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Abstract
The focus of this thesis is to design a hypersequent calculus called HMR for Riesz modal

logic, or equivalently, for the equational theory of modal Riesz spaces. It is part of a line of
research aiming to provide a structural proof system for well–known probabilistic logics like the
probabilistic µ–calculus or probabilistic Computational Tree Logic.

Riesz modal logic is a real–valued modal logic, i.e., a modal logic whose terms are interpreted
as real numbers instead of Booleans. If extended with fixed–point defined operators, Riesz modal
logic is expressive enough to encode most of the usual probabilistic logics like the probabilistic
Computational Tree Logic mentioned above. Moreover, an equational axiomatisation has been
provided for Riesz modal logic: there is a set of axioms such that two terms of Riesz modal logic
are equivalent, i.e., they have the same interpretations in all models, if and only if they can be
proved equal using this set of axioms and the rules of equational reasoning.

The goal of providing a hypersequent calculus for Riesz modal logic is to have a better–
behaved proof system. The main limitation of equational reasoning is that its rules are not
all analytical: it may be necessary to "guess" formulas during the construction of a derivation,
which require some human ingenuity. Therefore we want to provide a proof system that is both
sound and complete with regards to the axiomatisation of Riesz modal logic, while having only
analytical rules, making the process of building derivations much simpler.

To do so, we build upon another existing hypersequent calculus introduced for the Abelian
logic. Riesz modal logic can be seen as the Abelian logic extended with a scalar multiplication
(a term can be multiplied by a real scalar r ∈ R) and a modal operator ♦. Therefore, HMR is
built by extending the hypersequent calculus for the Abelian logic with new rules to deal with
those new operations, and by using weighted hypersequents instead of regular hypersequents,
i.e., using pairs of real numbers and Riesz modal logic terms as elementary blocks instead of
just Riesz modal logic terms. We show that this new hypersequent calculus is both sound and
complete with regards to the axiomatisation of Riesz modal logic. We also prove that it satisfies
the CAN elimination theorem, or equivalently the CUT elimination theorem, effectively removing
the only non–analytical rule.

Lastly, we use this new hypersequent calculus to prove new and interesting results. Among
them, we show that the equivalence problem of Riesz modal logic is decidable (i.e., there is an
algorithm to decide whether or not two Riesz modal logic terms are equivalent). We also solve
a problem that was previously left open regarding the axiomatisation of Riesz modal logic.
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Résumé
L’objectif de cette thèse est de concevoir un calcul d’hypersequents appelé HMR pour la

Logique Modale de Riesz, ou de manière équivalente, pour la théorie équationnelle des espaces
de Riesz modaux. Elle s’inscrit dans une ligne de recherche visant à fournir un système de preuve
structurelle pour des logiques probabilistes bien connues comme le µ–calcul probabiliste ou la
logique probabiliste du temps arborescent (probabilistic Computational Tree Logic or pCTL).

La logique modale de Riesz est une logique modale à valeurs réelles, c’est-à-dire une logique
modale dont les termes sont interprétés comme des nombres réels au lieu de Booléens. Si elle est
étendue avec des opérateurs de point fixes, la logique modale de Riesz est suffisamment expressive
pour coder la plupart des logiques probabilistes habituelles comme la logique probabiliste du
temps arborescent mentionnée ci-dessus. De plus, une axiomatisation équationnelle a été fournie
pour la logique modale de Riesz : il existe un ensemble d’axiomes tels que deux termes de
la logique modale de Riesz sont équivalents, c’est-à-dire qu’ils ont les mêmes interprétations
dans tous les modèles, si et seulement s’ils peuvent être prouvés égaux en utilisant cet ensemble
d’axiomes et les règles du raisonnement équationnel.

Le but de fournir un calcul d’hypersequents pour la logique modale de Riesz est d’avoir un
système de preuve ayant certaines propriétés intéressantes. La principale limite du raisonnement
équationnel est que ses règles ne sont pas toutes analytiques : il peut être nécessaire de « deviner
» des formules lors de la construction d’une dérivation, ce qui demande une certaine ingéniosité
humaine. Par conséquent, nous voulons fournir un système de preuve à la fois correct et complet
en ce qui concerne l’axiomatisation de la logique modale de Riesz, tout en n’ayant que des règles
analytiques, ce qui rend le processus de construction des dérivations beaucoup plus simple.

Pour ce faire, nous nous appuyons sur un autre calcul d’hypersequents existant introduit pour
la logique Abélienne. La logique modale de Riesz peut être vue comme la logique Abélienne
étendue avec une multiplication par un nombre réel (un terme peut être multiplié par un nombre
réel r ∈ R) et un opérateur modal ♦. Par conséquent, HMR est construit en étendant le calcul
d’hypersequents pour la logique Abélienne avec de nouvelles règles pour traiter ces nouvelles
opérations, et en utilisant des hypersequents pondérés au lieu des hypersequents habituels, c’est-
à-dire en utilisant des paires de nombres réels et des termes de la logique modale de Riesz comme
blocs élémentaires au lieu de simples termes de la logique modale de Riesz. Nous montrons que ce
nouveau calcul d’hypersequents est à la fois correct et complet en ce qui concerne l’axiomatisation
de la logique modale de Riesz. Nous prouvons également qu’il satisfait le théorème d’élimination
de la règle CAN, ou de manière équivalente le théorème d’élimination de la règle CUT, supprimant
la seule règle non analytique.

Enfin, nous utilisons ce nouveau calcul d’hypersequents pour prouver des résultats nouveaux
et intéressants. Parmi eux, nous montrons que le problème d’équivalence de la logique modale
de Riesz est décidable (c’est-à-dire qu’il existe un algorithme pour décider si oui ou non deux
termes de la logique modale de Riesz sont équivalents). Nous résolvons également un problème
précédemment laissé ouvert concernant l’axiomatisation de la logique modale de Riesz.
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Introduction

In the last decades, many applications for mathematical logic have been found, notably
regarding the formal verification of hardware and software systems: logics are used to express
and verify properties of programs. By using tools for the verification of properties of complex
systems based on logical methods, it is possible to find and correct bugs which could otherwise
be very costly or even be dangerous to human lives. As a concrete example, in [LFZG13] the
authors used logical methods to verify some correctness properties of the software regulating
air–traffic.

To verify those properties, they first have to be expressed formally. One approach is to express
them using a chosen logic. For instance, the well–known modal µ–calculus [Koz83] can be used
to express interesting properties, like the fact that a program is deadlock–free, i.e., that it will
not be stuck in some state (see also [BdRV02, Sti01, CF08] for an introduction to modal logics).

It then becomes useful to be able to reason on the formulas that can be expressed in the
logic. It is, for instance, often desirable to be able to check whether or not two formulas φ and ψ
are equivalent, i.e., that a program satisfies φ if and only if it satisfies ψ. One of the uses is, for
instance, that if it is known that a program satisfies φ, and that φ is equivalent to ψ, then we
automatically get that the program satisfies ψ, avoiding the (possibly expensive) cost of having
to check the second property.

For some logics, it is possible to automatically check whether or not two formulas are equiv-
alent, like for modal µ–calculus (see, e.g., [BK08]). However it is not always possible, and even
when it is possible, the process can be quite costly. It is thus often useful to design alternative
and complementary approaches to establish relations on formulas. Those approaches can be
human–aided, and help the user construct a formal proof of a desired statement.

A classic human–aided approach is equational reasoning, where one can construct formal
proofs of equalities between formulas using a set of axioms and the well–known rules of equational
reasoning. An example is to use the axioms of Boolean algebras to construct proofs that two
formulas of Boolean logic are equivalent.

However, human ingenuity can be necessary in such systems. In equational reasoning, because
of the transitivity rule

A ` A = C A ` C = B
A ` A = B

trans

the user may have to guess the formula C while constructing the proof of A = B, which can
require quite a lot of ingenuity. Such a rule where it is necessary to "guess" a new formula is
called a non–analytical rule. Even some basic equalities such as x∨x = x may heavily rely on the
user to provide those intermediary steps, e.g., the proof x∨x = (x∨x)∧> = (x∨x)∧ (x∧¬x) =
x∨(x∧¬x) = x∨⊥x = x requires four intermediary formulas. This makes the process of deriving
such proofs difficult to automatize. Such a rule where we have to guess a new formula is called
a non–analytic rule.

7
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Structural proof theory is a field of mathematics (see [Bus98]) that focuses on developing
proof systems that require less human ingenuity to build proofs. For instance, regarding Boolean
logic, Gentzen’s sequent calculus [Gen34] is a structural proof system with good properties, most
notably the CUT–elimination theorem that effectively removes the only non–analytical rule of
the system.

When coming with a new structural proof system S for a logic L, there are three properties
that are very desirable:

• Soundness: every property that can be proved in S can be proved in L,

• Completeness: every property that can be proved in L can be proved in S, and

• Elimination of the non–analytical rules: the system S is complete even without any
non–analytical rule (in the case of Gentzen’s sequent calculus, this is the CUT–elimination
theorem).

Those three properties are often enough to ensure that the structural proof system S behaves
well–enough. Structural proof systems have been developed even for very expressive logics such
as the modal µ–calculus among others [Wal95, Stu07, DHL06, Dou17].

Despite being well studied and well understood, ordinary modal logics like modal µ–calculus
are not adequate for reasoning on all kinds of programs. One of the limitations concerns proba-
bilistic programs, i.e., programs that use instructions to generate random numbers (e.g., rand()
in C).

To handle such programs, it is often natural and useful to express properties about prob-
abilities. Thus, the interest in designing probabilistic logics since the early 1980’s. Those can
express properties regarding probabilities such as "the program will not face any deadlock with
probability strictly greater than 1

5".
Quite a few probabilistic logics have been designed and studied, in particular probabilistic

Computation Tree Logic (pCTL) [LS82, HS86, HJ94, BK08]. pCTL is one of the most used
probabilistic logic since it has a simple definition but is already quite expressive. For instance,
the deadlock–free property above can be stated in pCTL as ¬(P≥ 4

5
(F terminal)).

However, the progress in designing a well–behaved structural proof system for probabilistic
logics has, this far, been quite underwhelming. There is currently, to the best of our knowledge,
no well–behaved structural proof system for the logic pCTL, or any other expressive probabilistic
logic (see, e.g., [DFHM16] for the logic pCTL, [BGZB09, Hsu17] for pRHL and [Koz85] pPDL).
We can separate the design of a well–behaved structural proof system into two distinct steps:

1. first design a sound and complete proof system for deriving the equivalence of formulas –
this is a called the axiomatisation problem,

2. then build upon this proof system to design a better behaved structural proof system, more
specifically, a proof system without any non–analytic rule.

In the case of Boolean logic, the first step could be to find the set of axioms used in equational
reasoning, while the second step would be to build Getzen’s sequent calculus and prove the
CUT–elimination theorem.

The axiomatisation problem for pCTL has been left open for 35 years (see [LS82] or [HS86]):
all the proof systems for pCTL are currently incomplete.

One of the approaches to design a good proof system for probabilistic logics, which was
democratised by the seminal work of Kozen on probabilistic PDL [Koz85], is to take some distance
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from the usual Boolean semantics. Instead of interpreting formulas as either true or false (like
in pCTL), pPDL formulas are interpreted as real numbers. Such logics are called real–valued
logics. Further insights on the usefulness of real–valued logics for probabilistic programs can
be found in [Koz81]. Importantly, a sound and complete axiomatisation was found for pPDL
[Koz85]. However, pPDL is quite limited, and can not be easily directly extended to other
expressive logics like pCTL. This comes from the fact that the language of pPDL is both used as
a programming language and as the logic used to reason on those programs, and the programs
built using pPDL are quite limited. For instance, pPDL satisfies the finite model property where
one of the key points of pCTL is that the finite model property fails for pCTL.

Even though all the methods used by Kozen to design pPDL can not be directly used to
develop a well–behaved proof system for pCTL, it gives some new insights into the problems
faced in designing this system. For instance, the use of a real valued logic instead of a Boolean
one is quite promising. Indeed, recent works [Mio12, MS13, Mio18] have shown that pCTL can be
encoded using a simple real–valued modal logic extended with (co)inductively defined operators
like Łukasiewicz µ–calculus.

Therefore, one natural direction of research is the following.

1. Find a simple real–valued modal logic having nice properties.

2. Design a good structural proof system for this logic. This thesis focuses on designing
such a system for Riesz modal logic.

3. Extend the logic with the (co)inductive defined operators necessary to obtain the expres-
siveness of pCTL.

4. Build upon the proof system designed at step 2 to obtain a well–behaved proof system for
the logic obtained at step 3, thus having a good proof system for pCTL.

As mentioned above, good real–valued modal logics have already been designed. Among
those, this thesis will focus on Riesz modal logic, introduced by Furber, Mardare and Mio in
[MFM17, FMM20]. Riesz modal logic can interpret other basic real–valued logics, including
Łukasiewicz modal logic. Moreover, a sound and complete axiomatisation for Riesz modal logic
has been found in [MFM17]. Moreover, a structural proof system called GA for Abelian logic,
which can be seen as a fragment of Riesz modal logic, was designed by Gabbay, Metcalfe and
Olivetti in [MOG05]. Thus Riesz modal logic is a good candidate for building a proof system for
the second step. Note that there are other good candidates to study for designing a well–behaved
structural proof system. E.g., Diaconescu, Metcalfe and Schnüriger recently introduced another
extension to Abelian logic with modal operators called K(A) in [DMS18].

To provide a sound and complete axiomatisation for Riesz modal logic, Furber, Mardare and
Mio introduce the notion of modal Riesz spaces [MFM17]. A modal Riesz space is a Riesz space,
i.e., a vector space equipped with a lattice order compatible with the vector operations, extended
with a modal operator ♦ satisfying the following axioms:

• Linearity: for all terms t1, t2 and real scalar r, ♦(t1 + rt2) = ♦(t1) + r♦(t2),

• Positivity: if 0 ≤ t then 0 ≤ ♦(t),

• 1–decreasing : ♦(1) ≤ 1.
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It was shown that two formulas for Riesz modal logic are equivalent, when interpreted on Markov
chains, if and only if the two corresponding terms are equal in all modal Riesz spaces [MFM17,
FMM20].

An interesting class of proof systems to investigate for Riesz modal logic, and modal logics
in general, is the class of hypersequent calculi. Hypersequent calculus is a generalisation of
Gentzen’s sequent calculus introduced by A. Avron [Avr87], and independently by G. Pottinger
[Pot83]. In hypersequent calculus, instead of having only one sequent, the system is used to derive
a multiset of sequents. This modification significantly increases the expressiveness of Gentzen’s
calculus as it allows additional transfers of information between the sequents.

Contributions of this thesis: The focus of this thesis is to design a hypersequent calculus
called HMR for Riesz modal logic, or equivalently, for the equational theory of modal Riesz
spaces. To do so, we will build on the hypersequent calculus GA introduced in [MOG05] by
Gabbay, Metcalfe and Olivetti.

Since GA is a hypersequent calculus for Abelian lattice–ordered groups, i.e., Abelian groups
equipped with a lattice order, there are two operations that needs to be added to the system:
the scalar multiplication and the modal operator ♦.

This will be done incrementally: I separately introduce a hypersequent calculus for Riesz
spaces, i.e., Abelian lattice–ordered groups with scalar multiplication, called HR and a hyperse-
quent calculus for modal Abelian lattice–ordered groups called MGA before introducing HMR.
This iterative process is useful to better appreciate the difficulties and insights concerning those
two additional operations.

Organisation of this thesis. In Chapter 1, we provide the required technical background.
We give the basic definitions of the different algebras considered in this thesis, i.e., Abelian
lattice–ordered groups, Riesz spaces and modal Riesz spaces. We also introduce the Riesz modal
logic and provide the definition of the hypersequent calculus GA of [MOG05].

In Chapter 2, we start building the iterative hypersequent calculi. We first introduce the
hypersequent calculus GA‖, which is equivalent to GA but has a structure better suited to the
systems introduced after. We then introduce HR and MGA before merging them into HMR.

In Chapter 3, we give some applications of the system HMR. Notably, we prove that the
equational theory of modal Riesz spaces is decidable, and answer a problem left open in [FMM20]
by showing that free modal Riesz spaces are Archimedean.



Chapter 1

Technical background

1.1 Lattice–ordered Abelian groups
Lattice–ordered groups constitute a mature field of research, dating back to fundamental

papers by Birkhoff, Nakano and Lorenzen among others and are closely related to (modal) Riesz
spaces as we will see. Moreover, a hypersequent calculus was introduced by Metcalfe, Gabbay
and Olivetti for the theory of lattice–ordered Abelian groups, and this hypersequent calculus will
serve as the basis for the work presented in this thesis. Thus, we will first introduce the definitions
of lattice–ordered Abelian groups and the results used in our work. We refer to [AF89, KM94]
for a comprehensive reference to the subject.

A lattice–ordered Abelian group, or Abelian l–group, is an algebraic structure (R, 0,+,−,t,u)
such that (R, 0,+,−) is an Abelian group, (R,t,u) is a lattice and the induced order (a ≤ b⇔
aub = a) is compatible with addition in the sense that for all a, b, c ∈ R, if a ≤ b then a+c ≤ b+c.
Formally we have:

Definition 1.1.1 (Abelian l–group). The language LA of Abelian l–groups is given by the
signature {0,+,−,t,u} where 0 is a constant, +, t and u are binary functions and − is a
unary function. A lattice–ordered Abelian group, or Abelian l–group, is a LA-algebra, i.e., a set
equipped with interpretations for the operations, satisfying the set Al–groups of equational axioms
of Figure 1.1. We use the standard abbreviation of x ≤ y for x u y = x.

1. Axioms of Abelian groups: x+(y+z) = (x+y)+z, x+y = y+x, x+0 = x, x−x = 0,

2. Lattice axioms: (associativity) x t (y t z) = (x t y) t z, x u (y u z) = (x u y) u z,
(commutativity) zty = ytz, zuy = yuz, (absorption) zt(zuy) = z, zu(zty) = z.

3. Compatibility axiom: (x u y) + z ≤ y + z.

Figure 1.1: Set Al–group of equational axioms of Abelian l–groups.

Remark 1. Note how the compatibility axiom has been equivalently formalised in Figure 1.1 as
an inequality and not as an implication by using (xuy) and y as two general terms automatically
satisfying the hypothesis (x u y) ≤ y. Moreover the inequality

(x u y) + z ≤ y + z

11
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can be rewritten as the equation

((x u y) + z) u (y + z) = (x u y) + z

using the lattice operations (x ≤ y ⇔ xu y = x). Hence, since Abelian l–groups are axiomatised
by a set of equations, the family of Abelian l–groups is a variety in the sense of universal algebra.
Example 1. The integers Z together with their standard linear order (≤), expressed by taking
k1 u k2 = min(k1, k2) and k1 t k2 = max(k1, k2), is an Abelian l–group. This is a fundamental
example also due to the following fact (see, e.g., [Wei63] for a proof): for any two terms A,B, the
equality A = B holds in all Abelian l–groups if and only if A = B holds in the Abelian l–group
(Z,≤).
Example 2. For a given set X, the set ZX of functions f : X → Z is a Abelian l–group when
all operations are defined pointwise: (−f)(x) = −(f(x)), (f + g)(x) = f(x) + g(x), (f t g)(x) =
f(x) t g(x), (f u g)(x) = f(x) u g(x). Thus, for instance, the space of n-dimensional vectors Zn
is an Abelian l–group whose lattice order is not linear.
Remark 2. We use the capital letters A,B,C to range over terms built from a set of variables
ranged over by x, y, z. We write A[B/x] for the term, defined as expected, obtained by substi-
tuting all occurrences of the variable x in the term A with the term B.

As observed in Remark 1, the family of Abelian l–groups is a variety of algebras. This means,
by Birkhoff completeness theorem, that two terms A and B are equivalent in all Abelian l–groups
if and only if the identity A = B can be derived using the familiar deductive rules of equational
logic, written as Al–groups ` A = B (see Theorem 21 of [Wec92] or the seminal work of Birkhoff
[Bir35]).

Definition 1.1.2 (Deductive Rules of Equational Logic). Rules for deriving identities between
terms from a set A of equational axioms:

(A = B) ∈ A
A ` A = B

Ax A ` A = A
refl A ` B = A

A ` A = B
sym A ` A = B

A ` C[A] = C[B]
ctxt

A ` A = B A ` B = C
A ` A = C

trans A ` A = B
A ` A[C/x] = B[C/x]

subst

where A,B,C are terms of the algebraic signature under consideration built from a countable
collection of variables and C[·] is a context.

In what follows we denote with Al–groups ` A ≤ B the judgement Al–groups ` A = A uB.
The following elementary facts (see, e.g., [KM94] for proofs) imply that, in the theory of

Abelian l–groups, a proof system for deriving equalities can be equivalently seen as a proof
system for deriving equalities with 0 or inequalities.

Lemma 1. The following assertions hold:

• Al–groups ` A = B ⇔ Al–groups ` A−B = 0,

• Al–groups ` A = 0 ⇔
(
Al–groups ` 0 ≤ A and Al–groups ` 0 ≤ −A

)
.

Definition 1.1.3. A term A is in negation normal form (NNF) if the operator (−) is only
applied to variables.

For example, the term (−x) u (−y) is in NNF, while the term −(x t y) is not.

Lemma 2. Every term A can be rewritten to an equivalent term in NNF.
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Proof. Negation can be pushed towards the variables by the following rewritings: −(−A) = A,
−(A+B) = (−A)+(−B), −(AtB) = (−A)u(−B) and −(AuB) = (−A)t(−B) (see Lemma 5
(4) below).

Negation can be defined on terms in NNF as follows.

Definition 1.1.4. Given a term A in NNF, the term A is defined inductively as follows: x = −x,
−x = x, A+B = A+B, A tB = A uB, A uB = A tB.

The following are basic facts regarding negation of NNF terms.

Lemma 3. For any term A in NNF, the term A is also in NNF and it holds that Al–groups `
A = −A.

Proof. We prove the result by straightforward induction on A. See Lemma 5 (4) below for the
t and u cases.

Lemma 4. For any terms A,B in NNF, it holds that A[B/x] = A[B/x].

It is convenient to define a notion of complexity on the terms to reason by induction on the
size of the terms later on.

Definition 1.1.5 (Complexity). We define the complexity c(A) of a term in NNF A by induction
as follows:

• c(x) = 0

• c(x) = 0

• c(0) = 1

• c(A+B) = 1 + c(A) + c(B)

• c(A tB) = 1 + c(A) + c(B)

• c(A uB) = 1 + c(A) + c(B)

We now list some useful facts that will be used throughout the paper. The following are
useful derived operators frequently used in the theory of Abelian l–groups:

Symbol Terminology Definition
A+ The positive part A t 0
A− The negative part (−A) t 0
|A| The absolute value A+ +A−

Lemma 5. The following equations hold:

• (1) For all A, 2A− = (2A)−

• (2) For all A,B, 2(A tB)− ≤ (A+B)−

• (3) For all A,B, (A+B)− ≤ A− +B−

• (4) For all A,B, −(A tB) = (−A) u (−B) and −(A uB) = (−A) t (−B).

• (5) For all A,B,C, At (B uC) = (AtB)u (AtC) and Au (B tC) = (AuB)t (AuC).

• (6) For all A,B,C, A+(BtC) = (A+B)t (A+C) and A+(BuC) = (A+B)u (A+C).

• (7) For all A, 0 ≤ A t (−A).
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Most notably, observe that Abelian l–groups are distributive lattices (Lemma 5 (5)), that
sum distributes over lattice operations (Lemma 5 (6)) and that the least upper bound of any
element with its negation is always positive (Lemma 5 (7)).

Proof. As mentioned in Example 1, the Abelian l–group Z is complete for the equational theory
of Abelian l–groups. This means that a universally quantified equation Al–groups ` A = B
holds in all Abelian l–groups if and only if it holds in the Abelian l–group (Z,≤). It is then
straightforward to check the validity of all equations in Z.

Lemma 6. For all A,B, A tB ≥ 0 if and only if A− uB− = 0.

Proof. For all A,B we have:

0 u (A tB) = (A u 0) t (B u 0)
= −(((−A) t (−0)) u ((−B) t (−0)))
= −(A− uB−)

Hence 0 u (A tB) = 0 if and only if −(A− uB−) = 0 if and only (A− uB−) = 0. The proof is
complete recalling that 0 ≤ A tB means, by definition, that 0 = 0 u (A tB).

1.2 Riesz Spaces
The theory of Riesz spaces, also known as vector lattices, is a branch of mathematics at the

intersection of algebra and functional analysis, introduced by F. Riesz, L. Kantorovich and H.
Freudenthal among others. It merges the notions of lattice order and that of real vector spaces.
The former is pervasive in logic and the latter is at the heart of probability theory (e.g., convex
combinations, linearity of the expected value operator, etc.). Kozen was the first to observe in
a series of seminal works (see, e.g., [Koz81, Koz85]) that, for the above reasons, the theory of
Riesz spaces provides a convenient mathematical setting for the study and design of probabilistic
logics. Mio, Furber and Mardare extend the theory of Riesz spaces with a modal operator to
obtain the theory of modal Riesz spaces, which is the theory we are interested in for the different
hypersequent calculi introduced later on.

A Riesz space is an algebraic structure (R, 0,+, (r)r∈R,t,u) such that (R, 0,+, (r)r∈R) is a
vector space over the reals, (R,t,u) is a lattice and the induced order (a ≤ b ⇔ a u b = a)
is compatible with addition and with the scalar multiplication, in the sense that: (i) for all
a, b, c ∈ R, if a ≤ b then a+ c ≤ b+ c, and (ii) if a ≥ b and r ∈ R≥0 is a non–negative real, then
ra ≥ rb.

Following Definition 1.1.1, a Riesz space can be seen as an Abelian l–group where the language
is extended with scalar multiplications (r) for all r ∈ R and the axioms regarding the scalar
multiplications are added to the axioms of Abelian l–groups.

This section contains the basic definitions and results related to Riesz spaces. We refer to
[LZ71, JR77] for a more thorough introduction to the topic. Formally we have:

Definition 1.2.1 (Riesz Space). The language LR of Riesz spaces is given by the (uncountable)
signature {0,+, (r)r∈R,t,u} where 0 is a constant, +, t and u are binary functions and r is a
unary function, for all r ∈ R. A Riesz space is a LR-algebra satisfying the set ARiesz of equational
axioms of Figure 1.2. We use the standard abbreviations of −x for (−1)x and x ≤ y for xuy = x.

Remark 3. Similarly to Abelian l–groups (see Remark 1, Riesz spaces are axiomatised by a set
of equations, and so the family of Riesz spaces is a variety in the sense of universal algebra.
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1. Axioms of real vector spaces:

• Additive group: x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ 0 = x, x− x = 0,

• Axioms of scalar multiplication: r1(r2x) = (r1 · r2)x, 1x = x, r(x + y) = (rx) +
(ry), (r1 + r2)x = (r1x) + (r2x),

2. Lattice axioms: (associativity) x t (y t z) = (x t y) t z, x u (y u z) = (x u y) u z,
(commutativity) zty = ytz, zuy = yuz, (absorption) zt(zuy) = z, zu(zty) = z.

3. Compatibility axioms:

• (x u y) + z ≤ y + z,

• r(x u y) ≤ ry, for all scalars r ≥ 0.

Figure 1.2: Set ARiesz of equational axioms of Riesz spaces.

Example 3. The real numbers R together with their standard linear order (≤), expressed by
taking r1 u r2 = min(r1, r2) and r1 t r2 = max(r1, r2), is a Riesz space. It has the same
importance as Z for Abelian l–groups in the sense that the real numbers R is complete for the
quasi–equational theory of Riesz spaces (see, e.g., [LvA07] for a proof). Note however that
this result is stronger than the one for Abelian l–groups mentioned in Example 1. Indeed, Z
is complete for the equational theory of Abelian l–groups whereas R is complete for the quasi–
equational theory of Riesz spaces. Thus a quasi–equation, i.e., an implication of the form

n∧
i=1

Ai = Bi ⇒ A = B

holds in all Riesz spaces if and only if it holds in R.
Example 4. For a given set X, the set RX of functions f : X → R is a Riesz space when all
operations are defined pointwise: (rf)(x) = r(f(x)), (f + g)(x) = f(x) + g(x), (f t g)(x) =
f(x) t g(x), (f u g)(x) = f(x) u g(x). Thus, for instance, the space of n-dimensional vectors Rn
is a Riesz space whose lattice order is not linear.

The following elementary facts (see, e.g., [LZ71, §2.12] for proofs) imply that, in the theory
of Riesz spaces, a proof system for deriving equalities can be equivalently seen as a proof system
for deriving equalities with 0 or inequalities.

Lemma 7. The following assertions hold:

• ARiesz ` A = B ⇔ ARiesz ` A−B = 0,

• ARiesz ` A = B ⇔
(
ARiesz ` A ≤ B and ARiesz ` B ≤ A

)
.

Remark 4. From now on, in the rest of this paper, it will be convenient to take the derived
negation operation (−A) = (−1)A as part of the signature and restrict all scalars r to be strictly
positive (r > 0). The scalar 0 ∈ R can be removed by rewriting (0)A as 0.

Definition 1.2.2. A term A is in negation normal form (NNF) if the operator (−) is only
applied to variables.

For example, the term (−x) u (−y) is in NNF, while the term −(x t y) is not.
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Lemma 8. Every term A can be rewritten to an equivalent term in NNF.

Proof. Negation can be pushed towards the variables by the following rewritings: −(−A) = A,
−(rA) = r(−A), −(A+B) = (−A)+(−B), −(AtB) = (−A)u(−B) and−(AuB) = (−A)t(−B)
(see Lemma 10(4) below).

Negation can be defined on terms in NNF as follows.

Definition 1.2.3. Given a term A in NNF, the term A is defined as follows: x = −x, −x = x,
rA = rA, A+B = A+B, A tB = A uB, A uB = A tB.

The following are basic facts regarding negation of NNF terms.

Lemma 9. For any term A in NNF, the term A is also in NNF and it holds that ARiesz ` A =
−A.

Proof. We prove the result by straightforward induction on A. See Lemma 10(4) below for the
t and u cases.

Proposition 1. For any terms A,B in NNF, it holds that A[B/x] = A[B/x].

We now define the complexity of a Riesz term.

Definition 1.2.4 (Complexity). We define the complexity c(A) of a term in NNF A by induction
as follows:

• c(x) = 0

• c(x) = 0

• c(0) = 1

• c(rA) = 1 + c(A)

• c(A+B) = 1 + c(A) + c(B)

• c(A tB) = 1 + c(A) + c(B)

• c(A uB) = 1 + c(A) + c(B)

We now list some useful facts that will be used throughout the paper.

Lemma 10. The following equations hold:

• (1) For all A and r > 0, r(A−) = (rA)−.

• (2) For all A,B, 2(A tB)− ≤ (A+B)−

• (3) For all A,B, (A+B)− ≤ A− +B−.

• (4) For all r > 0, 0 ≤ A if and only if 0 ≤ rA.

• (5) For all A,B, −(A tB) = (−A) u (−B) and −(A uB) = (−A) t (−B).

• (6) For all A,B,C, At (B uC) = (AtB)u (AtC) and Au (B tC) = (AuB)t (AuC).

• (7) For all A,B,C, A+(BtC) = (A+B)t (A+C) and A+(BuC) = (A+B)u (A+C).

• (8) For all A, 0 ≤ A t (−A).

Most notably, observe that Riesz spaces are distributive lattices (Lemma 10(6)), that sum
distributes over lattice operations (Lemma 10(7)) and that the least upper bound of any element
with its negation is always positive (Lemma 10(8)).
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Proof. As mentioned in Example 3, the Riesz space R is complete for the quasi–equational theory
of Riesz spaces. This means that a universally quantified Horn clause

∧
i∈I ARiesz ` Ai = Bi ⇒

ARiesz ` A = B holds in all Riesz spaces if and only if it holds in the Riesz space (R,≤). It is
then straightforward to check the validity of all equations and equational implications in R.

Lemma 11. For all A,B, A tB ≥ 0 if and only if A− uB− = 0.

Proof. For all A,B we have:

0 u (A tB) = (A u 0) t (B u 0)
= −(((−A) t (−0)) u ((−B) t (−0)))
= −(A− uB−)

Hence 0 u (A tB) = 0 if and only if −(A− uB−) = 0 if and only (A− uB−) = 0. The proof is
complete recalling that 0 ≤ A tB means, by definition, that 0 = 0 u (A tB).

The Archimedean property plays a central role in the representation theory of Riesz spaces.
Indeed the Archimedean spaces are precisely those that can be shown to be isomorphic to spaces
of real-valued functions on certain topological spaces (see, e.g., [LZ71, Sec. 46]) Furthermore,
special representation theorems are available if the Riesz space possesses a weak-unit [LZ71, Sec.
50]) or even a strong unit ([LZ71, Sec. 45]).

Definition 1.2.5 (Archimedean Riesz spaces). A Riesz space R is said to be Archimedean if it
satisfies the following property

∀a, b ∈ R, (∀n ∈ N, na ≤ b)⇒ a ≤ 0

Example 5. The Riesz space R is Archimedean.

Example 6. The Riesz space R2 with the lexicographic order, i.e.,

(a, b) ≤ (c, d)⇔

{
a < c

a = c and b ≤ d

is not Archimedean. Indeed, n(0, 1) = (0, n) ≤ (1, 0) for all n ∈ N but (0, 1) 6≤ (0, 0).

Definition 1.2.6 (Weak unit). Let R be a Riesz space. A positive element u ∈ R is said to be
a weak unit if for all positive element x ∈ R, if x u u = 0 then x = 0.

Definition 1.2.7 (Strong unit). Let R be a Riesz space. A positive element u ∈ R is said to be
a strong unit if for all x ∈ R, there exists n ∈ N such that |x| ≤ nu.

1.3 Modal Riesz Spaces
This section contains the basic definitions and results related to modal Riesz spaces, as

introduced in [MFM17, FMM20].
The language of modal Riesz spaces extends that of Riesz spaces with two symbols: a constant

1 and an unary operator ♦.

Definition 1.3.1 (Modal Riesz Space). The language L♦
R of modal Riesz spaces is LR ∪ {1,♦}

where LR is the language of Riesz spaces as specified in Definition 1.2.1. A modal Riesz space is
a L♦

R-algebra satisfying the set A♦
Riesz of axioms of Figure 1.2.
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Axioms of Riesz spaces see Figure 1.2
+

Positivity of 1: 0 ≤ 1
Linearity of ♦: ♦(r1A+ r2B) = r1♦(A) + r2♦(B)
Positivity of ♦: ♦(0 tA) ≥ 0
1-decreasing property of ♦: ♦(1) ≤ 1

Figure 1.3: Set A♦
Riesz of equational axioms of modal Riesz spaces.

Remark 5. Note that the positivity axiom is equivalent to the following implication, which is
easier to read.

A ≥ 0⇒ ♦A ≥ 0

However, as in Remark 1, we formalise the axiom as an inequality to ensure that modal Riesz
spaces are fully axiomatised by a set of equations, and thus that the family of modal Riesz spaces
is a variety.

Example 7. Every Riesz space R can be made into a modal Riesz space by interpreting 1 with
any positive element and by interpreting ♦ as the identity function (♦(x) = x) or the constant 0
function ♦(x) = 0.

Example 8. The Riesz space (R,≤) of linearly ordered real numbers becomes a modal Riesz space
by interpreting 1 with the number 1, and ♦ by any linear (due to the linearity axiom) function
x 7→ rx for a scalar r ∈ R such that r ≥ 0 (due to the positivity axiom) and r ≤ 1 (due to the
1-decreasing axiom).

Example 9. Generalising the previous example, the Riesz space Rn (with operations defined
pointwise, see Example 4) becomes a modal Riesz space by interpreting 1 with the constant 1
vector and ♦ by a linear (due to the linearity axiom) map M : Rn → Rn, thus representable as
a square matrix,

1 =


1
1
...
1

 ♦ =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n
...

...
. . .

...
rn,1 rn,2 · · · rn,n


such that all entries ri,j are non–strictly positive (due to the positivity axiom) and where all
the rows sum up to a value ≤ 1, i.e., for all 1 ≤ i ≤ n it holds that

∑k
j=1 ri,j ≤ 1 (due

to the 1–decreasing axiom). Such matrices are known as sub–stochastic matrices. Each sub–
stochastic matrix M can be regarded as a probabilistic transition system (also referred to as
Markov chain, see Section 1.5) whose set S of states is S = {s1, . . . , sn} and whose transition
function τM : S → D≤1(S), defined as:

τM (si)(sj) = ri,j

assigns to each state si ∈ S a sub–probability distribution τM (si) ∈ D≤1(S) specifying the
probability of reaching sj from si, for any si, sj ∈ S.
Example 10. Consider the equality ♦(x t y) = ♦(x) t ♦(y). Does it hold in all modal Riesz
spaces? In other words, does A♦

Riesz ` ♦(x t y) = ♦(x) t ♦(y)? The answer is negative. Take as
example the modal Riesz space R2 with:
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1 =

(
1
1

)
♦ =

(
1
3

2
3

0 0

)
and let a = (1, 0) and b = (0, 1). One verifies that ♦(a t b) = (1, 0) while ♦(a) t ♦(b) = ( 2

3 , 0).
This example shows that unlike the theory of Riesz spaces (cf. Example 3), the theory of modal
Riesz spaces cannot be generated by a linear model, i.e. a model where either a ≤ b or b ≤ a for
all a and b. Indeed, in any linear model, the equality ♦(x t y) = ♦(x) t ♦(y) clearly holds while
it does not hold in the example above.

Remark 6. The choice of using the ♦ symbol for the unary operation of modal Riesz spaces
might suggest the existence of a distinct De Morgan dual operator �x = −♦−x. This is not the
case since, due to linearity, �x = ♦x, i.e., ♦ is self dual. While using a different symbol such as
(◦) might have been a better choice, we decided to stick to ♦ for backwards compatibility with
previous works on modal Riesz spaces [MFM17, FMM20, LM19]. Another source of potential
ambiguity lies in the “modal” adjective itself. Of course other axioms for ♦ can be conceived
(e.g., ♦(xty) = ♦(x)t♦(y) instead of our ♦(x+y) = ♦(x)+♦(y), see, e.g., [DMS18]). Therefore
different notions of modal Riesz spaces can be investigated, just like many types of classical modal
logic exist (K, S4, S5, etc). Once again, our choice of terminology is motivated by backwards
compatibility with previous works.

We now expand the definitions and properties related to terms in negation normal form to
modal Riesz spaces.

Definition 1.3.2. A term A is in negation normal form (NNF) if the operator (−) is only
applied to variables and the constant 1.

Lemma 12. Every term A can be rewritten to an equivalent term in NNF.

Proof. Negation can be pushed towards the variables by the following rewritings: −♦(A) =
♦(−A) (see Lemma 8 for the other operators).

Negation can be defined on terms in NNF as follows.

Definition 1.3.3. Given a term A in NNF, we expand the operator A as follows: ♦A = ♦A,
1 = −1, −1 = 1.

The following are basic facts regarding negation of NNF terms.

Lemma 13. For any term A in NNF, the term A is also in NNF and it holds that ARiesz ` A =
−A.

Lemma 14. For any terms A,B in NNF, it holds that A[B/x] = A[B/x].

To define the complexity of a modal Riesz term, special care has to be taken for the ♦ operator
and the 1 constant. Indeed, as we will see in Sections 2.3 and 2.4, it is useful for the induction
proofs to consider the complexity of a ♦ formula and the 1 constant to be 0. Therefore we define
the complexity of a modal Riesz term as follows.

Definition 1.3.4 (Complexity). We define the complexity c♦(A) of a term A in NNF by induc-
tion as follows:

• c♦(x) = 0

• c♦(x) = 0

• c♦(1) = 0

• c♦(1) = 0
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• c♦(♦A) = 0

• c♦(0) = 1

• c♦(rA) = 1 + c(A)

• c♦(A+B) = 1 + c(A) + c(B)

• c♦(A tB) = 1 + c(A) + c(B)

• c♦(A uB) = 1 + c(A) + c(B)

We now list the usual facts that we require. First, note that modal Riesz spaces are an
extension of Riesz spaces, i.e., any equation that holds in all Riesz spaces also holds in all modal
Riesz spaces.

Lemma 15. Let A and B be Riesz terms, i.e., not containing any ♦ nor 1. If ARiesz ` A = B,
then A♦

Riesz ` A = B.

Proof. We prove this result by a straightforward induction on the derivation of ARiesz ` A = B.
The induction is trivial since every axiom of Riesz spaces is also an axiom of modal Riesz
spaces.

Moreover, the following elementary facts still hold in the theory of modal Riesz spaces.

Lemma 16. The following assertions hold:

• A♦
Riesz ` A = B ⇔ A♦

Riesz ` A−B = 0,

• A♦
Riesz ` A = B ⇔

(
A♦

Riesz ` A ≤ B and A♦
Riesz ` B ≤ A

)
.

Proof. The first assertion comes from the following equalities:

A = A+ 0 = A+ (B −B) = (A−B) +B

Thus if A♦
Riesz ` A = B then A♦

Riesz ` A−B = B−B = 0 and if A−B = 0 then (A−B) +B =
0 +B = 0.

For the second assertion, recall that A♦
Riesz ` A ≤ B is a notation for A♦

Riesz ` A u B = A.
Moreover, since ARiesz ` xux = x holds, by Lemma 15, we have A♦

Riesz ` xux = x and by using
the substitution rule, A♦

Riesz ` AuA = A and A♦
Riesz ` B uB = B. Therefore if A♦

Riesz ` A = B,
then A♦

Riesz ` A uB = A uA = A and A♦
Riesz ` B uA = B uB = B.

For the other direction, if A♦
Riesz ` A ≤ B and A♦

Riesz ` B ≤ A, then A♦
Riesz ` A = A u B =

B uA = B.

Lemma 17. The following equations hold:

• (1) For all A and r > 0, r(A−) = (rA)−.

• (2) For all A,B, 2(A tB)− ≤ (A+B)−

• (3) For all A,B, (A+B)− ≤ A− +B−.

• (4) For all r > 0, 0 ≤ A if and only if 0 ≤ rA.

• (5) For all A,B, −(A tB) = (−A) u (−B) and −(A uB) = (−A) t (−B).

• (6) For all A,B,C, At (B uC) = (AtB)u (AtC) and Au (B tC) = (AuB)t (AuC).

• (7) For all A,B,C, A+(BtC) = (A+B)t (A+C) and A+(BuC) = (A+B)u (A+C).

• (8) For all A, 0 ≤ A t (−A).
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Most notably, observe that Riesz spaces are distributive lattices (Lemma 10(6)), that sum
distributes over lattice operations (Lemma 10(7)) and that the least upper bound of any element
with its negation is always positive (Lemma 10(8)).

Proof. Since R is not complete for the (quasi)equational theory of modal Riesz spaces (see Ex-
ample 10), we can not use the same proof as in Lemma 10.

However, apart from the fact (4), every fact is an equality, and thus still holds in modal Riesz
spaces according to Lemma 15. For instance, to show (1), according to Lemma 10, we know
that ARiesz ` r(x−) = (rx)− for a variable x and for all r > 0 and thus A♦

Riesz ` r(x−) = (rx)−.
Therefore, for all A and r > 0 we can derive r(A−) = (rA)− with the following derivation:

A♦
Riesz ` r(x−) = (rx)−

A♦
Riesz ` r(A−) = (rA)−

subst

The last fact (4) is a direct consequence of the compatibility axiom r(xu y) ≤ ry with x = 0
and y = A. Indeed, if 0 ≤ A then 0 u A = 0, and thus 0 = r(0 u A) ≤ rA. Therefore, if
0 ≤ A then 0 ≤ rA for all r ≥ 0. For the other direction, if 0 ≤ rA then we just showed that
0 ≤ 1

r rA = A.

Lemma 18. For all A,B, A tB ≥ 0 if and only if A− uB− = 0.

Proof. For all A,B we have:

0 u (A tB) = (A u 0) t (B u 0)
= −(((−A) t (−0)) u ((−B) t (−0)))
= −(A− uB−)

Hence 0 u (A tB) = 0 if and only if −(A− uB−) = 0 if and only (A− uB−) = 0. The proof is
complete recalling that 0 ≤ A tB means, by definition, that 0 = 0 u (A tB).

1.4 Free algebras
Being definable purely by equations, the class of modal Riesz spaces is a variety in the sense

of universal algebras. Therefore the category of modal Riesz spaces has free objects. Moreover,
the study of those free objects can be of interest. For instance, the open problem of [FMM20]
concerns the initial object of the category of modal Riesz spaces – which is a free object.

Definition 1.4.1 (Free objects). Let A be a variety of algebras (e.g., the variety of modal Riesz
spaces). For every set X, there is an unique free algebra FA(X) ∈ A over the set of generators
X satisfying the following universal property: there is an injective map i : X → FA(X) such
that for any given algebra A ∈ A and map k : X → A, there is an unique A–homomorphism
f : FA(X)→ A satisfying f ◦ i = k.

The free algebra FA(∅) is the initial object.

Remark 7. Note that since there is an injective map i from X to FA(X), by identifying x ∈ X
and i(x), we can always consider that X ⊆ FA(X).

Definition 1.4.2 (Term algebras). Let A be a variety of algebras over the signature L and let
V be a set. The term algebra over the variables V is the set of terms built using the signature L
and the variables V quotiented by the axioms of A.
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Example 11. In the case of modal Riesz spaces, the term algebra over the variables V is the set
of modal Riesz space terms on V, i.e., the set defined by the grammar

A,B := x ∈ V | 0 | 1 | A+B | rA | A uB | A tB | ♦A

quotiented by the axioms of modal Riesz spaces.

Lemma 19 (Thm 12 of [Wec92]). Let A be a variety of algebras. The term algebra over the
variables V is isomorphic to the free algebra FA(V).

Corollary 1. Let A be a variety of algebras and let A,B two A–terms over the set of variables
V, i.e., the variables appearing in A and B are all in V. Then

AA ` A = B if and only if A = B in FA(V)

1.5 Riesz modal logic
In this section, we will introduce the Riesz modal logic. Riesz modal logic was introduced by

Furber, Mardare and Mio in [FMM20] as a real–valued probabilistic logic for Markov chains. As
mentioned earlier, modal Riesz spaces were introduced as the algebraic semantic for Riesz modal
logic.

Definition 1.5.1 (Sub–probability). Given a set X, we denote by D≤1(X)

D≤1(X) = {d : X → [0, 1] |
∑
x

d(x) ≤ 1}

the set of sub–probability distributions on X.

Given a distribution d ∈ D≤1(X) and a subset A ⊆ X, we note by d(A) the cumulative
probability of A:

d(A) =
∑
x∈A

d(x)

Definition 1.5.2 (Markov chain). A Markov chain is a pair (X, τ) where X is the (possibly
infinite) set of states and τ : X → D≤1(X) is the transition function which maps each state to a
sub–probability distribution over states.

The intended interpretation is that, at a state x ∈ X, the computation stops with probability
1 − d(X), where d = τ(x), and continues with probability d(X) following the sub–probability
distribution d.

Example 12. Consider the Markov chain having state space S = {s1, s2} and transition function
τ defined by: τ(s1) = (s1 7→ 1

3 , s2 7→
1
2 ) and τ(s2) = (s1 7→ 1

3 , s2 7→ 0):

s1
1
2 //

1
3

��
s2

1
3

gg
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From the state s1 the computation progresses to s1 itself with probability 1
3 , to s2 with probability

1
2 and it halts with probability 1

6 (i.e., with the remaining probability 1 − ( 1
2 + 1

3 )). From the
state s2 the computation progresses to s1 with probability 1

3 and it halts with probability 2
3 .

Definition 1.5.3 (Terms). The terms of Riesz modal logic are defined using the following
grammar:

A,B ::= 0 | 1 | A uB | A tB | rA | A+B | ♦A

Remark 8. Note that all Riesz modal logic terms are also modal Riesz space terms. Conversely,
all closed modal Riesz space terms (i.e., modal Riesz space terms without any variable) are also
Riesz modal logic terms.

Given any Markov chain (S, τM ), each Riesz modal logic term A is interpreted as a function
JAK = S → R.

Definition 1.5.4 (Transition semantics). For a Markov chain C = (S, τM ), the interpretation
JAKC of a Riesz modal logic term A is inductively defined as:

J0KC(si) = 0 J1KC(si) = 1

JrAKC(si) = r ·
(
JAKC(si)

)
JA+BKC(si) = JAKC(si) + JBKC(si)

JA tBKC(si) = max{JAKC(si), JBKC(si)}

JA uBKC(si) = min{JAKC(si), JBKC(si)}

J♦AKC(si) =

n∑
j=1

(
τM (si)(sj) · JAKC(sj)

)
for all si ∈ S.

Therefore, the semantics JAKC of a term A can be understood as a (real–valued) quantitative
property of states and J♦AKC denotes the expected value of JAKC after a transition step.

Example 13. Consider for example the Markov chain of the previous example:

s1
1
2 //

1
3

��
s2

1
3

gg

and the Riesz modal logic terms ♦1 and ♦(♦1). They are interpreted as the two functions on
S = {s1, s2} illustrated as vectors below:

J♦1K =

(
5
6
1
3

)
and J♦(♦1)K =

(
4
9
5
18

)
The term ♦1 assigns to each state si ∈ {s1, s2} the probability of making a computational step
from si to any other state (and thus not halting). Similarly, the term ♦♦1 is the vector assigning
to each state si the probability of making two consecutive computational steps from si.

More generally, ♦n1 assigns to each state si the probability of making n computational step
from si.
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Importantly, in [FMM20] the transition semantic is proved to be sound and complete with
respect to the equational theory of modal Riesz spaces.

Lemma 20 ([FMM20][Thm 8.1]). Two closed modal Riesz terms A and B are provably equal
from the axioms of modal Riesz spaces if and only if JAKC = JBKC when interpreted in all possible
Markov chains1 C.

Moreover, sophisticated real–valued properties of Markov chains can be expressed using Riesz
modal logic [MFM17, FMM20]. For instance, Riesz modal logic is powerful enough to characterise
bisimulation (see Corollary 8.3 of [FMM20]).

Riesz modal logic with fixed–points
The remainder of this section is an informal discussion to give some insights on how to extend

the Riesz modal logic with fixed–points to obtain a more expressive logic. Note, however, that
this extension has not been studied during this thesis, and thus reading this section is not required
to understand this work.

In its current state, Riesz modal logic terms can only express properties concerning a bounded
number of steps (e.g., ♦n1 concerns only the next n steps). Therefore, some interesting properties
can not be expressed using Riesz modal logic. For instance, the property “the Markov chain will
eventually halt” can not be expressed since the number of steps before a Markov chain halts can
not, in general, be bounded. Note that this is also the case for other classical modal logic on
Kripke frames.

To express such properties, fixed–points or (co)inductively defined operators are necessary.
For instance, we will investigate the property "the Markov chain will never halt". Let consider
a Markov chain C = (S, τ). With some abuse of notations, we denote by JPNT KC the function
that maps a state s to the probability that the Markov chain does not halt starting from s. The
Markov chain does not halt starting from si if it does one step, and then does not halt either.
Thus by the law of total probability

JPNT KC(si) =

n∑
j=1

(
τ(si)(sj) · JPNT KC(sj)

)
or, again, with some abuse of notations,

JPNT KC(si) = J♦PNT KC(si)

Thus we would want to define the term PNT as the fixed–point of the function X 7→ ♦X. By
taking inspirations from the µ–calculus, we define the term PNT as

PNT = νX.♦X t 0 u 1

Remark 9. Note the presence of t0u 1 in the definition of PNT . This is done to ensure that the
interpretation of PNT is in [0, 1]S and not RS .

We can proceed in a similar way for the property “the Markov chain will eventually halt”
mentioned above. Indeed, for a Markov chain C = (S, τ), we can denote by JPT KC the function
that maps a state s to the probability that the Markov chain will eventually halt starting from s.

1In fact, a generalised semantics is required for completeness, where Markov chains have state spaces endowed
with a compact Hausdorff topology. The examples above have finite state spaces, and are thus trivially compact
Hausdorff.
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C will eventually halt starting from a state si if it halts at this step (with probability J1−♦1KC(si))
or it does one more step and then eventually halts (with probability J♦PT KC(si)). Thus by the
law of total probability

JPT KC(si) = J(1− ♦1) + ♦PT KC(si)

and we define the term PT as

PT = µX.((1− ♦1) + ♦X t 0 u 1)

Informally, we can extend the terms of Riesz modal logic with the fixed–points à la µ–calculus

µX.φ(X) | νX.φ(X)

where φ is defined using the grammar

φ, ψ := X | 0 | 1 | φ u ψ | φ t ψ | rφ | φ+ ψ | ♦φ | µX.φ(X) | νX.φ(X)

The interpretation of a term φ with k variables can be seen as an operator that takes k
functions and returns a function. We define

Jφ(X1, ..., Xk)KC : (RS)k → RS

inductively as

J0KC(~f) = s 7→ 0 J1KC(~f) = s 7→ 1 JXiKC(~f) = fi

JrφKC(~f) = r ·
(
JφKC(~f)

)
Jφ1 + φ2KC(~f) = Jφ1KC(~f) + Jφ2KC(~f)

Jφ1 t φ2KC(~f) = max{Jφ1KC(~f), Jφ2KC(~f)} Jφ1 u φ2KC(~f) = min{Jφ1KC(~f), Jφ2KC(~f)}

J♦φKC(~f) =

n∑
j=1

(
τM (si)(sj) · JφKC(~f)

)
JµX.φ(X)KC(~f) = lfp(g 7→ JφKC(~f, g)) JνX.φ(X)KC(~f) = gfp(g 7→ JφKC(~f, g))

where lfp(F ) is the least fixed–point of the function F and gfp(F ) is the greatest fixed–point of
the function F . We then extend the semantics of Riesz modal logic terms with

JµX.φ(X)KC = lfp(JφKc) JνX.φ(X)KC = gfp(JφKC)

Remark 10. To ensure that the fixed–points always exist, some considerations must be taken
when defining the grammar of φ (e.g., restricting the variable X to only appear in positive
occurrences). Since we are interested in probabilistic properties, we will only consider fixed–
point expressions to monotone functions from [0, 1]S to [0, 1]S in the discussion below.

Thus we define

PNT = νX.♦X t 0 u 1

PT = µX.((1− ♦1) + ♦X) t 0 u 1

and we will show that JPNT KC is the function that maps a state s to the probability that the
Markov chain does not halt starting from s, and JPT KC is the function that maps a state s to
the probability that the Markov chain will eventually halt starting from s.
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Lemma 21. In modal Riesz logic extended with fixed–point, for all Markov chain C, JPNT KC is
the function that maps a state s to the probability that the Markov chain does not halt starting
from s.

Proof. Let C = (S,τ) be a Markov chain. We have shown that the formula ♦n1 computes the
probability to do at least n steps. Thus

lim
n→+∞

J♦n1KC

maps a state s to the probability that the Markov chain does an infinite number of steps starting
from s and therefore never halts. Thus we want to show that JPNT KC = lim

n→+∞
J♦n1KC .

First note that the limit of the sequence J♦n1KC does exist for every Markov chain. Indeed,
we define the operator ♦C : RS → RS by

♦C(f)(si) =
∑
sj∈S

τM (si)(sj)ḟ(sj)

Then J♦n1KC = ♦nC(1) where 1 is the constant function equal to 1. By definition of ♦C , we have

♦C(1) ≤ 1
♦C(f) ≤ ♦C(g) whenever f ≤ g

Thus the sequence (♦nC(1))n is decreasing and bounded below by the function constant equal to
0, and therefore has a limit.

We will now show that lim
n→+∞

J♦n1KC is the greatest fixed–point of the operator J♦Xt0u1KC .

First, we show that lim
n→+∞

♦nC(1) = J♦X t 0 u 1KC( lim
n→+∞

♦nC(1)). Indeed for all state si ∈ S,
we have

J♦X t 0 u 1KC( lim
n→+∞

♦nC(1)) = ♦C( lim
n→+∞

♦nC(1))

since lim
n→+∞

♦nC(1) ∈ [0, 1]S . Also,

♦C( lim
n→+∞

♦nC(1))(si) =
∑
sj∈S

τM (si)(sj) lim
n→+∞

♦nC(1)(sj)

= lim
n→+∞

∑
sj∈S τM (si)(sj)♦nC(1)(sj)

= lim
n→+∞

♦n+1
C (1)(si)

= lim
n→+∞

♦nC(1)(si)

Therefore J♦X t 0 u 1KC( lim
n→+∞

♦nC(1)) = lim
n→+∞

♦nC(1).

Then, we will show that lim
n→+∞

♦nC(1) is the greatest fixed–point. Let f be a fixed–point of

J♦X t 0 u 1KC . Then f = J♦X t 0 u 1KC(f) ∈ [0, 1]S and thus f ≤ 1. Since f ∈ [0, 1]S then
J♦X t 0 u 1KC(f) = ♦C(f). Thus, we can show by a straightforward induction that for all n,

f ≤ ♦nC(1)

Indeed, if f ≤ ♦nC(1) for some n then f = ♦C(f) ≤ ♦n+1
C (f). Since f ≤ ♦nC(1) for all n, we have

f ≤ lim
n→+∞

♦nC(1)
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Therefore lim
n→+∞

♦nC(1) is indeed the greatest–fixed point of J♦X t 0 u 1KC .
Thus we have

JPNT KC = gfp(J♦X t 0 u 1KC)

= lim
n→+∞

♦nC(1)

Lemma 22. In modal Riesz logic extended with fixed–point, for all Markov chain C, JPT KC is
the function that maps a state s to the probability that the Markov chain will eventually halt
starting from s.

Proof. If we restrict the set of function to [0, 1]S , we have shown that JPNT KC = gfp(♦C).
Moreover 1 − gfp(φ) = lfp(f 7→ 1 − φ(1 − f)) for all φ : [0, 1]S → [0, 1]S (see Proposition 1.2.25
of [NA01][§1.2] for a proof). Thus

1− JPNT KC = lfp(J1− ♦(1−X)KC)

= lfp(J1− ♦1 + ♦XKC)

= JPT KC

We can then conclude since JPNT KC is the function that maps a state s to the probability that
the Markov chain will never halt starting from s.

Most of the interesting properties of Markov chains can be expressed using Riesz modal logic
and fixed–point operators. Indeed, the full logic pCTL can be encoded in Riesz modal logic
with fixed–point operators (see [Mio12, MS13, Mio18]). One of the first steps to do so is to
simulate a Boolean logic in Riesz modal logic. To do so, we can define threshold operators T∗p
for ∗ ∈ {≤, <,≥, >} and p ∈ [0, 1] such that

JT∗p(A)KC(si) =

{
1 if JAKC(si) ∗ p
0 otherwise

and thus JT∗p(A)KC is always a Boolean function (i.e., {0, 1}–valued). Such threshold operators
can be defined using fixed–point (see [Mio18] for details).

1.6 Hypersequent calculus GA
Hypersequent calculus is a generalisation of Gentzen’s sequent calculus introduced by A.

Avron [Avr87], and independently by G. Pottinger [Pot83]. In hypersequent calculus, instead
of having only one sequent, the proof system is used to derive a multiset of sequents. This
modification significantly increases the expressiveness of Gentzen’s calculus as it allows additional
transfers of information between the sequents.

Hypersequent calculus was introduced to provide a cut–free formalisation of many nonclassical
logics including modal, relevant, multi–valued and fuzzy logics. In particular, replacing ordinary
sequents with hypersequents made possible obtaining different CUT–free systems for S5 ([Avr87,
Pot83]).

In [MOG05], G. Metcalfe, N. Olivetti and D. M. Gabbay introduced a hypersequent calculus
for the theory of Abelian l–groups called GA. The system GA is the basis on which we will
build the other hypersequent calculi introduced in this thesis. We will give the formal definition
of this system.
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Definition 1.6.1. A term is a formal expression A where A is an Abelian l–group term.

We use the greek letters Γ,∆,Θ,Σ to range over possibly empty finite multisets of terms. We
often write these multisets as lists but they should always be understood as being taken modulo
reordering of their elements. As usual, we write Γ,∆ for the concatenation of Γ and ∆.

Definition 1.6.2. A sequent is a formal expression of the form Γ ` ∆.

If Γ = ∅ and ∆ = ∅, the corresponding empty sequent is simply written as `.

Definition 1.6.3. A hypersequent is a non–empty finite multiset of sequents, written as `
Γ1| . . . | ` Γn.

We use the letter G,H to range over hypersequents.
We now describe how sequents and hypersequents can be interpreted by Abelian l–group

terms. This means that GA, like all the systems introduced in this thesis, is a structural proof
system, i.e., by manipulating sequents and hypersequents it in fact deals with terms of a certain
specific form.

Definition 1.6.4 (Interpretation). We interpret sequents Γ ` ∆ and hypersequents G as the
Abelian l–group terms LΓ ` ∆M and LGM, respectively, as follows:

Syntax Term interpretation L_M
Sequents A1, . . . , An ` B1, . . . , Bm (B1 + · · ·+Bm)− (A1 + · · ·+An)
Hypersequents Γ1 ` ∆1| . . . |Γn ` ∆n LΓ1 ` ∆1M t · · · t LΓ1 ` ∆nM

Hence a sequent is simply interpreted as sum (
∑

) and a hypersequent is interpreted as a join
of sums (

⊔∑
).

Example 14. The interpretation of the hypersequent:

x− y ` x, (y u z) | ` ((−x) u y)

is the Abelian l–group term:(
x+ (y u z)− (x− y)

)
t
(
((−x) u y)

)
.

The hypersequent calculus GA, is a deductive system for deriving hypersequents whose in-
terpretation is positive, i.e., the hypersequents G such that Al–groups ` 0 ≤ LGM. The rules of
GA are presented in Figure 1.4.

In what follows we say that an hypersequent G has a CAN–free derivation (resp., M–free,
etc.) if it has a derivation that never uses the CAN can (resp., M rule, etc.).

Definition 1.6.5 (Elimination theorem). For a rule R, the R elimination theorem states that
if a hypersequent has a derivation, then it has a R–free derivation.

Remark 11. Note that the following CUT rule

G | Γ1, A ` ∆1 G | Γ2 ` ∆2, A

G | Γ1,Γ2 ` ∆1,∆2
CUT

is equivalent (i.e., mutually derivability) to the CAN rule in the GA hypersequent calculus:
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Axioms:

` ∆–ax
A ` A ID–ax

Structural rules:

G
G|Γ ` ∆

Weakening (W)
G|Γ ` ∆|Γ ` ∆

G|Γ ` ∆
Contraction (C)

G|Γ1,Γ2 ` ∆1,∆2

G|Γ1 ` ∆1|Γ2 ` ∆2
Split (S)

G|Γ1 ` ∆1 G|Γ2 ` ∆2

G|Γ1,Γ2 ` ∆1,∆2
Mix (M)

Logical rules:

G|Γ ` ∆

G|Γ, 0 ` ∆
0L

G|Γ ` ∆

G|Γ ` ∆, 0
0R

G|Γ, A,B ` ∆

G|Γ, A+B ` ∆
+L

G|Γ ` ∆, A,B

G|Γ ` ∆, A+B
+R

G|Γ ` ∆, A

G|Γ,−A ` ∆
−L

G|Γ, A ` ∆

G|Γ ` ∆,−A
−R

G|Γ, A ` ∆ G|Γ, B ` ∆

G|Γ, A tB ` ∆
tL

G|Γ ` ∆, A|Γ ` ∆, B

G|Γ ` ∆, A tB
tR

G|Γ, A ` ∆|Γ, B ` ∆

G|Γ, A uB ` ∆
uL

G|Γ ` ∆, A G|Γ ` ∆, B

G|Γ ` ∆, A uB
uR

CAN rule:

G | Γ, A ` ∆, A

G | Γ ` ∆
CAN

Figure 1.4: Inference rules of the hypersequent system GA of [MOG05].

G | Γ1, A ` ∆1 G | Γ2 ` ∆2, A

G | Γ1,Γ2, A ` ∆1,∆2, A
M

G | Γ1,Γ2 ` ∆1,∆2
CAN

Figure 1.5: Derivability of the CUT rule.

G | Γ, A ` ∆, A

G | Γ, A,−A ` ∆
−L

G | Γ, (A−A) ` ∆
+L

A ` A ID-ax

` A,−A −R

` (A−A)
+R

G | ` (A−A)
W∗

G | Γ ` ∆
CUT

Figure 1.6: Derivability of the CAN rule.

Thus, instead of the traditional CUT elimination theorem, the main result of interest con-
cerning the system GA is the CAN elimination theorem.

The main results concerning the system GA are proved in [MOG05, MOG09], namely the
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soundness and completeness of the calculus with regard to the equational theory of Abelian
l–groups, as well as the CAN–elimination theorem. Those results can be summarised as

For all hypersequent G, Al–groups ` 0 ≤ LGM
if and only if

G has a CAN–free derivation.

Notice that the system GA is used to derive inequality instead of equality. However, Lemma
1 shows that a system for deriving inequalities can be used to derive equalities. Thus the system
GA is expressive enough to reason on the equational theory of Abelian l–groups.



Chapter 2

Hypersequent calculi

In this chapter, we build upon the hypersequent calculusGA introduced in [MOG05, MOG09]
to achieve a system for modal Riesz spaces presented in Section 1.2. The system GA was built
to reason on Abelian l–groups. Thus we will add rules for the scalar multiplication as well as for
the ♦ operator and the 1 constant to the system GA to build a system for modal Riesz spaces.

Before adding the new operations, we will implement a few changes to the systemGA for it to
be more convenient when we will add the ♦ operator. Indeed, the proof of the CAN elimination
for GA of [MOG09] is not easily adapted to deal with the ♦ operator. To recall, they first show
how to remove one instance of the CAN rule. Thus, they first prove that if G | Γ, A ` ∆, A has
a CAN–free derivation, then so does G | Γ ` ∆. To do so, they proceed in two steps:

• they first show the atomic CAN elimination, i.e., if

G | Γ, x ` ∆, x

is derivable, then so is
G | Γ ` ∆

• and then they use the CAN–free invertibility of the logical rules, i.e., the fact that if the
conclusion of a logical rule has a CAN–free derivation, then so do the premises, to reduce
the problem to the atomic CAN elimination.

For instance, to show that if G | Γ, x+y ` ∆, x+y is CAN–free derivable, then so is G | Γ ` ∆,
they first show that G | Γ, x, y ` ∆, x, y is CAN–free derivable using the invertibility of the +
rule and they conclude with the atomic CAN elimination.

However, the invertibility of the ♦ rule can not be used in the second step. As we will see,
the ♦ rule

Γ ` ∆, 1n

♦Γ ` ♦∆, 1n
♦

has very strong constraints for its shape. One of those constraints is that the ♦ rule can be
used only if the hypersequent has only one sequent. The other is that the terms appearing in the
sequent must be either ♦ terms or 1. Thus, we can not use the invertibility of the ♦ rule to reduce
the complexity of the CAN term. For instance, even if x ` y | Γ,♦x ` ∆,♦x has a CAN–free
derivation, we can not use the invertibility of the ♦ rule to show that x ` y | Γ, x ` ∆, x has a
CAN–free derivation since x ` y | Γ,♦x ` ∆,♦x is not a valid instance of the conclusion of the
♦ rule.

31
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To address this limitation, it is possible to deal with the case of CAN terms being ♦ terms in a
different way, by induction on the structure of the derivation (in the style of the classic inductive
proof techniques for eliminating CUT applications in sequent calculi, see, e.g., [Bus98]). In this
inductive proof, however, there is a critically difficult case when the derivation ends with an M
rule, since the M rule can break the symmetry of the CAN rule. For instance, we do not know
how to deal with the following instance of the M rule:

G | Γ1,♦A ` ∆1 G | Γ2 ` ∆2,♦A

G | Γ1,Γ2,♦A ` ∆1,∆2,♦A
M

since we can not use the induction hypothesis on the two premises (because ♦A does not appear
on the two sides of the `).

Therefore, it would be useful to prove a M elimination theorem to get rid of this difficult case.
However, one can easily notice that the system GA does not satisfy the M elimination theorem,
since the hypersequent x, y ` x, y is derivable as follows

x ` x ID–ax
y ` y ID–ax

x, y ` x, y M

but does not have a M–free derivation. We implement three changes to the system GA for it to
satisfy the M elimination theorem.

The first one is to go from two–sided hypersequent calculus to one–sided hypersequent cal-
culus, thus removing half of the logical rules. Since most of our proofs are done by induction
on the derivations, removing half of the logical rules effectively removes quite a few cases in the
proofs. Even though this change is not necessary for the M elimination theorem, it makes most
of the proofs shorter and more simple, so this change is quite convenient.

More importantly, we replace the ID axiom with the following ID rule

G | Γ ` ∆

G | Γ, x ` ∆, x
ID

which makes, e.g., the hypersequent x, y ` x, y mentioned above M–free derivable.
Lastly, we allow the logical rule to act on several instances of a term in a sequent. For

instance, we will now allow the following rule

G | Γ, A,B,A,B ` ∆

G | Γ, A+B,A+B ` ∆
+

where we apply the + rule to two instances of the formula A+B. This is also a crucial change
as we do not know how to prove the M elimination theorem without this flexibility in the logical
rules.

Because of the novelty and the significant usefulness of the last change, where we allow to use
a rule in parallel on several instances of a term, we call the system where we implement these
three changes on top of GA as GA‖. Then we add the rules for the new operators to the system
GA‖. Adding the scalar multiplication requires changing the structure of the hypersequents we
manipulate - we no longer have regular sequents like in GA but weighted sequents, i.e. sequents
where formulas have weights. It is thus convenient to add scalar multiplication separately from
the 1 constant and the ♦ operator. Thus we introduce two systems, the system HR where we
add the scalar multiplication the the system GA‖ and the system MGA where we add both the
♦ operator and the 1 constant.
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We then merge the two systems into the system HMR that implements both the scalar
multiplication as well as the ♦ operator and the 1 constant.

GA (Sect. 1.6)

GA‖ (Sect. 2.1)

MGA (Sect. 2.3) HR (Sect. 2.2)

HMR (Sect. 2.4)

Equivalent

+♦,1
+scalar multiplication

Merge

We will build each hypersequent calculus in the same way so the following sections will have
the same structure. Thus for X ∈ {1, 2, 3, 4}, Section 2.X has the following structure

• We start by recalling the basic definitions concerning the hypersequent calculus we are
considering in the introduction of Section 2.X

• In Section 2.X.1, we state some technical lemmas which are necessary for the main results.

• And then we prove the main results mentioned above concerning the system, namely

– in Section 2.X.2, we show the soundness of the system,
– in Section 2.X.3, we show the completeness,
– in Section 2.X.4, we show the CAN–free invertibility of the logical rules,
– in Section 2.X.5, we show the M elimination theorem,
– in Section 2.X.6, we show the CAN elimination theorem,
– and finally in Section 2.X.7, we show a result we call the algebraic property.

2.1 Hypersequent calculus GA‖
In this section, we introduce the hypersequent calculus GA‖. As mentioned earlier, GA‖ is

equivalent to the system GA but is closer to the systems we will introduce later on and thus this
section will allow the readers to get used to the new features of our systems, such as the rules
acting on several instances of a formula. Those new features are important for proving some of
our results, for instance we do not know yet how to prove the results of Section 2.1.5 if the rules
can only act on one formula (see Remark 18).

We start with a sequence of syntactical definitions and notational conventions necessary to
present the rules of the system. We use the letters A, B, C to range over Abelian l–group terms
in negation normal form (NNF, see Definition 1.1.3) built from a countable set of variables x, y,
z and negated variables x, y, z.

Definition 2.1.1. A term is a formal expression A where A is an Abelian l–group term in NNF.

We use the greek letters Γ,∆,Θ,Σ to range over possibly empty finite multisets of terms. We
often write these multisets as lists but they should always be understood as being taken modulo
reordering of their elements. As usual, we write Γ,∆ for the concatenation of Γ and ∆. We use
the notation An for the multiset A, ..., A consisting of n copies of A, and the notation Γn for the
multiset Γ, ...,Γ consisting of the concatenation of n copies of Γ.
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Definition 2.1.2. A sequent is a formal expression of the form ` Γ.

If Γ = ∅, the corresponding empty sequent is simply written as `.

Definition 2.1.3. A hypersequent is a non–empty finite multiset of sequents, written as `
Γ1| . . . | ` Γn.

We use the letter G,H to range over hypersequents. Note that, under these notational con-
ventions, the expression ` Γ could either denote the sequent ` Γ itself or the hypersequent [` Γ]
containing only one sequent. The context will always determine which of these two interpreta-
tions is intended.

We introduce a notion of "simple" hypersequent which arises as the basic case in some of the
proofs since one of the inductive schemes used to reason on the system GA‖ is to reduce the
complexity of the formulas appearing in the hypersequents until only atoms remain.

Definition 2.1.4. A hypersequent is said atomic if it only contains atoms, i.e., formulas of the
form x or x.

We now describe how sequents and hypersequents can be interpreted by Abelian l–group
terms. This means that GA‖, like all the systems introduced in this thesis, is a structural proof
system, i.e., by manipulating sequents and hypersequents it in fact deals with terms of a certain
specific form.

Definition 2.1.5 (Interpretation). We interpret sequents ` Γ and hypersequents G as the
Abelian l–group terms L` ΓM and LGM, respectively, as follows:

Syntax Term interpretation L_M
Sequents ` A1, . . . , An A1 + · · ·+An
Hypersequents ` Γ1| . . . | ` Γn L` Γ1M t · · · t L` ΓnM

Hence a sequent is simply interpreted as sum (
∑

) and a hypersequent is interpreted as a join
of sums (

⊔∑
).

Example 15. The interpretation of the hypersequent:

` x, (y u z) | ` (x u y)

is the l-group term: (
x+ (y u z)

)
t
(
(x u y)

)
.

The hypersequent calculus GA‖, as for the system GA, is a deductive system for deriving
hypersequents whose interpretation is positive, i.e., the hypersequents G such that Al–groups `
0 ≤ LGM. The rules of GA‖ are presented in Figure 2.1 and are very similar to the rules of the
system GA of [MOG05, MOG09] (see Figure 1.4) where the main difference is that the rules act
on several instances of a term in a sequent. We write .GA‖G if the hypersequent G is derivable
in the system GA‖.

The axiom INIT allows for the derivation of (`), the hypersequent containing only the empty
sequent, thus it corresponds to the positivity of the constant 0. The C rule (contraction) allows
treating hypersequents as (always non–empty) sets of sequents. The M (mix) and S (split)
rules are as in the system GA of [MOG05, MOG09] (see Section 1.6). As mentioned earlier, we
instead adopted the rule ID, in place of the axiom ID-ax of GA. While the two are equivalent
(i.e., mutually derivable) in presence of the other rules, the formulation of ID as a rule is necessary
in the statement of the M elimination theorem later on. Finally, note that the logical rules are
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Axiom:

` INIT

Structural rules:

G
G | ` Γ

W
G | ` Γ | ` Γ

G | ` Γ
C

G | ` Γ1,Γ2

G | ` Γ1 | ` Γ2
S

G | ` Γ1 G | ` Γ2

G | ` Γ1,Γ2
M

G | ` Γ

G | ` Γ, xn, xn
ID

Logical rules:

G | ` Γ

G | ` Γ, 0n
0

G | ` Γ, An, Bn

G | ` Γ, (A+B)n
+

G | ` Γ, An | ` Γ, Bn

G | ` Γ, (A tB)n
t

G | ` Γ, An G | ` Γ, Bn

G | ` Γ, (A uB)n
u

CAN rule:

G | ` Γ, An, A
n

G | ` Γ
CAN

Figure 2.1: Inference rules of GA‖.

all presented using the syntactic sugaring An described above. For example, one valid instance
of the rule (+) is the following:

` Γ, y, x, y, x

` Γ, (y + x), (y + x)
+

This effectively allows us to apply the rule to several terms in the sequent at the same time. This
feature adds some flexibility in the process of derivation construction and is necessary for some
proofs, such as the M elimination theorem.
Note 1. We often have to use the same rule multiple times when building a derivation. For
convenience, we may write the rule only once with the number of times the rule is used as
exponent, as follows:

G
G | ` Γ | ` ∆

W 2

If the number of times a rule is used is not known, we use a wildcard as exponent, as in the
following example where the weakening rule is used to remove all sequents appearing in G:

` Γ
G | ` Γ

W ∗

Remark 12. On the one hand, we could have introduced appropriate exchange (i.e., reordering)
rules and defined sequents and hypersequents as lists, rather than multisets. In the opposite
direction, we could have defined hypersequents as (non–empty) sets and dispose of the rules (C).
Our choice is motivated by a balance between readability and fine control over the derivation
steps in the proofs.
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Remark 13. Note that the following CUT rule

G | ` Γ1, A
n G | ` Γ2, A

n

G | ` Γ1,Γ2
CUT

is, as in GA, equivalent to the CAN rule in the GA‖ hypersequent calculus:

G | ` Γ1, A
n G | ` Γ2, A

n

G | ` Γ1,Γ2, A
n, A

n M

G | ` Γ1,Γ2
CAN

Figure 2.2: Derivability of the CUT rule.

G | ` Γ, An, A
n

G | ` Γ, (A+A)n
+

G | ` Γ, An, A
n

G | ` Γ, (A+A)n
+

G | ` Γ,Γ
CUT

G | ` Γ | ` Γ
S

G | ` Γ
C

Figure 2.3: Derivability of the CAN rule.

Our choice (following [MOG09, MOG05]) of presenting the system GA‖ using the CAN rule,
rather than the equivalent CUT rule, is just motivated by elegance and technical convenience.

Example 16. Example of derivation of the hypersequent `
(
(x+ y) t (y + x)

)
which consists of

only one sequent.
` INIT

` y, y ID

` x, y, x, y ID

` x, y | ` y, x S

` x, y | ` (y + x)
+

` (x+ y) | ` (y + x)
+

`
(
(x+ y) t (y + x)

) t
We now define an appropriate notion of complexity of a hypersequent. One natural way to

reason on hypersequents is to use the logical rules to reduce the “complexity” of the hypersequent
and to do so, we have to define the complexity of a hypersequent in such a way that it decreases
when applying the logical rules. Unfortunately, we can not simply use the number of operators
for the complexity of a hypersequent since the application of the t rule

G | ` Γ, ~r.A | ` Γ, ~r.B

G | ` Γ, ~r.A tB t

may increase the number of operators in the hypersequent because of the duplicated Γ. Therefore
we use the following definition for the complexity of a hypersequent.
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Definition 2.1.6. We define the complexity of a sequent ` Γ, noted c(` Γ), as the sum of the
operators used in the terms of Γ,i.e., if Γ = A1, ..., An, c(` Γ) =

∑n
i=1 c(Ai) (see Definition 1.1.5

for the definition of c(Ai)).
The complexity of a hypersequent G, noted c(G), is then defined as the pair c(G) = (a, b)

where

• a is the maximum complexity of a sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then
a = max

i∈[1..n]
c(` Γi), and

• b is the number of sequents in G having a complexity of a, i.e., b = #{` Γi | c(` Γi) = a}.

We say that a sequent ` Γ of G is maximal if c(` Γ) = a.

The complexities of hypersequents is then ordered using the lexicographic order, meaning
that

(a, b) < (c, d) if and only if

{
a < c or
a = c and b < d

Remark 14. The premises of a logical rule acting on a maximal sequent have a strictly lower
complexity than the conclusion of the logical rule with regard to the lexicographic order.

For instance, for the t rule
G | ` Γ, ~r.A | ` Γ, ~r.B

G | ` Γ, ~r.A tB t

with c(G | ` Γ, ~r.AtB) = (a, b) and c(` Γ, ~r.AtB) = a. Then c(` Γ, ~r.A) < a and c(` Γ, ~r.B) <
a and so we have two possibilities:

• either b > 1 and c(G | ` Γ, ~r.A | ` Γ, ~r.B) = (a, b− 1),

• or b = 1 and c(G | ` Γ, ~r.A | ` Γ, ~r.B) = (a′, b′) for some a′ and b′ such that a′ < a.

In both cases, the complexity of the hypersequent has decreased.

Remark 15. Since the lexicographic order is well-founded, together with Remark 14, we can
ensure that the process of applying the logical rules to maximal sequents until we reach an
atomic hypersequent always finishes.

2.1.1 Preliminary lemmas
Before embarking on the proofs of the main theorems, we prove in this section a few useful

routine lemmas that will be used often.
Our first lemma states that the following variant of the ID rule (see Figure 2.1) where general

terms A are considered rather than just variables, is admissible in the proof system GA‖.

G | ` Γ

G | ` Γ, An, A
n ID

Lemma 23. For all terms A and natural numbers n

if .GA‖G | ` Γ then .GA‖G | ` Γ, An, A
n

Proof. We prove the result by induction on A.

• If A is a variable, we simply use the ID rule.
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• If A = 0, we use the 0 rule.

• If A = B + C, we use the + rule twice (for A + B and A + B) and conclude with the
induction hypothesis.

• For the case A = B uC or A = B tC, we first use the u rule and then the t rule on each
premise and the W rule on each premise to remove the sequents with both B and C in
them. We can then conclude with the induction hypothesis.

G | ` Γ, Bn, B
n

G | ` Γ, Bn, B
n | ` Γ, Bn, C

n W

G | ` Γ, Bn, (B t C)n
t

G | ` Γ, Cn, C
n

G | ` Γ, Cn, B
n | ` Γ, Cn, C

n W

G | ` Γ, Cn, (B t C)n
t

G | ` Γ, (B u C)n, (B t C)n
u

The next result states that derivability in the GA‖ system is preserved by substitution of
terms for variables.

Lemma 24. For all hypersequents G and terms A, if .GA‖G then .GA‖G[A/x].

Proof. We prove the result by induction on the derivation of G. Most cases are quite straightfor-
ward, we simply use the induction hypothesis on the premises and then use the same rule. For
instance, if the derivation finishes with

G | ` Γ, Bn, Cn

G | ` Γ, (B + C)n
+

by induction hypothesis .GA‖G[A/x] | ` Γ[A/x], B[A/x]n, C[A/x]n so

G[A/x] | ` Γ[A/x], B[A/x]n, C[A/x]n

G[A/x] | ` Γ[A/x], (B + C)[A/x]n
+

The only tricky case is when the ID rule is used on the variable x, where we conclude using
Lemma 23.

The next lemma states that the logical rules are invertible using the CAN rule, meaning
that if the conclusion is derivable, then the premises are also derivable. Unlike a stronger result
we will prove later in Section 2.1.4 where we prove the CAN–free version of this lemma, the
derivations of the premises may contain CAN rules and thus this result is not sufficient to imply
the CAN elimination theorem.

Lemma 25. All logical rules are invertible.

Proof. We simply use the CAN rule to introduce the operators. We will show one example. The
u rule: we assume that G | ` Γ, (A uB)n is derivable. The derivation of G | ` Γ, An is then:

G | ` Γ, (A uB)n

` INIT

` An, An
Lemma 23

` An, An | ` An, Bn
W

` An, (A tB)n
t

G | ` An, (A tB)n
W∗

G | ` Γ, An, (A uB)n, (A tB)n
M

G | ` Γ, An
CAN
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The derivation of G | ` Γ, Bn is similar.

The next lemmas state that CAN–free derivability in the GA‖ system is preserved by multi-
plication by a natural number.

Lemma 26. Let n > 0 be a natural number and G a hypersequent. If .GA‖\{CAN}G | ` Γn then
.GA‖\{CAN}G | ` Γ.

Proof. We simply use the C and S rules :

G | ` Γn

G | ` Γ | ... | ` Γ
Sn−1

G | ` Γ
Cn−1

Lemma 27. Let n > 0 be a natural number and G a hypersequent. If .GA‖\{CAN}G | ` Γ then
.GA‖\{CAN}G | ` Γn.

Proof. We simply use the M rule n− 1 times.

Equivalence between GA and GA‖
We want to emphasise that the results we prove in this section are already known and have

been proved by Metcalfe, Gabbay and Olivetti in [MOG05]. The Section 2.1 must be understood
as an introduction to the features of our systems (parallel rules and M elimination theorem), and
not as new results.

Indeed, we will show that the system GA and GA‖ are equivalent in the sense that there
is a one to one translation of a GA derivation to a GA‖ derivation, and vice–versa. Moreover,
those translations preserve the CAN rule in the sense that a CAN–free derivation is sent to a
CAN–free derivation. Thus all the results in this section (except the M elimination theorem) are
direct corollaries of those translations.

Lemma 28. Let G be a hypersequent. If .GAG then .GA‖G.

Proof. We prove this result by induction on the derivation of .GAG. Note that, apart from the
ID axiom, every single inference rules of the system GA is also a valid instance of a rule of the
system GA‖. Thus we only show how to translate the ID axiom.

If the derivation of .GAG finishes with

` A,A
ID–ax

then the derivation of the hypersequent in GA‖ is

` INIT

` A,A
Lemma 23

Lemma 29. Let G be a hypersequent. If .GA‖G then .GAG.

Proof. We prove this result by induction on the derivation of .GA‖G. Note that the INIT, S,
C,W,M rules are also valid rules of the system GA. Thus we only show how to translate the
other rules.
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• If the derivation finishes with
G | ` Γ

G | ` Γ, xn, xn
ID

then by induction hypothesis, .GAG | ` Γ and thus the derivation of the hypersequent in
GA is

G | ` Γ

` x, x ID–ax

` xn, xn Mn−1

G | ` xn, xn W∗

G | ` Γ, xn, xn
M

• The +, 0 and CAN are similar, so we will only the case of the + rule. If the derivation
finishes with

G | ` Γ, An, Bn

G | ` Γ, (A+B)n
+

then by induction hypothesis .GAG | ` Gamma,An, Bn and thus the derivation of the
hypersequent in GA is

G | ` Γ, An, Bn

G | ` Γ, (A+B)n
+n

• If the derivation finishes with

G | ` Γ, An | ` Γ, Bn

G | ` Γ, (A tB)n
t

then by induction hypothesis .GAG | ` Γ, An | ` Γ, Bn. We first show the case where
n = 2 to help the reader understand the idea of the derivation before doing the general
case. Therefore we show how to derive G | ` Γ, (A tB)2 in GA:

G | `,Γ, A,A | ` Γ, B,B

G | ` Γ, A,A | ` Γ, A,B | ` Γ, B,A | ` Γ, B,B
W2

G | ` Γ, (A tB)2
t3

The general derivation is

G | `,Γ, An | ` Γ, Bn

G |
[
[` Γ, Ai, Bj ](

n
i)
]
i+j=n

W2n−2

G | ` Γ, (A tB)n
t2n−1

where [` Γ, Ai, Bj ](
n
i) means that the sequent ` Γ, Ai, Bj appears

(
n
i

)
times in the hyper-

sequent.

• If the derivation finishes with

G | ` Γ, An G | ` Γ, Bn

G | ` Γ, (A uB)n
t
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then by induction hypothesis .GAG | ` Γ, An and .GAG | ` Γ, Bn. We first show the
case where n = 2 to help the reader understand the idea of the derivation before doing the
general case. Therefore we show how to derive G | ` Γ, (A uB)2 in GA:

G | ` Γ, A,B

G | ` Γ, A,A uB u
G | ` Γ, B,A G | ` Γ, B,B

G | ` Γ, B,A uB u

G | ` Γ, (A uB)2
u

thus we need to derive the hypersequent G | ` Γ, A,B which we can do with the following
derivation

G | ` Γ, A,A G | ` Γ, B,B

G | ` (Γ, A,B)2
M

G | ` Γ, A,B | ` Γ, A,B
S

G | ` Γ, A,B
C

More generally, to derive G | ` Γ, (A u B)n in the system GA, we need to derive G | `
Γ, Ai, Bj for all i, j ∈ N such that i+ j = n. We can derive those hypersequents with the
following derivation:

G | ` Γ, An

G | (` Γ, An)i
Lemma 27

G | ` Γ, Bn

G | (` Γ, Bn)j
Lemma 27

G | (` Γ, Ai, Bj)n
M

G | ` Γ, Ai, Bj
Lemma 26

Note that in the translations shown above, a CAN–free derivation is indeed sent to a CAN–
free derivation since the translation of the other rules does not add any new CAN rule. Thus
since those results have been proved for GA, we obtain automatically that

• GA‖ is sound and complete (Theorems 32 and 39 of [MOG05]),

• the logical rules of GA‖ are CAN–free invertible (Proposition 36 of [MOG05]),

• the CAN elimination theorem holds for GA‖ (corollary of the previous results since the
completeness is proved without the CAN rule, see the note at the end of Section 4.1 of
[MOG05]), and

• what we will refer to as the "algebraic property" holds forGA‖ (Proposition 37 o f[MOG05]).

However the proofs of these results in [MOG05] rely heavily on the fact that Q is complete
for the equational theory of Abelian l–groups (in the same sense that Z is complete, see Remark
1). We do not have such a universal model for the equational theory of modal Riesz spaces, and
thus we can not easily adapt the proofs of [MOG05] for the other hypersequent calculi we will
introduce.

On the other hand, the proofs we present in this section are purely syntactic. This has two
main advantages: this gives us concrete procedure to, for instance, eliminate the CAN rule or
translate a derivation Al–groups ` LGM in equational theory to a derivation of .GA‖G. Moreover,
it provides a solid foundation on which to build to extend our system.
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Remark 16. Note however that Metcalfe, Gabbay and Olivetti provided a syntactical proof of
the CAN elimination theorem for a class of hypersequent calculi similar to GA in [MOG09],
proof on which we based the proof of the CAN elimination theorem provided in this thesis. Yet,
this class of hypersequent calculi does not have a rule for the ♦ operator, nor have a rule for the
scalar multiplication, which we add to GA.

2.1.2 Soundness
We need to prove that if there exists a GA‖ derivation of a hypersequent G then LGM ≥ 0

is derivable in equational logic (written Al–groups ` LGM ≥ 0). This is done in a straightforward
way by showing that each deduction rule of the system GA‖ is sound. The desired result then
follows immediately by induction on the derivation of G.

Theorem 2.1.1 (Soundness of GA‖). For all hypersequent G, if .GA‖G then Al–groups ` LGM ≥
0.

Proof. By induction on the derivation of G.

• For the rule
` INIT

The semantics of the hypersequent consisting only of the empty sequent is L`M = 0 and
therefore L`M ≥ 0, as desired.

• For the rule
G

G | ` Γ
W

the hypothesis is LGM ≥ 0 so

LG | ` ΓM = LGM t L` ΓM
≥ LGM
≥ 0

• For the C, ID,+, 0 and CAN rules, it is immediate to observe that the interpretation of
the only premise and the interpretation of its conclusion are equal, therefore the result is
trivial.

• For the rule
G | ` Γ1,Γ2

G | ` Γ1 | ` Γ2
S

the hypothesis is LG | ` Γ1,Γ2M ≥ 0 so according to Lemma 6, LGM−u L` Γ1,Γ2M− = 0. Our
goal is to prove that LG | ` Γ1 | ` Γ2M ≥ 0. Again, using Lemma 6, we equivalently need
to prove that

LGM− u L` Γ1 | ` Γ2M− = 0.

The above expression is of the form A− uB−, and since A− = (−A) t 0 ≥ 0 always holds
for every A, it is clear that LGM− u L` Γ1 | ` Γ2M− ≥ 0. It remains therefore to show that
LGM− u L` Γ1 | ` Γ2M− ≤ 0. This is done as follows (where 2.A is a notation for A+A):
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LGM− u L` Γ1 | ` Γ2M− ≤ LGM− u 2.L` Γ1 | ` Γ2M− since L` Γ1 | ` Γ2M− ≥ 0
≤ LGM− u (2.(L` Γ1M t L` Γ2M))− Lemma 5[1]
≤ LGM− u (L` Γ1M + L` Γ2M)− Lemma 5[2]
= LGM− u (L` Γ1,Γ2M)−
= 0

• For the rule
G | ` Γ1 G | ` Γ2

G | ` Γ1,Γ2
M

the hypothesis is
LG | ` Γ1M ≥ 0

LG | ` Γ2M ≥ 0

so according to Lemma 6,
LGM− u L` Γ1M− = 0

LGM− u L` Γ2M− = 0

Following the same reasoning of the previous case (S rule) our goal is to show that LGM−uL`
Γ1,Γ2M− ≤ 0. This is done as follows:

LGM− u L` Γ1,Γ2M− = LGM− u (L` Γ1M + L` Γ2M)−
≤ LGM− u (L` Γ1M− + L` Γ2M−) Lemma 5[3]
≤ LGM− u L` Γ1M− + LGM− u L` Γ2M− distributivity of u over +

• For the rule
G | ` Γ, An | ` Γ, Bn

G | ` Γ, (A tB)n
t

the hypothesis is LG | ` Γ, An | ` Γ, BnM ≥ 0. So :

LG | ` Γ, (A tB)nM = LGM t L` Γ, (A tB)nM
= LGM t L` Γ, AnM t L` Γ, BnM distributivity of t over +
≥ 0

• For the rule
G | ` Γ, An G | ` Γ, Bn

G | ` Γ, (A uB)n
u

the hypothesis is
LG | ` Γ, AnM ≥ 0

LG | ` Γ, BnM ≥ 0

So

LG | ` Γ, (A uB)nM = LGM t L` Γ, (A uB)nM
= LGM t (L` Γ, AnM u LΓ, BnM) distributivity of u over +
= (LGM t L` Γ, AnM) u (LGM t L` Γ, BnM) distributivity of t over u
≥ 0
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2.1.3 Completeness
In order to prove the completeness of the system GA‖, i.e. that if Al–groups ` LGM ≥ 0 then

.GA‖G, we first prove an equivalent result (Lemma 30 below) stating that if Al–groups ` A = B

then the hypersequents ` A,B and ` B,A are both derivable. The advantage of this formulation
is that it allows for a simpler proof by induction.

From Lemma 30 one indeed obtains Theorem 2.1.2 as a corollary.

Theorem 2.1.2 (Completeness of GA‖). For all hypersequent G, if Al–groups ` LGM ≥ 0 then
.GA‖G.

Proof. Recall that Al–groups ` LGM ≥ 0 is a shorthand for Al–groups ` 0 = LGM u 0. Hence, from
the hypothesis Al–groups ` LGM ≥ 0 we can deduce, by using Lemma 30, that .GA‖ ` (0u LGM), 0.

From this we can show that .GA‖G by invoking Lemma 25. Indeed, if G is ` Γ1 | ... | ` Γn
then LGM = L` Γ1M t ... t L` ΓnM and

1. by using the invertibility of the 0 rule, ` (0 u (L` Γ1M t ... t L` ΓnM)) is derivable,

2. by using the invertibility of the u rule, ` (L` Γ1M t ... t L` ΓnM) is derivable,

3. by using the invertibility of the t rule n− 1 times, ` L` Γ1M | ... | ` L` ΓnM is derivable,

4. and finally, by using the invertibility of the + rule, ` Γ1 | ... | ` Γn is derivable.

Lemma 30. If Al–groups ` A = B then ` A,B and ` B,A are derivable.

Proof. We prove this result by induction on the derivation in equational logic (see Definition
1.1.2) of Al–groups ` A = B.

• If the derivation finishes with

Al–groups ` A = A
refl

we can conclude with Lemma 23.

• If the derivation finishes with

Al–groups ` B = A

Al–groups ` A = B
sym

then the induction hypothesis allows us to conclude.

• If the derivation finishes with

Al–groups ` A = C Al–groups ` C = B

Al–groups ` A = B
trans

then the induction hypothesis is
.GA‖ ` A,C

.GA‖ ` C,A

.GA‖ ` C,B

.GA‖ ` B,C
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We will show that .GA‖ ` A,B, the other one is similar.

` A,C ` C,B
` A,B,C,C

M

` A,B
CAN

• If the derivation finishes with
Al–groups ` A = B

Al–groups ` A[C/x] = B[C/x]
subst

we conclude using the induction hypothesis and Lemma 24.

• If the derivation finishes with
Al–groups ` A = B

Al–groups ` C[A] = C[B]
ctxt

we prove the result by induction on C. For instance, if C = C1 + C2 , then the induction
hypothesis is

.GA‖ ` C1[A], C1[B]

.GA‖ ` C1[B], C1[A]

.GA‖ ` C2[A], C2[B]

.GA‖ ` C2[B], C2[A]

We then have the following derivation for ` (C1[A] + C2[A]), (C1[B] + C2[B]) (the other
one is similar):

` C1[A], C1[B] ` C2[A], C2[B]

` C1[A], C2[A], C1[B], C2[B])
M

` (C1[A] + C2[A]), (C1[B] + C2[B])
+∗

• It now remains to consider the cases when the derivation finishes with one of the axioms
of Figure 1.1. Since all cases are quite straightforward, we only show one.

– If the derivation finishes with

Al–groups ` x t (y t z) = (x t y) t z
ax

then

` INIT

` x, x ID

` (x t (y t z)), x t
3 −W2

` INIT

` y, y ID

` (x t (y t z)), y t
3 −W2

` INIT

` z, z ID

` (x t (y t z)), z t
3 −W2

` (x t (y t z)), ((x u y) u z) u2

and

` INIT

` x, x ID

` ((x t y) t z), x t
2 −W2

` INIT

` y, y ID

` ((x t y) t z), y t
2 −W2

` INIT

` z, z ID

` ((x t y) t z), z t
2 −W2

` ((x t y) t z), (x u (y u z)) u2
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2.1.4 CAN–free invertibility
In this section, we prove that all logical rules of the system GA‖ are CAN–free invertible,

meaning that if there is CAN–free derivation of the conclusion, then there are CAN–free deriva-
tions for the premises. This result will be necessary for the CAN–elimination theorem, and thus
it is important that we do not add any CAN rule in the proofs of invertibility. For this reason,
the CAN–free invertibility result is stronger than Lemma 25 of Section 2.1.1.

It is technically convenient, in order to carry out the inductive argument, to prove a slightly
stronger result, expressed as the invertibility of more general logical rules that can act on the
same term on different sequents of the hypersequent, at the same time. The generalised rules
are the following:

Logical rules:

[` Γi]
n
i=1

[` Γi, 0
ni ]

n
i=1

0
[` Γi, A

ni , Bni ]
n
i=1

[` Γi, (A+B)ni ]
n
i=1

+

[` Γi, A
ni | ` Γi, B

ni ]
n
i=1

[` Γi, (A tB)ni ]
n
i=1

t
[` Γi, A

ni ]
n
i=1 [` Γi, B

ni ]
n
i=1

[` Γi, (A uB)ni ]
n
i=1

u

Figure 2.4: Generalised logical rules

Indeed, if we try to prove the invertibility of the regular rules, e.g., the + rule, it is difficult
to deal with the C or t rule. For instance, if the derivation of G | ` Γ1, (A+B)n1 finishes with

G | ` Γ1, (A+B)n1 | ` Γ1, (A+B)n1

G | ` Γ1, (A+B)n1
C

we need to be able to use the induction hypothesis on both sequents at the same time. Thus the
need to prove the invertibility of the generalised rules. This situation where we want to prove a
result concerning only one sequent by induction on the derivation will appear quite a few more
times (e.g., Lemma 38 for the M elimination or Lemma 41 for the CAN elimination). Each time,
the situation is resolved by proving a more general result concerning the whole hypersquent.

Remark 17. It would have been possible to define GA‖ directly using the generalised rules.
However, we feel that the notation would have then been too heavy, and so we decided against
this.

We conceptually divide the logical rules in three categories:

Type 1 The rule with only one premise but that adds one sequent to the hypersequent: the t
rule.

Type 2 The rules with only one premise and that do not change the number of sequents: the
0,+ rules.

Type 3 The rule with two premises: the u rule.

Because of the similarities of the rules in each of these categories, we just prove the CAN–free
invertibility of one rule in each category by means of a sequence of lemmas.
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Lemma 31 (Type 1). If [` Γi, (A t B)ni ]ni=1 has a CAN–free derivation then [` Γi, A
n
i | `

Γi, B
ni ]ni=1 has a CAN–free derivation.

Proof. By induction on the derivation of [` Γi, (A t B)ni ]ni=1. Most cases are easy except the
cases for when the derivation ends with a M rule, a u rule or a t rule so we will only show those
cases.

• If the derivation finishes with

G | ` Γ1, (A tB)n1 G | ` Γ2, (A tB)n2

G | ` Γ1,Γ2, (A tB)n1 , (A tB)n2
M

with G = [` Γi, (A t B)ni ]ni=3 and G′ = [` Γi, A
ni | ` Γi, B

ni ]ni=3 then by induction
hypothesis on the CAN–free derivations of the premises we have that

.GA‖\{CAN}G
′ | ` Γ1, A

n1 | ` Γ1, B
n1

and
.GA‖\{CAN}G

′ | ` Γ2, A
n2 | ` Γ2, B

n2

are derivable by CAN–free derivations. We want to prove that both

.GA‖\{CAN}G
′ | ` Γ1, A

n1 | ` Γ2, B
n2

and
.GA‖\{CAN}G

′ | ` Γ2, A
n2 | ` Γ1, B

n1

are CAN–free derivable, as this will allow us to conclude by application of the M rule as
follows:

G | ` Γ1, A
n1 | ` Γ2, B

n2 G | ` Γ1, A
n1 | ` Γ2, B

n2

G | ` Γ1, A
n1 | ` Γ1,Γ2, B

n1 , Bn2
M

G | ` Γ2, A
n2 | ` Γ1, B

n1 G | ` Γ2, A
n2 | ` Γ2, B

n2

G | ` Γ2, A
n2 | ` Γ1,Γ2, B

n1 , Bn2
M

G | ` Γ1,Γ2, A
n1 , An2 | ` Γ1,Γ2, B

n1 , Bn2
M

If n1 = 0 or n2 = 0, those two hypersequents are derivable using the C rule then the W
rule.
Otherwise, by using the W rule, Lemma 27 and the M rule, we have

.GA‖\{CAN}G
′ | ` Γ1, A

n1 | ` Γ2, B
n2 | ` Γn2

1 ,Γn1
2 , An1n2 , Bn1n2

and
.GA‖\{CAN}G

′ | ` Γ2, A
n2 | ` Γ1, B

n1 | ` Γn2
1 ,Γn1

2 , An1n2 , Bn1n2

We can then conclude using the S rule, Lemma 26 and the C rule.

• If the derivation finishes with

G | ` Γ1, (A tB)n1 , Ck G | ` Γ1, (A tB)n1 , Dk

G | ` Γ1, (A tB)n1 , (C uD)k
u

with G = [` Γi, (A t B)ni ]ni=2 and G′ = [` Γi, A
ni | ` Γi, B

ni ]ni=2, then by induction
hypothesis on the CAN–free derivations of the premises we have that

.GA‖\{CAN}G
′ | ` Γ1, A

n1 , Ck | ` Γ1, B
n1 , Ck
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and
.GA‖\{CAN}G

′ | ` Γ1, A
n1 , Dk | ` Γ1, B

n1 , Dk

so by using the W rule and the M rule, we can derive

.GA‖\{CAN}G
′ | ` Γ1, A

n1 , Ck | ` Γ1, B
n1 , Dk | ` Γ1,Γ1, A

n1 , Bn1 , Ck, Dk

and
.GA‖\{CAN}G

′ | ` Γ1, A
n1 , Dk | ` Γ1, B

n1 , Ck | ` Γ1,Γ1, A
n1 , Bn1 , Ck, Dk

and then with the S rule and the C rule

.GA‖\{CAN}G
′ | ` Γ1, A

n1 , Ck | ` Γ1, B
n1 , Dk

and
.GA‖\{CAN}G

′ | ` Γ1, A
n1 , Dk | ` Γ1, B

n1 , Ck

We can then conclude with the u rule.

• if the derivation finishes with an application on the t rule acting on the formula AtB, we
need to carefully analyse where the A tB formulas appear. There are three cases:

– the formulas A t B active in the rule, but which are not under consideration in the
lemma, i.e., there are not the instances of AtB we want to reduce, which are (AtB)m1

below,

– the formulas A tB which are both active in the rule, and under consideration in the
lemma, which are (A tB)m2 below, and

– the formulas A t B which are not active in the rule but under consideration in the
lemma, which are (A tB)m3 below.

Thus, the derivation finishes with

G | ` Γ1, A
m1+m2 , (A tB)m3 | ` Γ1, B

m1+m2 , (A tB)m3

G | ` Γ1, (A tB)m1+m2 , (A tB)m3
t

with G = [` Γi, (A t B)ni ]ni=2, G′ = [` Γi, A
ni | ` Γi, B

ni ]ni=2 and n1 = m2 + m3 and we
want to derive

G′ | ` Γ1, (A tB)m1 , Am2+m3 | ` Γ1, (A tB)m1 , Bm2+m3

We note Γα1,α2,α3
= Γ1, α

m1
1 , αm2

2 , αm3
3 for αi ∈ {A,B}. For instance, ΓA,B,B = Γ1, A

m1 , Bm2 , Bm3 .

Notice that Γm2
α1,α2,α2

,Γm3
α1,α3,α3

= Γm2+m3
α1,α2,α3

.

The induction hypothesis is

.GA‖\{CAN}G
′ | ` ΓA,A,A | ` ΓA,A,B | ` ΓB,B,A | ` ΓB,B,B



CHAPTER 2. HYPERSEQUENT CALCULI 49

Then the derivation is

G′ | ` ΓA,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ΓB,B,A

G′ | ` ΓA,A,A | ` ΓB,B,B | ` ΓA,A,B | ` Γm2+m3

B,B,A

Lemma 27

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` Γm2+m3

B,B,A

W

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` Γm2

B,B,B | ` Γm3

B,A,A

S

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ΓB,B,B | ` ΓB,A,A
(Lemma 26)2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B
C2

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` Γm2+m3

A,A,B

Lemma 27

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` Γm2+m3

A,A,B

W

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` Γm2

A,A,A | ` Γm3

A,B,B

S

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` ΓA,A,A | ` ΓA,B,B
(Lemma 26)2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B
C2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` Γ1, (A tB)m1 , Bm2+m3
t

G′ | ` Γ1, (A tB)m1 , Am2+m3 | ` Γ1, (A tB)m1 , Bm2+m3
t

Lemma 32 (Type 2). If [` Γi, (A+B)ni ]ni=1 has a CAN–free derivation then [` Γi, A
ni , Bni ]ni=1

has a CAN–free derivation.

Proof. Straightforward induction on the derivation of [` Γi, (A + B)ni ]ni=1. For instance if the
derivation finishes with

G | ` Γ1, (A+B)n1 G | ` Γ2, (A+B)n2

G | ` Γ1,Γ2, (A+B)n1 , (A+B)n2
M

with G = [` Γi, (A+B)ni ]ni=3 and G′ = [` Γi, A
ni , Bni ]ni=3, then by induction hypothesis on the

CAN–free derivations of the premises we have that

.GA‖\{CAN}G
′ | ` Γ1, A

n1 , Bn1

and
.GA‖\{CAN}G

′ | ` Γ2, A
n2 , Bn2

so
G′ | ` Γ1, A

n1 , Bn1 G′ | ` Γ2, A
n2 , Bn2

G′ | ` Γ1,Γ2, A
n1 , An2 , Bn1 , Bn2

M

Lemma 33 (Type 3). If [` Γi, (AuB)ni ]ni=1 has a CAN–free derivation then [` Γi, A
ni ]ni=1 and

[` Γi, B
ni ]ni=1 have a CAN–free derivation.

Proof. A straightforward induction on the derivation of [` Γi, (A u B)ni ]ni=1. We will show the
only complicated case, i.e., the u rule acting on A uB.

As previously, we need to distinguish three types of A uB formulas:

• the formulas AuB active in the rule, but which are not under consideration in the lemma,
i.e., there are not the instances of A uB we want to reduce, which are (A uB)m1 below,
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• the formulas AuB which are both active in the rule and under consideration in the lemma,
which are (A uB)m2 below, and

• the formulas AuB which are not active in the rule but under consideration in the lemma,
which are (A uB)m3 below.

Thus the derivation finishes with

G | ` Γ1, A
m1+m2 , (A uB)m3 G | ` Γ1, B

m1+m2 , (A uB)m3

G | ` Γ1, (A uB)m1+m2 , (A uB)m3
u

with G = [` Γi, (A uB)ni ]ni=2 and n1 = m2 +m3.
We will show how to derive

G′ | ` Γ1, (A uB)m1 , Am2+m3

where G′ = [` Γi, A
ni ]ni=2, the other case is similar.

By using the induction hypothesis, we have that

.GA‖\{CAN}G
′ | ` Γ1, A

m1+m2 , Am3

.GA‖\{CAN}G
′ | ` Γ1, B

m1+m2 , Am3

We will now derive the hypersequent G′ | ` Γ1, B
m1 , Am2+m3 which will allow us to conclude

using the u rule.

G′ | ` Γ1, B
m1+m2 , Am3

G′ | ` Γm1
1 , B(m1+m2)m1 , Am1m3

Lemma 27
G′ | ` Γ1, A

m1+m2+m3

G′ | ` Γm2
1 , Am2(m1+m2+m3)

Lemma 27

G′ | ` Γm1+m2
1 , B(m1+m2)m1 , A(m2+m3)(m1+m2)

M

G′ | ` Γ1, B
m1 , Am2+m3

Lemma 26

2.1.5 M–elimination
In this section, we will show the M elimination theorem. Recall that the M elimination

theorem states

if a hypersequent G is derivable, then it has a M–free derivation.

However, since this result will be used in the proof of the CAN elimination theorem, we have
to ensure that the M elimination theorem does not add any instance of the CAN rule. Thus we
will show the slightly different result

if a hypersequent G is CAN–free derivable, then it has a CAN–free M–free derivation.

To prove this theorem, we need to show that for each hypersequent G and sequents Γ and
∆, if there exist CAN–free and M–free derivations d1 of G | ` Γ and d2 of G | ` ∆, then there
exists also a CAN–free and M–free derivation of G | ` Γ,∆.

The idea behind the proof is to combine d1 and d2 step-by-step. First we take the derivation
d1 and we modify it into a CAN–free and M–free prederivation (i.e., an open derivation) of

G | G | ` Γ,∆
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where all the leaves in the prederivation are either terminated (by the INIT axiom) or non–
terminated and of the form:

G | ` ∆n

for some n ∈ N.
For instance if the derivation d1 of ` y t y (with G = ∅ and Γ = ` y t y) is

` ax

` y, y ID

` y | ` y S

` y t y t

then we will modify it into a prederivation of ` y t y,∆ by using the exact same rules, thus
obtaining,

` ∆2

` y, y,∆2 ID

` y,∆ | ` y,∆ S

` y t y,∆ t

Then we use the derivation d2 to construct a CAN–free and M–free derivation of each

G | ` ∆n

hence completing the prederivation of

G | G | ` Γ,∆

into a full derivation. From this it is possible to obtain the desired CAN–free and M–free
derivation of G | ` Γ,∆ using several times the C rule:

G | G | ` Γ,∆

G | ` Γ,∆
C∗

In what follows, the first step is formalised as Lemma 34 and the second step as Lemma 35.

Lemma 34. Let d1 be a CAN–free and M–free derivation of G | ` Γ, let H be a hypersequent
and ∆ be a sequent. Then there exists a CAN–free M–free prederivation of

G | H | ` Γ,∆.

where all non–terminated leaves are of the form H | ` ∆n for some n.

Proof. This is an instance of the slightly more general statement of Lemma 37 below where:

• [` Γi]
k−1
i=1 = G and Γk = Γ.

• ni = 0 for 1 ≤ i < k and nk = 1.

Lemma 35. Let d2 be CAN–free and M–free derivation of H | ` ∆. Then, for every natural
number n, there exists a CAN–free and M–free derivation of

H | ` ∆n
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Proof. This is an instance of the slightly more general statement of Lemma 38 below where:

• [` ∆i]
k−1
i=1 = H and ∆k = ∆.

• ni = 1 for 1 ≤ i < k and nk = n.

Before proving Lemmas 37 and 38, we now show how to remove one instance of the M rule
and then the M-elimination theorem.

Lemma 36. If G | ` Γ and H | ` ∆ have CAN–free M–free derivations, then so does G | H |
` Γ,∆.

Proof. By using Lemma 34, we have a prederivation of G | H | ` Γ,∆ where all non–terminated
leaves are of the form H | ` ∆n for some n.

To conclude, we have to show that every non-terminated leaf is derivable, which can be done
using Lemma 35.

Theorem 2.1.3 (M elimination). If G is CAN–free derivable, then G is CAN–free M–free
derivable.

Proof. We prove the result by induction on the derivation of G. The only interesting case if the
M rule, i.e., if the derivation finishes with

G | ` Γ G | ` ∆

G | ` Γ,∆
M

then by induction hypothesis, G | ` Γ and G | ` ∆ have a CAN–free M–free derivation.
By using Lemma 36, we have a CAN-free M-free derivation of G | G | ` Γ,∆. The derivation

is then
G | G | ` Γ,∆

G | ` Γ,∆
C∗

Lastly, we prove the technical version of Lemmas 34 and 35.

Lemma 37. Let d1 be a CAN–free and M–free derivation of [` Γi]
k
i=1 and let H be a hypersequent

and ∆ be a sequent. Then for every sequence of natural numbers ni, there exists a CAN–free
M–free prederivation of

H | [` Γi,∆
ni ]ki=1

where all non-terminated leaves are of the form H | ∆n for some n.

Proof. By induction on d1. We will show the case of the INIT axiom and the S rule, the other
cases are similar.

• If the derivation finishes with
` INIT

Let n be a natural number. The prederivation of H | ` ∆n is simply the leaf

H | ` ∆n
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• If the derivation finishes with
[` Γi]

k−2
i=1 | ` Γk−1,Γk

[` Γi]
k−2
i=1 | ` Γk−1 | ` Γk

S

Let ni be a sequence of natural numbers. By induction hypothesis, there exists a CAN–free
M–free prederivation of

H | [` Γi,∆
ni ]k−2i=1 | ` Γk−1,Γk,∆

nk−1+nk

where all non-terminated leaves are of the form H | ∆n for some n. We then continue this
prederivation with

H | [` Γi,∆
ni ]k−2i=1 | ` Γk−1,Γk,∆

nk−1+nk

H | [` Γi,∆
ni ]k−2i=1 | ` Γk−1,∆

nk−1 | ` Γk,∆
nk

S

Lemma 38. If [` ∆i]
k
i=1 has a CAN–free M–free derivation then for all ni, there is a CAN–free

M–free derivation of [` ∆ni
i ]

k
i=1.

Proof. By induction on the derivation of [` ∆i]
k
i=1. We show the only nontrivial case:

• If the derivation finishes with

[` ∆i]
k
i=3 | ` ∆1,∆2

[` ∆i]
k
i=3 | ` ∆1 | ` ∆2

S

By induction hypothesis there is CAN–free derivation of

[` ∆ni
i ]

k
i=3 | ` ∆n1n2

1 ,∆n1n2
2

If n1 = 0 or n2 = 0, we have the empty sequent which is derivable. Otherwise,

[` ∆ni
i ]

n
i=3 | ` ∆n1n2

1 ,∆n1n2
2

[` ∆ni
i ]

n
i=3 | ` ∆n1n2

1 | ` ∆n1n2
2

S

[` ∆ni
i ]ni=3 | ` ∆n1

1 | ` ∆n2
2

Lemma 26

Remark 18. Lemma 38 is the main reason for using parallel rules in GA‖. Indeed, it is necessary
for the logical rules to be able to act on several instances of a term in the same sequent, more
precisely for the cases of the t and u rules.

To show this, let’s consider the case of the t rule when the rule can only act on one instance
of the formula, i.e., if the derivation finishes with

[` ∆i]
k
i=2 | ` ∆1, A | ` ∆2, B

[` ∆i]
k
i=2 | ` ∆1, A tB

t

We want to show that [` ∆ni
i ]

k
i=2 | ` ∆n1

1 , (AtB)n1 is derivable, which is direct by using the
induction hypothesis when the t rule can act on the n1 instances of AtB but would require to
show that the hypersequent

[` ∆ni
i ]

k
2=1 |

[
` ∆n1

1 , AkA , BkB
]
kA+kB=n1

is derivable if the t acts only on one instance of AtB at a time. However, we do not know how
to prove this without using the M rule.
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2.1.6 CAN–elimination
The CAN rule has the following form:

G | ` Γ, An, A
n

G | ` Γ
CAN

We prove the CAN elimination Theorem 2.1.4 below by showing that if the hypersequent
G | ` Γ, An, A

n
has a M–free CAN–free derivation then the hypersequent G | ` Γ also has a

M–free CAN–free derivation.
Our proof proceeds by induction on the complexity of the term A. The base case is given by

A = x (or equivalently A = x) for some variable x. The following lemma proves this base case.

Lemma 39. If there is a M–free CAN–free derivation of G | ` Γ, xn, xn, then there exists a
M–free CAN–free derivation of G | ` Γ.

Proof. The statement follows as a special case of Lemma 41 below, a stronger version of Lemma
39 that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, xn, xn,
where:

• [` Γi]
k−1
i=1 = G and Γk = Γ.

• ni = 0 for 1 ≤ i < k.

• nk = n.

For complex terms A, we proceed by using the CAN–free invertibility of the logical rules (see
Section 2.1.4) as follows.

Lemma 40. If there is a M–free CAN–free derivation of G | ` Γ, An, A
n
, then there exists a

M–free CAN–free derivation of G | ` Γ.

Proof. We proceed by induction on A.

• If A = x, we are in the base case of Lemma 39.

• If A = 0, we can conclude with the CAN–free invertibility of the 0 rule and the M–
elimination theorem.

• If A = B + C, since the + rule is CAN–free invertible, G | ` Γ, Bn, Cn, B
n
, C

n
has a

M–free CAN–free derivation. Therefore we can have a M–free CAN–free derivation of the
hypersequent G | ` Γ by invoking the induction hypothesis twice, since the complexity of
B and C is lower than that of B + C.

• If A = BtC, since the t rule is CAN–free invertible, G | ` Γ, Bn, (BuC)n | ` Γ, Cn, (Bu
C)n has a M–free CAN–free derivation. Then, since the u rule is CAN–free invertible,
G | ` Γ, Bn, B

n | ` Γ, Cn, C
n
has a M–free CAN–free derivation. Therefore we can have a

M–free CAN–free derivation of the hypersequent G | ` Γ | ` Γ by invoking the induction
hypothesis twice on the simpler terms B and C.

We can then derive the hypersequent G | ` Γ as:

G | ` Γ | ` Γ

G | ` Γ
C
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• If A = B u C, since the t rule is CAN–free invertible, G | ` Γ, (B u C)n, B
n | ` Γ, (B u

C)n, C
n
has a M–free CAN–free derivation. Then, since the u rule is CAN–free invertible,

G | ` Γ, Bn, B
n | ` Γ, Cn, C

n
has a M–free CAN–free derivation. Therefore we can have a

M–free CAN–free derivation of the hypersequent G | ` Γ | ` Γ by invoking the induction
hypothesis twice on the simpler terms B and C.

We can then derive the hypersequent G | ` Γ as:

G | ` Γ | ` Γ

G | ` Γ
C

We can now prove the CAN elimination theorem by a straightforward induction on the
derivation of the hypersequent, the CAN rule being dealt with using Lemma 40 above.

Theorem 2.1.4 (CAN elimination). For all hypersequent G, if .GA‖G then .GA‖\{CAN}G.

Proof. We proceed by induction on the derivation of G. We only show the case of the CAN rule
and one example for the other rules since the other cases are all similar.

• If the derivation finishes with:
G

G | ` Γ
W

then .GA‖\{CAN}G and by using the W rule, we obtain a CAN–free derivation of G | ` Γ.

• If the derivation finishes with
G | ` Γ, An, A

n

G | ` Γ
CAN

then .GA‖\{CAN}G | ` Γ, An, A
n
and we can conclude with Lemma 40.

We now prove Lemma 41, the stronger version of Lemma 39.

Lemma 41. If there is a CAN–free and M–free derivation of the hypersequent

[` Γi, x
ni , xmi ]

k
i=1

then for all n′i,m′i such that ni −mi = n′i −m′i for all i ∈ [1..k], there is a CAN–free, M–free
derivation of [

` Γi, x
n′i , xm

′
i

]k
i=1

Proof. By induction on the derivation of [` Γi, x
ni , xmi ]

k
i=1. Most cases are trivial, we just

describe the most interesting one.

• If the derivation finishes with:

[` Γi, x
ni , xmi ]i≥2 | ` Γ1, x

nc , xmc

[` Γi, x
ni , xmi ]i≥2 | ` Γ1, x

na+nb+nc , xma+mb+mc
ID

with n1 = nb + nc, m1 = mb +mc and na + nb = ma +mb.
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We want to show that

.GA‖\{CAN}

[
` Γi, x

n′i , xm
′
i

]
i≥2
| ` Γ1, x

na , xn
′
1 , xma , xm

′
1

We will now prove that nc −mc = n′1 + na − (m′1 + ma) to be able to conclude with the
induction hypothesis.

nc −mc = (n1 − nb)− (m1 −mb)

= (n1 −m1) + (mb − nb)
= (n′1 −m′1) + (na −ma)

= (n′1 + na)− (m′1 +ma)

so by induction hypothesis, we have

.GA‖\{CAN}

[
` Γi, x

n′i , xm
′
i

]
i≥2
| ` Γ1, x

na , xn
′
1 , xma , xm

′
1

which is the result we want.

2.1.7 Algebraic property
We will now present a property that reduces the problem of derivability of an atomic hyper-

sequent to solving a system of linear equations, allowing us to have an algebraic characterization
of the derivability of atomic hypersequents. With some abuse of notations, this property states
that an atomic hypersequent

` Γ1 | ... | ` Γm

is derivable if and only if there are k1, ..., km ∈ N with ki 6= 0 for some i such that

k1Γ1 + ...+ kmΓm = 0 (2.1)

This result is a direct consequence of the elimination Theorems 2.1.3 and 2.1.4 stating that
if an atomic hypersequent has a derivation, then it has a CAN–free M–free derivation. Thus,
to build this CAN–free M–free derivation, only the S,C, W and ID rules can be used before
concluding with the INIT axiom. If we analyse the impact of those rules to the hypersequent,
then

• the C rule adds some copies the sequents,

• the W rule removes some copies of the sequents,

• the S rule connects two sequents together, such that we can only add or remove copies of
those sequents at the same time, i.e., after the rule

` Γ1 | ... | ` Γm,Γm+1

` Γ1 | ... | ` Γm | ` Γm+1
S

then we can add or remove copies of Γm only if we also add or remove copies of Γm+1 (and
vice versa), and

• the ID rule removes axioms that cancel each other, i.e., removes both n x and n x for some
n and x.
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Since only those rules can be used to derive the hypersequent, we can only multiply the
different sequents by natural numbers (the natural number being the number of copies of the
corresponding sequent) before cancelling all of the remaining ones with the ID rule. Thus, we
obtain the equation (2.1).

Theorem 2.1.5. For all atomic hypersequents G, built using the variables and negated variables
x1, x1, . . . , xk, xk, of the form

` Γ1 | . . . | ` Γm

where Γi = x
ni,1

1 , ..., x
ni,k

k , x1
n′i,1 , ..., xk

n′i,k , the following are equivalent:

1. G has a derivation.

2. there exist numbers k1, ..., km ∈ N, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ki 6= 0, i.e., the numbers are not all 0’s, and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

kini,j =

m∑
i=1

kin
′
i,j

i.e., the scaled (by the numbers k1 . . .km) sum of the numbers of variable xj is equal
to the scaled sum of the numbers of covariable xj.

Proof. We prove (1) ⇒ (2) by induction on the derivation of G. By using Theorem 2.1.4 and
Theorem 2.1.3, we can assume that the derivation is CAN–free and M–free. We show only the
C case, the other cases being similar:

• If the derivation finishes with

` Γ1 | ... | ` Γm | ` Γm

` Γ1 | ... | ` Γm
C

by induction hypothesis, there are k1, ..., km, km+1 ∈ N such that :

– there exists i ∈ [1..m+ 1] such that ki 6= 0.

– for every variable and covariable (xj , xj) pair, it holds that
∑m
i=1 kini,j +km+1nm,j =∑m

i=1 kin
′
i,j + km+1n

′
m,j .

Then k1, ..., km−1, km + km+1 satisfies the property.

The other way ((2)⇒ (1)) is more straightforward. If there exist natural numbers k1, ..., km ∈ N,
one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ki 6= 0 and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

kini,j =

m∑
i=1

kin
′
i,j
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then we can use the W rule to remove the sequents corresponding to the numbers ki = 0, and
use the C rule ki − 1 times then the S rule ki − 1 times on the ith sequent to multiply it by ki.
If we assume that there is a natural number l such that ki = 0 for all i > l and ki 6= 0 for all
i ≤ l, then the CAN–free derivation is:

` INIT

` Γ1
k1 , . . . ,Γl

kl
ID∗

` Γ1
k1 | . . . | ` Γl

kl
S∗

` Γ1 | . . . | ` Γl
C-S∗

` Γ1 | . . . | Γm
W∗

Remark 19. Note that the M elimination theorem 2.1.3 is actually not necessary to prove the
result above. However, it makes the proof much simpler.

2.2 Hypersequent calculus HR
In this section we add rules for the scalar multiplication to the system GA‖ to build the

system HR. Whereas the system GA‖ was used to derive positive Abelian l-group terms, the
system HR can be used to derive positive Riesz terms. The main difference between GA‖ and
HR lies in the presence of scalars in hypersequents, namely in the weighted terms defined below,
and the additional T rule of the system HR.

We start by adapting the definitions and conventions used for the system GA‖ in the context
of Riesz spaces and HR.

Definition 2.2.1. A weighted term is a formal expression r.A where r ∈ R>0 and A is a term
in NNF.

Recall that the scalars appearing in these terms in NNF are all strictly positive and are ranged
over by the letters r, s, t ∈ R>0. From now on, the term scalar should always be understood as
strictly positive scalar.

Given a weighted term r.A and a scalar s we denote with s.(r.A) the weighted term (sr).A.
Thus we have defined (strictly positive) scalar multiplication on weighted terms.

We adopt the following notation:

• Given a sequence ~r = (r1, . . . rn) of scalars and a term A, we denote with ~r.A the multiset
[r1.A, . . . , rn.A]. When ~r is empty, the multiset ~r.A is also empty.

• Given a multiset Γ = [r1.A1, . . . , rn.An] and a scalar s > 0, we denote with s.Γ the multiset
[s.r1.A1, . . . , s.rn.An].

• Given a sequence ~s = (s1, . . . sn) of scalars and a multiset Γ, we denote with ~s.Γ the multiset
s1.Γ, . . . , sn.Γ.

• Given two sequences ~r = (r1, . . . rn) and ~s = (s1, . . . sm) of scalars, we denote ~r;~s the
concatenation of the two sequences, i.e. the sequence (r1, . . . rn, s1, . . . sm).

• Given a sequence ~s = (s1, . . . sn) of scalars and a scalar r, we denote (r~s) the sequence
(rs1, . . . rsn).
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• Given two sequences ~r = (r1, . . . rn) and ~s = (s1, . . . sm) of scalars, we denote ~r~s the
sequence r1~s; . . . ; rn~s.

• Given a sequence ~s = (s1, . . . sn) of scalars, we denote
∑
~s the sum of all scalars in ~s, i.e.

the scalar
n∑
i=1

si.

Note that the notation An = A, ..., A used in the system GA‖ can be seen as a specific
instance of the notation ~r.A where every element of ~r is equal to 1. We can adapt most of the
definitions and results of the system GA‖ to the system HR by simply replacing An with ~r.A
and Γn with ~r.Γ, as can be seen in the rules of Figure 2.5.

Definition 2.2.2. A sequent is a formal expression of the form ` Γ.

If Γ = ∅, the corresponding empty sequent is simply written as `.

Definition 2.2.3. A hypersequent is a non–empty finite multiset of sequents, written as `
Γ1| . . . | ` Γn.

We use the same notion of "simple" hypersequent as in the system GA‖, once again it can
be seen as the basic case when reasoning by induction on hypersequents.

Definition 2.2.4. A hypersequent is said atomic if it only contains atoms, i.e., formulas of the
form x or x.

We now describe how sequents and hypersequents can be interpreted by Riesz terms.

Definition 2.2.5 (Interpretation). We interpret weighted terms (r.A), sequents ` Γ and hyper-
sequents G as the Riesz terms Lr.AM, L` ΓM and LGM, respectively, as follows:

Syntax Term interpretation L_M
Weighted terms r.A rA
Sequents ` r1.A1, . . . , rn.An Lr1.A1M + · · ·+ Lrn.AnM
Hypersequents ` Γ1| . . . | ` Γn L` Γ1M t · · · t L` ΓnM

Hence a weighted term is simply interpreted as the term scalar–multiplied by the weight. A
sequent is interpreted as sum (

∑
) and a hypersequent is interpreted as a join of sums (

⊔∑
).

Example 17. The interpretation of the hypersequent:

` 1.x, 2.(y u z) | ` 2.(3x u y)

is the Riesz term: (
1x+ 2(y u z)

)
t
(
2(3x u y)

)
.

The hypersequent calculus HR is a deductive system for deriving hypersequents whose in-
terpretation is positive, i.e., the hypersequents G such that ARiesz ` 0 ≤ LGM. The rules of HR
are presented in Figure 2.5 and are very similar to the rules of the system GA‖ (see Figure
2.1) where the main difference is the use of weighted terms in sequents. We write .HRG if the
hypersequent G is derivable in the system HR.

The T rule is novel, and can be seen as a real–valued variant of C (contraction) rule in that the
weight of a sequent in the hypersequent can be multiplied by an arbitrary positive real number –
while the C rule was mostly used to multiply a sequent by a natural number. It is worth knowing
that the T rule is not necessary to prove the completeness of the system HR, but is necessary for
the CAN elimination theorem, and appears naturally in the proofs of the CAN–free invertibility
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Axiom:

` INIT

Structural rules:

G
G | ` Γ

W
G | ` Γ | ` Γ

G | ` Γ
C

G | ` Γ1,Γ2

G | ` Γ1 | ` Γ2
S

G | ` Γ1 G | ` Γ2

G | ` Γ1,Γ2
M

G | ` r.Γ
G | ` Γ

T
G | ` Γ

G | ` Γ, ~r.x,~s.x
ID,
∑
ri =

∑
si

Logical rules:

G | ` Γ

G | ` Γ, ~r.0
0

G | ` Γ, ~r.A,~r.B

G | ` Γ, ~r.(A+B)
+

G | Γ ` Γ, (s~r).A

G | Γ ` Γ, ~r.(sA)
×

G | ` Γ, ~r.A | ` Γ, ~r.B

G | ` Γ, ~r.(A tB)
t

G | ` Γ, ~r.A G | ` Γ, ~r.B

G | ` Γ, ~r.(A uB)
u

CAN rule:

G | ` Γ, ~s.A,~r.A

G | ` Γ
CAN,

∑
ri =

∑
si

Figure 2.5: Inference rules of HR.

of the logical rules in Section 2.2.4. Finally, note that the logical rules are all presented using
the syntactic sugaring ~r.A described above. As in the system GA‖, this effectively allows us to
apply the rule to several terms in the sequent at the same time. We stress again that we can
obtain most of the rules of the system HR simply by replacing An with ~r.A in the rules of the
system GA‖. Note that the following ID rule

G | ` Γ

G | ` Γ, ~r.x, ~r.x
bad ID

that we would obtain by replacing xn and xn with ~r.x and ~r.x would not allow to prove the
completeness of the system HR, and more precisely to derive the axiom (r1 + r2)x = r1x+ r2x
and thus we require the slightly more complex ID rule presented above. The CAN rule was then
chosen to keep the symmetry with the ID rule.

Remark 20. Note that the following CUT rule

G | ` Γ1, ~r.A G | ` Γ2, ~s.A

G | ` Γ1,Γ2
CUT,

∑
~r =

∑
~s

is equivalent to the CAN rule in the HR hypersequent calculus. Deriving the CAN rule from
the CUT rule is done the same way as in GA‖ but the other way is trickier and actually requires
to use three times the CAN rule (instead of one in GA‖):
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G | ` Γ1, ~r.A G | ` Γ2, ~s.A

G | ` Γ1,Γ2, ~r.A,~s.A
M

G | ` Γ1,Γ2
CAN,

∑
~r =

∑
~s

Figure 2.6: Derivability of the CUT rule.

G | ` Γ, ~r.A,~s.A

` INIT

` ~s.A,~r.A
Lemma 42

G | ` ~s.A,~r.A
W∗

G | ` Γ, ~r.A,~r.A
CUT

G | ` Γ, ~r.(A+A)
+

G | ` Γ, ~r.A,~s.A

` INIT

` ~s.A,~r.A
Lemma 42

G | ` ~s.A,~r.A
W∗

G | ` Γ, ~r.A,~r.A
CUT

G | ` Γ, ~r.(A+A)
+

G | ` Γ,Γ
CUT

G | ` Γ | ` Γ
S

G | ` Γ
C

Figure 2.7: Derivability of the CAN rule.

Example 18. Example of derivation of the hypersequent ` 1.
(
(2x+ 2y)t (y+ x)

)
which consists

of only one sequent.

` INIT

` 2.y, 2.y
ID

` 2.x, 2.y, 2.x, 2.y
ID

` 2.x, 2.y | ` 2.y, 2.x
S

` 2.x, 2.y | ` 1.y, 1.x
T(multiplication by 2)

` 2.x, 2.y | ` 1.(y + x)
+

` 2.x, 1.2y | ` 1.(y + x)
×

` 1.2x, 1.2y | ` 1.(y + x)
×

` 1.(2x+ 2y) | ` 1.(y + x)
+

` 1.
(
(2x+ 2y) t (y + x)

) t
Definition 2.2.6. We define the complexity of a sequent ` Γ, noted c(` Γ), as the sum of the
operators used in the terms of Γ,i.e., if Γ = r1.A1, ..., rn.An, c(` Γ) =

∑n
i=1 c(Ai) (see Definition

1.2.4 for the definition of c(Ai)).
The complexity of a hypersequent G, noted c(G), is then defined as the pair c(G) = (a, b)

where

• a is the maximum complexity of a sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then
a = max

i∈[1..n]
c(` Γi), and

• b is the number of sequents in G having a complexity of a, i.e., b = #{` Γi | c(` Γi) = a}.

We say that a sequent ` Γ of G is maximal if c(` Γ) = a.
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2.2.1 Preliminary lemmas
As in Section 2.1, we start by proving a few technical lemmas.
Our first lemma states that the following variant of the ID rule (see Figure 2.5) where general

terms A are considered rather than just variables, is admissible in the proof system HR.

G | ` Γ

G | ` Γ, ~r.A,~s.A
ID,
∑
~r =

∑
~s

Lemma 42. For all terms A and vectors ~r and ~s

if .HRG | ` Γ and
∑
~r =

∑
~s then .HRG | ` Γ, ~r.A,~s.A

Proof. We prove the result by induction on A.

• If A is a variable, we simply use the ID rule.

• If A = 0, we use the 0 rule.

• If A = B + C, we use the + rule twice (for A + B and A + B) and conclude with the
induction hypothesis.

• For the case A = B uC or A = B tC, we first use the u rule and then the t rule on each
premise and the W rule on each premise to remove the sequents with both B and C in
them. We can then conclude with the induction hypothesis.

G | ` Γ, ~r.B,~s.B

G | ` Γ, ~r.B,~s.B | ` Γ, ~r.B,~s.C
W

G | ` Γ, ~r.B,~s.(B t C)
t

G | ` Γ, ~r.C,~s.C

G | ` Γ, ~r.C,~s.B | ` Γ, ~r.C,~s.C
W

G | ` Γ, ~r.C,~s.(B t C)
t

G | ` Γ, ~r.(B u C), ~s.(B t C)
u

The next result states that derivability in the HR system is preserved by substitution of
terms for variables.

Lemma 43. For all hypersequents G and terms A, if .HRG then .HRG[A/x].

Proof. We prove the result by induction on the derivation of G. Most cases are quite straightfor-
ward, we simply use the induction hypothesis on the premises and then use the same rule. For
instance, if the derivation finishes with

G | ` Γ, ~r.B,~r.C

G | ` Γ, ~r.(B + C)
+

by induction hypothesis .HRG[A/x] | ` Γ[A/x], ~r.B[A/x], ~r.C[A/x] so

G[A/x] | ` Γ[A/x], ~r.B[A/x], ~r.C[A/x]

G[A/x] | ` Γ[A/x], ~r.(B + C)[A/x]
+

The only tricky case is when the ID rule is used on the variable x, where we conclude using
Lemma 42.
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The next lemma states that the logical rules are invertible using the CAN rule, meaning
that if the conclusion is derivable, then the premises are also derivable. Unlike a stronger result
we will prove later in Section 2.2.4 where we prove the CAN–free version of this lemma, the
derivations of the premises may contain CAN rules and thus this result is not sufficient to imply
the CAN elimination theorem.

Lemma 44. All logical rules are invertible.

Proof. We simply use the CAN rule to introduce the operators. We will show the two most
interesting cases, the other cases are trivial.

• The u rule: we assume that G | ` Γ, ~r.(A uB) is derivable. The derivation of G | ` Γ, ~r.A
is then:

G | ` Γ, ~r.(A uB)

` INIT

` ~r.A,~r.A
Lemma 42

` ~r.A,~r.A | ` ~r.A,~r.B
W

` ~r.A,~r.(A tB)
t

G | ` ~r.A,~r.(A tB)
W∗

G | ` Γ, ~r.A,~r.(A uB), ~r.(A tB)
M

G | ` Γ, ~r.A
CAN

The derivation of G | ` Γ, ~r.B is similar.

• The t rule: we assume that G | ` Γ, ~r.(AtB) is derivable. The derivation of G | ` Γ, ~r.A |
` Γ, ~r.B is then:

G | ` Γ, ~r.(A tB)

G | ` Γ, ~r.(A tB) | ` Γ, ~r.B
W

` INIT

` ~r.A,~r.A
Lemma 42

G | ` ~r.A,~r.A | ` Γ, ~r.B
W∗ Π

G | ` ~r.A,~r.B | ` Γ, ~r.B

G | ` ~r.A,~r.(A uB) | ` Γ, ~r.B
u

G | ` Γ, ~r.A,~r.(A tB), ~r.(A uB) | ` Γ, ~r.B
M

G | ` Γ, ~r.A | ` Γ, ~r.B
CAN

where Π is the following derivation:

G | ` Γ, ~r.(A tB)

G | ` ~r.A,~r.B | ` Γ, ~r.(A tB)
W

` INIT

` ~r.B,~r.B
Lemma 42

` ~r.A,~r.B,~r.B,~r.A
Lemma 42

` ~r.A,~r.B | ` ~r.B,~r.A
S

` INIT

` ~r.B,~r.B
Lemma 42

` ~r.A,~r.B | ` ~r.B,~r.B
W

` ~r.A,~r.B | ` ~r.B,~r.(A uB)
u

G | ` ~r.A,~r.B | ` ~r.B,~r.(A uB)
W∗

G | ` ~r.A,~r.B | ` Γ, ~r.B,~r.(A tB), ~r.(A uB)
M

G | ` ~r.A,~r.B | ` Γ, ~r.B
CAN

Remark 21. The proof of invertibility does not introduce any new T rule, so if the conclusion of
a logical rule has a T–free derivation then the premises also have T–free derivations.
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The next lemmas state that CAN–free derivability in the HR system is preserved by scalar
multiplication.

Lemma 45. Let ~r ∈ R>0 be a non-empty vector and G a hypersequent. If .HR\{CAN}G | ` ~r.Γ
then .HR\{CAN}G | ` Γ.

Proof. We simply use the C,T and S rules :

G | ` ~r.Γ
G | ` r1.Γ | ... | rn.Γ

S∗

G | ` Γ | ... | ` Γ
T∗

G | ` Γ
C∗

Lemma 46. Let ~r ∈ R>0 be a vector and G a hypersequent. If .HR\{CAN}G | ` Γ then
.HR\{CAN}G | ` ~r.Γ.

Proof. We reason by induction on the size of ~r.
If the size of ~r is 0: Since ` ~r.Γ =`, we simply use the W rule until we can use the INIT rule:

` INIT

G | ` W∗

If the size of ~r is 1: we can use the T rule:

G | ` ( 1
r1
r1).Γ

G | ` r1.Γ
T

Otherwise: Let (r1, ..., rn+1) = ~r. We can invoke the inductive hypothesis and conclude as
follows:

G | ` Γ

G | ` r1.Γ, ..., rn.Γ

G | ` ( 1
rn+1

rn+1).Γ

G | ` rn+1.Γ
T

G | ` r1.Γ, ..., rn.Γ, rn+1.Γ
M

2.2.2 Soundness
We need to prove that if there exists a HR derivation of a hypersequent G then LGM ≥ 0 is

derivable in equational logic (written ARiesz ` LGM ≥ 0). This is done in a straightforward way
by showing that each deduction rule of the system HR is sound. Notice that the soundness of
the rules already present in GA‖ is proved in the exact same way since the scalar multiplication
is mostly irrelevant in those rules.

Theorem 2.2.1 (Soundness of HR). For all hypersequent G, if .HRG then ARiesz ` LGM ≥ 0.

Proof. By induction on the derivation of G.

• For the rule
` INIT

The semantics of the hypersequent consisting only of the empty sequent is L`M = 0 and
therefore L`M ≥ 0, as desired.
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• For the rule
G

G | ` Γ
W

the hypothesis is LGM ≥ 0 so

LG | ` ΓM = LGM t L` ΓM
≥ LGM
≥ 0

• For the C, ID,+, 0,× and CAN rules, it is immediate to observe that the interpretation of
the only premise and the interpretation of its conclusion are equal, therefore the result is
trivial.

• For the rule
G | ` Γ1,Γ2

G | ` Γ1 | ` Γ2
S

the hypothesis is LG | ` Γ1,Γ2M ≥ 0 so according to Lemma 11, LGM− u L` Γ1,Γ2M− = 0.
Our goal is to prove that LG | ` Γ1 | ` Γ2M ≥ 0. Again, using Lemma 11, we equivalently
need to prove that

LGM− u L` Γ1 | ` Γ2M− = 0.

The above expression is of the form A− uB−, and since A− = (−A) t 0 ≥ 0 always holds
for every A, it is clear that LGM− u L` Γ1 | ` Γ2M− ≥ 0. It remains therefore to show that
LGM− u L` Γ1 | ` Γ2M− ≤ 0. This is done as follows:

LGM− u L` Γ1 | ` Γ2M− ≤ LGM− u 2.L` Γ1 | ` Γ2M− since L` Γ1 | ` Γ2M− ≥ 0
= LGM− u (2.(L` Γ1M t L` Γ2M))− Lemma 10[1]
≤ LGM− u (L` Γ1M + L` Γ2M)− Lemma 10[2]
= LGM− u (L` Γ1,Γ2M)−
= 0

• For the rule
G | ` Γ1 G | ` Γ2

G | ` Γ1,Γ2
M

the hypothesis is
LG | ` Γ1M ≥ 0

LG | ` Γ2M ≥ 0

so according to Lemma 11,
LGM− u L` Γ1M− = 0

LGM− u L` Γ2M− = 0

Following the same reasoning of the previous case (S rule) our goal is to show that LGM−uL`
Γ1,Γ2M− ≤ 0. This is done as follows:

LGM− u L` Γ1,Γ2M− = LGM− u (L` Γ1M + L` Γ2M)−
≤ LGM− u (L` Γ1M− + L` Γ2M−) Lemma 10[3]
≤ LGM− u L` Γ1M− + LGM− u L` Γ2M− distributivity of u over +
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• For the rule
G | ` r.Γ
G | ` Γ

T

the hypothesis is LG | ` r.ΓM ≥ 0 so using Lemma 11, we have

LGM− u r.(L` ΓM)− = LGM− u (L` r.ΓM)− = 0

By the same reasoning as for the S rule’s case, our goal is to show that LGM− u L` ΓM− ≤ 0.
To do so, we need to distinguish between two cases: whether or not r ≥ 1.

If r ≥ 1, then
LGM− u L` ΓM− ≤ LGM− u r.L` ΓM−

= 0

Otherwise, Lemma 10[4] states that LGM−uL` ΓM− ≤ 0 if and only if r.(LGM−uL` ΓM−) ≤ 0,
which is proven as follows:

r.(LGM− u L` ΓM−) = (r.LGM−) u (r.L` ΓM−)
≤ LGM− u (r.L` ΓM−)
= 0

In both cases LGM− u L` ΓM− ≤ 0.

• For the rule
G | ` Γ, ~r.A | ` Γ, ~r.B

G | ` Γ, ~r.(A tB)
t

the hypothesis is LG | ` Γ, ~r.A | ` Γ, ~r.BM ≥ 0. So :

LG | ` Γ, ~r.(A tB)M = LGM t L` Γ, ~r.(A tB)M
= LGM t L` Γ, ~r.AM t L` Γ, ~r.BM distributivity of t over +
≥ 0

• For the rule
G | ` Γ, ~r.A G | ` Γ, ~r.B

G | ` Γ, ~r.(A uB)
u

the hypothesis is
LG | Γ, ~r.A ` ΓM ≥ 0

LG | Γ, ~r.B ` ΓM ≥ 0

So

LG | ` Γ, ~r.(A uB)M = LGM t L` Γ, ~r.(A uB)M
= LGM t (L` Γ, ~r.AM u LΓ, ~r.BM) distributivity of u over +
= (LGM t L` Γ, ~r.AM) u (LGM t L` Γ, ~r.BM) distributivity of t over u
≥ 0
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2.2.3 Completeness
In order to prove the completeness of the system HR, i.e. that if ARiesz ` LGM ≥ 0 then

.HRG, we first prove an equivalent result (Lemma 47 below) stating that if ARiesz ` A = B then
the hypersequents ` r.A, r.B and ` r.B, r.A are both derivable for all r > 0.

From Lemma 47 one indeed obtains Theorem 2.2.2 as a corollary.

Theorem 2.2.2 (Completeness of HR). For all hypersequent G, if ARiesz ` LGM ≥ 0 then
.HRG.

Proof. Recall that ARiesz ` LGM ≥ 0 is a shorthand for ARiesz ` 0 = LGM u 0. Hence, from
the hypothesis ARiesz ` LGM ≥ 0 we can deduce, by using Lemma 47 stated below, that .HR `
1.(0 u LGM), 1.0.

From this we can show that .HRG by invoking Lemma 44. Indeed, if G is ` Γ1 | ... | ` Γn
then LGM = L` Γ1M t ... t L` ΓnM and

1. by using the invertibility of the 0 rule, ` 1.(0 u (L` Γ1M t ... t L` ΓnM)) is derivable,

2. by using the invertibility of the u rule, ` 1.(L` Γ1M t ... t L` ΓnM) is derivable,

3. by using the invertibility of the t rule n− 1 times, ` 1.L` Γ1M | ... | ` 1.L` ΓnM is derivable,

4. and finally, by using the invertibility of the + rule and × rule, ` Γ1 | ... | ` Γn is derivable.

Remark 22. We could simply have used the following weaker formulation for Lemma 47 stated
below:

If ARiesz ` A = B then ` 1.A, 1.B and ` 1.B, 1.A are provable

However, to prove this version of the lemma, we would have had to use the T rule, and thus we
would not be able to show that the T rule is admissible in HR.

Lemma 47. If ARiesz ` A = B then ` r.A, r.B and ` r.B, r.A are derivable for all r > 0.

Proof. We prove this result by induction on the derivation, in equational logic (see Defini-
tion 1.1.2) of ARiesz ` A = B.

• If the derivation finishes with
ARiesz ` A = A

refl

we can conclude with Lemma 42.

• If the derivation finishes with
ARiesz ` B = A

ARiesz ` A = B
sym

then the induction hypothesis allows us to conclude.

• If the derivation finishes with

ARiesz ` A = C ARiesz ` C = B

ARiesz ` A = B
trans

then the induction hypothesis is
.HR ` r.A, r.C
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.HR ` r.C, r.A

.HR ` r′.C, r′.B

.HR ` r′.B, r′.C

for all r, r′ > 0. We will show that .HR ` r.A, r.B for all r, the other one is similar.

` r.A, r.C ` r.C, r.B
` r.A, r.B, r.C, r.C

M

` r.A, r.B
CAN

• If the derivation finishes with

ARiesz ` A = B

ARiesz ` A[C/x] = B[C/x]
subst

we conclude using the induction hypothesis and Lemma 43.

• If the derivation finishes with

ARiesz ` A = B

ARiesz ` C[A] = C[B]
ctxt

we prove the result by induction on C. For instance, if C = sC ′ with s > 0, then the
induction hypothesis is .HR ` r.C ′[A], r.C ′[B] and .HR ` r.C ′[B], r.C ′[A] for all r > 0 so

` rs.C ′[A], rs.C ′[B]

` r.C[A], r.C[B]
×∗

` rs.C ′[B], rs.C ′[A]

` r.C[B], r.C[A]
×∗

• It now remains to consider the cases when the derivation finishes with one of the axioms
of Figure 1.2. We only show the nontrivial cases.

– If the derivation finishes with

ARiesz ` (r1 + r2)x = r1x+ r2x
ax

then
` INIT

` (r1 + r2)r.x, r1r.x, r2r.x
ID

` r.((r1 + r2)x), r.r1x, r.r2x
×∗

` r.((r1 + r2)x), r.(r1x+ r2x)
+

and
` INIT

` r1r.x, r2r.x, (r1 + r2)r.x
ID

` r.r1x, r.r2x, r.((r1 + r2)x)
×∗

` r.(r1x+ r2x), r.((r1 + r2)x)
+
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– If the derivation finishes with

ARiesz ` (s(x u y)) u sy = s(x u y)
ax

then

` INIT

` r.(s(x u y)), r.s(x t y)
Lemma 42

` INIT

` rs.y, rs.y ID

` rs.y, rs.x | ` rs.y, rs.y W

` rs.y, rs.(x t y)
t

` r.sy, r.s(x t y)
×∗

` r.((s(x u y)) u sy), r.s(x t y)
u

and
` INIT

` r.(s(x u y)), r.(s(x t y))
Lemma 42

` r.(s(x u y)), r.((s(x t y)) t (sy))
t −W

Remark 23. By inspecting the proof of Lemma 47 it is possible to verify that the T rule is never
used in the construction of .HRG. This, together with the similar Remark 21 regarding Lemma
44, implies that the T rule is never used in the proof of the completeness Theorem 2.2.2. From
this we get the following corollary.

Corollary 2. The T rule is admissible in the system HR.

It turns out, however, that there is no hope of eliminating both the T rule and the CAN rule
from the HR system.

Lemma 48. Let r1 and r2 be two irrational numbers that are incommensurable (so there is no
q ∈ Q such that qr1 = r2). Then the atomic hypersequent G

` r1.x | ` r2.x

does not have a CAN–free and T–free derivation.

Proof. This is a corollary of the next Lemma 49. The idea is that in the HR system without the
T rule and the CAN rule, the only way to derive G is by applying the structural rules S, C, W,
M and the ID rule. Each of these rules can be seen as adding up the sequents in G or multiplying
them up by a positive natural number, very much like the Algebraic Property 2.1.5 of system
GA‖. Since r1 and r2 are incommensurable, it is not possible to construct a derivation.

Lemma 49. For all atomic hypersequents G, built using the variables and negated variables
x1, x1, . . . , xk, xk, of the form

` Γ1 | . . . | ` Γm

where Γi = ~ri,1.x1, ..., ~ri,k.xk, ~si,1.x1, ..., ~si,k.xi,k, the following are equivalent:

1. G has a CAN–free and T–free derivation.

2. there exist natural numbers n1, ..., nm ∈ N, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ni 6= 0, i.e., the numbers are not all 0’s, and
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• for every variable and covariable (xj , xj) pair, it holds that
m∑
i=1

ni(
∑

~ri,j) =

m∑
i=1

ni(
∑

~si,j)

i.e., the scaled (by the numbers n1 . . .nm) sum of the coefficients in front of the
variable xj is equal to the scaled sum of the coefficients in front of the covariable xj.

Proof. We prove (1) ⇒ (2) by induction on the derivation of G. We show only the M case, the
other cases being trivial:

• If the derivation finishes with

` Γ1 | ... |` Γm ` Γ1 | ... |` Γ′m
` Γ1 | ... |` Γm,Γ

′
m

M

by induction hypothesis, there are n1, ..., nm ∈ N and n′1, ..., n′m ∈ N such that :

– there exists i ∈ [1..m] such that ni 6= 0.
– for every variable and covariable (xj , xj) pair, it holds that

∑
i ni.

∑
~ri,j =

∑
i ni.

∑
~si,j .

– there exists i ∈ [1..m] such that n′i 6= 0.

– for every variable and covariable (xj , xj) pair, it holds that
∑m−1
i=0 n′i.

∑
~ri,j+n

′
m.
∑
~r′m,j =∑m−1

i=0 n′i.
∑
~si,j + n′m.

∑
~s′m,j .

If nm = 0 then n1, ..., nm−1, 0 satisfies the property.
Otherwise if n′m = 0 then n′1, ..., n′m−1, 0 satisfies the property.
Otherwise, nm.n′1 + n′m.n1, nm.n

′
2 + n′m.n2, ..., nm.n

′
m−1 + n′m.nm−1, nm.n

′
m satisfies the

property.

The other way ((2)⇒ (1)) is more straightforward. If there exist natural numbers n1, ..., nm ∈ N,
one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ni 6= 0 and

• for every variable and covariable (xj , xj) pair, it holds that
m∑
i=1

ni(
∑

~ri,j) =

m∑
i=1

ni(
∑

~si,j)

then we can use the W rule to remove the sequents corresponding to the numbers ni = 0, and
use the C rule ni − 1 times then the S rule ni − 1 times on the ith sequent to multiply it by ni.
If we assume that there is a natural number l such that ni = 0 for all i > l and ni 6= 0 for all
i ≤ l, then the CAN–free T–free derivation is:

` INIT

` Γ1
n1 , . . . ,Γl

nl ID∗

` Γ1
n1 | . . . | ` Γl

nl S∗

` Γ1 | . . . | ` Γl
C-S∗

` Γ1 | . . . | Γm
W∗

where Γn stands for Γ, . . . ,Γ︸ ︷︷ ︸
n

.
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2.2.4 CAN–free invertibility
In this section, we prove the 0,+,×,t and u rules are CAN-free invertible, i.e., that if the

conclusion of one of those logical rules has a CAN-free derivation, then so do the premises. As for
the system GA‖, it allows us to reduce the complexity of the formulas in an hypersequent in the
proof of the CAN elimination theorem, and thus it is important that we do not add any CAN rule
in the proofs of invertibility. For this reason, the CAN–free invertibility result is stronger than
Lemma 44 of Section 2.2.1. Note that those results are the ones requiring the T rule. Indeed, if
we were able to prove the CAN-free invertibility of all logical rules without using the T rule, all
other results can also be proved without using the T rule.

Like in the previous Section 2.1.4, we will prove the CAN-free invertibility of more general
rules as those rules are more convenient for the induction process.

Logical rules:

[` Γi]
n
i=1

[` Γi, ~ri.0]
n
i=1

0
[` Γi, ~ri.A, ~ri.B]

n
i=1

[` Γi, ~ri.(A+B)]
n
i=1

+
[` Γi, (s~ri).A]

n
i=1

[` Γi, ~ri.(sA)]
n
i=1

×

[` Γi, ~ri.A | ` Γi, ~ri.B]
n
i=1

[` Γi, ~ri.(A tB)]
n
i=1

t
[` Γi, ~ri.A]

n
i=1 [` Γi, ~ri.B]

n
i=1

[` Γi, ~ri.(A uB)]
n
i=1

u

Figure 2.8: Generalised logical rules

Notice again that the rules 0,+,t,u of Figure 2.8 are exactly the ones of Figure 2.4 with the
translation An ↔ ~r.A (with the addition of the × rule). The proofs of the following lemmas are
then very similar to the ones in Section 2.1.4 modulo this translation.

We conceptually divide the logical rules in three categories:

Type 1 The rule with only one premise but that adds one sequent to the hypersequent: the t
rule.

Type 2 The rules with only one premise and that do not change the number of sequents: the
0,+ rules.

Type 3 The rule with two premises: the u rule.

Because of the similarities of the rules in each of these categories, we just prove the CAN–free
invertibility of one rule in each category by means of a sequence of lemmas.

Lemma 50 (Type 1). If [` Γi, ~ri.(A t B)]ni=1 has a CAN-free derivation then [` Γi, ~ri.A | `
Γi, ~ri.B]ni=1 has a CAN–free derivation.

Proof. By induction on the derivation of [` Γi, ~ri.(AtB)]ni=1. We show the two cases that require
the T rule.

• If the derivation finishes with

G | ` Γ1, ~r1.(A tB) G | ` Γ2, ~r2.(A tB)

G | ` Γ1,Γ2, ~r1.(A tB), ~r2.(A tB)
M
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with G = [` Γi, ~ri.(A t B)]ni=3 and G′ = [` Γi, ~ri.A | ` Γi, ~ri.B]ni=3 then by induction
hypothesis on the CAN–free derivations of the premises we have that

.HR\{CAN}G
′ | ` Γ1, ~r1.A | ` Γ1, ~r1.B

and
.HR\{CAN}G

′ | ` Γ2, ~r2.A | ` Γ2, ~r2.B

are derivable by CAN–free derivations. We want to prove that both

.HR\{CAN}G
′ | ` Γ1, ~r1.A | ` Γ2, ~r2.B

and
.HR\{CAN}G

′ | ` Γ2, ~r2.A | ` Γ1, ~r1.B

are CAN–free derivable, as this will allow us to conclude by application of the M rule as
follows:

G | ` Γ1, ~r1.A | ` Γ2, ~r2.B G | ` Γ1, ~r1.A | ` Γ2, ~r2.B

G | ` Γ1, ~r1.A | ` Γ1,Γ2, ~r1.B, ~r2.B
M

G | ` Γ2, ~r2.A | ` Γ1, ~r1.B G | ` Γ2, ~r2.A | ` Γ2, ~r2.B

G | ` Γ2, ~r2.A | ` Γ1,Γ2, ~r1.B, ~r2.B
M

G | ` Γ1,Γ2, ~r1.A, ~r2.A | ` Γ1,Γ2, ~r1.B, ~r2.B
M

If ~r1 = ∅ or ~r2 = ∅, those two hypersequents are derivable using the C rule then the W
rule.
Otherwise, by using the W rule, Lemma 46 and the M rule, we have

.HR\{CAN}G
′ | ` Γ1, ~r1.A | ` Γ2, ~r2.B | ` ~r2.Γ1, ~r1.Γ2, (~r1~r2)A, (~r1~r2)B

and
.HR\{CAN}G

′ | ` Γ2, ~r2.A | ` Γ1, ~r1.B | ` ~r2.Γ1, ~r1.Γ2, (~r1~r2)A, (~r1~r2)B

We can then conclude using the S rule, Lemma 45 and the C rule.

• if the derivation finishes with an application on the t rule acting on the formula AtB, we
need to carefully analyse where the A tB formulas appear. There are three cases:

– the formulas A t B active in the rule, but which are not under consideration in the
lemma, i.e., there are not the instances of AtB we want to reduce, which are ~a.(AtB)
below,

– the formulas A tB which are both active in the rule, and under consideration in the
lemma, which are ~b.(A tB) below, and

– the formulas A t B which are not active in the rule but under consideration in the
lemma, which are ~c.(A tB) below.

Thus, the derivation finishes with

G | ` Γ1,~a;~b.A,~c.(A tB) | ` Γ1,~a;~b.B,~c.(A tB)

G | ` Γ1,~a;~b.(A tB),~c.(A tB)
t

with G = [` Γi, ~ri.(A t B)]ni=2, G′ = [` Γi, ~ri.A | ` Γi, ~ri.B]ni=2 and ~r1 = ~b;~c and we want
to derive

G′ | ` Γ1,~a.(A tB),~b;~c.A | ` Γ1,~a.(A tB),~b;~c.B
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We note Γα1,α2,α3 = Γ1,~a.α1,~b.α2,~c.α3 for αi ∈ {A,B}. For instance, ΓA,B,B = Γ1,~a.A,~b.B,~c.B.

Notice that ~b.Γα1,α2,α2
,~c.Γα1,α3,α3

= ~b;~c.Γα1,α2,α3
.

The induction hypothesis is

.HR\{CAN}G
′ | ` ΓA,A,A | ` ΓA,A,B | ` ΓB,B,A | ` ΓB,B,B

Then the derivation is

G′ | ` ΓA,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ΓB,B,A

G′ | ` ΓA,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ~b;~c.ΓB,B,A
Lemma 46

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ~b;~c.ΓB,B,A
W

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ~b.ΓB,B,B | ` ~c.ΓB,A,A
S

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B | ` ΓB,B,B | ` ΓB,A,A
(Lemma 45)2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓB,B,B | ` ΓA,A,B
C2

G′ | ` ΓA,A,A | ΓB,A,A | ` ΓB,B,B | ` ~b;~c.ΓA,A,B
Lemma 46

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` ~b;~c.ΓA,A,B
W

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` ~b.ΓA,A,A | ` ~c.ΓA,B,B
S

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B | ` ΓA,A,A | ` ΓA,B,B
(Lemma 45)2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` ΓA,B,B | ` ΓB,B,B
C2

G′ | ` ΓA,A,A | ` ΓB,A,A | ` Γ1,~a.(A tB),~b;~c.B
t

G′ | ` Γ1,~a.(A tB),~b;~c.A | ` Γ1,~a.(A tB),~b;~c.B
t

Lemma 51 (Type 2). If [` Γi, ~ri.(A+B)]ni=1 has a CAN–free derivation then [` Γi, ~ri.A, ~ri.B]ni=1

has a CAN–free derivation.

Proof. Straightforward induction on the derivation of [` Γi, ~ri.(A + B)]ni=1. For instance if the
derivation finishes with

G | ` Γ1, ~r1.(A+B) G | ` Γ2, ~r2.(A+B)

G | ` Γ1,Γ2, ~r1.(A+B), ~r2.(A+B)
M

with G = [` Γi, ~ri.(A + B)]ni=3 and G′ = [` Γi, ~ri.A, ~ri.B]ni=3, then by induction hypothesis on
the CAN–free derivations of the premises we have that

.HR\{CAN}G
′ | ` Γ1, ~r1.A, ~r1.B

and
.HR\{CAN}G

′ | ` Γ2, ~r2.A, ~r2.B

so
G′ | ` Γ1, ~r1.A, ~r1.B G′ | ` Γ2, ~r2.A, ~r2.B

G′ | ` Γ1,Γ2, ~r1.A, ~r2.A, ~r1.B, ~r2.B
M

Lemma 52 (Type 3). If [` Γi, ~ri.(AuB)]ni=1 has a CAN–free derivation then [` Γi, ~ri.A]ni=1 and
[` Γi, ~ri.B]ni=1 have a CAN–free derivation.
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Proof. A straightforward induction on the derivation of [` Γi, ~ri.(A u B)]ni=1. We will show the
only case requiring the T rule, i.e., the u rule acting on A uB.

As previously, we need to distinguish three types of A uB formulas:

• the formulas AuB active in the rule, but which are not under consideration in the lemma,
i.e., there are not the instances of A uB we want to reduce, which are ~a.(A uB) below,

• the formulas AuB which are both active in the rule and under consideration in the lemma,
which are ~b.(A uB) below, and

• the formulas AuB which are not active in the rule but under consideration in the lemma,
which are ~c.(A uB) below.

Thus the derivation finishes with

G | ` Γ1,~a;~b.A,~c.(A uB) G | ` Γ1,~a;~b.B,~c.(A uB)

G | ` Γ1,~a;~b.(A uB),~c.(A uB)
u

with G = [` Γi, ~ri.(A uB)]ni=2 and ~r1 = ~b;~c.
We will show how to derive

G′ | ` Γ1,~a.(A uB),~b;~c.A

where G′ = [` Γi, ~ri.A]ni=2, the other case is similar.
By using the induction hypothesis, we have that

.HR\{CAN}G
′ | ` Γ1,~a;~b.A,~c.A

.HR\{CAN}G
′ | ` Γ1,~a;~b.B,~c.A

We will now derive the hypersequent G′ | ` Γ1,~a.B,~b;~c.A which will allow us to conclude
using the u rule.

G′ | ` Γ1,~a;~b.B,~c.A

G′ | ` ~a.Γ1, (~a;~b)~a.B,~a~c.A
Lemma 46

G′ | ` Γ1,~a;~b;~c.A

G′ | ` ~b.Γ1,~b(~a;~b;~c).A
Lemma 46

G′ | ` ~a;~b.Γ1, (~a;~b)~a.B, (~b;~c)(~a;~b).A
M

G′ | ` Γ1,~a.B,~b;~c.A
Lemma 45

2.2.5 M–elimination
In this section, we will show the M elimination theorem. Recall that the M elimination

theorem states

if a hypersequent G is derivable, then it has a M–free derivation.

However, since this result will be used in the proof of the CAN elimination theorem, we have
to ensure that the M elimination theorem does not add any instance of the CAN rule. Thus we
will show the slightly different result

if a hypersequent G is CAN–free derivable, then it has a CAN–free M–free derivation.
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To do so, we will show that for each hypersequent G and sequents Γ and ∆, if there exist
CAN–free and M–free derivations d1 of G | ` Γ and d2 of G | ` ∆, then there exists also a
CAN–free and M–free derivation of G | ` Γ,∆.

Recall that the idea of the proof is to combine d1 and d2 step-by-step. First we take the deriva-
tion d1 and we modify it into a CAN–free and M–free prederivation (i.e., an open derivation)
of

G | G | ` Γ,∆

where all the leaves in the prederivation are either terminated (by the INIT axiom) or non–
terminated and of the form:

G | ` ~r.∆

for some vector ~r of scalars. Then we use the derivation d2 to construct a CAN–free and M–free
derivation of each

G | ` ~r.∆

hence completing the prederivation of

G | G | ` Γ,∆

into a full derivation. From this it is possible to obtain the desired CAN–free and M–free
derivation of G | ` Γ,∆ using several times the C rule:

G | G | ` Γ,∆

G | ` Γ,∆
C∗

In what follows, the first step is formalised as Lemma 53 and the second step as Lemma 54.

Lemma 53. Let d1 be a CAN–free and M–free derivation of G | ` Γ and let H be a hypersequent
and ∆ be a sequent. Then there exists a CAN–free M–free prederivation of

G | H | ` Γ,∆.

where all non–terminated leaves are of the form H | ` ~r.∆ for some vector ~r.

Proof. This is an instance of the slightly more general statement of Lemma 56 below where:

• [` Γi]
n−1
i=1 = G and Γn = Γ.

• ~ri = ∅ for 1 ≤ i < n and ~rn = 1.

Lemma 54. Let d2 be CAN–free and M–free derivation of H | ` ∆. Then, for every vector ~r,
there exists a CAN–free and M–free derivation of

H | ` ~r.∆

Proof. This is an instance of the slightly more general statement of Lemma 57 below where:

• [` ∆i]
n−1
i=1 = G and ∆n = ∆.

• ~ri = 1 for 1 ≤ i < n and ~rn = ~r.
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Before proving Lemmas 56 and57, we show how to remove one instance of the M rule and
then the M-elimination theorem.

Lemma 55. If G | ` Γ and H | ` ∆ have CAN–free M–free derivations, then so does G | H |
` Γ,∆.

Proof. By using Lemma 53, we have a prederivation of G | H | ` Γ,∆ where all non–terminated
leaves are of the form H | ` ~r.∆ for some vector ~r.

To conclude, we have to show that every non-terminated leaf is derivable, which can be done
using Lemma 54.

Theorem 2.2.3 (M elimination). If G is CAN-free derivable, then G is CAN-free M-free deriv-
able.

Proof. We prove the result by induction on the derivation of G. The only interesting case if the
M rule, i.e., if the derivation finishes with

G | ` Γ G | ` ∆

G | ` Γ,∆
M

then by induction hypothesis, G | ` Γ and G | ` ∆ have a CAN-free M-free derivation.
By using Lemma 55, we have a CAN-free M-free derivation of G | G | ` Γ,∆. The derivation

is then
G | G | ` Γ,∆

G | ` Γ,∆
C∗

Lastly, we prove the technical version of Lemmas 53 and 54.

Lemma 56. Let d1 be a CAN–free and M–free derivation of [` Γi]
n
i=1 and let H be a hypersequent

and ∆ be a sequent. Then for every sequence of vectors ~ri, there exists a CAN–free M–free
prederivation of

H | [` Γi, ~ri.∆]ni=1

where all non-terminated leaves are of the form H | ~r.∆ for some vector ~r.

Proof. By induction on d1. We will show the case of the INIT axiom and the S rule, the other
cases are similar.

• If the derivation finishes with
` INIT

Let n be a natural number. The prederivation of H | ` ~r1.∆ is simply the leaf

H | ` ~r1.∆

• If the derivation finishes with

[` Γi]
k−2
i=1 | ` Γk−1,Γk

[` Γi]
k−2
i=1 | ` Γk−1 | ` Γk

S

Let ni be a sequence of natural numbers. By induction hypothesis, there exists a CAN–free
M–free prederivation of

H | [` Γi, ~ri.∆]k−2i=1 | ` Γk−1,Γk, (~rk−1;~rk).∆
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where all non-terminated leaves are of the form H | ∆n for some n. We then continue this
prederivation with

H | [` Γi, ~ri.∆]k−2i=1 | ` Γk−1,Γk, (~rk−1;~rk).∆

H | [` Γi, ~ri.∆]k−2i=1 | ` Γk−1, ~rk−1.∆ | ` Γk, ~rk.∆
S

Lemma 57. If [` ∆i]
n
i=1 has a CAN–free M–free derivation then for all ~ri, there is a CAN–free

M–free derivation of [` ~ri.∆i]
n
i=1.

Proof. By induction on the derivation of [` ∆i]
n
i=1. We show the only nontrivial case:

• If the derivation finishes with

[` ∆i]
n
i=3 | ` ∆1,∆2

[` ∆i]
n
i=3 | ` ∆1 | ` ∆2

S

By induction hypothesis there is CAN–free derivation of

[` ~ri.∆i]
n
i=3 | ` (~r1 ~r2).∆1, (~r1 ~r2).∆2

If ~r1 = ∅ or ~r2 = ∅, we have the empty sequent which is derivable. Otherwise,

[` ~ri.∆i]
n
i=3 | ` (~r1 ~r2).∆1, (~r1 ~r2).∆2

[` ~ri.∆i]
n
i=3 | ` (~r1 ~r2).∆1 | ` (~r1 ~r2).∆2

S

[` ~ri.∆i]
n
i=3 | ` ~r1.∆1 | ` ~r2.∆2

Lemma 45

Remark 24. The careful readers may notice that the T rule is used in this proof, which contradicts
with our statement in the introduction of Section 2.2.4 where we claim that the T rule would
not be necessary in this section. However, if we carefully inspect the proof of the lemmas, we
notice that if both derivations of G | ` Γ and G | ` ∆ are T–free M–free, then all scalars in the
vectors ~ri are equal to 1 and thus the resulting derivation of G | ` Γ,∆ is also T–free M–free.

Thus if the CAN–free invertibility could be proven without the T rule, then the T rule would
indeed not be necessary for the CAN elimination theorem.

2.2.6 CAN–elimination
The CAN rule has the following form:

G | ` Γ, ~r.A,~s.A

G | ` Γ
CAN,

∑
~r =

∑
~s

We prove the CAN-elimination theorem by showing that if the hypersequent G | ` Γ, ~r.A,~s.A
has a M–free CAN–free derivation then the hypersequent G | ` Γ also has a M–free CAN–free
derivation.

Our proof proceeds by induction on the complexity of the term A. The base case is given by
A = x (or equivalently A = x) for some variable x. The following lemma proves this base case.
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Lemma 58. If there is a M–free CAN–free derivation of G | ` Γ, ~r.x,~s.x, where
∑
~r =

∑
~s

then there exists a M–free CAN–free derivation of G | ` Γ.

Proof. The statement follows as a special case of Lemma 60 below, a stronger version of Lemma 58
that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, ~r.x,~s.x,
where:

• [` Γi]
n−1
i=1 = G and Γn = Γ.

• ~ri = ~r′i = ~si = ~s′i = ∅ for 1 ≤ i < n.

• ~rn = ~r, ~sn = ~s and ~r′n = ~s′n = ∅.

For complex terms A, we proceed by using the CAN–free invertibility lemmas of Section 2.2.4.

Lemma 59. If there is a M–free CAN–free derivation of G | ` Γ, ~r.A,~s.A where
∑
~r =

∑
~s,

then there exists a M–free CAN–free derivation of G | ` Γ.

Proof. We proceed by induction on A.

• If A = x, we are in the base case of Lemma 58.

• If A = 0, we can conclude with the CAN–free invertibility of the 0 rule and the M–
elimination theorem.

• If A = B + C, since the + rule is CAN–free invertible, G | ` Γ, ~r.B,~r.C,~s.B,~s.C has a
M–free CAN–free derivation. Therefore we can have a M–free CAN–free derivation of the
hypersequent G | ` Γ by invoking the induction hypothesis twice, since the complexity of
B and C is lower than that of B + C.

• If A = r′B, since the × rule is CAN–free invertible, G | ` Γ, (r′~r).B, (r′~s).B has a M–
free CAN–free derivation. Therefore we can have a M–free CAN–free derivation of the
hypersequent G | ` Γ by invoking the inductive hypothesis on the simpler term B.

• If A = BtC, since the t rule is CAN–free invertible, G | ` Γ, ~r.B,~s.(BuC) | ` Γ, ~r.C,~s.(Bu
C) has a M–free CAN–free derivation. Then, since the u rule is CAN–free invertible,
G | ` Γ, ~r.B,~s.B | ` Γ, ~r.C,~s.C has a M–free CAN–free derivation. Therefore we can have
a M–free CAN–free derivation of the hypersequent G | ` Γ | ` Γ by invoking the induction
hypothesis twice on the simpler terms B and C.

We can then derive the hypersequent G | ` Γ as:

G | ` Γ | ` Γ

G | ` Γ
C

• If A = B uC, since the t rule is CAN–free invertible, G | ` Γ, ~r.(B uC), ~s.B | ` Γ, ~r.(B u
C), ~s.C has a M–free CAN–free derivation. Then, since the u rule is CAN–free invertible,
G | ` Γ, ~r.B,~s.B | ` Γ, ~r.C,~s.C has a M–free CAN–free derivation. Therefore we can have
a M–free CAN–free derivation of the hypersequent G | ` Γ | ` Γ by invoking the induction
hypothesis twice on the simpler terms B and C.

We can then derive the hypersequent G | ` Γ as:
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G | ` Γ | ` Γ

G | ` Γ
C

We can now prove the CAN elimination theorem by a straightforward induction on the
derivation of the hypersequent, the CAN rule being dealt with using Lemma 59 above.

Theorem 2.2.4 (CAN elimination). For all hypersequent G, if .HRG then .HR\{CAN}G.

Proof. We proceed by induction on the derivation of G. We only show the case of the CAN rule
and one example for the other rules since the other cases are all similar.

• If the derivation finishes with:
G

G | ` Γ
W

then .HR\{CAN}G and by using the W rule, we obtain a CAN-free derivation of G | ` Γ.

• If the derivation finishes with

G | ` Γ, ~r.A,~s.A

G | ` Γ
CAN,

∑
~r =

∑
~s

then .HR\{CAN}G | ` Γ, ~r.A,~s.A and we can conclude with Lemma 59.

We now prove Lemma 60, the stronger version of Lemma 58.

Lemma 60. If there is a CAN–free and M–free derivation of the hypersequent

[` Γi, ~ri.x, ~si.x]
n
i=1

then for all ~r′i and ~s′i, with 1 ≤ i ≤ n, such that
∑
~ri−

∑
~si =

∑ ~r′i−
∑ ~s′i, there is a CAN–free,

M–free derivation of [
` Γi, ~r′i.x,

~s′i.x
]n
i=1

Proof. By induction on the derivation of [` Γi, ~ri.x, ~si.x]
n
i=1. Most cases are trivial, we just

describe the most interesting one.

• If the derivation finishes with:

[` Γi, ~ri.x, ~si.x]i≥2 | ` Γ1,~c.x, ~c′.x

[` Γi, ~ri.x, ~si.x]i≥2 | ` Γ1, (~a;~b;~c).x, (~a′; ~b′; ~c′).x
ID,
∑

(~a;~b) =
∑

(~a′;~b′)

with ~r1 = ~b;~c and ~s1 = ~b′; ~c′. We want to show that

.HR\{CAN}

[
` Γi, ~r′i.x,

~s′i.x
]
i≥2
| Γ1, (~a; ~r′1).x, (~a′; ~s′1).x
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We will now prove that
∑
~c−

∑
~c′ =

∑
~r′1 +

∑
~a− (

∑
~s′1 +

∑
~a′) to be able to conclude

with the induction hypothesis.∑
~c−

∑
~c′ = (

∑
~r1 −

∑
~b)− (

∑
~s1 −

∑
~b′)

= (
∑

~r1 −
∑

~s1) + (
∑

~b′ −
∑

~b)

= (
∑

~r′1 −
∑

~s′1) + (
∑

~a−
∑

~a′)

=
∑

~r′1 +
∑

~a− (
∑

~s′1 +
∑

~a′)

so by induction hypothesis, we have

.HR\{CAN}

[
` Γi, ~r′i.x,

~s′i.x
]
i≥2
| Γ1, (~a; ~r′1).x, (~a′; ~s′1).x

which is the result we want.

2.2.7 Algebraic property
The algebraic property of the system GA‖ (see Section 2.1.7) can be adapted to the system

HR. Recall that the algebraic property mostly states that to derive an atomic hypersequent,
one could only use the structural rules (S,M,C,W and ID rules) and thus could only multiply
the sequents by natural numbers before using the ID rule. However, in the system HR, there
is one more structural rule, namely the T rule. Thus the algebraic property now states that we
can only multiply the sequents by real numbers before using the ID rule.

Remark 25. The main difference between Lemma 49 and the algebraic property below is indeed
the presence of the T rule. Lemma 49 requires the derivation to be T–free and thus the sequents
can only be multiplied by natural numbers and not real numbers.

Theorem 2.2.5. For all atomic hypersequents G, built using the variables and negated variables
x1, x1, . . . , xk, xk, of the form

` Γ1 | . . . | ` Γm

where Γi = ~ri,1.x1, ..., ~ri,k.xk, ~si,1.x1, ..., ~si,k.xk, the following are equivalent:

1. G has a derivation.

2. there exist numbers t1, ..., tm ∈ R≥0, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ti 6= 0, i.e., the numbers are not all 0’s, and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

~ri,j) =

m∑
i=1

ti(
∑

~si,j)

i.e., the scaled (by the numbers t1 . . . tm) sum of the coefficients in front of the variable
xj is equal to the scaled sum of the coefficients in front of the covariable xj.
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Proof. We prove (1)⇒ (2) by induction on the derivation of G. By using Theorem 2.2.4, we can
assume that the derivation of G is CAN–free. We will only deal with the case of T rule since
every other case is similar to the proof of Theorem 2.1.5. If the derivation finishes with

` Γ1 | . . . | ` r.Γm
` Γ1 | . . . | ` Γm

T

then by induction hypothesis there are t1, ..., tm ∈ R such that :

• there exists i ∈ [1..m] such that ti 6= 0.

• for every variable and covariable (xj , xj) pair, it holds that
∑m−1
i=0 ti.

∑
~ri,j+tm.

∑
r~rm,j =∑m−1

i=0 ti.
∑
~si,j + tm.

∑
r~sm,j .

so t1, . . . , tm−1, rtm satisfies the property.

The other way ((2)⇒ (1)) is also very similar to Theorem 2.1.5, only using the T rule instead
of the C and S rules. If there exist numbers t1, ..., tm ∈ R, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ti 6= 0 and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

~ri,j) =

m∑
i=1

ti(
∑

~si,j)

then we can use the W rule to remove the sequents corresponding to the numbers ti = 0, and use
the T rule on the ith sequent to multiply it by ti. If we assume that there is a natural number l
such that ti = 0 for all i > l and ti 6= 0 for all i ≤ l, then the CAN–free derivation is:

` INIT

` t1.Γ1, . . . , tl.Γl
ID∗

` t1.Γ1 | . . . | ` tl.Γl
S∗

` Γ1 | . . . | ` Γl
T∗

` Γ1 | . . . | Γm
W∗

2.3 Hypersequent calculus MGA
In this section we add the ♦ operator to the system GA‖ as well as the constant 1, thus

obtaining the system MGA used to derive positive modal Abelian l–group terms.
We start by adapting the definitions and conventions used for the system GA‖ to the system

MGA.

Definition 2.3.1. A term is a formal expression A where A is modal Abelian l–group terms in
NNF.

We use the notation An for the multiset A, ..., A consisting of n copies of A, and the notation
Γn for the multiset Γ, ...,Γ consisting of the concatenation of n copies of Γ.
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Definition 2.3.2. A sequent is a formal expression of the form ` Γ.

If Γ = ∅, the corresponding empty sequent is simply written as `.

Definition 2.3.3. A hypersequent is a non–empty finite multiset of sequents, written as `
Γ1| . . . | ` Γn.

We use the letter G,H to range over hypersequents.
We now give two notions of "simple" hypersequents, atomic hypersequents already introduced

in Section 2.1 and basic hypersequents.

Definition 2.3.4. A hypersequent is said atomic if it only contains atoms, i.e., formulas of the
form x or x.

Definition 2.3.5. A hypersequent is said basic if it only contains atoms (formulas of the form
x or x), ♦ formulas (formulas of the form ♦A), 1 formulas and 1 formulas.

The notion of atomic hypersequent is no longer sufficient in the presence of the ♦ operator,
as we will see that is not as easy to reduce the complexity of a ♦ formula as it is for the other
formulas. As a result, some of the inductive proofs will now have the following pattern: reduce
the complexity of all non-♦ formulas until we reach basic hypersequents, remove all the atoms
then remove one ♦ application and start over until we reach a hypersequent with only 1 and 1
formulas.

We now describe how sequents and hypersequents can be interpreted by modal Abelian l–
group terms.

Definition 2.3.6 (Interpretation). We interpret sequents ` Γ and hypersequents G as the modal
Abelian l–group terms L` ΓM and LGM, respectively, as follows:

Syntax Term interpretation L_M
Sequents ` A1, . . . , An LA1M + · · ·+ LAnM
Hypersequents ` Γ1| . . . | ` Γn L` Γ1M t · · · t L` ΓnM

Hence a sequent is interpreted as sum (
∑

) and a hypersequent is interpreted as a join of
sums (

⊔∑
).

Example 19. The interpretation of the hypersequent:

` x, (y u z) | ` (x u y)

is the Riesz term: (
x+ (y u z)

)
t
(
(x u y)

)
.

The hypersequent calculus MGA is a deductive system for deriving hypersequents whose
interpretation is positive, i.e., the hypersequents G such that A♦

l–groups ` 0 ≤ LGM. The rules of
MGA consist of the rules of the system GA‖(see Figure 2.1) with the additional rules of Figure
2.9 below.

The 1 rule is quite similar to the ID rule but it reflects the axiom 0 ≤ 1 of modal Abelian
l–groups, and thus the side condition expresses an inequality, rather than an equality. The ♦
rule, as we will show in the soundness and completeness theorems below (Theorem 2.3.1 and
Theorem 2.3.2), is remarkably capturing in one single rule all three axioms regarding the (♦)
modality

♦(x− y) = ♦(x)− ♦(y) 0 ≤ ♦(x t 0) 1 ≤ ♦(1)
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Modal rules:

G | ` Γ

G | ` Γ, 1n, 1
n 1, n ≥ m ` Γ, 1n

` ♦Γ, 1n
♦

Figure 2.9: Inference rules of MGA.

Remark 26. Note how the ♦ rule imposes strong constraints on the shape of its (single) premise
and conclusion. First, both the conclusion and the premise are required to be hypersequents
consisting of exactly one sequent. Furthermore, in the conclusion, all terms, except those of
the form 1 need to be of the form ♦A for some term A. These constraints determine the main
difficulties when trying to adapt the proofs of Section 2.1 for the system MGA, but they are
necessary. Indeed, for example, the following two alternative relaxed rules, while more natural
looking, are in fact not sound:

G | ` Γ, 1n

G | ` ♦Γ, 1n
♦1

` Γ, An

` Γ,♦An
♦2

Indeed, the hypersequent ` ♦(x u y),♦(x) t ♦(y) would be derivable (see below) while
A♦

l–groups 6` ♦(−x u −y) +
(
♦(x) t ♦(y)

)
≥ 0 or, equivalently, A♦

l–groups 6` ♦(x t y) ≤ ♦(x) t ♦(y)
(see Example 10).

` INIT

` x, x ID

` x, x | ` x u y, y W

` INIT

` y, y ID

` x, y, x, y ID

` y, x | ` x, y S

` INIT

` y, y ID

` y, x | ` y, y W

` y, x | ` x u y, y u

` x u y, x | ` x u y, y u

` x u y, x | ` ♦(x u y),♦(y)
♦1

` ♦(x u y),♦(x) | ` ♦(x u y),♦(y)
♦1

` ♦(x u y),♦(x) t ♦(y)
t

` INIT

` x, x ID

` x,♦(x)
♦2

` x,♦(x) | ` x u y,♦(y)
W

` INIT

` y, y ID

` x, y, x, y ID

` x, y, x,♦(y)
♦2

` x, y,♦(x),♦(y)
♦2

` y,♦(x) | ` x,♦(y)
S

` INIT

` y, y ID

` y,♦(y)
♦2

` y,♦(x) | ` y,♦(y)
W

` y,♦(x) | ` x u y,♦(y)
u

` x u y,♦(x) | ` x u y,♦(y)
u

` (x u y),♦(x) t ♦(y)
t

` ♦(x u y),♦(x) t ♦(y)
♦2

Moreover, if we replace the ♦ rule with the rule:

` Γ
` ♦Γ

♦3

the system is not complete as the axiom ♦1 ≤ 1 is no longer derivable.
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The notion of complexity of a hypersequent introduced for the system GA‖ needs to be
adapted to the particularities of the ♦ operator and the constant 1. The complexity of a hyper-
sequent is used to ensure that we can only apply a finite number of logical rules before reaching
an atomic hypersequent. To do so, we show that applying a logical rule acting on a maximal
sequent in the hypersequent decreases the complexity of the hypersequent.

However, if the ♦ operator is included in the computation of the complexity of the sequents,
it may not be possible to use a logical rule on a maximal sequent even if the hypersequent is not
atomic nor basic. Take for instance the hypersequent

` 1.x u y | ` 1.♦x, 1.♦y

The hypersequent is not atomic nor basic, but no logical rule can be applied on the maximal
sequent ` 1.♦x, 1.♦y, and using the u rule will not decrease the complexity of the hypersequent.

Therefore, the ♦ operator and the constant 1 must be kept out of the computation of the
complexity of a term, as shown in Definition 1.3.4, to ensure that the process of applying logical
rules until we reach a basic hypersequent always terminates. Finally, to make the application
of a ♦ rule also decrease the complexity of the hypersequent, the modal depth is added to the
complexity.

Definition 2.3.7 (Modal depth of a hypersequent). We define the modal depth of a sequent,
noted d♦(` Γ), has the maximal modal depth of a term in Γ, i.e., if Γ = A1, ..., An, d♦(` Γ) =
max
i∈[1..n]

d♦(Ai).

The modal depth of a hypersequent G, noted d♦(G), is then the maximal modal depth of the
sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then d♦(G) = max

i∈[1..n]
d♦(` Γi).

Definition 2.3.8 (Complexity). We define the complexity of a sequent ` Γ, noted c(` Γ), as
the sum of the operators which are not under a ♦ operator or the constant 1 used in the terms
of Γ (see Definition 1.3.4), i.e., if Γ = A1, ..., An, c(` Γ) =

∑n
i=1 c

♦(Ai).
The complexity of a hypersequent G, noted c(G), is then defined as the triplet c(G) = (a, b, c)

where

• a is the modal depth of the hypersequent G, and

• b is the maximum complexity of a sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then
b = max

i∈[1..n]
c(` Γi), and

• c is the number of sequents in G having a complexity of b, i.e., c = #{` Γi | c(` Γi) = b}.

We say that a sequent ` Γ of G is maximal if c(` Γ) = b.

Remark 27. As in Remark 14, the premises of one of the +,×,t,u and 0 logical rules acting on
a maximal sequent have a strictly lower complexity than the conclusion of the logical rule with
regard to the lexicographic order.

The ♦ rule has a very peculiar place in the system MGA: informally, a MGA derivation
can be seen as a sequence of GA‖ derivations separated by a ♦ rule as illustrated in the Figure
2.10 below.

Some results on the system MGA can then be proven by induction on the number of ♦ rules
appearing in a branch of the derivations, which we call the modal depth of the derivation: the
basic case is very similar to a GA‖ derivation – we just add the 1 rule and the proofs for the
system GA‖ can be easily adapted to deal with this additional rule.
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G1

GA‖ derivation

` Γ1

` ♦Γ1
♦

...

GA‖ derivation

...

Figure 2.10: A MGA derivation can be seen as a sequence of GA‖ derivations.

Definition 2.3.9 (Modal depth of a derivation). The modal depth of a derivation is the maximal
number of ♦ rules used in a branch of the derivation.

Remark 28. Note that the modal depth of a derivation is not necessarily the same as the modal
depth of the end hypersequent. Indeed, the derivation could introduce terms with ♦ operators
by using the CAN rule, and thus can make the modal depth of the derivation greater than the
modal depth of the end hypersequent.

2.3.1 Preliminary lemmas
As in Section 2.1, we start by proving a few technical lemmas that are used in this section.
Our first lemma states that the following variant of the ID rule (see Figure 2.1) where general

terms A are considered rather than just variables, is admissible in the proof system MGA.

G | ` Γ

G | ` Γ, An, A
n ID

Formally, we prove the admissibility of a slightly more general rule which can act on several
sequents of the hypersequent at the same time.

Lemma 61. For all terms A

if .MGA[` Γi]
k
i=1 then .MGA[` Γi, A

ni , A
ni

]ki=1

Proof. We prove the result by double induction on A and the derivation of .MGA[` Γi]
k
i=1.

• If A is a variable, we simply use the ID rule m-times.

• If A = 0, we use the 0 rule k-times.

• If A = B + C, we use the + rule 2k-times (for A + B and A + B) and conclude with the
induction hypothesis.

• For the case A = B u C or A = B t C, we first use the u rule 2n − 1 times – one time
on the conclusion, then again on the two premises, then on the four premises and so forth
until we used the u–rule for all sequents – and then the t rule n times on each premise and
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the W rule n times on each premise to remove the sequents with both B and C in them.
We can then conclude with the induction hypothesis.

. . .

[` Γi]
n
i=0

[` Γi, B
ni , B

ni
]ki=0 | [` Γi, C

ni , C
ni

]ni=k+1

IH2

[` Γi, B
ni , B

ni
]ki=0 | [` Γi, B

ni , C
ni

]ki=0 | [` Γi, C
ni , B

ni
]ni=k+1 | [` Γi, C

ni , C
ni

]ni=k+1

Wn

[` Γi, B
ni , (B t C)ni ]ki=0 | [` Γi, C

ni , (B t C)ni ]ni=k+1

tn

... . .
.

[` Γi, (B u C)ni , (B t C)ni ]ni=1

u

Note that the premises obtained after applying the u–rule can have a different shape than
the displayed premise in the derivation above, where B is chosen for the first k sequents and
C for the remaining ones. Indeed, the general shape of the premise can be any combination
of B and C appearing in the sequents.

• For the case A = ♦B, we can not use the ♦ rule because of the constraints on the hyper-
sequent in the rule. Instead we will now work on the derivation of .MGA[` Γi]

k
i=1 until we

reach a ♦ rule to conclude. We will only show the case of the ♦ rule and one other rule,
the remaining of the rules are similar.

– if the derivation of .MGA[` Γi]
k
i=1 finishes with

[` Γi]
k
i=3 | ` Γ1,Γ2

[` Γi]
k
i=3 | ` Γ1 | ` Γ2

S

then by induction hypothesis on the premise

.MGA[` Γi,♦B
ni ,♦B

ni
]ki=3 | ` Γ1,Γ2,♦B

n1+n2 ,♦B
n1+n2

and thus

[` Γi,♦Bni ,♦B
ni

]ki=3 | ` Γ1,Γ2,♦Bn1+n2 ,♦B
n1+n2

[` Γi,♦Bni ,♦B
ni

]ki=3 | ` Γ1,♦Bn1 ,♦B
n1 | ` Γ2,♦Bn2 ,♦B

n2
S

– if the derivation of .MGA[` Γi]
k
i=1 finishes with

` Γ1, 1
n

` ♦Γ1, 1
n ♦

then by induction hypothesis on B

.MGA ` Γ1, B
n1 , B

n1
, 1n

thus
` Γ1, B

n1 , B
n1
, 1n

` ♦Γ1,♦Bn1 , B
n1
, 1n

♦
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We can see in this lemma that it is difficult to reduce the complexity of a ♦ formula. For
any other operations, we simply can use the corresponding logical rule (or the invertibility of the
corresponding logical rule) but because of the constraints on the ♦ rule, we can not do the same
to reduce the ♦ formula and thus we need to work by induction on the derivation. As often when
proving a result by induction on the derivation, we prove a more general result.

The next result states that derivability in the MGA system is preserved by substitution of
terms for variables.

Lemma 62. For all hypersequents G and terms A, if .MGAG then .MGAG[A/x].

Proof. We prove the result by induction on the derivation of G. Most cases are quite straightfor-
ward, we simply use the induction hypothesis on the premises and then use the same rule. For
instance, if the derivation finishes with

G | ` Γ, Bn, Cn

G | ` Γ, (B + C)n
+

by induction hypothesis .MGAG[A/x] | ` Γ[A/x], B[A/x]n, C[A/x]n so

G[A/x] | ` Γ[A/x], B[A/x]n, C[A/x]n

G[A/x] | ` Γ[A/x], (B + C)[A/x]n
+

The only tricky case is when the ID rule is used on the variable x, where we conclude using
Lemma 61.

The next lemma states that the {0,+,t,u}-logical rules are invertible using the CAN rule,
meaning that if the conclusion is derivable, then the premises are also derivable. Unlike a stronger
result we will prove later in Section 2.3.4 where we prove the CAN–free version of this lemma,
the derivations of the premises may contain CAN rules and thus this result is not sufficient to
imply the CAN elimination theorem.

Lemma 63. The {0,+,t,u} logical rules are invertible.

Proof. We simply use the CAN rule to introduce the operators. We will show the two most
interesting cases, the other cases are trivial.

• The u rule: we assume that G | ` Γ, (A u B)n is derivable. The derivation of G | ` Γ, An

is then:

G | ` Γ, (A uB)n

` INIT

` An, An
Lemma 61

` An, An | ` An, Bn
W

` An, (A tB)n
t

G | ` An, (A tB)n
W∗

G | ` Γ, An, (A uB)n, (A tB)n
M

G | ` Γ, An
CAN

The derivation of G | ` Γ, Bn is similar.
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• The t rule: we assume that G | ` Γ, (AtB)n is derivable. The derivation of G | ` Γ, An |
` Γ, Bn is then:

G | ` Γ, (A tB)n

G | ` Γ, (A tB)n | ` Γ, Bn
W

` INIT

` An, An
Lemma 61

G | ` An, An | ` Γ, Bn
W∗ Π

G | ` An, Bn | ` Γ, Bn

G | ` An, (A uB)n | ` Γ, Bn
u

G | ` Γ, An, (A tB)n, (A uB)n | ` Γ, Bn
M

G | ` Γ, An | ` Γ, Bn
CAN

where Π is the following derivation:

G | ` Γ, (A tB)n

G | ` An, Bn | ` Γ, (A tB)n
W

` INIT

` Bn, Bn
Lemma 61

` An, Bn, Bn, An
Lemma 61

` An, Bn | ` Bn, An
S

` INIT

` Bn, Bn
Lemma 61

` An, Bn | ` Bn, Bn
W

` An, Bn | ` Bn, (A uB)n
u

G | ` An, Bn | ` Bn, (A uB)n
W∗

G | ` An, Bn | ` Γ, Bn, (A tB)n, (A uB)n
M

G | ` An, Bn | ` Γ, Bn
CAN

Remark 29. Note that the ♦ rule is also invertible, but because of the constraints of the ♦ rule,
we can not use it to reduce the complexity of a ♦ formula. Thus we do not use its invertibility
to prove the CAN elimination theorem.

The next lemmas state that CAN–free derivability in the MGA system is preserved by scalar
multiplication.

Lemma 64. Let n > 0 be a natural number and G a hypersequent. If .MGA\{CAN}G | ` Γn

then .MGA\{CAN}G | ` Γ.

Proof. We simply use the C and S rules :

G | ` Γn

G | ` Γ | ... | ` Γ
Sn−1

G | ` Γ
Cn−1

Lemma 65. Let n > 0 be a natural number and G a hypersequent. If .MGA\{CAN}G | ` Γ then
.MGA\{CAN}G | ` Γn.

Proof. We simply use the M rule n− 1 times.
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2.3.2 Soundness
We need to prove that if there exists a MGA derivation of a hypersequent G then LGM ≥ 0 is

derivable in equational logic (written A♦
l–groups ` LGM ≥ 0). This is done in a straightforward way

by showing that each deduction rule of the system MGA is sound. Notice that the soundness
of the rules already present in MGA is proved in the exact same way so we will only show the
soundness of the new rules.

Theorem 2.3.1 (Soundness of MGA). For all hypersequent G, if .MGAG then A♦
l–groups `

LGM ≥ 0.

Proof. By induction on the derivation of G. We only show the ♦ and 1 rules since the other are
similar to Theorem 2.1.1.

• For the rule
` Γ, 1n

` ♦Γ, 1n
♦

the hypothesis is L` Γ, 1nM ≥ 0 so

L` ♦Γ, 1nM ≥ L` ♦Γ,♦1nM since ♦1 ≤ 1

= ♦(L` Γ, 1nM) by linearity of ♦
≥ 0 by the hypothesis and the monotonicity of ♦.

• For the rule
G | ` Γ

G | ` Γ, 1n, 1
m 1, n ≥ m

the hypothesis is LG | ` ΓM ≥ 0 so

LG | ` Γ, 1n, 1
mM ≥ LG | ` ΓM since n ≥ m and 0 ≤ 1

≥ 0

2.3.3 Completeness
In order to prove the completeness of the system MGA, i.e. that if A♦

l–groups ` LGM ≥ 0 then
.MGAG, we first prove an equivalent result (Lemma 66 below) stating that if A♦

l–groups ` A = B

then the hypersequents ` A,B and ` B,A are both derivable.
From Lemma 66 one indeed obtains Theorem 2.3.2 as a corollary.

Theorem 2.3.2 (Completeness of MGA). For all hypersequent G, if A♦
l–groups ` LGM ≥ 0 then

.MGAG.

Proof. Recall that A♦
l–groups ` LGM ≥ 0 is a shorthand for A♦

l–groups ` 0 = LGM u 0. Hence, from
the hypothesis A♦

l–groups ` LGM ≥ 0 we can deduce, by using Lemma 66, that .MGA ` 0 u LGM, 0.
From this we can show that .MGAG by invoking Lemma 63. Indeed, if G is ` Γ1 | ... | ` Γn

then LGM = L` Γ1M t ... t L` ΓnM and

1. by using the invertibility of the 0 rule, ` (0 u (L` Γ1M t ... t L` ΓnM)) is derivable,
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2. by using the invertibility of the u rule, ` (L` Γ1M t ... t L` ΓnM) is derivable,

3. by using the invertibility of the t rule n− 1 times, ` L` Γ1M | ... | ` L` ΓnM is derivable,

4. and finally, by using the invertibility of the + rule, ` Γ1 | ... | ` Γn is derivable.

Lemma 66. If A♦
l–groups ` A = B then ` A,B and ` B,A are derivable.

Proof. We prove this result by induction on the derivation in equational logic (see Definition
1.1.2) of A♦

l–groups ` A = B. Most cases are the same as in Lemma 30, we will only show some
of the interesting axioms.

• If the derivation finishes with

A♦
l–groups ` ♦1 u 1 = ♦1

ax

then
` INIT

` 1, 1
1

` ♦1,♦1
♦

` INIT

` 1, 1
1

` 1,♦1
♦

` ♦1 u 1,♦1
u

and
` INIT

` 1, 1
1

` ♦1,♦1
♦

` ♦1, 1 | ` ♦1,♦1
W

` ♦1, 1 t ♦1
t

• If the derivation finishes with

A♦
l–groups ` 0 u ♦(0 t x) = 0

ax

then

` INIT

` 0
0

` INIT

` 0
0

` 0 | ` x W

` 0 t x t

` ♦(0 t x)
♦

` 0 u ♦(0 t x)
u

` 0 u ♦(0 t x), 0
0

and
` INIT

` 0
0

` 0 | ` ♦(0 u x)
W

` 0 t ♦(0 u x)
t

` 0, 0 t ♦(0 u x)
0
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2.3.4 CAN–free invertibility
In this section, we prove that the {0,+,t,u}–logical rules are CAN-free invertible, i.e., that

if the conclusion of a logical rule has a CAN-free derivation, then so do the premises. As for the
system GA‖, it allows us to reduce the complexity of the formulas in an hypersequent in the
proof of the CAN elimination theorem, and thus it is important that we do not add any CAN
rule in the proofs of invertibility. For this reason, the CAN–free invertibility result is stronger
than Lemma 63 of Section 2.3.1.

Like in the previous Section 2.1.4, we will prove the CAN-free invertibility of more general
rules as those rules are more convenient for the induction process.

Logical rules:

[` Γi]
n
i=1

[` Γi, 0
ni ]

n
i=1

0
[` Γi, A

ni , Bni ]
n
i=1

[` Γi, (A+B)ni ]
n
i=1

+

[` Γi, A
ni | ` Γi, B

ni ]
n
i=1

[` Γi, (A tB)ni ]
n
i=1

t
[` Γi, A

ni ]
n
i=1 [` Γi, B

ni ]
n
i=1

[` Γi, (A uB)ni ]
n
i=1

u

Figure 2.11: Generalised logical rules

The proof steps dealing with the rules already present inGA‖ are the same as in Section 2.1.4.
In what follows we just show the details of the proof steps associated with the new cases associated
with the ♦–rule and 1–rule of MGA.

We conceptually divide the logical rules in three categories:

Type 1 The rule with only one premise but that adds one sequent to the hypersequent: the t
rule.

Type 2 The rules with only one premise and that do not change the number of sequents: the
0,+ rules.

Type 3 The rule with two premises: the u rule.

Because of the similarities of the rules in each of these categories, we just prove the CAN–free
invertibility of one rule in each category by means of a sequence of lemmas.

Lemma 67 (Type 1). If [` Γi, (A t B)ni ]ki=1 has a CAN-free derivation then [` Γi, A
ni | `

Γi, B
ni ]ki=1 has a CAN–free derivation.

Proof. By induction on the derivation of [` Γi, (A t B)ni ]ki=1. We only show the cases of the ♦
rule and the 1 rule.

• If the derivation finishes with
` Γ1, 1

n

` ♦Γ1, 1
n ♦

then k = 1 and n1 = 0. Thus we want to derive ` ♦Γ1, 1
n | ` ♦Γ1, 1

n. The derivation is

` Γ1, 1
n

` ♦Γ1, 1
n ♦

` ♦Γ1, 1
n | ` ♦Γ1, 1

n C
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• If the derivation finishes with

[` Γi, (A tB)ni ]ki=2 | ` Γ1, (A tB)n1

[` Γi, (A tB)ni ]ki=2 | ` Γ1, (A tB)n1 , 1n, 1m
1, n ≥ m

then by induction hypothesis

.MGA[` Γi, A
ni | ` Γi, B

ni ]ki=2 | ` Γ1, A
n1 | ` Γ1, B

n1

and thus the derivation is

[` Γi, A
ni | ` Γi, B

ni ]ki=2 | ` Γ1, A
n1 | ` Γ1, B

n1

[` Γi, A
ni | ` Γi, B

ni ]ki=2 | ` Γ1, A
n1 , 1n, 1m | ` Γ1, B

n1
1, n ≥ m

[` Γi, A
ni | ` Γi, B

ni ]ki=2 | ` Γ1, A
n1 , 1n, 1m | ` Γ1, B

n1 , 1n, 1m
1, n ≥ m

Lemma 68 (Type 2). If [` Γi, (A+B)ni ]ki=1 has a CAN–free derivation then [` Γi, A
ni , Bni ]ki=1

has a CAN–free derivation.

Proof. By induction on the derivation of [` Γi, (A+ B)ni ]ki=1. We only show the cases of the ♦
rule and the 1 rule.

• If the derivation finishes with
` Γ1, 1

n

` ♦Γ1, 1
n ♦

then k = 1 and n1 = 0. Thus ` ♦Γ1, 1
n, An1 , Bn1 = ` ♦Γ1, 1

n which is derivable.

• If the derivation finishes with

[` Γi, (A+B)ni ]ki=2 | ` Γ1, (A+B)n1

[` Γi, (A+B)ni ]ki=2 | ` Γ1, (A+B)n1 , 1n, 1m
1, n ≥ m

then by induction hypothesis

.MGA[` Γi, A
ni , Bni ]ki=2 | ` Γ1, A

n1 , Bn1

and thus the derivation is

[` Γi, A
ni , Bni ]ki=2 | ` Γ1, A

n1 , Bn1

[` Γi, A
ni , Bni ]ki=2 | ` Γ1, A

n1 , Bn1 , 1n, 1m
1, n ≥ m

Lemma 69 (Type 3). If [` Γi, (AuB)ni ]ni=1 has a CAN–free derivation then [` Γi, A
ni ]ni=1 and

[` Γi, B
ni ]ni=1 have a CAN–free derivation.

Proof. By induction on the derivation of [` Γi, (A u B)ni ]ki=1. We only show the cases of the ♦
rule and the 1 rule, and that [` Γi, A

ni ]ki=1 is derivable.

• If the derivation finishes with
` Γ1, 1

n

` ♦Γ1, 1
n ♦

then k = 1 and n1 = 0. Thus ` ♦Γ1, 1
n, An1 = ` ♦Γ1, 1

n which is derivable.
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• If the derivation finishes with

[` Γi, (A uB)ni ]ki=2 | ` Γ1, (A uB)n1

[` Γi, (A uB)ni ]ki=2 | ` Γ1, (A uB)n1 , 1n, 1m
1, n ≥ m

then by induction hypothesis

.MGA[` Γi, A
ni ]ki=2 | ` Γ1, A

n1

and thus the derivation is

[` Γi, A
ni ]ki=2 | ` Γ1, A

n1

[` Γi, A
ni ]ki=2 | ` Γ1, A

n1 , 1n, 1m
1, n ≥ m

2.3.5 M–elimination
In this section, we will show the M elimination theorem. Recall that the M elimination

theorem states

if a hypersequent G is derivable, then it has a M–free derivation.

However, since this result will be used in the proof of the CAN elimination theorem, we have
to ensure that the M elimination theorem does not add any instance of the CAN rule. Thus we
will show the slightly different result

if a hypersequent G is CAN–free derivable, then it has a CAN–free M–free derivation.

Following the same pattern of Section 2.1.5, we need to show that for each hypersequent G
and sequents Γ and ∆, if there exist CAN–free and M–free derivations d1 of G | ` Γ and d2 of
G | ` ∆, then there also exists a CAN–free and M–free derivation of G | ` Γ,∆.

The general idea presented in Section 2.1.5 is to combine the derivations d1 and d2 in a
sequential way, first constructing a prederivation d′1 of G | G | ` Γ,∆ (using d1) whose leaves are
either axioms or hypersequents of the form G | ` ∆n, and then by completing this prederivation
into a derivation (using d2). Finally, G | G | ` Γ,∆ can be easily turned into a derivation of
G | ` Γ,∆ as desired.

However, this technique cannot be directly applied in the context of the system MGA due to
the constraints imposed on the shape of the hypersequent by the ♦ rule. Indeed an application
of the ♦ rule in d1 acting on some hypersequent of the form

` ♦Γ′, 1m

cannot turned into an application of the ♦ rule on

G | ` ∆n,♦Γ′, 1m

because this hypersequent cannot be the conclusion of a ♦ rule as it does not satisfy the con-
straints. To deal with the ♦ rule, we will expand the construction of Section 2.1.5 by induction
on the modal depth of the derivation d1.

Indeed, when constructing the prederivation d′1 inductively from d1, we stop at the appli-
cations of the ♦–rule. Hence, the inductive procedure takes the derivation d1 and produces a
CAN–free and M–free prederivation d′1 of

G | G | ` Γ,∆

where all the leaves in the prederivation are either:
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1. terminated, or

2. non–terminated and having the shape

G | ` ∆n

which can then be completed using the derivation d2 in the exact same way explained in
Section 2.1.5, or

3. non–terminated and having the shape:

G | ` ♦Γ′,∆n, 1m

for some sequent Γ′ and natural numbers n and m. For each of these leaves there is a
corresponding derivation of

` Γ′, 1m (2.2)

To obtain derivations of the leaves of d′1 of the third type, and thus complete the derivation, we
proceed as follows. First, we use the derivation d2 to construct a CAN–free and M–free derivation
d2,n

G | ∆n

for each natural number n in the leaves. We then modify each derivation d2,n into a prederivation
d′2 of

G | ` ♦Γ′,∆n, 1m

using the exact same inductive procedure (which stops when reaching applications of ♦ terms)
introduced above for producing d′1 from d1. Note that in this case, the leaves of the third kind
in d′2 are of the form:

` (♦Γ′, 1m)n
′
,♦∆′, 1m

′

and have associated derivations of
` ∆′, 1m

′
(2.3)

Therefore, we can legitimately apply the ♦ rule (Lemma 70 below ensures that the proviso of
the rule is respected) and reduce these leaves to leaves of the form

` (Γ′, 1m)n
′
,∆′, 1m

′

which, importantly, have a lower modal depth compared to the conclusion G | ` Γ of the
derivation d1 we started with above.

In order the produce a derivation for the leaves ` (Γ′, 1m)n
′
,∆′, 1m

′
, and thus conclude the

completion of d′1 into a full derivation, it is sufficient to re–apply the whole process using the
derivations of Equation 2.2 and Equation 2.3 above. This process is well founded and eventually
terminates because the modal depth is decreasing. We summarise the different steps in the
Figure 2.12 below.

For instance, removing the M rule in the following derivation

` INIT

` x, x ID

` ♦x,♦x
♦

` ♦x | ` ♦x
S

` ♦x t ♦x
t

` INIT

` y, y ID

` ♦y,♦y
♦

` ♦y | ` ♦y
S

` ♦y t ♦y
t

` ♦x t ♦x,♦y t ♦y
M
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G1 |` Γ

d1

` Γ1

` ♦Γ1
♦

...

G2 |` ∆

d2

` ∆1

` ♦∆1
♦

...

G1 | G2 |` Γ,∆

G2 |` ♦Γ1,∆
n1 ...

d′1

G2 |` ♦Γ1,∆
n1

` ∆n1
1 ,Γ

n′1
1

` ♦∆n1
1 ,♦Γ

n′1
1

♦ ...

d′2

Figure 2.12: Sequentially composing d1 and d2 in the M elimination proof.

gives the following M free derivation

` INIT

` y2, y2
ID| d1 is over, we finish d2

` x2, x2, y2, y2
ID| we start again with d1

` (♦x)2, (♦x)2, (♦y)2, (♦y)2
♦| d2 reached a ♦ rule so the ♦ rule is now valid

` ♦x,♦x, (♦y)2 | ` ♦x,♦x, (♦y)2
S

` ♦x,♦x, (♦y t ♦y)2
t| we reached a ♦ rule so we switch to d2

` ♦x,♦y t ♦y | ` ♦x,♦y t ♦y
S

` ♦x t ♦x,♦y t ♦y
t| start with d1

We now proceed with the technical statements.

Lemma 70. Let d1 be a CAN–free and M–free derivation of G | ` Γ and let H be a hypersequent
and ∆ be a sequent. Then there exists a prederivation of

G | H | ` Γ,∆.

where all non–terminated leaves are either of the form H | ` ∆n or of the form H | ` ♦Γ′,∆n, 1m

for some sequent Γ′ and natural numbers n and m such that ` Γ′, 1m has a derivation d′1 with a
strictly lower modal depth than d1.

Proof. This is an instance of the slightly more general statement of Lemma 73 below where:

• [` Γi]
k−1
i=1 = G and Γk = Γ.

• ni = 0 for 1 ≤ i < k and nk = 1.

Remark 30. Following Remark 31, if the derivation of G | ` Γ does not use any ♦ rule then all
unfinished leaves are of the form H | ` ∆n.
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Lemma 71. Let d2 be CAN–free and M–free derivation of H | ` ∆. Then, for any natural
number n, there exists a CAN–free and M–free derivation of

H | ` ∆n

with a modal depth lower or equal to d2.

Proof. This is an instance of the slightly more general statement of Lemma 74 below where:

• [` ∆i]
k−1
i=1 = H and ∆k = ∆.

• ni = 1 for 1 ≤ i < n and nk = n.

We now show how to remove one instance of the M rule and then the M-elimination theorem.

Lemma 72. If G | ` Γ and H | ` ∆ have CAN–free M–free derivations, then so does G | H |
` Γ,∆.

Proof. We show the lemma by induction on the modal depth of the derivation d of G | ` Γ.
If the modal depth of d is 0, then we proceed as in Theorem 2.1.3, i.e., we use Lemma 70 to

have a prederivation of G | H | ` ∆,Γ where all leaves are of the form H | ` ∆n, and we finish
the prederivation by using Lemma 71.

Otherwise d uses some ♦ rule. We do the following:

• we use Lemma 70 to have a prederivation of G | H | ` Γ,∆ where all non–terminated
leaves are either of the form H | ` ∆n or of the form H | ` ♦Γ′,∆n, 1m for some sequent Γ′

and natural numbers n and m such that ` Γ′, 1m has a derivation d′1 with a strictly lower
modal depth than d1.

• We show that all leaves of the form H | ` ∆n are derivable using Lemma 71.

• We conclude by showing that all leaves of the form H | ` ♦Γ′,∆n, 1m are derivable. Let’s
show how to derive them.

– We show that H | ` ∆n are derivable using Lemma 71.

– Then we build a prederivation of H | ` ♦Γ′,∆n, 1m using Lemma 70 where all non-
terminated leaves are either of the form ` (♦Γ′, 1m)n

′
or of the form ` (♦Γ′, 1m)n

′
,♦∆′, 1m

′

such that ` ∆′, 1m
′
has a CAN-free M-free derivation.

– The leaves of the form ` (♦Γ′, 1m)n
′
can be terminated using the ♦ rule and Lemma 71.

– For the leaves of the form ` (♦Γ′, 1m)n
′
,♦∆′, 1m

′
, we will show that ` (Γ′, 1m)n

′
,∆′, 1m

′

has a CAN-free M-free derivation and we can conclude using the ♦ rule. Recall that
` Γ′, 1m has a CAN-free M-free derivation with strictly lower modal depth than d1.
We use Lemma 71 to have a derivation of ` (Γ′, 1m)n

′
with strictly lower depth than

d1.

– We can then use the induction hypothesis since the derivation of ` (Γ′, 1m)n
′
has a

strictly lower depth than d1, thus building a derivation of ` (Γ′, 1m)n
′
,∆′, 1m

′
) to

conclude the proof.

Theorem 2.3.3 (M elimination). If G is CAN-free derivable, then G is CAN-free M-free deriv-
able.
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Proof. We prove the result by induction on G. The only interesting case if the M rule, i.e., if the
derivation finishes with

G | ` Γ G | ` ∆

G | ` Γ,∆
M

then by induction hypothesis G | ` Γ and G | ` ∆ have CAN-free M-free derivation.
By using Lemma 72, we have a CAN-free M-free derivation of G | G | ` Γ,∆. The derivation

is then
G | G | ` Γ,∆

G | ` Γ,∆
C∗

We now prove the technical version of Lemmas 70 and 71.

Lemma 73. Let d1 be a CAN–free and M–free derivation of [` Γi]
k
i=1 and let H be a hypersequent

and ∆ be a sequent. Then for every sequence of natural numbers ni, there exists a prederivation
of

H | [` Γi,∆
ni ]ki=1

where all non–terminated leaves are either of the form H | ` ∆n or of the form H | ` ♦Γ′,∆n, 1m

for some sequent Γ′ and natural numbers n and m such that ` Γ′, 1m has a derivation d′1 with a
strictly lower modal depth than d1.

Proof. We prove the result by induction on d1. We will only show the ♦ and the 1 rules, since
all other cases are done in the same way as in Lemma 37.

• if d1 finishes with:
[` Γi]

k
i=2 | ` Γ1

[` Γi]
k
i=2 | ` Γ1, 1

n′ , 1
m′

1, n′ ≥ m′

then by induction hypothesis, there is a prederivation of G | [` Γi,∆
ni ]ki=2 | ` Γ1,∆

n1

where all non–terminated leaves are either of the form H | ` ∆n or of the form H | `
♦Γ′,∆n, 1m for some sequent Γ′ and natural numbers n and m such that ` Γ′, 1m has a
derivation d′1 with a strictly lower modal depth than d1. We continue the prederivation
with

G | [` Γi,∆
ni ]ni=2 | ` Γ1,∆

n1

G | [` Γi,∆
ni ]ki=2 | ` Γ1,∆

n1 , 1n
′
, 1
m′

1, n′ ≥ m′

• If d1 finishes with:
` Γ1, 1

m

` ♦Γ1, 1
m ♦

then the prederivation is simply the leaf H | ` ♦Γ1,∆
n, 1m.

Remark 31. Notice that if the derivation [` Γi]
k
i=1 does not use any ♦ rule, then all leaves of the

prederivation of H | [` Γi,∆
ni ]ki=1 are of the form H | ∆n.

Lemma 74. If d2 is a CAN–free M–free derivation of [` ∆i]
k
i=1 then for all ni, there is a

CAN–free M–free derivation of [` ∆ni
i ]

k
i=1 with a modal depth lower or equal than d2.

Proof. We will only show the ♦ and 1 rules, the other cases being similar to Lemma 38 – and so
do not introduce any new ♦ rule.
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• if d2 finishes with:
[` ∆i]

k
i=2 | ` ∆1

[` ∆i]
k
i=2 | ` ∆1, 1

n, 1
m 1, n ≥ m

then by induction hypothesis, there is a CAN–free M–free derivation of [` ∆ni
i ]ki=2 | ` ∆n1

1

with a modal depth lower or equal than d2. We continue the derivation with

[` ∆ni
i ]ki=2 | ` ∆n1

1

[` ∆ni
i ]ki=2 | ` ∆n1

1 , 1nn1 , 1
mn1

1, n1n ≥ n1m

which does not increase the modal depth of the derivation.

• If d2 finishes with:
` ∆1, 1

n

` ♦∆1, 1
n ♦

by induction hypothesis, there is a derivation of ` ∆n1
1 , 1nn1 with a modal depth strictly

less than d2. We continue the derivation with

` ∆n1
1 , 1nn1

` ♦∆n1
1 , 1nn1

♦

which gives a derivation with a modal depth less or equal than d2.

2.3.6 CAN–elimination
Recall that the CAN rule has the following form:

G | ` Γ, An, A
n

G | ` Γ
CAN

As in Section 2.1.6, we prove Theorem 2.1.4 by showing that if the hypersequent G | `
Γ, An, A

n
has a M–free CAN–free derivation, then so does the hypersequent G | ` Γ.

The CAN elimination theorem follows the same pattern as in the system GA‖: we reduce the
complexity of the formula introduced by the CAN rule until we reach an atom (or a 1 formula).
However, because of the constraint of ♦ rule, we can not invoke its invertibility to reduce the
complexity of the a ♦ formula since the hypersequent G | ` Γ, ~r.♦A,~s.♦A is, in general, not the
conclusion of an application of the ♦ rule.

To circumvent this issue, we prove the slightly more general Lemma 77 by double induction
on both the term A and the derivation of G | ` Γ, An, A

n
.

We first prove the two basic cases where A = x (or equivalently A = x) in Lemma 75 and
A = 1 (or equivalently A = 1) in Lemma 76, and the general case in Lemma 77.

Lemma 75. If there is a M–free CAN–free derivation of G | ` Γ, xn, xn then there exists a
M–free CAN–free derivation of G | ` Γ.

Proof. The statement follows as a special case of Lemma 78 below, a stronger version of Lemma 75
that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, xn, xn,
where:

• [` Γi]
k−1
i=1 = G and Γk = Γ.

• ni = mi = n′i = m′i = 0 for 1 ≤ i < k.
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• nk = mk = n and n′k = m′k = 0.

Lemma 76. If there is a M-free CAN–free derivation of G | ` Γ, 1n, 1
n then there exists a M–free

CAN–free derivation of G | ` Γ.

Proof. The statement follows as a special case of Lemma 79 below, a stronger version of Lemma 76
that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, 1n, 1

n,
where:

• [` Γi]
k−1
i=1 = G and Γk = Γ.

• ni = mi = n′i = m′i = 0 for 1 ≤ i < k.

• nk = mk = n and n′k = m′k = 0.

We are now ready to prove the general case.

Lemma 77. For all terms A and numbers k > 0 and for all sequents Γi and natural numbers
ni,

if [` Γi, A
ni , A

ni
]ki=1 has a M–free CAN–free derivation, then so does [` Γi]

k
i=1.

Proof. For the basic cases A = x, A = x, A = 1 and A = 1, we use Lemmas 75 and 76. For
complex terms A which are not ♦ terms, we proceed by invoking the CAN–free invertibility of
the logical rules proven in Section 2.3.4 as follows:

• If A = 0, we can conclude with the CAN–free invertibility of the rule 0.

• If A = B+C, since the + rule is CAN–free invertible,
[
` Γi, B

ni , Cni , B
ni
, C

ni
]
has a CAN–

free, M–free derivation. Therefore we can have a CAN–free derivation of the hypersequent
[` Γi]

k
i=1 by invoking the induction hypothesis twice, since the complexity of B and C is

lower than that of B + C.

• If A = B t C, since the t rule is CAN–free invertible,[
` Γi, B

ni , (B u C)ni
]
|
[
` Γi, C

ni , (B u C)ni
]

has a CAN–free, M–free derivation. Then since the u is CAN–free invertible,[
` Γi, B

ni , B
ni
]
|
[
` Γi, C

ni , C
ni
]

has a CAN–free, M–free derivation. Therefore we can obtain a CAN–free derivation of the
hypersequent [` Γi]

k
i=1 by invoking the induction hypothesis twice on the simpler terms B

and C.

• If A = B u C, we proceed in a similar way as for the case A = B t C.

• Finally, if A = ♦B, we distinguish two cases:

1. the derivation ends with an application of the ♦ rule which simplifies A = ♦B to B.
In this case we can simply conclude by invoking the induction hypothesis on B and
the ♦ rule.
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2. The derivation ends with some other rule (recall that no CAN rules and no M rules
appear in the derivation). In this case we decrease the complexity of the derivation,
keeping ♦B as the CAN term, and then invoke the induction hypothesis on the deriva-
tion having reduced complexity. This proof step is rather long to prove, as it requires
analysing all possible cases. We just illustrate the two cases when the derivation ends
with a logical rule (+) and a structural rule (C) to illustrate the general method.
– if the derivation finishes with

[` Γi,♦Bni ,♦B
ni

]ki=2 | ` Γ1,♦Bn1 ,♦B
n1
, Cn, Dn

[` Γi,♦Bni ,♦B
ni

]ki=2 | ` Γ1,♦Bn1 ,♦B
n1
, (C +D)n

+

by induction hypothesis, there is a CAN–free M–free derivation of

[` Γi]
k
i=2 | ` Γ1, C

n, Dn

We continue the derivation with

[` Γi]
k
i=2 | ` Γ1, C

n, Dn

[` Γi]
k
i=2 | ` Γ1, (C +D)n

+

– if the derivation finishes with

[` Γi,♦Bni ,♦B
ni

]ki=2 | ` Γ1,♦Bn1 ,♦B
n1 | ` Γ1,♦Bn1 ,♦B

n1

[` Γi,♦Bni ,♦B
ni

]ki=2 | ` Γ1,♦Bn1 ,♦B
n1

C

by induction hypothesis, there is a CAN–free M–free derivation of

[` Γi]
k
i=2 | ` Γ1 | ` Γ1

We continue the derivation with

[` Γi]
k
i=2 | ` Γ1 | ` Γ1

[` Γi]
k
i=2 | ` Γ1

C

Remark 32. Note it is important for the derivation to be M-free in the proof of Lemma 77 above.
Indeed, when dealing with the case A = ♦B, the M rule would be critically difficult to deal with,
as this rule breaks the symmetry between the ♦B and ♦B of the CAN rule. For instance, we do
not know how to deal with the following instance of the M rule:

G | ` Γ1,♦B,♦B,♦B G | ` Γ2,♦B

G | ` Γ1,Γ2,♦B,♦B,♦B,♦B,
M

G | ` Γ1,Γ2
CAN

since we cannot use the induction hypothesis on the two premises. Thus, even though the M
elimination theorem is not used to prove the CAN elimination theorem in the system without
the ♦ operator like the system GA‖, it becomes crucial in its presence.

We now have all necessary tools to prove the CAN elimination theorem.

Theorem 2.3.4 (CAN elimination). For all hypersequents G, if .MGAG then .MGA\{CAN}G.

Proof. We want to prove that if G has a derivation, then G has a CAN–free derivation. We prove
this result by induction on the derivation of G:
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• If the derivation finishes with an application of a rule that is not the CAN–rule, then by
induction, the premises have CAN–free derivations and we can conclude by using the exact
same rule to obtain a CAN–free derivation of G.

• If the derivation finishes with
G | ` Γ, An, A

n

G | ` Γ
CAN

then by induction G | ` Γ, An, A
n

has a CAN–free derivation. By invoking the M–
elimination Theorem 2.3.3, G | ` Γ, An, A

n
has a CAN–free M–free derivation and we

can conclude by using Lemma 77.

Finally, we prove Lemma 78 and Lemma 79, the stronger versions of Lemma 75 and Lemma 76.

Lemma 78. If there is a CAN–free and M–free derivation of the hypersequent

[` Γi, x
ni , xmi ]

k
i=1

then for all n′i,m′i such that ni −mi = n′i −m′i for all i ∈ [1..k], there is a CAN–free, M–free
derivation of [

` Γi, x
n′i , xm

′
i

]k
i=1

Proof. The proof is done by induction on the derivation and is similar to the proof of Lemma 41.

Lemma 79. If there is a CAN–free and M–free derivation of the hypersequent[
` Γi, 1

ni , 1
mi
]k
i=1

then for all n′i,m′i such that ni −mi ≤ n′i −m′i for all i ∈ [1..k], there is a CAN–free, M–free
derivation of [

` Γi, 1
n′i , 1

m′i
]k
i=1

Proof. By induction on the derivation of
[
` Γi, 1

ni , 1
mi
]k
i=1

. Most cases are trivial, we just
describe the most interesting one.

• If the derivation finishes with:[
` Γi, 1

ni , 1
mi
]
i≥2 | ` Γ1, 1

nc , 1
mc[

` Γi, 1
ni , 1

mi
]
i≥2 | ` Γ1, 1

na+nb+nc , 1
ma+mb+mc

1

with n1 = nb + nc, m1 = mb +mc and na + nb = ma +mb.
We want to show that

.MGA\{CAN}

[
` Γi, 1

n′i , 1
m′i
]
i≥2
| ` Γ1, 1

na , 1n
′
1 , 1

ma , 1
m′1

We will now prove that nc −mc ≤ n′1 + na − (m′1 + ma) to be able to conclude with the
induction hypothesis.

nc −mc = (n1 − nb)− (m1 −mb)

= (n1 −m1) + (mb − nb)
≤ (n′1 −m′1) + (na −ma)

= (n′1 + na)− (m′1 +ma)
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so by induction hypothesis, we have

.MGA\{CAN}

[
` Γi, 1

n′i , 1
m′i
]
i≥2
| ` Γ1, 1

na , 1n
′
1 , 1

ma , 1
m′1

which is the result we want.

2.3.7 Algebraic property
We will now adapt the algebraic property of the systemGA‖ (see Section 2.1.7) to the system

MGA. However, instead of characterising the derivability of atomic hypersequents, we will give
an algebraic characterisation for basic hypersequents, i.e., hypersequents with only atoms, 1, 1
and ♦ terms.

The main difference with the algebraic property of the systemGA‖ is that instead of reducing
the question of derivability to just real numbers, we also reduce it to the derivability of a simpler
hypersequent, where we remove the outer applications of the ♦ operator.

Theorem 2.3.5. For all basic hypersequents G, built using the variables and negated variables
x1, x1, . . . , xk, xk, of the form

` Γ1,♦∆1, 1
c1 , 1

d1 | . . . | ` Γm,♦∆m, 1
cm , 1

dm

where Γi = x
ai,1
1 , ..., x

ai,k
k , x1

bi,1 , ..., xk
bi,k , the following are equivalent:

1. G has a derivation.

2. there exist numbers t1, ..., tm ∈ N, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ti 6= 0, i.e., the numbers are not all 0’s, and
• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

ai,j) =

m∑
i=1

ti(
∑

bi,j)

i.e., the scaled (by the numbers t1 . . . tm) sum of the number of the variable xj is equal
to the scaled sum of the number of the covariable xj.

•
∑m
i=1 ti(

∑
ci) ≥

∑m
i=1 ti(

∑
di), i.e., there are more 1 than 1, and

• the hypersequent
` ∆t1

1 , ...,∆
tm
m , 1n

where n =
∑m
i=1 ti(

∑
ci) −

∑m
i=1 ti(

∑
di) has a derivation, i.e., the hypersequent

obtained after cancelling every atoms and using the ♦ rule is derivable.

Proof. We prove (1)⇒ (2) by induction on the derivation of G. By using Theorem 2.3.4, we can
assume that the derivation of G is CAN–free. We will only deal with the case of ♦ rule since
every other case is similar to the proof of Theorem 2.1.5. If the derivation finishes with

` ∆1, 1
n1

` ♦∆1, 1
n1

♦

then t1 = 1 satisfies the property.

The other way ((2) ⇒ (1)) is also very similar to Theorem 2.1.5, only finishing with the ♦
rule. If there exist numbers t1, ..., tm ∈ N, one for each sequent in G, such that:
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• there exists i ∈ [1..m] such that ti 6= 0, i.e., the numbers are not all 0’s, and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

ai,j) =

m∑
i=1

ti(
∑

bi,j)

•
∑m
i=1 ti(

∑
ci) ≥

∑m
i=1 ti(

∑
di), and

• the hypersequent
` ∆t1

1 , ...,∆
tm
m , 1n

where n =
∑m
i=1 ti(

∑
ci)−

∑m
i=1 ti(

∑
di) has a derivation

then we can use the W rule to remove the sequents corresponding to the numbers ti = 0, and
use the C and S rule on the ith sequent to multiply it by ti. If we assume that there is a natural
number l such that ti = 0 for all i > l and ti 6= 0 for all i ≤ l, then the CAN–free derivation is:

` ∆t1
1 , . . . ,∆

tl
l , 1

n

` ♦∆t1
1 , . . . ,♦∆tl

l , 1
n

♦

` ♦∆t1
1 , 1

t1c1 , 1
t1d1 , . . . ,♦∆tl

l , 1
tlcl , 1

tldl
1

` Γt11 ,♦∆t1
1 , 1

t1c1 , 1
t1d1 , . . . ,Γtll ,♦∆tl

l , 1
tlcl , 1

tldl
ID∗

` Γt11 ,♦∆t1
1 , 1

t1c1 , 1
t1d1 | . . . | ` Γtll ,♦∆tl

l , 1
tlcl , 1

tldl
S∗

` Γ1,♦∆1, 1
c1 , 1

d1 | . . . | ` Γl,♦∆l, 1
cl , 1

dl
C∗ − S∗

` Γ1,♦∆1, 1
c1 , 1

d1 | . . . | ` Γm,♦∆m, 1
cm , 1

dm
W∗

where n =
∑m
i=1 ti(

∑
ci) −

∑m
i=1 ti(

∑
di) and since ` ∆t1

1 , . . . ,∆
tl
l , 1

n is derivable, we can
complete the derivation.

Remark 33. Notice that if the hypersequent is atomic, the algebraic property of MGA is exactly
the same as for GA‖.

2.4 Hypersequent calculus HMR
In this section, we will merge both the system HR, dealing with scalar and Riesz terms, and

the system MGA, regarding the ♦ operator and the 1 constant. Since the two modifications are
quite orthogonal, merging the two systems goes without any additional difficulty. Most of the
difficulties were already seen and resolved in the two previous sections.

As in the previous sections, we start by recalling the definitions and conventions used in the
system HMR.

Definition 2.4.1. A weighted term is a formal expression r.A where r ∈ R>0 and A is a term
in NNF.

Recall that the scalars appearing in these terms in NNF are all strictly positive and are ranged
over by the letters r, s, t ∈ R>0. From now on, the term scalar should always be understood as
strictly positive scalar.

We remind the readers of the following notations used in the system HR:
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• Given a sequence ~r = (r1, . . . rn) of scalars and a term A, we denote with ~r.A the multiset
[r1.A, . . . , rn.A]. When ~r is empty, the multiset ~r.A is also empty.

• Given a multiset Γ = [r1.A1, . . . , rn.An] and a scalar s > 0, we denote with s.Γ the multiset
[s.r1.A1, . . . , s.rn.An].

• Given a sequence ~s = (s1, . . . sn) of scalars and a multiset Γ, we denote with ~s.Γ the multiset
s1.Γ, . . . , sn.Γ.

• Given two sequences ~r = (r1, . . . rn) and ~s = (s1, . . . sm) of scalars, we denote ~r;~s the
concatenation of the two sequences, i.e. the sequence (r1, . . . rn, s1, . . . sm).

• Given a sequence ~s = (s1, . . . sn) of scalars and a scalar r, we denote (r~s) the sequence
(rs1, . . . rsn).

• Given two sequences ~r = (r1, . . . rn) and ~s = (s1, . . . sm) of scalars, we denote ~r~s the
sequence r1~s; . . . ; rn~s.

• Given a sequence ~s = (s1, . . . sn) of scalars, we denote
∑
~s the sum of all scalars in ~s, i.e.

the scalar
n∑
i=1

si.

Definition 2.4.2. A sequent is a formal expression of the form ` Γ.

If Γ = ∅, the corresponding empty sequent is simply written as `.

Definition 2.4.3. A hypersequent is a non–empty finite multiset of sequents, written as `
Γ1| . . . | ` Γn.

We use the letter G,H to range over hypersequents.
As in the system MGA, we will use two notions of "simple" hypersequents since atomic

hypersequents are not sufficient in the presence of the ♦ operator.

Definition 2.4.4. A hypersequent is said atomic if it only contains atoms, i.e., formulas of the
form x or x.

Definition 2.4.5. A hypersequent is said basic if it only contains atoms (formulas of the form
x or x), ♦ formulas (formulas of the form ♦A), 1 formulas and 1 formulas.

We now describe how sequents and hypersequents can be interpreted by modal Riesz terms.

Definition 2.4.6 (Interpretation). We interpret sequents ` Γ and hypersequents G as the modal
Riesz terms L` ΓM and LGM, respectively, as follows:

Syntax Term interpretation L_M
Weighted terms r.A rA
Sequents ` r1.A1, . . . , rn.An Lr1.A1M + · · ·+ Lrn.AnM
Hypersequents ` Γ1| . . . | ` Γn L` Γ1M t · · · t L` ΓnM

Hence a sequent is interpreted as sum (
∑

) and a hypersequent is interpreted as a join of
sums (

⊔∑
).

The hypersequent calculus HMR is a deductive system for deriving hypersequents whose
interpretation is positive, i.e., the hypersequents G such that A♦

Riesz ` 0 ≤ LGM. The rules of
HMR consist of the rules of the system HR (see Figure 2.5) with the additional rules of Figure
2.13 below.
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Modal rules:

G | ` Γ

G | ` Γ, ~r.1, ~s.1
1,
∑
~r ≥

∑
~s

` Γ, ~r.1, ~s.1

` ♦Γ, ~r.1, ~s.1
♦,
∑
~r ≥

∑
~s

Figure 2.13: Inference rules of HMR

Notice that the 1 rule is very similar to the system MGA modulo the usual translation
An ↔ ~r.A. However, the ♦ is a little more complicated, there are no longer only 1 but also 1.
While the system with the following ♦ rule

` Γ, ~r.1

` ♦Γ, ~r.1
♦4

is both sound and complete, it does not satisfy the CAN-elimination theorem. Indeed, the
hypersequent ` 1.♦1, 2.1, 1.1 has the following derivation

` INIT

` 2.1, 2.1
1

` INIT

` 1.1, 1.1
1

` 1.♦1, 1.1
♦4

` 1.♦1, (1, 1).1, 1.1
1

` 1.♦1, 2.1, 1.1, (1, 1).1, 2.1
M

` 1.♦1, 2.1, 1.1
CAN, 1 + 1 = 2

but would not have a CAN-free derivation with the rule above. The idea is that the structural
rules can only be used to multiply the sequent by a real number, and so the only useful rule we
can use is the 1 rule, whose premise can only be ` 1.♦1 which is not derivable.

Definition 2.4.7 (Modal depth of a hypersequent). We define the modal depth of a sequent,
noted d♦(` Γ), has the maximal modal depth of a term in Γ, i.e., if Γ = r1.A1, ..., rn.An,
d♦(` Γ) = max

i∈[1..n]
d♦(Ai).

The modal depth of a hypersequent G, noted d♦(G), is then the maximal modal depth of the
sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then d♦(G) = max

i∈[1..n]
d♦(` Γi).

Definition 2.4.8 (Complexity). We define the complexity of a sequent ` Γ, noted c(` Γ), as
the sum of the operators which are not under a ♦ operator or the constant 1 used in the terms
of Γ (see Definition 1.3.4), i.e., if Γ = r1.A1, ..., rn.An, c(` Γ) =

∑n
i=1 c

♦(Ai).
The complexity of a hypersequent G, noted c(G), is then defined as the triplet c(G) = (a, b, c)

where

• a is the modal depth of the hypersequent G, and

• b is the maximum complexity of a sequent in G, i.e., if G = ` Γ1 | ... | ` Γn, then
b = max

i∈[1..n]
c(` Γi), and

• c is the number of sequents in G having a complexity of b, i.e., c = #{` Γi | c(` Γi) = b}.

Definition 2.4.9 (Modal depth). The modal depth of a derivation is the maximal number of ♦
rules used in a branch of the derivation.
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2.4.1 Preliminary lemmas
We proved the usual technical lemmas used in this section. The results and proofs are very

similar to the one for the system MGA where we replace the occurrences of An and Γn with
~r.A and ~r.Γ.

Our first lemma states that the following variant of the ID rule (see Figure 2.5) where general
terms A are considered rather than just variables, is admissible in the proof system HMR.

G | ` Γ

G | ` Γ, ~r.A,~s.A
ID,
∑
~r =

∑
~s

Lemma 80. For all A, ~ri, ~si such that
∑
~ri =

∑
~si, it holds that:

if .HMR [` Γi]
n
i=1 then .HMR

[
` Γi, ~ri.A, ~si.A

]n
i=1

.

Proof. Let d be a derivation of .HMR [` Γi]
n
i=1. We prove the result by double induction on (A, d).

If A is not a ♦ term, we prove the result as in Lemma 42 – which decreases the complexity of
the term each time. Otherwise A = ♦B. We prove the result by induction on the derivation d.
We will only show three cases: the other cases are similar to the + case.

• If d finishes with
` INIT

then by induction hypothesis on B, .HMR ` ~r1.B, ~s1.B so

` ~r1.B, ~s1.B
` ~r1.♦(B), ~s1.♦(B)

♦

• If d finishes with
[` Γi]

n
i=2 | ` Γ1, ~s.C,~s.D

[` Γi]
n
i=2 | ` Γ1, ~s.(C +D)

+

then by induction hypothesis on the subderivation

.HMR[` Γi, ~ri.♦(B), ~si.♦(B)]ni=2 | ` Γ1, ~s.C,~s.D, ~r1.♦(B), ~s1.♦(B)

so
[` Γi, ~ri.♦(B), ~si.♦(B)]ni=2 | ` Γ1, ~s.C,~s.D, ~r1.♦(B), ~s1.♦(B)

[` Γi, ~ri.♦(B), ~si.♦(B)]ni=2 | ` Γ1, ~s.(C +D), ~r1.♦(B), ~s1.♦(B)
+

• If d finishes with
` Γ1, ~r.1, ~s.1

` ♦Γ1, ~r.1, ~s.1
♦

then by induction hypothesis on B

.HMR ` Γ1, ~r1.B, ~s1.B, ~r.1, ~s.1

so
` Γ1, ~r1.B, ~s1.B, ~r.1, ~s.1

` ♦(Γ1), ~r1.♦(B), ~s1.♦(B), ~r.1, ~s.1
♦

The next lemma states that if G is provable then the hypersequent obtained by substituting
an atom for a term in G is also provable.
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Lemma 81. If .HMRG then for all terms A, .HMRG[A/x].

Proof. Similar to the proof of Lemma 43.

The next lemma states that the {0,+,×,t,u}-logical rules are invertible using the CAN
rule, meaning that if the conclusion is derivable, then the premises are also derivable. Unlike
a stronger result we will prove later in Section 2.4.4 where we prove the CAN–free version of
this lemma, the derivations of the premises may contain CAN rules and thus this result is not
sufficient to imply the CAN elimination theorem.

Lemma 82. All the logical rules {0,+,×,t,u} are invertible.

Proof. Similar to Lemma 44.

Remark 34. The proof of Lemma 82 does not introduce any new T rule, so if the conclusion of
one of the logical rules {0,+,×,t,u} has a T–free derivation, then the premises also have T–free
derivations.

Remark 35. As in the system MGA, note that the ♦ rule is also invertible, but because of the
constraints of the ♦ rule, we can not use it when we would need it, and thus we leave this result
to Chapter 3.

The next lemmas state that CAN–free derivability in the HMR system is preserved by scalar
multiplication.

Lemma 83. Let ~r ∈ R>0 be a non-empty vector and G a hypersequent. If .HMR\{CAN}G | ` ~r.Γ
then .HMR\{CAN}G | ` Γ.

Proof. Similar to Lemma 45.

Lemma 84. Let ~r ∈ R>0 be a vector and G a hypersequent. If .HMR\{CAN}G | ` Γ then
.HMR\{CAN}G | ` ~r.Γ.

Proof. Similar to Lemma 46.

2.4.2 Soundness
We need to prove that if there exists a HMR derivation of a hypersequent G then LGM ≥ 0

is derivable in equational logic (written A♦
Riesz ` LGM ≥ 0). This is done in a straightforward way

by showing that each deduction rule of the system HMR is sound. Notice that the soundness
of the rules already present in HR is proved in the exact same way so we will only show the
soundness of the new rules.

Theorem 2.4.1 (Soundness of HMR). For all hypersequent G, if .HMRG then A♦
Riesz ` LGM ≥

0.

Proof. By induction on the derivation of G. We only show the ♦ and 1 rules since the other are
similar to Theorem 2.2.1.

• For the rule
` Γ, 1n

` ♦Γ, 1n
♦
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the hypothesis is L` Γ, ~r.1, ~s.1M ≥ 0 so

L` ♦Γ, ~r.1, ~s.1M = L` ♦Γ, (
∑

~r −
∑

~s).1M by distributivity

≥ L` ♦Γ, (
∑

~r −
∑

~s).♦1M since ♦1 ≤ 1

= ♦(L` Γ, (
∑

~r −
∑

~s).1M) by linearity of ♦

= ♦(L` Γ, ~r.1, ~s.1)M by distributivity
≥ 0 by the hypothesis and the monotonicity of ♦.

• For the rule
G | ` Γ

G | ` Γ, ~r.1, ~s.1
1,
∑
~r ≥

∑
~s

the hypothesis is LG | ` ΓM ≥ 0 so

LG | ` Γ, ~r.1, ~s.1M ≥ LG | ` ΓM since
∑

~r ≥
∑

~s and 0 ≤ 1

≥ 0

2.4.3 Completeness
In order to prove the completeness of the system HMR, i.e. that if A♦

Riesz ` LGM ≥ 0 then
.HMRG, we first prove an equivalent result (Lemma 85 below) stating that if A♦

Riesz ` A = B
then the hypersequents ` r.A, r.B and ` r.B, r.A are both derivable for all r > 0.

From Lemma 85 one indeed obtains Theorem 2.4.2 as a corollary.

Theorem 2.4.2 (Completeness of HMR). For all hypersequent G, if A♦
Riesz ` LGM ≥ 0 then

.HMRG.

Proof. Recall that A♦
Riesz ` LGM ≥ 0 is a shorthand for A♦

Riesz ` 0 = LGM u 0. Hence, from the
hypothesis A♦

Riesz ` LGM ≥ 0 we can deduce, by using Lemma 85, that .HMR ` 1.0 u LGM, 1.0.
From this we can show that .HMRG by invoking Lemma 82. Indeed, if G is ` Γ1 | ... | ` Γn

then LGM = L` Γ1M t ... t L` ΓnM and

1. by using the invertibility of the 0 rule, ` 1.(0 u (L` Γ1M t ... t L` ΓnM)) is derivable,

2. by using the invertibility of the u rule, ` 1.(L` Γ1M t ... t L` ΓnM) is derivable,

3. by using the invertibility of the t rule n− 1 times, ` 1.L` Γ1M | ... | ` 1.L` ΓnM is derivable,

4. and finally, by using the invertibility of the + and × rules, ` Γ1 | ... | ` Γn is derivable.

Lemma 85. If A♦
Riesz ` A = B then for all r > 0, ` r.A, r.B and ` r.B, r.A are derivable.

Proof. Since the other cases are proven in the exact same way as in Theorem 2.2.2, we will only
derive the new axioms.
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• For the axiom 0 ≤ 1.
` INIT

` r.0 0
` INIT

` r.1 1, r ≥ 0

` r.(0 u 1)
u

` r.(0 u 1), r.0
0

and
` INIT

` r.0 0

` r.0 | ` r.1
W

` r.(0 t 1)
t

` r.0, r.(0 t 1)
0

• For the axiom ♦(1) ≤ 1.

` INIT

` r.1, r.1
1

` r.♦(1), r.♦(1)
♦

` INIT

` r.1, r.1
1

` r.1, r.♦(1)
♦

` r.(♦(1) u 1), r.♦(1)
u

and
` INIT

` r.1, r.1
1

` r.♦(1), r.♦(1)
♦

` r.♦(1), r.♦(1) | ` r.♦(1), r.1
W

` r.♦(1), r.(♦(1) t 1)
t

• For the axiom ♦(r1x+ r2y) = r1♦(x) + r2♦(y).

` INIT

` r1r.x, r2r.y, r1r.x, r2r.y ID2

` r.r1x, r.r2y, r1r.x, r2r.y ×
2

` r.(r1x+ r2y), r1r.x, r2r.y
+

` r.♦(r1x+ r2y), r1r.♦(x), r2r.♦(y)
♦

` r.♦(r1x+ r2y), r.r1♦(x), r.r2♦(y)
×2

` r.♦(r1x+ r2y), r.(r1♦(x) + r2♦(y))
+

and
` INIT

` r1r.x, r2r.y, r1r.x, r2r.y ID2

` r1r.x, r2r.y, r.r1x, r.r2y ×
2

` r1r.x, r2r.y, r.(r1x+ r2y)
+

` r1r.♦(x), r2r.♦(y), r.♦(r1x+ r2y)
♦

` r.r1♦(x), r.r2♦(y), r.♦(r1x+ r2y)
×2

` r.(r1♦(x) + r2♦(y)), r.♦(r1x+ r2y)
+
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• For the axiom 0 ≤ ♦(0 t x).

` INIT

` r.0 0

` INIT

` r.0 0

` r.0 | ` r.x W

` r.(0 t x)
t

` r.♦(0 t x)
♦

` r.(0 u ♦(0 t x))
u

` r.(0 u ♦(0 t x)), r.0
0

and
` INIT

` r.0 0

` r.0 | ` r.♦(0 u x)
W

` r.(0 t ♦(0 u x))
t

` r.0, r.(0 t ♦(0 u x))
0

Remark 36. By inspecting the proof of Lemma 85 it is possible to verify that the T rule is
never used in the construction of .HMRG. This, together with the similar Remark 34 regarding
Lemma 82, implies that the T rule is never used in the proof of the completeness Theorem 2.4.2.
From this we get the following corollary.

Corollary 3. The T rule is admissible in the system HMR.

However, as in the system HR, there is no hope of eliminating both the T rule and the CAN
rule from the HMR system.

Lemma 86. Let r1 and r2 be two irrational numbers that are incommensurable (so there is no
q ∈ Q such that qr1 = r2). Then the atomic hypersequent G

` r1.x | ` r2.x

does not have a CAN–free and T–free derivation.

Proof. By analysing a potential CAN–free T–free derivation of ` r1.x | ` r2.x, we can show that
only the S, M, C, W, ID and INIT rules can be used (the logical rules do nothing since there are
only atoms in the hypersequent).

Therefore, if ` r1.x | ` r2.x has a CAN–free T–free derivation in the system HMR, it also
has one in the system HR which contradicts Lemma 48.

2.4.4 CAN–free invertibility
In this section, we prove the 0,+,×,t and u rules are CAN-free invertible, i.e., that if the

conclusion of one of those logical rules has a CAN-free derivation, then so do the premises. As for
the previous systems, it allows us to reduce the complexity of the formulas in an hypersequent in
the proof of the CAN elimination theorem, and thus it is important that we do not add any CAN
rule in the proofs of invertibility. For this reason, the CAN–free invertibility result is stronger
than Lemma 82 of Section 2.4.1.

As usual, we prove the CAN–free invertibility of more general rules. The general rules are
the same as the ones in the system HR:
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Logical rules:

[` Γi]
n
i=1

[` Γi, ~ri.0]
n
i=1

0
[` Γi, ~ri.A, ~ri.B]

n
i=1

[` Γi, ~ri.(A+B)]
n
i=1

+
[` Γi, (s~ri).A]

n
i=1

[` Γi, ~ri.(sA)]
n
i=1

×

[` Γi, ~ri.A | ` Γi, ~ri.B]
n
i=1

[` Γi, ~ri.(A tB)]
n
i=1

t
[` Γi, ~ri.A]

n
i=1 [` Γi, ~ri.B]

n
i=1

[` Γi, ~ri.(A uB)]
n
i=1

u

Figure 2.14: Generalised logical rules

We will prove that those rules are CAN–free invertible by induction on the derivation of the
conclusion. The proof steps dealing with the rules already present in HR are the same as in
Section 2.2.4. In what follows we just show the details of the proof steps associated with the new
cases associated with the ♦–rule and 1–rule of HMR.

We conceptually divide the logical rules in three categories:

Type 1 The rule with only one premise but that adds one sequent to the hypersequent: the t
rule.

Type 2 The rules with only one premise and that do not change the number of sequents: the
0,+ rules.

Type 3 The rule with two premises: the u rule.

Because of the similarities of the rules in each of these categories, we just prove the CAN–free
invertibility of one rule in each category by means of a sequence of lemmas.

Lemma 87 (Type 1). If [` Γi, ~ri.(A t B)]ni=1 has a CAN–free derivation then [` Γi, ~ri.A | `
Γi, ~ri.B]ni=1 has a CAN–free derivation.

Proof. By induction on the derivation.

• If the derivation finishes with
[` Γi, ~ri.(A tB)]ni=2 | ` Γ1, ~r1.(A tB)

[` Γi, ~ri.(A tB)]ni=2 | ` Γ1, ~r1.(A tB), ~r.1, ~s.1
1

then by induction hypothesis on the CAN–free derivation of the premise we have that

.HMR\{CAN}[` Γi, ~ri.A | ` Γi, ~ri.B]ni=2 | ` Γ1, ~r1.A | ` Γ1, ~r1.B

so
G′ | ` Γ1, ~r1.A | ` Γ1, ~r1.B

G′ | ` Γ1, ~r1.A, ~r.1, ~s.1 | ` Γ1, ~r1.B, ~r.1, ~s.1
1∗

with G′ = [` Γi, ~ri.A | ` Γi, ~ri.B]ni=2

• If the derivation finishes with an application of the ♦ rule, the shape of the conclusion is

` ♦Γ1, ~r.1, ~s.1

with ~r1 = ∅ so the hypersequent

` ♦Γ1, ~r1.A, ~r.1, ~s.1 | ` ♦Γ1, ~r1.B, ~r.1, ~s.1 = ` ♦Γ1, ~r.1, ~s.1 | ` ♦Γ1, ~r.1, ~s.1

is CAN–free derivable using the C rule.
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Lemma 88 (Type 2). If [` Γi, ~ri(A+B)]ni=1 has a CAN–free derivation then [` Γi, ~riA,~riB]ni=1

has a CAN–free derivation.

Proof. By induction on the derivation.

• If the derivation finishes with

[` Γi, ~ri.(A+B)]ni=2 | ` Γ1, ~r1.(A+B)

[` Γi, ~ri.(A+B)]ni=2 | ` Γ1, ~r1.(A+B), ~r.1, ~s.1
1

then by induction hypothesis on the CAN–free derivation of the premise we have that

.HMR\{CAN}[` Γi, ~ri.A, ~ri.B]ni=2 | ` Γ1, ~r1.A, ~r1.B

so
[` Γi, ~ri.A, ~ri.B]ni=2 | ` Γ1, ~r1.A, ~r1.B

[` Γi, ~ri.A, ~ri.B]ni=2 | ` Γ1, ~r1.A, ~r1.B, ~r.1, ~s.1
1

• If the derivation finishes with an application of the ♦ rule, the shape of the conclusion is

` ♦Γ1, ~r.1, ~s.1

with ~r1 = ∅ so the hypersequent ` ♦Γ1, ~r1.A, ~r1.B, ~r.1, ~s.1 = ` ♦Γ1, ~r.1, ~s.1 is derivable.

Lemma 89 (Type 3). If ` Γi, ~ri.(AuB)]ni=1 has a CAN–free derivation then [` Γi, ~ri.A]ni=1 and
[` Γi, ~ri.B]ni=1 have CAN–free derivations.

Proof. By induction on the derivation. We will only show that .HMR\{CAN}[` Γi, ~ri.A]ni=1, the
other case is similar.

• If the derivation finishes with

[` Γi, ~ri.(A uB)]ni=2 | ` Γ1, ~r1.(A uB)

[` Γi, ~ri.(A uB)]ni=2 | ` Γ1, ~r1.(A uB), ~r.1, ~s.1
1

then by induction hypothesis on the CAN–free derivation of the premise we have that

.HMR\{CAN}[` Γi, ~ri.A]ni=2 | ` Γ1, ~r1.A

so
[` Γi, ~ri.A]ni=2 | ` Γ1, ~r1.A

[` Γi, ~ri.A]ni=2 | ` Γ1, ~r1.A, ~r.1, ~s.1
1

• If the derivation finishes with an application of the ♦ rule, the shape of the conclusion is

` ♦Γ1, ~r.1, ~s.1

with ~r1 = ∅ so the hypersequent ` ♦Γ1, ~r1.A, ~r.1, ~s.1 = ` ♦Γ1, ~r.1, ~s.1 is derivable.
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2.4.5 M–elimination
In this section, we will show the M elimination theorem. Recall that the M elimination

theorem states

if a hypersequent G is derivable, then it has a M–free derivation.

However, since this result will be used in the proof of the CAN elimination theorem, we have
to ensure that the M elimination theorem does not add any instance of the CAN rule. Thus we
will show the slightly different result

if a hypersequent G is CAN–free derivable, then it has a CAN–free M–free derivation.

Following the same pattern of Section 2.3.5, we need to show that for each hypersequent G
and sequents Γ and ∆, if there exist CAN–free and M–free derivations d1 of G | ` Γ and d2 of
G | ` ∆, then there also exists a CAN–free and M–free derivation of G | ` Γ,∆.

The general idea is similar to the one presented for the system MGA. The results and proofs
can be easily adapted to the system HMR with the usual translation An ↔ ~r.A. We recall the
different steps of the proof (see Section 2.3.5 for more details).

• we first construct a prederivation d′1 of G | G | ` Γ,∆ (using d1) whose unfinished leaves
are hypersequents of the form G | ` ~r.∆,♦Γ′, ~s.1,~t.1,

• then we construct a derivation d2,~r of G | ` ~r.∆ using d2,

• and a prederivation d′2 of G | ` ~r.∆,♦Γ′, ~s.1,~t.1 (using d2,~r) whose unfinished leaves are
hypersequents of the form ` ~r′.(♦Γ′, ~s.1,~t.1),♦∆′, ~s′.1, ~t′.1,

• and finally we use the ♦ rule and we conclude by induction on modal depth of the deriva-
tions.

We now proceed with the technical statements.

Lemma 90. Let d1 be a CAN–free and M–free derivation of G | ` Γ using the ♦ rule and let H
be a hypersequent and ∆ be a sequent. Then there exists a prederivation of

G | H | ` Γ,∆.

where all non–terminated leaves are either of the form H | ` ~r.∆ or of the form H | `
♦Γ′, ~r.∆, ~s.1,~t.1 for some sequent Γ′ and vectors ~r,~s,~t such that

•
∑
~s ≥

∑
~t and

• ` Γ′, ~s.1,~t.1 has a derivation d′1 with a strictly lower modal depth than d1.

Proof. This is an instance of the slightly more general statement of Lemma 93 below where:

• [` Γi]
n−1
i=1 = G and Γn = Γ.

• ~ri = ∅ for 1 ≤ i < n and ~rn = 1.

Remark 37. Following Remark 38, if the derivation of G | ` Γ uses no ♦ rule, then all unfinished
leaves are of the form H | ` ~r.∆.
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Lemma 91. Let d2 be CAN–free and M–free derivation of H | ` ∆. Then, for every vector ~r,
there exists a CAN–free and M–free derivation of

H | ` ~r.∆

with a modal depth lower or equal than d2.

Proof. This is an instance of the slightly more general statement of Lemma 94 below where:

• [` ∆i]
n−1
i=1 = H and ∆n = ∆.

• ~ri = 1 for 1 ≤ i < n and ~rn = ~r.

We now show how to remove one instance of the M rule and then the M-elimination theorem.

Lemma 92. If G | ` Γ and H | ` ∆ have CAN–free M–free derivations, then so does G | H |
` Γ,∆.

Proof. We show the lemma by induction on the modal depth of the derivation d of G | ` Γ.
If the modal depth of d is 0, then we proceed as in Theorem 2.2.3, i.e., we use Lemma 90 to

have a prederivation of G | H | ` ∆,Γ where all leaves are of the form H | ` ~r.∆, and we finish
the prederivation by using Lemma 91.

Otherwise d uses some ♦ rule. We do the following:

• we use Lemma 90 to have a prederivation of G | H | ` Γ,∆ where all non–terminated
leaves are either of the form H | ` ~r.∆ or of the form H | ` ♦Γ′, ~r.∆, ~s.1,~t.1 for some
sequent Γ′ and vectors ~r,~s,~t such that

*
∑
~s ≥

∑
~t and

* ` Γ′, ~s.1,~t.1 has a derivation d′1 with a strictly lower modal depth than d1.

• We show that all leaves of the form H | ` ~r.∆ are derivable using Lemma 91.

• We conclude by showing that all leaves of the form H | ` ♦Γ′, ~r.∆, ~s.1,~t.1 are derivable.
Let’s show how to derive them.

– We show that H | ` ~r.∆ are derivable using Lemma 91.
– Then we build a prederivation of H | ` ♦Γ′, ~r.∆, ~s.1,~t.1 using Lemma 90 where

all non-terminated leaves are either of the form ` ~r′.(♦Γ′, ~s.1,~t.1) or of the form
` ~r′.(♦Γ′, ~s.1,~t.1),♦∆′, ~s′.1, ~t′.1 such that

∗
∑
~s′ ≥

∑
~t′ and

∗ ` ∆′, ~s′.1, ~t′.1 has a derivation.
– The leaves of the form ` ~r′.(♦Γ′, ~s.1,~t.1) can be terminated using the ♦ rule and

Lemma 91.
– For the leaves of the form ` ~r′.(♦Γ′, ~s.1,~t.1),♦∆′, ~s′.1, ~t′.1, we will show that `
~r′.(Γ′, ~s.1,~t.1),∆′, ~s′.1, ~t′.1 has a CAN-free M-free derivation and we can conclude us-
ing the ♦ rule. Recall that ` Γ′, ~s.1,~t.1 has a CAN-free M-free derivation with strictly
lower modal depth than d1. We use Lemma 91 to have a derivation of ` ~r′.(Γ′, ~s.1,~t.1)
with strictly lower depth than d1.

– We can then use the induction hypothesis since the derivation of ` ~r′.(Γ′, ~s.1,~t.1) has a
strictly lower depth than d1, thus building a derivation of ` ~r′.(Γ′, ~s.1,~t.1),∆′, ~s′.1, ~t′.1
to conclude the proof.
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Theorem 2.4.3 (M elimination). If G is CAN-free derivable, then G is CAN-free M-free deriv-
able.

Proof. We prove the result by induction on G. The only interesting case if the M rule, i.e., if the
derivation finishes with

G | ` Γ G | ` ∆

G | ` Γ,∆
M

then by induction hypothesis G | ` Γ and G | ` ∆ have CAN-free M-free derivation.
By using Lemma 92, we have a CAN-free M-free derivation of G | G | ` Γ,∆. The derivation

is then
G | G | ` Γ,∆

G | ` Γ,∆
C∗

We now prove the technical version of Lemmas 90 and 91.

Lemma 93. Let d1 be a CAN–free and M–free derivation of [` Γi]
n
i=1 and let H be a hypersequent

and ∆ be a sequent. Then for every sequence of vectors ~ri, there exists a prederivation of

H | [` Γi, ~ri.∆]ni=1

where all non–terminated leaves are either of the form H | ` ~r.∆ or of the form H | `
♦Γ′, ~r.∆, ~s.1,~t.1 for some sequent Γ′ and vectors ~r,~s,~t such that

•
∑
~s ≥

∑
~t and

• ` Γ′, ~s.1,~t.1 has a derivation d′1 with a strictly lower modal depth than d1.

Proof. We prove the result by induction on d1. We will only show the ♦ and the 1 rules, since
all other cases are done in the same way as in Lemma 56.

• if d1 finishes with:
[` Γi]

n
i=2 | ` Γ1

[` Γi]
n
i=2 | ` Γ1, ~s.1,~t.1

1,
∑
~s ≥

∑
~t

then by induction hypothesis, there is a prederivation of H | [` Γi, ~ri.∆]ni=2 | ` Γ1, ~r1.∆
where all non–terminated leaves are either of the form H | ` ~r.∆ or of the form H | `
♦Γ′, ~r.∆, ~s.1,~t.1 for some sequent Γ′ and vectors ~r,~s,~t such that

–
∑
~s ≥

∑
~t and

– ` Γ′, ~s.1,~t.1 has a derivation d′1 with a strictly lower modal depth than d1.

We continue the prederivation with

H | [` Γi, ~ri.∆]ni=2 | ` Γ1, ~r1.∆

H | [` Γi, ~ri.∆]ni=2 | ` Γ1, ~r1.∆, ~s.1,~t.1
1,
∑
~s ≥

∑
~t

• If d1 finishes with:
` Γ1, ~s.1,~t.1

` ♦Γ1, ~s.1,~t.1
♦,
∑
~s ≥

∑
~t

then the prederivation is simply the leaf H | ` ♦Γ1, ~r1.∆, ~s.1,~t.1 which satisfies both
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–
∑
~s ≥

∑
~t and

– ` Γ1, ~s.1,~t.1 is derivable using strictly less ♦ rule than in d1.

Remark 38. Since the leaves of the form H | ` ♦Γ′, ~r.∆, ~s.1,~t.1 appear only in the case of the ♦
rule, if the derivation of [` Γi]

n
i=1 does not use any ♦ rule, all leaves are of the form H | ` ~r.∆.

Lemma 94. If d2 is a CAN–free M–free derivation of [` ∆i]
n
i=1 then for all ~ri, there is a CAN–

free M–free derivation of [` ~ri.∆i]
n
i=1 with a modal depth lower or equal to d2.

Proof. We will only show the ♦ and 1 rules, the other cases being similar to Lemma 57 – and so
do not introduce any new ♦ rule.

• if d2 finishes with:
[` ∆i]

n
i=2 | ` ∆1

[` ∆i]
n
i=2 | ` ∆1, ~s.1,~t.1

1,
∑
~s ≥

∑
~t

then by induction hypothesis, there is a CAN–free M–free derivation of [` ~ri.∆i]
n
i=2 | `

~r1.∆1 with a modal depth lower or equal than d2. We continue the derivation with

[` ~ri.∆i]
n
i=2 | ` ~r1.∆1

[` ~ri.∆i]
n
i=2 | ` ~r1.∆1, (~r1~s).1, (~r1~t).1

1,
∑
~r1~s ≥

∑
~r1~t

which does not increase the modal depth of the derivation.

• If d2 finishes with:
` ∆1, ~s.1,~t.1

` ♦∆1, ~s.1,~t.1
♦,
∑
~s ≥

∑
~t

by induction hypothesis, there is a derivation of ` ~r1.∆1, (~r1~s).1, (~r1~t).1 with a modal depth
strictly less than d2. We continue the derivation with

` ~r1.∆1, (~r1~s).1, (~r1~t).1

` ~r1.♦∆1, (~r1~s).1, (~r1~t).1
♦,
∑
~r1~s ≥

∑
~r1~t

which gives a derivation with a modal depth less or equal than d2.

2.4.6 CAN–elimination
Recall that the CAN rule has the following form:

G | ` Γ, ~r.A,~s.A

G | ` Γ
CAN,

∑
~r =

∑
~s

As in the previous sections, we prove Theorem 2.4.4 by showing that if the hypersequent
G | ` Γ, ~r.A,~s.A has a M–free CAN–free derivation, then so does the hypersequent G | ` Γ.

The proof follows the same pattern as in the system MGA: we first prove the result when
A = x (or equivalently A = x) and A = 1, and by double induction on both the formula A and
the derivation for complex formulas.

Lemma 95. If there is a M–free CAN–free derivation of G | ` Γ, ~r.x,~s.x, where
∑
~r =

∑
~s,

then there exists a M–free CAN–free derivation of G | ` Γ.
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Proof. The statement follows as a special case of Lemma 98 below, a stronger version of Lemma 95
that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, ~r.x,~s.x,
where:

• [` Γi]
n−1
i=1 = G and Γn = Γ.

• ~ri = ~r′i = ~si = ~s′i = ∅ for 1 ≤ i < n.

• ~rn = ~r, ~sn = ~s and ~r′n = ~s′n = ∅.

Lemma 96. If there is a M-free CAN–free derivation of G | ` Γ, ~r.1, ~s.1, where
∑
~r =

∑
~s then

there exists a M–free CAN–free derivation of G | ` Γ.

Proof. The statement follows as a special case of Lemma 99 below, a stronger version of Lemma 96
that allows for a simpler proof by induction on the structure of the derivation of G | ` Γ, ~r.1, ~s.1,
where:

• [` Γi]
n−1
i=1 = G and Γn = Γ.

• ~ri = ~r′i = ~si = ~s′i = ∅ for 1 ≤ i < n.

• ~rn = ~r, ~sn = ~s and ~r′n = ~s′n = ∅.

We are now ready to prove the general case.

Lemma 97. For all terms A and numbers n > 0 and for all sequents Γi and vectors ~ri, ~si such
that

∑
~ri =

∑
~si, for 1 ≤ i ≤ n,

if [` Γi, ~ri.A,~si.A]ni=1 has a M–free CAN–free derivation, then so does [` Γi]
n
i=1.

Proof. For the basic cases A = x, A = x, A = 1 and A = 1, we use Lemmas 95 and 96. For
complex terms A which are not ♦ terms, we proceed by invoking the CAN–free invertibility
proven in Section 2.4.4 as follows:

• If A = 0, we can conclude with the CAN–free invertibility of the rule 0.

• If A = B + C, since the + rule is CAN–free invertible,
[
` Γi, ~ri.B, ~ri.C, ~si.B, ~si.C

]
has

a CAN–free, M–free derivation. Therefore we can have a CAN–free derivation of the
hypersequent [` Γi]

n
i=1 by invoking the induction hypothesis twice, since the complexity of

B and C is lower than that of B + C.

• If A = r′B, since the × rule is CAN–free invertible,
[
` Γi, (r

′~ri.).B, (r
′~si.).B

]
has a CAN–

free, M–free derivation. Therefore we can have a CAN–free derivation of the hypersequent
[` Γi]

n
i=1 by invoking the induction hypothesis on the simpler term B.

• If A = B t C, since the t rule is CAN–free invertible,[
` Γi, ~ri.B, ~si.(B u C)

]
|
[
` Γi, ~ri.C, ~si.(B u C)

]
has a CAN–free, M–free derivation. Then since the u is CAN–free invertible,[

` Γi, ~ri.B, ~si.B
]
|
[
` Γi, ~ri.C, ~si.C

]
has a CAN–free, M–free derivation. Therefore we can obtain a CAN–free derivation of the
hypersequent [` Γi]

n
i=1 by invoking the induction hypothesis twice on the simpler terms B

and C.
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• If A = B u C, we proceed in a similar way as for the case A = B t C.

• Finally, if A = ♦B, we distinguish two cases:

1. the derivation ends with an application of the ♦ rule which simplifies A = ♦B to B.
In this case we can simply conclude by invoking the induction hypothesis on B.

2. The derivation ends with some other rule (recall that no CAN rules and no M rules
appear in the derivation). In this case we decrease the complexity of the derivation,
keeping ♦B as the CAN term, and then invoke the induction hypothesis on the deriva-
tion having reduced complexity. This proof step is rather long to prove, as it requires
analysing all possible cases. We just illustrate the two cases when the derivation ends
with a logical rule (+) and a structural rule (C) to illustrate the general method.

– if the derivation finishes with

[` Γi, ~ri.♦B,~si.♦B]ni=2 | ` Γ1, ~r1.♦B,~s1.♦B, ~r′.C, ~r′.D

[` Γi, ~ri.♦B,~si.♦B]ni=2 | ` Γ1, ~r1.♦B,~s1.♦B, ~r′.(C +D)
+

by induction hypothesis, there is a CAN–free M–free derivation of

[` Γi]
n
i=2 | ` Γ1, ~r′.C, ~r′.D

We continue the derivation with

[` Γi]
n
i=2 | ` Γ1, ~r′.C, ~r′.D

[` Γi]
n
i=2 | ` Γ1, ~r′.(C +D)

+

– if the derivation finishes with

[` Γi, ~ri.♦B,~si.♦B]ni=2 | ` Γ1, ~r1.♦B,~s1.♦B | ` Γ1, ~r1.♦B,~s1.♦B

[` Γi, ~ri.♦B,~si.♦B]ni=2 | ` Γ1, ~r1.♦B,~s1.♦B
C

by induction hypothesis, there is a CAN–free M–free derivation of

[` Γi]
n
i=2 | ` Γ1 | ` Γ1

We continue the derivation with

[` Γi]
n
i=2 | ` Γ1 | ` Γ1

[` Γi]
n
i=2 | ` Γ1

C

We now have all necessary tools to prove the CAN–elimination theorem.

Theorem 2.4.4 (CAN elimination). For all hypersequents G, if .HMRG then .HMR\{CAN}G.

Proof. We want to prove that if G has a derivation, then G has a CAN–free derivation. We prove
this result by induction on the derivation of G:

• If the derivation finishes with an application of a rule that is not the CAN–rule, then by
induction, the premises have CAN–free derivations and we can conclude by using the exact
same rule to obtain a CAN–free derivation of G. For
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• If the derivation finishes with

G | ` Γ, ~s.A,~r.A

G | ` Γ
CAN,

∑
~r =

∑
~s

then by induction G | ` Γ, ~s.A,~r.A has a CAN–free derivation. By invoking the M–
elimination Theorem 2.4.3, G | ` Γ, ~s.A,~r.A has a CAN–free M–free derivation and we can
conclude by using Lemma 97.

Finally, we prove Lemma 98 and Lemma 99, the stronger versions of Lemma 95 and Lemma 96.

Lemma 98. If there is a CAN–free, M–free derivation of [` Γi, ~ri.x, ~si.x]
n
i=1 then for all ~r′i. and

~s′i. such that for all i,
∑
~ri −

∑
~si =

∑
~r′i −

∑
~s′i, there is a CAN–free, M–free derivation of[

` Γi, ~r′i.x,
~s′i.x
]n
i=1

.

Proof. The proof is done by induction on the derivation and is similar to the proof of Lemma 60.

Lemma 99. If there is a CAN–free, M–free derivation of
[
` Γi, ~ri.1, ~si.1

]n
i=1

then for all ~r′i. and
~s′i. such that for all i,

∑
~ri −

∑
~si ≤

∑
~r′i −

∑
~s′i, there is a CAN–free, M–free derivation of[

` Γi, ~r′i.1,
~s′i.1
]n
i=1

.

Proof. By induction on derivation. We show only the non–trivial case.

• If the derivation finishes with:[
` Γi, ~ri.1, ~si.1

]
i≥2 | ` Γ1,~c1, ~c′1[

` Γi, ~ri.1, ~si.1
]
i≥2 | ` Γ1, (~a;~b;~c).1, (~a′; ~b′; ~c′).1

1,
∑
~a+

∑~b ≥
∑
~a′ + ~b′

with ~r1 = ~b;~c and ~s1 = ~b′; ~c′. We want to show that

.HMR

[
` Γi, ~r′i.1,

~s′i.1
]
i≥2
| ` Γ1, (~r′1;~a).1, (~s′1; ~a′).1

We will now prove that
∑
~c−

∑
~c′ ≤

∑
~r′1 +

∑
~a− (

∑
~s′1 +

∑
~a′) to be able to conclude

with the induction hypothesis.∑
~c−

∑
~c′ = (

∑
~r1 −

∑
~b)− (

∑
~s1 −

∑
~b′)

= (
∑

~r1 −
∑

~s1) + (
∑

~b′ −
∑

~b)

≤ (
∑

~r′1 −
∑

~s′1) + (
∑

~a−
∑

~a′)

=
∑

~r′1 +
∑

~a− (
∑

~s′1 +
∑

~a′)

so by induction hypothesis

.HMR

[
` Γi, ~r′i.1,

~s′i.1
]
i≥2
| ` Γ1, (~r′1;~a).1, (~s′1; ~a′).1

which is the result we want.
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2.4.7 Algebraic property
The algebraic property of the system HMR can be obtained by merging both the algebraic

properties of the systems HR and MGA. Indeed, because of the presence of the ♦ operator, the
algebraic property is about basic hypersequent instead of atomic hypersequent, as in the system
MGA. Moreover, because of the T rule, the sequents can be multiplied by real numbers instead
of only natural numbers, as in the system HR. Thus the algebraic property of the system HMR
is very similar to the one of the system MGA, but with real numbers.

Theorem 2.4.5. For all basic hypersequents G, built using the variables and negated variables
x1, x1, . . . , xk, xk, of the form

` Γ1,♦∆1, ~r′1.1, ~s′1.1 | ... | ` Γm,♦∆m, ~r′m.1, ~s′m.1

where Γi = ~ri,1.x1, ..., ~ri,k.xk, ~si,1.x1, ..., ~si,k.xk, the following are equivalent:

1. G has a derivation.

2. there exist numbers t1, ..., tm ∈ R≥0, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ti 6= 0, i.e., the numbers are not all 0’s, and
• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

~ri,j) =

m∑
i=1

ti(
∑

~si,j)

i.e., the scaled (by the numbers t1 . . . tm) sum of the coefficients in front of the variable
xj is equal to the scaled sum of the coefficients in front of the covariable xj.

•
∑n
i=1 ti

∑
~s′i ≤

∑n
i=1 ti

∑
~r′i, i.e, there are more 1 than 1 and,

• the hypersequent consisting of only one sequent

` t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1

has a derivation, where the notation 0.Γ means ∅.

Proof. We prove (1)⇒ (2) by induction on the derivation of G. By using Theorem 2.4.4, we can
assume that the derivation of G is CAN–free. We will only deal with the case of ♦ rule since
every other case is similar to the proof of Theorem 2.2.5. If the derivation finishes with

` ∆1, ~r.1, ~s.1

` ♦∆1, ~r.1, ~s.1
♦,
∑
~r ≥

∑
~s

then t1 = 1 satisfies the property.

The other way ((2) ⇒ (1)) is also very similar to Theorem 2.2.5, only finishing with the ♦
rule. If there exist numbers t1, ..., tm > 0, one for each sequent in G, such that:

• there exists i ∈ [1..m] such that ti 6= 0, i.e., the numbers are not all 0’s, and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑

~ri,j) ≥
m∑
i=1

ti(
∑

~si,j)
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•
∑m
i=1 ti(

∑
~r′i) =

∑m
i=1 ti(

∑
~s′i), and

• the hypersequent

` t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1

has a derivation,

then we can use the W rule to remove the sequents corresponding to the numbers ti = 0, and
use the C and S rule on the ith sequent to multiply it by ti. If we assume that there is a natural
number l such that ti = 0 for all i > l and ti 6= 0 for all i ≤ l, then the CAN–free derivation is:

` t1.∆1, . . . , tl.∆l, (t1~r′1).1, ..., (tl~r′l).1, (t1~s′1).1, ..., (tl~s′l).1

` t1.♦∆1, . . . , tl.♦∆l, (t1~r′1).1, ..., (tl~r′l).1, (t1~s′1).1, ..., (tl~s′l).1
♦

` t1.Γ1, t1.♦∆1, (t1~r′1).1, (t1~s′1).1, . . . , tl.Γl, tl.♦∆l, (tl~r′l).1, (tl~s′l).1
ID∗

` t1.Γ1, t1.♦∆1, (t1~r′1).1, (t1~s′1).1 | . . . | ` tl.Γl, tl.♦∆l, (tl~r′l).1, (tl~s′l).1
S∗

` Γ1,♦∆1, ~r′1.1, ~s′1.1 | . . . | ` Γl,♦∆l, ~r′l.1, ~s′l.1
T∗

` Γ1,♦∆1, ~r′1.1, ~s′1.1 | . . . | ` Γm,♦∆m, ~r′1.1, ~s′1.1
W∗

and since ` t1.∆1, ..., tl.∆l, (t1~r′1).1, ..., (tl~r′l).1, (t1~s′1).1, ..., (tl~s′l).1 is derivable, we can complete
the derivation.

Remark 39. Notice that if the hypersequent is atomic, the algebraic property of HMR is exactly
the same as for HR.



Chapter 3

Applications

In this chapter, we use the machinery of the hypersequent calculus developed previously
to study (modal) Riesz spaces. Most specifically, we will prove results concerning free modal
Riesz spaces over a set of generators X, noted F♦

Riesz(X). We will also explore the connections
between the different equational theories mentioned in this thesis. More formally, we will show
the following results:

1. ♦ injectivity: for all set X and A,B ∈ F♦
Riesz(X), if ♦A = ♦B then A = B,

2. Weak unit: for all set X, 1 ∈ F♦
Riesz(X) is a weak unit,

3. Conservativity regarding scalar multiplication: for all Abelian l–group terms A,B,
Al–groups ` A = B if and only if ARiesz ` A = B,

4. Conservativity regarding the ♦ operator: for all Riesz space terms A,B, ARiesz `
A = B if and only if A♦

Riesz ` A = B

5. Decidability: the equational theory of modal Riesz spaces is decidable, i.e., there is an
algorithm to check whether or not A♦

Riesz ` A = B for all modal Riesz space terms A,B,
and

6. Archimedean: for all set X, F♦
Riesz(X) is Archimedean.

Note that, to the best of our knowledge, apart from the third result which is already known
as folklore in the theory of Riesz spaces, all the results are completely new.

The first two properties are examples of properties easy to prove using the hypersequent
calculus HMR, but to the best of our knowledge, not easy without HMR. Note also that the
constant 1 was shown to be a strong unit in the free modal Riesz spaces over the empty set of
generators (see [FMM20]), but this result does not hold in the presence of generators since if x
is a generator, then x 6≤ n1 for all n.

The two next properties are the conservativity results known regarding the different algebras
considered in this thesis. Note that a similar proof of the conservativity regarding the ♦ operator
could be used to prove that the theory of modal Abelian l–groups if a conservative extension of
the theory of Abelian l–groups, but it is an open problem whether or not the theory of modal
Riesz spaces is a conservative extension of the theory of modal Abelian l–groups (see Remark 41
below).

The last two results are quite more complicated, and actually require the machinery of
parametrized hypersequent calculus that will be introduced later on. Recall that the Archimedean
property of free modal Riesz spaces was a problem left open in [FMM20].
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This chapter will be divided in three sections: the first one concerning the properties of the
new operations in modal Riesz spaces, i.e., the injectivity of the ♦ operator and the fact that 1 is
a weak unit. The second section will show the conservativity results, and finally the last section
will deal with the parametrized hypersequent calculus and the last two properties.

3.1 Injectivity and unit

3.1.1 Injectivity of the ♦ operator
We start by proving the injectivity of the ♦ operator. By using Corollary 1, we have to show

that if A♦
Riesz ` ♦A = ♦B then A♦

Riesz ` A = B. Note that even though we prove the result for
free modal Riesz spaces, a similar proof can be used for free modal Abelian l–groups.

It is sufficient to show the following result: for all A,

A♦
Riesz ` 0 ≤ ♦A⇒ A♦

Riesz ` 0 ≤ A (3.1)

Indeed using Lemma 16 and the linearity of the ♦ operator, we have

A♦
Riesz ` ♦A = ♦B ⇔ A♦

Riesz ` 0 ≤ ♦(A−B) and A♦
Riesz ` 0 ≤ ♦(B −A)

and
A♦

Riesz ` A = B ⇔ A♦
Riesz ` 0 ≤ A−B and A♦

Riesz ` 0 ≤ B −A

and we can conclude using the implication (3.1) to show the injectivity statement (1).
Now using the soundness and completeness of the system HMR, the implication (3.1) is

equivalent to the following result

.HMR ` 1.♦A⇒ .HMR ` 1.A

which is a direct corollary of the invertibility of the ♦ rule proved in the following Lemma 100.

Lemma 100. If [` ♦Γi, ~ri.1, ~si.1]ni=1 has a derivation, then [` Γi, ~ri.1, ~si.1]ni=1 has a derivation.

Proof. By using the CAN elimination Theorem 2.4.4, we can assume that the derivation of
[` ♦Γi, ~ri.1, ~si.1]ni=1 is CAN free. We can then proceed by induction on the CAN–free derivation
of [` ♦Γi, ~ri.1, ~si.1]ni=1.

• if the derivation finishes the INIT axiom, then n = 1, Γ1 = ∅ and ~r1 = ~s1 = ∅ so the result
is trivial.

• We will only show one of the structural rules, the others are similar. If the derivation
finishes with

[` ♦Γi, ~ri.1, ~si.1]ni=1

[` ♦Γi, ~ri.1, ~si.1]n+1
i=1

W

then by induction hypothesis

.HMR[` Γi, ~ri.1, ~si.1]ni=1

and thus
[` Γi, ~ri.1, ~si.1]ni=1

[` Γi, ~ri.1, ~si.1]n+1
i=1

W
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• If the derivation finishes with

` Γ1, ~r1.1, ~s1.1

` ♦Γ1, ~r1.1, ~s1.1
♦,
∑
~s1 ≤

∑
~r1

then ` Γ1, ~r1.1, ~s1.1 is derivable which is the result we want.

• If the derivation finishes with

[` ♦Γi, ~ri.1, ~si.1]ni=2 | ` ♦Γ1, ~r1.1, ~s1.1

[` ♦Γi, ~ri.1, ~si.1]ni=2 | ` ♦Γ1, ~r1.1, ~s1.1, ~r.1, ~s.1
1,
∑
~s ≤

∑
~r

then by induction hypothesis

.HMR[` Γi, ~ri.1, ~si.1]ni=2 | ` Γ1, ~r1.1, ~s1.1

and thus
[` Γi, ~ri.1, ~si.1]ni=2 | ` Γ1, ~r1.1, ~s1.1

[` Γi, ~ri.1, ~si.1]ni=2 | ` Γ1, ~r1.1, ~s1.1, ~r.1, ~s.1
1,
∑
~s ≤

∑
~r

We can now prove the injectivity of the ♦ operator.

Theorem 3.1.1 (♦ injectivity). For all term A and B, if A♦
Riesz ` ♦A = ♦B then A♦

Riesz ` A =
B.

Proof. Since A♦
Riesz ` ♦A = ♦B then by using Lemma 16, we have

A♦
Riesz ` 0 ≤ ♦(A−B)

A♦
Riesz ` 0 ≤ ♦(B −A)

and thus by the completeness Theorem 2.4.2 of the system HMR and the invertibility of the 0
rule,

.HMR ` 1.♦(A+B)

.HMR ` 1.♦(B +A)

We can now use Lemma 100 to obtain

.HMR ` 1.(A+B)

.HMR ` 1.(B +A)

and by the soundness Theorem 2.4.1 of the system HMR

A♦
Riesz ` 0 ≤ A+B

A♦
Riesz ` 0 ≤ B +A

and we can conclude by using Lemma 16 again to obtain

A♦
Riesz ` A = B
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3.1.2 Weak unit
We will show that 1 is a weak unit in free modal Riesz spaces. Using Corollary 1 of Section

1.2, it is sufficient to show that for all A such that A♦
Riesz ` 0 ≤ A, if A♦

Riesz ` A u 1 = 0 then
A♦

Riesz ` A = 0.
To do so we will prove the slightly different result stating that if A♦

Riesz ` 0 ≤ −(A u 1) then
A♦

Riesz ` 0 ≤ −A. This implies that 1 is a weak unit since if A♦
Riesz ` A u 1 = 0, then by using

Lemma 16 we have A♦
Riesz ` 0 ≤ −(A u 1) and thus A♦

Riesz ` 0 ≤ −A. We can then conclude
using the same lemma that A♦

Riesz ` A = 0 since A♦
Riesz ` 0 ≤ A.

Using the soundness and completeness of the system HMR, we can rephrase the previous
property as follows

.HMR ` 1.A u 1⇒ .HMR ` 1.A

or, using the invertibility of the t rule,

.HMR ` 1.A | ` 1.1⇒ .HMR ` 1.A (3.2)

We will first prove a more general version of the implication (3.2), which is better suited for
a proof by induction.

Lemma 101. For all hypersequent G, if .HMRG | ` 1.1 then .HMRG.

Proof. We prove this result by induction on the complexity of the hypersequentG. We distinguish
three cases:

• If G is basic of the form

` Γ1,♦∆1, ~r′1.1, ~s′1.1 | ... | ` Γm,♦∆m, ~r′m.1, ~s′m.1

since .HMRG | ` 1.1, there t1, ..., tm, tm+1 satisfying the conditions of the algebraic prop-
erty 2.4.5 for the hypersequent G | ` 1.1. One of the condition is

.HMR ` t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1, tm+1.1

and according to Lemma 102 below with

– m = 1,
– Γ1 = t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1, and
– ~r1 = tm+1,

we can show that

.HMR ` t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1

and thus t1, ..., tm satisfy the algebraic property for the hypersequent G, and we can con-
clude that G is derivable.

• Otherwise we can use the invertibility of the logical rules to decrease the complexity of the
hypersequent G and conclude with the induction hypothesis. For instance, if G has the
form

H | ` Γ, ~r.A tB
where ` Γ, ~r.A tB is maximal in G. Then by using the invertibility of the t rule, we can
show that

.HMRH | ` Γ, ~r.A | ` Γ, ~r.B | 1.1



CHAPTER 3. APPLICATIONS 126

and by induction hypothesis on H | ` Γ, ~r.A | ` Γ, ~r.B,

.HMRH | ` Γ, ~r.A | ` Γ, ~r.B

We can finish the derivation by using the t rule:

H | ` Γ, ~r.A | ` Γ, ~r.B

H | ` Γ, ~r.A tB t

Notice that because of the constraints of the ♦ rule that impose to have only one sequent
before using the ♦ rule, we can not simply continue the induction process when the hypersequent
G is basic and we require the additional Lemma 102 below.

Lemma 102. If .HMR[` Γi, ~ri.1]mi=1 then .HMR[` Γi]
m
i=1.

Proof. We prove the result by induction on the derivation of [` Γi, ~ri.1]mi=1. We will only show
the case of the 1 rule, the other ones are straightforward.

If the derivation finishes with

[` Γi, ~ri.1]mi=2 | ` Γ1,~c.1

[` Γi, ~ri.1]mi=2 | ` Γ1, ~r.1,~a.1,~b.1,~c.1
1,
∑
~a;~b ≤

∑
~r

where ~r1 = ~b;~c then by induction hypothesis

.HMR[` Γi]
m
i=2 | ` Γ1

and thus
[` Γi]

m
i=2 | ` Γ1

[` Γi]
m
i=2 | ` Γ1, ~r.1,~a.1

1,
∑
~a ≤

∑
~r

We can now prove that 1 is a weak unit in free modal Riesz spaces.

Theorem 3.1.2 (Weak unit). For all A, if A♦
Riesz ` 0 ≤ (A t 1) then A♦

Riesz ` 0 ≤ A.

Proof. If A♦
Riesz ` 0 ≤ (At1) then by using the completeness Theorem 2.4.2 of the systemHMR

and the invertibility of the 0 rule,
.HMR ` 1.A t 1

and then by invertibility of the t rule

.HMR ` 1.A | ` 1.1

We can now use Lemma 101 to show that

.HMR ` 1.A

and we can conclude using the soundness Theorem 2.4.1 of the system HMR.
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3.2 Conservativity

3.2.1 Conservativity over the ♦ operator
In this section, we will show that modal Riesz spaces are a conservative extension of Riesz

spaces, i.e., that for all Riesz terms A,B, ARiesz ` A = B if and only if A♦
Riesz ` A = B.

Note that the implication

ARiesz ` A = B ⇒ A♦
Riesz ` A = B

is trivial since a derivation of ARiesz ` A = B is also a valid derivation of A♦
Riesz ` A = B. Thus,

we will focus on the other direction.
A natural option to prove that

A♦
Riesz ` A = B ⇒ ARiesz ` A = B

would be to work by induction on the derivation A♦
Riesz ` A = B. However, such derivation

could use the transitivity rule

A♦
Riesz ` A = C A♦

Riesz ` C = B

A♦
Riesz ` A = B

trans

where C can include some ♦, and thus would not be a Riesz term but a modal Riesz term,
preventing us from using the induction hypothesis.

To go around this issue, we will use the hypersequent calculus HMR since it satisfies the
CAN elimination theorem, effectively removing the transitivity rule. Using the soundness and
completeness of the system HMR, the conservativity result is equivalent to

.HMRG⇒ .HRG

where G only contains Riesz terms.

Lemma 103. Let G be a hypersequent containing only Riesz terms. If .HMRG then .HRG.

Proof. By invoking the CAN elimination Theorem 2.4.4, we can assume that the derivation of
G is CAN–free. The result is then proven by a straightforward induction on the CAN–free
derivation of G.

Theorem 3.2.1 (Conservativity regarding the ♦ operator). For all Riesz terms A,B, ARiesz `
A = B if and only if A♦

Riesz ` A = B.

Proof. As mentioned above, the direction ARiesz ` A = B ⇒ A♦
Riesz ` A = B is trivial.

For the other direction, let’s assume that A♦
Riesz ` A = B then by using Lemma 16, we have

A♦
Riesz ` 0 ≤ A−B

A♦
Riesz ` 0 ≤ B −A

and thus by the completeness Theorem 2.4.2 of the system HMR and the invertibility of the 0
rule,

.HMR ` 1.(A+B)

.HMR ` 1.(B +A)
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We can now use Lemma 103 to obtain

.HR ` 1.(A+B)

.HR ` 1.(B +A)

and by the soundness Theorem 2.2.1 of the system HR

ARiesz ` 0 ≤ A+B

ARiesz ` 0 ≤ B +A

and we can conclude by using Lemma 7 to obtain

ARiesz ` A = B

which concludes the proof.

Remark 40. The same process can be used to prove that modal Abelian l–groups are a conser-
vative extension of Abelian l–groups, i.e., that for all l-group terms A,B, A♦

l–groups ` A = B if
and only if Al–groups ` A = B

3.2.2 Conservativity over scalar multiplication
We will now show that Riesz spaces are a conservative extension of Abelian l–groups, i.e.,

that for all Abelian l–group terms A,B, Al–groups ` A = B if and only if ARiesz ` A = B. Note
that this result is well–known in the theory of Riesz spaces, but we provide a purely syntactic
proof and an effective way of translating a derivation in one equational theory to the other.

We will proceed in a similar way as in Section 3.2.1, i.e., we will reduce the theorem to the
hypersequent calculi HR and GA‖. However, because of the weights in the hypersequent, a
hypersequent G in HR is not a valid hypersequent in GA‖. Thus, for all HR hypersequent G,
we define the GA‖ hypersequent G† by removing the weights, e.g., if G = ` 1.x | ` 1.x, 1.y then
G† = ` x | ` x, y.

Lemma 104. Let G be a hypersequent containing only Abelian l–group terms and where all
weights are equal to 1. If .HRG then .GA‖G

†.

Proof. By invoking the CAN elimination Theorem 2.2.4, we can assume that the derivation of
G is CAN–free.

Moreover, by using the invertibility of the logical rules of Section 2.2.4, we can assume that
G is atomic of the form

` Γ1 | ... | ` Γm

where Γi = ` (1.x1)ni,1 , ..., (1.xk)ni,k , (1.x1)n
′
i,1 , ..., (1.xk)n

′
i,k (since G contains only Abelian l–

group terms, the × rule is never used and so the weights stay equal to 1).
Then, by application of the algebraic property of HR 2.2.5, there are t1, ..., tm in R≥0 such

that

• there exists i ∈ [1..m] such that ti 6= 0 and

• for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

tini,j =

m∑
i=1

tin
′
i,j
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Since all coefficients are rational and the theory of linear arithmetic over R is an elementary
extension of that of linear arithmetic over Q [FR75], there are q1, ..., qm ∈ Q≥0 satisfying the same
property of t1, ..., tm. By multiplying all qi by the least common multiple of their denominators,
we get a solution k1, ..., km in N. So according to the algebraic property of GA‖ 2.1.5, G† has a
GA‖ derivation. This concludes the proof.

Theorem 3.2.2 (Conservativity regarding scalar multiplication). For all Abelian l–group terms
A,B, ARiesz ` A = B if and only if Al–groups ` A = B.

Proof. As before, the direction Al–groups ` A = B ⇒ ARiesz ` A = B is trivial since a derivation
of Al–groups ` A = B is also a derivation of ARiesz ` A = B.

For the other direction, let’s assume that ARiesz ` A = B then by using Lemma 7, we have

ARiesz ` 0 ≤ A−B

ARiesz ` 0 ≤ B −A

and thus by the completeness Theorem 2.2.2 of the system HR and the invertibility of the 0
rule,

.HR ` 1.(A+B)

.HR ` 1.(B +A)

We can now use Lemma 104 to obtain

.GA‖ ` (A+B)

.GA‖ ` (B +A)

and by the soundness Theorem 2.1.1 of the system GA‖

Al–groups ` 0 ≤ A+B

Al–groups ` 0 ≤ B +A

and we can conclude by using Lemma 1 to obtain

Al–groups ` A = B

which concludes the proof.

Remark 41 (Open problem). We have not been able to prove or disprove the equivalent of The-
orem 3.2.2 in the context of modal Riesz spaces. We leave this as an open problem.

Question. Let A,B be modal Abelian l–group terms, is it true that if A♦
Riesz ` A = B then

A♦
l–groups ` A = B?

The proof above can not be adapted to the context of modal Riesz spaces since the algebraic
property of HMR concerns polynomial inequalities instead of linear inequalities as in the system
HR, and thus it is no longer true that if the system has a real solution, then it necessarily has
a rational one.
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3.3 Decidability and Archimedean property

3.3.1 Parametrized HMR
In this section, we will introduce a generalisation of the hypersequent calculus HMR where

the weights are not scalars but polynomials. Such a hypersequent can be interpreted as describing
the set of possible assignments to these real–valued variables that result in a valid concrete (i.e.,
where all scalars are numbers and not variables) derivation.

For instance, the derivation
` INIT

` r.x, r.x ID

is valid for any r ∈ R>0 and, similarly, the derivation

` INIT

` r.x, s.x, t.x ID, r + s = t

is valid for any values of reals (r, s, t) ∈ R3 such that r = s + t. Lastly, the hypersequent
containing two scalar–variables α, β and two concrete scalars s and t

` (α2 − β).x, s.x, t.x

is derivable for any assignment of concrete assignments r1, r2 ∈ R to α and β such that (r1)2−r2 >
0 and (r1)2 − r2 = s+ t.

The notion of parametrized hypersequent appears naturally when dealing with the algebraic
property of the system HMR (see Theorem 2.4.5). The algebraic property requires the existence
of scalars t1, ..., tm satisfying some conditions, one of which is the derivability of the hypersequent
H

` t1.∆1, ..., tm.∆m, (t1~r′1).1, ..., (tm~r′m).1, (t1~s′1).1, ..., (tm~s′m).1

Thus to check if a hypersequent satisfies the algebraic property, we have to check whether or
not the hypersequent H above is derivable for some t1, ..., tm. Since the t1, ..., tm are not neces-
sarily known and will depend on the possible derivation of the hypersequent H, it is convenient
to consider the parametrized hypersequent

` α1.∆1, ..., αm.∆m, (α1
~r′1).1, ..., (αm~r′m).1, (α1

~s′1).1, ..., (αm~s′m).1

and then build a parametrized derivation of this hypersequent. One then only has to check
if there is an assignment to the variables α1, ..., αm that satisfies the other conditions of the
algebraic property, and such that the derivation is valid, i.e., all the weights are positive.

We will now give the formal definition of the parametrized hypersequent calculus.

Definition 3.3.1. A parametrized weighted term is a formal expressionR.A whereR ∈ R[α1, ..., αk]
for some variables α1, ..., αk and A is a term in NNF.

Example 20. For polynomial variables α, β,

(α− 5β).x and (α2 + αβ).x u ♦y

are parametrized weighted terms.

Definition 3.3.2. A parametrized sequent is a formal expression of the form ` Γ where Γ is a
multiset of parametrized weighted terms.
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Example 21. For polynomial variables α, β,

` (α− 5β).x, (α2 + αβ).x u ♦y

is a parametrized sequent.

Definition 3.3.3. A parametrized hypersequent is a non–empty finite multiset of parametrized
sequents, written as ` Γ1| . . . | ` Γn.

Example 22. For polynomial variables α, β,

` (α2 − β).x, 4.x, β.x | ` (α− 5β).x, (α2 + αβ).x u ♦y

is a parametrized hypersequent.
We say that a sequent (resp. hypersequent) is parametrized by α1, ...αk if R ∈ R[α1, ..., αk]

for all weight R appearing in the sequent (resp. hypersequent). If a sequent ` Γ is parametrized
by α1, ..., αk, we say that an assignment t1, ..., tk of the variables is valid if R(t1, ..., tk) ≥ 0 for
all weight appearing in ` Γ (where R(t1, ..., tk) is the usual evaluation of polynomials in R).
Similarly, if a hypersequent G is parametrized by α1, ..., αk, we say that an assignment t1, ..., tk
is valid if it is valid for all sequent appearing in G.

Definition 3.3.4. For all sequent ` Γ = ` R1.A1, ..., Rn.An parametrized by α1, ..., αk and valid
assignment t1, ..., tk, ` Γ(t1, ..., tk) is the sequent

` R1(t1, ..., tk).A1, ..., Rn(t1, ..., tk).An

Definition 3.3.5. For all hypersequent G = ` Γ1 | ... | ` Γn parametrized by α1, ..., αk and
valid assignment t1, ..., tk, G(t1, ..., tk) is the hypersequent

` Γ1(t1, ..., tk) | ... | ` Γn(t1, ..., tk)

Remark 42. Remark that valid assignments evaluate the weights to non-negative scalars instead
of positive ones (recall that in Definition 2.4.1 of a weighted term, the weights are positive).
This choice was made out of convenience, since it is often useful for the weights to evaluate
to 0. In this case, we simply remove the weighted term, e.g., for the parametrized sequent
` Γ = ` (α1 − α2).x, α1.x, the valid assignments are all t1, t2 such that t1 ≥ t2 ≥ 0. When
t1 = t2, we have ` Γ(t1, t2) = ` t1.x (we removed 0.x from the sequent).

Definition 3.3.6. A parametrized derivation is a HMR derivation where the T rule can be
used with a polynomial instead of a positive scalar, i.e., we use the following T rule

G | ` R.Γ
G | ` Γ

T, R ∈ R[α1, ..., αk]

We say that a derivation is parametrized by α1, ..., αk if all hypersequent appearing in the
derivation are parametrized by α1, ..., αk.

If a derivation is parametrized by α1, ..., αk, we say that an assignment t1, ..., tk is valid if the
assignment is valid for all hypersequent appearing in the derivation, and if the provisos of the
rules are respected for this assignment. For instance, if the derivation contains the following ID
rule

`
` R1.x, R2.x, S1.x

ID, R1 +R2 = S1

then for the assignment to be valid, we require that R1(t1, ..., tk) +R2(t1, ..., tk) = S1(t1, ..., tk).
For all hypersequent G parametrized by α1, ..., αk, parametrized derivation of G and valid

assignment t1, ..., tk, we can obtain a derivation ofG(t1, ..., tk) by simply evaluating all polynomial
appearing in the derivation on t1, ..., tk.
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Example 23. A possible parametrized derivation of the hypersequent G =` (α2−β).x, s.x, t.x is

` INIT

` (α2 − β).x, s.x, t.x
ID, α2 − β = s+ t

The valid assignments (r1, r2) for such a derivation are exactly the one satisfying

• r21 − r2 = s+ t because of the proviso of the ID rule, and

• r21 − r2 ≥ 0 for the assignment to be valid for the hypersquent.

For all assignment satisfying those conditions, we can obtain a derivation of G(r1, r2) simply
by replacing every occurrences of α by r1 and β by r2, obtaining the following HMR derivation

` INIT

` (r21 − r2).x, s.x, t.x
ID, r21 − r2 = s+ t

3.3.2 Decidability
In this section, we use the algebraic property 2.4.5 to introduce an algorithm for deciding if

a hypersequent G is derivable in the system HR.
The procedure takes a hypersequent G parametrized by α1, ..., αn, and construct a formula

φG(~α) ∈ FO(R,+,×,≤) in the language of the first order theory of the reals. The procedure
is recursive and terminates because each recursive call decreases the complexity (see Definition
2.4.8) of its input G. The key property is that a sequence of scalars (s1, ..., sn) ∈ R satisfies φG if
and only if the hypersequent G(s1, ..., sn) is derivable in the systemHMR. The decidability then
follows from the well–known fact that the theory FO(R,+,×,≤) admits quantifier elimination
and is decidable [Tar51, Gri88].

The algorithm to construct φG takes as input G and proceeds as follows:

1. if G is not a basic hypersequent (i.e., if it contains any complex term whose outermost
connective is not ♦ or 1 or 1), then the algorithm returns

φG =

n∧
i=1

φGi

where G1, . . . , Gn are the basic hypersequents obtained by iteratively applying the logical
rules, and φGi

is the formula recursively computed by the algorithm on input Gi.

2. if G has the shape ` ~R.1, ~S.1 then φG =
∑ ~S ≤

∑ ~R.

3. otherwise G is a basic hypersequent which has the shape

` Γ1,♦∆1, ~R′1.1, ~S′1.1 | ... | ` Γm,♦∆m, ~R′m.1, ~S′m.1

where Γi = ~Ri,1.x1, ..., ~Ri,k.xk, ~Si,1.x1, ..., ~Si,k.xk. We then define:

• A formula GZ(β1, ..., βm) that states that for all i ∈ [1..m], 0 ≤ βi.

Z(β1, ..., βm) =
∧

i∈[1..m]

(0 ≤ βi)
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• A formula NZ(β1, ..., βm) that states there is i ∈ [1..m] such that βi 6= 0.

NZ(β1, ..., βm) =
∨

i∈[1..m]

¬(βi = 0)

• A formula A(β1, ..., βm) that states that all the atoms cancel each other.

A(β1, ..., βm) =

k∧
j=0

(

m∑
i=1

βi
∑

~Ri,j =

m∑
i=1

βi
∑

~Si,j)

• A formula O(β1, ..., βm) that states that there are more 1 than 1,

O(β1, ..., βm) =

m∑
i=1

βi
∑

~S′i ≤
m∑
i=1

βi
∑

~R′i

• A hypersequentH(β1, ..., βm) which is the result of cancelling the atoms using β1, ..., βm
and then using the ♦ rule, i.e. is the leaf of the following prederivation:

` β1.∆1, (β1 ~R′1).1, (β1 ~S′1).1, ..., βm.∆m, (βm ~R′m).1, (βm ~S′m).1

` β1.♦∆1, (β1 ~R′1).1, (β1 ~S′1).1, ..., βm.♦∆m, (βm ~R′m).1, (βm ~S′m).1
♦

` β1.Γ1, β1.♦∆1, (β1 ~R′1).1, (β1 ~S′1).1, ..., βm.Γm, βm.♦∆m, (βm ~R′m).1, (βm ~S′m).1
ID∗

` β1.Γ1, β1.♦∆1, (β1 ~R′1).1, (β1 ~S′1).1 | ... | ` βm.Γm, βm.♦∆m, (βm ~R′m).1, (βm ~S′m).1
S∗

` Γ1,♦∆1, ~R′1.1, ~S′1.1 | ... | ` Γm,♦∆m, ~R′m.1, ~S′m.1
T∗

• The formula φH(β1,...,βm) computed recursively from H(β1, ..., βm) above.

Finally, we return φG defined as follows:

φG = ∃β1, ..., βm, GZ(β1, ..., βm)∧NZ(β1, ..., βm)∧A(β1, ..., βm)∧O(β1, ..., βm)∧φH(β1,...,βm)

The following theorem states the correctness of the above described algorithm.

Theorem 3.3.1. Let G be a hypersequent parametrized by ~α. Let φG(~α) be the formula returned
by the algorithm described above on input G. Then, for all valid assignment ~s ∈ R of G, the
following are equivalent:

1. φG(~s) holds in R,

2. G(~s) is derivable in HMR.

Proof. By using the CAN–free invertibility of the logical rules, we can assume that G is a basic
hypersequent. If G has the shape ` ~R.1, ~S.1, the result is trivial since φG is the proviso of the 1
rule. Otherwise, the result is a direct corollary of the algebraic property 2.4.5 since the formula
NZ corresponds to the first property, the formula A corresponds to the second property, the
formula O corresponds to the third one and the formula φH corresponds to the last one.

Even though the problem is decidable, the algorithm described previously is non–elementary
since the size of the formula φG can not be bound by a finite tower of exponentials.

Lemma 105. Let An be defined by induction on n as follows:
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• A0 = x for some variable x

• An+1 = ♦An t ♦An

For i ∈ N, let Gi = ` 1.Ai. Then for all i, φGi has at least 22
. .

.
2

︸ ︷︷ ︸
i times

existentials (with the convention

22
. .

.
2

︸ ︷︷ ︸
0 times

= 1), i.e., each use of the ♦ rule will add one exponential to the number of existentials.

Proof. For i, j, k ∈ N and R1, ..., Rj ∈ R[α1, ..., αk], we define

Hi,j(R1, ..., Rj) = ` R1.Ai, ..., Rj .Ai

We will show by induction that for all 0 < i and 0 < j, φHi,j has at least 22
. .

.
2j

︸ ︷︷ ︸
i times

existentials.

For all j ∈ N>0, k ∈ N and R1, ..., Rj ∈ R[α1, ..., αk], H0,j [R1, ..., Rj ] is an atomic hyperse-
quent with only one sequent, so φH0,j

has at least one existential.
Let j ∈ N>0, k ∈ N and R1, ..., Rj ∈ R[α1, ..., αk]. By applying iteratively the logical rules

on H1,j , we obtain the basic hypersequent Hb = [` R1.♦x, ..., Rj .♦x]2
j

and φHb has 2j + 1
existentials. So φH1,j

(R1, ..., Rj) has 2j + 1 ≥ 2j existentials.
Let us now analyse φHi+1,j

(R1, ..., Rj) for i > 0. By applying iteratively the logical rules,
we obtain only one basic hypersequent : Hb

i+1,j(R1, ..., Rj) = [` R1.♦Ai, ..., Rj .♦Ai]2
j

. We notice
that one of the subformulas of φHb

i+1,j
(R1, ..., Rj) is φHi,j×2j

( ~R′) for some ~R′ ∈ (R[α1, ...., αk, β1, ..., β2j ])j×2
j

,

which has at least 22
. .

.
2j×2j

︸ ︷︷ ︸
i times

≥ 22
. .

.
2j

︸ ︷︷ ︸
i+1 times

existentials.

So φHi+1,j (R1, ..., Rj) has at least 22
. .

.
2j

︸ ︷︷ ︸
i+1 times

existentials. Since Gi = Hi,1(1), Gi has at least

22
. .

.
2

︸ ︷︷ ︸
i times

existentials.

Remark 43. It is still an open question whether or not there is an elementary algorithm to decide
if a hypersequent is derivable in the system HMR.

3.3.3 Archimedean
In this Section, we will show that free modal Riesz spaces are Archimedean, i.e., that for all

modal Riesz terms A and B, if A♦
Riesz ` nA ≤ B for all n then A♦

Riesz ` A ≤ 0. Note that this
result was previously left open in [FMM20, §6.3].

As often, we will reduce the Archimedean property to the system HMR. To do so, we first
rephrase the Archimedean property. We have

∀n,A♦
Riesz ` nA ≤ B ⇔ ∀n,A♦

Riesz ` 0 ≤ B − nA

⇔ ∀n,A♦
Riesz ` 0 ≤ 1

n
B −A
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and

A♦
Riesz ` A ≤ 0 ⇔ A♦

Riesz ` 0 ≤ −A

thus the Archimedean property is equivalent to the following implication

∀n,A♦
Riesz ` 0 ≤ 1

n
B −A⇒ A♦

Riesz ` 0 ≤ −A

or using the soundness, completeness and invertibility of the logical rules of the systemHMR

∀n, .HMR `
1

n
.B, 1.A⇒ .HMR ` 1.A

In order to establish the implication above, we prove a stronger result of independent interest
about the hypersequent calculus HMR. This states that derivability in HMR is continuous in
the sense that derivability preserves limits of scalars in hypersequents. More formally, this means
that for all hypersequent G parametrized by α1, ..., αl, sequence of scalars (s1,n, ..., sl,n)n∈N and
vector of scalars s1, ..., sl such that lim

n→+∞
si,n = si for all i, we have

∀n, .HMRG(s1,n, ..., sl,n)⇒ .HMRG(s1, ..., sl)

This continuity comes from the continuity of the polynomials used in the algebraic property:
if G is basic and G(s1,n, ..., sl,n) satisfies the algebraic property for all n, by continuity of the
polynomials, so does G(s1, ..., sl).

Lemma 106 (Continuity of .HMR). For all hypersequent G parametrized by α1, ..., αl, se-
quence of valid assignments (s1,n, ..., sl,n)n∈N of G and a valid assignment s1, ..., sl of G such
that lim

n→+∞
si,n = si for all i, we have

∀n, .HMRG(s1,n, ..., sl,n)⇒ .HMRG(s1, ..., sl)

Proof. We will show this result by induction on the complexity of G. We distinguish three cases:

• If G is not basic, then we can use the invertibility of the logical rules to reduce the com-
plexity of G. For instance if

G = H | ` Γ, ~R.A+B

with ` Γ, ~R.A+B. We define

G′ = H | ` Γ, ~R.A, ~R.B

Since .HMRG(s1,n, ..., sl,n) for all n, by using the invertibility of the + rule, we have
.HMRG

′(s1,n, ..., sl,n).
By induction hypothesis, we have .HMRG

′(s1, ..., sl) and thus we can conclude by using
the + rule.

• If G = ` ~R.1, ~S.1. Since .HMRG(s1,n, ..., sl,n) for all n then by using the algebraic property
2.4.5, we have

∀n,
∑

~S(s1,n, ..., sl,n) ≤
∑

~R(s1,n, ..., sl,n)

and thus by continuity of the polynomials,∑
~S(s1, ..., sl) ≤

∑
~R(s1, ..., sl)

and so
` INIT

` ~R(s1, ..., sl).1, ~S(s1, ..., sl).1
1,
∑ ~S(s1, ..., sl) ≤

∑ ~R(s1, ..., sl)
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• Otherwise G has the form

` Γ1,♦∆1,
−→
R′1.1,

−→
S′1.1 | . . . | ` Γm,♦∆m,

−→
Rm.1,

−→
S′m.1

where Γi =
−→
R i,1.x1, ...,

−→
R i,k.xk,

−→
S i,1.x1, ...,

−→
S i,k.xi,k

According to the algebraic property 2.4.5, since G(s1,n, ..., sl,n) has a derivation for all n,
then for all n there exist numbers t1,n, ..., tm,n ∈ R≥0 such that:

– there exists i ∈ [1..m] such that ti,n 6= 0 and,

– for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti,n(
∑−→

R i,j(s1,n, ..., sl,n)−
∑−→

S i,j(s1,n, ..., sl,n)) = 0

and,

– 0 ≤
∑n
i=1 ti,n(

∑−→
R′i(s1,n, ..., sl,n)−

∑−→
S′i(s1,n, ..., sl,n)) and,

– .HMRH(s1,n, ..., sl,n, t1,n, ..., tm,n)

where
H = ` αl+1.(∆1,

−→
R′1.1,

−→
S′1.1), , ..., αl+m.(∆m,

−→
R′m.1, tm,n

−→
S′m.1)

Notice that for all n, if t1,n, ..., tm,n ∈ R≥0 satisfies the algebraic property for G, then for
all a > 0, t1,na , ...,

tm,n

a also satisfies the algebraic property. By taking a = max
i∈[1..m]

ti,n, we

can assume that for all n, t1,n, ..., tm,n ∈ [0, 1] and that tin,n = 1 for some in.

Since [0, 1] is compact and for all n, there is in ∈ [1..m] such that tin,n = 1, then there is
a subsequence (σ(n)) such that for all j ∈ [1..m], tj,σ(n) converge toward some tj ∈ [0, 1]
and there is i ∈ [1..m] such that ti,σ(n) = 1 for all n (therefore ti = 1).

If ∆i = ∅ for all i, then H = ` ~R.1, ~S.1 for some ~R and ~S and we conclude as in the
previous case to show that H(s1, ..., sl+m) has a derivation.

Otherwise, the complexity of H is strictly lesser that the complexity of G and by induction
hypothesis, H(s1, ..., sl+m) has a derivation.

In both case H(s1, ..., sl+m) has a derivation and by continuity

– for every variable and covariable (xj , xj) pair, it holds that

m∑
i=1

ti(
∑−→

R i,j(s1, ..., sl)−
∑−→

S i,j(s1, ..., sl)) = 0

and,

– 0 ≤
∑n
i=1 ti(

∑−→
R′i(s1, ..., sl)−

∑−→
S′i(s1, ..., sl))

so according to the algebraic property 2.4.5, G(s1, ..., sl) has a derivation.

Theorem 3.3.2 (Archimedean property). For all modal Riesz terms A and B, if A♦
Riesz ` nA ≤

B for all n then A♦
Riesz ` A ≤ 0.
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Proof. Let’s assume that A♦
Riesz ` nA ≤ B for all n. Then for all n ≥ 1,

ARiesz ` 0 ≤ 1

n
B −A

and thus by the completeness Theorem 2.2.2 of the systemHR and the invertibility of the logical
rules,

∀n ≥ 1, .HMR `
1

n
.B, 1.A

We can now use Lemma 106 on the parametrized hypersequent

G(α1) = ` α1.B, 1.A

to obtain
.HMRG(0)

and by the soundness Theorem 2.4.1 of the system HMR

A♦
Riesz ` 0 ≤ −A

and therefore
A♦

Riesz ` A ≤ 0

which concludes the proof.



Conclusion and future work

Recall the four steps for our direction of research announced in the introduction:

1. Find a simple real–valued modal logic for expressing properties of probabilistic systems.

2. Design a good structural proof system for this logic.

3. Extend the logic with the (co)inductive defined operators necessary to obtain the expres-
siveness of pCTL.

4. Build upon the proof system designed at step 2 to obtain a well–behaved proof system for
the logic obtained at step 3, thus having a good proof system for pCTL.

In this thesis, we have taken the work of [MFM17, Mio18, FMM20] as the step one and we have
accomplished step two. Indeed, we have built upon the hypersequent calculus GA of Metcalfe,
Gabbay and Olivetti [MOG05] to develop a hypersequent calculus for the theory of modal Riesz
spaces called HMR. To do so, we have built hypersequent calculi for different fragments of
modal Riesz spaces, namely HR for Riesz spaces and MGA for modal lattice–ordered Abelian
groups, before combining them to obtain HMR. For each of those systems, we have shown that
they satisfy the basic properties required for well–behaved structural proof systems, i.e., among
others, the soundness, completeness and CAN elimination theorems.

We then have used the hypersequent calculus HMR to prove new results regarding modal
Riesz spaces. Among them, we have shown that the equational theory of modal Riesz spaces is
decidable. We also solved a problem left open in [FMM20][§6.3], namely that free modal Riesz
spaces are Archimedean.

Future work
The natural continuation of our work is to implement steps three and four mentioned above.

Step three - Mio extended Riesz modal logic with threshold operators (denoted by T>0)
to implement a logic sufficiently expressive to interpret the bounded–fragment of pCTL and an
axiomatisation for this logic. The threshold operator T>0 is defined using a least fixed–point
definition, in the style discussed in Section 1.5. See [Mio18] for further details. Thus, the
only remaining operator of pCTL not included in the logic of [Mio18] is the unbounded Until
operator. Mio suggests that further extending the logic with the following fixed–point defined
binary operator U :

U(F,G) = µX.T>0(G) t (T>0(F ) u ♦X)

should allow for the encoding of the unbounded Until operator of pCTL.

138
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However, no axiomatisation has yet been found for this extended logic, and this is therefore
an interesting line of research.

Step four - For the implementation of a well–behaved proof system, the main difficulty
is to extend our hypersequent calculus with rules for (co)inductive operators. One of the most
promising approach is the study of cyclic proofs originally introduced for logics with (co)inductive
definitions such as the modal µ–calculus [DHL06, Stu07, BS11].

A cyclic proof is a derivation that can contain cycles and should satisfy a certain condition
in order to ensure soundness. For instance, if we consider the following usual rules for the
fixed–points operators:

G | ` Γ, φ(νX.φ(X))

G | ` Γ, νX.φ(X)

G | ` Γ, φ(µX.φ(X))

G | ` Γ, µX.φ(X)

and the hypersequent ` νX.♦(X)t−1u 1, which is semantically equivalent to the formula PNT
defined in Section 1.5, then a possible cyclic proof for this hypersequent would be

` νX.♦(X) t −1 u 1†

` ♦(νX.♦(X) t −1 u 1)
♦

` ♦(νX.♦(X) t −1 u 1) | ` −1
W

` ♦(νX.♦(X) t −1 u 1) t −1
t ` INIT

` 1
1

` ♦(νX.♦(X) t −1 u 1) t −1 u 1
u

` νX.♦(X) t −1 u 1†

where † marks the cycle. However, not all cyclic proofs are valid. A similar cyclic proof is
possible for the hypersequent ` µX.♦(X)t−1u1, but this hypersequent should not be derivable
since its interpretation is not positive. Indeed, in (R,≤,♦ = x 7→ x), the interpretation of
` µX.♦(X) t −1 u 1 is the greatest number r ∈ R such that r = min(max(r,−1), 1), and
therefore, it is the real number −1. Since −1 is not positive, the sequent should not be derivable.
Thus it is necessary to find adequate conditions for a cyclic proof to be valid. Those conditions
must be strong enough for the hypersequent calculus to be sound, but must also be weak enough
for the hypersequent calculus to be complete.

The theory of cyclic proofs is an active area of research, and has been mostly developed
around the µ-calculus (see, e.g., [DHL06, Stu07, BS11] and the recent [Dou17]). Cyclic proof
systems have also been considered for Linear Logic (see [Gir87, Gir95] for an introduction to
Linear Logic and, e.g., [Dou17][§2.4.3] for an introduction to the theory of cyclic proofs for
several logics including Linear Logic). In this direction, some parallels can be done between the
hypersequent calculus GA and the sequent calculus for Linear Logic. Firstly, GA can be seen
as a sequent calculus by removing the S,C and W rules and restricting every other rules to act
on hypersequent with only one sequent, e.g., the + rules become

` Γ, A,B

` Γ, A+B
+

and the t rule becomes the two rules

` Γ, A

` Γ, A tB
t1

` Γ, B

` Γ, A tB
t2

This sequent calculus is no longer complete for the equational theory we consider (the sequent
` xtx is no longer derivable), but it is very similar to the sequent calculus of the Multiplicative
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Additive fragment of Linear Logic (MALL) [Gir87, Gir95] extended with the usual nullary and
binary mix rules (see, among others, [Gir87, FR94, AJ94]):

` Mix0
` Γ ` ∆
` Γ,∆

Mix2

In fact, we can directly translate a derivation of the sequent version of GA into a derivation
of MALL, and vice–versa, with the following translations:

Operator of GA Rule of GA Operator of Linear Logic Rule of Linear Logic
INIT axiom Mix0 axiom
ID axiom ID axiom
M rule Mix2 rule

+
+ rule ` ` rule

+ rule and M rule ⊗ ⊗ rule

t t1 rule ⊕ ⊕1 rule
t2 rule ⊕2 rule

u u rule & & rule

0
0 rule ⊥ ⊥ rule

0 rule and INIT axiom 1 1 axiom

Note that the translation from MALL to GA sends both multiplicative operators ` and ⊗ of
MALL to the operator + of GA and also sends both multiplicative constants ⊥ and 1 of MALL
to the constant 0 of GA. It is well known as folklore that in MALL, the binary MIX rule is
equivalent to the derivability of the sequent

` 1, 1

and the nullary MIX rule is equivalent to the derivability of the sequent

` ⊥,⊥

and both these sequents are trivially derivable when the multiplicative constants are equivalent
since ` 1, 1 = ` ⊥,⊥ = ` 1,⊥ and ` 1,⊥ has the following derivation:

` 1
1

` 1,⊥ ⊥

Thus, since the multiplicative constants are the same, the nullary and binary MIX rules are
redundant and the sequent version of GA is exactly the logic MALL where the multiplicative
operators and multiplicative constants collapse.

One possible line of research is then to further study the connections between Linear Logic
and the hypersequent calculus HMR and how the circular proof techniques for Linear Logic can
be exported to hypersequent calculi.
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