]�+
λr T

〈
[~U] /x

〉+
, µα.β|µγ.η|T||�+

ρr µα.η|T|{β/γ}.

One can check that →+
r on N〈λµr〉 is contextual.

We need a number of technical lemmas handling the interaction of two successive substitu-
tions. The proofs of these lemmas are tedious and long inductions.

15Whose statement is that if →1, →2 are two confluent binary relations on X s.t. �1, �2 commute, then
→1 ∪ →2 is confluent.

16The same of course holds also in the quantitative case.
17Another possibility would be to consider a “parallel reduction”, in the style of the well known Tait&Martin-

Löf technique. We are currently working on such a proof as well.
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Notation 4.4.29. In this section we will sometimes use the following notation: for α, β, η
names, we set δαη (β) to be18 α if β = η, or η otherwise. Remark that with this notation the

ρ-reduction takes the form µα.β|µγ.η|t|| →+
ρr µα.δβη (γ)

|t{β/γ}|.

Lemma 4.4.30. Let t ∈ λµr and α, β, γ, η names.
If α 6= η, β 6= η and β 6= γ, then t{α/β}{γ/η} = t{γ/η}{α/β}.

The following lemma says how a renaming behaves with respect to the linear substitution
and the linear named application.

Lemma 4.4.31. Let t ∈ λµr and [~u] a bag. Then:

1. t〈[~u]/x〉+{α/β} = t{α/β}〈[~u{α/β}]/x〉+.

2. If α 6= γ 6= β then: ( 〈t〉+γ [~u] ){α/β} = 〈t{α/β}〉+γ [~u{α/β}].

3. If α 6= γ 6= β then: ( 〈η|t|〉+γ [~u] ){α/β} = 〈η|t|{α/β}〉+γ [~u{α/β}].

The next lemma says how two linear substitutions operate when applied consecutively.

Lemma 4.4.32. . Let t ∈ λµr, [~v] =: [v1, . . . , vn] and [~u] bags and y 6= x variables with y not
occurring in [~u]. Then:

t〈[~v]/y〉〈[~u]/x〉 =
∑
W

t〈[~w 0]/x〉〈[v1〈[~w 1]/x〉, . . . , vn〈[~w n]/x〉]/y〉

with W : (~u) −→ {0, . . . , n}.

The condition x 6= y in the previous lemma cannot be suppressed: for instance for x =
y, t = x, [~v] = 1 and [~u] = [z], with z 6= y, the left hand-side of the equality becomes
x〈1/x〉+〈[z]/x〉+ = 0 while the right hand-side becomes x〈[z]/x〉+〈1/x〉+ = z.

The next lemma says how a linear substitution operates on linear named application.

Lemma 4.4.33. . Let t ∈ λµr, [~v] =: [v1, . . . , vn] and [~u] bags and α a name with19 degα([~u]) =
0. Then:

( 〈t〉+α [~v] ) 〈[~u]/x〉 =
∑
W

〈t〈[~w 0]/x〉〉+α [v1〈[~w 1]/x〉, . . . , vn〈[~w n]/x〉]

with W : (~u) −→ {0, . . . , n}.

The following two remarks are easy:

Remark 4.4.34. Let α be a name, t ∈ λµr and [~u], [~v] bags. If degα([~v]) = 0 then one has:

〈t[~v]〉+α [~u] = (〈t〉+α [~u] ) [~v].

Remark 4.4.35. Let α 6= β be names, t ∈ λµr and [~v] =: [v1, . . . , vn], [~u] bags. If degβ(t) = 0
then one has:

〈〈t〉+α [~v]〉+β [~u] =
∑
W

〈t〉+α [〈v1〉+β [~w 1], . . . , 〈vn〉+β [~w n]].

with W : (~u) −→ {1, . . . , n}.

The next lemma says in which sense and when, in some cases, one can swap the order of
two linear applications.

18Note that we may use the letter “δ” for a name as well: in this notation – which is however used only in
some proofs – it is of course not a name, and there should be no ambiguity.

19By “degβ([~u]) = 0” we mean that degβ(u) = 0 for all u ∈ [~u].
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Lemma 4.4.36. Let t ∈ λµr, [~u], [~v] bags and α 6= β names.

1. If degα([~v]) = 0 and degβ([~u]) = 0, then:

〈〈t〉+α [~u]〉+β [~v] = 〈〈t〉+β [~v]〉+α [~u].

2. If degα([~v]) = 0 then, taking δ a fresh name, one has:

〈〈t〉+α [~u]〉+β [~v] =
∑
W

〈〈〈t〉+β [~w 1]〉+α [~u{δ/β}]〉+δ [~w 2] {β/δ}

with W : (~v) −→ {1, 2}.

3. If degβ([~u]) = 0 then, taking δ a fresh name, one has:

〈〈t〉+α [~u]〉+β [~v] = 〈〈t〉+β [~v{δ/α}]〉+α [~u] {α/δ}.

The next lemma says how a linear named applications on a name operates on a renaming
involving the same name.

Lemma 4.4.37. Let t ∈ λµr, [~u] a bag and α 6= β names with degβ([~u]) = 0. Then:

〈t{α/β}〉+α [~u] =
∑
W

〈〈t〉+α [~w 1]〉+β [~w 2] {α/β}

with W : (~u) −→ {1, 2}.

The condition α 6= β in the previous lemma cannot be suppressed: for instance, for t =
µγ.α|x| and [~u] = 1, the left hand-side of the equality becomes µγ.α|x1| while the right hand-
side becomes: ∑

W :()−→{1,2}

µγ.α|x [~w 1] [~w 2]| = µγ.α|x 1 1|.

Also the condition degβ([~u]) = 0 cannot be suppressed: for instance, for t = µγ.α|x| and
[~u] = [µγ′.β|y|], the left hand-side becomes µγ.α|x[µγ′.β|y|]| while the right hand-side becomes
µγ.α|x[µγ′.β|y1|]|.

The following lemma says how a linear named application operates on a linear substitution.

Lemma 4.4.38. Let t ∈ λµr, [~v] =: [v1, . . . , vn], [~u] bags, x a variable and α a name s.t.
degx([~u]) = 0.

〈t〈[~v]/x〉〉+α [~u] =
∑
W

(〈t〉+α [~w 0])〈[〈v1〉+α [~w 1], . . . , 〈vn〉+α [~w n]]/x〉

with W : (~u) −→ {0, . . . , n}.

The condition degx([~u]) = 0 in the previous lemma cannot be suppressed: for instance, for
t = µγ.α|y| (with y 6= x), [~v] = 1 and [~u] = [x], the left hand-side becomes µγ.α|y[x]| while the
right hand-side becomes 0.

The next lemma says how two linear named application operate consecutively.

Lemma 4.4.39. Let t ∈ λµr, α 6= γ names and [~v] =: [v1, . . . , vn], [~u] bags s.t. degγ([~u]) = 0.
We have:

〈〈t〉+γ [~v]〉+α [~u] =
∑
W

〈〈t〉+α [~w 0]〉+γ [〈v1〉+α [~w 1], . . . , 〈vn〉+α [~w n]]
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with W : (~u) −→ {0, . . . , n}.
Furthermore, the same holds also for named terms. That is, under the same hypothesis and

for η a name, we have20:

〈〈η|t|〉+γ [~v]〉+α [~u] =
∑
W

〈〈η|t|〉+α [~w 0]〉+γ [〈v1〉+α [~w 1], . . . , 〈vn〉+α [~w n]]

with W : (~u) −→ {0, . . . , n}.

The condition α 6= γ in the previous lemma cannot be suppressed: for instance, for t =
µδ.α|x|, [~u] = [µδ.δ|x|] and [~v] = [µδ.δ|y|], the left hand-side becomes µδ.α|x[µδ.δ|y|][µδ.δ|x|]|
while the right hand-side becomes µδ.α|x[µδ.δ|x|][µδ.δ|y|]|.

Also the condition degγ([~u]) = 0 in the previous lemma cannot be suppressed: for instance,
for t = µδ.α|x|, [~u] = [µδ.γ |x|] and [~v] = [µδ.δ|x|], the left hand-side becomes 0 while the right
hand-side becomes µδ.α|x[µδ.γ |x[µδ.δ|x|]|]|.

With these technical lemmas in place, we can now can prove the crucial Lemma 4.4.41 for
the confluence of the quantitative resource calculus. To say it in other words, it states that
reduction on sums (see Remark 4.4.28) remains contextual also if we include (·)〈[·, . . . , ·]/x〉 and
〈·〉+α [·, . . . , ·] as (multi-hole-)contexts.

In the proof of Lemma 4.4.41 we also use the following remark.

Remark 4.4.40. Let [p, ~q] be a bag. Then, every function W ′ : {p, u1, . . . , uk} −→ {0, . . . , n}
is uniquely determined by the choice of W ′(p) ∈ {0, . . . , n} plus the choice of a function W :
{u1, . . . , uk} −→ {0, . . . , n}. This is reflected in the equality (n + 1)k+1 = (n + 1)k · (n + 1).
Now, for 0 ≤ i, j ≤ n, let us set [p]ji the singleton multiset [p] if i = j, and the empty mulitset
1 if i 6= j. Therefore, the w.c. of [p, ~q] generated by a W ′ : {p, u1, . . . , uk} −→ {0, . . . , n} is

of shape ([~w 0] ∗ [p]
W ′(p)
0 , . . . , [~w n] ∗ [p]

W ′(p)
n ), for ([~w 0], . . . , [~w n]) a w.c. of [~q] generated by a

W : {u1, . . . , uk} −→ {0, . . . , n}.

Lemma 4.4.41. Let t, s ∈ λµr, x a variable, α, β names and [~u] a bag. If s→+
r S then:

1. s{α/β}�+
r S{α/β}

2. t〈[s, ~u]/x〉+ �+
r t〈[S, ~u]/x〉+

3. s〈[~u]/x〉+ �+
r S〈[~u]/x〉+

4. 〈t〉+α [s, ~u]�+
r 〈t〉+α [S, ~u]

5. µα.〈β|t|〉+α [s, ~u]�+
r µα.〈β|t|〉+α [S, ~u]

6. 〈s〉+α [~u]�+
r 〈S〉+α [~u].

7. µα.〈β|s|〉+α [~u]�+
r µα.〈β|S|〉+α [~u].

Proof. 1. Induction on s:

Case s variable: impossible.

Case s = λy.s′: straightforward by inductive hypothesis.

Case s = µγ.η|s′|: we have two subcases21:

20The following is just an equality between sets of words – the named terms.
21In the following we do not explicitly say it, but of course we will take bound names different from α and β,

as well as from other bound names.
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Subcase s→+
r S is performed by reducing s′:

then S = µγ.η|S′| with s′ →+
r S′, and so (regardless of whether η equals γ or not):

s{α/β} = µγ.δαη (β)|s′{α/β}| →+
r µγ.δαη (β)|S′{α/β}| = µγ.η|S′|{α/β} = S{α/β}

where we used the inductive hypothesis.

Subcase s′ = µγ′.η′ |s′′| and s→+
r S is performed by reducing its leftmost ρ-redex:

Then s = µγ.η|µγ′.η′ |s′′||, S = µγ.η′ |s′′|{η/γ′} and we have four sub-subcases:

Sub-subcase η = β and η′ = β: then S{α/β} = µγ.β|s′′|{α/β, α/γ′} = µγ.α|s′′{α/β, α/γ′}|
and:

s{α/β} = µγ.α|µγ′.α|s′′{α/β}|| →+
ρ µγ.α|s′′{α/β}|{α/γ′}

= µγ.α|s′′{α/β, α/γ′}| = S{α/β}.

Sub-subcase η = β and η′ 6= β: then

S{α/β} = µγ.η′ |s′′|{α/β, α/γ′} = µγ.δα
η′ (γ

′)|s′′{α/β, α/γ′}|

and:
s{α/β} = µγ.α|µγ′.η′ |s′′{α/β}|| →+

ρ µγ.η′ |s′′{α/β}|{α/γ′}
= µγ.δα

η′ (γ
′)|s′′{α/β, α/γ′}| = S{α/β}.

Sub-subcase η 6= β and η′ = β: then

S{α/β} = µγ.β|s′′|{η/γ′}{α/β} = µγ.α|s′′{η/γ′}{α/β}|

and:

s{α/β} = µγ.η|µγ′.α|s′′{α/β}|| →+
ρ µγ.α|s′′{α/β}|{η/γ′} = µγ.α|s′′{α/β}{η/γ′}|

and the result follows by Lemma 4.4.30.

Sub-subcase η 6= β and η′ 6= β: then

S{α/β} = µγ.δη
η′ (γ

′)|s′′{η/γ′}|{α/β} = µγ.δη
η′ (γ

′)|s′′{η/γ′}{α/β}|

and:

s{α/β} = µγ.η|µγ′.η′ |s′′{α/β}|| →+
ρ µγ.η′ |s′′{α/β}|{η/γ′} = µγ.δη

η′ (γ
′)|s′′{α/β}{η/γ′}|

and the result follows by Lemma 4.4.30.

Case s = s′[~v]: we have four subcases:

Subcase s→+
r S is performed by reducing the s′: straightforward by inductive hypothesis.

Subcase s →+
r S is performed by reducing one vi ∈ [~v]: straightforward by inductive

hypothesis.

Subcase s′ = λx.s′′ and s →+
r S is performed by reducing the λ-redex s: then S =

s′′〈[~v]/x〉+ and:

s{α/β} = (λx.s′′{α/β})[~v{α/β}]→λr s′′{α/β}〈[~v{α/β}]/x〉+ = s′′〈[~v]/x〉+{α/β} = S{α/β}

where the second-last equality holds thanks to Lemma 4.4.31.

Subcase s′ = µγ.η|s′′| and s →+
r S is performed by reducing the µ-redex s: then S =

µγ.〈η|s′′|〉+γ [~v] and:

s{α/β} = (µγ.δαη (β)|s′′{α/β}|)[~v{α/β}]
→µr µγ.〈δαη (β)|s′′{α/β}|〉+γ [~v{α/β}]
= µγ.〈η|s′′|{α/β}〉+γ [~v{α/β}]

and the equality with S{α/β} follows from Lemma 4.4.31.
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2. Induction on t, using Figure 4.1. The only non-trivial case is22 t = v0[v1, . . . , vn]. In this
case, by Figure 4.1 plus Remark 4.4.40, we have:

( v0[v1, . . . , vn] ) 〈[s, ~u]/x〉+ =
∑
W

n∑
j=0

( v0〈[~w 0] ∗ [s]j0/x〉 ) [. . . , vi〈[~w i] ∗ [s]ji/x〉, . . . ].

where W : (~u) −→ {1, . . . , n}. Fix now a W : (~u) −→ {1, . . . , n} (together with its
generated w.c.) and consider each of the n + 1 elements of the sum on j. We write the
case for j = 0, but the other cases are exactly the same. Since j = 0, the element is
( v0〈[~w 0] ∗ [s]/x〉 ) [. . . , vi〈[~w i]/x〉, . . . ] and by inductive hypothesis we have:

( v0〈[~w 0] ∗ [s]/x〉 ) [. . . , vi〈[~w i] ∗ [s]/x〉, . . . ]�+
r ( v0〈[~w 0] ∗ [S]/x〉 ) [. . . , vi〈[~w i]/x〉, . . . ].

Now summing up all the elements for j = 0, . . . , n and W : (~u) −→ {1, . . . , n} we obtain
the following sum:∑

W

n∑
j=0

( v0〈[~w 0] ∗ [S]j0/x〉 )[. . . , vi〈[~w
i] ∗ [S]ji/x〉, . . . ].

Using again Remark 4.4.40 plus Figure 4.1, the above sum becomes:

( v0[v1, . . . , vn] ) 〈[S, ~u]/x〉+

which is the desired result.

3. Induction on s.

Case s variable: impossible.

Case s = λ-abstraction: straightforward by Figure 4.1 and inductive hypothesis.

Case s = µα.β|s′|: we have two subcases:

Subcase s→+
r S is performed by reducing s′: immediate by Figure 4.1.

Subcase s′ = µγ.η|s′′| and s→+
r S is performed by reducing its leftmost ρ-redex:

then S = µα.η|s′′|{β/γ} and (call [~u] =: [u1, . . . , uk])

s〈[~u]/x〉+ = µα.β|µγ.η|s′′〈[~u]/x〉+|| (by Figure 4.1)
→ρr µα.η|s′′〈[~u]/x〉+|{β/γ}
= µα.η|s′′|〈[~u]/x〉+{β/γ} (by Figure 4.1)
= µα.η|s′′|{β/γ}〈[~u]/x〉+ (because, being bound, γ does not occur in ~u)
= S〈[~u]/x〉+.

Case s = s′[~v]: we have four subcases:

Subcase s→+
r S is performed by reducing s′: straightforward by Figure 4.1 and inductive

hypothesis.

Subcase s→+
r S is performed by reducing the vi in [~v]: straightforward by Figure 4.1 and

inductive hypothesis.

Subcase s′ = λy.s′′ and s →+
r S is performed by reducing the λ-redex s: follows by

Figure 4.1 and Lemma 4.4.32 (where x 6= y because y is bound and x is fixed).

Subcase s′ = µα.β|s′′| and s →+
r S is performed by reducing the µ-redex s: follows by

Figure 4.2 and Lemma 4.4.33 (where degα([~u]) = 0 because α is bound and [~u] is fixed).

22In the case t = y 6= x, and if S = 0 and ~u is empty, note that t〈[S, ~u]/x〉+ = y〈[0]/x〉+ =
∑
s′∈0

y〈[s′]/x〉+ = 0

(and not “y〈[0]/x〉+ = y〈1/x〉+ = y”), so the result still holds in this case.
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4. Induction on t, using Figure 4.1. The non-trivial cases are t = v0[v1, . . . , vn] and t =
µγ.η|t′|. Both are done following the same argument as we did in point (2); first, apply
Figure 4.2, then Remark 4.4.40, then the inductive hypothesis and thus close the argument
by applying Remark 4.4.40 again and finally Figure 4.2 again.

5. It is immediate discriminating the cases α = β and α 6= β, using Figure 4.2, and concluding
by point (4).

6. Induction on s ∈ λµ.

Case s = variable. Impossible.

Case s = λ-abstraction. Straightforward by Figure 4.2 and inductive hypothesis.

Case s = µβ.γ |s′|: we have two subcases:

Subcase s →+
r S is performed by reducing s′: then S = µβ.γ |S′| with s′ →r S′. By

Figure 4.2 we have 〈s〉+α [~u] = µβ.〈γ |s′|〉+α [~u]. Remark that we cannot immediately apply
the inductive hypothesis on γ |s′|, simply because γ |s′| /∈ λµr (it is a named term). However
we can split in the two subcases whether γ = α or γ 6= α and now in both subcases we
can conclude straightforwardly by Figure 4.2 and the inductive hypothesis.

Subcase s′ = µγ′.η|s′′| (with γ 6= γ′) and s →+
r S is performed by reducing its leftmost

ρ-redex: then S = µβ.η|s′′|{γ/γ′}. We split in two sub-subcases:

Sub-subcase α 6= γ:

〈s〉+α [~u] = µβ.γ |µγ′.〈η|s′′|〉+α [~u]| (by Figure 4.2)
�+
ρr µβ. 〈η|s′′|〉+α [~u] {γ/γ′}

= 〈µβ.η|s′′|{γ/γ′}〉+α [~u] (by Lemma 4.4.31 plus degγ′([~u]) = 0)

= 〈S〉+α [~u].

Sub-subcase α = γ. By Figure 4.2, we have:

〈s〉+α [~u] =
∑
W

µβ.α| (µγ′.〈η|s′′|〉+α [~w 1] ) [~w 2]| where W : (~u) −→ {1, 2}

�+
µr

∑
W

µβ.α|µγ′.〈〈η|s′′|〉+α [~w 1]〉+γ′ [~w
2]|

�+
ρr

∑
W

µβ.〈〈η|s′′|〉+α [~w 1]〉+γ′ [~w
2] {α/γ′}

=
∑
W

〈〈µβ.η|s′′|〉+α [~w 1]〉+γ′ [~w
2] {α/γ′}

= 〈µβ.η|s′′| {α/γ′}〉+α [~u] (by Lemma 4.4.37)
= 〈S〉+α [~u] (since α = γ).

Case s = s′[v1, . . . , vn]: we have four subcases:

Subcase s→+
r S is performed by reducing s′: straightforward by Figure 4.2 and inductive

hypothesis.

Subcase s→+
r S is performed by reducing the vi in [~v]: straightforward by Figure 4.2 and

inductive hypothesis.

Subcase s′ = λx.s′′ and s →+
r S is performed by reducing the λ-redex s. Then S =
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s′′〈[~v]/x〉 and using Figure 4.2 we have:

〈s〉+α [~u] =
∑
W

(λx.〈s′′〉+α [~w 0]) [. . . , 〈vi〉+α [~w i], . . . ] with W : (~u) −→ {0, . . . , n}

�+
λr

∑
W

(〈s′′〉+α [~w 0])〈[. . . , 〈vi〉+α [~w i], . . . ]/x〉

= 〈s′′〈[~v]/x〉〉+α [~u] (by Lemma 4.4.38)

= 〈S〉+α [~u].

Subcase s′ = µγ.η|s′′| (with γ 6= α) and s →+
r S is performed by reducing the µ-redex s.

Then S = µγ.〈η|s′′|〉+γ [~v] and using Figure 4.2 we have:

〈s〉+α [~u] =
∑
W

(〈µγ.η|s′′|〉+α [~w 0]) [. . . , 〈vi〉+α [~w i], . . . ] with W : (~u) −→ {0, . . . , n}

�+
µr µγ.

∑
W

〈〈η|s′′|〉+α [~w 0]〉+γ [. . . , 〈vi〉+α [~w i], . . . ]

= µγ.〈〈η|s′′|〉+γ [~v]〉+α [~u] (by Lemma 4.4.39)

= 〈S〉+α [~u].

7. It is immediate by discriminating the cases α = β and α 6= β, using Figure 4.2, and then
concluding by point (6).

Now we can finally state and prove the local confluence of quantitative resource λµ-calculus.

Proposition 4.4.42. The reduction →+
r is locally confluent in N〈λµr〉.

Proof. We show, by induction on a single-hole resource context c, that if:

t→+
baser T and cLtM→+

r T2

then there is T′ ∈ N〈λµr〉 s.t.

cLTM�+
r T′ +r� T2.

In all the following diagrams we write “→” but of course we mean “→+
r ”.

1. Case c = ξ. So cLtM = t→+
baser T and we only have the three base-cases of Definition 4.4.20.

In all the diagrams of this case, when not explicitly said differently or not clear by an easy
reduction, the bottom-left reduction follows from Lemma 4.4.41 and the bottom-right
from Remark 4.4.28.

Subcase t = (λx.s)[~u] and T = s〈[~u]/x〉+. Then cLtM = t →+
r T2 (on a different redex

than t) can only be performed either by reducing s, or by reducing an element w of [~u].
We have thus the following two diagrams:

(λx.s)[~u]

s〈[~u]/x〉+ (λx.S)[~u]

S〈[~u]/x〉+

(s→S)
(λx.s)[w, ~u′]

s〈[w, ~u′]/x〉+ (λx.s)[W, ~u′]

s〈[W, ~u′]/x〉+

(w→W)
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Subcase t = (µα.β|s|)[~u] and T = µα.〈β|s|〉+α [~u]. Then cLtM = t →+
r T2 (on a different

redex than t) can only be performed either by reducing s, or by reducing an element w
of [~u], or if s = µγ.η|s′| and we reduce the ρ-redex ...β|µγ. ...|. In the latter case we split
into the case α 6= β, the case α = β, γ 6= η, η = α, the case α = β, γ 6= η, η 6= α, and the
case α = β, η = γ (with necessary γ 6= α). The above six cases respectively correspond to
the following six diagrams:

(µα.β |s|)[~u]

µα.〈β |s|〉+α [~u] (µα.β |S|)[~u]

µα.〈β |S|〉+α [~u]

(s→S)

(µα.β |s|)[w, ~u′]

µα.〈β |s|〉+α [w, ~u′] (µα.β |s|)[W, ~u′]

µα.〈β |s|〉+α [W, ~u′]

(w→W)

(µα.β |µγ.η|s′||)[~u]

µα.β |µγ.〈η|s′|〉+α [~u]| (µα.η|s′|)[~u]{β/γ}

µα.〈η|s′|〉+α [~u]{β/γ}

(α 6=β)

(
α 6=β

degγ([~u])=0
)

(µα.α|µγ.α|s′||)[~u]

µα.〈α|µγ.α|s′||〉+α [~u] (µα.α|s′{α/γ}|)[~u]

∑
W

∑
D

µα.α|(µγ.α|(〈s′〉+α [~d 0])[~d 1]|)[~w 1]| µα.〈α|s′{α/γ}|〉+α [~u]

∑
W

∑
D

µα.α|µγ.α|〈(〈s′〉+α [~d 0])[~d 1]〉+γ [~w 1]||
∑
W

µα.α|(〈s′{α/γ}〉+α [~w 0])[~w 1]|

∑
W

∑
D

µα.α|〈(〈s′〉+α [~d 0])[~d 1]〉+γ [~w 1]|{α/γ}

W :(~u)→{1,2}
D:(~w 0)→{1,2}

W :(~u)→{1,2}

where the bottom right equality holds because, by Lemma 4.4.37, Remark 4.4.34 and since
degγ([~u]) = 0, each addend of the bottom right sum is:

µα.α|(〈s′{α/γ}〉+α [~w 0])[~w 1]| =
∑

D:(~w 0)→{1,2}
µα.α|(〈〈s′〉+α [~d 1]〉+γ [~d 0])[~w 1]|{α/γ}

=
∑
D

µα.α|〈(〈s′〉+α [~d 1])[~w 1]〉+γ [~d 0]|{α/γ}

and since we are then summing up on all possible W : (~u)→ {1, 2}, the resulting sum is
the same as the one at the bottom of the above diagram.
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(µα.α|µγ.η|s′||)[~u]

µα.〈α|µγ.η|s′||〉+α [~u] (µα.η|s′{α/γ}|)[~u]

∑
W

µα.α|(µγ.η|〈s′〉+α [~w 0]|)[~w 1]| µα.〈η|s′{α/γ}|〉+α [~u]

∑
W

µα.α|µγ.η|〈〈s′〉+α [~w 0]〉+γ [~w 1]|| µα.η|〈s′{α/γ}〉+α [~u]|

∑
W

µα.η|〈〈s′〉+α [~w 0]〉+γ [~w 1]{α/γ}|

(γ 6=η)

W :(~u)→{1,2}

(η 6=α)

W :(~u)→{1,2}

where the bottom right equality holds by Lemma 4.4.37 and because degγ([~u]) = 0.

(µα.α|µγ.γ |s′||)[~u]

µα.〈α|µγ.γ |s′||〉+α [~u] (µα.α|s′{α/γ}|)[~u]

∑
W

µα.α|(µγ.γ |〈s′〉+α [~w 0]|)[~w 1]| µα.〈α|s′{α/γ}|〉+α [~u]

∑
W

∑
D

µα.α|µγ.γ |(〈〈s′〉+α [~w 0]〉+γ [~d 0])[~d 1]||
∑
W

µα.α|(〈s′{α/γ}〉+α [~w 0])[~w 1]|

∑
W

∑
D

µα.α|(〈〈s′〉+α [~w 0]〉+γ [~d 0])[~d 1]{α/γ}|

W :(~u)→{1,2}

D:(~w 1)→{1,2} W :(~u)→{1,2}

where the bottom right equality holds by Lemma 4.4.37 and because degγ([~u]) = 0.

Subcase t = µγ.α|µβ.η|s|| and T = µγ.η|s|{α/β}. Then cLtM = t →+
r T2 (on a different

redex than t) can be only performed either by reducing s, or if s = µγ′.η′ |s′| and we reduce
the ρ-redex ...η|µγ′. ...|. We have thus the following two diagrams:

µγ.α|µβ.η|s||

µγ.η|s|{α/β} µγ.α|µβ.η|S||

µγ.η|S|{α/β}

(s→S)

µγ.α|µβ.η|µγ′.η′ |s′|||

µγ.δ0 |µγ′.δ′1 |s
′{α/β}|| µγ.α|µβ.δ′2 |s

′{η/γ′}||

µγ.δ1 |s′{α/β}{δ0/γ′}| = µγ.δ2 |s′{η/γ′}{α/β}|
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where δ0 := δαη (β), δ′1 := δαη′(β), δ1 := δδ0
δ′1

(γ′), δ′2 := δηη′(γ
′) and δ2 := δαδ′2

(β). Let us prove

the equality in the last diagram: we first show that s′{α/β}{δ0/γ
′} = s′{η/γ′}{α/β} and

then that δ1 = δ2. For the former equality, we have:

if β 6= η, then δ0 = η and the equality follows from Lemma 4.4.30;

if β = η then δ0 = α and the equality holds because both renamings {α/β}{δ0/γ
′} and

{η/γ′}{α/β} coincide with the unique renaming {α/(β, γ′)}23.

For the latter equality, we have:

if γ′ = η′: then δ′2 = η and thus δ2 = δ0. Remark that it must be β 6= η′, because otherwise
β = γ′ which is impossible. This means that δ′1 = η′. But then δ1 = δ0, so we are done.

if γ′ 6= η′: then δ′2 = η′ and thus δ2 = δ′1. Now if β 6= η′ then δ′1 = η′ and thus δ1 = η′; if
β = η′ then δ′1 = α and thus δ1 = δδ0α (γ′) = α, because it cannot be γ′ = α. If we read
what we just found about δ1, it precisely says that δ1 = δ′1 so we are done.

2. Case c = µα.β|c′| with either c′LtM not a µ-abstraction, or c = λx.c′. Then the reduction
cLtM→ T2 can only be performed via a reduction c′LtM→ T′2. The diagram for both cases
has the same shape; using the notation of Section 4.3, let’s call in both cases c =: g(v, c′)
(where v is either x if g is a λ-abstraction, or (α, β) if g is a µ-abstraction). Now the
result is given by the following diagram:

g(v, c′LtM)

g(v, c′LTM) g(v,T′2)

g(v, T̃)

(c′L t M→T′2)

where a sum T̃ s.t. c′LTM� T̃� T′2 is given by inductive hypothesis on c′.

3. Case c = µα.β|c′|, with c′LtM a µ-abstraction. Then either c′ = ξ and t = µγ.η|t′0|, or
c′ = µγ.η|c′′|.

In the first case, since by hypothesis t →+
baser T, it must be t = µγ.η|µγ′.η′ |t′|| and

T = µγ.η′ |t′|{η/γ′}. Therefore, the reduction cLtM →r T2 (on a different redex than the
one of t →+

baser T) can only be performed either by reducing t′, or by reducing the ρ-
redex ...β|µγ. ...|, or if t′ = µγ̃.η̃|t̃| and we reduce the ρ-redex ...η′ |µγ̃. ...|. The first and
second situation of the previous list have been already treated in the case c = ξ (with the
notation used there, it corresponds to the two diagrams of the subcase t = µγ.α|µβ.η|s||
and T = µγ.η|s|{α/β}.). Also the third situation corresponds to the exact same case just
mentioned, because the external µα.β|...| is not modified in neither reductions.

In the second case, then the reduction cLtM→r T2 can only be performed either by reducing
c′′LtM, or by reducing the ρ-redex cLtM. In the first situation the diagram follows easily
by inductive hypothesis as in the previous case, and in the second one the diagram is the

23We mean here that both β and γ′ get renamed with α.
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following:

µα.β|µγ.η|c′′LtM||

µα.β|µγ.η|c′′LTM|| µα.η|c′′LtM|{β/γ}

µα.η|c′′LTM|{β/γ}

thanks to Remark 4.4.28 and Lemma 4.4.41.

4. Case c = c′[~u]. Then cLtM = c′LtM[~u] and the reduction cLtM→r T2 can only be performed
either by reducing c′LtM, or reducing an element of [~u], or the in case c′LtM is a λ-abstraction
or a µ-abstraction and we reduce the λµ-redex cLtM. In the first case one can easily use
inductive hypothesis; in the second case one can easily write the diagram; let us see the
third and fourth case.

If c′LtM is a λ-abstraction, then either c′ = ξ and t = λx.t′, or c′ = λx.c′′. But the first case
is impossible, because by hypothesis t →+

baser T, so t cannot be a λ-abstraction; In the
second case the diagram corresponds to the first diagram of the case 1 (with the notations
used there, take s := c′′LtM and S := c′′LTM).

If c′Lt′ M is a µ-abstraction, then either c′ = ξ and t = µα.β|t′|, or c′ = µα.β|c′′|. But
in the first situation, since by hypothesis t →+

baser T, it must be t = µα.β|µγ.η|t′′|| and
T = µα.η|t′′|{β/γ}, and this situation has already been treated in the case c = ξ (with the
notations used there, it corresponds to the subcase t = (µα.β|s|)[~u] and T = µα.〈β|s|〉+α [~u],
where we consider the reduction of the ρ-redex24). In the second case the diagram corre-
sponds to the third diagram of the case 1 (with the notations used there, take s := c′′LtM
and S := c′′LTM).

5. Case c = v[c′, ~u]. Then cLtM = v[c′LtM, ~u] and the reduction cLtM →r T2 can only be
performed either by reducing c′LtM, or reducing v, or reducing an element of [~u], or in the
case v is a λ-abstraction or a µ-abstraction and we reduce the λµ-redex cLtM. In the first
case one can trivially use the inductive hypothesis as done in the previous case; in the
second and third case one can easily write the diagram; let’s look at the fourth case.

If v is a λ-abstraction, say v = λx.v′, then the diagram corresponds to the second diagram
of the case 1 (with the notations used there, take w := c′LtM and W := c′LTM).

If v is a µ-abstraction, say v = µα.β|v′|, then the diagram corresponds to the fourth
diagram of the case 1 (with the notations used there, take w := c′LtM and W := c′LTM).

Corollary 4.4.43. The reduction →+
r is confluent in N〈λµr〉. Furthermore, every T ∈ N〈λµr〉

has exactly one →+
r -normal form in N〈λµr〉.

Proof. The confluence is an immediate application of Newman Lemma (Lemma 2.1.1), thanks to
the strong normalisation (Remark 4.4.26) and Proposition 4.4.42. The existence and uniqueness
of the normal form immediately follows from the confluence and the strong normalisation.

24The diagrams are the last four of that subcase.
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Now that we have the confluence (in particular, the fact that every term has at most one
→+

r -normal form) of the qualitative resource calculus (that is, of (N〈λµr〉,→+
r )), we can prove

the local confluence of the qualitative one, that is, of (2〈λµr〉,→r). In order to do so, we
introduce a reduction ⇒⊆ N〈λµr〉 × N〈λµr〉 which →+

r -reduces in one step all the occurrences
of a term t of a quantitative sum in the same way.

In the following, supp(T) ∈ 2〈λµr〉 is the support of a sum T ∈ N〈λµr〉, that is, the set of all
its addends (with no coefficients)25.

Definition 4.4.44. The reduction ⇒⊆ N〈λµr〉 ×N〈λµr〉 is defined as the contextual closure of
the reduction in Figure 4.3 (where m ∈ N, t ∈ λµr and T,S ∈ N〈λµr〉).

t→+
r T t /∈ supp(S)

mt+ S⇒ mT + S

Figure 4.3: The reduction ⇒⊆ N〈λµr〉 × N〈λµr〉

Lemma 4.4.45. 1. ⇒⊆�+
r .

2. If T→r S in 2〈λµr〉, then for all mt ∈ N (with t ∈ T), we have
∑
t∈T

mtt⇒ S′ (in N〈λµr〉),

with supp(S′) = S.

Proof. Both properties simply follow from the definition of ⇒.

Corollary 4.4.46. The reduction →r in 2〈λµr〉 is locally confluent.

Proof. Let T1 r← t →r T2 in 2〈λµr〉. Since we know that →r is strongly normalising (Corol-
lary 4.4.15), there are (in 2〈λµr〉) reductions T1 �r S1 and T2 �r S2, with S1, S2 r-normal.
Therefore by Lemma 4.4.45(2), we have (in N〈λµr〉) reductions t⇒ · · · ⇒ S′1 and t⇒ · · · ⇒ S′2,
for some S′1,S′2 ∈ N〈λµr〉 s.t. supp(S′i) = Si. But then, since Si is r-normal, S′i must be →+

r -
normal. Now because of Corollary 4.4.43, it must be S′1 = S′2, and therefore S1 = supp(S′1) =
supp(S′2) = S2. Hence, we found a common reduct of T1,T2.

We can now finally infer the confluence of the reduction →r.

Corollary 4.4.47 (Confluence). The reduction →r is confluent on 2〈λµr〉.

Proof. It is an immediate application of Newman Lemma (Lemma 2.1.1), thanks to Corol-
lary 4.4.15 and Corollary 4.4.46.

4.4.1 Qualitative Taylor expansion

We define the qualitative Taylor expansion of λµ-calculus following Definition 4.3.2. That is,
we define the map T : λµ→ P(λµr) as:

T (x) := {x} T (λx.M) := {λx.t | t ∈ T (M)} T (µα.β|M |) := {µα.β|t| | t ∈ T (M)}

T (MN) := {t[~u] | t ∈ T (M), [~u] ∈ ! T (N)}.
25That is, supp(T) is T when considered with an idempotent sum.
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The same definition, as usual, also endows λµ with the partial preorder ≤ given by the
inclusion of Taylor normal forms.

Remark that the Monotonicity property (Theorem 4.3.4) is then true for λµ-calculus, that
is: for C a k-context, the map C : λµ× · · · × λµ −→ λµ is monotone w.r.t. ≤.

As usual, we need a Lemma saying that Taylor expansion behaves well w.r.t. substitutions.

Lemma 4.4.48. One has:

T (M{α/β}) = T (M){α/β}
T (M{N/x}) =

⋃
t∈T (M)

⋃
~u∈ ! T (N)

t〈[~u]/x〉

T ((M)αN) =
⋃

t∈T (M)

⋃
~u∈ ! T (N)

〈t〉α[~u].

Proof. (1). Straightforward induction on M .

(2). Induction on M . Nothing changes w.r.t. the proof one does in λ-calculus, the only new
case is M = µβ.α|P | but it is done straightforwardly exactly as the case M = λx.P .

(3). Induction on M .

Case M = x:

T ((M)αN) = T ((x)αN) = {x} = 〈x〉α1 =
⋃

~u∈ ! T (N)

〈x〉α[~u] =
⋃

t∈T (M),~u∈ ! T (N)

〈t〉α[~u].

Case M = λx.P :

T ((M)αN) = T (λx.(P )αN)
= {λx.s | s ∈ T ((P )αN)}
=

⋃
p∈T (P )

⋃
[~u]∈ ! T (N)

λx.(〈p〉α[~u]) (by inductive hypothesis)

=
⋃

p∈T (P )

⋃
[~u]∈ ! T (N)

〈λx.p〉α[~u]

=
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

〈t〉α[~u].

Case M = µβ.γ |P | (with β, γ 6= α):

T ((M)αN) = T (µβ.γ |(P )αN |)
= {µβ.γ |s| | s ∈ T ((P )αN)}
=

⋃
p∈T (P )

⋃
[~u]∈ ! T (N)

µβ.γ |〈p〉α[~u]| (by inductive hypothesis)

=
⋃

p∈T (P )

⋃
[~u]∈ ! T (N)

〈µβ.γ |p|〉α[~u]

=
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

〈t〉α[~u].
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Case M = µβ.α|P | (with β 6= α):

T ((M)αN) = T (µβ.α|((P )αN)N |)
=

{
µβ.α|v[~w]| | [~w] ∈ ! T (N), v ∈

⋃
p∈T (P ),~q∈ ! T (N)

〈p〉α[~q]
}

(by ind. hyp.)

=
{
µβ.α|v[~w]| | [~w] ∈ ! T (N), v ∈ 〈p〉α[~q], p ∈ T (P ), [~q] ∈ ! T (N)

}
=

⋃
p∈T (P )

⋃
[~u]∈ ! T (N)

µβ.
∑

([~w], [~q])
w.c. of [~u]

α|(〈p〉α[~q])[~w]|

=
⋃

p∈T (P )

⋃
[~u]∈ ! T (N)

µβ.〈α|p|〉α[~u] (by Figure 4.2)

=
⋃

p∈T (P )

⋃
[~u]∈ ! T (N)

〈µβ.α|p|〉α[~u]

=
⋃

t∈T (M)

⋃
[~u]∈ ! T (N)

〈t〉α[~u].

Case M = PQ:

T ((M)αN) = T (((P )αN)((Q)αN))

=
⋃
n∈N

⋃
p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~s0],...,[~sn]∈ ! T (N)

{
v[w1, . . . , wn] | v ∈ 〈p〉α[~s0], wi ∈ 〈qi〉α[~si]

}
(by inductive hypothesis)

=
⋃
n∈N

⋃
p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~u]∈ ! T (N)

∑
([~s0], . . . , [~sn])

w.c. of [~u]

(〈p〉α[~s0])[〈q1〉α[~s1], . . . , 〈qn〉α[~sn]]

=
⋃

p∈T (P )

⋃
[~q]∈ ! T (Q)

⋃
[~u]∈ ! T (N)

〈p[~q]〉α[~u] (by Figure 4.2)

=
⋃

t∈T (M)

⋃
~u∈ ! T (N)

〈t〉α[~u].

We prove that Assumption 3 holds.

Proposition 4.4.49. Assumption 3 holds in λµ-calculus. That is, if M →base N , then:

1. for all s ∈ T (M) there exist T ⊆ T (N) s.t. s�r T

2. for all s′ ∈ T (N) there is s ∈ T (M) s.t. s�r s
′ + T for some sum T ⊆ T (N).

Therefore, Proposition 4.3.5 lifts the statement to all →.

Proof. We have three subcases, corresponding to the three cases of the base-reduction.

Subcase M = (µα.β|P |)Q, N = µα.(β|P |)αQ.

(1). If s ∈ T ((µα.β|P |)Q) then s = (µα.β|p|)[~q] for p ∈ T (P ) and [~q] ∈ ! T (Q). So
s→r µα.〈β|p|〉α[~q] ⊆ T (µα.(β|P |)αQ) thanks to Lemma 4.4.48.

(2). If s′ ∈ T (µα.(β|P |)αQ) then thanks to Lemma 4.4.48, s′ ∈ µα.〈β|p|〉α[~q] for p ∈
T (P ) and [~q] ∈ ! T (Q). So T ((µα.β|P |)Q) 3 (µα.β|p|)[~q] →r µα.〈β|p|〉α[~q] 3 s′, and
µα.〈β|p|〉α[~q] ⊆ T (µα.(β|P |)αQ).

Subcase M = µγ.α|µβ.η|P ||, N = µγ.η|P |{α/β}. (1) and (2) are straightforward using
Lemma 4.4.48 as above.
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Subcase M = (λx.P )Q, N = P{Q/x}. (1) and (2) are straightforward using Lemma
4.4.48 as above.

Let us now prove Assumption 4.

We need the following:

Lemma 4.4.50. Let P,Q be λµ-terms, p, p′ ∈ T (P ) and [~d], [~d ′] ∈ ! T (Q). Then p = p′ and
[~d] = [~d ′] are entailed by any of the following three conditions:

1. if p〈[~d]/x〉 ∩ p′〈[~d ′]/x〉 6= ∅

2. if 〈p〉γ [~d] ∩ 〈p′〉γ [~d ′] 6= ∅

3. if 〈η|p|〉γ [~d] ∩ 〈η|p′|〉γ [~d ′] 6= ∅26.

Proof. 1. Induction on P , similar to as it is done in [ER08].

2. Induction on P . Let us see the case P = µα.β|M |, the other cases being similar. Then

p = µα.β|s| and p′ = µα.β|s′|, with s, s′ ∈ T (M). Let h ∈ 〈p〉γ [~d] ∩ 〈p′〉γ [~d ′]. By Remark
4.4.5 (chosing α 6= γ) we have two subcases.

Subcase β 6= γ: then h = µα.β|h0| with h0 ∈ 〈s〉γ [~d] ∩ 〈s′〉γ [~d ′]. We can easily conclude
by inductive hypothesis.

Subcase β = γ: then h = µα.γ |h0[~v]|, with h0 ∈ 〈s〉γ [~w] ∩ 〈s′〉γ [~w ′] and where ([~v], [~w])

and ([~v], [~w ′]) are w.c. respectively of [~d] and of [~d ′]. Thus by inductive hypothes we have
s = s′, i.e. p = p′, and also [~w] = [~w ′]. Finally, [~d] = [~w] ∗ [~v] = [~w ′] ∗ [~v] = [~d ′].

3. Let α 6= γ and fresh. Then 〈η|p|〉γ [~d]∩〈η|p′|〉γ [~d ′] 6= ∅ iff µα.〈η|p|〉γ [~d]∩µα.〈η|p′|〉γ [~d ′] 6= ∅.
Using Figure 4.2 the latter interparagraph is 〈µα.η|p|〉γ [~d] ∩ 〈µα.η|p′|〉γ [~d ′], so it is of the
shape considered by (2), and µα.η|p|, µα.η|p′| ∈ λµ. Therefore (2) gives µα.η|p| = µα.η|p′|,
i.e. p = p′, as well as [~d] = [~d ′].

The previous statement may seem strange at first sight, because one would expect (3) (which
is the item used in the proof of Theorem 4.4.51, together with (1)) to be an indutive step of
(2). However, (3) is not an inductive step of (2), simply because η|p| /∈ λµr. This is due to the
fact that we are in λµ-calculus and not in Saurin’s Λµ-calculus. One could be then tempted
to state it in Λµ-calculus, so only with item (2). In this case, since p would be in Λµ and not
just in λµ, (3) would in fact be an inductive step of (2), but still this is not what we need: in
fact when we use (3) in the present chapter, we want p to be in λµ, something which is not
guaranteed if we state Lemma 4.4.50 for Λµ.

Now we can prove Assumption 4.

Theorem 4.4.51 (Non-interference property for λµ-calculus). Assumption 4 holds for the λµ-
calculus. That is, for all t, s ∈ T (M) s.t. t 6= s, we have nfr(t) ∩ nfr(s) = ∅.

Proof. By induction on ms(t) we prove that for all s ∈ λµr, if t, s ∈ T (M) for some M ∈ λµ,
and if there is h ∈ nfr(t) ∩ nfr(s), then t = s.

Case ms(t) = (1, 0, 1). Then (Corollary 4.4.19) t is a variable, thus M is the same variable
and therefore s = t.

26Notice that, even if this set is not a set of λµ-terms, item (3) still makes perfect sense: it is just the intersection
of two sets, the sets of named terms built according to Figure 4.2.



4.4. THE RESOURCE λµ-CALCULUS 119

Case ms(t) > (1, 0, 1). By Lemma 4.4.2, M has shape:

M = λ~x1µα1.β1 |. . . λ~xkµαk.βk |RQ1 . . . Qn||

for R either a variable, or a λ-redex or a µ-redex. Since the series of λ and µ abstrac-
tions (with their respective namings) will play no role in the following, in this proof
we shorten λ~x1µα1.β1 |. . . λ~xkµαk.βk |. . .|| to just ~λµ|. . .|. So: t = ~λµ|t′[~u 1] . . . [~un]| and

s = ~λµ|s′[~v 1] . . . [~v n]| for t′, s′ ∈ T (R) and [~u i], [~v i] ∈ ! T (Qi).

We have now three subcases depending on the shape of R.

Subcase R variable, say R = x. Then t′ = s′ = x. Wlog n ≥ 1, otherwise it is trivial
that t = s. Now say [~u i] =: [u i1, . . . , u

i
mi ] and [~v i] =: [v i1 , . . . , v

i
m′i

] for i = 1, . . . , n. By

confluence we have h ∈ nfr( ~λµ|x nfr([~u
1]) . . . nfr([~u

n])|), so h ∈ nfr( ~λµ|x[~d 1] . . . [~dn]|) for
some d ij ∈ nfr(u

i
j ). Similarly, we get: h ∈ nfr( ~λµ|x[~d

′ 1] . . . [~d
′ n]|) for some d

′ i
j ∈ nfr(v

i
j ).

So it must be mi = m′i (i = 1, . . . , n) and:

h = ~λµ
′
|x[d1

1, . . . , d
1
m1

] · · · [dn1 , . . . , dnmn ]|

for some head ~λµ
′
, some dij ∈ nfr(u

i
j) ∩ nfr(v

i
σi(j)

) and permutations σi on mi elements.

But uij , v
i
j ∈ T (Qi) and ms(uij) < ms(t) since uij is a strict subterm of t. So we can apply

the inductive hypothesis to each uij and obtain uij = vij . Hence, t = s.

Subcase R = (λy.P )N . It is the same argument as the following subcase, so we skip it.

Subcase R = (µγ.η|P |)N . Then t′ = (µγ.η|p|)[~d] and s′ = (µγ.η|p′|)[~d ′] for p, p′ ∈ T (P )

and [~d], [~d ′] ∈ ! T (N). By confluence on λµr we have:

nfr(t) = nfr( ~λµ|(µγ.〈η|p|〉γ [~d])[~u 1] . . . [~un]|).

So there is h1 ∈ µγ.〈η|p|〉γ [~d] s.t. h ∈ nfr(h̃1) where: h̃1 := ~λµ|h1[~u 1] . . . [~un]|. Analogously

we find a h2 ∈ µγ.〈η|p′|〉γ [~d ′] s.t. h ∈ nfr(h̃2), where: h̃2 := ~λµ|h2[~v 1] . . . [~v n]|. By Lemma

4.4.48 we have h1, h2 ∈ T (µγ.(η|P |)γN) and so h̃1, h̃2 ∈ T ( ~λµ|(µγ.(η|P |)γN)Q1 · · ·Qn|).
This and the fact that h ∈ nfr(h̃1)∩ nfr(h̃2) mean that h̃1 satisfies both the hypotheses of
the inductive hypothesis. Moreover, since t′ →µr h1 + T for some sum T, then m(h1) <
m(t′). And since the number of µ’s is constant under µ-reduction, degµ(t′) = degµ(h1).
Therefore we can apply Lemma 4.4.18 and obtain:

m(h̃1) = m( ~λµ|h1[~u 1] . . . [~un]|) < m( ~λµ|t′ [~u 1] . . . [~un]|) = m(t).

So ms(h̃1) < ms(t) and we can safely apply the inductive hypothesis obtaining h̃1 = h̃2.
Looking at the definition of h̃1, h̃2, we get h1 = h2 as well as [~u i] = [~v i] (i = 1, . . . , n).
But now we have:

µγ.〈η|p|〉γ [~d] 3 h1 = h2 ∈ µγ.〈η|p|〉γ [~d ′]

so Lemma 4.4.50 gives p = p′ and [~d] = [~d ′], i.e. t′ = s′. If we now look at the shape
of t, s, this last information together with [~u 1] = [~v 1], . . . , [~un] = [~v n], precisely means
t = s.

The previous result was first proved by Ehrhard and Regnier in [ER08] for the λ-calculus. It
is known27 that it fails in MELL. A natural question is what is the threshold, between λ-calculus
and MELL, where this property starts failing? This is a non-trivial question to which one does
not have an answer yet, and it is important also because somehow linked to the possibility of
defining a coherence on resource terms for which Taylor expansion is a maximal clique. We will
mention this question in the conclusive Section 4.5.

27Private communication by Tortora de Falco, based on some work of Mazza, Pagani and Guerrieri.
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Proposition 4.4.52. Assumption 5 holds in λµ-calculus. That is, if T (M) 3 t →base T′ then
there is N ∈ λµ s.t. T′ ⊆ T (N) and M → N .

Proof. We have the three base-case reductions:
Case t = (µα.β|p|)[~q] and T′ = µα.〈β|p|〉α[~q]. So it must be M = (µα.β|P |)Q with p ∈ T (P )

and [~q] ∈ ! T (Q). Now thanks to Lemma 4.4.48 we can take N := µα.(β|P |)αQ.
Case t = (λx.p)[~q] and T′ = p〈[~q]/x〉, or case t = µγ.α|µβ.η|p|| and T′ = µγ.η|p|{α/β}.

Exactly as above, thanks to Lemma 4.4.48.

In particular thus, from Section 4.3 we have that:

Corollary 4.4.53. . The λµ-calculus satisfies Corollary 4.3.14.

We want to mention that it is possible to prove Corollary 4.4.53 also by adapting the big-step
reduction (Definition 3.3.22), following the way we did for λ-calculus.

Definition 4.4.54 (Big-step reduction). The big-step reduction ⇓ ⊆ λµ×λµ is the contextual
closure of the rules given in Figure 4.4.

The big-step reduction for λµ-calculus has the same rules
of Figure 3.2, with the following two modifications.

1- The rule for λ is replaced by the following rule:

t ⇓ t′ ~λµ|·| ⇓ ~λµ
′
|·|{∗}

~λµ|t| ⇓ ~λµ
′
|t′|{∗}

where by ~λµ|·| ⇓ ~λµ
′
|·|{∗} we mean that is ~λµ

′
obtained from ~λµ′ by reducing all the ρ-redexes

(since the ρ-reduction is confluent, there is only one such head ~λµ
′
.)

2- We add the following rule:

t ⇓ µα.β|t′| u1 ⇓ v1 · · · uk ⇓ vk w[~s 1] · · · [~sh] ⇓ t′′ w ∈ µα.〈β|t′|〉α[~v]

t [~u] [~s 1] · · · [~sh] ⇓ t′′

Figure 4.4: Base cases of the big-step reduction for λµ-calculus

One can straightforwardly reproduce the exact same proofs for the analogues of Lemma 3.3.24,
Lemma 3.3.25 and Corollary 3.3.26.

Thus, we get again Corollary 4.4.53 (it is the analogue of Corollary 3.3.26).
In those proofs, one needs to use ms(·) instead of sz(·).

4.4.2 The λµ-theory NFT

By Corollary 4.3.6 we know that the equivalence M =τ N defined by NFT (M) = NFT (N) is
a λµ-theory, and it is clearly non-trivial (I 6=τ ∅ =τ Ω).

In λ-calculus, =τ is the λ-theory equating Böhm trees. In particular, it is sensible (i.e. it
equates all unsolvables). We will see (Corollary 4.4.61) that in our case it is still sensible.
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Definition 4.4.55. A λµ-term M is a head normal form ( hnf for short) iff there are no ρ-
redexes in its head (remember Lemma 4.4.2) and it has a head variable. We define the exact
same notion for λµr.

Definition 4.4.56. The head reduction is the partial function H : λµ→ λµ obtained defining
H(M) via the following algorithm:

1. ρ-reduce the leftmost ρ-redex in the head of M , if there is one

2. otherwise, λµ-reduce the head redex of M , if there is one

3. otherwise, H(M) is not defined.

H(M) is not defined iff M is a hnf. We say that head reduction starting on M terminates
iff there is a (necessarily unique) n ≥ 0 s.t. Hn(M) is a hnf. Here we mean as usual that
H0(M) := M .

We extend these definitions to resource terms by setting H(t) := ∅ whenever t is a hnf.
Moreover, we set H0(t) := t ∈ 2〈Λr〉 and, for n ≥ 028:

Hn+1(t) :=
∑

t1∈H(t)

∑
t2∈H(t1)

· · ·
∑

tn+1∈H(tn)

tn+1 ∈ 2〈Λr〉.

It is clear that we have H1(t) = H(t), and that Hn+1(t) =
∑

t′∈H(t)

Hn(t′).

Remark 4.4.57. Observe that if t is a hnf (in particular, if it is normal), then t 6→r H(t),
because by definition H(t) = 0. On the contrary, if t is not a hnf, then by definition of H (it
reduces the leftmost redex), we have t→r H(t). In conclusion, we have: t is not hnf iff t→r H(t).
Observe that of course it is possible that t→r H(t) = 0, for instance take t = (λx.x[x])[y].

Lemma 4.4.58. If s only contains empty bags (if any) and s ∈ nfr(t), then s ∈ Hn(t) for
some n ≥ 0.

Proof. If t is a hnf, we can easily conclude: since any eventual bag of s is empty, and since
reductions cannot erase non-empty bags (because linear), the fact that s ∈ nfr(t) entails that
already t contains only empty bags. But in a hnf the reduction can only take place inside some
bag, so it actually must be s = t. Therefore, s ∈ s = t = H0(t) and we are done taking n := 0.

So we are left with the case in which t is not hnf. In this case we know that t →r H(t).
By confluence, H(t) �r nfr(t). But since s ∈ nfr(t), there is some t1 ∈ H(t) s.t. s ∈ nfr(t1).
Now we can reason as in the beginning, splitting in two cases: either t1 is a hnf, in which case
we reason exactly as in the first four lines of the proof: by linearity we get s = t1 ∈ H(t), and
we are done taking n := 1. Or t1 is not a hnf. In this case we can reason again as before,
obtaining a t1 →r H(t1), H(t1)�r nfr(t1) and a t2 ∈ H(t1) s.t. s ∈ nfr(t2). The reader can look
at Figure 4.5. We can keep going with the same splits: if t2 is hnf, we are done taking n := 2;
if t2 is not hnf, we obtain a new t3 as before. Now, the generation of such a new ti+1 from
the previously generated ti cannot continue forever: we claim that there must be some m ∈ N
for which tm is hnf. If this is the case, the proof is concluded because we can take n := m as
already mentioned. To see that such an m does exist, one simply remarks that at each time
we have ti →r H(ti) and ti+1 ∈ H(ti). But the well-founded measure m(·) is strictly decreasing
along reductions, which precisely means that we obtain the strictly decreasing sequence:

m(t) > m(t1) > m(t2) > · · ·

Therefore, it must terminate (because the order is well-founded) on some m(tm), for some m ∈ N
(in Figure 4.5 we have the case m = 3), and we are done as already explained.
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t

nfr(t) 3 s

H(t) 3 t1

nfr(t1) 3 s

H(t1) 3 t2

nfr(t2) 3 s

H(t2) 3 t3

nfr(t3) 3 s

Figure 4.5: Schema of the proof of Lemma 4.4.58

Set H(T (M)) :=
⋃

t∈T (M)

H(t) ⊆ λµr. The following lemma states that there is a commutation

between the Taylor expansion and the head reduction.

Lemma 4.4.59 (Commutation between Taylor expasion and Head-reduction). If M ∈ λµ with
H(M) defined, we have:

T (H(M)) = H(T (M)).

Proof. We have to show that T (H(M)) =
⋃

t∈T (M)

H(t). By Lemma 4.4.2 we know that:

M = λ ~x1.µα1.β1 |. . . λ ~xk.µαk.βk |RQ1 . . . Qn||

with the condition that either there is a ρ-redex in the head of M , or there is no such ρ-redex
and R is not a variable (thus R is either a λ-redex or a µ-redex). We have just said in a different
fashion that M is not a hnf. Now let us show the two inclusions.

(⊆). Take s ∈ T (H(M)). We have three cases:

Case in which there is a ρ-redex in the head of M . Therefore there is also a leftmost
ρ-redex . . . βi |µαi+1. . . .| in the head of M . Then:

H(M) = λ ~x1.µα1.β1 |. . . λ~xi.µαi.βi+1
|. . . λ~xkµαk.βk |R~Q||{βi/αi+1}|.

So s = λ ~x1.µα1.β1 |. . . λ~xi.µαi.βi+1
|. . . λ~xkµαk.βk |r[~q1] . . . [~qn]||{βi/αi+1}| for r ∈ T (R) and

[~q i] ∈ ! T (Qi). But T (M) 3 λ ~x1.µα1.β1 |. . . λ ~xk.µαk.βk |r[~q1] . . . [~qn]|| =: t, and thus s =
H(t), i.e. s ∈

⋃
t∈T (M)

H(t).

Case there are no ρ-redexes and R = (µγ.η|P |)D. Then H(M) = ~λµ. | (µγ.(η|P |)γD) ~Q |.
So by Lemma 4.4.48 s ∈ ~λµ. | (µγ.〈η|p|〉γ [~d])[~q1] . . . [~qn] | for a p ∈ T (P ), [~d] ∈ ! T (D) and

[~q i] ∈ ! T (Qi). So s ∈ H(t), with t := λ ~x1.µα1.β1 |. . . λ ~xk.µαk.βk |(µγ.η|p|)[~d][~q1] . . . [~qn]|| ∈
T (M), i.e. s ∈

⋃
t∈T (M)

H(t).

Case there are no ρ-redexes and R = (λx.P )D. Exactly as above using Lemma 4.4.48.

(⊇). One can follow the exact same kind of argument as before: the fact that Taylor expansion
preserves the structure of the term, plus Lemma 4.4.48, is what makes us able to transport
one step of the head reduction from terms to resource terms.

28Here we write the sum symbol just to stress the fact that those are finite sums, but remember that they are
just sets (so the sum is the union).
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The following proposition shows that in λµ-calculus one can define a notion of solvability
which is analogous to the one in λ-calculus.

Proposition 4.4.60. For M ∈ λµ, the following are equivalent:

1. M =λµρ H with H hnf

2. Head reduction starting on M terminates

3. NFT (M) 6= ∅.

Proof. (1⇒2). By confluence M and H have a common λµρ-redex M0. Since H is a
hnf, M0 is too. Let s0 be the unique resource λµ-term in T (M0) s.t. all its bags (if any)
are empty. This term clearly exists. Note that, by construction, s0 is λµρ-normal. By
repeatedly applying Proposition 4.4.49 one can check that we obtain an s ∈ T (M) s.t.
s0 ∈ nfr(s). Now, by Lemma 4.4.58, s0 ∈ Hn(s) for some n ≥ 0. By repeatedly applying
Lemma 4.4.59, we find that s0 ∈ Hn(T (M)) = T (Hn(M)). And being s0 a hnf, so it must
be Hn(M).

(2⇒3). We know that =τ is a λµ-theory, so if M � H with H hnf (this is the hypothesis
that head-reduction starting from M terminates), we have M =τ H, and it is immediate
that NFT (H) 6= 0 because H is hnf.

(3⇒1). If NFT (M) 6= 0 there is t ∈ T (M) s.t. nfr(t) 6= 0. By Corollary 4.4.53, M � N
for some N ∈ λµ s.t. nfr(t) ⊆ T (N). So T (N) contains at least a hnf, and thus N must
be a hnf too.

We callM ∈ λµ solvable iff it satisfies any of the previous equivalent conditions of Lemma 4.4.60.
Otherwise, M is called unsolvable.

Corollary 4.4.61. The λµ-theory =τ is sensible (that is, it equates all unsolvable terms).

Proof. Immediate by Lemma 4.4.60.

4.4.3 Stability and Perpendicular Lines Property

Stability We have all the necessary assumptions in order to immediately have that the Sta-
bility property holds in λµ-calculus.

Remembering the notation of Definition 4.3.15, Theorem 4.3.16 takes the form:

Theorem 4.4.62 (Stability). Let C be an n-ary λµ-context and fix non-empty bounded X1, . . . ,Xn
⊆ λµr. For all M1, . . . ,Mn ∈ λµ s.t. Mi =τ

⋂
N∈Xi N (for i = 1, . . . , n) we have:

CLM1, . . . ,Mn M =τ

⋂
N1∈X1

· · ·
⋂

Nn∈Xn

CLN1, . . . , Nn M.

We immediately obtain the non implementability of the following parallel-or, for which we
use the usual encoding of couples as (M,N) := λz.zMN .

Corollary 4.4.63 (No parallel-or in λµ-calculus). There is no Por ∈ λµ s.t. for all M,N ∈ λµ,{
Por (M,N) =τ True if M 6=τ Ω or N 6=τ Ω
Por (M,N) =τ Ω if M =τ N =τ Ω.

Proof. Exactly the same already shown for λ-calculus.
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The perpendicular Lines Property We already discussed the PLP in the setting of λ-
calculus. We are going to prove that the exact same statement holds in λµ-calculus, that is, if
a term λz1 . . . zn.F ∈ λµ, seen as the function ~M ∈ λµn/=τ −→ (λ~z.F ) ~M ∈ λµ/=τ , is constant
on n “perpendicular lines”, then it is constant everywhere. Another way to see it is as a weak
form of sequentiality. The proof is a simple readaptation of the one already given for λ-calculus.

The following lemma (and its proof) is the analogue of Lemma 3.3.12.

Lemma 4.4.64. If ~λµ|.xM1 · · ·Mk| =τ
~λµ|.yN1 · · ·Nk′ | then n = n′, k = k′, x = y and

Mi =τ Ni for all i = 1, . . . , k.

The following is the version of Lemma 3.3.12 for the current framework, whose proof follows
the same lines.

Lemma 4.4.65. Fix ~z := z1, . . . zn distinct variables and let t ∈ λµr. Suppose that:

i. nfr(t) 6= 0

ii. there is F ∈ λµ s.t. t ∈ T (F )

iii. there are {Mij}1≤i 6=j≤n ⊆ λµ s.t. the function mapping ~M ∈ λµn/=τ to (λ~z.F ) ~M ∈ λµ/=τ

is constant on the following “perpendicular lines” of λµn/=τ :

l1 = {(Z, M12, . . . . . . , M1n) | Z ∈ λµ}
l2 = {(M21, Z, . . . . . . , M2n) | Z ∈ λµ}

. . .

ln = {(Mn1, . . . , Mn(n−1), Z) | Z ∈ λµ}.

(4.1)

Then degz1(t) = · · · = degzn(t) = 0.

Proof. Induction on the size ms(t) of t ∈ λµr.

Case ms(t) = (1, 0, 1). Then t is a variable (Corollary 4.4.19). If t = zi for some i then
the i-th line of (4.1) gives the contradiction:

Ni =τ (λ~z.zi)Mi1 · · ·Mi(i−1)ZMi(i+1) · · ·Min =τ Z

for all Z ∈ λµ. Hence, it must be degz1(t) = · · · = degzn(t) = 0.

Case ms(t) > (1, 0, 1). By (i) there is u ∈ nfr(t). Being u normal, it has shape: u =
~λµ|y[~u 1] . . . [~um]| for some m ≥ 0, some variable y, some normal bags [~u j ], and where we
have shorten, as before, a series λ~x1µα1.β1 |. . . λ~xkµαk.βk |. . .|| of λ and µ abstraction by

just ~λµ|. . .|. By (ii) t ∈ T (F ), so that by Theorem 4.3.14 there is Q ∈ λµ s.t. F �λµρ Q

and u ∈ T (Q). So Q must have shape: Q = ~λµ|yQ1 · · ·Qm| for some Qj ’s in λµ s.t.
[~uj ] ∈ ! T (Qj) for all j = 1, . . . ,m. Now there are two possibilities: either y = zi for some
i = 1, . . . , n, either y 6= zi for all i.

Suppose y = zi. Then, for ~q := q1, . . . , qm fresh variables, we can chose Z := λ~q.True ∈ λµ
(or Z := True if m = 0) in the i-th line li of (4.1), and since by (iii) λ~z.F is constant
(mod =τ ) on li, we can compute its value as:

(λ~z.F )Mi1 · · ·Mi(i−1) (λ~q.True)Mi(i+1) · · ·Min =τ Q{Mi1/z1, . . . , (λ~q.True)/zi, . . . ,Min/zn}
=τ

~λµ|(λ~q.True)Q̃i1 · · · Q̃im|
=τ

~λµ|True|

where we set Q̃ij := Qj{Mi1/z1, . . . , (λ~q.True)/zi, . . . ,Min/zn}. The first equality holds
because F �λµρ Q and =τ is finer than =λµρ (Corollary 4.3.6), and the second equality
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holds because y = zi. In the same way, choosing Z := λ~q.False ∈ λµ in li we find that the
value (mod =τ ) of λ~z.F on li is ~λµ|False|. But this is impossible because True 6=τ False.

Therefore, it must be y 6= zi for all i. Note that wlog m ≥ 1 (indeed if m = 0, from
the fact that y 6= zi for all i we already get degzi(u) = 0 and, as u ∈ nfr(t) and in λµr

one cannot erase non-empty bags, we are done). Now fix i ∈ {1, . . . , n} and Z ′, Z ′′ ∈ λµ.
Similarly as before, choosing Z := Z ′ in li and using what we found so far, putting
Q′ij := Qj{Mi1/z1, . . . , Z

′/zi, . . . ,Min/zn}, since λ~z.F is constant (mod =τ ) on li, we can
compute its value as:

(λ~z.F )Mi1 . . .Mi(i−1)Z
′Mi(i+1) . . .Min =τ Q{Mi1/z1, . . . , Z

′/zi, . . . ,Min/zn}
=τ

~λµ|yQ′i1 . . . Q′im|

where the last equality holds since y is not one of the zi’s. Choosing Z ′′ instead of Z ′

and putting Q′′ij the same as Q′ij but with Z ′′ instead of Z ′, one has that the value (mod

=τ ) of λ~z.F on li is ~λµ|yQ′′i1 . . . Q′′im|. So we have ~λµ|yQ′i1 . . . Q′im| = ~λµ|yQ′′i1 . . . Q′′im|,
and Lemma 4.4.64 entails that:

Q′i1 =τ Q
′′
i1

...
Q′im =τ Q

′′
im.

But by construction it is:

Q′ij =τ (λ~z.Qj)Mi1 . . .Mi(i−1)Z
′Mi(i+1) . . .Min

Q′′ij =τ (λ~z.Qj)Mi1 . . .Mi(i−1)Z
′′Mi(i+1) . . .Min.

So if we remember that Z ′, Z ′′ were generic in λµ, the previous equalities Q′ij = Q′′ij
precisely say that λ~z.Qj is constant on the line li. And since this holds for all i = 1, . . . , n,
we have just found that λ~z.Qj satisfies (iii). And since we have equalities Q′ij = Q′′ij for all
j = 1, . . . ,m, we have that each λ~z.Q1, . . . , λ~z.Qk satisfies (iii). We can now comfortably
apply the induction hypothesis on any s ∈ [~u j ]. In fact, as [~u j ] is normal, nfr(s) 6= 0, i.e.
(i); as [~u j ] ∈ ! T (Qj), we have s ∈ T (Qj), i.e. (ii); and we just found that λ~z.Qj satisfies
(iii); finally, s is a strict subterm of u ∈ nfr(t), thus (Corollary 4.4.19) ms(s) < ms(u) ≤
ms(t). Therefore, the inductive hypothesis gives degz1(s) = · · · = degzn(s) = 0. Since
this is true for all s in all [~u j ], j = 1, . . . ,m, we get degz1(u) = · · · = degzn(u) = 0. And
now u ∈ nfr(t) entails degz1(t) = · · · = degzn(t) = 0.

Theorem 4.4.66 (Perpendicular Lines Property). Suppose that for some fixed {Mij}1≤i 6=j≤n,
{Ni}1≤i≤n ⊆ λµ, the system of equations:

(λz1 . . . zn.F ) Z M12 . . . . . . M1n =τ N1

(λz1 . . . zn.F ) M21 Z . . . . . . M2n =τ N2

. . .
...

(λz1 . . . zn.F ) Mn1 . . . Mn(n−1) Z =τ Nn

holds for all Z ∈ λµ. Then:
(λz1 . . . zn.F )Z1 . . . Zn =τ N1

for all Z1, . . . , Zn ∈ λµ.

Proof. It follows from Lemma 4.4.65 as done in [BM20].

PLP immediately entails the non implementability of the following parallel-or, a result which
is known as folklore via arguments involving stable models: here we proved it solely via Taylor
expansion.
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Corollary 4.4.67 (No Parallel-or in λµ-calculus). There is no Por′ ∈ λµ s.t. for all Z ∈ λµ
one has: 

Por′ TrueZ =τ True

Por′ Z True =τ True

Por′ False False =τ False.

4.5 Conclusive comments

In [Lau04] Laurent studies the mathematics of (untyped) λµ-calculus via its denotational se-
mantics; in this chapter we did it by developing a theory of program approximation based on
Linear Logic resources. In particular, we proved that the approximation theory satisfies the
“non-interference property”, that it induces a sensible λµ-theory, and that it can be used as a
tool in order to obtain the Stability property, the Perpendicular lines property, and thus the
impossibility of parallel computations in the language. A first natural question immediately
arises:

1. Can Taylor expansion allow to find new interesting properties that are not satisfied by the
λ-calculus, but that are enjoyed by the λµ-calculus due to the presence of continuations
(such as callcc)? It is usually a difficult task to conjecture new properties (interesting
from a mathematical or programming point of view) of a language, and we do not have
an answer to such question.

For future investigations, we believe that it would be interesting to integrate this approach
with the differential extension of λµ-calculus defined in [Vau07b], in order to explore quantita-
tive properties as well.

The following two questions are maybe the most significant:

2. Does it makes sense to introduce Böhm trees for the λµ-calculus? For instance, for the call-
by-value λ-calculus, the Taylor expansion has provided in [KMP20] invaluable guidance
for finding a meaningful notion of trees satisfying Ehrhard and Regnier’s commutation
formula; the same methodology could maybe be applied here. However, in [DP01] it
is shown that λµ-calculus does not enjoy Böhm’s separation property. David and Py’s
counterexample could hence be an indication that, instead, Böhm trees are not a “good”
notion for λµ-calculus. The best way of proceeding would be, in that case, to consider
Saurin’s Λµ-calculus [Sau12] (see the end of Section 4.2). It was introduced precisely to
satisfy Böhm’s property and, as a matter of fact, in [Sau12] Saurin proposes a definition
of Böhm trees for his Λµ-calculus. This certainly constitutes an interesting starting point.

3. Does Λµ-calculus admit all the constructions of the present chapter? On one hand, many
constructions we did in this chapter seem possible also in Saurin’s calculus (for instance,
Definition 4.4.6, but remember also the discussion in the line just above that definition),
on the other hand we used the fact that the number of µ’s in a term is the same as
named subterms, for instance, in Remark 4.4.9. In general, one could wonder which
one, between λµ and Λµ, should be the “canonical lambda-mu-calculus”: from a proof-
theoretical perspective λµ-calculus precisely corresponds to Parigot’s CD-derivations, but
Λµ-calculus satisfies more wishful properties (Böhm separation). Moreover, in [Sau10],
Saurin adapts usual techniques of λ-calculus to Λµ-calculus: he studies the notion of
solvability, proves a standardization theorem and studies more in detail the notion of
Böhm trees. A very interesting future direction of research would be, hence, to develop
a theory of resource approximation for Saurin’s calculus, and study its relation with his
theory of “Böhm approximation”.
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In any case, we regard the fact that the Taylor expansion works so nicely in λµ-calculus – and
this regardless of a notion of Böhm trees – as a a posteriori confirmation of the high power of
this form of approximation.

There are at least two other interesting points in relation with strictly related areas:

4. In order to perform a deeper logical analysis, one should consider translations into Linear
Logic. It is known from [Lau03] that λµ-calculus translates into polarized proof nets.
Taylor expansion for proof-nets is possible, but the construction can be complex: in fact
one of the interests in directly defining a Taylor expansion for a certain “λ-calculus style”
programming language (as we did for λµ-calculus, and as one does for λ-calculus) is pre-
cisely to avoid that complexity. In our case we have just shown that, at the end of the day,
the theory of resource approximation for λµ-calculus can be developed with essentially the
same methodology as in λ-calculus. This leads to asking what makes a Taylor expansion
“easy”, and should be considered in relation to the already mentioned “non-interference
property” (Theorem 4.4.51) and the possibility of the existence of a coherence relation for
which T (M) is a clique. This motivates an investigation of the complexity of the definition
of a Taylor expansion of a programming language/proof system, which may be related to
the notion of connectedness of proof-nets, whose study starts in [GPdF16]. Such question
should be considered in relation with the so-called problem of the “inversion of Taylor
expansion” [GPdF19, GPdF20] and the problem of “injectivity” of denotational models
(in particular, the relational one) for Linear Logic.

5. As we have mentioned in Section 4.2, the λµ-calculus is not the only way of extending
the Curry-Howard correspondence to classical logic. Another notable one is the already
mentioned Krivine’s classical realizability, which is a “machine to extract computational
content from proofs + axioms” (for almost all mathematics, such as the one formaliz-
able in ZF+AC, see [Kri20]). There are translations between λµ-calculus and Krivine’s
calculus, and vice-versa, so developing differential tools on λµ-calculus might be related
to developing them in Krivine’s setting: can one move the resource approximation and
Taylor expansion from λµ-calculus to Krivine’s realizability? What do the mathematical
properties we found for λµ-calculus (such as Stability and PLP) say for Krivine’s realiz-
ability? The same questions hold for the other systems extending the correspondence to
classical logic. We believe that an investigation of those questions would be of a major
interest.
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Chapter 5

A miscellany of meditations

5.1 Plan of the Chapter

This final chapter is more peculiar than the rest of the manuscript and presents some reflections
more than some results. It is organized in two geometrical “meditations” and one philosophical
one, for a total of three sections:

1. Section 5.2.1 is a brief methodological discussion on the nature of the mathematics of
λ-calculus, in particular with respect to the Scott topology.

2. Section 5.2.2 contains the presentation of a possible direction of future research, which
is still incomplete and we only started to explore. The main observation is that the
exact same notion of coherent space, very well known in linear logic, exists also in com-
binatorics/geometry under a different name. In particular, topologists study this kind of
structures (the abstract simplicial complexes, in general) by means of (simplicial) homol-
ogy: whence the idea of doing the same, but from a logically oriented perspective. As we
will explain, this raises one main non-trivial question, which we tried (but did not clearly
succeed) to resolve.

3. Section 5.3 is not of a mathematical content but of a philosophical one. We will present
our viewpoint on the question of the “foundations of mathematics” – the question that in
some sense gave birth to mathematical logic. Our reflection is mainly influenced by the
crucial insights that computer science has made possible, and by the vision of Girard on
logic.

5.2 Geometrical meditations

5.2.1 What about topology for λ-calculus ?

We want to discuss, in this section, the particular status of λ-calculus as a mathematical ob-
ject. Indeed, the kind of mathematics one develops in this discipline is very different from
the “standard” one1. Thus, it is sometimes a misconception that λ-calculus does not enjoy a
rich mathematical theory. This manuscript itself, which only considers a very small piece of
the great number of works in λ-calculus, together with areas such as combinatorial algebras,
λ-theories, denotational models etc, show that this misconception is false.

Before further doing, let us give in the following pages some examples showing in which
sense the mathematics related to it is particular.

1A situation somehow annoying, for the “working λ-calculist” as well as for the popularization of the discipline.
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A first example is what Barendregt in [Bar84] calls a “pathological algebraic structure”. He
refers to the fact that term-algebras of λ-theories never enjoy some natural properties “standard”
algebraic object usually satisfy; namely, associativity of the product, and recursivity.

To that, we would add also another kind of “pathological” situation: one can associate each
λ-theory with a group, called its Church group, and always in [Bar84, Chapter 21] it is proved
that, for the more standard λ-theories2 these groups all trivialize, and for the more complex
λ-theories3 these groups all come from some difficult constructions, which makes it not clear
what one could use them for4. So λ-calculus presents the unusual situation of an object which
one is not able to study with the usual techniques (it is not associative nor recursive) and with
which one is not even able to associate an interesting algebraic object (usually, a group).

There is another situation in which one is very tempted to consider some groups associated
with an object, and this is when one has a topological space (the groups being the homotopy
groups). Now, it is well known (see for instance [Bar84]) that Λ can be endowed with a non-
trivial topology, called the Scott topology5. This is possible since the set B of Böhm-like-trees
is a “coherent algebraic cpo” (see [AC98] for these known notions), and thus comes with its
Scott topology of cpo’s. One can immediately transfer it to Λ: the Scott topology on Λ is the
smallest one that makes the map:

BT : M ∈ Λ→ BT(M) ∈ B

continuous (where the cpo6 B is endowed with its Scott topology).

The opens of the topology are thus the sets of shape:

BT−1(O ∩BΛ)

for O open in B. For instance, the set SOL ⊆ Λ of the solvables is open, since SOL = BT−1{A ∈
BΛ | A 6= ⊥} and {A ∈ B | A 6= ⊥} is open in B.

It is known that Scott-topology on Λ is not T0. This is simply because any two terms
M 6= N s.t. BT(M) = BT(N) cannot be separated by an open. When one has a non-T0 space
X, one usually wants to consider a T0 space which is ”essentially” the same as X. This is
always possible by performing the simple Kolmogorov quotient KQ(X) of X, which is defined as
the quotient space of X under the identification of all the points which have exactly the same
open neighbours7. In the Scott-topology on Λ, indistinguishable terms are exactly those who
have the same Böhm trees, so KQ(Λ) = Λ/=B . It is worth adding here that not only Λ/=B is in
bijection with BΛ – the latter has to be seen as the set of the canonical representatives of the
equivalence classes of the former – but one can actually see by a simple computation that they
are homeomorphic. In particular, thus, BΛ is T0 and Λ is not homeomorphic to BΛ.

However, the obtained space still fails to be, e.g. Hausdorff. This is another kind of patho-
logical situation, intended as being far from the usual spaces one is used to.

Remark 5.2.1. As a side remark, notice that using the Continuity theorem 3.5.34, together
with the two following general properties of Kolmogorov quotients:

2Namely, for =λ,H and =B.
3Namely, the Hilbert-Post completion H∗ of H, or the ones obtained from =λ and H by considering the η or

ω-rules.
4To the best of our knowledge, these groups do not constitute nowadays an active topic of research.
5Actually, at least two: the Visser topology, and the Scott topology – which Barendregt calls the “tree

topology”,but we will lighten terminologies and call it “Scott”. Here we only consider the Scott one, because it
is the most useful one.

6Equivalently, one can substitute B with BΛ (equipped with the subspace topology) in the definition.
7Obviously KQ(X) is T0 by construction. There is also a bijection between the topology on KQ(X) and that

on X, so that the spaces are really “essentially the same”.



5.2. GEOMETRICAL MEDITATIONS 131

1. for topological spaces X,Y and continuous f : X → Y , if x ∈ X and y ∈ X are identified
in KQ(X) then also f(x) and f(y) are identified in KQ(Y ).

2. KQ(X1 × · · · ×Xk) = KQ(X1)× · · · ×KQ(Xk).

one finds again the Monotonicity of Böhm trees on multi-hole contexts8. In fact by Continuity
of contexts, one can apply (1) to C : Λ×· · ·×Λ→ Λ and obtain that if (M1, . . . ,Mk) is identified
to (N1, . . . , Nn) in KQ(Λ× · · · ×Λ) = Λ/=B × · · · ×Λ/=B , then CLM1, . . . ,Mn M is identified to
CLN1, . . . , Nn M in Λ/=B .

One can give the following notion.

Definition 5.2.2. A point x in a topological space X is a compactification point iff x admits
exactly one open neighbourhood in X (which, thus, must be all X).

The following are the typical topological features of Λ.

Proposition 5.2.3. 1. The sets OM,k := {N ∈ Λ s.t. N ≥ M (k)} for M ∈ Λ and k ∈ N,
form a basis for the Scott topology. Therefore, Λ is second countable.

2. The set NF ⊆ Λ of all the λ-nf is dense in Λ.

3. M is λ-normalizable iff M is isolated.

4. M is unsolvable iff M is a compactification point.

5. Any term algebra Λ/T of a λ-theory T (and in general any quotient of Λ) contains a
compactification point (with the quotient topology).

Points 1-4 are well known and already appear in [Bar84]. Point 5 is not written there, but
it is trivial from point 4 since containing a compactification point is preserved by quotients.
Indeed, let Ω be a compactification point of a space X, and let ∼ be an equivalence on X.
Let q : x ∈ X → [x] ∈ X/∼ be the quotient map, which is surjective and continuous. Now if
O 3 [Ω] is open in X/∼, then q−1O 3 Ω and it is open in X. Being Ω a compactification point,
q−1O = X, and thus O ⊇ qX = X/∼. So [Ω] is a compactification point of ∈ X/∼.

As already mentioned, now that we have a topology on Λ, a typical question would be:
“what is its fundamental group π1(Λ,M0)?” As far as we know, this question does not appear
in the literature. It may be because the answer is immediate: in fact, consider the following
undergraduate exercise.

Proposition 5.2.4. If a space X contains a compactification point then X is contractible.

Proof. Let Ω be a compactification point of X and take the constantly equal to Ω map from X
to itself. An homotopy between it and idX is by definition a continuous map F : X× [0, 1]→ X
(w.r.t. product topology) s.t. F (x, 0) = x and F (x, 1) = Ω for all x ∈ X. The following F does
the work:

F (x, t) :=

{
x if t ∈ [0, 1

2)

Ω if t ∈ [1
2 , 1].

In fact, we only have to show that it is continuous: let O 6= X be open in X, and let us show
that F−1O = O × [0, 1

2). Being the latter an open in X × [0, 1], this will conclude the proof.
The inclusion (⊇) is trivial by definition of F . For (⊆), take (x, t) ∈ F−1O. If t ∈ [1

2 , 1] then
O 3 F (x, t) = Ω and, since Ω is a compactification point, O = X, which is not possible. So it
must be t ∈ [0, 1

2), and this entails (x, t) = (F (x, t), t) ∈ O × [0, 1
2).

8However, in order to prove the Continuity theorem one needs, in the lemmas that one uses, the Monotonicity
for 1-hole contexts. Since we already saw that this easily implies the Monotonicity for multi-hole contexts, this
remark does not give an alternative proof of the Monotonicity.
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Therefore, the properties of contractible spaces immediately answer to our question:

Corollary 5.2.5 (Fundamental group of λ-calculus). Λ, as well as any of its quotients, is
contractible to a point. Hence, Λ, as well as any of its quotients (in particular any term algebra
Λ/T of a λ-theory T ) is simply connected, i.e. it is path-connected and have trivial fundamental
group π1(Λ) = π1(Λ/T ) = {∗}. More generally, it is n-connected for all n ∈ N, so all its
homotopy groups are trivial (and the same for the quotients).

Despite the striking banality, we find that Corollary 5.2.5 deserves to be written somewhere,
because when having a topological space it is always good manner to know what its fundamental
group is.

We see here another manifestation of the fact that (Scott)-topology on λ-calculus is “badly
behaved”, at least if one considers it from a geometrical perspective. In fact, the Scott-topology
should be better understood from the perspective of order theory. However, the “pathology”
of the geometry seems to be caused by the presence of compactification points, which are
exactly the unsolvables, so one could ask: is the geometry of the space of solvables still triv-
ial/pathological? Does, in general, Λ contain “interesting” subspaces? Even if our guess, and
maybe the one of the most of the researchers, is that one cannot find any interesting “standard”
geometry in Λ, this should still be supported by concrete results – of which our Corollary 5.2.5
is an example.

To the list of “pathological” properties of λ-calculus, we can also add the fact that continuity
of the contexts functions is componentwise, and that any denotational model must embed the
function space into the object space9. Longo imputes these last “pathologies” to the lack of
attention to the notion of space:

The componentwise analysis of continuity, as Cartesian Closure of the intended
categories, the weakness of the topology (T0 separation) ... are all symptoms of this
“lack of attention” to physical space (and its cartesian dimension) which is typical
of this theory. The sequentiality of (classical and intuitionistic) logical deduction is
at the core of it. [...] Observe then that all its models force the strong isomorphic
embedding that we considered as a paradigm of “being unrelated to physical space” (as
dimension is a topological invariant): in any Cartesian Closed Category, a solution
D of the equation X = X → X is such that D ×D can be isomorphically embedded
into D.
Giuseppe Longo – [Lon03]

Who says “space” says “geometry”, and Longo observes that, indeed, while at the beginning
of the XXth century physics became “geometrical”, mathematical logic – and thus (theoretical)
computer science – became instead “arithmetical”.

In conclusion, we think that λ-calculus (and its term-algebras, λ-theories, Church groups
etc) only reflects the mathematical properties that the notion of computation shows up, when
modelled as such a functional programming language. We suggest that one should, instead,
approach the peculiarity of λ-calculus10 as a point of interest: its real mathematical content
has to be find somewhere else than, say, usual geometry; the fact that the computation, when
expressed in this fundamental formalism, organizes in a certain kind of mathematics, different
and less known than standard one, is interesting and actually gives motivation to investigate
it.

9Of course this is, in some sense, the “essence” itself of λ-calculus, and comes from the fact that it is a high
order programming language.

10And here we could really talk about all the discipline known as “computer science logic”.
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5.2.2 What about the homology of the space of proofs?

This section begins with the observation that a coherent space is a particular case of the well
known geometrical notion of abstract simplicial complex (Remark 5.2.13). It contains some
incomplete observations and ideas which we had the occasion to quickly discuss together with
Ehrhard, Manzonetto and Tortora de Falco.

We start by recalling the notions of abstract simplicial complex and the simplicial homology
(a standard reference being [Hat02]). Then, we explain in which sense we would like to bring
this kind of techniques into the study of proofs in relation to denotational semantic; we will
show how this raises the non-trivial question of choosing a right notion of morphisms in order to
make the homology modules functorial; finally, we give some naive notions of such morphisms,
which however fail, and we sketch a possible solution.

Interlude: abstract simplicial complexes and simplicial homology

Definition 5.2.6. An abstract simplicial complex (“asc”, for short) X is the data of a set |X|
and a collection SX of finite non-empty subsets of |X|, such that:

1. {a} ∈ X for all a ∈ |X|

2. X is an initial segment of P∗
fin(|X|) w.r.t. inclusion.

Of course tha important point in the previous definition is 2), as an asc on a given web can
be given either by declaring all its elements, or by declaring only its non-singleton elements.

We will always assume |X| to be at most countable.

Terminology 5.2.7. The set |X| is called the web of X and its elements are the vertices of X.
The elements of SX are the simplices of X. The dimension dimx of a simplex x = {a0, . . . , ak}
of X is k, and a k-dimensional simplex is called a k-simplex for short. The dimension dimX
of X is sup

x∈SX
{dimx} ∈ N∪{∞}. The subsets y of a simplex x of X are the faces of x. Vertices

can be identifies with 0-simplices. 1-simplices are called the edges of X. 2-simplices are called
the triangles of X. 3-simplices are called the thetraedras of X. The elements of P∗

fin(|X|)−SX
are called the non-simplices of X. We will use the usual notions of standard n-simplex ∆n,
and of Sn.

Definition 5.2.8. A sub-asc of an asc X is an asc X ′ with web |X| s.t. SX ′ ⊆ SX.
The k-skeleton Skk(X) of an asc X is the sub-asc of X whose simplices are the h-simplices of
X with h ≤ k. The 1-skeleton of X can be seen as a graph and it is called the underlying graph
of X.

Remark 5.2.9. Any asc X can be “geometrically realized” as a topological space11 Geo(X) in-
side RCard(|X|). It is a standard and well known construction, which justifies Terminology 5.2.7.
For example, ∆2 becomes the filled triangle on the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) in R3,
S1 becomes its “border” and so on. Remark that this geometric realization “abuses of space”,
in the sense that, for instance, Geo(∆2) is a surface and so it can be already embedded in R2.
Furthermore, the construction depends on an arbitrary enumeration of the vertices and on an
arbitrary choice of the embedding in Rn, so it is not canonical 12. But we will not worry about

11Usually the geometrical realization is denoted with |X|. Here we used this notation for something completely
different: the set of vertices, which we call the “web”. We did so in order to stay within the tradition of the
notations and terminologies used in the discipline of logic of programs.

12In fact, there is a standard modified version of the geometric realization, usually called “topological realiza-
tion”, which is canonical and realizes an asc X inside the free R-vector space over |X|, endowed with a canonical
topology (but it still “abuses of dimensions”). Of course this two realizations are homeomorphic.
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these facts since we will only sporadically refer to it, and for the same reason we will not detail
it.

The following is a standard construction.

Definition 5.2.10. The barycentric subdivision bs(X) of an asc X is the asc with web |bs(X)|:=
SX and whose k-simplices are the ⊆-totally-ordered {u0, . . . , uk} ⊆ SX.

One proves that Geo(bs(X)) ≈ Geo(X) (we mean homeomorphic).

Definition 5.2.11. A map f : |X|→ |Y | is said to be simplicial iff it sends simplices of X to
simplices of Y . Asc and simplicial maps form a category, denoted ASC.
Remark that if f is simplicial, then dim (fx) ≤ dimx for all simplex x of X. If the equality
holds for all simplex x of X, then f is said to be rigid.

Definition 5.2.12. 1. A qualitative domain (qd for short) is a asc X s.t. for all D ⊆ SX
directed13 w.r.t. inclusion, we have

⋃
d∈D

d ∈ SX.

2. A asc X is said to be flag iff any minimal (w.r.t. inclusion) non-simplex has cardinality
2 (we say that it is a “missing edge”).

Theoretical computer scientists and logicians know very well the notion of flag complexes,
as the following remark explains:

Remark 5.2.13 (Coherent spaces). 1. Flag complexes can be equivalently defined by requir-
ing Cl(Sk1(X)) ⊆ SX. Note that this means SX = Cl(Sk1(X)), since Cl(Sk1(X)) ⊇ SX
holds for any asc.
Equivalently, a flag complex can be defined by requiring that for all family {xi}i of sim-
plices, if xi ∪ xj is a simplex for all i, j, then

⋃
i xi is a simplex.

Flag complexes are known in the realm of logic of programs as coherent spaces (cs for
short), and this is the terminology we will employ from now on.

2. It is easily seen that a cs is a qd, but the converse is in general false.

3. If G is a graph14 with vertices W , then Cl(G) forms a cs (still denoted by Cl(G)) with
web W . Thus, G = Sk1(Cl(G)) (since they are graphs with the exact same cliques).
Remembering the definition of cs’s, graphs and cs’s are hence identified via the inverse
bijections Cl(·) and Sk1(·).

Let us now recall the the notion of (simplicial) homology. It is a a powerful tool to study
the geometry of asc’s by looking at their “n-dimensional holes” via the means of a chain of
modules. Its construction goes as follows.

Definition 5.2.14 (Oriented simplices). Let X be a asc. Let C̃kX be the free Z-module generated
by the set of the (a0, . . . , ak) ∈ |X|k+1 such that {a0, . . . , ak} ∈ SX.
Define the set CkX of the k-chains of X as the set C̃kX quotiented under the identifications

(a0, . . . , ak) = ε(σ)(aσ(0), . . . , aσ(k))

(a0, . . . , ak) = 0 if ai = aj for some i 6= j

where 0 is the empty sum and σ ∈ Sk+1 and ε(σ) = ±1 is the parity of σ. CkX hereditates a Z-
module structure from C̃kX. We still denote with (a0, . . . , ak) ∈ CkX the image of (a0, . . . , ak) ∈
C̃kX under the quotient map. We denote with

−→
SkX the set of the k-chains of X with exactly one

summand, that is, the elements of CkX with shape (a0, . . . , ak). They are called the oriented
k-simplices of X.

13A poset D is said to be directed iff for all x, y ∈ D there is z ∈ D s.t. x ≤ z ≥ y.
14To be pendantic, here we identify a graph with its reflexive graph.
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Each k-simplex x of X induces exactly two oriented k-simplices (except for k = 0, where
it induces only one), and the choice of one of them intuitively corresponds to the choice of an
orientation for x. So, concretely, a k-chain of X is a finite linear combination with coefficients
in Z of k-simplices of X with a chosen orientation for each of them. That is, CkX is free with

basis the set
−→
SkX of the oriented k-simplices of X.

Proposition 5.2.15 (Boundary operator). Let X be an asc. There is15 a unique linear map

∂k : CkX → Ck−1X

called the k-boundary operator, such that for all oriented k-simplex (a0, . . . , ak) ∈
−→
SkX one has

∂k(a0, . . . , ak) =
k∑
i=0

(−1)i(a0, . . . , ai−1, ai+1, . . . , ak).

Proposition 5.2.16. We have
∂k ◦ ∂k+1 = 0.

Definition 5.2.17 (Chain complexes). A chain complex on Z is the data of a sequence of
Z-modules Mk together with linear maps

· · ·
∂k+2−−−→Mk+1

∂k+1−−−→Mk
∂k−→Mk−1

∂k−1−−−→ . . .

such that16

∂2 = 0.

We just saw that chain-modules CkX and boundary operators ∂k on an asc form a chain-
complex17 on Z.

The following constructions are the starting point of homological algebra.

Definition 5.2.18 (Simplicial homology modules). Let (Mk, ∂k)k∈N be a chain complex. Ele-
ments of Im(∂k+1) are called k-boundaries and elements of Ker(∂k) are called k-cycles. Both
are sub-Z-modules of Mk. By definition of chain complex, a k-boundary is a k-cycle, so the
(abelian) group structure of Im(∂k+1) forms a subgroup (thus, normal) of Ker(∂k), and so we
can take the abelian quotient group:

Hk := Ker(∂k)/Im(∂k+1)

which is called the k-homology group of (Mk, ∂k)k∈N. Its elements are called k-homology calsses
on Z and are the cosets γ + Im(∂k+1) for γ ∈ Ker(∂k).
The group Hk inherits a structure of Z-module via the multiplication in Ker(∂k), it is known as
the k-homology module of X.

Definition 5.2.19 (The category of chain complexes). A chain map from a chain complexes
(Mk, ∂k)k∈N to a chain complex (M ′k, ∂

′
k)k∈N is the data of a sequence of linear maps ϕk : Mk →

M ′k commuting with borders, that is, such that one has the commutative diagrams:

Mk+1 Mk

M ′k+1 M ′k

∂k+1

ϕk+1 ϕk

∂′k+1

Chain complexes on Z with chain maps as morphisms form a category, denoted ChainCpxZ.
15This is not immediatly obvious due to the quotient operated in CkX. One has to show that the same map

when defined on C̃kX is well-defined on the quotient.
16Or equivalently, Im(∂k+1) ⊆ Ker(∂k).
17Actually, one can prove that in a certain sense the boundary operator is, modulo the sign ±, the only existing

map forming a chain-complex with the sets of chains of an asc.
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Remark 5.2.20. Every chain map ϕ = (ϕk)k∈N from a chain complexes M = (Mk, ∂k)k∈N to
a chain complex M ′ = (M ′k, ∂

′
k)k∈N induces linear maps:

Hkϕ : Hk(M)→ Hk(M ′)

setting for all k-cycles γ in M ,

Hkϕ(γ + Im(∂k+1)) := ϕk(γ) + Im(∂′k+1).

That is, we have a functor:

Hk : ChainCpxZ → ModulesZ.

Remark 5.2.21. Thanks to the previous remark, a functor F from a category A to the category
ChainCpxZ induces, by composition, functors18

Hk : A → ModulesZ.

In algebraic topology, one often takes A = ASC and considers the k-homology Z-modules
Hk(X) of X defined by the chain-complex (CkX, ∂k)k of an asc X. The construction is the
following:

Let f : X → Y a simplicial map. For all k ∈ N there is a unique linear map:

Ckf : CkX → CkY

such that for all (a0, . . . , ak) ∈
−→
SkX one has:

Ckf(a0, . . . , ak) = (f(a0), . . . , f(ak)).

One can easily see that one has the following commutative diagrams:

CkX Ck−1X

CkY Ck−1Y

∂Xk

Ckf Ck−1f

∂Yk

That is, the maps Ckf form a chain map Cf from the chain complex (CkX, ∂Xk )k∈N to the chain
complex (CkY, ∂Yk )k∈N. Furthermore, one can prove that we have actually defined a functor:

C : ASC→ ChainCpxZ

setting CX := (CkX, ∂Xk )k∈N and Cf := (Ckf)k∈N for a simplicial f : X → Y .

This entails that, for all k ∈ N, one has a functor:

Hk : ASC→ ModulesZ.

The reason why we gave all these details about this standard constructions is, in addition
to recalling them, because we would like to render the homology construction functorial in the
same sense as the above functor. However, we are led to change the category ASC, and we have
to find the “right” notion of morphism.

18To be pedantic, we should write Hk ◦ F , but one just writes Hk.
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Getting denotational semantics involved

Coherent spaces are a particular case of asc’s, therefore they can be realized geometrically and
can be thought as concrete spaces inside Rn. We can interpret LL within the coherent semantics,
so a formula becomes a space inside Rn and its proofs, which are cliques of the coherent space,
become simplices of the space.

Let us see an easy situation.

Take the usual encoding of booleans inside LL, that is, via the MALL formula Bool := 1⊕1.
Write Bool&n := Bool & · · ·& Bool (n times).

Consider Bool&2. If we call {T1, F1, T2, F2} its web, then JBool&2K is given by the graph19:

T1 T2

F2 F1

In order to see it as an asc, we have to take the cliques of the graph as simplices. So when
realized geometrically, we get the circle S1 modulo homeomorphism.

Now consider Bool&3. If we call {T1, F1, T2, F2, T3, F3} its web, then JBool&3K is given by
the graph:

T1

T3

T2

F2 F1

F3

The maximal cliques of this graph are the 8 “faces of the octaedron”, so when realized geomet-
rically we get an empty octaedron, which is homeomorphic to the sphere S2. One can see that
in general Bool&n is realized as Sn−1 modulo homeomorphism.

Observe that in the previous examples, all the simplices of the asc JBool&nK are “witnessed”
by a proof of ` Bool&n, in the sense that any simplex is cointained in some proof. This is due
to the fact that the 8 maximal cliques are exactly the interpretation of some proof. In fact,
take to stay simple the case n = 3, and it is easy to see that in MALL there are exactly 23 = 8
cut-free proofs of Bool&3, which are the following:

πijk :=

` 1
ax

` Bool
⊕i ` 1

ax

` Bool
⊕j

` Bool&2
& ` 1

ax

` Bool
⊕k

` Bool&3
&

for i, j, k = 1, 2. Now, it is easy to see that, setting ah1 = Th and ah2 = Fh for h = 1, 2, 3, one has
JπijkK = {a1

i , a
2
j , a

3
k}, that is, the 8 faces of the octaedron.

However, the fact that all the cliques are witnesses by a proof (in the previous sense) is due
to the simple case we have considered.

19In the sense that this graph is its 1-skeleton. But since we are takling about cs’s, it already gives all the
information about its simplices (which are its cliques).
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In fact, it is not always the case: take for instance “Gustave’s formula”:

G := (1⊕ (1&1)) ` (1⊕ (1&1)) ` (1⊕ (1&1))

of MALL. If we call {⊥, T, F} the web of J(1 ⊕ (1&1))K, then JGK has web |G|= {⊥, T, F}3.
Let’s call a1 := (⊥, T, F ), a1 := (F,⊥, T ), a3 := (T, F,⊥) ∈ |G|. Now, it is easily seen that there
are MALL proofs π1,2,3 :` 1 ⊕ (1&1) s.t. Jπ1K ⊇ {a2, a3}, Jπ2K ⊇ {a1, a3} and Jπ3K ⊇ {a1, a2}.
So each of the previous 3 sets is an edge of JGK, and the definition of coherence space forces
thus x := {a1, a2, a3} to be a 2-simplex of JGK, as one can in fact check. But one can also see
that there is no MALL proof whose coherent semantics contains the whole x.

The property of being a cs can be thought as “synchronization” property: cs’s are those asc
for which, when one can “synchronize” a family of simplices (or of vertices) two by two, one can
synchronize the whole family. From this point of view, the prototipical example of an asc which
is not a cs, the simplicial cercle S1, can be thought as a three agents process synchronising
any two of them but failing to synchronize them all three together. The previous example of
Gustave’s formula shows that, however, if we think to the “synchronization” as given by the
proofs of a formula, then the situation is not faithfully reflected by the coherent semantics.

In order to have a faithful representation of the situation, one would be tempted to take as
simplices the interpretations of the proofs of a formula A; of course this fails to give an asc20.
But the problem is easily solved by “down-closing it” and consider the sub-asc [A] of JAK given
by the web |[A]|:= |A| and simplices:

S[A] := {x ⊆ JπK | π :` A}.

In [A], every simplex comes from a proof in the lax sense that it is a face of the interpretation
of one (i.e. it is contained in it).

In the previous examples we have thus seen that S[G] ( SJGK, and S[Bool&n] = SJBool&nK.
In the case of coherent semantics, to have S[A] = SJAK (that is, [A] = JAK) is equivalent to the
fact that every ⊆-maximal clique21 is the interpretation of a proof.

It is important to remark at this point some aspects:

1. In the case of coherent semantics JAK is already a geometrical object - it is an asc itself - but
because it is a cs, it does not show up a faithful geometry w.r.t. proofs. The quite natural
definition of [A] “solves” this problem. Furthermore, the construction of [A] makes sense
if J·K is any “webbed semantics” of LL, not just the coherent one. This two points suggest
that [A] could be the “canonical” geometrical object associated with webbed semantics.

2. The meaning of the asc [A] is geometric, and we are not trying to construct a new deno-
tational model of MALL. The idea is different: from a denotational interpretation JAK of
a formula A we want to extract a geometrical object to study.

3. The asc [A] is, of course, determined by the formula A, but only in the fact that (for a
fixed system - here we took MALL) a formula determines its proofs, so [A] is really talking
about the proofs of A. More precisely it provides the geometrical organisation of the
interpretations of the proofs of A as an asc. Concretely, the information of the simplices
of [A] comes from the proofs of A, and A alone would be not enough. In particular,
the geometrical property of having or not “n-holes” (the “absence” of n-simplices), is
determined by the existence or not of suited proofs. A more precise notation would
therefore be something like [Proofs(A)], or if one wants to remember that the construction
depends on a fixed denotational semantics for the proofs, we could write [ProofsJ·K(A)].

20Because it is not closed w.r.t. inclusion.
21That is, the “external” simplices if we think of it as a concrete space.
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Of course we will only use the simpler [A] but one has to remember that what we are
really considering is the geometry of the space of the proofs of A.

We already said that a powerful tool to precisely study asc’s is simplicial homology. A
first natural request would be that homology modules be type-isomorphism invariants. Since
homology, when induced by a functor, is a functor itself (Remark 5.2.21), if we can have this
property, then we automatically obtain that whenever there is a type isomorphism there is an
isomorphism of homologies. This is a basic property that we want to require.

However, we face a problem: what should we take as morphisms between asc’s? In topology
one takes simplicial maps, but in denotational semantics one typically works with relations
instead of functions. It is not clear how to make homology a functor w.r.t. to a “relational
based” notion of morphism.

In the following we quickly give some quite natural tries, which however all fail. Only the
last one succeeds in giving raise to a functor, and thus we have the isomorphic homologies for
isomorphic types (Corollary 5.2.26), but the price to pay is that we need to modify the space
[A] via a certain monad I (Definition 5.2.23). We will comment on that after Corollary 5.2.26
till the end of the section.

Relational semantics? The easiest way of interpreting LL is the relational semantics, so let
us try with it.

Relational semantics interprets a type A as a set JAK and a proof π :` A( B as a subset
JπK ⊆ JAK× JBK. We can thus send A to the (easily checked) asc [A] := {x ⊆ JρK | ρ :` A} with
web |A|, and one easily sees that JπK ⊆|A| × |B| satisfies the following “simplicial property”:

JπK · σ ∈ [B] for all σ ∈ [A]

where JπK ·σ is the image of σ through the function JπK · (.) : |A|→ [B] defined by JπK ·a := {b ∈|
B| | (a, b) ∈ t}. The idea is to take as the new category from which start the constructions, the
category RelASC of asc’s as objects, and morphisms given by:

RelASC(X,Y ) := {t ⊆|X| × |Y | | t · σ ∈ Y for all σ ∈ X}

where of course t · σ is defined analogously as before.
The natural choice for Ckt : CkX → CkY is then to extend by linearity the following association:

Ckt(a0, . . . , ak) :=
∑

(~a,~b)∈t⊗(k+1)

(b0, . . . , bk)

where t⊗(k+1) is the relation22 {(~a,~b) ∈ |X|k+1×|Y |k+1 | (ai, bi) ∈ t for i = 0, . . . , k}.
This construction has two crucial problems: first, (Ckt)k is not a chain map, and second, it is
not functorial. Just one of them is enough to invalidate the construction we are looking for, but
let us see the reason for both of them:

- Non chain map: it does not commute with borders. In fact, take X = S1 (with web
{a0, a1, a2})23, Y = ∆2 (with web {b0, b1, b2}), and the morphism t from X to Y given by the set
{(a0, b0), (a0, b1), (a1, b1), (a2, b2)}. Now it is easily seen that ∂1(C1t(a0, a2)) = 2(b2)− (b0)− (b1)
while C0t(∂1(a0, a2)) = (b2) − (b0) − (b1). This would be enough, but just to mention it, let
us say that also on (a0, a1) we don’t have a commutation: ∂1(C1t(a0, a1)) = (b1) − (b0) while
C0t(∂1(a0, a1)) = −(b0).

- Non functoriality: take asc’s X,Y ,Z with X containinig a vertex a, Y an edge {b, b′}
and Z a vertex c. Now take s := {(a, b), (a, b′)} ∈ RelASC(X,Y ) and t := {(b, c), (b′, c)} ∈

22Or, equivalently, we can require b0 ∈ t · a0, . . . , bk ∈ t · ak.
23We could also take X = ∆2.



140 CHAPTER 5. A MISCELLANY OF MEDITATIONS

RelASC(Y, Z). If C is a functor from RelASC to ChainComplexesZ, then C0(t ◦ s)(a) =
C0t(C0s(a)). But one can check that C0(t ◦ s)(a) = (c) and C0t(C0s(a)) = 2(c).

The problems seem to be related to the fact the relational sematics is qualitative and not
quantitative. So let us try with a quantitative one.

Matrix semantics? Matrix semantics interprets a type A as the relational semantics, and a
proof π :` A( B as an integer matrix on |A| × |B|. Here by “integer matrix on a cartesian
product S × S′ of sets” we mean a function t : S × S′ → N. We won’t bother say “integer
matrix” but just “matrix”. Let us set some notations: we write tab for t(a, b) and ta : S′ → N
for the curried function ta(b) := tab.
So the idea is to take as MatixASC the category of asc’s and morphims given by:

MatixASC(X,Y ) := {t matrix on X × Y |
⋃
a∈σ

support(ta) ∈ Y for all σ ∈ X}.

The identities are the diagonally 1 matrices, and composition is matrix composition.
Now the natural choice for Ckt : CkX → CkY is to extend by linearity the following association:

Ckt(a0, . . . , ak) :=
∑

(b0,...,bk)

(
k∏
i=0

taibi

)
(b0, . . . , bk).

But this fails to form a chain map. In fact, consider the following counterexample:
take X = Y = S1 (or also ∆1 would work) with vertices {a0, a1, a2}, and take t ∈

MatixASC(X,X) the following matrix:

a0 a1 a2

a0 1 0 1

a1 0 0 1

a2 1 0 0

It is a simple verification that one has:

C1t(a0, a1) = det(t�{a0,a1}×{a0,a1})(a0, a1) + det(t�{a0,a1}×{a0,a2})(a0, a2)

+ det(t�{a0,a1}×{a1,a2})(a1, a2)

= (a1, a2)

so ∂1(C1t(a0, a1)) = (a2)− (a1). But one also can check that:

C0t(∂1(a0, a1)) = (ta1a0 − ta0a0)(a0) + (ta1a1 − ta0a1)(a1) + (ta1a2 − ta0a2)(a2) = −(a0)

and thus the Ckt do not commute with borders.
The problem seems to be related to the fact that we don’t have any constraint on the

morphisms. So let us try to impose them in the following way.

Relational semantics with coherent semantics? A possible attempt could be to “mix”
together the relational and the matrix semantc, in the following sense:

Definition 5.2.22. An coherence asc X is the data of an asc X = (|X|,SX) and of a cs
cs(X) = (|X|,aX) both on the same web |X|. It is easily checked that coherence asc’s form
a category CohASC, where the morphisms from X to Y are the simplicial cliques of the cs
cs(X)( cs(Y ), that is, CohASC(X,Y ) is the set of the t ⊆ |X|×|Y | such that:

i) t · σ ∈ SY for all σ ∈ SY
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ii) for all (a, b), (a′, b′) ∈ t, if a ¨X a′ then one has both b ¨Y b′ and the implication: if b = b′

then a = a′.

Composition is usual relational composition24 and the identities are the diagonal relations.

The natural way is to define C as in the relational semantics case. But this fails again to
be a chain map, because we can reproduce the same exact couter example of that case, just
taking for X the asc X = S1 and coherence the trivial one (only the singletons are coherent
with themselves)25, and for Y take Y = ∆2 with coherence given by b0 _ b1 (plus the trivial
coherences, that is, the one on the singletons). Now the same exact t of the relational semantics’
case counterexample is a well defined simplicial clique from X to Y and the computations
showing that C does not commute with the borders are exactly the same.

A possible solution: transform relations into maps via monads? Remember that we
defined the category RelASC as the category whose objects are the asc’s and whose morphisms
are the simplicial relations. That is, the elements of RelASC(X,Y ) are the t ⊆ |X|×|Y | s.t.
t · σ ∈ SY for all σ ∈ SX, where for a σ ⊆P∗

fin(|X|) we set:

t · σ :=
⋃
a∈σ

t+(a)

and t+ : |X|→P(|Y |) is given by:

t+(a) := {b ∈ |Y | | (a, b) ∈ t}.

Definition 5.2.23. We define the following endofunctor I on ASC.

If X is an asc, then IX is the asc with web |IX| := SX and k-simplices the sets
{u0, . . . , uk} ⊆∗fin SX s.t.

k⋃
i=0

ui ∈ SX.

If f : |X|→ |Y | is a simplicial map from X to Y , then If : SX → SY is given by the
direct image: If(u) := fu.

It is immediate to check that the previous definition makes sense.

Proposition 5.2.24. The endofunctor I forms a monad on ASC with unit ε : id ⇒ I and
multiplication µ : I 2 ⇒ I whose components are respectively:

εX : |X|→ SX given by:

εX(a) := {a}

µX : SIX → SX given by:

µX(U) :=
⋃
u∈U

u.

Proof. Firstly, let us see why εX ∈ ASC(X,IX) and µX ∈ ASC(I 2X,IX). For εX , take a
simplex u of X. Then εXu = {{a} | a ∈ u} ⊆∗fin SX and thus εX is simplicial because εXu is
a simplex of IX since

⋃
a∈u
{a} = u ∈ SX. For µX , take a simplex U of I 2X. Then µXU =

24Just remark that (s ◦ t) · σ = s · (t · σ) to prove that composition preserves simpliciality.
25In particular, thus, we have a0 ^ a1.
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{
⋃
u∈U

u | U ∈ U} ⊆∗fin SX because U is finite and non-empty and
⋃
u∈U

u ∈ SX by definition of

SIX. Thus µX is simplicial because µXU is a simplex of IX since
⋃
U∈U

⋃
u∈U

u =
⋃

u∈
⋃
U∈U

U

u ∈ SX

by definition of SIX, because
⋃
U∈U

U ∈ SIX and U ∈ SI 2X.

Secondly, fix f ∈ ASC(X,Y ). Then εX is natural in X because of the equality If(εX(a)) =
{f(a)} = εY (f(a)) for a ∈ |X|, and µX is natural in X because of the equality

If(µX(U)) = f
⋃
u∈U

u =
⋃
u∈U

fu = µY (If U) = µY (I 2f(U))

for U ∈ SIX.

Finally, let us check the three monad diagrams. For u ∈ SX, the first diagram for the unit ε
is given by the immediate equality µX(εIX(u)) = u, and the second diagram for ε is given by the
immediate equality µX(IεX(u)) = u. The third diagram is the equality µX ◦IµX = µX ◦µIX .
This is easily checked:

µX(IµX(U)) = µX(µXU) =
⋃
U∈U

⋃
u∈U

u =
⋃

u∈
⋃
U∈U

U

u = µX(
⋃
U∈U

U) = µX(µIX(U))

where U ∈ SI 2X.

Proposition 5.2.25. There is an equivalece of categories between RelASC and the Kleisli cat-
egory ASCI of I , which is given by the functor:

(·)+ : RelASC→ ASCI

defined by X+ := X and t+ : |X|→ SX by t+(a) := {b ∈ |Y | | (a, b) ∈ t} for a simplicial
relation t ⊆ |X|×|Y |.

Proof. It is easily checked that (·)+ is well-defined. Let’s show that it (·)+ is functorial. The
verification of (idX)+ = εX is immediate. Remembering that the Kleisli composition t+ ◦I s+

of two Kleisli morphisms t+ ∈ RelASC(Y,IZ) and s+ ∈ RelASC(X,I Y ) is by definition
µZ ◦It+ ◦ s+, the verification of (t ◦ s)+ = t+ ◦I s+ is the following simple computation:

(t+ ◦I s+)(a) = µZ(It+(s+(a)))
=

⋃
b∈s+(a) t

+(b)

= {c ∈ |Z| | ∃b ∈ |Y | s.t. (a, b) ∈ s, (b, c) ∈ t}
= (t ◦ s)+(a).

Finally, let us show that (·)+ gives an equivalence of categories. It is immediate that it is faithful
and essentailly surjective. To show that it is full, it is immediate to see that if g ∈ ASCI (X,Y )
then g = g+ where g ∈ RelASC(X,Y ) is the graph relation of g.

We have thus the following situation (where we call ModZ the category of Z-modules):

RelASC ASCI ASC ChainCpxZ ModZ
(·)+

∼=
RI C Hk

where RI is part of the Kleisli adjunction LI a RI . That is, RIX := IX and RI f := µY ◦If .

Therefore, we immediately have the desired property that we have been looking:
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Corollary 5.2.26. If A and B are isomorphic types in MALL, then Hk(I [A]) ∼= Hk(I [B]) for
all k ∈ N.

A brief discussion is needed here. We declared that our interest is the study of the geometry
of [A], which being an asc is quite natural to tackle by regarding its homology. Because of our
constraint to take simplicial relations as morphisms instead of simplicial maps, we find ourself
able to talk in a satisfactory (functorial) way about the modified asc I [A]. The question is thus
what is the relation between IX and X, or at least between the geometry of IX and that of
X, for whatever “geometry” could mean.

For instance:

Proposition 5.2.27. If X is non-trivial (trivial being a point), bs(X) is a strict sub-asc of
IX.

Proof. The inclusion is clear: if σ is a simplex of bs(X) then (since σ is totally ordered w.r.t.
inclusion)

⋃
u∈σ

u coincides with some u ∈ σ, which is a simplex of X by definition of bs(X).

To see that it is a strict sub-asc, take the segment ∆1 (call its web {a, b}). Then ã := {a} and
b̃ := {b} are simplices of ∆1 s.t. ã ∪ b̃ ∈ S∆1, thus {ã, b̃} is a simplex of I∆1. But it is not a
simplex of bs(∆1) because ã * b̃ nor the other way around. If now an asc X is not a point,
then it contains at least a ∆1 as an edge, so IX strictly contains bs(X).

It is instructive to visualize some examples:

∆1 =

a

b

bs(∆1) =

ã

b̃

{a, b} I∆1 =

ã

b̃

{a, b} = ∆2

We immediately remark something: IX makes the dimension grow. This means that in
general, the geometric realisations are not homeomorphic:

Geo(IX) 6≈ Geo(X).

One can easily see that in general we have:

I∆n = ∆(2n+1−1).

The following is an interesting example too:

S1 =

a b

c

bs(S1) =

ã b̃

c̃

{a, c} {b, c}

{a, b}

IS1 =

ã b̃

c̃
{a, c} {b, c}

{a, b}

We remark something about all the previous examples (both the cases X = ∆n and X = S1):
even if bs(X) 6= IX and even if their geometric realizations are not homeomorphic, we still
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have that Geo(IX) retracts onto Geo(bs(X)) ≈ Geo(X). Therefore, in this very simple cases,
the homology of X and of IX remains the same.

However, it is not clear what happens in more complex cases. We think that, if one had
Hk(IX) 6= Hk(X) in general, this should be possible to show by considering X = S2. If the
inequality above does hold, then it would require to understand if the study of this geometrical
object IX still makes sense (does it have some geometrical interest? Does it carries some
interesting computational/logical properties?). On the contrary, if our conjecture is false, then
the homology is invariant under I, and so we have achieved our first goal of constructing a
space ([A]) whose homology is invariant under type isomorphism.

5.3 Philosophical meditations: what about the foundations of
mathematics?

We organize our reflection in three steps:

- First, we give a quick presentation of the traditional viewpoint under which mathematical
logic is usually considered. In particular, we highlight the points of unsatisfactoriness in it, that
can be found in the notion of truth and coherence, when one charges them with a too important
foundational relevance.

- Then, we present (our understanding of) Girard’s philosophical proposal known as “tran-
scendental syntax”, which precisely moves from the mentioned unsatisfactoriness in order to
find a deeper point of view, incorporating ideas from computer science.

- Last, we present our proposal organization for some “foundational activity”, a central idea
being Kant’s transcendental method.

5.3.1 The traditional ideology and the questions of logic

Tarski and the problem of truth Mathematical logic is for the most understood from the
point of view of analytical philosophy26, as that was the one of two of the main father founders
of discipline: Frege and Russel. A central role is played by the dichotomy syntax/semantics,
which is understood as “language/reality”. Logic is supposed to extrapolate the formal aspects
of reality, as it can be seen in Russel’s famous quote:

[...] logic is concerned with the real world just as truly as zoology, though with its
more abstract and general features.
— Russel, Introduction to Mathematical Philosophy (1919)

The mean which controls the distinction syntax/semantics is identified with the notion of truth,
that is, accordance with reality. This vision is accompanied by a clear and unambiguous dis-
tinction between “subject/object”, which is another way to usually look at the dichotomy
syntax/semantics, and this philosophical point of view is close to what is usually called es-
sentialism. This approach is reflected, for instance, in the so-called philosophical logics, and
in general in the so-called Tarski’s definition of truth – which is just the name for a simple
mathematical construction. This approach (which constitutes the main philosophical concep-
tion in most of logic departments) has shown to be valid, from a certain point of view: typically,
model theory has proved to be a valid branch of mathematics, with its own problems and its
own mathematical reason of being; we also find the very idea of “interpreting syntax in some
mathematical structure”, even if in a slightly different taste, behind the notion of denotational

26We are referring here to the well known distinction analytical/continental philosophy.
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semantics of programs. The arguably most important achievement of the “essentialist” point
of view is the notion of Turing machines27, which constitute the first model of computer.

However, considered as a philosophical position on the question of foundations, we tend to
consider this traditional approach quite limited, for basically the following two reasons:

1. The notion of truth playing the role of ultimate justification is of dubious foundational
relevance, as expressed by Girard’s doubts:

La vérité est de fait une notion rebelle à toute analyse, car elle commute à toutes
les opérations logiques (A ∧ B est vrai ssi A et B le sont, ¬A est vrai ssi A n’est
pas vrai etc.) et en particulier toute justification des principes mathématiques
par leur vérité est grandement suspecte.
— Girard, [Gir00]

What is achieved in this way is in fact a form of translation from a language to another, so
that the relation is more language/language than language/reality. Remark that “trans-
lations” are useful: for example, programs are compiled28 in executables, and this exactly
means translating a program from a language to another. Another value of the dominant
point of view is that of the “justification” of the different formal systems. By “justifica-
tion” we mean the arguments supporting the fact that some formal system is worth the
study, or not, just like one does in applied mathematics when deciding what model to
use for a specific situation. Typically, one justifies predicate calculus as “abstract zoology
of boolean operations on non-empty sets”29; or we can justify modal logics as a way of
formally dealing with our concepts of necessity and possibility, and similarly for other
philosophical logics; we can apply temporal logics in formal verification; we can also say
that linear logic is the logic “of automatic coffee machines”30.

But we would say that this approach places this disciplines more in the realm of ap-
plied mathematics – for it provides a mathematical model of some phenomenon – rather
than answering some foundational quest. In general, we tend to agree with Dummett’s
conception:

If to know the meaning of a mathematical statement is to grasp its use; if
we learn the meaning by learning its use, and our knowledge of its meaning is
a knowledge which we must be capable of manifesting by the use we make of
it: then the notion of truth, considered as a feature which each mathematical
statement determinately possesses or determinately lacks, independently of ours
means of recognising its truth-value, cannot be the central notion for a theory of
the meanings of mathematical statements [...]
— Dummett [Dum75]

2. In general, this approach proposes a quite simplistic vision on the “logical activity”, on the
lines of the – nowadays surpassed – vision of the physics of the absolute space and time,
and of the ultimate “objective” reality (in contraposition with the “subjective” reality of
the relativistic world and the “non-reality” of the quantic world). One could reasonably
expect that, like physics, also logic needs a renewing of its foundational paradigm. As a
matter of fact, a “truth-based viewpoint” is not able to satisfactorily take into account
the activity one does in some parts of proof-theory/computer science (mainly in relation

27Turing’s analysis of the (human) computer is based on the distinction object (datas) / subject (the program,
or the programmer).

28Or interpreted, but this is essentially the same.
29This is supported by the soundness and completeness theorems with non-empty Tarski semantics.
30We refer here to the resource interpretation of linear logic.
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with linear logic). It is interesting to notice, as Abrusci does31, that a purely essentialist
vision is also in discrepancy with today’s state of computer science, which is much more
a matter of nets (typically, internet) and interaction between entities (the hosts of the
net) which can play both the role of subject and object, rather than a matter of single-
machine-computation on data as in Turing’s conception – dating back to before computers
existed. There is also another hint: Kant’s analysis of (transcendental) logic shows how
relevant it is to carefully consider the subject’s “action” on the object. And to consider
the action of the subject on the object we are studying exactly means to reconsider the
duality syntax/semantics.

In conclusion, the traditional approach (and all its “products”) are not “wrong”; they should
simply not be considered as providing a satisfactory foundational paradigm, and their interest
should be measured only with respect to the concrete results they allow to find in the respective
areas, just like one does for other mathematical modelings. We believe that what we need is not
a negation of the traditional point of view, just like XXth century physics is not the negation
of the physics before it: it is its surpass, in the Hegelian sense of aufhebung.

Hilbert and the problem of coherence In Hilbert’s formalistic vision of mathematics,
mathematics is divided in two parts: the finitist one and the ideal one. The two are linked via
the fascinating idea that the ideal mathematics is to finitist mathematics as points to infinity
in projective geometry are to standard geometry, or as imaginary numbers are to the reals: it
is there, basically for convention and utility, in order to “complete” the discipline and make it
“better functioning”. Also, in Hilbert’s vision, finitist mathematics is nothing but a meaningless
game of symbols. This raises the question of which one, among all possible games of symbols
(that is, formal systems), one should use in order to represent mathematics; Hilbert’s answer
was basically “anyone which is coherent” (and powerful enough).

Let us say we take PA (first order Peano’s arithmetic) as formal system. Now Hilbert’s
program could be resumed as follows:

1. An assumption: if PA does not derive ⊥, then arithmetic is coherent.

2. First goal: reduce the coherence of all mathematics to the one of arithmetic.

3. Second goal: prove, with an argument formalizable in PA32, that PA does not derive ⊥.

If such a program was achieved, by (3) and (1) arithmetic would be coherent, and by (2) so
would be all mathematics. The point here is that this program aims at an absolute certainty
on the coherence of mathematics, and the absolute character should be assured by the fact that
the proof can be carried on in PA. In particular, an argument which is not formalizable inside
PA would not give absolute certainty.

Moreover, Hilbert’s vision was based on his famous “Wir müssen wissen, wir werden wissen”,
consisting on the following assumptions:

4 All non-finitary argument admits a formalization in PA.

5 All (and only) arithmetical truths are provable inside PA.

6 There is an algorithm which, for all formula of PA, decides whether it is true or false.

31See his intervention in https://www.youtube.com/watch?v=r3pDktwmtzg.
32Le us say that a property P admits a proof formalizable in PA when there is a formula P of PA which

“expresses P” and which is derivable inside PA; here with “P expresses P” we mean that N � P iff P holds.

https://www.youtube.com/watch?v=r3pDktwmtzg
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Each of the previous points 1-6 motivated, in a sense, the very birth of mathematical logic
as well as all its most important developments. However, as it is well known, his program
fails and his vision is wrong: Gödel’s second incompleteness theorem says that, if PA is really
coherent, then such a proof as in (3) cannot exist33. Gödel’s second incompleteness theorem,
together with Gentzen’s proof of the coherence of PA based on transfinite induction, says that
(4) is false. Gödel’s first incompleteness theorem says that (5) is false. Turing’s and Church’s
undecidability of the Halting Problem, or the undecidability of first order predicate calculus,
say that (6) is false.

We are left with (1), which is generally accepted, and (2) which, at least for some interesting
parts of mathematics, is completed. But we have lost the “absolute” certainty of the coherence
of mathematics and of arithmetic.

Furthermore, Gödel’s results also imply that Hilbert’s suggestion that any (sufficiently pow-
erful) coherent system would do to represent mathematics, is false. Coherence loses thus its
role of the only “light” of logic: not only it is necessary reduced to relative coherence – and so
cannot be established once and for all –, but it is not even reliable for what concerns arithmetic;
there are in fact coherent theories which derive false arithmetical statements, such as T +¬GT
(where GT is a Gödel’s formula for a coherent theory T under the hypothesis of the theorems),
deriving the arithmetically false statement ¬GT .

Therefore, we tend to consider the question of the coherence of “all” mathematics as less
important than one would expect. On one side, even if we know that there are contradictions
in informal mathematics34, those never appear in the practice; also, there are interesting formal
theories which are proven to be coherent (and/or complete). On the other side, from a mathe-
matical point of view, modern developments of proof theory show that the internal structure of
the systems is already a valid object of study, and this even if the system is contradictory. Of
course, coherence still remains an important question in some circumstances: for example, one
would hope the kernel of a proof assistant to be coherent.

The questions of logic We have seen how the two main possible sources of foundational
certainty – truth and coherence – on which mathematical logic (and thus mathematics) has
been linked to in the last century, and which still constitute the main point of view of the most
of mathematicians and logicians, actually fail in their foundational role.

What are, then, the questions of logic? Were the foundational questions of mathematical
logic only the ones of truth and coherence? The answer is of course, no.

Take for instance Kant’s question:

How is mathematics possible?

It certainly is an interesting foundational question, and we would say it belongs to logic. Since
it deserves a philosophical investigation rather than a mathematical one, we will omit it in the
following pages.

Other interesting questions – which sound extremely modern today – were expressed by the
neo-Kantian Mouburg school:

How do we know that the logical laws are true? How do we know that the concepts
that they isolate are the fundamental concepts of logic, and how do they [Frege and
Russel] know that their basic laws are in fact properly basic?
— Natorp, 1910

33We mean a proof of the formula “naturally” expressing, in PA, the coherence of PA.
34See the ones mentioned in Section 1.3.
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In virtue of what do the logical laws have content, as opposed to being just empty
symbols?
— Cassirer, 1907

As the name “neo-Kantian” suggests, with no surprise they proposed a transcendental approach
to those questions.

The two previous questions suggest a point of view surprisingly close to the one of Girard,
both in the fact of believing in the relevance of a transcendental approach, and in the fact of
questioning the status of the logical “laws” in themselves, a priori from the notion of truth.
For instance, today we can nicely answer to some of those questions: we now know that modus
ponens is in fact not properly basic, due to linear logic’s decomposition A → B = (!A) ( B.
We also we know that, for say MLL, logical “laws” have content in virtue of graph theoretical
properties (such as the Danos-Regnier criterion), and this is what differentiates them from
empty symbols.

Remark that, from the traditional point of view, those questions essentially trivialize: every-
thing reduces to saying that logical laws are true because they preserve truth35, and that what
differentiates them from being empty symbols is precisely the fact that they preserve truth.

Last, let us mention an important notion, not central in the traditional viewpoint: the very
notion of proof. Some important questions about this notions are:

In which sense a proof is a finite object? How is it possible that a finite object
gives us certainty about the infinite? This certainty cannot be absolute (due to
incompleteness). So it is relative: relative to what?
- Girard [Gir12]

Traditionally, proofs do not appear with the same level of “foundational importance” as
truth or coherence, because they are only seen bureaucratic artefacts in order to find out (when
such bureaucratic artefact can be constructed) if the value of a proposition is “1” or “0”. A
more exciting way of saying that the logical laws preserve truth, would be saying that a proof
is a “way of propagating truth”, and this all of a sudden sounds much more modern if we state
it as “a proof is like a circuit in which some information propagates”. The study of proofs then
becomes then the study of the properties of such a circuit36, or the study of the propagation
itself37, or, thanks to the Curry-Howard correspondence, the study of it as a computational
object.

It would not be wise to say that those are the only questions of logic. Nevertheless, we
believe they are some mathematically and philosophically important questions of logic and –
employing a recurrent slogan of Girard – they really shift the logical interest from the “rules of
logic” to the “logic of rules”.

5.3.2 Girard’s trascendental syntax: between Kant and computer science

Girard has, in the last 20 years, proposed a sort of new conceptual setting for conceptually
organising logic (and in particular proof theory). We find it of relevant foundational value. As
already mentioned, we assist to a change of the perspective on the whole discipline:

[...] we are led to consider the opposition between syntax and semantics as an obso-
lete legacy of the XIXth century : in particular the traditional logical issues of logic
– completeness and soundness – should be completely revisited.
- Girard [Gir99]

35This is still the way things are presented to students in the introductory courses.
36Such as in proof-nets, which are indeed circuits in the same way Feynman diagrams are: see [BP11].
37Such as in Geometry of Interaction.
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How should we handle, then, the questions of logic?

My thesis is that the meaning of logical rules is to be found in the well-hidden geomet-
rical structure of the rules themselves : typically, negation should not be interpreted
by 〈NO〉, but by the exchange between Player and Opponent.
- Girard [Gir99]

And with which methodology?

[...] l’expression magique conditions de possibilité, si l’on préfère transcendan-
talisme, est la clef qui ouvre les serrures obstruées par un bon siècle de décervelage
scientiste.
- Girard [Gir18]

Thus, as it was already clear to the neo-Kantians one century ago:

[...] il est nécesssaire de comprendre la part de nous-mêmes dans les objets que
nous étudions, d’où l’invocation de Kant. [...] Bien sûr, il ne faut pas compter sur
Immanuel pour répondre à notre place : rappelons que ces questions n’avaient aucun
sens précis il y a 25 ans.
- Girard [Gir11]

The program he launched, called “transcendental syntax”, is meant to be both philosophical
and technical. However, we believe that the core of the matter has to be found first of all in
the philosophical aspects, which are those we are going to develop in this section38.

Girard’s knitting The basic idea is to organise the logical activity in some “cases”, remi-
niscent of the Kantian table of judgements. Let us say that we are dealing with “entities” (in
an explicitly vague sense) that can “interact” (in an explicitly vague sense) with each other39.
There are four ways of describing such a situation:

� Via an ascertainment40: that is, a self-contained description of each of the entities.

� Via a performance: that is, a self-contained description of how the interaction of each
entity goes.

� Via an usine: that is, organising the entities w.r.t. to behaviours which are possible to
check in an effective manner.

� Via an usage: that is, giving all the possible interactions.

For example, in a net of machines, one may say that: an ascertainment is a description of
the hardware of each machine; a performance is a description of the software of each machine;
an usine is given by the routing tables; an usage is a description of all the possible “states” of
the net.

We can group the four previous modes as follows:

38Girard’s texts are often as fascinating as difficult to understand, so what follows is our conception of the
matter.

39The image of a network of computers here is useful.
40“Constat” in french. “Ascertainment” is the most similarly meaning word in English we could find.
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1. An analytic description is one in which we give an internal description of each entity
(ascertainment and performance). That is, one considers the system as the mere addition
of entities.

De ce point de vue, A et ∼A ne sont que des 〈〈lieux〉〉 où pourront, éventuellement,
se manifester les partenaires. S’il s’agissait [he is talking about the formula
A` ∼A] d’une rallonge physique, il faudrait imaginer un fil nu que l’on branche
au moyen d’épissures. Rien ne nous empêche donc de mettre l’appareil du côté
A et la source du côté ∼ A. Avec, en perspective, de réjouissants incidents:
court-circuits, électrocutions et incendies.
- Girard [Gir21]

2. A synthetic description is one in which we give an external description of each entity
(usine and usage). That is, one considers the system as a whole new entity (of a different
kind).

C’est le mode d’emploi, le surmoi qui régule le 〈〈ça〉〉 analytique. En logique,
ce surmoi est représente par des énonces, des textes pédants, des règles qui
restreignent, in fine, les branchements licites.
- Girard [Gir21]

One could ask why use Kant’s terminology. The answer is that, in a sense, this it is related
to Kant’s table of judgments41, with his famous definitions:

- analytic judgements are those for whom all the concepts present in the predicate already
appear in the subject;

- synthetic judgements are those which are not analytic.

From a different viewpoint, we can also consider the distinction syntax/semantics as an in-
stance of the distinction analytic/synthetic: syntax is just “raw information”, while semantics
is raw syntax plus some meaning.

The typical ascertainment is the result of a computation, considered together with the
program which did it42 (or also a program which is “not meant to be executed”). It cannot be
questioned, nor taken to mean something, it is just there and that is it43.

A program “meant to be executed” can be regarded as a performance, since it describes the
way it manipulates (read: “interacts with”) its argument.

The types in a typed computation can be regarded as usine.

The typical usage is the infinity of all the possible ways one can use a program.

Girard usually resumes this as saying that “analytic is the space of the meaningless”, and
“synthetic is the meaning”.

We would say that a useful everyday-life example is provided by dialogues: take for instance
a correspondence between Abelard and Heloise; in answering to Abelard’s question, Heloise
sends analytic information; in sending the question to Heloise, Abelard also fixes a format for
answers he is expecting the answer to respect; in receiving Heloise’s answer, Abelard structures
it (if possible) inside the fixed format. For instance, if Abelard asks Heloise if she knows the

41Sentences of shape “subject + predicate”.
42This is what Girard means when he says that “tout est sur la table, y compris la table”.
43Girard often makes the example of a computation for 27 + 37 = 999, with the program of multiplication

loaded inside +.
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time, he expects the answer to be of the form: “yes, it is ...”, or of the form: “no, sorry”. If her
answer is different, this raises an error (typically caught by Abelard repeating the question).

This example helps understand what Girard means when he says that “analytic corresponds
to answers” and “synthetic to questions”.

Typically, when the notions of typed/untyped make sense, one has: “analytic = untyped”,
“synthetic = typed”. For example, this is the case for the duality proof-structures/proof-nets,
or untyped λ-calculus/simply typed λ-calculus.

The synthetic usually comes with an element, the format. It typically corresponds to formal
systems, and its nature is particular. In fact consider Berry’s paradox44: the usual solution
to the contradiction consists in preventing it to happen by using two different meanings of the
verb “to define”: when we say that b is “defined” by those 12 words English sentence that is
the informal meaning of “to define” we are using; when inside the English sentence we say that
b cannot be “defined” in less than 12 English words, that is some fixed formal meaning we are
using, which does not include the informal one. Now, we can regard the paradox as saying that
if we want to “rigorously ask questions” (which is the heart of what we do in mathematics),
then some format is necessary (if we do not want contradictions); but most importantly, the
fact that the intuitive meaning of “defined” cannot be included in the format, indicates that a
“well-behaving format” cannot answer everything (here we lose the answer to the question “is
b defined in the intuitive sense?”). This is not just a pointless remark: this aspect of Berry’s
paradox can be seen as a primitive manifestation of the phenomenon of incompleteness. In
fact, the systematic existence of an undecidable formula inside a certain “well-behaving” formal
system, can be understood as the fact that not only outside of the format – as for the intuitive
notion of “defined” – but also inside the format, the presence of the format itself prohibits one
to answer any question (even if one can ask it). This is why Girard often compares the format
to a turtle shell: necessary for surviving, but uncomfortable.

Let us synthesize all we said with the “conceptual” table in Figure 5.1, which has to be
thought of as a sort of refinement of Kant’s renowned table, with the new ingredient of computer
science (which of course Kant did not dispose of). The collocation of the different modes in
the explicit/implicit column is obtained thinking of the explicit as something effectively given,
while implicit is the rest. This corresponds to Kant’s a posteriori/a priori in some sense.

Explicit Implicit

Analytic Ascertainment Performance

Synthetic Usine Usage

A posteriori A priori

Analytic / Analytic a priori

Synthetic Synthetic a posteriori Synthetic a priori

Figure 5.1: Girard’s knitting and Kant’s table

Remark, however, that Girard’s knitting should not be applied to a theory of knowledge, as
Kant’s table. The prototypical situation of application is linear logic, since all those consider-
ations were first made possible by linear logic. In general, its typical realm of application, and
of all the transcendental syntax which rounds around it, is the theory of proofs and programs.
We will clarify that in the next Section 5.3.3.

44See Section 1.3.
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There is a natural question: can the implicit be always effectively reduced to the explicit?
This specializes in the following two questions:

� Can any performance be effectively given by an ascertainment?

� Does it always exist an usine which guarantees the usage?

Remark that, in the second question, we are asking for an adequacy of the usine w.r.t. usage,
i.e. that usine guarantees (or justifies) the possibility of usage. If we now remember that usage
is the synthetic a priori, we see that from this point of view a major preoccupation of logic is
that of the justification of the synthetic a priori, just like in Kant it was the major one for the
theory of knowledge. However its justification, that is its conditions of possibility, now is given
(when possible) by the usine, corresponding to the synthetic a posteriori, and which gives only
sufficient conditions by no means necessary; this a point of departure with respect to Kant45.

Looking at some old questions through this new perspective

� In some cases, one can explicit a performance. And in some cases there is adequacy be-
tween usine and usage: for example, a simply typed λ-term of type Int → Int, when
applied to any Int necessary computes a normal form of type Int. Analogously for proof
nets (for which the usine is the correctness criterion – which is decidable). However, Tur-
ing’s 1936 result and Gödel’s incompleteness theorems say that, in general, the previously
mentioned questions of the analytic and of the synthetic have negative answers.

� What does the notation “A ` B” mean? This could look like as a naive “beginner
student” question, as one immediately answers: “it means that under the hypothesis A,
one gets B”, that is, it is implication. So one could ask why bother introducing a new
symbol in addition to “→”, but after a certain time one becomes accustomed with this
notation and stops questioning it: it is just a notation for expressing the hypotheses, and
it turns out that it is the same thing of implication. Of course this is not false46. But
we find it not satisfying; a more exciting way of dealing with this question is to say that,
conceptually speaking, A ` B is the implicit version of the implication, while A → B
is the explicit version of it. This comes with the fact that the cut-rule, which brings
dynamics/computation – so it represents the implicit – applies on A ` B, while A→ B is
just a static piece of information (typically used to “eliminate” all the hypothesis after a
proof is concluded).

� The analytical implicit and explicit are “relative”. For instance, one can regard a program
both as an analytic piece of information (as a result), or as synthetic (when it is meant
to be executed). For example, in the sequent calculus LJ, the relativity of the analytic
implicit/explicit manifests as the fact that performances can be stalled. This does not
mean that performances can be systematically reduced to ascertainments (we saw that
this is impossible), but that we can choose to consider the performance given by A ` B as

45There is nothing strange in this departure: Kant is talking about theory of knowledge, we are talking about
logic.

46It supported by:
- the so-called “deduction theorem” in Hilbert-style systems, which precisely says that A ` B iff ` A→ B.
- the introduction rule for implication in natural deduction, which says exactly the same thing of the deduction
theorem, but with the considerable intellectual advantage of simply posing it as a definition and not as a result
to find.
- soundness and completeness theorems (in first order): B is a logical consequence of A by definition iff all models
of A are models of B. Then A ` B exactly corresponds to logical consequence.
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the ascertainment given by A→ B. So the deduction theorem/arrow-introduction-rule:

A ` B
` A→ B

makes one pass from the executable A ` B (which is waiting for its argument – a proof of
A) to the non-executable47 ` A→ B (which is just a factual statement).

5.3.3 A shift of the foundational question

In the last 60 or so years the field of mathematical logic has known a great polarization of its
branches: on one side, the tradition related to model theory and set theory; on the other side
the one related to proof-theory and the notion of computation/programs. This two traditions
became technically, conceptually and even spatially48 distant. We feel the need a conceptual
reorganization of the discipline, particularly when related to the “question of foundations”. By
“the questions of foundations” we do not mean to tell now which is a “foundational theory” in
some sense, question on which we tend to agree with Maddy’s pluralist spirit:

Once we reject the idea that the choice of a fundamental theory to do these foun-
dational jobs is a matter of determining the ‘true mathematical ontology’, once we
focus instead on the literal mathematical content of our decisions, we come to see
that we can and should allow some wiggle room for both pure and applied mathe-
maticians to work in well-motivated variants of the fundamental theory.
— Maddy [Mad19]

The discussions in the previous pages indicate, to us, that we should operate what we would
call a true shift of the foundational paradigm, in the sense that the “quest of foundations” should
instead be thought of as an organic mathematical study, as well as philosophical organization
of the aspects of logic and mathematics. From our point of view, the state of art about the
foundational reflections on mathematics should be mentally organized in the following points:

� Fundamental mathematical logic

– Formal mathematics

– Proof Theory

� Transcendental mathematical logic.

By “fundamental mathematical logic” we do not mean “more important than others”: we
simply mean “who refers to foundational questions” and not just to other mathematical as-
pects. The contents of the item “fundamental mathematical logic” is mainly mathematical, in
opposition with the content of the “Transcendental mathematical logic”, which is philosophical.

A very important point is that the above classification is not meant to be a “classification
of the disciplines”, but instead of the approaches a researcher can have when dealing with
foundational questions. That is, one can work in formal mathematics or proof theory without
having a foundational point of view at all: this is actually the most common situation. So the
classification above must be seen as a conceptual organization of the different topics a typical
nowadays foundational reflection could include.

Let us give some details.

47Think of Linux’s “chmod -x”. In LJ we can also pass from the non-executable implication to the executable
one: the previous rule is reversible; think of Linux’s “chmod +x”.

48The first tradition is mainly done in mathematics departments, while the second one in computer science
departments.
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Formal mathematics Inside “formal mathematics” we intend all which is related to formal-
ising mathematics – in real computers as well as in formal yet still not computerized languages
(such as formal theories). Typically, this includes works in proof assistants (for which we share
Buzzard’s enthusiastic vision on the “digitalization of mathematics”49) and the relative theo-
retical issues (such as Voevodsky’s Univalent Foundations [Uni13] and similar topics). But we
can also include reverse mathematics, set theory or model theory when one mentally considers
them as formalizations of (parts of) mathematics.

For instance, ZFC set theory has always been the most thought of as concerned with “formal-
izing mathematics”. However it is nowadays mainly accepted that, as a “concrete” formalization
of mathematics, set theory is not ideal. This is basically because the encoding is possible only
in theory – the system is too “low level” (think of programming everything in assembly) – and
it is full of arbitrary implementation choices which have as side effect to make the formal theory
able to ask and answer “forbidden” questions, for example “2 ∈ 3”, or worse:

What’s even worse, is that in theory the set M could genuinely represent more than
one mathematical object. Perhaps somebody writing the library on natural numbers
decided to define 3 to be the set {0, 1, 2}, and more generally they defined n to be
the set {0, 1, 2, . . . , n− 1}. Then someone doing topology defined a topology on a set
X to be a set of subsets of X satisfying some axioms. It then turns out that 3 is a
topology on 2 (check it! It’s really true!).
- Buzzard, in: https://xenaproject.wordpress.com/2020/04/30/the-invisible-map/

Its weaknesses of course do not mean that formal set theory is not valuable or that it is not
interesting as a mathematical discipline. They just mean that it should be freed from much
of its usual philosophical/foundational charge. Furthermore, if one wants to really formalize
mathematics, then type theories behave much better. For example, Voevodsky proposes to
substitute ZFC with, basically, Homotopy Type Theory plus his Univalence Axiom. Actually,
insisting to consider ZFC as a true formal foundation of mathematics is charging set theory (or,
better, set theorists) of a responsibility which is not demanded. It is true that, at the beginning
(more than one century ago), ZF(C) was thought of as a real foundation of mathematics (but
always in a purely theoretical way, computers not even existing), but soon set theorists became
more interested in the mathematics of the “actual infinite50”:

[...] moving rather far from the foundational issues, as much as set theorists have
understood the privileged position of the subject as regards to its ability to formulate
mathematics, many in general consider that the subject of foundations is not worth
pursuing and are much more interested in the mathematics of infinity. [...] There-
fore, not only the working set theorists of today do not see themselves as providing
the unique ontological foundation of mathematics, but they do not believe in such a
unique foundation and do not claim it even for their own subject.
— Mirna Dzamonja [Dža17]

Proof theory By “proof theory” we mean everything mathematical which is related to the
mathematical study of “mathematical reasoning”. It is here that one studies proofs as math-
ematical objects. Nowadays the major activity in this item is usually done in relation with
computer science. As already mentioned, it is important to keep in mind that subjects in this
item are not limited to foundational issues: for example, one can work in the area of the abstract
theory of programming languages, and yet not have any foundational interest.

49See https://xenaproject.wordpress.com/2021/01/21/formalising-mathematics-an-introduction/.
50In contraposition with the mathematics of the infinite in power, which is arithmetic.

https://xenaproject.wordpress.com/2020/04/30/the-invisible-map/
https://xenaproject.wordpress.com/2021/01/21/formalising-mathematics-an-introduction/
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We think that the activity one carries on in this item can be nicely organized via Girard’s
transcendental syntax approach (in its philosophical form explained in Section 5.3.2): it is in
transcendental syntax that one can produce questions, interpret answers etc. In addition to
that, we agree with Girard’s “descending levels” description of the different approaches one can
have when dealing with proofs:

In level −1 we see proofs as mere “bureaucratic” artefacts, the only thing which matters
being its existence. This means that we are not really interested in the mathematics of
proofs, but more in the notion of provability inside some formal system.

In level −2 we see proofs as programs and/or morphisms. This is where Curry-Howard-
Lambek like correspondences typically happen. Historically, the first idea of this level can
be traced back in the so called “Brower-Heyting-Kolmogorov interpretation” of proofs.

In level −3 we see proofs as interactive processes, typically in a sort of “dialogue”. Typical
examples of this point of view are Game Semantics, Ludics, Geometry of Interaction, but
also Krivine’s classical realizability.

A very nice and clear explanation of these levels can be found in [Tro07].

Trascendental mathematical logic While the technical work one does in the previous two
items is mathematical, here we mean it to be philosophical. The questions we mean to investi-
gate are those who are left, from the previous items, with respect to the nature of mathematics.
Let us take as “definition” the following:

What is maths? I think it can basically be classified into four types of thing. There
are definitions, true/false statements, proofs, and ideas.
- Buzzard, in
https://xenaproject.wordpress.com/2020/06/20/mathematics-in-type-theory/

Identifying Buzzard’s expression “true/false statements” with “mathematical language in
general”, we can say that we are only left with the nature of “definitions”51, and the nature of
“ideas”, which we will both refer to with the word intuitions.

We choose the name “transcendental mathematical logic” because our idea is to develop
arguments in a “Kantian style”, in order to treat the status of mathematical concepts. Let us
just mention the points which we believe important in such a reflection:

� First of all, one has to describe how mathematics is created in our mind52. Our feeling
is that a good way of proceeding is by considering Kant’s theory of knowledge – “from
empirical sensations to concepts by applying some transcendental categories of logic53”).

� It is evidence that mathematical statements can be organized in the table54:

Quantity Quality Relation

∀,∃ ¬ ∧,∨,→

51In the sentence we quoted, Buzzard was thinking mostly about a formal account of definitions, while here
we intend it from a philosophical point of view.

52We mean here from a philosophical point of view, not from a neuroscience-like one.
53Here we explicitly change Kant’s original expression “intellect” to “logic”, in order to stress the fact that we

are looking for an account of the logical/mathematical activity, not knowledge in general.
54Here the names Quantity, Quality and Relation are just there to preserve a continuity with Kant’s terminology.

https://xenaproject.wordpress.com/2020/06/20/mathematics-in-type-theory/
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It is therefore quite tempting to consider the transcendental forms of logic as the rules
of, for instance, the formal system NK (or LK, etc). But we know that we can modify
these systems: typically, a deeper logical analysis is provided via the tool of linear logic
and obtaining thus the following table:

Quantity Quality Relation Modality

∀,∃ ()⊥ ⊗,&,`,⊕,( !,?

which comes together with the proof rules given by LL sequent calculus, or LL proof nets.
This is a novelty w.r.t. Kant’s, where the transcendental forms are necessary and cannot
be “decomposed”.

One can now see why the name “transcendental syntax” is appropriate for denoting the
conceptual organization of the study of mathematical reasoning: it can be seen as the
(mathematical and philosophical) study of the transcendental forms of the logic.

� The study of intuition in mathematics. By that we mean the fact that in mathematics
one usually follows two “parallel” paths: we have an intuitive argument in mind and we
follow it in order to create a formal one. These two paths are of a different nature, since
one is in our mind and basically formulated in an informal language, while the other is on
the paper and formulated in such a way that it could be translated in a formal language.
The fact of reproducing, in a a formal way, intuitive considerations is not always a trivial
act, as it can be for simple mathematical concepts. For instance, consider what Buzzard
says:

I also have a picture in my head of an overconvergent modular form defined on
a neighbourhood of the ordinary locus on a p-adic modular curve. This picture
informed several papers I wrote earlier this century with Richard Taylor, Frank
Calegari, and others. I was once privileged to be invited to speak in the number
theory seminar at Orsay in Paris, and Jean-Pierre Serre was in the audience. I
drew one of these pictures of mine on the board and Serre interrupted! He asked
what the picture meant. I had drawn a picture of a compact Riemann surface of
genus 3 and was drawing discs and annuli on the Riemann surface. [...] How-
ever, my Annals of Mathematics paper with Taylor and my follow-up Journal
of the AMS single-author paper (which I was lecturing on at the time) were all
evidence that my way of thinking about things, the pictures in my head, really
could be translated down into rigorous mathematics, even though they were in
some sense meaningless. They were effective guides. [...] In short, I knew ‘how
far one could push the picture’ in some sense - which bits of it to take seriously.
— Buzzard, in
https://xenaproject.wordpress.com/2021/01/21/formalising-mathematics-an-introduction/

� If the creation of mathematical concepts follows the same process as Kant’s theory of
knowledge, then it must be explained how mathematics is different from metaphysics. In
fact, both mathematical and metaphysical concepts would appear from the application of
some transcendental forms to objects which are not necessary directly derived by experi-
ence – even if both of them are necessary generated by it. We believe that the solution
is to consider again Kant, in particular its idea of schematism: mathematical concepts
can be “schematized”, while metaphysical ones cannot. Here we mean a sort of revisited
notion of (what we understand as) Kantian schematism. In particular, one has to stress
the idea of a schema as a “rule”; today, we would be tented to say a program. Better said,
what makes mathematics not metaphysics, is the possibility for it to be formalized into a
programming language (such as the usual formal systems, PA, ZF, System F, HoTT, ...);
whence, the possibility of actually applying the transcendental forms not to the intuitions
one has in mind, but on the concrete formal language (which, appearing on the paper, is
an object of direct experience).

https://xenaproject.wordpress.com/2021/01/21/formalising-mathematics-an-introduction/
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Let us make a last consideration.
Observe that, once mathematics is formalized, it looks like an “explicitation” of the theorems

from the axioms through purely formal manipulations; let us call this the analytical moment.
In the creation of these explicitations one is guided by intuition, in what one could call the
intuitionistic moment. A crucial situation, in this “dialogue” between intuition and formalities,
is when one stumbles upon an undecidable question, and one has thus to decide if to take it
as a new axiom, or not; let us call this the synthetic moment. In the analytic moment one can
only obtain theorems which are either provable or disprovable inside the formal system one has
decided to stay in. That is, only decidable formulas (w.r.t. the fixed system). Here the use
of the terms “analytic” and “synthetic” should not be seen in the Girardian sense, but in the
Kantian one: in a sense, the information given by a decidable formula is already “contained”
in the axioms of the formal system, while the one of an undecidable formula is not.

From this point of view, the undecidability of interesting formal systems (that is, incom-
pleteness) is the heart of the “mathematical progress”55, and the mathematics activity has the
following alternating shape56:

Synthetic moment; Analytic moment; Synthetic moment; Analytic moment; ...

We recently found out that this point of view is quite close to the one expressed by the
physician Müller in [Mül21].

A natural question appears: how should one decide if to take or not an undecidable formula?
Evidence from the mathematical practice indicates that the solution is usually made according
to: either utility (in the sense of considering the results one can obtain with it); or experiments
(typically, this occurs when one does applied mathematics). Remark that this is quite far from
a Platonist view of mathematics, in which, being mathematical objects “really there” together
with their true or false value, one cannot “choose” about an undecidable formula, but only
“discover” if it is true or false57. On the contrary, this vision is much more on the lines of, for
instance, Poincaré’s conventionalism.

We can thus make another58 “Kantian-like table”:

A posteriori A priori

Analytic moment / Proofs

Synthetic moment Experiments Utility

Here the distinction a priori/a posteriori is with respect to experience. It is interesting to
note that, as Kant’s epistemological problem was how to justify his synthetic a priori, and as
Girard’s logical problem is how to justify his synthetic a priori (the usage), here the problem is
again how to justify the a synthetic a priori moment (and it is handled considering the utility).

55Quite close to the famous Poincaré’s quote from “Science et méthode”: C’est par la logique qu’on démontre,
c’est par l’intuition qu’on invente.

56Famous examples of undecidable (with respect to different formal systems) formulas which make the progress
of mathematics go, are: Euclid’s V postulate w.r.t. the first four; induction axiom w.r.t. the other Peano’s axioms;
axiom of choice w.r.t. ZF; the continuum hypothesis w.r.t. ZFC.

57A nice discussion which is, in a certain sense, precisely about the distinction between these two approaches,
can be found in [Deh07] in relation with the works of Woodin about the Continuum Hypothesis.

58The last one!
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[Tro07] Samuel Tronçon. Interaction et signification. Logique, dynamique et cognition, pages
119–145, 2007.

[TS19] Andrea Aler Tubella and Lutz Straßburger. Introduction to Deep Inference. Lecture,
August 2019.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

[Var15] Moshe Y. Vardi. Why doesn’t ACM have a SIG for theoretical computer science?
Commun. ACM, 58(8):5, July 2015.
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