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A B S T R A C T

This thesis tackles some of the scientific locks of perception systems based on
neural networks for autonomous vehicles. This dissertation discusses domain
adaptation, a class of tools aiming at minimizing the need for labeled data. Do-
main adaptation allows generalization to so-called target data that share struc-
tures with the labeled so-called source data allowing supervision but nevertheless
following a different statistical distribution.

First, we study the introduction of privileged information in the source data,
for instance, depth labels. The proposed strategy, BerMuDA, bases its domain
adaptation on a multimodal representation obtained by bilinear fusion, modeling
complex interactions between segmentation and depth.

Next, we examine self-supervised learning strategies in domain adaptation,
relying on selecting predictions on the unlabeled target data, serving as pseudo-
labels. We propose two new selection criteria: first, an entropic criterion with ESL;
then, with ConDA, using an estimate of the true class probability.

Finally, the extension of adaptation scenarios to several target domains as well
as in a continual learning framework is proposed. Two approaches are presented
to extend traditional adversarial methods to multi-target domain adaptation:
Multi-Dis. and MTKT. In a continual learning setting for which the target do-
mains are discovered sequentially and without rehearsal, the proposed CTKT
approach adapts MTKT to this new problem to tackle catastrophic forgetting.
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R É S U M É

Cette thèse attaque certains des verrous scientifiques des systèmes de percep-
tion à base de réseaux de neurones des véhicules autonomes. Une classe d’outils
abordée dans cette thèse pour limiter les besoins de données étiquetées est celle
de l’adaptation de domaine. Celle-ci permet la généralisation à des données dites
cibles qui partagent des structures avec les données annotées dites sources per-
mettant la supervision mais qui suivent néanmoins une distribution statistique
différente.

D’abord, nous étudions l’introduction d’information privilégiée dans les don-
nées sources, par exemple des annotations de profondeur. La stratégie proposée
BerMuDA appuie son adaptation de domaine sur une représentation multimo-
dale obtenue par fusion bilinéaire, modélisant des interactions complexes entre
segmentation et profondeur.

Ensuite, nous examinons les stratégies d’auto-apprentissage en adaptation de
domaine, reposant sur la sélection de prédictions sur les données cibles non
étiquetées, servant de pseudo-étiquettes. Nous proposons deux nouveaux critères
de sélection : d’abord, un critère entropique avec ESL ; puis, avec ConDA, utilisant
une estimation de la probabilité de la vraie classe.

Enfin, l’extension des scénarios d’adaptation à plusieurs domaines cibles ainsi
que dans un cadre d’apprentissage continu est proposée. Deux approches sont
présentées pour étendre les méthodes adversaires traditionnelles à l’adaptation
de domaine multi-cible : Multi-Dis. et MTKT. Dans un cadre d’apprentissage
continu, les domaines cibles sont découverts séquentiellement et sans répétition.
L’approche proposée CTKT adapte MTKT à ce nouveau problème pour lutter
contre l’oubli catastrophique.
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1
I N T R O D U C T I O N

1.1 Context

Autonomous vehicles have recently returned to the front of the stage with the
dazzling progress of Artificial Intelligence (AI) and the emergence of many actors
around new forms of mobility (connected, shared, autonomous and electric), tech
giants, like Google-Waymo and Uber, and countless start-ups. As a major French
automotive supplier and world leader in automotive sensors, Valeo is positioned
at the heart of these upcoming revolutions, especially regarding autonomous ve-
hicles. Resolutely involved in improving advanced driving assistance systems
(ADAS) deployed in commercial cars, the group has been developing major re-
search and development activity on autonomous driving for several years. Two
experimental programs, Valeo Cruise4U for autonomous driving on motorways
and Valeo Drive4U for driving in urban environments, were set up in 2012. The
first gave rise to several large-scale experiments, including crossing Europe and
the United States, or 24 hours on the Parisian ring road. During the Paris Motor
Show 2018, the latter came to be the first-ever experience of autonomous driving
in the center of Paris.

The recent progress in AI brought by Deep Learning (DL) (a branch of Machine
Learning (ML) relying on Neural Networks (NNs) with multiple layers) largely
explains the spectacular resurgence of driverless cars. Thanks to the new gen-
eration of Convolutional Neural Networks (CNNs), cameras may be embedded
to understand, in real-time, crucial aspects of the environment: nature and po-
sition of vehicles, pedestrians and stationary objects; position and meaning of
lane markings, signs, traffic lights; drivable area; etc. Nevertheless, the richness
and versatility of visual signals have their drawbacks: accessing the underlying
information is often indirect and complex. The projective nature of the camera
makes it especially challenging when considering three-dimensional information.
To increase the extent, the robustness, and the quality of automated perception,
other sensors are thus necessary, in particular radar and LiDAR (3D laser scan-
ner). Both of these sensors directly measure a sparse representation of the three-
dimensionality and dynamic of their environment. Thus, autonomous vehicles
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2 introduction

generally conjointly leverage cameras, radars, and LiDARs in their perception
system (Figure 1.1). The fusion of their information is often late, after the decision
function attached to each sensor, but may also be early, either on the raw signal
or after a few transformations. Sensors and their fusions are the heart of the first
step of perception, followed in succession by the localization, prediction, planning,
and finally, vehicle control.

Figure 1.1 – Sensors of the Drive4U Valeo car. The Drive4U Valeo car leverages
multiple types of sensors (mass-produced by Valeo Comfort and Driv-
ing Assistance) all around the vehicle in order to acquire complete
knowledge of its environment in real-time. Illustration from Valeo.

1.2 Motivation

Despite these recent advances, there is still a long way to go before we see
widespread deployment of automated taxis, let alone the launch of fully self-
driving vehicles on the market to private individuals. One of the major obstacles
is the capacity of autonomous systems to handle unforeseen situations in new
environments. Although these systems are now extremely effective, they remain
vulnerable and subject to critical errors even in situation which a human would
handle. For example, the perception system may fail to recognize a new animal
or vehicle it has not been trained to detect, catastrophically misleading the rest of
the decision stack. Critical failures of autonomous cars could lead to disastrous
accidents with other vehicles or Vulnerable Road Users (VRUs). These problems
have to be solved before any advanced autonomous vehicle may be approved by
regulators and adopted by users.
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Many scientific obstacles remain for autonomous driving systems. This disser-
tation specifically focuses on the perception layers based on NN. Today, these are
trained in a fully-supervised fashion, requiring massive amounts of annotated
data. While powerful, this form of training raises major issues. Gathering an-
notated datasets that are large and varied enough for supervised learning is a
complex and costly enterprise. For instance, the semantic segmentation of urban
scenes is a task that aims at predicting a category label for each pixel of an image,
illustrated in Figure 1.2. Thus, this task requires thousands of high-definition
urban scene images and manually annotated semantic segmentation maps. While
capturing large datasets of urban scene images is made easy by car-embedded
cameras, the manual annotation of their semantic segmentation maps costs a lot
of time and human energy: for instance, a single image of the Cityscapes dataset
(Cordts et al. 2016b) required more than 1.5 hours on average in annotation and
quality control.

Moreover, such datasets remain limited, considering the diversity, complexity,
and unpredictability of environments a vehicle may encounter. For safety reasons,
it is much more complex to acquire data for rarer critical scenarios, for example,
car accidents, for which a system failure may have catastrophic consequences.
Conceiving perception systems that generalize better, even from limited training
situations, that may identify novel environments they cannot understand, and that
may adapt to changes and continue training, are some of the many challenges
facing autonomous driving, and AI in general.

Figure 1.2 – Semantic segmentation of urban scene. Each pixel of the image
is associated with a category label, represented in different colors
on the semantic segmentation map. Image and manually anno-
tated ground-truth semantic segmentation map from the Cityscapes
dataset (Cordts et al. 2016b).

In this context, a prime class of tools in the ML community is frugal learning.
The goal of frugal learning is to drastically reduce the need for data and annota-
tion of fully-supervised learning to train performing models. More specifically,
this dissertation focuses on Domain Adaptation (DA). Its goal is to generalize,
or adapt, to a set of data, the target domain, sharing structures with another an-
notated dataset, the source domain, allowing supervised training though having
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some statistical distribution differences. Practically, one could, for example, use
DA to train a model on nighttime data as the target domain by taking advantage
of annotated daytime data. Similarly, a promising practice in DL is to use DA to
leverage synthetic data as the source domain, on which annotation is automatic
and cheap, to train models on real-world data as the target domain.

1.3 Outline and Contributions

Many different problems of DA remain open, especially when considering
Unsupervised Domain Adaptation (UDA), the setting in which the target domain
is completely unlabeled. My Ph.D. work focuses on developing UDA algorithms
and architectures that better leverage available data to build more robust models,
specifically for the task of semantic segmentation of urban scene images.

While semantic segmentation annotation is essential in the source domain as
supervision for the target domain, more knowledge may be leveraged from the
source data. For instance, synthetic imagery may produce more modalities, such
as depth map or object bounding boxes, that a UDA algorithm may exploit as
Privileged Information (PI) (Vapnik and Izmailov 2015) to improve its perfor-
mance on the semantic segmentation task on the target domain (Chapter 3). Fur-
thermore, semi-supervised learning, another frugal learning paradigm, may shed
some light on ways to better use the unlabeled target data of UDA. In particular,
Self-Training (ST) (D.-H. Lee 2013) is a strategy that produces pseudo-annotation
for unlabeled data based on a pre-trained model’s predictions. Building a ST

framework in the context of UDA could help to improve existing algorithms
(Chapter 4). Finally, due to the variety of scenarios an autonomous vehicle may
encounter in the wild, restricting UDA to a single target domain may limit the use
cases of these perception models. Finding UDA architectures and algorithms that
may adapt to more than one target domain would considerably increase their
practicality (Chapter 5).

Outline. This dissertation is structured around these diverse themes of UDA for
semantic segmentation I tackled during my Ph.D.:

• Chapter 2 introduces the basics of ML, DL and Transfer Learning (TL), while
giving an overview of standard UDA approaches in the literature and making
a first focus on UDA for urban scene segmentation;

• Chapter 3 covers UDA scenarios in presence of PI and how to effectively
use this additional knowledge to improve UDA methods. The work in this
chapter has led to the publication of a conference paper:
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• Taylor Mordan, Antoine Saporta, Alexandre Alahi, Matthieu Cord, and Patrick
Pérez (2020). “Bilinear Multimodal Discriminator for Adversarial Domain
Adaptation with Privileged Information”. In: Symposium of the European Asso-
ciation for Research in Transportation (hEART).

• Chapter 4 discusses how to estimate confident pseudo-labels from a seman-
tic segmentation model trained with UDA techniques and how to effectively
improve the performance of such a model with ST using these new anno-
tations. The work in this chapter has led to the publication of a conference
workshop paper and a journal paper:

• Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez (2020).
“ESL: Entropy-guided self-supervised learning for domain adaptation in se-
mantic segmentation”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshop on Scalability in Autonomous Driving.

• Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu
Cord, and Patrick Perez (2021). “Confidence Estimation via Auxiliary Models”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

• Chapter 5 extends the traditional UDA scenario to multiple target domains
rather than a single one, both in a multi-target learning context and a con-
tinual learning context. The work in this chapter has led to the publication
of a conference paper:

• Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez (2021).
“Multi-Target Adversarial Frameworks for Domain Adaptation in Seman-
tic Segmentation”. In: IEEE/CVF International Conference on Computer Vision
(ICCV).

• Finally, Chapter 6 concludes and proposes some perspectives.
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Chapter abstract

Transfer Learning (TL) is a well-known research problem in the Machine
Learning (ML) community whose focus is to leverage the knowledge acquired
by solving one problem to solve another different though related problem.
More specifically, Unsupervised Domain Adaptation (UDA) concerns the class
of TL problems on which data from the source includes annotations for the
considered task, while the target data available is not labeled. This research
topic has received increasing attention with the rise of Deep Learning (DL)
due to the need for large amounts of training data while an increasing amount
of raw data is available, especially in the Computer Vision (CV) community.
This chapter starts by laying essential definitions and notations of ML and
DL for CV as well as TL and develops some particular cases of TL depending
on the parameters of the problem. Then, the chapter goes further into the
details of the specific TL scenario of UDA in CV and reviews the multiple
core approaches to this problem found in the literature. This review is non-
exhaustive and the following chapters go into more details in some more
specific UDA topics. Finally, a focus on UDA for urban scene segmentation is
made, which introduces the work carried out during the thesis.

7
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2.1 Deep Learning for Computer Vision

2.1.1 Machine Learning Basics

Machine Learning (ML) (Bishop 2006; Hastie 2009) is the domain that aims at
training models to solve various tasks based on given examples. In the context
of Computer Vision (CV), ML models are generally given pictures, real or syn-
thetic, and are trained to solve a large variety of problems: classification, semantic
segmentation, object detection, etc. (Cord and Cunningham 2008; Szeliski 2010)

Before going further into the details, let’s start with a few definitions and nota-
tions that will be used in all that follows.

A domain D is composed of:

• a multi-dimensional space X, generally some subset of a real d-space Rd;

• a marginal distribution P(X) on X.

Moreover, for a given domain D, a task T is defined by:

• a label space Y, which, for example, can be described as some subset of
natural numbers N for classification tasks, a subset of a d-space of natural
numbers Nd for semantic segmentation tasks, or a subset of a real k-space Rk

for regression tasks;
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• a conditional probability distribution P(Y |X).

ML trains a model F with parameters w, having as input elements x ∈ X, to
produce predictions F (x) = ŷ ∈ Y for a given task T. The objective of the model
F is to solve the task T, i.e. estimating the conditional probability distribution
P(Y |X). Knowing the ground-truth label y ∈ Y for a sample x ∈ X, the prediction
error of the model is quantified by the definition of a loss function for the task
T written LT(ŷ,y). For instance, for classification tasks with C classes, the usual
loss function used is the Cross-Entropy (CE):

LCE(ŷ,y) = −
C∑
c=1

yc log(ŷc), (2.1)

performed after a softmax activation in order to convert the C-sized output of the
model ỹ into a vector of probabilities:

∀c ∈ [C], ŷc = softmax(ỹ)c =
exp(ỹc)

C∑
j=1

exp(ỹj)

, (2.2)

where [K] is defined as the set of all natural numbers between 1 and K:

[K] = {k ∈ N | 1 ≤ k ≤ K}. (2.3)

The output of the model ŷ is thus the vector of probabilities of x belonging to
each of the C classes while the ground-truth y is a one-hot vector, i.e. the value of
the coordinate for the true class is 1 and the other values are 0.

In the specific two-class classification case (C = 2), the loss is changed. The
output of the model ŷ has only one dimension and the loss becomes the Binary
Cross-Entropy (BCE):

LBCE(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ), (2.4)

where the ground-truth y takes the value 0 for the first class and 1 for the second
class.

Semantic segmentation tasks usually extends the CE to a pixel-wise CE as seg-
mentation loss:

Lseg(ŷ,y) =
H∑

h=1

W∑
w=1

LCE(ŷ[h,w,·],y[h,w,·]), (2.5)

where H ×W are the dimensions of the input image x (and thus are also the
dimensions of its ground-truth segmentation map y), u[i,j,k] is the (i, j, k) compo-
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nent of a three-dimensional u and u[i,j,·] is the vector over the last coordinate with
fixed two first coordinates (i, j) ∈ [I]× [J ], defined as:

u[i,j,·] = (u[i,j,k])k∈[K]. (2.6)

With the task loss defined, the goal of ML is to find the optimal parameters w∗

of F that minimize the expectation of the loss function for the domain and task
couple:

w∗ = argmin
w

E(X,Y )[LT(Ŷ , Y )] = argmin
w

E(X,Y )[LT(F (X), Y )]. (2.7)

Practically, supervised ML exploits a training dataset (X ,Y) = {(x(n),y(n))}, n ∈
[Ntrain] on which the expectation above is empirically estimated with Monte-Carlo
sampling. An optimization algorithm is then employed to minimize the empirical
loss function over the training dataset:

w∗ = argmin
w

Ntrain∑
n=1

[
LT(F (x

(n)),y(n))
]
. (2.8)

In general, after training, the performance of ML models are then evaluated on
a test dataset using various metrics depending on the considered task. Moreover,
a dedicated validation dataset is often used beforehand to optimize any hyperpa-
rameter or architectural detail which was chosen prior to the training to hope for
the best performance possible on the test dataset.

2.1.2 Deep Learning and Architectures

Deep Architectures. Deep Learning (DL) (Goodfellow et al. 2016) represents
the subset of ML models based on Deep Neural Networks (DNNs). Usually, the
Neural Networks (NNs) considered are feed-forward: the model F is a succession
of transformations, called layers, transforming the input x in a sequence of inter-
mediate representations or features hl after each layer l.

One of the most common layer is the dense or fully-connected layer, often noted
fc. These layers consist in a linear transformation of their input by a weight matrix
wl and bias bl:

h̃l = wlhl−1 + bl, (2.9)
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followed by a non-linear activation function, the most commonly used nowadays
being the Rectified Linear Unit (ReLU) activation:

hl = ReLU(h̃l) = max(0, h̃l). (2.10)

In the CV community, another layer, though introduced decades ago by LeCun
et al. (1989), has been popularized by the AlexNet architecture (Krizhevsky et al.
2012) due to the outstanding performance of the model at the time on the Ima-
geNet Large Scale Visualization Challenge in 2012: convolutional layers, generally
noted conv, apply 2D convolutions instead of dense linear functions, allowing
to capture local and spatially-aware features, regardless of the spatial position
in the image. DNN architectures based on convolutional layers are usually called
Convolutional Neural Networks (CNNs).

Finally, pooling layers are used to aggregate spatial information and effectively
reduce the size of the intermediate representations. The most commonly used
pooling strategies are the average pooling, which outputs the average of each
patch of the input, and the maximum pooling, which outputs the maximum of
each patch of the input.

For CV applications, CNNs have become a staple architecture for most tasks,
may it be classification, object detection, semantic segmentation, etc. Models such
as VGG-16 (Simonyan and Zisserman 2014), Inception V1 or V3 (Szegedy et al.
2015; Szegedy et al. 2016) or ResNet-50, 101 or 152 (K. He et al. 2016) are still
used today as backbone networks for many architectures in order to extract deep
features before a task-dedicated NN head.

For instance, popular semantic segmentation models such as PSPNet (H. Zhao
et al. 2017) or DeepLabs (L.-C. Chen et al. 2014; L.-C. Chen et al. 2017; L.-C. Chen
et al. 2018b) base their architecture on such baseline CNN. For the semantic seg-
mentation task, the CNNs must output a segmentation map of the size of its input.
Thus, fully-connected layers are not well suited for this task since they discard the
spatiality of their input. In general, semantic segmentation models replace them
with convolutional layers, making them Fully-Convolutional Networks (FCNs).
For example, DeepLabV2 (L.-C. Chen et al. 2017) uses Atrous Spatial Pyramidal
Pooling (ASPP), illustrated in Figure 2.1, to upsample features extracted from ei-
ther VGG-16 (Simonyan and Zisserman 2014) or ResNet-101 (K. He et al. 2016).
ASPP uses in parallel multiple atrous convolutional layers: these convolutions use a
dilation rate defining a spacing between the values in a kernel, effectively enlarg-
ing the field of view of the filter. By employing atrous convolutions with different
dilation rates, ASPP can capture objects or image context at multiple scales.
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Figure 2.1 – Atrous Spatial Pyramid Pooling overview. The center pixel (orange)
representation after the ASPP exploits multi-scale features thanks to
multiple convolutional filters with different dilation rates in parallel.
Illustration from (L.-C. Chen et al. 2017).

Training DNNs. DNNs are trained by using gradient back-propagation (Rumelhart
et al. 1995). This method exploits the feed-forward property and the chain-rule
to compute progressively the gradient of the loss ∇wL. The weights are then
updated iteratively using a gradient descent algorithm to decrease the value of
the loss until a minimum of the objective function is reached:

w← w − η∇wL, (2.11)

where the parameter η, called learning rate, modulates the step size of each itera-
tion of gradient descent.

Exactly estimating the gradient of the loss over the training dataset is usually
impractical due to the amount of training data and the size of the DNNs. Moreover,
DNN training losses are complex and non-convex, leading to the existence of
many local minima. Numerous gradient descent algorithms have been developed
to exploit a stochastic estimation of the loss, the simplest one being Stochastic
Gradient Descent (SGD) (Bottou 2010), with many variants designed to improve the
stability, training speed, and the local minimum reached after training. The most
used algorithms include SGD with momentum (Qian 1999), RMSProp (Tieleman,
Hinton, et al. 2012) or Adam (Diederik P. Kingma 2015).

Adversarial Training. Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) introduces a new training framework for generative models via an
adversarial process. They train two models in parallel: first, a generative model
that aims at capturing the distribution of the data and generates close-to-data
outputs; second, a discriminator model that estimates the probability of a sample
belonging to the training data rather than being generated by the generative
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model. In this adversarial training framework, the generative model seeks to
maximize the probability of the discriminator model making a mistake on the
generated data. This adversarial training strategy has become popular in the DL

community both to train generative models and, more generally, to bring closer
together features coming from different domains.

2.1.3 Transfer Learning

In a Transfer Learning (TL) (C. Tan et al. 2018; Zhuang et al. 2020) setting, let’s
consider two couples of domain and task: the source, described as (Ds,Ts); and the
target, described as (Dt,Tt). The core objective of TL is to solve the target problem,
i.e. learn to estimate P(Yt|Xt), by transferring the knowledge accumulated by
learning to estimate P(Ys|Xs), considering that the source and the target share
some common ground. Generally, it is also assumed that source and target are
different, which is formalized as either Ds ̸= Dt or Ts ̸= Tt, otherwise one could
resort to traditional learning instead. As an analogy, one will have an easier time
learning to play the violin if they have already learned to play the cello; and
one will learn more easily how to drive a truck if they know how to drive a car,
or how to drive on snow if they know how to drive on dry roads. In short, TL

aims at leveraging the knowledge of the source domain to solve the problem of
the related target domain. Ideally, the advantages of TL compared to traditional
learning on the target domain are a faster learning process, more accurate models
or a limited need for training data.

Following this general setting and depending on the availability of annotation
on the source or target, the next paragraphs describe a few, non-exhaustive, typical
scenarios of TL (C. Tan et al. 2018; Zhuang et al. 2020).

Pre-Training and Fine-Tuning. When considering a target problem (Dt,Tt)

with annotated data, a common strategy to boost the efficiency of a supervised
learning algorithm is to employ a pre-training strategy: instead of initializing the
weights of the model at random, one may use those of a model pre-trained on a
different source problem (Ds,Ts) to start the training procedure on the target with
already meaningful features. Training such a model on the new target problem
is usually referred to as fine-tuning. This pre-training and fine-tuning strategy is
particularly helpful when the target training data is scarce, such as in few-shot
learning (Wang et al. n.d.). Nonetheless, this approach may be extended to most DL

problems and is almost always employed by the community when using existing
DNN as backbone of the models.
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Multi-Task Learning. Very similar as above, when both the source data and
target data are labeled and from a same domain Ds = Dt but the tasks are
different (Ts ̸= Tt), the scenario is generally called Multi-Task Learning (MTL)
(Caruana 1997). The core principle of MTL is that, by simultaneously training
both tasks with shared representations, what is learned for each task should help
the model generalize better on other tasks. Note also that due to the symmetry
between source and target in this scenario, MTL may consider an arbitrary number
of tasks. MTL often considers the different tasks equally, meaning the objective is
to perform on every task, though one may only care about performance on one
task and do not evaluate the other auxiliary tasks at run-time.

Domain Adaptation. Let’s finally consider a last specific setting. When P(Xs) ̸=
P(Xt) but the feature spaces and the tasks are the same (Ts = Tt), the scenario
is called Domain Adaptation (DA) (Csurka 2017). In this setting, the source is al-
ways annotated and the core idea is to transfer the predictive function that can
be learned in a supervised fashion on the source to the target domain. Differ-
ent assumptions may be made on the presence of annotations on the target do-
main: if the target is fully, though generally scarce, the scenario is supervised
DA (Motiian et al. 2017; Morsing et al. 2021); if the target is partially annotated,
semi-supervised DA (Saito et al. 2019; B. Li et al. 2021); and finally, if the target
is not annotated, Unsupervised Domain Adaptation (UDA), which is the most
studied in the literature and the focus of this dissertation. On a side note, while
DA traditionnally assumes that the tasks are identical between source and target,
specific DA settings may consider some marginally different class labels between
source and target (Ys ̸= Yt) – e.g. class-incremental DA (Kundu et al. 2020) or
boundless DA (Bucher et al. 2020) – or unbalance between source and target with
regards to their classes (P(Ys|Xs) ̸= P(Yt|Xt)) – e.g. class-imbalanced DA (S. Tan
et al. 2020). Also, in what follows and for convenience, Ds = (Xs,P(Xs)) and
Dt = (Xt,P(Xt)) will usually simply be referenced as Xs and Xt with the initial
assumptions in mind and still be called domains.

2.2 Unsupervised Domain Adaptation in the Com-
puter Vision Literature

Knowing that one can train a model to estimate P(Ys|Xs) with supervised
learning methods thanks to the availability of annotated source data, the crux of
DA is to adapt this model to give a good estimation of P(Yt|Xt). DA generally
rely either on aligning in some way the source and target features of the model
to make them indistinguishable or on finding a transformation from the source
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domain to the target domain and using this transformation to train the model
entirely in the target domain. In this section, we describe multiple UDA approaches
to highlight the different paradigms and strategies found in the literature to
tackle the adaptation problem on CV tasks and categorize them in three core
approaches: direct distribution alignment approaches; image-level approaches to
learn transformation between domains, and adversarial approaches to indirectly
align the source and target distributions. The objective is to give a global view
of the UDA literature by presenting principally architecture designs and some
losses that impacted the community by their novelty and performance compared
to the state of the art at the time of their publication. We claim by no means to
be exhaustive, only a few representative examples of works are presented among
the sizeable number of contributions in the field. We also want to mention that,
though we identify three core approaches to UDA, they are not mutually exclusive,
and some works may adopt more than one. Finally, note that this section mixes
UDA approaches for classification and semantic segmentation tasks, each approach
may not be directly applicable to any other task than the one it has been designed
to solve.

2.2.1 Direct Distribution Alignment Approaches

The first class of approaches consists in performing this distribution alignment
by directly minimizing some distance or measure of discrepancy between the two
domains. We describe in what follows common metrics and strategies for UDA

with direct distribution alignment.

2.2.1.1 Maximum Mean Discrepancy

As far as distances between distribution go, the Maximum Mean Discrepancy
(MMD) (Gretton et al. 2012) is a standard metric that has been widely used in UDA

applications. Very generally, for a given feature map ϕ(·) on a reproducing kernel
Hilbert space H, the MMD is empirically estimated on source data Xs and target
data Xt by the formula:

M̂MD(Xs,Xt) =

∥∥∥∥∥ 1

|Xs|
∑
xs∈Xs

ϕ(xs)−
1

|Xt|
∑
xt∈Xt

ϕ(xt)

∥∥∥∥∥
H

. (2.12)

In NN applications, the feature map ϕ(·) is often applied on the output activation
of a chosen layer of the NN instead of the input images and H is usually a real
multi-dimensional space Rd. While the theory behind MMD depending on the
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chosen feature map won’t be developed further there, we present some UDA

approaches exploiting this metric.

Deep Domain Confusion. Tzeng et al. (2014) adapt an AlexNet (Krizhevsky
et al. 2012) classification model to the UDA task. Along with the classification loss
on the source domain, their architecture minimizes the square of the MMD on an
added bottleneck fully-connected layer “fc adapt”. This additional loss, dubbed
domain loss, aligns the distributions coming out of “fc adapt”, thus ensuring that
source and target domains are indistinguishable, i.e. maximizing the domain
confusion. Their architecture is illustrated in Figure 2.2.

Figure 2.2 – Deep Domain Confusion network overview. The CNN architecture
adapts AlexNet (Krizhevsky et al. 2012) to enforce domain confu-
sion through an adaptation layer “fc adapt” as well as an additional
“domain loss”, based on MMD, that minimizes the distance between
source features (coming from labeled images, in blue) and target fea-
tures (coming from unlabeled images, in red). The weights of the
models are shared between the source CNN (left) and the target CNN
(right), highlighted by the dotted lines between the two models. Il-
lustration from (Tzeng et al. 2014).

Deep Adaptation Networks. Long et al. (2015) go even further than Tzeng et al.
(2014). First, instead of focusing on a single layer, their architecture directly aligns
the features between source and target on each fully-connected layer of AlexNet
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(Krizhevsky et al. 2012). Secondly, they exploit a multi-kernel MMD, allowing for
a more discriminative metric. Figure 2.3 illustrates their architecture.

Figure 2.3 – Deep Adaptation Network overview. From a partially frozen
AlexNet, pre-trained on ImageNet (Krizhevsky et al. 2012), the ar-
chitecture adapts the fully-connected layers of the model with multi-
kernel MMD. Illustration from (Long et al. 2015).

Joint Adaptation Networks. Long et al. (2017) improves over Long et al. (2015)
by aligning the joint distribution over the fully-connected layers of AlexNet with
a single joint MMD. Figure 2.4 illustrates their architecture.

Figure 2.4 – Joint Adaptation Networks overview. The architecture aligns the
joint distribution of the fully-connected layers of the AlexNet
(Krizhevsky et al. 2012) with a single joint MMD: each fully-connected
layer i, with output activations zsi and zti for source input xs and
target input xs, respectively, is given a dedicated kernel ϕi for the
joint MMD. Illustration from (Long et al. 2017).
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2.2.1.2 Correlation Alignment

CORAL. First proposed by Sun et al. (2016) specifically for UDA purposes,
CORrelation ALignment (CORAL) aims at matching the distributions of source
and target by aligning the second-order statistics, i.e. the covariance. Practically,
CORAL performs a linear transformation A on the source representations and
minimizes the distance between the covariance Cs of the transformed source
representations and the covariance Ct of the target representations:

min
A
||A⊤CsA− Ct||2F , (2.13)

where || · ||2F is the Frobenius norm.

Deep CORAL. Sun and Saenko (2016) extend their CORAL loss to DNNs. They
define the CORAL loss directly as the distance between the source features and
the target features on a given layer of the DNN. The CORAL loss can be minimized
directly with the supervised classification loss on the source domain. Figure 2.5
illustrates their approach with the CORAL loss acting at the last layer of the NN.

Figure 2.5 – Deep CORAL network overview. In this example, the CORAL loss is
applied on the output of the NN, the last fully-connected of AlexNet
(Krizhevsky et al. 2012). Illustration from (Tzeng et al. 2014).

This approach can be used on multiple layers and different DNN architectures.
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2.2.1.3 Optimal Transport for Domain Adaptation

The theory of optimal transport is intuitively simple: the goal is to find the
transportation map of minimal cost between two distributions. Optimal transport
is an interesting strategy for UDA: using the optimal transportation map from
the source domain to the target domain is an elegant way to learn meaningful
representations in the target domain by making them closer to those of the source
data samples.

Courty et al. (2016) apply optimal transport theory to UDA for image classifica-
tion. Their method proposes a regularized unsupervised optimal transportation
model on the density functions of source and target images which constrains
source samples of the same class to remain close during transport, thus ensuring
that the transport retains the original semantic. Courty et al. (2017) go further and
propose Joint distribution Optimal Transport (JDOT). This method uses optimal
transportation to find a transformation between the joint feature space and label
space distributions of source and target domains, thus allowing to jointly bring
both the source feature distribution and classification distribution closer to those
of the target domain.

DeepJDOT. Damodaran et al. (2018) extend the theory developed by Courty
et al. (2017) and apply it on deep neural networks. Their method DeepJDOT is
illustrated in Figure 2.6. They perform optimal transport on the joint distribution
of latent representation and label spaces using an optimal transport solver, giving
a coupling matrix γ of size |X s|×|X t|. This coupling matrix represents the optimal
transport function from the source data to the target data: γij is close to 1 if the
source image xs

i is transported onto xt
j with optimal transport. This coupling

matrix serves as a weight to the loss function on the target data for the deep
neural network training. For each source-target image pair (xs

i ,x
t
j), the authors

apply a constraint on the extracted features from g in order to bring closer the
features of xs

i and xt
j if γij is close to 1. Moreover, they apply the classification loss

on the unlabeled target data image xt
j by using the ground-truth of the source

image ys
i , yet again weighted by γij which is close to 1 if xs

i is close to xt
j after

optimal transport.

2.2.2 Image-Level Approaches

The second class of approaches consists in building transformations at the im-
age level, either by directly translating the source image into the target domain
before the NN model dedicated to solving the task (“task model”) or by finding
representations that allow reconstructing of images in either domain, indepen-
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Figure 2.6 – DeepJDOT network overview. The latent representations and labels
are used to compute with optimal transport a coupling matrix γ, used
as weight on the loss function to align the representations of target
images to source images which are close to them after transportion.
A classification loss on the target domain is also added by using the
source labels of close source images, still weighted by the coupling
matrix γ. Illustration from (Damodaran et al. 2018).

dently of their domain of origin. We describe in what follows common image-level
strategies for UDA.

2.2.2.1 Image-to-Image Translation

In image-to-image translation approaches, the source images are translated to
the target domain before training the task model. Such approaches usually make
the additional assumption that this transformation does not alter the labels of the
source data. This way, one can train the model in the target domain using the
supervision of this translated source data with their original annotations.

Pixel Domain Adaptation. Bousmalis et al. (2017) use a GAN (Goodfellow et
al. 2014) to translate source domain images into the target domain. The target
domain images (real) are only used to train an image generator G: G takes as
input a source image (synthetic) and a random noise to produce “fake” images,
which are constrained to resemble target domain images (real) by adversarially
training a discriminator network D that distinguishes between real target images
and generated images. In parallel, the classifier model T is trained on both the
source images (synthetic) and the generated target-like images from these source
images (fake) paired with the original source annotations. Figure 2.7 illustrates
their architecture.
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Figure 2.7 – PixelDAN network overview. A generator network G learns to trans-
form source images (synthetic) into target-style images (fake). A dis-
criminator D serves as adversary to train the generator G in a GAN
approach. The classification model T is trained both on source im-
ages (synthetic) and generated images (fake) by consdering that the
labels are not impacted by the translation. Illustration from (Bous-
malis et al. 2017).

Cycle-Consistent Adaptation. Similarly, Hoffman et al. (2018) use CycleGAN

(Zhu et al. 2017) to translate source images into the target domain style, style gaps
coming, for instance, from considering a synthetic domain and a real domain,
or different weathers such as clear and foggy. Their cycle-consistent stylization
strategy is illustrated in red on Figure 2.8. A source-to-target generator GS→T

is trained to stylize source images into the target style, which are then used to
train the task model with the original labels. In green on Figure 2.8, an adversary
discriminatorDT ensures that the generated images are indistinguishable from the
target images. To finalize the cycle-consistent stylization, still in red on Figure 2.8,
as in CycleGAN (Zhu et al. 2017), a target-to-source generator GT→S is also trained
to reconstruct the original source images from the translated target-style images. A
similar cycle is performed during training on the target images to the source style
(not illustrated on Figure 2.8). Additionally, represented in grey on Figure 2.8, a
semantic consistency loss, based on a segmentation model pre-trained on source
data, is added between images and their generated stylized images to ensure
that the semantics are not impacted by the transformation. Finally, the authors’
method CyCADA also performs feature-space adversarial alignment, in orange
on the Figure 2.8, which is described in more detail in Section 2.2.3.1.

Dual Channel-wise Alignment. Wu et al. (2018) also have a similar idea but
with a different approach. Figure 2.9 illustrates their architecture. Instead of opt-
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Figure 2.8 – CyCADA network overview. Inspired by CycleGAN (Zhu et al. 2017),
the architecture performs cycle-consistent adversarial stylization of
source image into target style (in red and green) and trains the seman-
tic segmentation model on this stylized data (in yellow and purple).
Illustration from (Hoffman et al. 2018).

ing to use GANs for image translation, their method DCAN uses an image gener-
ator based on adaptive instance normalization (Huang and Belongie 2017): given
an arbitrary target image (orange arrows on Figure 2.9), the intermediate feature
means and standard deviations of the source image being translated (blue arrows
on Figure 2.9) are matched to the statistics of a target image. Then, the segmenta-
tion network (green arrows on Figure 2.9) is trained using these translated source
images, considering that the label maps are unchanged by the stylization.

Figure 2.9 – Dual Channel-wise Alignment Network overview. The model
adapts the style of source images (blue arrows) into target style
through an image generator conditionned on a target image (orange
arrows) using adaptive instance normalization (Huang and Belongie
2017). The segmentation network is then trained on these synthesized
images (green arrows) while considering that the label maps are un-
touched by the stylization. Illustration from (Wu et al. 2018).
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Fourier Domain Adaptation. Y. Yang and Soatto (2020) adopt a radically dif-
ferent strategy to image-to-image translation. Indeed, their method FDA relies on
“spectral transfer”: the low-frequency components of the Fourier amplitude of the
source image are swapped with the ones of the target image. They argue that the
low-frequencies are responsible for the style of the image and can be changed
significantly without affecting the semantics, thus allowing to keep the original
annotations on the stylized source. Their approach is illustrated in Figure 2.10.

Figure 2.10 – Fourier Domain Adaptation overview. Spectral transfer is per-
formed to transfer the target style onto the source image without
impacting its semantic content. The low-frequency components of
the Fourier amplitude of the source image are swapped with the
ones of a target image. Illustration from (Y. Yang and Soatto 2020).

Style-swap. M. Kim and Byun (2020) propose to use another style transfer
method: Style-swap (T. Q. Chen and Schmidt 2016). This style transfer method
is an image synthesis technique that reproduces the content of an image while
applying the style of another. The approach of M. Kim and Byun (2020) to UDA

for semantic segmentation using Style-swap is illustrated in Figure 2.11. On the
left part of Figure 2.11, they use Style-swap to stylize source images with random
styles from the Painter by Numbers dataset 1 (Stylized source data in Figure 2.11)
and to stylize source images as target domain data from a sampled target image
(Translated source data in Figure 2.11). Yet again, it is assumed that those trans-
formations do not change the label maps of the images. An additional alignment

1. Painting dataset sourced primarily from wikiart.org by Small Yellow Duck (Kiri Nichol)
and hosted by Kaggle.

wikiart.org
https://www.kaggle.com/smallyellowduck
https://www.kaggle.com/c/painter-by-numbers
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is then performed with output-space discrimination (right part of Figure 2.11),
described in more details in Section 2.2.3.2.

Figure 2.11 – Style-swap approach overview. On the left part, the architecture
uses Style-swap (T. Q. Chen and Schmidt 2016) to stylize source
images with random styles from the Painter by Numbers dataset
(Stylized source data) and to translate source images into target
style (Translated source data). On the right part, the segmentation
network is then trained with output-space adversarial alignment
(Section 2.2.3.2). Illustration from (M. Kim and Byun 2020).

LAB-color space stylization. J. He et al. (2021) use yet another strategy for
image translation. Closer to (Y. Yang and Soatto 2020), their work introduces LAB-
color space stylization: to convert a source image into target-style given a target
image, after converting the source image and the target image into the LAB color-
space, they swap the mean and standard deviation of the source image with the
ones of the target image and finally re-convert the source image into RGB-color
space.

2.2.2.2 Reconstruction Approaches

Reconstruction-based approaches usually focus on finding representations that
allow for image reconstruction in either source or target domain. With the ability
to reconstruct images to either domain, such representation only encompass the
semantics of the input data.

Domain Separation Network. Bousmalis et al. (2016) construct different rep-
resentations for both source and target data. Figure 2.12 illustrates their architec-
ture. First, a shared encoder Ec is used to extract both domain representations
in a common space that ideally encompasses the content of the images. These
common representations are the ones used by the classifier G. Secondly, two pri-
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vate encoders, Es
p and Ep

p for source and target domains, respectively, extract style
representations that are used, when summed with the content representations, to
reconstruct the original images through a shared decoder D. Some orthogonal-
ity constraints are applied between private and shared representations to ensure
that both encoders encode different aspects of their inputs. Moreover, a similarity
constraint is also applied between the shared representations of source and target
with MMD, similarly to what is discussed in Section 2.2.1.1.

Figure 2.12 – Domain Separation Network overview. The architecture uses a
shared encoder Ec and private encoders Es

p and Et
p to disentangle

the representations of source and target domains into components
used for the classification task (representation of the semantics of
the input) and components used for reconstruction by a shared
decoder D (representation of the style of the input). Illustration from
(Bousmalis et al. 2016).

Domain Invariant Structure Extraction. Chang et al. (2019) base their architec-
ture on a feature disentangling strategy, as in (Bousmalis et al. 2016), but train it
with different objectives. As Bousmalis et al. (2016), their model DISE has a shared
encoder extracting structure content representations that are used for solving the
task. It also features two domain-specific encoders extracting texture appearance
representations. Moreover, they train a single decoder that takes as input a struc-
ture content representation and a texture appearance representation to output an
image. Their approach uses this decoder to reconstruct the source and target im-
ages, but also, following ideas from Section 2.2.2.1, to translate the source image
into target-style by using the source content and the target texture representa-
tions, and similarly to translate the target image into source style. Finally, the task
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model is also trained on the source image translated into target style. Figure 2.13

illustrates their architecture.

Figure 2.13 – Domain Invariant Structure Extraction overview. The architecture
uses a shared encoder Ec to extract structure content components
and private encoders Es

p and Et
p to extract texture appearance com-

ponents from the source and target images. While only the structure
content part is used by the segmentor T , a single shared decoder
D is used to construct and reconstruct images using the multiple
structure content representation zc and texture appearance repre-
sentation zp pairs. Illustration from (Chang et al. 2019).

Image-to-Image Adaptation. Murez et al. (2018) mix ideas from reconstruc-
tion and image-to-image translation approaches. Their method consists in encod-
ing both source and target domains into a single shared embedding space from
which one can reconstruct images in either source or target style with a double
CycleGAN approach. The task is then solved from this shared embedding space.
Their method is illustrated in Figure 2.14.

2.2.3 Adversarial Approaches

Finally, the last class of UDA approaches is based on adversarial training to
align the distributions of some representations of source and target domains.
Usually, the representations selected for adversarial alignment are either deep
features extracted after the DNN backbone of the model right before the last layers
dedicated to the task or directly close-to-prediction representations at the output
of the task model. In such approaches, besides the task model F , an additional
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Figure 2.14 – Image-to-Image Adaptation overview. Both source and target im-
ages are embedded into a common shared space from which source
or target images can be reconstructed. Illustration from (Murez et al.
2018).

network D, called discriminator, is trained to play the model’s “adversary”: D
is learned to predict the domain of input from the features extracted from F .
Concurrently, F tries to produce results that can fool D into wrong discrimination.

2.2.3.1 Feature-Space Adversarial Alignment

Gradient Reversal Layer. Ganin and Lempitsky (2015), whose method is illus-
trated in Figure 2.15, introduce a domain classifier Gd (in pink on Figure 2.15)
attached to intermediate features of the classification NN, after the feature extrac-
tor Gf (in green on Figure 2.15). As its name suggests, it is trained in parallel with
the main model to classify the domain of the input. Furthermore, a “gradient
reversal layer” changes the sign of the gradients coming from the domain clas-
sifier during back-propagation and flowing into the feature extractor, effectively
changing the objective of the feature extractor over this domain classification loss:
the feature extractor tries to fool the domain classifier.

Adversarial Discriminative Domain Adaptation. Tzeng et al. (2017) adopt an
adversarial approach inspired by GANs, illustrated in Figure 2.16. Their strategy
is decomposed into three steps. First, they pre-train a source feature extractor
(Source CNN) and a classifier on the source. Both models are frozen after this
pre-training. Second, using the frozen Source CNN, both a target feature extrac-
tor (Target CNN) and a discriminator are trained. While this discriminator must
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Figure 2.15 – Gradient reversal layer overview. A domain classifier Gd, in pink,
takes as input the intermediate features of the model, after the fea-
ture extractor Gf , in green. Its gradient is backpropagated into the
feature extractor through a gradient reversal layer, making the two
networks adversaries. Illustration from (Ganin and Lempitsky 2015).

distinguish between source features and target features, the target extractor must
fool this discriminator and make indistinguishable the target and source features.
Third, for testing on the target domain, the final model consists of this Target CNN

and pre-trained classifier from the first step.

Figure 2.16 – Adversarial Discriminative Domain Adaptation overview. The
GAN-inspired approach consists in three steps. First, a classifica-
tion model (Source CNN + Classifier) is pre-trained on the source
data. Second, both a Target CNN and a discriminator are trained in
an adversarial fashion using the frozen Source CNN in order to pro-
duce indistinguishable features between source and target domains.
Third, for testing on target data, the classification model consists in
the Target CNN and the classifier pre-trained in the first step. Illus-
tration from (Tzeng et al. 2017).
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FCNs in the Wild. Hoffman et al. (2016), illustrated in Figure 2.17, train itera-
tively and alternately a semantic segmentation network, shared between source
and target domains, and a discriminator on the extracted features to perform do-
main adversarial training. Moreover, to further constrain the constructed segmen-
tation maps in the target domain, the label statistics from the source domain are
enforced on the target domain with an additional constrained multiple instance
loss (constrained MI loss), encouraging the predictions of the target domains
to have a label distribution within the expected range observed in the source
domain.

Figure 2.17 – FCNs in the Wild network overview. Domain adversarial training
is performed on intermediate features of the segmentation network,
shared between the two domains. Additionally, the class distribu-
tion of the target domain are aligned onto the one of the source
data with what the authors call constrained multiple instance loss,
encouraging the predictions on the target domain to have a label
distribution within the expected range observed in the source do-
main. Illustration from (Hoffman et al. 2016).
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2.2.3.2 Output-space Adversarial Alignment

In semantic segmentation, adversarial approaches operating on close-to-prediction
representations have had the most success. We present two particular state-of-the-
art approaches following this paradigm.

AdaptSegNet. Adversarial-based approaches to UDA focus on enforcing that
features extracted at a particular level of the neural network are made indis-
tinguishable between source and target domains. To this aim, Tsai et al. (2018)
consider semantic segmentation maps as structured outputs containing spatial
similarities between source and target domains and propose to perform adver-
sarial alignment on the segmentation softmax outputs of the model. Moreover, to
improve further the performance of the adapted model, their model AdaptSegNet
constructs a multi-level adversarial network with domain adaptation modules at
multiple feature levels, each computing segmentation outputs and aligning them
adversarially between source and target domains. Figure 2.18 describes the archi-
tecture of this network.

Figure 2.18 – AdaptSegNet architecture overview. Images are passed through
the segmentation network to obtain output predictions into a DA
module. Source predictions only are used to compute a segmenta-
tion loss Lseg based on the source ground-truth. Target predictions
are brought closer to the source ones thanks to an adversarial loss
Ladv on a discriminator network trained to distinguish whether the
input comes from the source or the target domain. Illustration from
(Tsai et al. 2018).
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AdvEnt. Inspired by (Tsai et al. 2018), Vu et al. (2019a) base their adaptation
strategy on output space features. However, instead of considering the segmen-
tation softmax outputs, they develop two UDA strategies based on the entropy of
the pixel-wise predictions, or more specifically on the weighted self-information
maps of the outputs. The first one, Minimizing Entropy (MinEnt), proposes to
directly minimize the entropy on the target domain, which can be seen as a soft-
assignment version of a pseudo-label cross-entropy loss (cf. Chapter 4 for more
details on training with pseudo-labels). The second one, Adversarial Entropy
Minimization (AdvEnt), proposes to minimize the entropy by performing adver-
sarial training on the weighted self-information maps between source and target
domains. Both approaches are illustrated in Figure 2.19.

Figure 2.19 – MinEnt and AdvEnt architecture overview. For each input image,
the weighted self-information is computed from the prediction out-
put of the segmentation network and used to minimize the entropy
of the minimzation with two approaches. In MinEnt, the entropy of
the predictions is directly minimized by minimizing the weighted
self-information maps. In AdvEnt, adversarial training is performed
to enforce the consistency of the weighted self-information maps be-
tween domains. Red arrows are used for target domain and blue
arrows for source domain. Illustration from (Vu et al. 2019a).
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2.3 Unsupervised Domain Adaptation for Urban Scene
Segmentation

2.3.1 Context

2.3.1.1 Specific Issues of Semantic Segmentation

While classification requires to produce image-level predictions and object de-
tection requires producing bounding-box localization and bounding-box-level
categories, semantic segmentation involves pixel-level prediction, which poses a
unique set of challenges while addressing UDA. With the need to produce input-
sized outputs, semantic segmentation models need to keep a large amount of
information in their features to produce precise enough pixel-wise predictions,
leading to very large feature spaces. Furthermore, due to the co-occurence of
categories in semantic segmentation compared to classification, UDA may have to
deal with uneven domain shifts for each category, coexisting within individual
target inputs. Practically, having to deal with networks with large feature spaces
automatically requires a lot of computing power and large Graphics Processing
Unit (GPU) memory to store the features for each image of the batch for SGD. With
limited GPU memory, one has to consider small mini-batches of a couple of images
during training. All in all, training semantic segmentation models is tricky and
demands task-specific methodologies and dedicated UDA architectures.

2.3.1.2 Output-Space Adversarial Baselines

Over the past few years, output-space adversarial alignment (Section 2.2.3.2) has
been used by many methods as a baseline UDA strategy for semantic segmentation.
AdaptSegnet (Tsai et al. 2018) proposes to have adversarial learning on top of
the soft-segmentation predictions F (x) = Px. AdvEnt (Vu et al. 2019a) uses the
weighted self-information maps Ix:

Ix = −PxlogPx, (2.14)

with entrywise multiplication and logarithm. More generally, we denote Qx the
used representation, which stands for either Px in (Tsai et al. 2018) or Ix in (Vu
et al. 2019a). Such adversarial frameworks serve as the building block on top
of which we developed most of our work. Note nevertheless that many of our
contributions may be extended to other UDA architectures and approaches, which
will be specified in the following chapters when necessary.
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segmenter 
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feature ext. classifier

'source vs. target'
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Figure 2.20 – Output-space adversarial alignment approach to UDA. The seg-
mentation model under training ingests source-domain (green) and
target-domain (blue) data. The former contribute to the segmen-
tation loss, the latter to the adversarial loss, and both to the dis-
criminator’s loss. The three losses (dotted boxes) are defined in
Equation 2.15 and Equation 2.16.

In practice, the discriminator D is a fully-convolutional binary classifier with
parameters ϕ. It classifies segmenter’s output Qx into either class 1 (source) or 0
(target). To train the discriminator on the source dataset Xs and target dataset Xt,
one minimizes the classification loss:

LD =
1

|Xs|
∑
xs∈Xs

LBCE(D(Qxs), 1) +
1

|Xt|
∑
xt∈Xt

LBCE(D(Qxt), 0), (2.15)

where LBCE is the BCE loss defined in Equation 2.4.

Concurrently, the semantic segmentation model, or segmenter, F is trained
over its parameters θ not only to minimize the supervised segmentation loss
LF,seg on source-domain data, but also to fool the discriminator D via minimizing
an adversarial loss LF,adv. The final objective reads:

LF =
1

|Xs|
∑
xs∈Xs

Lseg(Pxs ,ys)︸ ︷︷ ︸
LF,seg

+λadv
1

|Xt|
∑
xt∈Xt

LBCE(D(Qxt), 1)︸ ︷︷ ︸
LF,adv

, (2.16)

with a weight λadv balancing the two terms; Lseg is the pixel-wise CE defined in
Equation 2.5. During training, one alternately minimizes the two losses LD and
LF .

Figure 2.20 provides a high-level view of the training flow in output-space
adversarial alignment UDA approaches. For more details, we refer the readers to
(Tsai et al. 2018) or (Vu et al. 2019a).

To later facilitate the presentation of some of the proposed strategies, the seg-
menter F may be decoupled into a feature extractor, F feat, followed by a pixel-wise
classifier, F cls.
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2.3.2 Urban Scene Semantic Segmentation Datasets

Historically, UDA in CV was mostly popular in classification applications and the
methods were generally evaluated on the office environment object classification
datasets like Office-31 (Saenko et al. 2010) or on numbers classification datasets,
such as MNIST (LeCun et al. 1989), SVHN (Netzer et al. 2011) or USPS (Hull 1994).
With the growing interest in autonomous driving applications of DL, urban scene
semantic segmentation datasets have become popular in the community. In this
real-world context with many sources of domain gaps and critical consequences
on safety when failing to handle them, UDA in multiple specific and practical
scenarios have been studied, the most prominent being synthetic-to-real and city-
to-city. This section describes the datasets that will be used in the experiments of
the following chapters.

2.3.2.1 Cityscapes

Cityscapes (Cordts et al. 2016a) contains 2048× 1024-sized labeled urban scene
images from cities around Germany, split in training and validation sets of 2,975

and 500 samples respectively. Human annotations are based on 34 classes, di-
vided in 7 high-level categories (or super classes). While the segmentation maps
for training examples are available, note that they are not used in UDA applica-
tions where Cityscapes is used as the target domain. Nonetheless, Cityscapes
may also be used as a source domain in some experiments. Figure 2.21 shows
example images from the Cityscapes dataset. Table 2.1 describes the class labels
and mappings of the dataset.

Figure 2.21 – Example of images from the Cityscapes dataset. First row: Real
European urban scene image; Second row: Associated 19-class se-
mantic segmentation map provided by human annotators (colormap
defined in Figure 2.22).
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Figure 2.22 – Urban scene segmentation colormaps. Top: colormap for the 19-
class semantic segmentation setting of Cityscapes; Bottom: colormap
for the 7 high-level categories of classes for urban scene datasets.
“void” refers to both unlabeled pixels and irrelevant or ignored
classes.

2.3.2.2 GTA5

GTA5 (Richter et al. 2016) is a dataset of 24,966 synthetic images of size 1920×
1080 rendered using the eponymous open-world video game. The urban scenes
are all from the car perspective and mimic the streets of American cities. Every
image is annotated with a pixel-wise semantic segmentation map with labels over
19 classes compatible with Cityscapes. This dataset is generally used as a source
domain for UDA experiments. As a consequence, it only includes a fully-labeled
train set and no validation or test set. Figure 2.23 shows example images from the
GTA5 dataset. Table 2.2 describes the class labels and mappings of the dataset.

2.3.2.3 SYNTHIA

The SYNTHIA dataset (Ros et al. 2016) is a synthetic dataset of urban scenes
that proposes a split designed for domain adaptation to Cityscapes, SYNTHIA-
RAND-CITYSCAPES. It is composed of 9,400 synthetic images of size 1280 ×
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Class Name Orig. Id Std. Id Category Used?
unlabeled 0 void
ego vehicle 1 void
rectification border 2 void
out of roi 3 void
static 4 void
dynamic 5 void
ground 6 void
road 7 0 flat ✓
sidewalk 8 1 flat ✓
parking 9 flat
rail track 10 flat
building 11 2 construction ✓
wall 12 3 construction ✓
fence 13 4 construction ✓
guard rail 14 construction
bridge 15 construction
tunnel 16 construction
pole 17 5 object ✓
polegroup 18 object
traffic light 19 6 object ✓
traffic sign 20 7 object ✓
vegetation 21 8 nature ✓
terrain 22 9 nature ✓
sky 23 10 sky ✓
person 24 11 human ✓
rider 25 12 human ✓
car 26 13 vehicle ✓
truck 27 14 vehicle ✓
bus 28 15 vehicle ✓
caravan 29 vehicle
trailer 30 vehicle
train 31 16 vehicle ✓
motorcycle 32 17 vehicle ✓
bicycle 33 18 vehicle ✓
license plate -1 vehicle

Table 2.1 – Classes of Cityscapes. First two columns: names and ids of original
classes; Third column: ids of the classes standardly used in the 19-class
semantic segmentation setting of Cityscapes. Not numbered classes
are not used; Fourth column: high-level categories (or super classes)
of the class (color-code as defined in Figure 2.22); Fifth column: ✓
indicates that the class is considered during training and test with
super classes, the other classes are ignored.
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Figure 2.23 – Example of images from the GTA5 dataset. First row: Synthetic
urban scene image; Second row: Associated 19-class semantic seg-
mentation map provided by simulation (colormap defined in Fig-
ure 2.22).

Class Name Id Category Used?
road 0 flat ✓
sidewalk 1 flat ✓
building 2 construction ✓
wall 3 construction ✓
fence 4 construction ✓
pole 5 object ✓
traffic light 6 object ✓
traffic sign 7 object ✓
vegetation 8 nature ✓
terrain 9 nature ✓
sky 10 sky ✓
person 11 human ✓
rider 12 human ✓
car 13 vehicle ✓
truck 14 vehicle ✓
bus 15 vehicle ✓
train 16 vehicle ✓
motorcycle 17 vehicle ✓
bicycle 18 vehicle ✓
unlabeled -1 void

Table 2.2 – Classes of GTA5. First two columns: names and ids of the classes.
Note that these classes are common with Cityscapes; Third column:
high-level categories (or super classes) of the class; Fourth column:
✓ indicates that the class is considered during training and test both
with the standard 19-class setting and with super classes, the other
classes are ignored.

760, fully annotated with pixel-wise semantic labels over 16 classes in common
with Cityscapes as well as other ground-truth modalities, for instance, depth
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information. Compared to GTA5 whose images are all from the car perspective,
SYNTHIA features photo-realistic frames from multiple viewpoints. Usually, this
dataset is only used for training purposes as a source domain. Thus, it doesn’t
include either validation or test sets. Figure 2.24 shows example images from
the SYNTHIA dataset. Table 2.3 describes the class labels and mappings of the
dataset.

Figure 2.24 – Example of images from the SYNTHIA dataset. First row: Syn-
thetic urban scene image; Second row: Associated 16-class semantic
segmentation map provided by the simulation (colormap defined
in Figure 2.22); Third row: Associated depth map provided by the
simulation (brighter means closer).

2.3.2.4 Mapillary Vistas

Mapillary Vistas (Neuhold et al. 2017), Mapillary in short, is a dataset collected
in multiple cities around the world, which is composed of 18,000 training and
2,000 validation labeled scenes of varying sizes. Figure 2.25 shows example images
from the Mapillary dataset. Table 2.4 describes the class labels and mappings of
the dataset.

2.3.2.5 IDD

IDD (Varma et al. 2019) is an Indian urban dataset having 6,993 training and
981 validation labeled scenes of size 1280×720. Figure 2.26 shows example images
from the IDD dataset. Table 2.5 describes the class labels and mappings of the
dataset.
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Class Name Orig. Id 16-c. Id 13-c. Id Category Used?
void 0 void
sky 1 9 6 sky ✓
building 2 2 2 construction ✓
road 3 0 0 flat ✓
sidewalk 4 1 1 flat ✓
fence 5 4 construction ✓
vegetation 6 8 5 nature ✓
pole 7 5 object ✓
car 8 12 9 vehicle ✓
traffic sign 9 7 4 object ✓
pedestrian 10 10 7 human ✓
bicycle 11 15 12 vehicle ✓
motorcycle 12 14 11 vehicle ✓
parking-slot 13 flat
road-work 14 flat
traffic light 15 6 3 object ✓
terrain 16 nature ✓
rider 17 11 8 human ✓
truck 18 vehicle ✓
bus 19 13 10 vehicle ✓
train 20 vehicle ✓
wall 21 3 construction ✓
lanemarking 22 flat

Table 2.3 – Classes of SYNTHIA. The reported classes correspond to the
SYNTHIA-RAND-CITYSCAPES split. First two columns: names and
ids of the classes; Third and fourth columns: ids of the classes stan-
dardly used in the 16-class and 13-class semantic segmentation set-
ting of SYNTHIA. Not numbered classes are not used; Fifth column:
high-level categories (or super classes) of the class; Sixth column: ✓
indicates that the class is considered during training and test with
super classes, the other classes are ignored.

2.3.2.6 Evaluation

Semantic segmentation models are generally evaluated in terms of Intersection
over Union (IoU), also known as Jaccard index, per class or mean Intersection
over Union (mIoU) over all classes, expressed in percentage. The IoU is a distance
between two sets A and B defined as the ratio between the intersection of the sets
and their union:

IoU(A,B) =
|A ∩B|
|A ∪B|

. (2.17)

When evaluating the performance of a semantic segmentation model on a specific
class, the IoU metric is computed between the ground-truth and the predicted set
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Figure 2.25 – Example of images from the Mapillary dataset. First row: Real
urban scene image; Second row: Associated high-level category se-
mantic segmentation map (colormap defined in Figure 2.22).

Figure 2.26 – Example of images from the IDD dataset. First row: Real indian
urban scene image; Second row: Associated high-level category se-
mantic segmentation map (colormap defined in Figure 2.22).

of pixels of this class. The higher this percentage, the better. The mIoU is computed
as the average of the IoU of all the considered classes, sometimes excluding some
irrelevant or problematic classes.

Since the goal of UDA is to train a model to perform on the target domain, the
performance of UDA models are only evaluated on the target dataset. Moreover,
since the source and target domain must be associated with the same task, the
semantic labels of source and target must also be shared. Thus, “mIoU-C” may
refer to the mIoU over the C classes shared between the source and target datasets.

2.3.3 Positioning

The literature on UDA is rich, with a variety of models and strategies to tackle
the problematics of the task, especially in the complex semantic segmentation
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Class Name Id Category Used?
bird 0 other
ground animal 1 other
curb 2 construction ✓
fence 3 construction ✓
guard rail 4 construction ✓
barrier 5 construction ✓
wall 6 construction ✓
bike lane 7 flat ✓
crosswalk - plain 8 flat ✓
curb cut 9 flat ✓
parking 10 flat ✓
pedestrian area 11 flat ✓
rail track 12 flat ✓
road 13 flat ✓
service lane 14 flat ✓
sidewalk 15 flat ✓
bridge 16 construction ✓
building 17 construction ✓
tunnel 18 construction ✓
person 19 human ✓
bicyclist 20 human ✓
motorcyclist 21 human ✓
other rider 22 human ✓
lane marking - crosswalk 23 flat ✓
lane marking - general 24 flat ✓
mountain 25 nature
sand 26 nature
sky 27 sky ✓
snow 28 nature
terrain 29 flat ✓
vegetation 30 nature ✓
water 31 nature
banner 32 object

Class Name Id Category Used?
bench 33 object
bike rack 34 object
billboard 35 object
catch basin 36 object
cctv camera 37 object
fire hydrant 38 object
junction box 39 object
mailbox 40 object
manhole 41 object
phone booth 42 object
pothole 43 object ✓
street light 44 object ✓
pole 45 object ✓
traffic sign frame 46 object ✓
utility pole 47 object ✓
traffic light 48 object ✓
traffic sign (back) 49 object ✓
traffic sign (front) 50 object ✓
trash can 51 object
bicycle 52 vehicle ✓
boat 53 vehicle ✓
bus 54 vehicle ✓
car 55 vehicle ✓
caravan 56 vehicle ✓
motorcycle 57 vehicle ✓
on rails 58 vehicle ✓
other vehicle 59 vehicle ✓
trailer 60 vehicle ✓
truck 61 vehicle ✓
wheeled slow 62 vehicle ✓
car mount 63 void
ego vehicle 64 void
unlabeled -1 void

Table 2.4 – Classes of Mapillary Vistas. Due to its size, the table is split in two.
The organization of both is the same. First two columns: names and
ids of the classes; Third column: high-level categories (or super classes)
of the class; Fourth column: ✓ indicates that the class is considered
during training and test with super classes, the other classes are ig-
nored.

problem. However, the gap in performance between fully supervised learning
and UDA is still large, leading to hopes of finding new better performing UDA

techniques to bridge this gap. Moreover, the classical UDA scenario is very rigid:
its scope is limited to the adaptation of a single source domain to a single tar-
get domain, sharing a single task, on which the source data is fully annotated
while the target data is completely unannotated. Direct distribution alignment
approaches, image-level approaches and adversarial approaches of the literature
constitute a powerful toolbox for closing the gap between two domains based on
a given task. However, they can neither directly leverage additional data from
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Class Name Id Category Used?
road 0 flat ✓
parking 1 flat
drivable fallback 2 flat ✓
sidewalk 3 flat ✓
rail track 4 flat
non-drivable fallback 5 flat
person 6 human ✓
animal 7 other
rider 8 human ✓
motorcycle 9 vehicle ✓
bicycle 10 vehicle ✓
autorickshaw 11 vehicle ✓
car 12 vehicle ✓
truck 13 vehicle ✓
bus 14 vehicle ✓
caravan 15 vehicle ✓
trailer 16 vehicle ✓
train 17 vehicle ✓
vehicle fallback 18 vehicle ✓
curb 19 construction ✓

Class Name Id Category Used?
wall 20 construction ✓
fence 21 construction ✓
guard rail 22 construction
billboard 23 object ✓
traffic sign 24 object ✓
traffic light 25 object ✓
pole 26 object ✓
polegroup 27 object
obs-str-bar-fallback 28 object
building 29 construction ✓
bridge 30 construction
tunnel 31 construction
vegetation 32 nature ✓
sky 33 sky ✓
fallback background 34 object
unlabeled 35 void
ego vehicle 36 void
rectification border 37 void
out of roi 38 void
license plate 39 vehicle

Table 2.5 – Classes of IDD. Due to its size, the table is split in two. The organi-
zation of both is the same. First two columns: names and ids of the
classes; Third column: high-level categories (or super classes) of the
class; Fourth column:✓ indicates that the class is considered during
training and test with super classes, the other classes are ignored.

the source or target domain, nor be trivially extended to more than two domains.
Based on the UDA approaches of this literature, my Ph.D. work aims at broadening
the classical UDA scenario to more practical cases depending on its applications,
especially in an autonomous driving context.

For instance, even though the main objective is to train a semantic segmentation
model for the target domain using unlabeled target data, the source data used by
the UDA model does not need to be restricted to pairs of images and semantic seg-
mentation maps from a practical standpoint. Indeed, especially when synthetic
source data is considered, more modalities could be acquired and included in the
training process as Privileged Information (PI): instance segmentation, 2D bound-
ing boxes, or even depth information, also more and more often sparsely available
in real datasets thanks to joint scanning with LiDAR. Chapter 3 studies how to
effectively use additional knowledge in the source domain as PI, especially depth
information, and presents, in particular, the architecture Bilinear Multimodal Do-
main Adaptation (BerMuDA) we propose to improve adversarial UDA approaches
in the presence of PI.

Moreover, some parallels can be made between UDA and semi-supervised learn-
ing: indeed, while in UDA two different domains are considered with the source
labeled and the target unlabeled, semi-supervised learning aims at training mod-
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els using both few labeled data and a larger unlabeled dataset. Analyzing the UDA

problem from a semi-supervised learning point of view may shed new light on
ways to better leverage the unlabeled target data. In particular, Self-Training (ST)
is a semi-supervised learning method that uses a pre-trained classifier on the
unlabeled data to generate more labeled samples, which can be used by a su-
pervised learning method. Generally, in this kind of approach, only the most
confident predictions are used as pseudo-labels. Chapter 4 studies how to improve
UDA methods by using this semi-supervised learning ST strategy. In particular,
it discusses how to properly estimate the confidence of the predictions used to
generate pseudo-labels and introduces two novel methods to this end: Entropy-
based Self-supervised Learning (ESL), which exploits the entropy as a measure
of confidence, and Confidence Learning for Domain Adaptation (ConDA), which
learns the confidence with an auxiliary NN.

Finally, while the standard UDA scenario is useful for autonomous driving ap-
plications, especially in the synthetic-to-real context, it is still very limited when
considering practical use-cases. Indeed, autonomous vehicles may encounter a
large variety of urban scene scenarios in the wild, such as varying weather condi-
tions, lighting conditions, or different cities, each of those representing a specific
domain. While standard UDA allows us to train a model on a particular unla-
beled target domain, it may not generalize to this wide variety of scenarios. Thus,
Chapter 5 extends the single source-single target UDA setting to UDA to multiple
target domains. More specifically, we introduce two adversarial frameworks for
multi-target UDA, Multi-Discriminator (Multi-Dis.) and Multi-Target Knowledge
Transfer (MTKT), as well as an adversarial method for continual learning UDA,
Continual Target Knowledge Transfer (CTKT).
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Chapter abstract

One advantage of synthetic imagery is the ease with which additional ground-
truth information may be obtained, e.g. other modalities, which can be con-
sidered as Privileged Information (PI). This chapter studies the scenario of
Unsupervised Domain Adaptation (UDA) from synthetic images for semantic
segmentation with depth as PI, in the context of autonomous driving. It intro-
duces our contribution, Bilinear Multimodal Domain Adaptation (BerMuDA),
which exploits this PI by adversarial training with a multimodal discrimina-
tor. More specifically, BerMuDA proposes to efficiently learn a bilinear fusion
between the two modalities to optimize the ability of the discriminator to
distinguish between the source and target domains.

The work in this chapter has led to the publication of a conference paper:

• Taylor Mordan, Antoine Saporta, Alexandre Alahi, Matthieu Cord, and
Patrick Pérez (2020). “Bilinear Multimodal Discriminator for Adversarial
Domain Adaptation with Privileged Information”. In: Symposium of the
European Association for Research in Transportation (hEART).
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The Unsupervised Domain Adaptation (UDA) methods for semantic segmenta-
tion presented in Chapter 2, such as (Tsai et al. 2018) or (Vu et al. 2019a), proved
to be particularly effective in synthetic-to-real scenarios. Resorting to synthetic im-
agery to produce the labeled source dataset while being able to adapt to the real
target domain has many advantages. In addition to being substantially cheaper to
annotate than real images, the synthetic image generator is significantly less prone
to labeling errors compared to human-annotated data. Furthermore, synthetic im-
agery has the freedom to generate urban scenes from virtually any conceivable
situation, including unusually-rare scenarios in real life. These properties of syn-
thetically generated datasets can help prediction models trained with Domain
Adaptation (DA) to be more robust and better adjust to the unpredictability of
urban environments.

Additionally, synthetic urban scene generators may create ground-truth anno-
tations for other modalities than semantic segmentation maps, for instance, depth
maps, without great additional costs. This extra data could be used as Privileged
Information (PI) (Vapnik and Izmailov 2015) to further improve the UDA train-
ing for semantic segmentation. To leverage this PI, the UDA strategies need to be
adapted both in terms of architectures and in terms of learning.

This chapter first extends the literature review of Chapter 2 by discussing UDA

approaches revolving on multiple modalities, both in Multi-Task Learning (MTL)
settings and PI settings. Then, it presents our contribution Bilinear Multimodal Do-
main Adaptation (BerMuDA) which proposes a new way to adapt the discriminator
of adversarial UDA strategies when dealing with PI such as depth.
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3.1 Domain Adaptation with Multiple Modalities

This section reviews UDA approaches dealing with multiple modalities in the
literature, first developing UDA in an MTL context, then in a PI scenario. It finally
dicusses how to more generally leverage multiple modalities in Deep Neural
Network (DNN) architectures.

3.1.1 Multi-Task Unsupervised Domain Adaptation

The methods discussed in Chapter 2 consider UDA in the traditional context
where both source and target domains deal with a single task. Nonetheless, if
data for other tasks were to be accessible for the source domain, one may extend
the standard UDA scenario to an MTL context (Caruana 1997). By training the UDA

model on multiple tasks simultaneously with shared representations, the model
should be able to generalize better on each of the tasks on the one hand and, more
importantly, on the target domain on the other hand.

Cross-Domain Multi-Task Feature Learning. Ren and Y. J. Lee (2018) propose
to apply an adversarial domain adaptation strategy (see Section 2.2.3) in an MTL

setting. More specifically, their approach considers a single base network, a bot-
tleneck consisting of dilated convolution layers and multiple task heads, one for
edge detection, one for surface normal estimation, and one for depth prediction.
A discriminator, placed at the end of the base network, ensures that the learned
features are domain invariant. Figure 3.1 illustrates their architecture.

Cross-Task Distillation. Kundu et al. (2019) build an architecture relying on a
good balance between the multiple tasks to ensure an easy adaptation to the target
domain. Figure 3.2 illustrates their architecture. The base model is first trained
on the source domain along with a cross-task distillation module (blue block on
Figure 3.2): this module aims at predicting representation of each task from the
combined representations of all the other tasks. This module effectively balances
the importance given to each task during the training since the least performing
task will exhibit higher discrepancy between its direct prediction and indirect
prediction through cross-task distillation, thus giving it more importance in the
next iterations. In the second training phase, the base model is adapted to the
target domain. The whole model is frozen except for the single last residual block
(in yellow on Figure 3.2), which is trained by minimizing the cross-task distillation
module discrepancy losses. While the source-target alignment is performed with
an adversarial approach in (Ren and Y. J. Lee 2018), Kundu et al. (2019) leverage



48 unsupervised domain adaptation with privileged information

the MTL framework for the UDA by learning on the source domain to distill
knowledge from each task to the other tasks.

Figure 3.1 – Cross-Domain Multi-Task Feature Learning Architecture.. While
the upper net predicts the depth, surface normal and edges of syn-
thetic images (source domain) in a supervised fashion, a domain
discriminator D tries to differentiate between real (target) and syn-
thetic (source) features. Illustration from (Ren and Y. J. Lee 2018).

Figure 3.2 – Cross-Task Distillation Architecture.. The model is pre-trained on
source along with a cross-task distillation module (blue block). It is
adapted in a second phase on the target domain by finetuning only
the last residual block (in yellow); this is achieved by minimizing the
cross-task distillation module discreapancy losses to transfer knowl-
edge from each task to the other tasks. Illustration from (Kundu et al.
2019).
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3.1.2 Privileged Information in Unsupervised Domain Adapta-
tion

Nonetheless, the additional tasks on the source domain could be instrumental
and a way to regularize and learn better features, while the objective of the UDA

model is still to perform a single task on the target domain. In the context of PI, the
scenario where the model is trained in an MTL on the source domain while only
the main task is evaluated on the target domain is more generally considered.

SPIGAN. K.-H. Lee et al. (2019) propose Simulator Privileged Information
and Generative Adversarial Network (SPIGAN), illustrated in Figure 3.3. Their
architecture is inspired by image-to-image translation-based UDA approaches such
as (Bousmalis et al. 2017) (see Section 2.2.2.1). A Generative Adversarial Network
(GAN) G learns to transform source images into the style of the target domain.
A discriminator D is trained to distinguish between fake generated images and
real target domain images. Both the semantic segmentation task T and a depth
prediction model P , based on the depth privileged information zs, are trained on
source data using the original and generated images while directly transferring
the annotations from the former to the latter.

Figure 3.3 – Simulator Privileged Information and Generative Adversarial Net-
work Architecture. SPIGAN learns a GAN G to translate source syn-
thetic image in the target real style by adversarial training with a
discriminator D. The model uses both original and translated source
images to train a semantic segmentation network T and a depth pre-
diction network P by exploiting the ground-truth predictions both
for semantic segmentation ys and for depth zs as PI. Though it is not
used at test time, training the depth prediction network P serves as
PI regularization to the generator G. Illustration from (K.-H. Lee et al.
2019).
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DADA. Vu et al. (2019b) take some inspiration from the primary MTL context
of (Mordan et al. 2018) and Adversarial Entropy Minimization (AdvEnt) (Vu et al.
2019a) (see Section 2.2.3.2) to build Depth-Aware Domain Adaptation (DADA).
First, the semantic segmentation model is augmented by an auxiliary depth pre-
diction module inspired by (Mordan et al. 2018). From the extracted features of
the model, an encoder computes features for depth prediction, simply computed
with an average pooling – the depth is entirely encoded in these features since
a simple pooling is required to extract the predictions. These auxiliary features
are then merged into the segmentation model with a decoder plus a pointwise
feature fusion. Moreover, the adversarial discrimination of DADA is applied on
the joint product of the depth output and the weighted self-information of the
output. The DADA architecture is illustrated in Figure 3.4.

Figure 3.4 – Depth-Aware Domain Adaptation Architecture. DADA uses an auxil-
iary encoder from the features of the segmentation model to perform
depth prediction and injects these new features into the segmentation
model with a decoder and feature fusion. Furthermore, adversarial
discrimination is performed on the fusion of predicted depth and
weighted self-information. Illustration from (Vu et al. 2019b).

3.1.3 Dealing with Multiple Modalities

Both (K.-H. Lee et al. 2019) and (Vu et al. 2019b) exploit the depth PI by learning
an additional depth prediction module. SPIGAN (K.-H. Lee et al. 2019) completely
separates the two task modules – only the image generator is “shared”. Following
a similar strategy in an output-space adversarial approach, one could consider



3.1 domain adaptation with multiple modalities 51

training a different discriminator for each modality. On the other hand, DADA

(Vu et al. 2019b) explicitly leverages both modalities in its single model with
both a feature fusion and a DADA fusion (joint product) between depth map
and weighted self-information to perform adversarial training on this merged
representation. Merging the multiple modalities into a single representation in the
context of UDA with PI allows leveraging the PI while performing the alignment
between source and target on this single representation. This section studies
bilinear fusions which are a class of functions that can fuse multiple modalities
into a single representation.

Visual Question Answering and Block. Bilinear fusions have been widely
studied for the Visual Question Answering task, where such models have been
used with text and image modalities (Fukui et al. 2016; J.-H. Kim et al. 2016;
Ben-Younes et al. 2017; Ben-Younes et al. 2019).

Ben-Younes et al. (2017) propose a general tensor-based fusion, taking as inputs
the two modality representations – text and image – and, through the tensor bilin-
ear product, outputting a fused representation. Practically, their method MUTAN
reduces the number of learnable parameters required for the tensor fusion by
performing a Tucker decomposition: the 3-way tensor T ∈ Rdq×dv×do is expressed
as the product between factor matrices Wq,Wv,Wo, and a core tensor T c:

T = ((T c ×1Wq)×2Wv)×3Wo, (3.1)

where Wq ∈ Rdq×tq , Wv ∈ Rdv×tv , Wo ∈ Rdo×to , T c ∈ Rtq×tv×to , and ×i is the
i−mode product between a tensor and a matrix. The MUTAN fusion is illustrated
in Figure 3.5.

Ben-Younes et al. (2019) extend this approach with BLOCK: the core tensor is
now expressed as a block-diagonal tensor. MUTAN can be seen as a particular
case of BLOCK where there is only a single block in the core tensor.

Figure 3.5 – MUTAN Fusion Architecture. The multiple modalities are merged
into a single representation by the bilinear product associated to
the tensor T . The Tucker decomposition {T c,Wq,Wv,Wo} allows a
parameter-efficient fusion. Illustration from (Ben-Younes et al. 2017).
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Bilinear Fusion in Domain Adaptation. Bilinear fusions have also been ex-
plored in UDA contexts without PI. Long et al. (2018) propose a conditional ad-
versarial alignment approach that relies on the multimodal information of the
feature representation and the classifier prediction obtained by multilinear fusion,
either the tensor product of those two modalities or a randomized version for
higher-dimensional scenarios. Figure 3.6 illustrates their method.

Figure 3.6 – Conditional Domain Adversarial Network Architecture. (a) In
lower-dimensional scenario, the discriminator is applied on the mul-
tilinear map between feature representation and classifier prediction.
(b) In higher-dimensional scenario, a randomized multilinear map
is considered where a few components of the feature representation
and the classifier prediction are selected at random. Illustration from
(Long et al. 2018).

On a very different setting, Qi et al. (2018) use bilinear fusions to align audio-
visual multimodal distributions, without PI.

Finally, in UDA with PI and as mentioned earlier, DADA (see Figure 3.1.2) also
uses bilinear fusion as the joint product of depth and weighted self-information.

3.2 BerMuDA : Bilinear Multimodal Discriminator
for Adversarial Domain Adaptation with Privi-
leged Information

SPIGAN (K.-H. Lee et al. 2019) and DADA (Vu et al. 2019b) are two approaches
tackling UDA from synthetic images and using depth as privileged information.
The first one uses depth as an additional way to regularize the training of the
generator that translates images from the source domain to the target one. PI is
therefore not directly used to enhance the segmentation network, which should
yield less transfer between tasks. On the other hand, DADA, among other ideas,
employs a simple element-wise product to fuse semantic segmentation and depth
modalities, thus focusing on close objects.
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Our approach BerMuDA, presented in this section, opts for bilinear transforma-
tions based on BLOCK (Ben-Younes et al. 2019) which allow performing more
complex fusions between the two modalities, leading to more discriminative fused
features.

3.2.1 Model

BerMuDA addresses UDA with depth as PI on the source domain. The model is
built on standard output-space adversarial training for UDA (see Section 2.2.3.2),
and adapts both the segmentation and discriminator networks to accommodate
to the additional modality, as illustrated in Figure 3.7. In particular, alignment
between both modalities is performed with a bilinear fusion integrated within
the discriminator.

Shared

Segmentation
Loss

Depth
Loss

Bilinear 
Multimodal

Discriminator

Adversarial
Loss

Target

Source

Figure 3.7 – BerMuDA’s architecture. A bilinear multimodal discriminator aligns
segmentation and depth predictions into a common representation
of both modalities used for adversarial training.

3.2.1.1 Overview of the approach

Let us consider two image domains: the synthetic source Xs, with dataset Xs,
and the real target Xt, with dataset Xt. A source example

(
xs,y

seg
s ,y

dep
s

)
is com-

posed of a synthetic image xs ∈ Xs with the corresponding ground truth seg-
mentation map yseg

s and depth map ydep
s , represented as spatial arrays of one-hot

vectors of C classes and of scalar distance values respectively. On the other hand,
a target domain example only contains an unlabeled real image xt ∈ Xt. In this
context of learning with PI, the model is a main network F taking either a source
or target image x as input and yielding both a segmentation P seg

x and a depth map
P

dep
x as output, denoted as

(
P

seg
x ,P

dep
x

)
= F (x) and illustrated in Figure 3.7. The

model consists of a backbone network with two task-specific prediction branches
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for segmentation and depth prediction that are learned jointly, as is common
practice in MTL problems (Girshick 2015; Kokkinos 2017).

Supervised training on source domain. Since annotations are available on the
source domain, the model is learned in the standard supervised MTL way for
source examples, with the supervised loss LF,sup being a linear combination of all
task losses:

LF,sup = LF,seg + λF,depthLdepth, (3.2)

where λdepth is a hyper-parameter balancing both task losses. The segmentation
loss LF,seg is the usual pixel-wise cross-entropy loss (Equation 2.5). The depth
prediction loss LF,depth is a reverse Huber regression loss (Laina et al. 2016) applied
on depth predictions P dep in log space, to focus more on closer objects, as in
(Mordan et al. 2018):

LF,depth
(
P dep

xs
,ydep

s

)
=

H∑
h=1

W∑
w=1

berHu
(
P dep

xs
[h,w,·]− ydep

s [h,w,·]
)
, (3.3)

where H ×W are the dimensions of the input image xs (and thus are also the
dimensions of its ground-truth depth map y

dep
s ) and with the reverse Huber

function defined by

berHu (e) =

{
|e| if |e| ≤ τ,
e2+τ2

2τ
if |e| > τ,

(3.4)

τ being a threshold set to 1/5 of the maximum error in the mini-batch.

Adversarial training on target domain. Target domain examples are used for
learning through an adversarial training procedure as no annotation is available
on this domain. For this, a discriminator D is learned concurrently to the main
network F , and they compete against each other for optimizing exclusive objec-
tives. Following output-space adversarial alignment strategies (Section 2.2.3.2),
for an input image x in either domain, the discriminator D takes the output F (x)
of network F as input, and makes a prediction D(F (x)) for the domain of x. Let
us introduce a new kind of discriminator network D, called Bilinear Multimodal
Discriminator, to handle the multiple modalities output by the network F , as
showcased in Figure 3.7. With the architecture of this discriminator D further
described in Section 3.2.1.2, the training procedure is similar to standard output-
space adversarial alignment with, on one hand, the minimization of the binary
cross-entropy loss LD to learn D (Equation 2.15) and, on the other hand, the ad-
versarial binary cross-entropy loss LF,adv on the target domain examples to train
F in order to fool the discriminator D (Equation 2.16).
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Full training on both domains and deployment. The full loss function LF

minimized by the network F is then the weighted sum of the supervised loss
(Equation 3.2) and the adversarial loss (Equation 2.16):

LF = LF,seg + λdepthLF,depth + λadvLF,adv, (3.5)

with λadv a hyper-parameter controlling the weight of the adversarial loss. The
training therefore alternates between optimizing the network F (Equation 3.5)
and the discriminator D (Equation 2.15).

When deployed, our model does not induce any overhead compared to a stan-
dard segmentation network, as the depth branch is not used. The associated aux-
iliary task is leveraged during training only, under the primary MTL framework
(Mordan et al. 2018).

3.2.1.2 Bilinear Multimodal Discriminator

Figure 3.8 – Bilinear Multimodal Discriminator. The discriminator is composed
of two parts: a bilinear fusion between segmentation and depth rep-
resentations, yielding a multimodal representation of both inputs,
and a fully convolutional classifier to predict the domain of the input
image.

The discriminator D, detailed in Figure 3.8, is composed of a bilinear fusion and
a fully convolutional classifier. The last part is commonly used alone in adversarial
training, and we here add a prior merging layer to handle multimodal inputs.

This additional step takes both segmentation P seg and depth P dep predictions
from F as inputs, and projects them onto f seg and fdep, in a feature space of higher
dimension d through two separate 3× 3 spatial convolutions. Using convolutions
instead of pointwise mappings (Ben-Younes et al. 2017; Ben-Younes et al. 2019)
is a way to generalize to spatial inputs, and therefore to locally aggregate spatial
context, which is especially useful to handle depth prediction P dep composed of a
single channel. The block-diagonal fusion of (Ben-Younes et al. 2019), with K full-
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rank blocks, lets us perform the actual alignment, represented by the green core
tensor in Figure 3.8 (note that the K-block decomposition is not shown for clarity).
This decomposition allows modelling fine interactions while still controlling the
number of parameters in this core tensor. At each spatial position (h,w), f seg

[h,w,·]

and fdep
[h,w,·] are fused into f [h,w,·] through the action of the core tensor, shown

with red arrows in Figure 3.8. For this, they are uniformly divided into K chunks
f̃

seg
k [h,w,·] and f̃dep

k [h,w,·]. Each pair of features is then bilinearly fused to yield a
multimodal feature f̃k [h,w,·]:

f̃k [h,w,·] =
(
f̃

seg
k [h,w,·]

)⊤
Ak

(
f̃

dep
k [h,w,·]

)
+ bk, (3.6)

with Ak and bk the weight matrix and bias learned for chunk k in the core tensor.
The final multimodal representation f [h,w,·] at spatial position (h,w) is the concate-
nation of all K f̃k [h,w,·]. The complete multimodal map f is then fed into the fully
convolutional classifier to output the prediction δ of the domain of input image.

3.2.2 Experimental Results

3.2.2.1 Datasets

As source domain, we use the SYNTHIA dataset (Ros et al. 2016). As detailed
in Section 2.3.2, this dataset is composed of synthetic images annotated with
pixel-wise semantic labels and has the particularity of also including depth map
annotations which may be used as PI in our UDA context. For the target domain,
we use the Cityscapes dataset (Cordts et al. 2016a), without any annotation. The
models are trained on the union of SYNTHIA and Cityscapes training sets with
the 16 common classes between them, and are evaluated on the 16-class and 13-
class (excluding wall, fence and pole classes) subsets with the mean Intersection
over Union (mIoU) metric, reported as the ‘mIoU-16’ and ‘mIoU-13’ metrics respec-
tively, of Cityscapes validation set. Section 2.3.2 and more specifically Table 2.1
and Table 2.3 give more details on the datasets and their classes.

3.2.2.2 Implementation details

As it is common practice, we adopt DeepLab-V2 (L.-C. Chen et al. 2018a) as the
base semantic segmentation architecture, with a ResNet-101 (K. He et al. 2016)
backbone model pre-trained on ImageNet (Deng et al. 2009). The predictors for
segmentation and depth estimation are two separate Atrous Spatial Pyramidal
Pooling (ASPP) modules applied in parallel on the last layer from the backbone.
The discriminator is composed of a bilinear fusion block with K = 50 full-rank
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chunks in dimension d = 200, followed by five convolutional layers with kernel
4×4, stride 2, {64, 128, 256, 512, 1} channels respectively, and leaky Rectified Linear
Unit (ReLU) as activation function.

The main network is learned with Stochastic Gradient Descent (SGD), with an
initial learning rate of 2.5 × 10−4 polynomially decayed with a factor of 0.9, a
momentum of 0.9 and a weight decay of 5 × 10−4. The loss weights are set to
λdepth = 0.001 and λseg = 0.001. The threshold τ of the reverse Huber function
(Equation 3.4) is set to 1/5 of the maximum error in the mini-batch. The discrim-
inator is trained with Adam, with 10−4 as the initial learning rate for the same
polynomial decay, and (0.9, 0.99) for momentum. Each mini-batch contains one
source image of size 1280 × 760 pixels and one target image of size 1024 × 512

pixels.

3.2.2.3 Results and comparison between approaches

In this work, we study several ways to leverage privileged depth information for
UDA and to integrate it within a simple baseline, in order to focus on this aspect
with fair comparisons. These experiments all train a single feature extractor model
with two separate task heads, as illustrated in the BerMuDA’s architecture figure
(Figure 3.7), but merge the modalities with different methods. The improvement
brought by BerMuDA compared to other fusion strategies is detailed in Table 3.1.

Table 3.1 – Comparison of modality fusion approaches in mIoU (%).
Model Results

Name Approach
used in

Privileged
information

Modality
fusion mIoU-16 mIoU-13

Segmentation discriminator AdaptSegNet (Tsai et al. 2018) - - 39.0 45.6
Independent discriminators - ✓ - 39.0 45.9
Joint concatenation - ✓ concatenation 39.3 46.0
Joint product DADA (Vu et al. 2019b) ✓ product 39.5 46.3
Joint bilinear BerMuDA ✓ bilinear 40.2 47.0

The first row shows the baseline method, where no depth information is used,
and the discriminator is applied on segmentation output only. This correspond
to the approach used by AdaptSegNet (Tsai et al. 2018). All subsequent rows
leverage depth in different ways. On the second row is a model simply integrating
depth with two independent discriminators applied on segmentation and depth
outputs, respectively. Its results are comparable with the baseline’s ones, with a
slight improvement of 0.3 points only in mIoU-13, and show that adding depth
supervision does not improve transfer between domains by itself if used in a
naive way. The last three rows present several variants of a joint discriminator,
taking both modalities as input, with differences lying in the way to fuse them.
The first version uses a simple concatenation and the second an element-wise
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product, similar to DADA (Vu et al. 2019b). The last one is our proposed model,
with a bilinear discriminator. It yields the best performance, with improvements
of 1.2 and 1.4 points in both metrics with respect to not using depth information.
The other two variants of a joint discriminator have more limited improvements,
indicating that the alignment step is useful to leverage depth effectively.

Figure 3.9 displays qualitative visualization of segmentation results. These
examples show that including the depth as PI with BerMuDA leads to finer seg-
mentation results and, in particular, the model better detects Vulnerable Road
Users associated to the pedestrian and rider classes.

(a) Image (b) Ground truth (c) AdaptSegNet (d) BerMuDA

Figure 3.9 – Qualitative segmentation results. Input images are presented in (a)
with corresponding ground truths in (b). We show segmentation pre-
dictions by the baseline AdaptSegNet (Tsai et al. 2018) in (c) and by
our proposed model BerMuDA in (d). It is noticeable that BerMuDA
obtains finer segmentation masks than AdaptSegNet for some practi-
cally important classes, such as the pedestrian and rider ones in these
examples.

Finally, we compare the performance of BerMuDA with the other works of the
UDA with PI in the literature in Table 3.2.

BerMuDA achieves 40.2% and 47.0% in mIoU-16 and mIoU-13 respectively. It is
noticeable that it yields better performance than SPIGAN (K.-H. Lee et al. 2019)
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Table 3.2 – Comparison of mIoU results (in %) for SYNTHIA.→ Cityscapes exper-
iments.
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SPIGAN (K.-H. Lee et al. 2019) 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.5
DADA (Vu et al. 2019b) 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

AdaptSegNet (Tsai et al. 2018) 87.0 38.5 77.7 6.6 0.1 24.7 5.6 7.9 78.2 83.4 52.4 18.5 73.5 30.5 14.7 24.5 39.0 45.6
BerMuDA [ours] 87.6 41.9 79.2 10.8 0.3 21.2 3.7 5.7 78.5 83.1 55.7 21.1 76.5 33.2 19.9 24.4 40.2 47.0

(36.8% and 42.5%), which also leverages depth as privileged information to im-
prove adaptation between domains.

Furthermore, it is interesting to compare BerMuDA to DADA (Vu et al. 2019b),
as they are both based around similar ideas, as discussed before. DADA achieves
42.6% and 49.8%, but we can notice that BerMuDA yields better scores on most of
the Vulnerable Road Users classes, which are arguably some of the most important
classes for autonomous driving safety in practice. Specifically, BerMuDA reaches
55.7% for the person class, 21.1% for the rider class and 19.9% for the motorbike one.
This fact that privileged depth information is especially useful for Vulnerable
Road Users has already been hinted at in (Vu et al. 2019b), and we here confirm
it with more emphasis.

In addition to a multimodal fusion, DADA also includes two recent advances,
namely a feature fusion step (Mordan et al. 2018) in the main network, which
modifies its architecture to tailor it to primary MTL and to focus more on seg-
mentation than on depth estimation, and adversarial adaptation on weighted
self-information of AdvEnt (Vu et al. 2019a) instead of the soft-segmentation pre-
dictions of AdaptSegNet (Tsai et al. 2018) we use in this work. Both of these
improvements have been shown to yield better results and are orthogonal to the
choice of fusion. We have shown in Table 3.1 that our bilinear fusion is superior
to the element-wise product used in DADA. Thus, we believe that, as future work,
integrating it within DADA, i.e., combining it with the two improvements, should
then result in greater performance.

3.3 Conclusion

This chapter has investigated UDA in the presence of additional information
in the source domain only, thus called PI. Having access to more annotated data,
even for a different task, proves to help significantly improve the performance of
the UDA model on its primary task.
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I introduced BerMuDA, a contribution of this thesis to UDA for semantic segmen-
tation with PI, such as depth information. Under an adversarial training frame-
work, its discriminator aligns all modalities thanks to a bilinear fusion operation.
This alignment step enables the learning of the privileged modality to better
transfer to the adaptation between domains.

It is notable that latest approaches, e.g., Domain Invariant Structure Extraction
(DISE) (Chang et al. 2019) or Bidirectional Learning (BDL) (Y. Li et al. 2019a),
explore pseudo-labeling and CycleGAN-based image translation strategies, which
yield great results but are also computationally heavy to train. Since they do not
affect the architecture of the discriminator, they should be complementary to the
use of depth as PI through a multimodal discriminator. Overall, the main idea
behind a bilinear multimodal discriminator is to optimize over a large family of
bilinear functions applied on segmentation and depth predictions, encompassing
a wide variety of relevant representations. Although this operation is well suited
to merge depth maps, as bilinear interactions are more expressive, they should
also better generalize to other kinds of structured PI and not just depth maps.

While this chapter developed how to leverage additional data in the source
domain, which is supposedly easily and automatically accessible when consider-
ing synthetic source data, it would be extremely relevant to wonder whether a
similar strategy could be applied directly to the target data and whether it would
be possible to automatically collect annotation from the unlabeled target data and
use it to improve a UDA learning. Chapter 4 develops this concept and introduces
ways to extract and use confident pseudo-labels in the context of UDA.
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Chapter abstract

Self-Training (ST) is a semi-supervised learning strategy that aims at exploit-
ing the predictions of a pre-trained model on unlabeled data to produce pseudo-
annotations that may be used in further training as true annotations. This
chapter studies how to employ this strategy in the context of Unsupervised Do-
main Adaptation (UDA) for semantic segmentation, how to estimate confident
pseudo-labels as well as how to exploit them to improve existing UDA methods.
It introduces two of our contributions to ST for UDA; the first one, Entropy-
based Self-supervised Learning (ESL), exploits the entropy of the predictions as
a measure of confidence, and the second one, Confidence Learning for Domain
Adaptation (ConDA), trains an auxiliary model to predict the confidence of the
model in its predictions.

The work in this chapter has led to the publication of a conference workshop
paper and a journal paper:

• Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez (2020).
“ESL: Entropy-guided self-supervised learning for domain adaptation
in semantic segmentation”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop on Scalability in Autonomous Driving;

• Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu
Cord, and Patrick Perez (2021). “Confidence Estimation via Auxiliary
Models”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI).
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The objective of Unsupervised Domain Adaptation (UDA), developed in Chap-
ter 2, is to train a model to perform on an unlabeled target dataset. While the
literature review of Chapter 2 shows that UDA strategies perform much better
by actively using this unlabeled target data rather than simply using a model
previously trained on a labeled source dataset, UDA model performance is still
far from the performance of models trained on the same target data in a fully-
supervised fashion. Finding better ways to exploit this unlabeled data from the
self-supervised (X. Liu et al. 2021) or semi-supervised learning (X. Yang et al.
2021) community could help acquire supervisory signals on the target domain
that should improve the performance of any UDA model.

Self-Training (ST) with pseudo-labeling (D.-H. Lee 2013) is a simple strategy
that relies on picking up the current predictions on the unlabeled data and using
them as if they were true labels for further training. D.-H. Lee (2013) show that the
effect of pseudo-labeling is equivalent to entropy regularization (Grandvalet and
Bengio 2005). In a UDA setting, the idea is to collect pseudo-labels on the unlabeled
target-domain samples to have an additional supervision loss in the target domain
while making sure to select only reliable pseudo-labels, such that the performance
of the adapted semantic segmentation network effectively improves.

This chapter focuses on ST and pseudo-labeling in the context of UDA for seman-
tic segmentation; in particular, how to extract pseudo-labels, and how to use them
in a UDA learning procedure. It first describes a unified ST protocol for extracting
and exploiting pseudo-labels in UDA frameworks and proposes an overview of
ST strategies in the UDA literature. After this general review, I discuss the con-
fidence metric these methods consider for the model predictions, employed to
select confident pseudo-labels.
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Afterward, the chapter presents two of my contributions to ST for UDA in se-
mantic segmentation, both focused on proposing confidence criteria in the model
predictions which are used to estimate pseudo-labels. The first contribution,
Entropy-based Self-supervised Learning (ESL), developed in Section 4.2, proposes
a simple yet effective entropy criterion to extract pseudo-labels while the second
contribution, Confidence Learning for Domain Adaptation (ConDA), developed
in Section 4.3, introduces an auxiliary neural network to properly estimate the
confidence of the model in its predictions.

4.1 Self-Training in Unsupervised Domain Adapta-
tion

This section describes a unified ST framework, applicable to most UDA strategy.
Then, it completes the literature review of Chapter 2 by discussing ST approaches
for UDA in semantic segmentation.

4.1.1 Self-Training Framework

This section establishes a unified framework for exploiting pseudo-labels ex-
tracted from a given model for ST, independent of the method of extraction. Two
confidence criteria for pseudo-labels extraction will be presented afterwards in
the following Sections (Section 4.2 and Section 4.3)

In addition to the standard UDA strategy, an extra self-supervision with pseudo-
labels on the target dataset Xt, on which no ground-truth annotation is available,
can be included to improve the performance of the segmentation network F . By
attaching pseudo-labels ŷt to the target images xt, the objective function of F
with ST can be written:

LST
F = LF +

λST

|Xt|
∑
xt∈Xt

Lseg(Pxt , ŷt), (4.1)

with a weight λST to balance the ST term, Pxt being the softmax output of the
segmentation model Pxt = F (xt), Lseg being the pixel-wise Cross-Entropy (CE)
defined in Equation 2.5 and LF being the objective function of F without ST (for
output-based adversarial alignement strategies, written as in Equation 2.16).

ST in UDA leverages the domain alignment that has already been achieved
by the UDA strategy, assuming that the predictions of the current segmentation



64 estimating and exploiting confident pseudo -labels for self -training

network F on the target domain are relatively accurate. Following this principle,
a ST approach to UDA can be described as follows (see Figure 4.1):

(1) Train a segmentation network on the target domain using standard UDA;

(2) Collect pseudo-labels on the target training dataset from the predictions of
this network;

(3) Train a new semantic segmentation network from scratch using standard UDA

combined with supervised training on target domain data with pseudo-labels;

(4) Possibly, repeat from step (2) by collecting finer pseudo-labels after each iter-
ation of the algorithm.

Target
Segmentation

Network
Target Domain
Pseudo-labels

ST-improved 
Target

Segmentation
Network

(1) UDA
Training

(2) Collect
Pseudo-

labels

(4) Repeat (2) 

(3) UDA
Training
with ST

Figure 4.1 – Self-training for Unsupervised Domain Adaptation. A segmenta-
tion model is first learned with Unsupervised Domain Adaptation
and used to collect pseudo-labels on target domain images. These
automatically annotated data are used to subsequently retrain the
model, an operation that can be iterated.

While the general idea of ST is simple and intuitive, collecting good pseudo-
labels in step (2), which improves segmentation performance, is quite tricky,
since erroneous predictions can significantly deteriorate performances. Indeed,
in case many erroneous predictions are present among the pseudo-labels, ST can
be counter-productive and significantly deteriorate the performance of the final
model in the target domain. Thus, a measure of confidence should be used to
gather only the most reliable predictions and use them as pseudo-labels.

4.1.2 Self-Training in the Literature

Maximum Class Probability. A standard strategy to select such pseudo-labels
is to use the softmax score, or Maximum Class Probability (MCP), as a measure
of confidence in the prediction. Y. Li et al. (2019a) perform multiple UDA train-
ing iterations; Figure 4.2 illustrates their architecture. At each iteration, their
method trains a new generative model to do image-to-image translation from
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source images to target style (see Section 2.2.2.1) based on the previous model,
then output-space adversarial alignment (see Section 2.2.3.2), and finally extracts
pseudo-labels using a MCP criterion based on a single threshold before re-training
the model to complete the training iteration.

Enforcing this maximum softmax score to be greater than a threshold is a
common practice to filter poor predictions from the constructed pseudo-labels.
Formally, the pseudo-labels extracted using the trained segmentation network F
can be written:

ŷt[h,w,c] =


1, if argmax

c̃

Pxt [h,w,c̃] = c

and Pxt [h,w,c] > µ(c)

0, otherwise,

(4.2)

where µ(c) is a threshold over the softmax prediction score for class c. Pixels with
maximum class score below the relevant threshold are assigned a null pseudo-
label vector ŷt[h,w,·] = 0 (not one-hot then). This assignment effectively excludes
such pixels from the segmentation loss Lseg(xt, ŷt) according to its definition in
Equation 2.5.

A simple way to define this threshold, as in (Y. Li et al. 2019b), would be:

µ(c) = min
(
µ∗,median

{
Pxt [h,w,c] |xt ∈ Xt, h ∈ [H], w ∈ [W ] ∧ argmax

c̃

Pxt [h,w,c̃] = c
})
,

(4.3)
where µ∗ is a hyper-parameter. This threshold ensures that at least 50% of the
predictions for each class are kept based on their softmax prediction score and
that all the predicted labels with a maximum softmax prediction score greater
than µ∗ are kept on the easier-to-predict classes (on which the prediction scores
are rather high over the training set).

Overall, the strategy of ST as described in Section 4.1.1 using this softmax-
based pseudo-label selection criterion is refered as Softmax-based Self-supervised
Learning (SSL) in what follows.

Class-Balanced Self-Training. Zou et al. (2018) propose an iterative ST proce-
dure where the pseudo-labels are generated based on a loss minimization. While
very close to an MCP criterion, the softmax output is normalized by a separate
parameter for each class, determining the proportion of selected pseudo-labels
for the considered class. The difference between these parameters introduce a
different level of bias for each class and tackles inter-class balance.
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Figure 4.2 – Bidirectional Learning Network Architecture. An image transla-
tion model and the segmentation adaptation model collaborate and
improve each other at each training iteration. Pseudo-labels are ex-
tracted based on the MCP and used in self-training to further enhance
the segmentation performance. Illustrations from (Y. Li et al. 2019a)

Instance Adaptive Self-Training. Mei et al. (2020) propose yet another twist
on the MCP approach called Instance Adaptive Self-Training. Their pseudo-label
selection does not rely simply on a single threshold per class, but dynamically
updates these thresholds based on the current image instances depending on the
confidence probability of the class in the image.

Confidence-Regularized Self-Training. Zou et al. (2019) identify that selected
pseudo-labels with MCP-based criteria may lead to overconfident mistakes and
upgrades (Zou et al. 2018) by introducing multiple types of confidence regular-
ization to limit the propagation of errors caused by noisy pseudo-labels. First,
they suggest a label regularization based on negative entropy that only depends
on the pseudo-labels. Second, based on the network softmax output probabilities,
they propose multiple model regularization based on L2, negative entropy, and
Kullback-Leibler (KL) distillation with the uniform distribution.

Discussion. In the pseudo-label extraction strategies previously described, the
MCP score is used as a confidence score for the prediction. I argue that the MCP

score is not the best measure of confidence of the network. Indeed, while the MCP

score may be greater than the given threshold, this measure does not take into
account the softmax prediction score over other classes, overlooking potentially
high softmax prediction scores on those other classes that would question the
confidence of the model. This phenomenon has been discussed in (Corbière et al.
2019) and will be developed into more details in Section 4.3.1. I introduce in the
rest of this chapter two different ways to address this issue by proposing better
measures of confidence of Deep Neural Network (DNN) predictions and by using
them to extract better semantic segmentation pseudo-labels for UDA.
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4.2 ESL : Entropy-guided Pseudo-Label Generation

As discussed in the previous section, the MCP, which is commonly used as
a measure of confidence for ST in UDA, may lead to catastrophic errors in the
pseudo-label generation due to the behavior of DNN. As a consequence, we pro-
pose an entropy-guided pseudo-label extraction strategy that uses the entropy of
the softmax prediction as a measure of confidence. Unlike the MCP, the entropy
takes into account the complete distribution of the softmax prediction score for
each pixel, making this measure more reliable in assessing the confidence of the
network. Such a behavior of MCP and entropy is illustrated in Figure 4.3.

0

Softmax-based pseudo-labelsSelected pixel

Not-selected pixel

Labels
excluded in

ESL
Proposed ESL Method

Standard SSL Method

Entropy-based pseudo-labels

Pixel softmax
output

Figure 4.3 – Comparison of Softmax-based Self-supervised Learning (SSL) and
Entropy-based Self-supervised Learning (ESL). While SSL only con-
siders the maximum softmax prediction score, ESL uses the entropy
of the output distribution to better assess the confidence of the pre-
diction. Less confident predictions in terms of entropy are excluded
from the pseudo-labels by ESL (see right-most figure, best viewed in
color and zoomed-in), effectively improving the quality of the label
map and boosting the performance of self-trained segmentation net-
works.
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4.2.1 Method

We propose to use the entropy of the predictions of the model to measure its
confidence in the predictions. The extracted pseudo-labels using this measure can
be written as follow:

ŷt[h,w,c] =


1, if argmax

c̃

Pxt [h,w,c̃] = c

and Ext [h,w] < ν(c)

0, otherwise

(4.4)

where the entropy Ext [h,w] is defined as:

Ext [h,w] = − 1

log(C)

C∑
c=1

Pxt [h,w,c] logPxt [h,w,c] (4.5)

and ν(c) is a threshold over the entropy score for pixels of class c. Similarly to the
threshold of the previous method, we can define ν(c) as:

ν(c) = max
(
ν∗,median

{
Ext [h,w] |xt ∈ Xt, h ∈ [H], w ∈ [W ] ∧ argmax

c̃

Pxt [h,w,c̃] = c
})
,

(4.6)
where ν∗ is a hyper-parameter. This threshold ensures at least the 50% most
confident predictions in terms of entropy are kept for each class for our pseudo-
labels. Moreover, all the predictions with an entropy score lower than the hyper-
parameter ν∗ are kept for the easier to predict classes on which the segmentation
network is more confident. Overall, the strategy of ST as described in Section 4.1.1
using this entropy-based pseudo-label selection criterion is refered as ESL.

4.2.2 Experimental Results

We present experimental results on models trained with self-supervised learn-
ing techniques on various semantic segmentation domain adaptation datasets.
We compare them to different baselines, showing that self-supervised learning
helps boost the performance and that models trained with entropy-guided self-
supervised learning consistently outperform baselines and models with stan-
dard self-supervised learning. The code developed for this work is available on
GitHub 1.

1. https://github.com/valeoai/ESL

https://github.com/valeoai/ESL
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4.2.2.1 Architectures and baseline frameworks

We experiment with three state-of-the-art domain adaptation baselines. The
three of them are based on DeepLab-V2 (L.-C. Chen et al. 2018a) for the semantic
segmentation module of the architecture, but the domain adaptation frameworks
of these baselines are different:

• AdaptSegNet (Tsai et al. 2018) considers semantic segmentation as structured
outputs that contain spatial similarities between source and target domains.
For this reason, they adopt an adversarial learning framework on the output
space. Moreover, they construct a multi-level adversarial network to perform
adaptation at different feature levels.

• Adversarial Entropy Minimization (AdvEnt) (Vu et al. 2019a), alternatively,
adopts an adversarial learning framework on the entropy of the pixel-wise
predictions instead of the raw softmax output predictions as in AdaptSegNet
(Tsai et al. 2018).

• Bidirectional Learning (BDL) (Y. Li et al. 2019b), as AdaptSegNet (Tsai et al.
2018), conducts adaptation on the output space of the semantic segmentation
module. The method adds two main components to the framework: first, an
image translation module based on CycleGAN (Zhu et al. 2017) to transfer the
style of the target domain to source domain images ; second, a bidirectional
learning training procedure in which this image translation module and the
semantic segmentation module are trained alternately and contribute to each
other’s performance. Furthermore, this strategy already incorporates ST using
standard pseudo-label extraction. In our experiments, we will focus on two
given steps of the sequential model training on GTA5 → Cityscapes, called
‘Step 1’ and ‘Step 2’, which can be found on the authors’ GitHub 2. We apply ST

strategies on those two pre-trained models, possibly adding Image Translation
(IT).

4.2.2.2 Implementation details

Implementations are done with the PyTorch Deep Learning (DL) framework
(Paszke et al. 2017). Training and validation of the models are done on a single
NVIDIA 1080TI GPU with 11GB memory. The semantic segmentation models are
initialized with the ResNet-101 (K. He et al. 2016) pre-trained on ImageNet (Deng
et al. 2009). The semantic segmentation models are trained by a Stochastic Gradi-
ent Descent optimizer (Bottou 2010) with learning rate 2.5× 10−4, momentum 0.9

and weight decay of 10−4. The discriminators are trained by an Adam optimizer

2. https://github.com/liyunsheng13/BDL

https://github.com/liyunsheng13/BDL
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(Diederik P. Kingma 2015) with learning rate 10−4. We fix λadv as 10−3 and λSL as
1. Following the recommendation from (Y. Li et al. 2019b), we use a value of 0.9
for µ∗ in the SSL experiments. Moreover, we adopt a value of 0.1 for ν∗ in the ESL

experiments and justify this choice in Section 4.2.2.4.

4.2.2.3 Quantitative Results

We consider two synthetic source datasets – SYNTHIA and GTA5 – and two
real target datasets – Cityscapes and Mapillary Vistas. The datasets are described
into more details in Chapter 2 (Section 2.3.2). SYNTHIA is the only synthetic
source dataset considered in Chapter 3 due to the need for depth annotation
for training with Privileged Information (PI). Since the setting considered in this
chapter is the one of traditional UDA, we also consider as source the GTA5 dataset,
in particular in the very popular GTA5→ Cityscapes setting.

GTA5 → Cityscapes. Table 4.1 reports semantic segmentation performance in
terms of mIoU (%) on the Cityscapes validation set using GTA5 as source domain.
As explained in Section 4.2.2.1, ‘BDL (step 1)’ and ‘BDL (step 2)’ represent the two
pre-trained models which can be found on the authors’ GitHub. We can notice
that ESL consistently outperforms SSL on every setup, giving the best performance
for each baseline framework. The performance absolute change in terms of mIoU
using ESL compared to the baseline state-of-the-art models range from +1.0% to
+2.2%, which is a significant improvement. Along with the quantitative results,
Figure 4.4 displays some samples of pseudo-labels extracted with both SSL and
ESL. First, the pseudo-label maps look globally similar inside of the semantic
regions between SSL and ESL.

Indeed, in these regions, the softmax prediction is often very peaky with a
high maximum score and low entropy. Nevertheless, marked differences can be
observed along the boundaries of these regions. These transition areas are those
where the prediction models are the most uncertain, despite maximum scores
remaining often high. Indeed, the boundaries should be the areas where the model
is the less confident about its predictions. This clearly shows that most missing
pixels in both pseudo-label maps lie on such locations. Around the boundaries,
however, the prediction entropy tends to get higher even if the softmax prediction
score stays high. This results in pixels being rightly excluded from the ESL pseudo-
label map while present in the SSL one (column (d) of Figure 4.4). Reversely, there
are much fewer pixels that are added to ESL compared to SSL.

SYNTHIA → Cityscapes. Table 4.2 reports semantic segmentation perfor-
mance in terms of mIoU (%) on the Cityscapes validation set using SYNTHIA
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Table 4.1 – Comparison of mean Intersection over Union (mIoU) results (in %) for
GTA5→ Cityscapes experiments.

GTA5→ Cityscapes

Method Self-Training mIoU-19

AdaptSegNet (Tsai et al. 2018)
- 37.6

SSL 38.9
ESL 39.7

AdvEnt (Vu et al. 2019a)
- 43.7

SSL 45.6
ESL 45.9

BDL (step 1) (Y. Li et al. 2019a)

- 44.3
SSL 45.0
ESL 45.6

SSL + IT 46.8
ESL + IT 47.2

BDL (step 2) (Y. Li et al. 2019a)

- 47.3
SSL 47.0
ESL 47.6

SSL + IT 48.2
ESL + IT 48.6

as source domain. Again, ESL consistently outperforms SSL on every setup, even
when SSL fails to improve the performance over the baseline.

Table 4.2 – Comparison of mIoU results (in %) for SYNTHIA→ Cityscapes experi-
ments. mIoU* is the 13-class setup (excluding the classes ‘wall’, ‘fence’
and ‘pole’) as used in earlier works.

SYNTHIA→ Cityscapes

Method Self-Training mIoU-16 mIoU-13

AdaptSegNet (Tsai et al. 2018)
- 40.0 46.5

SSL 39.7 46.0
ESL 40.4 46.9

AdvEnt (Vu et al. 2019a)
- 41.2 48.3

SSL 43.1 50.2
ESL 43.5 50.7

Mapillary Vistas. Table 4.3 reports semantic segmentation performance in
terms of mIoU (%) on the Mapillary Vistas validation set using SYNTHIA as
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(a) Ground-truth labels (b) SSL pseudo-labels (c) ESL pseudo-labels (d) Excluded by ESL

Figure 4.4 – Qualitative results of Entropy-based pseudo-labels. The four
columns visualize (a) ground-truth label maps, (b) standard SSL
pseudo-labels with maximum softmax predictions, (c) our entropy-
based ESL pseudo-labels and (d) pseudo-labels in (b) but excluded by
our entropy criterion. Most excluded pixels lie in region boundaries
where segmentation models are the most uncertain. Experiments
show that excluding them boosts the performance of self-trained net-
works. There are much fewer pseudo-labels added in (c) compared
to (b), thus we don’t display them.

source domains and ADVENT as baseline model. Proposed ESL outperforms SSL

and improves over the baseline performance.

Table 4.3 – Comparison of mIoU results (in %) for Mapillary Vistas experiments.
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mIoU-7

AdvEnt (Vu et al. 2019a)
- 87.5 63.2 29.2 72.2 88.8 43.1 70.4 64.9

SSL 88.3 55.4 29.1 73.3 81.8 52.4 75.7 65.1
ESL 88.4 55.7 32.0 75.4 84.3 43.5 76.2 65.4

4.2.2.4 Ablation Studies

Choice of threshold ν∗. Let us describe how to choose the threshold ν∗ such
that a good balance is achieved between having as many high confidence pre-
dicted labels as possible and avoiding as much as possible noise from incorrect
predictions. A quick computation suggests 0.1 as a good threshold value. Indeed,
considering the maximum softmax prediction score for a given pixel is 0.95 on a
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19-classes setup, the entropy of the distribution would range from 0.07 in the best
case to 0.12 in the worst case. We confirm this choice experimentally. Table 4.4
segmentation results on the domain adaptation problem GTA5 → Cityscapes
with the AdvEnt baseline using different thresholds in the ESL label extraction.
Alternately, we show the limit case where the threshold is always selected as the
median of the entropy for each class. The result of this experiment is shown on
the last row of Table 4.4. When the threshold is higher than 0.1, the incorrect
predictions degrade the quality of the pseudo-label maps and induce more noise
during training. When the threshold is lower than 0.1, we don’t keep as many
confident predictions, slightly reducing the effectiveness of the pseudo-labeling.
This experiment confirms that 0.1 seems to be a good threshold for ESL.

Table 4.4 – Influence of threshold ν∗ in ESL. Baseline model is AdvEnt (Vu et al.
2019a)

GTA5→ Cityscapes

Threshold Baseline 0.05 0.1 0.15 0.2 0.3 Median

mIoU-19 43.7 45.6 45.9 45.5 45.3 44.9 45.1

Incorrect predictions in the pseudo-labels. In order to further motivate the
choice of entropy as a confidence measure in the proposed ESL method over the
softmax prediction score of SSL, Table 4.5 reports the ratio of incorrect predictions
(in %) in the selected pseudo-labels for every class for both SSL and ESL on the
GTA5→ Cityscapes experiment with the AdvEnt baseline (the lower the score, the
better). Additionally, the last row of the Table displays the relative change in the
ratio of incorrect predictions for every class. The results show that ESL performs
significantly better than SSL on the easier-to-predict classes (less than 10% incor-
rect predictions in the selected pseudo-labels). Indeed, ESL reduces the number of
incorrect predictions for those classes by a significant margin, ranging from 4.2%

up to 18.6%. This means that ESL induces significantly less noise during training
for those classes. These changes can be explained by the “overconfidence” the
model may have in terms of softmax prediction score for easier-to-predict classes,
which is not as significant for the entropy as measure of confidence. Overall, ESL

decreases the ratio of incorrect predictions for 14 classes out of 19 and globally
reduces the ratio of incorrect predictions by 3.7% over SSL.
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Table 4.5 – Comparison of incorrect predictions (in %) selected in the pseudo-
labels extracted. Baseline architecture is AdvEnt (Vu et al. 2019a)

GTA5→ Cityscapes
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SSL 19.3 33.5 9.8 54.0 51.3 33.8 21.3 10.4 4.0 37.7 6.9 4.4 33.7 2.9 53.2 50.0 66.9 27.5 15.8 14.5
ESL 18.5 36.1 8.7 53.4 51.2 35.1 20.5 10.2 3.4 38.7 6.5 4.2 33.1 2.4 53.1 49.8 59.8 28.8 17.0 13.9

Rel. Change (%) -3.9 +8.0 -11.7 -1.1 -0.3 +3.9 -3.6 -2.2 -16.1 +2.6 -5.3 -4.2 -1.8 -18.6 -0.2 -0.5 -10.7 +5.0 +7.2 -3.7

4.3 ConDA : Pseudo-Label Generation with Learned
Confidence

The previous section shows that entropy serves as a better measure of confi-
dence than MCP for DNN predictions, which is particularly impactful in the per-
formance of models trained with ST in a UDA context. Nonetheless, even though it
may cover some cases where MCP is overconfident, it is not an infallible measure of
confidence. Ideally, the True Class Probability (TCP) would be the perfect measure
of confidence since it directly gives the probability of the predicted class being
the ground-truth class. However, the TCP is not practically accessible when the
ground-truth is unknown. ConDA, one of our ST for UDA contribution, proposes
to learn an auxiliary model that estimates the TCP of the semantic segmentation
network and serves as a measure of confidence for pseudo-label extraction on the
unlabeled target data.

4.3.1 Confidence Network

I shortly present some work done by co-authors of our journal paper (Corbière
et al. 2021) previously published in the conference article (Corbière et al. 2019).
This work defines a neural network that gives the confidence of a model in its
predictions. Our contribution on pseudo-labeling presented in Section 4.3 extends
this method to the task of semantic segmentation and Domain Adaptation (DA),
which are not studied in the original work of the co-authors (Corbière et al. 2019).
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4.3.1.1 True Class Probability as confidence-rate function

In Section 4.3.1, to simplify, let’s consider a classification task with classes Y.
For a given input x, a standard confidence-rate function for a classifier F is the
probability associated to the predicted max-score class, that is the MCP:

MCPF (x) = max
k∈Y

P (Y = k|x) = max
k∈Y

F (x)[k]. (4.7)

However, by taking the largest softmax probability as confidence estimate, MCP

leads to high confidence values both for correct and erroneous predictions alike,
making it hard to distinguish them, as shown in Figure 4.5a. On the other hand,
when the model misclassifies an example, the probability associated to the true
class y is lower than the maximum one and likely to be low. Based on this simple
observation, we propose to consider instead this TCP as a suitable confidence-rate
function. For any admissible input x ∈ X, we assume the true class y(x) is known,
which we denote y for simplicity. The TCP confident rate is defined as

TCPF (x, y) = P (Y = y|x) = F (x)[y]. (4.8)

(a) Maximum Class Probability (b) True Class Probability

Figure 4.5 – Distributions of different confidence measures over correct and
erroneous predictions of a given model. When ranking according
to MCP (a) the test predictions of a convolutional model trained on
CIFAR-10, we observe that correct ones (in green) and misclassifica-
tions (in red) overlap considerably, making it difficult to distinguish
them. On the other hand, ranking samples according to TCP (b) alle-
viates this issue and allows a much better separation.

Simple guarantees. With TCP, the following properties hold. Given a properly
labelled example (x, y), then:
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Figure 4.6 – ConfidNet learning confidence approach. The fixed classification
network F , with parameters w = (wE,wcls), is composed of a succes-
sion of convolutional and fully-connected layers (encoderE) followed
by last classification layers with softmax activation. The auxiliary con-
fidence network C, with parameters θ, builds upon the feature maps
extracted by the encoder E, or its fine-tuned version E ′ with parame-
ters wE’: they are passed to ConfidNet, a trainable multi-layer module
with parameters ϕ. The auxiliary model outputs a confidence score
C(x;θ) ∈ [0, 1], with θ = ϕ in absence of encoder fine-tuning and
θ = (wE′ ,ϕ) in case of fine-tuning.

• TCPF (x, y) > 1/2 ⇒ f(x) = y, i.e. the example is correctly classified by the
model;

• TCPF (x, y) < 1/K ⇒ f(x) ̸= y, i.e. the example is wrongly classified by the
model,

where class prediction f(x) is defined by:

f(x) = argmax
k∈Y

P (Y = k|x) = argmax
k∈Y

F (x)[k]. (4.9)

Within the range [1/K, 1/2], there is no guarantee that correct and incorrect
predictions will not overlap in terms of TCP. However, when using deep neural
networks, we observe that the actual overlap area is extremely small in practice, as
illustrated in Figure 4.5b on the CIFAR-10 dataset (Krizhevsky and Hinton 2009).
One possible explanation comes from the fact that modern deep neural networks
output overconfident predictions and, therefore, non-calibrated probabilities (Guo
et al. 2017).
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4.3.1.2 Predict the True Class Probability with a neural network

Using TCP as a confidence-rate function on a model’s output would be of great
help when it comes to reliably estimate its confidence. However, the true classes
y are obviously not available when estimating confidence on test inputs.

The work proposes to learn TCP confidence from data. More formally, for the clas-
sification task at hand, we consider a parametric selective classifier (f, g), with f

based on an already-trained neural network F . They aim at deriving its compan-
ion selection function g from a learned estimate of the TCP function of F . To this
end, they introduce an auxiliary model C, with parameters θ, that is intended to
predict TCPF and to act as a confidence-rate function for the selection function g.
An overview of their proposed approach is available in Figure 4.6. This model is
trained such that, at runtime, for an input x ∈ X with (unknown) true label y:

C(x;θ) ≈ TCPF (x, y). (4.10)

In practice, this auxiliary model C will be a neural network trained under full
supervision on a dataset (X ,Y) to produce this confidence estimate. To design
this network, knowledge can be transferred from the already-trained classification
network. Throughout its training, F has indeed learned to extract increasingly-
complex features that are fed to its final classification layers. Calling E the encoder
part of F , a simple way to transfer knowledge consists in defining and training a
multi-layer head with parameters ϕ that regresses TCPF from features encoded
by E. This module is called Confidence Network (ConfidNet). As a result of this
design, the complete confidence network C is composed of a frozen encoder
followed by trained ConfidNet layers. The whole architecture might be later fine-
tuned, including the encoder. In that case, θ will encompass the parameters of
both the encoder and the ConfidNet’s layers.

4.3.2 Model

4.3.2.1 Selecting pseudo-labels with a confidence model

Following the ST framework previously described in Section 4.1.1, a confidence
network C is learned at step (2) to predict the confidence of the UDA-trained
semantic segmentation network F and used to select only trustworthy pseudo-
labels on target-domain images. To this end, the framework of (Corbière et al.
2021) presented in Section 4.3.1 in an image classification setup needs here to be
adapted to the structured output of semantic segmentation.
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Semantic segmentation can be seen as a pixel-wise classification problem. Given
a target-domain image xt, we want to predict both its soft semantic map F (xt)

and, using an auxiliary model with trainable parameters θ, its confidence map
C(x;θ) = Cθ

xt
∈ [0, 1]H×W . Given a pixel (h,w), if its confidence Cθ

xt
[h,w] is above a

chosen threshold δ, we label it with its predicted class f(xt)[h,w] = argmaxcPxt [h,w,c],
otherwise it is masked out. Computed over all images in the target dataset Xt,
these incomplete segmentation maps constitute target pseudo-labels that are used
to train a new semantic-segmentation network. Optionally, we may repeat from
step (2) and learn alternately a confidence model to collect pseudo-labels and a
segmentation network using this ST.

4.3.2.2 Confidence training with adversarial loss

To train the segmentation confidence network C, we propose to jointly optimize
two objectives. Following the approach presented in Section 4.3.1, the first one
supervises the confidence prediction on annotated source-domain examples using
the known TCPs for the predictions from F . Specific to semantic segmentation
with UDA, the second one is an adversarial loss that aims at reducing the domain
gap between source and target. A complete overview of the approach is provided
in Figure 4.7.

Confidence loss. On annotated source-domain images, it requires C to predict
at each pixel the score assigned by F to the (known) true class:

Lconf =
1

|Xs|
∑
xs∈Xs

∥∥Cθ
xs
− TCPF (xs,ys)

∥∥2

F, (4.11)

where ∥ · ∥F denotes the Frobenius norm and, for an image x with true segmenta-
tion map y and predicted soft one F (x), we note

TCPF (x,y)[h,w] = F (x)[h,w, argmaxy[h,w,·]] (4.12)

at spatial position (h,w). On a new input image, C should predict at each pixel
the score that F will assign to the unknown true class, which will serve as a
confidence measure.

However, compared to the application in Section 4.3.1, we have here the addi-
tional problem of the gap between source and target domains, an issue that might
affect the training of the confidence model as in the training of the segmentation
model.
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Figure 4.7 – Overview of proposed Confidence Learning for Domain Adapta-
tion (ConDA) in semantic segmentation. Given images in source
and target domains, we pass them to the encoder part of the seg-
mentation network F to obtain their feature maps. This network
F is fixed during this phase and its weights are not updated. The
confidence maps are obtained by feeding these feature maps to the
trainable head of the confidence network C, which includes a multi-
scale ConfidNet module. For source-domain images, a regression
loss Lconf (Equation 4.11) is computed to minimize the distance be-
tween Cθ

xs
and the fixed true-class-probability map TCPF (xs,ys). An

adversarial training scheme – based on discriminator’s loss LD(ψ)
(Equation 4.13) and adversarial part Ladv(θ) of confidence net’s loss
(Equation 4.15) –, is also added to enforce the consistency between
the Cθ

xs
’s and Cθ

xT
’s. Dashed arrows stand for paths that are used

only at train time.

Adversarial loss. The second objective concerns the domain gap. While model
C learns to estimate TCP on source-domain images, its confidence estimation
on target-domain images may suffer dramatically from this domain shift. As
classically done in UDA, we propose adversarial learning of our auxiliary model
to address this problem. More precisely, we want the confidence maps produced
by C in the source domain to resemble those obtained in the target domain.

A discriminator DC , with parameters ψ, is trained concurrently with C with
the aim to recognize the domain (1 for source, 0 for target) of an image given its
confidence map. The following loss is minimized w.r.t. ψ:

LDC
=

1

|Xs|
∑
xs∈Xs

LC,adv(xs, 1) +
1

|Xt|
∑
xt∈Xt

LC,adv(xt, 0), (4.13)
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where Ladv denotes the Binary Cross-Entropy (BCE) loss of the discriminator based
on confidence maps:

LC,adv(x, λ) = −λ log
(
DC(C

θ
x;ψ)

)
− (1− λ) log(1−DC(C

θ
x;ψ)

)
, (4.14)

for λ ∈ {0, 1}, which is a function of both ψ and θ. In alternation with the training
of the discriminator using Equation 4.13, the adversarial training of the confidence
net is conducted by minimizing, w.r.t. θ, the following loss:

LC = Lconf +
λadv

|Xt|
∑
xt∈Xt

LC,adv(xt, 1), (4.15)

where the second term, weighted by λadv, encourages C to produce maps in target
domain that will confuse the discriminator.

This adversarial scheme for confidence learning also acts as a regularizer dur-
ing training, improving the robustness of the unknown TCP target confidence.
As the training of C may be unstable, adversarial training provides additional
information signal, in particular, imposing that confidence estimation should be in-
variant to domain shifts. We empirically observed that this adversarial confidence
learning provides better confidence estimates and improves the convergence and
stability of the training scheme.

4.3.2.3 Multi-scale ConfidNet architecture

In semantic segmentation, models consist of fully convolutional networks where
hidden representations are 2D feature maps. This is in contrast with the archi-
tecture of classification models considered in Section 4.3.1. As a result, ConfidNet

module must have a different design here: instead of fully-connected layers, it is
composed of 1×1 convolutional layers with an adequate number of channels.

In many segmentation datasets, the existence of objects at multiple scales may
complicate confidence estimation. As in works dealing with varying object sizes
(L.-C. Chen et al. 2018a), we further improve our confidence network C by adding
a multi-scale architecture based on Atrous Spatial Pyramidal Pooling (ASPP). It
consists of a computationally efficient scheme to re-sample a feature map at
different scales, and then, to aggregate the confidence maps.

From a feature map, we apply parallel atrous convolutional layers with 3×3
kernel size and different sampling rates, each of them followed by a series of 4

standard convolutional layers with 3×3 kernel size. In contrast with convolutional
layers with large kernels, atrous convolution layers enlarge the field of view of
filters and help to incorporate a larger context without increasing the number of
parameters and the computation time. The resulting features are then summed
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before upsampling to the original image size of H×W . A final sigmoid activation
outputs a confidence map with values between 0 and 1.

The whole architecture of the confidence model C is represented in the orange
block of Figure 4.7, along with its training given a fixed segmentation model F
(blue block) with which it shares the encoder. Such as in Section 4.3.1, fine-tuning
the encoder within C is also possible, although we did not explore the option
in this semantic segmentation context due to the excessive memory overhead it
implies.

4.3.3 Experimental Results

In this section, we analyze on several semantic segmentation benchmarks
the performance of ConDA, our approach to domain adaptation with learned
confidence-based ST. We report comparisons with state-of-the-art methods on
each benchmark. We also analyze further the quality of ConDA’s pseudo-labeling
and demonstrate via an ablation study the importance of each of its components.

4.3.3.1 Experimental setup

As in the experiments with ESL (Section 4.2), we experiment in the common
GTA5 → Cityscapes setup as well as two other benchmarks – SYNTHIA →
Cityscapes and SYNTHIA → Mapillary Vistas. The datasets are described into
more detail in Section 2.3.2.

We evaluate the proposed ST method on AdvEnt (Vu et al. 2019a). All the im-
plementations are done with the PyTorch framework (Paszke et al. 2017). The
semantic segmentation models are initialized with DeepLabv2 backbones pre-
trained on ImageNet (Krizhevsky et al. 2012). Due to computational constraints,
we only train the multi-scale ConfidNet without encoder fine-tuning.

GTA5 → Cityscapes. The results of semantic segmentation on the Cityscapes
validation set using GTA5 as source domain are available in Table 4.6. All the
methods rely on DeepLabv2 as their segmentation backbone. We first notice
that ST-based methods from the literature are superior on this benchmark, with
performance reaching up to 48.6% mIoU with ESL (Section 4.2). ConDA outperforms
all those methods by reaching 49.9% mIoU.

SYNTHIA → Cityscapes. Table 4.7 reports in a consistent way adaptation
results for the task SYNTHIA→ Cityscapes. Following relevant literature on this
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Table 4.6 – Comparative performance of ConDA for GTA5 → Cityscapes exper-
iments. Results in per-class Intersection over Union (IoU) and class-
averaged mIoU on GTA5 → Cityscapes. All methods are based on a
DeepLabv2 backbone.
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mIoU-19

AdaptSegNet (Tsai et al. 2018) 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
CyCADA (Hoffman et al. 2018) 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
DISE (Chang et al. 2019) 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
AdvEnt (Vu et al. 2019a) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

CBST (Zou et al. 2018) ✓ 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRKLD (Zou et al. 2019) ✓ 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
BDL (Y. Li et al. 2019a) ✓ 91.0 44.7 84.2 34.6 27.5 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
ESL (Section 4.2) ✓ 90.2 43.9 84.7 35.9 28.5 31.2 37.9 34.0 84.5 42.2 83.9 59.0 32.2 81.8 36.7 49.4 1.8 30.6 34.1 48.6
ConDA ✓ 93.5 56.9 85.3 38.6 26.1 34.3 36.9 29.9 85.3 40.6 88.3 58.1 30.3 85.8 39.8 51.0 0.0 28.9 37.8 49.9

Table 4.7 – Comparative performance of ConDA for SYNTHIA→ Cityscapes ex-
periments. Results in per-class IoU and aggregated mIoU on SYNTHIA
→ Cityscapes (‘mIoU*’ is the 13-class setup, excluding the classes
‘wall’, ‘fence’ and ‘pole’, as used in earlier works). All methods are
based on a DeepLabv2 backbone.
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mIoU-16 mIoU-13

AdaptSegNet (Tsai et al. 2018) 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
DISE (Chang et al. 2019) 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.8
AdvEnt (Vu et al. 2019a) 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

CBST (Zou et al. 2018) ✓ 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
MRKLD (Zou et al. 2019) ✓ 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
BDL (Y. Li et al. 2019a) ✓ 83.9 43.7 80.2 12.9 0.5 30.1 18.0 17.3 79.7 83.5 52.2 25.8 72.5 35.5 25.8 45.4 44.2 51.0
ConDA ✓ 88.1 46.7 81.1 10.6 1.1 31.3 22.6 19.6 81.3 84.3 53.9 21.7 79.8 42.9 24.2 46.8 46.0 53.3

dataset, mIoU results for 16 categories and for 13 categories are available. Again,
ConDA achieves state-of-the-art performance on this benchmark with 46.0% mIoU.

SYNTHIA → Mapillary. Along with results on Cityscapes, we further study
domain adaptation on another target dataset, namely Mapillary Vistas. Table 4.8
presents semantic segmentation performance using SYNTHIA as source dataset.
This benchmark has also been used in other recent works, such as in AdvEnt (Vu et
al. 2019a) and Depth-Aware Domain Adaptation (DADA) (Vu et al. 2019b). ConDA

outperforms baseline method with 66.4% mIoU compared to 65.2% mIoU in AdvEnt.

Combining with PI. We also tested the proposed confidence-based ST approach
on DADA (Vu et al. 2019b), another domain adaptation baseline which uses the
depth information available on source-domain synthetic scenes as PI during seg-
mentation training (see Chapter 3 and more specifically Figure 3.1.2). Again, the
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Table 4.8 – Comparative performance of ConDA for SYNTHIA→Mapillary ex-
periments. Results in per-class IoU and class-averaged mIoU on SYN-
THIA→ Mapillary.
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AdvEnt (Vu et al. 2019a) 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2
ConDA ✓ 89.1 63.5 28.3 72.7 88.2 49.7 73.0 66.4

Table 4.9 – Combining ConDA with DADA for UDA in semantic segmentation
with PI. Performance in IoU and mIoU on SYNTHIA → Mapil-
lary.‘ConDA*’ is trained with DADA as baseline model with Bilinear
Multimodal Domain Adaptation (BerMuDA) using depth as PI.
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DADA (Vu et al. 2019b) 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6
ConDA* ✓ 87.8 67.5 40.5 76.8 92.3 60.7 78.5 72.0

proposed method (ConDA*) further increases performance from 67.6% mIoU to
72.0% mIoU.

Ablation Study. To study the effect of the adversarial training and of the multi-
scale confidence architecture on the confidence model, we perform an ablation
study on the GTA5 → Cityscapes benchmark. The results on domain adapta-
tion after re-training the segmentation network using collected pseudo-labels are
reported in Table 4.10. In this table, “ConfidNet” refers to the simple network
architecture defined in Section 4.3.1 (adapted to segmentation by replacing the
fully connected layers by 1×1 convolutions of suitable width); “Adv. ConfidNet”
denotes the same architecture but with the adversarial loss from Section 4.3.2.2
added to its learning scheme; “Multi-scale ConfidNet” stands for the architec-
ture introduced in Section 4.3.2.3; Finally, the full method, “ConDA” amounts to
having both this architecture and the adversarial loss. We notice that adding the
adversarial learning achieves significantly better performance, for both ConfidNet
and multi-scale ConfidNet, with respectively +1.4 and +0.8 point increase. Multi-
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scale ConfidNet (resp. adv. multi-Scale ConfidNet) also improves performance up
to +0.9 point (resp. +0.3) from their ConfidNet architecture counterpart. These
results stress the importance of both components of the proposed confidence
model.

Table 4.10 – Ablation study of ConDA on semantic segmentation with
pseudo-labelling-based adaptation. Full-fledged ConDA approach
is compared on GTA5 → Cityscapes to stripped-down variants
(with/without multi-scale architecture in ConfidNet, with/without ad-
versarial learning).

Model Multi-Scale. Adv mIoU-19

ConfidNet 47.6
Multi-Scale ConfidNet ✓ 48.5
Adv. ConfidNet ✓ 49.0
ConDA (Adv. Multi-scale ConfidNet) ✓ ✓ 49.9

Quality of pseudo-labels. Here we analyze the effectiveness of ConDA compared
to MCP as confidence measures to select relevant pseudo-labels in the target do-
main. For a given fraction of retained pseudo-labels (coverage) on target-domain
training images, we compare in Figure 4.8 the proportion of those labels that are
correct (accuracy). ConDA outperforms MCP for all coverage levels, meaning it se-
lects significantly fewer erroneous predictions for the next round of segmentation-
model training. Along with the segmentation adaptation improvements presented
earlier, these coverage results demonstrate that reducing the amount of noise in
the pseudo-labels is key to learning a better segmentation adaptation model.

Figure 4.9 presents qualitative results of those pseudo-labels methods. We find
again that MCP and ConDA seem to select around the same amount of correct pre-
dictions in their pseudo-labels, but with ConDA picking out a lot fewer erroneous
ones.

4.4 Conclusion

ST is an interesting technique from the semi-supervised learning community
that aims at generating pseudo-annotations of unlabeled data using the predic-
tions of a pre-trained model. In the context of UDA, this is a popular strategy to
generate supervision on the unlabeled target domain by leveraging the predic-
tions of a model previously trained with a standard UDA strategy. This additional
supervision helps improve substantially the performance of UDA approaches.
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Figure 4.8 – Comparative quality of selected pseudo-labels. Proportion of cor-
rect pseudo-labels (precision) for different coverages on GTA5 →
Cityscapes, for MCP and ConDA.

Figure 4.9 – Qualitative results of pseudo-label selection of ConDA for semantic-
segmentation adaptation. The three first columns present target-
domain images of the GTA5→ Cityscapes benchmark (a) along with
their ground-truth segmentation maps (b) and the predicted maps be-
fore self-training (c). We compare pseudo-labels collected with MCP
(d) and with ConDA (e). Green (resp. red) pixels are correct (resp.
erroneous) predictions selected by the method and black pixels are
discarded predictions. ConDA retains fewer errors while preserving
approximately the same amount of correct predictions.

While most methods of the literature rely on MCP as a measure of confidence
for the pseudo-label extraction, I argue that MCP tends to show overconfidence
in some prediction mistakes of the model due to the behavior of DNN training.
First, I introduced ESL that exploits the entropy of the predictions instead of the
MCP, one to take into account the probability distribution over all the classes,
which reduces the tendency of overconfidence of this criterion compared to MCP.
While ESL proposes a simple yet effective ST method based on entropy, the TCP
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would be an ideal measure of confidence for pseudo-label estimation. Neverthless,
since the TCP is not directly accessible from the model predictions, the proposed
method ConDA learns with adversarial training an auxiliary Neural Network (NN)
with dedicated architecture that predicts the TCP of a semantic segmentation
model. While more complex to implement than ESL due to the training of an
additional NN, ConDA proves to improve significantly the performance of UDA

models compared to ST methods based on the MCP.

The ST framework and pseudo-label estimation methods presented are ex-
tremely flexible. While the experiments mostly show ST on synthetic-to-real with
adversarial UDA models, they may be applied on virtually any UDA setting and
approach. For instance, I demonstrated the efficiency of ConDA in a PI information
setting based on DADA (Vu et al. 2019b). Furthermore, Chapter 5 develops UDA to
multiple target domains and also shows the addition of ST strategies is impactful
when dealing with multiple unlabeled domains.
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Chapter abstract

Beyond the traditional scope of Unsupervised Domain Adaptation (UDA) with
a single source domain and a single target domain, real-world autonomous
driving systems are confronted to a variety of scenarios to handle, may it
be varying light conditions, numerous cities from all over the world or di-
verse weathers. In this context, one is confronted to UDA to multiple domains,
which further increases the challenges of traditional UDA with the addition
of distribution shifts existing within the different target domains. While also
mentioning other extensions of traditional UDA, this chapter focuses on multi-
target UDA and continual UDA and introduces our solutions to both these
problems. Multi-Discriminator (Multi-Dis.) extends single-target adversarial
UDA approaches to multi-target UDA by performing adversarial distribution
alignment both between source-target pairs and between targets. Multi-Target
Knowledge Transfer (MTKT) is another strategy to multi-target UDA that in-
troduces multiple specialized segmentation branches, one for each target, and
performs knowledge transfer from these experts to a domain-agnostic segmen-
tation branch in a multi-teacher single-student fashion. Finally, Continual
Target Knowledge Transfer (CTKT) extends this last approach to continual
UDA by additionally distilling at each training step the knowledge from the
previous model into the current model.

The first part of this chapter has led to the publication of a conference paper:

• Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez (2021).
“Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic
Segmentation”. In: IEEE/CVF International Conference on Computer Vision
(ICCV).
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The Unsupervised Domain Adaptation (UDA) methods presented in Chapter 2

rely on one of two core ideas: either a distribution alignment between the source
domain and the target domain on some intermediate features of the model using
various strategies (direct, adversarial, etc.), or the transformation of the input
images from one domain to the other, most often the source images translated
into the target domain.

These strategies are effective in the traditional UDA setting as defined in Chap-
ter 2, and Chapter 3 and Chapter 4 discussed how to leverage extra source data
as Privileged Information (PI) and how to design new Self-Training (ST) schemes
in this context.

We explore here another aspect of UDA. All these strategies rely on the fact
that this standard setting only deals with two domains – one source and one
target – and focuses on matching the representations or the inputs of one do-
main onto those of the other domain. This constitutes an important limitation of
UDA since real-world applications are significantly more complex: for instance,
an autonomous vehicle should operate in multiple countries, or under various
weather conditions, all constituting different target domains from a UDA perspec-
tive. Furthermore, autonomous systems should be able to improve and adapt to
new target domains, for instance when deploying autonomous vehicles to a new
country.

These problems are still open in the UDA community, especially for the seman-
tic segmentation task. This section explores both multi-target UDA and continual
UDA for semantic segmentation, which are both novel UDA settings. On the former,
Section 5.2 proposes two frameworks to extend standard adversarial single-target
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UDA to multi-target UDA: Multi-Discriminator (Multi-Dis.), relying on source-target
and target-targets alignment, and Multi-Target Knowledge Transfer (MTKT), in-
troducing a multi-teacher single-student approach with multiple target-specific
segmentation branches and a single target-agnostic segmentation branch. These
extensions of adversarial UDA approaches may be combined with ST strategies
discussed in Chapter 4, and we propose some experiments using Entropy-based
Self-supervised Learning (ESL). Finally, with the Continual Target Knowledge
Transfer (CTKT) framework, Section 5.3 extends the multi-target UDA approach
MTKT to the more complex continual UDA in which the target domains are discov-
ered sequentially and one at a time.

5.1 Extending the Standard Unsupervised Domain
Adaptation Setting

This section extends the literature review of Chapter 2 with works related to
traditional UDA but involving more than two domains. Then, it specifically focuses
on multi-target UDA and continual learning, the lines of research I tackle in my
contributions. I first give a brief overview of multi-domain learning settings in
the Computer Vision (CV) literature.

Domain Generalization. Domain generalization (H. Li et al. 2018; Matsuura
and Harada 2020; Shanshan Zhao et al. 2020; Pandey et al. 2021) is a challenging
task close to the Domain Adaptation (DA) problem. Its objective is to learn a model
from one or several training (source) domains that will be able to generalize to
unseen testing (target) domains. While very close to a multi-domain UDA setting,
their difference lies in the total absence of target data during training, leading to
drastically different approaches to tackle these tasks.

Multi-Source Unsupervised Domain Adaptation. Multi-source UDA (Sicheng
Zhao et al. 2019; J. He et al. 2021; Nguyen et al. 2021) aims at training using an
arbitrary number of source domains to learn better, more generalizable features
for a single target domain. While one could train a model with a standard UDA

approach on the combination of all the considered source domains, it proves to be
inefficient due to the discrepancy between the domains. Multi-source approaches
effectively account for these distribution shifts and leverage them to produce
more generalizable features.
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Open-Compound Domain Adaptation. In Open-Compound Domain Adapta-
tion (OCDA) (Z. Liu et al. 2020; Park et al. 2020), the target domain may be con-
sidered as a combination of multiple homogeneous target domains – for instance,
similar weather conditions such as ‘sunny’, ‘foggy’, etc. – where the domain labels
are not known during training. Moreover, previously unseen target domains may
be encountered during inference.

Multi-Target Unsupervised Domain Adaptation. Multi-target UDA is still a
fairly recent setting in the literature and mostly tackles classification tasks. While
multi-target UDA is close to the OCDA setting in that it considers multiple target
domains instead of a single one, multi-target UDA differs from this last setting in
that it assumes that the domain of origin is known during training and that no
new domains are faced at test time. Thus, for instance, multi-target UDA would
be better suited to DA to multiple cities than OCDA since the origin of the train-
ing data should be easily accessible. Two main scenarios emerge in the works
on this task. In the first one, even though the target is considered composed of
multiple domains with gaps and misalignments, the domain labels are unknown
during training and test. Peng et al. (2019) propose an architecture that extracts
domain-invariant features by performing source-target domain disentanglement.
Moreover, it also removes class-irrelevant features by adding a class disentan-
glement loss. In a similar setting, Z. Chen et al. (2019) present an adversarial
meta-adaptation network that both aligns source with mixed-target features and
uses an unsupervised meta-learner to cluster the target inputs into k clusters,
which are adversarially aligned. In the second scenario, the target identities are
labeled on the training samples but remain unknown during inference. To handle
it, Yu et al. (2018) learn a common parameter dictionary from the different target
domains and extract the target model parameters by sparse representation; Gho-
lami et al. (2020) adopt a disentanglement strategy by separately capturing both
domain-specific private features and feature representations by learning a domain
classifier and a class label predictor, and train a shared decoder to reconstruct the
input sample from those disentangled representations.

Tackling multi-target UDA in semantic segmentation has been proposed in
a concurrent work to ours (Isobe et al. 2021). Isobe et al. (2021) train multi-
ple semantic segmentation models, each one expert on a specific domain. These
domain-specific expert models collaborate by being trained on images from the
other domains stylized in the domain of expertise while making sure that the
predicted map are coherent between the experts for a same original image. Finally,
the knowledge of all these experts is transferred to another model, which serves
as domain-generic student. Figure 5.1 illustrates their Collaborative Consistency
Learning method.
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Figure 5.1 – Collaborative Consistency Learning approach to multi-target UDA.
Each expert model is trained on images stylized in the domain of ex-
pertise and the expert models collaborate by ensuring the consistency
of their predictions for a same original image. A domain-generic
model is trained by ensuring its consistency with the domain experts.
Illustration from (Isobe et al. 2021).

5.2 Multi-Target Adversarial Frameworks for Do-
main Adaptation in Semantic Segmentation

As discussed in the previous section, standard UDA strategies are not well suited
to tackle adaptation to multiple target domains. This section develops frameworks
that extend standard UDA adversarial methods to a multi-target setting.

5.2.1 Multi-Target Unsupervised Domain Adaptation

Problem Setting. We consider a different UDA scenario where T ≥ 2 distinct
target domains Xt,n, n ∈ [T ], must be jointly handled. These target domains are
represented by unlabeled training sets Xt,n, n ∈ [T ]. Similar to the standard UDA

setting, we assume that the annotated training examples (x,y) ∈ Xs × Ys stem
from a single source domain Xs, for instance, a specific synthetic environment.
The main goal is to train a single segmenter F that achieves equally good results
on all target-domain test sets. While the target domain of origin is known for
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all unlabeled training examples, we assume, as in classification approaches of
(Gholami et al. 2020; Yu et al. 2018), that this information is not accessible at test
time.

Revisiting Adversarial Unsupervised Domain Adaptation Approach. Many re-
cent state-of-the-art approaches for UDA in semantic segmentation rely on output-
space adversarial alignment (see Section 2.2.3.2).

Approaches like (Tsai et al. 2018) and (Vu et al. 2019a) handle only one source
domain and one target domain. Such approaches fail to generalize to multiple
domains, as illustrated in Figure 5.2, and require proper handling of the multiple
domains during training to produce good results on every target domain.

Figure 5.2 – Multi-target unsupervised domain adaptation for semantic segmen-
tation. In the standard single-target setting, UDA methods produce
good segmentation in the target domain they are trained on, but
generalize poorly to other unseen domains. Multi-target UDA aims
at excelling in the multiple domains the model is trained on. (Top)
The information available during training is composed of source-
domain RGB images with ground-truth semantic maps (green), here
from GTA5, and unannotated RGB images from target domain(s)
(blue), here from IDD (‘target 1’) and Cityscapes (‘target T ’). (Bottom)
Test-time segmentation is on new images from the target domains,
without knowing which domain they stem from.

In our setting with multiple target domains, a simple strategy is to merge all
target datasets into a single one and then to utilize an existing single-source
single-target UDA framework. The UDA model is trained on the source data Xs

and the aggregated target data Xt =
⋃

n∈[T ]

Xt,n. However, such a strategy disregards

the inherent discrepancy among target domains. As shown in the experiments,
this “multi-target baseline” is less effective than the proposed strategies, which
explicitly handle inter-target domain shifts. The following sections describe these
two novel frameworks.
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5.2.2 Multi-Dis.: Multi-Discriminator Framework

Our first strategy for multi-target UDA, called Multi-Dis., relies on two types of
discriminators to align each target domain with the source (source-target discrim-
inators) and with other targets (target-target discriminators). Figure 5.3 illustrates
this first approach.

'target  vs. other targets'
 discriminator

'source vs. target ' 
discriminator

Source

target 

feature ext. classifier
source

Figure 5.3 – Multi-discriminator approach to multi-target UDA. With Multi-Dis.,
the segmenter is trained against two types of adversaries that discrim-
inate respectively source vs. one target and one target vs. all other
targets. The multiple losses are defined in Equation 2.16, Equation 5.1,
Equation 5.2, Equation 5.4 and Equation 5.5.

Source-target adversarial alignment. We introduce a discriminator Ds−t
n with

parameters ϕs−t
n for each target domain n. It learns to discriminate Xt,n from the

source set Xs. By denoting LDs−t
n

the minimization objective of this discriminator,
defined as in Equation 2.15 on domain n, we train these T source-target discrimi-
nators with the mean objective:

LDs−t

(
ϕs−t
1:T

)
=

1

T

T∑
n=1

LDs−t
n

(
ϕs−t
n

)
. (5.1)

Concurrently, the segmenter F is trained to fool these T discriminators with
the adversarial objective:

Ls
F,adv(θ) =

1

T

T∑
n=1

1

|Xt,n|
∑

xt∈Xt,n

LBCE(D
s−t
n (Qx), 1), (5.2)

with the Binary Cross-Entropy (BCE) loss defined in Equation 2.4.

Target-target adversarial alignment. In the above source-target alignment, the
source acts as an anchor for each target to “pull” closer to the other targets. How-
ever, as this alignment is imperfect, there remain gaps across targets, which we
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propose to reduce further by additional target-target alignments. To this end, we
introduce for each target domain n a discriminator Dt

n with parameters ϕt
n that

classifies Xt,n (class 1) vs all other target domains Xt,k, k ̸= n (class 0), result-
ing in T 1-vs-all discriminators. The target-target discriminator Dt

n is trained by
minimizing the loss

LDt
n

(
ϕt
n

)
=

1

|Xt,n|
∑

xt∈Xt,n

LBCE(D
t
n(Qxt), 1) +

1∑
k ̸=n

|Xt,k|
∑

xt∈
⋃

k ̸=n
Xt,k

LBCE(D
t
n(Qxt), 0).

(5.3)

The collective objective of all target-target discriminators now reads:

LDt

(
ϕt
1:T

)
=

1

T

T∑
n=1

LDt
n

(
ϕt
n

)
. (5.4)

The segmenter F tries to fool all the target-target discriminators by minimizing
the adversarial loss:

Lt
F,adv(θ) =

1

T

T∑
n=1

1∑
k ̸=n

|Xt,k|
∑

xt∈
⋃

k ̸=n

Xt,k

LBCE(D
t
n(Qxt), 1). (5.5)

To sum up, the segmenter F is trained by minimizing over θ the objective:

LF = LF,seg + λs
advLs

F,adv + λtadvLt
F,adv, (5.6)

with weights λs
adv and λtadv to balance the adversarial terms and LF,seg defined in

Equation 2.16.

5.2.3 MTKT : Multi-Target Knowledge Transfer Framework

The main driving force in prediction-level adversarial approaches (Tsai et al.
2018; Vu et al. 2019a) is the adjustment of the decision boundaries. Alignment in
feature space then follows to comply with adjusted boundaries. We thus stress the
importance of classifier design in the multi-target UDA scenario. In our Multi-Dis.

approach, one classifier simultaneously handles multiple domain shifts, either
source-target or target-target. The main challenge is the instability of adversarial
training, which is amplified if several adversarial losses are jointly minimized.
Such an issue is particularly problematic in the early training phase when most
target predictions are very noisy. To address this challenge, we propose the MTKT

framework, with a novel network design and learning scheme which do not rely
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on the joint minimization of multiple adversarial losses over the same classifier
module, hopefully reducing the instability of the training. Figure 5.4 shows the
MTKT architecture.

'source vs. target '
discriminator

target-specific 
classifier

target-agnostic
classifier

target 

feature ext.
source

Figure 5.4 – Multi-target knowledge transfer approach to multi-target UDA.
With MTKT, a set of target-specific segmenters is first trained adversar-
ially. Their knowledge is then jointly distilled to the target-agnostic
segmenter whose loss defined in Equation 5.8 is not back-propagated
into the target-specific branches (as indicated by the dotted arrow).

The classification part of the network is first re-designed with T target-specific
instrumental classifiers, F cls

n , n ∈ [T ], based on the same feature extractor F feat,
each handling one specific source-target domain shift. Such an architecture allows
separate output-space adversarial alignment for each specific source-target pair,
alleviating the instability problem. For each target-specific classifier F cls

n , we in-
troduce a domain discriminator Dt

n as to classify source vs target n. The training
objectives are similar to those used in single-target models (Equation 2.15 and
Equation 2.16).

We then introduce a target-agnostic classification branch F cls
agn that fuses all the

knowledge transferred from the T target-specific classifiers. This target-agnostic
classifier is the final product of the approach, i.e., the one used at test time when
domain knowledge is not available.

The knowledge from the T “teachers” is transferred to the target-agnostic
“student” via minimizing the Kullback-Leibler (KL) divergence (Hinton et al. 2015)
between teachers’ and student’s predictions on target domains. In details, for a
given sample xt ∈ Xt,n, we compute the KL loss

LKL,n(xt) =
H∑

h=1

W∑
w=1

C∑
c=1

Pn,xt [h,w,c] log
Pn,xt [h,w,c]

Pxt [h,w,c]
, (5.7)
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where Pn,xt and Pxt are soft-segmentation predictions coming from the target-
specific F cls

n and the target-agnostic F cls
agn respectively. The minimization objective

of the target-agnostic classifier F cls
agn over the segmenter’s parameters (including

feature extractor’s) then reads:

LF cls
agn
(θ) =

1

T

T∑
n=1

1

|Xt,n|
∑

xt∈Xt,n

LKL,n(xt). (5.8)

Minimizing KL losses helps F cls
agn adjust its decision boundaries toward good

behavior in all T target domains. As the KL loss is back-propagated through the
feature extractor, such an adjustment results in implicit alignment in target feature
space, which overall mitigates the distribution shifts between the T domains.

Discussion. Unlike Multi-Dis., the multi-teacher/single-student mechanism in
MTKT avoids direct alignment between unlabeled parts. The target-agnostic classi-
fier is encouraged to adjust its decision boundaries to favor all the target-specific
teachers, thus helping cross-target alignment.

Although we build our frameworks over output-space alignment (Vu et al.
2019a; Tsai et al. 2018), note that they could be adapted to other adversarial feature-
alignment methods (Hoffman et al. 2016). Moreover, orthogonal approaches like
pseudo-labeling (Chapter 4) can also be included in our frameworks, and we show
some experiments with such addition in Section 5.2.4.4.

5.2.4 Experimental Results

5.2.4.1 Datasets

We build our experiments on four urban driving datasets, one being syn-
thetic and the three other being recorded in various geographic locations: GTA5,
Cityscapes, IDD, Mapillary Vistas. The datasets are described in Section 2.3.2.
Though all containing urban scenes, the four datasets have different labeling poli-
cies and semantic granularity.

We follow the protocol used in (K.-H. Lee et al. 2019; Vu et al. 2019b) and
standardize the label set with 7 super classes, common to all four datasets: flat,
construction, object, nature, sky, human and vehicle. The mapping from original
classes to these super classes is given in Table 2.2, Table 2.1, Table 2.5 and Table 2.4.

When Cityscapes, IDD, or Mapillary are used as target domains, only unlabeled
images from them are used for training, by definition of the UDA problem.
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5.2.4.2 Implementation Details

The experiments are conducted with PyTorch (Paszke et al. 2017). The adversar-
ial framework is based on Adversarial Entropy Minimization (AdvEnt)’s published
code. 1 The semantic segmentation model is DeepLab-V2 (L.-C. Chen et al. 2018a),
built upon the ResNet-101 (K. He et al. 2016) backbone initialized with ImageNet
(Deng et al. 2009) pre-trained weights. The segmenters are trained by Stochastic
Gradient Descent (SGD) (Bottou 2010) with learning rate 2.5 × 10−4, momentum
0.9 and weight decay 10−4. We train the discriminators using an Adam optimizer
(Diederik P. Kingma 2015) with learning rate 10−4. All experiments are conducted
at the 640× 320 resolution.

For MTKT, we “warm up” the target-specific branches for 20,000 iterations before
training the target-agnostic branch. The warm-up step avoids the distillation of
noisy target predictions in the early phase, which helps stabilize target-agnostic
training.

5.2.4.3 Main results

We consider four setups, varying the type of domain-shift (‘syn-2-real’ or ‘city-
2-city’) or the number T of targets (two to three domains). For multi-target per-
formance, we report the mean Intersection over Union (mIoU) averaged over the
target domains. Using the average helps mitigate the potential bias caused by
target evaluation sets with substantially different sizes.

GTA5 � Cityscapes + Mapillary. Table 5.1 reports segmentation results on the
two target validation sets of Cityscapes and Mapillary; GTA5 is the source domain
in this setup. For comparison, we consider the single-target AdvEnt models, i.e.
trained on either Cityscapes or Mapillary unlabeled images. We also have the
multi-target AdvEnt model, denoted as ‘Multi-Target Baseline’ in Table 5.1, which
is trained on the merging of the two targets. For all models, including the single-
target ones, we report both per-target and average mIoUs. The two rows marked
with ‘(*)’ indicate results of the single-target models on the same domains used
for training, regarded as per-target baselines.

Single-target baselines achieve worse average mIoU than those trained on both
domains, which indicates the benefit of having access to diverse data from mul-
tiple domains during training. Our proposed approaches outperform the multi-
target baseline with mIoU gains of +0.6% for multi-discriminator and +2.0% for
MTKT. Looking closer at the per-target results, we observe unfavorable perfor-
mance if one directly transfers single-target models to a new domain. Indeed,

1. https://github.com/valeoai/ADVENT

https://github.com/valeoai/ADVENT
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Table 5.1 – Multi-target semantic segmentation performance on GTA5 �
Cityscapes + Mapillary. Per-class Intersection over Union (IoU) (%),
per-domain mIoU (‘mIoU’) and mIoU averaged over domains (‘mIoU
Avg.’); mIoU gain (green) or loss (red) w.r.t. corresponding per-target
baselines (marked as ‘*’); ‘train’: indication of the unlabeled target data
used for training.

GTA5� Cityscapes+Mapillary

Method Target Train fla
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mIoU-7
mIoU-7
Avg.

Single-Target
Baselines (Vu et al. 2019a)

Cityscapes ✓ 93.5 80.5 26.0 78.5 78.5 55.1 76.4 69.8 (*)
66.6Mapillary - 86.8 69.0 30.2 71.2 91.5 35.3 59.5 63.4↓ 6.2

Cityscapes - 89.3 79.3 19.5 76.9 84.6 47.7 63.0 65.8↓ 4.0
67.7Mapillary ✓ 89.5 72.6 31.0 75.3 94.1 50.7 73.8 69.6 (*)

Multi-Target
Baseline (Vu et al. 2019a)

Cityscapes ✓ 93.1 80.5 24.0 77.9 81.0 52.5 75.0 69.1↓ 0.7
68.9Mapillary ✓ 90.0 71.3 31.1 73.0 92.6 46.6 76.6 68.7↓ 0.9

Cityscapes ✓ 94.5 80.8 22.2 79.2 82.1 47.0 79.0 69.3↓ 0.5Multi-Dis. Mapillary ✓ 89.4 71.2 29.5 76.2 93.6 50.4 78.3 69.8↑ 0.2
69.5

Cityscapes ✓ 95.0 81.6 23.6 80.1 83.6 53.7 79.8 71.1↑1.3MTKT Mapillary ✓ 90.6 73.3 31.0 75.3 94.5 52.2 79.8 70.8↑1.2
70.9

testing the Cityscapes-only model on Mapillary results in a drop of −6.2% mIoU

compared to the reference performance, and a similar drastic drop is seen for
Mapillary-only model on Cityscapes. Especially we notice important degradation
on safety-critical classes like human or vehicle using those single-target models.
The Multi-Dis. model achieves comparable mIoUs as the per-target baselines. The
MTKT model improves over the per-target baselines by a significant margin, i.e.
+1.3% on Cityscapes and +1.2% on Mapillary. Such results highlight the merit of
the proposed strategies, especially MTKT. Note that adding adversarial training
on the target-agnostic branch of MTKT hinders the alignment effect, reducing the
performance by 0.9% mIoU Avg.

GTA5 � Cityscapes + IDD. We experiment with another synthetic-to-real
setup in which the two target datasets have noticeably different landscapes, i.e.
European cities in Cityscapes and Indian ones in IDD. Results are reported in
Table 5.2. Here also, multi-target models outperform single-target ones. In this
setup, the performance of Multi-Dis. is comparable to the multi-target baseline’s.
We conjecture that the complex and unstable optimization problem in the Multi-Dis.

framework makes it difficult to achieve good alignment across targets, especially
when the two target domains are more noticeably different. With a dedicated
architecture and learning scheme that alleviates such an optimization issue, the
MTKT model achieves the best results, in terms of both per-target and average
mIoUs.
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Table 5.2 – Multi-target semantic segmentation performance on GTA5 �
Cityscapes + IDD. Organization as in Table 5.2.

GTA5� Cityscapes+ IDD

Method Target Train fla
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mIoU-7
mIoU-7
Avg.

Single-Target
Baselines (Vu et al. 2019a)

Cityscapes ✓ 93.5 80.5 26.0 78.5 78.5 55.1 76.4 69.8 (*)
66.5IDD - 91.3 52.3 13.3 76.1 88.7 46.7 74.8 63.3↓ 1.8

Cityscapes - 78.6 79.2 24.8 77.6 83.6 48.7 44.8 62.5↓ 7.3
63.8IDD ✓ 91.2 53.1 16.0 78.2 90.7 47.9 78.9 65.1 (*)

Multi-Target
Baseline (Vu et al. 2019a)

Cityscapes ✓ 93.9 80.2 26.2 79.0 80.5 52.5 78.0 70.0↑ 0.2
67.4IDD ✓ 91.8 54.5 14.4 76.8 90.3 47.5 78.3 64.8↓ 0.3

Cityscapes ✓ 94.3 80.7 20.9 79.3 82.6 48.5 76.2 68.9↓ 0.9Multi-Dis. IDD ✓ 92.3 55.0 12.2 77.7 92.4 51.0 80.2 65.7↑ 0.6
67.3

Cityscapes ✓ 94.5 82.0 23.7 80.1 84.0 51.0 77.6 70.4↑0.5MTKT IDD ✓ 91.4 56.6 13.2 77.3 91.4 51.4 79.9 65.9↑0.8
68.2

We visualize some qualitative results in Figure 5.5.

GTA5 � Cityscapes + Mapillary + IDD. We consider a more challenging
setup involving three target domains – Cityscapes, Mapillary and IDD – and
show results in Table 5.3. With more target domains, the same conclusions hold.
In terms of average mIoU, the Multi-Dis. model marginally improves over the multi-
target baseline. The MTKT model significantly outperforms all other models with
69.1% mIoU Avg. Moreover, when compared to the per-target baselines, MTKT is
the only model to show improvement on every target domain.

Cityscapes � Mapillary + IDD. Finally, we experiment on a realistic city-to-city
setup with Cityscapes as the source and Mapillary and IDD as target domains. The
results are shown in Table 5.4. Interestingly, on Mapillary, the single-target model
trained on IDD achieves better results than the one trained only on Mapillary. We
conjecture that the domain gap between Cityscapes and Mapillary is less than
the one between Cityscapes and IDD; The extra data diversity coming from IDD
improves the single-target IDD-only model generalization and helps mitigate the
small Cityscapes-Mapillary domain gap. Another observation is that the IDD-only
model outperforms the multi-target baseline. This indicates the disadvantage of
the naive dataset merging strategy: not only complementary signals but also
conflicting/negative ones get transferred. The two proposed models outperform
the multi-target baseline; MTKT obtains the best performance overall. Again in
this realistic setup, we showcase the advantages of our methods, especially the
MTKT model.
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(a) Input (b) Ground truth (c) City. Baseline (d) IDD Baseline (e) MT Baseline (f) Multi-Dis. (g) MTKT
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Figure 5.5 – Multi-target qualitative results in the GTA5� Cityscapes+ IDD
setup. (a) Test images from Cityscapes and IDD; (b) Ground-truth
segmentation maps; Results of (c) single-target baseline trained on
Cityscapes target, (d) single-target baseline trained on IDD target, (e)
multi-target baseline, (f) proposed Multi-Dis. and (g) proposed MTKT.
Both proposed multi-target frameworks give overall cleaner segmen-
tation maps compared to the baselines.

Conclusions. These four sets of experiments demonstrate that the proposed
multi-target frameworks consistently deliver competitive performance on the
multiple target domains on which they are trained. MTKT always gives the best
performance, both in per-target and average mIoUs, compared to the baselines and
the Multi-Dis. model. Note that our models are compatible with techniques such as
image translation (Hoffman et al. 2018; Wu et al. 2018; Y. Yang and Soatto 2020)
or ST with pseudo-labeling (Chapter 4), from which they could benefit. In partic-
ular, we show next with additional experiments how to use ESL pseudo-labeling
(Section 4.2) with MTKT.

5.2.4.4 Combining with Self-Training.

We proposed in Chapter 4 some extensions of the AdvEnt method used here
as UDA strategy. In particular, ST can easily be combined with our multi-target
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Table 5.3 – Multi-target segmentation performance on GTA5 � Cityscapes +
Mapillary + IDD (T = 3). Organization as in Table 5.1.

GTA5� Cityscapes+Mapillary+ IDD

Method Target Train fla
t

co
ns

tr
.

ob
je

ct

na
tu

re

sk
y

hu
m

an

ve
hi

cl
e

mIoU-7
mIoU-7
Avg.

Single-Target
Baselines (Vu et al. 2019a)

Cityscapes ✓ 93.5 80.5 26.0 78.5 78.5 55.1 76.4 69.8 (*)
65.5Mapillary - 86.8 69.0 30.2 71.2 91.5 35.3 59.5 63.3↓ 6.3

IDD - 91.3 52.3 13.3 76.1 88.7 46.7 74.8 63.3↓ 1.8

Cityscapes - 89.3 79.3 19.5 76.9 84.6 47.7 63.0 65.8↓ 4.0
66.7Mapillary ✓ 89.5 72.6 31.0 75.3 94.1 50.7 73.8 69.6 (*)

IDD - 91.7 54.3 13.0 77.3 92.3 47.4 76.8 64.7↓ 0.4

Cityscapes - 78.6 79.2 24.8 77.6 83.6 48.7 44.8 62.5↓ 7.3
65.5Mapillary - 88.5 71.2 32.4 72.8 92.8 51.3 73.7 69.0↓ 0.6

IDD ✓ 91.2 53.1 16.0 78.2 90.7 47.9 78.9 65.1 (*)

Multi-Target
Baseline (Vu et al. 2019a)

Cityscapes ✓ 93.6 80.6 26.4 78.1 81.5 51.9 76.4 69.8−
67.8Mapillary ✓ 89.2 72.4 32.4 73.0 92.7 41.6 74.9 68.0↓ 1.6

IDD ✓ 92.0 54.6 15.7 77.2 90.5 50.8 78.6 65.6↑ 0.5

Cityscapes ✓ 94.6 80.0 20.6 79.3 84.1 44.6 78.2 68.8↓ 1.0
Mapillary ✓ 89.0 72.5 29.3 75.5 94.7 50.3 78.9 70.0↑ 0.4Multi-Dis.
IDD ✓ 91.6 54.2 13.1 78.4 93.1 49.6 80.3 65.8↑ 0.7

68.2

Cityscapes ✓ 94.6 80.7 23.8 79.0 84.5 51.0 79.2 70.4↑0.6
Mapillary ✓ 90.5 73.7 32.5 75.5 94.3 51.2 80.2 71.1↑1.5MTKT
IDD ✓ 91.7 55.6 14.5 78.0 92.6 49.8 79.4 65.9↑0.8

69.1

frameworks. Taking for instance ESL (Section 4.2), we consider three ways to
adapt its pseudo-labeling strategy to the MTKT architecture. In all of them, we col-
lect pseudo-labels in each target domain using the corresponding target-specific
classifier and use them as additional self-supervision for these target-specific
heads; In the second method we also use these pseudo-labels to restrict the back-
propagation of the KL losses to pixels that are correctly classified according to
these pseudo-labels; In the third method, they are also used to refine the target-
agnostic classifier. We report in Table 5.5 the results of the models trained with
these three pseudo-labeling-based refinement strategies on GTA5 � Cityscapes
+ IDD and compare them to the baseline trained with ESL. The three ways of ex-
tending MTKT with pseudo-labeling result in similar performance gains of at least
+1.6% mIoU Avg. This demonstrates that knowledge transfer is complementary to
pseudo-labeling. Moreover, MTKT with ESL outperforms the baseline with ESL by
+1.7% mIoU Avg.

5.2.4.5 Direct Transfer to a New Dataset.

We consider a direct transfer setup: the models see no images from the test
domain during training. This experiment highlights how well the models can
generalize to new previously-unseen domains. Table 5.6 reports the results of
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Table 5.4 – Multi-target segmentation performance of city-2-city multi-target
UDA on Cityscapes � Mapillary+ IDD. Organization as in Tab. 5.1.

Cityscapes � Mapillary+ IDD

Method Target Train fla
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mIoU-7
mIoU-7
Avg.

Single-Target
Baselines (Vu et al. 2019a)

Mapillary ✓ 87.4 65.9 28.2 72.8 92.1 46.9 72.7 66.6 (*)
65.8IDD - 91.8 52.2 15.9 80.2 91.1 45.7 77.6 65.0↓ 2.3

Mapillary - 88.2 70.0 28.5 75.4 93.6 49.1 76.7 68.8↑ 2.2
68.0IDD ✓ 93.2 53.4 16.5 83.4 93.4 51.4 79.5 67.3 (*)

Multi-Target
Baseline (Vu et al. 2019a)

Mapillary ✓ 87.7 65.9 29.0 73.2 91.5 47.9 75.7 67.3↑ 0.7
67.0IDD ✓ 93.3 53.0 17.2 82.8 92.2 49.3 79.6 66.8↓ 0.5

Mapillary ✓ 88.6 70.9 29.6 75.8 94.7 49.2 76.1 69.3↑ 2.7Multi-Dis. IDD ✓ 92.8 52.8 17.0 83.1 94.2 48.5 77.4 66.5↓ 0.8
67.9

Mapillary ✓ 88.3 70.4 31.6 75.9 94.4 50.9 77.0 69.8↑3.2MTKT IDD ✓ 93.6 54.9 18.6 84.0 94.5 53.4 79.2 68.3↑1.0
69.0

Table 5.5 – Additional impact of pseudo-labeling on multi-target UDA. Trained
models are refined with one step of ESL (Section 4.2). For MTKT,
pseudo-labels are extracted for each target domain with the associ-
ated teacher head, and used either (1) to refine this head only, (2) to
refine this head and to back-propagate KL-loss only on the pixels with
predictions compliant with pseudo-labels or (3) to refine both this head
and the target-agnostic model.

GTA5� Cityscapes+ IDD

Method M-T base.
M-T base.

+ PL MTKT
MTKT

+ PL (1)
MTKT

+ PL (2)
MTKT

+ PL (3)

mIoU-7 Avg. 67.4 68.9 68.2 69.8 69.7 69.9

such a direct transfer to a new dataset in different setups. The models are trained
on GTA5 � Cityscapes + IDD (resp. on GTA5 � Cityscapes + Mapillary) and
tested on Mapillary (resp. IDD). On both setups, MTKT shows better performance
in terms of mIoU compared to the baselines on the new domain. In the first
one, in particular, with Mapillary as the new test domain, MTKT outperforms the
multi-target baseline by +3.9%. What is particularly noticeable in this setup is
the performance on the human class: while we observe an IoU of around 50% in
the main results on domain adaptation to Mapillary (e.g. in Table 5.1), the direct
transfer results of the multi-target baseline and of Multi-Dis. drop under 38% on
this class; Differently, MTKT manages to get similar performance with 52.8% IoU

on human. This experiment hints at the ability of MTKT to better generalize to new
unseen domains.
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Table 5.6 – Direct transfer to new target. Multi-target models are tested on a new
unseen domain: (Top) GTA5 � Cityscapes + IDD, tested on Mapillary;
(Bottom) GTA5 � Cityscapes + Mapillary, tested on IDD.

se
tu

p

Method Test set fla
t

co
ns

tr
.

ob
je

ct

na
tu

re

sk
y

hu
m

an

ve
hi

cl
e

mIoU-7
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I M-T Baseline
Mapillary

88.4 71.0 31.0 72.4 92.0 37.4 74.7 66.7
Multi-Dis. 89.2 72.1 21.7 73.8 94.0 34.8 75.9 65.9
MTKT 89.8 74.0 30.4 74.1 93.6 52.6 79.4 70.6
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M M-T Baseline
IDD

91.6 54.7 13.9 76.5 90.9 48.3 77.5 64.8
Multi-Dis. 91.2 54.6 12.9 77.7 92.5 50.3 78.6 65.4
MTKT 91.5 56.1 12.3 76.1 90.9 51.4 79.2 65.4

Limits. Nonetheless, multi-target settings have their drawbacks, especially in
the context of urban scene segmentation. As already discussed in Chapter 2, UDA

for semantic segmentation is an expensive task in terms of computing power,
and specifically requires a lot of Graphics Processing Unit (GPU) memory. This
becomes exponentially more problematic when considering more than two do-
mains.

Moreover, while showing significant improvements on multi-target settings, the
methods proposed in this section rely on the simultaneous availability of all the
target domain data during training. This limits the practical usage of multi-target
UDA strategies as one may not have access to all the target domains at the same
time due to privacy or may want to improve a pre-trained model on a new target
domain without re-training on the previous target domains.

In these scenarios, a continual learning perspective in which new target do-
mains are discovered sequentially would be more relevant than a multi-target
setting.

5.3 Continual Target Knowledge Transfer for Con-
tinual Unsupervised Domain Adaptation

5.3.1 Continual Unsupervised Domain Adaptation

Continual Learning. The task of continual learning aims at learning a constantly
changing distribution. A naive mitigation is to re-train the model from scratch
on the updated dataset. However, it assumes that previous data is kept, which is
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often unfeasible for multiple reasons, including privacy. Thus, a continual model
has to learn solely on the new data while remembering the previous data. As a
result, the model faces the challenge of “catastrophic forgetting” (Robins 1995;
Thrun 1998; French 1999) where the performance on previous samples drops. This
problem can be mitigated by different approaches: rehearsal of a limited amount
of previous data (Rebuffi et al. 2017; Hayes et al. 2020) can reduce forgetting, but
is memory-costly for high-resolution images required for semantic segmentation
(Douillard et al. 2021b). A second approach is to constrain the new model to be
“similar” to the previous model. This similarity can be defined on the weights
(Kirkpatrick et al. 2017), the gradients (Lopez-Paz and Ranzato 2017), or even the
probabilities (Z. Li and Hoiem 2016) and the intermediary features (Douillard et al.
2020). More recently, continual models were adapted for semantic segmentation
(Michieli and Zanuttigh 2019; Cermelli et al. 2020; Douillard et al. 2021a) with
success, but they restricted themselves to supervised tasks on a single dataset and
not unsupervised adaptation across multiple domains.

Problem Setting. As in Section 5.2.1, T ≥ 2 distinct target domains Xt,n, n ∈ [T ],
must be jointly handled by the model. They are represented by unlabeled training
sets Xt,n, n ∈ [T ]. As in standard UDA settings, we assume that the annotated
training examples (x,y) ∈ Xs × Ys stem from a single source domain, a specific
synthetic environment for instance.

This setting differs from the multi-target unsupervised domain adaptation
setting of Section 5.2.1: we assume here that the different target domains can
only be accessed sequentially and one at a time during training. More precisely,
during training, the model only has access to a single target dataset Xt,n with
n ∈ [T ] and cannot access ever again the target datasets Xt,k, k ∈ [n − 1] it has
previously learned. Nevertheless, we consider that the source domain dataset
(Xs,Ys) is always accessible during training.

However, the objective is the same as the multi-target setting: train a single
segmenter F that achieves equally good results on all target-domain test sets. Also,
while the target domain of origin is known for all unlabeled training examples,
we assume, as in multi-target classification approaches of (Gholami et al. 2020; Yu
et al. 2018), that this information is not accessible at test time.

Overall, this setting brings a new challenge compared to the multi-target one:
when training on new target domains, the model must not forget the old target
domains it has trained before.

Revisiting Adversarial Unsupervised Domain Adaptation Approach. As in
Section 5.2.1, we adapt the training procedure of state-of-the-art UDA approaches
like (Tsai et al. 2018) or (Vu et al. 2019a) to this new setting.
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In continual unsupervised domain adaptation, the model always has access
during training to a single source domain and a single target domain. Standard
UDA approaches can easily be adapted to this setting: at each iteration n ∈ [T ],
the model is trained on the source dataset Xs and the current target dataset Xt,n,
initialized from the model trained at the previous iteration. This way, the model
is trained in a UDA fashion sequentially on all the target domains. However, this
“continual baseline” doesn’t directly tackle catastrophic forgetting of old domains.
The following section describes our strategy to explicitly prevent catastrophic
forgetting.

5.3.2 CTKT: Continual Target Knowledge Transfer Framework

The proposed approach extends the MTKT framework presented in Section 5.2.3
to the continual setting. The proposed CTKT framework is described in Figure 5.6.

As in MTKT, the classification part of the network is designed with multiple
branches. At iteration n ≥ 2, the segmentation model F(1:n), composed of a fea-
ture extractor F feat

(1:n) and a pixel-wise classifier F cls
(1:n), is trained on the source

domain Xs and the target domain Xt,n to perform on the target domains 1 to n.
In this step n, the network has one additional target-specific instrumental classifier
F cls
n based on the feature extractor F feat

(1:n). This classifier F cls
n handles the specific

source-target n domain shift. This separated branch allows a proper output-space
adversarial alignment between the source domain and the target domain n. This
classification head is associated with a domain discriminator D to classify source
vs. target n. The training objectives are similar to those used in single-target
models (Equation 2.15 and Equation 2.16).

Target-agnostic architecture. The target-agnostic head F cls
(1:n), which is eventu-

ally kept as classification head of the model, is trained to perform on all the target
domains from 1 to n. The knowledge from the target-specific branch is transferred
to the target-agnostic branch via a teacher-student strategy by minimizing the KL

divergence between the predictions of the two classification heads on the target
domain n. For a given sample xt ∈ Xt,n, we compute the KL loss

LKL,n(xt) =
H∑

h=1

W∑
w=1

C∑
c=1

Pn,xt [h,w,c] log
Pn,xt [h,w,c]

P(1:n),xt [h,w,c]
, (5.9)

where Pn,xt and P(1:n),xt are soft-segmentation predictions coming from the target-
specific F cls

n and the target-agnostic F cls
(1:n) respectively.
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Figure 5.6 – Continual-target knowledge transfer approach to continual UDA.
When discovering a new target domain n, CTKT learns its model
(F feat

(1:n), F
cls
(1:n)) using knowledge transfer from both a target-specific

segmenter F cls
n trained adversarially for this target domain, and

the frozen segmentation model from the previous training step
(F feat

(1:n−1), F
cls
(1:n−1)). In combination with this architectural design, the

training losses are indicated and further developed in the text. In
particular, the Local POD loss LLocalPod is introduced to further pre-
vent catastrophic forgetting. The losses are not back-propagated into
dotted arrows.

Preventing catastrophic forgetting. Furthermore, the model must not forget
what it has learned in the previous training iterations about the other target
domains. Without proper constraint, the model may be subject to catastrophic for-
getting, hindering its performance on previous target domains. Thus, additional
losses based on the model’s previous iteration are considered when training the
model on the new target domain. The aim of these losses is to make sure that the
new model keeps similar features to its previous iteration in order to keep similar
results on the previous target domains, on which the old model was performing
well.

Ideally, one would want to use images from the previous target domains to
get the features and results of the old model and make sure they are as close as
possible as those of the currently trained model. However, in this continual setting,
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one cannot access the previous target domain images anymore. Nevertheless,
since the models are trained with adversarial alignment, we assume that the
features on the source domain are close enough to the features of the previous
target domains to use them as proxy. Under this assumption, we contrain source
domain features of the current model with source domain features of the previous
model.

Practically, we perform a similar knowledge transfer with KL distillation be-
tween the previously trained target-agnostic classifier F cls

(1:n−1), supposed to per-
form on targets 1 to n−1, and the currently trained target-agnostic classifier F cls

(1:n)

we want to perform on all targets 1 to n. Without access to images from domains
1 to n− 1, we use source images as proxy. For a given source sample xs ∈ Xs, we
compute the KL loss

LKL,(1:n−1)(xs) =
H∑

h=1

W∑
w=1

C∑
c=1

P(1:n−1),xs [h,w,c] log
P(1:n−1),xs [h,w,c]

P(1:n),xs [h,w,c]
, (5.10)

where P(1:n−1),xs and P(1:n),xs are soft-segmentation predictions coming from the
previous iteration of the target-agnostic classifier F cls

(1:n−1), previously trained for
targets 1 to n− 1 and now frozen, and the currently trained target-agnostic F cls

(1:n),
respectively.

With the addition of this loss, the minimization objective of the target-agnostic
classifier F cls

(1:n) over the segmenter’s parameters (including feature extractor’s), or
knowledge transfer loss, then reads:

LF cls
(1:n)

(θ) =
1

|Xt,n|
∑

xt∈Xt,n

LKL,n(xt) + λprev
1

|Xs|
∑
xs∈Xs

LKL,(1:n−1)(xs), (5.11)

with weight λprev to balance the knowledge transfer from the previous model.

Along with this knowledge transfer loss, we also want to specifically enforce
the current feature extractor F feat to produce features at each layer close to the
previous iteration of the feature extractor. This kind of approach helps alleviate the
catastrophic forgetting in continual learning problems. Practically, we propose to
use the Local POD distillation LLocalPod(θ

feat) proposed in (Douillard et al. 2021a).
By noting ψ(u) the concatenation of width-pooled slices and height-pooled slices
over multiple scales of u, the Local POD distillation is defined, on each sample xs

of the source dataset Xs, and over each layer activation F feat (l)
(1:n) (xs) and F feat (l)

(1:n−1)(xs),
l ∈ [L], of the the feature extractors F feat

(1:n) and F feat
(1:n−1), by the formula:

LLocalPod(θ
feat) =

1

L

L∑
l=1

∥∥∥ψ(F feat (l)
(1:n) )− ψ(F feat (l)

(1:n−1))
∥∥∥2

F
. (5.12)
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It is a multi-scale pooling distillation method that aims at preserving spatial
relationships on the intermediate features. A more in-depth definition of the loss
is developed in (Douillard et al. 2021a).

Note that this distillation loss was originally proposed in (Douillard et al. 2021a)
in a continual semantic segmentation setting where new classes were added at
each iteration while staying in the same domain. The setting considered here
is notably different since the classes don’t change throughout training, but the
model encounters new target domains at each iteration. Furthermore, the target
domains are not annotated, while segmentation maps are available for all images
during training in the setting of (Douillard et al. 2021a). We use the authors’
implementation of the LocalPod in our experiments 2.

Overall, the minimization objective of the semantic segmentation model F over
θ can be written as:

LF = LF cls
n ,seg + λadvLF cls

n ,adv + λktLF cls
(1:n)

+ λdistLLocalPod, (5.13)

with weights λadv, λkt, λdist balancing adversarial training, knowledge transfer and
distillation, respectively.

5.3.3 Experimental Results

5.3.3.1 Datasets

To be able to compare the results between multi-target and continual UDA, we
build our experiments on the same datasets as the previous section on multi-
target UDA (Section 5.2): GTA5, Cityscapes, IDD, Mapillary Vistas. These datasets
are further described in Section 2.3.2. Yet again, we standardize the label set with
the 7 super classes common to all four datasets.

5.3.3.2 Implementation Details

The experiments are conducted with PyTorch (Paszke et al. 2017). The adversar-
ial framework is based on AdvEnt’s published code. 3 The semantic segmentation
model is DeepLab-V2 (L.-C. Chen et al. 2018a), built upon the ResNet-101 (K.
He et al. 2016) backbone first initialized with ImageNet (Deng et al. 2009) pre-
trained weights. In a continual setting, when considering a new target domain,
the model is initialized with the weights of the previously trained model. All
semantic segmentation models are trained by SGD (Bottou 2010) with learning

2. https://github.com/arthurdouillard/CVPR2021_PLOP
3. https://github.com/valeoai/ADVENT

https://github.com/arthurdouillard/CVPR2021_PLOP
https://github.com/valeoai/ADVENT
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rate 2.5×10−4, momentum 0.9 and weight decay 10−4. We train the discriminators
using an Adam optimizer (Diederik P. Kingma 2015) with learning rate 10−4. All
experiments are conducted at the 640×320 resolution. For CTKT, the weights λprev

(Equation 5.11) and λdist (Equation 5.13), balancing the knowledge transfered from
the previously trained model, are set to 10−5 in all experiments.

5.3.3.3 Results

Ablation Study. We first consider the two-step continual task GTA5 � Cityscapes
� IDD: the models are first trained on GTA5 � Cityscapes, then on GTA5 � IDD.
We perform an ablation study of this setting of the proposed method CTKT after
this second training step.

The results are displayed in Table 5.7. In this table, we analyze the impact of the

Table 5.7 – Ablation study of the CTKT architecture for continual UDA. The mod-
els are decomposed into multiple blocks: ‘Prev. KT’ denotes knowl-
edge transfer from the previous model; ‘Feat. Dist.’ denotes feature
distillation with LocalPod (Douillard et al. 2021a); ‘Multi Heads’ de-
notes training both a target-specific head with adversarial training and
a target-agnostic head with knowledge transfer. The best results for
each metric are in bold, the second best are underlined.

GTA5� Cityscapes � IDD

Method Prev. KT Feat. Dist. Multi Heads Target mIoU-7
mIoU-7
Avg.

GTA5 � Cityscapes
Baseline (Vu et al. 2019a)

Cityscapes 69.0
65.2IDD 61.5

Continual
Baseline (Vu et al. 2019a)

Cityscapes 63.6
64.5IDD 65.4

Previous model
Knowledge Transfer ✓ Cityscapes 65.3

65.3IDD 65.3

LocalPod (Douillard et al. 2021a)
Feature Distillation ✓ Cityscapes 66.4

65.9IDD 65.5

Prev. Knowledge Transfer
+ Feature Distillation ✓ ✓ Cityscapes 66.8

66.2IDD 65.5

CTKT ✓ ✓ ✓ Cityscapes 68.0 66.7IDD 65.3

multiple elements of CTKT: knowledge transfer from the previous model (‘Prev.
KT’), feature distillation from the previous model with LLocalPod (‘Feat. Dist.’),
and the decomposition into target-specific and target-agnostic branches (‘Multi
Heads’).

First, we note that all the continual experiments exhibit comparable perfor-
mance on IDD, on which they were trained last: from 65.2% to 65.5% mIoU on
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IDD, much higher than the 61.5% mIoU on IDD of the previous model, not trained
on this domain.

Then, we note that the continual baseline, not implementing any of these ele-
ments, suffers catastrophic forgetting on the previous Cityscapes target domain,
dropping from 69.0% to 63.6% mIoU. Despite the improvement on IDD, on which
it was trained last, the overall performance is lower than the previous model
(difference of −0.7% mIoU Avg.).

Implemented on their own, both the knowledge transfer from the previous
model and the feature distillation with LocalPod help limit the catastrophic for-
getting on Cityscapes. Furthermore, they prove to be complementary, exhibiting
greater performance on Cityscapes when combined.

Finally, CTKT adds the decomposition into target-specific and target-agnostic
branches, which lessens catastrophic forgetting even further. CTKT performance
on Cityscapes is only 1.0% mIoU lower than the previous model trained only on
Cityscapes while being competitive on IDD. Overall, the performance of CTKT in
terms of mIoU Avg. is significantly higher than the other models, notably +2.2%

greater than the continual baseline.

GTA5 � Cityscapes � IDD � Mapillary. We consider the challenging setup
involving three target domains – Cityscapes, Mapillary and IDD – discovered
sequentially in a three-step continual learning setting and show results in Table 5.8.
We compare results of continual UDA with multi-target UDA results from the
previous section (Section 5.2). Due to the simultaneous availability of data for all
the target domains, the multi-target setting is easier than the continual setting
and the performance of multi-target experiments are expected to be higher than
those of continual UDA experiments.

The continual baseline performs worse than all the multi-target experiments
with at least a−0.8% mIoU Avg. decrease. In particular, the results on the Cityscapes
and IDD datasets, which have been seen in early continual training steps, are sig-
nificantly lower than those of all the other models due to catastrophic forgetting.
Moreover, its performance is notably degraded on the human and vehicle classes
compared to the better performing multi-target models, which is especially critical
for autonomous driving applications.

On the other hand, CTKT exhibits comparable performance to the rather compet-
itive Multi-Dis. multi-target model with a 68.2% mIoU Avg., proving the efficiency
of the proposed continual learning framework.
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Table 5.8 – Continual UDA segmentation performance on GTA5 � Cityscapes �
IDD � Mapillary (three steps). ‘Setting’ indicates if the experiment
is multi-target (simultaneous training on all the target domains) or
continual (target domains discovered sequentially, three-step training).

GTA5� Cityscapes � IDD � Mapillary

Method Setting Target fla
t

co
ns

tr
.

ob
je

ct

na
tu

re

sk
y

hu
m

an

ve
hi

cl
e

mIoU-7
mIoU-7
Avg.

Multi-Target
Baseline (Vu et al. 2019a) Multi-Target

Cityscapes 93.6 80.6 26.4 78.1 81.5 51.9 76.4 69.8
67.8IDD 92.0 54.6 15.7 77.2 90.5 50.8 78.6 65.6

Mapillary 89.2 72.4 32.4 73.0 92.7 41.6 74.9 68.0

Multi-Dis. Multi-Target
Cityscapes 94.6 80.0 20.6 79.3 84.1 44.6 78.2 68.8

68.2IDD 91.6 54.2 13.1 78.4 93.1 49.6 80.3 65.8
Mapillary 89.0 72.5 29.3 75.5 94.7 50.3 78.9 70.0

MTKT Multi-Target
Cityscapes 94.6 80.7 23.8 79.0 84.5 51.0 79.2 70.4

69.1IDD 91.7 55.6 14.5 78.0 92.6 49.8 79.4 65.9
Mapillary 90.5 73.7 32.5 75.5 94.3 51.2 80.2 71.1

Continual
Baseline (Vu et al. 2019a) Continual

Cityscapes 92.9 79.0 18.7 76.9 84.1 47.3 72.9 67.4
67.0IDD 91.8 51.1 11.6 79.0 91.6 47.5 72.5 63.6

Mapillary 90.3 71.7 30.1 76.1 93.9 50.2 77.3 70.0

Cityscapes 94.9 80.2 19.3 79.4 80.7 53.2 78.2 69.4
IDD 92.5 54.1 12.0 79.2 92.7 48.0 76.6 65.0CTKT Continual
Mapillary 91.0 73.2 29.2 76.0 94.1 50.0 78.0 70.2

68.2

5.4 Conclusion

Practical applications of UDA require models that perform on a multitude of
different domains, such as multiple cities or various weather conditions. While
effective in the traditional single-target setting, standard UDA strategies do not
easily extend to multi-target domains scenarios.

I first tackled the multi-target UDA problem for semantic segmentation by in-
troducing two frameworks to extend adversarial alignment UDA strategies to this
task. The first one, Multi-Dis., actively enforces the pairwise alignment between
the source and the target domains as well as between the alignment between
each target and the other targets using multiple discriminators. The second one,
MTKT, introduces a multi-teacher single-student strategy based on multiple target-
specific segmentation heads and a single target-agnostic segmentation head. This
strategy alleviates some instability of the concurrent adversarial training proce-
dures of Multi-Dis..

Then, I proposed CTKT to tackle the novel continual UDA problem. Close to
MTKT, CTKT adapts to each new target domain using a teacher-student strategy
from a target-specific head to a target-agnostic head while transferring the knowl-
edge from the previous model, trained to perform on all the previous target
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domains. The proposed benchmarks and architectures deliver competitive base-
lines for developments of real-world use-cases UDA scenarios.
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6
C O N C L U S I O N

In this chapter, we first summarize the contributions of this thesis before dis-
cuting directions for future work on Domain Adaptation (DA) for urban scene
segmentation.

6.1 Summary of Contributions

This thesis focuses on improving Deep Learning (DL) architectures and training
procedures for Unsupervised Domain Adaptation (UDA) in semantic segmen-
tation on three themes: leveraging source domain Privileged Information (PI)
(Chapter 3), estimating the confidence in the target domain segmentation pre-
dictions for Self-Training (ST) (Chapter 4), and simultaneously or continuously
adapting to multiple target domains (Chapter 5).

Bilinear multimodal discriminator for adversarial UDA with PI. Chapter 3 stud-
ies UDA scenarios in which additional information is available on the source do-
main, which is especially common when considering a synthetic source domain.
More specifically, we discuss depth information as PI for UDA by considering
depth prediction as an additional task to further constrain the semantic segmenta-
tion model. We propose Bilinear Multimodal Domain Adaptation (BerMuDA) that
aims at explicitly discovering multimodal interactions by learning a bilinear fusion
between semantic segmentation and depth predictions in the domain discrimina-
tor. The tensor-based bilinear fusion allows modelling fine interactions between
the two modalities and builds discriminative multimodal representations that
help improve adversarial UDA, as shown in the experiments on synthetic-to-real
urban scene UDA.

Estimation of confidence for target pseudo-label selection and ST. Chapter 4

tackles ST on the unlabeled target domain based on pseudo-label selection, a strat-
egy borrowed from the semi-supervised learning community. In particular, we
discuss the measure of confidence employed in the literature, generally revolving
around the Maximum Class Probability (MCP) of the segmentation model predic-

113
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tions. We first propose Entropy-based Self-supervised Learning (ESL), a simple
yet efficient improvement over MCP-based approaches, that considers the entropy
of the prediction as measure of confidence. Since the entropy takes into consider-
ation the complete distribution of the prediction for each pixel, this measure is
more reliable than MCP in assessing the confidence of the semantic segmentation
network. Experiments on multiple UDA models and settings demonstrate that the
introduction of ESL substantially improves the performance of the ST procedure
compared to the MCP criterion.

To go further, we propose the more complex Confidence Learning for Domain
Adaptation (ConDA) that aims at estimating the True Class Probability (TCP), best
suited as measure of confidence. ConDA learns an auxiliary neural network ded-
icated to confidence estimation, with an architecture specifically designed for
semantic segmentation and an adversarial training procedure tailored to UDA.
ConDA proved to significantly improve over strong baselines on various bench-
marks.

Adversarial frameworks for multi-target and continual UDA. Chapter 5 dis-
cusses UDA to multiple target domains in semantic segmentation, which rep-
resents a practical challenge for UDA applications such as autonomous driv-
ing. We propose two adversarial frameworks to tackle multi-target UDA, Multi-
Discriminator (Multi-Dis.) and Multi-Target Knowledge Transfer (MTKT), that ex-
tend output-based adversarial approaches of standard UDA to this new setting.

Furthermore, we address continual UDA where target domains are discovered
sequentially, adding the challenge of catastrophic forgetting to the UDA problem.
We propose Continual Target Knowledge Transfer (CTKT) that allows the continu-
ous training of output-based adversarial UDA approaches on new target domains
by distilling the knowledge of previous iterations.

Finally, we additionally propose unified benchmarks for adaptation to multiple
urban scene datasets on which we test our different approaches and baselines,
setting competitive standards for these novel tasks.

6.2 Perspectives for Future Work

Let us now discuss some directions that could be addressed in future work in
relation to our contributions.
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Extending the DA setting to more practical scenarios

Solving DA settings closer to practical applications has been one of the main
focuses of this thesis, Chapter 3 addressing UDA with additional PI in the source
domain and Chapter 5 tackling UDA to more than one target domain. Design-
ing architectures that can leverage additional data or perform in more complex
scenarios is one of the major research directions toward practical use cases of
UDA.

Source-free UDA. While we considered in Chapter 5 that it may be unfeasible to
keep previous data in continous UDA settings for diverse reasons such as privacy,
the same assessment could be made about the source data. Source-free UDA

(Kundu et al. 2021; Y. Liu et al. 2021) considers settings in which only a source pre-
trained model is made available for adaptation to the target domain, making the
task significantly more challenging. Nonetheless, building architectures which can
continuously learn on new target domains (like the proposed CTKT in Chapter 5),
while remembering their knowledge of previous target domains and not requiring
to memorize the source data to adapt on this new target data would consitute a
major breakthrough for practical applications such as autonomous vehicles.

Semi-supervised DA. In this thesis, we specifically considered UDA, which is
the most commonly tackled DA setting in the literature. However, even if manual
semantic segmentation annotation is costly, annotating a few real urban scene im-
ages is conceivable. Semi-supervised DA (B. Li et al. 2021; Singh et al. 2021) stud-
ies DA scenarios in which the target training dataset has a few labeled examples.
Specific architectures and strategies must be employed to properly leverage this
additional target information and improve the performance of the DA. Nonethe-
less, the confidence estimation method proposed in Chapter 4 would perfectly fit
semi-supervised DA and enhance the target dataset with confident pseudo-labels
for the unlabeled samples.

Adaptation with new target labels. Despite the many differences and gaps
between the considered domains, UDA generally assumes that the label spaces of
the domains are identical. However, some domains may show some very specific
classes, for example “autorickshaw” in Indian urban scenes in IDD. Ideally, for
practical applications, UDA models should be able to, at least, detect new classes,
if not actually predict their class with marginal supervision. Such incremental
or boundless DA settings have been tackled on various Computer Vision (CV)
tasks by a few works in the literature (Kundu et al. 2020; Bucher et al. 2020).
The continual UDA setting proposed in Chapter 5 could be extended with the
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more traditional continual learning paradigm in mind: when discovering new
target domains, the model must also learn to predict new classes, maybe with
a few annotated examples of this new class. Such a setting would combine the
challenges of the continual UDA problem discussed in Chapter 5 with those of
the continual semantic segmentation task, studied for example in (Douillard et al.
2021a).

Adaptation with other sensors

In this thesis and in the vast majority of the literature, UDA is considered on
traditional camera inputs. However, in the context of autonomous vehicles, the
system has access to a variety of different sensors, each providing unique and
informative signals about their environment. As for semantic segmentation of
images, the annotation of LiDAR point clouds, for instance, is expansive and UDA

is a compelling solution to leverage these signals, especially when combined with
traditional cameras.

Traditional camera to fish-eye camera. While the UDA literature, and more
generally the semantic segmentation community, mostly consider traditional cam-
eras, fisheye cameras are commonly employed in practice for capturing a large
field of view, in particular in automotive applications. Solving CV tasks on fisheye
camera data would have a massive impact on autonomous driving, and recent
datasets such as Woodscape (Yogamani et al. 2019) promote the use of such data.
One may consider fisheye camera input as a new target domain in a UDA strategy
and leverage traditional camera data as source domain. Adapting multi-target
UDA strategies like those we propose in Chapter 5 by considering a synthetic
source domain and the multiple video inputs of an autonomous car, coming from
traditional and fisheye cameras, as multiple target domains to build a unified
semantic segmentation model for all the cameras of the vehicle could have a
tremendous impact on autonomous driving systems.

UDA for 3D CV by leveraging LiDAR and radar. Apart from cameras, au-
tonomous vehicles employ other sensors to acquire a 3D knowledge of their
environment, in particular radar and LiDAR. While Chapter 3 discussed leverag-
ing depth as source PI in UDA settings, one could practically have access to depth
information or 3D point clouds in the target domain and in real-time. (Jaritz et al.
2020) first proposes to perform UDA for 3D semantic segmentation on point clouds
by leveraging both camera and LiDAR inputs. In such a context, approaches like
the proposed BerMuDA (Chapter 3) could help build discriminative feature accross
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the multiple modalities to improve the cooperation between the modalities and
better adapt on the target domain.

Applying UDA to practical driving assistance systems

Valeo is firmly committed to improving advanced driving assistance systems
(ADAS) and to developing autonomous vehicles. Experiments on prototypes of
autonomous cars or on controlled circuits in collaboration with other research
and development teams of the company would prove to be the perfect testing
ground for the proposed UDA methods. For instance, we could check the impact
of integrating day-to-night adaptation with UDA methods on an experimental
autonomous driving car. This applied context would also allow us to evaluate the
algorithms on more practical metrics than the Intersection over Union (IoU), such
as counting the number of times the driver takes over the wheel.
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