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ABSTRACT

In coastal areas, the wind energy industry migrates to the offshore environment, where huge
spaces are still available in stronger and better behaved wind conditions. The offshore envi-
ronment imposes new challenges to a well established wind energy industry. It is imperative
to accurately predict and describe the offshore wind resource in order to design cost efficient
solutions. The concerned flow is characterized by a turbulent Atmospheric Boundary Layer
(ABL) where the ocean’s dynamics significantly alter the atmospheric flow through higher
heat capacity and complex wind-wave interactions important in fairly common situations.

So this Thesis reviews and extends the current knowledge regarding Wind-Wave inter-
actions in the lower part of the Marine ABL (MABL), where they are possibly significant in
the characterization of the wind resource. The MABL is investigated through physical and
numerical experiments, to reveal the role of Wave Induced (WI) motions transferred from
the sea into the atmosphere. Thanks to the use of complementary physical and numerical
experiments, new insights on the wind-wave interaction processes are obtained.

A scanning Light Detection and Ranging (LiDAR) system is deployed to observe the prop-
agation of WI motions approximately 18 m above the ocean. The sLiDAR registers high reso-
lution space-time maps of the Radial Wind Speed (RWS), allowing an original two-dimensional
(2D) spectral analysis rarely possible in the field. Unlike more conventional methods, the
upward turbulent energy transfer from the waves to the wind is evident and well distinguish-
able from the atmospheric turbulence in the 2D wave-number-angular-frequency (k − w)
spectra. This is a first to demonstrate the applicability of sLiDAR systems to measure k −w
dependent turbulent spectra in the Offshore Environment.

The MABL is investigated employing a Large Eddy Simulation (LES) solver. The test cases
are built to investigate the WI disturbances above fast traveling waves, propagating under
comparatively slow wind conditions in a situation commonly described as old seas. An orig-
inal method is proposed to control the Wind Speed at a certain height above an arbitrary
sea-state. The WI disturbances are investigated as function of varying Wave Age conditions
in monochromatic wave scenarios. Non-monochromatic waves are also investigated, lead-
ing to the comparison between physical and numerical experiments in a level of detail rarely
observed in the literature.

Recent developments in measuring and modelling techniques open path to a mechanis-
tic approach, i.e., one that seeks the characterization of certain phenomena in purely physi-
cal or deterministic terms. Applied to the investigation of wind-wave interactions it consists
in the direct estimation of WI velocities and pressure in the atmosphere, rather than the in-
ference of WI disturbances in vertical wind profiles, total momentum fluxes, or TKE budget.
An original methodology is proposed to characterize WI motions from the measurements
in instantaneous velocities. The definition of a Wave Related flow is extended from Wave
Coherent (WC) to Wave Induced (WI). If the waves travel with velocities sufficiently greater
than the mean wind speed, that leads to WC and WI decompositions that for the first time
allow their quantification in the field without any previous sea-state knowledge required.
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RÉSUMÉ EN FRANÇAIS (ABSTRACT IN FRENCH)

Dans les zones côtières, l’industrie de l’énergie éolienne migre vers l’environnement marin,
où de vastes espaces sont encore disponibles avec des conditions de vent plus fort et mieux
contrôlé. L’environnement marin impose de nouveaux défis à une industrie éolienne pour-
tant bien établie. Il est impératif de prédire et de décrire avec précision la ressource éoli-
enne en mer afin de concevoir des solutions techniques rentables. L’écoulement concerné
est caractérisé par une couche limite atmosphérique (CLA), turbulente, où la dynamique
de l’océan modifie considérablement l’écoulement atmosphérique par une capacité ther-
mique plus élevée, et par des interactions vent-vagues complexes, importantes dans des
situations assez courantes.

Cette thèse passe en revue et étend les connaissances actuelles concernant les interac-
tions vent-vagues dans la partie inférieure de la CLA Marine (CLAM), où elles peuvent être
importantes pour la caractérisation de la ressource éolienne. La CLAM est étudiée par des
expériences physiques et numériques, afin de révéler le rôle des mouvements Induits par
les Vagues (IV) transférés de la mer vers l’atmosphère. Grâce à l’utilisation d’expériences
physiques et numériques complémentaires, de nouvelles perspectives sur les processus
d’interaction vent-vague sont obtenues.

Un système de détection et de télémétrie par la lumière à balayage (sLiDAR) est déployé
pour observer la propagation des mouvements IV à environ 18m au-dessus de l’océan. Le
sLiDAR enregistre des mesures spatio-temporelles de la vitesse radiale du vent (VRV) à haute
résolution, permettant une analyse spectrale bidimensionnelle (2D) originale rarement pos-
sible sur le terrain. Contrairement aux méthodes plus conventionnelles, le transfert d’énergie
turbulente ascendante des vagues vers le vent est mis en évidence et est bien distinguable de
la turbulence atmosphérique dans les spectres 2D en nombre d’onde-fréquence angulaire
(k −w). C’est la première fois que l’on démontre l’applicabilité des systèmes sLIDAR pour
mesurer les spectres de turbulence dépendant de k −w dans l’environnement marin.

La CLAM est étudiée à l’aide d’un solveur de Simulation aux Grandes Échelles (SGE).
Les cas d’essai sont construits pour étudier les perturbations IV au-dessus des vagues rapi-
des, se propageant dans des conditions de vent relativement lent, dans une situation com-
munément décrite par un âge des vagues élevé. Une méthode originale est proposée pour
contrôler la vitesse du vent à une certaine hauteur au-dessus d’un état de mer arbitraire.
Les perturbations IV sont étudiées en fonction des conditions variables de l’âge des vagues
dans des scénarios de vagues monochromatiques. Les vagues non monochromatiques sont
également étudiées, ce qui permet de comparer les expériences physiques et numériques à
un niveau de détail rarement observé dans la littérature.

Les développements récents des techniques de mesure et de modélisation ouvrent la
voie à une approche mécaniste, c’est-à-dire une approche qui cherche à caractériser cer-
tains phénomènes en termes purement physiques ou déterministes. Appliquée à l’étude
des interactions vent-vagues, elle consiste en l’estimation directe des vitesses et de la pres-
sion induites par les vagues dans l’atmosphère, plutôt que les conséquences globales des
perturbations IV sur les profils verticaux de vitesse du vent, les flux de quantité de mou-
vement totale, ou le bilan d’énergie turbulente. Une méthodologie originale est proposée
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pour caractériser les mouvements IV à partir des mesures de vitesses instantanées. La défi-
nition d’un écoulement Relatif aux Vagues est étendue de Coherent aux Vagues (CV) à Induit
par les Vagues (IV). Si les vagues se déplacent à des vitesses suffisamment supérieures à la
vitesse moyenne du vent, cela conduit à des décompositions IV et CV qui, pour la première
fois, permettent leur quantification sur le terrain, sans qu’aucune connaissance préalable
de l’état de mer ne soit nécessaire.
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EũR ũR ( f )/Eu′
R u′

R
( f ). Wave peak scales denoted by vertical dotted

lines, with black (Case 01) and red (Case 02a) colors corresponding to the
curves of F shown in the legend. The filter characteristic scales (kγ, fγ1)
appear in the vertical green dotted line. . . . . . . . . . . . . . . . . . . . . . . 164

IV.2.12 Sea-State forcing and the atmospheric response. Sea-State forcing (F ): Auto-
spectra of the longitudinal orbital velocities on the free-surface (FS). Atmo-
spheric response (EũR ũR ): Auto-spectra of the WI flow, as previously shown
at figure IV.2.9. Cases 01 and 02a superposed, with line types given in the
legend. Together with the sea-state forcing, the corresponding wave peak
scales are shown in vertical lines. The peak scales correspond to peaks of
the FS displacement spectra, and not to the velocities spectra shown in the
figures. The filter characteristic scales (kγ, fγ1) appear in the vertical green
dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

IV.2.13 Transfer function between the Sea-State forcing and the atmospheric re-
sponse shown in figure IV.2.12. Computed as TF= √
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IV.3.1 The PDF of the surface elevation F . F ( f ,φ) is obtained far from the sL-
iDAR, and reconstructed to match the global parameters obtained closer
to the sLiDAR. (a) Integrating F ( f ,φ) in φ dimension, the reconstruction is
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IV.3.7 Wave-number-frequency 2D turbulent spectra for the decomposed Atmo-
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Tγ1 in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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A.1 Asymptotic Old-Sea: Monochromatic wave (Swell) of length λ and phase
velocity c propagating under static wind and neutral atmospheric condi-
tion. The Stokes orbitals (represented by the spirals) and drift are extended
to the atmosphere. In crests and troughs the longitudinal velocities (hor-
izontal arrows with opposite senses) are discontinuous. The discontinu-
ity reveals a viscous boundary layer across the free-surface. The wave is
damped by the pressure distribution perfectly out of phase with the wave
slope, represented by the fictitious resultant force Fp . . . . . . . . . . . . . . 217
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1957]. In the inner region, turbulence is mostly isotropic and blocked by
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A.3 A monochromatic wave with phase velocity c drags an initially undisturbed
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INTRODUCTION

This Thesis concerns fluid mechanics’ studies of fundamental phenomena in earth sciences,
in which deeper understanding is required for engineering purposes. On the offshore envi-
ronment takes place different engineering activities, often encountering great technologi-
cal challenges due to the physical complexities and environmental concerns. Particularly,
overcoming these challenges gives access to multiple energy sources. Nowadays one could
first think of currents, waves, wind and solar, but the most mature offshore energy industry
is still oil and gas. It turns out that it is imperative for humanity to rapidly change its en-
ergy supply bases to clean sources, being large amount of research devoted into developing
its competitiveness against the pollutant, non-renewable, and well established alternatives.
Challenging as it might be, the exploitation of Offshore Renewable Energy sources offers the
potential to supply a considerable amount of the global energy demand in the near future.

Wind energy harvesting is an example of well established clean energy industry, on which
many nations, such as France, rely to review its energy bases in compliance with the interna-
tional pact at the Paris climate conference (COP21). In coastal areas, wind turbines deploy-
ment migrate to the offshore environment, where huge spaces are available in stronger and
better behaved wind conditions. The offshore environment imposes new challenges to a
well established wind energy industry. Increasing the distance to the coast and water depths
leads to significant rise in operational costs, that are sustained through increasing produc-
tion, and more efficient engineering. It is imperative to accurately predict and describe the
offshore wind resource in order to propose cost efficient solutions, as one can then act in
site planning, design and operational phases to maximize production and reduce costs.

Much of the challenges encountered by the offshore wind energy industry relate to an
insufficient understanding of the environment behavior, a natural subject for fluid mechan-
ics. The concerned flow is characterized by a turbulent Atmospheric Boundary Layer (ABL),
where the ocean’s dynamics significantly alters the atmospheric flow through higher heat
capacity, and complex wind-wave interactions that are significant in fairly common situa-
tions. Though wind-wave interactions are clearly important determining for example, the
waves growth and ocean circulation processes, their impact to the wind resource is largely
unknown, recently becoming a major field of interest for the scientific community. The Hy-
drodynamics, Energetics and Atmospheric Environment Laboratory (LHEEA) from Ecole
Centrale de Nantes, France, is particularly active in studies concerning, for example: Off-
shore Renewable Energy sources; Ocean and Atmospheric dynamics in coastal areas; and
more recently Wind-Wave interactions.

So this Thesis reviews and extends the current knowledge regarding Wind-Wave inter-
actions in the lower part of the Marine ABL (MABL), where they are possibly significant in
the characterization of the wind resource. The MABL is investigated through physical and
numerical experiments, to reveal the role of Wave Induced (WI) motions transferred from
the sea into the atmosphere. Given the current state-of-the-art knowledge, this general ob-
jective translates into addressing, along the Thesis, some fundamental scientific questions
regarding wind-wave interactions.
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SCIENTIFIC QUESTIONS

According to theory and observations, WI disturbances extend into limited regions above
the water free surface, generally referred as the Wave Boundary Layer (WBL). Though cou-
pled to this inner layer through modified turbulent scales, the outer flow behaves similarly
to static bottom atmosphere flows. The WBL is usually defined as the height below which WI
disturbances are significant. Though, there is no universally accepted definition of the WBL.
One of the reasons is that the criteria and techniques employed in the literature, often lack
sensitivity to other significant WI disturbances. After all, the WI disturbances significance
strongly depends on the variable of interest. Is it reasonable to expect a single definition to
the WBL height?

Inside the WBL, the waves’ influence directly alters the flow dynamics with the appear-
ance of the WI flow, and notably a Wave Induced Stress perturbation responsible for the
vertical transfer of momentum between waves and wind. The WI Stress has drawn consid-
erable attention of the scientific community over the last decades, and is often recognized
as playing a most important role in wind-wave interactions. Notably, if the waves travel suf-
ficiently fast with respect to the mean wind speed, the momentum transfer occurs upwards,
and the wind speeds up due to the waves’ incidence. Naturally, a wave-driven speed-up
of the mean wind profile is of major importance to characterize the wind energy resource.
When, and up to which extend does the WI stress and the wind speed-up become significant
in the MABL?

The Wave Induced flow refers to wave related dynamics (Velocities and Pressure) that
advect through the atmosphere, yet maintaining some of its original aspects. The WI flow
is supposedly significant in the WBL, and is the origin of other disturbances that propagate
even higher on the MABL. Through the experimental literature, one often observes the con-
sequence of WI motions distorting turbulent statistics in the WBL, but one rarely encounters
a direct characterization of the WI field. Is it possible to extract the WI flow from the instan-
taneous wind speed measurements?

WI motions are an extension (transfer) of the wave’s orbital at the free-surface, into the
atmosphere. Hence, there exists a Transfer Function (TF) linking the Sea-State forcing to
the atmospheric response, i.e., to the WI field. The determination of such TF shall precede
any parametric description of the WI field in the MABL, but it has not yet been reported in
the literature as actual measurements in the offshore environment. The reason being that
the WI flow itself is hardly reconstructed from the measurements. Can one establish a link
between multi-scale waves and wave induced motions in the atmosphere?

To afford multiple scenarios and real time applications, prediction tools for design and
operational purposes rely on semi-empirical and low-fidelity numerical solutions. State-of-
the-art wind models consider a mean wind log-law profile based on the Monin-Obukhov
Similarity Theory (MOST), superposed to randomly generated turbulent components with
statistics given, e.g, by the Mann spectra. It is observed though, that the mean wind profiles
and its turbulent statistics considerably deviate from MOST and Mann’s predictions on the
vicinity of ocean waves. The investigation of the WBL at local scales is thus desired to im-
prove low-fidelity MABL models. How to improve state-of-the-art wind models’ accuracy
in the offshore environment?
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OVERVIEW AND METHODOLOGY

Engineering sciences are based on analytic, experimental and computational approaches.
The complex phenomena characteristic of most engineering problems cannot be fully ac-
cessed by analytical studies, and imposes great difficulties for the alternatives. The rise
on computational resources availability, recently allowed numerical approaches to com-
plement or even substitute experiments: Saving costs and accessing scales and phenom-
ena which cannot be fully accessed by current experimental technologies. Computational
modeling is now commonly employed as numerical experiments, complementing or even
substituting the reciprocal physical experiments of field-based measuring campaigns.

The proposed methodology follows previous analytical, experimental and computational
approaches presented in Part I. A brief review of some analytical foundations in fluid me-
chanics is described at section I.1, introducing the governing equations that describe ocean
and atmospheric flows. The development departs from the conservation equations of mass,
momentum and energy in a continuum, written in an Eulerian frame of reference and ap-
plied to a Newtonian fluid, i.e., the Navier Stokes equations. The physical concepts of Ocean
waves, Atmospheric Boundary Layer and Wind-Wave interactions are described in the lit-
erature review of section I.2. Compared to the foundations section, these physical descrip-
tions rely a lot more into physical and numerical experiments to complement the theory.
Special attention is given to the Wind-Wave interactions subject, closing the literature re-
view of Part I, and further developing the questions stated above at section I.3.

The field experiment conducted during the Thesis’ experimental campaign is presented
at part II. The wave influence in the MABL is investigated within the WBL through field mea-
surements taken above the Ocean by a scanning Light Detection and Ranging (sLiDAR) sys-
tem, deployed in Le Croisic, France. Measurements from Plan Position Indicator (PPI) scans
are used to assess Wind Direction and Wind Speed providing guidance to the case selec-
tion, while time-space descriptions of the Radial Wind Speed (RWS) are explored through
staring Mode scans at the selected periods. The sLiDAR operates as described along section
II.1, also introducing the selected test cases. General and often original post-processing
techniques are exposed along section II.2. Results of the Radial Wind Speed (RWS) cap-
tured by the staring mode operating sLiDAR follow at sections II.3. Conventional methods
are employed evaluating the RWS contours, and the one-dimensional (1D) wave-number
or frequency spectra. More significant to the upcoming discussions, the sLiDAR operat-
ing in the proposed configuration allows an original two-dimensional (2D) wave-number-
angular-frequency spectral analysis, yet not encountered in the literature at similar scales in
the offshore environment.

The numerical model exploited during the Thesis is presented at part III. The MABL is
investigated employing the Large Eddy Simulation (LES) solver developed by Peter Sullivan,
from the National Center for Atmospheric Research (NCAR) of the United States of America,
as described in section III.1. The test cases presented are built to investigate the WI distur-
bances above fast traveling waves, propagating under comparatively slow wind conditions
in a situation commonly described as old seas. While first describing the WI disturbances
observed in the LES generated MABL above monochromatic waves, section III.2 also intro-
duces an original method to control the Wind Speed at a certain height above an arbitrary
sea-state. The WI disturbances are investigated as function of varying Wave Age conditions
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in section III.3. Non-monochromatic waves are presented in section III.4, with the compar-
ison between regular, 1D irregular, and 2D irregular sea-states. In the comparison of section
III.4, the 2D irregular sea-state corresponds to the conditions estimated during the experi-
mental campaign, and the mean velocity at the measurement height also matches the one
observed during the campaign.

Numerical and Physical experiments are both exploited in part IV, counting in an orig-
inal analysis to quantify and qualify WI motions above arbitrary sea-states. The author in-
troduces it as an enhanced perspective of the WI flow in section IV.1, because it character-
izes the WI flow in an increasing level of detail if compared to the existing alternatives. The
methodology proposed extends current definitions of the Wave Coherent flow, so that in the
two-dimensional wave-number-angular-frequency spectra, the total energy splits into WI
and Atmospheric contributions.

At section IV.1 the WI flow is evaluated for the monochromatic case, still counting only
in the 1D spectral description. In physical and numerical experiments with irregular sea-
states, it is unfeasible to effectively employ the methodology proposed, or the existing alter-
natives, counting only in the information available from the 1D spectra. In section IV.2 the
partitioning of the 2D spectra leads to the decomposition of atmospheric turbulence and
WI motions for each of the physical and numerical test cases presented.

The comparison of physical and numerical experiments closes part IV in section IV.3.
It is then detailed the estimation of sea-state conditions encountered during the physical
experiments, to be taken as boundary conditions in the numerical experiments. It is also
described the modelling of the sLiDAR filtering effect incorporated in the numerical experi-
ments. The sLiDAR filtering effect is so evaluated in flat and wave bottom numerical exper-
iments. Finally gathering all the developments previously presented, it is here available the
comparison between physical and numerical experiments, in a level of detail rarely available
in the literature.
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Part I

THEORETICAL, EMPIRICAL AND
NUMERICAL FRAMEWORKS

Leonardo da Vinci (1452-1519). Sketch of winds encountering vertical cliffs, and supporting
bird flight. From Richardson [2019].
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I.1 FOUNDATION IN FLUID MECHANICS

I.1.1 THEORETICAL FRAMEWORK

I.1.1.1 INCOMPRESSIBLE NAVIER STOKES EQUATIONS

Applied to an incompressible medium (Dρ/Dt ) = 0, under the continuum hypothesis and
on an Eulerian frame of reference, the mass and momentum conservation principles are
locally enforced by equations I.1.1 and I.1.2, respectively [Batchelor, 2000]:

∇·u = 0, (I.1.1)

and

ρ

[
∂u

∂t
+ (u ·∇)u + f ×u

]
=∇·σ+ρg , (I.1.2)

being u(x , t ) = ui the instantaneous velocity field; ρ(x , t ) the specific mass, such that its
material derivative Dρ/Dt = ∂ρ/∂t + (u ·∇)ρ is null; f = fiδi 3 and g = −gδi 3 the Coriolis
and gravity vector parameters, respectively, and with δi j the Kronecker delta.

For a Newtonian fluid, the Cauchy stress tensorσ(x , t ) relates to the pressure p(x , t ) and
the symmetric part of the velocity gradient S through the dynamic molecular viscosityµ(x , t )
with Dµ/Dt = 0. The kinematic molecular viscosity is ν = µ/ρ, and equation I.1.3 so intro-
duces the shear-stress tensor τ(µ)(= ρτ(ν)):

σ=−p I +τ(µ), where

τ(µ) = 2µS, and S =
[∇u + (∇u)(T )

]
2

.

(I.1.3)

Expressing the first law of thermodynamics, that balances internal energy (δE) with heat
(δQ) and work (δW ) transfers, the energy equation is written for the unknown temperature
θ. Considering previous conservation equations for a Newtonian fluid, introducing the con-
ductivity µθ, specific heat capacity at constant pressure (cp ), and the coefficient of thermal
expansion (βθ), the energy balance equation is written as:

ρcp
Dθ

Dt
−βθθ

Dp

Dt
= 2µ (S : S)+∇(

µθ∇θ
)

, where

cp =
(
δQ

δθ

)
δp=0

, and βθ =
1

ρ

(
∂ρ

∂θ

)
p

.

(I.1.4)
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Equations I.1.1, I.1.2 (With I.1.3), and I.1.4 are known as the incompressible Navier Stokes
(NS) equations.

The incompressibility constraint (eq. I.1.1) has several implications on the flow physi-
cal and numerical behavior. For stating incompressibility, one assumes that pressure waves
travels much faster than the momentum convection effect, so that both phenomena can
be uncoupled. Ultimately, this assumption may be translated into a low Mach number
(Ma=U 2

0 /c2
s ) requirement, on which the characteristic flow velocity U0 is much smaller than

the speed of sound cs . Additionally (Batchelor [2000]), for oscillatory flows occurring in fre-
quency f0 and characteristic length L0, the quantity to be minimized is f 2

0 L2
0/c2

s , as concern-
ing gravity body forces g L0/c2

s are to be small. The first and latest conditions might become
important, e.g., in acoustics and meteorology studies, respectively. The incompressibility
assumptions is equivalent to stating that pressure propagate instantaneously, and the ther-
modynamic equation I.1.4 is uncoupled from the equation of motion I.1.2. Nevertheless
the simplification comes with a price, as the limit of incompressibility introduces the sad-
dle point problem to the Navier Stokes equations (Le Quéré et al. [2010]), which has to be
handled by very specific numerical approaches, such as the one presented in Sullivan et al.
[2014] and further discussed in the appendix A.4.1.

The convection term (u ·∇)u is highly non-linear, and in the often encountered cases
where it becomes important, the solution of the NS equations will become increasingly
complex and chaotic in what’s referred as a turbulent flow regime (Jiménez [2004]): The
flow becomes highly unsteady as the velocity, pressure and temperature fields rapidly vary
in time and space; the flow streamlines are constantly distorted, broken and rebuild, merg-
ing and collapsing with each other; and the slightest change in boundary and initial condi-
tions will lead to a drastically different solution of the NS equations. A ratio between iner-
tial and viscous effects, with characteristic length L0 and velocity U0, the Reynolds number
Re= ρU L0/µ usually characterizes the turbulence regime.

I.1.1.2 FREE SURFACE CONDITIONS

Considering air and water domains of generalized properties αa and αw respectively, con-
tinuity is then imposed on velocities and stresses passing through the interface η(x, y, z, t ).
The kinematic condition infers that a particle on the interface keeps attached to it so that
Dη/Dt = 0 leads to equation I.1.5, while the dynamic condition is simply stated by the
stresses continuity in equation I.1.6 (c.f. Batchelor [2000]).

∂η

∂t
+u ·∇η= 0, at η(x, y, z, t ). (I.1.5)

pa = pw , and

2µaSa = 2µw Sw , at η(x, y, z, t ).

(I.1.6)
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I.1.1.3 REYNOLDS AVERAGED NAVIER STOKES EQUATIONS

For turbulence chaotic nature, and because in engineering applications one is often satis-
fied in accessing statistical quantities such as the mean and standard deviations of the flow
fields, turbulent flows are usually described by stochastic approaches. The Reynolds decom-
position is stated so that for any quantityχ, the turbulent flow may be described by mean (χ)
and fluctuation (χ′) values such that χ = χ+χ′. Inserting Reynolds decomposition into the
velocity and pressure fields of the incompressible Navier Stokes equations I.1.1.1, and con-
sidering averaging properties known in this context as the Reynolds axioms, give rise to the
Reynolds Averaged Navier Stokes (RANS) equations. When the RANS equations are applied
to an unsteady problem one refers to the Unsteady RANS (URANS) equations:

∂ui

∂t
+u j

∂ui

∂x j
+ f j uk εi j k =− 1

ρ

∂p

∂xi
+ ∂

∂x j

[
τ(ν)

i j −τ(r )
i j

]
− gδi 3, where

τ(ν)
i j = 2νSi j , and τ(r )

i j = u′
i u′

j .

(I.1.7)

The continuity equation I.1.1 holds on the mean and instantaneous velocity fields:

∇·u = 0, and ∇·u′ = 0. (I.1.8)

The term −τ(r )
i j in equation I.1.7 has its origin on the non linear term of the Navier Stokes

equations, and designate components of the Reynolds Stress Tensor −ρτ(r ) that couple
mean and fluctuation fields. In a probabilistic point of view, τ(r ) are the correlation func-
tions evaluated at the origin: Ri j (r = 0) further discussed in section I.1.1.5. The turbulent

kinetic energy (TKE, e) is defined in terms of tr[τ(r )] so that e = u′
i u′

i /2.

The URANS equations solving the mean velocities will be later generalized to the LES
equations solving the filtered velocities in section I.1.1.6, and e will be then called residual
turbulent kinetic energy.

I.1.1.4 REYNOLDS STRESS TENSOR AND TURBULENT KINETIC ENERGY

Subtracting equation I.1.7 from the Navier Stokes momentum equations (I.1.2 and I.1.3) one
obtains the equations for the instantaneous velocity field. With additional algebra demon-
strated in Pope [2000] (pg. 315), one obtains the advection equation for the Reynolds Stress
tensor τ(r ), which is exposed containing the Coriolis effects, e.g., in Stenberg [2016]. The

Turbulent Kinetic Energy (TKE) e = u′
i u′

i /2 conservation equation derives from combining
the equations for the diagonals of the Reynolds Stress Tensor (e=tr[τ(r )]/2) that gives:

∂e

∂t
+u j

∂e

∂x j
=− ∂

∂x j
T (r ) +P −εe − gρ′u′

3 (I.1.9)

where the TKE production P , the pseudo-dissipation εe and fluxes T (r ) are given by:

8



P =−τ(r )
i j

∂ui

∂x j
=−τ(r )

i j Si j , εe = ν
∂u′

i

∂x j

∂u′
i

∂x j
,

T (r ) =
u′

j u′
i u′

i

2
+

p ′u′
j

ρ
+T (ν), & T (ν) =−2 ν

∂e

∂x j
.

(I.1.10)

Alternatively, equation I.1.9 can be written in terms of the actual dissipation ε= 2νS′
i j S′

i j

and a modified viscous diffusion term T (ν), but the dissipation and pseudo-dissipation have
usually similar values so that many authors refer to both simply as the dissipation (Pope

[2000], pg. 132). The term ρ′u′
3 consider turbulence generation or dissipation by buoyancy

forces, and when the state equation is given in section I.1.2.2 relating ρ′ to the temperature

θ′ that will reveal the cross-correlation term θ′u′
3 of major importance in atmospheric flows.

The convection and production terms in equations I.1.9 and I.1.10 are in closed form,
involving only linear expressions of the resolved quantities, but the fluxes and dissipation
terms must be empirically modeled. The energy flux term is usually modeled according to a
gradient-diffusion hypothesis that with the introduction of a general turbulent viscosity νe

translate into:

T =−νe
∂e

∂x j
. (I.1.11)

Production is usually positive, acting as a source on equation I.1.9, while appearing with
opposite sign, i.e, a sink, on the mean flow energy equation. The turbulent kinetic energy
production usually transfers energy from the mean to the fluctuation fields, but the opposite
may locally occur when its value gets negative (c.f. Gayen and Sarkar [2011] and Cimarelli
et al. [2019]), through the inversion of the turbulent energy cascade described in section
I.1.1.5. Only the symmetric part of the velocity gradient and the anisotropic part of τ(r )

affect the production.

The dissipation ε is strictly positive transforming e into internal energy, and generally
results into negligible amounts of changes on the fluid temperature. Although on eq. I.1.10,
ε is directly proportional to ν, at sufficiently high Reynolds numbers it is found that ε is
independent from the molecular viscosity ν, with a rise on the Reynolds number leading to
smaller turbulent scales and consequently higher turbulent velocity gradients S ′. At such
cases, ε is determined by the TKE production, being sufficient to stabilize the energy flux
through the turbulent cascade (Pope [2000], pg. 188) discussed in section I.1.1.5.

I.1.1.5 TURBULENT SPECTRAL DISTRIBUTION AND SCALES

Turbulent spectra is the term commonly used, referring to the spectral density functions
of pressure or velocities fluctuations, where the energy spectral distribution may be ap-
preciated in the wave-number k and/or frequency f domains. A great deal of the theo-
retical development in turbulent flow dynamics is achieved in view of the turbulent cas-
cade that Kolmogorov developed for the wave-number dependent turbulent spectra Ek (k).

9



Taking the distance r = r ĵ between two locations on the direction ĵ , and given the wave
number k = 2π/r , the one dimensional correlation function of χi and χ j is defined as

Rr = Rχ′iχ
′
j
(r ) = χ′i (x)χ′j (x + r ) and the one-dimensional spectral density function Eχ′iχ

′
j
(k)

as twice its Fourier transform (Pope [2000], pg. 225):

Eχ′iχ
′
j
(k) = 1

π

∫ ∞

−∞

[
Rχ′iχ

′
j

e−i kr
]

dr with

Rχ′iχ
′
j
(r ) = 1

2

∫ ∞

−∞

[
Eχ′iχ

′
j

e−i kr
]

dk.
(I.1.12)

Kolmogorv turbulent cascade The turbulent energy is transferred from larger to smaller
scales in a process known as the energy cascade (Kolmogorov [1991], from the original of?).
At larger scales, the flow pattern is highly anisotropic, being fed by the mean flow energy
and sensitive to boundary conditions. A scale lE I exists, from which below the statistic tur-
bulent properties become insensitive to larger scales anisotropies and the energy density
spectra Ek (k) depends only on the wave number k, the dissipation rate ε and the kinematic
viscosity ν= µ/ρ. The scale lE I represents the border between the larger energy-containing
range and the universal equilibrium range. Another scale lD I exists above which the viscous
forces are negligible compared to inertial forces, so that E does not depend on ν. On high
Reynolds flow, the inertial zone exists where lD I < r < lE I and the energy density spectra is
E = f (ε,k) = C ε2/3 k−5/3. When the inertial zone exists, lD I splits the universal range into
inertial and dissipation zones.

The large scale turbulent motions occurs in characteristic scales comparable to the mean
flow: Given the characteristic length l0 and velocity u0 of the mean flow; the turbulent
timescale is τ0 ∼ l0/u0 so that the rate of energy transferred from those large scales down-
stream along the energy spectrum is scaled as u3

0/l0. The dissipation ε is determined by the
energy transfer at large scales so that ε∼ u3

0/l0.

The Kolmogorov scale η0 is defined as the lowest scale on which turbulence can man-
ifest. With characteristic velocity uη, at the Kolmogorov scale the local Reynolds number
Reη = η0 uη/ν equals to one, and viscosity prevents inertial terms to generate further fluc-
tuations. Spectral energy equilibrium at the universal equilibrium range implies the unique
scale definition η0 = f (ε,ν) = (ν3/ε)1/4. Finally with the scaling ε∼ u3

0/l0 and Reη = 1:

η0

l0
∼ Re−3/4. (I.1.13)

The integral length scale lL and The Taylor micro-scale lλ are commonly referred to in-
dicate lE I and lD I , respectively. According to Pope [2000] (Pages 200 and 226), lL is related to
the energy spectra with equation I.1.14 (pg. 226), and lλ can be approximated with equation
I.1.15 (pg. 200).

lL = πEk (k = 0)

2Rr (r = 0)
. (I.1.14)
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lλ ≈
p

10 l 2/3
η l 1/3

0 . (I.1.15)

Spectral tensor of the velocity fluctuations Simply defined as the spectral tensor in Mann
[1998] and as the velocity-spectrum tensor in Pope [2000] (pg. 220), such tensor holds the
full three dimensional space correlations of the velocity fluctuations. It is defined as func-
tion of the wave-number vector k = 2π/r as:

Eu′
i u′

j
(k) =

−∞∫ ∫ ∫
−∞

[
Ru′

i u′
j
(r ) e−i k ·r

]
dr . (I.1.16)

Wave-Number-Frequency turbulent spectra The space-time correlation function ofχi and

χ j is Rrτ = Rχ′iχ
′
j
(r,τ) =χ′i (x, t )χ′j (x + r, t +τ), and the correspondent spectral energy density

function Ekw = Eχ′iχ
′
j
(k, w) twice its Fourier transform, which is consistent with the defini-

tion of Ek = ∫
Ekw dw according to equation I.1.12. So with k = 2π/r and w = 2π/τ= 2π f :

Eχ′iχ
′
j
(k, w) = 1

π2

∫ ∞

−∞

∫ ∞

−∞

[
Rχ′iχ

′
j
(r,τ) e−i kr e−i wτ

]
dr dτ, with

Rχ′iχ
′
j
(r,τ) = 1

22

∫ ∞

−∞

∫ ∞

−∞

[
Eχ′iχ

′
j
(k, w) e−i kr e−i wτ

]
dk d w.

(I.1.17)

Taylor hypothesis The Taylor hypothesis is the first (Taylor [1938]) and most applied model
describing the joint (k − w) wave-number and angular-frequency spectral distributions of
the fluctuations. Taylor pictures a frozen turbulence scenario, where the turbulent eddies
evolve so slowly compared to the mean velocity u0, that their evolution can be neglected.
Turbulence is then simply advected by the mean flow, and Ekw is uniquely defined from Ek

or Ew as:

Ekw (k, w) = Ek (k) δd (w −u0 k)

= Ew (w) δd (w −u0 k);
(I.1.18)

where Ek and Ew are the one-dimensional wave-number and angular-frequency turbulent
spectra; and δd (·) the dirac function operator.

I.1.1.6 LARGE EDDY SIMULATION

The method here employed for granting the numerical solution of the atmospheric turbu-
lent flow in chapters III and IV, classifies as a Large Eddy Simulation (LES), which consists
into sufficiently refining the domain, resolving the most energetic (and larger) scales of tur-
bulence. The velocity field is decomposed into filtered

(

u and residual ǔ components. The
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filtered Navier Stokes equation are solved for

(

u. Coupling between filtered and residual
scales is modeled in a much more reliable way than in RANS equations, due to the universal
shape of the energy spectrum at lower quasi-isotropic scales. Ideally, a LES approach must
capture all the energy-containing scales above lE I (See section I.1.1.5).

The filter G(r , x) is defined such that

(

u(x , t ) =
∫

G(r , x)u(x − r , t )dr (I.1.19)

and

∫
G(r , x)dr = 1. (I.1.20)

Contrary to URANS models, the filtered residual
(

ǔ =

(

u − (

u is generally non zero. Filtering
the Navier Stokes equations I.1.2 and I.1.3 leads to an analogous of URANS equations I.1.7
where the Reynolds-stress tensor τ(r ) gives place to the residual-stress tensor τLES :

∂

(

ui

∂t
+ ∂(

(

u j

(

u i )

∂x j
+ f j

(

u k εi j k =− 1

ρ

∂

(

p

∂xi
+ ∂

∂x j

[
τ(ν)

i j −τLES
i j

]
, where

τ(ν)
i j = 2ν

(

S i j , and τLES
i j ≡ (

ǔi ǔ j − ˇ(

ui
ˇ(

u j .

(I.1.21)

Still, the residual-stress tensor includes sub-grid information and thus has to be mod-
eled. Different approaches are proposed to close the filtered Navier Stokes equations I.1.21,
such as the Deardorff single equation presented in section III.1.1.1. The continuity equation
I.1.1 holds on the filtered and residual velocity fields so that ∇· (

u =∇· ǔ = 0.

I.1.2 SPECIFIC ASSUMPTIONS DELIMITING THE THEORETICAL FRAMEWORK

I.1.2.1 WATER DOMAIN

Ocean waves’ propagation are usually uncoupled from the Coriolis forces, since the wave’s
frequency is much higher than the earth rotation’s frequency (P. Janseen [2004], pg. 9), and
so body forces derive exclusively from a potential field: Gravity. Moreover, viscous phe-
nomena can often be neglected due to the predominant inertial forces characteristic of the
wave’s motion, and sufficiently high distances from solid boundaries. If so, an initially non-
rotational fluid keeps this particular property during its evolution (Batchelor [2000]). In-
troducing the velocity potential φu , the definition u = ∇φu is sufficient to ensure the non-
rotational velocity field where ∇×u = 0. One then refers to a potential flow where the conti-
nuity equation I.1.1 reduces to Laplace’s equation I.1.22.
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∇2φu = 0, ∀ z ≤ η(x, y, t ) (I.1.22)

Disregarding wave breaking and white capping, the interface is identified by the un-
known single-valued function z = η(x, y, t ) (Instead of η(x, y, z, t ) at section I.1.1.2). The
kinematic condition now infers that the particle is kept in the interface defined by η− z = 0,
so that D(η− z)/Dt = 0 (With D(z)/Dt = u3 and ∂η/∂z = 0) leads to equation I.1.23 written
in terms of the velocity potential.

∂η

∂t
+∇φu ·∇η= ∂φu

∂z
, at z = η(x, y, t ). (I.1.23)

The momentum equation I.1.2, if applied to a Newtonian fluid and non-rotational flow,
results in the Bernoulli equation relating the velocity potential and pressure fields:

∂φu

∂t
+ 1

2
(∇φu)2 + gη=−p, ∀ z ≤ η(x, y, t ). (I.1.24)

Since viscosity is neglected, the continuity in tangential velocities and stresses may not
be satisfied on the free surface. The dynamic boundary condition (Eq. I.1.6) is so limited
to normal stresses, i.e., the pressure p = pF S acting in the Bernoulli equation I.1.24 at the
free-surface z = η.

I.1.2.2 ATMOSPHERE

Boussinesq approximation for incompressibility The incompressibility constraint discussed
in section I.1.1.1, strictly prevents any buoyancy, and notably thermal effects acting in the
momentum equations I.1.2. Nevertheless such forces are a key aspect of the atmospheric
flow, effectively driving the wind and imposing the free convection or stable stratification
regimes discussed in section I.2.2.3. Luckily, adopting the Boussinesq approximation for
incompressibility, one may consider a slowly varying density field acting only in the buoy-
ancy terms of equation I.1.2, consistently accounting for the thermal effects as wind driving
sources in the atmosphere.

Such an approach relies on the dimensional considerations carefully discussed by Spiegel
and Veronis [1960]. Consider that a state variable χ(x , t ) (ρ, p, or θ) decomposes into mean
χ(t ), motionless (static and horizontally homogeneous) χ0(x3, t ), and fluctuating (dynamic
and resulting from motion) χ(x , t ) components. The characteristic scale height of motion-
less χ0 variation is defined as:

Hχ =
∣∣∣∣ 1

χ

∂χ0

∂z

∣∣∣∣−1

. (I.1.25)
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and the crucial requirement stated in Spiegel and Veronis [1960] is that: (i) Any vertical ex-
tension of flow changes, e.g., the boundary layer height δ, is negligible compared to any
scale height Hρ, Hp , or Hθ. Particularly, integrated over the height δ0 of maximum density
variation ∆ρ0, that implies ∆ρ0/ρ << 1. In non-linear applications such as the one here
employed, it also necessary to ensure that: (ii) Motion induced fluctuations in density and
pressure do not exceed the order of magnitude of its static variations, i.e., |∆χ′/∆χ0| ≤O(1).

Buoyancy forces & Thermodynamic State function Under these conditions, the incom-
pressible equation of motion (eq. I.1.2) for a Newtonian fluid (eq. I.1.3) may partially incor-
porate slight density variations ρ′ as:

ρ∞
[
∂u

∂t
+ (u ·∇)u + f ×u

]
=−∇p ′+µ∇2u +ρ′g , (I.1.26)

while equations I.1.1 and I.1.4 still hold.

Considering changes in density due to temperature only, and consistent to the previous
assumption of small changes in temperature, the state equation introduces the coefficient
of thermal expansion βθ:

ρ′ =−ρ∞βθ(θ−θ∞), (I.1.27)

and the modified pressure is given by:

p ′ = p −p∞+ρg (z − z∞), (I.1.28)

Dimensional analysis of the governing equations The behavior of equations I.1.26 and
I.1.4 can be studied from their non-dimensional form. Given the characteristic length L,
velocity U , temperature difference ∆Θ, density ρ0 = ρ∞, non-dimensional variables are
expressed as: u∗ = u/U , x∗ = x/L, t∗ = t U /L, ∇∗ = L ∇, (θ∗ − θ∗∞) = (θ− θ∞)/∆Θ, p∗ =
p ′/(ρ∞U 2), f ∗ = f /| f |. The resultant equations are:

Du∗
i

Dt
=−∂p∗

∂xi
+Re−1 ·∇∗2u∗

i +Fr−1δ3,i +Ri
(
θ∗−θ∗∞

)
δ3,i −Ro−1 f ∗

j u∗
k εi j k , (I.1.29)

Dθ∗

Dt
= Ec ·β∗

θθ
∗ Dp∗

Dt
+2Ec ·Re−1 ·S∗

i , j
2 + (Pr ·Re)−1 ·∇2θ∗, (I.1.30)

revealing the non-dimensional quantities:
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Re = ρ0U L

µ
, Fr =U 2/g L, Ri = βθg∆ΘL

U 2
,

Ro = U

| f |L Ec = U 2

cp∆Θ
, Pr = µcp

k
.

(I.1.31)

Fully turbulent flow Turbulence is caused by excessive inertial forces, which overcomes
the damping effect of the fluid’s molecular viscosity, increasing non-linear contributions to
the Navier Stokes equations. The onset of turbulence can be determined by the Reynold’s
Number Re that balance those terms in the momentum conservation equation. A fully tur-
bulent flow where Re→∞ is assumed in the numerical resolution employed at chapters III
and IV.

Gravity waves Froude’s number Fr compares inertial and body forces (here, gravity). It is
particularly important in gravity dominated phenomena including, clearly, gravity waves.
In section B.1.1, Fr is shown equivalent to the Wave Age WA, characterizing the Wind-Wave
interactions here discussed in section I.3.

Thermal Stratification Buoyancy becomes important when the absolute Richardson num-
ber Ri rises, being it a direct measure of momentum generation (or damping) capability
by buoyancy, compared to inertia. This number is particularly important in atmospheric
flows, where it reveals the stability of the atmospheric boundary layers [Kaimal and Finni-
gan, 1994], and shall be revisited in other forms in section I.2.2.3.

Coriolis forces An inertial force accounting for the earth rotation with angular frequency
Ω = 7.3 10−5 rad/s, Coriolis forces are known to introduce large scale spinning motion to
the atmospheric flow, and are characterized by the Rossby number Ro. In sufficiently small
scales, Ro>> 1, and the Coriolis effects are negligible face to the dominant advection forces.

In the latitude ψ, the Coriolis magnitude parameter is given by | f | = 2Ωsin(ψ). In the
physical experiment of part II (Cases 01 and 02a), e.g., | f | = 10−4 rad/s, and across the
L = 1 km measuring distance, with mean velocity U ∼ 5 m/s, Ro(U ,L) ∼ 50. In the same
experiment, considering the wave instead of the wind velocity would give a Rossby number
∼ 150% higher. In small scale atmospheric flows such as this, the Coriolis forces are usu-
ally negligible close to the surface, where the characteristic length is instead given by the
surface distance, so both the turbulent characteristic velocity and length diminish, and the
turbulent time scale is kept significantly lower than the Coriolis.

The situation is more complex in wavy conditions, where the friction velocity shall evolve
in the wave length scale rather than the wall distance. In the numerical experiments of sec-
tion III.4) for example, one can take the characteristic friction velocity u∗ ∼ 0.147 m/s, with
the wave-length λ∼ 128 m, to find Ro(u∗,λ) ∼ 11: Noting that within the long wave lengths
considered, and face to the slow velocity differences encountered, Coriolis forces might get
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increasingly important close to the surface. All of the cases here discussed in the numeri-
cal experiments of parts III ensure Ro(U ,L) > 50 and Ro(u∗,λ) > 10, and Coriolis forces are
neglected in the governing equations presented at section III.1.1.1.

Reversibility The Eckert number Ec measures kinetic energy against enthalpy change in
the flow. If the enthalpy change becomes important on the energy balance equations, dis-
sipation can occur. From the discussion in Spiegel and Veronis [1960], one sees that the
Boussinesq hypothesis is consistent to imposing Ec→ 0 so that equation I.1.30 becomes:

Dθ∗

Dt
= (Pr ·Re)−1 ·∇2θ∗, (I.1.32)

Heat advection Prandtl’s constant Pr compares thermal and molecular diffusion. The Peclet
number Pe =Pr·Re gives the relative importance of heat diffusion and convection in the en-
ergy balance equation.
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I.2 GEOPHYSICAL MECHANISMS AND MODELS

Figure I.2.1: According to Edson et al. [2007] (Fig. 1), a
"few of the processes governing air-sea exchange across
the coupled boundary layers". Already much more than
the ones admitted by the theoretical framework estab-
lished.

The offshore environment is char-
acterized by multiple physical pro-
cesses occurring simultaneously,
exchanging momentum, heat, and
mass through different layers of
the fully coupled ocean and at-
mospheric boundary layers. Some
of this processes are summarized
in figure I.2.1, presented in Ed-
son et al. [2007] to justify the slow
progress achieved towards mod-
elling the fully coupled Marine At-
mospheric Boundary Layer, par-
ticularly regarding weather fore-
cast applications. From their ob-
servations and in agreement to
other wind-wave interaction stud-
ies reviewed in section I.3, Edson
et al. [2007] indicate that wave re-
lated processes play a significant
role in micro and mesoscale variabilities above the Ocean.

With that picture in mind, next sections present a broad, rather than exhaustive review
on the coupled ocean and atmospheric systems. Naturally, focus is given to the aspects most
exploited during the Thesis, that must be described within the theoretical framework estab-
lished in section I.1. In section I.2.1, oceanic processes are discussed with focus given to the
statistical description of ocean waves, but with mention to ocean circulation and dissipa-
tion processes. The observations presented in the Thesis regard physical measurements in
the atmosphere, and the numerical reproduction of the Atmospheric Boundary Layer (ABL).
So the description of the ABL receives special attention in section I.2.2, without any popper
consideration of wind-wave interactions. The goal is to establish a consistent overview of a
few oceanic and atmospheric processes, so the discussion can meet the specific objectives
of the Thesis in section I.3, particularly considering Wind-Wave interactions.

I.2.1 OCEAN WAVES

Employing the framework of section I.1.2.1, analytical solutions of monochromatic waves
are given in the appendix, describing the linear solution known as Airy wave theory (1841),
and the non-linear development of Stokes’ theory (1847). There are some aspects, high-
lighted in the next sections, that describe ocean waves better than these simplistic analyti-
cal solutions. In section I.2.1.1, the statistical nature of ocean waves is discussed, where the
sea-state energy is distributed along an energy cascade in analogy to turbulence (see section
I.1.1.5), but yet within potential flow and linearity assumptions. Section I.2.1.2 highlights
important physical aspects of wave-driven circulation and wave dissipation the Oceanic
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Mixed Layer, that cannot be described within the potential flow theory, thus not being prop-
erly exploited during the Thesis but yet, essential to understand some of the Wind-Wave
interaction mechanisms discussed in section I.3.

I.2.1.1 SEA STATE SPECTRAL DISTRIBUTION

Instead of the canonical regular wave scenario, the sea-state is better described as a contin-
uous spectral distribution of an infinite number of regular waves, as exemplified in figure
I.2.2, taken from Pierson et al. [1955]. The mathematical description of the sea-state sta-
tistical variability by means of its Spectral Energy Density distribution is first developed in
Pierson and Marks [1952], and is now a standard practice in the Ocean engineering industry.

Considering a directional sea-state where linear waves propagate in x and y directions,
the power density function of the free-surface (FS) elevations F (k) = F (kx ,ky ) (FS spectrum)
is function for example of the wave-number space (kx ,ky ), so that counting on a Fourier
decomposition of the free-surface elevation η(x, y), discretized into the wave-number space
with spacing (∆kx ,∆ky ) and modal amplitudes ai j (kxi ,ky j ), then:

F (kxi ,ky j ) = lim
∆kx→0

lim
∆ky→0

1

∆kx∆ky

[
1

2
a2

i j

]
. (I.2.1)

The FS spectrum is also commonly given as F ( f ,φ), function of frequency f and direc-
tion φ. With the group velocity definition cg = ∂w/∂k, F scales between (kx ,ky ) and ( f ,φ):

F (kx ,ky ) = F ( f ,φ)
cg

2π(k2
x +k2

y )0.5
, (I.2.2)

and the one-dimensional angular-frequency (w = 2π f ) spectra is given as:

F (w) = 1

2π

∫ 2π

0
F ( f ,φ)dφ. (I.2.3)

The linearity assumption is crucial for determining that each infinitesimal segment of F ,
corresponds to an oceanic, dispersive, gravity wave. In that case one can generate a statisti-
cal sample of the irregular sea state by a combination of regular components, as suggested in
figure I.2.2. Each wave component have their amplitudes ai j determined by the discretiza-
tion of the spectrum into intervals of size ∆φ and ∆n:

ai j =
√

2F ( fi ,φ j )∆ f ∆φ (I.2.4)

The phase information is not contained in the spectrum and is usually randomly gener-
ated for each wave component, to give a deterministic sample from this statistical descrip-
tion.
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Figure I.2.2: An irregular
sea-state composed of
multiple wave compo-
nents, from Pierson et al.
[1955].

Thanks to the dispersion equation relating the wave-
number with its angular-frequency, as in equation A.1, the
spectrum F is equivalently defined either in the wave-number
(k) or frequency ( f ) spaces. Hence, such description is partic-
ularly valuable in the present context, for it provides a conve-
nient basis for the evaluation of many of the Wind-Wave inter-
action studies (c.f. Donelan et al. [1996]), further discussed in
section I.3.

Universal Spectral Similarity A universal scaling of the sea-
state spectra is imperative for describing a sea-state in terms
of simple parameters, e.g., the Wave Age extensively explored
in Wind-Wave interaction studies I.3. Naturally the parallel
to Kolmogorov turbulence theory established in 1941 (Section
I.1.1.5), suggest the existence of universal laws ruling the sea-
state spectral behavior. One of the earliest accounts where the
analogous behavior of sea-state and turbulent spectra is in-
voked explicitly, is found in Zakharov and Filonenko [1967].
While addressing what they refer as weak turbulence of cap-
illarity waves, in the transparency region analogous to the in-
ertial range of the turbulent cascade, Zakharov and Filonenko
[1967] predict in dimensional grounds that the spectral decay
in the directional wave-number space shall scale with k−7/2.
That’s quite an early prediction with strong assumptions (c.f.
P. Janseen [2004], pg. 186-187), but remarkable implications as discussed below.

At large fetches and at the smallest wave scales, a universal spectral similarity is first
demonstrated in Pierson Jr. and Moskowitz [1964], where the spectra are determined by
wave-breaking processes in the so-called saturation zone, as previously suggested in Phillips
[1958]. From their observations on North Atlantic measurements Pierson Jr. and Moskowitz
[1964] proposed the Pierson-Moskowitz as a universal wave spectrum, with the high fre-
quency part exhibiting the w−5 law dependency proposed in Phillips [1958]. According
to that, the saturation level is determined exclusively by frequency and gravity, the spectra
scales with F (w) ∼αp g 2w−5, and the Pierson-Moskowitz spectrum is given by:

FP M (w, wp ,αp ) =αp g 2w−5 exp

[
−5

4

(wp

w

)4
]

, (I.2.5)

in terms of the spectral peak angular-frequency wp , and the model’s constant αp .

Within shorter fetch situations, the sea-state spectrum present considerably sharper
peaks than the Pierson–Moskowitz model, which is accounted for in the JONSWAP spectrum
developed in Hasselmann et al. [1973]. The JONSWAP spectra are exemplified in figure I.2.3
(Originally from Hasselmann et al. [1973]) for varying fetch distances, denoted in kilome-
ters over the spectra. With the increasing fetch the JONSWAP spectra converges towards the
Pierson-Moskowitz spectra, as non-linear wave-wave interactions displace the spectral peak
towards lower frequencies. In very high frequencies, the spectra collapse saturated by wave
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breaking processes, exhibiting the w−5 dependence of Phillips [1958]. For smaller fetches
the spectra rapidly deviates from the w−5 law at lower frequencies, and there is a consider-
able overshoot captured in the JONSWAP spectra compared to Pierson Jr. and Moskowitz
[1964]. The JONSWAP spectrum is defined as:

F JS(w) = FP M (w, wp ,αp ) ·γ
exp

− (w −wp )2

2σ2 w 2
p


, where σ=

{
σ1, if w < wp

σ2, if w ≥ wp
.

(I.2.6)

Figure I.2.3: Evolution of the sea-state spec-
tra with fetch. Taken from P. Janseen [2004]
(Fig. 2.5), in turn extracted from the original
in Hasselmann et al. [1973]. Fetch indicated
in kilometers over the spectra.

While the Pierson–Moskowitz spectrum
presented a single constant αp scaling the
sea-state spectra, the JONSWAP spectra
considers additional three constants (γ, σ1,
σ2), and more importantly, the fetch depen-
dency of αp and wp parameterized by the
Wave Age (WA). Up to this point the WA10 =
cp /U10 was usually taken from the mea-
sured wind velocity at the arbitrarily chosen
10 m height, and probably from this point it
has become clear that the Wind-Wave inter-
actions, discussed in section I.3 play a ma-
jor role into determining a universal shape
of the sea-state spectra.

An alternative to Pierson Jr. and
Moskowitz [1964] universal spectral similar-
ity F (w) ∼αp g 2w−5 is given in Toba [1973],
almost simultaneously to Hasselmann et al.
[1973]. From laboratory experiments Toba
[1973] identified a −3/2 power law in the
wave significant height Hs , so similarity reasoning led to the saturated spectral region char-
acterized by the functional F (w) ∼ u∗ αT g w−4. An important contribution of such rea-
soning is that the friction velocity appears as the significant wind parameter, in place of
the arbitrarily chosen 10 m height parametrization of the JONSWAP spectrum. Besides, the
JONSWAP data has been revisited in Battjes et al. [1987], and a better agreement was found
by employing a modified JONSWAP spectrum, with the scaling proposed in Toba [1973], i.e.,
FP M → FT in equation I.2.6, and:

FT (w, wp ,αT ) = u∗ αT g w−4 exp

[
−

(wp

w

)4
]

. (I.2.7)

According to P. Janseen [2004] (pg. 48), there is extensive observational support to a con-
stant αT parameter, leading to accurate fittings of the modified JONSWAP spectrum with
equation I.2.7 at the largest scales of the sea-state spectrum. So the functional F (w) ∼
u∗ αT g w−4 is better suited to represent a universal sea-state spectrum in the lowest fre-

20



quencies of the saturated region, as long as w < 3wp . Moreover in the directional wave-
number domain that finally recovers the k−7/2 slope predicted in Zakharov and Filonenko
[1967] (P. Janseen [2004] pg. 187).

The analogy to Kolmogorov turbulent cascade is brought back in Kitaigorodskii [1983],
now employing an approximation of non-linear wave-wave interactions yet neglected in Za-
kharov and Filonenko [1967]. It is demonstrated in Kitaigorodskii [1983], that the non-linear
interactions between different waves in the sea-state spectra sustain a spectral cascade such
as Kolmogorv’s, where at the larger scales (w < 3wp , P. Janseen [2004] pg. 189) the inertial
range scales with F (w) ∼ u∗ αT g w−4, as predicted in Toba [1973]. It is also postulated in
Kitaigorodskii [1983] that beneath the inertial range, the sea-state spectra is said fully satu-
rated in the dissipation region, where the wave-breaking processes of Phillips [1958] become
predominant. As consequence the sea-state spectra shall adapt from a w−4 slope in the in-
ertial range, to a w−5 slope in the dissipation range.

Though there might be considerable evidence of a w−4 to w−5 transition, there is also
a good amount of discrepancy between the exact spectral distribution obtained in different
experiments above the Ocean (c.f. Kahma and Calkoen [1992]). The introduction of other
Wind-Wave interaction processes, such as the ones discussed in section I.3, for determining
the transition between the w−4 and the w−5 spectra is remarked e.g., in Hara and Belcher
[2002].

I.2.1.2 WAVE-DRIVEN CIRCULATION AND WAVE DISSIPATION

First note that at sufficiently large scales, a boundary layer system is also developed beneath
the water, where the ocean currents are generally subject to the same similarity theories
usually employed in the atmosphere, including the log-law (Craig and Banner [1994]) and
the Monin Obukhov similarity theory [P. Janseen, 2012], here presented in section I.2.2.3.
Though, the boundary layer flow develops considerable differences in the upper ocean layer
if compared to the atmospheric flow depicted in section I.2.2.

Wave-driven circulation Non-linear solutions of gravity waves reveal the stokes drift, phe-
nomenon responsible for mass transport, i.e., wave-driven ocean circulation. With a ma-
jor role in oceanic circulation processes, the stokes drift sums to the ocean current giving
the total circulation, and induces the so called Stokes-Coriolis forcing of the ocean [Has-
selmann, 1971]. In global circulation models (c.f. Janssen et al. [2013]) the Stokes-Coriolis
forces are to be decoupled from the Current-Coriolis forces, and the wind-ocean momen-
tum exchanges distributed between wave and current systems. Acting against the mean
flow shear, the Stokes-Coriolis force may generate Langmuir cells and WI turbulence [Grant
and Belcher, 2009] which have a penetration depth on the order of half the characteristic
wavelength of the wave field (Hundreds of meters for a typical swell). Note that, probably
with lesser intensity, the Stokes drift shall also propagate into the atmosphere according to
the discussion in section I.3.2, where it is also subject to the Coriolis effects, but the impli-
cations of the Stokes-Coriolis forces into the atmospheric flow is unnoticed in the literature
review of section I.3.
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Wave damping and dissipation A possible mechanism of wave damping, mostly known
for inducing the wave growth, is the Wind-Wave interactions later discussed in section I.3.
Other mechanisms are to be considered in order to account for the effective total wave dis-
sipation. Viscous forces act both on the bottom and the free surface. The viscosity acting
on the bottom is important in shallow water conditions. The viscous stresses in the free sur-
face effectively damp capilarity gravity waves (P. Janseen [2004], pg. 199), and might slowly
damp longer wave trains (c.f. Perignon et al. [2014]). Wave-current interactions generate
both structured and turbulent motions capable of exerting wave damping.

Most important, quasi-continuous and fully intermittent processes of white capping
and wave breaking coexist, and are probably the most complex phenomena encountered
in wave mechanics (c.f. Drazen et al. [2008]), leading to strong and localized wave dissipa-
tion events. The ocean current profile strongly deviates from the log-law profiles close to the
free-surface, as wave breaking events generate huge amount of turbulence on depths com-
parable to the waves’ height (c.f. Craig and Banner [1994]). Except for the pressure-related
wave growth and damping mechanisms, the other aforementioned dissipation phenomena
depend on the ocean’s convection and viscosity, and so cannot be resolved by the proposed
assumption of potential flow, presented in section I.1.2.1.

I.2.2 ATMOSPHERIC BOUNDARY LAYER

Existing between the earth’s surface and the geostrophic layer, the atmospheric boundary
layer (ABL) is the portion of the atmospheric flow submitted to the surface direct influence.
In the geostrophic layer, which may be regarded as a the boundary condition prevailing
above the ABL, the flow is in near-geostrophic balance (c.f. Lee [2018]), being insensitive to
the surface conditions. The Boussinesq equations I.1.29 (with I.1.1, and I.1.30) describe the
flow in the ABL, as framed in section I.1.2.2. Turbulence is generated by the shear stresses,
sustained in the surface by viscous forces, and may be damped or produced by buoyant
forces depending on the stability regime.

To properly describe the ABL, it is important to identify and define scales of interest in
the atmosphere, which is argued and established in section I.2.2.1. Within the microscales
studied, an adiabatic ABL is described in section I.2.2.2, following from Prandtl’s Bound-
ary Layer theory described in the appendix A.1.2, and sustained by empirical observations
in neutral conditions. Though, atmospheric neutral conditions are rare and often just a
transition between different thermal-driven regimes described in section I.2.2.3. Relying in
the aforementioned aspects, wind resource low-fidelity prediction models are introduced in
section I.2.2.4, so to base further arguments regarding the improvement of those models for
harvesting applications in the offshore environment.

I.2.2.1 TURBULENT SCALES IN THE ATMOSPHERE

A wide range of physical phenomena and flow scales coexist in the atmosphere. Luckily,
as one cannot afford the multi-scale solution of the whole atmospheric system depicted in
figure I.2.1, the different scales can be often identified with minor, or at least predictable,
influence between each other. One of the first demonstrations of such scale dependency is
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given in der Hoven [1957], reporting the horizontal wind speed variance spectra depicted
in figure I.2.4. Of major implications into the atmospheric flow, and naturally to the wind
energy harvesting industry (c.f. Escalante Soberanis and Mérida [2015]), the Van Der Hoven
spectrum reveal a spectral gap splitting mesoscale and microscale motions in the atmo-
sphere. Here, the main interest is towards the microscale. The spectral gap favors statistical
convergence of the velocity variances, when the averages are performed within such scales.
So, one of the most practical consequences of this demonstration is the establishment of
10 min average window, adopted as a standard in microsale studies (Escalante Soberanis
and Mérida [2015]).

Figure I.2.4: Atmospheric motions, exemplified by the Van Der Hoven spectrum reported in
der Hoven [1957]. The spectral gap splits mesoscale and microscale motions (legend, arrow
and color added to the original) in the atmosphere, the latest being the focus of present
studies.

Different physical processes characterize different scales in the atmosphere, such as in-
dicated in the diagram of figure I.2.5, presented in Larsen et al. [1979]. The region of interest
in this Thesis appear red and hashed in the diagram, corresponding to the microscales of fig-
ure I.2.4, and excluding the Kolmogorov dissipation range. The diagram and discussion in
Larsen et al. [1979] highlight a zone of intersection between different scales and processes.
So the hashed zones in the diagram designate both resolved and modeled motions in the nu-
merical methodology described at section III.1, i.e.: The effects of the dissipation sub-range
are introduced in the inertial sub-range through the LES sub-grid model; and the simpli-
fied large scale forcing mimics the influence of the Planetary Boundary Layer in the shear
production subrange.
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Figure I.2.5: Diagram depicting atmospheric scales related to different physical processes
in the atmosphere, from Larsen et al. [1979]. Red dashed regions are added to the original,
remarking the region of interest in current studies.

I.2.2.2 BL THEORY AND THE ABL AT NEUTRAL CONDITIONS

The amazing importance of Prandtl’s Boundary Layer theory described in the appendix
A.1.2, is that it has been shown a fundamental tool for describing numerous and differ-
ent physical aspects of fluid mechanics (c.f. Aziz et al. [2013]). Notably in the ABL, one
encounter at least two applications of Prandtl’s theory, occurring in very different scales.
Sufficiently close to the wall, the flow is invariant to the other boundary conditions, and
Prandtl’s Boundary Layer theory leads to universal log-law wall models, that are usually in-
voked as lower boundary conditions in numerical approaches, such as the one here em-
ployed and described in section III.1. Most important at this point, at large enough scales,
where viscosity is usually neglected through a fully turbulent flow assumption, Prandtl’s the-
ory explain many of the flow features observed through a large portion of the Atmospheric
Boundary layer. Recall from equation A.9, that Prandtl’s theory leads to the log-law mean
velocity profile:

u1 = u∗

κ
ln

(
z

zo

)
, (I.2.8)

and to the velocity defect law given in equation A.10.

When the difference in temperature balances with the gravity effects in equation I.1.29
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(∂θ/∂z ≈−1oC/100 m), one refers to neutrally stable boundary layers, where buoyancy forces
are negligible and disappear from eq. I.1.26. Despite the strong assumptions of wind steadi-
ness and homogeneity (c.f. Larsen et al. [1979]), turns out that sufficiently apart from the
surface the log-law velocity profile encounter extensive observational support at neutral
buoyancy conditions. In the significant cases where buoyancy forces become important,
the log-law theory is also the basis of more elaborated, state-of-the-art theories (c.f. Tong
and Ding [2020]), soon described in section I.2.2.3.

Figure I.2.6: Atmospheric Boundary Layer regions and
schematics, inspired in BME.

Consider for example, the At-
mospheric Boundary Layer de-
picted in figure I.2.6, bounded
below by different arbitrary ter-
rains, and above by the the free-
stream velocity, with very small
turbulence intensities defining
the free-atmosphere. Far enough
from the surface, the arbitrary
terrain will appear like rough-
ness elements to the mean flow,
that can be accounted for in
the roughness length zo defining
equation I.2.9. For most of the
ABL extension, i.e., the surface
layer in figure I.2.6, the velocity
profile shall be indeed logarith-
mic and Prandtl’s theory shall
hold, as long as buoyancy forces
are being negligible. The Outer
Layer is the upper portion of the
ABL where Coriolis forces become important. In the figure, d0 is a statistical quantity de-
scribing the geometry of the roughness elements, and shall obviously be related to z0, but
such relation is strongly dependent on the micro-climate solution at the roughness sub
layer. So rather than a purely geometrical parameter, z0 is defined as the height where the
mean wind log-law velocity profile values zero.

Perfectly neutral conditions are rarely strictly encountered in the atmosphere, but are
still representative of high speed winds, where inertia largely prevails over buoyancy. A no-
table review and notorious contribution into the subject is so presented in Counihan [1975],
exploring the implications and establishing the coherence of multiple field data available
from the period 1880-1972. According to Counihan [1975] there is an extensive observa-
tional support not only for the log-law velocity profile describing the mean wind across the
ABL, but also for the power-law profile Sverdrup [1936] (at another publication in 1934, see
Counihan [1975]) defined as:

u1

u2
=

(
z1

z2

)1/α

, (I.2.9)

The data in Counihan [1975] is classified in four types of terrains, according to their
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roughness z0. That is now a common practice in meteorological studies, leading e.g., to table
I.2.1 summarizing a full page image given in the European Wind Atlas [Troen and Lundtang
Petersen, 1989]. The original figure in Troen and Lundtang Petersen [1989] also note that

typical uncertainties of z0 values reported in table I.2.1 are on the order of ×÷2 factor.

Table I.2.1: Approximated roughness length z0 associated to different terrain types, from
Troen and Lundtang Petersen [1989].

z0 Description
1·100 City, forest

5·10−1 Suburbs
3·10−1 Shelter belts
2·10−1 Many trees and/or bushes
1·10−1 Farmland with closed appearance
5·10−2 Farmland with open appearance
3·10−2 Farmland with very few buildings, trees etc. Airport areas with buildings and trees
1·10−2 Airport runway areas. Mown grass
5·10−3 Bare soil (smooth)
1·10−3 Snow surfaces (smooth)
3·10−4 Sand surfaces (smooth)
1·10−4 Water areas (lakes, fjords, open sea)

I.2.2.3 THERMAL STRATIFICATION EFFECTS

The idealized neutral condition is often just a local transition between (usually daylight)
convectively mixed, and (usually nighttime) stable boundary layers. Basically the two regimes
determine the buoyancy role in the momentum equations I.1.29: A negative (virtual) tem-
perature gradient characterizes the unstable or convective regime, where thermal forces
sustain turbulent motions at very high altitudes in the atmosphere; the positive tempera-
ture gradient characterizes stable or stratified regime, with thermal forces actually damping
the turbulent motions and confining them to shorter distances from the surface.

Potential virtual temperature and humidity The definitions below follow from Kaimal
and Finnigan [1994] (pg. 6-7). The potential temperature θp measures the deviance from
the actual temperature profile to its neutrally stable (adiabatic) state, so that being cp the
specific heat at constant pressure, and g /cp the adiabatic rate:

∂θp

∂z
= ∂θ

∂z
+ g

cp
, (I.2.10)

that integrated in first order, at a height ∆z from the surface where θp = θ, gives θp = θ+
∆z g /cp .

Over water surfaces or forests, significant moisture may be encountered and the poten-
tial virtual temperature θv introduced for a specific humidity qh :
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θv = θp
θv

θ
, with

θv = θ(1+0.61qh).
(I.2.11)

Figure I.2.7: Diurnal cycle of thermal stratification,
from Kaimal and Finnigan [1994] (pg. 7). In this ex-
ample, the convective regime follows sunrise, and the
transition to the stable regime occurs just after sunset.

Stratification regimes The solar
radiation imposes the diurnal cy-
cle of thermal forces in the atmo-
sphere, leading to the 24 hrs di-
agram of figure I.2.7, taken from
Kaimal and Finnigan [1994] (pg.
7). Most of the radiation kept
in the surface, the convective
regime usually follows sunrise,
and from this moment the bound-
ary layer height (zi in the figure)
increases until reaching a maxi-
mum, around midday when the
radiation is strongest. The con-
vective regime shall be sustained
through most of the day, with the
ABL bounded by the capping in-
version layer, where the tempera-
ture gradient become again positive. But when radiation ceases the surface is also the fastest
cooling medium in the system, so the stable regime follows around sunset. As the stable
regime approaches, one or multiple shallow inversion layers rise from the cooling surface,
slowly converging to a statistically steady regime with zi ∼ [100,200] m (Kaimal and Finnigan
[1994]).

The diurnal cycle depicted is not as precise as it seems, and the radiation reaching the
surface is also submitted to climate and meteorological conditions (c.f. Zhang and Klein
[2010] and Kalthoff et al. [2018]). Notably a water body presents much larger heat capacity
than the land, so generally above the Ocean the convective regime will appear later during
the day, and the stable regime later during the night. A diurnal variability of the surface
temperature is surely present, but not necessarily it will leads to positive or negative tem-
perature gradients as pictured, and besides the system is also submitted, e.g. to seasonal
cycles and ocean currents.

Associated to the induction of thermals in the atmosphere, strong buoyant forces char-
acterize the convectively mixed regime, with mean vertical profiles exemplified in figure
I.2.8a. The vertical profiles vary strongly in the surface layer, until ∼ 10% zi from the surface,
and are almost constant otherwise. The convective regime is characterized by high turbu-
lence levels, and an extended ABL boundary layer size. An inversion layer limit the ABL size
at about zi ∼ [1,2] km (Kaimal and Finnigan [1994]), where ∂θp /∂z becomes predominantly
positive.

In stable conditions such as depicted in the mean profiles of figure I.2.8b, the hot air
tends to be kept stable in the upper locations, so turbulence is damped by thermal effects.

27



The profiles vary gradually with height, and the size of the ABL may not be so easily de-
fined: According to Kaimal and Finnigan [1994], it shall be defined by small enough values
of turbulence (∼ 5% from surface values) but it is often measured by sodars as the mini-
mum between the velocity maximum or the inversion layer height. The mean quantities
evolve slowly during the night, and statistical equilibrium is less often encountered in stable
regimes.

(a) Convective regime (b) Stable regime

Figure I.2.8: Representative exemplification of the mean velocity, direction and temperature
profiles, in convective (a) and stable (b) conditions. From Kaimal and Finnigan [1994] (pg.
5-6).

Non-dimensional scale of buoyancy The Richardson number, first introduced in eq. I.1.31
as Ri = βθg∆ΘL/U 2, measures the momentum generation capability by buoyancy, com-
pared to inertia. An alternative, local expression for the Richardson number is:

Ri = (g /θv )(∂θv /∂z)

(∂u/∂z)2
, (I.2.12)

which better resembles the form introduced by Richarson itself in Richardson and Shaw
[1920], while others are given, e.g., in Kaimal and Finnigan [1994] (pg. 14 and 15). Defined
like this, Ri is negative for unstable, positive for stable, and null for neutral regimes. Beyond
a certain value (Ric ∼ 0.25 in Kaimal and Finnigan [1994] pg. 14), turbulence is effectively
damped and the flow turns laminar.

Monin-Obukhov Similarity Theory (MOST) The latest breakthrough in characterizing the
non-neutral ABL is achieved in 1946 by Obukhov (Reprint in Obukhov [1971]), extending
Pradtl’s boundary layer theory for situations of significant buoyancy forces, characterized
by the Richardson number defined in equation I.2.12. In 1946 Obukhov set the theory basis
and its relevant parameters, and in 1954 (Reprint in Monin and Obukhov [2009]) Monin and
Obukhov defined the most significant non-dimensional height:
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z

LMO
=

(
g

θv

)(
q

cpρ
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introducing the Monin-Obukhov length LMO , i.e., the length dimensioned quantity formed
by the characteristic relevant parameters: (g /θv ); u∗; q/(cpρ). Here θv is the surface mean

potential virtual temperature, and q the kinematic heat flux w ′θ′v . The successful Monin
Obukhov similarity theory (Obukhov [1971]), recently reviewed by Foken [2006b] on its 50th
anniversary, argue that z/LMO is sufficient to evaluate the deviance from Prandtl’s log-law
due to thermal instability effects. The momentum and heat fluxes across the ABL are then
given by universal, empirically obtained, functions of z/LMO . From that point until today, a
great part of the atmospheric scientific community (c.f. Foken [2006b]) dedicates into deter-
mining these universal functions, as one should note the functional presented in Businger
et al. [1971], together with the Dyer-Businger equation (see Businger [1988], dedicated to
Arch Dyer) establishing the relation between momentum and heat functions.

Besides the strong assumptions of homogeneity and steadiness in the ABL, MOST also
assumes constant fluxes occurring across the ABL. In the so-called Surface Boundary Layer,
which covers about 10% of the ABL, a constant flux region is indeed sustained where MOST
performs quite well. However, the theory shall fail when the gradients change rapidly across
the boundary layer height, which is a problem often encountered in stable conditions, char-
acterized by the presence of multiple inversion layers close above the surface [Optis et al.,
2014].

I.2.2.4 WIND RESOURCE AND HARVESTING PREDICTION

To operate wind turbines closest to their maximum efficiency point and reduce the mechan-
ical loadings, the wind energy industry disposes of active control mechanisms to adjust the
rotor’s torque and each blade’s pitch angle [Salic Tom, 2019]. At this point the control al-
gorithm relies on the wind field description to absorb power from fluctuations that can be
significant if compared to the mean available power [Emejeamara et al., 2015]. It is also a
clear trend that wind turbines are getting bigger and thus structural loads increasingly im-
pact construction and maintenance costs. One of the main structural concern relates to
fatigue, which may be reduced through careful design and intelligent active controls [Reza-
eiha et al., 2017], both relying in fine turbulent flow descriptions.

To afford multiple scenarios and real time applications, prediction tools for design and
operational purposes rely on semi-empirical and low-fidelity numerical solutions. State-of-
the-art wind models adopted in solvers like HAWC2 [Rezaeiha et al., 2017] consider a mean
wind log-law profile based on the MOST (see Foken [2006a], and section I.2.2.3) superposed
to randomly generated turbulent components with statistics given, e.g, by the Mann spectra
(Mann [1998]).
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Artificial turbulence and the Mann spectra To avoid phase resolving turbulent motions,
and yet account for their statistical effect in engineering structures, the methodology usually
adopted relies in the prescription of second order turbulent statistics, such as the turbulent
velocities auto and cross-spectra, and the spectral tensor of equation I.1.17, naturally related
to the 1D (space) or 2D (space-time) spectra introduced in section I.1.1.5 (c.f. Pope [2000],
pg. 220).

The idea that turbulence can be reproduced from the turbulent spectra can be traced
back to Taylor [1938], by introducing a deterministic initial field with random phases, anal-
ogous to Pierson et al. [1955] ideas exemplified in figure I.2.2, but that Taylor presented in
analogy to optical applications. The approach introduced by Taylor [1938] is widely ex-
ploited up-to-date, counting on a dispersion relation for turbulent motions given by the
Taylor’s hypothesis discussed in section I.1.1.5.

In isotropic turbulence and due to the incompressibility constraint, the relationship
between two of the one-dimensional auto-correlation functions of longitudinal velocities
(Eu′

1u′
1
(k1) and Eu′

1u′
1
(k2) for example), or the total energy density spectrum Eu′

1u′
1
(k) (where

k = |k |), are sufficient to determine all the double correlations of the velocity field, and hence
the spectral tensor of each of the velocity components. So von Kármán [1948] develops the
von Karman spectrum for Eu′

1u′
1
(k), still often employed to this days describing isotropic tur-

bulence, and function of two parameters, i.e., the dissipation ε (in the term αε2/3 where α is
Kolmogorov’s constant), and a length scale Lk .

In the presence of shear, Mann [1994] linearize the Navier-Stokes equations with bound-
ary layer assumptions, and employing Rapid Distortion theory arrives to simple equations
governing the time evolution of the spectral tensor. He considered these equations acting
in initial conditions given by the Von Karman spectra for isotropic turbulence, thus qualita-
tively [Mann, 1994] accounting for the reorientation and stretching of individual turbulent
eddies. To close the problem avoiding the unconstrained deformation of turbulent eddies,
the vortex lifetime has to be prescribed, as close as possible reproducing the physical break-
up events, which introduces the parameterΩ to Mann’s spectra, in addition to those of Von
Karman (ε and Lk ). In Mann [1998], the Mann spectra is compared to other models in the
literature, establishing the values ofΩ, ε, and Lk corresponding to each of these models.

The state-of-the-art method of artificial turbulence generation is probably the one pre-
sented in Mann [1998]. Besides very efficient in establishing the relationship between the
velocity field and the spectral tensor, it consider and argues in favor of Gaussian distributed
velocity fluctuations, contrasting to the random phases approach yet adopted in many ap-
plications.

Introduction to the Marine Atmospheric Boundary Layer (MABL) In the MABL, the ocean
(thermo)dynamics’ significantly alter the atmospheric flow through higher heat capacity
and complex wind-wave interactions that become important in fairly common situations.
The impact of the marine environment to the wind energy exploitation inside the MABL is
carefully review, e.g., in Kalvig et al. [2014], where one observes the importance of poorly
understood (compared to in-land applications) wind-wave interactions. These wind-wave
interactions are the main subject of present Thesis, to be further discussed along its specific
literature review along section I.3.
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I.3 WIND-WAVE INTERACTION MECHANISMS

Figure I.3.1: The modern Beaufort Scale (1805-2001),
taken from Journée and W.W.Massie [2001]. Even more
recent images dating 2010 can be appreciated with the
historical review in Centre [2010].

The relation between wind and
wave motions has long been ev-
ident to keen eyes observing the
fluid dynamics in the offshore en-
vironment. The Beaufort scale
was devised by the Irish hydro-
grapher, and royal Navy officer,
Francis Beaufort in 1805. It is a
highly empirical method to mea-
sure wind speeds above the ocean
from visual estimations of the sea-
state behavior, based on the em-
pirical knowledge acquainted by
decades of naval expeditions along
the 17th century [Centre, 2010].
The scale devised by Beaufort, re-
viewed along the years and exemplified in the modern pictures of figure I.3.1, survived to
the trial of time until very recently, when most of the vessels are equipped with anemome-
ters. According to Kent and Taylor [1997], still in 1990, 60% of the wind observations from the
north Atlantic were visual estimates based on the Beaufort scale, motivating their systematic
comparison between the Beaufort scale and modern anemometer-based techniques.

An implicit assumption of equilibrium between wind and waves is assumed by em-
ploying the Beaufort scale, for it implies that the wind uniquely defines the sea-state, and
vice-versa, which shall occur in infinite fetch, statistically steady and homogeneous condi-
tions. Away from the idealized equilibrium condition, one distinguish the young and old sea
regimes. Young sea conditions occur when rapid winds force the free-surface, transferring
its momentum to comparatively slow traveling waves. Old seas occur when fast traveling
waves (notably a swell) encounter comparatively slow wind conditions in the lower part of
the MABL. The non-dimensional quantity usually employed in the literature to characterize
the wind-wave interaction regime is the Wave Age WA= c/U , defined as the ratio between
the wave phase velocity c, and a characteristic velocity scale in the atmosphere U .

The scientific knowledge about ocean waves and turbulent dynamics has enormously
evolved in the years following the Beaufort scale in 1805, for instance: The Stokes wave the-
ory revised in section A.1.1, is introduced by Sir George Stokes in 1847; Prandtl’s boundary
layer theory revised in section A.1.2, is presented by Ludwig Prandtl in 1904; the Kolmogorov
turbulent cascade seen in section I.1.1.5, is proposed by Andrei Kolmogorov in 1941; and the
sea-state spectral decomposition seen in section I.2.1.1 is proposed by Willard J. Pierson in
1952. Simultaneously to this major achievements in fluid dynamics, the specific applica-
tion of Wind-Wave interactions received increased attention from the scientific community,
with some principal concepts introduced through the analytical developments of Thomson
[1871], Jeffreys [1925], Miles [1957], Phillips [1957], and Belcher and Hunt [1993], covering
the years of 1871-1993 described in section I.3.1. Joining the theoretical concepts aforemen-
tioned motivated the author to present the flow description in the appendix A.2.1.
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Section I.3.2 presents some of the empirical observations necessary to establish the most
important concepts of Wave Boundary Layer and Wave Induced flow, highlighting the as-
pects that receive particular attention during the thesis. In section I.3.3 the Marine Atmo-
spheric Boundary Layer is investigated in comparison to the ABL similarity theories pre-
viously introduced at section I.2.2, with some emphasis on the chronological progress ob-
served between early and modern, physical and numerical experiments. Very modern mea-
suring and modelling techniques allow the flow description into the very small scales dis-
cussed in section I.3.4. The latest two sections go deeper into the numerical and empirical
methodologies that most specifically resemble the ones here adopted. High fidelity and
oceanic scale numerical reproductions of the MABL are achievable as discussed along sec-
tion I.3.5, by employing Large Eddy Simulations, and possibly a High Order Spectral method
describing the free-surface. Direct evaluations of the Wave Induced flow are reviewed in
section I.3.6, that also depicts some of the technical solutions nowadays available for the
offshore experimental campaigns, and particularly describe the Wave Coherent flow as an
approximation to the Wave Induced flow, leading to the simplified WBL equations discussed
in the section.

I.3.1 EARLY ESTABLISHED THEORIES AND WAVE GROWTH

(a)

(b)

Figure I.3.2: Jeffrey’s mechanism of wave
growth [Jeffreys, 1925], relying in the flow de-
tachment occurring at the lee-side of a suf-
ficiently steep wave. (a) A schematic on the
flow structure. (b) DNS (See section I.3.5) ob-
servations from Yang and Shen [2010].

Probably the earliest attempt to develop
an analytical solution of coupled wind
and wave motions, is the one Lord Kelvin
presents in Thomson [1871], employing a
potential (non-rotational) flow assumption
(see section I.1.2.1) to both water and air
domains. Remarking the disagreement be-
tween Lord Kelvin’s predictions and the
empirical observations at the time, Jef-
freys [1925] first consider the importance
of strong convection forces, i.e., apparent
discontinuities and turbulence, to be ac-
counted for in the following wind-wave in-
teractions studies. The sheltering theory,
as proposed in Jeffreys [1925] and exem-
plified in figure I.3.2, pictures an interac-
tion with negligible viscosity, where the air
motion gives rise to boundary layer detach-
ments starting on the wave’s crest; pressure
rises windward, and drops leeward on the
detachment zone, feeding an existing wave
system in phase with its slope. The pressure
distribution is given through physical rea-
soning and the introduction of a sheltering
coefficient.

From Jeffreys [1925], the next theoretical leaps were achieved simultaneously, differently
but complementary, by Miles [1957] and Phillips [1957]. Miles’ proposes a boundary value
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problem (BVP) exemplified in figure I.3.3, coupling the linear inviscid and laminar pertur-
bations on an initial mean velocity wind profile, and a linear irrotational gravity wave with
non-deformable shape. The resultant flow includes a singularity at z = zc where u1(z) = c
introducing a continuous distribution of vorticity depicted in the figure. The vorticity distri-
bution is responsible for the wave growth, and corresponds to a conceptual advancement on
Lord Kelvin’s theory of point-wise vorticities. Elegant as it is, Miles’ mathematical reasoning
can be less than intuitive, so that a more physically motivated discussion on this mechanism
can be appreciated in Lighthill [1962].

Figure I.3.3: Miles mechanism [Miles, 1957] of wave
growth/ damping, from Lighthill [1962]. Figure 1
(above): The reversed flow below the critical height,
and the streamlines deformation due to the moving
boundary. Figure 2 (below): A continuous vorticity dis-
tribution appears at the critical height zc , where the
mean wind u1 equals the phase velocity of the wave.

In Miles’ model, turbulence
role is restricted into determining
the mean wind profile, an assump-
tion already recognized by Miles
as an intrinsic, major simplifica-
tion. At the proof stage, Miles
[1957] acknowledges the comple-
mentary mechanism presented by
Phillips [1957], who associates the
wave growth to a resonance mech-
anism between turbulent motions
and the free surface characteristic
modes, leading to the exchange of
momentum between the systems.
Philips’ turbulent mechanism of
wave generation is the first to
explain how wind-induced waves
appear in an initially undisturbed
surface. Both theories were after-
wards improved and combined as
first described and evaluated on
Miles [1959] as the so called Miles-
Philips mechanism of wave gener-
ation. Philips mechanism is predominant on the initial phases of waves generation, as the
wind induces a broad-band wave spectrum energy transfer with amplitudes evolving lin-
early in time. At later stages of wave development, miles’ mechanism takes place and waves
shall grow exponentially.

Even though initially pictured for high steep wave profiles where detachment can oc-
cur, a non-separated sheltering effect ([Belcher and Hunt, 1993] and figure I.3.4) still holds
for lower steep waves, where a thickening of the boundary layer invariably occurs leeward
to the crest leading to asymmetrical disturbances of the Reynolds stresses. In a young wave
context where the reversed region below zc is confined to the very vicinity of the free-surface,
employing a mixing length model in the inner region and rapid distortion theory in the
outer region, Belcher and Hunt [1993] demonstrate that the non-separated sheltering in-
duces the non-symmetrical, and symmetrical but longitudinally displaced, disturbances of
inner and outer regions, respectively. In both regions, the difference in phases between the
flow streamlines and the free-surface allow the (partially) out-of-phase slope-pressure cor-
relations that contribute to the wave growth or damping.
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An extensive review and evaluation of the wave growth mechanisms is presented in
Belcher and Hunt [1993], including those already mentioned above, and: Higher order ef-
fects with respect to the wave linearity; the waves orbitals’ velocity acting in the atmosphere;
and variable roughness effects.

(a) (b)

Figure I.3.4: Shelter related wave growth mechanisms, from Belcher and Hunt [1993]. (a)
Non-separated sheltering: streamlines are depicted above the matched height. The bound-
ary layer thickens leeward, and shrinks windward to the crest. (b) Outer region Reynolds-
stress effects: the non-separated sheltering in the inner region leads displaces the largely
inviscid outer-region flow.

I.3.2 THE WAVE BOUNDARY LAYER AND THE WAVE INDUCED FLOW

Rather than an exhaustive description, this section is intended to be an introduction to these
subjects, that for its importance in the present context will be constantly revisited in the next
sections. The text in bold highlights the aspects that most relate to the discussions presented
along the manuscript, raising the scientific questions stated in the introduction at section 0.

According to theory (c.f. Miles [1957], Belcher and Hunt [1993], from section I.3.1) and
observation (c.f. Tamura et al. [2018] and Hristov [2018]), the Wave Induced disturbances
extend into limited regions above the free surface. Though coupled to this inner layer through
modified turbulent scales, the outer flow behaves similarly to static bottom atmosphere
flows such as usually described by the Monin-Obukhov Similarity Theory (MOST) described
in section I.2.2.3. Definitions of the inner layer’s height are not unique, as one could take,
e.g., Mile’s [Miles, 1957] critical height or the Non-separated sheltering region of Belcher and
Hunt [1993] as rough approximations with possibly drastically different outcomes.

The commonly adopted strategy [Cifuentes-Lorenzen et al., 2018] is to define the Wave
Boundary Layer as the region in which the wind or turbulent profiles strongly deviate from
widely accepted In-land similarity theories, such as MOST. The problem is that Wind-Wave
interactions are in fact multiple physical mechanisms acting in different manners on the
wind field: Those mechanisms are very sensitive to the sea-state definition, wind and ther-
mal stratification behavior; and each mechanism shall propagate up to different heights and
disturb different quantities of the wind field. Moreover, MOST is often observed to fail due
to the lack of homogeneity and steadiness in the atmosphere [Hristov and Ruiz-Plancarte,
2014], and together with measurement induced bias significant uncertainty is introduced
with such definition. With that complexity in mind, Hristov and Ruiz-Plancarte [2014] note
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that a simple and robust parametrization of the surface drag is unlikely to exist, which is
probably valid for the WBL height parametrization, apparently equally unlikely to be found
for generic sea-state and atmospheric conditions.

That said, the Wave Boundary Layer (WBL) exists in the vicinity of the free-surface, where
the waves’ influence directly alters the flow dynamics with the appearance of the WI flow,
and notably a WI Stress perturbation ([Belcher and Hunt, 1993, Sullivan et al., 2008]) re-
sponsible for the vertical transfer of momentum between waves and wind. When the waves
travel sufficiently fast in old seas (high WA) conditions, the upwards transfer is such that the
wave signature might emerge explicitly as low-level jets ([Harris, 1966, Hanley and Belcher,
2008]), characterized by a maxima of the wind velocity profiles occurring inside the WBL.

In section I.2.1.2 the reader is introduced to Wave driven circulation, Stokes-Coriolis
forces and Wave-Current interactions acting in the upper Ocean, in the ocean mixed layer.
The author notices that in different intensities each of this mechanisms shall transfer into
the atmosphere. Such similarities are inferred to a coupled air-sea WBL discussed in Ed-
son et al. [2007], particularly noting the parallel between wave-current or wave-induced-
wind interactions in the WBL. Their LES numerical simulations reveal atmospheric coher-
ent structures resembling Langmuir circulations, usually associated to motions in the ocean
[Grant and Belcher, 2009].

The definition of the WBL relates to the existence of the Wave Induced flow, i.e., wave
related dynamics (Velocities and Pressure) that advect through the atmosphere, yet main-
taining some of its original aspects described in section I.2.1. The WI flow is supposedly
significant in the WBL, and is the origin of other disturbances that propagate even higher
on the MABL. Such flow is sustained by the ocean waves, commonly described within an
irrotational framework, as described in section I.1.2.1 and assumed in the earliest studies of
Thomson [1871], that in the absence of wind could well be valid in the atmosphere. However
in the turbulent shear flow of the MABL, the WI flow is submitted to other interactions the-
oretically framed between Jeffreys [1925] and Belcher and Hunt [1993]. Through the experi-
mental literature, one often observes the consequence of WI motions, qualitatively confirm-
ing many aspects of the theoretical framework established, such as the exponential decay of
WI disturbances [Semedo et al., 2009] with height, the existence of a critical layer mech-
anism [Grare et al., 2013a], and with significant scatter (c.f. the comparison in Cathelain
[2017]) the wave growth rate (Montalvo et al. [2013]) prediction. A more precise definition
of the WBL and the WI flow remains elusive though, as the WI disturbances significance is
often dependent in the variables of interest, as suggested in Hristov [2018].

The theoretical developments were up to a certain point the main tools for addressing
Wind-Wave interactions in the WBL, but they are obviously limited to canonical conditions.
Nowadays, the ever increasing computational power and improving measuring techniques
allow the evaluation of Wind-Wave interactions in complex oceanic conditions, which is
the focus in this Thesis. With that in mind, the next sections extend the physical descrip-
tion and bibliographic review with focus in numerical and experimental, observational
approaches. Particularly, sections I.3.6 and I.3.5 discuss the literature review that better re-
late, respectively, to the numerical and physical experiments conducted during the Thesis.

For the reader seeking an overall perspective of Wind-Wave interaction studies, better
balanced between the trinity theory-experiment-numerics, the PhD Thesis of Ayet [2020]
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focuses in the theoretical studies that might often complement the numerical and exper-
imental studies here presented. Noting that previous theoretical models described in sec-
tion I.3.1 are limited to a single monochromatic wave, instead Ayet [2020] employs a spectral
framework, yet exploited only in flat bottom scenario [Katul et al., 2011], in order to study
multi-scale aspects of wind-wave interactions. The consequent discussion highlights some
important remarks concerning wind-waves interactions, including the importance of the
stokes drift determining the spectral behavior of the smallest wind-waves, and the necessity
of more detailed experimental data concerning, e.g., space-time joint distribution Energy
Density Functions (EDF). The theory developed establishes a promising first step towards a
well desired analytical spectral model, linking multi-scale waves and wind motions in the
atmosphere.

I.3.3 BOUNDARY LAYER SIMILARITIES IN THE MABL

I.3.3.1 ROUGHNESS LENGTH: EARLY TO RECENT MEASURING CAMPAIGNS

Historically wind measurement campaigns rely on cup anemometers, or more recently (In
the 70’s) sonic anemometers capable of measuring the three components of the velocity
field with very high acquisition frequency, but limited to a single position per probe, and a
few probes per experiment. Naturally, and often critical in field experiments, meteorological
masts are involved and special attention has to be taken so that it does not interfere with
the incoming wind, nor introduce significant displacements in the measuring probes. The
latest is particularly hard to achieve with floating platforms in the offshore environment,
where the rigid body motions have to be carefully measured and subtracted from the wind
measurements. With cup anemometers attached into fixed bottom structures, the first field
experiments on the wind-wave interactions consider the ABL over fetch-limited reservoirs,
and that leads to the pioneer work of Charnock [1955] opening this section.

Measuring the wind profile 8 meters above a 16-m-deep reservoir with ∼1 km fetch,
Charnock [1955] rightfully theorizes through dimensional reasoning that the roughness length
z0 above a water surface shall scale with Charnock’s constantα, in z0 =αu2∗/g , as a function
of the friction velocity u∗ and gravity g . Over the next decades the techniques to obtain the
friction velocity evolved considerably (c.f. the HEXOS experimental campaign Smith et al.
[1991]), and Charnock’s theory observed to hold even in the offshore environment, while the
question remains up to this date on how exactly does α scale in this case, and rather than
a constant it is obviously dependent on the sea-state parameters characterizing its energy
spectral distribution.

Following Charnock, much of the experimental effort in the Wind-Wave interactions is
dedicated into determining the roughness length parametrization. On the reconciliation of
wave growth measurements during JONSWAP and Lake Ontario, Kahma and Calkoen [1992]
attributes a great deal of the previously observed discrepancies to thermal stability effects.
In Donelan et al. [1993] such effort combines the measuring over Lake Ontario, North Sea
and Atlantic Ocean, remarking the intrinsic difference between field and laboratory scale
experiments to study the WI drag, or z0. In wind-wave conditions and the absence of a
predominant swell, Donelan et al. [1993] concludes z0 can either scale with u∗2/g , or with
a characteristic wave height representative of the locally generated wave field, and that α
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shall definitely scale with the WA, though presenting opposite trends in laboratory or field
experiments. From this moment, at least, it is generally accepted that above the ocean and
for young waves, the roughness length increases with decreasing Wave Age.

Still, multiple questions remain, e.g., regarding the swell influence, the coexistence of
multiple wave systems, and wind-wave (mis)alignment. Since then, multiple other exper-
iments have been conducted in the MABL, and exploited to improve and extend previous
definitions of α, describing the roughness length as function of the sea-state parameters,
as one could cite e.g., Edson et al. [2013] (CBLAST campaign), Patton et al. [2019] (FINO1
campaign) and Porchetta et al. [2019] (FINO1, CBLAST).

I.3.3.2 EDDY VISCOSITY: EARLY TO RECENT NUMERICAL MODELS

As soon as non-linearity comes into play in the theoretical framework presented in Miles
[1959], some sort of numerical approximations shall be employed to obtain the solution, so
for clarification the discussion is here limited to models including a minimum level of fi-
delity, i.e., considered to include at least some level of resolved turbulence. That definition
shall include numerical models ranging from URANS with one equation closures to DNS
resolution, but first one shall note the mixing length theory: The simplest first order closure
to the URANS equations that imposes the linear scaling of the eddy viscosity with height,
employed since Jacobs [1987] and Van Duin and Janssen [1992] to address wind-wave inter-
actions in the asymptotic case of slow traveling waves. The mixing length theory is usually
invoked by higher fidelity models to characterize the flow very close to the surface, and that’s
the case for example in two-layer models (c.f. [Belcher and Hunt, 1993]), when describing
the flow in the inner layer, and in present LES formulation for prescribing the lower bound-
ary condition. Above the inner layer, Belcher and Hunt [1993] employs the rapid distortion
theory to describe the turbulence straining effects.

The eddy viscosity hypothesis is the predominant approach adopted in RANS with one
or two equation closures, and is extensively applied to CFD simulations of ABL flows at lo-
cal scales (O’Sullivan et al. [2011], Blocken [2014]). The pioneer numerical studies regard-
ing wind-wave interactions indeed relied a lot in such schemes, but employing a six equa-
tions 2nd order turbulent closure for the Reynolds Stress Tensor (RST), Mastenbroek [1996]
demonstrate that for waves traveling with velocities comparable to the wind speed, the tur-
bulent viscosity hypothesis shall fail due to a lack of equilibrium between production and
dissipation of TKE in the outer layer of Belcher and Hunt [1993]. Significantly more complex
than first or second order schemes, and not subject to the eddy viscosity assumptions, there
is still a significant amount of modeling in RST schemes such as the Launder-Reece-Rodi
(LRR) employed in Mastenbroek [1996], and his comparison between one, two, or six equa-
tions closures reveals a strong dependency of key flow features, such as the wave growth,
to the turbulent scheme employed. Nevertheless, with its assumption comprehending fast
and slow waves traveling with or against the wind, Mastenbroek [1996] confirms the exis-
tence and scaling of the inner region, previously limited to slow traveling waves in Belcher
and Hunt [1993]. Revisited in Cohen and Belcher [1999], the WBL model coupling mixing
length and rapid distortion theory is extended to the case of fast traveling waves, and con-
firms the agreement to the second order closures of Mastenbroek [1996].
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I.3.3.3 SIMILARITY DISTURBANCES: MEASURING AND MODELLING IMPLICATIONS

The physical experiments yet discussed seek the parametric description of a logarithmic
wind profile, supposedly occurring above the Wave Boundary Layer. On the other side the
numerical approaches described before Mastenbroek [1996] employ considerable level of
modelling, dependent on the same boundary layer similarities of the logarithmic wind pro-
file, for example: Mixing length theory; two-layer assumptions; log-law boundary condi-
tions; and notably the eddy viscosity hypothesis.

But the definition of a WBL is as seen, not unique, and in reality even the logarithmic
wind profile shall be carefully reviewed in the MABL (c.f. Cathelain [2017] and Hristov
[2018]). It is so imperative to examine the Wave Induced flow and disturbances very close
to the free-surface, and specially in the so-called WBL. Unfortunately, direct measurements
inside the WBL can be extremely difficult to perform above the ocean, due to its proximity
to the deforming surface that induces flooding risks and motions to the probing equipment.

In the ocean environment, the momentum flux (friction velocity) estimation above the
ocean is a challenge by itself, reviewed e.g. in Edson and Fairall [1998] and Sjöblom and
Smedman [2002]. Invariably the measurement is limited to a certain height above the free-
surface, and have to be extrapolated downwards to obtain surface quantities such as the
friction velocity or the form drag, and Cifuentes-Lorenzen et al. [2018] note that in the field
such approach truncates the most important contribution of short waves to the growth rate,
as they are probably undetected at the available measurement heights. In the early stages of
Wind-Wave interaction studies, these difficulties apparently resulted in years of experimen-
tal studies with contradictory conclusions, e.g., discrediting for the lack of observational
insight (c.f. Longuet-Higgins [1962] and Simpson [1969]) Miles’ and Philips’ theories, nowa-
days assumed true for its extensive observational support.

By that time, most of the experimental measurements between Charnock [1955] and
Edson and Fairall [1998] were unable to detect WI disturbances to the Monin-Obukhov sim-
ilarity theory, with the common explanation that the measurements occur above the WBL
(Hristov and Ruiz-Plancarte [2014]). While addressing the challenge of momentum flux esti-
mation with measurements performed at the semi-enclosed Baltic Sea (that they note might
strongly differ to the open ocean), Sjöblom and Smedman [2002] offer the first field-based
TKE budget dependency to different sea-state conditions. One of the main conclusions in
Sjöblom and Smedman [2002] confirms the numerical suggestions of Mastenbroek [1996],
regarding the lack of balance between production and dissipation inside the WBL. Dur-
ing swells, dissipation largely prevails, and the usually neglected turbulent transport terms
become significant (notably the pressure term contribution): In these conditions that ulti-
mately condemns traditional "inertial dissipation" methods for estimating the momentum
flux [Sjöblom and Smedman, 2002], but also traditional URANS numerical approaches rely-
ing in the eddy viscosity hypothesis [Mastenbroek, 1996].

At laboratory scales those difficulties are more easily surpassed: For example in Grare
et al. [2013b] one will find the momentum fluxes being evaluated inside the linear viscous
sublayer, by employing modern floating masts equipped with hot-wire anemometers. Next
section presents laboratory scale physical and numerical experiments, but the focus is given
to the unique, small scale physical aspects that it reveals.
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I.3.4 DOWN TO THE DISSIPATION RANGE AT LABORATORY SCALES

I.3.4.1 MODERN MEASURING TECHNIQUES: PIV

Particle Image Velocimetry (PIV) is a measuring technique capable of reconstructing the
flow kinematics, revealing highly detailed velocity fields rarely available with other kind of
physical experiments. Requiring highly controlled experimental conditions, PIV techniques
are often restricted to laboratory scale experiments, which is the case regarding its applica-
tion for wind-wave interaction studies, since the studies of Reul et al. [1999] regarding two
dimensional wave-breaking separation events, and up to Yousefi and Veron [2020] revealing
the very detailed description of turbulent kinetic energy budgets in the WBL.

I.3.4.2 MODERN MODELLING TECHNIQUES: DNS

Recently, fully resolved turbulence is affordable in Direct Numerical Simulation (DNS) com-
putations, though limited to very small Reynolds numbers. Apparently the first DNS model
applied over a propagating wave is presented in Sullivan et al. [2000], later developed into
to the LES formulation discussed in section I.3.5. Since then numerous studies such as Yang
and Shen [2010] consider the detailed resolution of turbulent structures in laboratory scale
WBLs.

I.3.4.3 COHERENT VORTICAL STRUCTURES

In section I.1.1.3 turbulence is described as chaos, justifying the use of statistical approaches
describing turbulent flows. Truth is that turbulence presents in fact a dual character of
chaotic and coherent motions, since it is also a dynamic system emerging as a determin-
istic solution of the Navier Stokes equations I.1.1, I.1.2 and I.1.4. Measuring and resolving
turbulence through PIV and DNS techniques reveals a lot of the coherent, structured nature
of turbulence. An extensive review of coherent structures in (flat) wall-bounded turbulence
is presented in Jiménez [2018], tracing back to Voltaire in 1764 the argument that "random-
ness is an admission of ignorance that should be avoided whenever possible".

Two kind of coherent structures have to be brought to discussion and are exemplified
in figure I.3.5a (From Adrian et al. [2000]), where one encounters: Roller structures ranging
from blue in the wall, to purple on the outside, elongated in the stream-wise direction and in
some cases, attached to the surface; and the Hairpin vortices in yellow, appearing as pack-
ets turning around the rollers. Based in PIV measurements, exposed in figure I.3.5b, Adrian
[2007] focus in Hairpin vortices existing in wall-bounded flows, and describes its genera-
tion from the roller structures attached to the wall, as sketched in figure I.3.5a. It is noted
in Jiménez [2018] that hairpin structures are characteristic to low Reynolds flows, or equiv-
alently to a small confined region on the wall vicinity; they rapidly degenerate into other
coherent structures, and so are hardly observable at high Reynolds conditions. Note that
even though the techniques applied to identify these structures shall go beneath the dissi-
pation range, coherent structures are required to be long-lived, and for such be sufficiently
larger than the kolmogorov scale.
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(a) (b)

Figure I.3.5: Coherent vortical structures in a shear layer flow. (a) From Adrian et al. [2000]:
Schematics of hairpin structures (yellow) rising at the edge of roller structures (blue and
violet). (b) From Adrian [2007]: longitudinal evolution of a hairpin structure, resolved with
DNS.

Figure I.3.6: Quadrant analysis of the PDF of
longitudinal and vertical velocity fluctuation
components. The elliptical iso-contours de-
pict different DNS solutions. The hyperbolic
red lines represent the threshold applied to
identify sweeps and ejections in Q2 and Q4.
From Jiménez [2018].

Another element brought to discussion
is the quadrant analysis, depicted in figure
I.3.6. The figure depicts different DNS ex-
periments gathered in Jiménez [2018], pre-
sented as elliptical isocontours of the joint
Probability Density Function PDF of lon-
gitudinal and vertical velocity fluctuation
components. In wall bounded turbulence,
most of the energy lies in the quadrants
Q2 and Q4, that characterize respectively,
ejection and sweeps events ruling the life-
cycle of these coherent structures. The hy-
perbolic red lines in figure I.3.6 indicate
constant cross-correlation values, used as
a threshold to identify strong sweeps and
ejection events, that according to Jiménez
[2018] carry approximately 60 % of the total
vertical momentum flux, though represent-
ing only about 7% of the PDF volume frac-
tion, i.e., fraction of the area of the PDF in
figure I.3.6.

Bringing these analysis to wind-wave interactions, based in DNS computations Yang and
Shen [2009] observed a quite peculiar scenario occurring above slow and fast waves as ex-
emplified by their schematic in figure I.3.7, from Yang and Shen [2010]. It is noted the reg-
ular wave introduces a highly structured pattern to the turbulent flow, that Yang and Shen
[2009] and Yang and Shen [2010] associate to the mean flow statistics (Reynolds stresses,
scalar mixing, form and fiction drag) within four different phases of the wave, i.e., the crest,
though, and two nodes. They identify two kinds of vortical structures: Horse shoes vortices,
resembling the hairpin structures described by Adrian [2007]; and quasi-streamlined vor-
tices corresponding to the rollers that prevail in the discussions of Jiménez [2018].
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Figure I.3.7: Schematics of the coherent struc-
tures Yang and Shen [2010] observed above (a)
slow and (b) fast traveling waves. From Yang
and Shen [2010].

At slow waves (a) in figure I.3.7, horse-
shoe vortices appear close to the waves
though, and quasistreamwise vortices ap-
pear on the wind-ward faces close to the
wave crest. Those structures are sequen-
tially evolving into one another along the
wave length as described in Yang and
Shen [2009]. They conclude these vortices
stretching and turning due to the wave in-
duced flow play an essential role determin-
ing the vortex life-cycle. For intermedi-
ate and fast waves (b) in figure I.3.7, the
predominant kind of vortices are elongated
quasi-stream-wise structures, bending sub-
mitted to the orbitals velocities, depicted
downward below the though in the figure.
It is remarkable that the horseshoe vortices
identified in Yang and Shen [2010] and as-
sociated to sweeping events in the WBL, have their head wind-ward and legs lee-ward, con-
trary to the Hairpin structures of Adrian [2007].

Regarding the quadrant analysis, Sullivan et al. [2000] demonstrate a considerable dis-
turbance in old wave ages where the PDF spreads more uniformly around the four quad-
rants, instead of focusing in Q2 and Q4. In Yang and Shen [2010] such disturbance is observ-
able from its contribution at different wave phases. Moreover according to the demonstra-
tion in Yang and Shen [2010], contrary to the standard view of flat bottom boundary layers,
Q2 and Q4 do not necessarily indicate sweeping events in the WBL. Another hot topic ex-
ploited in Yang and Shen [2010] is the effect of the wave non-linearity in turbulent statistics
and coherent structures in the WBL, noting they are responsible for intensifying these ele-
ments around the wave crests, so attenuating their strength in the waves’ though.

I.3.4.4 WAVE BREAKING

Noted during section I.2.1.2, wave-breaking events are essential processes determining, e.g.,
the dissipation rate, and thus the overall spectral behavior of a sea-state. Regarding wind-
wave interactions, wave-breaking events also determine the momentum exchange and tur-
bulent structures behavior in the atmosphere [Buckley et al., 2020]. For their intense, in-
termittent, localized behavior, occurring in the very vicinity of the free-surface, these kind
of events pose tremendous difficulties to physical and numerical techniques, only recently
being surpassed by DNS and PIV techniques. In that sense, Reul et al. [1999] (more deeply
discussed in Reul et al. [2008]) presents a pioneer PIV study from measurements taken in the
IRPHE-Luminy small wind-wave tank facility, where they describe the geometry of a sepa-
rated region occurring on the leeside of a breaking wave, at figure I.3.8. The airflow separa-
tion observed in Reul et al. [1999] ressembles jeffreys’ sheltering mechanism of wave growth
[Jeffreys, 1925], and according to the discussion in Reul et al. [2008] they are in many aspects
coherent to each other, but naturally the complexity of the physical experiment greatly ex-
ceeds the theoretical framework proposed by Jeffreys.
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Figure I.3.8: Flow separation observed above
breaking waves with PIV, from Reul et al.
[1999].

The observations and discussion in Reul
et al. [2008] reveal a strong dependency of
the separated region to the breaking waves
geometry, which shall of course depend of
the wave with respect to wind regime. Not-
ing that the mechanical generated waves in
the PIV experiments of Reul et al. [1999] bet-
ter represent wave forcing wind conditions,
Veron et al. [2007] instead employs the PIV
in wind generated waves, better approach-
ing the equilibrium condition at a larger
wind-wave-current tank, from the Univer-
sity of Delaware. They are also capable of
measuring the velocity field inside the vis-
cous boundary layer, so besides confirming
the observations of a separated region for wind-generated waves, and evaluating its con-
sequence on the viscous stresses, Veron et al. [2007] also indicate a unique, linear relation
between non-dimensional surface tangential stress and velocity.

For the numerical community wave-breaking events might be an even harder challenge,
but very recently DNS computations start becoming available even at arbitrary geometries.
Basically the cost of resolving both turbulence and free-surface dynamics grow tremen-
dously, so there is a considerable lag between the development and application of the nu-
merical methods employed in the recent, yet pioneer study of Yang et al. [2018]. Fully re-
solved turbulence and interface dynamics are coupled in Yang et al. [2018], considering a
DNS method applying to both water and air domains, separated by the free-surface with
dynamics tracked by a mixed level set and volume of fluid method. One will find a most
relevant flow description from the discussion in Yang et al. [2018], regarding the effect of
wave-breaking events over turbulence, here exemplified at figure I.3.9.

Figure I.3.9: Monochromatic breaking waves in DNS resolution. The figure depicts one (left)
or three (right) wave periods after the breaking event. From Yang et al. [2018].
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I.3.5 RESOLVING THE WBL AT OCEANIC SCALES

I.3.5.1 LARGE EDDY SIMULATION

To address realistic offshore conditions, Sullivan et al. [2008] and Sullivan et al. [2014] extend
their DNS code into the LES formulation employed in this Thesis. The LES approach intro-
duces limited level of modeling into the isotropic, smallest turbulent scales, theoretically
resolving most of the turbulent energy and specially the anisotropic motions determined by
the problem’s boundary conditions: It is a methodology now responsible for modeling nu-
merous atmospheric studies, regarding different phenomena and discretization scales (d x)
ranging, e.g., from climate (d x ∼ O[ km]) to local wind farming (d x ∼ O[ m]) scales (Moeng
et al. [2009], Yang et al. [2014]). Over the last two decades, LES have been widely employed
evaluating the wind resource available for harvesting applications (Mehta et al. [2014]), but
its use for accessing WI dynamics in the MABL is significantly more recent, and compar-
atively unexploited. Examining the swell effect in the wind energy source available in the
MABL at moderate wind speed situations, Yang et al. [2014] note a significant increase in the
fluctuations and average available power, both due to the WI motions and drag discussed in
Sullivan et al. [2014] in a more phenomenological approach.

(a) (b)

Figure I.3.10: Large Eddy Simulation of the MABL at very different scales. In (a) the temper-
ature fluctuation field at the first grid level (25 m height) of a planetary convective boundary
layer, from Moeng et al. [2009]. In (b) Yang et al. [2014] an offshore wind farm, including
the atmospheric LES resolution, a wave prescription, and wind turbine modelling through
actuator disks, from Yang et al. [2014].

Large Eddy Simulations finally allow the reproduction of the MABL at oceanic scales,
above realistic sea-states where the waves energy is also distributed into multiple scales, and
where the buoyancy and turbulence effects might be resolved with limited level of model-
ing (c.f. Sullivan et al. [2014]). Nevertheless the LES solution is already expensive by itself if
compared to URANS formulations; for considering wavy motions the situations gets signif-
icantly more complex, requiring a moving grid or remesh algorithm; and the WI flow is par-
ticularly challenging for the discretization scheme and SGS model [Hristov, 2018], built to
describe small scale turbulent motions that behave substantially different from the WI flow,
e.g., in terms of anisotropy, regeneration cycle and space-time correlations. Due to such
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challenges, there is yet a significant amount of research required, before numerous and sys-
tematic varying studies based in LES can finally provide, accurate and consistent low order
closures to the WBL reconstruction. In a feedback methodology that would ultimately feed
the less costly predictive tools, still required e.g., in regional or global atmospheric forecast
systems (c.f. Janssen et al. [2013] and Will et al. [2017]), and in wind turbines design and
operational wind prescription solvers (See section I.2.2.3).

I.3.5.2 DETERMINISTIC COUPLING OF RESOLVED SEA-STATE AND AIR FLOW

Very recently the fully deterministic and coupled modeling of Ocean Waves and atmospheric
turbulence is achievable, and available in the literature employing, e.g., the High Order
Spectral (HOS, see Ducrozet et al. [2016]) method at the ocean; with a DNS or LES for-
mulation at the atmosphere. This approach is introduced in Yang and Shen [2011] with a
DNS-HOS formulation. As discussed in section I.3.4, the DNS approach is limited to labo-
ratory scale experiments, but it is still a powerful tool for extending the phenomenological
knowledge about WI and turbulent motions interactions, and particularly the DNS-HOS for-
mulation is yet giving it some first significant outcomes. In Wang et al. [2020] for example,
one encounters an original analysis leading to the spectral discretization of the turbulent
kinetic energy budget.

The scale limitation may be overcome by LES-HOS formulations, as already suggested
in Yang and Shen [2011] and recently presented in Cathelain [2017]: Assembling the LES de-
veloped as in Sullivan et al. [2014], with the HOS described in Ducrozet et al. [2016], coupled
through the algorithm described in the appendix B.2.1. The work of Cathelain [2017] leads to
the numerical tool inherited for this Thesis, and while most of the previous studies consider
a 1-way coupling (Sea to Atmosphere), the fully 2-way coupled scenario is briefly addressed
in Cathelain [2017], revealing some crucial aspects challenging this coupled framework that
remain unresolved up to date.

In this multi-scale LES-HOS coupled scenario, wind is continuously providing energy
to small scale waves, which grow rapidly in steepness. In the ocean, the waves steepness
is limited by wave-breaking and white capping events triggering effective wave dissipation
mechanisms, but in HOS the free-surface is a single valued function and the flow is non-
rotational, so these events cannot be resolved and have to be modeled. In fact, the lack of
dissipation is a well known problem with arbitrarily non-linear HOS formulations, which
is extensively discussed in Ducrozet et al. [2017]. Without a dissipation mechanism, non-
linear processes bring the sea-state energy down the spectrum, and the energy accumulates
at small scales. Eventually non-physical wave steepness events lead to numerical instabil-
ities, and the code crashes. To prevent those instabilities the wave-number solution space
can be truncated below the physical space resolution, but the threshold is flow and non-
linearity dependent. Moreover, the resolved wave steepness is a statistical quantity, that in
critical events might considerably deviate from the standard deviation, becoming critical at
certain instants and locations over the long periods and distances here considered: Mean-
ing that without proper dissipation these critical events, and the HOS stability itself (the fact
that it crashes or not) become a statistical quantity.

The physical inspired modeling of wave breaking and white capping dissipation in the
HOS formulation is a challenge on its own, and an ongoing subject of study at the LHEEA
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lab (c.f. Perignon et al. [2010], Seiffert et al. [2017] and Seiffert and Ducrozet [2018]). Em-
ploying a numerical (rather than physical) inspired low-pass filter to the HOS solution, and
justifying it shall weakly affect the broad-band sea-state spectra over larger scales, Hao and
Shen [2019] first exploit the LES-HOS coupling capabilities during very long (∼3000 wave
peak) periods, observing e.g., the importance of non-linear wave-wave interactions in the
WI disturbances at the Wave Boundary Layer.
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I.3.6 OBSERVING AND QUANTIFYING THE WI FLOW ABOVE THE OCEAN

I.3.6.1 MEASUREMENTS

The measuring techniques have been rapidly evolving, and recently flow measurements are
being held closer to the surface, with ever increasing accuracy and level of detail. Such mea-
surements rely in two aspects responsible for these developments: The wind anemome-
ter, and the structure carrying it. The sonic anemometers invented on the 70’s represented
a corner-stone for enabling turbulence measurements held above the ocean, specially be-
cause other state-of-the-art alternatives such as hot-wire anemometers, are on the contrary
extremely delicate (c.f. Nfaoui [2012]).

Regarding the structure, multiple alternatives exist and are more appropriate to different
circumstances, as extensively reviewed in Bourras et al. [2014]. Here, figure I.3.11 exempli-
fies three solutions: In I.3.11a ASIT, a fixed platform exploited during CBLAST in Edson et al.
[2007]; in I.3.11b FLIP, a hybrid vessel and floating platform, equipped for the air-sea inter-
action studies of Hristov et al. [2003]; in figure I.3.11c OCARINA, a platform buoy described
in Bourras et al. [2014]. Fixed platforms usually gain in reliability, and maintenance/ oper-
ational costs; as drawback they are limited to shallow waters, and the large structures often
disturbs the wind as shadow effects become significant in certain wind directions. Floating
platforms and vessels are extremely autonomous and versatile, as they can cruise the open
oceans and operate for months uninterruptedly, though, the operational costs are enor-
mous, and the platform may also shadow the measurements. Buoy platforms are a very
interesting solution, for they can measure very low heights inside the WBL and their small
structures mitigate the shadow effect, but they also rely in costly operations, and are more
sensitive to long-term deterioration.

(a) (b) (c)

Figure I.3.11: Meaningful examples of air-sea interaction platforms. (a) ASIT, a fixed plat-
form exploited during CBLAST, fig. from Edson et al. [2007]. (b) FLIP, a hybrid vessel and
floating platform, fig. from Hristov et al. [2003]. (c) OCARINA, a platform buoy, fig. from
Bourras et al. [2014].
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I.3.6.2 SPECTRAL EVIDENCE

Regarding the direct assessment of the WI flow, a pronounced augmentation of the turbu-
lent spectral energy distribution is often observed to occur in the waves’ predominant scales.
At [Snyder et al., 1981], replicated at figure I.3.12a, air-pressure sensors measure the turbu-
lent spectra depicted in the upper part of the figure, and water-pressure sensors measure
the sea state spectra at the lower part of that same figure. In more recent campaigns sonic
anemometers detect the WI disturbances in the velocity fluctuations and its derived quan-
tities, as [Tamura et al., 2018] shows replicated in figure I.3.12b, that at strong wave ages
the horizontal and vertical velocities (above and below the figure, respectively) fluctuations
spectra present a clear peak disturbance at the peak frequency fp . Nevertheless, the number
of failed attempts to detect WI disturbances in frequency-domain turbulent spectra is quite
disturbing, as portrayed in Hristov [2018].

(a) (b)

Figure I.3.12: The Wave Induced signature observed in different frequency dependent tur-
bulent spectra inside the WBL. (a) Air-pressure fluctuations and sea-state spectra, at two
different periods taken from Snyder et al. [1981], and with added legends in red. (b) Lon-
gitudinal and vertical velocity fluctuation spectra, with the frequency space normalized by
the wave peak frequency fp , from [Tamura et al., 2018].

Alternatively, the turbulent sources can be distinguishable in the space-time domain
looking for their characteristic velocities in the two-dimensional (2D) turbulent spectra E(k, w):
Turbulent motions are generally convected by mean local velocities U and shall somehow
follow the Taylor’s hypothesis w = k U [Taylor, 1938, Wilczek and Narita, 2012]; while ocean
waves with phase velocity c = w/k follow their characteristic dispersion equation w 2 =
k g tanh(k d), with g the gravity and d the depth in a linear wave theory framework. Unfor-
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tunately the study of k −w turbulent spectra (2D) has not been addressed in the literature
as extensively as the wave-number or frequency 1D spectra, but the k −w characterization
of WI motions in the atmosphere has been previously noted within a numerical framework
in Hao and Shen [2019], as exemplified in figure I.3.13.

Figure I.3.13: The Wave Induced signature observed in the wave-number-angular-frequency
dependent, stream-wise velocity turbulent spectra, within a LES resolved WBL. In the left (g
and i) the resolved spectra is shown in the contours; the red dashed line stands for the mean
wind velocity, and the red dash-dotted line for the dispersion relation. In the right (h,j), the
spectra predicted by the random sweeping model of Wilczek and Narita [2012]. From Hao
and Shen [2019].

I.3.6.3 A MECHANISTIC APPROACH

The recent developments in measuring techniques open the path to what Hristov and Ruiz-
Plancarte [2014] describe as the mechanistic approach for obtaining wind-wave interaction
observational insight: It consists in the direct estimation of WI velocities and pressure in
the atmosphere, rather than the inference of WI disturbances in vertical wind profiles, total
momentum fluxes, or TKE budget, and that path is widely pursued through this thesis.

One shall often encounter an ambiguity between Wave Induced and Wave Coherent
flows in the literature. Because present thesis shall attempt a specific definition of the Wave
Induced flow in section IV.1, it is important to note that instead of directly defining the WI
field from given measurements, past studies rather consider the definition of a Wave Co-
herent flow, i.e., wind fluctuations occurring at the waves’ scales, soon to be defined more
precisely by the end of this section.

If the Wave Coherent flow approximates the Wave Induced flow, then a transfer function
exists linking the sea-state and WC velocities spectra in the atmosphere. That is the transfer
function exploited in Hristov et al. [2003] at 8.7 m above the surface, within Wave Age ranging
in 16 < c/u∗ < 40, and here replicated at figure I.3.14: Showing the magnitudes (a, c) and
phases (b, d) of the transfer function, for horizontal (a, b) and vertical (c, d) velocities. At the
figure, one observes a high quality agreement between the prediction from the Critical layer
theory of Miles [1957], given by the solution of the Rayleigh equations and depicted in full
lines, and the measured wave coherent flow presented in Hristov et al. [2003], and shown in
the squared markers.
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Figure I.3.14: Transfer Function (TF) between the sea-state and atmospheric Wave Coherent
spectra of stream-wise (a, b) and vertical (c, d) velocities. Magnitude of the TF in (a, c); phase
in (b, d). Those are frequency dependent spectra, shown as function of the wave velocity c.
The vertical line is the mean wind velocity at the measurement height 8.7 m. The squared
refer to experimental obsrrvations, and the full line to Mile’s critical layer theory prediction.
From Hristov et al. [2003].

Showing the phase of the Wave Coherent vertical velocity, as in figure I.3.15a, Hristov
et al. [2003] show unmistakable evidence of Mile’s critical layer mechanism, with a sharp
phase shift occurring precisely at the critical layer height. Another approach to quantify the
Wave Induced flow is to consider the cross-spectra of wind velocity and sea-state motions,
as exploited in Grare et al. [2013a] (with FLIP), that leads in figure I.3.15b (vertical wind
velocity) to the same kind of phase-shift occurring at the critical height, again attesting the
validity of Mile’s critical layer mechanism. In Grare et al. [2013a], one also observes a very
pertinent and detailed description of WI motions and stresses. Notably, Grare et al. [2013a]
observes that at 10 m height, fast waves (c/u∗ > 40) induce an upward momentum flux that
can represent about 20% of the turbulent, downward momentum flux. For intermediate
Wave Ages (20 < c/u∗ < 40), they observe that more than 90% of the momentum flux is
supported by waves smaller than ∼15 m. As an evidence contradicting Mile’s theory, they
observe Wave Coherent momentum transfer occurring above the critical layer height.

(a) (b)

Figure I.3.15: Evidence of Mile’s critical layer mechanism. In both figures, the black line
indicates the critical layer height, where a wave component travels with the same velocity
as the mean wind, and across that line an intense phase shift takes place as predicted in
Mile’s theory. (a) Phase of the vertical velocity fluctuation spectra, from Hristov et al. [2003].
(b) Phase between the vertical velocity fluctuation spectra and the sea-state free-surface
elevation spectra, from Grare et al. [2013a].
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I.3.6.4 WAVE COHERENT FLOW AND SIMPLIFIED WBL EQUATIONS

As first introduced in Hristov et al. [1998], the quantification of the WI response relies in
the triple decomposition of a measured wind field, usually measured in time as the signal
χ(t ). The approach adopted so far, e.g. in Hristov and Ruiz-Plancarte [2014], and Cifuentes-
Lorenzen et al. [2018], assumes uncorrelated Atmospheric turbulence (Atm.) and Wave Co-
herent (WC) motions, but more generally a triple decomposition applies so that χ=χ+χ̂+χ̃,
being χ̂ and χ̃ the Atm. and Wave Related fields. Imposing a filter to retain the WC flow

(χ = χ+ χ̃C + χ̂C
), Hristov and Ruiz-Plancarte [2014] present the dynamic equations for the

decomposed and uncorrelated fields, uncoupled between Wave Coherent (χ̃
C

) and turbu-

lence (χ̂
C

) balance equations.

The WC filter is so defined by projecting χ into the vector space of all wave coherent
signals, i.e., those occurring at the same frequencies as the wave profile η(t ). Like-wise, the
present study employs the WC filter (Eq. I.3.1) in space, so counting in the Hilbert transform
discretizing η in the spectral domain, let η

◦
k (x) (η

◦
w (t )) be the in-quadrature counterpart

of the k th (w th) wave number (angular frequency), one-dimensional free surface elevation
ηk (x) (ηk (t )), then:
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(x) =∑
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k (x), and χ̂
C

(x) =χ(x)− χ̃C
(x).

(I.3.1)

The filter defined in equation I.3.1 effectively filters flow features occurring with length
scale 2π/k, where ·[x] and || · ||[x] indicate, respectively, the average and norm in x direction.
Such filter inherits the properties: ˜̃χ = χ̃; ˜̂χ = 0; and notably the absence of averaged cor-
relation χ̃χ̂ = 0. With these properties, the Reynolds decomposition of the Navier Stokes
equations (Section I.1.1.3 and equation I.1.7) reveal the role of WC momentum fluxes τ(W ):

∂ui

∂t
+ ∂(u j ui )

∂x j
=− 1

ρ

∂p

∂xi
+ ∂
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[
τ(ν)

i j −τ(r )
i j −τ(W )

i j

]
−ρgδi 3, where

τ(ν)
i j = 2νSi j , τ(r )

i j = ûi û j , and τ(W )
i j = ũi ũ j .

(I.3.2)

Also thanks to χ̃χ̂ = 0, the continuity equation I.1.1, the Reynolds Stress Tensor equa-
tions (omitted, but see Pope [2000], pg. 315), and the turbulent kinetic energy equations
I.1.9, all apply separately to turbulent and Wave Coherent fields. For example, considering
the turbulent part previously described by equation I.1.9, the Wave Coherent TKE balance
equations are similarly:
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∂ẽ
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∂ẽ
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∂x j
T̃ (r ) + P̃ − ε̃− g ρ̃ũ3, (I.3.3)

where the WC TKE (ẽ) production P̃ , the pseudo-dissipation ε̃ and fluxes T̃ (r ) are given by:
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.

(I.3.4)

To arrive to the governing equations presented in Hristov and Ruiz-Plancarte [2014], one
adopts the usual Boundary Layer assumptions described in the appendix A.1.2; considers
that ρ̃(θ̃) and ũ3 are always in quadrature so the WC TKE and fluxes do not couple with
temperature; that viscous dissipation is negligible in the Wave Coherent flow; and neglects
third-order effects. Then with the sole assumption of infinitesimally small wave amplitudes
in the sea (Linear theory), Hristov and Ruiz-Plancarte [2014] present a quasi-linear theory
for the Wave Coherent flow that results in the Taylor-Goldstein equation: An advance to
Miles [1957] theory (Rayleigh equation) that considers an additional buoyancy term acting
on the velocity mean profiles, so highlighting the fact that Miles’ theoretical framework is
not conceptually limited to a logarithmic wind profile.

I.3.6.5 SURFACE FOLLOWING COORDINATES

A conceptually similar alternative to the WC filter relies in the phase average of a given signal
to perform the decomposition, which is extensively described in Yousefi and Veron [2020],
notably presenting the very detailed development of the Boundary Layer equations at or-
thogonal and curvilinear coordinates.

The wavy bottom surface invariably requires the problem to be formulated in surface
following coordinates, and that leads to the pressure acting as a momentum flux mechanism
in the NS equations [Yousefi and Veron, 2020]. Any coordinate system so defined shall match
the free-surface elevation at the bottom [Ayet, 2020], where h = η(x, y, t ) and one observes
the contribution of the form drag (or thrust) τ(P0)

i j , with the friction velocity definition:

u∗2 =
[
τ(ν)

i j −τ(r )
i j −τ(W )

i j +τ(P0)
i j

]
, with

τ(P0)
i j = 1

ρ
p
∂η

∂xi
.

(I.3.5)
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Part II

FIELD MEASUREMENTS IN THE WAVE
BOUNDARY LAYER

High seas (1874), of Ivan Aivazovsky. From www.wikiart.org.
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A scanning LiDAR (sLiDAR) is deployed to observe Wave Induced (WI) disturbances
propagating into the lower part of the Marine Atmospheric Boundary Layer (MABL), or more
precisely into the Wave Boundary Layer (WBL) where they are significant. Based in original
measurements performed above the ocean, this work contributes to the description of a pri-
mary mechanism taking place in the WBL: The propagation of Free-Surface dynamics into
the atmosphere, the so-called Wave Induced flow.

Driven by the recent growth in wind energy exploitation, sLiDAR technologies and post-
processing techniques have been experiencing a rapid growth in the last 20 years. In [Peña
and Mann, 2019] (Dual sLiDAR configuration) one finds the reference to a wide range of ap-
plications, including weather and climate monitoring and forecast, fundamental studies in
the ABL and turbulent flows, and multiple studies concerning the wind energy industry. As
the industry moves to the offshore environment, one shall also encounter multiple LiDAR
applications being performed offshore (c.f. Désert et al. [2021] for a floating LiDAR configu-
ration).

One of the reasons for the sLiDAR success at so many different fields, is the capability
of largely adapting its scanning movements to attain specifics objectives with a given con-
figuration. It is unknown to the author, other sLiDAR measurements aiming to characterize
the WI flow inside the WBL. To attain that goal, the sLiDAR here operates as described along
section II.1: Fixed on the shore, facing the ocean at the location described in section II.1.1,
employed according to the Calibration and Setup discussed in section II.1.2, presented with
a reminder of some crucial challenges concerning the sLiDAR operating at these conditions.
Wind and ocean monitoring strategies are presented at section II.1.3, also introducing the
experimental cases to be exploited in the results sections.

General post-processing techniques are exposed along section II.2. Section II.2.1 present
the techniques employed to evaluate data quality, treating bad quality data when necessary.
The most significant results and discussions are based in the spectral analyses reviewed and
described at section II.2.2. The wind steadiness and homogeneity are evaluated at section
II.2.3.

Results of the Radial Wind Speed (RWS) captured by the staring mode operating sLiDAR
follow at sections II.3. Through the observations here described, the WI motions are re-
vealed by different analyses based on the RWS, i.e.: Space-Time maps of the RWS in section
II.3.1; one dimension (1D), wave-number (k) and frequency ( f ) dependent spectra in sec-
tion II.3.2; two dimensions (2D), wave-number-angular-frequency (k −w) dependent spec-
tra in section II.3.3. Cases with vanishing wave signature are presented for comparison in
section II.3.4.
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II.1 EXPERIMENTAL CONDITIONS

II.1.1 TEST SITE

Figure II.1.1: The sLiDAR on the bal-
cony of a seafront villa at Le Croisic.
Definition of: Radial (R) and vertical
(z) axes; roll (ψ), pitch (elevation angle
θ), and yaw (azimuth angle φ) angular
movements.

From October 2020 to January 2021, the scanning
LiDAR (sLiDAR), Leosphere WindCube® Scan 100S
pictured at figure II.1.1, from the research laboratory
in Hydrodynamics, Energetics and Atmospheric En-
vironment (LHEEA) has been deployed in the penin-
sula of Le Croisic (France, see fig. II.1.2a), mostly
a sub-urban area constituted of low-rised build-
ings and parks with a south-western rocky coast-
line, aligned with an 110°-290° axis for nearly 10 km
(fig. II.1.2b). The prevailing wind directions at Le
Croisic are South-West and North-East as shown in
Fig. II.1.2a. The sLiDAR was installed on the balcony
of a seafront villa, 100 m away from the coastline at
a height of 18.33 m above the mean sea level (MSL)
with a clear view to the North Atlantic ocean from
135° to 260°. Directly to the North-East of the sLi-
DAR’s position (47°17’8.6"N, -2°31’1.5"E), the Penn-
Avel park is a densely forested area with tall vegeta-
tion (10 m). The local ground is around 8 m above the
MSL with a mean slope of 8% down to the water in
the South-West direction. The installation was chosen to explore the micro-scale wind/wave
interaction close to the water surface using horizontal scans.
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(a) Location of Le Croisic on the French west Atlantic coast.

(b) View of Le Croisic peninsula (France).

Figure II.1.2: sLiDAR position denoted by a red dot and water depth displayed by
the colormap. (a) Location of Le Croisic on the French west Atlantic coast. The
wind rose for Le Croisic has been exported from the Global Wind Atlas (GWA 3.0,
https://globalwindatlas.info), comprehending the period 2008-2017. (b) View of Le
Croisic peninsula (France), with the PPI scans for wind direction determination in
the black sector, and staring mode measurements lines (f-LOS) for Case01 (blue) and
Case02 (red) in dashed lines. Oceanic conditions are estimated from the HOMERE
hind-cast database: The grid is depicted by its nodes in yellow dots; and the probing
occurs in the node depicted in magenta.
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II.1.2 SLIDAR TECHNOLOGY AND EXPERIMENTAL SETUP

II.1.2.1 TECHNOLOGICAL CHALLENGES

Current experimental setup introduces two challenges particularly important to the upcom-
ing analysis, i.e., mitigating the bias induced by the misalignment between Wind Direction
(WD) and the sLiDAR’s Line-Of-Sight (LOS), and evaluating the laser volume filtering effect
[Peña and Mann, 2019]. Due to misalignment, the turbulent spectrum measured along the
LOS is contaminated with different components of the spectral tensor, that latest holding
the full directional information of the Energy Density Function (EDF). Thus the effort of se-
lecting sLiDAR-aligned wind conditions through this study, approaching the observations
to longitudinal correlations/ spectra.

The filtering effect is observed through the mitigation of turbulent motions at small
scales and is generally flow/ turbulence dependent. The light ray pulses for a few nano
seconds, but in light speed that translates into a few meters, leading to the space filtering
of measured velocity fluctuations. Depending on the flow, the space filtered fluctuations in-
duce a time filter according to the characteristic velocities (U and c) advecting the turbulent
structures. sLiDAR measurements are often compared to measurements performed with
other instruments, such as a sonic anemometer to evaluate or correct [Bastine et al., 2015]
its BIAS. Current setup does not dispose of such an instrumentation, and to the authors’
knowledge no other physical experiment has been performed to assess space-time velocity
correlations in similar scales above the ocean. So a k −w (2D) dependent BIAS is expected
in the turbulent spectra (EDF), but its implications to the joint space-time correlation func-
tions are yet unknown to the literature. Such BIAS is further discussed during the results
section, and numerically evaluated later at sections IV.3.3 and IV.3.4.

II.1.2.2 CALIBRATION

The azimuth calibration of the sLiDAR was performed using the classical hard target proce-
dure [Shimada et al., 2020], leading to an uncertainty smaller than 0.5°. Pitch (θ) and Roll (ψ)
angles (see figure II.1.1 for definitions) were adjusted to a value below 0.1° using the sLiDAR
internal inclinometers. For an azimuth of 221.77° with zero elevation, configuration used in
this paper, this misalignment leads to an angle of elevation offset of 0.065° pointing down
to the water surface, corresponding to an altitude offset of -1.1 m per kilometer distance
between the measurement and the sLiDAR’s height.

II.1.2.3 SETUP

In order to assess the time and space spectral content of the turbulent atmosphere above
the sea, the sLiDAR was set-up in staring mode with an elevation angle θ = 0° to measure
the radial wind speed (RWS, uR ) along a horizontal fixed line of sight (f-LOS) above the water
surface. The RWS is negative when the wind blows towards the sLidar in the f-LOS. During
the measurement campaign, the acquisition frequency was ranging from 1 Hz to 4 Hz and
the acquisition time set to 600 s for each f-LOS scan. Gates were defined at each 10 m along
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a 1 km LOS, starting at least 0.5 km away from the position of the sLiDAR. Considering that
the gate length was set to the smallest available on this device, Lγ = 25 m, that gives a 60%
of gate overlapping. The comparison between time and space data being easier to interpret
when the wind speed is aligned to the f-LOS, an azimuth angle φL = 221,77° was chosen
in agreement with the prevailing wind sectors at Le Croisic (See figure II.1.2a) and with the
prevailing wave direction.

To monitor the wind direction close to the area of measurement, horizontal plane po-
sition indicator (PPI) scans with 45° opening (Fig. II.1.2b) were programmed between the
10 min f-LOS scans. During 96 s (between the f-LOS scans), multiple PPI scans (6 different
elevation angles θ) are registered, and the one here exploited corresponds to a 16 s long PPI
Scan where θ = 0°. The RWSs measured from the PPI scan were processed along the gates
following the velocity volume processing method described by Shimada et al. [2020] to ob-
tain gate-wise horizontal Wind Speed (WS) and Wind Direction (WD). This method uses a
cosinus fitting function and assumes that the wind field is homogeneous in time and space
during each PPI scan, which seems particularly appropriate in offshore conditions as Shi-
mada et al. [2020] reported an accuracy of the order of 1% for the mean wind speed and 1°
for the wind direction during gate-wise 10 min averages. Current study instead, employs a
16 s (1 PPI scan) time average combined with a 1.2 km (51 gates) space average to obtain the
results shown in section II.1.3.

Details on the configuration used for each scan is given in Table II.1.1 and the locations
of the scans are reported in Fig. II.1.2b.

Table II.1.1: Description of scans for case 01 (f-LOS 01), case 02 (f-LOS 02) and mean hori-
zontal Wind Speed/ Direction determination (PPI).

Scan θ φL
Rot.

speed
Lγ

Gate
spacing

First
Gate

Last
Gate

Acc.
time

Dura-
tion

(°) (°) (°/s) (m) (m) (km) (km) (s) (s)
f-LOS 01 0 221.77 0 25 10 1.00 2.00 1.00 600
f-LOS 02 0 221.77 0 25 10 0.75 1.75 0.25 600
PPI 0 [154 - 199] 3 25 25 0.50 1.7 1.00 16

II.1.3 ENVIRONMENTAL DESCRIPTION AND TEST-CASE SELECTION

It is here presented the monitoring of meteocean conditions performed during the exper-
imental campaign. Atmospheric quantities are measured in the field, while Oceanic data
are extracted from well established numerical hind-cast databases described further in the
text. Two dates (10:12-Nov and 04:05-Nov) are exposed from which four cases (01, 02.[a-c])
are selected for further evaluation. The dates exposed indicate, through high peak period
values, the presence of a swell, i.e., long energetic wave trains generated far in the ocean
and usually characterizing old-seas conditions. The important difference to notice between
these dates is the wind direction, which comes from the Ocean on 10:12-Nov (Case 01), and
from the land on 04:05-Nov (Cases 02.[a-c]).
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II.1.3.1 METEOCEAN CONDITIONS

The wind direction and the horizontal wind speed were monitored using the sLiDAR PPI
scans described in section II.1.2.3. The turbulence intensity is averaged between the f-LOS
scans and computed as

T I =
√√√√〈

u′
R u′

R

uR
2

〉
, (II.1.1)

where u′
R = uR−uR is the RWS fluctuation, with · the space-time average operator, and 〈·〉 the

ensemble average (Between 10 min scans) operator. The total average RWS is so UR =< uR >.

The atmospheric thermal stability was estimated on a three hours basis using the Richard-
son number introduced in equation I.1.31, here stated as:

Ri = βθg∆Tz

U 2
R

(II.1.2)

where βθ = 3.4 ·10−3 (1/°C) is the coefficient of thermal expansion, z = 18.33 m is the mea-
surement height, and∆T = Tai r −SST is the air-sea temperature difference. The air temper-
ature Tai r is recorded by a PTH probe at the balcony near the sLiDAR, and the sea surface
temperature (SST ) comes from the MARC’s database using the MARS3D model [Lazure and
Dumas, 2008].

The global sea-state parameters, i.e., the significant height Hs , wave length Lp , peak pe-
riod Tp , mean wave direction αw , and wave directional spread βw , are extracted hourly at
the closest node to the sLiDAR LOS final gate, from the HOMERE hind-cast database [Ac-
censi et al., 2017]: a WAVEWATCH III (WWIII) model using the NORGAS-UG grid ([Ardhuin,
2012], and scatter in figure II.1.2b). The water depths are also registered from HOMERE, ex-
cluding tidal variations: d ∼ 22m closest to the f-LOS last gate, and d ∼ 14m closest to the
f-LOS first gate. It is so assumed that d = 22±8, as further discussed in section II.3.3.

At the site, the dominant semi-diurnal tide may induce significant variation of the water
level, modifying the depth and the relative height between the water surface and the sLiDAR
measurement. Though, tidal variations of water surface elevation occur in such large time-
space scales that its effect shall not interfere with our spectral analyses, and the highest
water level variation here observed is approximately ±2 m, on the order of our uncertainties
for the water depth.

The wave age is here defined as WAc = −cp / < uR >, a function of the estimated peak
wave velocity cp = Lp /Tp and the measured RWS. Note that according to present conven-
tion uR is negative when the wind comes from the ocean, and so, when the wind and wave
directions are aligned WAc > 0. A negative WAc value highlights the intrinsic difference of
wave-opposed wind situations where uR > 0.

The monitoring of the most important meteocean variables for each date is presented in
figure II.1.3.
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(a) WS and WD, for Case 01. (b) WS and WD, for Case 02[a-c].

(c) Hs and Tp , for Case 01. (d) Hs and Tp , for Case 02[a-c].

(e)αw and βw , for Case 01. (f)αw and βw , for Case 02[a-c].

Figure II.1.3: Evolution of wind and sea-state quantities around Cases 01 and 02[a-c], in sub-
figures (a,c,e) and (b,d,f), respectively. (a,b) PPI obtained horizontal Wind Speed (WS) and
Wind Direction (WD). (b-f) Wave model (WWIII) hind-cast: In (c,d) the significant wave
height (Hs) and peak period (Tp ); in (e,f) the wave peak direction (αw ) and directional
spreading (βw ). Horizontal lines in (a,b,e,f) for the sLiDAR fLOS-aligned direction φL −180°.
Vertical lines for the initial, middle and final moments of the selected periods.
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II.1.3.2 TEST CASES DESCRIPTION

In figure II.1.3, the 3-hour periods selected for further exploitation stand between vertical
(Red for Case 01 and 02.a; Black for Cases 02.[b-c]) dashed lines, and the dot-dashed lines
correspond to the middle time.

The Case selection seeks the best alignment of the f-LOS direction ([221.77°,41.77°]) with
the mean wind and wave directions: Case 01 is one of the few possibilities in 10-12-November,
but a wide range of possibilities emerges from a mostly constant WD registered in 04-05-
November, leading to Cases 02.[a-c]. Case 01 and 02.a are characterized by similar Wave Age
magnitude |WAc |, which drops significantly in Cases 02.b and 02.c through a diminishing
swell and increasing WS scenario.

Main wind and sea-state statistics of the cases are summarized in tables II.1.2 and II.1.3.
In average, the misalignment of the wind direction to the sLiDAR LOS is nearly 10° for Case
01 and 18° for Case 02.a, leading to a RWS by WS ratio of 99% and 95%, respectively.

Table II.1.2: Summary of the wind parameters.

Case ID Day Start time UR WD TI ∆T Rib , which sign
(UTC) (m/s) (°) (%) (°C) gives (Stability)

01 12/11/2020 11:10:32 4.12 212 8.6 1.4 0.038 (Stable)
02.a 4 /11/2020 07:10:24 4.29 60 10.0 -6.2 -0.170 (Unstable)
02.b 4 /11/2020 19:41:19 5.31 51 13.7 -4.6 -0.086 (Unstable)
02.c 5 /11/2020 04:44:30 6.93 56 12.1 -7.2 -0.075 (Unstable)

Table II.1.3: Summary of the sea-state parameters.

Case ID WAc Hs Tp Lp αw βw

(m) (m) (m) (°) (°)
01 3.05 1.34 10.10 126.9 241 25.8

02.a -3.14 1.04 13.45 181.4 247 29.9
02.b -2.53 0.73 13.16 176.8 249 45.6
02.c -1.92 0.59 12.50 166.2 219 71.3

Cases 01 and 02[a-c] are intrinsically different because of the 180° shift in wind direc-
tion, and the different stability regimes. Case 01 considers wave-following wind scenario,
with virtually infinite fetch from the open ocean, where a near-equilibrium behavior is ex-
pected in the wind-wave interaction. In contrast, Case 02[a-c] considers a wave-opposing
wind scenario with the wind coming from the land, and only∼1 km of ocean fetch. Impacted
by in-land non-homogeneity and unstable stability regimes, Case 02(a-c) are therefore char-
acterized by stronger turbulence intensities. Case 01 and Case 02a have comparable WAc ,
but Case 01 presents higher (129% ratio) significant height Hs , with lower (75% ratio) peak
period Tp , meaning that the sea-state energy flux (or power, in deep waters proportional to
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∼ H 2
s Tp ) is expected to be approximately 25% higher in Case 01 when compared to Case

02.a.

II.1.3.3 SEA-STATE SPECTRAL DISTRIBUTION

The sea-state statistical description is complemented by the spectral energy density func-
tion of free-surface displacements: F (φ, f ) function of the direction φ and frequency f , and
solution of the WWIII model equations. The sea-state full spectral content is registered in
HOMERE only at a few points of the NORGAS-UG, the closest one located approximately
9 km south and 2 km east (At 47°12’N,-2°30’E) of the sLiDAR, for which F (φ, f ) is shown
in figure II.1.4. The figure shows F (φ, f ) together with the frequency-dependent mean di-
rection φ0( f ) traced in full line, and the wave peak direction (φp = 241° or 247°) traced in
dashed line. φ0( f ) is obtained from the integration of F (φ, f ) 1st momentum in φ, and φp is
available at a grid point closer to the sLiDAR according to table II.1.3.

The difference between the directions is consistent with the expected effect of wave re-
fraction, occurring for a sea state propagating over a variable bathymetry (See figure II.1.2b),
as the sea-state evolves considerably between the F (φ, f ) (Orφ0) andφp probes. It is impor-
tant to note that, as for turbulence, the sea-state description is statistically distributed in
various scales and the sea-state spectrum is generally a combination of different swell and
wind-generated wave systems, the swell and wind prevailing in low and high frequencies
respectively, clearly distinguishable from one another in the wind-wave opposite direction
Case 02.a.

Figure II.1.4: Free-surface variance energy density function F (φ, f ) (log scale) for Case 01 (a) and
Case 02a (b). The frequency dependent mean direction φ0( f ) and the peak wave direction registered
closer to the sLiDAR are depicted as a black dotted line and dashed line, respectively. The mean WD
and the sLidar fLOS are depicted in dot-dashed yellow and red lines, respectively.
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II.2 DATA ANALYSES

The following section describes the post-processing techniques developed to evaluate the
staring mode dataset of the Radial Wind Speed (RWS). The dataset corresponds to mea-
surements done during the 3 hr periods described in section II.1.3, and is segmented in 9
samples of 10 min records, spaced by another 10 min where PPI takes place. For each case,
the initial dataset spans 1.5 km through 150 gates, and is further exploited in the first 1 km
(101 gates) for the reasons discussed below. With different accumulation times, a 10-min
series contains 600 and 2400 time-steps for Cases 01 and 02, respectively. The methodology
built is tuned and exemplified for Cases 01 and 02.a., but also considered in the exploitation
of cases 02.[b,c] in section II.3.4.

II.2.1 DATA QUALITY AND FILTER

The sLiDAR’s measurements might be sensitive to varying atmospheric conditions that con-
trol the particle’s density in the ABL, and become improper for example through an insuffi-
cient concentration of particles, or due to the ray collision with hard targets. Two methods
are here discussed to identify bad quality data: (i) Fixed CNR threshold (Section II.2.1.1);
(ii) RWS spike detection (Sec. II.2.1.2). Bad quality data are first removed from the dataset,
and then reconstructed according to section II.2.1.3, such that the RWS can be assessed in a
uniform space-time grid as required for the spectral analyses in section II.2.2.

II.2.1.1 CARRIER-TO-NOISE RATIO

The Carrier-to-Noise-Ratio evaluates the back-scattering intensity with respect to noise,
such that higher its value, better the data quality (Gryning et al. [2016]). A fixed CNR value
threshold, below which data is discarded to ensure high quality datasets, is usually employed
in the literature with values ranging between -22 db and -29 db. However, this is shown to in-
duce CNR-dependent statistical properties [Gryning and Floors, 2019], and becomes a hard
limit in specific environmental conditions [Beck and Kühn, 2017] where the CNR naturally
tends to lower values. The CNR behavior and its impact in present results have been stud-
ied prior to the definition of a CNR criteria (CNR>-29 db), and the exploited spatial range is
limited to ensure higher overall CNR values of the dataset.

The fraction of data filtered as a function of the threshold is shown as cumulative his-
tograms in Figure II.2.1(a,d), for Cases 01 (II.2.1a) and 02.a (II.2.1d). The CNR is indeed de-
pendent on the environmental conditions, as for example its cumulative distribution shifts
towards lower values in Case 02.a. As expected (Gryning and Floors [2019]), at the same time
lower CNR values occur more often in more distant measurements. A higher data quality is
hereby achieved limiting the total sLiDAR’s LOS ranges (Blue bars in figure II.2.1), to be ex-
ploited in the first 1km distance closest to the sLiDAR (Yellow bars).

The graphs in figure II.2.1 also reveal CNR-dependent statistics for the mean RWS (figs.
II.2.1b and II.2.1e) and turbulence intensity (TI, figs. II.2.1c and II.2.1f). The threshold for
which the statistics become CNR dependent is proportional to the overall CNR quality: Gen-
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(a) Case 01: Fraction of data be-
low the CNR threshold.

(b) Case 01: Mean velocity of
data above the CNR threshold.

(c) Case 01: Mean TI of data
above the CNR threshold.

(d) Case 02.a: Fraction of data
below the CNR threshold.

(e) Case 02.a: Mean RWS of data
above the CNR threshold.

(f) Case 02.a: Mean TI of data
above the CNR threshold.

Figure II.2.1: Case 01 above; Case 02.a below. Cumulative histogram of CNR occurrences be-
low the threshold; Mean velocity and turbulence intensity as function of the CNR threshold.

erally higher for Case 01 and in shorter distances from the coast where the sLiDAR signal is
stronger. With the limited 1 km LOS extent, independence is observed for Cases 01 and 02.a
with thresholds as big as -22 db. However, independence in the mean quantities of variables
such as the RWS and the TI, does not imply independence of other statistical and more sen-
sitive quantities, such as the turbulent spectra. Referring to the cumulative histograms, a
-22 db threshold discards 0.02% of the data in Case 01 and 0.08% in Case 02.a: Too much for
current objectives counting in highly detailed FFT-based spectral analyses.

To perform a Fast Fourier Transform (FFT) the dataset must be uniformly distributed
in space and time domains, such that data removal implies data reconstruction (Described
below), which is hardly more trustworthy than the actual measurement. Indeed the spectra
quality completely deteriorates with the removal of ∼0.1% of the dataset: A CNR threshold
of -27 db if the full LOS range were considered in Case 02.a (Blue cumulative histogram in
figure II.2.1d). To avoid CNR dependent biases in future results, the lower threshold of -29
db is here adopted, together with the dataset reduction to 1 km span, discarding no data in
Case 01 and a single point in Case 02.a.

II.2.1.2 SPIKE DETECTION AND REMOVAL

A spike is defined as data for which the difference between the measurements and its es-
timate exceeds a certain threshold, big enough to be considered non-turbulence related.
Spike detection methods cover the mathematical description of the estimate and the def-
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inition of a criterion, and vary through the literature being their performance intrinsically
flow-dependent (Suomi et al. [2017]). Here the estimate is given by the low-pass filtered
signal, and the threshold is imposed with respect to the difference between the measure-
ment and its estimate. The filter standard deviation and the criterion thresholds are tuned
through graphical inspection of Cases 01 and 02.a to filter non-physical outliers.

The spikes are identified in the time domain, as the short acquisition sampling period
enables to capture turbulent scales smaller than the comparatively larger gate spacing. At
each gate, there are n = 1..N = [600 or 2400] time steps tn in a 10-min time series. The
low pass time filter uα(x, t ) represents the large scale motions of the space-time dependent
measurements u(x, t ), and are evaluated at a given position x, being the space dependency
omitted below. A single parameter gaussian filter (Eq. II.2.1) is applied, where the standard
deviation σα is tuned to 10 s by graphical inspection of Cases 01 and 02a.

uα(t ) =

N∑
n=1

[u(tn) ·Wα(tn − t )]

N∑
n=1

[Wα(tn − t )]

, with Wα(tn − t ) = 1p
2πσα

exp

[
− (tn − t )2

2σ2
α

]
. (II.2.1)

This method is an alternative to more simplistic approaches where |u −u| < mσ ·σu (in
which case u is the estimate), being σu the standard deviation of u(t ) and m a constant. In
increased complexity, an advantage of the proposed procedure is that the estimate includes
low frequency motions, such that spikes remain defined in high frequency scales: The wind
might strongly deviate from its average value (Due to unsteadiness for example), yet it is
only a spike if the deviation occurs during short periods.

The criterion depends on the time-wise difference dn = un−uα between the time-dependent
signal un(t ) and its estimate uα(t ), in comparison to the Round Mean Square difference
RMSdi f f = [

∑
(d 2

n)/N ]0.5, and to its neighbors: (i) |dn |/RMSdi f f > mσ1; and (ii) dn/dn−1 &
dn/dn+1 > mσ2, tuned to mσ1 = 5 and mσ2 = 2 by graphical inspection of Cases 01 and 02a.
This procedure identify 5 points (∼ 0.001% of all) and 305 points (∼ 0.01% of all) as spikes,
for Cases 01 and 02.a, respectively.

An example is given in figure II.2.2, where the original signal appears in blue and its low-
pass filter (with σα = 10s) in red; the spike identified is shown as a purple dot, being its
quality close below the threshold; the yellow lines and dot refer to the signal reconstruction
described below.

II.2.1.3 SIGNAL RECONSTRUCTION

For the subsequent analyses relying on FFT algorithms, it is necessary to reconstruct the
data previously discarded as described in sections II.2.1.1 and II.2.1.2. The data is substi-
tuted by its low-pass filtered (Eq. II.2.1 with α→ β) signal, with high pass-bands where the
(small) filter duration (σβ/3) initially doubles the acquisition period, i.e., σβ = 6 · [1,0.25] s
for Cases 01 and 02.[a-c], respectively. Bad quality data do not contribute to the summation
in equation II.2.1.
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As a last prevention against badly conditioned data, if required, an adaption of the recon-
struction takes place in an iterative procedure: The filter standard deviation σβ doubles as
long as the weighting function spreads too wide in the removed data; more precisely when
the gaussian weight (

∑
Wα) in equation II.2.1 is ten time larger if integrated with bad quality

data, than with good quality data. This threshold is not often assessed.

Figure II.2.2: An example of the spike-removal and reconstruction procedure, selected from
a time series where the spike is identified close to the established threshold. The blue full
line represents a 10-min measurement of uR (x, t ) with fixed position x. The orange full line
represents the low frequency estimate of uR (x, t ), used to identify the spike denoted by a
purple dot. The yellow dotted line is the high frequency estimate of uR (x, t ), used to recon-
struct the spike attributing the value once in purple to the yellow dot just below.

II.2.2 ENERGY DENSITY FUNCTIONS

Aiming the sLiDAR f-LOS as close as possible to the wind direction in a quasi-steady wind
condition, it is here expected to approximate the RWS (uR ) to the streamwise component
of the wind velocity u1, with velocity fluctuations u′

1 = u1 −u1. The distance r is measured
along the f-LOS, approximating the streamwise distance. The spectra exposed are so ap-
proximations of the longitudinal spectra Eu′

1u′
1
∼ Eu′

R u′
R

. Any deviation between wind and
f-LOS directions contaminate the spectra with the full spectral tensor information (Peña
and Mann [2019]).

The space-time correlation function of longitudinal velocity fluctuations is Ru′
1u′

1
(r,τ),

and the corresponding spectral energy density function Eu′
1u′

1
(k, w) twice its Fourier trans-

form (c.f. Pope [2000]), as defined in equation I.1.17. Most described in the literature it is
also here discussed the one-dimensional space and time correlations/spectra of the RWS,
i.e., E(k) and E(w), that form Fourier pairs with the one-dimensional correlation functions
Ru′

1u′
1
(r ) and Ru′

1u′
1
(τ), respectively and according to equation I.1.12.
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The 1D spectra Eu′
R u′

R
are computed from the 1D correlation functions Ru′

R u′
R

for each 10-
min series. Inside a 10-min series Ru′

R u′
R

(r ) and Ru′
R u′

R
(τ) are averaged in space and time, and

then the ensemble average of Eu′
R u′

R
is considered between the 9 samples of 10-min series.

Because the 2D wave-number-frequency spectra can be considerably more noisy than
the 1D spectra, and because turbulent eddies convected by the mean wind velocity cross the
LOS 1 km span in much less than 10 min (3.33 min if < uR >∼ 5 m/s), the 2D spectra rely in
the further segmentation of the data set. To obtain the 2D spectra, each of the nine 10-min
series is segmented in three: Ru′

R u′
R

(r,τ) is averaged inside a 3.33-min space-time series; and
the ensemble average of Eu′

R u′
R

(k, w) is performed over 9·3 segments of 3.33-min.

II.2.3 WIND HOMOGENEITY AND STEADINESS

Homogeneity and Steadiness are assumed, e.g., to take space and time averages that rep-
resent the statistical ensemble of a case. These conditions are hardly ever strictly achieved
in nature, but an effort is made to quantify them based on the observed RWS, character-
izing the quality of the dataset that leads to further results, and the main findings starting
from section II.3. In the open ocean, the absence of solid obstacles favors homogeneity, but
strong variability in time is often observed in the offshore environment (Baker and Gibson
[1987]). Regarding the joint space-time distribution of the velocity fluctuations exploited in
section II.3, it shall be here noted (c.f. the introduction in Nappo et al. [2010]) that Homo-
geneity and Steadiness are in fact coupled through the turbulent eddies’ convection veloc-
ity. Thus, both Homogeneity and Steadiness are here considered as lack of intermittency, in
space and time domains, respectively.

Different methods are disposed in the literature to evaluate the intermittency of the wind
flow. A first difference characterizing these methods are the quantities in interest, as one
could cite for example: The strong intermittency effects observed in viscous and thermal
dissipation rates in Baker and Gibson [1987]; the wind steadiness, or persistance, evaluated
in Singer [1967], Nappo et al. [2010], and Mahrt [2011] through variations in the wind di-
rection; the turbulent kinetic energy exploited, e.g., in Nappo et al. [2010], and in Mahrt
[2009] together with the different velocity variances; and higher order statistics, such as the
kurtosis of different velocity components, in Mahrt [1989] and Mahrt [2009]. Each of these
studies also employs different criteria defining intermittent motions, but generally two ap-
proaches are identified: Either identifying changes in these quantities with respect to a local
multi-resolution basis (Mahrt [2009]), or with respect to the changes in the statistics taken
between consecutive segments in a determined scale (Nappo et al. [2010]). There is no uni-
versally accepted definition of homogeneity or steadiness criteria. Here, the variability of
mean RWS and Turbulence Intensity (TI) are evaluated in the largest scales available with
the 1-km/ 3-hrs f-LOS dataset, and the criteria established characterize the rate of change
in this variables, between large segments of this dataset, in space and time domains simul-
taneously.

The definition of intermittent motions being intrinsically scale dependent (c.f. Mahrt
[2009]), notably one shall distinguish between small and global scales intermittency that
coexist in a turbulent flow (Mahrt [1989]). Avoiding ambiguity it is here addressed the global
variability of turbulent statistics. The local variability designating small scales intermittency,
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is fully incorporated in the high resolution part of the turbulent spectra discussed in sections
II.3.2 and II.3.3. So the large scales variability here accessed designates turbulent motions
occurring at scales larger, or comparable, to the low resolution part of the spectral domain
defined in section II.2.2. Moreover, the flow is evaluated in two different scales: (i) Large
Scales, with distances rl and periods τl comparable to the largest spectral scales considered;
(ii) Very large scales, with distances (rL) and periods (τL) larger than the spectral domain
extension. Lengths and periods rl and τl split a 10-min series, and so interfere with the
space-time averages defined with equation II.1.1; but τL ≥10-min, so interfering with the
ensemble averages in the same equation.

To evaluate the intermittency level in each scale so defined, the whole dataset (Nt ×Nx

instants × gates) is segmented according to figure II.2.3, into: (a) The large scale grid, with
(mt ×mx = 9 [5×5]) intervals of rl = 1/mx km and τl = 9 ·10/mt min; and (b) the very large
scale grid with (mt ×mx = 9 [1×1]) intervals of rL = 1 km and τL = 10 min. A subset is thus
composed of nt ×nx instants × gates, with nt = (Nt /mt ) and nx = (Nx/mx). The very large
distances rL equal the dataset extension, so preventing the evaluation of the homogeneity
level at these scales. In a Cartesian and uniform grid, a subset ab is identified by its middle
time-space coordinates (ta , xb), and its extension given by (τa ,rb).

Figure II.2.3: Segmentation of the dataset of Case 01 into different grids (a,b) to address: (a)
Large scale steadiness and homogeneity; (b) Very large scale steadiness. The blank spaces
between ti +10 min and ti+1 are out of scale, for they correspond to another 10-min intervals
where PPI motions are executed.
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Figure II.2.3 exemplifies for Case 01, the average procedure as employed for the RWS
field, together with the space time limits defining each subset. The space-time average of a
generic flow field χ(x, t ), in the segment ab is given by:

χab(ta , xb) =
∑

t ∈ [ta−τa
2 ,ta+τa

2 [

x ∈ [xb− rb
2 ,xb+ rb

2 [

[
χ(t , x)

nt nx

]
,

(II.2.2)

so defining the (very) large scale functions uab(uR |ab), and TIab(u′
R u′

R |ab ,uR |ab) =
√〈

u′
R u′

R |ab÷uR |2ab

〉
according to equation II.1.1. Up to this point, no average occurs across different 10-min se-
ries, so the ensemble average can be discarded in the evaluation of TIab .

Let gab(ta , xb) represents a generic large scale function (uab , or TIab), so the intermit-
tency criteria V are defined in terms of the rate of change in gab over time (Steadiness, in
V (t )), or space (Homogeneity, in V (x)). Two criteria are defined, either as the average (V (0)),
or the maximum (V (1)) derivatives, normalized with respect to τa , rb , and g ab , according to:

V (0t )(g ) =
(
τa

g ab

)
1

nt nx

∑
ta∈±∞
xb∈±∞

[
∂gab

∂ta

]
, V (1t )(g ) =

(
τa

g ab

)
max

ta∈±∞

{
1

nx

∑
xb∈±∞

[ ∣∣∣∣∂gab

∂ta

∣∣∣∣ ]}
,

V (0x)(g ) =
(

rb

g ab

)
1

nt nx

∑
ta∈±∞
xb∈±∞

[
∂gab

∂xb

]
, V (1x)(g ) =

(
rb

g ab

)
max

xb∈±∞

{
1

nt

∑
ta∈±∞

[ ∣∣∣∣∂gab

∂xb

∣∣∣∣ ]}
,

(II.2.3)

where the derivatives are evaluated in a first order finite difference approach.

II.2.3.1 LARGE SCALE NON-HOMOGENEITY AND UNSTEADINESS

The criteria defined in equation II.2.3 are ensemble averaged between the 10-min data-set
and depicted in table II.2.1, giving V (0x,0t ), followed by V (1x,1t ) into parenthesis, as the rate
of change (%) per τa = 2 min or rb = 200 m, for each case and variable considered.

There is no reference classification for these values but, to guide the discussion, in the
table they are colored with a 1/3 rule: For each of the 8 criteria (V (0x,0t ,1x,1t ) of uR and TI), the
values range between Vmi n and Vmax (Vdi f = Vmax −Vmi n); so green, yellow, and red colors,
apply respectively to values in the intervals

{
Vmi n + [0,Vdi f /3]

}
,
{
Vmi n+]Vdi f /3,2 Vdi f /3[

}
,

and
{
Vmi n + [2 Vdi f /3,Vdi f ]

}
.

The criteria exposed in table II.2.1 summarize different aspects of the intermittency. The
variables in interest are preferably affected by different sources of intermittency, and the
changes in TI are significantly more pronounced compared to the changes in the RWS. For
instance, changes in the large scale forcing, and/or in the wind direction, would primarily
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affect the mean wind velocity, and conserve the turbulence intensity. The turbulence inten-
sity on the other side is particularly influenced by the stratification regime and/or in-land
wind sources. At Case 01 in figure II.1.3a, the unsteadiness level is apparently significant
in the wind speed and direction, which is confirmed in the values of V (0t )(uR ) = 0.6 and
V (1t )(uR ) = 2.5 shown in the table for the RWS, but not clearly observed for the TI criteria 4.5
(and 19.6). The changes in TI registered at Case 01 are not negligible, but considerably lower
than in Case 02b and 02c.

Cases(02a-c) are characterized by winds coming from the land and that introduces sig-
nificant level of non-homogeneity to the atmosphere, but globally quasi-steady winds are
encountered in figure II.1.3b. While Case 01 is critical in terms of the unsteadiness in V (0t )(uR ),
it presents significantly lower averaged non-homogeneity criteria V (0x)(uR ). Intermittency
in time and space shall invariably affect one another in the scales considered, and even
though the averaged criteria V (0x) is low at Case 01, the maximum criteria V (1x)(uR ) is not.

Because it captures the influence of strong isolated large scale fluctuations, the maxi-
mum criteria is important to qualify the quality of the dataset, but it is also very sensitive
to different sources of intermittency, and can be rather difficult to interpret. At Case 01 and
regarding the non-homogeneity criteria of TI for example, one encounters the lowest aver-
age value V (0x)(TI) = 3.2, but the highest maximum value V (1x)(TI) = 16. Such discrepancy
indicate that there is a comparatively small trend of the TI variation over large distances,
but local and intense intermittent motions occurring with r ∼ 200 m. Indeed turbulence
intermittence is favored in stable stratification conditions (c.f. Nappo et al. [2010]), which is
the regime characterizing Case 01. Opposite to Case 01, Case 02(a-c) are in the convective
turbulent regime, and present higher TI in table II.1.2. In Cases 02(b,c) there is a strong non-
homogeneity induced in the TI due to the land effect, the high average criteria indicating
a clear tend of TI over large distances, with V (0x)(T I ) = (5.2,5.1); but the maximum crite-
ria V (1x)(T I ) = (14.6,13.3) is not as big as in Case 01, probably due to the different stability
regimes.

Back to figure II.1.3b, Case 02b presents large variations of the wind speed in compari-
son to Cases 02(a,c), and indeed Case 02b reveals most of the critical criteria in table II.2.1,
with the exception of: Case 01 leading in V (0t )(uR ) and V (1x)(T I ), probably due respectively,
to wind direction changes, and stable regime induced intermittence; and V (1x)(uR ) slightly
surpassed in Case 02a. The most steady wind occurs at Case 02c, with V (0t )(uR ) = 0.1 and
V (0t )(T I ) = 3.6; the same Case presents one of the highest large scale non-homogeneity
tends with V (0x)(uR ) = 0.7 and V (0x)(T I ) = 5.1, which is due to land-induced intermittence
and not very different from the observations in Cases 02(a,b).
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Table II.2.1: Steadiness and homogeneity evaluation at the large scale motions of grid (a)
in figure II.2.3, through the criteria V (0x,0t ) (V (1x,1t ) in parenthesis) established in equation
II.2.3. Rate of change (%) per τ= 2 min (In V (t )), and rb = 200 m (In V (x)).

Case Unsteadiness Non-homogeneity Unsteadiness Non-homogeneity
ID V (t ) of u1 V (x) of u1 V (t ) of TI V (x) of TI
01 0.6 (2.5) 0.4 (1.5) 4.5 (19.6) 3.2 (16.0)

02a 0.4 (1.9) 0.7 (1.6) 3.7 (13.2) 3.8 (12.2)
02b 0.4 (2.5) 0.9 (1.5) 6.5 (46.4) 5.2 (14.6)
02c 0.1 (1.1) 0.7 (1.2) 3.6 (30.2) 5.1 (13.3)

II.2.3.2 VERY LARGE SCALE UNSTEADINESS

The steadiness criteria V (0t ) (V (1t )) from equation II.2.3 are depicted in table II.2.2, as the
rate of change (%) per τa = 10 min, for each case and variable considered.

Table II.2.2: Steadiness evaluation at the very large scale motions of grid (b) in figure II.2.3,
through the criteria V (0t ) (V (1t ) in parenthesis) established in equation II.2.3. Rate of change
(%) per τ= 10 min.

Case Unsteadiness Unsteadiness
ID V (t ) of u1 V (t ) of TI
01 0.5 (8.7) 11.2 (39.6)

02a 0.8 (6.6) 6.2 (53.5)
02b 1.4 (6.1) 7.9 (52.7)
02c 1.3 (3.4) 3.2 (53.3)

The unsteadiness criteria shown in table II.2.2 concerning very large motions, are to be
compared to the discussion held around table II.2.1 characterizing large scale motions. At
first the tables might seem contradictory, but they are in fact complementary. At Case 01,
recall from figure II.1.3a that significant unsteadiness is observed in the wind speed and di-
rection, and the same is observed in V (0t ) and V (1t ) at table II.2.1. Now at table II.2.2, Case 01
presents the lowest value of V (0t ). A close look inside Case 01, between the initial and final
time-steps depicted as vertical lines in figure II.1.3a, shows that what seemed as a clear trend
in the large scale grid, is in fact a very large scale intermittency: In figure II.1.3a the mean
wind speed rises, but later decays to wind speeds similar to the initial; in the large scale grid
these variations reflect an even larger scale motion, and are captured as a trend in the aver-
age criteria V (0t ) at table II.2.1; but in the very large scale grid they appear as intermittence,
and reflect only in the maximum criteria at table II.2.2. The turbulence intensity variation
criterion is particularly important at the very large scales for Case 01, with the critical value
of V (0t )(T I ) = 11.2 depicted in table II.2.2, possibly because of the turbulence intermittence
induced in the stable ABL. Also in the very large scales, Case 02b is critical by most of the
established criteria, significantly surpassed only in V (1t )(uR ) and V (0t )(T I ) by Case 01.
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II.3 FIELD MEASUREMENTS OF WAVE INDUCED

DISTURBANCES IN THE WBL

The RWS obtained during the f-LOS measurements above the water surface are analyzed
through this section. The wave signature is first sought and observed in the time-space do-
main, by spatio-temporal maps of the velocity fluctuations in section II.3.1, and by the one-
dimension and two-dimension turbulent spectra, in sections II.3.2 and II.3.3, respectively.
Section II.3.4 addresses the diminishing of the wave signature with smaller Wave Ages.

II.3.1 RADIAL WIND SPEED FLUCTUATIONS

Turbulent streaks (Eddies) are usually identified in two-dimensional space mapping of the
longitudinal velocities in the ABL, characterized by a coherent pattern of alternated longitu-
dinal velocities, either captured in the x − y or x − z planes. Such pattern can be explained
by the coherent vortical structures introduced in section I.3.4, but the definitions are not
equivalent. Notably, the velocity field characterizing the stream-wise vortices of figure I.3.7
are almost aligned to the x − y place, and due to their interaction with the mean shear that
results in alternated regions of low and high stream-wise velocities, i.e., a turbulent streak
[Jiménez, 2018].

Somehow more unusual, here one encounters the two-dimensional space-time map-
ping of (approximately) longitudinal velocities, in the x − t plane. Figure II.3.1 presents a
color plot of the spatio-temporal RWS from two f-LOS 10 min records above the sea surface,
for Case 01 (II.3.1a and b) and Case 02a (II.3.1c and d). Also in the spatio-temporal map one
encounters alternated low and high speed regions depicting a turbulent streak. Instead of
giving two dimensions of the turbulent streak (x − y or x − z), a spatio-temporal temporal
map identifies its (approximately) longitudinal dimension (span of a streak in the vertical
axis at figure II.3.1), and duration (span of a streak in the horizontal axis at the figure).

Approaching the focus of current discussion, a spatio-temporal map also depicts the
convection velocity of these turbulent streaks, which is identified by the slopes (length/duration)
in figure II.3.1. In a statistical perspective, the expectation for the advection velocities of the
turbulent eddies shall follow certain characteristics discussed in this section.

According to the Taylor hypothesis, in a flat bottom scenario the turbulent eddies are
advected by the local mean speed, so for its evaluation the mean RWS of the 10 min period
is shown as dot-dashed lines in figure II.3.1. Wave induced motions on the other side, are
advected by the free-surface and thus follow the dispersion equation that imposes the (peak)
wave-phase velocity, computed as cp = Lp /Tp from Tab II.1.3, and represented in Fig. II.3.1
by two dashed lines separated by Tp .

For each observation in figure II.3.1 the turbulent streaks are strongly correlated to the
peak wave-phase velocity cp , and the time between two streaks qualitatively corresponds to
Tp (Distance between two dashed lines in the figure). The close relation between space-time
RWS fluctuations and wave characteristics suggests that, at that height, a significant part of
the wave motions are transferred to the wind. When looking for the mean RWS (Dot-dashed
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lines in the figure) though, the correlation expected from Taylor hypothesis is clearly seen
in Case 02a (II.3.1c and d), but not as much for Case 01 (II.3.1a and b). Instead, turbulent
streaks in Case 01 appear to be convected by velocities lower than the RWS: The arbitrary
value 0.5 RWS appearing as green dot-dashed lines, a reference in figures II.3.1a and b.

(a) A record for Case 01. (b) Another record for Case 01.

(c) A record for Case 02a. (d) Another record for Case 02a.

Figure II.3.1: Staring mode 10-min records of the RWS from Case 01 at (a,b) and Case 02.a at
(c,d). Mean RWS (Taylor’s hypothesis) and Peak wave phase velocity (Dispersion equation)
slopes as dash-dotted and dashed lines, respectively. Wave slope duplicated and spread
apart by Tp (tab. II.1.3). At Case 01 the streaks appear to travel with velocities lower than the
RWS, the arbitrary value of 0.5 RWS denoted in figures (a,b).

The deviations from the Taylor hypothesis prediction in Case 01 resembles the descrip-
tion in Cheng et al. [2017], where turbulent eddies are distorted and have their life-time
reduced. Though the convection velocity is still the RWS, turbulence is not frozen as ex-
pected from Taylor’s hypothesis, and the alternated dissipation and reestablishment of vor-
tical structures give the impression of lower convection velocities. These observations are
recalled in the discussion at section IV.2.3.4.
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II.3.2 ONE-DIMENSION TURBULENT SPECTRA

To analyze the spectral transfer from the sea-state to the wind, the RWS fluctuation en-
ergy distribution are analyzed in space and time dimensions by one-dimension (1D) wave-
number (k) or frequency ( f ) energy density functions (EDF or turbulent spectra). Figure
II.3.2 shows in transparency, for each Case 01 (II.3.2a, b) and Case 02a (II.3.2c, d), k and f
spectra for each 10 min record constituting the 3 hours period of each test case. The 3-hour
spectral average is depicted by a solid black line.

(a) Case 01: Wave-number EDF of u′
R u′

R . (b) Case 01: Frequency EDF of u′
R u′

R .

(c) Case 02: Wave-number EDF of u′
R u′

R . (d) Case 02: Frequency EDF of u′
R u′

R .

Figure II.3.2: Wave-number (a,c) and frequency (b,d) 1D turbulent spectra for Case 01 (a,b)
and Case 02.a (c,d). Observed 10-min spectra in light grey, and the 3-hour average in black
full lines. The ESDU reference is given in black dashed lines. Vertical blue lines stand for
the wave peak scales kp and fp , and green lines show the filter scales kγ0 and fγ0, for wave-
number and frequency spectra, respectively.

The ESDU spectra ESDU 85020 is traced in figure II.3.2 as a dashed black line with pa-
rameters uR , observed integral length scale (Ll = πEk (0)/[2Rk (0)] obtained from Ek ) , al-
titude 18.33 m, and a boundary layer height estimated to 1 km. The ESDU spectra being
defined in the frequency domain, the Taylor’s hypothesis is assumed (k = w/uR ; E(k) =
E(w)uR ) to obtain the reference wave-number spectra depicted in figure II.3.2a,c.
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At large scales, the measured spectra are observed in good coherence to the reference
through a region of constant slope, i.e. -5/3 through the inertial sub-range, which is repro-
duced exactly in the reference spectra.

At smaller scales (High k, f ), observations deviate from the reference, notably as conse-
quence of the sLiDAR volume filtering (c.f. Bastine et al. [2015]). The spatial filtering charac-
teristic length scale is represented as twice the gate length of the sLiDAR, so kγ0 = 2π/(2 Lγ),
with 2 Lγ = 50 m, i.e., 5 times the gate spacing. The correspondent filter frequency scale is
estimated from Taylor hypothesis with fγ0 =UR /(2 Lγ), where UR = 4.12 and UR = 4.29 for
cases 01 and 02a, respectively. Filter scales kγ0 and fγ0 are reported in figure II.3.2 by vertical
green dotted lines.

The peak wave-number of the sea-state kp = 2π/Lp and its corresponding frequency
fp = 1/Tp (Table II.1.3), are depicted as vertical blue dot-dashed lines in the same figure. In
figure II.3.2b and d, fp lies close to fγ0, yet, a clear peak is observed in the vicinity of fp de-
noting an energy transfer from the waves to the wind. The peak present in Case 02 (II.3.2d)
is less pronounced than in Case01a (II.3.2b), but still detectable, and energy does not drop
as expected from the spatial filtering. On the contrary, wave-induced motions cannot be de-
tected in the wave-number spectra, and only the spatial filtering effect is appreciated in Figs
II.3.2a,c. These remarks are explained in the next section, looking to the two-dimensional
wave-number-(angular-)frequency spectra.

II.3.3 TWO-DIMENSION TURBULENT SPECTRA

The sLiDAR in the proposed configuration allows an original 2D spectral analysis rarely pos-
sible in the field. Figure II.3.3 presents the 2D spectra of the RWS Eu′

R u′
R

(k, w), plotted as
function of wave length L = 2π/k and period T = 2π/w , for Cases 01 and 02a, respectively
in subfigures a and b. To help the analysis, the velocity relations predicted by the Taylor hy-
pothesis and the dispersion equations (3 curves with different depths) are depicted in full
and dashed lines, respectively. The sea-state peak scale [Tp ,Lp ] is marked as a black star.
The characteristic filter scales discussed in section II.3.2 still apply, and are reported in the
2D spectra as horizontal and vertical green lines.

As expected from a shear-layer flow (c.f. Wilczek and Narita [2012]), most of the energy is
present for long periods/lengths around the mean velocity with significant spreading. Aside
from that, and much more interesting here, the 2D spectra clearly show a second, elongated,
area of high energy, disconnected from the Taylor hypothesis and precisely following the
wave dispersion equation.

The dispersion equation is shown in figure II.3.3 for 3 different water depths roughly rep-
resenting the uncertainty. Two depths are registered from HOMERE, excluding tidal varia-
tions: d ∼ 22m at the closest node to the f-LOS last gate, and d ∼ 14m closest to the f-LOS
first gate. Considering that the WI flow might be generated from waves farther away from
the f-LOS, one observes in the figure 3 curves with d = [14,22,30] m (22±8 m). Fact is that
Case 02a (fig. II.3.3b) agrees well to d = 22±8 m. But as the wind blows from the sea, and the
fetch tends to infinite in Case 01 (fig. II.3.3a), wind is mostly affected by waves from higher
depths than the LOS, and the signature displaces towards d → 30±8 m.
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(a) Case 01. (b) Case 02.a.

Figure II.3.3: Wave-number-angular-frequency 2D turbulent spectra. The mean RWS ve-
locity is depicted in the black full line, and the wave velocity presented in dashed lines for
d = [14,22,30] m. The wave peak scale (Lp ,Tp ) is denoted by a star. The sLiDAR filter charac-
teristic period and wave length are given in the green dashed, horizontal and vertical lines,
respectively.

In section II.3.2 the wave signature is observable only in the frequency spectra, where
actually much of its energy is still hidden beneath the predominant atmospheric turbulence,
so one can hardly dissociate one from the other. Contrary to the 1D spectra from section
II.3.2, in figure II.3.3, the upward turbulent energy transfer from the waves to the wind is
evident and well distinguishable from the atmospheric turbulence. That demonstrates the
great added value of this kind of analysis, that allow the detailed assessment the of turbulent
energy content in the space-time domain.

Atmospheric (Atm.) and Wave Induced (WI) motions correlate differently in space and/or
time domains. The impossibility to see the wave signature in the 1D-spatial spectra (Figures
II.3.2a and c) results from their strong coherence to the atmospheric turbulence in space,
meaning both systems present considerable energy at similar spatial scales (∼ Lp ). Due to
the different advection velocities between Atm. and WI motions, the wave signature arises in
the 1D-temporal spectra (Fig. II.3.2b, d), as the coherence decreases in Tp compared to Lp .
At Case02a Tp is higher, the signature moves towards the atmospheric scales in the space-
time domain (Fig. II.3.3b), and the coherence increases in 1D-temporal spectra, leading to
the less pronounced peak in figure II.3.2d compared to II.3.2b.

The sLiDAR spatial filtering also plays an important role. For instance, the atmospheric
turbulence at Tp is largely filtered by the sLiDAR, since following Taylor hypothesis uR Tp

approaches (case 02.a) or fall below (case 01) the filter scale 2Lγ. On the other side Lp À
2Lγ, so the wave energy content at Tp is less filtered. One shall consider that the sLiDAR
filter effect is distributed in the 2D spectral domain, and a better characterization of the
implications that follow is achieved numerically in sections IV.3.3 and IV.3.4

As can be seen, the 1D spectra previously discussed reveal a partial perspective of turbu-
lent fluctuations. The prominence of the wave signature in the 1D spectra is very sensitive
to the 1D scale-dependent coherence between WI and Atm. motions, and so might be often
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unsuitable for an objective evaluation of the WI flow. In the 2D spectra on the contrary, as
long as uR and cp are sufficiently apart with cp > uR , the 2D scale-dependent coherence be-
tween WI and Atm. motions is mitigated, so both systems are well distinguishable from one
another in the k −w domain.

II.3.3.1 SPECTRAL GAP DISTURBANCE

Figure II.3.4: Spectral valley (dashed) and
ridges (dot-dashed), observed in the 2D tur-
bulent spectra of Case 01 at figure II.3.3.

In the Space-Time turbulent spectra of fig-
ure II.3.3, for both cases but stronger at Case
01 highlighted in figure II.3.4, a valley or gap
appears around the convection velocity U .
The spectral distribution is still symmetri-
cal to U , but submitted to a bi-modal dis-
turbance, such that the convection velocity
is often smaller or bigger than U . This un-
expected feature is often observed along the
experimental campaign, in other test cases
to be presented in future works, and is en-
hanced when the wind blows from the sea as
in Case 01. It is shown in section II.3.4 that
the spectral valley vanishes with the wave
signature as the WA decreases, and the spec-
tra later presented in figure II.3.8 no longer
reveal a significant wave influence, nor the
spectral valley: Their shape is coherent with
the expected random sweeping [Wilczek and Narita, 2012] behavior, introduced in section
I.3.6 (fig. I.3.13), and reviewed in the appendix C.2 (fig. C.2b). Though the observations
suggest the disturbance could be wave related, buoyancy forces must be significant and the
rough estimations presented in section II.1.3 are insufficient to allow its proper investiga-
tion. The spectral gap observed in figure II.3.3 are so believed to be a wave and/or buoyancy
induced disturbance in turbulence, to be further investigated in future works.

II.3.3.2 OPPOSING DIRECTIONS AND THE FOUR QUADRANT SPECTRA

The spectra yet discussed are more precisely defined as the resultant spectra QR , because
it gives the resultant auto-spectra after the interference of motions propagating in differ-
ent directions. These resultant spectra are the ones that integrated, lead to the 1D spec-
tra observed in section II.3.2. According to the definitions given in the appendix A.3, more
generally the 2D spectra are defined in four quadrants Q±±, normally referred by negative
and positives wave-numbers k± or frequencies w±. The four quadrant Fourier Transform
is conjugate symmetrical, but the EDF of the auto-correlation function is a real number, so
Q++ = Q−− and Q+− = Q−+. The different quadrants indicate the components that propa-
gating in different directions interfere to give the resultant spectra QR = 2 (Q+++Q+−) pre-
viously presented.

The decomposition between signals propagating in opposite directions is particularly
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useful at Case 02a, which is demonstrated at figure II.3.5. For clarity and completeness, the
four-quadrant spectra of Cases 01 and 02a are given in figure II.3.6, from which figure II.3.5 is
extracted for the discussion. Virtually no Wave Induced disturbance is observed for motions
traveling from the sLiDAR into the ocean in figure II.3.5a, as they are fully captured travel-
ing in the opposite sense, at figure II.3.5b. From the ocean to the sLiDAR, the atmospheric
turbulence is limited to very large scales, so the WI disturbances appear in a well detached
region, even more clearly than in the resultant spectra previously depicted at figure II.3.3b.

Note the word virtually: In fact it is possible that WI disturbances are present at mo-
tions traveling from the sLiDAR into the ocean, either due to Wind-Wave interactions, or
due to the waves reflection at the coast. The reason why they are not seen in the spectra of
figure II.3.5a indicate that WI disturbances might be negligible compared to the prevailing
Atmospheric contribution, but not necessarily absent. At Case 01, figure II.3.5a for example,
one may notice a slight, almost unclear wave signature occurring from the sLiDAR into the
ocean, at quadrants Q+− and Q−+. The counter-propagating WI disturbance can be appreci-
ated at Case 01 because this is also the counter-propagating wind direction, where the Atm.
turbulence is mostly restricted to very large scales.

(a) From the sLiDAR to the ocean. (b) From the ocean to the sLiDAR.

Figure II.3.5: Wave-number-angular-frequency 2D turbulent spectra for Case 02a, decom-
posed between opposite directions of propagation thanks to the four quadrant 2D spectra.
The lines denote the characteristic scales described at figure II.3.3.
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Figure II.3.6: Four quadrants (Q±±, see the appendix A.3) of the EDF of u′
R u′

R , referred
by negative and positives wave-numbers k± or angular-frequencies w±. Considering
the EDF of u′

R u′
R is real, Q±± is fold-symmetric: Q++ =Q−− and Q+− =Q−+. Summing

the quadrants one obtains Qr shown in figure II.3.3. Case 01 is depicted above, with
waves and wind aligned in the same sense (Ocean to sLiDAR) at quadrants Q++ and
Q−−. Case 02a is depicted below, with the wind aligned to the opposite sense (sLiDAR
to Ocean) at quadrants Q+− and Q−+.
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II.3.4 RISING WIND AND DIMINISHING SEA-STATE

During the next 28 hrs after Case 02.a and as shown in figure II.1.3(b,d), meteocean con-
ditions registered a rising wind with approximately constant off-shore direction, while the
swell decayed as the significant height and the peak period diminished. Cases 02.b and
02.c (WAc =-[2.53, 1.92]) are here presented to evaluate the decay of wave induced motions
during this period in comparison to Case 2.a (WAc =-3.14). The estimated wave peak veloc-
ity (cp = Lp /Tp in table II.1.2) and the mean RWS (uR ) are used to estimate the wave age
WAc = cp /uR . As the absolute WAc approaches unity, the wind and waves have the same
speed, the Taylor’s hypothesis relation matches the Wave dispersion velocity in the so de-
fined critical layer height zc (Miles [1957]).

The wave boundary layer (WBL) height definition is in debate, but it shall scale with the
WA [Hristov, 2018], such that diminishing the absolute WAc between Cases 02.a-c is some-
how equivalent to shrinking the WBL with respect to the ABL, or "moving out of the WBL"
when employing a fixed LOS above the sea.

In a first attempt to observe the wave signature, figures II.3.7a and II.3.7b refer to Case02.b
and are to be compared with figures II.3.1 and II.3.2 (Case 02.a). The RWS contours reveal
streaks that correlate well with the mean RWS value, and the frequency spectra agrees well
to the reference, except for the filtering effect in high frequencies. The wave signature on the
other side, has vanished from figures II.3.7a and II.3.7b.

(a) staring mode 10 min records of the RWS. (b) Frequency 1D turbulent spectra.

Figure II.3.7: Case 02b, to be compared to previous figures denoting Case 02a. (a) RWS con-
tours as in figure II.3.1(c,d). Mean RWS (Taylor’s hypothesis) and Peak wave phase veloc-
ity (Dispersion equation) slopes as dash-dotted and dashed lines, respectively. (b) 1D fre-
quency spectra as in figure II.3.2d. Observed 10-min spectra in light grey, the 3-hour average
in black full lines, and the ESDU reference in black dashed lines.

If one considers instead the k −w spectra from figure II.3.8, to be compared with Case
02a given at figure II.3.3b, the wave signature is noticeable with decreasing importance: Still
distinguishable at Case 02.b (WA=-2.53 at II.3.8a), but not anymore at Case02.c (WA=-1.92
at II.3.8b). As the wave signature vanishes, so vanishes the spectral gap described in section
II.3.3, which is not detected in figure II.3.8. The 2D spectra shown for Cases 02[b-c] in figure
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II.3.8 agree well to the expected random sweeping [Wilczek and Narita, 2012] behavior .

(a) Case 02.b (b) Case 02.c

Figure II.3.8: Wave-number-angular-frequency 2D turbulent spectra of Cases 02[b-c]. To be
compared with the spectrum of Case 02a previously shown at figure II.3.3b. The mean RWS
velocity is depicted in the black full line, and the wave velocity presented in dashed lines
for d = [14,22,30] m. The wave peak scale (Lp ,Tp ) is denoted by a star. The sLiDAR filter
characteristic period and wave length are given in the green dashed, horizontal and vertical
lines, respectively.

Figure II.3.9: Wave-number-angular-
frequency 2D turbulent spectra for Case
02c, decomposed between opposite di-
rections of propagation thanks to the four
quadrant 2D spectra. Motions traveling from
the Ocean to the sLiDAR are shown. The lines
denote the characteristic scales described in
figure II.3.8.

As in Case 02a, Cases 02b and c also con-
sider wind and waves traveling in opposite
directions, and using the four quadrant 2D
spectra the resultant spectra might be de-
composed as previously exemplified in fig-
ure II.3.5. Again the WI flow is observed
traveling from the Ocean to the sLiDAR, so
that is the component depicted in the 2D
spectra of figure II.3.9, for Case 02c. Thanks
to the opposing directions, weak as it can
be, the WI disturbance is still distinguish-
able at the lowest Wave Ages characterizing
Case 02c.

As the wave age decreases and the sig-
nature diminishes, the principal wave dis-
turbance occurs in scales greater than the
wave peak, i.e., [Lp ; Tp ] from tab. II.1.2,
indicated by the dots in figures II.3.8 and
II.3.9: An indication of the scale-dependent
energy transfer occurring between ocean
waves and turbulent fluctuations, which fa-
vors the propagation of long waves across the WBL.
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II.3.5 OVERVIEW AND DISCUSSION

In swell dominated scenarios (Cases 01 and 02.a with higher |WAc |) the Wave Induced (WI)
disturbances are qualitatively appreciated in the RWS space-time contours at section II.3.1.
The contours slope generally correspond to the Atmospheric (Atm.) and WI characteristic
velocities, given respectively by the Taylor Frozen hypothesis and the wave dispersion equa-
tion. The exception occurs for Case 01, where the Atm. turbulence appears to propagate at
lower velocities than the mean RWS.

In its discussion about the validity of the Taylor hypothesis in the lower part of the At-
mospheric Boundary Layer (ABL), Cheng et al. [2017] associate an apparent slow down of
turbulent eddies to their distortion and the consequent reduction of their life-time, which
can be the case here. As seen in the 2D spectra of figure II.3.3, there is no Doppler shift in
the Taylor hypothesis, meaning the overall expected convection velocity for the Atm. tur-
bulence is still the mean RWS. Though, a spectral gap disturbance is particularly evident at
Case 01 indicating that the turbulence advection velocity is often slower or faster than the
expected. Moreover, the wind-wave interactions are significant in the virtually infinite fetch
scenario, and the distortion of Atm. eddies by the WI motions is appreciated in the RWS
contours of Case 01 at figures II.3.1a and II.3.1b. As in Cheng et al. [2017], the Taylor’s hy-
pothesis fails because turbulence is not frozen, which ultimately gives the impression of the
turbulent eddies propagating with lower convection velocities.

The remarks about the RWS contours are consequence of the spectral distribution of the
fluctuations, represented by the 1D and 2D turbulent spectra shown in sections II.3.2 and
II.3.3, respectively. The 1D spectra analyses reveal the wave signature only in the frequency
domain, with the WI spectral contribution becoming prominent in the 1D frequency spectra
of figures II.3.2b and d. Contrary to the RWS contours, the frequency spectra allow a partial,
but quantitative evaluation of the WI disturbance. The spectral transfer between sea-state
and atmospheric motion is thus appreciated, as previously [Tamura et al., 2018] but not that
often encountered in the literature [Hristov, 2018].

The Space-Time spectral description of the velocity fluctuations provides an enhanced
perspective of the Atm. and WI motions. Contrary to the 1D spectra, the upward turbulent
energy transfer from the waves to the wind is evident and well distinguishable from the at-
mospheric turbulence in the 2D spectra of fig. II.3.3. The 2D spectra reveal that Atm. and WI
motions correlate differently (in terms of spectral coherence) in space and/or time domains,
explaining the observations previously evaluated in the 1D spectra.

The decomposition between fluctuations traveling in opposite directions is available
from the four quadrant 2D spectra as demonstrated in figure II.3.6. Such decomposition
is particularly useful when wind and waves propagate in opposite directions, so the wave
signature emerges even more clearly in the quadrants representing the ’Ocean to sLiDAR’
direction, where the Atm. turbulence in turn is restricted to very large scales.

In decreasing |WAc | conditions (Section II.3.4), the signature vanishes from the RWS con-
tours and from the 1D frequency spectra, but it’s still noticeable in the 2D space-time spectra
that are clearly a more sensitive tool to detect WI disturbances. Though observable, the wave
signature is very weak in this diminishing WA scenario (Cases 02b,c), that can be taken as a
reference to evaluate the WI disturbances previously noted for Case 02a.
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The 2D spectra are in fact so sensitive, that it shall be actually hard to find measure-
ments without any WI disturbance during the measurement campaign (October 2020 to
January 2021, waves season at Le Croisic, France). The reason of multiple failed attempts
(Hristov [2018]) to detect WI disturbances in the frequency 1D turbulent spectra is its partial
perspective of modal energy distribution.

The characterization of measured WI motions is further presented in section IV.2.3, fol-
lowing its definition and methodology described in section IV.1. The numerical evaluation
of the sLiDAR volume filter effect is evaluated in section IV.3, culminating in the comparison
of physical and numerical experiments at section IV.3.5.
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Part III

NUMERICAL MODEL DESCRIPTION,
DEVELOPMENTS, AND APPLICATIONS

An adaption between: The Great Wave, by Katsushika Hokusai (1831); and The Starry Night,
by Vincent van Gogh (1889).
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The Marine Atmospheric Boundary Layer (MABL) is investigated with the Large Eddy
Simulation (LES) solver developed by Peter Sullivan, from the National Center for Atmo-
spheric Research (NCAR) of the United States of America. As discussed in section I.3.5, the
LES is capable of resolving the most energetic scales of turbulence in the MABL, and Sulli-
van’s solver admits the resolution to be achieved above moving waves.

The test cases here presented are built to investigate the WI disturbances above fast mov-
ing waves, propagating under comparatively slow wind conditions in a situation commonly
described as old seas (see the beginning of section I.3). To focus in the WI disturbances,
buoyancy and Coriolis forces are neglected, with the MABL assumed to be in neutral regime
(see section I.2.2.2).

Note that the test cases and methodologies here explored follow from the contribution
shared in Paskin et al. [2020], which is not plainly repeated hereby. Consulting that reference
is not strictly required, because this manuscript shall recover the main elements of discus-
sion, either confirming or complementing previous observations.

The numerical model is described in section III.1, concerning both the problem for-
mulation and the strategy adopted for resolution and post-processing. Section III.2 recalls
some of the observations in Paskin et al. [2020] to justify the introduction of a dynamic pres-
sure gradient modeler, capable of achieving a constant average target velocity, at a certain
boundary layer height. The dynamic modeler introduced is employed to achieve that goal in
the applications that follow. Still in section III.2, one encounters a flat bottom application,
and an introductory monochromatic wave application, the latest including a reference test
case correspondent to the one presented in Paskin et al. [2020].

Introducing a monochromatic wave to the flat bottom cases presented in section III.2,
section III.3 addresses the WI disturbances dependence to the Wave Age parameter. Single
and multi-directional irregular sea-states are introduced in section III.4, to identify intrinsic
differences between each wave prescription method, while approaching the sea-state and
wind conditions observed during the physical experiment, described in section II.1.3 (wind
following waves case).

The analyses here presented focus in averaged statistics, presented either as history pro-
files (function of time), or vertical profiles (function of height). Most of these test cases are
revised with spectral analyses during sections IV.1 and IV.2, while also introducing an origi-
nal characterization of the WI flow, valid for both physical and numerical experiments, and
proposed as a major contribution amongst the current developments. The comparison be-
tween the numerical experiment of section III.4, and the physical experiment of section
II.1.3, is considered at section IV.3.

III.1 NUMERICAL PROBLEM FORMULATION AND STRATEGY

Some crucial aspects of the numerical formulation employed are recalled in section III.1.1.
Next, section III.1.2 presents the general strategies, adopted either in the solver, for the free-
surface prescription, or the post-processing phases. The general aspects of the numerical
strategy here discussed are common to every test case later presented, so the applications
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sections shall only describe the specific aspects concerning each test case.

III.1.1 PROBLEM FORMULATION

A volume domain is defined in the atmosphere with sizes (xl , yl , zl ), bounded below at Sz−
by the free-surface and above by the geostrophic layer at Sz+, as exemplified in figure III.1.1.
Wind and waves are aligned and propagate in the longitudinal direction x. The coordinate
system is specified so z points upwards and the origin is positioned in the inlet, at the mean
water level, and such that y ≥ 0. The domain is defined with dimensions xl , yl and zl . A
log-law based wall function mimics the no-slip boundary condition in the free surface Sz−,
and a free-slip condition is imposed in the upper surface Sz+ representing the free-stream.

The LES methodology introduced in section I.1.1.6 applies to the atmosphere, with gov-
erning equations derived from section I.1.2.2 and here given in section III.1.1.1, to be solved
in a moving grid by the pseudo-spectral numerical method described in Sullivan et al. [2008].

Figure III.1.1: Sketch indicating the Cartesian coordinates, wind and waves aligned to x1,
the volume domain bounded below by an arbitrary single-valued wave, and above by the
free-stream velocity.

III.1.1.1 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Recalling the theoretical framework established in section I.1.2.2, an incompressible and
fully turbulent flow is considered with the Boussinesq approximation [Spiegel and Veronis,
1960] acting in the buoyancy terms of the momentum and Turbulent Kinetic Energy conser-
vation equations. Coriolis forces are neglected. The balance equations are filtered according

to an LES approach. Let

(

u(x , t ) = (

(

u,

(

v ,

(

w),

(

p(x , t ), and

(

θ be the spatially filtered, velocity,
pressure, and virtual temperature fields, respectively; ǔ, p̌, and θ̌ are the correspondent
residual fields.

The modified pressure is p ′(x , t ) = (

p −p∞+ρg (z − z∞)+ (2ě/3), accounting for a refer-
ence value p∞; the static pressure ρg (z − z∞) dependent on the total average specific mass
ρ∞, the gravitational acceleration g , and height (z − z∞); and the residual turbulent kinetic

energy (ě = ǔi ǔi /2) effect. The specific mass is ρ′(x , t ) = −ρ∞βθ(

(

θ−θ∞), dependent on the

filtered virtual temperature

(

θ, the reference values [p∞,θ∞], and the coefficient of thermal
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expansionβθ. The filtered strain rate tensor is

(

S = [∇ (

u + (∇ (

u)T
]

/2. The sub-grid-scale mod-

eled shear stress tensor τSGS =−2νt

(

S is defined within the eddy viscosity hypothesis scope
and dependent on the turbulent viscosity νt .

Mass and momentum balances are written as equations III.1.1 and III.1.2. The residual
turbulent kinetic energy is modeled by the Deardorff single equation III.1.3 [Moeng, 1984].

∂

(

u j

∂x j
= 0, (III.1.1)
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−ε. (III.1.3)

The turbulent dissipation ε= cεě3/2/∆ f is determined according to the filter length scale
∆ f = [(3/2)2∆x1∆x2∆x3]1/3. The turbulent kinematic viscosity and diffusivity are respec-
tively νt = ck l ě1/2 and νh = (1+2l/∆ f )νt , where l is here equal to ∆ f . The governing equa-
tions are transformed from the deformed moving grid into the cartesian numerical space
and the full set of equations presented with the constants values, e.g., in Sullivan et al. [2008].

The Geometrical Conservation Law (GCL) introduced by Thomas and Lombard [1979]
and described in the appendix A.4.3, reads according to equation A.21, repeated in equation
III.1.4:

∂

∂t

(
1

J

)
= ∂

∂ξ3

(
∂h

∂t

)
, (III.1.4)

relating the grid Jacobian J to its vertical position h, for the specific surface following coor-
dinates defined in section III.1.1.2.

Consistent with the spectral discretization adopted, periodic boundary conditions apply
to the transversal and longitudinal boundaries, Sy± and Sx±. The boundary conditions at the
upper Sz+ and lower Sz− boundaries are described as follow.

Upper boundary conditions The geostrophic layer is represented by no-penetration and
free-slip Boundary Conditions (BCs). These upper BCs in the absence of buoyant forces
impose the boundary layer height δ∼ zl .

• No-penetration: The vertical velocities are null (Homogeneous Dirichlet BC for

(

u 3).

• Free-slip: Except for

(

u 3, all fluxes are null (Homogeneous Neumann BC for

(

u 1,

(

u 2,

(

θ,ě).
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u 1
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= 0,

∂
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u 2

∂x3
= 0, and

(

u 3 = 0, at Sz+. (III.1.5)

Lower boundary condition The free-surface dynamics may be imposed with an arbitrary
single-valued function z = η(x, y, t ), as long as it is consistent with the framework presented
in I.1.2.1, and the alternatives exploited are described in section III.1.2.2. As common in
fully turbulent atmospheric applications, the lower boundary conditions follow a log-law
wall model.

The difference in the tangential and normal velocities (∆

(

u [ξ1,ξ2] and ∆

(

u ξ3 , respectively),
between the first cell and the surface, are given by a log-law wall-function:

∆

(

u [ξ1,ξ2] =
u∗

[ξ1,ξ2]

κ
ln

(
z

z0

)
, and

∆

(

u ξ3 =0,

(III.1.6)

with the normalized roughness length z0/L0 = 10−6 and von Karman constant κ= 0.4.

The tangential velocities are not imposed directly as a Dirichlet BC from equation III.1.6.
Instead ∆

(

u [ξ1,ξ2] is computed from the resolved LES field, minus the prescribed surface ve-
locities, and equation III.1.6 is used to obtain the friction velocity u∗

[ξ1,ξ2]. That gives the wall

fluxes τw
[ξ1,ξ2] = u∗2

[ξ1,ξ2], specifying a Robin type of BC for the tangential velocities.

The residual turbulent kinetic energy flux is null (Homogeneous Neumann BC), and the
turbulent kinematic viscosity is given by νt = u∗κx3. The temperature θ can be specified
either by its surface value or heat flux (Dirichlet or Neumann BC). When the heat flux is
non-null, equation III.1.6 is adapted by employing MOST (See I.2.2.3 for MOST, and Sullivan
et al. [2014] for more details about the buoyancy-driven BC).

III.1.1.2 DISCRETIZATION

The Cartesian physical space (x1, x2, x3) = (x, y, z) is mapped into the computational terrain
following space, defined from ξ1 = x, ξ2 = y , and ξ3 = ξ3(x, y, z, t ). The Jacobian of such
transformation is given by J = ∂ξ3/∂z. The fundamental unknowns (u, p, e, θ) are located
at the cell center. The mass equation III.1.1 and the convective term of the momentum
equations III.1.2 are written in terms of the ’contra-variant flux’ velocities:

Ûi =
u j

J

∂ξi

∂x j
, (III.1.7)

to circumvent to saddle point problem of the Navier Stokes equations, as further discussed
with the Poisson equation in section III.1.1.3.

The grid is structured. The domain is discretized with (nx ,ny ,nz) cells sized (∆x,∆y,∆z)
respectively. The cells are equally distributed in (x, y), but not in z where it grows according
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to an algebraic mapping: The first grid size in z direction is zw1, and it grows with a constant
ratio of 1.05. More details are given in section III.1.2.1.

The spectral discretization applies to (ξ1,ξ2) directions, in which the unknowns are rep-
resented with Fourier transforms and the derivatives evaluated in the spectral wave-number
domain (kξ1,kξ2). A second order finite difference applies to ξ3 direction.

The third-order Runge-Kutta time-stepping scheme described in the appendix A.4.4 ad-
mits arbitrarily selected time-steps. An adaptive time step (∆t ) procedure is available so
that the CFL = ∆t ·max(u/∆x, v/∆y, w/∆z) is kept constant. Thanks to the explicit time-
marching scheme, the first disturbance induced by non-sufficiently small time-steps ap-
pears in the maximum divergent of the velocity field ∇ ·u, which is required to be below
10−21 u∗

0 /L0 for any case here presented. .

III.1.1.3 THE ROLE OF PRESSURE

Large scale pressure driven flow A uniform pressure gradient [∂p/∂x]0 acts in x direction
driving the flow, and in flat terrains the stresses’ integral balance in the boundaries gives
the theoretical friction velocity u∗

0 = [∂p/∂x]0 · zl . The uniform pressure gradient is revisited
in section III.2 with the introduction of an original dynamically evolving but homogeneous
[∂p/∂x]0 modeler.

Pressure Poisson equation As usual the mass conservation equation III.1.1 is here en-
forced by a Poisson equation, such as equation A.18 discussed in the appendix A.4.1. Solved
for the pressure field, the Poisson equation is somehow coupled to the momentum equa-
tions III.1.2 solved for the velocity field. Now due to the saddle point problem introduced
in section I.1.1.1, the exact manner in which the terms are specified and computed in equa-
tion A.18, together with the specific discretization and time-marching techniques adopted,
determine the behavior of the numerical solution of the Navier Stokes equations.

It is so that the pressure Poisson equation specification and solution, is a crucial aspect
determining the specifics of a numerical scheme, and Sullivan et al. [2014] describes the
one here employed as the heart of present numerical scheme. One is invited to appreciate
the exact form of equation A.18, and a detailed description of its solution method in Sullivan
et al. [2014], as the following highlights only a few aspects of that numerical scheme. Notably
both pressure and velocity unknowns are positioned in the cell center, but the contra-variant
velocities (Equation III.1.7) that determine R[P ](Û ) are considered otherwise to circumvent
the saddle point problem: The discretization scheme allows Û1 and Û2 to be located at the
cell center, while Û3 is located at the cell upper face. In flat bottom cases equation A.18
assumes a simple form and is directly solved for, but in the terrain following grid it gets con-
siderably more complex, and an iterative method is adopted for the solution of the pressure
Poisson equation that considerably increases the overall computational time.

Pressure form drag and momentum flux Recall that in equation I.3.2 the Wave Induced
shear stress τ(W )

i j is introduced, and in equation I.3.5 a surface-following coordinate system

leads to the appearance of the form drag (or thrust) τ(P0)
i j . The total momentum flux ∂τi j /∂x j
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also considers viscous τ(ν)
i j and turbulent τ(r )

i j contributions, so in the surface equation I.3.5
(repeated below) is exact:

u∗2 =
[
τ(ν)

i j −τ(r )
i j −τ(W )

i j +τ(P0)
i j

]
, with τ(P0)

i j = 1

ρ
p
∂η

∂xi
. (III.1.8)

Above the free-surface, the grid may be arbitrarily defined with vertical position h =
ξ3(x, y, z, t ), and so the WI pressure stress is given by:

τ(P )
i j = 1

ρ
p
∂ξ3

∂xi
. (III.1.9)

Equation III.1.9 defines a fictitious (Grid dependent) pressure and wave related momen-
tum flux ∂τ(P )

i j /∂ξ3 acting between layers of constant ξ3, that vanishes when the problem
is written in Cartesian coordinates such as, e.g. in equation I.3.2. Nevertheless, it reveals
a physical mechanism over which the pressure acts into the wave disturbed streamlines,
effectively dragging the atmospheric flow as discussed in I.3. In the lower surface the grid
matches the free-surface deformation, and so the WI pressure stress given by equation III.1.9
is exact and equal to the form drag in equation III.1.8.

III.1.1.4 TURBULENT KINETIC ENERGY BUDGET

Recall from section I.1.1.4 that the TKE transport equation I.1.9 reveal the production (P ),
the dissipation (εe ) and fluxes (T (r )) terms, defined in equation I.1.10. In the LES formula-
tion the TKE is decomposed in filtered (

(

e) and residual (ě) components, with the residual
modeled by the Deardorff single equation III.1.3. The TKE budget decomposes accordingly,
and the following equations give the explicit form of resolved and modeled terms, to be ex-
ploited in the next sections.

Consistent with a fully turbulent assumption where Re → ∞, the molecular dissipa-
tion is neglected in the resolved TKE equation, being exclusively modeled according to ε =
cεě3/2/∆ f (see section III.1.1.1). In the resolved TKE equations the viscous transport is also

neglected, so it remains the triple correlation

(

T (u) and pressure terms

(

T (p) forming the total
TKE resolved transport

(

T (r ) = (

T (u) + (

T (p). In the residual TKE equation the transport terms
are gathered in SGS modeled turbulent transport Ť (r ). Production contains filtered

(

P and
sub-grid-scale P̌ terms. Buoyancy terms are not exploited during the manuscript, and so
omitted in the discussion.

The Reynolds average employed in the TKE conservation equation I.1.9 (·) is here re-
garded as space averages in the horizontal domain, so giving the vertical dependence of the
TKE budget described [Moeng and Sullivan, 1994]. Production and transport terms of the
resolved TKE budget are computed as:
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]
.

(III.1.10)

The sub-grid-scale contributions are:

P̌ (z) = 2νt

[
∂

(

u1

∂x3

∂

(

u1

∂x3
+ ∂

(

u2

∂x3

∂
(

u2

∂x3

]
, and

∂Ť (r )(z)

∂x3
= ∂

∂x3

[
2νt

∂ě

∂x3

]
, (III.1.11)

with modeled viscous dissipation:

ε= cεě3/2/∆ f . (III.1.12)

III.1.2 GENERAL NUMERICAL STRATEGY

III.1.2.1 SOLVER SETUP

Recall from section III.1.1.2 that the cells (sizes ∆x =∆z) are equally distributed in (x, y) but
not in z where it grows according to an algebraic mapping ∆zi+1 = 1.05 ·∆zi . The first grid
size in z direction is zw1, and its aspect ratio (AR=zw1/∆x) is set constant and equal to 1/3,
as e.g., in Sullivan et al. [2014] and Cathelain [2017].

Given the characteristic length L0, the presented domain has sizes (xl , yl , zl ) = (4,2,5)L0.
Three different grids are here exploited, with characteristics given in III.1.1. These config-
urations follow the studies presented in Cathelain [2017], where one encounter systematic
studies varying the grid sizes and the domain vertical extension zl .

Table III.1.1: Description of the structured grids employed. The domain is discretized with
ntotal = nx ny nz cells. The aspect ratio at the first grid is kept constant zw1/∆x = 1/3.

Grid ntot al nx ny nz zw1/L0

01 (Coarse) 655,360 128 64 66 1.0416 ·10−2

02 (Medium) 3,080,192 256 128 80 0.5208 ·10−2

03 (Fine) 14,155,776 512 256 94 0.2604 ·10−2

For example, assuming the kinematic viscosity of air at 15 °C (ν= 1.5∗10−5 m2/s), when
employing the grid 02 with WA= 60 in sections III.2 and III.3, if L0 = λ = 100 m (u∗ = 0.210
m/s), then z+ = zw1u∗/ν = 7.3 · 103. When employing the grid 03 with WA= 85 in section
III.4, if L0 = 2 λ= 256 m (u∗ = 0.147 m/s), then z+ = zw1u∗/ν= 3.3 ·103.
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The cases here presented have been tested in each grid of table III.1.1, and the grids fur-
ther exploited during very large computations are assumed sufficient to present minimal in-
fluence on the second order statistics discussed. An exemplification of grid 02 (table III.1.1)
is given at figure III.1.2, fitted to a monochromatic wave prescribed as the lower boundary
condition.

Figure III.1.2: Exemplification of grid 02 (Medium in table III.1.1). From the computation
exploited in sections III.2 and III.3 regarding a monochromatic wave prescription.

A uniform pressure gradient [∂p/∂x]0 acts in x direction driving the flow, and in flat ter-
rains the stresses’ integral balance in the boundaries gives the theoretical friction velocity
u∗

0 = [∂p/∂x]0 · zl . The uniform pressure gradient is revisited in section III.2 with the intro-
duction of an original dynamically evolving but homogeneous [∂p/∂x]0 modeler.

Originally the flow field is constructed from mean theoretical solution for flat plate tur-
bulent boundary layers superposed to artificial, randomly generated turbulent motions.
The initialization procedure then considers buoyant effects on the momentum equations
to generate resolved turbulence as further initial solution. The results here presented fol-
low from a converged restart after buoyant terms are set back to zero, representing neutral
stratification conditions.

III.1.2.2 WATER SURFACE PRESCRIPTION

The LES formulation accommodates an arbitrary free-surface (FS) prescription, as long as
it is defined by a single-valued function in space. Three methodologies are here explored to
generate the wave field prescribed into the LES computation:

i. Non-linear monochromatic wave: A monochromatic wave is prescribed from the
fifth order Stokes solution given in Fenton [1985], as introduced in section A.1.1.
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ii. Linear Irregular Sea-Sate: A two dimensional dependent FS spectra F (kx ,ky ) is given.
Linear waves components with amplitudes given by the FS spectra (see section I.2.1.1)
are initially generated with random phases, afterwards propagating with their phase
velocities.

iii. Arbitrarily non-linear, HOS resolved sea-state: The free-surface positions and ve-
locities are solved with an arbitrarily level of non-linearity by the HOS formulation
(Ducrozet et al. [2016]), and that’s coupled to the LES such as described in the ap-
pendix B.2.

III.1.2.3 POST-PROCESSING

Mean history and vertical profiles A spatial average, denoted by (·[ξ1,ξ2]), applies to each
(ξ1,ξ2) horizontal computational plane, and is followed by a moving time average through
the period tav g , with the total average operator denoted by (·).

Fluctuations (·′) are obtained deducing spatial averages from the resolved fields, so that

a generic quantity decomposes as χ=χ[ξ1,ξ2] +χ′. The fluctuations are then submitted to the
moving time average, leading to the total average of turbulent quantities.

Turbulent quantities Unless stated contrary during the text, the turbulent quantities are a
sum of resolved and SGS modeled quantities. The turbulent quantities further explored in
the numerical applications are:

• Friction velocity u∗
[ξ1,ξ2] =

√
τw

[ξ1,ξ2] ;

• Turbulent Kinetic Energy TKE = 0.5u′
i u′

i + ě;

• Turbulent Normal stresses, or one-point Auto-correlations τ(r )
i i = u′

i u′
i +2ě/3;

• Turbulent Shear stresses, or one-point Cross-correlations τ(r )
i j = (u′

i u′
j +τSGS

i j ) (1−
δi j );

• Turbulence Intensity TIi i =
√
τ(r )

i i ÷u1
2;

• Turbulent kinematic viscosity νt =−(τSGS
13 +u′

1u′
3)÷ (2S13).

• Wave Induced pressure stress τ(P )
i j = (p +2ě/3) · (∂ξ3/∂xi ).

• Form drag (Or thrust, per m2 and ρ∞) Fp = (p +2e/3) · (∂η/∂x1) = τ(P0)
13 .

• Total drag (Or thrust, per m2 and ρ∞) Fτ = Fp +u∗2.
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Turbulent spectra The 1D Correlation functions are averaged on each (ξ1,ξ2) directions
along a horizontal computational plane; while the 2D (Space-Time) correlation functions
are averaged in (ξ1,ξ2), and time t . The turbulent spectra are then obtained through the
FFT of the Correlation functions (see section I.1.1.5), before being (possibly) submitted to a
moving time average with period tav g .

Reference Wind Speed profile and turbulent spectra The references are chosen from the
ESDU standard ESDU 85020, because it provides accurate empirical models for the mean
wind profiles and turbulent spectra descriptions in neutral stratification and flat bottom
conditions, as demonstrated e.g. in Paskin et al. [2020], and here at figure III.2.1. The mean
wind u1(z) is accurately defined across all the ABL extension, and the turbulent spectra E(n)
through a wide range of turbulent frequencies n before the kolmogorov dissipative range.
According to the ESDU 85020 parametrization, the boundary layer height δ and the friction
velocity u∗ relate to the Coriolis parameter f3 through f3 = u∗/[6δ]. With the roughness
length z0, that’s sufficient to define the Wind Speed:

u1(z) = 2.5 u∗
[

ln

(
z

z0

)
+34.5 f3

z

u∗

]
. (III.1.13)

The ESDU norm also gives equations for the one-point auto-correlations of the longi-

tudinal velocity σ2
u′

1u′
1
= u′

1u′
1 and the integral length scale lu , but to avoid combining the

errors regarding different estimations, these are directly deduced from the resolved spectra.
From the first element of the auto-correlation function of longitudinal velocities one obtains
σ2

u′
1u′

1
= Ru′

1u′
1
(0). The integral length scale is computed from the wave-number dependent

turbulent spectra with lu = πEu′
1u′

1
(k = 0)/[2Ru′

1u′
1
(k = 0)] (Pope [2000]). The mean veloc-

ity u1 is also as observed from the space and/or time samples, leading to the wave-number
and/or frequency spectra by Taylor hypothesis (see section I.1.1.5). The non-dimensional
frequency is defined as nu = (lun/u1), and the longitudinal frequency-dependent turbulent
spectra (Appendix B in ESDU 85020) are given by:

Eu′
1u′

1
(n) =

σ2
u′

1u′
1

n

{
β1

2.987 nu/α[
1+ (2 π nu/α)2

]5/6
+β2 F1

1.294 nu/α[
1+ (π nu/α)2

]5/6

}
; with (III.1.14)

F1 = 1+0.455 exp
[−0.76 (nu/α)−0.8] ,

α= 0.535+2.76 (0.138− A)0.68,

β1 = 2.357 α−0.761,

β2 = 1−β1, and

A = 0.115 (1+0.3151 (1− z/zl )6)2/3.

Wind profile structure and log-law fit. The resolved wind profiles reveal different regions
in the MABL, depicted at figure III.1.3 further obtained and discussed in section III.2.4: In
the inner surface layer, turbulence is blocked by the surface, exhibits an isotropic behavior,
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and the SGS modeled stresses are significant; in the outer surface region highly anisotropic
turbulence dominate the shear flow, the SGS stresses become negligible face to the LES re-
solved turbulence, and the longitudinal velocity is given by a log-law profile; this so called
logarithmic region is observed above a buffer region, and below the outer region; in the
outer region the flow adapts to the free-stream condition, turbulence vanishes, and the ve-
locity profiles exhibit an almost linear behavior. The buffer region is here induced by the
transition between the wall function model and the full LES resolved turbulence: It does not
corresponds to the physical buffer region, characteristic to the flat plate boundary layer so-
lution (appendix A.1.2), and existent between the inner viscous layer and the log-law bound-
ary condition, i.e., below the first cell layer in figure III.1.3.

Figure III.1.3: Wind profile obtained
and discussed at section III.2.4 (figure
III.2.8b) for different flat bottom cases,
depicted in linear-log scale revealing dif-
ferent regions inside the ABL. Log-law
fitting by equation III.1.15 denoted by
straight, transparent lines.

Introducing the effective friction velocity
Cd u∗ and roughness length αz0, the log fit of
equation III.1.15 with parameters [Cd ,α], is fit-
ted into the wind profile minimizing the RMS
difference RMSdi f f (equation III.1.16) at an ar-
bitrarily region zmi n < z < zmax . Depending on
the application, one of the parameters between
Cd or α might be set constant. The fitting al-
gorithm acts in the log-linear space ln(z)×uF I T ,
that leads in fact to a linear optimization prob-
lem, solved by a Gauss-Newton algorithm.

uF I T =Cd
u∗

κ
ln

( z

α z0

)
(III.1.15)

RMSdi f f =
√

1

n

∑
n

[
(uF I T −u)2

u2

]
,

∀ {n | zmi n ≤ zn ≤ zmax}

(III.1.16)

This fitting is embedded in an adaptive procedure determining the log-law region at
zmi n ≤ z ≤ zmax . Starting from a certain height zs , and given the threshold RMSc for the
maximum allowed RMSdi f f , the lower (zmi n) and upper (zmax) limits advance while RMSdi f f <
RMSc . The log-law region is so defined as the most extensive portion of the ABL around zs ,
in which the log fitting error is below the threshold RMSc .
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III.2 DYNAMICALLY EVOLVING PRESSURE-GRADIENTS

In the numerical formulation, the flow is driven by the longitudinal large scale pressure gra-
dient ∂p/∂x|0, that have been considered constant in Sullivan et al. [2014], Cathelain [2017],
and Paskin et al. [2020]. The physical interpretation of such driving force is to mimic large
scale forcing in the ABL, and in a wider context similar body forces may incorporate Coriolis
effects (c.f. Basu et al. [2008]) here neglected. There is no physical reason for ∂p/∂x|0 to be
constant though. Instead, the large-scale pressure gradient varies in scales much larger than
the computational domain, and so not resolved by the numerical model.

Although there is no precise information leading to the prescription of ∂p/∂x|0 in the
numerical model, it can be defined such that both ∂p/∂x|0, and the driven wind behave with
certain properties. By the definition here proposed: Inside the numerical domain ∂p/∂x|0
shall be indeed homogeneous, but in time this homogeneous pressure gradient can well
vary in periods much longer than the resolved motions. As consequence, one can achieve
an average target velocity at a certain height in the ABL.

A discussion about large scale pressure gradients acting in LES generated ABL is appre-
ciated in Pimont et al. [2020], that notes adaptive pressure-gradient forcing methods can
be used to achieve certain wind speeds and directions in LES models. Counting on LiDAR
measurements above the ABL, Pedersen et al. [2013] improve its LES simulation accuracy
through the prescription of a linear time-varying and homogeneous pressure-gradient. The
body forces driving the wind might also be considered height-dependent [Basu et al., 2008],
which is not explored hereby. In any case, none of these previous studies consider wavy
bottom boundary conditions, nor the resolution of Wind-Wave interactions.

The developments here proposed have been motivated by previous studies discussed
in section III.2.1. The fundamental role of the large-scale pressure is examined in section
III.2.2. The method developed to control the mean Wind Speed with a dynamic homoge-
neous but slowly evolving large-scale pressure gradient is presented in section III.2.3, and
initially evaluated at section III.2.4 in a flat bottom scenario. In section III.2.5 the method is
evaluated for its impact in the wavy bottom case previously presented in Paskin et al. [2020]

III.2.1 PRELIMINARY STUDIES AND MOTIVATION

Past works (Paskin et al. [2020], exemplified by figure III.2.1) considered old-sea conditions
imposing a 5th order stokes solution in the free-surface, and noticed the strong momentum
flux to the atmosphere results in the speed-up of longitudinal velocities all along the MABL
and up to the upper boundary: An unlikely behavior in the free-stream velocity above the
MABL. Figure III.2.1a shows the friction velocity history, for the flat and wavy lower Bound-
ary Conditions (BC) presented in Paskin et al. [2020]. The mean wind profiles probed in the
final moments of the history depicted, are shown in figure III.2.1b, superposed to the ESDU
standard ESDU 85020 described in section III.1.2.3. The wind profiles are a linear combi-
nation of log and linear functions, which match quite accurately the ESDU prediction for
the flat bottom case. Otherwise, the wave propagation effectively drags and speeds-up the
mean wind across the ABL, and the wind velocity is considerably augmented for the wavy
case in figure III.2.1b.

95



(a) Friction velocity. (b) Wind speed profile, with the ESDU reference.

Figure III.2.1: From Paskin et al. [2020]. Friction velocity history and velocity profiles for flat
and wavy, lower BCs. The reference wind profile is described in III.1.2.3 as given by ESDU
85020.

The free-stream disturbance in the upper boundary is consequence of the numerical
problem formulation. The imposed constant pressure gradient shall combine with the case
dependent WI momentum stresses, and with free-slip zero-gradient conditions in the upper
boundary, so the Wind Speed profile is allowed to vary across the vertical extension of the
MABL. The use of no-slip, Dirichlet conditions in the upper boundary is often adopted by
URANS methodologies (c.f. O’Sullivan et al. [2011]). The turbulence modeling of URANS is
consistent with the dirichlet conditions in the upper boundary, but in the LES resolved tur-
bulence framework, unless the domain vertical extension is sufficiently large, this induces
the development of a second non-physical boundary layer in the free-stream. The vertical
extension of the domain will be hardly large enough in old-seas conditions, since Wave In-
duced pressure disturbances are observed to propagate all the way to the upper boundary
(Cathelain [2017]) in the LES generated MABL.

Other, preliminary studies examined the effects of no-slip conditions imposed for u1

in the upper boundary. The results are exemplified for null Dirichlet conditions in figure
III.2.2, where the friction velocity and mean velocity profile are shown for three cases: Null
Dirichlet upper B.C. (Fix Up) of u with flat lower B.C. in blue (full) line; Null Neumann upper
B.C. (Free Slip Up) of u with wavy lower B.C. in orange (dotted line); Null Dirichlet upper
B.C. (Fix Up) of u with wavy lower B.C. in gold (dashed line). The numerical strategy and
setup are such as given in Paskin et al. [2020], except for: The Dirichlet Upper B.C. in Cases
01 and 03; the reduced mesh [128× 64× 80]; and the higher domain [4× 2× 10]L0. As in
Paskin et al. [2020], one observes the wind speed-up (figure III.2.2b) induced all the way
through the ABL in the wave bottom (Wavy) Cases 02 and 03. When the upper velocity is kept
constant in Case 02 (Fix Up Wavy), the speed-up still occurs just below, which induces a non-
null velocity gradient profile as a second boundary layer develops in the upper boundary.
The conclusions are the same when considering null Dirichlet and Newmann conditions
combined, except that the upper boundary layer will occur one cell below.

The methodologies here presented instead, keep free-slip (Null Neumann) conditions as
in Cathelain [2017] (And Paskin et al. [2020]), but search for a dynamic large-scale pressure
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gradient [∂p/∂x]0 that targets an average constant longitudinal velocity, e.g., in the upper
boundary.

(a) Friction velocity. (b) Wind Speed profile.

Figure III.2.2: Rejected studies of Dirichlet upper B.C.: Null Dirichlet upper B.C. (Fix Up) of u
with Flat lower B.C. in blue full line; Null Newmann upper B.C. (Free Slip Up) of u with Wavy
lower B.C. in orange dotted line; Null Dirichlet upper B.C. (Fix Up) of u with Wavy lower B.C.
in gold dashed line. The Dirichlet upper condition combined with the Wavy lower surface
induce a non-physical velocity gradient in the upper boundary.

III.2.2 THE ROLE OF LARGE-SCALE PRESSURE GRADIENTS

The large-scale [∂p/∂x]0 drives the atmospheric flow. Considering the integral balance of
longitudinal forces in a statistically steady, flat bottom case: In the upper boundary Sz+, free-
slip condition imposes null longitudinal forces τh = 0; for lateral walls (Sy±), the longitudinal
forces vanish in the absence of a transversal pressure gradient τl t = 0; on the inlet and outlet
Sx±, the normal forces give τi n0 = −[∂p/∂x]0 · (xl yl zl ). With the definition of the friction
velocity u∗, the tangential forces on the lower boundary integrates into τw = u∗2 ·(xl yl ). The
integral balance becomes τi n0 +τl t = 0, so that u∗2 = [∂p/∂x]0 · zl .

When a wave suddenly appears, a pressure-related momentum flux occurs between the
water surface and the atmosphere, originated from the WI pressure stress τP (Or form drag
Fp ) discussed in sections I.3 and III.1.1.3. First statistical steadiness is lost, while the ABL
flow adapts to this changing forcing condition. When statistical steadiness is again reached,
the mean velocity u1 in the bottom is no longer null, but travels with a mean velocity charac-
teristic to the ensemble of the sea-state’s wave components, i.e., the stokes drift. The wave-
related momentum flux is dominant in the vicinity of the free-surface and vanishes along
the ABL, being balanced in the boundaries by a resolved Wave Induced pressure distribu-
tion [∂pw (x, z)/∂x] in inlet and outlet. The mean Wave Induced pressure pw (x, z) vanishes
everywhere for its oscillatory nature, but its averaged integration in the inlet, outlet and free
surface are non-null because of the moving domain.
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III.2.3 A LARGE-SCALE DYNAMICALLY EVOLVING PRESSURE-GRADIENT

MODELER.

Isolating the local time derivative in the first component (i=1) of equation III.1.2, and sub-
tracting a constant (negative) longitudinal pressure gradient−[∂p/∂x]0 from the right-hand-
side R[P ], the large scale wind forcing is achieved in the LES formulation through the mo-
mentum balance equation:

∂u1

∂t
=R[P ] +

[
∂p

∂x

]
0

, (III.2.1)

which is evaluated at each time-step and Runge-Kutta iteration.

The evaluation of equation III.2.1 leads to a non-zero mean local time derivative on the
upper boundary ∂uh0/∂t , which could in a first step be corrected according to:

∂uh

∂t
= ∂uh0

∂t
+

[
∂p

∂x

]
1

, which is required to be null so,

[
∂p

∂x

]
1
=−∂uh0

∂t
, and

P︷ ︸︸ ︷[
∂p

∂x

]
0
→

[
∂p

∂x

]
0
+

dP︷ ︸︸ ︷[
∂p

∂x

]
1

.

(III.2.2)

Through equation III.2.2, ∂uh/∂t is constant at every instant, and
[
∂p/∂x

]
0 incorporates

any turbulent disturbances in the upper boundary. This shall be avoided since
[
∂p/∂x

]
0 by

definition contains only large scale dynamics. Instead it is considered an evolution equation
for

[
∂p/∂x

]
0, in which it is dynamically filtered responding to the large scale part of equation

III.2.2.

Figure III.2.3: The Mass-Spring-Damper system ruling the evolution of the longitudinal
pressure gradient P = [

∂p/∂x
]

0, according to equation III.2.3.

A Mass-Spring-Damper model, represented in figure III.2.3, determine the evolution of
P = [

∂p/∂x
]

0:
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P̈ =−w 2
P dP −2ξ wP Ṗ , (III.2.3)

advancing with the same Runge-Kutta scheme applied to other quantities in the LES code
as described in the appendix A.4.4. The displacement from the equilibrium state is given by:

dP =
[
∂p

∂x

]
1
= ∂uh

∂t
− ∂uh0

∂t
, and

∂uh0

∂t
= ur e f −uh

TP
, (III.2.4)

so seeking the equilibrium, uh tends to the target ur e f , over the time TP = 2π/wP . The
response shall be limited to occur in large periods TP , and to preserve stability, a critical
regime is imposed with the damping ratio ξ:

TP = 103 xl

ur e f
; wP = 2π/TP ; ξ= 1, (III.2.5)

The pressure gradient is constant is space, but varies instantaneously in time so that
the large-scale mean longitudinal velocity in the upper surface tends to the target velocity.
That covers the method as applied in sections III.2.4, III.2.5, and III.3, but it can be easily
generalized associating the subscript ·h to an arbitrary height instead of the boundary layer
height.

III.2.4 FLAT BOTTOM APPLICATION

III.2.4.1 SPECIFIC NUMERICAL STRATEGY

The wind field initializes from a constant pressure gradient ∂p/∂x|0 giving nominal friction
velocity u∗

0 . The characteristic length scaling the domain is L0. The turbulent characteristic
time scale is T0 = L0/u∗

0 . Results are presented for grid 02 (Medium [256 x 128 x 80] at table
III.1.1). A variable time-step ∆t is employed ensuring CFL= 0.5.

The initial space averaged free-stream velocity is uh0 = 52.11 u∗
0 , obtained as the so-

lution of a constant pressure gradient case ∂p/∂x|0 · zl = ρu∗2
0 . Five cases are presented,

varying the the free-stream velocity from its initial value so the dynamical pressure gradi-
ent method is employed with varying target velocities: Case [01,02,03,04,05] with ur e f =
[0.75,0.90,1.00,1.10,1.25] uh0, respectively.

As the continuous solution is self-similar and the characteristic length L0 is constant for
all cases, except for numerical deviations that are assumed negligible, any deviations in tur-
bulent statistics shall scale with the reference velocity ur e f (And time T r e f = L0/ur e f ). The
flat bottom cases so introduced generate the initial conditions for the Wave Age variation
study in section III.3.
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III.2.4.2 RESULTS

The mean wind velocity in the last cell layer uh is shown in figure III.2.4 within the non-
dimensional scales employed in the solver. The wind speed slowly tends to the specified
values ur e f , depicted by the horizontal lines in the figure. The sliding average period is
tav g = 75 T0 and tav g = 75 ·10−3 T0, in figures III.2.4a and III.2.4b, respectively. The low level
of fluctuations revealed in figure III.2.4b is consistent with the low turbulence level imposed
by the upper boundary condition.

(a) tav g = 75 T0. (b) tav g = 75 ·10−3 T0.

Figure III.2.4: Mean wind velocity in the last cell layer uh . Target values ur e f are remarked by
the horizontal lines. The non-dimensional scales are shown as computed in the solver, but
the problem is expected to be self-similar with respect to the reference velocity ur e f . Sliding
statistics are taken with time averages tav g varying by 103.

The vertically integrated non-dimensional homogeneous pressure gradient, imposed in
the solver according to the proposed dynamic methodology, is shown in figure III.2.5 (tav g =
75 T0 and tav g = 75 ·10−3 T0 in a. and b., respectively). As expected the pressure gradients
evolve in much larger scales than the mean velocities of figure III.2.4, with its natural period
imposed as TP = 103 (xl /ur e f ) = 77 T0).
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(a) tav g = 75 T0. (b) tav g = 75 ·10−3 T0.

Figure III.2.5: Vertically integrated non-dimensional, homogeneous, and large scale pres-
sure gradient. Sliding statistics are taken with time averages tav g varying by 103.

The mean target velocity is achieved in the upper boundary and ∂p/∂x indeed evolves
much slower than turbulence. From now turbulent statistics are evaluated to assure the
dynamic pressure gradient to not break self-similarity in the LES generated ABL. The friction
velocity normalized by the target velocity is shown in figure III.2.6 (tav g = 75 T0 and tav g =
75 · 10−3 T0 in a. and b. respectively): As the last cell velocity approaches the target, so
the non-dimensional solution converge between the cases. Comparison between figures
III.2.6a and III.2.6b show that the friction velocities fluctuate much rapidly than uh , and
there is no appreciative difference of fluctuation level between the cases.

(a) tav g = 75 T0. (b) tav g = 75 ·10−3 T0.

Figure III.2.6: Friction velocity normalized by the target velocity. As the upper boundary
velocity reaches its target, the solution becomes self-similar and the Cases converge. Sliding
statistics are taken with time averages tav g varying by 103.

The vertical wind and turbulent profiles are shown in figure III.2.7, and the Cases al-
most perfectly collapse in the non-dimensional mean longitudinal velocity, turbulent ki-
netic energy, turbulence intensities, and u′w ′ cross-correlations shown respectively in fig-
ures III.2.7a, b, c, and d. The whole domain extension is shown with zl /λ= 5, and to better
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appreciate the distributions across the ABL the profiles are shown in vertical log scale at fig-
ures III.2.7a,b and c, but not in figure III.2.7d where the cross-correlations exhibit a linear
behavior.

(a) Wind profile. (b) Turbulent Kinetic Energy.

(c) Turbulence intensities. (d) u′w ′ Cross-Correlations.

Figure III.2.7: Vertical mean (in ξ1, ξ2 and t ) wind and turbulent profiles. The five cases
shown with varying free-stream velocity collide with proper normalization. The normaliz-
ing friction velocity is obtained from equation III.1.6. Sliding statistics are taken with time
averages tav g = 75 T0.

The fitting described in section III.1.2.3 is applied to the wind profile and depicted in
figure III.2.8. To identify the log-law region, the interval [zmi n , zmax] extension is maximized
under the constraint RMSdi f f < 3·10−3. Two methodologies are compared: In figure III.2.8a
the drag coefficient is constant Cd = 1, withαz0 optimized as shown in table III.2.1; in figure
III.2.8b both Cd and αz0 are optimized with values given in table III.2.2. The best fitting be-
havior is observed in figure III.2.8b that reveals the ABL regions discussed in section III.1.2.3.
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(a) Cd = 1; Optimized αz0. (b) Optimized Cd and αz0.

Figure III.2.8: Wind velocity profile and fitting to the outer surface layer according to equa-
tion III.1.15. The different regions exposed are discussed in section III.1.2.3, as (b) is repli-
cated at figure III.1.3.

Recall that with [Cd = 1,α= 1], the log-law fitting by equation III.1.15 recovers the lower
Boundary Condition (BC) given by equation III.1.6. When Cd = 1 is fixed in table III.2.1 and
figure III.2.8a, the effective roughness length αz0 varies up to 8% from the log-law Bound-
ary Condition (BC) where α = 1. The fitting is best when Cd is allowed to vary as in table
III.2.2 and figure III.2.8b, in which case α decreases up to 60% with respect to the BC. When
optimized, Cd is diminished up to 7% in table III.2.2.

The differences observed between the fitting to the log-law region, and the log-law BCs
reflect the existence of the numerical induced buffer region depicted in figure III.2.8b, and
the differences between the Cases reflect the uncertainties, specially due to the lack of sta-
tistical convergence. The latest gives a quantification of the overall procedure uncertainties,
to be taken into account when evaluating the wave bottom cases in the next sections. The
[Cd ,α] combined optimization is said best because it leads to the most extensive log-law
region (0.74λ in table III.2.2), and more consistent fitting in view of figure III.2.8.

Table III.2.1: Log-Fit of eq. III.1.15: Opti-
mal [α] for RMSdi f f < 3 · 10−3 in zmi d +[
−zlen

2
,+zlen

2

]
.

Case Cd α zmi d /λ zl en/λ
1 1.00 1.02 0.39 0.63
2 1.00 0.97 0.39 0.67
3 1.00 1.01 0.38 0.53
4 1.00 0.94 0.39 0.67
5 1.00 0.92 0.39 0.69

Table III.2.2: Log-Fit of eq. III.1.15: Op-
timal [Cd /κ,α] for RMSdi f f < 3 · 10−3 in

zmi d +
[
−zl en

2
,+zl en

2

]
.

iCase Cd α zmi d /λ zl en/λ
1 0.95 0.54 0.39 0.74
2 0.97 0.67 0.39 0.74
3 0.93 0.40 0.39 0.74
4 0.97 0.61 0.39 0.74
5 0.99 0.77 0.39 0.74
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III.2.5 WAVY BOTTOM APPLICATION

III.2.5.1 SPECIFIC NUMERICAL STRATEGY

The wind field initializes from a constant pressure gradient ∂p/∂x|0 giving nominal friction
velocity u∗

0 . The characteristic length scaling the domain is L0. The turbulent characteristic
time scale is T0 = L0/u∗

0 . Results are presented for grid 02 (Medium [256 x 128 x 80] at table
III.1.1). A variable time-step ∆t is employed ensuring CFL= 0.5.

The initial space average free-stream velocity is uh0 = 52.11 u∗
0 . Three cases are pre-

sented: Case 01 is the reference, with flat bottom Boundary Condition (BC) and constant
∂p/∂x|0 · zl = ρu∗2; Case 02 corresponds to a reproduction of the wavy case exploited in
Paskin et al. [2020], with the monochromatic wavy surface introduced in the bottom and still
constant ∂p/∂x|0; Case 03 considers the same wavy prescription as Case 02, but also the dy-
namic pressure gradient method here discussed with target velocity ur e f = uh0 = 52.11 u∗

0 .

The lower free-surface position and velocities are prescribed according to the fifth order
Stokes solution given in Fenton [1985]. The wave length λ = 2π/k equals the characteristic
length scale L0, and the non-dimensional wave height is ka = 0.2. The dispersion equa-
tion in deep water gives phase velocity c =√

g /k (wave period Tp =λ/c) setting the relation
between characteristic length and velocity scales with nominal WA0 = c/u∗

0 = 60. The turbu-
lent characteristic time-scale is T0 =λ/u∗

0 = 60 Tp . The wave forcing in the lower BC linearly
evolves from null till its 5th order solution during 100Tp = 1.68T0. Note that Case 01 and
02 have almost the same setup as in Paskin et al. [2020], except for the wave introduction
during 100Tp instead of 15Tp , as an unworthy effort to mitigate the resultant unsteadiness.

III.2.5.2 RESULTS

The mean wind velocity in the last cell layer uh is shown in figure III.2.9a within the non-
dimensional scales employed in the solver. At Case 03 (Wavy BC, Dyn ∂p/∂x), the dynamic
pressure gradient algorithm is activated, with the target velocity uh0 = 52.11 u∗

0 shown as
the horizontal line in the figure: Due to the dynamic ∂p/∂x the free-stream velocity devi-
ates only ∼ 1% from the target when t > 200T0. A higher level of unsteadiness is intrinsic
even to the flat bottom Case 01, where the free-stream velocity deviates ∼ 2% from its ini-
tial value, that equals the target uh0. Without a dynamic ∂p/∂x balancing the momentum
transfer from the waves to the wind, the free-stream velocity is greatly augmented by the
wave introduction in Case 02, reaching values ∼ 14% higher than the reference uh0.

The friction velocity is normalized by its nominal value in figure III.2.9b. Concerning the
Case 02 (Wavy BC, Cte ∂p/∂x), as in Paskin et al. [2020], the wave first leads to a rapid drop
in the friction velocity, that later converges towards u∗

0 over large periods. Employing the
dynamic pressure gradient algorithm in Case 03, the friction velocity does not recover the
nominal value, instead being kept at ∼ 0.88 u∗

0 , so to keep the free-stream velocity close to
the target uh0 during the computation.

Both the free-stream and friction velocities of figures III.2.9a and III.2.9b reveal a great
level of unsteadiness for Case 02, that in fact might be only partially converged after the 2M
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time-steps and the period of 250 T0 shown in the figures. The amount of unsteadiness is
significantly reduced in Case 03 with the dynamic ∂p/∂x method, that presents relatively
slight velocity variations over the whole computation, reaching a statically steady regime for
t > 200 T0. With the wave introduced in Cases 02 and 03, the ratio between free-stream uh

and friction velocity u∗ becomes flow dependent, and so the Wave Age behaves differently
if defined as function of WA(uh) in figure III.2.9c, or function of WA(u∗) in figure III.2.9d.
The different velocities and Wave Ages might be correlated, but are intrinsically different:
For Case 02 the WA(uh) drops ∼ 14%, distancing from the flat bottom (Case 01) reference
(∼ 1.14) over time, while WA(u∗) actually converges towards the reference (∼ 60) over time;
On the contrary for Case 03, the WA(uh) is kept close to the reference, while WA(u∗) is con-
siderably (∼ 12%) higher than the reference. Section III.3 shall evaluate the implications of
these different WA definitions, and conclude that the WA(uh) characterizing the free-stream
flow is also better suited to characterize the Wind-Wave Interactions. Interestingly for Case
02, the free-stream velocity converges towards the wave phase velocity in figure III.2.9a, as
the WA(uh) converges to unity in figure III.2.9c, which brings Mile’s critical height inside the
ABL in a physical perspective, or inside the computational domain in a numerical perspec-
tive: Such ’coincidence’ shall be further explored in future works.

The homogeneous pressure gradient is shown at figure III.2.9e: Constant and equal to
1/zl for Cases 01 and 02; dynamic and slowly evolving at Case 03, that converges towards
∂p/∂x|0 ∼ 0.6/zl for t > 200T0. Compared to Case 02, the unsteady ∂p/∂x|0 in Case 03 is
responsible for keeping the quasi-steady wind and friction velocities. The unsteadiness of
the wind field reflects into the non-dimensional form drag Fp /Fτ shown in figure III.2.9f.
While Case 03 converges towards Fp /Fτ ∼ −15% for t > 200T0, Case 02 ever increases after
its sudden drop and minimum occurring at t ∼ 10T0. Moreover in Case 03, Fp < 0 and the
momentum flux is exclusively upwards, but for Case 02 the form drag will change sign, and
becoming positive indicates a downward (Wind to Wave) momentum flux for t > 100T0.

The different Wave Ages between Cases 02 and 03, qualitatively justify the differences
in the wind profiles of figure III.2.10b, and in the turbulent profiles of figure III.2.11. In the
turbulent profiles, each of the disturbances previously reported in Paskin et al. [2020] for
the TKE, the TI, and the uw correlations is again observed in figure III.2.11, and augmented
at Case 03 where the WA is higher. Nevertheless a steady state regime might not have been
reached for Case 02, so that a more quantitative WA comparison shall wait until section III.3.
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(a) Wind velocity in the last cell layer uh . (b) Friction velocity u∗.

(c) WA= cp /uh . (d) WA= cp /u∗.

(e) ∂p/∂x|0. (f ) Form drag Fp /Fτ.

Figure III.2.9: Different mean (in ξ1, ξ2 and t ) history profiles for the three cases considered:
Flat bottom with constant large scale ∂p/∂x|0 as the reference; Wavy bottom with constant
∂p/∂x|0; Wavy bottom with the dynamic ∂p/∂x|0 modeler here proposed. Sliding statistics
are taken with time averages tav g = 75 T0.
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(a) In linear scale normalized by the nominal fric-
tion velocity.

(b) In linear-log scale normalized by the resolved
friction velocity.

Figure III.2.10: Mean (ξ1, ξ2 and t ) wind velocity profile for the three cases considered, in
different scales and normalized by different friction velocities. Sliding statistics taken with
tav g = 75 T0.

III.2.6 OVERVIEW AND DISCUSSION

With the large scale pressure gradient evolving in much larger times than turbulent fluctu-
ations in the ABL, turbulence statistics are shown invariant to different values of the target
velocity ur e f imposed for the different flat bottom cases presented.

When fast traveling waves are introduced with lengths scales comparable to the ABL
height, significant unsteady processes take place in the LES generated ABL. Notably the
wave drags the wind, and if the large scale pressure gradient is kept constant, the free-stream
velocity speeds-up, eventually dragging back the propagating wave. The flow history is ex-
tremely important determining the wind profile speed-up once the steady state regime is
reached.

Nevertheless, the transient cycle here observed is artificial and should be avoided, being
determined by non-physical aspects of the problem formulation: A wave does not grow lin-
early over 100 peak periods; the waves shall also be modulated by the evolving form drag;
and the large scale pressure gradient might be unknown, but shall certainly not be constant
above the ocean. Instead, one shall often desire to achieve statistically steady state regimes,
and controllable wind conditions. The dynamic pressure gradient modeler proposed greatly
favors the convergence to steady state, and conveniently allows great amount of control over
the mean wind profile above propagating waves.

The methodology built for the large scale pressure gradient modeler is physically in-
spired in the sense that: (i) It is capable of reproducing a quasi-steady state wind regime
at the last cell-layer, or a target (measured) velocity at a given height; (ii) It responds exclu-
sively to motions occurring at scales much larger than the considered domain, which can be
adjusted in the natural frequency of the mass-spring-damper system. (iii) It is more likely
that the large-scale pressure gradient (traveling instantaneously in incompressible flows)
adapts to keep a free-stream velocity, rather than the free-stream velocity varying to keep a
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constant large-scale pressure gradient condition.

On the other side, the evolution equation built for ∂p/∂x|0 is artificial in the sense that it
does not follow from any conservation law. Then one of the largest appeals of such method-
ology in the given context appears when it enables the arrival to a steady state regime with
the same free-stream velocity imposed as the initial flat bottom condition.

(a) Turbulence Kinetic Energy. (b) Turbulence intensity TIuu .

(c) Turbulence intensity TIw w . (d) uw Cross-correlations

Figure III.2.11: Different mean (ξ1, ξ2 and t ) vertical turbulent profiles for the three cases
considered. The normalizing friction velocity is obtained from equation III.1.6. Sliding
statistics are taken with time averages tav g = 75 T0.
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III.3 SYSTEMATIC COMPARISONS VARYING THE WAVE AGE

The dimensional analysis of the Navier Stokes equations in section I.1.2.2 reveals the Froude
number Fr, quantifying gravitational with respect to inertial forces. Notably, these grav-
itational effects rule the free-surface dynamics, so that the Fr number is often the most
important non-dimensional parameter in oceanic and wave propagation studies. As seen
in section I.1.2.2, stating fully turbulent flow (Re→ ∞), neglecting Coriolis forces (Ro→ 0),
and assuming neutral buoyancy conditions (Ri→ 0), the Fr number is also the only non-
dimensional quantity determining the solution of the Navier Stokes momentum equations
I.1.29 in an unbounded domain. Prescribing the boundary conditions, other non-dimensional
quantities define the solution such as ka, kd , kδ, kLx , and kLy ; and in the discrete for-
mulation numerical similarity depends in the CFL and Peclet numbers; as discussed in the
appendix B.1.1. Through the Wind-Wave Interaction specific literature (Section I.3), it is
the Wave Age the most important non-dimensional parameter describing the solution and
observations, though its precise definition varies in the literature. Indeed the Wave Age is
shown equivalent to the Fr number in the appendix B.1.1.

With such importance determining the solution of the Navier Stokes equations, it is nat-
ural that the literature puts so much effort into determining the parametrization of Wind-
Wave interaction phenomena with respect to the Wave Age. The best example of such an
effort is probably the parametrization of the drag coefficient through the literature reviewed
in section I.3.3, where over six decades of studies since Charnock [1955] evidentiate both
the pertinence and the complexity of the drag dependency to the Wave Age condition. Such
complexity has just been noted in section III.2.5, where the flow history is crucial for deter-
mining the state of the system and so the pressure drag coefficient.

A simple WA parametrization thus depends on a steady state scenario, hardly existent
in the offshore environment. Another major simplification is that such parametrization
also implies the sea-state spectra similarity with respect to the wave peak period [Donelan
et al., 1993]. Besides, previous studies reviewed in section I.3.2, and for example the results
in section III.2.5, indicate that WI disturbances can propagate into the ABL up to heights
comparable to the wave length λ, which might often approach the ABL height δ in swell
dominated conditions; then from the discussion in the appendix B.1.1, it is clear that the
non-dimensional ABL height kδ shall be equally important for determining the solution.
The author believes the kδ dependency has been possibly underrated through the litera-
ture, specially for fast waves conditions in stable boundary layers where δ/λ can be in the
order of (or even below) unity. With these complexities in mind, Hristov and Ruiz-Plancarte
[2014] note a simple and robust parametrization of the surface drag is unlikely to exist.

Present systematic WA variation studies count in the following simplification to accom-
modate these challenges: A simple monochromatic wave prescription in deep water, so de-
fined by ka and λ; the dynamic pressure gradient modeler presented in III.2, to obtain a
quasi-steady state solution in the free-stream velocity; the systematic variation of wind in-
tensity rather than the wave length, so keeping λ and δ constant between the cases. To limit
the variations of the Peclet number, the free-stream velocity varies between ±25% from the
middle WA case.
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III.3.1 SPECIFIC NUMERICAL STRATEGY

The wind field initializes from a constant pressure gradient ∂p/∂x|0 giving the 0th reference
friction velocity u∗

0 = u∗
r e f 0. The characteristic length scaling the domain is L0. The nominal

turbulent characteristic time scale is T0 = L0/u∗
0 . Results are presented for grid 02 (Medium

[256 x 128 x 80] at table III.1.1). A variable time-step ∆t is employed ensuring CFL= 0.5.

The initial space-averaged free-stream velocity is uh0 = 52.11 u∗
r e f 0. Five cases are pre-

sented, varying the free-stream velocity from its initial value so the dynamical pressure gra-
dient method is employed with varying target velocities: Case [01,02,03,04,05] with ur e f =
[0.75,0.90,1.00,1.10,1.25] uh0, respectively. The wavy bottom surface is so introduced to the
flat bottom cases previously discussed in section III.2.4.

The free-surface position and velocities are prescribed according to the fifth order Stokes
solution given in Fenton [1985]. The wave length λ = 2π/k equals the characteristic length
scale L0, and the non-dimensional wave height is ka = 0.2. The dispersion equation in deep
water gives phase velocity c = √

g /k (Wave period Tp = λ/c), setting the relation between
characteristic length and velocity scales with nominal WAr e f = c/u∗

r e f = [80,67,60,55,48],
for cases [01,02,03,04,05], respectively. The turbulent characteristic time-scale relates to the
wave period with T0 = 60 Tp . The wave forcing in the lower BC linearly evolves from null till
its 5th order solution in 100Tp = 1.68T0. Case 03 is the same as in section III.2.5.

III.3.2 RESULTS

III.3.2.1 MEAN HISTORY PROFILES

The mean wind velocity in the upper cell layer u(zl ) is shown in figure III.3.1a within the
non-dimensional scales employed in the solver, i.e., normalized by the 0th reference friction
velocity u∗

r e f 0. The horizontal lines in the figure depict the target velocities uh = [0.75, 0.90,

1.00, 1.10, 1.25] ·uh0, with uh0 = 52.11 u∗
r e f 0. The highest discrepancy observed between

actual and target velocities in the last cell layer is 3.1%, and occurs for Case 01 uh = 0.75 uh0

(Highest WA). In the last steps of the evolution profiles, where vertical profiles are to be
probed, the discrepancy in Case 01 is still the highest and drops to 1.9%. To keep these
free-stream velocities close to the target values, the dynamic pressure gradient evolves as
reported in figure III.3.1b: With the WI drag propagating into the atmosphere, ∂p/∂x drops
to meet the criterion, responding to the large scale trend of u(zl ).
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(a) Free-Stream velocity. (b) Large-Scale pressure gradient.

(c) Friction velocity ratio to undisturbed case. (d) Resolved Wave Age.

Figure III.3.1: Mean history profiles averaged with tav g = 75 T0. (a) Wind velocity (|u|(zl )) at
last vertical layer, normalized by the middle reference value u∗

r e f 0, as resolved in the com-
putational non-dimensional domain. The horizontal lines stand for the target velocities
ur e f = uh . (b) Dynamic and slowly evolving pressure gradient controlling |u|(zl ) to match
uh . (c) Ratio between the resolved u∗ and reference u∗

r e f friction velocities, with u∗
r e f /u∗

r e f 0
given in the legend. (d) Resolved Wave Age WA(u∗). The legend shown in (c) applies to
(a,b,c,d), relating the line types and colors to each case.

In the flat case scenario of section III.2.4, it is shown the friction velocity scales with
uh , and the normalized curves of u∗/uh collapse in figure III.2.6. In the wavy cases here
presented the WI drag varies between the cases, and the free-stream velocity kept constant,
the friction velocity becomes function of the non-dimensional wave speed, or Wave Age
(WA). In the flat case, the nominal friction velocities are u∗

r e f = [0.75,0.90,1.00,1.10,1.25] ·
u∗

r e f 0, and figure III.3.1c shows the ratio between resolved and nominal friction velocities for
each wavy case. Except for Case 01 when uh = 0.75 uh0 (Highest WA), the friction velocities
drop with respect to the reference values, and the discrepancy is larger with larger reference
velocities, so largest in Case 05 (1.25 uh0, lowest WA) with 13% deviation in the last steps of
figure III.3.1c.

111



Figure III.3.2: Same as figure III.3.1c, but averaged with tav g = 75 ·10−3 T0. Ratio between
the resolved u∗ and reference u∗

r e f friction velocities, with u∗
r e f /u∗

r e f 0 given in the legend of
figure III.3.1c for each line type.

In Case 01, where u∗/u∗
r e f actually rises, there is also a significant mitigation of the fric-

tion velocities fluctuations. This becomes clear with the lower time averages adopted at fig-
ure III.3.2, suggesting there might be a transition to the laminar regime being approached.

The actual friction velocity and so the Wave Age, are consequence of the WI drag com-
bined with the constant free-stream velocity, so the Wave Age shown in figure III.3.1d vari-
ates substantially from the nominal values WAr e f = [80,67,60,55,48]. The quantities re-
vealed in figure III.3.1 are probed at the final time-step of the evolution depicted, with values
given in table III.3.1, where they can also be compared to the references here discussed.

Table III.3.1: The parameters of figure III.3.1 probed at the final time-step, and the corre-
spondent reference values.

Case ID uh0/u∗
0 (uh −uh0)/uh0 ∂p/∂x · zl u∗

r e f u∗ WAr e f WA

1 39.08 1.85% 0.107 0.157 0.169 79 74
2 46.90 0.18% 0.361 0.189 0.175 66 72
3 52.11 1.24% 0.479 0.210 0.183 60 68
4 57.32 -0.04% 0.876 0.231 0.201 54 62
5 65.14 -0.49% 1.270 0.262 0.228 48 55

It is shown that unlike the flat cases of section III.2.4, to keep a constant free-stream ve-
locity above a propagating wave, the friction velocity must be allowed to vary, and it varies
such that here the actual WA differs from its nominal values WAr e f up to 15%. On the litera-
ture, the WA is computed with different reference velocities, such as the actual or an effective
friction velocity, the velocity at an arbitrary (Preferably 10 m) height, or the free-stream ve-
locity. It is here shown that within such detailed resolution of the MABL, the ratio between
each of this velocities in not kept constant, rather depending on the WI dynamics and thus
on the Froude number, or equivalently on the characteristic WA.
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Figure III.3.3: The evolution of Fp /Fτ in
time, with tav g = 75 T0.

At this point, a question is naturally posed as:
Which is the atmospheric characteristic velocity
U , that scaling the WA= cp /U leads to a better
characterization of Wind-Wave interaction ef-
fects? A first investigation into this issue comes
from evaluating the Form drag (Fp ), which is
normalized in figure III.3.3 by the total drag Fτ.
In the literature the normalized form drag, or
the growth rate parameter β = 2 Fp /[u∗2(ka)2],
are usually assumed function of the WA: Such as
denoted by the blue dots in figure III.3.4a, func-
tion of the actual WA= cp /u∗; or in figure III.3.4c,
function of the nominal WAr e f = cp /u∗

r e f , with
u∗

r e f scaling linearly to the target velocity uh , and

uh approximating the actual free-stream velocity u(zl ) with better than 3% accuracy.

Noting that the discrepancy between WA and WAr e f monotonically decreases with aug-
menting u∗

r e f , three functions are fitted to the data and appear with dotted lines in the fig-
ures: The red lines fits to Cases 01-04; the yellow lines to Cases 02-05; and the purple lines to
Cases 01-05. The fitting of constants A and B in equation III.3.1 applies to the slopes of the
curves, given in the middle of the intervals by a 1st order finite difference, denoted by the
blue dots in figures III.3.4b and III.3.4d. The constant part of the approximating function
(C in eq. III.3.1) is set so to match exactly the solution in Case 03, where the dotted curves
intersect in figures III.3.4a and III.3.4c.

As a function of the actual WA, the fitted curves strongly diverge in figures III.3.4a and
III.3.4b. As a function of the nominal WAr e f on the contrary, the fitting of the two intervals
almost collapse in figures III.3.4c and III.3.4d, indicating that the form drag better scales
with the nominal WAr e f , which characterizes the non-disturbed flow, and scales with the
free-stream velocity (Or u∗

r e f ) in present formulation. Finally, the form drag dependency
on the WA is here given by the fitting denoted in purple at figure III.3.4c, obtained with the
parameters shown at table III.3.2, and the equation:

Fp

Fτ
=−B exp[A ·WAr e f ]

A
+C (III.3.1)

Table III.3.2: The form drag dependency on the WA is here represented by equation III.3.1,
fitted with parameters given below. The resultant fitting is drawn in purple at figure III.3.4c.

A B C
1.07 ·10−1 6.75 ·10−6 2.04 ·10−1
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Figure III.3.4: Wave Age dependency of the non-dimensional form drag (Fp /Fτ). (a and c)
The numerical experiments reveal Fp /Fτ denoted by the blue dots, function of the actual
WA in (a), and function of the reference WAr e f in (c). (b and d) The negative sign of the
slopes between the intervals of figures (a) and (c), respectively denoted by the blue dots in
figures (b) and (d). The red dot line fits to the first 4 Cases, the yellow dotted line fits to the
last four Cases, and the purple line fits for every Case. The fitted equation is III.3.1, with A
and B obtained from figures (b) and (d), and C set as to match exactly the value at Case 03
where ur e f = ur e f 0

III.3.2.2 MEAN WIND VELOCITY PROFILES

Recall that in section III.2.4 the solutions are shown similar with respect to any characteris-
tic velocity in the MABL, and the 5 flat cases have their wind profiles collapsed as in figure
III.3.5a, here repeated to base further discussions. The LES generated MABL may be seg-
mented in the 4 regions exposed in figure III.3.5a: In the outer layer the profiles transit from
log into linear behavior adapting to the free stress condition in the upper surface; in the
outer surface layer the profiles exhibit a perfect logarithmic behavior above the buffer re-
gion; the inner surface layer is modeled below the first grid point by the log-law boundary
condition; and so the buffer region is a very limited region above the first grid point upon
which the resolved stresses become predominant over the SGS contribution.
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(a) Flat bottom cases; repeated from figure III.2.4
for comparison.

(b) Wavy cases; Normalized by the actual friction
velocity u∗.

(c) Wavy cases; Normalized by the 0th reference
friction velocity u∗

0 = u∗
r e f 0. Fitting αz0 in the in-

ner surface layer.

(d) Wavy cases; Normalized by the 0th reference
friction velocity u∗

0 = u∗
r e f 0. Fitting Cd and αz0 to

the outer surface layer.

Figure III.3.5: Mean (in ξ1, ξ2 and t ) wind velocity profiles and fitting. In (a) the flat bottom
cases presented in section III.2.4. In (b-d) the wavy bottom cases here discussed. Log fitted
profiles (from equation III.1.15) are shown with transparency in (c,d). (c) Fitting to the inner
region. (d) Fitting to the outer region. Sliding statistics are taken with time averages tav g =
75 T0.

The scenario is significantly more complicated in figure III.3.5b, where the wind profiles
vary substantially between the cases, subject to the Wind-Wave interactions in the atmo-
sphere. In the inner surface layer, the roughness length (table III.3.3) is augmented with re-
spect to flat conditions, and increases with the increasing WA between the cases. The buffer
region extends higher in the MABL confining the outer surface layer into a smaller logarith-
mic region if compared to the flat bottom cases. Contrary to the inner surface layer, the
roughness length in the outer surface layer (table III.3.4) decreases with augmenting WA. It
will be also shown that, differently from the flat case scenario, there is a significant difference
between the apparent friction velocity fitted in the logarithmic region and the actual friction
velocity that gives the profiles’ slope in the inner surface. With so many disturbances in the
velocity profiles, the question posed in Cathelain [2017] over the cautiousness of consider-
ing log-law profiles in the offshore wind energy is restated: Is a log-law profile representative
of the atmospheric wind in neutral conditions above a propagating wave? The short answer
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is that it can be representative of the flow in the inner surface layer, or in the outer surface
layer, but hardly both at the same time, and its region of validity shrinks with augmenting
WBL extension.

For the long answer, log-law functions are fitted to the inner surface layer as in figure
III.3.5c, and to the outer surface layer as in figure III.3.5d. The fitting applies to each region
according to the procedures described in section III.1.2.3, and that leads to the values re-
ported in tables III.3.3 and III.3.4. Recall that with the fitting defined, the ratio between the
effective roughness length αz0 and the boundary condition z0 = 10−6λ is α. Likewise, Cd

gives the ratio between effective friction velocity, and u∗ as obtained from equation III.1.6.

The flat cases presented in section III.2.4 appear in the tables with the case average opti-
mization values, and the uncertainties are taken as (±0.5) the maximum variation between
the cases: Note that both fittings are comparatively much more similar in flat, rather than
wavy bottom cases. In the inner surface layer the fitting applies only to the first two cells,
and with Cd = 1, the effective roughness length αz0 is optimized to the values of α given in
table III.3.3, to be compared with the flat cases: The effective roughness length (αz0) is mag-
nified compared to the flat case, increasing up to a factor of ∼ 10 in Case 01, and augmenting
with rising WA between the cases.

In the outer surface layer, Cd and α are optimized in a variable region between the
closed interval [zmi n , zmax], or zmi d ± 0.5 zlen , being the bounds [zmi n , zmax] found itera-
tively so maximizing zlen while keeping RMSe <3 · 10−3. The optimized parameters Cd , z0

and [zmi d , zl en] that describe the wind profiles in the outer surface layer are so given in ta-
ble III.3.4. Contrary to the inner layer, the roughness length increases with decreasing WA
between the cases (as expected from the literature, c.f. section I.3.3), approaching the flat
case solution between Cases 01 and 02. Except for Case 01 (highest WA), there are strong Cd

disturbances due to the wave incidence, that between Cases 2 and 5 vary from 34% to 53%,
compared to only 4% in Case 01, and the uncertainty of ±3%. Finally, the regions over which
the log-law applies shrink due to the wave incidence, becoming shorter (46% in Case 01 to
15% in Case 05) in higher Wave ages.

Table III.3.3: Log-Fit of eq.
III.1.15 to the inner surface
layer (1st two cells): Opti-
mal [α] with Cd = 1.

iCase α

1 12.4
2 7.8
3 5.2
4 3.5
5 2.4

Flat 1.01±0.14

Table III.3.4: Log-Fit of eq. III.1.15 to the outer surface
layer: Optimal [Cd ,α] for RMSdi f f < 3 ·10−3 in zmi d +[
−zlen

2
,+zl en

2

]
.

iCase Cd (κ= 0.4) α zmi d /λ zl en/λ
1 1.04 0.1 0.38 0.40
2 1.34 2.8 0.38 0.46
3 1.54 12.6 0.38 0.53
4 1.52 14.3 0.38 0.55
5 1.53 22.3 0.39 0.63

Flat 0.96± 0.03 0.60±0.19 0.39 0.74
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III.3.2.3 MEAN TURBULENT PROFILES

Present section discusses turbulent motions that comprehend both atmospheric turbulence
and WI motions in the MABL.

Turbulent Normal stresses The turbulent kinetic energy is presented in figure III.3.6, de-
picted by the resolved components in solid colors, and the sub-grid-scale component in
transparency, or zoomed in the upper-right corner. Close to the surface the modeled con-
tribution is approximately an order of magnitude below the resolved part, and becomes
negligible close to the wave amplitude z = ka. The resolved part is strongly augmented
with increasing Wave Ages, but the SGS contribution on the contrary, diminishes simulta-
neously. Before discussing the implications of such remarks in the TKE budget analysis, next
paragraphs exploit the total (resolved+SGS) TKE behavior, decomposed in longitudinal and
vertical variances (transversal omitted).

Figure III.3.6: Mean (ξ1, ξ2 and t ) Turbulent Kinetic Energy (TKE) vertical profiles. Decom-
posed, with the total TKE appearing in solid and the SGS component with transparency, or
zoomed in the upper right corner. The horizontal lines depict: 5th cell layer; 10th cell layer;
and non-dimensional wave-height ka = 0.2. Sliding statistics are taken with time averages
tav g = 75 T0.

The turbulence intensities for longitudinal and vertical velocities appear respectively in
figures III.3.7a and III.3.7b, where the colored lines depict the wavy cases described in the
legend, and the light gray lines the reference flat bottom case. As usual the variances are
strongly enhanced by the waves introduction close to the surface, but are diminished above,
in the outer surface layer. With the WA augmenting, the disturbances are amplified, the
variances grow close to the surface and diminish in the outer region.

A striking feature revealed in figure III.3.7, is that for each TIuu and TIw w , the point where
the cases intersect with each other and the flat solution remains almost constant: z/λ= 0.1
for TIuu in figure III.3.7a and z/λ= 0.26 for TIw w in figure III.3.7b. Clearly, the enhancement
of TI close to the surface is due to the WI motions, shown in Paskin et al. [2020] (and further
in section IV.1.2) to propagate higher in the WBL for the vertical velocities. The TKE budget
analysis that follows, suggest that the diminish of TI on the outer region is rather due to an
increase of the turbulent transport in the buffer region, bringing turbulent motions from the
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outer layer into the WBL where they can be assimilated either by the WI flow (enhanced TKE
in the WBL), or by the mean flow (localized negative production, or mitigation of positive
production).

(a) TIuu . (b) TIw w .

Figure III.3.7: Mean (ξ1, ξ2 and t ), Turbulence Intensity profiles, for longitudinal (TIuu) and
vertical (TIw w ) velocity fluctuations. The legends correspond to the wavy cases here pre-
sented. The light gray lines represent the flat case solution of figure III.2.7c. The zoomed
regions depict the intersections between the curves. Sliding statistics are taken with time
averages tav g = 75 T0.

Turbulent Kinetic energy budget As an introduction to the TKE budget analysis described
in section III.1.1.4, production and dissipation terms are first exploited in figure III.3.8. The
production is composed of resolved and modeled components. In figure III.3.8a one finds
the total TKE production with solid colors, and the resolved components in transparency.
Note that the sub-grid-scale production is dominant, at least until the 5 cells mark where
the resolved component present a maximum for WAr e f = 48. As the total production dimin-
ishes with increasing Wave Age, so the maximum of the resolved component is displaced up-
wards, and the sub-grid-scale becomes important even higher on the ABL: For WAr e f = 60,
e.g., the maximum of the resolved production is already close the 10 cells mark. These re-
marks let clear that the SGS model is significant determining the turbulence behavior in the
near surface region, and into the lower part of outer surface layer depicted in figure III.3.5a.
Even though one is right to be skeptical about the adequacy of the turbulent model [Hristov,
2018], the proper characterization of turbulent motions occurring in the LES reproduced
ABL is given by both resolved and modeled components. So for the sake of brevity, only the
total TKE budget terms are discussed forward.

The dissipation acts only in the SGS equations, and is modeled by ε = cεě3/2/∆ f , i.e.,
dependent exclusively in a constant cε, the grid related filter length∆ f , and the residual TKE
ě. Then the behavior of the dissipation in figure III.3.8b is determined by the residual TKE
previously exposed in figure III.3.6: Close to the surface ě and ε diminish consistently with
increasing Wave Ages.

Resolved and total variances strongly augment with increasing Wave Ages (figures III.3.6
and III.3.7), so the diminishing production with increasing Wave Ages observed at figure
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III.3.8a indicate that a great amount of turbulence is not sustained by the shear production
mechanisms of the TKE budget. The following discussion demonstrate that such excess in
turbulence is associated to Wave-Induced motions, imposed by the waves orbital velocities
in the surface and transported upwards in the ABL.

The production term evaluates the correlation between shear and reynolds stresses. The
diminishing production in figure III.3.8a could be explained by either a lack of correlation
between those stresses, or locally negative production terms that have already been ob-
served in the literature above propagating waves (c.f. Yousefi and Veron [2020], Yang and
Shen [2010]). With the horizontally (not wave phase dependent) averaged TKE budget here
presented, it is not possible to distinguish localized regions of diminished or negative TKE
production.

(a) Production term, resolved and total. (b) Dissipation terms.

Figure III.3.8: Mean (ξ1, ξ2 and t ) Turbulent kinetic energy budget profiles: Production and
dissipation. In (a) the production is decomposed, with the total TKE production appearing
in solid, and the resolved component with transparency. In (b) dissipation admits only SGS
contributions. Sliding statistics are taken with time averages tav g = 75 T0.

Figure III.3.9 comprehends all the terms forming the TKE budget in the WBL and de-
scribed at section III.1.1.4: Production minus dissipation (net production) is shown in figure
III.3.9a, turbulent and SGS transport are summed in figure III.3.9b, and the pressure trans-
port shown in figure III.3.9c. In a neutral flat ABL, denoted by the light gray lines in the
figures, production and dissipation closely balance each other in the outer layer, and just
below the dominance of each term oscillates in a symmetrical pattern, with a minimum in
the inner layer followed by a maximum just above in the buffer region. Also in the flat case,
the predominance of dissipation and production are balanced respectively by positive and
negative TKE transports, that ultimately transfer the turbulence generated near the wall to
the outer region. When the WI flow enters the balance in the wavy cases here presented, the
situation is drastically changed.

The WI flow does contribute to diminishing both production and dissipation (fig. III.3.8),
but clearly it favors diminishing the first over the second, as strong TKE sinks are revealed
close to the surface in figure III.3.9a: The wavy cases depart in the surface with consider-
ably more net dissipation (− net production) than the flat case; from Cases 05 to 01 (Low-
est to highest WA), the point upon which the dominant production reaches its maximum
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is sequentially displaced upwards, and the maximum itself is sequentially diminished until
almost vanishing in Cases 01 or 02.

Since dissipation largely dominates in figure III.3.9a, while the dissipation itself dimin-
ishes in figure III.3.8b, the resultant sink is instead attributed to an excessive mitigation of
the production term, previously observed in figure III.3.8a. It reflects the physical mecha-
nism upon which the WI flow either prevents the mean flow of generating turbulence (lack of
correlation between shear and reynolds stresses), or gives energy to the mean flow (localized
negative production), in any case contributing to the drag observed in the wind profiles.

The net production is, at least partially, balanced by the turbulent transport terms of
figure III.3.9b, and in a pattern almost symmetrical to the flat bottom cases (with opposite
signs), it becomes increasingly positive in the near-wall region with increasing Wave Ages.
This near-wall region occurs in the buffer and lower part of the outer regions, defined in
figure III.3.5a. In the flat bottom case the negative turbulent transport transfer turbulence
generated in near-wall region, to be dissipated in the viscous region below, or the outer re-
gion above. On the contrary, with increasing wave ages turbulence is brought into the near-
region. The amount of turbulence distributed from the outer and inner regions to the near-
wall region depends on the WA, as for WAr e f = 48 and WAr e f = 55, e.g., the turbulent trans-
port in the inner region remains positive or negligible, respectively. Also for WAr e f = 48, the
WI disturbances are mitigated, and the turbulent transport profiles are more similar to the
flat bottom cases, instead of presenting the symmetrical pattern noted for the other cases.

In a flat bottom case, the integration of transport terms in the vertical direction is null
[Moeng and Sullivan, 1994], so the only source of turbulence in the TKE budget is the net
production: At the wavy cases, actually a strong sink acting through most of the ABL exten-
sion as seen in figure III.3.9a. With such turbulent sink induced, the excess of turbulence
revealed in figures III.3.6 and III.3.7 is clearly detached from the classical atmospheric tur-
bulence generation mechanisms.

As revealed previously, the excess of TKE is attributed to the so-called WI flow, sus-
tained in the surface by the waves’ orbitals (boundary conditions), and notably transported
through the atmosphere by the pressure transport term: Strongly disturbed in figure III.3.9c
due to the wave incidence. Indeed one notes in the figure, that the pressure transport term
is strongly out-of-balance to the remaining TKE budget terms previously discussed, some-
times exceeding the others by an order of magnitude or more. The prevailing TKE Pres-
sure transport justifies the similar overshoot observed in the TKE advection term at figure
III.3.9d.
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(a) Production minus Dissipation terms.
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(b) Turbulent transport terms, except pressure.

(c) Pressure transport term. (d) TKE Advection term.

Figure III.3.9: Mean (ξ1, ξ2 and t ) Turbulent kinetic energy budget profiles, comprehending
all the terms described at section III.1.1.4. Summing the profiles (a,b,c) one obtains the
advection at (d). The legends correspond to the wavy cases here presented, and the light
gray lines represent the flat case solution. Sliding statistics are taken with time averages
tav g = 75 T0.

Turbulent Shear stresses The total shear stresses τ13 = τ(r )
13 +τ(P )

13 are shown in figure III.3.10a,
where they exhibit a linear behavior with varying slopes between the cases. A linear fit-
ting applies to each profile and appears with transparency in the figure. The flat bottom
solution, appearing in black at the figure, matches quite accurately the solution of Case 4
(WAr e f = 55). Due to the waves, the total shear stress profile depart from other values rather
than u∗2 in the bottom, and evolve until vanishing in the upper boundary. The fitted profiles
evolve from the values given in table III.3.5 on the surface, and are null when z = zl . In the
buffer region zoomed at figure III.3.10a the stresses deviate from the linear behavior.

In figure III.3.10b the total stress is decomposed into: Velocity correlations τ(r )
13 = u′

1u′
3 +

τSGS
i j ; and WI pressure stress τ(P )

i j = (p +2ě/3) · (∂ξ3/∂xi ) components. The fictitious decom-
position arises from the problem discretization in a moving grid, and is particularly useful
because the pressure drag converges exactly to the form drag in the lower surface. The nu-
merical formulation, then reveals a physical mechanism where the turbulent component of
the flux responds to the pressure-drag acting in the deformed streamlines above a propagat-
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ing wave, and it does so maintaining an almost linear stress profile along the boundary layer,
such as observed at the flat bottom case and in the absence of τ(P )

i j at figure III.3.10a. It must
be noted though, that the decomposition is inexact above the surface, where the streamlines
do not follow the moving grid. The rapid variation of pressure stresses (solid lines in figure
III.3.10b) in the near region are sensed by the total stresses, explaining the deviation from
the linear flux profile zoomed at figure III.3.10a.

(a) Total shear stress. (b) u′w ′ turbulent (Transparent) and WI pressure
(Solid) components of the shear stress.

Figure III.3.10: (a) Mean (ξ1, ξ2 and t ) total shear stress τ13(z), and (b) its decomposition
into: velocity cross-correlation (τ(r )

13 , transparent in b.), and WI pressure (τ(P )
13 , solid colors in

b.) contributions. In (a) linear fittings appear with transparency, parameterized according
to table III.3.5, and the black line represents the flat case solution. The fitting is less accurate
in the near-wall region, zoomed at the upper left corner of (a). Sliding statistics are taken
with time average tav g = 75 T0.

Table III.3.5: Linear fitting to the total shear stresses revealed in figure III.3.10a. At the upper
boundary τ13(z = zl ) = 0, so the table gives the values of τ13(z = 0), sufficient to specify the
linear approximation.

Case ID WAr e f Fitted τ13(z = 0)/u2∗

1 80 -0.21
2 67 -0.62
3 60 -0.80
4 55 -0.98
5 48 -1.10

The wave induced drag Fp = Fτ−u∗2 has been previously discussed in figure III.3.4. At
Cases 01 and 02, the drag is negative, and the waves are expected to grow, but at Case 02
the value is very close to zero, and not surprisingly the shear stresses closely approach the
flat Case (Fτ ∼ u∗2) in figure III.3.10. The pressure drag is obviously determinant imposing
the slope of the profiles in figure III.3.10a. To clarify that relationship, figure III.3.11 com-
pares the dependence of Fτ to WAr e f , as obtained from either: Fτ = Fp +u∗2, with actual
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u∗ reported in table III.3.1, and Fp /Fτ discussed in figure III.3.4c; or from the fitted value
of τ13(z = zl ) = 0, reported at table III.3.5. One notes a very good agreement between each
prediction, for which linear fittings appear as dotted lines in the figures. There is though, a
small but persistent bias between these estimations, probably induced by the linear fitting
employed to the τ13 profile (in figure III.3.10a, leading to table III.3.5).

The coefficients fitting Fτ/u∗2 and τ13(z = 0)/u∗2 (in figure III.3.11) are given at table
III.3.6. The offset between each methodology is observed in the 2% discrepancy of the con-
stant coefficient B, which represents either: a 1.84 (3% of 60) offset in the WAr e f ; or a 0.05
(2% of 2.5) offset in Fτ/u∗2; between the curves at figure III.3.11.

Table III.3.6: The total drag Fτ as
a function of the WAr e f , is approx-
imated in figure III.3.11 by a lin-
ear fitting with equation Fτ/u∗2 =
A·WAr e f +B ; and the coefficients are
given hereby.

Case ID A B
actual Fτ 2.84·10−2 -2.54

Fitted from τ13(z) 2.84·10−2 -2.48

Figure III.3.11: Total drag Fτ as a function of
WAr e f . Comparison between the actual value,
and the one extrapolated from the linear fit-
ting depicted in figure III.3.10a. Here a lin-
ear fitting applies to Fτ(WAr e f ) and appears
with dotted line in the figures; the fitting co-
efficients are given in table III.3.6.

III.3.3 DISCUSSION

Thanks to the evolving pressure gradient method, the free-stream velocities are kept in a
quasi-steady regime, and its averaged evolution converges towards the target value with a
discrepancy of less than 3%. The friction velocity on the contrary, strongly deviates from
its flat bottom solution, exhibiting a strong dependency to the WA parameter. So if WA is
defined as function of the actual friction velocity, one establishes a circular dependency
between those two parameters.

Alternatively the WA can be defined, e.g., from the non-disturbed friction velocities, and
in the present formulation that will approximately scale with the actual free-stream velocity,
here varying less than 3% from its undisturbed values. The two WA definitions are com-
pared in the parametrization of the non-dimensional form drag, and the WA characterizing
the non-disturbed or free-stream flow is significantly more consistent to describe the obser-
vations. A simple exponential model then accurately fits to the non-dimensional form drag
as function of the reference WA. When evaluating the turbulent profiles, this parametriza-
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tion also provides a reasonable first order approximation to the approximately linear shear
stresses across the boundary layer height.

The waves introduced disturb the wind speed profiles, and notably their behavior through
the logarithmic region. Due to waves, the region of validity of the logarithmic wind pro-
file considerably diminishes with increasing wave age, squeezed by the extended inner and
buffer regions occurring below. Also the apparent friction velocity that scales the wind pro-
file in the logarithmic region is significantly disturbed by the waves, but such disturbance
decreases with increasing wave ages. The effective roughness length fits separately to the
inner and log-law regions: In the inner region it increases with increasing WA; but at the
outer region the opposite trend is observed, as expected from empirical observations in the
offshore environment and available through the literature.

Based on a few relevant observations where resolved and SGS motions are effectively dis-
cretized, a choice is made to focus in the total fluctuations, because they better characterize
the LES resolved turbulence. Even though one is right to be skeptical about the adequacy
of the SGS model [Hristov, 2018], it must be noted that resolved and SGS turbulence are
determining each other simultaneously, and their physical meaning can only be properly
evaluated together.

The turbulence intensity profiles indicate higher turbulence levels at the lower part of
the ABL, due to the existence of the WI fluctuations, but just above that region one observes
in fact lower turbulence levels if compared to the flat bottom cases. Such behavior is ex-
plained by the TKE budget analyses here presented.

While the total and resolved TKE augment close to the surface, the SGS contribution di-
minishes simultaneously, so the turbulent dissipation is diminished in the WBL. Regarding
production, both the resolved and SGS components diminish in the WBL. The diminish of
production is accentuated compared to dissipation, so the waves lead to a strong lack of
balance between production and dissipation, ultimately acting as a sink in the total TKE
equations. In the horizontally averaged, integral perspective here adopted, the diminished
production reflects that less energy is transferred from the mean flow to the turbulent fluc-
tuations. Naturally that suggests local regions of diminished production depending on the
wave phase, and possibly local regions of negative production, with fluctuations transferring
energy back to the mean flow.

The lack of balance between production and dissipation triggers the disturbance of tur-
bulent transport terms, now bringing turbulent eddies from the outer region to the buffer
region, contrary to the flat bottom case. The pressure transport term greatly surpasses the
other terms of the TKE budget, and appears as the principal mechanism transferring the
waves’ orbital velocities to the air-flow. These enormous pressure transport terms imply
strong TKE advection in the WBL, which is again consistent to the TKE profiles, presented
with strong vertical variations in the analyses.
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III.4 DIFFERENT LEVELS OF SEA-STATE DESCRIPTION

A major simplification employed in previous section regards the monochromatic wave pre-
scription. Instead of the canonical regular wave scenario, the sea-state is better described
as a continuous spectral distribution of an infinite number of regular waves, as discussed in
section I.2.1.1. Approaching realistic offshore conditions estimated during the experimental
campaign described in section II.1.3 (Case 01), and reconstructed in section IV.3.1, the sea-
state description is considered in three levels of increasing complexity: (i) Regular waves;
(ii) Irregular and single directional (1D) Sea-State; (iii) Irregular and multi-directional (2D)
Sea-State.

The Sea-States so defined have the same total energy Et , which for irregular Sea-States
gives significant height Hs = 4

p
Et = 1.34 m. The regular wave with energy Et has wave

height H = 2
p

2
p

Et = 0.95 m. The wave peak period is Tp = 10.10 s, the peak length
Lp = 126.9 m and the depth 22 m. The nominal (numerical) peak length is λ= 128 m, corre-
sponding to the discrete resolved scale closest to Lp . One shall refer to table II.1.3 for other
Sea-State quantities, and section IV.3.1 for more details about the Sea-States considered.
Note that present section is still framed in a purely numerical perspective, and the compar-
ison between physical and numerical experiments is presented later at section IV.3.4.

Compared to Paskin et al. [2020], and sections III.2, and III.3, the waves here considered
have significant less energy. In the regular case here presented the non-dimensional height
is ka = 2%, which is quasi-linear, if compared to the previous sections where ka = 20%. The
energy scaling with H 2, that represents an 100 times decrease in the sea-state energy density
per surface area. The ABL height and the domains’ extension ratio to the wave-length here
doubles the values presented before. The nominal Wave Age is comparable between those
sections, with the value WA0=85 here contrasting with WA0=60 adopted in section III.2, or
WA0=80 for Case 01 in section III.3.

The WI disturbances are strongly mitigated compared to previous sections, and for some
quantities they are negligible no matter which sea-state here considered. Notable excep-
tions are the vertical velocities variances or pressure related quantities, and minor distur-
bances can be evaluated in the wind speed profiles, or the longitudinal velocity variances.
Later in section IV.2, the enhanced perspective described in section IV.1 is employed, and
in contrast to previous analyses, the WI disturbances become clear at the two-dimensional
wave-number-angular-frequency spectra, that also reveal some crucial and intrinsic differ-
ences between each sea-state considered.

III.4.1 SPECIFIC NUMERICAL STRATEGY

The dynamic pressure gradient method developed in section III.2 is used to keep the Wind
Speed close to ur e f = ur e f |h =4.12 m/s at the sLiDAR measurement height h = 18.33 m. Even
though the method given in section III.2 can be easily generalized to an arbitrary (measure-
ment) height instead of the boundary layer height δ, in the present case the fluctuations at
h = 18.33 m greatly exceeds the ones at δ, and that could induce a considerably different
behavior of the ∂p/∂x|0 evolution compared to the previous sections, requiring for example
the specification of different natural periods TP . To avoid such differences in the ∂p/∂x|0
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evolution scheme, like-wise in previous sections, here it responds to the free-stream velocity
u1(δ) discrepancy to the target ur e f |δ.

To control the velocity at h = 18.33 m close to ur e f = ur e f |h , the target velocity ur e f |δ
scales dynamically with the mean velocity flow-dependent ratio u1(δ)/u1(h):

ur e f |δ = ur e f |h
u1(δ)

u1(h)
, (III.4.1)

evaluated at each period TP , where the spatio-temporal (ξ1, ξ2 ,t ) averages are computed
for u1(z).

The wind field initializes from a constant pressure gradient ∂p/∂x|0 giving nominal fric-
tion velocity u∗

0 = 0.147 m/s, and then the dynamic ∂p/∂x|0 algorithm is activated so the
actual u∗ and ∂p/∂x values come as consequence. The natural period of the pressure gra-
dient response is TP = 103 (Lx/u′

r e f ) = 285 T0, and the dynamic ∂p/∂x|0 algorithm runs for
400T0 before the moving bottom is introduced.

The characteristic length scaling the domain is L0 = 256 m, which doubles the nominal
wave length λ= 128 m. The boundary layer height (δ= Lz) to wave length ratio is δ/λ= 10,
and the longitudinal and transversal domain extensions to wave length ratio are respectively
Lx/λ = 8 and Ly /λ = 4. The turbulent characteristic time scale is T0 = λ/u∗

0 = 14.51 min,
which gives 86 wave peak periods Tp per turbulent time scale. The nominal WA0 = cp /u∗

0 is
85.47.

The power density function of the wave elevation spectra is the real-valued input to the
LES code. Linear waves components (i , j ) with amplitudes given by the power spectra as

ai j =
√

2F (kxi ,ky j )∆kx∆ky , are initially generated with random phases. Afterwards those

waves propagate with their phase velocity cp (ki j ), given by the linear intermediate water
dispersion equation cp (k) = √

(g /k) tanh(kd). Initializing the wave field from a converged
dynamic ∂p/∂x|0 and flat bottom case, during 100 peak periods the actual wave heights shall
linearly evolve from zero to its nominal value ai j .

This numerical strategy is tested in the different grids of table III.1.1, but results are here
presented only for grid 03 (Fine [512 x 256 x 94]). The time discretization has also been
tested with its results here omitted. The regular wave case is found to require the smallest
time steps, and the value CFL= 0.5 is selected that keeps ∇·u below 10−23 u∗

0 /L0 at any case
here presented.

Four cases are here compared: (0) Case 00 is the reference considering a flat terrain;
(i) Case 01 introduces the regular monochromatic wave; (ii) Case 02 the 1D Irregular Sea-
State; and (iii) Case 03 the 2D Irregular Sea-State. These sea-state conditions correspond
to the conditions estimated during the experimental campaign (Section II.3), reconstructed
as described in section IV.3.1: (iii) Is the full 2d Spectra F (n,φ) → F (kx ,ky ), reconstructed
at the sLiDAR’s Line of Sight (LOS); (ii) is F (n) → F (k), obtained at the LOS and through
the integration of

∫
F (n,φ)dφ, propagating in the wind direction; (i) is the integration of∫

F (n)dn concentrated in the wave peak frequency/ wave-number.
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III.4.2 RESULTS

III.4.2.1 MEAN HISTORY PROFILES

The moving time average is performed through the period tav g = 41 T0 (10 hrs) for the quan-
tities presented in this section, but a shorter average tav g = 0.04 T0 is also employed for the
wind speed and the pressure gradient, respectively shown in figures III.4.1 and III.4.2. In
figure III.4.1, one observes the resolved velocities at the measurement height (h = 18.33 m=
0.14λ), and the target velocity is denoted by the horizontal black dotted line (|u|h = 4.12 m/s=
28 u∗

0 ). The wind at the measurement height and during the period exposed, deviates less
than 4% and 11% from the target, with tav g = 41 T0 and tav g = 0.04 T0, respectively. The
Wind Speed (And such u∗ and WA) is consequence of the dynamic and homogeneous pres-
sure gradient (∂p/∂x|0) modeled according to section III.2, and revealed in figure III.4.2.
Contrary to the wind speed of figure III.4.1, the different average periods (tav g ) have little
effect in ∂p/∂x|0, proving it responds only to very large scale motions.

(a) tav g = 41 T0 (b) tav g = 0.04 T0

Figure III.4.1: Wind speed at the measurement height. For the flat case, and three differ-
ent sea-states identified in the legend at (a). The horizontal line depicts the target velocity
ur e f =4.12 m/s. Sliding statistics are taken with time different averages tav g in (a) and (b).
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(a) tav g = 41 T0 (b) tav g = 0.04 T0

Figure III.4.2: Slowly evolving and homogeneous pressure gradient, modeled according to
section III.2 to achieve the target velocity depicted at figure III.4.1. For the flat case, and
three different sea-states identified in the legend at (a). Sliding statistics are taken with time
different averages tav g in (a) and (b).

(a) Friction velocity. (b) Resolved Wave Age.

Figure III.4.3: Resolved friction velocity (computed from equation III.1.6), and the corre-
spondent Wave Age. For the flat case, and three different sea-states identified in the legends.
Sliding statistics are taken with time average tav g = 41 T0.

The friction velocity u∗
[ξ,η] averaged history is presented in figure III.4.3a for each test

case. The varying friction velocity represents varying WA, that as shown in figure III.4.3b
deviates less than 5.0% from the nominal value WA0=85.47 in the case of an Irregular 1D
spectra, and less than 3.2% otherwise. The Time Step∆t responsible for obtaining a constant
CFL = 0.5 is shown in figure III.4.4a. The slighly varying wind induces small changes in ∆t ,
but no direct influence of the Sea-State description is observed: An evidence that the wave
orbital velocities do not surpass the maximum velocity obtained in the upper boundary,
contrary to the observations in previous sections where ka = 20%.

The non-dimensional form drag Fp /Fτ is shown in figure III.4.4b, revealing the most evi-
dent and striking difference between the cases. The Regular Wave is expected to damp, driv-
ing the wind with negative form drag, while the irregular waves are actually growing with
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positive form drag. The irregular 1D case leads to the highest form drag coefficient. Note
that in the irregular cases, waves are being damped or generated at different scales simulta-
neously, so the positive integrated form drag indicate the predominance of wave generation
at lower scales, over the wave damping occurring in larger scales: In these cases the litera-
ture often employs the Fourier decomposition of the form drag, defining it as function of the
wave-number of frequency scales; such investigation have not yet been employed in current
studies, but would certainly allow an interesting perspective of the form drag behavior in the
irregular sea-states.

(a) Time-step. (b) Form drag Fp /Fτ.

Figure III.4.4: Non-dimensional Time step and form drag. For the flat case, and three dif-
ferent sea-states identified in the legends. Sliding statistics are taken with time average
tav g = 41 T0.

The mean vertical profiles are being probed in the last time-step of the mean history
profiles, and their values reported in table III.4.1.

Table III.4.1: Mean history quantities, probed at the last time-step of figures III.4.1, III.4.2,
and III.4.3. Sliding statistics are taken with time average tav g = 41 T0.

Case ID |u|(m/s) u∗(m/s) WA= cp /u∗ ∂p/∂x ·zl ∆t/T0 Fp /Fτ
1 4.11 0.148 84.9 0.52 1.35·10−4 0.0
2 4.07 0.145 86.7 0.46 1.35·10−4 -1.5%
3 3.98 0.140 89.7 0.43 1.35·10−4 2.5%
4 4.22 0.148 84.9 0.50 1.35·10−4 1.0%

III.4.2.2 MEAN WIND VELOCITY AND TURBULENT PROFILES

The quantities here exploited are obtained with tav g = 41 T0, and the measurement height
h = 18.33 m= 0.14 λ is denoted by the black horizontal dotted lines in the following figures.

The normalized mean wind profiles are shown in figure III.4.5 with the height depen-
dence appearing both in linear (Up to z =λ) and log (Up to z = zl ) scales. The wind profiles
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are a combination of logarithmic and linear functions as discussed in section III.2.1, figure
III.2.1b. Normalized by the resolved friction velocity in the figures, the wind is intensified
across the boundary layer by the waves’ introduction, and the speed-up of the wind pro-
file is more significant for the Irregular 1D Sea State, closely followed by the 2D case. The
measurement height occurs inside the logarithmic region described in section III.1.2.3.

(a) In linear scale.
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(b) In log-linear scale.

Figure III.4.5: Longitudinal velocity profile. The horizontal dashed line between circles
depicts the measurement height h = 18.33 m= 0.14 λ. The regions discussed in section
III.1.2.3 are drawn with the wind profiles at (b). Sliding statistics are taken with time average
tav g = 41 T0.

Table III.4.2: Logarithmic fit of equa-
tion III.1.15 to the wind profile in
the outer surface layer. Optimal α
(Cd = 1) for RMSdi f f < 3 · 10−3, in

zmi d +
[
−zl en

2
,+zl en

2

]
.

iCase α zmi d /L0 zl en/L0

1 1.00 0.39 0.74
2 0.90 0.39 0.73
3 0.78 0.39 0.76
4 0.79 0.39 0.74

Figure III.4.6: Longitudinal velocity profile
and logarithmic fit in the outer surface layer.
The horizontal line denotes the measurement
height 0.14 λ. tav g = 41 T0.

As often (but not always) remarked in the literature, the wave induced disturbances in
the MABL do not break a log-law behavior in the outer surface layer, which is attested fitting
the logarithmic profile of equation III.1.15 with optimal αz0, to the wind profile at a vari-
able region between the closed interval [zmi n , zmax], or zmi d ± 0.5 zl en , being the bounds
[zmi n , zmax] found iteratively so maximizing zlen while keeping RMSe <3 ·10−3. The fitting is
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exemplified in figure III.4.6, with the solution given in table III.4.2. Note the boundary con-
dition is imposed withα= 1 (z0/L0 = 1·10−6), which is accurately matched in the flat bottom
case. The roughness obtained for the wavy cases summarizes the speed up observed in fig-
ure III.4.5a: The regular case introduces the slightest (still significant) disturbance with z0

decreasing of 10%; followed by the irregular 2D sea-state with 21% reduction; and the irreg-
ular 1D Sea-State with 22% reduction.

Figure III.4.7: Turbulent kinetic energy
profiles. The horizontal lines denote the
measurement height 0.14 λ. tav g = 41 T0.

The turbulent kinetic energy (TKE) is shown
in figure III.4.7, and is magnified by the wave
incidence up to z/λ ≈ 0.1, in the lower part of
the logarithmic region. The TKE disturbances
become clearer if normalized by the mean ve-
locities through the Turbulence Intensities de-
picted at figure III.4.8. The turbulence intensity
for longitudinal velocities (TIuu) is shown in fig-
ure III.4.8a, and as in section III.3, the rise in the
turbulent kinetic energy close to the surface is
followed by diminishing turbulence intensities
above that region (z/λ> 0.1). The turbulence in-
tensity for vertical velocities (TIw w ) is also very
sensitive to the wave incidence, significantly in-
creasing up to the measurement height where
z/λ∼ 0.14 as shown in figure III.4.8b. The irreg-
ular 1D and 2D cases present similar TIw w , but in the lower part of the logarithmic region
the TIuu at the 1D Case naturally exceeds the solution for the 2D Case, since in the former
the waves orbital velocities perfect align to the uw plane, while in the second part of the
energy is introduced in the transversal direction.

(a) Turbulent Intensity TIuu . At the measurement
height, TIuu = 8.5%.

(b) Turbulent Intensity TIw w .

Figure III.4.8: Turbulent Intensity of longitudinal and vertical velocity variances. The hor-
izontal lines denote the measurement height 0.14 λ. Sliding statistics are taken with time
average tav g = 41 T0.
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Figure III.4.9: Height dependent ficti-
tious form drag, or WI pressure stress
τ(P )

13 . The horizontal line denotes the
measurement height 0.14 λ. tav g = 41 T0.

In the wave bottom cases and according
to the numerical formulation, the total flux is
given by the contribution of turbulent cross-
correlations (Reynolds) stresses, summed with
the WI pressure shear stress (c.f., Sullivan et al.
[2000] and equation III.1.9), i.e., τ(P )

13 shown in
figure III.4.9a: It results from the projection of
p into the moving grid, and depends on very
specific wind-wave interactions that impose the
phase difference between pressure fluctuations
and the surface elevation. The Regular wave
case reveals indeed a very particular regime on
the WI pressure stress, with a positive form drag
leading to the wave damping, while the Irregular
cases with same Wave Age present negative drag
such leading to wave growth.

The turbulent kinetic energy (TKE) here incorporates Wave Induced motions, and the
TKE balance is presented in figure III.4.10: The wavy cases present slight deviations of pro-
duction, dissipation and transport terms, but the pressure transport is more seriously dis-
turbed.

Production and dissipation are almost symmetric to each other, as shown in figure III.4.10a.
They balance each other resulting in the combined, net (source or sink) production, shown
in figure III.4.10b and observed to be below 10% of their separated values. Close to the sur-
face and above the inner surface layer, dissipation prevails. Just above, production prevails
over dissipation, and above that on the log-law region, production and dissipation balance
each other to the order of ∼ 1%. The regular wave case hardly disturbs the net production
above the inner surface layer, but the irregular waves slightly elevate the height upon which
the net production reaches its maxima.

The net production appears with solid lines in figure III.4.10c, to be compared to the
turbulent transport given in transparency. The turbulent transport adapts to the lack of bal-
ance in production and dissipation, as previously noted in section III.3.9b for the flat bottom
reference. Except that here, the wavy cases to not lead to the inversion of the profiles signs.

The most striking difference in the TKE budget appears again the pressure term shown
in figure III.4.10d. The pressure transport term is non-null in the flat bottom case, slighly
increased in the regular and irregular 1D cases, and greatly increased in the irregular 2D
case. The irregular 2D case is the only one for which the wave induced disturbances in the
pressure transport are indeed smooth, since the regular and irregular 1D cases present sharp
disturbances in the inner surface layer as observed, e.g., in figure III.3.9c.
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(a) Production (positive) and Dissipation (nega-
tive) terms.

(b) Net production: Production minus Dissipa-
tion terms.
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(c) Turbulent transport terms, except pressure, in
transparency; Net production term in solid lines.

(d) Pressure transport term.

Figure III.4.10: Turbulent kinetic energy budget analysis, considering the terms defined in
section III.1.1.4. The horizontal lines denote the measurement height 0.14 λ. Sliding statis-
tics are taken with time average tav g = 41 T0.

III.4.3 OVERVIEW AND DISCUSSION

Addressing long waves (λ = 128 m) and old seas (WA=85) conditions, with small (quasi-
linear) wave amplitudes (ka ∼ 2%) if compared to previous sections (ka = 20%), the sea-
state description is here considered in three levels of increasing complexity and fidelity to
the reproduced experimental conditions observed in section II.3. The dynamic pressure gra-
dient method presented in section III.2.3 is successfully used to keep the mean velocity close
to the target ur e f =4.12 m/s at the measurement height h = 18 m. The WI disturbances are
significantly less pronounced than in previous sections, and a log-law behavior is sustained
in the wind profiles, but the turbulent profiles discussed reveal some of the the intrinsic dif-
ferences between the different sea-state prescriptions, notably remarking the complexity of
Wind-Wave interactions.

The sea-state energy here being ∼ 100 times smaller, many of the disturbances observed
in the previous sections here become negligible, as for example: The logarithmic region is
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sustained with undisturbed apparent friction velocity; the u′w ′ cross correlation profiles
have not even been discussed, because the disturbances are comparable to the intrinsic
level of fluctuation, preventing any meaningful discussion; the turbulence intensities are
very weakly disturbed above the measurement height 0.14 λ; and except for the pressure
transport term, the TKE budget analyses do not behave drastically different in the wavy
compared to the flat bottom cases. Even in this numerical controlled scenario, these dis-
turbances are so hard to catch that the comparison is often contaminated by turbulent un-
certainties, and in the offshore environment most of the previous remarks would be unde-
tectable face to the uncertainties of the measurement techniques, unsteadiness, and non-
homogeneity effects (Hristov [2018]).

As for the previous test cases, the ones here presented are to be revisited with spectral
analyses in section IV.2, after the introduction of an original methodology for identifying the
WI motions above arbitrary sea-states, and during physical or numerical experiments. Con-
trary to the mean history, mean wind and turbulent profiles, and the 1D spectral analyses
(later presented), and as argued in section IV.1: The Space-Time (Or k−w) perspective of tur-
bulent fluctuations reveals detailed information about the WI flow structure. Thus such ap-
proach favors the investigation of consequent WI disturbances and Wind-Wave interactions
in the atmospheric flow, revealing intrinsic differences between the test cases discussed.
The comparison between physical and numerical experiments is considered at section IV.3.
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Part IV

A MECHANISTIC APPROACH TO
PHYSICAL AND NUMERICAL

EXPERIMENTS

Europa and the Great Red Spot photographed by the Voyager 1 in March, 1979. The Great
Red Spot: An enduring large scale anticyclone, larger than earth (Wong et al. [2021]). Eu-
ropa: One of jupiter’s 79 moons; slightly smaller than earth. Colored by the artist Alexis
Tranchandon, part of The Bruce Murray Space Image Library collection. Original from Voy-
ager 1 Imaging Science Subsystem (ISS): NASA / JPL-Caltech / Alexis Tranchandon / Solaris.
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IV.1 AN ENHANCED PERSPECTIVE OF THE WAVE INDUCED

FLOW

The Wave Coherent (WC) decomposition, introduced at section I.3.6 and reviewed in sec-
tion IV.1.1.1, is often adopted in the literature to identify WI motions in the atmosphere. It
is here argued that though extremely important, the WC flow evaluates the quality of turbu-
lent motions coherent to the sea-state, rather than giving a precise characterization of the
WI flow. The WC flow might cover a large portion of the turbulent spectra, not necessarily
capturing any WI disturbance in the airflow, and it does not discriminate different motions
occurring at the same scale. In fact, Atmospheric Turbulence (Atm.) and Wave Induced (WI)
motions coexist in the Wave Coherent (WC) flow, that holds all Wind-Wave interaction ef-
fects.

Looking forward into the flow description, it is desired to observe what is happening at
the WC scales. Notably, Atm. and WI motions occurring at the same scales behave consider-
ably different, e.g., in terms of anisotropy, regeneration cycle and Space-Time correlations.
But which are the local processes of Wind-Wave interactions occurring between Atm. and
WI motions, and after all, what are these Wave Induced motions? The author believes there
is yet place for a more detailed description of the flow topology insight the WBL, and intro-
duces it as follows.

IV.1.1 THEORETICAL FOUNDATION

Two concepts extend the definition of a Wave Related flow, from Wave Coherent (WC) to
Wave Induced (WI), leading to WI and WC decompositions that for the first time allow their
quantification in the field, without any previous sea-state knowledge required: (i) The exist-
ing correlation between Atmospheric turbulence (Atm.) and WI motions; and (ii) The Space-
Time spectral description of the WI flow. The WI flow is so defined as a specific kind of
turbulent fluctuation, that does not behave as expected from atmospheric turbulent flows
above fixed terrains, which might be often particularly noticeable in the k − w turbulent
spectra that allows the decomposition above arbitrary sea-states.

IV.1.1.1 WAVE COHERENT AND WAVE INDUCED FLOWS

Recall from section I.3.6, equation I.3.1, that the WC filter (superscript ·C ) is defined by pro-
jecting a generic variable χ, into the vector space of all wave (elevation η) coherent signals.
Counting in the Hilbert transform discretizing η in the spectral domain, let η

◦
k (x) (η

◦
w (t ))

be the in-quadrature counterpart of the k th (w th) wave number (angular frequency), one-
dimensional free surface elevation ηk (x) (ηk (t )), then repeating equation I.3.1:
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χ̃
C

k (x) =χ(x)ηk (x)
[x]

||ηk ||2[x]

ηk (x)+ χ(x)η
◦

k (x)
[x]

||η◦k ||2[x]

η
◦

k (x)

χ̃
C

(x) =∑
k
χ̃

C

k (x), and χ̂
C

(x) =χ(x)− χ̃C
(x).

(IV.1.1)

Consider the numerical case of a monochromatic wave described in section III.2.5, and
further explored in section IV.1.2. The wave is highly non-linear ka = 0.2, described by a 5th
order stokes theory, and considerably fast with WA= cp /u∗ ∼ 60. The wave-number depen-
dent longitudinal EDF (Turbulent spectra), resolved ∼1.1 m above the surface, is depicted
in blue full line at figure IV.1.1: The WI flow is observed augmenting the turbulent spectra at
five local maxima corresponding to the wave harmonics scales.

Figure IV.1.1: Numerical experiment of a monochromatic wave described in section IV.1.2.
One-dimensional spectral density function Eu1u1 (l = 2π/k). Total fluctuation spectra Eu′

1u′
1

in blue full line; Residual of the Wave Coherent filtered turbulent spectra EC
û1û1

in green dot-

ted line; Wave Induced filtered Atmospheric turbulence spectra E I
û1û1

in red dashed line.

In this canonical condition, where the sea-state spectrum is infinitely sharp (i.e., a dirac
function), applying the Wave Coherent (WC) filter of equation IV.1.1 is straightforward and
leads to the green dashed line turbulent spectrum in figure IV.1.1. As expected the WC filter
associates all the energy occurring at the waves’ scales to the WC flow, leaving nonphysical
gaps in the turbulent spectrum, ultimately ensuring the lack of correlations between the
decomposed fields χ̃χ̂= 0. To further evaluate the implications of this assumption, the Wave
Induced (WI) filter (red dashed line in fig. IV.1.1) is here proposed as an alternative to the
WC filter. Introducing the flow dependent WI fraction 0 ≤Fχ(k) ≤ 1, yet defined in the wave-
number domain, the WI filter identified by the ·I superscript is defined as a fraction of the
Wave Coherent filter:

χ̃
I

k (x, t ) = Fχ(k) ·χ̃C

k (x, t ), and

χ̂
I

k (x, t ) = [
1−Fχ(k)

] ·χ̃C

k (x, t ),

(IV.1.2)
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splitting total fluctuations into Atmospheric Turbulence (Atm., χ̂) and Wave Induced (WI, χ̃)

fields. Clearly the χ̃χ̂= 0 property is lost with the WI filter, as Atm. χ̂
I

k and WI motions χ̃
I

k are
not perfectly in quadrature, and are allowed to coexist in the same wave-number, unless:
Fχ(k) = 0 that suppresses WI motions in the wave-number k, or Fχ(k) = 1 that recovers
the WC filter in k. Thanks to the linearity of the Fourier Transform operator, F uniquely
defines the auto and cross-correlation EDFs of Atm. and WI motions, in terms of the total
auto-correlation spectra Eχχ(k):

Eχ̃χ̃(k) = [
Fχ(k)

]2 Eχχ(k) ,

Eχ̂χ̂(k) = [
1−Fχ(k)

]2 Eχχ(k) , and
Eχ̃χ̂(k) = [

Fχ(k)
][

1−Fχ(k)
]

Eχχ(k) ,

(IV.1.3)

with the total EDF decomposed in Eχχ = Eχ̃χ̃+2 Eχ̃χ̂+Eχ̂χ̂.

If there is a phase shift ψ(k) between χ̃
I

k and χ̃
C

k , then Fχ(k) = |F | · exp[i ψ] shall be a
complex valued function. In a statistically steady scenario, it is reasonable to assume that
Atm. and WI motions interacting at the same scales will resonate, and one can assume
ψ(k) = 0. Without any other reason to assume the contrary, the WI flow is here defined
perfectly in phase to the WC flow, and Fχ(k) = R(F ) is a real-valued function. Note that’s
a necessary assumption, because the auto-correlation functions do not hold any informa-
tion about the phase, preventing in principle the deterministic reconstruction of turbulent
motions from the turbulent auto-spectra (c.f. Kogan et al. [2016]).

From that assumption and equation IV.1.3, F (k) can be determined from the magnitude
of the turbulent spectra Eχχ(k), so that Eχ̂χ̂(k) = [

1−Fχ(k)
]2 Eχχ(k) behaves as expected

from Atmospheric Turbulence motions. This approach is first tested in figure IV.1.1, where
F (k) is obtained through a linear interpolation of the total turbulent spectra at the waves’
harmonic scales, leading to the Atm. turbulence spectrum depicted in red dashed line at the
figure, and further explored in section IV.1.2.

With the methodology proposed, Eχ̂χ̂(k) is by definition extracted from Eχχ(k) to follow
a certain behavior. The phase ψ(k) would then play its role distributing the energy excess
(Eχχ−Eχ̂χ̂) between the WI auto and cross spectra Eχ̃χ̃+2 Eχ̃χ̂. The assumptionψ(k) = 0 (in-
phase signals) maximizes the amount of Atm.-WI correlations in the decomposition, while
ψ(k) →π/2 (in-quadrature signals), on the contrary, implies a negligible amount of WI-Atm.
correlations. Hence, with ψ(k) = 0 the WI-Atm. correlations is here approximated by its
upper limit, while the exact WI auto-spectra shall range between Eχ̃χ̃ and Eχ̃χ̃+2 Eχ̃χ̂.

To be soon overcome by an enhanced perspective of WI motions, such methodology has
three major drawbacks: (i) As for the WC filter, the WI filter so defined applies easily to a
monochromatic WI disturbance, or in a lesser extent to a very sharp sea-state spectrum, but
that is a quite different situation from that of a continuous sea-state spectrum observed in
the ocean, overlapping with turbulence over multiple scales; (ii) Often the case, WI motions
that do not introduce significant changes in the 1D turbulent spectra shall not be detected,
contrary to the WC filter that on the other side neglects the atmospheric turbulent part in-
dependently of any specific WI disturbance; (iii) Significant χ̃χ̂ correlations are frequently
observed, which prevent the uncoupling between WI and Atmospheric turbulence govern-
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ing equations, defying the notion of a WI flow system (almost) detached from turbulent dy-
namics.

IV.1.1.2 JOINT SPACE-TIME MODAL PERSPECTIVE

In section II.3, it is argued that compared to the 2D wave-number-angular-frequency (k−w)
spectra, 1D wave-number (k) or frequency f = w/2π turbulent spectra reveal a very limited
perspective of the spectral energy distribution. If the mean wind velocity (U ) is sufficiently
apart from the waves’ velocities (c), atmospheric turbulence and WI motions shall be fre-
quently distinguishable in the 2D spectra, whereas they are not in the 1D spectra.

It is also shown in section II.3 that the reason the WI signature emerges preferably in the
2D Spectra, whereas it does not in the 1D Spectra is exactly because the Atm.-WI coherence
is diminished in the Space-Time domain, if compared to the 1D Space or Time versions.
Within such perspective, the difficulties sooner expressed might be often overcome: (i) It
will be shown for multiple physical and numerical experiments, and for wind signals mea-
sured above arbitrarily sea-states, that the partitioning of the turbulent spectra becomes
feasible in the k −w domain, without any sea-state information being known a priori; (ii)
As long as U and c are sufficiently apart, the WI signature shall be sufficiently separated
from the most energetic Atm. turbulence in the 2D Spectra; (iii) In the Space-Time (x − t )
domain the apparent correlations χ̃χ̂ are much smaller than in the 1D separated Space or
Time domains, so without any loss of consistency the URANS equations might be obtained
from combined Space-Time averages, and that will frequently lead to a negligible amount
of χ̃χ̂, limiting the Atm.-WI interactions and supporting the relevance of the uncoupled set
of equations presented in Hristov and Ruiz-Plancarte [2014].

In the x − t and k − w perspective, the WC and WI filters are defined by the following
equations:

χ̃
C

kw
(x, t ) = χ(x, t )ηkw (x, t )

[x,t ]

||ηkw ||2[x,t ]

ηkw (x, t )+
χ(x, t )η

◦
kw

(x, t )
[x,t ]

||η◦
kw
||2[x,t ]

η
◦

kw
(x, t )

χ̃
C

(x, t ) =∑
w

∑
k
χ̃

C

kw
(x, t ), χ̂

C
(x, t ) =χ(x, t )− χ̃C

(x, t )

(IV.1.4)

χ̃
I

kw
(x, t ) = Fχ(k, w) ·χ̃C

kw
(x, t )

χ̂
I

kw
(x, t ) = [

1−Fχ(k, w)
] ·χ̃C

kw
(x, t ).

(IV.1.5)

As before the turbulent spectra scale with the square of F or its counterpart 1−F , such
as given in equation IV.1.3 that can be easily generalized for F (k, w) and Eχχ(k, w). Again
F is directly estimated from the turbulent spectra, but the procedure is significantly more
complex in the 2D version, so the partition of Eχχ(k, w) leading to the real-valued F is de-
scribed in section IV.2. The partitioning introduced also allows the estimation of the WC
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field, without previous knowledge of the free-surface motions, which is simply recovered
when F ∼ 1.

IV.1.2 MONOCHROMATIC WAVE APPLICATION

The Wave Coherent and Wave Induced flow definitions are first exploited in the numerical,
canonical case of monochromatic waves described in section III.2.5. Recall that this section
presented 3 cases: Case 01 is the flat bottom (flat BC) reference with constant ∂p/∂x|0; Case
02 considers a wavy bottom (Wavy BC), but still constant ∂p/∂x|0; and Case 03 considers the
Wavy BC introducing the dynamic ∂p/∂x|0 algorithm. Cases 01 and 02 have been exploited
in Paskin et al. [2020] by considering the same analysis followed hereby.

Here, sections IV.1.2.1 and IV.1.2.2 compare the flat and wavy bottom cases, previously
presented in section III.2.5 as Case 01 (flat BC and constant ∂p/∂x|0) and Case 03 (wavy
BC and dynamic ∂p/∂x|0), repeating and confirming the analyses previously presented in
Paskin et al. [2020] for Case 02. The wavy case is characterized by WAr e f = 60, with non-
dimensional wave height ka = 0.2, and non-dimensional boundary layer height δ/λ = 5.
One shall refer to section III.2.5 for other details about the specific numerical setup.

IV.1.2.1 WAVE INDUCED MOTIONS

The longitudinal 1D Correlation functions R(ξ1) are averaged on (ξ1,ξ2) directions along
each horizontal computational plane. The wave-number dependent turbulent spectra E(k)
are then obtained through the FFT of the Correlation functions (see section I.1.1.5), before
being submitted to a moving time average with period tav g = 6.7 T0, so that E = E(ξ3,k).

These spectra are first evaluated at different heights ξ3 in figure IV.1.2, for the flat bottom
case in (a,b), and the wavy bottom case in (c,d). The turbulent spectra for longitudinal ve-
locities are given in (a,c), and for the vertical velocities in (b,d). In terms of lengths 2π/k, the
E(k) spectra ranges between 2∆x = λ/64 and xl = 4λ, but in the LES a dealising procedure
truncates the spectra, damping fluctuations smaller than 3∆x.

The wave signature is evident at the wavy bottom case, figures IV.1.2c and d, leading
to peaks occurring in the swell free (kw ) and bounded (nkw ; n = 2..5) wave numbers. The
spectra are normalized by the one-point auto-correlation, that equals their integral, so the
WI localized disturbances introduce large gaps between different heights in undisturbed
regions of the spectra depicted. The peaks are gradually damped with increasing height ξ3,
and are more prominent for the vertical velocities.

The WI disturbances are very sharp, mostly detected at single points of the spectra,
which is natural because the wave itself is prescribed that way. A monochromatic wave is
infinitely sharp in the spectral domain, i.e., a dirac function in the continuous, or a step
function (with width ∆k = 2π/[xl nx]) in the discrete formulation.
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(a) Longitudinal velocities; Flat B.C. (b) Vertical velocities; Flat B.C.

(c) Longitudinal velocities; Wavy B.C. (d) Vertical velocities; Wavy B.C.

Figure IV.1.2: One-dimensional wave-number-dependent spectral EDF of longitudinal and
vertical velocities. Flat and Wavy bottom cases of section III.2.5. Wave (WAr e f = 60, ka = 0.2)
prescribed according to a fifth order solution, leading to WI disturbances at five harmon-
ics. The spectral domain ranges between 2π/xl and π/∆x, but in LES it is truncated at
(2/3)π/∆x.

The Wave Coherent and Wave Induced flow were introduced in section IV.1, with help
of figure IV.1.1, that exemplifies the WC and WI filters employed to the turbulent spectra of
figure IV.1.2.

The obtained (squared root of the) wave induced (energy) fraction Fk (z) is shown in
figure IV.1.3 for each of the decomposed velocity fields and wave harmonics lengths. The
five different curves in each figure represent each of the five harmonics (n = 1..5) with length
λk =λ/n, and the vertical axes is normalized for each harmonic by λk .

Focusing on the principal wave component λ, the decay with height is noted, as F

smoothly decays from F ∼ 1 in the bottom, up to F ∼ 0 at z ∼ 0.6λ and z ∼ 0.8λ, respectively
for longitudinal and vertical velocities. No Wave Induced flow is observed for transversal ve-
locities, omitted for the sake of brevity.

The decay in Fk is more rapid for lower wave numbers. It is still unclear how much this
is either due to: A weaker BC’s wave forcing, because higher wave-number harmonics have
smaller non-dimensional amplitudes; or due to the fluctuation behavior at these specific
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scales, because e.g., WA and λk /δ vary for each harmonic, or because higher than first order
harmonics (bounded waves) do not follow the dispersion relation

A natural definition of the WBL height that requires negligible (< 1%) wave induced en-
ergy compared to the total energy in the principal wave number occurs when F < 0.1: Lead-
ing to a WBL height of ∼ 0.4λ or ∼ 0.6λ if longitudinal or vertical motions are respectively
considered.
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(a) Longitudinal velocity WI fraction Fku = fk .
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(b) Vertical velocity WI fraction Fkw = fk .

Figure IV.1.3: Wave Induced fraction Fλk (z), corresponding to the squared root of the WI
energy fraction according to equations IV.1.2 and IV.1.3. Obtained for longitudinal and ver-
tical velocities. Presented and normalized (in ξ3) separately for each harmonic (n = 1..5)
with length λk =λ/n.

IV.1.2.2 ATMOSPHERIC TURBULENCE MOTIONS

Applying the wave related decompositions allow the comparison of Atm. turbulence in Wavy
and Flat bottom cases. So employing the WI filter, the Atm. auto-spectra of both cases are
superposed in figure IV.1.4, together with the ESDU reference described in section III.1.2.3.
The spectra are presented for the longitudinal velocities at two different heights. There is a
slight difference between the cases, but generally both agree well to the ESDU reference on
largest scales, then decay faster than the reference at smallest scales due to the SGS mod-
elling. The difference observed between the cases is mostly related to a disturbance on the
turbulent integral length scale, demonstrated below.
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(a) Eu′u′/σu′u′ at ξ3/λ= 1.1 ·10−2 (b) Eu′u′/σu′u′ at ξ3/λ= 5.0 ·10−2

Figure IV.1.4: Atmospheric turbulence spectra of longitudinal velocities presented at two
different heights. Wavy and flat bottom cases with the ESDU reference. The WI filter is em-
ployed in the wave bottom case. The ESDU reference considers the variances and integral
length scales obtained from each spectra, according to section III.1.2.3.

In cases where the auto-correlations are strongly affected by WI motions, the WC and
WI filters give meaning to turbulent motions, and thus to the definition of integral length
scales lL(u′

i ). For the Wavy BC and the longitudinal velocities, the integral length scale lL(u′
1)

is first presented in figure IV.1.5, as computed from different decompositions. As in figure
IV.1.1, blue full lines designate the total fluctuations, red dashed lines the Atm. turbulence
given by the WI filter, and green dotted lines the Atm. turbulence given by the WC filter. The
integral length scale computed for the total fluctuations are hugely disturbed if compared
to what is revealed for the Atm. turbulence by either (WC or WI) methodology. A smaller
improvement to the turbulent length scales is further obtained with the WI filter.

Figure IV.1.5: Integral length scale of longitudinal velocities at the wave bottom case. Ex-
tracted from the turbulent spectra revealed by the different spectra in figure IV.1.1. Total
fluctuations l0(u′) in blue full line; residual of the Wave Coherent filtered l0(û(C )) in green
dotted line; WI filtered, Atm. motions l0(û(I )) in red dashed line.

So, the integral length scale of the Atm. turbulence revealed by the WI filter is further
explored by comparing flat and wavy cases in figures IV.1.6a and IV.1.6b, concerning lon-
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gitudinal or vertical velocities, respectively. The diminishing of turbulent integral scales by
the wave’s introduction is observed in figures IV.1.6a and IV.1.6b, at least up to ξ3 > 0.6λ.

(a) Longitudinal velocities l0(û(I )). (b) Vertical velocities l0(ŵ (I )).

Figure IV.1.6: Integral length scale l0 of longitudinal and vertical velocities, at Flat and Wavy
bottom cases. Obtained from the Atm. turbulence auto-spectra employing the WI filter.

Recalling the assumption that Atm. and WI motions occurring at the same scale are
in-phase, each field can be reconstructed from the total fluctuations, according to equa-
tions IV.1.1 and IV.1.2, and given the real-valued function F shown in figure IV.1.3. Figure
IV.1.7 depicts the reconstructed fields: Atm. turbulence, represented by coherent vortical
structures, identified by the Q-criterion, and colored by the u′w ′ (y-plane) vorticity; and WI
motions, represented by a colormap of the longitudinal velocities and the velocity vectors
projected in the (x − z, normal to y) plane.

The coherent structures identified in figure IV.1.7 are quasi-streamwise aligned, bending
downwards at the wave trough as described in Yang and Shen [2010] (reviewed in fig. I.3.7)
when considering fast waves conditions. In figure IV.1.7 one observes those coherent struc-
tures submitted to the geometrical influence of the wavy bottom, but also to interactions
with the Wave Induced flow.

The structure of the WI flow pictured in figure IV.1.7 agrees to the potential theory de-
scribed at the appendix A.1.1, meaning they qualitatively ressemble the stokes orbitals. But
note that means a 180° shift in longitudinal velocities between the sea and air domains, i.e.:
At the ocean the longitudinal velocity is positive on the crest and negative on the trough, but
at the atmosphere as depicted in the figure, velocities are negative (blue) on the crest, and
positive (red) on the trough.

The Atm. turbulence is characterized by a predominance of negative u′w ′ correlations
(fig. III.2.7d for example) aligned to the mean shear stresses, and indeed negative vorticity
(red) prevails in figure IV.1.7. In two-dimensional flows, it is expected that vortical structures
rotating in the same direction break-down into smaller structures, while vortical structures
rotating in opposed directions roll-up Jiménez [2004]. That remark could explain the pre-
dominance of vortical structures on the crests, and the mitigation of these structures in the
trough. Note that at the crest, WI vorticity is positive rotating against the shear stresses, but
on the trough the WI vorticity is negative rotating with the shear stresses. These kind of
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interactions could also explain, qualitatively at least, the diminishing integral length scales
observed at figure IV.1.6.

Figure IV.1.7: Assuming in-phase Atm. and WI motions occurring at the same scale, Atm.
and WI fields are reconstructed from equations IV.1.1 and IV.1.2. Atmospheric Turbulence
field: Iso-surfaces of Q-criterion colored by ’y’ (x-z plane) vorticity; Wave Induced field: Mid-
dle ’y’ plane, probing velocity vectors, and colored by longitudinal WI velocity.

IV.1.2.3 JOINT SPACE-TIME MODAL DISTRIBUTION

As said, the methodologies here presented for obtaining WC and WI flows can hardly be em-
ployed in more complex situations, where the sea-state energy is continuously distributed
over a wide range of the 1D spectral domain. It has also been sad that this problem might
be overcome by considering the 2D wave-number-frequency spectra (k −w), which is the
topic of next section IV.2. So figure IV.1.8 closes this section presenting the 2D spectra k −w
spectra that corresponds to the wavy case here discussed.

At figure IV.1.8, the 2D spectra are presented at two different heights, and as a function of
the wave length (2π/k) period (1/ f ), so the slopes in the figure indicate velocities. The Taylor
hypothesis prediction corresponds to the mean wind velocity, given in full lines. The disper-
sion relation corresponds to the wave velocity, given in the upper-most dashed lines. There
are five dashed lines in figure IV.1.8a resembling the dispersion relation, each one giving the
velocity of each of the waves harmonics. The lines corresponding to higher harmonics are
omitted in figure IV.1.8b to avoid contaminating the analysis, since WI disturbances start to
become unnoticed in some harmonics.

Before properly describing the WI disturbances, one must note a strong anomaly in fig-
ure IV.1.8a. The Taylor hypothesis implies that eddies are transported by the mean velocities.
In the 2D spectra of figure IV.1.8, that means that the energy shall rise when approaching the
full black line in the figure. Note that in figure IV.1.8b, the local maxima of the spectra in-
deed approach the full black lines. This kind of disturbance characterize a Doppler shift
in spectral turbulence with respect to Taylor’s prediction, and during the whole manuscript
is only observed in figure IV.1.8a. A little bit higher in the ABL for the same test case, in
figure IV.1.8b, the anomaly is hardly observed. That’s clearly a Wave Induced disturbance
in the Atmospheric turbulence, but whether it is a numerical or physical feature remains
unanswered. Recall that present sea-state also contains much more energy than the others
considered in the manuscript.
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(a) Eu′u′/σu′u′ at ξ3/λ= 1.1 ·10−2 (b) Eu′u′/σu′u′ at ξ3/λ= 5.0 ·10−2

Figure IV.1.8: Wave-number-angular-frequency 2D turbulent spectra for the Wavy bottom
case of a monochromatic wave (WAr e f = 60, ka = 0.2). The mean velocity is depicted in
the black full line corresponding to Taylor’s hypothesis, and the wave velocities presented in
dotted lines. In (a) the wave velocities are shown for the first five harmonics. In (b) only the
wave velocity is depicted.

Now to the WI flow, the disturbances are clearly noted by the strong peaks occuring in
the waves harmonics, and along the dotted lines in figure IV.1.8. Interestingly, there are five
harmonics, five dotted lines, but one can observe eight WI disturbances in figure IV.1.8a.
That’s because the free-surface Boundary Condition (BC) might be prescribed according to
a 5th order stokes solution, but in the LES: The vertical velocities of the BC are reconstructed
so ensuring the incompressible constraint ∇ ·u = 0; and the fully non-linear Navier-Stokes
equations is solved in the atmosphere. So the WI flow present higher degree of non-linearity
if compared to the 5th order wave prescribed. With attention, actually six harmonics can be
found in the 1D spectra of figure IV.1.2, but many more can be observed in the 2D spectra
hereby. In fact, nine were found by the author by adjusting the color ranges in figure IV.1.8a.

The 2D spectra also reveal that contrary to the sea-state forcing, and to what is suggested
from the 1D spectra of figure IV.1.2, actually WI disturbances spread from the wave and
its harmonics scales, transferring into a wider part of the 2D spectra. Also section IV.2.2.1
presents a regular wave case, but with ∼ 100 times less energy, where this feature is again
observed and further characterized with figure IV.2.6b.

IV.1.3 OVERVIEW AND DISCUSSION

An original methodology allows the characterization of the MABL into its Wave Induced and
Atm. turbulent motions, considering the correlation between those fields, thus allowing
further investigation of the coupled dynamics between them.

The decomposition must rely on turbulent and wave induced characteristics to define
the WI fraction F , here obtained to recover turbulent spectral density functions’ shapes as
expected from classical flat terrain turbulent motions. This particular strategy is suitable for
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regular seas but should be adapted otherwise, which is addressed in the next sections.

A canonical test case is presented where a reasonably sized swell (ka = 0.2), described
by 5th order theoretical solution, meets relatively slow wind conditions (WA = 60) in the
neutral MABL resolved by LES. A natural definition of the WBL height that require negligible
(< 1%) wave induced energy compared to the total energy in the principal wave number
occurs when F < 0.1: Leading to a WBL height of ∼ 0.4λ or ∼ 0.6λ if longitudinal or vertical
motions are respectively considered in the test case presented.

The Wave Induced filter proposed recover the expected turbulent behavior, though tur-
bulent scales are distorted and particularly the integral scale is diminished. Wave induced
motions merge into the turbulent cascade distorting and forcing the turbulent flow above
the WBL. Present results indicate statistical models of wind resource could improve their
accuracy in offshore environments by considering (i) The distortion of turbulent scales and
(ii) The superposition of a Wave Induced field model.
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IV.2 PARTITIONING WI MOTIONS IN THE TURBULENT SPECTRA

ABOVE ARBITRARY SEA-STATES

Directly evaluating Wave Induced fluctuations in the atmosphere, the mechanistic approach
reviewed in section I.3.6 generally considers the triple decomposition of a flow field χ =
χ+ χ̂+ χ̃ (Such as velocity and pressure) into mean χ, turbulent χ̂, and wave related χ̃ fields,
with the total fluctuations given by χ′ = χ̂+ χ̃. Imposing a filter to retain the Wave Coherent
(WC) flow that neglects its correlation with turbulence, Hristov and Ruiz-Plancarte [2014]
present dynamic equations (Section I.3.6) for the decomposed fields uncoupled between

WC (χ̃
C

) and turbulent (χ̂
C

) motions.

Present work proposes at section IV.1 a definition of the Wave Induced (WI, χ̃
I
) flow, and

the Atmospheric turbulence (Atm., χ̂
I
) counter-part, in an enhanced perspective relying in

two crucial aspects: (i) The admissibility of the correlation between WI and Atm. motions as
first proposed in Paskin et al. [2020] (Section IV.1.2); and (ii) The Space-Time description of
χ, notably counting in the wave-number-angular-frequency (k−w , 2D) spectral distribution
of the fluctuations. The WI flow is so defined by extending the definition of the WC flow
through the introduction of the WI fraction F in equations IV.1.4 and IV.1.5, here repeated
for the sake of completeness:
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(x, t ) = χ(x, t )ηkw (x, t )
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(IV.2.2)

Still according to the discussion in section IV.1, WI and Atm. motions occurring at the
same scale are assumed in-phase, so a real-valued function F uniquely describes the auto
and cross correlations EDF through equation IV.2.3, rewritten below in the k−w perspective:

Eχ̃χ̃(k, w) = [
Fχ(k, w)

]2 Eχχ(k, w)

Eχ̂χ̂(k, w) = [
1−Fχ(k, w)

]2 Eχχ(k, w) , and
Eχ̃χ̂(k, w) = [

Fχ(k, w)
][

1−Fχ(k, w)
]

Eχχ(k, w) .

(IV.2.3)

As discussed and attested in sections IV.2.2 and IV.2.3, respectively in numerical and
physical experiments, the k −w EDF of the fluctuations Eχ′χ′(k, w) = Eχ̂χ̂+Eχ̃χ̃+2 Eχ̂χ̃ often
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contains enough information so that F can be determined from equation IV.2.3, recover-
ing the Atm. part Eχ̂χ̂(k, w) that behaves as expected from atmospheric turbulence. These
applications rely in the partitioning of the 2D spectra Eχ′χ′(k, w), here achieved with the
method described below, built to operate in generic conditions above arbitrary sea-states,
as long as WI disturbances are noticeable in Eχ′χ′(k, w).

IV.2.1 CONTOUR ADVANCING SEGMENTATION OF THE 2D TURBULENT

SPECTRA

A particular contour based segmentation technique is developed to identify Atmospheric
(Atm., ·̂) and Wave Induced (WI, ·̃) contributions to the 2D Turbulent spectra Eχ′χ′(k, w),
operating in the image of the logarithmic spectra, given in the wave-length-period (r,τ) do-
main, i.e., log[Eχ′χ′(r,τ)]. In the physical experiment that corresponds to the images of figure
II.3.3, for example.

Let Ci (Ei ) be the contour of Eχ′χ′ associated with energy Ei , the method advances with
decreasing energy (Ei > Ei+1) classifying sets of Ci into Atm. (Ĉi ) and/or WI (C̃i ) parts. The
procedure is first exemplified in figure IV.2.1; and applies to Cases 01 and 02.a. of section II.3,
as exemplified in figure IV.2.2; and to Cases 01, 02 and 03 of section III.4, as in figure IV.2.3.
The figures contain a lot of information, that the reader is suggested to unveil during the
section. Notably figure IV.2.1 summarizes multiple definitions given hereby, while figures
IV.2.2 and IV.2.3 exemplify the overall contour-advancing procedure.

Figure IV.2.1: Schematic of the contour advancing segmentation technique, drawn from fig-
ure IV.2.3o at level i > i0. Starting from i0, the contour is segmented. The current contour Ci

is defined in the wave-length-period (r,τ) domain as depicted in full black line at the figure,
and is segmented into Atm. (Ĉi ) and WI (C̃i ) parts by the points [p1, p2]i depicted as red
circles. Between [p1, p2]i a red dot-dashed line represents the reconstruction of Ĉi . The WI
region of influence is bounded by SW I that stands in magenta dots and lines. Below (with
smaller energy than) the [p1, p2]i reconstructed line, SW I matches C̃i . Above (with greater
energy than) the [p1, p2]i reconstructed line, SW I is defined by the previous set of points
[p1, p2] j for i 0 < j ≤ i .

For each case, figures IV.2.2 and IV.2.3 depict four different levels i , with the black full
line standing for the current, total fluctuation contour Ci . As the procedure advances, a
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region is identified inside the closed boundary SW I (Magenta lines and dots in the figures),
where the WI disturbances in the contours are potentially significant. The Atm. contours
Ĉi are linearly reconstructed inside SW I (see fig. IV.2.1). Once the procedure converges, the
interpolation of reconstructed Ĉi inside SW I gives a continuous distribution of the Atm. 2D
spectra Ê(k, w) = Eχ̂χ̂, from which Fχ = 1−√

Eχ̂χ̂/Eχχ is obtained according to equation
IV.2.3.

Initially and up to a certain level i0, registered in figures IV.2.2(a,e) and IV.2.3(a,e,i,m), the
classification is trivial because SW I and Ĉi do not overlap: If Ci is open, Ci → Ĉi is Atm.; if Ci

is closed and contains the wave peak scale [Lp ,Tp ], Ci → C̃i is Wave related; and up to this
point C̃ → SW I . After level i0 though, when Ci contains the saddle point between Ĉi 0 and
SW I , the open contours also contain the wave peak scale, and Ci has to be segmented.

(a) Case 01; i0. (b) Case 01; i1 = i0 +1. (c) Case 01; i2 > i1. (d) Case 01; i3 > i2.

(e) Case 02.a; i0. (f) Case 02.a; i1 = i0 +1. (g) Case 02.a; i2 > i1. (h) Case 02.a; i3 > i2.

Figure IV.2.2: Turbulent 2D Spectra for Cases 01 and 02.a from section II.3; and the contour
based segmentation technique, advancing in i shown at i0..3. Lines, dots, and circles are as
described in figure IV.2.1.

When i > i 0 the contour Ci is split in points p1 and p2, defining the segments C̃i inside,
and Ĉi outside of [p1, p2]i . The points p1 and p2 are found maximizing the coherence be-
tween Ci and the previous reference sets, according to the procedure described in section
IV.2.1.1. The splitting points p1 and p2 are spotted in red circles when i > i0 in figures IV.2.1,
IV.2.2, and IV.2.3.

The turbulent contour Ĉi is linearly reconstructed between [p1, p2]i , depicted as a red
dot-dashed line between the red circles in the figures. Inside (in the augmenting energy
sense of) the reconstructed Ĉi , SW I is composed of all points [p1, p2] j previously obtained
for i 0 < j ≤ i . Outside (in the diminishing energy sense of) Ĉi , SW I = C̃i .

The advancing procedure finishes when the coherence between Ci and the previous
reference sets deteriorates (Criterion established in section IV.2.1.1), which happens soon
after Figures IV.2.2(d,h), and IV.2.3(d,h,l,p). Outside the region SW I , Eχ̃χ̃(k, w) is null and
Eχ̂χ̂ = Eχ′χ′ . Inside SW I , log[Eχ̂χ̂] is linearly interpolated from the turbulent contours Ĉi re-
constructed between [p1, p2] j for i 0 < j ≤ i .
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That covers the overall contour-advancing procedure, leading to Eχ̂χ̂, and consequently
to Fχ, Eχ̃χ̃, and Eχ̃χ̂ from equation IV.2.3. A single, non-trivial question remains, regard-
ing the actual segmentation procedure, determining points [p1, p2] j according to the next
section.

(a) Case 01; i0. (b) Case 01; i1 = i0 +1. (c) Case 01; i2 > i1. (d) Case 01; i3 > i2.

(e) Case 02a; i0. (f) Case 02a; i1 = i0 +1. (g) Case 02a; i2 > i1. (h) Case 02a; i3 > i2.

(i) Case 02b; i0. (j) Case 02b; i1 = i0 +1. (k) Case 02b; i2 > i1. (l) Case 02b; i3 > i2.

(m) Case 03; i0. (n) Case 03; i1 = i0 +1. (o) Case 03; i2 > i1. (p) Case 03; i3 > i2.

Figure IV.2.3: Turbulent 2D Spectra for Cases 01 (a-d), 02 (e-l), and 03 (m-p); and the contour
based segmentation technique, advancing in i shown at i0..3. Case 02 reveal two detached
regions of WI disturbances, so the partitioning here is split in Case 02a (e-h) and 02b (i-l).
Lines, dots, and circles are as described in figure IV.2.1.

IV.2.1.1 SEGMENTATION PROCEDURE

The image defined in (r,τ) is here accessed in non-dimensional coordinates x = r /max(r )
and y = τ/max(τ). To reduce the computational effort and because c À u1, the contours are
kept only for velocities r /τ above the mean wind speed u1.
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Once the level i0 has been reached at i ≥ i0, the advancing procedure relies in the seg-
mentation of the contour Ci = C̃i ∪ Ĉi , identifying the points [p1, p2]i that define the sets C̃i

(Between [p1, p2]i ), and its complement Ĉi = Ci \ C̃i , given the previous level definitions of
SW I |i−1 and Ĉi−1 (see fig. IV.2.1, and note that C̃i−1 ⊂ SW I |i−1). An optimization problem
is formulated finding [p1, p2]i that maximizes the coherence between previous and current
sets, i.e., between C̃i and SW I |i−1, and between Ĉi and Ĉi−1.

The contours Ci , Ĉi−1, and SW I |i−1 are respectively defined by the segments c j , ĉ j , and
s j , with j = 1..n{C ,Ĉ ,SW I }, and n{C ,Ĉ ,SW I } denoting the number of segments composing con-

tours {C ,Ĉ ,SW I }. The segment c j for example, is in turn bounded by points p j and p j+1, and
identified by the position vector xc evaluated at its middle, and the orientation vector oc in
its normal direction, according to:

xc =
[

xc

yc

]
= 0.5

[
x(p j )+x(p j+1)
y(p j )+ y(p j+1)

]

oc =
[

oc

oc

]
=

[
y(p j+1)− y(p j )
x(p j )−x(p j+1)

] (IV.2.4)

The coherence −1 < q < 1 between two segments c and s (for example) is defined as:

q(c · s) = qx(c · s) qo(c · s), with

qx(c · s) = (xc ·x s)p
(xc · xc )(x s · x s)

, and qo(c · s) = (oc ·os)p
(oc ·oc )(os ·os)

.
(IV.2.5)

Equation IV.2.5 is evaluated for every segment in Ci , with respect to the segments in
SW I |i−1 (nCi nSW I |i−1 evaluations), and in Ĉi−1 (nCi nĈi−1

evaluations). The best coherence

between c j , and the segments in SW I |i−1, and in Ĉi−1, are stored respectively in the vectors
q(c j · s) and q(c j · ĉ). The best coherence vector is stored together with the corresponding
(best) distance vector, i.e., d (c j · s) and d (c j · ĉ), defined by d (c · s) =p

(xc −x s) · (xc −x s).

The following measure is found to increase the method robustness, using the best dis-
tance vectors d to impose hard limits in q , and constraint the upcoming quality function. In-
troducing the parameter αd , tuned to αd = 4 which applies to every case in this manuscript:

• If d j (c j · s) >αd d j (c j · ĉ); then q j (c j · s) =−1.

• If d j (c j · ĉ) >αd d j (c j · s); then q j (c j · ĉ) =−1.

Given the points [p1, p2]i defining the sets C̃i and Ĉi , the quality function Q to be maxi-
mized is:
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Q[p1,p2]i =Qs +Qc , with

Qs = ∑
j⊂C̃i

[
q j (c j · s)

]
, and Qc = ∑

j⊂Ĉi

[
q j (c j · ĉ)

]
.

(IV.2.6)

The quality function is evaluated for every possible combinations of [p1, p2]i , and with
the constraint that p2 comes after p1, that leads to nCi (nCi +1)/2 evaluations of equation
IV.2.6. The solution is rejected if Q[p1,p2]i /nCi < 0.1, in which case Ci is discarded, Ĉi−1 → Ĉi ,
and SW I |i−1 → SW I |i . If Q/nCi ≥ 0.1 then the procedure succeeds, and [p1, p2]i are used to
update Ĉi and SW I |i .

IV.2.1.2 OVERVIEW AND DISCUSSION

The WI flow definition introduced in section IV.1, suggests that if Eχ′χ′(k, w) can be parti-
tioned between Atm. (Eχ̂χ̂) and WI (Eχ̃χ̃+2 Eχ̂χ̃) parts, then WI motions can be recovered
from equations IV.2.1, IV.2.2, and IV.2.3. Present section describes an image processing tech-
nique capable of reconstructing Eχ̂χ̂ from Eχ′χ′(k, w) in almost arbitrary situations, which is
attested in the numerical and physical applications considered below.
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IV.2.2 NUMERICAL EXPERIMENTS

Present section recall the numerical experiments of section III.4, where the sea-state de-
scription is considered at three levels of increasing complexity: (i) Regular waves; (ii) Irregu-
lar and single directional (1D) Sea-State; (iii) Irregular and multi-directional (2D) Sea-State.
Case 00 is the flat bottom reference. One shall refer to section III.4.1 for the specific numer-
ical strategy.

In the test cases of section III.4, the sea-state energy is ∼ 100 times smaller than in the
previous sections, so that WI disturbances in the vertical wind and turbulence profiles of-
ten become negligible above the measurement height 0.14 λ, according to the discussion in
section III.4.3. Here, the Wave Induced motions are sought through the enhancement per-
spective introduced in section IV.1, employing the partition of turbulent spectra described in
section IV.2, revealing good part of the WI flow structure at the measurement height 0.14 λ.

IV.2.2.1 ATMOSPHERIC TURBULENCE AND WAVE INDUCED MOTIONS

First, consider the one-dimensional (1D) turbulent spectra of figure IV.2.4, where (a,c,e) cor-
respond to the wave-number, and (b,d,f) to the frequency dependent spectra, with Case 01
(Regular Wave) appearing in (a,b), Case 02 (Irregular 1D sea-state) in (c,d), and Case 03 (Ir-
regular 2D sea-state) in (e,f). The total fluctuation spectra is given as blacked dotted lines,
and the partitioning of the 2D spectra described in section IV.2 leads to its decomposition in:
Atmospheric turbulence (Atm.) spectrum in blue full lines; Wave Induced (WI) spectrum in
red dashed lines; crossed Atm-WI spectrum in magenta dash-dotted lines. The blue vertical
line denotes the wave peak period.

For the regular wave at Case 01 (figs. IV.2.4a,b), one observes a sharp disturbance of
E(k), in a similar manner to the observations in section IV.1.2, except that here the wave
is quasi-linear (∼ 100 times less energy), so higher wave harmonics are not detected in the
atmosphere. In that case partitioning the 1D spectra through the Wave Coherent (WC) or
Wave Induced (WI) filter is feasible as described in section IV.1.2, and the WI alternative
leads to results similar to the ones here discussed. At the wave peak scales, the 1D and 2D
partitioning methods lead to the same F , but farther away from (Lp ,Tp ) the 2D alternative
capture WI disturbances that introduce negligible changes to the 1D turbulent spectra.

Recall that Cases 02 and 03 (Irregular Sea States) present the same sea-state energy of
Case 01, and in section III.4.2 the irregular cases often introduce the most significant distur-
bances to the turbulent statistics in the ABL. With that in mind, one could be rather disap-
pointed with the 1D fluctuation spectra denoted by black dotted lines in figure IV.2.4(c-f):
Virtually no disturbance is seen comparing the total fluctuations (black dotted line) to the
atmospheric turbulent part (blue full line) in E(k) at (c,e); and only minor disturbances are
appreciated in E( f ) at (d,f). In these cases the procedures described in section IV.1.2 are
deemed to failure: The WC flow classical definition would attribute large portions of the
fluctuations to the wave related field, at scales where the WI flow is in fact negligible com-
pared to the atmospheric turbulence; and the partition of the 1D spectra leading to F (k)
and F ( f ) is simply unfeasible face to such smooth disturbances on the turbulent spectra.
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(a) Regular wave; E(k). (b) Regular wave; E( f ).

(c) Irregular 1D sea-state; E(k). (d) Irregular 1D sea-state; E( f ).

(e) Irregular 2D sea-state; E(k). (f) Irregular 2D sea-state; E( f ).

Figure IV.2.4: One-dimensional wave-number and angular-frequency EDF of longitudinal
velocity fluctuations. Numerical experiments with different types of sea-state prescription.
Atmospheric turbulence in blue full line; Total fluctuation spectra in black dotted line; Wave
Induced auto-spectra in red dashed line; Wind-Wave cross-spectra in magenta dot-dashed
line. The light blue vertical line denotes the wave peak period.
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Nevertheless, adopting the 2D Space-Time perspective introduced in section IV.1, and
employing the partition of the 2D spectra described in section IV.2, F (k, w) can be deter-
mined for arbitrarily sea-states at heights below the critical height (c(k) À u), and its inte-
gration in k or w domains leads to F (k) and F ( f ), and so the partitioned 1D spectra can
be shown in figure IV.2.4. That strategy reveals a WI flow that is hidden beneath the at-
mospheric turbulence 1D spectrum, but is definitely existent at the measuring height, dis-
tributed over a broad-band energy auto-spectra depicted by the red-dashed lines in figure
IV.2.4.

Naturally to perform the partition of figure IV.2.4, one relies in much more information
than what is available from the 1D fluctuation spectra, and that is achieved by the 2D k −w
spectra, shown in figure IV.2.5 for Cases 00-03, in (a-d). For the wavy cases in the figures,
the lower dashed line represents the dispersion equation corresponding to the WI motions,
contrasting to the upper dashed line representing the Taylor hypothesis for the atmospheric
turbulent part.

(a) Flat bottom. (b) Regular Wave.

(c) Irregular 1D sea-state. (d) Irregular 2D sea-state.

Figure IV.2.5: Wave-number-angular-frequency 2D turbulent spectra. The lower dashed line
follow the dispersion equation in the wavy cases (b-d). The upper dashed line follow the
mean convection velocity u1 and represents the Taylor hypothesis for the atmospheric tur-
bulent part.
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The 2D spectra lead to the most detailed description of the WI disturbances yet de-
scribed for these test cases. At the measurement height, where most disturbances in the
wind and turbulent profiles and in the 1D spectra appear negligible face to the prevailing
atmospheric turbulence behavior, the WI flow is observed directly impacting the 2D spectra
at the waves prevailing scales, i.e. across the dispersion equation. The k −w spectra also let
clear the intrinsic difference between the wavy cases here considered.

Case 01 (fig. IV.2.5b) is forced by a dirac function perturbation occurring at the wave peak
scale, and provides evidence that this monochromatic wave interacts with turbulence in the
atmosphere, with the WI disturbances propagating further away from the peak scale along
two prevailing k −w paths: One with constant k, and the other following the atmospheric
turbulence contours. These paths are highlighted by red dotted lines in figure IV.2.6b, de-
noting the WI auto-spectra correspondent to the total fluctuations depicted in figure IV.2.5b.

Case 02 (fig. IV.2.5c) considers a continuous wave-number dependent spectra propa-
gating in the wind direction, the WI disturbances are symmetrically distributed around the
dispersion relation, but they are not continuous in the k −w domain. Indeed a continuous
wave-number-dependent sea-state spectra is not continuous in the k −w domain, because
waves are only defined at certain frequencies according to the dispersion relation. The wave
directional spreading introduced at Case 03 mitigates, but does not suppress these disconti-
nuities, so that leads to the sharp disturbances of the 1D frequency-dependent WI spectra in
figure IV.2.4(d,f), and the multiple detached wave focusing scales of the 2D spectra in figures
IV.2.5(c,d).

In Case 03 (fig. IV.2.5d), the wave spreading distributes the WI energy over larger portions
of the k−w domain. The WI disturbances in figure IV.2.5d are not symmetrically distributed
around the dispersion equation, because the spreading can only diminish the wave period
at a given wave length, and both the 1D and 2D spectra are significantly smoother than in
the 1D sea-state case.

The 2D spectra partition is depicted in figure IV.2.6, for Cases 01 (a,b), 02 (c,d) and 03
(e,f), with the atmospheric turbulence part shown in (a,c,e) and the WI part in (b,d,f). First
note that by definition the Atm. turbulent part is continuous, while the WI part is not. Nev-
ertheless, the WI disturbances are significantly more continuous than the sea-state spectra
itself. Reminding that the sea-state spectra is given by: A dirac function in Case 01; a single
line (1D dispersion equation) in Case 02; and compared to Case 02, the exclusive diminish-
ing wave periods in Case 03.

In Case 01 (Regular wave) the WI part reveals fluctuations generated far from the dirac
forcing and through two preferred paths, highlighted in the lower left corner of figure IV.2.6b:
an evidence of the non-linear interactions taking place between Atm. and WI motions. In
Cases 02 and 03 (irregular waves) such interactions leads to the smoothness of WI distur-
bances. Though the 1D WI spectra are continuous in k, they are not in k −w , and at Case 02
that reveals to two separate regions of WI motions in figure IV.2.6d.

The Atmospheric turbulence part in figures IV.2.6(a,c,e) closely resemble each other be-
tween the wavy cases, also resembling the flat bottom spectra of figure IV.2.5a, which attests
the partitioning efficiency in view of the definition given in section IV.1. The main difference
between the Atm. spectra reveals the limits of the partitioning. The WI fraction is ill defined
when Atm. turbulence largely prevail over WI motions, which will rapidly occur above the
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wave peak scale, in the elliptical regions highlighted at figures IV.2.6(a,c,e). In Case 01 that
leaves especially the upper part of the non-linear interactions to the Atm. part, and in Cases
02 and 03 that leads to a slight augmentation of the Atm. 2D spectra above the wave peak
scale.

IV.2.2.2 OVERVIEW AND DISCUSSION

Contrary to the mean history, mean wind and turbulent profiles, and the 1D spectral analy-
ses; and as argued in section IV.1: The Space-Time (Or k −w) perspective of turbulent fluc-
tuations reveals detailed information about the WI flow structure, which favors the inves-
tigation of consequent WI disturbances and Wind-Wave interactions in the MABL, demon-
strating intrinsic differences between the test cases discussed.

The 1D spectra reveal a partial perspective of the spectral energy distribution. So in
more realistic conditions where the sea-state is defined at multiple scales (irregular), it is
often unfeasible to employ the WC and WI filters based on the 1D turbulent spectra, such
as previously exploited in section IV.1.2 for the regular wave case. Adopting the enhanced
perspective of the WI flow proposed in section IV.1, the k−w 2D spectral partition proposed
in section IV.2 is shown feasible for each test case, even given the significant differences ob-
served in the correspondent WI 2D spectra, and without any prior information about the
Sea-State prescription. When the decomposition based on the 1D spectra is feasible, it leads
to accurate approximations of the WI flow at the wave harmonics; but neglect WI distur-
bances captured in a wider range of scales by the 2D spectral based partitioning.
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(a) Regular Wave; Atm. turbulence. (b) Regular Wave; WI motions.

(c) Irregular 1D sea-state; Atm. turbulence. (d) Irregular 1D sea-state; WI motions.

(e) Irregular 2D sea-state; Atm. turbulence. (f) Irregular 2D sea-state; WI motions.

Figure IV.2.6: Wave-number-angular-frequency 2D turbulent spectra partitioning for the
wavy Cases 01 (a,b), 02 (c,d) and 03 (e,f). Atmospheric (Atm.) turbulence part in (a,c,e) and
Wave Induced (WI) part in (b,d,f). The upper dashed line stands for the Taylor hypothesis
and the lower dashed line for the dispersion equation.
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IV.2.3 PHYSICAL EXPERIMENTS

Previous results presented in section II.3, concerning the physical experiments described in
section II.1, give evidence of wave dynamics, named Wave Induced (WI) motions, propa-
gating through the atmosphere and registered by the sLiDAR in the RWS fluctuations. The
original field measurement revealed an enhanced perspective of the velocity fluctuations, in
which the WI disturbances emerge distinctively on the 2D spectra, but the WI flow remains
to be quantified.

A definition of the WI flow is presented in section IV.1, relying in the introduction of the
WI fraction F , and two conceptual expansions of the Wave Coherent (WC) filter presented
in Hristov and Ruiz-Plancarte [2014]: (i) The existent coherence between Atmospheric tur-
bulence (Atm.) and WI motions; and (ii) The Space-Time spectral description of turbulent
fluctuations. Section IV.2 describes how F (k, w) can be obtained from partitioning the 2D
turbulent spectra, such as the ones discussed along section II.3.3. Partitioning the 2D spec-
tra with the methodology proposed leads to the resultant Atmospheric turbulence spectra
shown in figure IV.2.7, to be compared to the total fluctuation spectra previously given in
figure II.3.3. The partition is successful, filtering out the WI disturbances and leaving the
atmospheric turbulence intact at figure IV.2.7.

(a) Case 01. (b) Case 02.a.

Figure IV.2.7: Atmospheric part of the resultant spectra, i.e. the Atm. auto-spectra
EûR ûR (k, w). Employing the partition described at section IV.2, The WI disturbance has been
deduced from the the total fluctuation spectra, previously shown at figure II.3.3. The mean
wind velocity uR and the wave velocities c (Dispersion equation with d = 22 m), appear in
black dashed lines.

In Case 02a, where wind and waves travel in apposite directions, the four quadrant spec-
trum is used, and the partition is employed exclusively in the Ocean to sLiDAR component,
with the total fluctuation spectra previously given in figure II.3.5b, and the decomposed
Atmospheric part here given in figure IV.2.8. The resultant atmospheric spectra of figure
IV.2.7b is reconstructed from the partitioned four quadrant spectra.
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Figure IV.2.8: Decomposed atmospheric part (EûR ûR ) of the ’Ocean to sLiDAR’ component,
of the four quadrant spectra shown in figure IV.2.7b. The black dashed lines denote wind
and wave characteristic scales, as in figure IV.2.7.

IV.2.3.1 ATMOSPHERIC AND WAVE INDUCED 1D SPECTRA

The integration of the 2D k −w spectra in k and w domains leads to the wave-number and
frequency 1D spectra, decomposed as shown in figure IV.2.9. Case 01 appear above in figures
IV.2.9(a,b), and Case 02a below at IV.2.9(c,d). Wave-number dependent spectra are shown in
the left at figures IV.2.9(a,c), and frequency dependent spectra in the right at IV.2.9(b,d). The
total fluctuation auto-spectra appear in black dotted lines, and the ESDU reference in black
dashed lines. The total fluctuation spectra (Eu′

R u′
R

), corresponding to the same 1D spectra
previously shown in figure II.3.2, are here decomposed into: The Atm. turbulence auto-
spectra (EûR ûR ), given in blue dashed lines; the WI flow auto-spectra (EũR ũR ), given in red
dashed lines; and the Atm-WI cross-spectra (2 EûR ũR ) given in magenta dot-dashed lines.
So, Eu′

R u′
R
= EûR ûR +2 EûR ũR +EũR ũR .

No WI disturbance is observed in any of the atmospheric parts (blue dashed lines) of
figure IV.2.9, that closely resemble the flat bottom ESDU reference (Dashed black lines in the
figure), if submitted to the sLiDAR filter as previously discussed in section II.3.2, and further
evaluated in the numerical experiments at sections IV.3.3 (flat) and IV.3.4 (wavy). The cross-
spectra, and so the cross correlations, are significant between Atm and WI motions, figures
IV.2.9(a,b), indicating a strong interaction between coherent Atm and WI motions.

Still in figure IV.2.9, the vertical blue dot-dashed lines correspond to the wave peak scales,
and the vertical green dotted lines to the filter scales. Note that the WI auto and cross spectra
have their peak close, but slightly larger the the peak scales, as expected from the discussion
in section II.3.4, where larger waves travel higher in the ABL.

Recall that in section II.3 the filter characteristic frequency ( fγ0) assumed that turbulence
was advected by the mean wind velocity. However in figure IV.2.9, and in the others to come,
the characteristic frequency corresponds to the WI motions and the dispersion equation,
rather than the wind velocity and the Taylor’s hypothesis. That highlights the filter effect on
the WI velocities, as discussed from its numerical evaluation in section IV.3.4. Thus the filter

frequency shown further through this section is fγ1 = c/(2 Lγ), with c =
√

(g /kγ) tanh(kγd),
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kγ = 2π/(2 Lγ), Lγ = 25 m, and d = 22 m. One notices that the wave disturbances drastically
diminish in figure IV.2.9 close to kγ and fγ1, where the sLiDAR filters a significant amount of
the WI fluctuations.

(a) Case 01: Wave-number EDF of u′
R u′

R . (b) Case 01: Frequency EDF of u′
R u′

R .

(c) Case 02: Wave-number EDF of u′
R u′

R . (d) Case 02: Frequency EDF of u′
R u′

R .

Figure IV.2.9: Resultant wave-number (a,c) and frequency (b,d) 1D decomposed turbulent
spectra for Case 01 (a,b) and Case 02.a (c,d). The legend associates the five spectra depicted
to: The (Ref. ESDU) reference; total turbulent fluctuation auto-spectra (Total); Atmospheric
turbulence auto-spectra (Atm.-Atm.); Wave Induced auto-spectra (WI-WI); and (Atm.-WI)
cross spectra. Vertical blue lines stand for the wave peak scales kp and fp , and the green
lines show filter scales kγ and fγ1.

The partition of the turbulent spectra at Case 02a occurs exclusively at motions travel-
ing from the ’Ocean to sLiDAR’ direction, and that can be appreciated from the correspon-
dent quadrant spectra at figure IV.2.10, where the Total, Atm, WI, and Atm-WI spectra, are
given as for the resultant spectra in figures IV.2.9(c,d). Note that in both figures (quadrants
and resultant spectra) the WI and cross spectra terms (red dashed and magenta dot-dashed
lines) are the same. But the atmospheric turbulence and total parts are drastically reduced
in the ’Ocean to sLiDAR’ direction, so the WI signature emerges distinctively in the direc-
tional decomposed spectra of figure IV.2.10. Also in the directional spectra of figure IV.2.10,
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the atmospheric turbulence auto-spectra agree considerably well to the ESDU reference.

(a) Case 02: Wave-number EDF of u′
R u′

R . (b) Case 02: Frequency EDF of u′
R u′

R .

Figure IV.2.10: One-dimensional decomposed spectra (Eu′
R u′

R
, EûR ûR , EũR ũR , and 2 EûR ũR ) for

fluctuations traveling from the Ocean into the sLiDAR, at Case 02a. The legends apply as for
Case 01 in figure IV.2.9, that in turn denote the resultant spectra comprehending motions in
both directions, and where the explicit WI auto spectra has been omitted for Case 02a.

IV.2.3.2 WAVE INDUCED FRACTION

The decomposition presented follows from the determination of the WI fraction F (k, w)
in the 2D k − w domain. Here the WI fraction is reconstructed in the 1D, wave-number
or frequency domains, as F (k) =

√
EũR ũR (k)/Eu′

R u′
R

(k) and F ( f ) =
√

EũR ũR ( f )/Eu′
R u′

R
( f ), as

reported in figure IV.2.11 for Cases 01 (Red dashed lines) and 02.a (Black full lines). Recall
that F gives the squared root of the WI energy fraction. For a wide range of scales in figure
IV.2.11, F (w) and F (k) exceed the threshold of 0.1 (1% of WI energy fraction), suggesting
the WI motions are non-negligible and the measurement occurs inside the WBL.

Next to each case spectra in figure IV.2.11, one encounters vertical lines corresponding
to the wave peak scales (kp , fp ), colored according to each case spectra. Note that (kp , fp )
corresponds to the peak of the sea surface displacement spectrum, but F is the sea surface
velocity spectrum, so it is natural that the peak of F occurs at scales smaller than (kp , fp ).
Close to the wave peak scale, both cases (similar |WA|, but different wind directions) present
similar values for the WI fraction F (k, w), that approaches (or even surpasses, for F ( f )) the
threshold of 0.5, indicating that WI motions are dominant. Towards larger scales (lower k, f ),
F (k, w) rapidly diminishes at both cases, but a gradual decay is observed towards smaller
scales behaving significantly different at each test case.

As usual the filter scales (kγ, fγ1) appear with vertical green lines at figure IV.2.11. The
decay in F ( f ) is also very rapid at scales smaller than the filter characteristics. It is im-
portant to note this is not only due to the physical transfer function between sea-state and
atmospheric motions, but also due to the sLiDAR filter effect becoming predominant close
to (kγ, fγ1). The region of interest is that between (kp , fp ) and (kγ, fγ1), where the WI flow
is significant, the sLiDAR effect is mitigated (far enough from kγ, fγ1), and the cases behave
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considerably differently. Notably, the decay of Case 02a is attenuated, and the WI flow is
significant over a wider range of scales at Case 02a, if compared to Case 01.

(a) WI fraction F (k) (b) WI fraction F ( f )

Figure IV.2.11: Wave Induced fraction F (k) (Left) and F (w) (Right), corresponding to the
squared root of the WI energy fraction according to equation IV.1.3. After integrating the 2D
decomposed spectra in the 1D spectra of figure IV.2.10, F (k) and F (w) are here computed

as F (k) =
√

EũR ũR (k)/Eu′
R u′

R
(k) and F ( f ) =

√
EũR ũR ( f )/Eu′

R u′
R

( f ). Wave peak scales denoted

by vertical dotted lines, with black (Case 01) and red (Case 02a) colors corresponding to
the curves of F shown in the legend. The filter characteristic scales (kγ, fγ1) appear in the
vertical green dotted line.

IV.2.3.3 TRANSFER FUNCTION OF THE SEA-STATE SPECTRA INTO THE ATMOSPHERE

The observed WI motions are an extension (transfer) of the wave’s orbital at the free-surface,
into the atmosphere. Hence, there exists a Transfer Function (TF) linking the Sea-State
forcing to the atmospheric response, i.e., to the WI field. The TF is here evaluated as TF=√

(EũR ũR )/F , where EũR ũR is the decomposed WI auto-spectra, and F the sea-state auto-
spectra of longitudinal orbital velocities, taken from the WaveWatch III oceanic model as
described in section II.1.3.

Prior to the transfer function, EũR ũR and F are superposed in figure IV.2.12: Where the
first appear in black full lines for Case 01 and red dashed lines for Case 02a; and the second
appear in dotted lines, with colors given by each corresponding case according to the leg-
end. In any case, the peak of EũR ũR is slightly displaced to lower scales if compared to the
peak of F , naturally since long waves disturbances are expected to propagate higher in the
MABL. Around the peak scales, both spectra (E and F ) are highly coherent, presenting sim-
ilar slopes. But the slopes highly differ in smaller scales, where both the scale-dependent
transfer function and the sLiDAR filter effects are significant. The sea-state spectra present
a second, less energetic peak at lower scales, which is captured in EũR ũR at Case 02a. There
is a remarkable similarity between the WI spectra slopes observed for both Cases, at scales
smaller than the smallest wave peak (Lp = 126.9 and Tp = 10.10 for Case 01).

The Transfer Functions are finally exposed in figure IV.2.13, for Cases 01 (Black) and 02.a
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(Red). The resemblance is clear between the cases, where TF(k) and TF(w) reach a max-
imum of ∼ 0.3, and eventually decay with similar behavior at both cases. The significant
difference between the cases is that Case 02a presents a wide range of scales with almost
constant TF values, while Case 01 rapidly decays far away from the wave peak scales.

(a) k-dependent spectra. (b) f -dependent spectra.

Figure IV.2.12: Sea-State forcing and the atmospheric response. Sea-State forcing (F ): Auto-
spectra of the longitudinal orbital velocities on the free-surface (FS). Atmospheric response
(EũR ũR ): Auto-spectra of the WI flow, as previously shown at figure IV.2.9. Cases 01 and 02a
superposed, with line types given in the legend. Together with the sea-state forcing, the
corresponding wave peak scales are shown in vertical lines. The peak scales correspond to
peaks of the FS displacement spectra, and not to the velocities spectra shown in the figures.
The filter characteristic scales (kγ, fγ1) appear in the vertical green dotted line.

(a) k-dependent TF. (b) f -dependent TF.

Figure IV.2.13: Transfer function between the Sea-State forcing and the atmospheric re-
sponse shown in figure IV.2.12. Computed as TF= √

(EũR ũR )/F . Cases 01 and 02a super-
posed, with line types given in the legend. Together with the TF, the corresponding wave
peak scales are given in vertical lines. The filter characteristic scales (kγ, fγ1) appear in the
vertical green dotted line.

165



IV.2.3.4 OVERVIEW AND DISCUSSION

The characterization of measured WI motions is presented in section IV.2.3, following its
definition given in section IV.1. With no generalization intent, an image contour-based seg-
mentation method is developed in section IV.2 to obtain F (k, w) from the 2D Space-Time
turbulent spectra. The effectiveness of the employed triple decomposition is established in
figures IV.2.7 and IV.2.9 where the WI disturbances have vanished from the Atm. filtered 2D
and 1D turbulent spectra, respectively.

Contrary to the decomposed equations of Hristov and Ruiz-Plancarte [2014] and Cifuentes-
Lorenzen et al. [2018], the Atm. and WI flows are strongly correlated and coupled in either
space and time domains. The idea that Atm. and WI flows are strongly correlated might ap-
pear contradictory, for it defies the definition of the WI flow as a particular system detached
from atmospheric turbulent motions. In the combined space-time perspective though, the
correlation is reduced as long as the wind is sufficiently weak, and the swell is sufficiently
fast, so that U and c are sufficiently apart. The correlations shall exist so that WI-Atm. in-
teractions can occur, but the correlations and interactions shall be limited so that WI and
Atm. fields can be defined as two different systems. The different propagating velocities of
Atm. and WI fluctuations shall limit their interactions in the coupled set of equations gov-
erning those fields. Naturally this definition of the WI flow is limited to scenarios where it is
detectable, which according to current observations shall occur in the Space-Time spectral
distribution Eu′

R u′
R

(k, w) when F (w) or F (k) exceeds 0.1.

From the integration of F (w,k), figure IV.2.11 presents F ( f ) and F (k). In any case F

exceed the threshold of 0.1 between the wave peak and the filter characteristic scale, sug-
gesting the WI motions are significant and the measurement occurs inside the WBL. For a
wide range of scales, and specially at Case 02a, F (k) and F ( f ) approach and surpass the
threshold of 0.5, and the WI motions are dominant.

The determination of the transfer function linking the sea-state forcing and the atmo-
spheric response shall precede any parametric description of the WI field in the MABL, but
it has not yet been reported in the literature as actual measurements in the offshore en-
vironment. That shall occur for the absence of a triple decomposition method capable of
measuring the WI field in the ocean environment, characterized by non-regular sea-state
situations. Recent developments in sLiDAR measurements technologies and techniques al-
low the enhanced perspective achieved through the 2D spectra, and together with the triple
decomposition proposed, the Transfer Function (TF) is here presented in figure IV.2.13.
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IV.3 TOWARDS THE NUMERICAL REPRODUCTION OF SLIDAR
OBSERVATIONS

IV.3.1 SEA STATE RECONSTRUCTION

Estimated quantities that describe the oceanic conditions during the experimental cam-
paign have been described in section II.1.3. These quantities are extracted from HOMERE
hind-cast database (Accensi et al. [2017]), hourly and at the closest node to the sLiDAR LOS
final gate. Some of the quantities to be exploited at this closest node/probe are the frequency
dependent power density function (PDF) of surface elevations F∗( f ), the mean directionφ∗

0 ,
and the spreading directionβ∗. Only at a few nodes of the oceanic grid, the full spectral con-
tent of the surface elevations F ( f ,φ) is available, being the closest one approximately 9 km
south and 2 km east (At 47°12’N,-2°30’E) of the sLiDAR.

It has been discussed in section II.1.3, and observed in figure II.1.4, that significant re-
fraction occurs between the F ( f ,φ) probing position and the sLiDAR’s. It is further demon-
strated how to obtain the description of F ( f ,φ) coherent with the global estimations ob-
tained closer to the sLiDAR, and how to generate the initial conditions necessary for its nu-
merical exploitation.

An iterative set of linear transformations applies to F ( f ,φ), until it meets the frequency
spectra (F ( f ) → F∗( f )) and the mean and spreading directions (φ0 →φ∗

0 and β→β∗) regis-
tered closer to the sLiDAR, with the definitions:

F ( f ) =
∫

F ( f ,φ) dφ, φ0 =atan[a/b] , β=
√

2
(
1−φ1

)
,

a = 2π
∫ ∫ [

cos(φ)F ( f ,φ)
]

dφ d f , b = 2π
∫ ∫ [

sin(φ)F ( f ,φ)
]

dφ d f ,

and φ1 =
√

a2 +b2

(
∫

F ( f ) d f )2
.

(IV.3.1)

The correction of F ( f ,φ) is sequentially performed with respect to its frequency distri-
bution, mean direction and spreading:

• While β is not converged, i.e., abs

 β∗√
2

(
1−φ1

) −1

> 10−6:

– Correct for F(f), normalizing F ( f ,φ) at each frequency:

F ( f ,φ) → F ( f ,φ)
F∗( f )

F ( f )
.
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– Correct for φ0, shifting the direction domain:

φ→φ−φ0 +φ∗
0 .

– Correct for β, shrinking or expanding the direction domain around φ0:

φ→φ0 + (φ−φ0)
β∗

β
.

(a) Comparison between F ( f ): Close to the
sLiDAR (1D Input); Far from the sLiDAR (2D
Input); Reconstruction (2D Output).

(b) Probed far from the sLiDAR. (c) Reconstructed closer to the sLiDAR.

Figure IV.3.1: The PDF of the surface elevation F . F ( f ,φ) is obtained far from the sLiDAR,
and reconstructed to match the global parameters obtained closer to the sLiDAR. (a) Inte-
grating F ( f ,φ) inφ dimension, the reconstruction is evaluated in comparison to the 1D and
2D spectral input, obtained closer and farther to the sLiDAR, respectively. (b) The 2D spec-
tral input F ( f ,φ). (c) The 2D spectral output, F ( f ,φ) reconstructed to match F ( f ), φ and β
closer to the sLiDAR. In (b) and (c) the frequency-dependent mean direction β( f ) is shown
with black dotted lines as obtained from each spectra, and the value of β probed closer to
the sLiDAR appears with black dashed lines.
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The reconstruction is first shown in figure IV.3.1a, where the initial and final (Input and
Output) 2D spectra F ( f ,φ) integrated in φ dimension, lead to the 1D frequency spectra
shown in yellow dot-dashed and red dashed lines, respectively. The F ( f ) 1D spectra (Input)
is shown in blue full line at the same figure. Transforming the input to output 2D spectra,
F ( f ) is strongly diminished at lower frequencies, accurately matching the input 1D spectra
as consequence.

The input directional Sea-State spectra from figure II.1.4 is repeated in figure IV.3.1b to
be compared with the output F ( f ,φ) spectra given in figure IV.3.1c. One can readily note
a significant change in the mean direction φ0, by shifting the frequency-dependent mean
direction φ( f ) denoted by black dotted lines in the figures. The target, total average mean
direction φ∗

0 is denoted by the dashed line, and is accurately matched by the output spec-
trum at figure IV.3.1c. The sea-state spreading β is slightly diminished, shrinking the direc-
tion domain closer to φ0 = 241°: Note the large spacing between angles 45° and 75° at figure
IV.3.1c.

The reconstructed spectrum F ( f ,φ) is then interpolated into the LES numerical grid.
In the frequency domain the interpolation is log-linear (Linear in logarithmic scale such
as in figure IV.3.1a), and in the direction domain (Between φ0 − 0.5 π and φ0 + 0.5 π) the
interpolation is FFT-based. Only a π sector is considered around the mean direction φ0. In
the domain of F ( f ,φ), a scatter plot of the LES surface nodes ([512x256] grid and [5x4]L0

domain with L0 = 256 m) is shown in figure IV.3.2a, colored by the interpolated values of
F ( f ,φ) in the nodes. Note that integrated in the LES domain the mean direction is slightly
different from φ0, and the domain is adjusted from black to red bounds in figure IV.3.2a, in
order to have the waves mean direction (almost) perfectly aligned to the ABL longitudinal
direction.

Finally with the group velocity definition cg = ∂w/∂k, F is scaled to the [kx ,ky ] space:

F (kx ,ky ) = F ( f ,φ)
cg

(k2
x +k2

y )0.5
, (IV.3.2)

with result shown in figure IV.3.2b, ready to be read by the LES code.

(a) A scatter plot of F ( f ,φ) in the LES interpo-
lated grid (kx ,ky )i j .

(b) F (kx ,ky ), input to the LES code.

Figure IV.3.2: The interpolation of F ( f ,φ) into F (kx ,ky ).

169



IV.3.2 A NUMERICAL SLIDAR MODELLING THE FILTER EFFECT

Section II.3 presents original analyses based on measurements with a sLiDAR staring into
the WBL above the Ocean. As discussed in section II.1.2.1, the sLiDAR imposes a filter to
the measured Radial Wind Speed (RWS). The impact of such filter in the frequency or wave-
number 1D spectra is often documented in the literature (c.f. Bastine et al. [2015]) with
the aid of another instrument such as a Sonic Anemometer. Besides not disposing of an
anemometer, the author does not know any instrument other than the sLiDAR capable of
evaluating the wave-number-frequency 2D Spectra at similar scales. So due to the sLiDAR
filter, a BIAS is expected in current experimental observations, which behavior in the wave-
number-frequency spectra is not reported in the literature.

As explained in section II.1.2.1 the filter is physically imposed through the light-speed
traveling ray beam emitted by the sLiDAR. To control the filter and mitigate the BIAS, the
sLiDAR system employs a weight function convolution to the received signal. This weight
function is system dependent and generally protected by the manufacturer. Instead, the sL-
iDAR user controls the Gate Length L f , that in present application corresponds to the Full
Width at Half Maximum (FWHM) of the filter ensemble, i.e., considering the convolution
of the physical filter and the weight function. So consistent with the manufacturer sugges-
tion, given the gate length L f (FWHM) the filter is here modeled by a gaussian function with

standard deviation σ f = L f /(2
p

2ln2), and the filtered RWS is:

ũR (x, t ) =
∫ ∞

0

uR (x0, t )p
2πσ f

exp

[
− (x0 −x)2

2σ2
f

]
dx0, (IV.3.3)

In the LES, uR (x, t ) = u1(x, y = yl /2, z = h, t ) is the longitudinal velocity field, probed at
a half of the domain width (y = yl /2) and at the sLiDAR’s height (h = 18.33 m). Note that
contrary to the real world sLiDAR, the LES resolved velocities already embody the SGS filter
effect, and are discretized within a grid, so not defined in the continuum.

To properly evaluate the sLiDAR filter uncoupled to the LES filter, the grid size shall be
sufficiently small if compared to L f . The filter is imposed in the experimental campaign
with L f = 25 m, and requires our finest mesh (Grid 03 at table III.1.1) for the analysis, so
that ∆x = L f /10. The gate spacing ∆x0 = 10 m is such that a numerical gate is placed at
each four LES nodes, and the ensemble (101 gates or 401 nodes over 1 km) almost covers the
whole numerical domain’s extension (512 nodes over 1.28 km). Equation IV.3.3 is evaluated
at every gates, and integrated along the 401 LES nodes at the probing line [y = yl /2, z = h].

IV.3.3 NUMERICAL EXPERIMENT IN THE FLAT BOTTOM ABL

Present section introduces the effect of sLiDAR induced filtering in the flat bottom, LES gen-
erated ABL, to be later discussed in section IV.3.4 for the LES generated WBL above an irreg-
ular 2D sea-state.
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IV.3.3.1 SPECIFIC NUMERICAL STRATEGY

The numerical Case here exploited has previously been presented, as Case 00 (Flat bottom)
in section III.4.1, that one shall consult for the detailed description about the numerical
strategy. The dynamic pressure gradient method developed in section III.2 is used to keep
the Wind Speed close to ur e f =4.12 m/s at the sLiDAR measurement height h = 18.33 m. The
nominal friction velocity is u∗

0 = 0.147 m/s, and the natural period of the pressure gradient
response is TP = 285 T0.

The characteristic length scaling the domain is L0 = 256 m, which is twice the wave
length λ employed in the wavy cases, previously at section III.4.1 and further at section
IV.3.4. The turbulent characteristic time scale is T0 = 0.5 L0/u∗

0 = 14.51 min, so that is
equivalent to T0 = λ/u∗

0 employed for the wavy cases. The boundary layer height (δ= Lz) is
δ= 5 L0, and the longitudinal and transversal domain extensions are respectively Lx = 4 L0

and Ly = 2 L0.

Results are presented for grid 03 (Fine [512 x 256 x 94] from table III.1.1). The next re-
marks are specific to current application, so contrasting to section III.4.1 that provides in
Case 00 (Flat bottom) the initial conditions to current computations.

A fixed time-step∆t = 0.244 s is employed ensuring CFL< 0.5 and approximating a fourth
of the sLiDAR acquisition period 1 s (f-LOS 01 at table II.1.1). The average of ũR (x, t ) over the
acquisition period have also been studied but revealed no impact on the observed quanti-
ties, probably because the SGS filter becomes important at periods below 1 s, making further
time refinement irrelevant below that period.

Three cases are presented: (0) No filter; (1) sLiDAR’s filter imposed with L f = 25 m; (2)
sLiDAR’s filter imposed with L f = 50 m. Case 00 is the reference, probing uR at every time
and in the numerical grid (512 Nodes over 1.28 km) along the line [y = yl /2, z = h]; Case 01
considers the filter adopted in the experimental campaign; and Case 02 doubles the filter
width of Case 01. For Case 01 and Case 02 ũR (x, t ) is probed at the measurement line (101
Gates over 1 km), and averaged over 4 time steps 4∆t = 0.98 s.

IV.3.3.2 THE SLIDAR FILTERING EFFECT IN THE ATMOSPHERIC TURBULENCE

The 1D wave-number and frequency dependent energy density functions (Turbulent spec-
tra) are shown in figure IV.3.3, superposing Cases 00 in blue full line, Case 01 in red dashed
line, and Case 02 in green dash-dotted line. The spatial filtering characteristic scale kγ0 =
2π/(2 Lγ) and its frequency equivalent fγ0 = U /(2 Lγ) are denoted by the vertical lines in
the same figure, with line types and colors equal to the correspondent (Case 01 or Case 02)
spectra. The ESDU 85020 reference spectra described in section III.1.2.3 appears as black
dotted lines in figure IV.3.3, with the ESDU parameters obtained for Case 00. All spectra are
normalized by the space-time averaged auto-correlations obtained for the reference Case
00:

[
u′

R u′
R

]
0. To help the comparison to the filtered spectra, the wave-number domain is

truncated for Case 00 at figure IV.3.3a, showing only the scales obtained with the sLiDAR’s
gate space resolution k <π/∆x0 and numerical frequency acquisition n < 1/(8∆t ).

The wave-number spectra for Case 00 and the ESDU reference collide almost perfectly
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in figure IV.3.3a, suggesting the adequacy of the adopted space resolution, since the SGS
filtering effect is not observed at wave-numbers lower than π/∆x0. In the frequency spectra
of figure IV.3.3b though, Case 00 slightly deviates from the reference in higher frequencies,
suggesting the SGS filter effects are not negligible in periods comparable to 8∆t . Indeed the
sLidar acquisition period (1 s) captures much smaller turbulent structures than the available
from its gate space resolution (10 m). The sLiDAR filtering is significant in Cases 01 and 02,
mostly above but also below the filter scales kγ0 and fγ0.

(a) Wave-number EDF of u′
R u′

R . (b) Frequency EDF of u′
R u′

R .

Figure IV.3.3: Flat bottom numerical experiment evaluating the sLiDAR filter effect. Wave-
number (a) and frequency (b) 1D turbulent spectra. Cases 00 (No filter) in blue full line, Case
01 (Lγ = 25 m) in red dashed line, and Case 02 (Lγ = 50 m) in green dashed-dotted line. The
filter scales kγ0 and fγ0 appear in the vertical lines associated to Case 01 and Case 02. The
reference ESDU 85020 spectra is traced in black dotted lines, with parameters obtained for
Case 00. The auto-correlations

[
u′

R u′
R

]
0 normalizing the spectra are also obtained for Case

00.

Table IV.3.1: Fraction of energy lost below or
above the filter characteristic scales; Ratio be-
tween the integrated EDF for Cases 01 and 02,
and the integrated EDF of Case 00.

Fraction of
energy lost

(%) in range →

k < kγ
or

n < nγ

k > kγ
or

n > nγ

Total

Case 01 in Ek 20 93 30
Case 01 in Ew 21 93 32
Case 02 in Ek 26 94 49
Case 02 in Ew 27 93 50

The fraction of energy filtered in Cases
01 and 02 in comparison to Case 00 is shown
in table IV.3.1. According to the table giv-
ing energy losses of [30,32]% and [49,50]%,
Case 01 presents ∼70%, and Case 02 ∼50%
of the total energy observed in Case 00. The
energy loss is critical above the filter kγ and
fγ scales, with Cases 01 and 02 presenting
less than 10% of the energy (>90% loss) ob-
served in Case 00; and that is mitigated be-
low these same scales where the energy loss
is ∼21% and ∼27%, at Cases 01 and 02, re-
spectively.

The Taylor hypothesis fγ = kγU /(2π)
leads to consistent definitions of the filter
frequency fγ scale, with the Ek and E f spectra leading to similar conclusions in table IV.3.1.
The filter scale definition kγ = 2π/(2 Lγ) seems appropriate in the sense that the fraction
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of energy loss above that scale is relatively predominant (>90%), and slightly varies (<1%)
between Cases 01 and 02 in the table. Nevertheless the energy loss below kγ and fγ is not
negligible, and varies ∼6% between the cases.

The 2D wave-number-frequency dependent turbulent spectra is shown in figure IV.3.4.
The Taylor hypothesis stands in dashed black line together with the 2D turbulent spectra.
For Cases 01 and 02, one notices the filter scales Lγ0 = 2π/kγ and Tγ0 = 1/ fγ in green dotted
lines. The filtering is effective below Lγ0 and Tγ0, and close to the Taylor hypothesis, or more
generally at whatever scales the turbulent energy is significant below Lγ0.

(a) Case 00: No filter
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(b) Case 01: Lγ = 25 m
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(c) Case 02: Lγ = 50 m

Figure IV.3.4: Wave-number-angular-frequency 2D turbulent spectra, for the flat bottom nu-
merical experiment evaluating the sLiDAR filter effect. The mean wind velocity correspond-
ing to the Taylor hypothesis appears in black dashed line. In Cases 01 and 02 the green
dotted lines denote the characteristic filter scales Lγ and Tγ0.

IV.3.3.3 OVERVIEW AND DISCUSSION

A numerical model of the sLiDAR filter is established to evaluate it’s impact on the original
analyses presented in section II.3, and particularly the filter behavior in the joint Space-Time
distribution of turbulent correlations. Even though the sLiDAR’s filter is originally presented
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in space, the flow dependency is such that the turbulent fluctuations are like-wise filtered
in time and space domains. In this flat Case scenario the Taylor’s hypothesis is observed to
hold, and correctly describes the filter scaling in k and w domains with respect to the mean
RWS velocity u1.

IV.3.4 NUMERICAL EXPERIMENT IN THE WAVY BOTTOM ABL

IV.3.4.1 SPECIFIC NUMERICAL STRATEGY

The numerical case here exploited has already been introduced as Case 03 (Irregular 2D
Sea-State) in section III.4.1, that one shall consult for the detailed description about the
numerical strategy. The dynamic pressure gradient method developed in section III.2 is
used to keep the Wind Speed close to ur e f =4.12 m/s at the sLiDAR measurement height
h = 18.33 m. The nominal friction velocity is u∗

0 = 0.147 m/s, and the natural period of the
pressure gradient response is TP = 285 T0.

The characteristic length scaling the domain is L0 = 256 m, which doubles the nominal
wave length λ= 128 m. The boundary layer height (δ= Lz) to wave length ratio is δ/λ= 10,
and the longitudinal and transversal domain extensions to wave length ratio are respectively
Lx/λ = 8 and Ly /λ = 4. The turbulent characteristic time scale is T0 = λ/u∗

0 = 14.51 min,
which gives 86 peak periods Tp per turbulent time scale. The nominal WA0 = cp /u∗

0 is 85.47.

Results are presented for grid 03 (Fine [512 x 256 x 94] from table III.1.1). The next re-
marks are specific to current application, so contrasting to section III.4.1 that provides in
Case 03 (Irregular 2D Sea-State) the initial conditions to current computations.

To exploit the turbulent spectra, short computations are performed with fixed time-step
∆t = 0.122 s ensuring CFL< 0.5, with∆t approximating 1/8 of the sLiDAR acquisition period
1 s (f-LOS 01 at table II.1.1).

A single computation (Irregular 2D Sea-State) is presented in three cases to evaluate the
sLiDAR filter effect, as for the flat bottom experiment previously presented in section IV.3.3:
(0) Case 00 is the reference, probing uR at every time-step and in the numerical grid (512
Nodes over 1.28 km) along the line [y = yl /2, z = h]; (1) Case 01 considers the filter adopted
in the experimental campaign with L f = 25 m; and (2) Case 02 doubles the filter width of
Case 01 with L f = 50 m. For Case 01 and Case 02, ũR (x, t ) is probed at the measurement line
(101 Gates over 1 km) and averaged over 8 time steps (8∆t = 0.98 s). The spectra of Case 00
are truncated to be presented in the same k, f , and k −w domains as Case 01 and Case 02.

IV.3.4.2 THE SLIDAR FILTERING EFFECT IN THE WBL

The 1D wave-number and frequency dependent energy density functions (EDF or Turbu-
lent spectra) are shown in figure IV.3.5, superposing Cases 00 in blue full line, Case 01 in red
dashed line, and Case 02 in green dash-dotted line. The spatial filtering characteristic wave-
number kγ = 2π/(2 Lγ) and its frequency equivalent fγ0 =U /(2 Lγ) are denoted by the verti-
cal lines in the same figure, with line types and colors equal to the correspondent (Case 01

174



or Case 02) spectra. The ESDU 85020 reference spectra described in section III.1.2.3 appear
in black dashed lines in figure IV.3.5, with its parameters obtained for Case 00. All spectra
are normalized by the (Space or Time averaged) auto-correlations obtained for the reference

Case 00:
[

u′
R u′

R

]
0
.

(a) Wave-Number 1D spectra. (b) Frequency 1D spectra.

Figure IV.3.5: Wavy bottom numerical experiment evaluating the sLiDAR filter effect. One
dimensional turbulent spectra as: Case 00 (No filter) in blue full lines; Case 01 (Lγ = 25 m)
in red dashed lines; Case 02 (Lγ = 50 m) in green dot-dashed lines. The filter characteristic
scales kγ and fγ0 appear in the vertical lines, with types and colors corresponding to their

Case spectra. Everything normalizes by the auto-correlation u′
R u′

R |0 obtained for Case 00.
The ESDU reference appears in black dashed lines with its parameters obtained for Case 00.

As for the physical experiment presented in section II.3, the wave disturbances are only
detectable in the frequency dependent 1D spectra (Fig. IV.3.5a), and not in the wave-number-
dependent spectra (Fig. IV.3.5b) that closely resemble those presented in flat bottom scenar-
ios and discussed in figure IV.3.3a. The filter effect is significant in smaller scales including
the ones containing Wave Induced motions. Even if the filter diminishes both Wave Induced
motions and Atmospheric turbulence indistinctly, as it becomes more effective the Wave sig-
nature becomes prominent in Case 02 compared to 01, and Case 01 compared to 00. In the
cases addressed, the waves are faster than the wind. So at a given period (say 1/ fγ0), WI mo-
tions have lengths larger than the atmospheric turbulence (Lγ), and are thus less affected by
the filter (at Lγ).

The 2D wave-number-frequency dependent turbulent spectra are shown in figure IV.3.6.
The mean RWS (Taylor hypothesis) stands in full green lines and the waves’ velocity (Dis-
persion relation) in red dashed lines together with the 2D turbulent spectra. For Cases 01
and 02 one observes the filter scales in dotted lines: Twice the filter length 2 Lγ in yellow; the
filter period correspondent to Atmospheric turbulence and Wave Induced motions (Tγ0 and
Tγ1), respectively in green and red.

Analogous to section IV.2.3.1, the filter frequency 1/Tγ1 corresponding to WI motions is
defined as fγ1 = c/(2 Lγ), but here one observes the k dependency of fγ1(k), since c(k) =√

(g /k) tanh(kd). A discussion on the significance of such definition of a wave-number
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dependent characteristic frequency might be appreciated in the Appendix C.1, and its de-
termination exemplified in figure C.1.

The filter acts in the atmospheric turbulence as described in section IV.3.3, and is par-
ticularly effective below 2 Lγ0 and 2 Tγ0. The flow dependency of the filter effect becomes
clear in figures IV.3.6b and IV.3.6c, where the period Tγ1 below which it becomes effective
in the WI motions is considerably lower than Tγ0. Contrary to the atmospheric turbulence,
Wave Induced motions are hidden from the filter effect between Tγ1 and Tγ0, and thus com-
paratively magnified in the frequency spectra of numerical and physical experiments, given
respectively in figures IV.3.5b and II.3.2b.

(a) Case 00: No filter (b) Case 01: Lγ = 25 m

(c) Case 02: Lγ = 50 m

Figure IV.3.6: Wave-number-angular-frequency 2D turbulent spectra, for the wavy bottom
numerical experiment evaluating the sLiDAR filter effect. The mean wind velocity corre-
sponding to the Taylor hypothesis appears in green full lines, and the waves velocities given
by the intermediate water dispersion equation appears in red dashed lines. In Cases 01 and
02 the dotted lines denote the characteristic filter scales: Lγ in yellow, Tγ0 corresponding to
Taylor hypothesis in green, Tγ1 corresponding to the dispersion equation in red.
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IV.3.4.3 THE SLIDAR FILTERING EFFECT IN DECOMPOSED WI MOTIONS

The decomposition technique developed in section IV.2 is employed to the 2D spectra of
figure IV.3.6, leading to the Atmospheric turbulence (Atm.) and Wave Induced (WI) parts,
shown respectively at figures IV.3.7 and IV.3.8. Again, the filter scales 2 Lγ, 2 Tγ0 and 2 Tγ1

are depicted respectively as yellow, green and red dotted lines in the figures. The Atm.
part closely resembles the flat case spectra previously shown in figure IV.3.4, which attests
the faithful reproduction of the Atmospheric turbulence, meaning the filter effect in atmo-
spheric turbulence still applies as evaluated in section IV.3.3.

Present section evaluates the filter effect in the WI part revealed in figure IV.3.8. At Case
01 employing Lγ = 25 m such as in the physical experiment, it seems most of the WI motion
is protected from the filter effect at scales larger than the filter period 2 Tγ1. At Case 02
employing Lγ = 50 m, the filter period 2 Tγ1 gets comparable to the waves predominant
periods, and the filter becomes more significant in the WI flow.

(a) Case 00: No filter (b) Case 01: Lγ = 25 m (c) Case 02: Lγ = 50 m

Figure IV.3.7: Wave-number-frequency 2D turbulent spectra for the decomposed Atmo-
spheric Turbulence part. Wavy bottom numerical experiment evaluating the sLiDAR filter
effect. The mean wind and the waves velocities appear in black dashed lines. Again, the
dotted lines denote the characteristic filter scales: Lγ in yellow, Tγ0 in green, Tγ1 in red.
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(a) Case 00: No filter (b) Case 01: Lγ = 25 m (c) Case 02: Lγ = 50 m

(d) Case 00: No filter; Zoomed. (e) Case 01: Lγ = 25 m; Zoomed. (f) Case 02: Lγ = 50 m; Zoomed.

Figure IV.3.8: Wave-number-frequency 2D turbulent spectra for the decomposed Wave In-
duced part. Wavy bottom numerical experiment evaluating the sLiDAR filter effect. Same
scales as usual in (a,b,c); Scales adjusted to highlight the comparison in (d,e,f). The mean
wind and the waves velocities appear in black dashed lines. Again, the dotted lines denote
the characteristic filter scales: Lγ in yellow, Tγ0 in green, Tγ1 in red.

As discussed in section IV.2.2.1 (Fig. IV.2.6), the WI decomposition is sensitive to small
values of the WI fraction F (k, w), i.e., the squared root of the ratio between the WI motions
and the total fluctuations energy at a given (k, w) scale. It will be soon shown that, filtering
preferably the Atm. rather than WI motions, the WI fraction is artificially magnified by the
sLiDAR filtering, so that it acts somehow favorably to the proposed decomposition. As con-
sequence, the WI flow definition extends wider in the spectral domain, meaning the region
over which it is defined enlarges perpendicularly to the dispersion relation at figure IV.3.8:
In Case 02 compared to 01, and Case 01 compared to Case 00.

The integration of the decomposed 2D spectra leads to the 1D wave-number and fre-
quency spectra, respectively shown in figures IV.3.9 and IV.3.10, where the total energy ap-
pears in dotted black line, the Atm. part in blue dashed line, and the WI part in red dashed
line. The ESDU reference appears in the figures as dashed black lines.
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(a) Case 00: No filter (b) Case 01: Lγ = 25 m (c) Case 02: Lγ = 50 m

Figure IV.3.9: Wave-number dependent 1D spectra, decomposed into Atm. turbulence and
WI flow. To be compared to the ESDU reference. Wavy bottom numerical experiment eval-
uating the sLiDAR filter effect. The vertical dotted light blue lines stand for the wave peak
wave-number, and the green for the wave-number filter scale kγ. The ESDU reference ap-
pears in the dashed black lines.

(a) Case 00: No filter (b) Case 01: Lγ = 25 m (c) Case 02: Lγ = 50 m

Figure IV.3.10: Frequency dependent 1D spectra, decomposed into Atm. turbulence and WI
flow. To be compared to the ESDU reference. Wavy bottom numerical experiment evalu-
ating the sLiDAR filter effect. The vertical dotted light blue lines stand for the wave peak
frequency. The vertical green and red lines stand for the filter frequencies fγ0 and fγ1, re-
spectively.

As discussed in section IV.3.3, the filter strongly affects the Atm. part, but its effect is
mitigated in the Wave Induced 1D spectra. In the wave-number spectra of figure IV.3.9, in-
dependently of the filter length, the WI contribution remains hidden beneath the prevailing
Atm. part. In the frequency spectra of figure IV.3.10 though, the different filtering appre-
ciated by WI and Atm. motions becomes clear, with the WI part mostly preserved, thus
emerging from beneath the Atm. part that is strongly mitigated by the filtering effect.

Note that in the non-filtered signal at figures IV.3.9a and IV.3.10a, the WI part does not
follow the slope of the total or Atm. parts, but once the filter becomes significant at fig-
ures IV.3.9(b-c) and IV.3.10(b-c) they do present similar slopes: Probably a mere but striking
coincidence that the filter imposed slope is very close to the WI spectra slope.

Table IV.3.2 summarizes the energy distribution per decomposed parts (Total, Atm., WI,
and Atm-WI correlated) and test cases. In the table, the cross-correlation energy 2Eũ1û1
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(the Atm-WI correlated part) is also evaluated, though it is often neglected in the other dis-
cussions through this section. Case 00 is the reference, characterized by uh = 4.0 m/s and
TI=6.7%, for which the table shows: 1.09% of the total fluctuation energy is held by WI mo-
tions, and 0.36% by the correlations between Atm. and WI parts; so the cross-correlations
contain 33% of the energy contained by the WI flow alone, and are apparently not negligible.

Then taking 1 minus the ratio from Case 01 and Case 02 to Case 00, table IV.3.2 shows
the amount of energy filtered from each of the total or decomposed parts: With Lγ = 25 m,
24% and 34% of the energy from Atm. and WI parts is respectively lost; and with Lγ = 50 m
the amount rises to 37% and 60%, respectively. It was previously noted that if compared to
Atm. turbulence occurring in the same wave lengths or periods, the filter effect is mitigated
at the WI flow, and that ultimately leads to the pronounced enhancement of WI motions in
the 1D frequency spectra. This is true, but it is here demonstrated that WI motions are also
significantly filtered by the sLiDAR.

Table IV.3.2: Energy distribution and filtering deficit per Case. In Case 00 the total energy
(Giving TI = 6.7% with U = 4.0 m/s) is distributed into Atm. turbulence (Eû1û1 ), WI motions
(Eũ1ũ1 ), and Atm-WI cross-correlations (2Eũ1û1 ). For Cases 01 and 02 it is shown the energy
deficit with respect to Case 00, for each spectral contribution.

Total Atmospheric Wave Atm.-WI
Turbulence Induced Correlated

Case 00÷u′
i u′

i |0 100.00% 98.47% 1.09% 0.36%
1-[Case 01÷Case 00 Energy ratio] 24% 24% 34% 20%
1-[Case 02÷Case 00 Energy ratio] 38% 37% 60% 62%

The WI part of the 1D spectra is highlighted in figure IV.3.11, where Case 00 (No filter)
appears in blue full line, Case 01 (Lγ = 25 m) in red dashed line and Case 02 (Lγ = 50 m) in
green dashed-dot line. The forcing sea-state spectra F (k) and F ( f ) are drawn at the figure
with black dotted lines and circles. The wave peak wave-number or frequency is depicted
with the vertical black line, and the filter scales kγ, fγ1 by the vertical dotted lines with colors
corresponding to their Case.

Like for the Atm. turbulence, the filter invariably induces the mitigation of WI motions
across the whole range of scales, but it is strongly magnified for k > kγ and f > fγ1. Un-
like the Atm. turbulence, the WI part is smoothly filtered: There is a very small change of
slopes between the WI wave-number spectra shown in figure IV.3.11a, and an even smaller
one between the frequency spectra of figure IV.3.11b, which is another indication that the
sLiDAR filter imposes a slope to the spectra that coincidentally approaches the slope of the
WI spectra.
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(a) Wave-Number 1D spectra (b) Frequency 1D spectra

Figure IV.3.11: Sea-State forcing and the atmospheric response, for the wavy bottom numer-
ical experiments evaluating the sLiDAR filter effect. Sea-State forcing (F ) in black dotted
lines and circles: Auto-spectra of the longitudinal orbital velocities on the free-surface (FS).
Atmospheric response (EũR ũR ): Auto-spectra of the WI flow, as previously shown at figures
IV.3.9 and IV.3.10. The vertical lines colored accordingly to each spectra denote the filter
characteristic scales kγ, fγ1. The vertical black line denote the wave peak scales kp and fp .

The ratio between the WI and total fluctuation spectra of figures IV.3.9 and IV.3.10, gives
the squared of the wave-number and frequency dependent WI fractions, i.e., F (k) and F ( f ),
respectively shown in figures IV.3.12a and IV.3.12b. The flow dependency of the sLiDAR ef-
fect is evident, leading to the artificial enhancement of the WI fraction as the filter acts more
significantly in the Atm. turbulence. In the wave-number spectra of figure IV.3.12a, the dif-
ferent filtering of Atm. and WI motions appears significant only in Case 02 (Lγ = 50 m), for
which the WI fraction is artificially augmented at k > kγ. In the frequency spectra of figure
IV.3.12b, the disturbance appears as soon as in Case 01 where Lγ = 25 m, and the WI fraction
is so magnified by a factor of ∼2, thus becoming the predominant contribution to the 1D
spectra of figure IV.3.5b when F ( f ) > 0.5.
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(a) Wave-Number dependent F (k) (b) Frequency dependent F ( f )

Figure IV.3.12: Wave Induced fraction F (k) and F ( f ), for the wavy bottom numerical ex-
periments evaluating the sLiDAR filter effect. The vertical lines colored accordingly to each
spectra denote the filter characteristic scales kγ, fγ1. The vertical black line denote the wave
peak scales kp and fp .

IV.3.4.4 OVERVIEW AND DISCUSSION

In the absence of other instruments capable of evaluating the sLiDAR filtering effect in the
results of section II.3, and without any previous measurements of the 2D spectra reported
in the literature at similar scales and at the offshore environment, present section gathers
multiple developments presented during this thesis to numerically evaluate the sLiDAR fil-
tering effect in the results obtained during the experimental campaign. For instance: The
numerical setup is established in section III.4; the reconstruction of the sea-state spectra
observed during the experimental campaign is described in section IV.3.1; and a numerical
sLiDAR model is introduced to the numerical framework according to section IV.3.3, that
also describes the filtering effect in the flat bottom cases.

The decomposition proposed in section IV.2 enables the separated evaluation of the sL-
iDAR filter acting in Atm. and WI motions. The decomposition recovers the Atm. turbulent
part as observed in flat bottom cases, for which the discussion in section IV.3.3 still applies.
Present section instead, focuses on the sLiDAR filter effects to the WI part.

Contrary to section IV.3.3, where the filtering effect scales simply with the mean wind
velocity, the WI disturbances in 1D and 2D turbulent spectra reveal the strong flow depen-
dency of the sLiDAR filtering effect. The filter length scale is constant, but the corresponding
filter period scales differently for Atm. and WI motions, according to the Taylor hypothesis
for the former and the wave dispersion relation for the second.

As in the experimental campaign, at any case the WI disturbances remain hidden in the
1D wave-number dependent turbulent spectra, and appear only in the 1D frequency depen-
dent, and specially in the 2D k −w dependent turbulent spectra. The filter effect is notable
in the 1D frequency spectra, and at a given frequency the filter acts preferably in Atm. rather
than WI motions. So as the filter becomes more important, the WI flow is relatively magni-
fied in the 1D frequency spectra.
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IV.3.5 COMPARISON BETWEEN PHYSICAL AND NUMERICAL EXPERIMENTS

The presented test cases and methodologies allow a very detailed comparison between phys-
ical and numerical experiments rarely observed in the literature. The numerical Cases 00.Num
(No filter) and 01.Num (Lγ = 25 m) just discussed in section IV.3.4.3 are here compared to
the physical experiment Case 01.Phys, previously presented in section II.3 and exploited in
section IV.2.3. The triple decomposition developed in section IV.2 has already been applied
to each case, but for the sake of completeness, Atm. and WI parts of the 2D spectra are re-
peated respectively in figures IV.3.13 and IV.3.14. At these figures, Cases 01.Num (Lγ = 25 m)
and 00.Phys appear respectively in subfigures (a) and (b).

As noted before in section II.3, the Atm. turbulence appears in the physical experiment
of Case 01.Phys (figure IV.3.13b) with an unexpected shape that contradicts the one expected
on a simple shear flow, i.e., the one observed in the numerical experiment of figure IV.3.13a,
and in the experimental campaign at other instants such as Case 02.c (Figure II.3.8b). The
atypical shape of the 2D spectra in the physical experiment is believed to be due to buoyancy
forces. These forces are neglected in the numerical model, and so the Atm. turbulence
cannot be properly evaluated by the current numerical setup.

(a) Numerical Case 01.Num (b) Numerical Case 01.Phys

Figure IV.3.13: Wave-number-frequency 2D turbulent spectra for the decomposed Atmo-
spheric Turbulence part. Comparison between physical and numerical experiments. The
mean wind and the waves velocities appear in black dashed lines. The dotted lines denote
the characteristic filter scales: Lγ in yellow, Tγ0 in green, Tγ1 in red.

There is also considerable uncertainty regarding the sea-state modelling in WaveWatch
III, and introduced by sea-state reconstruction at section IV.3.1. Even though the uncertain-
ties regarding the sea-state and the error assumed in the background turbulence are signif-
icant, it is yet worth to compare the WI motions revealed in figures IV.3.14a and IV.3.14b, for
the numerical Case 01.Num and experimental Case 01.Phys, respectively.
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(a) Numerical Case 01.Num
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(b) Numerical Case 01.Phys

Figure IV.3.14: Wave-number-frequency 2D turbulent spectra for the decomposed Wave In-
duced part. Comparison between physical and numerical experiments. The mean wind and
the waves velocities appear in black dashed lines. The dotted lines denote the characteristic
filter scales: Lγ in yellow, Tγ0 in green, Tγ1 in red.

As usual, the integration of the WI 2D spectra leads to the k and f 1D spectra of fig-
ure IV.3.15, where: Case 00.Num given in blue full lines; Case 01.Num in red dashed lines;
and Case01.Phys in golden dot-dashed lines; are to be compared to the free-surface EDF of
longitudinal velocities, given in dotted black lines and circles.

The spectra are normalized in figures IV.3.15a and IV.3.15b by the integral correspond-
ing to the total fluctuation energy of Case00.Num. Note that the forcing spectra is exact for
the numerical cases, but just an estimation for the experimental case. Besides, the forcing
F (kx ,ky ) is discretized in the numerical wave-number domain, for which there is a one-
to-one correspondence to the frequency domain that does not necessarily covers the whole
range of frequencies resolved: As a consequence, the numerical WI frequency spectra present
strong oscillations at larger scales, being magnified in the frequencies where F (kx ,ky ) is de-
fined, and mitigated in between.

The WI spectra are also considerably lower in the numerical reproduction, but when
one evaluates the spectral shape with the spectra normalized by their own energy, such as
remarked in figures IV.3.15c and IV.3.15d, there is an astonishing similarity between the nu-
merical and physical experiments. The slopes drawn in the figures are just an approximation
to the observations, closely followed by each test case below the wave peak scales kp and fp ,
and above the filter scales kγ and fγ0.
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(a) Ẽ(k) normalized with Case 00.Num u′u′. (b) Ẽ( f ) normalized with Case 00.Num u′u′.
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(c) Ẽ(k) normalized with each case ũũ.
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(d) Ẽ( f ) normalized with each case ũũ.

Figure IV.3.15: Wave Induced 1D spectra. Comparison between physical and numerical ex-
periments: Case 00.Num in blue full lines; Case 01.Num in red dashed lines; Case 01.Phys
in golden dot-dashed lines. The dotted vertical black lines stand for the wave peak scales kp

and fp , and the other vertical lines for the filter characteristic scales kγ and fγ1. The black
dotted lines and circles denote the sea-state longitudinal velocity EDF F (k) or F ( f ). Above
(a,b), the spectra are normalized by the total auto-correlation obtained in Case 00, and be-
low (c,d) the normalization occurs with respect to the WI auto-correlation obtained for each
case.

The WI fraction is obtained from the ratio between WI and total 1D spectral distribu-
tions, observed at each case as shown in figure IV.3.16. Considering the predominance of
Atm. turbulence and its improper numerical evaluation demonstrated in figure IV.3.13, it
was not expected a faithful reproduction of the WI fraction. Nevertheless, when the filter
becomes important in the frequency spectra revealed by Case 01.Num and Case01.Phys,
the WI fractions match quite accurately in figure IV.3.16b, suggesting that the filter effect is
properly taken into account by the numerical model.
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(a) Wave-Number dependent F (k) (b) Frequency dependent F ( f )

Figure IV.3.16: Wave Induced fraction, giving the relative intensity of WI in Total fluctuations.
Comparison between physical and numerical experiments: Case 00.Num in blue full lines;
Case 01.Num in red dashed lines; Case 01.Phys in golden dot-dashed lines. The vertical black
lines correspond to the wave peak scales kp and fp , and the others to the filter characteristic
scales kγ and fγ1.

While the WI fraction inherit a numerical bias, assumed to be due to the neglected buoy-
ancy effects in the numerical experiment, the transfer functions presented in figure IV.3.17
incorporate a bias regarding the sea-state spectra estimated at the experimental campaign,
which is of course exact in the numerical cases. The transfer functions are presented in fig-
ures IV.3.17a and IV.3.17b, where the WI 1D spectra are normalized by the sea-state forcing
spectra.

As for the WI spectra itself, the transfer functions have similar shapes but different mag-
nitudes in the numerical and physical experiments. So in figures IV.3.17c and IV.3.17d the
transfer functions appear normalized by its value in the peak wave-number/ frequency, and
the similarities between the experiments is remarkable.

In figure IV.3.17c, the transfer functions in numerical and physical experiments reveal
an inflection point occurring in the vicinity of the peak scale, separating two regions of ap-
proximately constant slopes that apparently converge between the cases. The inflection is
stronger in the experimental case, so the two constant slope regions become further apart,
and a local maximum appears below the peak scale, which is not observed in the numerical
experiments. Again, the approximated slopes observed between the wave peak and sLiDAR
filter scales is drawn in the figures to help the comparison.
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(a) Wave-Number dependent TF(k) (b) Frequency dependent TF( f )
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(d) Frequency dependent TF( f ), normalized by the
wave peak value

Figure IV.3.17: Transfer function, giving the ratio between the WI atmospheric response to
the sea-state longitudinal velocity spectra. Comparison between physical and numerical
experiments: Case 00.Num in blue full lines; Case 01.Num in red dashed lines; Case 01.Phys
in golden dot-dashed lines. The vertical black lines correspond to the wave peak scales kp

and fp , and the others to the filter characteristic scales kγ and fγ1.

IV.3.5.1 OVERVIEW AND DISCUSSION

Ultimately, the proposed framework allows the direct comparison between the physical and
numerical experiments, in a level of detail rarely observed in the literature. The artificial
enhancement of WI motions due to the sLiDAR filter is seemingly well described in the nu-
merical case, as its employment leads to much accurate magnitude and shape of the 1D
frequency-dependent WI fraction.

The uncertainties leading to such comparison are still significant, as for example: The
boundary layer height is unknown in the physical experiment, so chosen arbitrary in its nu-
merical reproduction; and the sea-state spectra has not been measured, but estimated dur-
ing the experimental campaign. Besides and more critical, buoyancy forces are neglected
in the numerical model, but are probably significant during the physical experiment, esti-
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mated to be in a stable stratification regime. These buoyancy forces lead to very peculiar
behaviors of the 2D spectral distribution of Atm. motions, so the physical and numerical ex-
periments are characterized by drastically different Atm. turbulence spectral distributions.

The WI disturbances are significantly stronger in the physical experiment, probably due
to the sea-state uncertainty between the cases, or the buoyancy effects neglected in the nu-
merical model. Nevertheless, the comparison reveals remarkable similarities between the
Wave Induced flow, observed in physical and numerical experiments.

Notably, each of the features revealed in the WI spectral distribution of the physical ex-
periment as discussed in section IV.2.3, are reproduced in the numerical model. The WI
spectra almost collapse between the cases when normalized by the case-specific total WI
energy. Considering the same sea-state forcing at each test case, the same remarks apply
to the transfer function: It is amplified in the physical experiment, but if normalized to the
same value at the wave peak scales, their curves agree well in numerical and physical appli-
cations.
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CONCLUSION

As proposed in the introduction, this Thesis reviews and extends the current knowledge re-
garding Wind-Wave interactions in the lower part of the Marine ABL (MABL), where they are
indeed observed to be significant in the characterization of the wind resource. Thanks to
the use of complementary physical and numerical experiments, new insights on the wind-
wave interaction processes are obtained, revealing good part of the role of Wave Induced
(WI) motions transferred from the sea into the atmosphere.

OVERVIEW AND MAIN FINDINGS

An overview of the most relevant aspects of discussion is presented below. Some of the
findings are fully original, which is properly remarked during the text. Many of the findings
support the results presented in the literature review of section I.3, but all consider a certain
level of originality in the analyses.

PHYSICAL EXPERIMENT

The field experiment conducted during the Thesis’ experimental campaign has been pre-
sented at part II. A scanning Light Detection and Ranging (LiDAR) system is deployed to
observe the propagation of Wave Induced (WI) motions into the lower part of the Marine
Atmospheric Boundary Layer (MABL), approximately 18 m above the ocean.

As remarked through the literature, WI disturbances are captured in the one-dimensional
(1D) frequency dependent turbulent spectra, but not in the wave-number dependent spec-
tra. It is only in the two-dimensional (2D) combined wave-number-angular-frequency (k −
w) perspective, that the characterization of WI motions can be fully appreciated. This is a
first to demonstrate the applicability of sLiDAR systems to measure k−w dependent turbu-
lent spectra in the Offshore Environment, and though the difficulties might still be signifi-
cant, the LiDAR is currently the only measurement device capable to perform the task in the
micro-scales of the WBL above the ocean.

The Space-Time spectral description of the velocity fluctuations provides an enhanced
perspective of the Atmospheric (Atm.) and WI motions. Contrary to the 1D spectra, the up-
ward turbulent energy transfer from the waves to the wind is evident and well distinguish-
able from the atmospheric turbulence in the 2D turbulent spectra. The 2D spectra reveal
that Atm. and WI motions correlate differently (in terms of spectral coherence) in space
and/or time domains, explaining the observations previously evaluated in the 1D spectra.

The 2D spectra are in fact so sensitive, that it shall be actually hard to find measurements
without any WI disturbance during the measurement campaign (October 2020 to January
2021, waves season at Le Croisic, France). The reason of multiple failed attempts [Hristov,
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2018] to detect WI disturbances in the frequency 1D turbulent spectra is its partial perspec-
tive of modal energy distribution.

NUMERICAL EXPERIMENT

The numerical model exploited during the Thesis is presented at part III. The MABL is in-
vestigated employing the Large Eddy Simulation (LES) solver described in section III.1. The
test cases presented are built to investigate the WI disturbances above fast traveling waves,
propagating under comparatively slow wind conditions in a situation commonly described
as old seas. Contrary to the physical experiment, where measurements are restricted to a
certain height and to the Radial Wind Speed measurements, the numerical approach gives
the detailed information of the overall flow behavior across the ABL and in highly controlled,
simplified, neutral stratification conditions.

When fast traveling waves are introduced with lengths scales comparable to the ABL
height, significant unsteady processes take place in the LES generated ABL. Notably the
wave drags the wind, and if the large scale pressure gradient is kept constant, the free-stream
velocity speeds-up, eventually dragging back the propagating wave. The flow history is ex-
tremely important determining the wind profile speed-up once the steady state regime is
reached.

An original large scale pressure gradient modeler is proposed in section III.2, shown ca-
pable of achieving a target, averaged constant longitudinal velocity at a certain height in the
ABL. With the large scale pressure gradient evolving in much larger times than turbulent
fluctuations in the ABL, turbulence statistics are shown invariant to different values of the
target velocity ur e f imposed in different flat bottom cases. The pressure gradient evolution
scale can be adjusted in the natural frequency of the mass-spring-damper system modeler.
One of the largest appeals of such methodology in the given context appears when it enables
the arrival to a steady state regime with the same free-stream velocity imposed as the initial
flat bottom condition.

The WI disturbances are investigated as function of varying Wave Age conditions in sec-
tion III.3. The wind speed profile is observed to be dependent on the incident wave, so
before considering the parametrization of WI disturbances, it is first discussed the defini-
tion of the WA parameter with respect to the friction or free-stream velocities. Thanks to
the evolving pressure gradient method, the free-stream velocities are kept in a statistically
steady regime. The friction velocity on the contrary, strongly deviates from its flat bottom
solution. The WA characterizing the non-disturbed or free-stream flow is significantly more
consistent to describe the observations. A simple exponential model then accurately fits to
the non-dimensional form drag as function of the reference WA. When evaluating the tur-
bulent profiles, this parametrization also provides a reasonable first order approximation to
the approximately linear shear stresses observed across the boundary layer height.

The waves introduced disturb the wind speed profiles, and notably their behavior through
the logarithmic region. Due to waves, the region of validity of the logarithmic wind pro-
file considerably diminishes with increasing wave age, squeezed by the extended inner and
buffer regions occurring below. Also the apparent friction velocity and roughness lengths
that scales the wind profile in the logarithmic region are significantly disturbed by the waves.

190



The turbulence intensity profiles indicate higher turbulence levels at the lower part of
the ABL, due to the existence of the WI fluctuations, but just above that region one observes
in fact lower turbulence levels if compared to the flat bottom cases. Such behavior is ex-
plained by the TKE budget analyses. In increasing WA, turbulent production and dissipation
diminish in the WBL. The reduction of production is accentuated compared to dissipation,
so the waves lead to a strong lack of balance between production and dissipation, ultimately
acting as a sink in the total TKE equations. The lack of balance between production and
dissipation triggers the disturbance of turbulent transport terms, now bringing turbulent
eddies from the outer region to the buffer region, contrary to the flat bottom case. The pres-
sure transport term greatly surpasses the other terms of the TKE budget, and appears as the
principal mechanism transferring the waves’ orbital velocities to the air-flow.

Non-monochromatic waves are presented in section III.4, with the comparison between
regular, 1D irregular, and 2D irregular sea-states. In the comparison of section III.4, the
two-dimensional irregular sea-state corresponds to the conditions estimated during the ex-
perimental campaign, and the mean velocity at the measurement height also matches the
one observed during the campaign. The sea-state energy being ∼ 100 times smaller, many
of the disturbances observed in the previous sections become negligible. Even in this nu-
merical controlled scenario, these disturbances are so hard to catch that the comparison
is often contaminated by turbulent uncertainties, and in the offshore environment most of
the previous remarks would be undetectable face to the uncertainties of the measurement
techniques, unsteadiness, and non-homogeneity effects [Hristov, 2018].

These test cases of section III.4 are revisited with spectral analyses in section IV.2. Con-
trary to the mean history, mean wind and turbulent profiles, and the 1D spectral analyses;
and as argued in section IV.1: The Space-Time (Or k −w) perspective of turbulent fluctua-
tions reveals detailed information about the WI flow structure, which favors the investiga-
tion of consequent WI disturbances and Wind-Wave interactions in the MABL, demonstrat-
ing intrinsic differences between the test cases discussed.

A MECHANISTIC APPROACH TO PHYSICAL AND NUMERICAL EXPERIMENTS

According to the discussion in the literature review, the recent developments in measuring
and modelling techniques open the path to what Hristov and Ruiz-Plancarte [2014] describe
as the mechanistic approach for obtaining wind-wave interaction observational insight: It
consists in the direct estimation of WI velocities and pressure in the atmosphere, rather than
the inference of WI disturbances in vertical wind profiles, total momentum fluxes, or TKE
budget. That path is widely pursued through this Thesis, in physical and numerical experi-
ments as discussed along part IV.

An original methodology is proposed in section IV.1 to characterize WI motions from the
measurements in instantaneous velocities. Two concepts extend the definition of a Wave
Related flow, from Wave Coherent (WC) to Wave Induced (WI), leading to WI and WC decom-
positions that for the first time allow their quantification in the field, without any previous
sea-state knowledge required: (i) The existing correlation between Atmospheric turbulence
(Atm.) and WI motions; and (ii) The Space-Time spectral description of turbulent fluctua-
tions.
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The WI flow is so defined as a specific kind of turbulent fluctuation, that does not behave
as expected from atmospheric turbulent flows above fixed terrains. The different behavior
of both fields shall be often particularly noticeable in the k − w turbulent spectra, that al-
lows the decomposition above arbitrary sea-states. The WI flow is obtained as a fraction of
the WC flow, so introduced as the WI fraction F . The squared of the WI fraction gives the
fraction of WI energy in total fluctuations, so leading to precise (not unique) definitions of
the WBL height when the WI energy is negligible (∼1% if F = 0.1). This definition of the WI
flow is limited to scenarios where it is detectable.

That methodology is first exploited in section IV.1.2, where the simplistic monochro-
matic wave scenario still allows the WC decomposition, to be compared with the WI decom-
position yet based on the 1D wave-number or frequency dependent spectra. Contrary to
the WC alternative, the WI filter recovers the expected turbulent behavior at the WC scales.
Though, due to Wind-Wave interactions, turbulent scales are distorted and particularly the
integral scale is diminished in the WBL. Wave induced motions merge into the turbulent
cascade distorting and forcing the turbulent flow in the WBL.

In more realistic conditions where the sea-state is defined at multiple scales (irregular),
it is often unfeasible to employ the WC and WI filters based on the 1D turbulent spectra,
such as otherwise exploited for the regular wave case. Adopting the enhanced perspective
of the WI flow proposed in section IV.1, the 2D k − w spectral partition proposed in sec-
tion IV.2 is shown feasible for every test case here presented, even given the significant dif-
ferences observed in the correspondent WI 2D spectra, and without any prior information
about the Sea-State prescription. The effectiveness of the employed triple decomposition is
established with the WI disturbances vanishing from the Atm. filtered 1D and 2D turbulent
spectra.

The comparison of physical and numerical experiments closes part IV in section IV.3.
A numerical model of the sLiDAR filter is established to evaluate it’s impact on the original
analyses presented in section II.3, and particularly the filter behavior in the joint Space-Time
distribution of turbulent correlations. Even though the sLiDAR’s filter is originally presented
in space, the flow dependency is such that the turbulent fluctuations are like-wise filtered in
space and time domains.

The decomposition proposed enables the separated evaluation of the sLiDAR filter act-
ing in Atm. and WI motions. Contrary to the Atm. turbulence, where the filtering effect
scales simply with the mean wind velocity, the WI disturbances in 1D and 2D turbulent
spectra reveal the strong flow dependency of the sLiDAR filtering effect. The filter length
scale is constant, but the corresponding filter period scales differently for Atm. and WI mo-
tions, according to the Taylor hypothesis for the former, and the wave dispersion relation for
the second.

Ultimately, the proposed framework allows the direct comparison between physical and
numerical experiments, in a level of detail rarely observed in such complex Fluid Mechanic’s
studies. The artificial enhancement of WI motions due to the sLiDAR filter is seemingly well
described in the numerical case, as its employment leads to much accurate intensity and
shape of the 1D frequency-dependent WI fraction. The WI disturbances are significantly
stronger in the physical experiment, probably due to the sea-state uncertainty between the
cases, or the buoyancy effects neglected in the numerical model. Nevertheless, the compar-
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ison reveals remarkable similarities between the Wave Induced flow observed in physical
and numerical experiments.

Notably, each of the features revealed in the WI spectral distribution of the physical ex-
periment are qualitatively reproduced in the numerical model. The WI spectra almost col-
lapse between the cases when normalized by the case-specific total WI energy. The same
applies to the transfer function: It is amplified in the physical experiment, but if normalized
to the same value at the wave peak scales, their curves agree well in numerical and physical
applications.

SCIENTIFIC DISCUSSION

The introduction stated some fundamental scientific questions regarding wind-wave inter-
actions. Each of them is briefly reconsidered hereby, explicitly stating the corresponding
answer, and indicating the interests in future studies.

WAVE BOUNDARY LAYER

The observations presented support the literature review, where the Wave Induced distur-
bances extend into limited regions above the free surface. A more precise definition of the
WBL remains elusive though, as the WI disturbances significance strongly depends on the
variable of interest, which is discussed in Hristov [2018] and sustained by current observa-
tions.

The physical experiment presented gives access to space-time velocity measurements
at a single height that, depending on the variable of interest, might be considered below or
above the WBL height. At the 1D turbulent spectra of section II.3.2, for example, the wave-
number-dependent spectra do not present any WI disturbances, yet they are significant in
the 1D frequency-dependent spectra at the same section.

The numerical experiments reveal the vertical evolution of mean wind velocity and tur-
bulent quantities. Indeed the WI disturbances vanish sufficiently far from the surface, but
the height below which they are significant depends on vertical profile considered. Notably
in the Turbulent Intensity (TI) profiles of section III.3.2, there is a relatively precise height
below which the TI is augmented, and above which it is diminished. Though, that height is
different if considering longitudinal or vertical velocity variances.

A precise definition of the WBL may be taken from imposing a criteria for the WI frac-
tion (F ) introduced at section IV.1, that corresponds to the squared root of the WI energy
fraction in the total energy density function. Such definition is also not unique, as different
conclusions are obtained if F is wave-number and/or angular-frequency dependent, or if
F corresponds to a particular velocity component. Vertical velocities are shown to prop-
agate higher in the ABL, and the sLiDAR filter will artificially augment F (w), rather than
F (k).

It is thus, unreasonable to expect a single definition to the WBL height, as it is strongly
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dependent in the variable of interest.

WAVE INDUCED STRESS

The WI Stress has drawn considerable attention of the scientific community over the last
decades, and is often recognized as playing a most important role in wind-wave interac-
tions. Notably, if the waves travel sufficiently fast with respect to the mean wind speed, the
momentum transfer occurs upwards, and the wind speeds up due to the waves’ incidence.

The radial velocity component and single height measurement of the physical experi-
ment do not give access to shear stresses in the ABL. The numerical experiment on the con-
trary, gives the detailed evolution of Total, SGS, resolved, turbulent and WI stresses along
the ABL. Besides, the numerical experiment present simplified and controlled conditions,
allowing to study the influence of single varying parameters in the results. As drawback, the
LES formulation introduces numerical modelling and discretization errors, that have not
been the focus of present studies.

Section III.2 revealed that the WI pressure drag is very sensitive to the flow history. In
section III.3, the WI pressure drag is shown to impose the disturbance of the shear stresses
profile in the ABL. In the controlled scenario presented, characterized by the LES generated
MABL in neutral conditions with almost constant free-stream velocity, the WI pressure drag
and the total shear stresses are consistently parameterized as functions of the WA.

The WI stress and the wind speed-up become significant in sufficiently old seas regimes,
characterized by high Wave Ages. Though, the precise relation here presented are limited to
very simplistic environmental conditions, and valid for a specific set of numerical parame-
ters.

Further works could evaluate the sensitivity of the analyses with respect to the numerical
setup, and the importance of physical phenomena neglected in the numerical model, e.g.,
buoyancy forces, and the two-way coupling between ocean waves and atmospheric winds.
But one shall note that a perfectly steady state condition can hardly ever be found in the off-
shore environment. With these and others complexities in mind, Hristov and Ruiz-Plancarte
[2014] note that a simple and robust parametrization of the surface drag is unlikely to exist,
which is supported in current discussions.

WAVE INDUCED FLOW

The WI flow is generally defined in the literature review of section I.3.2, as wave related dy-
namics (Velocities and Pressure) that advect through the atmosphere, yet maintaining some
of its original aspects. Through the experimental literature, one often observes the conse-
quence of WI motions distorting turbulent statistics in the WBL, but one rarely encounters
a direct characterization of the WI field.

An original methodology is here proposed in section IV.1 to characterize WI motions
from measurements in instantaneous velocities, that for the first time allows its quantifi-
cation in the field, without any previous sea-state knowledge required. The WI flow is so
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defined as a specific kind of turbulent fluctuation, that does not behave as expected from
atmospheric turbulent flows above fixed terrains.

Effectively extracting the WI flow above arbitrary sea-states requires considering corre-
lated WI motions and Atm. turbulence, and the wave-number-angular-frequency perspec-
tive of modal energy distribution. As the methodology relies in the partitioning of the turbu-
lent auto-correlation spectra, the inference of deterministic and decomposed WI motions
encounters the phase retrieval problem [Kogan et al., 2016], here circumvented assuming
that coherent WI motions and Atm. turbulence are in-phase.

Employing the proposed methodology, the WI flow is extracted from the instantaneous
wind speed measurements, observed for each of the experimental and numerical cases pre-
sented.

The assumption of in-phase Wave coherent signals determine the amount of WI-Atm.
cross correlations, according to the discussion in section IV.1. The assumption seems rea-
sonable, because in a statistically steady scenario the coherent signals shall resonate with
each other. Though, there is yet no observational support to that assumption, which shall be
explored in further works. The interest in determining the exact amount of WI-Atm. cross-
correlations is because that term shall hold all the wind-wave interactions effects in the de-
composed WI and Atm. momentum equations.

TRANSFER FUNCTION

The determination of the transfer function linking the sea-state forcing and the atmospheric
response shall precede any parametric description of the WI field in the MABL, but it has
not yet been reported in the literature as actual measurements in the offshore environment.
That shall occur for the absence of a triple decomposition method capable of measuring the
WI field in the ocean environment, characterized by non-regular sea-state situations.

Recent developments in sLiDAR measurements technologies and techniques allow the
enhanced perspective achieved through the 2D spectra, and together with the triple decom-
position proposed, the Transfer Function (TF) is here presented for the physical experiments
at section IV.2.3. The critical issue in the Tranfer Function obtained in the physical exper-
iment, is that the Sea-State spectra has not been measured, rather being estimated from a
well established WaveWatch III hind-cast database.

For a parametric description valid in low-fidelity applications, it is also desired to re-
produce the Transfer Function in high fidelity numerical tools. To evaluate the numerical
model capabilities, the transfer function is also obtained for the numerical experiments, and
the comparison is presented in section IV.3.5. It is then observed a high similarity between
the Transfer Function shape obtained in physical and numerical experiments, though it is
considerably augmented in the physical experiment test case. Another critical issue with
the comparison, is that buoyancy forces are neglected in the numerical experiment, and the
Atm. turbulence contribution behaves considerably different in each case.

The Transfer Function establishes a link between multi-scale waves and wave induced
motions in the atmosphere, and is here reported for the first time as actual measurements in
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the offshore environment. In order to obtain more precise estimates of the Transfer Func-
tion, it is desirable to measure the sea-state spectra as part of future experimental cam-
paigns, and to consider buoyancy forces in future numerical experiments.

STATE-OF-THE-ART WIND MODELS

It has been discussed in the literature review of section I.2.2.4, that prediction tools for de-
sign and operational purposes rely in state-of-the-art wind models considering a mean wind
log-law profile based on the Monin-Obukhov Similarity Theory (MOST), superposed to ran-
domly generated turbulent components with statistics given, e.g, by the Mann spectra. It is
observed though, that the mean wind profiles and its turbulent statistics considerably devi-
ate from MOST and Mann’s predictions on the vicinity of ocean waves.

The main key-point to the current discussion is the artificial turbulence modal distribu-
tion assumed in these models. The modal distribution is critical in the wind turbine struc-
ture perspective, as the turbine is characterized by its natural lengths and frequencies that
shall be set sufficiently apart from the principal loading scales. Recall that wind and waves
velocity fluctuations cover a wide range of length scales, including the rotor’s blade length.
The design criteria of offshore wind turbines, then require that the rotor frequencies are suf-
ficiently higher than wind and waves frequencies [Nikitas et al., 2016]. In old seas situations
where waves’ travel faster than the wind, the waves become the critical loading imposing the
turbine’s frequency. The main issue here is that the exact amount of gap required between
the wave peak frequency and the turbine frequency is subject to significant uncertainty, de-
pending in very complex wind-wave-structure interactions.

In the design phase of wind turbines, waves loadings are usually considered as acting in
the water domain, but the state-of-the-art wind models do not consider any kind of WI mo-
tions in the wind source. As noted, in old seas WI motions approach the natural frequency
of wind turbines, and along the current Thesis they are often observed significant, some-
times predominant, determining the modal distribution of velocity fluctuations in the WBL
at Wave Coherent scales.

Present developments suggest that the total fluctuations can be decomposed in WI mo-
tions and Atm. turbulence in the WBL. The Atm. turbulence obtained with such a decompo-
sition behaves similarly to the one obtained in flat bottom cases, and thus agree well, e.g., to
Mann’s prediction. Though, when considering the monochromatic wave in section IV.1.2, it
is shown that due to Wind-Wave interactions, turbulent scales are distorted, and particularly
the integral scale is diminished in the Atm. turbulence spectra.

Moreover, present observations reveal an even more fundamental limitation of the artifi-
cial turbulence considered in current state-of-the-art wind models. Indeed, the one dimen-
sional wave-number or frequency spectra employed in these models reveal a very limited
perspective of turbulence modal distribution, even in canonical, flat bottom numerical ex-
periments. The artificial turbulence considered in these models is defined with the Taylor’s
hypothesis relation.

Recall that in the wave-number-angular-frequency spectra, the Taylor hypothesis cor-
responds to a straight line, strongly contrasting to the continuous observations here pre-
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sented, as further discussed in the appendix C.2. The appendix also discusses existing and
original wave-number-angular-frequency spectra models, neither of which has been actu-
ally tested in a wind turbine structure to access the implications. Notably, if turbulence
strictly follows the Taylor hypothesis, it is trivial to obtain non-coherent turbulence and
wind turbine motions in the ABL. But the 2D perspective reveals the modal spreading phe-
nomena, so that turbulence is actually existent through a wide range of space-time scales in
the ABL.

State-of-the-art wind models could improve their accuracy in offshore environment by
considering: (i) The superposition of a Wave Induced field model to the existing Atm. tur-
bulence models; and (ii) The distortion of turbulent scales in the Atm. turbulence, due to
wind-wave interactions. Additionally, it is suggested that they can also improve their ac-
curacy in generic conditions by considering a wave-number-angular-frequency turbulent
spectra description, rather than strictly adopting the Taylor’s hypothesis.

Looking forward to future works, it seems important to evaluate the implications of such
improvements to the structural and productive performance of wind turbines.
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APPENDIX

A THEORETICAL, EMPIRICAL AND NUMERICAL FRAMEWORKS

A.1 CANONICAL ANALYTICAL SOLUTIONS

A.1.1 STOKES WAVE THEORY

The analytical solution for a monochromatic wave propagating within the framework es-
tablished in section I.1.2.1 is available from the development of a perturbation series by Sir
George Stokes (1847, reprinted in Stokes [1880]). The solution is presented up to 5th or-
der accuracy e.g., in Fenton [1985] also considering the Doppler effect due to currents. The
equations below are restricted to the first other solution, also know as Airy wave theory first
published at the Encyclopaedia Metropolitana in 1841 [Craik, 2004].

Monochromatic waves are described by the free parameters: period T , height H = 2a
and water depth d . Other wave properties are the angular frequency w = 2π/T , frequency
f = 1/T , wave length λ and wave number k = 2π/λ. Linearization relies in non-shallow
water (dispersion parameter kd ≥ O(1)) and low steepness ka << O(1) assumptions. The
wave propagates into x direction through the time t . z vertical axis is directed upwards and
has origin in the still water position. g = 9.81 m/s2 stands for gravity constant. The specific
mass is ρ ∼ 103 kg/m3, but the quantities here presented are given per specific mass.

The linear dispersion equation relates the wave angular frequency, and period, to its
length on a given depth:

ω2 = g k tanh(kd) (A.1)

The analytical solution of the linear model presents the free surface elevation η(x, t ) and
the velocity potential φu(x, z, t ), such as:

η= a cos(kx −ωt )

φu = ag

ω

cosh[k(z +d)]

cosh[kd ]
sin(kx −ωt )

(A.2)
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The velocity field (vx , vz) is by definition:

vx = ∂φu

∂x
= ag k

ω

cosh[k(z +d)]

cosh[kd ]
cos(kx −ωt )

vz = ∂φu

∂z
= ag k

ω

sinh[k(z +d)]

cosh[kd ]
sin(kx −ωt )

(A.3)

Group velocity cg is the velocity at which energy is propagated with the waves. Is it so
that a regular wave front travels with velocity cg . No wave can be observed beneath its front.
The free surface elevation appears to travel with phase velocity c = λ/T , which is always
greater than cg . Just before the wave front, the free surface perturbation disappears limiting
the energy propagation velocity to cg . The velocities cg and c are defined in equation A.4,
and related by equation A.5.

cg ≡ ∂w

∂k
c ≡ w

k
(A.4)

cg = c ·n

n = 0.5

[
1+ 2kd

sinh(2kd)

]
(A.5)

Higher order phenomena Higher nth order effects occurs in the nth multiplied frequency/
wave-number of the wave frequency/ wave-number, and do not follow the dispersion rela-
tion, being so called Bounded Waves (Opposed to 1st order Free Waves). They are generally
secondary to lower order effects, but may become important when kd gets sufficiently low,
or ka gets sufficiently high. The free surface profile resultant from higher order approaches
is not symmetric with respect to the mean surface z = 0, as the crests are amplified and the
troughs are flattened. The orbitals do not form a closed curve as predicted in first order the-
ory, but rather advance constantly on the wave propagation direction, with the appearance
of the Stokes Drift as an effective mass transportation mechanism (comparable to ocean
currents) due to Ocean Waves.

Variable bathymetry The depth is considered constant through current employed numeri-
cal framework, and no solid boundaries are placed in the domain. But in a variable bathymetry
scenario, the wave length and group velocity change, and so do the wave height as con-
sequence, to conserve power in a phenomena called shoaling. In a multi-directional and
changing depth scenario, refraction also occurs with the local deformation of the wave front
line. The generation of waves induced by moving boundaries such as an offshore platform
is called radiation.

A.1.2 BOUNDARY LAYER THEORY

The boundary layer theory is first attributed to Ludwig Prandtl in his revolutionary presen-
tation at the Third International Mathematics Congress, at 1904 (See, e.g., Anderson [2005]).
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With major assumptions introduced to the theoretical framework established, this canon-
ical case is crucial for the development of more complex situations characterizing the At-
mospheric Boundary Layer described in section I.2.2. The theory here presented goes well
beyond the initial development of Prandtl, and one shall notably remark the contributions
of Theodore von Kármán in 1930 (c.f. Tong and Ding [2020] and Eckert [2018]).

Coriolis and buoyancy forces are neglected. The mean flow occurs in two dimensions,
and being statistically steady is described by the steady Reynolds Averaged Navier Stokes
Equations I.1.7 (With ∂ui /∂t = 0). The free-stream undisturbed velocity is U∞, the longi-
tudinal length is L0, and the boundary layer thickness δ(x1) is defined as the distance to
the wall (x3) on which the velocity is 0.99U∞. That defines the non dimensional length
x∗

1 = x1/L0 and wall distance x∗
3 = x3/δ scales. The non dimensional velocity vector u∗ =

u1U−1 ĵ1+u3V −1 ĵ3 is also defined, so that the mass conservation equation I.1.1 reveals that
the vertical velocity scales according to V ∼Uδ/L0.

Characteristic convection and diffusion time scales are respectively t (cnv) = L0/U and
t (di f ) = δ2/ν. In laminar flows one can assume t (cnv) ∼ t (di f ) revealing a non dimensional
viscosity ν∗ = ν ·Uδ2/L0. In turbulent flows the velocity fluctuations u′ can be estimated
as, e.g., u′ ∼ 0.1u, so considering that δ/L0 is typically about 1%, its non dimensional form
is defined as u′∗ = u′/(U

√
δ/L0). Thus, the time scale for turbulent diffusion is t (tur ) =

δ/u′ ∼ (δ/L0)0.5t (cnv), and the characteristic turbulent viscosity ν(tur ) = δ2/t (tur ). Finally it
is assumed that δ is very small compared to L0.

Neglecting terms on the order of δ/L0 << 1, the momentum RANS equations I.1.26 are
significantly simplified:

u1
∂u1

∂x3
+u3

∂u1

∂x3
= ∂

∂x3

[
ν
∂u1

∂x3
−u′

1u′
3

]
− 1

ρ0

∂p

∂x1
, (A.6)

∂
(
u′

3u′
3

)
∂x3

− 1

ρ0

∂p ′

∂x3
= 0. (A.7)

The integration of equation A.7 from x3 = (0..x3) gives the algebraic relation p(x1, x3, t ) =
pw (x1, t )−ρ0

(
u′

3u′
3

)
.

Representative of the overall momentum flux, the wall stress τw = µ∂u1/∂x3 character-
izes the friction velocity u∗ = √

τw /ρ and the non dimensional wall distance z+ = zu∗/ν.
The flow is fully determined by ρ,µ,δ and ∂pw /∂x, or equivalently, e.g., ρ,µ,δ and u∗. Two
independent non dimensional variables can be formed to characterize the velocity profiles
u1/(u∗) = fu(x3/δ,δu2ρ/µ) or its derivatives ∂u1/∂x3 = (u∗/x3) fdu(z+, x3/δ).

If the flow is considered either close or distant enough from the wall, further simpli-
fications take place. The inner region occurs when x3/δ << 1 (< 0.1), in which case ac-
cording to Prandtl’s (1925) postulate and its observation through physical and numerical
experiments (c.f. [Pope, 2000], pg. 272 and section 7.3.3), the velocity profile is invariant
to δ, so ∂u1/∂x3 = (u∗/x3) fdu(z+). On the outer region for which x3 >> z+(> 50), the flow
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is invariant to viscosity such that the velocity defect may be evaluated by ∂(u1 −u∞)/∂x3 =
−u∗gdu(z/δ). The viscous sublayer is a most confined region (z+ < 5) where turbulence
is negligible such that integration of the friction velocity definition on 0 < z+ < 1 leads to
u1 = u∗z+.

Being the global Reynolds large enough, the inner and outer regions are expected to su-
perpose within z3/δ < 0.3 and z+ > 30. (c.f. [Pope, 2000], pg. 275). Consequently in this
region the flow is invariant to thickness δ and viscosity ν, so that the function fdu(z+, x3/δ)
evaluates into a constant, i.e., the von Karman constantκ−1. Hence the name log-law region,
where ∂u1/∂x3 = (u∗/x3)κ−1 integrates from 0 to x3 according to a friction log-law velocity
profile:

u1 = u∗

κ
ln

(
z+)+B , (A.8)

where the integration constant B may be arbitrarily defined to incorporate a physically in-
spired roughness length zo :

u1 = u∗

κ
ln

(
z+

z+
o

)
. (A.9)

According to [Pope, 2000] (pg. 274) values for the introduced constants are usually ob-
served within 5% discrepancy from κ = 0.41 and B = 5.2. Alternatively, one may use the
velocity defect law ∂(u1 −u∞)/∂x3 = −u∗gdu(z/δ), where gdu(z/δ) = fdu(z+, x3/δ) = κ−1,
which integrates from x3 to δ into the defect log-law:

u1 −u∞ = u∗

κ
ln

( z

δ

)
+Bδ, (A.10)

being Bδ a flow dependent constant.

Considering the eddy viscosity hypothesis where the Reynolds Shear Stresses (Or fluxes)

are given by τ(r )
12 = u′

1u′
3 = νt ∂u1/∂x3 in the outer region where τ = τ(r ), the only possible

choice for νt consistent with the constant flux (τ= τw ) and the log-law regions is νt = u∗κx3.

A.2 WIND-WAVE INTERACTION MECHANISMS

A.2.1 FLOW DESCRIPTION

The effort to describe metocean conditions in a causal approach leads to fundamental ques-
tions such as: How are Ocean waves generated; and what drives the wind close to the Ocean
surface? These two questions are intrinsically related to each other, and result from complex
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wind-wave interactions taking place in the lower layers of the ABL above the ocean. As dis-
cussed in section I.3.1 the wind is responsible for the waves generation and damping, and
the waves disturb the wind as introduced in section I.3.2.

Related as they can be these two fundamental problems, i.e., of wave growth and wave
induced disturbances in the wind, are rarely evaluated together in Wind-Wave interaction
studies. It happens that these physics evolve in very different time scales: Waves will de-
velop much slower than the wind, and particularly in deep waters, swells may travel during
a few days and over hundreds or thousands of kilometers, before being submitted to sig-
nificant changes; the wind dynamics on the other side might significantly change in a few
minutes and over short distances due to atmospheric changes in pressure distribution or
stratification regime. A consequence is that, though Wave and Wind dynamics shall tend to
an equilibrium, this situation is rarely observed in the field.

Away from the idealized equilibrium condition, one distinguish the young and old sea
regimes. Young sea conditions occur when rapid winds force the free-surface, transferring
its momentum to comparatively slow traveling waves. Old seas occur when fast traveling
waves (Notably a swell) encounter comparatively slow wind conditions in the lower part of
the MABL. The non-dimensional quantity usually employed in the literature to characterize
the wind-wave interaction regime is the Wave Age WA= c/U , defined as the ratio between
the wave phase velocity c, and a characteristic velocity scale in the atmosphere U . The wave
induced disturbances into the wind are more significant in Old sea conditions, e.g., a swell
encountering light winds, which happens quite often in coastal areas.

As an introduction to the described scenario, the asymptotic cases where the wind is
static (Old seas), and where the wave lengths are on the order of the ABL roughness length
(Young seas), are respectively shown in figures A.1 and A.2. Note that neither of the cases are
expected to hold, and will slowly tend to equilibrium: The swell effectively drives the wind
which will not hold still, and the fast traveling waves are damped accordingly as their energy
transfers upwards into the atmosphere; The short ripples that initially allow the ABL to be
considered a rough but flat terrain will grow in energy and length, soon becoming significant
and eventually focusing in large scale motions, i.e., a swell.

In the absence of wind and assuming an irrotational framework, the Stokes solutions
described in the appendix A.1.1 are extended to the atmosphere such as shown in figure
A.1: A discontinuity then appears between the opposed longitudinal velocities at crests and
troughs, of air and water domains. In the viscous (rotational) flow the discontinuity is bal-
anced by the viscous boundary layer developed in the interface and highlighted in the figure.
The vertical motions are perfectly in phase between air and water, and the air pressure dis-
tribution (fictitious resultant force Fp in the figure) is perfectly out of phase with the wave
slope, resulting in the wave damping. The stokes drift also applies to the atmosphere, which
will induce a wave-driven jet in the lower part of the ABL.
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Figure A.1: Asymptotic Old-Sea: Monochromatic wave (Swell) of lengthλ and phase velocity
c propagating under static wind and neutral atmospheric condition. The Stokes orbitals
(represented by the spirals) and drift are extended to the atmosphere. In crests and troughs
the longitudinal velocities (horizontal arrows with opposite senses) are discontinuous. The
discontinuity reveals a viscous boundary layer across the free-surface. The wave is damped
by the pressure distribution perfectly out of phase with the wave slope, represented by the
fictitious resultant force Fp .

Figure A.2: Asymptotic Young-Sea: Waves with lengths on the order of the ABL roughness
length may occur in the free-surface. Turbulence generates and feeds energy to the ripples
by means of fluctuating pressure forces Fp [Phillips, 1957]. In the inner region, turbulence
is mostly isotropic and blocked by the free-surface. In the outer region turbulence is highly
anisotropic and dependent on the other boundary conditions. The shear is positive, and the
u′w ′ correlations predominantly negative (Clock-wise turning eddies).
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Figure A.3: A monochromatic wave with phase velocity c drags an initially undisturbed ABL
flow. The problem is usually described in the wave following frame of reference, and a re-
versed flow appears below zc where u1(zc ) = c, inducing the vorticity distribution attributed
to the solution of Miles’ BVP, in Miles [1957].

Now in the asymptotic case of young (new-born) seas pictured in figure A.2, the ABL
is described such as in section I.2.2, with a modified roughness length accounting for the
free-surface ripples. The fully turbulent flow, which is above the viscous inner layer, is char-
acterized in two regions: The inner region, where turbulence is blocked by the free-surface
and exhibits an isotropic, quasi-equilibrium behavior; The outer region where large scale
anisotropic turbulence is strongly dependent on the other boundary conditions. The pos-
itive shear generates predominantly negative u′w ′ correlations, depicted by the predomi-
nant clock-wise turning eddies in figure A.2. Very close to the surface a resonance mecha-
nism [Phillips, 1957] between turbulent pressure fluctuations and the free-surface dynamics
induces the (Fp ) appearance and growing of small waves (Or ripples) in the initially calm wa-
ter, changing the roughness length that in turn controls turbulence statistics across the ABL
extension.

A more general case is depicted in figure A.3 when the arbitrary wave of fig. A.1 with
phase velocity c encounters the initially undisturbed ABL flow of fig. A.2. The velocity pro-
file equals the mean surface velocity us at the mean surface height, which might account
for ocean currents and the stokes drift acting in the surface. The stokes orbital propagate
into the atmosphere, so the mean profiles are periodically disturbed: Above the crests the
mean velocity is us −uo ; and above the thoughts us +uo . The waves orbitals, irrotational
by definition from the potential theory framework, are now submitted to shear turbulent
dynamics, and will periodically feed turbulent eddies of opposite rotations into the atmo-
sphere through processes of vortex roll-up and break-down. Unless the free-stream velocity
is lower than c, then far enough from the surface there exists a critical height (zc ) where the
mean flow velocity is u1 = c.

In a moving frame traveling with velocity c, one observes the reversed flow below zc ,
and the instability mechanism of Miles [1957] induce a continuous vorticity distribution at
zc , which is depicted in detail at figure A.4. The geometrical effects of the moving bottom
induce periodic disturbances of the flow streamlines such as depicted in figure A.5. In this
last figure one observes other wave growing mechanisms, such as the separated sheltering
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of Jeffreys [1925], and the non-separated sheltering and outer flow perturbations introduced
in Belcher and Hunt [1993].

Figure A.4: Miles mechanism of wave growth/ damping, relying in the existence of a critical
height zc where the mean wind u1 equals the phase velocity of the wave. A discontinuity in
the BVP posed by Miles [1957] appears through a continuous vorticity distribution (Orange
spirals) in the critical height, which is responsible for the wave growth/ damping (Fp ).

Figure A.5: Sheltering related mechanisms of wave grow or damping (Fp ). The (separated)
sheltering theory of Jeffreys [1925] relies in the flow detachment denoted by the orange spi-
ral. The detachment can only occur in large wave slopes, but a non-separated sheltering
effect invariably occurs as described in Belcher and Hunt [1993]. In the inner region there
is an asymmetric disturbance of the streamlines and stresses. In the outer region the dis-
turbance is mostly symmetric, but displaced by the non-separated sheltering of the inner
region. The (partially) out-of-phase pressure distributions leads to the resultant pressure
forces Fp .

A.3 FOURIER TRANSFORMS

Definitions - Complex The two-dimensional (2D) Fourier Transform (FT) of the field vari-
able χ(x, t ), in this example function of the longitudinal position x and time t , gives the
approximation of χ in the wave-number-angular-frequency (k = 2π/x and w = 2π/t ) do-
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main. So if the k and w domains are discretized respectively in 2M +1 and 2N +1 intervals,
then the discrete FT is defined in complex notation as:

χ(x, t ) =
M∑

m=−M

N∑
n=−N

[
cmn e i (mx+nt )

]
, (A.11)

being the complex-valued Fourier coefficients cmn(k, w) (physically meaning the EDF, or
energy spectra) determined by a Fast Fourier Transform (FFT) algorithm. If the EDF is com-
puted from an auto-correlation function χ(x, t ) → R(r,τ), then cmn(k, w) is real.

That can be alternatively written in terms of the four quadrant spectra Q±±:

χ(x, t ) = b0 +
M∑

m=1

N∑
n=1

Q−−(k,w)︷ ︸︸ ︷
c1mn e i (−kx−w t ) +

Q−+(k,w)︷ ︸︸ ︷
c2mn e i (−kx+w t )

+ c3mn︸ ︷︷ ︸
Q+−(k,w)

e i (+kx−w t ) + c4mn︸ ︷︷ ︸
Q++(k,w)

e i (+kx+w t )

 .

(A.12)

The 2D FT is separable, so that a 2D FFT can be obtained from multiple one-dimensional
FFTs, acting sequentially in k and w directions, or vice-versa. It is also conjugate fold-
symmetric, meaning c1 = c4∗ (|c1| = |c4|) and c2 = c3∗ (|c2| = |c3|).

According to Parseval’s theorem,
∑∑ |χ(x, t )|2dxdt =∑∑ |cmn(k, w)|2dkdw , with |cmn(k, w)|2

commonly referred as the power spectrum Q2
R . So taking the square of the spectral content

(inside the summation) in equation A.12, yields:

M∑
m=1

N∑
n=1

(

QR︷ ︸︸ ︷
c1mn + c2mn + c3mn + c4mn)2 e−2i (kx+w t )

 , (A.13)

defined in terms of the resultant one-sided energy spectrum QR .

Definitions - Trigonometric In the numerical application the FT is rather defined in the
real valued formulation:

χ(x, t ) = b0+
M∑

m=1

N∑
n=1

[
d1mn sin(kx)sin(w t )−d2mn sin(kx)cos(w t )

−d3mn cos(kx)sin(w t )+d4mn cos(kx)cos(w t )
]

.

(A.14)

Taking the square of the spectral content (inside the summation) in equation A.14 yields
to the power spectrum Q2

R :
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M∑
m=1

N∑
n=1

(

QR︷ ︸︸ ︷
d1mn +d2mn +d3mn +d4mn)2 [sin(kx)sin(w t )]2

 . (A.15)

Trigonometric and Complex FT conversion Using the identity e±i x = cos(x)± i sin(x) in
equation A.12, and comparing it to equation A.14, one establish the relation between trigono-
metric and complex Fourier coefficients:


c1
c2
c3
c4

=


−1 +i +i +1
+1 +i −i +1
+1 −i +i +1
−1 −i −i +1




d1
d2
d3
d4

 , (A.16)

or conversely:


d1
d2
d3
d4

= 1

4


−1 +1 +1 −1
−i −i +i +i
−i +i −i +i
+1 +1 +1 +1




c1
c2
c3
c4

 (A.17)

A.4 NUMERICAL MODELLING ASPECTS

A.4.1 PRESSURE POISSON EQUATION

As discussed in section I.1.1.1 the incompressibility constraint (eq. I.1.1) has several impli-
cations on the flow behavior, ultimately introducing the saddle point problem to the Navier
Stokes (NS) equations (Le Quéré et al. [2010]). As the NS equations are to be solved for
(u, p) from equations I.1.1 and I.1.2, numerical approaches often rely in a Poisson equation
enforcing the incompressibility constraint through the determination of the pressure field.
Generally the Poisson equation is built taking the divergence of the momentum equation
I.1.2, that leads to an equation on the form:

∇2p =R[P ], (A.18)

where R[P ] stands for a generic right hand side, resulting from the combination of the of the
mass conservation equation with the specific discretization scheme adopted. In a continu-
ous medium:

R[P ] =−ρ∂ui

∂x j

∂u j

∂xi
, (A.19)
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and equation A.18 is necessary and sufficient to enforce the incompressibility constraint
in mean and fluctuation pressure fields (Pope [2000], pg. 18-19). Nevertheless due to the
saddle point problem the situation is more complicated in a discrete formulation, and the
topic revised in section III.1.1.3.

A.4.2 TURBULENT-VISCOSITY MODELS

The turbulent/eddy viscosity hypothesis is hardly locally verified on complex flows but con-
stitutes a powerful simplification that turned possible most of the nowadays engineering
scale applications of CFD. Its success comes to the fact that it is built to capture some of the
basic phenomena in interest on turbulent flows s.a. boundary and mixing layers, homoge-
neous decay and isotropic turbulence. In LES formulations (Section I.1.1.6) the hypothesis
gains additional credibility as the Sub-Grid modeled turbulence is indeed supposed to be
isotropic and homogeneous.

The eddy viscosity hypothesis is stated so the Reynolds stress tensor τ(r ) is modeled by
introducing the turbulent kinematic viscosity νt :

τ(r )
i j = 2

3
e δi j −2νt Si j , where

(A.20)

τ(r )
i j = u′

i u′
j , Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, and e = u′

k u′
k

2
.

Equation A.20 comes from analogy with the Newtonian fluid constitutive equation I.1.3,
and implies that the anisotropy of the Reynolds Stress Tensor τ(r ) depends linearly on the
symmetric part of the velocity gradient S through the scalar νt .

The assumption that τ(r ) anisotropy depends only on S means that turbulence straining
history is lost with S being a local quantity. The viscous law of equation I.1.3 is generally
valid because the molecular processes timescales is much smaller then the shear processes
timescales, so that both phenomena are uncoupled, anisotropy history is rapidly lost and
the shear stresses determined by local quantities. Being the turbulent processes timescales
comparable to the mean shear timescale, the anisotropy history becomes important so that
equation A.20 has no general validity.

On simple shear flows, where the velocity gradients change slowly and the turbulent pro-
duction and dissipation terms are comparable in the turbulent stresses transport equations
(omitted), the local gradients S characterize the strain history to which the turbulence has
been subjected, so the hypothesis becomes more accurate.

Moreover it is observed that the turbulent diffusion τ(r ) anisotropy is usually not aligned
with the molecular diffusion anisotropy S as suggested by the eddy-viscosity hypothesis on
equation A.20. Being the relationship between τ(r ) anisotropy and S limited to a scalar, the

222



eddy-viscosity assumption states that both tensors have aligned principal axes, a condition
hardly satisfied on many of the simplest flows. Anisotropic models can be build considering
relationships with other tensors, such as the mean rate of rotation, and a greater number of
scalars other then νt .

Keeping the hypothesis limitations in mind, its success into engineering applications is
quite amazing. Having specified νt and e, the relationship of eq. A.20 states a most conve-
nient form of closure where the equations I.1.7 behave in the same way, and can be similarly
treated, as the Navier Stokes equations with a modified viscosity.

A.4.3 GEOMETRIC CONSERVATION LAW

From the mass conservation equation, one arrives in the Geometrical Conservation Law
(GCL) introduced by Thomas and Lombard [1979]. A transport equation is built for the Jaco-
bian J including only geometrical parameters of the grid. For the specific surface following
coordinates defined in section III.1.1.2, J depends on the grid vertical position h:

∂

∂t

(
1

J

)
= ∂

∂ξ3

(
∂h

∂t

)
. (A.21)

Solving the equation A.21 with the same time-marching scheme as the conservation
equations on a moving grid, ensures conservation in constant flows, and according to Guil-
lard and Farhat [2000] is a sufficient condition for the whole scheme to be at least first-order
time-accurate on moving meshes. Taking R[G] as the right-hand-side of equation A.21 and
applying the RK3 method, a general sub-step evolution equation is on the form:

Jm = Jm−1 +∆tαmR[G]
m−1 +∆tβmR[G]

m−2, (A.22)

which is solved for R[G]
m−1 to obtain the current grid velocity ḣ = ∂h/∂t that satisfies the GCL.

A first order finite difference scheme is used to integrate the grid velocity, known in the first
cell layer where k = 1, so that ḣk+1 = ḣk +∆ξ3R

[G]
m−1.

A key-point to this scheme is that to obtain the grid velocity in m −1, used to march the
conservation equations to m, the grid should be known not only in the past (Grid velocity in
m −2), but also in the current (unknown) step (Jacobian at m −1), and in the future (Jaco-
bian at m). In coupled schemes where the grid depends on the LES solution, requiring for
example the pressure feedback into HOS, this non-linearity requires proper considerations,
further discussed in section B.2.

A.4.4 TIME-MARCHING SCHEME

The 3rd order Runge-Kutta (RK3) employed in the LES is the one refered as ’Method B’ in
Spalart et al. [1991]: No implicit treatment is considered in viscous terms, being the method
fully explicit. Consider each transport equation solved by the LES for the unknown χ, on the
form:

223



∂χ

∂t
=R[R](χ), (A.23)

so that the evolution occurs in 3 stages:

• 1: χ
′ =χn +∆tγ1R

[R]
n ;

• 2: χ
′′ =χ′

n +∆t
[
γ2R

[R]′ +ζ1R
[R]
n

]
;

• 3: χn+1 =χ′′
n +∆t

[
γ3R

[R]′′ +ζ2 R[R]′
]

;

with γ1 = 8/15, γ2 = 5/12, γ3 = 3/4, ζ1 =−17/60 and ζ2 =−5/12. The sub-time steps sizes are
thus: [8/15,2/15,5/15] ∆t .

This method have been adapted by Sullivan et al. [2008], considering the implicit treat-
ment of the pressure term to enforce the incompressibility constraint with the Poisson equa-
tion.

B NUMERICAL MODEL DESCRIPTION, DEVELOPMENTS, AND

APPLICATIONS

B.1 PHYSICAL SCALING IN THE LES GENERATED NEUTRAL MABL

B.1.1 GEOMETRICAL AND DYNAMICAL SIMILARITIES

Recall from section I.1.2.2, that stating fully turbulent and neutral flow is respectively equiv-
alent to consider Re →∞ and Ri → 0 in equation I.1.29. In flat bottom cases, where gravi-
tational forces are linear, Fr−1δ3,i might be fully incorporated as a static pressure in p ′, and
the problem’s dependency in the Froude number Fr is dropped: In this canonical case the
solution of I.1.29 is self-similar, scaling independently with the characteristic scales [L0, U0].
Nevertheless, the Froude F r number is essential to describe the non-linear gravitational
forces characteristic to wave-induced perturbations: Once a wave system exists, dynami-
cal similarity is only granted for constant F r numbers, as the solution of equation I.1.29
becomes F r dependent.

Froude number and Wave Age Equality in Froude number is equivalent to equality in the
wave-age (WA= c/u∗), which can be shown as follow. Consider the comparison of two geo-
metrically similar (Non-dimensional ABL height kδ; water depth kd and wave slope ka con-
stant; wave lengths λ1/λ2 = L1/L2 with k = 2π/λ) models with characteristic scales [L1,U1]
and [L2,U2]. If their wave age is constant so u∗

1 /u∗
2 = c1/c2, and if they are dynamically sim-

ilar u∗
1 /u∗

2 = U1/U2. The dispersion equation of those waves will give c1/c2 =
√
λ1/λ2 so

that:
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F r = U 2
1

g L1
= U 2

2

g L2
(B.1)

Numerical similarity Up to here the similarities discussed apply to a continuous medium
with infinite extension in the horizontal directions, but due to the limited domains exten-
sion and discretization, numerical similarities can also determine the solution. Unless con-
vergence is strictly achieved for space and time discretizations and domains’ extension, tur-
bulence non-linearities are such that the instantaneous disturbances due to the lack of nu-
merical similarity is likely to be significant, and the convergence has to be seek in a statisti-
cal perspective. Space resolution-independent solutions are unfeasible in LES formulations,
where the SGS model is grid dependent. The domains’ extension convergence is also hardly
achieved. For limited resources that obliges to focus in certain scales of interest.

Regarding the discretization, numerical dynamical similarity is achieved matching the
CFL=U∆t/∆x and the Peclet number U∆x/ν(tur ) (Withν(tur ) = δ2/t (tur ) as in section A.1.2),
with time and space discretizations ∆t and ∆x. Matching the CFL is trivial in present time-
adaptive scheme, but matching the Peclet number with the introduction of a wave propa-
gation would require an adaptive grid re-meshing procedure currently unavailable for that
task.

In the absence of buoyancy forces, the domain’s vertical extension zl is the numerical
approximation of the ABL physical height δ, assuming that above δ the flow remains undis-
turbed and so independent from the free-surface condition. To mimic an unbounded do-
main in the horizontal directions one imposes periodic conditions in xl that (as for δ) relate
geometrical and dynamic similarities.

B.1.2 SYSTEMATIC COMPARISONS VARYING THE WAVE AGE

According to section B.1.1 the dynamic similarity is trivial in flat bottom cases, but Fr depen-
dent otherwise. So a wave bottom model, with solution given for example in non-dimensional
units, might be arbitrarily scaled with length and velocity [L0,U0], as long as the F r number
(Or alternatively the WA) is kept constant through the scaling.

The wave age changes through systematic variations in waves (Length λ) or wind (Forc-
ing parameter [∂p∂x]0 · zl ∼ u∗2

0 , see section III.2.2) conditions. Once two different wave
cases are in comparison, if geometrical similarity is imposed L0 = λ and only one between
length and velocity spaces can be set to similar magnitudes through the procedures below:

• Varying WA from changing wave lengths:

¦ The wave-length (λ1 6= λ2) is shifted; the non-dimensional wave amplitude ka,
and depth kd are constant; the domain’s dimensions scale with the respective λ
(L0 = λ) so kδ is constant. The Boundary layer height vary between the cases. If
the ABL height is very large (δ >> λ), or adapting [∂p∂x]0 (c.f. section III.2), the
Wind speed is possibly constant between the cases.

• Varying WA from changing wind intensity:
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¦ One varies the imposed ([∂p∂x]0 · zl ), and keep L0 (And λ; δ; d) constant in the
solver. The Wind Speed vary between the cases.

Varying λ keeps u∗
0 constant, while varying [∂p∂x]0 · zl keeps the heights and lengths

constants. Neglecting numerical similarity discrepancies (Hardly acceptable from the dis-
cussion in B.1.1), both solutions would be similar and convertible into one another in post-
processing phase as long as λ 6= 0 and WA=cte.

• Post-processing scaling to match dimensional quantities:

¦ The Boundary Layer height: Setting L0 (And λ) to match a certain δ, scaling U0

accordingly so F r =cte. The wave-length and the Wind speed are consequential.

¦ The Wind Speed: Setting U0 to match a certain velocity scale (e.g. u∗, u10 or u∞),
scaling L0 (And λ) accordingly so F r =cte. The wave-length and the ABL height
are consequential.

The geometrical similarity constraint is problematic imposing δ/λ =cte., for once one
compares or superposes two waves where λ1/λ2 = 10, it is often of no use to consider at-
mospheric boundary layer heights that differ by a factor of 10. Besides if δ∼λ, the problem
is ill defined in the asymptotic young wave scenario, with the ABL vanishing when λ→ 0.
The point is that, just as for the water depth in ocean waves, δ/λ might be just as important
as the WA to define the problem. When different waves propagate in the ocean or in the
atmosphere, the depth and the ABL height do not scale accordingly.

B.2 REVIEW AND IMPROVEMENT OF THE COUPLING BETWEEN LES AND

HOS CODES

The two-way coupling occurs between the Atmospheric LES, and the Oceanic HOS codes:
The pressure field resolved in LES forces the HOS evolution; the free-surface position and ve-
locities solved in HOS, act as boundary conditions and impose the grid configuration in the
LES resolution. The LES evolves with an arbitrarily set (Often CFL-adaptive) time-step, and
a 3rd order Runge-Kutta (RK3) time-marching scheme. The HOS considers a fully adaptive
(Residual reduction) time-step, and a 4th order Runge-Kutta (RK4) time-marching scheme.

As the atmospheric perturbations evolve in smaller time-scales compared to the Ocean
response, the coupling is stronger from HOS to LES: For a whole LES time-step, the HOS
considers a single pressure solution and evolves during as many inner time-steps as required
to converge its equations. The free-surface input from HOS on the other side, is updated in
LES at each sub-step of the RK3 scheme. This is achieved by using the sub-steps sizes from
the LES, as output periods in HOS-Ocean. The non-synchronous exchange between the LES
and HOS solutions qualifies this strategy as a weakly coupling procedure.

The RK3 scheme advances so that in the sub-step m, the solution is known in m − 1
and solved for m. The boundary conditions and the grid speed are so constantly required
at m − 1 with the fully explicit scheme given in section A.4.4. Nevertheless, to obtain the

226



grid speed according to the GCL as in section A.4.3, one also require the grid metrics to be
known in the current and future steps at m and m + 1. The grid is imposed by the HOS,
and in a strongly coupled scenario is dependent on the pressure resolution at multiple HOS
time-steps, between (and including) m and m +1.

The weakly coupling procedure relies in two aspects: (i) The pressure is sent to HOS at
each global time-step, and is regarded as constant in between, where the HOS advances
multiple (> 3) inner time-steps; (ii) When the pressure evolves in the future at m, a simple
predictor-corrector scheme addresses the coupling non-linearity, i.e., the HOS predicts the
surface at m +1 with the pressure at m −1, so that the LES may solve the pressure at m, and
finally the HOS corrects its solution at m +1 with the updated pressure.

The aspects discussed so far are common to past and current developments, summa-
rized in figures B.1 and B.2, respectively. But they are easier to grasp in view of the scheme
in figure B.2, which strictly represents the current algorithm described in section B.2.2.

In figure B.2 (or B.1), one shall note the definitions to: the LES time-steps (i t ); the LES
sub-steps (ist ag e ); and the HOS outer time-steps (i tout ). In LES, the free-surface information
is required twice per sub-step, in the routines responsible for marching either the grid speed,
or the other unknowns,respectively depicted by the red circles or blue squares in the figures.
One may also note the weak coupling concept, with LES sending the information to HOS
once at each time-step. Other aspects of the algorithms depicted in the figures are revealed
in the next sections.

Though it represents a conceptual simplification that better exemplifies the concepts
introduced so far, current developments are just an improvement to the previous algorithm
developed in Cathelain [2017], and first presented in section B.2.1.

B.2.1 PREVIOUS COUPLING PROCEDURE

At each global time step, HOS freezes its solution at ist ag e = 0, and advances as needed by
the LES discarding intermediate solutions. The LES will ask for the HOS solution twice per
sub-step: At m+1 for the GCL, and m−1 for the explicit quantities in the RK3 scheme. After
performing 2 outer steps per LES sub-step, the HOS performs a 7th computation to advance
its solution to the next global time-step. Each HOS computation advances from the solution
in ist ag e = 0 (Or i tout = 1) to the current time received from LES. Referring to figure B.1,
when i tout = 1 no computation is done (∆tout = 0) and HOS send the results obtained at
i tout = 7. At i tout = 7 no message is sent to LES so that i tout = 1 and i tout = 7 are in fact
an algorithmical split of a single outer step in HOS. Twice per sub-step the LES will ask for
HOS results and wait for the solution before advancing its own computations: This may
potentially block hundreds of LES processors waiting for the communication.

At each global time step∆t , the HOS performs a minimum of 6 inner steps (One per outer
step, i tout = 1 and i tout = 7 degenerated), with the actual number of inner steps depending
on∆t and the problem’s non-linearity. Given the sub-steps sizes of the RK3 ([8/15,2/15,5/15]
∆t ), the HOS computes a total of 5.4 ∆t per ∆t in LES: 3.6 times the computation required
with the algorithm presented in section B.2. A numerical imprecision is that the HOS solu-
tion at m +1 do not necessarily passes through m, but the introduced error shall be negligi-
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ble as long as the HOS adaptive step tolerance is set sufficiently small. Both codes operate
in different dimensions, and every physical quantity exchanged between them have to be
scaled accordingly.

Figure B.1: Previous coupling procedure developed in Cathelain [2017].

• Loop in global time steps:

– Loop in LES sub-steps:

* As needed, the LES send the time-steps and wait for the HOS solution.

* The HOS computations advances from ist ag e = 0 (Or i tout = 1) to the
current time received from LES.

* Communication (And HOS outer steps computations) are done twice:

1: Before the GCL, for m +1.

2: With the boundary conditions, for m −1.

– LES sends the resolved pressure to HOS.

– The HOS advances a full time step and updates its solution.

B.2.2 CURRENT COUPLING PROCEDURE

The HOS receives the sub-step sizes and the pressure from LES once at each global time-
step. Four outer steps are performed by the HOS each global time-step, being the last one
a prediction (with a predicted time step). The HOS outer-steps are performed and their
solution successively sent to LES: Those are non-blocking operations, independent from
the LES processors availability to receive the data. The LES receives the HOS solution before
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computing the grid speed: twice at the first sub-step, once at the next two. The HOS solution
is stored in m−1, m and m+1, to be accessed implicitly at the GCL and explicitly otherwise.
The prediction is discarded in the end of the global time step, so that correction takes it
place.

At each global time step∆t , the HOS performs a minimum of 4 inner steps (One per outer
step), with the actual number of inner steps depending on ∆t and the non-linearity level.
Given the actual sub-steps sizes of the RK3 ([8/15,2/15,5/15] ∆t ), the HOS will compute a
total of ∼ 1.5∆t per∆t in LES. Both codes operate in same non-dimensional spaces, and no
scaling is required for the exchange.

Figure B.2: Current coupling procedure, here developed.

• Loop in global time steps:

– LES send the time step and its sub-steps to HOS.

– HOS performs 4 ’outer steps’, being the last one a prediction.

– Each HOS solution is sent sequentialy to the LES (Non-blocking operation).

– LES Loop in sub-steps:

* The HOS solution is received before computing the grid speed.

* Two HOS solutions are received in the first sub-step, one otherwise.

* The solution is stored in m −1, m and m +1 so it can be accessed im-
plicitly in the GCL and explicitly otherwise.

– LES sends the resolved pressure to HOS.

– The HOS latest solution (Prediction) is discarded in both codes, giving place
to correction in the next step.
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B.2.3 OVERVIEW AND DISCUSSION

Current development introduces significant improvements to the coupling methodology,
besides the conceptual simplification and a more rigorous numerical precision. The com-
putational gain in HOS computations is between 33% (4/6 HOS outer step) and 72% (1.5/5.4
∆t ), depending whether the non-linearities and/or∆t are sufficiently small (33%), or signif-
icantly large (72%).

The MPI communication gain is computation-dependent, but potentially huge as the
previous algorithm more easily admits the situation where multiple LES tasks hang-on wait-
ing for the HOS response. The total number of MPI communications is reduced, and the
number of operations per steps is also reduced with both codes operating in the same non-
dimensional space.

C A MECHANISTIC APPROACH TO PHYSICAL AND NUMERICAL

EXPERIMENTS

C.1 AN EQUIVALENT TIME SCALE FOR A SPACE DEPENDENT FILTER

During the experimental campaign presented in part II, special attention is given to the sL-
iDAR volume filter effect that mitigates small scale motions in the RWS fluctuations. The
sLiDAR spatial filter is approximately Gaussian, as further described and evaluated in the
flat bottom experiments along section IV.3.3. One shall then note that the filter strictly ap-
plies to the space domain, and is so characterized by a single characteristic scale Lγ (and
kγ = 2π/Lγ). Though, it is observed during these sections that the filter translates into the
mitigation of motions in the 1D frequency ( f ) dependent turbulent spectra, and moreover
its effect distributes jointly in the 2D k −w dependent spectra.

Considering the flat bottom atmospheric boundary layer, it is common to assume Taylor
hypothesis associating a characteristic time to its equivalent length scale. So given the mean
wind speed U , the filter characteristic time scale becomes Tγ = Lγ/U . The filter time scale
defined that way indeed appears to be significant in view of the one dimensional frequency
dependent spectra exploited in section IV.3.3.

The wave is introduced in the numerical experiment at section IV.3.4, where it is dis-
cussed the filter characteristic time scale associated to Wave Induced motions. Assum-
ing these motions are following the dispersion equation, they travel with velocity c(k) =√

(g /k) tanh(kd), and so the filter characteristic time scale becomes Tγ(k) = Lγ/c(k).

Further developments outline the mathematical reasoning supporting the association
of a filter characteristic time scale to its characteristic space scale, noting the dependency of
this relation to the wave velocity c.

Counting on a Fourier Decomposition of a given space-time dependent signal, and con-
sidering an arbitrary wave component on the k −w spectral domain that propagates with
velocity c = w/k: To its convolution with any linear filter employed in space, corresponds
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an equivalent time-dependent filter...

C.1.1 MATHEMATICS

Consider the space time function h(x, t ) as the convolution of a wave component f (x, t ) and
the filter function g (x −x0):

h(x, t ) = ( f ∗ g )(x, t )

=
∫ ∞

−∞
f (x0, t ) · g (x −x0)dx0.

(C.1)

The filter function acts in space, and might be possibly Gaussian, but surely linear and
symmetric:

f (x0, t ) = A1 cos(x0 − ct +φ1), and

g (x −x0) = 1

σ
p

2π
exp

[− (x −x0)2

2σ2

] (C.2)

A propriety of such linear convolution h is that it integrates into the same vector space
as the wave component f :

h(x, t ) = A2 cos(x − ct +φ2), (C.3)

OBS: and because g is symmetric φ1 =φ2.

So h inherits the property:

h(x, t ) = h(x0 + c(t − t0), t ) (C.4)

And we may apply the variable transformation, with Jacobian:

dx = c dt (C.5)

So from equation C.1:

h(x, t ) = ( f ∗ g )(x0 + c(t − t0), t )

=
∫ ∞

−∞
f (x, t0) g [c(t − t0)]cdt0

(C.6)
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Showing the equivalency between the filter in space and time, with:

g [c(t − t0)] = 1

σ
p

2π
exp

[−c2 (t − t0)2

2σ2

]
(C.7)

C.1.2 CONSEQUENCE

The sLiDAR filter is physically employed in space, with standard deviation σ given as func-
tion of the gate length L f , so σ = σL = L f /(2

p
2ln2). The given reasoning supports that

the equivalent time filter is such that the (time-dependent) standard deviation becomes
σT = σ/c. So meaning that for a gate length L f and the wave speed c, the characteristic
filter period is T f = L f /c.

Such reasoning gives the mapping of T f , in the k −w two-dimensional spectral domain
depicted in figure C.1, which is to be associated to the turbulent spectra depicted along sec-
tion IV.3.4. The figure exemplifies the determination of T f for atmospheric and WI motions,
by probing T f along the Taylor hypothesis and the dispersion relation, respectively.
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Figure C.1: Two-dimensional spectral mapping of T f . The mean wind velocity correspond-
ing to the Taylor hypothesis appears in black full line, and the waves velocities given by the
dispersion equation appears in red full line. The filter characteristic length is L f denoted
by the green vertical line. Probing T f along the Taylor hypothesis gives the characteristic
T f = L f /U for atmospheric motions, denoted by a black dotted line. Probing T f along the
dispersion relation gives the characteristic T f = L f /c(k) for WI motions, denoted by a red
dash-dotted line.
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C.2 ON THE RECONSTRUCTION OF VELOCITY WAVE-NUMBER-FREQUENCY

SPECTRA

The joint space-time distribution of turbulent correlations introduced in section IV.1, has
been shown to reveal crucial aspects of the MABL, and notably some of the main differences
between Atmospheric turbulence (Atm.) and Wave Induced (WI) motions inside the Wave
Boundary Layer. In section IV.1.2 (Paskin et al. [2020]), it is argued that statistical models of
wind resource reconstruction could improve their accuracy in the offshore environments by
considering the superposition of a WI flow model, to the background Atmospheric turbu-
lence, possibly occurring with distorted scales due to non-linear Wind-Wave interactions. It
is so desired to parameterize Atm and WI motions in the MABL but first, one is required to
characterize each contribution from the observations in total measured fluctuations.

In sections II.3 (For the physical experiment) and III.4 (For the numerical experiment),
the 1D wave-number (k) and frequency ( f = w/2π) dependent turbulent spectra reveal a
partial perspective of the turbulent fluctuations, shown insufficient to allow the decompo-
sition for arbitrary Sea-States. On the contrary, the 2D k −w dependent turbulent spectra
shown at the same sections reveal enough information about the Atm. and WI fluctuations,
so enabling the decomposition through the partitioning algorithm described in section IV.2.
Employing such decomposition, one might hope to establish simple models representing
each contribution to the 2D turbulent spectra, which enables the parametrization of the to-
tal fluctuations with respect to the atmospheric and sea-state parameters. Once established,
such models would also provide the segregated reconstruction of Atm. and WI components
to the 2D spectra, so giving an alternative procedure for the 2D spectra partitioning previ-
ously described in section IV.2.

Nevertheless, even in flat bottom conditions, the study of the 2D k−w turbulent spectra
has not been addressed in the literature as much as the wave-number 1D spectra, for which
the Kolmogorov hypothesis (Kolmogorov [1991], from the original of 1941) was developed as
described in section I.1.1.5. There is no universally accepted model for the k −w turbulent
spectra in simple shear flows, and as far as the author knows, none of the existing models are
sufficiently accurate to allow the proposed decomposition of the spectra as an alternative to
section IV.2. So the description of the k−w spectra in flat bottom conditions is the first (and
only, due to the Thesis time constraint) topic revisited in present section.

The first and most explored model for the k − w turbulent spectra has been proposed
by Taylor [1938], stating Taylor’s frozen hypothesis where turbulence evolves so slowly com-
pared to the mean velocity U0, that neglecting its evolution, it is advected by the mean flow
as:

E(k, w) = Ek (k)δ

(
k − w

U0

)
= Ew (w)δ(w −U0k); (C.8)

where δ is the dirac function, and Ek and Ew the one-dimensional wave-number and fre-
quency turbulent spectra. In the k − w domain, the Taylor’s hypothesis corresponds to a
straight line, contrasting to the continuous distributions observed in reality, as the EDF
spreads in the vicinity of this linear prediction as shown in figure C.2. The concept of spread-
ing is exploited by Kraichnan [1964] to develop a universal model for isotropic turbulent
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spectra, based on the random sweeping hypothesis, and observed to lack accuracy in the
case of turbulent shear flows.

The elliptic model for space-time correlation functions of He and Zhang [2006] extends
the random sweeping hypothesis (of Kraichnan [1964]) with a more general second order
approximation to determine elliptical iso-contours of these correlations. Departing from the
elliptical model of space-time correlations, Wilczek and Narita [2012] derive an improved
second-order model for the k −w turbulent spectra. A state-of-the-art review of the k −w
spectra models is presented in Narita [2017], and its effectiveness is exemplified for Gaus-
sian and power-law second-order approximations, with the reconstruction based on mea-
sured first and second order spectral moments of the 2D turbulent spectra. Inspection of
figure C.2b confirms the elliptical spectral shape expected from these models, to be further
discussed along this section.
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(a) 2D turbulent spectra. (b) Fitting of an elliptical contour.

Figure C.2: Wave-number-frequency 2D turbulent spectra for Case 00 (No filter) exploited
in section IV.3.3. The dashed line corresponds to the characteristic convective velocity given
by the Taylor hypothesis. In (b) an elliptical model denoted by the magenta dashed line, fits
to the contour given in blue full line and dots.

A methodology is build and presented below, to find an approximation functional g (k, w, ai )
that can accurately reproduce the Atm. and WI parts of the observed k−w spectra, in terms
of an optimized set of parameters ai . The base-line function developed and presented in
section C.2.2, leads to the consistent parametrization of the spectral decay far from the Tay-
lor hypothesis, introducing additional degrees of freedom and versatility, and thus improv-
ing the accuracy of the power law functional employed in Narita [2017]. The methodology
so introduced is first exploited in section C.2.4 considering the flat bottom case of figure C.2.
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C.2.1 ONE-DIMENSIONAL BASE-LINE FUNCTION

The base-line function of the proposed model is inspired from the power law (Narita [2017])
model, but we start from the rational function A/[(w −B1)(w −B2)]. The rational function
goes to infinity approaching the roots [B1,B2], requiring a penalization that limits the curve
behavior in that region. The rational is then multiplied by (1− exp−λ (w−B1)(w−B2)), where
the exponential term goes to zero more rapidly than 1/[(w −B1)(w −B2)] goes to infinity
on the roots. Further introducing the exponents α and β as additional degrees of freedom
to control the functions’ decay far from the roots, the complex-valued base-line function is:

h(w) = A
1−exp−λ (w−B1)α(w−B2)β

(w −B1)α(w −B2)β
. (C.9)

The parameter λ has to be big enough for the penalization to vanish far away from the
roots, but not so big that it introduces numerical issues. Most important, it will determine
the function’s behavior close to the roots. If:

B1 = w0 −0.5 w1, and B1 = w0 +0.5 w2, so

lim
w→w0

h(w) = Ap , is true if (C.10)

λ=−ε cε (−w1)−α (w2)−β with

ε= log

[
A cε

A cε− Ap (−w1)α (w2)β

]
, and cε = 2α+β.

(C.11)

The magnitude of the base-line function is exemplified in figure C.3 for multiple combi-
nations of the parameters [A, w0, w1, w2, Ap , α, β]. A local maximum occurs in the vicinity
of w0 at 0.5(B1+B2). The maximum value is constrained by Ap as seen in figure C.3a.
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(a) Varying Ap .

(b) Varying w1. (c) Varying w2.

(d) Varying α. (e) Varying β.

Figure C.3: The base-line function of the proposed model, defined in equation C.9; Multi-
ple deviations from [A, w0, w1, w2,λ, α, β] ↔ [A = 1, w0 = 1, w10 = 0.2, w20 = 0.2, Ap =
10, α0 = 1, β0 = 1].

A first comparison between the proposed base-line function and the functionals ex-
ploited by Narita [2017] in the context of an elliptical model is shown in figure C .4. The
Gaussian A exp[−0.5 (w − w0)2/k2] and Power law functions A [(w − w0)2]−k are fitted to
h(w) given by three sets of parameters: [A0 = 1, w0 = 1, w10 = 0.2, w20 = 0.2, α0 = 1, β0 = 1],
with Ap either equals to 10, 102 or 105. While the Gaussian function is highly compromised
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(a) Ap = 10 (b) Ap = 102

(c) Ap = 105

Figure C.4: The base-line function of the proposed model. Defined in equation C.9 with
[A0 = 1, w0 = 1, w10 = 0.2, w20 = 0.2, α0 = 1, β0 = 1], and varied Ap . Fitted Gaussian
A exp[−0.5 (x −x0)2/k2] and Power law A [(x −x0)2]−k for comparison with Narita [2017].

through a very bad behavior with increasing w , the power law has a limited deviation in the
vicinity of w0. Indeed, the base-line function degenerates to this power law function when
α=β and B2 = B1 → w0, in which case:

hpow (w) → A
1−exp−λ [(w−w0)2]α/2

[(w −w0)2]α/2
. (C.12)

The power law hpow (w) will be further exploited imposing α= β and w1 = w2 = 10−6 in
equation C.11, to obtain the value of λ that closes equation C.12.

C.2.2 TWO-DIMENSIONAL APPROXIMATION FUNCTION

The 2D approximation function g (k, w, ai ) is defined in terms of the base-line function
h(w), with the parameters [A, w1, w2,α, β] depending in the optimized set of parameters
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ai , and k. The presented cases consider a maximum of 11 parameters ai=1..11, with the vari-
ables in h(w) polynomial defined as:

A = Ek (k) Lw (a1 +a2 k +a3 k2),

w1 = Lk (a4 +a5 k),

w2 = Lk (a6 +a7 k),

α= (a8 +a9 k +a12 k2), and

β= (a10 +a11 k),

(C.13)

where Ek (k) is the wave-number dependent spectra, and Lw = 3.212 π/H z the normalizing
scale used so that ai=1..11 are non-dimensional. The polynomial terms in C.12 might be
independently suppressed reducing the total degree of freedom of the model. When a6 and
a7 are suppressed, w2 = w1; and when [a10, a11] are suppressed, β = α. The methodology
admits an arbitrary number of degrees of freedom, but 11 are here exploited.

The Ek (k), Ap (k) and w0(k) are necessary to close the model, and are directly obtained
from the spectra to guide the optimization. These are case-dependent and shall be de-
scribed for each application.

C.2.3 OPTIMIZATION ALGORITHM

An evolutionary algorithm is developed to perform the global search procedure. A popu-
lation of np , initially identical individuals, is characterized by their nt coefficients (ai j , i =
1..np , j = 1..nt ). Each coefficient ai j is linked to a random, Gaussian distributed with stan-
dard deviation 0.1, mutation factor (−0.5 < mi j < 0.5). An auxiliary array oi j , initially set to
unity, indicates whether a mutation is active (oi j = 1) or dormant (oi j = 0). Depending on
the quality of the first solution and population size, multiple randomly selected mutation
factors are set to zero (mi j = 0.0; oi j = 0) before evolution takes place. The factor γg control
the step size and is usually set to one.

Evolution occurs, looping successively in ng generations:

• If oi j = 1: Update ai j = ai j (1+γg mi j ).

• Fitness: the log-RMSe (Defined in section C.2.3) is stored for each individual.

• Selection: The individuals are ordered in ascendance of their log-RMSe .

• Reproduction: Mating occurs between each consecutive pair of parents. Each pair of
parents generate no = 2 pair of offsprings. Only the first np /no individuals will thus
reproduce. One pair of children is submitted to crossover and another to mutation.
The crossover and mutation processes occur on the parameter j = r , where 1 ≤ r ≤ nt

is a uniformly distributed random integer:

o Crossover: Generate a random integer r ; Exchange mi r and oi r between the par-
ents, resulting in a pair of offsprings.
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o Mutation: For each parent generate a random integer r ; Generate a new random
(Gaussian distributed) number for −0.5 < mi r < 0.5 and set oi r = 1 as the parents
become offsprings.

The error function The Round-Mean-Squared error (RMSe ) is usually considered as the
optimizing value function, but as one usually prefers to graphically examine E(k, w) in log
space, also the numerical procedure is found to be better behaved in terms of the so defined
log-RMSe (χ):

χ=
√∫ ∫

φ(k, w)
{
log[E(k, w)]− log[g (k, w, ai )]

}2 d log(k) d log(w), (C.14)

where φ(k, w) is a generic weighting function.

C.2.4 THE RECONSTRUCTION OF ATM. TURBULENT FLOW IN NEUTRAL FLAT ABLS

The approximation function g (k, w, ai ) is fitted to the E(k, w) spectra in 4 different forms,
considered in this section as different specifications of equation C.12, with optimized pa-
rameters given in table C.1. The fitting error log-RMSe for each test case is also presented in
the table. The power law is referred as Case01.Exp-n6 and defined with 6 degrees of freedom
(dof); The base-line model is further explored as Case01.Bas-(n3,n5,n7), considering (3,5,7)
dof. The dormant parameters appear in red and the active ones in blue, in table C.1.

Table C.1: Optimized values for the parameters determining the approximated functions
with four different sets (Cases) of different degrees of freedom. Fitting error log-RMSe for
each test case given in the last row.

Case01.Exp.n6 Case01.Bas.n3 Case01.Bas.n5 Case01.Bas.n7
a1 3.263e-04 3.554e-04 2.396e-04 2.624e-04
a2 6.085e-06 0 0 0
a3 3.982e-05 0 0 0
a4 1.000e-06 0 7.463e-02 6.186e-02
a5 0 9.386e-02 1.116e-01 9.438e-02
a6 a4 0 a4 6.939e-02
a7 0 a5 a5 1.273e-01
a8 1.187e+00 1.259e+00 7.730e-01 7.978e-01
a9 5.739e-02 0 0 0
a10 a8 a8 2.563e+00 2.521e+00
a11 a9 0 0 0
a12 -1.339e-02 0 0 0

log-RMSe 1.46 0.90 0.46 0.31
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The wave-number dependent spectra is obtained from the integration of E(k, w); the
peak line w0(k) =U k is taken from Taylor’s hypothesis; and the Ap (k) vector interpolated
from the spectra so Ap (k) = E(k, w0(k)). The vectors E(k, w) and Ap (k) are shown in fig-
ure C.5, and w0(k) is traced as a dotted line in the 2D spectra that follow next. The target
spectra E(k, w) is shown in figure C.6a, and the approximation functions g (k, w, ai ) (Pa-
rameters given in table C.1) shown between figures C.6b and C.6e. The power law function
behaves reasonably well, but even with only 3 dof the non-deprecated base-line model per-
form better, with the log-RMSe diminishing of 39% between Cases Exp-n6 and Bas-n3. With
additional 2 dof, the gain in log-RMSe between Bas-n3 and Bas-n5 is 49% (69% with respect
to Exp-n6). The fitted spectra behave particularly well in figures C.6d and C.6e, where the
log-RMSe gain between Bas-n5 and Bas-n7 is of 33%.

The error distribution (log[g (k, w)]-log[E(k, w)]) is shown in figure C.7. The non-symmetrical
error distribution occurs when symmetrical functionals of g are prescribed in Cases Exp-n6
and Bas-n3. Once g becomes assymmetrical the error tends to get symmetrical in figures
C.7c and C.7d.

The main advantages of the baseline-function with respect to its degenerated power law
version are: The spectra broadening close to the peak line; the asymmetrical form of the ap-
proximation function; the high versatility to raise the total number of dof considerably im-
proving the solution. The power law introduced through the degeneration of the base-line
function benefits from the penalization of equation C.11, that induces g to approximately
match E instead of going to infinity in w0.

(a) Ek (k). (b) Ap (k).

Figure C.5: Wave-number spectrum Ek and the peak value Ap = E(k, w0(k)).

241



(a) Target spectra E(k, w) .

(b) g (k, w) for Case Exp-n6. (c) g (k, w) for Case Bas-n3.

(d) g (k, w) for Case Bas-n5. (e) g (k, w) for Case Bas-n7.

Figure C.6: 2d spectra E(k, w) and four fitting functions g (k, w) defined in table C.1.

242



(a) Fit error for Case Exp-n6. (b) Fit error for Case Bas-n3.

(c) Fit error for Case Bas-n5. (d) Fit error for Case Bas-n7.

Figure C.7: Fitting error distribution (log[g (k, w)]-log[E(k, w)]) for the functions g (k, w) de-
fined in table C.1.

C.2.5 OVERVIEW AND DISCUSSION

Unfortunately the PhD time and scope constraints impose the end of current section at this
point. The WI contributions to the turbulent spectra discussed in section IV.3, require spe-
cific approximation functions to be built for each test case (Regular wave, 1D, and 2D Irreg-
ular Sea-states), which are not sufficiently matured to be shared yet. Also the 2D spectra
measured during the experimental campaign is still under study. Considering that the el-
liptic pattern of the spectral contours is broken, probably due to the buoyancy forces not
considered in the numerical case, according to the discussion in section IV.3.5. So, present
section is finally limited to the numerical flat bottom case scenario, and provides a consis-
tent basis to further developments.

The state-of-the-art k −w turbulent spectra models are revisited, and the most satisfac-
tory reconstruction is obtained employing a power law approximation function. A generic
procedure is developed around the base-line function h(w), that provides consistent ap-
proximations of the w profiles at a given wave-number. The base-line function degenerates
into a power law approximation function, submitted to a penalization procedure that im-
poses g (k, w) ∼ E(k, w), instead of g (k, w) → ∞ at the roots w = w0(k). Besides and con-
trary to the power law, the base-line function defined from a quadratic rational equation
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also admits non-symmetrical approximations to the 2D spectra, through the specification
of additional and important degrees of freedom, that effectively enhance the versatility of
h(w).

The whole procedure admits an arbitrary number of degrees of freedom. Contrary to
local derivative-based optimization methods, the genetic algorithm here presented can be
easily adapted to other functionals, rather then the ones presented hereby: It has been used,
for example, to fit the elliptical contour in figure C.2, modifying the method exclusively re-
garding the computation of the approximation function values. The global optimization
procedure also admits an arbitrary level of non-linearity in the approximation, and arbitrary
ill defined initial conditions as long as the optimization parameters are set accordingly.

Four approximation functions are compared, with different levels of degrees of freedom
(dof): 3; 5; 6; 7. The reference case refers to the degenerated power law function with 6
dof. Even with only 3 dof the non-degenerated base-line function performs better than the
power law, and the fitting quality is considerably increased with 5 or 7 dof.
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Titre : Sur l’interaction entre la houle et la couche limite atmosphérique : Une approche phé-
noménologique combinant des mesures de terrain et des simulations de haute fidélité.

Mot clés : environnement offshore, couche limite atmosphérique, turbulence, interactions vent-vagues,

Simulation des grandes échelles, Lidar météorologique

Résumé : Dans les zones côtières, l’industrie
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marin, où de vastes espaces sont encore dispo-
nibles avec des conditions de vent plus fort et
mieux contrôlé. L’environnement marin impose de
nouveaux défis à une industrie éolienne pourtant
bien établie. Il est impératif de prédire et de dé-
crire avec précision la ressource éolienne en mer
afin de concevoir des solutions techniques ren-
tables. L’écoulement concerné est caractérisé par
une couche limite atmosphérique (CLA), turbu-
lente, où la dynamique de l’océan modifie consi-
dérablement l’écoulement atmosphérique par une
capacité thermique plus élevée, et par des inter-
actions vent-vagues complexes, importantes dans

des situations assez courantes.

Cette thèse passe en revue et étend les
connaissances actuelles concernant les interac-
tions vent-vagues dans la partie inférieure de la
CLA Marine (CLAM), où elles peuvent être impor-
tantes pour la caractérisation de la ressource éo-
lienne. La CLAM est étudiée par des expériences
physiques et numériques, afin de révéler le rôle
des mouvements Induits par les Vagues (IV) trans-
férés de la mer vers l’atmosphère. Grâce à l’utilisa-
tion d’expériences physiques et numériques com-
plémentaires, de nouvelles perspectives sur les
processus d’interaction vent-vague sont obtenues.
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Abstract: In coastal areas, the wind energy in-
dustry migrates to the offshore environment, where
huge spaces are still available in stronger and bet-
ter behaved wind conditions. The offshore envi-
ronment imposes new challenges to a well es-
tablished wind energy industry. It is imperative to
accurately predict and describe the offshore wind
resource in order to design cost efficient solu-
tions. The concerned flow is characterized by a tur-
bulent Atmospheric Boundary Layer (ABL) where
the ocean’s dynamics significantly alter the at-
mospheric flow through higher heat capacity and
complex wind-wave interactions important in fairly

common situations.

So this Thesis reviews and extends the cur-
rent knowledge regarding Wind-Wave interactions
in the lower part of the Marine ABL (MABL), where
they are possibly significant in the characterization
of the wind resource. The MABL is investigated
through physical and numerical experiments, to re-
veal the role of Wave Induced (WI) motions trans-
ferred from the sea into the atmosphere. Thanks to
the use of complementary physical and numerical
experiments, new insights on the wind-wave inter-
action processes are obtained. (...)
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