
HAL Id: tel-03886336
https://theses.hal.science/tel-03886336v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application-based fault tolerance for numerical linear
algebra at large scale

Daniel Torres Gonzalez

To cite this version:
Daniel Torres Gonzalez. Application-based fault tolerance for numerical linear algebra at large scale.
Data Structures and Algorithms [cs.DS]. Université Paris-Nord - Paris XIII, 2021. English. �NNT :
2021PA131088�. �tel-03886336�

https://theses.hal.science/tel-03886336v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD
École Doctorale Sciences, Technologies, Santé Galilée

Application-Based Fault Tolerance for
Numerical Linear Algebra at Large

Scale

Tolérance aux Pannes Basée sur les Applications pour

l’Algèbre Linéaire Numérique à Grande Échelle

THÈSE DE DOCTORAT
présentée par

Daniel Alberto TORRES GONZÁLEZ
Laboratoire d’Informatique de Paris Nord, CNRS UMR 7030

pour l’obtention du grade de
DOCTEUR EN INFORMATIQUE

soutenue le 15/12/2021 devant le jury d’examen composé de :

WOLFLER CALVO Roberto, Université Sorbonne Paris Nord Examinateur
VIALLE Stéphane, CentraleSupélec .Rapporteur

DAYDÉ Michel, INP-ENSEEIHT . Rapporteur
THIBAULT Samuel, Université de Bordeaux . Examinateur
BAUTISTA GOMEZ Leonardo, Barcelona Supercomputing Center Examinateur
PETRUCCI Laure, Université Sorbonne Paris NordDirectrice de thèse
COTI Camille, University of Oregon . Co-encadrante de thèse

Abstract

The increasing size of supercomputers is allowing to compute solutions for various compu-
tational problems that, not so long ago, were consuming too much time and memory to be
solved. However, at that scale, other challenges are arising. The optimal performance of ded-
icated algorithms running on these parallel and distributed architectures gets hampered by
these new challenges. Large-scale systems involve their own challenges due to the total num-
ber of hardware and software components and the complexity of these components, including
system reliability, availability, and scalability. In particular, hardware or software failures
may occur at any moment during the execution of parallel applications that, therefore, can-
not complete unless these failures are handled. Meanwhile, as high-performance systems
have become larger, failures have become common and computation units are expected to
fail during the execution of critical programs. As a consequence, fault tolerance has arisen
as a major challenge in parallel and distributed computing, and parallel programs ought to
rely on scalable algorithms that also ensure the correct completion of the program in spite of
failures. In particular, parallel subroutines provided in libraries should be able to mitigate
errors that occur in a call to these subroutines. For instance, linear algebra operations are
building blocks used by domain scientists to solve problems or to simulate scientific phe-
nomena. They are usually provided in highly optimized libraries and are typically software
components that ought to be fault tolerant. One way to make sure fault tolerant algorithms
are robust and can tolerate any failure scenario consists in designing a formal model of the
system and prove properties on this model. In this thesis, I am presenting a set of fault
tolerant algorithms for QR, LU and Cholesky matrix factorizations. These algorithms rely
on a the corresponding communication-avoiding algorithms, for tall-and-skinny matrices and
for general matrices; communication-avoiding algorithms have given good performance on
multiple architectures and have properties that make them scale well. Using a model, I am
proving robustness properties of these algorithms and, in particular, that as long as enough
processes survive (and this number decreases as the execution progresses), they can tolerate
any failure scenario. My algorithms can tolerate crash-type failures, respawn new processes
to replace the failed ones and take advantage of algebraic and algorithmic properties to im-
plement a forward-recovery approach, i.e., the processes that replace the failed ones to not
roll back to a previous state but are inserted at a point of the execution that was never
reached by the failed processes. I am presenting an experimental evaluation of the overhead
introduced by the fault tolerance mechanisms on failure-free executions and the cost of a
failure. Both scenarios have a small overhead, meaning that the fault tolerance mechanisms

i

have little impact on the critical path of the algorithms, and the post-failure restoration time
is small.

ii

iii

Résumé

La taille croissante des supercalculateurs a permis de s’attaquer à des problèmes de calcul
auparavant trop coûteux en temps et en mémoire pour être résolus. Cependant, d’autres
problèmes apparaissent à cette échelle et la performance obtenue par les algorithmes par-
allèles et distribués conçus pour cette échelle est impactée. Les systèmes à grande échelle font
face à des défis spécifiques du fait du grand nombre de composants matériels et logiciels dont
ils sont composés, et parmi ces défis on compte la fiabilité du système, la disponibilité et le
passage à l’échelle. En particulier, des défaillances matérielles et logicielles peuvent survenir
à tout moment pendant l’exécution d’applications parallèles qui, par conséquent, ne peuvent
pas s’exécuter intégralement et atteindre leur fin. Alors que la taille des systèmes parallèles
augmente, les défaillances sont appelées à arriver fréquemment lors de l’exécution de pro-
grammes parallèles. Par conséquent, la tolérance aux défaillances est aujourd’hui un défi
important pour le calcul parallèle distribué, et des programmes parallèles doivent se baser
sur des algorithmes capables de passer à l’échelle mais aussi d’assurer la terminaison cor-
recte du programme malgré les défaillances qui surviendraient. En particulier, des fonctions
parallèles fournies dans des bibliothèques doivent être capables de tolérer des défaillances
survenues dans les appels à ses fonctions. Les opérations d’algèbre linéaire sont des briques
de base de calculs utilisés par les scientifiques pour résoudre des problèmes ou simuler des
phénomènes scientifiques. Elles sont habituellement fournies dans des bibliothèques haute-
ment optimisées et sont typiquement des composants logiciels qui devraient être capables
de tolérer des défaillances. Une méthode pour s’assurer que des algorithmes tolérants aux
défaillances sont robustes et peuvent tolérer n’importe quel scénario de défaillances consiste
à concevoir un modèle formel du système et à prouver des propriétés sur ce modèle. Dans
cette thèse, je présente un ensemble d’algorithmes tolérants aux pannes pour les factorisa-
tions LU, QR et de Cholesky. Ces algorithmes se basent sur les algorithmes à évitement de
communications correspondants, pour matrices hautes et fines et pour matrices générales.
Les algorithmes à évitement de communications ont montré de bonnes performances sur de
multiples architectures contemporaines et ont des propriétés qui leur permettent de bien
passer à l’échelle. En utilisant un modèle, je prouve des propriétés de robustesse de ces algo-
rithmes et, en particulier, que tant que suffisamment de processus survivent (et leur nombre
diminue au cours de l’exécution), ils peuvent tolérer n’importe quel scénario de défaillances.
Ces algorithmes tolèrent des pannes de type crash, ou fail-stop, relancent des processus pour
remplacer ceux atteints par des défaillances et exploitent des propriétés algorithmiques et
algébriques pour mettre en place une approche de type retour en avançant, c’est-à-dire que

iv

les processus qui remplacent ceux touchés par les défaillances n’effectuent pas un retour en
arrière mais sont insérés dans l’exécution à un point qui n’avait jamais été atteint par les
processus touchés par les défaillances. Je présente une évaluation expérimentale du surcoût
introduit par les mécanismes de tolérants aux défaillances sur l’exécution en l’absence de
pannes et le coût d’une défaillance. Ces deux scénarii ont un surcoût faible, impliquant que
les mécanismes de tolérance aux défaillance ont un impact faible sur le chemin critique des
algorithmes, et le temps de restauration de l’état après une défaillance est faible.

v

vi

Acknowledgments

With a special dedication:

- To my family: for being aware of the progress of the PhD (baby boy, wife, father,
mother, brother, sisters, brother-in-law, nephew and niece).

- To the partners in the laboratory: for sharing some delicious moments during the last
three years, trying to teach me as much french as possible, each one of them with
different accent.

- To Laure Petrucci: for accepting me as her PhD student, for giving me the necessary
advices to fully develop and write the thesis work and for being aware of every single
moment during my stay at the laboratory and in France.

- To Camille Coti: for accepting me as her PhD student too, despite of my english level,
for the discussions about how to optimize some parts of the work and for her advices
and help in the writing of the thesis.

- To the members of the laboratory: for being gentle at all times with each member.

- To the members of the jury: for accepting to be part of the thesis defense.

- To the Grid5000 team: for allowing me to perform my experiments on this large-scale
infrastructure, regardless of how much time I needed to successfully complete all the
experiments.

- To the National Council for Science and Technology (CONACyT): for the granted
support.

vii

viii

Contents

Abstract i

Résumé iv

Acknowledgments vii

Acronyms List xiii

Figure List xv

Table List xix

Algorithm List xxi

1 Introduction 1
1.1 Background . 1

1.1.1 Current HPC Systems . 1
1.1.2 Linear Algebra over Large Scale Infrastructures 3
1.1.3 Matrix Factorizations . 4
1.1.4 Fault Tolerance in HPC . 6

1.2 Objectives . 7
1.3 Thesis Organization . 8

2 State of the Art 11
2.1 Current Fault Tolerance Approaches . 11
2.2 Linear Algebra Applications at High Scale 13

3 Block Form Representations for Matrix Factorizations 17
3.1 LU Block Form . 18
3.2 QR Block Form . 19
3.3 Cholesky Block Form . 21

4 LU Factorization 23
4.1 TSLU and FT-TSLU . 24

4.1.1 TSLU . 24

ix

4.1.2 FT-TSLU . 27

4.2 CALU and FT-CALU . 33

4.2.1 CALU . 33

4.2.2 FT-CALU . 36

5 QR Factorization 39

5.1 TSQR and FT-TSQR . 39

5.1.1 TSQR . 39

5.1.2 FT-TSQR . 41

5.2 CAQR and FT-CAQR . 43

5.2.1 CAQR . 43

5.2.2 FT-CAQR . 44

6 Cholesky Factorization 47

6.1 TSCH and FT-TSCH . 47

6.1.1 TSCH . 47

6.1.2 FT-TSCH . 48

6.2 CACH and FT-CACH . 49

6.2.1 CACH . 49

6.2.2 FT-CACH . 50

7 Fault Tolerance Formal Verification 53

7.1 Tall and Skinny Formal Model . 53

7.1.1 Tall and Skinny Model Description 53

7.1.2 Tall and Skinny Structural Analysis 54

7.2 Communication-Avoiding Formal Model . 55

7.2.1 Communication-Avoiding Model Description 55

7.2.2 Communication-Avoiding Structural Analysis 57

8 Implementations 59

8.1 Variables and Structures Definition . 60

8.1.1 Variables and Structures for TS-Algorithms 60

8.1.2 Variables and Structures for CA-Algorithms 64

8.2 Tall and Skinny Matrix Factorizations . 65

8.2.1 TSLU and FT-TSLU . 66

8.2.2 TSQR and FT-TSQR . 67

8.2.3 TSCH and FT-TSCH . 73

8.3 Communication-Avoiding Matrix Factorizations 74

8.3.1 CALU and FT-CALU . 74

8.3.2 CAQR and FT-CAQR . 74

8.3.3 CACH and FT-CACH . 75

x

9 Experiments 77
9.1 Grid5000 Test Architecture . 77
9.2 Input and Measured Times . 78
9.3 LU Tall and Skinny/Communication-Avoiding Executions 79
9.4 QR Tall and Skinny/Communication-Avoiding Executions 81
9.5 Cholesky Tall and Skinny/Communication-Avoiding Executions 83

10 Conclusions and Future Perspectives 87
10.1 Summary . 87
10.2 Future Perspectives . 88

Appendices 91

Appendix A TSLU/FT-TSLU execution examples 93
A.1 TSLU execution example . 93

A.1.1 TSLU single-process execution . 93
A.1.2 TSLU multi-process execution . 93

A.2 FT-TSLU multi-process execution . 96

Appendix B More Tall and Skinny/Communication-Avoiding Graphics 99
B.1 More LU Execution Graphics . 99
B.2 More Cholesky Execution Graphics . 100

References 101

xi

xii

Acronyms List

ABFT Algorithm-Based Fault Tolerance

CA Communication-Avoiding

CACH Communication-Avoiding Cholesky

CALU Communication-Avoiding LU

CAQR Communication-Avoiding QR

CPN Coloured Petri Nets

FTCACH Fault-Tolerant Communication-Avoiding Cholesky

FTCALU Fault-Tolerant Communication-Avoiding LU

FTCAQR Fault-Tolerant Communication-Avoiding QR

FTTSCH Fault-Tolerant Tall and Skinny Cholesky

FTTSLU Fault-Tolerant Tall and Skinny LU

FTTSQR Fault-Tolerant Tall and Skinny QR

MPI Message Passing Interface

MTBF Mean Time Between Failures

OMPI OpenMPI

TS Tall and Skinny

TSCH Tall and Skinny Cholesky

TSLU Tall and Skinny LU

TSQR Tall and Skinny QR

ULFM User-Level Fault Mitigation

xiii

xiv

List of Figures

1.1 Mean Time Between Failures example . 2
1.2 Matrix factorizations general representation. 5

3.1 LU block form representation of a matrix. 19
3.2 Rectangular matrix partitioning by sub-blocks (sub-matrices), where rowM =

M − 1 is the number of block-rows and colN = N − 1 is the number of block-
columns. 19

3.3 QR block form representation of a matrix. 20
3.4 Cholesky block form representation of a matrix. 21

4.1 TSLU failure-free example with t = 4 processes. Gray bar represents the
moment when a LU factorization is performed. 26

4.2 FT-TSLU failure-free example with t = 4 processes. Gray bar represents the
moment when a LU factorization is performed. 30

4.3 FT-TSLU example with t = 4 processes, showing one failure at the last step. 31
4.4 FT-TSLU example with t = 4 processes, showing one failure at the middle step. 31
4.5 FT-TSLU example with t = 4 processes, showing one failure at the first step. 32
4.6 FT-TSLU example with t = 4 processes, showing two failures in the same

branch at the middle step. 32
4.7 FT-TSLU example with t = 4 processes, showing two failures in different

branches at the middle step. 33
4.8 FT-TSLU recovering example with t = 4 processes, showing one failure at the

first step. 33
4.9 FT-TSLU recovering example with t = 4 processes, showing one failure at the

middle step. 34
4.10 Square matrix partition by sub-blocks, panels selection and trailing matrix

update example. 34
4.11 CALU . 36

5.1 CAQR trailing matrix update equations by pairs of process 44
5.2 CAQR trailing matrix update execution example. 45

6.1 CACH panel selection and Li,j broadcast across panel and rows. 51

7.1 Model corresponding to algorithms 1, 2, 5, 6, 9 and 10. 54

xv

7.2 Model corresponding to algorithms 3, 4, 7, 8, 11 and 12. 56

8.1 Definition of C structure matrix data . 61

8.2 Definition of C structure mpi data . 62

8.3 More useful variables in a Tall and Skinny algorithm. 62

8.4 Variables used in TSQR to allow householder vector broadcasts between pro-
cesses. 63

8.5 Variables used in TSLU/TSQR to enable intermediate results to be concate-
nated and remembered in case of an error. 63

8.6 Variables used in Communication-Avoiding algorithms to form the process
grid with its respective communicators and maintain the current state of a
matrix. 64

8.7 Possible stages utilized in Communication-Avoiding algorithms, depending on
the factorization that is being applied. 65

8.8 Communication-Avoiding grid partitioning description: red=column commu-
nicators, orange=row communicators, green=panel communicators, blue=global
communicator; rowM = M − 1, colN = N − 1, {currRow, rowNum} ∈
[0, rowM], {currCol, colNum} ∈ [0, colN] 66

8.9 FT-TSQR example with t = 3 processes. 67

8.10 FT-TSQR example with t = 5 processes. 68

8.11 FT-TSQR example with t = 9 processes. 69

8.12 FT-TSQR example with t = 6 processes. 70

8.13 FT-TSQR example with t = 10 processes. 72

8.14 FT-TSQR example with t = 7 processes. 73

9.1 Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 100k ×
100k). 80

9.2 Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:
100k × 100k). 81

9.3 Restoration times obtained in FT-CALU algorithm for all inputs, with one
error. 81

9.4 Comparision of the scalability of FT-CALU for different matrix sizes. 82

9.5 Total times obtained in (FT-)TSQR/(FT-)CAQR algorithms (input: 16k×16k). 82

9.6 Maximal throughput and speed-up reached in (FT-)CAQR algorithms (input:
16k × 16k). 83

9.7 Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 100k ×
100k). 84

9.8 Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:
100k × 100k). 85

9.9 Comparision of the scalability in (FT-)CACH algorithm for all inputs. 85

10.1 Example of a sparse matrix with an elimination tree. 89

B.1 Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 32k×32k). 99

xvi

B.2 Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:
32k × 32k). 100

B.3 Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 64k×64k).100
B.4 Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:

64k × 64k). 101
B.5 Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 16k×16k).101
B.6 Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:

16k × 16k). 102
B.7 Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 32k×32k).102
B.8 Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:

32k × 32k). 103
B.9 Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 64k×64k).103
B.10 Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:

64k × 64k). 104

xvii

xviii

List of Tables

1.1 Five Most Powerful Machines in Top500 June 2021 list. 3
1.2 Comparison of the communication and computation complexities for different

parallel QR factorization algorithms. 4

2.1 Some linear algebra dedicated libraries capable to run on large-scale architec-
tures. 14

8.1 OpenBLAS subroutines used in the implementations. 60
8.2 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 3 processes. 67
8.3 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 5 processes. 68
8.4 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 9 processes. 70
8.5 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 6 processes. 71
8.6 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 10 processes. 71
8.7 Storing of Householder vectors Hi,j in TSQR after an exchange between part-

ners is successful, with t = 7 processes. 71

9.1 Grid5000 Gros cluster hardware characteristics 77

xix

xx

List of Algorithms

1 TSLU . 25
2 FT-TSLU . 28
3 CALU . 35
4 FT-CALU . 37

5 TSQR . 40
6 FT-TSQR . 42
7 CAQR . 44
8 FT-CAQR . 46

9 TSCH . 48
10 FT-TSCH . 49
11 CACH . 50
12 FT-CACH . 52

13 Random Positive-Definite Symmetric Matrix 78

xxi

xxii

CHAPTER 1

Introduction

Current High-Performance Computing (HPC) systems have been growing for three decades
and continue to grow. Now that exascale is around the corner (with the announcement of
machines such as El Capitan and the EuroHPC machines), a set of challenges have been
identified to be addressed for exascale[1, 2, 3]. Fault tolerance is one of them [4].

The Top500 ranks the 500 world’s most powerful supercomputers (that submit a score).
The June 2021 Top500 (https://www.top500.org/lists/top500/2021/06/) rank includes
5 machines that feature more than a million cores, and all the 500 machines listed have
more than 10 000 cores. Hence, large-scale computing is no longer reserved for a handful of
specialized machines, but accessible in many computation centers.

As the number of processors and nodes is increasing, HPC systems become more prone
to failures [5]. Failures can arise anytime, stopping partially or totally the execution (crash-
type failures) or providing incorrect results (bit errors). In this thesis, I focus on failures
in the fail-stop model: processes work normally until they stop working completely. Failure
detectors utilized in HPC use this model, such as [6].

The challenge for fault-tolerance in HPC presents two aspects: keep the overhead on
failure-free execution low and recover the execution after a failure with as little overhead as
possible. In other words, the cost of fault tolerance and the cost of failures must remain low.

1.1 Background

1.1.1 Current HPC Systems

Increasing the clock frequency in modern microprocessors faces physical limitations. Current
HPC supercomputers are built by aggregating more and more powerful components, each
with complex architectures (GPUs, multicore chips, etc.). But with this increase the difficulty
for programs to reach extreme high-performance throughput increases too, due to failures.

The Mean Time Between Failures (MTBF) is a measure of system reliability which is
defined as the probability that the system performs without deviations from agreed-upon
behavior for a specific time. Equation 1.1 shows how MTBF can be estimated using the
individual MTBF of each component and in figure 1.1 we can see how this measure decreases

1

https://www.top500.org/lists/top500/2021/06/

1.1. BACKGROUND

as the number of components increases.

MTBFT = (
n−1∑
i=0

1

MTBFi

)−1 (1.1)

M
e
a
n

 T
im

e
 B

e
tw

e
e
n

 F
a
il

u
re

s
o
f

th
e
 S

ys
te

m
 (

h
o
u

rs
)

Number of components in the system

 10 000 H

1 10 100 1000 10000 100000 1e+06
0

1000

2000

3000

4000

5000

100 000 H

1 000 000 H

10 000 000 H

Figure 1.1: Mean Time Between Failures example

According to this estimation, at the scale the upcoming generation of HPC systems will
be at, the system will experience a component failure every few hours or even minutes. For
instance, the supercomputer Blue Waters located at the National Center for Supercomputing
Applications (NCSA) at the University of Illinois has an MTBF of 4.18 hours, approximately.
This means that an application that takes more than 4.18 hours to finish its computation
in the whole machine has one out of two chances (50%) to finish its computation without
experiencing a failure, and the other chance will be hit by an error. So, the expected
behavior is the first case, that the launched program ends, but this will only happen 50
percent of the time the program is run. Therefore, computation intensive applications need
fault tolerance to run in a sustainable way at large-scale. Furthermore, such applications
should be designed to expect failures and take suitable actions, but the applications need to
rely on a fault-tolerant environment. While the performance of the most powerful systems
has almost doubled every 18 months, the overall system MTBF is reduced to just a few
hours. Table 1.1 shows the five most powerful machines in Top500 according to the June
2021 list(https://www.top500.org/lists/top500/2021/06/).

The road to exascale platforms requires simultaneous use and management of thousands
or even millions of processing, networking, and storage components. In the not too distant
future (El Capitan is expected in 20221), we are expecting an exaflop machine with hundreds
of CPU cores and thousands accelerator cores. But using this amount of components has a
dramatic impact on the MTBF of the entire platform because the probability of a failure to

1https://www.llnl.gov/news/doennsa-lab-announce-partnership-cray-develop-nnsas-first-exascale-
supercomputer

2

https://www.top500.org/lists/top500/2021/06/

1.1. BACKGROUND

Table 1.1: Five Most Powerful Machines in Top500 June 2021 list.

Rank System Cores
Rmax

(TFlop/s)

1

Supercomputer Fugaku - Supercomputer
Fugaku, A64FX 48C 2.2GHz, Tofu

interconnect D, Fujitsu RIKEN Center for
Computational Science, Japan

7,630,848 442,010.0

2

Summit - IBM Power System AC922, IBM
POWER9 22C 3.07GHz, NVIDIA Volta

GV100, Dual-rail Mellanox EDR Infiniband,
IBM DOE/SC/Oak Ridge National

Laboratory, United States

2,414,592 148,600.0

3

Sierra - IBM Power System AC922, IBM
POWER9 22C 3.1GHz, NVIDIA Volta

GV100, Dual-rail Mellanox EDR Infiniband,
IBM / NVIDIA / Mellanox

DOE/NNSA/LLNL, United States

1,572,480 94,640.0

4

Sunway TaihuLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway, NRCPC
National Supercomputing Center in Wuxi,

China

10,649,600 93,014.6

5

Perlmutter - HPE Cray EX235n, AMD
EPYC 7763 64C 2.45GHz, NVIDIA A100

SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC, United States

706,304 64,590.0

occur during the execution of a critical program on an exascale supercomputer gets closer
to 1.

Lots of scientific programs designed specifically for these high-performance systems re-
quire long execution times. With this amount of components, element failure is more fre-
quent, making it more difficult for programs to progress. To benefit from the computing
power of these complex architectures and avoid restarting programs from the beginning
when a failure occurs, the algorithms implemented in programs must be redesigned to toler-
ate failures efficiently.

1.1.2 Linear Algebra over Large Scale Infrastructures

Linear algebra operations are used by a lot of scientific applications and therefore, efficient
linear algebra computation kernels that take advantage of the hardware described in the
previous 1.1.1 section are in high demand, so the design of parallel linear algebra kernels

3

1.1. BACKGROUND

that take advantage of the hardware described in the previous section (1.1.1) should be
considered important. However, extreme-scale is a challenging environment.

The major limiting factor to use HPC platforms to run dense linear algebra algorithms is
the fact that such operations do not reach the highest performance and acceleration which is
expected because of high data movement costs. Networks are getting faster, but at a slower
rate than computation nodes. While computation nodes continue to increase their computing
speed, the network that interconnects them is facing physical limits. Therefore, the cost
imbalance is getting more and more in favor of the computation nodes as communications
are getting more and more expensive with respect to computation. Unless the algorithms
count with an implicit high level of parallelism due to repetitive operations, their performance
will continue to be hampered by the time to move data between nodes (compared to the
computation speed of the nodes). To take advantage of a large-scale distributed computing
environment, the number of communications the programs use must be rethought to reduce
and adjust them with the topology the cluster is built upon. Another possibility consists of
hiding these communications by overlapping them with computations.

In this thesis, I am focusing on a class of algorithms that reduce the number of com-
munications in matrix factorizations: the Communication-Avoiding Algorithms. Since com-
munications are expensive over large-scale infrastructures, these algorithms aim to use a
minimal number of inter-process communications, and a non-minimal number of computing
operations. As an example of complexity reduction in a Communication-Avoiding algorithm
we have the TSQR (see section 5.1) and CAQR algorithms. For example, CAQR that uses
a right-looking QR factorization of a matrix on a two-dimensional grid of processes, dis-
tributing a 2D block cyclic layout over the grid. In this case, the number of arithmetic
operations is almost the same as a parallel QR factorization implemented in ScaLAPACK,
but the number of messages transferred in CAQR is reduced by a factor of the chosen block
size. An example of this complexity reduction can be seen in table 1.2. For more details
about complexity in Communication-Avoiding algorithms, see [7].

Table 1.2: Comparison of the communication and computation complexities for different
parallel QR factorization algorithms.

TSQR (m× n, P = P × 1) CAQR PDGEQRF

Flops 4
3
mn2

P
+ 2

3
n3log(P) 4

3
n3

P
+ 4

3
n2b√
P
log(P) 4

3
n3

P

Bandwidth 3
4
mn · log(P) 3

4
n2
√
P
log(P) Same

Latency log(P) 5
2
n
b
log(P) 3

2
nlog(P)

1.1.3 Matrix Factorizations

A matrix factorization or a matrix decomposition is a procedure that factorizes a matrix into
a product of matrices, to reduce the computational complexity of computing other matrix
operations that can be performed on the decomposed matrix rather then on the original
matrix. A matrix factorization is part of the basic linear algebra operations on computers,

4

1.1. BACKGROUND

even for routine operations such as solving systems of linear equations, computing the inverse
of a matrix or computing its determinant.

For example, if we need to solve a system of linear equations Ax = b, the LU, QR and
Cholesky factorizations, casually known as Los Tres Amigos, can be used.

• LU factorization: decomposition of a matrix A into a product of matrices A = LU ,
where L is a lower triangular matrix and U is an upper triangular matrix. It can be
used, among other operations, to solve square systems of linear equations, to invert a
matrix, or to compute the determinant of a matrix. The matrix computation can be
represented as in figure 1.2a.

• QR factorization: decomposition of a matrix A into a product of matrices A = QR,
where Q is an orthogonal matrix and R is an upper triangular matrix. It can be used
to solve the linear least-squares problem. It is also the basis for finding the eigenvalues
of a matrix using the QR factorizations. The matrix computation can be represented
as in figure 1.2c.

• Cholesky factorization: decomposition of a Hermitian, positive-definite matrix A into
a product of matrices A = LLT , where L is a lower triangular matrix and LT is
its conjugate transpose. This decomposition is useful for efficient numerical solutions
and, when it is possible to apply the algorithm, it is roughly twice as fast as the LU
factorization for solving systems of linear equations Ax = b. The matrix partitioning
can be represented as in figure 1.2b.

A =
L

U

(a) Representation of the LU factorization

A =
L

LT

(b) Representation of the Cholesky factor-
ization

A = Q

R

(c) Representation of the QR factorization

Figure 1.2: Matrix factorizations general representation.

5

1.1. BACKGROUND

1.1.4 Fault Tolerance in HPC

As mentioned in section 1.1.1, fault tolerance is necessary to sustain large-scale executions.
Fault-tolerant methods aim at enhancing the use of the system at a high scale by handling
failures occurring during the execution of applications. Indeed, the overhead on HPC ap-
plications due to fault tolerance is critical to the efficient use of the newest HPC systems.
To use these systems efficiently and avoid restarting applications from the beginning when
a failure occurs, the applications must be designed to tolerate failures, while keeping low
overhead on failure-free executions.

Fault tolerance for high-performance parallel and distributed applications can be achieved
at two different levels:

• System-level: transparent for the application (no modification is needed) and requires
a specific middleware to restart the failed processes and maintain a consistent state
of the application. It often uses a checkpointing mechanism and relies on rollback
recovery to save and restart the state of a process in case of an error, and a distributed
protocol to ensure the consistency of the parallel application after a process rollback.
The protocols are usually classified into two categories: coordinated checkpoint and
non-coordinated checkpoint.

• Application-level: requires the application itself to handle the failures and adapt to
them. It implies that the specific middleware that supports the distributed execution
must be robust enough to survive the failures and provide the application with prim-
itives to handle them, such as run-time re-spawning of new processes to replace the
failed ones or detect the absence of a failure process when an active process tries to
communicate with the failed one. Such a middleware needs to be fault-tolerant.

The de facto message-passing standard capable to operate on a wide range of parallel and
distributed computing architectures is the Message Passing Interface (MPI). The standard
defines a friendly syntax and semantics to write efficient applications for large-scale archi-
tectures like clusters. Its set of libraries proves useful to a wide range of users that write
message-passing programs in C, C++, and Fortran, turning it into the main paradigm to
write parallel applications on distributed-memory, large-scale infrastructures.

Nowadays, MPI counts several efficient implementations (like OpenMPI or MPICH),
many of which are open-source and/or derived from these two implementations. Because
MPI facilitates the development of scalable large-scale parallel applications, the scientific
community has encouraged the use of this interface on HPC systems. However, MPI is still
evolving and benefits major research efforts to support the complexity of currently distributed
architectures, interfacing with new programming paradigms and taking advantage of dynamic
run-time systems.

Research topics related to fault-tolerant algorithms have led to the development of new
distributed and parallel environments. Fault-tolerant programming environments should be
used to ensure the safe execution of critical applications. Afault-tolerant specification that
provides process-level fault tolerance for MPI applications was initiated in the mid 2000s:
FT-MPI. It was extended with new functions to handle failures at run-time and define the

6

1.2. OBJECTIVES

behavior that must be followed by the application after an error occurs, like respawning or
restarting crashed processes. A more recent MPI Standard draft proposal called User-Level
Fault Mitigation (ULFM) provides an interface specification to implement failure-recovery
strategies in MPI: algorithms can be designed to be intrinsically fault-tolerant and programs
can be implemented, stabilized, and executed using any implementation of this interface.
This last specification is based on FT-MPI.

As previously said, a specific middleware is needed to be able to survive failures. It
should offer the corresponding features to handle the replacement of failed processes, such
as run-time spawning of new processes. Such middleware needs to be fault-tolerant. So
FT-MPI and ULFM are attempting to unify a direction towards standardization of fault
tolerance for MPI.

1.2 Objectives

The central idea of this work is to design, implement, evaluate and verify fault-tolerant
dense linear-algebra algorithms, relying on communication-avoiding algorithms and exploit-
ing properties of these algorithms. Those algorithms were chosen because, as presented in
section 1.1.4, they achieve good performance on current large-scale machines. A specific
approach is made on how they can be exploited to provide new fault-tolerant dense linear-
algebra algorithms capable of giving the same results with low computational overhead. The
produced libraries should be efficient and they should have a low impact recovery in case a
run-time failure occurs. To completely achieve the main objective of the research, a series
of previous objectives should be achieved first:

1. Analysis of existing non-fault-tolerant algorithms: how properties can be inserted in
non-fault-tolerant algorithms to make them fault-tolerant.

2. Analysis of the user-level failure mitigation: what the model allows in terms of al-
gorithm design and performance analysis, what the mechanisms implemented by the
MPI libraries (OpenMPI, ULFM) allow.

3. Implementation of non-fault-tolerant algorithms: which steps of the algorithms must be
emphasized, take advantage of the properties and get involved with the functionality.

4. Performance analysis of non-fault-tolerant algorithms: measure the performance of the
non-fault-tolerant implementations, to serve as a baseline for the fault-tolerant algo-
rithms; particularly, the overhead of the fault-tolerant algorithms must be measured.

5. Implementation of fault-tolerant algorithms: design a highly scalable model, such that
all detected failures can be mitigated at the user level. It must take advantage of the
communication-avoiding algorithms to improve the final results.

6. Theoretical analysis of the algorithms: overhead on the complexity, resilience (how
many failures it can tolerate, etc.).

7

1.3. THESIS ORGANIZATION

7. Design, analysis, and performance evaluation of other algorithms of the same family:
it is not enough to take into consideration only a few non-fault-tolerant algorithms.
Another set of algorithms must be considered to improve the fault-tolerant approxi-
mation.

8. Implementation of fault-tolerant techniques and practical performance evaluation: a
scalable implementation requires its recovery time to decrease as the number of proces-
sors increases. Therefore, a set-up for experimental conditions must consider a constant
failure for each processor. With this, the evaluation must consider the implementa-
tion overhead in execution without failures and the implementation overhead when a
run-time failure occurs.

9. Apply last optimizations and evaluate performance of implementations: it must be
proved that the final implementations can resist failures and be able to mitigate them
at run-time, avoiding data losses and gaining efficiency at run-time.

1.3 Thesis Organization

This thesis is mainly organized as follows:

• Chapter 2 briefly presents an overview of the related literature and previous works that
have addressed related issues with the current topic.

• Chapter 3 describes a special block-form representation of matrices, depending on the
factorization that is going to be applied to a matrix.

• Chapters 4,5 and 6 present the non-fault-tolerant and fault-tolerant algorithms for LU
factorization (TSLU/CALU), QR factorization (TSQR/CAQR) and Cholesky factor-
izations (TSCH/CACH), respectively. The TSLU algorithm includes the tournament
pivoting algorithm. TSQR follows an approach similar to TSLU, forming an identi-
cal communication pattern. TSCH follows a linear communication pattern (only root
process 0 distributes data).

• Chapter 7 introduces a formal verification model for the fault-tolerant algorithms,
proving resilience and robustness. The presented formal model also verifies the correct
termination of the communication-avoiding algorithms.

• Chapter 8 gives a summary about how all algorithms were implemented on a highly
parallel and distributed environment.

• Chapter 9 presents how performance evaluations were made on a grid environment
to experiment the execution/termination of non-fault-tolerant and fault-tolerant algo-
rithms. It shows the most relevant results reached on large rectangular/square matri-
ces. It provides an evaluation of the overhead injected to non-fault-tolerant algorithms
by the fault-tolerant mechanisms during failure-free executions, to show that additional

8

1.3. THESIS ORGANIZATION

overhead remains as low as possible. Here is shown an evaluation of the cost when a
failure occurs on the overall execution time.

• Chapter 10 concludes the thesis work and provides some perspectives about possible
future works on this topic.

9

1.3. THESIS ORGANIZATION

10

CHAPTER 2

State of the Art

2.1 Current Fault Tolerance Approaches

Although reliability and high scalability have been studied for a long time [8], nowadays
they have become critical for HPC infrastructures to exploit their power [5]. Fault tolerance
has been identified as a major challenge to address towards exascale, due to the Mean Time
Between Failures (MTBF), being only a few hours [9]. On the road to exascale [1, 2, 4, 10],
the number of processes in the entire system will be millions. Over time, a large range of
approaches have been studied to achieve these properties with satisfying performance [3],
both at hardware-level and at software-level. Some examples of hardware-level approach in-
clude studies for detecting silent errors produced by hardware-level error correcting codes in
DRAMS [11], a cache-flushing method to recover crash-consistence in non-volatile-memory
for an iterative solver, a dense matrix multiplication and a Monte-Carlo simulation [12], and a
strategy on monitoring events at system hardware-level across many computing nodes, repli-
cating the most important events to a fault-tolerant runtime environment with a dynamic
checkpointing scheme [13]. Another example can be seen in [14], where silent errors that
occur in HPC programs are detected with a low-memory-overhead SDC detector, incurring
low-performance overhead.

Considering software-level approaches for fault tolerance in parallel applications, they
can be classified into two categories: system-level fault tolerance and application-level fault-
tolerance. For system-level fault tolerance, most approaches rely on rollback recovery. A
system-level approach is given in [15], proposing compiler instructions for allowing users
to specify checkpoint/restart operations, supporting from basic to advanced mechanisms
currently available on dedicated libraries and the using of fault-tolerance-dedicated threads.
Another system-level strategy proposes extensions to the Distem emulator [16], enabling it
to evaluate fault tolerance and load balancing mechanisms in real HPC Runtimes Charm++,
MPICH, and OpenMPI. In system-level fault tolerance, checkpointing is widely used in large
systems [17, 18]. About checkpointing algorithms, the two most important are coordinated
checkpointing and non-coordinated checkpointing.

1. Coordinated checkpointing [19] requires a synchronization protocol between the pro-
cesses that save their local state or snapshot and then, all together to form a global

11

2.1. CURRENT FAULT TOLERANCE APPROACHES

snapshot or checkpoint. This global checkpoint is a consistent state of the system,
allowing the system to recover in case of error, but it also forces all processes to roll
back to the last stored state which is part of a complete global checkpoint [20]. More-
over, processes in the system perform a checkpoint operation, either stopping their
execution (blocking implementation) or logging the messages that are being sent or
received during the checkpoint wave (non-blocking implementation) [17]. This way to
save coordinated checkpoints cause significant latency [21].

2. Non-coordinated requires a protocol to make sure the state of the distributed applica-
tion will still be consistent after a process rolls back. After a roll back, messages sent
to and by the failed process between the checkpoint and the failure need to be sent
and received again. A first approach would be to force the remote processes to roll
back, but it would lead to a domino effect : all the processes are likely to be forced to
roll back up to the beginning of the execution. In order to avoid this, a solution is
to log messages. Message-logging protocols have algorithms to reduce the information
stored and the latency caused by storing the messages. However, message logging intro-
duces a significant overhead on the communications [22, 23]. Communication-Induced
Checkpointing [24] analyzes the causal dependencies between processes introduced by
the communications and forces checkpoints when these dependencies would cause a
domino effect. However, experimental results show that it forces a lot of checkpoints
and therefore, it introduces a high overhead reducing the probability of reaching the
desired performance in large-scale infrastructures [25, 26].

For this performance restriction, the application-level fault-tolerance approach proposes a
more adaptable variety of solutions, promising better scalability at the cost of significant
changes [27, 28]. With application-level fault tolerance, the run-time environment must be
able to survive failures and support the rest of the application despite failures, while allow-
ing to restart processes in the desired semantics. An extensively used software technique
for fault tolerance is replication, which uses a large number of resources (memory or stor-
age) to replicate relevant information at different levels, ensuring the reliable execution of
applications. The most common replication techniques are used for verifying the correctness
of computations, but for node failure errors, generating data redundancy to replace failed
processes or even equipment seems to work much better [29, 30]. However, due to the loss
of data in failed processes, this method often works together with checkpointing.

As MPI has been and continues to be the de facto standard to implement distributed
applications, some efforts to adding fault tolerance to MPI have been attempted. FT-MPI
[31], some recovery modes were available to the user: 1) Blank mode, which consisted in
replacing failed processes with MPI PROC NULL; 2) Replace mode, which consisted in
replacing failed processes with new ones. 3) Shrink mode, which consisted in replacing the
corrupted communicator by reordering process ranks in a new communicator. However,
despite all efforts, no standardization was attempted and it only served to people as the
basis to design new constructs for MPI draft proposals [32, 33].

More recently, and using the knowledge gained from previous works such as FT-MPI,
the MPI community proposed a new model for failure mitigation, called User-Level Fault

12

2.2. LINEAR ALGEBRA APPLICATIONS AT HIGH SCALE

Mitigation (ULFM) [34, 35]. It provides fault-tolerant instructions to effectively extend MPI.
With these fault-tolerant subroutines, the user is able to decide the behaviour his application
requires: to “delete” dead processes from communicators after a failure (shrink) and only
keep the alive ones, to re-start new processes (spawn) for replacing the dead ones, among
other fault-tolerant operations.

On this same axis of application-level fault-tolerant environments we have Fenix [36, 37].
It is a fault-tolerant framework for helping in enabling recovery from process failures in an
online and transparent manner, providing mechanisms for capturing failures, re-spawning
new processes, fixing failed communicators, restoring the application state and continuing
execution. This work relies on implicitly coordinated checkpointing and it can tolerate
high failure rates with low overhead while sustaining performance. Diverse approaches for
exploring failure recovery using stencil-based parallel applications to mask recovery overheads
are presented in [38, 39, 40], showing how multiple failures can be masked to effectively reduce
the impact on the total time.

Knowing these facts about application-level approaches, the Algorithm-Based Fault Tol-
erance (ABFT) approach [41] becomes promising. Essentially, it consists in avoiding “alive”
processes to wait when a recovery operation needs to be perfomed (is in progress), but replace
“dead” processes and feed them with redundant data to continue the program normal exe-
cution. Data redundancy should be ensured to allow that multiple failures can be tolerated,
but the data to be replicated also needs to be selected carefully. Considering a full replica-
tion is expensive, because to replicate all information in different processes to perform the
same operations could degrade the computation power [42]. So different techniques should
be considered, such as saving checkpoints or snapshots and store them in a shared memory
space [43]. According to [41], fault tolerance typically consists of fault detection/location,
which can be done with the runtime environment, and fault recovery, which corresponds
to the application for recovering lost data of the failed processes and reconstruct a correct
state of the program. The work [44] proposes a scalable fault tolerance mechanism to detect
and correct bit-flip errors on-the-fly on a matrix multiplication subroutine, giving less than
12 percent of injected overhead with respect to the failure-free implementation; and more
studies have applied ABFT as an approach to solve diverse HPC problems [45, 46, 47].

2.2 Linear Algebra Applications at High Scale

Dense linear algebra applications running on HPC systems have been popular in the last
decades and approaches have been adapted to the architecture they are targeting. Several
libraries with a variety of algorithms dedicated to linear algebra have been implemented to
allow users to take advantage of the computational resources the large-scale infrastructure
counts. Table 2.1 lists some of these dedicated libraries.

Programs that require to work with large matrices can be distributed among process grids
with specific, high-level subroutines that are in charge of managing the hardware resources
available on the machine, freeing final users from this responsibility. As MPI has become
the de facto interface for programming parallel applications on distributed architectures,
programmers have taken advantage of MPI operations to develop and optimize linear al-

13

2.2. LINEAR ALGEBRA APPLICATIONS AT HIGH SCALE

Table 2.1: Some linear algebra dedicated libraries capable to run on large-scale architectures.

Name Description Written in First Release Last Release

ScaLAPACK1

Contains high-performance linear
algebra routines for parallel

distributed memory; can use a block
cyclic data distribution for dense

matrices and a block data distribution
for banded matrices; low-level modular
components for parallelizing high level

routines

Fortran,
C

February 28,
1995

November
16, 2019

PLASMA2

Project to address linear algebra
programs to reach the scalability on
multi-core architectures; pretends to

create frameworks that enable
programmers to simplify the process of

developing applications on new
architectures

C
November
10, 2008

August 6,
2019

MAGMA3

Project that aims to develop a dense
linear algebra library for

heterogeneous/hybrid architectures;
design linear algebra algorithms and
frameworks for hybrid manycore and

GPUs systems

Fortran,
C++

September
14, 2009

July 13,
2021

gebra libraries [48]. However, the overhead generated due to the high cost of inter-process
communications has grown more and more [49]. Complex hardware architectures prevent
most of the existing algorithms to scale satisfactorly as the number of processes increases,
and main memory size is a constrain when the amount of data (a matrix) is large enough to
not fit directly on it [50]. Then, inter-process communication patterns need to be refactored
directly in the design of algorithms implemented on dense linear algebra applications [51].

Recent advances on computation kernels for dense linear algebra for computing matrix
factorizations use a (proven) minimal number of inter-process communications, overlapping
(as much as possible) communication with computation [7, 52]. The core idea behind these
algorithms is to minimize the number of messages sent by processes, reducing the total
amount of data exchanged between them [53]. Minimizing communications is performed to
the cost of some additional computations. However, in most situations, minimizing commu-
nications improves performance, because of the (growing) imbalance between communication
and computation costs [54]. Several works propose a variety of solutions applied to dense
linear algebra programs running on modern parallel computers [55, 56].

Focusing in matrix factorizations, it has been shown that the use of a tree-based algorithm
can be exploited to obtain a fault-tolerant panel factorization. Then is possible to take
advantage of algebraic properties on the trailing matrix update operation [57, 58], using
matrix block form representations [59]. These results lead to more efficient implementations
of matrix factorization. Similar approaches are promising in the sense that it is necessary
to introduce as little modification as possible in the critical path, and practical experiments
with these approaches show a small overhead [60, 61, 62].

14

2.2. LINEAR ALGEBRA APPLICATIONS AT HIGH SCALE

Finally, different solutions have been proposed to check if a dense linear algebra algorithm
can run without failures over an HPC system, over CPUs [63] or GPUs [64, 65]. It has
been shown that numerical algorithms running in HPC have two costs: arithmetic and
communication costs; communication costs often dominate arithmetic costs [66].

15

2.2. LINEAR ALGEBRA APPLICATIONS AT HIGH SCALE

16

CHAPTER 3

Block Form Representations for Matrix Factorizations

In matrix factorizations or decompositions, we aim at factoring a given matrix A as the
product of two matrices, generally finding a lower triangular matrix (all elements above the
diagonal are zero) and an upper triangular matrix (all the elements below the diagonal are
zero).

This way to decompose a matrix makes it simple to compute the solution of many prob-
lems associated with linear systems (Krylov subspaces, Least-Square Problem, etc.). It is
also the first step to find the inverse of a matrix, or when computing the determinant of a
matrix. In particular, solving a linear system of type Ax = b gets reduced to solving smaller
triangular systems.

A matrix factorization can be represented as the matrix form of Gaussian elimination.
In a general view, a factorization can be seen as:

A =

a0,0 0 0
...

. . . 0
am,0 . . . am,n

b0,0 . . . b0,n

0
. . .

...
0 0 bm,n

 =

a0,0b0,0 . . . a0,0b0,n
...

. . .
...

am,0b0,0 . . . am,0b0,n + . . .+ am,nbm,n

In modern machines with finite precision, it is very usual to solve square systems of

linear equations using decompositions. It is important to consider that computed factors
could or could not be numerically stable, meaning that minimal errors in the initial factors
can cause a larger error in the final result. For matrices with specific properties, such as
diagonal dominance by rows or columns, numerical stability is guaranteed, but in general, it
is necessary to incorporate row interchanges, or row/column interchanges, to obtain a stable
factorization.

Nowadays, current high-performance architectures are designed with hierarchical memo-
ries (cache, RAM, distributed memory, etc.). When we want to take advantage of modern
machines and achieve a higher throughput on matrix decompositions, it is recommendable
to implement them in a block form, expressing decompositions in terms of matrix multipli-
cations and the solution of multiple right-hand side triangular systems. In this work, we
use a right-looking and panel-update algorithm for partitioning a matrix and updating the
trailing matrix, respectively.

17

3.1. LU BLOCK FORM

3.1 LU Block Form

Supposing we have a matrix A ∈ RM×N and we want to apply the LU factorization on it,
dividing the matrix in a block form with blocks of size b × b, matrix A can be represented
as follows:

A =

[
A0,0 A0,1

A1,0 A1,1

]
=

[
L0,0 0
L1,0 L1,1

] [
U0,0 U0,1

0 U1,1

]

Then, we can obtain equations:

A0,0 = L0,0U0,0, A0,0 ∈ Rb×b (3.1)

A1,0 = L1,0U0,0, A1,0 ∈ RM−b×b (3.2)

A0,1 = L0,0U0,1, A0,1 ∈ Rb×N−b (3.3)

A1,1 = L1,0U0,1 + L1,1U1,1, A1,1 ∈ RM−b×N−b (3.4)

Taking A0,0 and A1,0 together, we can form a panel of A, that is the left-most part of the
matrix. Then, with equations 3.1 and 3.2 we can perform an LU factorization on the panel.
At the end of this computation, matrices L0,0, L1,0 and U0,0 are known. The lower triangular
system in 3.3 can be solved to give U0,1. Rearranging 3.4 as:

A′1,1 = L1,1U1,1 = A1,1 − L1,0U0,1, A
′
1,1 ∈ RM−b×N−b (3.5)

we can realize that the problem of finding L1,1 and U1,1 gets reduced to find the LU
factorization of the matrix A′1,1, that is known as the trailing matrix and the operation of
calculating the LU factorization is known as the trailing matrix update. This update can
be done by repeating the same procedure over A′1,1 instead of the complete matrix A. At
the end, L0,0/L1,1 are lower triangular with ones on the diagonal and U0,0/U1,1 are upper
triangular. In figure 3.1 is shown a LU block-form of a matrix A and figure 3.2 represents a
matrix being partitioned in sub-blocks Ai,j, with i ∈ [0, rowM] and j ∈ [0, colN].

18

3.2. QR BLOCK FORM

First Panel

Second Panel

U

L

U0
L0

L1

U1

A′1,1

Trailing Matrix

Figure 3.1: LU block form representation of a matrix.

0 1 2 · · · colN

0

1

2

...

rowM

A0,0 A0,1 A0,2 · · · A0,colN

A1,0 A1,1 A1,2 · · · A1,colN

A2,0 A2,1 A2,2 · · · A2,colN

...
...

...
. . .

...

ArowM,0 ArowM,1 ArowM,2 · · · ArowM,colN

Figure 3.2: Rectangular matrix partitioning by sub-blocks (sub-matrices), where rowM =
M − 1 is the number of block-rows and colN = N − 1 is the number of block-columns.

3.2 QR Block Form

Supposing we have a matrix A ∈ RM×N and we want to apply the QR factorization on it,
dividing the matrix in a block form with blocks of size b × b, matrix A can be represented

19

3.2. QR BLOCK FORM

as follows:

A =
[
A0 A1

]
=

[
A0,0 A0,1

A1,0 A1,1

]
= Q

[
R0,0 R0,1

0 R1,1

]
where A0,0 ∈ Rb×b, A1,0 ∈ RM−b×b, A0,1 ∈ Rb×N−b, A1,1 ∈ RM−b×N−b, R0,0 ∈ Rb×b is

upper triangular, R0,1 ∈ Rb×N−b and R1,1 ∈ RM−b×N−b.

We can see that A0 =

[
A0,0

A1,0

]
, A0 ∈ RM×b is a panel of A and it contains the first b

left-columns of matrix A, and A1 =

[
A0,1

A1,1

]
, A1 ∈ RM×N−b contains the remaining columns

of A.

To compute Q, a series of Householder transformations can be applied to A0, in the form:

Hi = I − τivivTi , i ∈ [0, b] (3.6)

It can be shown that Q = H0H1 · · ·Hb = I − V TV T , where T ∈ Rb×b is upper triangular
and the column i of V equals vi [67, 68]. Defining A′1 as:

A′1 = QTA1 = (I − V T TV T)A1 (3.7)

reduces the problem to only find the QR factorization on A′1, that is the trailing matrix,
instead of the complete matrix A. This operation can be repeated again and again over the
remaining trailing matrix until there are no more blocks to compute. This way to represent
the QR factorization in a block form gives very good performances in matrix operations. In
figure 3.3 is shown a QR block-form of a matrix A.

First Panel

Second Panel

R0

V0

R0,0

V1

R0,1

A′1,1

Trailing Matrix

Figure 3.3: QR block form representation of a matrix.

20

3.3. CHOLESKY BLOCK FORM

3.3 Cholesky Block Form

Supposing we have a matrix A ∈ RM×N and we want to apply the Cholesky factorization on
it, dividing the matrix in a block form with blocks of size b× b, matrix A can be represented
as follows:

A =

[
A0,0 AT

1,0

A1,0 A1,1

]
=

[
L0,0 0
L1,0 L1,1

] [
LT
0,0 LT

1,0

0 LT
1,1

]
Then, we can obtain equations:

A0,0 = L0,0L
T
0,0, A0,0 ∈ Rb×b (3.8)

A1,0 = L1,0L
T
0,0, A1,0 ∈ RM−b×b (3.9)

AT
1,0 = L0,0L

T
1,0, A0,1 ∈ Rb×N−b (3.10)

A1,1 = L1,0L
T
1,0 + L1,1L

T
1,1, A1,1 ∈ RM−b×N−b (3.11)

where A0,0 and A1,1 are lower triangular matrices. If we compute the Cholesky factor-
ization on A0,0, then the lower triangular Cholesky factor L0,0 will be known and, from
equations 3.9 and 3.11, we can obtain:

L1,0 = A1,0(L
T
0,0)
−1 (3.12)

A′1,1 = A1,1 − L1,0L
T
1,0 = L1,1L

T
1,1 (3.13)

Now, the trailing matrix is A′1,1 and the factorization can be completed by recursively
applying the steps described above over A′1,1. In figure 3.4 is shown a Cholesky block-form
of a matrix A.

First Panel

Second Panel

LT

L

LT
0

L0

L1

LT
1

A′1,1

Trailing Matrix

Figure 3.4: Cholesky block form representation of a matrix.

21

3.3. CHOLESKY BLOCK FORM

22

CHAPTER 4

LU Factorization

The LU factorization factors a given matrix A as the product of two matrices L and U as
A = LU , where L is a lower triangular matrix and U is an upper triangular matrix. This
decomposition helps in reducing the complexity of solving a linear system Ax = b, simplifying
a triangular system as Ly = b and Ux = y.

Since not all matrices can be factorized in the LU form (non-singular matrices in the
form AB = BA = I cannot), we need a way to ensure that the LU factorization can be
completed satisfactorily on a given matrix. For example, as the first step for finding the
upper triangular matrix U is with a Gaussian elimination method and it is not a stable
method, LU uses pivoting to improve stability by using the largest rows as pivots. Thus,
if required, the resulting LU product can include a permutation matrix. This way, we can
apply row and/or column interchanges to ensure that the pivots are nonzero (unless the pivot
is already triangular). When we represent row permutations only, then the factorization is
known as LU factorization with partial pivoting and is given by PA = LU or A = P TLU ,
where L and U are again lower and upper triangular matrices and P is a permutation matrix
representing row re-orderings or permutations. If P is left-multiplied to A, the result will be
the same initial matrix A, but with re-ordered rows. This technique is numerically stable,
making LU decomposition with partial pivoting a very useful technique in practice. Another
technique is the LU factorization with full pivoting. In this case, the decomposition involves
both row/column permutations and the resulting product includes two extra matrices P and
Q, as PAQ = LU , where L, U and P are defined as before, and Q is a permutation matrix
representing column re-orderings or permutations.

As mentioned in section 3.1, when we want to obtain a higher throughput on LU decom-
position, then it is recommendable to implement it in a block form, decomposing the matrix
into blocks and distributing them between available processes, allowing each process to have
one block. An example of a block decomposition is given in chapter 3, and it is the one that
is going to be used for the algorithms presented in this dissertation. In the next sections, we
will see how the LU block form can be used to factorize a matrix A.

23

4.1. TSLU AND FT-TSLU

4.1 TSLU and FT-TSLU

4.1.1 TSLU

A Tall and Skinny (TS) matrix is a matrix A ∈ RM×N with a specific shape; it has a large
number of rows M and a small number of columns N ; this is M � N . The Tall and
Skinny LU (TSLU) factorization of a tall and skinny matrix A is the cornerstone of the
LU factorization of a general square or rectangular matrix [7]. It can also be used alone
by applications involving a few vectors in a high-dimension space. In this case, the parallel
algorithms use a 1D data decomposition: columns are distributed between processes that
hold the full lines.

The first phase finds pivot rows to improve the numerical stability of the overall computa-
tion, as mentioned in section 3.1. TSLU uses a set of t processes P = {P0, P1, . . . , Pt−1} and
a communicator commp to compute the LU factorization of matrix A in parallel. At the first
step s = 0, it decomposes the M ×N matrix A into b ×N block-rows, with b = M

t
. Every

resulting sub-matrix or sub-block Ai,s is sent to its corresponding process Pi to compute the
LU factorization of each sub-matrix independently. Then an exchange is performed between
pairs of processes {Pi, Pj} to group sub-matrices into successive pairs Ui,s and Uj,s, to exe-
cute again the LU factorization algorithm over the grouped U{i,j},s+1 pairs in parallel. In the
case of process Pi, it receives the resulting sub-matrix process Pj sends. This procedure is
repeated until there is only one final Ui,s matrix left, which contains the best rows found on
the whole initial matrix A. Process 0 broadcast the final matrix Ui,s. This operation, known
as tournament pivoting, aims at finding at low communication cost the best b row-pivots
that can be used to factor the entire matrix A and put them on the final matrix U . This
technique gives good performance because it depends primarily on the size of the rows in A
and uses a minimal number of inter-process communications. When the size of the tall and
skinny matrix is considerable, tournament pivoting reduces the complexity of calculating the
LU Factorization of the whole matrix A. Algorithm 1 describes in detail how the steps of
the classical TSLU algorithm are executed in order to find final Ui,s and Li,s matrices.

As can be seen in lines 5, 7, 9, 13 and 16 of the algorithm, there are five important
functions that allow TSLU to work correctly:

• myPartner(s): assigns a new partner (neighbor) j to the local process at step s. The
value to the next partner can be assigned with equation 4.1.

j =

{
i+ 2s, if i mod 2s+1 == 0

i− 2s, otherwise
(4.1)

where i, j represent processes rank and s the step number.

• send(Ui,s, commp): sends the given matrix Ui,s to the partner in communicator commp.

• recv(Uj,s, commp): receives the given matrix Ui,s from the partner in communicator
commp.

24

4.1. TSLU AND FT-TSLU

Algorithm 1: TSLU

Data: Sub-matrix Ai,0, Communicator commp, Integer i

1 s = 0 ;

2 myrank = i ;

3 Ui,s = LU(Ai,0);

4 while !done() do
5 j = myPartner(s) ;

6 if myrank < j then
7 f = recv(Uj,s, commp) ;

8 else
9 f = send(Ui,s, commp) ;

10 break;

11 if FAIL == f then

12 return;

13 Ai,s = concatenate(Ui,s, Uj,s);

14 s = s+ 1 ;

15 Ui,s = LU(Ai,s);

16 broadcast(Ui,s, commp, Process with rank 0) ;

17 Li = Ai,0 \ Ui,s ;

18 return Li, Ui,s;

• concatenate(Ui,s, Uj,s): concatenates both Ui,s matrices, putting Ui,s on top of Uj,s.
Equation (4.2) represents the concatenation of both matrices.

U{i,j},s =

{
Ui,s||Uj,s, if i < j

Uj,s||Ui,s, if i > j
(4.2)

• broadcast(Ui,s, commp, r): process with rank r distributes the given matrix Ui,s to all
processes in communicator commp. Processes with rank different from r only receive
the matrix. This function is also used in future algorithms (3, 4, 7, 8, 11, 12) to dis-
tribute intermediate results in lines/columns, providing as source process the processes
with rank equal to the current column number to be computed (see figures 3.2, 8.8).

Figure 4.1 shows a TSLU example with t = 4 processes. We can see that each process
Pi starts with its own sub-matrix Ai,s to compute a local LU decomposition, generate local
sub-matrices Li,s, Ui,s. Process Pi gets ready to receive the sub-matrix from Pj, while process
Pj sends its results to its current partner Pi (in the image, process P0 receives data from
process P1 and process P2 receives from P3). After process Pj has sent its results, it finishes
its work (line 10) and remains waiting for the broadcast from process 0 (in the image, P1 and

25

4.1. TSLU AND FT-TSLU

P3 keep waiting). Then, process Pi reassings its new partner and receives new data from it.
This operation is repeated until process 0 has collected all sub-matrices with the best-row
pivots. At final step, process 0 broadcast the final matrix Ui,s to waiting processes. At the
end of the execution, every single process Pi has the same final Ui,s matrix.

P0

P1

P2

P3

LU
recv

send

recv

send

Idle

Idle

LU
recv

send

Idle

LU
bcast

Figure 4.1: TSLU failure-free example with t = 4 processes. Gray bar represents the moment
when a LU factorization is performed.

The processes assignment to communicate with each other in TSLU has been chosen as
a binary tree communication pattern, in which the computation of a process depends on the
data computed by all subtrees rooted in this process. The first Ai sub-blocks of the binary
tree represent the leaves and the final Ui,s matrix represents the root tree. Thus, the total
number of steps that will take place at run-time is limited by equation 4.3:

Tsteps = log2 t+ 1 (4.3)

where t is the total number of processes involved in the computation.
Following the previous example, with t = 4 and Tsteps = log2 t+ 1 = 3, the TSLU matrix

algebra can be represented as follows:

• Step 0: A =

A0,0

A1,0

A2,0

A3,0

 =

L0,0U0,0

L1,0U1,0

L2,0U2,0

L3,0U3,0

 =

L0,0 0 0 0
0 L1,0 0 0
0 0 L2,0 0
0 0 0 L3,0

 ·

U0,0

U1,0

U2,0

U3,0

• Step 1:

U0,0

U1,0

U2,0

U3,0

 =

[
U ′{0,1},1
U ′{2,3},1

]
=

[
L′{0,1},1U{0,1},1
L′{2,3},1U{2,3},1

]
=

[
L′{0,1},1 0

0 L′{2,3},1

]
·
[
U{0,1},1
U{2,3},1

]

• Step 2:

[
U{0,1},1
U{2,3},1

]
= U ′{0,1,2,3},2 = L′{0,1,2,3},2U{0,1,2,3},2

26

4.1. TSLU AND FT-TSLU

At each step s lower triangular matrices {Li,s , L′i,s} are generated too. Since solving
a linear system of equations only requires the use of the final matrix Ui,s, the {Li,s, L

′
i,s}

matrices can be set aside and, if required, they can be used to compute the final matrix
Li,s by multiplying the intermediate Li,s matrices of all the steps. Of course, this extra
computation requires more space and computing time. The algebra to generate the final
matrix Li,s in the previous example is:

L{0,1,2,3},2 =

L0,0 0 0 0
0 L1,0 0 0
0 0 L2,0 0
0 0 0 L3,0

 · [L′{0,1},1 0

0 L′{2,3},1

]
· L′{0,1,2,3},2

The matrix multiplications involved in the final Li,s are quite expensive, but there are
two ways to carry them out:

• On-the-fly at each step: each time an exchange has been completed, we have access to
{Li,s, Lj,s} matrices; then we generate the L′{i,j} from U ′{i,j}. The matrix multiplication
can be done when the three matrices are present at each process, generating the Li,s of
the current step. This way reduces the amount of memory needed to store intermediate
results but increases steps’ execution times.

• At the final step: all intermediate results {Li,s, Lj,s} can be stored on the memory,
increasing the amount of memory needed by the algorithm. In the end, when the final
Ui,s has been computed, we can solve a linear system Ax = b using the initial matrix
Ainit and the final matrix Ui,s as Ainitx = Ui,s to compute the final matrix Li,s. So
the operation Li,s = Ainit\Ui,s can be done in order to find efficiently the final lower
triangular matrix.

Knowing these facts about TSLU, we will introduce in the next section its the fault-
tolerant version.

4.1.2 FT-TSLU

The Fault-Tolerant Tall and Skinny LU (FT-TSLU) algorithm is the fault-tolerant version
of TSLU. FT-TSLU relies on a fault-tolerant run-time environment to detect crash-type
process failures at run-time and restore the communicators. When an error is detected, the
failed processes are respawned, the communicator used by processes to exchange information
is repaired and the current computation is recovered. To be able to recover the computation,
the algorithm keeps track of the states of the matrices computed at each step (except the
last one), storing them over the results generated at the previous step, thus enabling all
the processes to share their previous known results with a restored process if necessary.
Algorithm 2 shows the FT-TSLU algorithm, adding some operations to the TSLU original
algorithm.

The basic pattern is similar to its non-fault-tolerant version. The main difference is
that instead of having a sender and a receiver (the sender ending its participation after

27

4.1. TSLU AND FT-TSLU

Algorithm 2: FT-TSLU

Data: Sub-matrix Ai,0, Communicator commp, Integer i

1 s = 0 ;

2 if I am a spawned process then
3 Ui,s = update(s, commp) ;

4 else
5 Ui,s = LU(Ai,0);

6 while !done() do
7 j = myPartner(s) ;

8 f = sendRecv(Ui,s, Uj,s, commp) ;

9 if FAIL == f then
10 restoreFailed(s, Ui,s, commp) ;

11 continue;

12 Ai,s = concatenate(Ui,s, Uj,s);

13 s = s+ 1 ;

14 Ui,s = LU(Ai,s);

15 backup(Ui,s) ;

16 Li = Ai,0 \ Ui,s ;

17 return Li, Ui,s;

the communication), processes exchange local Ui,s intermediate matrices and, owning the
same concatenated matrix, compute the same intermediate Ui+1,s. As a result, intermediate
computations are replicated taking advantage of processes that would have otherwise been
idle. But the most significant changes reside in the new added functions to fully correct the
failed processes, as can be seen in lines 3, 8, 10 and 15 of algorithm 2:

• update(s, commp): when a process p has been re-spawned, it must receive from another
process in communicator commp the current state of the Up,s matrix, as well as the
current step s.

• sendrecv(Ui,s,Uj,s, commp): performs an exchange between partners in communicator
commp.

• restoreFailed(s, Up,s, commp): when a crash has been detected, all surviving processes
try to restore the failed ones in communicator commp, sending the step s in which the
error has occurred and the Up,s matrix. Here it must be noted that all processes do not
hold the same information, so every process can share its previous results only with
its previous partners. When the previous partners are part of the surviving processes,
a branch has been lost and the new processes must be spawned from the beginning.
The initial matrix should be sent to the restored processes.

28

4.1. TSLU AND FT-TSLU

• backup(Up,s): performs a backup operation of the Up,s matrix, overwriting previous
results. Backup can be performed in different ways:

– As global storage: in case the node dies, the information can be recovered from
anywhere.

– As local storage: in case the node dies, the information cannot be recovered.
However, a strategy can be carried out. Scheduling processes in a way that the
same replicas are located on different machines, information cannot be lost.

As TSLU, FT-TSLU uses the same set of processes and the same communication pattern
to exchange intermediate results. The initial distribution of matrix differs from the original
one; instead of decomposing the M ×N matrix into b×N block-rows and distributing them
to its corresponding process, it shares the whole matrix with all the processes and every
process Pi works on its corresponding sub-block. The mechanism was designed in this way
to create more data redundancy and thus to enable every process to restore and share the
initial information to all the processes from the beginning, regardless of its rank. Figure
4.2 shows a FT-TSLU example with t = 4 processes. We can see that each process Pi

starts with its own sub-matrix Ai,s to compute a local LU decomposition, generate local
sub-matrices Li,s, Ui,s and share its results with its current partner Pj (in the image, process
P0 exchanges data with process P1, process P2 with P3; then process P0 with P2 and process
P1 with P3). After an exchange has been successfully completed, both processes Pi and Pj

execute exactly the same operations, generating the same data. In other words, every pair
of processes generates independently the same Ui,s matrix, for later applying again the LU
decomposition over the newly Ui,s matrix and share its own results with its new assigned
partner at next step s+ 1. At the end of the execution, every single process Pi has the same
final Ui,s matrix. Exchanging results between pairs of processes generates data redundancy;
thus, FT-TSLU is provided with some level of fault tolerance, in the sense that if a process
that has exchanged data already with its current partner fails, there will be another process
that holds the same data, giving the algorithm a chance to continue with the computation.

Figures 4.3, 4.4, 4.5, 4.6 and 4.7 show a failure occurring on process P2 at different steps
in the algorithm.

• Figure 4.3: the error occurs at the final step. Only the failed process cannot complete
the execution and cannot obtain the final result. The other processes continue their
normal execution. Every surviving process is able to deliver the final Ui,s matrix.

• Figure 4.4: the error occurs at a middle step. The pair of processes in which the error
was detected are not able to complete the execution. First, process P2 fails; then,
process P0 tries to exchange data with it, but it realizes that its partner has died, so it
fails too since it cannot complete the whole computation. The other processes continue
their normal execution. Every surviving process can deliver the final Ui,s matrix.

• Figure 4.5: the error occurs at the first step. All processes fail and the final result
cannot be reached. First, process P2 fails; then, process P3 tries to exchange data with
the failed process P2, but it realizes that its partner has died, so it will fail too since

29

4.1. TSLU AND FT-TSLU

it cannot complete the whole computation. The other processes continue their normal
execution until a middle step is reached. Then, when they want to exchange data with
their newly assigned partners, they realize their partners have died, so they fail too
since they cannot complete the whole computation. There are no surviving processes
and hence, the final Ui,s matrix cannot be delivered.

• Figure 4.6: in this case, two errors occur at the middle step, in the same branch. Process
P2 and P3 fail; then, process P0 and P1 try to exchange data with their corresponding
partner, but they realize their partner has died, so they fail too since it is impossible to
complete the computation. There are no surviving processes, so the final Ui,s matrix
cannot be delivered.

• Figure 4.7: again, two errors occur at the middle step, but now in different branches.
Processes P1 and P2 fail; then, process P0 and P3 try to exchange data with their
corresponding partner, but they realize their partner has died and they fail too. Once
more, there are no surviving processes, and the final Ui,s matrix cannot be delivered.

P0

P1

P2

P3

LU LU LU

Figure 4.2: FT-TSLU failure-free example with t = 4 processes. Gray bar represents the
moment when a LU factorization is performed.

As can be seen from the previous descriptions, depending on the moment a process fails,
it changes the normal execution of the algorithm and it affects in different ways the execution
of other processes too. The failed process stops its execution and the data it was processing
is lost. As a consequence, it will not be able to communicate (send or receive) with its
partner and therefore, the partner will not send or receive the data it needs to proceed with
the computation. Thus, all the processes that (in a moment in time) could be designated
as a partner of the failed process, and the future partners of its current designated partner
will not be able to process the completed data and hence they will be forced to finish their
execution too. This behavior does not always crash the execution if failures appear at the
final step or a middle step, in different branches; but if failures start appearing from the

30

4.1. TSLU AND FT-TSLU

P0

P1

P2

P3

LU LU

X

LU

Figure 4.3: FT-TSLU example with t = 4 processes, showing one failure at the last step.

P0

P1

P2

P3

LU

X

LU

X
LU

Figure 4.4: FT-TSLU example with t = 4 processes, showing one failure at the middle step.

beginning, all processes could be forced to stop their processing and computation could be
terminated. So, at each successful data exchange, FT-TSLU doubles the number of failures
it can tolerate, but also the longer it has been running, the more processes might fail. For
example, at the first step s = 0 no failures can be tolerated; at the middle step s = 1 it
is allowed to tolerate only one failure; at the final step s = 2 it is allowed to tolerate three
failures. So it can be seen that after an exchange has been finalized, the level of redundancy
doubles and the number of failures that can be supported are:

Tfailures = 2s − 1 (4.4)

where s is the step number.

31

4.1. TSLU AND FT-TSLU

P0

P1

P2

P3

X

LU

X

LU

X

X

Figure 4.5: FT-TSLU example with t = 4 processes, showing one failure at the first step.

P0

P1

P2

P3

LU

X

X

LU

X

X

Figure 4.6: FT-TSLU example with t = 4 processes, showing two failures in the same branch
at the middle step.

Another example of execution can be seen in figure 4.8: the failure occurs at the first step
on process P2 inducing the loss of the sub-block A2; hence, it induces the whole procedure to
fail. As no communication between processes has been carried out, if the initial matrix were
not distributed to all processes, no process could restore the failed one (or even the failed
ones). Another example can be seen in figure 4.9, but this time with an error in a middle
step.

Thanks to these four new operations FT-TSLU can detect and handle the process failures
at run-time, avoiding loss of data (branches in the binary tree), and ensuring the completion
of the LU decomposition. Appendix A shows a numerical example of the execution by each
process of the algorithms described.

32

4.2. CALU AND FT-CALU

P0

P1

P2

P3

LU

X

X

LU

X

X

Figure 4.7: FT-TSLU example with t = 4 processes, showing two failures in different
branches at the middle step.

P0

P1

P2

P3

X

LU ER

P2

LU LU

Figure 4.8: FT-TSLU recovering example with t = 4 processes, showing one failure at the
first step.

4.2 CALU and FT-CALU

4.2.1 CALU

The Communication-Avoiding LU (CALU)[54] algorithm factors a wider (not necessarily
square) matrix A into the product of two matrices L and U by iterating over block-column
sub-matrices, as defined in section 3.1 and figure 3.1. Since a panel can be seen as a tall and
skinny matrix, CALU uses TSLU to compute the LU factorization of each panel.

Initially, CALU divides the potentially square matrix A ∈M×N into smaller sub-blocks

33

4.2. CALU AND FT-CALU

P0

P1

P2

P3

LU

X

LU ER

P2

LU

Figure 4.9: FT-TSLU recovering example with t = 4 processes, showing one failure at the
middle step.

Ai,j of size b × b each, forming a grid with M
b

lines and columns, as seen in figure 3.2. At
each iteration, it forms a panel and computes the LU factorization on it, finding the best row
pivots on the current panel and updating the trailing matrix, for later repeating the same
procedure with the next non-processed panel in the matrix until the trailing matrix is small
enough to execute a last single process LU factorization and complete the whole matrix. It
must be noted that the current panel is also the current column currCol to be processed
on the grid (see figure 8.8). Figure 4.10 displays an example of how the CALU algorithm
partitions a square matrix into sub-blocks to accomplish the LU decomposition.

A00

A10

A20

A30

A01

A11

A21

A31

A02

A12

A22

A32

A03

A13

A23

A33

A00

A10

A20

A30

A01

A11

A21

A31

A02

A12

A22

A32

A03

A13

A23

A33

L00

U00

L10

L20

L30

A01

A11

A21

A31

A02

A12

A22

A32

A03

A13

A23

A33

L00

U00

L10

L20

L30

U01

A′11

A′21

A′31

U02

A′12

A′22

A′32

U03

A′13

A′23

A′33

L00

U00

L10

L20

L30

U01

A′11

A′21

A′31

U02

A′12

A′22

A′32

U03

A′13

A′23

A′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

A′12

A′22

A′32

U03

A′13

A′23

A′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

A′′22

A′′32

U03

U13

A′′23

A′′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

A′′22

A′′32

U03

U13

A′′23

A′′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

L22

U22

L32

U03

U13

A′′23

A′′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

L22

U22

L32

U03

U13

U23

A′′′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

L22

U22

L32

U03

U13

U23

A′′′33

L00

U00

L10

L20

L30

U01

L11

U11

L21

L31

U02

U12

L22

U22

L32

U03

U13

U23

L33

U33

Figure 4.10: Square matrix partition by sub-blocks, panels selection and trailing matrix
update example.

CALU relies on a 2D data distribution (or a 2D block-cyclic one). Processes belonging
to the same column are in charge of decomposing the panel corresponding to their column
number. During the pivoting step, the permutation matrices are broadcast on the process

34

4.2. CALU AND FT-CALU

line to swap the whole lines of the matrix. Then, after a panel decomposition, every process
involved in the computation broadcasts its resulting Li,j sub-block on its row communicator
to allow other processes to update its corresponding part of the trailing matrix at the right
of the panel. Then, processes on the upper-row update the upper Ui,j sub-blocks of the
matrix by solving the linear system Ui,j = Li,i \Ai,j, and broadcast the result on their
column communicator to enable others processes to update the remaining Ai,j sub-blocks,
doing the local operation A′i,j=Ai,j − Li,j × Ui,j. At this stage, CALU can take the next
leftmost panel currCol + 1 of the recently updated trailing matrix and repeat the same
procedure iteratively on the trailing matrix. Algorithm 3 describes how the steps of the
CALU algorithm are executed. A more detailed description can be found in [7].

Algorithm 3: CALU

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 while stillHasPanel() do

2 if computing a panel then
3 Panel = nextPanel() ;

4 Li,j, Ui,j = TSLU(Panel) ;

5 broadcast(Li,j, rowi, Process with rank currCol) ;

6 else if comput. upper Ui,s then
7 broadcast(Li,j, rowi, Process with rank currCol) ;

8 Ui,j = Li,j \Ai,j ;

9 broadcast(Ui,j, colj, Process with rank currCol) ;

10 else if updating Ai,j then
11 broadcast(Li,j, rowi, Process with rank currCol) ;

12 broadcast(Ui,j, colj, Process with rank currCol) ;

13 Ai,j = Ai,j − Li,j × Ui,j ;

14 updateStage() ;

15 return Li,j,Ui,j;

In lines 1, 3, 4 and 14 of algorithm 3 new functions are used:

• stillHasPanel(): returns true if there are still panels to decompose; returns false oth-
erwise.

• nextPanel(): returns the next panel.

• TSLU(Panel): executes the TSLU algorithm over the panel, as described in algorithm
1.

• updateStage(): updates the current stage of the algorithm; i.e., the row and column
currently being processed.

35

4.2. CALU AND FT-CALU

U

L

p
an

el

trailing
matrix

(a) Panel: select a panel, com-
pute its LU factorization

U

L

(b) Broadcast Li,j ; pivot Ai,j ;
Ui,j = Li,j \Ai,j

U

L

(c) Update the trailing matrix:
Aij− = LijUij

Figure 4.11: CALU

As TSLU uses tournament pivoting to find the best rows in a matrix, each panel factor-
ization can be performed at a low communication cost, and hence, we can take advantage
of TSLU performance to gain throughput on CALU. Figure 4.11 represents how the panel
selection, broadcasting, and trailing matrix update work.

4.2.2 FT-CALU

The Fault-Tolerant Communication-Avoiding LU factorization algorithm is the fault-tolerant
version of the CALU algorithm. FT-CALU exhibits the same fault-tolerance characteristics
as FT-TSLU: little modifications of the critical path of the algorithm, crash-type process
failures detection at run-time, re-spawning all the failed processes at once, communicator
and matrix state repairing to proceed with the rest of the execution. It relies on the fact
that CALU is based on broadcast operations, that replicate the data over the processes of a
communicator.

To have little impact on the memory footprint, it keeps track of the results obtained at the
end of an operation backing up intermediate results on the local media storage device (HD,
SSD, etc.). For example, when a process ends the decomposition of a panel with FT-TSLU
or when a trailing matrix sub-block has been computed, each process stores its corresponding
sub-block, replacing the results saved from a previous operation over the sub-block. This
way, if a process restoration takes place, every process can have access to its last successful
result and continue the execution with correct updated information. Algorithm 4 shows how
fault tolerance can be achieved on CALU. We can appreciate the mention of new functions
in lines 2, 7, 8 and 21:

• readBackup(): when a process has been re-spawned, it must perform a read operation
of the last saved sub-block.

• FTTSLU(Panel): executes the FT-TSLU algorithm over the panel, that is described
in algorithm 2.

36

4.2. CALU AND FT-CALU

Algorithm 4: FT-CALU

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 if I am a spawned process then
2 Ai,j = readBackup() ;

3 updateStage() ;

4 while stillHasPanel() do
5 if computing a panel then
6 Panel = nextPanel() ;

7 Li,j, Ui,j = FTTSLU(Panel) ;

8 backup(Li,j) ;

9 broadcast(Li,j, rowi, Process with rank currCol) ;

10 else if comput. upper Ui,s then
11 broadcast(Li,j, rowi, Process with rank currCol) ;

12 Ui,j = Li,j \Ai,j ;

13 backup(Ui,j) ;

14 broadcast(Ui,j, colj, Process with rank currCol) ;

15 else if updating Ai,j then
16 broadcast(Li,j, rowi, Process with rank currCol) ;

17 broadcast(Ui,j, colj, Process with rank currCol) ;

18 Ai,j = Ai,j − Li,j × Ui,j ;

19 backup(Ai,j) ;

20 if FAIL == f then
21 restoreFailed(current stage) ;

22 continue;

23 updateStage() ;

24 return Li,j,Ui,j;

• backup(Li,j): performs a backup operation of the given sub-block, overwriting the
previous results on the local media storage device.

• restoreFailed(current stage): performs a dead process restoration on the process grid.

The FT-CALU restoration algorithm proposed in this thesis has been designed to allow all
the processes in the global communicator to detect errors at the same point in the algorithm,
independently from the task a process is in charge of; thus, at the end of a broadcast and
the backup operation, all processes can detect which processes have crashed and started
the restoration procedure. This way, as with FT-TSLU, we can tolerate the possible errors
that may appear in the CALU panel factorization and trailing matrix update, including the
CALU upper panel update and the remaining trailing matrix update.

37

4.2. CALU AND FT-CALU

Complementing the backup operations (reading and writing), it should be noted that if a
process fails before writing its results on the local media storage at a given stage S, the next
re-spawned process will read the previous state S−1 the process use to had, considering the
previous state was well written. In this case, it is considered as a backward recovery, because
the state S − 1 is re-taken. Otherwise, if a process fails after writing its results on the local
media storage at stage S, then the next re-spawned process will read the current state S the
process used to have. In this case, it is considered as a forward recovery, because the state S
is taken from the crashing point. Another method to perform reading/writing operations is
with one-sided communications, which allow a process to access an exposed memory block
defined by another process (could be a dead one). However, the fault-tolerant subroutines
needed to perform these operations are still ”on the road” and it is still not possible to carry
out this method with fault tolerance.

Both algorithms 3 and 4 seem very similar at communication and restoring level. They
have the same communication pattern. Both algorithms use the same set of t processes
P = {P0, P1, . . . , Pt−1} and the same initial distribution of matrix A. They also use the
same partner selection at every step, the same mechanism to detect and correct errors, and
the same backup operation. The main difference between them resides in the backup and
restore operations executed just after the information distribution ends.

The update operation over the US
i,s sub-blocks from the upper panel is done by computing

the operation US
i,s=L

S
i,i \AS

i,s. The update operation over the remaining AS
i,s sub-blocks from

the trailing matrix located below the US
i,s sub-blocks is performed by doing the operation

AS
i,s=A

S
i,s − LS

i,j × US
i,j.

Here it must be noted that every process (on the grid) computes, updates, distributes and
backups only its corresponding AS

i,s sub-block on the row and column it belongs to. After
that, depending on the position a process has on the grid, it is only responsible to act as a
monitor on the computation, or to continue performing FT-TSLU, or updating the trailing
matrix, and in case an error appears, it will be responsible for collaborating in the restoring
procedure to recover the failed processes, and share the information needed to recover the
state of the current matrix correctly. This characteristic is possible because all processes
store the basic state of the matrix (stage, panel number, column/row number) in case they
need to share it with a re-spawned process.

To complement a little bit more the operations a process does, if a process has already
performed its computation, it waits until the remaining working processes finish all their
computations. This way, some processes will execute FT-TSLU and others will not; some
processes will update a sub-block in the trailing matrix and others will not. Although not
all processes have the same tasks to run, they execute at least one dense operation (panel
decomposition, linear solving, matrix multiplication) during the execution of the algorithm
and thus the computation load is more evenly distributed. Thus, we can take advantage of
the parallel resources our architecture has.

38

CHAPTER 5

QR Factorization

The QR factorization or decomposition factors a given matrix A as the product of two
matrices Q and R as A = QR, where Q is an orthogonal matrix (its columns are orthogonal
unit vectors, meaning QT = Q−1 and QQT = QTQ = I) and R is an upper triangular matrix.
For an invertible matrix A, the QR factorization is unique. The QR factorization can be
used with various applications, such as solving linear least squares problems, or as a kernel
in finding the eigenvalues of a matrix. Like LU, it can also simplify the procedure to solve
a linear system Ax = b.

There are different methods to compute the QR decomposition (Gram–Schmidt process,
Givens rotations), but in this thesis, we are going to focus only on the computation with
Householder transformations, because it is a very numerically stable method. As mentioned
in section 3.2, when we want to obtain a higher throughput on QR decomposition, then it
is recommendable to implement it in a block form. In the next sections, we will see how we
can use the QR block form to factorize a matrix A.

5.1 TSQR and FT-TSQR

5.1.1 TSQR

As with LU (see chapter 4), the Tall and Skinny QR (TSQR) factorization of a tall and skinny
matrix A is a kernel of the QR factorization of a general square or rectangular matrix.

TSQR uses a set of t processes P = {P0, P1, . . . , Pt−1} and a column block decomposition
of the matrix (like with TSLU), to compute the QR factorization of matrix A, as previously
defined for LU. The first step s = 0 consist in dividing the A matrix into b×N sub-blocks,
with b = M

t
, as mentioned in section 3.2. Every sub-matrix or sub-block Ai,s is sent to its

corresponding process Pi to compute locally the QR factorization of each sub-matrix. This
operation will generate a set of Householder matrices Hi,s instead of a set of Qi,s matrices.
Notice that the Qi,s matrix can be computed from a collection of Householder vectors [68, 69].
After that, an exchange is performed between pairs of processes {Pi, Pj} to concatenate
upper Ri,s sub-matrices into successive pairs {Ri,s,Rj,s}, and also to collect the Householder
vectors {Hi,s,Hj,s} needed for updating the trailing matrix in future steps. Then, the QR

39

5.1. TSQR AND FT-TSQR

factorization is executed again over the R{i,j},s+1 pairs in parallel, generating Householder
vectors H{i,j},s+1 too. This procedure is repeated until there is only one final Ri,s matrix left.
In the case when it is only required the upper triangular factor Ri,s, this operation can be
seen as a reduction. After each concatenation {Ri,s,Rj,s}, a reduction operation is performed
over the concatenation to obtain the final Ri,s factor. A binary reduction tree is used and
at each level of the tree, two upper triangular matrices are reduced to one [70].

This technique is very similar to LU, giving good performance because it uses a minimal
number of inter-process communications. Algorithm 5 displays in detail how the steps of the
TSQR algorithm are performed.

Algorithm 5: TSQR

Data: Sub-matrix Ai,0, Communicator commp, Integer i

1 s = 0 ;

2 myrank = i ;

3 Hi,s, Ri,s = QR(Ai,0);

4 while !done() do
5 j = myPartner(s) ;

6 if myrank < j then
7 f = recv(Hj,s,Rj,s,commp) ;

8 else
9 f = send(Hi,s,Ri,s,commp) ;

10 break;

11 if FAIL == f then
12 return;

13 Ai,s = concatenate(Ri,s, Rj,s);

14 s = s+ 1 ;

15 Hi,s, Ri,s = QR(Ai,s);

16 broadcast(Hi,s, Ri,s, commp, Process with rank 0) ;

17 Qi = Ai,0 \Ri,s ;

18 return Qi, Hi,s, Ri,s;

We can appreciate that TSQR uses the same set of functions defined in 4.1, so we can
also represent with figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 TSQR examples with t = 4 processes,
only changing the LU execution gray bar for QR.

Compared with the LU algorithm 1, the differences between them are that LU uses a
pivoting operation to stabilize the factorization and QR does not, and the QR call generates
both Hi,s, Ri,s local matrices. Every collection of Householder vectors Hi,s will be stored as a
list for a later use in the QR communication-avoiding version. So each process Pi will start
with its corresponding local sub-matrix Ai,s, will generate sub-matrices Hi,s, Ri,s locally, will
share them with a partner Pj and finally will backup Hi,s.

40

5.1. TSQR AND FT-TSQR

Following the examples shown in 4.1, with t = 4, Tsteps = log2 t+ 1 = 3, and considering
we compute every Qi,s from Hi,s at each step, the TSQR matrix algebra can be represented
as follows:

• Step 0: A =

A0,0

A1,0

A2,0

A3,0

 =

Q0,0R0,0

Q1,0R1,0

Q2,0R2,0

Q3,0R3,0

 =

Q0,0 0 0 0
0 Q1,0 0 0
0 0 Q2,0 0
0 0 0 Q3,0

 ·

R0,0

R1,0

R2,0

R3,0

• Step 1:

R0,0

R1,0

R2,0

R3,0

 =

[
R′{0,1},1
R′{2,3},1

]
=

[
Q′{0,1},1R{0,1},1
Q′{2,3},1R{2,3},1

]
=

[
Q′{0,1},1 0

0 Q′{2,3},1

]
·
[
R{0,1},1
R{2,3},1

]

• Step 2:

[
R{0,1},1
R{2,3},1

]
= R′{0,1,2,3},2 = Q′{0,1,2,3},2R{0,1,2,3},2

We know that solving a linear system of equations only requires the use of the final matrix
Ri,s, so if we are not planning to generate the Qi,s final matrix, we can dismiss it from the
computation. In case we need it, the final matrix Qi,s can be computed by multiplying the
intermediate Qi,s matrices. The algebra to generate the final matrix Qi,s in the previous
example is:

Q{0,1,2,3},2 =

Q0,0 0 0 0
0 Q1,0 0 0
0 0 Q2,0 0
0 0 0 Q3,0

 · [Q′{0,1},1 0

0 Q′{2,3},1

]
·Q′{0,1,2,3},2

Again, the matrix multiplications involved in the final Qi,s require more computing time,
but at the end, when the final Ri,s has been computed, we can solve the linear system
Ainitx = Ri,s as Qi,s = Ainit\Ri,s to compute the final matrix Qi,s efficiently.

Finally, it is important to mention that, compared to TSLU, TSQR uses much more
space to save the Householder vectors Hi,s each process generates at each step. In the next
sections we will introduce the fault-tolerant version of this algorithm and we will see why
every Householder vectors should be saved to correctly use them in the communication-
avoiding version.

5.1.2 FT-TSQR

The Fault-Tolerant Tall and Skinny QR (FT-TSQR) algorithm is the fault-tolerant version
of TSQR. As FT-TSLU, FT-TSQR requires a fault-tolerant middleware to be able to de-
tect crash-type process failures at run-time and repair them. When an error is detected,
it re-spawns all the failed processes at once, repairs both the communicator used by the
processes to exchange information and the current state of the matrix. To achieve this last
characteristic, it keeps track of the states of the matrices obtained at each step, storing them
over the results generated at the previous step, thus enabling all processes to share their

41

5.1. TSQR AND FT-TSQR

previous known results with a restored process if necessary. Algorithm 6 shows how fault
tolerance can be achieved on the FT-TSQR algorithm, making some modifications over the
TSQR original algorithm.

Algorithm 6: FT-TSQR

Data: Sub-matrix Ai,0, Communicator commp, Integer i

1 s = 0 ;

2 if I am a spawned process then
3 Hi,s, Ri,s = update(s, commp) ;

4 else
5 Hi,s, Ri,s = QR(Ai,0);

6 while !done() do
7 j = myPartner(s) ;

8 f = sendRecv(Hi,s, Ri,s, Hj,s, Rj,s, commp) ;

9 if FAIL == f then
10 restoreFailed(s, Hi,s, Ri,s, commp) ;

11 continue;

12 Ai,s = concatenate(Ri,s, Rj,s);

13 s = s+ 1 ;

14 Hi,s, Ri,s = QR(Ai,s);

15 backup(Hi,s, Ri,s) ;

16 Qi = Ai,0 \Ri,s ;

17 return Qi, Hi,s, Ri,s;

FT-TSQR works similar to its non-fault-tolerant version and, as FT-TSLU, generates
data redundancy providing properties we can take advantage of for adding fault tolerance
mechanisms into the algorithm. Compared to TSQR, the most significant changes reside in
the added functions to fully correct the failed processes: update(s, commp),
sendrecv(Hi,s, Ri,s,Hj,s, Rj,s,commp), restoreFailed(s, Hi,s, Ri,s, commp) and backup(Hi,s, Ri,s).
These functions are already defined in section 4.1.

FT-TSQR uses the same set of t processes P = {P0, P1, · · · , Pt−1}, the same communi-
cation pattern to exchange intermediate Hi,s, Ri,s results between them and the same distri-
bution of matrix A as algorithm 2, described in section 4.1. Figures 4.8 and 4.9 illustrate an
example of the complete computation of the QR factorization, including the re-spawning of
a failed process.

42

5.2. CAQR AND FT-CAQR

5.2 CAQR and FT-CAQR

5.2.1 CAQR

The Communication-Avoiding QR (CAQR) algorithm factors a rectangular matrix A into
the product of two matrices Q and R taking the left-most panel at each iteration, as defined
in section 3.2 and figure 3.3. As a panel is a tall and skinny matrix, CAQR uses TSQR to
factorize an entire panel.

CAQR divides the rectangular matrix A ∈ M × N into sub-blocks Ai,j of size b × b,
forming a grid with M

b
lines and columns, as CALU. In every iteration, it forms a panel

with all the sub-blocks Ai,j belonging to the current processing column and computes the
QR factorization on it, finding the upper Ri,j and the initial set of Householder vectors Hi,j.
Then, it updates the trailing matrix. In this case, the resulting upper Ri,j panel-blocks are
the final ones and they do not need to be distributed across columns. Finally, the same
panel formation and construction is repeated until the trailing matrix is the last bottom-
right sub-block and it can be fastly computed by the process located at that part on the
grid.

CAQR processes are assigned to work on a specific sub-block on the grid. With this,
processes belonging to the same column will be in charge of decomposing the panel corre-
sponding to their column. At the end of the panel computation, the Householder vectors
Hi,j and the current state of the sub-block Ai,j are broadcasted across row communicators
on the grid to allow processes on the right of the panel to update its corresponding part of
the trailing matrix. The operations needed to do the update of the trailing matrix are:

• Operation executed by all processes to apply the local Householder vectors to its current
sub-block: Ai,j Ci = Ai,j −Hi × T T ×HT

i × Ai,j

• Operation executed by pairs of processes {Pi, Pj} after an exchange has been com-
pleted. W = T T × Ci +HT

i × Cj

• Operation executed by the upper process (normally Pi) to complete the update proce-
dure over its sub-block: Ci = Ci +W

• Operation executed by the lower process (normally Pj) to complete the update proce-
dure over its sub-block: Ci = Ci +Hi ×W

It must be noted that the trailing matrix update requires the computation of matrix T .
This matrix can be generated locally by every process since they have exchanged the needed
information [67]. At this stage, CAQR can take the next leftmost panel on the recently
updated trailing matrix and repeat the same procedure iteratively on the trailing matrix.
Algorithm 7 describes how the steps of the CAQR algorithm are executed.

CAQR uses the same set of functions defined in section 4.2: stillHasPanel(), nextPanel(),
broadcast(Hi,Ri,rowi,r) and updateStage(). Compared with algorithm 3, the difference re-
sides on the TSQR call. Figure 5.1 represents how the panel selection and trailing matrix
update work, and figure 5.2 displays an execution example.

43

5.2. CAQR AND FT-CAQR

Algorithm 7: CAQR

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 s = 0 ;

2 while stillHasPanel() do
3 if computing a panel then
4 Panel = nextPanel() ;

5 Hi, Ri = TSQR(Panel) ;

6 broadcast(Hi, Ri, rowi, Process with rank currCol) ;

7 else if updating trailing matrix then
8 broadcast(Hi, Ri, rowi, Process with rank currCol) ;

9 j = myPartner(s) ;

10 Ci = Ai,j −Hi × T T ×HT
i × Ai,j ;

11 W = T T × Ci +HT
i × Cj ;

12 if i < j then
13 Ci = Ci +W

14 else
15 Ci = Ci +Hi ×W

16 updateStage() ;

17 return Qi,j,Ri,j;

P0

P1

T

C ′0

W = T T (C ′0 − Y T
1 C

′
1)

W

Ĉ1 = C ′1 − Y1W

Ĉ0 = C ′0 −W

(a) CAQR trailing matrix update per sub-block,
without fault tolerance

P0

P1

T

T

C ′0

C ′1, Y1

W = T T (C ′0 − Y T
1 C

′
1)

W = T T (C ′0 − Y T
1 C

′
1)

Ĉ1 = C ′1 − Y1W

Ĉ0 = C ′0 −W

(b) CAQR trailing matrix update per sub-block,
with fault tolerance

Figure 5.1: CAQR trailing matrix update equations by pairs of process

5.2.2 FT-CAQR

The Fault-Tolerant Communication-Avoiding QR factorization algorithm is the fault-tolerant
version of the CAQR algorithm. FT-CAQR has been given with the same fault-tolerance
characteristics as FT-TSQR, FT-TSLU, and FT-CALU: minimal changes on the critical
path and crash-type process failures restoration procedure at run-time (failed processes re-
spawning, communication repairing, and matrix state repairing). FT-CAQR allows all pro-
cesses to have access to the required data to execute the trailing matrix update operation,

44

5.2. CAQR AND FT-CAQR

P0

P1

P2

P3

Figure 5.2: CAQR trailing matrix update execution example.

broadcasting only basic information over row communicators. When a process performs a
broadcast operation over his row, he generates data redundancy across the grid rows, so there
is always another process that holds the same data, and fault tolerance can be achieved.

To reduce the amount of memory used, FT-CAQR dumps the results obtained at the end
of an important operation on the local media storage device (HD, SSD, etc.). For example,
when a process ends the QR factorization of a panel or when a trailing matrix operation
has been completed, each process stores its corresponding sub-block, overwriting previous
results. As with previous fault-tolerant algorithms, this mechanism was designed like this to
let the algorithm restore failed processes. If a process restoration takes place, every process
can have access to its last valid result and continue with the execution. Algorithm 8 shows
how fault tolerance can be achieved on CAQR, using the same function defined in section
4.1: readBackup(), FTTSQR(Panel), backup(Hi,j,Ri,j) and restoreFailed(current stage).

The FT-CAQR restoration procedure synchronizes all processes in the global communi-
cator to allow error detection, independently from the task a process is in charge of. So at
the end of successful communication, all processes can realize which processes have crashed
and start the restoration procedure. Both algorithms 7 and 8 have the same communication
pattern (as with FT-TSLU and FT-CALU). Both algorithms use the same set of t processes
P = {P0, P1, . . . , Pt−1} and the same initial distribution of matrix A. The main difference
between them resides again in the backup and restoration operation.

45

5.2. CAQR AND FT-CAQR

Algorithm 8: FT-CAQR

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 s = 0 ;

2 if I am a spawned process then
3 Ai,j = readBackup() ;

4 updateStage() ;

5 while stillHasPanel() do
6 if computing a panel then
7 Panel = nextPanel() ;

8 Hi, Ri = FTTSQR(Panel) ;

9 broadcast(Hi, Ri, rowi, Process with rank currCol) ;

10 backup(Hi, Ri) ;

11 else if updating trailing matrix then
12 broadcast(Hi, Ri, rowi, Process with rank currCol) ;

13 j = myPartner(s) ;

14 Ci = Ai,j −Hi × T T ×HT
i × Ai,j ;

15 W = T T × Ci +HT
i × Cj ;

16 if i < j then
17 Ci = Ci +W

18 else
19 Ci = Ci +Hi ×W

20 backup(Hi, Ri, Ci) ;

21 if FAIL == f then
22 restoreFailed(current stage) ;

23 continue;

24 updateStage() ;

25 return Qi,j,Ri,j;

46

CHAPTER 6

Cholesky Factorization

The Cholesky factorization or decomposition factors a given Hermitian, positive-definite
matrix A as the product of matrices A = LLT , where L is a lower triangular matrix and
LT is its conjugate transpose (takes the complex conjugate of each entry of the matrix AT).
This decomposition is useful for efficient numerical solutions and, when it is possible to apply
the algorithm, the Cholesky factorization is roughly twice as fast as the LU factorization for
solving systems of linear equations Ax = b.

As mentioned in section 3.3, when we want to obtain a higher throughput on Cholesky
decomposition, then it is recommendable to implement it in a block form. In the next
sections, we will see how we can use the Cholesky block form to factorize a matrix A.

6.1 TSCH and FT-TSCH

6.1.1 TSCH

As with LU and QR (see chapters 4,5), the Tall and Skinny Cholesky (TSCH) factorization
of a tall and skinny matrix A is part of the usual, de facto standard set of kernels provided
by the mainstream linear algebra libraries [65, 63]. TSCH uses the same set of t processes
P = {P0, P1, . . . , Pt−1} to compute the Cholesky factorization of matrix A, as previously
defined for LU and QR. In this algorithm, we only have one step to execute. It consists in
dividing the A matrix into b×N sub-blocks, with b = M

t
, as mentioned in section 3.3. Every

sub-matrix or sub-block Ai is distributed to its corresponding process Pi. Compared with
LU and QR, TSCH only allows the upper process (normally process 0) to compute locally
the Cholesky factorization of its corresponding sub-matrix. This operation will generate the
lower triangular matrix Li, which will be broadcast on the entire panel to let other processes
compute its corresponding part of the matrix Li by solving the linear system Aix = L0. This
technique differs from LU and QR because in this case, we can only decompose diagonal sub-
blocks with the Cholesky factorization, due to the form of matrix A. Thus, this factorization
gives great performance because it uses only one broadcast operation and some other linear
solving operations. Algorithm 9 shows how the TSCH algorithm works.

We can notice that TSCH does not have the same pattern as TSLU and TSQR (see

47

6.1. TSCH AND FT-TSCH

Algorithm 9: TSCH

Data: Sub-matrix Ai,j, Communicator commp, Integer i

1 myrank = i ;

2 if myrank = 0 then
3 Li,j = CHOLESKY(Ai,j);

4 f = broadcast(Li,j, commp, Process with rank 0) ;

5 if FAIL == f then
6 return;

7 if myrank > 0 then
8 Li,j = Ai,j \ Li,j ;

9 return Li,j;

sections 4.1,5.1). Compared with these algorithms, the main differences are the Cholesky
call and the communication pattern. While LU and QR have a butterfly communication
pattern, Cholesky only generates a linear broadcast to distribute Li,0. So each process Pi

will start with its corresponding local sub-matrix Ai,s, process 0 will generate sub-matrix
Li,0 locally, will share it with all processes Pj on the panel, will send Li,0 to them and finally
processes with a rank higher than zero will compute its corresponding Li,s.

The TSCH matrix algebra can be represented as follows:

• A =

A0,0

A1,0

A2,0

A3,0

 =

L0,0L

T
0,0

A1,0

A2,0

A3,0

 =

L0,0L

T
0,0

A1,0 \ L0,0

A2,0 \ L0,0

A3,0 \ L0,0

 =

L0,0L

T
0,0

L1,0

L2,0

L3,0

Finally, it is important to mention that, compared to TSLU and TSQR, TSCH uses

much less space in memory or local media storage. In the next sections, we will introduce
the fault-tolerant version of this algorithm.

6.1.2 FT-TSCH

The Fault-Tolerant Tall and Skinny Cholesky (FT-TSCH) algorithm is the fault-tolerant
version of TSCH. As FT-TSLU and FT-TSQR, FT-TSCH requires a fault-tolerant middle-
ware to be able to detect crash-type process failures at run-time and repair them. When
an error is detected, it re-spawns all the failed processes at once, repairs the communication
channels used by the processes to distribute information and the required data to let failed
processes know which sub-block the dead process was in charge of. Processes backup their
results obtained after calculating the Cholesky factorization (in the case of a process 0) or
solving the corresponding linear system to find Li,j (in the case of processes which rank is
greater than zero). The storing procedure is capable of backup sub-blocks on memory or in
local media storage. Algorithm 10 describes how FT-TSCH functions.

48

6.2. CACH AND FT-CACH

Algorithm 10: FT-TSCH

Data: Sub-matrix Ai,j, Communicator commp, Integer i

1 myrank = i ;

2 while !done() do
3 if Li,j has not being computed and myrank = 0 then
4 Li,j = CHOLESKY(Ai,j);

5 f = broadcast(Li,j, commp, Process with rank 0) ;

6 if FAIL == f then
7 restoreFailed(Li,j, commp) ;

8 continue;

9 if myrank > 0 then
10 Li,j = Ai,j \ Li,j ;

11 backup(Li,j) ;

12 return Li,j;

This algorithm is less complex than LU and QR algorithms. It keeps the same fault
tolerance intention and works similar to its non-fault-tolerant version. The only change is
the restoreFailed(Li,j) and backup(Li,j) addition. These functions are already defined in
section 4.1.

FT-TSQR uses the same set of t processes P = {P0, P1, · · · , Pt−1}, keeps a linear com-
munication pattern to distribute the first Li,0 sub-block from process 0 to other processes
and retains the same initial distribution of matrix A as algorithm 2.

6.2 CACH and FT-CACH

6.2.1 CACH

The Communication-Avoiding Cholesky (CACH) algorithm factors a necessarily square ma-
trix A into the product of two matrices L and LT taking the left-most panel at each iteration,
as defined in section 3.3 and figure 3.4. CACH uses TSCH to factorize an entire panel at
once and uses their computed Li,j sub-blocks to update the trailing matrix.

CACH divides the square matrix A ∈ M ×N into sub-blocks Ai,j of size b× b, forming
a grid with M

b
lines and columns, as CALU and CAQR. It forms the current processing

panel with the sub-blocks Ai,j belonging to the current processing column and computes the
Cholesky factorization on it, as described in the previous section, finding all Li,j sub-blocks.
Then, it updates the trailing matrix. In this case, the resulting Li,j sub-blocks are distributed
across rows and the update procedure takes place. The same panel construction is repeated
until the trailing matrix is the last sub-block and it can be fastly computed by one process.

CACH processes are assigned to work on a specific sub-block on the grid. Properties

49

6.2. CACH AND FT-CACH

provided by the form of the matrix let CACH dismiss all the upper parts of the matrix.
Hence, processes working on the upper part of the main diagonal (belonging to the upper
part of the grid) can be discarded to save some memory. Then, processes belonging to the
same column will decompose the panel corresponding to their column. At the end of the
panel computation, the sub-blocks Li,j are broadcasted across row communicators on the
grid to allow processes on the right of the panel to update its corresponding part of the
trailing matrix; with this data distribution, data redundancy is generated across rows and
thus processes are holding the same data and fault-tolerant mechanisms can be added to
the algorithm. Now, only one operation it is needed to perform the trailing matrix update:
Ai,j = Ai,j −Li,j ×LT

i,j. We can see that the Cholesky trailing matrix update is much easier
than CALU or CAQR. We only need to perform a matrix transposition, a multiplication,
and an addition, which results in higher performance when implemented in parallel. In this
part, CACH takes the next panel and repeats the same procedure iteratively on the trailing
matrix. Algorithm 11 describes how the steps of the CACH algorithm are executed.

Algorithm 11: CACH

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 while stillHasPanel() do
2 if computing a panel then
3 Panel = nextPanel() ;

4 Li,j = TSCH(Panel) ;

5 broadcast(Li,j, rowi, Process with rank currCol) ;

6 else if updating trailing matrix then
7 broadcast(Li,j, rowi, Process with rank currCol) ;

8 Ai,j = Ai,j − Li,j × LT
i,j ;

9 updateStage() ;

10 return Li,j;

CACH uses the four functions defined in section 4.2: stillHasPanel(), nextPanel(),
broadcast(Li,j,rowi,r) and updateStage(). Compared with algorithm 3 and 7, the difference
resides on the TSCH call.

6.2.2 FT-CACH

The Fault-Tolerant Communication-Avoiding Cholesky factorization algorithm is the fault-
tolerant version of the CACH algorithm. FT-CACH has been given the same fault-tolerance
characteristics as all previous fault-tolerant algorithms, focusing on minimal changes on the
critical path and crash-type process failures restoration procedure at run-time. As a process
may need the Li,j sub-block corresponding to another row it is not part of, FT-CACH dumps
the results obtained at the end of FT-TSCH on the local media storage device, allowing all

50

6.2. CACH AND FT-CACH

LT

L
p

an
el

trailing
matrix

(a) Panel: select a panel, compute its
Cholesky factorization, broadcast over
Li panel

LT

L

(b) Broadcast Li,j ; update trailing
matrix with Li,j = Ai,j − Li,j × LT

i,j

Figure 6.1: CACH panel selection and Li,j broadcast across panel and rows.

processes to have access to all Li,j sub-blocks to execute the trailing matrix update procedure,
also broadcasting Li,j on row communicators.

When a process ends the Cholesky factorization of a panel and when a trailing matrix
operation has been completed, each process stores its corresponding sub-block and overwrites
its previous results. As with previous fault-tolerant algorithms, this mechanism allows the
algorithm to restore failed processes. If a process restoration takes place, every process
can have access to its last valid result and continue with the execution. Algorithm 12
displays how fault tolerance mechanism works, using the same functions defined in section
4.1: readBackup(), FTTSCH(Panel), backup(Li,j) and restoreFailed(current stage).

As with previous fault-tolerant versions, the restoration procedure synchronizes all pro-
cesses in the global communicator. At the end of successful communication, all processes
can detect which processes have died and re-start them. Both algorithms 11 and 12 have the
same communication pattern on the grid. Both algorithms use the same set of t processes
P = {P0, P1, . . . , Pt−1} and the same initial distribution of matrix A. The main difference
between them resides again in the backup and restoration operations.

In chapter 7, a model is presented validating the approach described in all previous
Communication-Avoiding algorithms, proving properties and demonstrating they can be
reliable enough.

51

6.2. CACH AND FT-CACH

Algorithm 12: FT-CACH

Data: Square Matrix A, Communicator rowi, colj, Integer i,j

1 if I am a spawned process then
2 Ai,j = readBackup() ;

3 updateStage() ;

4 while stillHasPanel() do
5 if computing panel then
6 Panel = nextPanel() ;

7 Li,j = FTTSCH(Panel) ;

8 broadcast(Li,j, rowi, Process with rank currCol) ;

9 backup(Li,j) ;

10 else if updating trailing matrix then
11 broadcast(Li,j, rowi, Process with rank currCol) ;

12 Ai,j = Ai,j − Li,j × LT
i,j ;

13 backup(Ai,j) ;

14 if FAIL == f then
15 restoreFailed(current stage) ;

16 continue;

17 updateStage() ;

18 return Li,j;

52

CHAPTER 7

Fault Tolerance Formal Verification

Interesting properties that can be used to provide fault tolerance to algorithms have arisen.
These properties do not seem very intuitive at all when we consider them outside the algo-
rithms. One way to represent fault-tolerant properties such that they appear more readable
or understandable is with formal models. Coloured Petri Nets (CPN) [71] allow for easily
representing the algorithm. Their ease in modeling and validating properties of parallel and
distributed algorithms is very intuitive.

A CPN model contains places (represented with circles) that depict elements of the state
of the system. It also contains transitions (represented with squares) that describe the
actions carried out in the system, with their prerequisites and effects. CPN places contain
tokens that hold a value that can be manipulated by transitions. Therefore, each place is
associated with the type of tokens it can hold.

Formal verification allows for proving properties of the model. Then, we formally prove
that Tall and Skinny algorithms are able to tolerate some failures that could arise during
its execution and guaranteeing that the final results are always the expected ones. We also
model the general fault tolerance mechanism used in our algorithms and prove it behaves as
expected.

7.1 Tall and Skinny Formal Model

Figure 7.1 depicts a Coloured Petri Net modeling a Tall and Skinny algorithm (see algorithms
1, 2, 5, 6, 9 and 10). It focuses on the structure for the functioning of the algorithm, its
different steps, and the communication between processes, and not the actual computation.
The model mostly depends on a single parameter: the number of processes in the system.
The other ones (number of steps, maximum number of failures) depend on the number of
processes.

7.1.1 Tall and Skinny Model Description

• Place Processes contains triples (q, s, k) where q is a process number, s the current
step, and k the index of the R̃ matrix it has already computed.

53

7.1. TALL AND SKINNY FORMAL MODEL

Processes
PROC×INT×PROC

∑
0≤q<t(q, 0, q)

compute
[q + 2s − q mod 2s−1 ≤ q′ < q + 2s+1 − q mod 2s−1

∧k′′ = min(k, k′)]

(q
, s
, k

)

(q
′ , s
, k
′)(q

, s
+

1,
k
′′)

(q
′ , s

+
1,
k
′′) INT×INT

MaxFail∑
0≤s≤dlog2 te

(s, 2s − 1)

nop
[q + 2s ≥ t]

(q, s, k)

(q, s+
1, k)

failure
[f > 0]

(q, s, k) (s
, f

)(s
, f
−

1)
Figure 7.1: Model corresponding to algorithms 1, 2, 5, 6, 9 and 10.

• Place MaxFail contains pairs (s, f) which indicates how many failures are still allowed
at step s. It thus limits the number of occurrences of transition failure.

• Transition compute assigns the fixed partner process q′ and executes the current step
s of the algorithm.

• Transition failure consumes a failed process at step s if it is still allowed.

• Transition nop captures the case when no partner can be found, and the process thus
moves to the next step.

7.1.2 Tall and Skinny Structural Analysis

In this section, it is proved that:

1. The system modelled in section 7.1 can reach the end of the computation (prop. 1)

2. The final result is unique and, therefore is the expected one (prop. 2)

For proving, there is used projection functions Πx to select the xth element of a token
which has a tuple value Πx,y to select the xth and yth elements to form a pair. Πs

x denotes
the value of Πx when the step number is s.

Property 1. At every step s > 0 , the system can tolerate at most 2s − 1 failures.

Proof. Let M() be the marking of places. During the first step, each process performs a
local computation. Then at every step s > 0, transition compute takes the upper triangular
Ũ and Ũ ′ from two processes q and q′ and produces Ũ ′′ on both q and q′ or transition failure
consumes a process. Formally, by a trivial recursion, it can be proved that at each step
s > 0, it holds that: |Πs

3(M(Processes))|+ Πs
2(M(MaxFail)) = 2s.

54

7.2. COMMUNICATION-AVOIDING FORMAL MODEL

However, the guard on transition failure ensures that 0 ≤ Πs
2(M(MaxFail)) ≤ 2s − 1.

Therefore, we have at each step s > 0: 1 ≤ |Πs
3(M(Processes))| ≤ 2s: at least one process

holds each intermediate Ũ , which is sufficient for the computation to proceed with the next
step.

Property 2. At the end of the computation, if the system did not suffer too many failures
(as specified in property 1), at least one process holds the final R.

Proof. This property is easily derived from the proof of property 1. At each step s > 0, we
have |Πs

3(M(Processes))| ≥ 1. This is sufficient for the algorithm to reach the final step.
We also need to prove that this final R̃ is unique (and therefore, is the final R). We know

that, for each R̃: |Πs
3(M(Processes))|+Πs

2(M(MaxFail)) = 2s Moreover, 0 ≤ Πs
2(M(MaxFail)) ≤

2s− 1. The final step is when s = log2 t. Hence, |Πs
3(M(Processes))|+ Πs

2(M(MaxFail)) = t.
As a consequence, all non-failed processes hold the same R̃, which is the final R.

7.2 Communication-Avoiding Formal Model

Figure 7.2 shows a CPN model for the Fault-Tolerant Communication-Avoiding schemes (see
algorithms 3, 4, 7, 8, 11 and 12). It is focused on the functioning of the algorithm: 1) how
panel selection and stage increment is made, 2) how different processes are selected to run
different tasks, 3) how processes communicate between them and 4) how dead processes are
restored. As the Tall and Skinny model in previous section 7.1, the The Communication-
Avoiding model mostly depends on the number of available processes in the system.

7.2.1 Communication-Avoiding Model Description

• Place Ready marked with an elementary token e indicates whether a new panel can be
handled, otherwise it is empty.

• Place Current Panel contains the number of panel p to be processed.

• Place Working Processes contains a triple (l, S, p) composed of the (sub-)list of pro-
cesses [qi, . . . , qj] ∈ Q in charge of processing the current panel p at stage S. It is
empty when no panel is being processed and initialized when starting to process a new
panel.

• Place Process Stage contains a pair (q, S) such that process q is executing stage S.

• Place Alive contains all processes q that are still alive.

• Place Dead contains all pairs (q, s) such that process q has failed at stage S.

• Transition initialize starts the initialization phase for handling the Current Panel p:
it initializes place Working Processes with a triple containing the processes list l =
workers(p), stage S = 0, and the panel p, and place Process Stage with all pairs with

55

7.2. COMMUNICATION-AVOIDING FORMAL MODEL

Working Processes
PROCS×INT×INT

next panel
[S = lastStage(p)] e

Ready
{e}

1

Current
Panel
INT

work finished

next stage
[S 6= lastStage(p)]

Process Stage
PROC×INT

initialize

Dead
PROC×INT

fail restart process

PROC

Alive
PROC

([
],
S
,p

)

p

(p
+

1)

e

p

e

∑ q
∈
w
o
r
k
er

s(
p
)(
q,

0)

(wo
rke

rs(
p),

0, p
)

∑
q∈

w
o
r
k
er

s(p−
1
) (q, S

)

([
],
S
, p

)

(w
ork

ers(p), S
+

1, p)

(l, S, p)

(remove(q, l), S, p) (q, S)

(q, S + 1)

(q
, S

)

(q, S)

q

(q, S)

(q, S)

q + q
′

q
′

Figure 7.2: Model corresponding to algorithms 3, 4, 7, 8, 11 and 12.

a process in the list workers(p), and their starting stage S = 0. At the same time,
it removes from Process Stage all processes that operated on the previous panel and
have now finished. This occurs only when place Ready is marked.

• Transition next stage occurs when the list of processes at the current stage S is empty,
i.e., they can move on to the next stage (and in that case there still exists one). Thus
it restarts with a new list of workers for panel p at stage S + 1.

• Transition next panel updates, when stage S is the last one for the current panel p,
the panel in place Current Panel with the next one p + 1. It also puts a token in
place Ready to indicate that the next panel is ready to be processed. The empty list

56

7.2. COMMUNICATION-AVOIDING FORMAL MODEL

of Working Processes at this last stage is also removed from its place.

• Transition work finished indicates a process has finished the stage S and is ready to
handle stage S + 1. It is also removed from the list of working processes in place
Working Processes.

• Transition fail captures the failure of a process q at stage S. It is removed from place
Process Stage and from place Alive and moved to place Dead.

• Transition restart process restarts a dead process q at the stage S where it had failed,
as indicated in place Dead, and puts it back in places Alive and Process Stage.

Note that the workers(p) function is not explicit here. It can choose the same worker
processes for different panels. As referred to in section 8.3, the implementation uses a 2D
process grid, hence in practice, they are different. However, this is not necessary because
all processes are removed from place process stage before the new ones are launched by
transition initialize. The only constraint on this function should be that workers(0) = ∅ so
that the first initialization does not require any token from the empty place Process Stage.

7.2.2 Communication-Avoiding Structural Analysis

This section exhibits the properties of the CPN model in figure 7.2, that ensures the correct
functioning of the fault-tolerant scheme. The same projection functions as in section 7.1.2
are used to select elements of a token.

Property 3. All processes are either alive or dead: M(Alive) + Π1(M(Dead)) = PROC .

Proof. The formula is a place invariant of the CPN.

Property 4. After a process q fails at stage s, it is restarted at the same stage.

Proof. If a process q fails at stage S, by firing transition fail, the pair (q, S) ”moves” from
place Process stage to place Dead. The pair is kept and used by transition restart process,
therefore restarting the process at the same stage. Note that no other transition can use a
token from place Dead.

Property 5. There is either one token in place Ready or Working processes: |M(Ready)|+
|M(Working processes)| = 1.

Proof. The formula is a place invariant of the CPN.

Property 6. The processes in the working list are either working or dead:

{q ∈ Π1(M(Working processes)} = ΠS
1 (M(Process stage)) +M(Dead)

57

7.2. COMMUNICATION-AVOIDING FORMAL MODEL

Proof. First, let us prove that there can only be one copy of a process q in place Process
Stage. This place is initially empty. It can be filled only by transition initialize which
removes the tokens corresponding to the processes in workers(p − 1) before filling it with
tokens corresponding to processes in workers(p), which are also in the list put in the list
of place Working Processes. Note that this transition can only occur if there is no Dead
process, since it requires all processes in workers(p) to be in place Process Stage.

Then, transition Work finished takes and puts a token in place Process Stage, both with
the same process number. It increments the stage associated with the process, and removes
the process from the Working Processes list.

Finally, transitions fail and restart process are using the same process numbers as shown
in Property 4.

The above arguments entail that processes in the list are members of the workers(p) set.
Those in Process Stage and Dead are exactly workers(p). Hence the property.

58

CHAPTER 8

Implementations

This chapter describes how the non-fault-tolerant and fault-tolerant algorithms presented
in chapters 4, 5 and 6 were implemented, showing some examples and explaining the most
important parts.

Before proceeding to the implementation of fault-tolerant mechanisms, it is first necessary
to measure one single process execution to have a base reference for the next parallel imple-
mentations. Then, the implementation of the non-fault-tolerant algorithms was carried out.
Knowing if the non-fault-tolerant implementations are scalable with our non-fault-tolerant
implementations, they will provide base reference times that will be used to make the corre-
sponding comparisons between fault-tolerant algorithms and the non-fault-tolerant ones. It
also helps to get a better idea of where to inject the fault-tolerant mechanisms.

All the codes were written in the C programming language, using OpenMPI for non-fault-
tolerant versions and ULFM for the fault-tolerant versions. The first utilized OpenMPI
version is 4.1.0, but then a new release was published and it was decided to update the
OpenMPI version to 5.1. The same happened with ULFM: the first utilized ULFM version
is 4.1.0u1a1, but then the fault-tolerant extension was integrated into the OpenMPI main
source code; so starting from this version, it is possible to get fault-tolerant subroutines with
OpenMPI source, of course using the right configuration.

Initially, LU factorization algorithms were tested with OpenMPI version is 4.1.0 and
ULFM 4.1.0u1a1, meaning that there was a comparison between two different software cores
at runtime. When OpenMPI and ULFM versions were updated, there was only one software
core at runtime, so comparisons for QR and Cholesky factorization algorithms were made
only between a non-fault-tolerant core software and a fault-tolerant one.

All dense operations executed by a single process (local matrix factorization, matrix ad-
dition, linear equation solving, etc.) were not implemented. It was better to use OpenBLAS
0.3.8, which contains a collection of highly optimized subroutines dedicated to performing
these dense operations locally and sequentially. In table 8.1, there are listed all OpenBLAS
subroutines used in the implementations. All codes were compiled using gcc 8.3 with the
-O3 optimization flag.

59

8.1. VARIABLES AND STRUCTURES DEFINITION

Table 8.1: OpenBLAS subroutines used in the implementations.

Name Description Use

DAXPY Perform the sum of two vectors
Matrix additions (or substractions) in

LU/QR/Cholesky trailing matrix
updates

DGEMM
Perform the product of two

matrices

Matrix multiplications in
LU/QR/Cholesky trailing matrix

updates

DGEQRF
Computes the QR factorization

of a matrix

Sub-matrix QR factorizations in
TS/CA algorithms, generating

Householder vectors used in trailing
matrix update

DGETRF
Computes the LU factorization

of a matrix

Sub-matrix LU factorizations in
TS/CA algorithms, generating IPIV

vectors used for row-swapping

DLARNV
Generates a random vector of
real numbers, with uniform or

normal distribution

Random input matrix generation
(with uniform distribution) in

LU/QR/Cholesky tests

DLASWP
Performs a series of row
interchanges on a matrix

Row-swapping in TS/CA LU
algorithms

DPOTRF
Computes the Cholesky

factorization of a real symmetric
positive definite matrix

Sub-matrix Cholesky factorizations in
TS/CA algorithms

DSCAL Scales a vector by a constant
Scalar vs matrix multiplication in QR

trailing matrix updates

DTRSM
Solves a triangular system of

linear equations

System solving to find lower triangular
sub-blocks in LU/QR/Cholesky TS

algorithms

8.1 Variables and Structures Definition

This section describes each fundamental variable for the development of the tall and skinny
and communication-avoiding algorithms.

8.1.1 Variables and Structures for TS-Algorithms

As was mentioned previously, the thesis aims to implement fault-tolerant versions of matrix
factorizations. For this, each matrix involved in the computations (input matrix, sub-matrix,
Householder vectors, etc.) is seen as a large array of floating values, in which the elements
of the matrix are store. As each matrix has particular fixed characteristics, it was defined a
special structure to stored every matrix, which is presented in figure 8.1. As can be seen, the
structure has the most important variables associated with a matrix, some of them are needed

60

8.1. VARIABLES AND STRUCTURES DEFINITION

to work with OpenBLAS subroutines and others are factorization-specific variables. Those
algorithm-specific (array) variables are only used for the algorithm (LU/QR/Cholesky) the
variable belongs to; if the algorithm does not need that variable, it will not initialized nor
used.

1 typedef struct _matrix_data{

2 int M; // row size

3 int N; // column size

4 double *A; // stores the matrix A

5 double *A_init; // stores the initial matrix (copy of A)

6 double *L; // stores the matrix L (for Cholesky)

7 double *U; // stores the matrix U (for LU)

8 double *R; // stores the matrix R (for QR)

9 double *Hv; // stores the householder vectors (for QR)

10 double *T; // stores the T matrix (for QR)

11 int *IPIV; // stores the swapping index (for LU)

12 double *TAU; // stores the tau values (for QR)

13 double *WORK; // stores working values (for QR)

14 int LDA; // leading dimension of A

15 int INFO; // return value for an OpenBLAS subroutine call

16 int Mb; // row size (per block)

17 int Nb; // column size (per block)

18 }matrix_data;

Figure 8.1: Definition of C structure matrix data

Then, we know that there will be processes exchanging information and they need a
communication channel; so also implemented a structure to store all information related
to the use of a classical MPI program. This special structure is shown in figure 8.2. The
structure has relevant variables useful to maintain the process state in the MPI and Tall and
Skinny environments. Particularly, the integer values spawned and step finished have special
use in a Tall and Skinny algorithm: variable spawned tells a process if he is a replacement
of some other process that previously died; variable step finished tells a process if he has
already completed its work on the current step, in case a failure appeared and it is not
necessary to (re-)execute again the operations the process already did.

The remaining variables used out of the structures for all Tall and Skinny algorithms are
listed in figure 8.3. As with structure matrix data, an algorithm will use only the variables
it needs.

There are also some variables used only in TSQR to enable processes to know what is
the current state of the algorithm, especially in data replication speaking. Those special
variables are listed in figure 8.4. All of them are related to process knowledge of type what
processes are doing. Processes use these variables to keep information about:

• it access to a Householder vector in order to distribute it.

• whether it should dump its current intermediate results.

61

8.1. VARIABLES AND STRUCTURES DEFINITION

1 typedef struct _MPI_data{

2 int argc; // argc value from main

3 char **argv; // argv array from main

4 int processor_name_len; // size of the machine name

5 char processor_name[MPI_MAX_PROCESSOR_NAME];// machine name

6 int spawned; // am I a spawned process?

7 MPI_Comm world; // comm (row ,column ,global)

8 int world_rank; // rank in comm

9 int world_size; // elements in comm

10 MPI_Status status; // receive calls status

11 int step; // step in a TS algorithm

12 int step_finished; // did I finished the step?

13 int *dest; // partner ranks

14 int *mirror; // previous partner ranks

15 }MPI_data;

Figure 8.2: Definition of C structure mpi data

1 int step_lim; // steps number to perform

2 int working_block[mpid ->world_size]; // matrix index a process is working

3 int *dead_rank_list; // dead process ranks

4 int *surv_rank_list; // surviving process ranks

5

6 double time_exec_final; // execution time

7 double time_tsch_final; // tscholesky time

8 double time_tslu_final; // tslu time

9 double time_tsqr_final; // tsqr time

10 double time_mult_final; // dgemm time

11 double time_solv_final; // dtrsm time

12 double time_add_final; // daxpy time

13 double time_swap_final; // dlaswp time

14 double time_rest_final; // restoration time

15 double time_comm_final; // communication time

16 double time_copy_final; // copy time

17 double *time_steps; // step by step time

Figure 8.3: More useful variables in a Tall and Skinny algorithm.

• whether it has a partner to share information with (in case the number of processes is
not a power of two).

• whether it should send a broadcast with its current intermediate results.

• whether it should receive a broadcast from a process with no partner in the previous
step.

• whether it should forget the broadcast operation, in case some other process has already
performed the broadcast with the same information.

62

8.1. VARIABLES AND STRUCTURES DEFINITION

The next sections give examples in which TSQR has a process number not a power of two
and some data could be lost if no broadcast operation is performed.

1 int avail; // householder vector is available?

2 int already_back; // did I dumped my results?

3 int broadcast; // am I broadcasting?

4 int broadcast_dim[DIM]; // broadcast sizes

5 int broadcast_list[SIZE]; // ranks with no partner

6 int prev_alone_list[SIZE]; // previous ranks with no partner

7 int broadcast_count; // how many processes received the broadcast?

8 int alone_count; // how many ranks with no partner?

9 int first_alone; // should I broadcast later?

10 int forget_broadcast; // did someone else performed my broadcast?

Figure 8.4: Variables used in TSQR to allow householder vector broadcasts between pro-
cesses.

Finalizing with the Tall and Skinny variables, we have the ones related to matrix concate-
nations in TSLU and TSQR algorithms. Figure 8.5 describes those special concatenation
variables. They are related to let processes know the current size of the upper triangular
matrix concatenation, since it increases after an exchange has been successful. They serve
to store Householder vectors, too. It should be mentioned that again when the number of
process is not a power of two, there will be processes that do not have an extra matrix to
concatenate with (they had no partner at some point of the execution), and hence, the con-
catenation operation will not be performed. Finally, there are some variables dedicated to
storing previous concatenations, with the aim of sending this concatenation to a respawned
process in case an error occurs.

1 int concat_sizes[CONCAT]; // concatenation sizes

2 int l_calc; // should I compute L?

3 int q_calc; // should I compute Q?

4 int MU ,NU; // U concatenation sizes

5 int MR ,NR; // R concatenation sizes

6 int MU_prev ,NU_prev; // previous U concatenation sizes

7 int MR_prev ,NR_prev; // previous R concatenation sizes

8 double *concatU; // stores the U concatenation

9 double *concatR; // stores the R concatenation

10 double *concatU_prev; // stores the previous U concatenation

11 double *concatR_prev; // stores the previous R concatenation

12 int ** Hv_sizes; // householder vector list

13 int Hv_list_size; // householder vector list size

Figure 8.5: Variables used in TSLU/TSQR to enable intermediate results to be concatenated
and remembered in case of an error.

63

8.1. VARIABLES AND STRUCTURES DEFINITION

8.1.2 Variables and Structures for CA-Algorithms

As mentioned before, Communication-Avoiding algorithms work over a process grid, using
a minimal number of inter-process communications, minimizing the number of transferred
messages across the grid. Processes communicate over a 2D process grid and use their
coordinates on this grid to determine what they are doing at a given step (panel factorization,
trailing matrix update). We know that there will be processes exchanging information in
their row and/or column communicators and that they will perform different tasks at the
same time, depending on their position on the grid and the current matrix state. The process
grid has specific characteristics, so there were defined a set of particular variables to represent
it. Variables related to the process grid are presented in figure 8.6.

1 MPI_Comm cart_2D; // grid communicator

2 MPI_Comm row_comm; // row communicator

3 MPI_Comm col_comm; // column communicator

4 MPI_Comm panel_comm; // panel communicator

5

6 int stage; // current matrix stage

7 int rowM; // number of rows in the grid

8 int colN; // number of columns in the grid

9 int rowNum; // process row number in the grid

10 int colNum; // process column number in the grid

11 int currRow; // current processing row

12 int currCol; // current processing column

13

14 double *panel; // stores the current panel

15 int panelRowNum; // process row number in the panel

16 int panelIndex; // panel index a process is working

17 int panelM; // number of rows in the panel

18 int panelN; // number of columns in the panel

19

20 double time_cach_final; // cacholesky time

21 double time_calu_final; // calu time

22 double time_caqr_final; // caqr time

23 double time_exec_tm_final; // trailing matrix update time

24 double time_read_final; // reading time

25 double time_write_final; // writing time

Figure 8.6: Variables used in Communication-Avoiding algorithms to form the process grid
with its respective communicators and maintain the current state of a matrix.

These variables are mainly defined to maintain the state the grid has through time.
Particularly, the integer value stage serves to know what operation is now being executed
over the grid. For example, from the starting point of an algorithm, processes belonging
to the first panel will generate it and they will perform the corresponding Tall and Skinny
algorithm, depending on the factorization is being applied. Other processes not belonging to
the currently processed column, will be waiting for the panel factorization to finish to advance
to the next stage, preparing themselves to exchange information across row communicators.

64

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

Different specific stages for every matrix factorization were defined, as specified in figure
8.7. There are identical stages on different factorizations, like the column division stage; the
main difference between them is the trailing matrix update preparation.

1 #define STAGE_COMM_DIVISION 0 // column comm division (Cholesky)

2 #define STAGE_PANEL_GENERATION 1 // panel generation (Cholesky)

3 #define STAGE_FTTSCH_INITIALIZATION 2 //FT environment init (Cholesky)

4 #define STAGE_FTTSCH_EXECUTION 3 //FT facto exec (Cholesky)

5 #define STAGE_SEND_RECEIVE_L 4 //L broadcast (Cholesky)

6 #define STAGE_SPLIT_COL_COMM 5 // column comm division (Cholesky)

7 #define STAGE_UPDATE_TM 6 // trailing matrix update (Cholesky)

8 #define STAGE_LAST_BLOCK 7 // final block? (Cholesky)

9

10 #define STAGE_COMM_DIVISION 0 // column comm division (LU)

11 #define STAGE_PANEL_GENERATION 1 // panel generation (LU)

12 #define STAGE_FTTSLU_INITIALIZATION 2 //FT environment init (LU)

13 #define STAGE_FTTSLU_EXECUTION 3 //FT facto exec (LU)

14 #define STAGE_SEND_RECEIVE_L 4 //L broadcast (LU)

15 #define STAGE_SEND_RECEIVE_U 5 //U broadcast (LU)

16 #define STAGE_UPDATE_TM 6 // trailing matrix update (LU)

17 #define STAGE_LAST_BLOCK 7 // final block? (LU)

18

19 #define STAGE_COMM_DIVISION 0 // column comm division (QR)

20 #define STAGE_PANEL_GENERATION 1 // panel generation (QR)

21 #define STAGE_FTTSQR_INITIALIZATION 2 //FT environment init (QR)

22 #define STAGE_FTTSQR_EXECUTION 3 //FT facto exec (QR)

23 #define STAGE_SEND_RECEIVE_HV_TAU_SIZE4 // householder size broadcast (QR)

24 #define STAGE_SEND_RECEIVE_HV_TAU 5 // householder vector broadcast(QR)

25 #define STAGE_SPLIT_COL_COMM 6 // column comm division (QR)

26 #define STAGE_UPDATE_TM_HOUSEHOLDER 7 // trailing matrix update (QR)

27 #define STAGE_LAST_BLOCK 8 // final block? (QR)

Figure 8.7: Possible stages utilized in Communication-Avoiding algorithms, depending on
the factorization that is being applied.

Finally, again in figure 8.6, variables referring to the number of rows/columns the grid
has and the current processing row/column are used to know what are the already processed
columns (panels), what operation a process is going to perform, and which processes have
finished their tasks. A more detailed description of the grid construction and representation
with these variables is shown in figure 8.8. The remaining variables serve to know the panel
size and time measurements for Communication-Avoiding specific times.

8.2 Tall and Skinny Matrix Factorizations

In this section it will be described the most relevant information about the Tall and Skinny
implementations.

65

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

rowNum
colNum

currRow

currCol

0 1 2 · · · colN

0

1

2

...

rowM

P0 P1 P2 · · · PcolN

PcolN+1 PcolN+2 PcolN+3 · · · PcolN×2

PcolN×2+1 PcolN×2+2 PcolN×2+3 · · · PcolN×3

...
...

...
. . .

...

P co
lN
×
r
ow

N
u
m

P co
lN
×
ro
w
N
u
m
+
1

P co
lN
×
ro
w
N
u
m
+
2

· · ·
P co

lN
×
r
ow

M
−
1

Figure 8.8: Communication-Avoiding grid partitioning description: red=column communica-
tors, orange=row communicators, green=panel communicators, blue=global communicator;
rowM = M − 1, colN = N − 1, {currRow, rowNum} ∈ [0, rowM], {currCol, colNum} ∈
[0, colN]

8.2.1 TSLU and FT-TSLU

As described in previous section 4.1, the most important functions to correctly develop
TSLU/FT-TSLU algoritms are myPartner, sendrecv, concatenate, update, restoreFailed and
backup. With all these functions implemented (and many others that are not described
here), TSLU was a little reduced to design the logic the algorithm has, like selecting the
pairs of processes to exchange data, write some functions according to equations in 3.1 and
4.1, etc. Particularly, in FT-TSLU implementation, the hardest part was to design the fault-
tolerant mechanisms to recover the current computation. Great care had to be taken in the
information contained in each process over time because not all processes have the same data
in the initial steps. This is one of the reasons why it was decided to use previous states of
the matrix concatenations, for example.

Special care was also taken when having a number of processes that is not a power of
two. In this case, the process without a partner will only compute its respective sub-matrix
factorization and simulate it has finished the exchange procedure, to later continue to the
next step and find a partner. In the next section, some examples will be presented in which
this not a power of two number of processes becomes a hard issue to solve.

66

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

8.2.2 TSQR and FT-TSQR

As described in section 5.1, TSQR/FT-TSQR uses the same set of functions as TSLU/FT-
TSLU to work correctly, but compared to LU previous algorithms, the main and most impor-
tant difference resides in that TSQR/FT-TSQR counts with a more sophisticated mechanism
to decide when to exchange information and when not to do it, since the number of processes
is not a power of two. So, the hardest part in TSQR/FT-TSQR implementation was the
design of the fault-tolerant mechanisms to avoid loss of data. For a better understanding
about this issue, figure 8.9 shows a TSQR execution example with t = 3 processes.

P0

P1

P2

QR QR QR

Incomplete

Figure 8.9: FT-TSQR example with t = 3 processes.

We can see that each process Pi starts with its own sub-matrix Ai,s to compute a local
QR decomposition, generate local sub-matrices Hi,s, Ri,s and, in the case of P0 and P1,
share their results between them. In the case of process P2, it only advances to the next step
keeping its current results. Then process P0 and P1 execute the second QR factorization over
the Ri,s matrix concatenation. Process P2 does not re-execute again the QR factorization.
When the next partner selection is carried out, P0 exchanges with P2 and P1 only advances to
the next step. At the end of the execution, P0 and P2 have the same results, but as no more
exchanges will take place, process P1 is not able to access the information P2 computed, so
the final result for P1 is incomplete and it is not possible to share it with other processes in
the Communication-Avoiding algorithm, because the incorrect result in TSQR will produce
an incorrect result in CAQR. The Householder vectors Hi,s held by every process at each
step in this same example can be seen in table 8.2.

Table 8.2: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 3 processes.

0 1 2

P0 H0, H1 H0,1, H2 H0,1,2

P1 H0, H1 H0,1 H0,1

P2 H2 H0,1, H2 H0,1,2

67

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

More examples of this behaviour are presented in figures 8.10 and 8.11, with Householder
vectors Hi,s in tables 8.3 and 8.4, respectively. In both cases, the lower-most process stays
without a partner until the last step, in which it exchanges its result with the upper-most
process (normally P0) and get the final result correctly, but it implies that the rest of the
processes (all intermediate processes) cannot have a partner and hence, they cannot have
the final result.

P0

P1

P2

P3

P4

QR QR QR QR

Incomplete

Figure 8.10: FT-TSQR example with t = 5 processes.

Table 8.3: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 5 processes.

0 1 2 3

P0 H0, H1 H0,1, H2,3 H0,1,2,3, H4 H0,1,2,3,4

P1 H0, H1 H0,1, H2,3 H0,1,2,3 -
P2 H2, H3 H0,1, H2,3 H0,1,2,3 -
P3 H2, H3 H0,1, H2,3 H0,1,2,3 -
P4 H4 - H0,1,2,3, H4 H0,1,2,3,4

Slightly different examples are shown in figures 8.12 and 8.13, with Householder vectors
Hi,s in tables 8.5 and 8.6, respectively. In both cases, in the first step, all processes can
have a partner to exchange results with, but starting from step s = 1, the two lower-most
processes stay without a partner until the last step, in which finally they find a partner and
exchange their results with the two upper-most processes (normally P0 and P1) and get the
final result correctly; but (again) this implies that the rest of the intermediate processes
cannot have a partner and they cannot have the final result.

68

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

P0

P1

P2

P3

P4

P5

P6

P7

P8

QR QR QR QR QR

Incomplete

Figure 8.11: FT-TSQR example with t = 9 processes.

Another incomplete data case is illustrated in figure 8.14 with Householder vectors in
table 8.7. In this case, process P6 stays without partner only until step s = 1; then process
P5 is the one without partner, losing the bottom-part of the concatenation; finally, in the
last step, process P3 loses its partner and it loses essential information to get the final result
too. So at the end, processes P1, P3 and P5 have incomplete information: P5 and P3 because
they lost their partner, and P1 because P5 sent him incomplete results.

With this set of examples, it is obvious that loss of data and redundancy can take place
if we do not take care of TSQR implementation. During the TSQR implementation, to
avoid loss of redundancy, a great care was taken regarding the information contained in each
process with the advancement of the algorithm over time. Taking into consideration that not
all processes can have access to the same data at different steps and that not all processes

69

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

Table 8.4: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 9 processes.

0 1 2 3 4

P0 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7, H8 H0,1,2,3,4,5,6,7,8

P1 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P2 H2, H3 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P3 H2, H3 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P4 H4, H5 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P5 H4, H5 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P6 H6, H7 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P7 H6, H7 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P8 H8 - - H0,1,2,3,4,5,6,7, H8 H0,1,2,3,4,5,6,7,8

P0

P1

P2

P3

P4

P5

QR QR QR QR

Incomplete

Figure 8.12: FT-TSQR example with t = 6 processes.

can get the final result, it was decided to implement a special distribution mechanism, using
the variables described in figure 8.4. This mechanism allows “lonely” processes to get ready
for sending broadcasts (in future steps) to future “lonely” processes, avoiding data loss for
those future “lonely” processes. For example, seeing figure 8.14, when process P6 realizes he
has no partner, he “lights” a flag telling him it is necessary to send his results to the “lonely”
processes in the next step (P5). When step s = 1 is achieved, P5 realizes he is now alone

70

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

Table 8.5: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 6 processes.

0 1 2 3

P0 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5 H0,1,2,3,4,5

P1 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5 H0,1,2,3,4,5

P2 H2, H3 H0,1, H2,3 H0,1,2,3 -
P3 H2, H3 H0,1, H2,3 H0,1,2,3 -
P4 H4, H5 H4,5 H0,1,2,3, H4,5 H0,1,2,3,4,5

P5 H4, H5 H4,5 H0,1,2,3, H4,5 H0,1,2,3,4,5

Table 8.6: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 10 processes.

0 1 2 3 4

P0 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7, H8,9 H0,1,2,3,4,5,6,7,8,9

P1 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7, H8,9 H0,1,2,3,4,5,6,7,8,9

P2 H2, H3 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P3 H2, H3 H0,1, H2,3 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P4 H4, H5 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P5 H4, H5 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P6 H6, H7 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P7 H6, H7 H4,5, H6,7 H0,1,2,3, H4,5,6,7 H0,1,2,3,4,5,6,7 -
P8 H8, H9 H8,9 - H0,1,2,3,4,5,6,7, H8,9 H0,1,2,3,4,5,6,7,8,9

P9 H8, H9 H8,9 - H0,1,2,3,4,5,6,7, H8,9 H0,1,2,3,4,5,6,7,8,9

Table 8.7: Storing of Householder vectors Hi,j in TSQR after an exchange between partners
is successful, with t = 7 processes.

0 1 2 3

P0 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5,6 H0,1,2,3,4,5,6

P1 H0, H1 H0,1, H2,3 H0,1,2,3, H4,5 H0,1,2,3,4,5

P2 H2, H3 H0,1, H2,3 H0,1,2,3, H4,5,6 H0,1,2,3,4,5,6

P3 H2, H3 H0,1, H2,3 H0,1,2,3 -
P4 H4, H5 H4,5, H6 H0,1,2,3, H4,5,6 H0,1,2,3,4,5,6

P5 H4, H5 H4,5 H0,1,2,3, H4,5 H0,1,2,3,4,5

P6 H6 H4,5, H6 H0,1,2,3, H4,5,6 H0,1,2,3,4,5,6

and some other process is sending some data, so P5 prepares to receive data and P6 sends
the data, continuing then with his normal exchange with P4. With this, P5 can generate the
complete intermediate results. Later, in s = 2, P5 is in charge of sending his data to the
lonely process P3. When exchanges are completed, all processes can have the correct final
result.

71

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

QR QR QR QR QR

Incomplete

Figure 8.13: FT-TSQR example with t = 10 processes.

This mechanism was developed to handle the Householder vectors Hi,j used in the
CAQR/FT-CAQR algorithms, in particular in the trailing matrix update subroutine. The
great advantage is that all processes can find the final upper triangular matrix Ri,s correctly.
It should be mentioned that every Householder vector Hi,j generated during the execution
is also written on the local media storage device, as part of the fault-tolerant mechanisms.

72

8.2. TALL AND SKINNY MATRIX FACTORIZATIONS

P0

P1

P2

P3

P4

P5

P6

QR QR QR QR

Incomplete

Figure 8.14: FT-TSQR example with t = 7 processes.

8.2.3 TSCH and FT-TSCH

TSCH/FT-TSCH algorithms were the last ones implemented. As described in the previous
section 6.1, TSCH/FT-TSCH use the same set of functions as TSLU/FT-TSLU/TSQR/FT-
TSQR, both for communication and for error recovery. But the biggest difference, compared
to both LU and QR algorithms is that the TSCH algorithm only performs one Cholesky
factorization over the sub-block located at the main diagonal of the matrix; that is, it
performs the Cholesky factorization over the upper sub-block of the panel, using only one
step s = 0. This property is derived from the shape the matrix has (see section 3.3). So there
is only one process executing this factorization (normally P0). In the end, the upper process
distributes the found lower triangular Li,0 to processes below him to let them compute their
corresponding sub-block Li,j with a linear solving operation.

In this case, the number of processes involved in the algorithm it is not important, since
only the first process is in charge of running the Cholesky factorization and distribute its
results. The others only keep waiting for receiving the results. If an error occurs, all processes
can restore the failed one without taking care of any intermediate result; they only take care
of the basic process information (rank, which sub-block was working, etc.), the restored one,
and if the operation has been completed or not.

73

8.3. COMMUNICATION-AVOIDING MATRIX FACTORIZATIONS

8.3 Communication-Avoiding Matrix Factorizations

This section describes the most relevant information about the Communication-Avoiding
implementations.

8.3.1 CALU and FT-CALU

CALU/FT-CALU algorithms were the first Communication-Avoiding implementations. The
chosen perspective to represent an environment in the form of a process grid is the one
illustrated in figure 8.8. As described in section 4.2, the most important functions to develop
CALU/FT-CALU algorithms are stillHasPanel, nextPanel, TSLU, broadcast, updateStage,
readBackup, backup and restoredFailed. With all these functions implemented, CALU/FT-
CALU most involved parts to implement were dealing with the amount of space needed to
store the sub-blocks in memory and local storage, ensuring that sub-block distribution by
rows and columns is completed correctly, and enabling each process to know exactly what
tasks he is executing in a particular stage. Particularly, in FT-CALU implementation, the
most challenging part was to design, implement and test the functioning of the fault-tolerant
mechanisms to recover the current state of the grid environment, especially knowing that, if
a process fails, it will fail in all communicators (row, column, global, maybe panel). All the
logic to respawn the failed process, let it know in which position it was on the grid before
the failure, and reintegrate it in its respective communicators was the hardest challenge.
Fortunately, the proposed solution to deal with these issues injects low overhead (depending
on the number of errors) and performance results scale correctly as the number of processes
increases (see experimental results in section 9.3).

8.3.2 CAQR and FT-CAQR

CAQR/FT-CAQR algorithms were the second (and hardest) Communication-Avoiding im-
plementations. As described in the previous section 5.2, CAQR/FT-CAQR uses the same
set of functions as CALU/FT-CALU to work correctly. Compared with LU algorithms,
CAQR/FT-CAQR uses much more space (memory and local media) to store all House-
holder vectors generated in TSQR/FT-TSQR, which are necessary for the trailing matrix
update. To perform correctly the CAQR trailing matrix update, each process belonging to a
non-processed column (at the right of the current panel) must share its Householder vectors
with the other processes belonging to the same column. This trailing matrix update follows
the same communication pattern as a Tall and Skinny algorithm but is now performed in all
non-processed columns, instead of the current panel. As previously seen in algorithm 7, we
can see that local operations require more computational time when performing this proce-
dure. Also, the same mechanism described in 8.2.2 was utilized to deal with trailing matrix
updates with a number of a process not a power of two. The fault-tolerant mechanisms in
FT-CAQR are the same described in FT-CALU (see 8.3.1). Experimental results are shown
in section 9.4.

74

8.3. COMMUNICATION-AVOIDING MATRIX FACTORIZATIONS

8.3.3 CACH and FT-CACH

CACH/FT-CACH algorithms were the last ones being implemented. As described in sec-
tion 6.2, CACH/FT-CACH use the same set of functions as CALU/FT-CALU/CAQR/FT-
CAQR, both for communication and for error recovery. The main difference, compared to
both LU and QR algorithms, is that the CACH algorithm only uses processes below the
main diagonal to perform the Cholesky factorization of the entire matrix. That is, processes
located above the main diagonal are not used in the algorithm, or they could be used as
backup processes in the fault-tolerant algorithm. If the second option is chosen, in case a
lower process crashes, its transposed process can act as the replacement, since it has the same
(transposed) sub-block to work with, derived from the shape the matrix has (see section 3.3).
With this, we can see that only processes located in the main diagonal perform the Cholesky
factorization and the rest perform matrix addition and multiplication to update the almost
half of the trailing matrix and proceed with the algorithm. Finally, as FT-CAQR, after a
sub-block of the entire matrix has been completed, FT-CACH dumps the result in the local
media storage device. Experimental results are shown in section 9.5.

75

8.3. COMMUNICATION-AVOIDING MATRIX FACTORIZATIONS

76

CHAPTER 9

Experiments

By having the implementations of both non-fault-tolerant and fault-tolerant algorithms,
the next step is to run a performance evaluation to verify that the overhead injected by
restoration mechanisms and the overhead on failure-free execution is minimal. This chapter
specifies the selected architecture for testing the algorithms. Time and performances graphics
obtained in the different algorithms versions are shown too.

9.1 Grid5000 Test Architecture

Grid5000 is a large-scale infrastructure available to address research experiments oriented
to diverse areas of computer science. It is supported by a scientific interest group hosted
by Inria and including CNRS, and several Universities, as well as other organizations (see
https://www.grid5000.fr). It is connected by the Renater French Education and Research
Network. Grid5000 is a computer science project dedicated to the study of grids. The main
areas using it for testing are parallel and distributed computing (Cloud, HPC, Big Data or
AI).

Algorithm implementations described in chapter 8 were evaluated on this architecture.
The cluster Gros in Nancy site was chosen for testing, because it is more likely to have access
to a large amount of nodes, which is mandatory to launch experiments with large amounts of
processes. It counts with the hardware specified in table 9.1. Nodes on the selected cluster
run a Debian 9.2 Linux-based operating system.

Table 9.1: Grid5000 Gros cluster hardware characteristics

Cluster Nodes CPU Cores Memory Storage Network

gros 124
124 x Intel Xeon Gold 5220

Cascade Lake-SP
18 96 GiB

480 GB
SSD +
960 GB

SSD

2 x 25
Gbps

(SR-IOV)

77

https://www.grid5000.fr

9.2. INPUT AND MEASURED TIMES

9.2 Input and Measured Times

Input matrix sizes used for testing are: 16k × 16k, 32k × 32k, 64k × 64k and 100k × 100k;
OpenBLAS DLARNV subroutine with uniform distribution and fixed seed was used to
generate them, except for the input matrices for Cholesky algorithms tests. For generating
matrices with the particular properties the Cholesky factorization needs, algorithm 13 was
implemented.

Algorithm 13: Random Positive-Definite Symmetric Matrix

Data: Integer M

1 I = identityMatrix(M) ;

2 A = randomMatrix(M) ;

3 AT = transposeMatrix(A) ;

4 A = (1
2

* (A + AT)) + (M * I);

5 return A;

The number of processes utilized for every test varies from 64 to 1024, corresponding to 4
to 57 Gros nodes. In Communication-Avoiding algorithm tests, executions are launched with
a number of processes with an exact square root (64, 144, · · · , 784, 1024) to be able to form
an exact square process grid. Every experiment was run 10 times and the plots presented
here were computed taking the average values of all executions. The maximal throughput
achieved in every algorithm were computed with the next equation:

τmax =
2MN2

tb ∗ 109
(9.1)

where M and N are the number of rows and lines in the original matrix, respectively,
tb represents the base time chosen for an algorithm execution (failure-free with OpenMPI,
failure-free with ULFM or one failure with ULFM) and τmax is the maximal throughput
represented in Gigaflops.

Failures were injected by sending a SIGKILL signal to the processes. In this case, the
operating system sends closing notifications on the TCP sockets used by the run-time en-
vironment and the failures are detected immediately. In real life, detecting failures is a
challenge on its own and this cannot happen when a failure occurs. A more advanced failure
detection mechanism could be used[6]. Although there exist more realistic techniques to in-
ject failures, we chose not to use them in order to isolate the algorithmic cost from the system
cost, and evaluate the performance of the algorithms separately from some system-specific
costs.

In every test, for every algorithm, elapsed times to perform a particular task were mea-
sured:

• Execution time: total execution time, since MPI environment is created until all pro-
cesses finish their execution. It includes all the initializations, including memory allo-

78

9.3. LU TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

cations for storing matrices, DLARNV call, etc., so it is not used to evaluate scalability
and injected overheads.

• DGEMM, DTRSM, DAXPY, DLASWP times: total time spent in calls to OpenBLAS
subroutines.

• TSCH, TSLU, TSQR times: total time spent in panel factorizations, since the first
step is started until all processes finish their computations. It includes all the com-
munications, memory allocations, etc. It is used to evaluate scalability and injected
overheads in panel factorization algorithms.

• Step by step time: total time spent to execute successfully a step in panel factorization.
It includes all the communications, matrix concatenations, etc.

• CACH, CALU, CAQR times: total time spent for the rectangular factorizations, since
the grid environment is created until all processes finish their executions. This time is
used to verify scalabitily.

• Trailing Matrix Update time: total time spent updating the trailing matrix.

• Restoration time: total spent time to respawn dead processes, restore communicators
and share required information with the new ones.

• Communication time: total time spent to communicate between processes (for ex-
changing information across communicators).

• Copy time: total time spent to copy (sub-)matrices with memcpy (backup, restoration,
sub-block extraction, etc.).

• Writing/Reading time: total time spent to write/read a backup. Various strategies
were explored and no significant difference in terms of performance was perceived.

In the next sections, graphics with the most relevant times are presented.

9.3 LU Tall and Skinny/Communication-Avoiding Ex-

ecutions

Figure 9.1a displays execution times for TSLU/FT-TSLU and figure 9.1b shows execution
times for CALU/FT-CALU. It can be noted that both algorithms scale satisfactorily as the
number of processes increases. It can also be seen that OpenMPI and ULFM failure-free
executions are similar, and when a failure occurs the ULFM execution gets slightly degraded.
This means that added fault tolerance mechanisms generate a small overhead over non-fault-
tolerant algorithms, but it is a minimal overhead compared against the total execution time;
and we have the advantage of having gained fault tolerance. As both algorithms perform
parallel LU decompositions over sub-blocks, complexity for factorizing panels is reduced
successfully with small overhead.

79

9.3. LU TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

64P128P 256P 512P 1024P

Ti
m

e
 (

s)

Processes

TSLU Total OMPI
FTTSLU Total ULFM

FTTSLU Error Total ULFM

(a) Execution times for TSLU/FT-TSLU

 0

 1000

 2000

 3000

 4000

 5000

 6000

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CALU Total OMPI
FTCALU Total ULFM

FTCALU Error Total ULFM

(b) Execution times for CALU/FT-CALU

Figure 9.1: Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 100k ×
100k).

With a small number of processes it is noticeable that non-fault-tolerant version slightly
overcomes fault-tolerant versions, but as the amount of processes grows, this overhead tends
to shrink, even when a failure occurs. When an error is detected and corrected, execution
times increase due to all the extra information that must be shared between processes to
restore the previous state the failed process had. Also, process synchronization on commu-
nicators must be done to successfully restore the processes grid environment.

Figures 9.2a and 9.2b present the maximal flops and speed up (respectively) achieved for
both algorithms. As expected, both measures increase with the amount of processes used;
but just as it happened with execution times, when a failure occurs on FT-TSLU execution,
it decreases its performance at the level of TSLU or even less.

Execution times for restoring processes were measured too. On every test including a
failure, a script in charge of sending SIGKILL signals to FT-CALU processes was used,
in order to simulate pseudo-random crashes. The selected number of errors detected and
corrected in every test was 1. Tests with more variations are those with more processes.
When an error is detected and a new process is spawned, the recovery step involves data
exchanges to restore the state of the failed process before the crash. This recovery time is
presented in figure 9.3. It can be seen time increases slightly as the number of processes
increase, because of the synchronizing operations on the communicator. As the size of
the grid increases, the recovering time of the process environment also grows, but without
reaching even one second, even with the bigger process number.

Figure 9.4 presents a comparision of our FT-CALU executions with all tested matrix
sizes. As expected, scalability swiftly increases as the amount of processes increase as well
as the matrix size, specially failure-free executions. When a failure occurs, performance looks
minimally hit compared against a failure-free FT-CALU execution.

In general, the overall performance increases with the number of processes. As expected,
the scalability and the performance per process increase as the size of the matrix increases

80

9.4. QR TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

 0

 200

 400

 600

 800

 1000

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(a) Maximal throughput reached in CALU/FT-CALU
executions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(b) Maximal speed-up reached in CALU/FT-CALU ex-
ecutions

Figure 9.2: Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:
100k × 100k).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

Restore Error ULFM

(a) Restoration times for TSLU/FT-
TSLU (input: 32k × 32k)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

Restore Error ULFM

(b) Restoration times for TSLU/FT-
TSLU (input: 64k × 64k)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

Restore Error ULFM

(c) Restoration times for TSLU/FT-
TSLU (input: 100k × 100k)

Figure 9.3: Restoration times obtained in FT-CALU algorithm for all inputs, with one error.

and the algorithms’ good parallelism properties get satisfactory performance on the parallel
platform, for both fault-tolerant and non-fault-tolerant versions of TSLU and CALU.

9.4 QR Tall and Skinny/Communication-Avoiding Ex-

ecutions

Figure 9.5 compares the execution times of TSQR/FT-TSQR (figure 9.5a) and CAQR/FT-
CAQR (figure 9.5b) implementations, respectively. Like TSLU/FT-TSLU, TSQR/FT-TSQR
scale well and the relative overhead of the proposed fault-tolerance mechanisms are very
small. It must be noticed that the impact of a failure on the total execution time is also
very small. This result shows (again) that exploiting intrinsic redundancies that exist in

81

9.4. QR TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

 0

 1000

 2000

 3000

 4000

 5000

 6000

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CALU OMPI 32768x32768
FTCALU ULFM 32768x32768

FTCALU Error ULFM 32768x32768
CALU OMPI 65536x65536

FTCALU ULFM 65536x65536
FTCALU Error ULFM 65536x65536

CALU OMPI 100200x100200
FTCALU ULFM 100200x100200

FTCALU Error ULFM 100200x100200

Figure 9.4: Comparision of the scalability of FT-CALU for different matrix sizes.

Tall and Skinny algorithms is a good approach to recover from failures and proceed with
the rest of the execution. However, CAQR/FT-CAQR presents a different behavior; with
a small amount of processes, total time starts decreasing, proving good scalability, but as
the number of process grows the execution time also starts increasing. In this case, with an
input size 16k × 16k, the best result is given with 576 processes; that is, a process grid of
size 24× 24. This increase begins to grow due to the operations of backup and distribution
of Householder vectors (which implies disk reading), in addition to the dense operations the
trailing matrix update requires (matrix multiplication, addition, transposing, etc.). So, in
CAQR/FT-CAQR, when applying the algorithm to ”small” matrices, it is recommended to
find the best number of processes to achieve good scalability.

 0

 2

 4

 6

 8

 10

 12

 14

64P128P 256P 512P 1024P

Ti
m

e
 (

s)

Processes

TSQR Total OMPI
FTTSQR Total ULFM

FTTSQR Error Total ULFM

(a) Execution times for TSQR/FT-TSQR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CAQR Total OMPI
FTCAQR Total ULFM

FTCAQR Error Total ULFM

(b) Execution times for CAQR/FT-CAQR

Figure 9.5: Total times obtained in (FT-)TSQR/(FT-)CAQR algorithms (input: 16k×16k).

This behavior can be seen in figure 9.6. Figure 9.6a present the maximal throughput
achieved for CAQR/FT-CAQR, and figure 9.6b present the maximal speed up. As described,

82

9.5. CHOLESKY TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

both measures start increasing with a small amount of processes, but then a maximal point
is reached and performance starts decreasing. But just as it happened with previous LU
algoritms, when a failure occurs on FT-CAQR, performance is marginally decreased at the
level of CAQR as maximum, which means that practically the same performance is kept,
but with fault tolerance included.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CAQR OMPI
FTCAQR ULFM

FTCAQR Error ULFM

(a) Maximal throughput reached in CAQR/FT-CAQR
executions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p

Processes

CAQR OMPI
FTCAQR ULFM

FTCAQR Error ULFM

(b) Maximal speed-up reached in CAQR/FT-CAQR ex-
ecutions

Figure 9.6: Maximal throughput and speed-up reached in (FT-)CAQR algorithms (input:
16k × 16k).

The same testing fault tolerance method was used in FT-CAQR (sending SIGKILL sig-
nals, with one error). When an error is detected and a new process is spawned, the recovery
step requires only basic data exchanges, and mainly local media reading to recover Houlse-
holder vectors to use in the trailing matrix update, that in fact, is the most expensive
operation in CAQR/FT-CAQR. So it can be seen time increases as the number of processes
increase, because of this expensive operations.

More tests with FT-CAQR algorithm were not possible because of the amount of space
required to store all Householder vectors and sub-blocks the algorithm needs, specially when
a big number of processes is used.

9.5 Cholesky Tall and Skinny/Communication-Avoiding

Executions

Figure 9.7a displays execution times for TSCH/FT-TSCH and figure 9.7b shows execution
times for CACH/FT-CACH. Both algorithms scale satisfactorily as processes increase, but
since it requires only one fast step (Cholesky factorization and result distribution), scalability
does not form a curve as TSLU or TSQR. Here, non-fault-tolerant and fault-tolerant versions
present the same behavior: with a process increase, total execution time gets reduced, but

83

9.5. CHOLESKY TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

benefit tends to be not as big as with TSLU/TSQR, since TSCH does not require exchanges
between partners and it does not execute a dense local operation per process (only process 0).
So, added fault tolerance mechanisms generate a small overhead, as TSLU or TSQR, since
if a process fails, it will onlly be re-launched and it will verify what was its corresponding
sub-block. The same behavior as FT-CAQR can be appreciated in FT-CACH, since they
perform the same backup subroutines on local disk; this is, Cholesky stores lower triangular
sub-blocks to let other processes to take and used them in trailing matrix update.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSCH Total OMPI
FTTSCH Total ULFM

FTTSCH Error Total ULFM

(a) Execution times for TSCH/FT-TSCH

 0

 200

 400

 600

 800

 1000

 1200

 1400

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CACH Total OMPI
FTCACH Total ULFM

FTCACH Error Total ULFM

(b) Execution times for CACH/FT-CACH

Figure 9.7: Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 100k ×
100k).

Figures 9.8a and 9.8b present the maximal flops and speed up (respectively) reached
for both algorithms. As expected, both measures increase with the amount of processes
used and they are bigger than FT-CALU/FT-CAQR. When a failure occurs, performances
decrease as with CALU/CAQR. But thanks to their inherent parallelism, TSCH/FT-TSCH
and FT-CACH/FT-CACH can generally achieve good scalability on cluster infrastructures.

When an error is detected and a new process is spawned, the recovery step involves
minimal data exchanges to restore the state of the failed process.

Figure 9.9 presents a comparison of our FT-CALU executions with all tested matrix
sizes. As expected, scalability swiftly increases as the amount of processes increases as well
as the matrix size, especially failure-free executions. When a failure occurs, performance
looks minimally hit compared against a failure-free FT-CACH execution.

In general, the overall performance increases with the number of processes. As expected,
the scalability and the performance per process increase as the size of the matrix increases
and the algorithms’ good parallelism properties get satisfying performance on the parallel
platform, for both fault-tolerant and non-fault-tolerant version of TSCH and CACH.

Appendix B shows more graphs obtained with different sizes of matrices, for each factor-
ization.

84

9.5. CHOLESKY TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

 0

 500

 1000

 1500

 2000

 2500

 3000

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(a) Maximal throughput reached in CACH/FT-CACH
executions

 0

 5

 10

 15

 20

 25

 30

 35

64P 144P 256P 400P 576P 784P 1024P
S
p
e
e
d
 U

p

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(b) Maximal speed-up reached in CACH/FT-CACH ex-
ecutions

Figure 9.8: Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:
100k × 100k).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CACH OMPI 16384x16384
FTCACH ULFM 16384x16384

FTCACH Error ULFM 16384x16384
CACH OMPI 32768x32768

FTCACH ULFM 32768x32768
FTCACH Error ULFM 32768x32768

CACH OMPI 65536x65536
FTCACH ULFM 65536x65536

FTCACH Error ULFM 65536x65536
CACH OMPI 100200x100200

FTCACH ULFM 100200x100200
FTCACH Error ULFM 100200x100200

Figure 9.9: Comparision of the scalability in (FT-)CACH algorithm for all inputs.

85

9.5. CHOLESKY TALL AND SKINNY/COMMUNICATION-AVOIDING EXECUTIONS

86

CHAPTER 10

Conclusions and Future Perspectives

10.1 Summary

In this thesis, I have worked on an approach to tolerate failures at application-level by ex-
ploiting properties of the algorithms in three linear algebra operations: the LU, QR and
Cholesky matrix factorizations. I have designed, implemented, and presented a collection of
algorithms to perform these important matrix factorizations of a dense matrix in parallel in
a context of crash-type failures. The algorithms presented here can be used in two contexts:
as a computation kernel, guaranteeing the user that if a failure happens during the factoriza-
tion, it will be dealt with automatically, or implementing these algorithms in fault-tolerant
applications that require to run a matrix factorization.

I have exploited structural properties of communication-avoiding factorization algorithms
[54] to introduce intrinsic redundancies upon failures and let the algorithms restore the
state of the failed processes, minimizing the amount of computation required to resume
computation. I have applied these ideas to the factorization of a tall-and-skinny matrix
(TSLU, TSQR, TSCH, FT-TSLU, FT-TSQR, FT-TSCH), of a rectangular matrix (CALU,
CAQR, FT-CALU, FT-CAQR) and a square matrix (CACH, FT-CACH). The robustness
of the tall-and-skinny algorithms has been previously modeled and proved in [72].

Execution times on failure-free executions and executions with one failure were measured.
The performance evaluation that was conducted to verify the scalability in the developed
algorithms show that the introduced fault-tolerant mechanisms do not represent a large
overhead on the final cost. The cost of a failure on the total execution time is very important
in a context where failures can happen at any time and must not be significantly harmful
for the computation. Therefore, I have seen that the approach based on exploiting intrinsic
(partial) redundancies in this communication-avoiding algorithms is promising, both since
it has little impact on the failure-free performance and the existence of intermediate results
allows new processes to start from a partial point, providing a quick post-failure recovery.

This work has produced new libraries that can be used in the context previously described.
These libraries are available for any person who needs them. However, more efforts can be
done to generate new fault-tolerant mechanisms in the development of new mathematical
libraries highly demanded in the scientific world.

87

10.2. FUTURE PERSPECTIVES

Finally, as being part of the design of concurrent system modeling and verification, a for-
mal model for fault-tolerant tall and skinny algorithms was derived. The core contributions
are to prove how failures can be represented and modeled using the abstraction provided by
the model. It also helps in the proof design of fault tolerance properties for general parallel
algorithms.

10.2 Future Perspectives

Regarding the issue of formal verification, the models derived and presented in this work can
be useful serving as a basis, or being extended to a general model that represents how errors
are modeled formally. A future perspective is to derive a model and verification approach
for fault-tolerant algorithms, showing that they are capable of mitigating failures that are
present at runtime, and also, that they are capable of repairing them on the fly regardless
of when they occur.

As experiments over the collection of fault-tolerant algorithms have given hopeful results,
this thesis work could be extended to add fault tolerance mechanisms into any algorithm
that enjoys of interesting intrinsic properties that allow creating data redundancy and add
fault-tolerant mechanisms on large-scale parallel algorithms, like sparse linear algebra.

In sparse linear algebra, for example, a temporary matrix is generated from the nonze-
ros entries in the first rows/columns of the original matrix. Then, a variant of Gaussian
elimination factorizes a temporary matrix with an LU factorization, generating frontal ma-
trices and dispersing the columns of the lower triangular matrix and the rows of the upper
triangular in a structure called elimination tree. In this procedure, there are also generated
the contribution blocks, which can be seen as a trailing matrix, and later they will be used
during the updating process of some rows and columns in the original matrix. During the
forward elimination, the elimination tree is processed; at each step, part of the solution LU
is computed, and the right-hand side is modified using the partial computed solution.

With a first analysis over this algorithm, I have realized that there are possibilities to
add similar fault-tolerant mechanisms as in Tall-and-Skinny and Communication-Avoiding
algorithms specified in chapters 4, 5 and 6. For example, some data redundancy can be
generated in the building of temporary matrices, distribution of frontal matrices and con-
tribution blocks. If we share information between processes, the elimination tree could be
processed in parallel. In figure 10.1 is represented a basic form of a sparse matrix (10.1a)
and the elimination tree generated from the initial matrix.

88

10.2. FUTURE PERSPECTIVES

(a) Example of a sparse matrix (b) Example of an elimination tree

Figure 10.1: Example of a sparse matrix with an elimination tree.

The conclusions from this work are encouraging and open perspectives for applying this
approach to other computation kernels.

89

10.2. FUTURE PERSPECTIVES

90

Appendices

91

APPENDIX A

TSLU/FT-TSLU execution examples

To provide a better understanding of the way the TSLU and FT-TSLU algorithms work,
this section provides an example of their execution steps. The matrix used is a tiny one, an
8 × 2 matrix, to make the easier and quicker the description. All the matrix factorizations
are computed with subroutine OpenBLAS DGETRF.

A.1 TSLU execution example

A.1.1 TSLU single-process execution

A =

7.0000 7.0000
7.0000 2.0000
9.0000 2.0000
5.0000 8.0000
1.0000 5.0000
3.0000 7.0000
7.0000 3.0000
8.0000 6.0000

=

1.0000 0.0000
0.5556 1.0000
0.7778 0.7903
0.7778 0.0645
0.1111 0.6935
0.3333 0.9194
0.7778 0.2097
0.8889 0.6129

[
9.0000 2.0000
0.0000 6.8889

]
= LU, IPIV = {3, 4}

A.1.2 TSLU multi-process execution

The matrix A is divided into t = 4 sub-blocks and each block is sent to a process. Each
process computes its block and shares its result with its current partner.

1. Step 0 execution:

P0 → A0 =

[
7.0000 7.0000
7.0000 2.0000

]
=

[
1.0000 0.0000
1.0000 1.0000

] [
7.0000 7.0000
0.0000 −5.0000

]
= L0U0

IPIV0 = {1, 2}

P1 → A1 =

[
9.0000 2.0000
5.0000 8.0000

]
=

[
1.0000 0.0000
0.5556 1.0000

] [
9.0000 2.0000
0.0000 6.8889

]
= L1U1

93

A.1. TSLU EXECUTION EXAMPLE

IPIV1 = {1, 2}

P2 → A2 =

[
1.0000 5.0000
3.0000 7.0000

]
=

[
1.0000 0.0000
0.3333 1.0000

] [
3.0000 7.0000
0.0000 2.6667

]
= L2U2

IPIV2 = {2, 2}

P3 → A3 =

[
7.0000 3.0000
8.0000 6.0000

]
=

[
1.0000 0.0000
0.8750 1.0000

] [
8.0000 6.0000
0.0000 −2.2500

]
= L3U3

IPIV3 = {2, 2}
Each process exchanges its results with its partner:

P0 ←→ P1, P2 ←→ P3

2. Step 1 execution:

• Ui, Uj concatenation: when the exchange has been completed, the processes ex-
ecute tournament pivoting to select the best rows from the Ui, Uj matrices they
have and concatenate them.

Pi, Pj : Ui, Uj → U ′i,j =

[
Ui

Uj

]

P0, P1 : U0 =

[
7.0000 7.0000
0.0000 −5.0000

]
, U1 =

[
9.0000 2.0000
0.0000 6.8889

]
→ U ′0,1 =

7.0000 7.0000
9.0000 2.0000
0.0000 −5.0000
0.0000 6.8889

P2, P3 : U2 =

[
3.0000 7.0000
0.0000 2.6667

]
, U3 =

[
8.0000 6.0000
0.0000 −2.2500

]
→ U ′2,3 =

3.0000 7.0000
8.0000 6.0000
0.0000 2.6667
0.0000 −2.2500

• DGETRF is executed on the U ′i,j new matrix:

Pi, Pj : U ′i,j = Li,jUi,j

P0, P1 : U ′0,1 =

7.0000 7.0000
9.0000 2.0000
0.0000 −5.0000
0.0000 6.8889

 =

1.0000 0.0000
0.0000 1.0000
0.0000 −0.7258
0.7778 0.7903

[9.0000 2.0000
0.0000 6.8889

]
= L0,1U0,1

IPIV0,1 = {2, 4}

P2, P3 : U ′2,3 =

3.0000 7.0000
8.0000 6.0000
0.0000 2.6667
0.0000 −2.2500

 =

1.0000 0.0000
0.3750 1.0000
0.0000 0.5614
0.0000 −0.4737

[8.0000 6.0000
0.0000 4.7500

]
= L2,3U2,3

IPIV2,3 = {2, 2}

94

A.1. TSLU EXECUTION EXAMPLE

At this part, each process has the resulting Ui,j of the step.

P0, P1 : U0,1 =

[
9.0000 2.0000
0.0000 6.8889

]

P2, P3 : U2,3 =

[
8.0000 6.0000
0.0000 4.7500

]
Each process exchanges its results with its new partner:

P0 ←→ P2, P1 ←→ P3

3. Step 2 execution:

• Ui,j, Uk,l concatenation: when the exchange has been completed, the processes
execute tournament pivoting to select the best rows from the Ui,j, Uk,l matrices
they have and concatenate them.

Pi,j, Pk,l : Ui,j, Uk,l → U ′i,j,k,l =

[
Ui,j

Uk,l

]

P0,1, P2,3 : U0,1 =

[
9.0000 2.0000
0.0000 6.8889

]
, U2,3 =

[
8.0000 6.0000
0.0000 4.7500

]
→ U ′0,1,2,3 =

9.0000 2.0000
8.0000 6.0000
0.0000 6.8889
0.0000 4.7500

• DGETRF is executed on the U ′i,j,k,l new matrix:

Pi,j, Pk,l : U ′i,j,k,l = Li,j,k,lUi,j,k,l

P0,1, P2,3 : U ′0,1,2,3 =

9.0000 2.0000
8.0000 6.0000
0.0000 6.8889
0.0000 4.7500

 =

1.0000 0.0000
0.0000 1.0000
0.8889 0.6129
0.0000 0.6895

[9.0000 2.0000
0.0000 6.8889

]
= L0,1,2,3U0,1,2,3

IPIV0,1,2,3 = {1, 3}

To generate the final Li,j,k,l, DTRSM is executed as follows:

Ax = Ui,j,k,l →

7.0000 7.0000
7.0000 2.0000
9.0000 2.0000
5.0000 8.0000
1.0000 5.0000
3.0000 7.0000
7.0000 3.0000
8.0000 6.0000

x =

9.0000 2.0000
0.0000 6.8889
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

→

0.7778 0.7903
0.7778 0.0645
1.0000 0.0000
0.5556 1.0000
0.1111 0.6935
0.3333 0.9194
0.7778 0.2097
0.8889 0.6129

= Li,j,k,l

95

A.2. FT-TSLU MULTI-PROCESS EXECUTION

At this part, each process has the final Li,j,k,l and Ui,j,k,l:

P0,1,2,3 : L0,1,2,3 =

0.7778 0.7903
0.7778 0.0645
1.0000 0.0000
0.5556 1.0000
0.1111 0.6935
0.3333 0.9194
0.7778 0.2097
0.8889 0.6129

, U0,1,2,3 =

[
9.0000 2.0000
0.0000 6.8889

]

Compared with the single process L,U matrices, the final L0,1,2,3 only need to be sorted
(with DLASWP):

L =

1.0000 0.0000
0.5556 1.0000
0.7778 0.7903
0.7778 0.0645
0.1111 0.6935
0.3333 0.9194
0.7778 0.2097
0.8889 0.6129

, U =

[
9.0000 2.0000
0.0000 6.8889

]

A.2 FT-TSLU multi-process execution

For a better understanding, the example given here shows how a failed process is re-spawned
in a middle step.

1. Step 0 execution: the same as TSLU, point 1.

2. Step 1 execution:

• Ui, Uj concatenation: when the exchange has been completed, the processes ex-
ecute tournament pivoting to select the best rows from the Ui, Uj matrices they
have and concatenate them. In this case, process P2 crashes after the exchange
with P3 has finished.

Pi, Pj : Ui, Uj → U ′i,j =

[
Ui

Uj

]

P0, P1 : U0 =

[
7.0000 7.0000
0.0000 −5.0000

]
, U1 =

[
9.0000 2.0000
0.0000 6.8889

]
→ U ′0,1 =

7.0000 7.0000
9.0000 2.0000
0.0000 −5.0000
0.0000 6.8889

96

A.2. FT-TSLU MULTI-PROCESS EXECUTION

P3 : U2 =

[
3.0000 7.0000
0.0000 2.6667

]
, U3 =

[
8.0000 6.0000
0.0000 −2.2500

]
→ U ′2,3 =

3.0000 7.0000
8.0000 6.0000
0.0000 2.6667
0.0000 −2.2500

• DGETRF is executed on the U ′i,j new matrix:

Pi, Pj : U ′i,j = Li,jUi,j

P0, P1 : U ′0,1 =

7.0000 7.0000
9.0000 2.0000
0.0000 −5.0000
0.0000 6.8889

 =

1.0000 0.0000
0.0000 1.0000
0.0000 −0.7258
0.7778 0.7903

[9.0000 2.0000
0.0000 6.8889

]
= L0,1U0,1

IPIV0,1 = {2, 4}

P3 : U ′2,3 =

3.0000 7.0000
8.0000 6.0000
0.0000 2.6667
0.0000 −2.2500

 =

1.0000 0.0000
0.3750 1.0000
0.0000 0.5614
0.0000 −0.4737

[8.0000 6.0000
0.0000 4.7500

]
= L2,3U2,3

IPIV2,3 = {2, 2}

At this part, each surviving process has the resulting Ui,j of the step.

P0, P1 : U0,1 =

[
9.0000 2.0000
0.0000 6.8889

]
P3 : U2,3 =

[
8.0000 6.0000
0.0000 4.7500

]
Each process exchanges its results with its new partner:

P0 ←→ P2, P1 ←→ P3

P1 and P3 exchange correctly their results, but by the time P0 tries to exchange its
results with P2, all processes realize it has died. The process restoration starts: P2 is
re-spawned and all the processes restore the communicator to include the new restored
process. The process in charge to share its current information with the failed one is
P3, because it is the previous partner that had the same data as P2.

P3 −→ P2

Here, P2 has received the resulting U2,3 of the step.

P2 : U2,3 =

[
8.0000 6.0000
0.0000 4.7500

]
When the restoration exchange finishes, P0 exchanges its results with its newly restored
partner P2 and the calculation continues.

3. Step 2 execution: the same as TSLU, point 3.

97

A.2. FT-TSLU MULTI-PROCESS EXECUTION

98

APPENDIX B

More Tall and Skinny/Communication-Avoiding

Graphics

In this section, more graphics obtained from the executions of the LU and Cholesky factor-
izations algorithms are shown.

B.1 More LU Execution Graphics

In figure B.1 it is shown the total execution times that the Tall and Skinny and Communication-
Avoiding algorithms generated, for LU factorization, with an input size of 32k × 32k. For
the same input and algorithms, figure B.2 is illustrated the maximal reached throughput
and speed-up.

 0

 10

 20

 30

 40

 50

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSLU Total OMPI
FTTSLU Total ULFM

FTTSLU Error Total ULFM

(a) Execution times for TSLU/FT-TSLU

 0

 50

 100

 150

 200

 250

 300

 350

 400

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CALU Total OMPI
FTCALU Total ULFM

FTCALU Error Total ULFM

(b) Execution times for CALU/FT-CALU

Figure B.1: Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 32k×32k).

Additionally, figures B.3 and B.4 display the total execution times and the the maximal
achieved throughput and speed-up, for the same algorithms, with an input size of 64k×64k.

99

B.2. MORE CHOLESKY EXECUTION GRAPHICS

 0

 100

 200

 300

 400

 500

 600

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(a) Maximal throughput reached in CALU/FT-CALU
executions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(b) Maximal speed-up reached in CALU/FT-CALU ex-
ecutions

Figure B.2: Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:
32k × 32k).

 0

 50

 100

 150

 200

 250

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSLU Total OMPI
FTTSLU Total ULFM

FTTSLU Error Total ULFM

(a) Execution times for TSLU/FT-TSLU

 0

 500

 1000

 1500

 2000

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CALU Total OMPI
FTCALU Total ULFM

FTCALU Error Total ULFM

(b) Execution times for CALU/FT-CALU

Figure B.3: Total times obtained in (FT-)TSLU/(FT-)CALU algorithms (input: 64k×64k).

B.2 More Cholesky Execution Graphics

In figure B.5 it is shown the total execution times that the Tall and Skinny and Communication-
Avoiding algorithms generated, for Cholesky factorization, with an input size of 16k × 16k.
For the same input and algorithms, figure B.6 is illustrated the maximal reached throughput
and speed-up.

Additionally, figures B.7 and B.8 display the total execution times and the the maximal
achieved throughput and speed-up, for the same algorithms, with an input size of 32k×32k.

Finally, figures B.9 and B.10 exhibit the total execution times and the maximal accom-

100

B.2. MORE CHOLESKY EXECUTION GRAPHICS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(a) Maximal throughput reached in CALU/FT-CALU
executions

 0

 0.5

 1

 1.5

 2

 2.5

 3

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p

Processes

CALU OMPI
FTCALU ULFM

FTCALU Error ULFM

(b) Maximal speed-up reached in CALU/FT-CALU ex-
ecutions

Figure B.4: Maximal throughput and speed-up reached in (FT-)CALU algorithms (input:
64k × 64k).

 0

 0.5

 1

 1.5

 2

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSCH Total OMPI
FTTSCH Total ULFM

FTTSCH Error Total ULFM

(a) Execution times for TSCH/FT-TSCH

 0

 10

 20

 30

 40

 50

 60

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CACH Total OMPI
FTCACH Total ULFM

FTCACH Error Total ULFM

(b) Execution times for CACH/FT-CACH

Figure B.5: Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 16k×16k).

plished throughput and speed-up, for the same algorithms, with an input size of 64k × 64k.

101

B.2. MORE CHOLESKY EXECUTION GRAPHICS

 0

 100

 200

 300

 400

 500

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(a) Maximal throughput reached in CACH/FT-CACH
executions

 0

 0.5

 1

 1.5

 2

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p
Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(b) Maximal speed-up reached in CACH/FT-CACH ex-
ecutions

Figure B.6: Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:
16k × 16k).

 0

 1

 2

 3

 4

 5

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSCH Total OMPI
FTTSCH Total ULFM

FTTSCH Error Total ULFM

(a) Execution times for TSCH/FT-TSCH

 0

 20

 40

 60

 80

 100

 120

 140

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CACH Total OMPI
FTCACH Total ULFM

FTCACH Error Total ULFM

(b) Execution times for CACH/FT-CACH

Figure B.7: Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 32k×32k).

102

B.2. MORE CHOLESKY EXECUTION GRAPHICS

 0

 200

 400

 600

 800

 1000

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(a) Maximal throughput reached in CACH/FT-CACH
executions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p
Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(b) Maximal speed-up reached in CACH/FT-CACH ex-
ecutions

Figure B.8: Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:
32k × 32k).

 0

 5

 10

 15

 20

 25

 30

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSCH Total OMPI
FTTSCH Total ULFM

FTTSCH Error Total ULFM

(a) Execution times for TSCH/FT-TSCH

 0

 100

 200

 300

 400

 500

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CACH Total OMPI
FTCACH Total ULFM

FTCACH Error Total ULFM

(b) Execution times for CACH/FT-CACH

Figure B.9: Total times obtained in (FT-)TSCH/(FT-)CACH algorithms (input: 64k×64k).

103

B.2. MORE CHOLESKY EXECUTION GRAPHICS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

64P 144P 256P 400P 576P 784P 1024P

G
ig

a
Fl

o
p
s

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(a) Maximal throughput reached in CACH/FT-CACH
executions

 0

 50

 100

 150

 200

64P 144P 256P 400P 576P 784P 1024P

S
p
e
e
d
 U

p

Processes

CACH OMPI
FTCACH ULFM

FTCACH Error ULFM

(b) Maximal speed-up reached in CACH/FT-CACH ex-
ecutions

Figure B.10: Maximal throughput and speed-up reached in (FT-)CACH algorithms (input:
64k × 64k).

104

Bibliography

[1] Jack Dongarra et al. The international exascale software project roadmap.
International Journal of High Performance Computing Applications, 2011.

[2] William Gropp and Marc Snir. Programming for exascale computers. Computing in
Science & Engineering, 15:27, 2013.

[3] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology
challenges. In International Conference on High Performance Computing for
Computational Science, pages 1–25. Springer, 2010.

[4] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1):5–28, 2014.

[5] Daniel A. Reed, Charng Da Lu, and Celso L. Mendes. Reliability challenges in large
systems. Future Generation Computer Systems, 22(3):293–302, 2 2006.

[6] G. Bosilca, A. Bouteiller, A. Guermouche, T. Herault, Y. Robert, P. Sens, and
J. Dongarra. Failure detection and propagation in hpc systems. In SC ’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 312–322, 2016.

[7] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.
Communication-optimal parallel and sequential qr and lu factorizations. SIAM J. Sci.
Comput., 34(1):206–239, February 2012.

[8] Franck Cappello. Fault tolerance in petascale/exascale systems: Current knowledge,
challenges and research opportunities. International Journal of High Performance
Computing Applications, 23(3):212–226, 2009.

[9] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K. Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. Lessons learned from the analysis of system
failures at petascale: The case of blue waters. In Proceedings of the 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN ’14,
pages 610–621, Washington, DC, USA, 2014. IEEE Computer Society.

105

BIBLIOGRAPHY

[10] Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp,
Torsten Hoefler, Sameer Kumar, Ewing Lusk, and Jesper Larsson Träff. MPI at
exascale. In Procceedings of SciDAC 2010, Jun. 2010.

[11] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. Unprotected
computing: A large-scale study of dram raw error rate on a supercomputer. In SC ’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 645–655, 2016.

[12] Shuo Yang, Kai Wu, Yifan Qiao, Dong Li, and Jidong Zhai. Algorithm-directed crash
consistence in non-volatile memory for hpc. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pages 475–486, 2017.

[13] S. Perarnau and L. Bautista-Gomez. Monitoring strategies for scalable dynamic
checkpointing. In 2016 Seventh International Green and Sustainable Computing
Conference (IGSC), pages 1–8, 2016.

[14] O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta, A. Cristal,
and F. Cappello. Spatial support vector regression to detect silent errors in the
exascale era. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 413–424, 2016.

[15] Marcos Maroñas, Sergi Mateo, Kai Keller, Leonardo Bautista-Gomez, Eduard
Ayguadé, and Vicenç Beltran. Extending the openchk model with advanced
checkpoint features. Future Generation Computer Systems, 112:738 – 750, 2020.

[16] C. Ruiz, J. Emeras, E. Jeanvoine, and L. Nussbaum. Distem: Evaluation of fault
tolerance and load balancing strategies in real hpc runtimes through emulation. In
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 267–272, 2016.

[17] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and
F. Cappello. Blocking vs. non-blocking coordinated checkpointing for large-scale fault
tolerant mpi. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, pages 18–18, Nov 2006.

[18] Ifeanyi P. Egwutuoha, Shiping Chen, David Levy, and Bran Selic. A fault tolerance
framework for high performance computing in cloud. In 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages
709–710, 2012.

[19] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

[20] Sangho Yi, Derrick Kondo, Bongjae Kim, Geunyoung Park, and Yookun Cho. Using
replication and checkpointing for reliable task management in computational grids. In
2010 International Conference on High Performance Computing & Simulation, pages
125–131. IEEE, 2010.

106

BIBLIOGRAPHY

[21] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The performance of consistent
checkpointing. In [1992] Proceedings 11th Symposium on Reliable Distributed Systems,
pages 39–47, 1992.

[22] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. Redesigning the message
logging model for high performance. Concurrency and Computation: Practice and
Experience, 22:2196–2211, 11 2010.

[23] Lemarinier Pierre, Bouteiller Aurelien, Herault Thomas, Krawezik Geraud, and
Cappello Franck. Impact of Event Logger on Causal Message Logging Protocols for
Fault Tolerant {MPI}. In 19th International Parallel and Distributed Processing
Symposium, Denver, USA, United States, April 2005.

[24] J.-M Helary, Achour Mostéfaoui, and Michel Raynal. A communication-induced
checkpointing protocol that ensures rollback-dependency trackability. pages 68–77, 07
1997.

[25] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput.
Surv., 34(3):375–408, September 2002.

[26] Ifeanyi Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high performance
computing systems. The Journal of Supercomputing, 65, 09 2013.

[27] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill.
Implementation and evaluation of a scalable application-level checkpoint-recovery
scheme for mpi programs. In SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, pages 38–38, 2004.

[28] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated
application-level checkpointing of mpi programs. SIGPLAN Not., 38(10):84–94, June
2003.

[29] Y. Zhu, Y. Liu, and G. Zhang. Ft-pblas: Pblas-based fault-tolerant linear algebra
computation on high-performance computing systems. IEEE Access, 8:42674–42688,
2020.

[30] M. Artioli, D. Loreti, and A. Ciampolini. Fault tolerant high performance solver for
linear equation systems. In 2019 38th Symposium on Reliable Distributed Systems
(SRDS), pages 113–11309, 2019.

[31] Graham E Fagg and Jack J Dongarra. FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world. In European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, pages 346–353. Springer,
2000.

107

BIBLIOGRAPHY

[32] William Hoarau, Pierre Lemarinier, Thomas Hérault, Eric Rodriguez, Sébastien
Tixeuil, and Franck Cappello. Fail-mpi: How fault-tolerant is fault-tolerant mpi? 2006
IEEE International Conference on Cluster Computing, pages 1–10, 2006.

[33] Joshua Hursey, Richard L. Graham, Greg Bronevetsky, Darius Buntinas, Howard
Pritchard, and David G. Solt. Run-through stabilization: An mpi proposal for process
fault tolerance. In Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and
Jack Dongarra, editors, Recent Advances in the Message Passing Interface, pages
329–332, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[34] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. Post-failure recovery of mpi communication capability: Design and
rationale. 27(3):244–254, August 2013.

[35] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca,
and Jack J. Dongarra. An evaluation of user-level failure mitigation support in mpi.
In Jesper Larsson Träff, Siegfried Benkner, and Jack J. Dongarra, editors, Recent
Advances in the Message Passing Interface, pages 193–203, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[36] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Exploring
automatic, online failure recovery for scientific applications at extreme scales. In SC
’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 895–906, 2014.

[37] M. Gamell, D. S. Katz, K. Teranishi, M. A. Heroux, R. F. Van der Wijngaart, T. G.
Mattson, and M. Parashar. Evaluating online global recovery with fenix using
application-aware in-memory checkpointing techniques. In 2016 45th International
Conference on Parallel Processing Workshops (ICPPW), pages 346–355, 2016.

[38] Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla,
Jacqueline Chen, and Manish Parashar. Exploring failure recovery for stencil-based
applications at extreme scales. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’15, page 279–282, New
York, NY, USA, 2015. Association for Computing Machinery.

[39] M. Gamell, K. Teranishi, J. Mayo, H. Kolla, M. A. Heroux, J. Chen, and M. Parashar.
Modeling and simulating multiple failure masking enabled by local recovery for
stencil-based applications at extreme scales. IEEE Transactions on Parallel and
Distributed Systems, 28(10):2881–2895, 2017.

[40] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and M. Parashar.
Local recovery and failure masking for stencil-based applications at extreme scales. In
SC ’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2015.

108

BIBLIOGRAPHY

[41] Erlin Yao, Mingyu Chen, Rui Wang, Wenli Zhang, and Guangming Tan. A new and
efficient algorithm-based fault tolerance scheme for a million way parallelism. CoRR,
abs/1106.4213, 2011.

[42] Rachid Guerraoui and André Schiper. Fault-tolerance by replication in distributed
systems. In Alfred Strohmeier, editor, Reliable Software Technologies — Ada-Europe
’96, pages 38–57, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[43] J.S. Plank, Kai Li, and M.A. Puening. Diskless checkpointing. IEEE Transactions on
Parallel and Distributed Systems, 9(10):972–986, 1998.

[44] George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. Algorithm-based
fault tolerance applied to high performance computing. Journal of Parallel and
Distributed Computing, 69(4):410–416, 2009.

[45] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming
Ouyang, Franck Cappello, and Zizhong Chen. Algorithm-based fault tolerance for
convolutional neural networks, 2020.

[46] C. Coti. Exploiting redundant computation in communication-avoiding algorithms for
algorithm-based fault tolerance. In 2016 IEEE 2nd International Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference on
Intelligent Data and Security (IDS), pages 214–219, April 2016.

[47] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers, 33(06):518–528, jun 1984.

[48] E. Agullo, C. Coti, J. Dongarra, T. Hérault, and J. Langem. Qr factorization of tall
and skinny matrices in a grid computing environment. In 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), pages 1–11, April 2010.

[49] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, third edition, 1996.

[50] Eran Rabani and Sivan Toledo. Out-of-core svd and qr decompositions. In PPSC,
2001.

[51] Laura Grigori. Introduction to Communication Avoiding Algorithms for Direct
Methods of Factorization in Linear Algebra, pages 153–185. Springer International
Publishing, Cham, 2017.

[52] Edward Hutter and Edgar Solomonik. Communication-avoiding cholesky-qr2 for
rectangular matrices. 10 2017.

[53] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5d matrix
multiplication and lu factorization algorithms. In Emmanuel Jeannot, Raymond

109

BIBLIOGRAPHY

Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Processing, pages 90–109,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[54] Laura Grigori, James W. Demmel, and Hua Xiang. Calu: A communication optimal
lu factorization algorithm. SIAM J. Matrix Anal. Appl., 32(4):1317–1350, November
2011.

[55] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.
Communication-avoiding parallel and sequential qr factorizations. CoRR,
abs/0806.2159, 2008.

[56] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr
Luszczek, and Ichitaro Yamazaki. On algorithmic variants of parallel gaussian
elimination: Comparison of implementations in terms of performance and numerical
properties. 01 2013.

[57] C. Coti. Scalable, robust, fault-tolerant parallel qr factorization. In 2016 IEEE Intl
Conference on Computational Science and Engineering (CSE) and IEEE Intl
Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES),
pages 626–633, Aug 2016.

[58] Jack J. Dongarra, Sven Hammarling, and David W. Walker. Key concepts for parallel
out-of-core lu factorization. Parallel Comput., 23:49–70, 1997.

[59] James Demmel, Nicholas Higham, and Robert Schreiber. Block lu factorization. 03
2000.

[60] Erik Elmroth and Fred Gustavson. Applying recursion to serial and parallel qr
factorization. IBM Journal of Research and Development, 44:605 – 624, 08 2000.

[61] Erik Elmroth. New serial and parallel recursive qr factorization algorithms for smp
systems. 11 1998.

[62] Camille Coti. Fault tolerant QR factorization for general matrices. CoRR,
abs/1604.02504, 2016.

[63] Joseph Dorris, Jakub Kurzak, Piotr Luszczek, Asim Yarkhan, and Jack Dongarra.
Task-based cholesky decomposition on knights corner using openmp. volume 9945,
pages 544–562, 06 2016.

[64] Jieyang Chen, Hongbo Li, Sihuan Li, Xin Liang, Panruo Wu, Dingwen Tao, Kaiming
Ouyang, Yuanlai Liu, Kai Zhao, Qiang Guan, and Zizhong Chen. Fault tolerant
one-sided matrix decompositions on heterogeneous systems with gpus. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18, pages 68:1–68:12, Piscataway, NJ, USA, 2018. IEEE
Press.

110

BIBLIOGRAPHY

[65] Tingxing Dong, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. A fast batched
cholesky factorization on a gpu. In 2014 43rd International Conference on Parallel
Processing, pages 432–440, 2014.

[66] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz.
Communication-optimal parallel and sequential cholesky decomposition. Computing
Research Repository - CORR, 32, 02 2009.

[67] Robert Schreiber and Charles VanLoan. A storage-efficient wy representation for
products of householder transformations. SIAM Journal on Scientific and Statistical
Computing, 10, 02 1989.

[68] Christian H. Bischof and Charles Van Loan. The wy representation for products of
householder matrices. In PPSC, 1985.

[69] Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin, Hong Diep Nguyen,
and Edgar Solomonik. Reconstructing householder vectors from tall-skinny qr. In
2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages
1159–1170, 2014.

[70] Julien Langou. Computing the r of the qr factorization of tall and skinny matrices
using mpi reduce. 02 2010.

[71] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Springer Publishing Company, Incorporated, 1st edition, 2009.

[72] Camille Coti, Laure Petrucci, and Daniel Alberto Torres Gonzalez. Fault-tolerant
matrix factorisation: a formal model and proof. 6th International Workshop on
Synthesis of Complex Parameters (SynCoP) 2019, 2019.

111

	Abstract
	Résumé
	Acknowledgments
	Acronyms List
	Figure List
	Table List
	Algorithm List
	Introduction
	Background
	Current HPC Systems
	Linear Algebra over Large Scale Infrastructures
	Matrix Factorizations
	Fault Tolerance in HPC

	Objectives
	Thesis Organization

	State of the Art
	Current Fault Tolerance Approaches
	Linear Algebra Applications at High Scale

	Block Form Representations for Matrix Factorizations
	LU Block Form
	QR Block Form
	Cholesky Block Form

	LU Factorization
	TSLU and FT-TSLU
	TSLU
	FT-TSLU

	CALU and FT-CALU
	CALU
	FT-CALU

	QR Factorization
	TSQR and FT-TSQR
	TSQR
	FT-TSQR

	CAQR and FT-CAQR
	CAQR
	FT-CAQR

	Cholesky Factorization
	TSCH and FT-TSCH
	TSCH
	FT-TSCH

	CACH and FT-CACH
	CACH
	FT-CACH

	Fault Tolerance Formal Verification
	Tall and Skinny Formal Model
	Tall and Skinny Model Description
	Tall and Skinny Structural Analysis

	Communication-Avoiding Formal Model
	Communication-Avoiding Model Description
	Communication-Avoiding Structural Analysis

	Implementations
	Variables and Structures Definition
	Variables and Structures for TS-Algorithms
	Variables and Structures for CA-Algorithms

	Tall and Skinny Matrix Factorizations
	TSLU and FT-TSLU
	TSQR and FT-TSQR
	TSCH and FT-TSCH

	Communication-Avoiding Matrix Factorizations
	CALU and FT-CALU
	CAQR and FT-CAQR
	CACH and FT-CACH

	Experiments
	Grid5000 Test Architecture
	Input and Measured Times
	LU Tall and Skinny/Communication-Avoiding Executions
	QR Tall and Skinny/Communication-Avoiding Executions
	Cholesky Tall and Skinny/Communication-Avoiding Executions

	Conclusions and Future Perspectives
	Summary
	Future Perspectives

	Appendices
	Appendix TSLU/FT-TSLU execution examples
	TSLU execution example
	TSLU single-process execution
	TSLU multi-process execution

	FT-TSLU multi-process execution

	Appendix More Tall and Skinny/Communication-Avoiding Graphics
	More LU Execution Graphics
	More Cholesky Execution Graphics

	References

