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Emmanuel THOMÉ Directeur de Recherche, INRIA, LORIA, Nancy, France

Composition du Jury :

Examinateurs : Gildas AVOINE Professeur, INSA Rennes, IRISA, France
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é
en

fr
a

n
ça

is

Résumé en français

P
oussée par la menace hypothétique de la construction dans les prochaines décennies d’un
ordinateur quantique à grande échelle, la communauté cryptographique a été amenée à con-

sidérer de nouveaux problèmes mathématiques sur lesquels fonder la sécurité des cryptosystèmes
à clé publique dits post-quantiques. En 2016, l’agence américaine National Institute of Stan-
dards and Technology (NIST) a lancé une compétition de standardisation pour la cryptogra-
phie post-quantique, afin d’évaluer et standardiser des algorithmes à clé publiques résistants à
l’ordinateur quantique. Pas loin de 70 propositions ont été reçues, utilisant plusieurs objets
mathématiques comme, pour n’en nommer que quelques-uns, les réseaux euclidiens, les codes
correcteurs d’erreurs ou les graphes d’isogénies entre courbes elliptiques supersingulières.

La famille des réseaux euclidiens, qui fait l’objet d’un grand nombre de soumissions, repré-
sente l’une des solutions post-quantiques les plus prometteuses. Plusieurs problèmes difficiles sont
utilisés afin de prouver la sécurité de ces cryptosystèmes, comme le problème Ntru [HPS98],
le problème Short Integer Solution (Sis) [Ajt96] ou le problème Learning With Errors (Lwe)
[Reg05], ainsi que leurs variantes algébriquement structurées ring (Ring-Sis [LM06, PR06],
Ring-Lwe [SSTX09, LPR10]) ou Module (Module-Sis, Module-Lwe [LS15]). Typiquement, les
variantes algébriquement structurées ont l’avantage d’offrir de meilleures performances, au prix
d’une possible perte de sécurité. En fin de compte, leur sécurité repose sur la difficulté de
résoudre le problème du presque plus court vecteur, ou Approximate Shortest Vector Problem
(Approx-Svp), dans la classe réduite des réseaux euclidiens algébriquement structurés.

Dans le cas de réseaux arbitraires, Svp est un problème NP-difficile [Ajt98] extensivement
étudié. Sa version approchée consiste, pour tout réseau de rang n, à trouver un vecteur non nul
du réseau dont la norme euclidienne diffère d’un petit facteur multiplicatif de la longueur du plus
court vecteur non nul du réseau. Le meilleur compromis dans ce cas est donné par la hiérarchie

de Schnorr [Sch87], qui permet d’atteindre un facteur d’approximation 2Õ(nω) en temps 2Õ(n1−ω),
pour tout ω ∈ (0, 1). En pratique, le meilleur algorithme connu qui est proche de ce compromis
est l’algorithme Block Korkin-Zolotarev (BKZ) [SE94], qui peut être vu comme une amélioration
de l’algorithme bien connu LLL [LLL82], dû à A. Lenstra, H. Lenstra et L. Lovász.

Cependant, ces hypothèses structurées (p. ex., Ring-Lwe) pourraient se révéler triviales si les
variantes sous-jacentes d’Approx-Svp s’avéraient plus faciles dans le cas spécifique des réseaux
algébriquement structurés. Ainsi, une cible naturelle pour la cryptanalyse est le problème du
plus court vecteur dans les réseaux idéaux, ou Ideal Shortest Vector Problem (id-Svp), c.-à-
d., restreint aux réseaux images par le plongement de Minkowski d’idéaux fractionnaires de
l’anneau des entiers OK d’un corps de nombres K. Pendant une longue période, le meilleur
algorithme connu pour résoudre Approx-Svp dans les réseaux idéaux a été le même que pour
les réseaux non structurés. Cependant, une série récente de travaux [CGS14, EHKS14, BS16,
CDPR16, CDW17, DPW19, PHS19a] tend à montrer que la résolution de ce problème pourrait
se révéler plus facile dans les réseaux idéaux, en particulier dans un monde quantique.
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viii Résumé en français

Algorithmes quantiques pour la théorie des nombres

En effet, la découverte de nouveaux algorithmes quantiques en temps polynomial pour la théorie
des nombres a attiré de plus en plus d’attention sur la manière dont la forte structure algébrique
de ces réseaux idéaux pourrait être utilisée pour s’attaquer à id-Svp plus efficacement que par
le truchement des algorithmes traditionnels de réduction de réseaux comme LLL ou BKZ.

Tout a commencé avec la note de Campbell, Groves et Shepherd [CGS14], qui a fait
grand bruit et a revendiqué, toutefois sans preuves, une attaque en temps polynomial quantique
contre un schéma nommé Soliloquy, qui résout des instances très spécifiques d’Approx-Svp sur
des réseaux idéaux principaux. Leur algorithme comporte deux étapes successives :

• la première résout le problème de l’idéal principal, ou Principal Ideal Problem (Pip), qui
consiste à trouver n’importe quel générateur d’un idéal principal,

• la deuxième réduit ce générateur autant que possible, grâce aux unités algébriques du corps
de nombres, ce qui revient à résoudre un problème du plus proche vecteur, ou Closest Vector
Problem (Cvp) dans le réseau log-unité.

Les auteurs affirment que la première étape peut être effectuée en temps quantique polynomial,
et que la deuxième étape est suffisamment facile pour permettre de casser le schéma dans le cas
des corps cyclotomiques, grâce aux unités circulaires.

La première partie de leurs revendications a été prouvée indépendamment dans [EHKS14],
qui décrit une généralisation de l’algorithme de Shor [Sho97], pour calculer le groupe des unités
de corps de nombres de degrés arbitraires en temps quantique polynomial. Plus tard, en se basant
sur [EHKS14], Biasse et Song [BS16] ont étendu ce résultat au calcul du groupe des classes et
des S-unités. Plus précisément, ils montrent comment calculer des S-unités, une généralisation
des unités algébriques d’un corps de nombres dépendant d’un ensemble S d’idéaux premiers,
en temps quantique polynomial en la taille du discriminant ∆K du corps de nombres K, et en
la taille de la base de facteurs S. Ils montrent également comment la résolution du Pip, ainsi
que le calcul du groupe des classes ou du groupe des unités, peuvent être réduits à ces calculs
de S-unités pour des bases de facteurs S convenablement choisies.

Cryptanalyses algébriques de id-SVP

En ce qui concerne la seconde revendication de [CGS14], Cramer, Ducas, Peikert et Regev
[CDPR16] ont prouvé que, dans le cas des corps cyclotomiques de conducteur égal à une puissance
d’un nombre premier, les plongements logarithmiques de l’ensemble des unités circulaires [Was97,
§8] induisent une base de suffisamment bonne qualité d’un sous-réseau d’indice relativement petit
dans le réseau log-unité. Cette propriété fondamentale leur permet de conclure qu’il existe un
algorithme quantique polynomial qui, en moyenne, résout Approx-Svp dans des réseaux idéaux

principaux pour un facteur d’approximation 2Õ(
√
n), où n est la dimension de l’idéal.

Cette première cryptanalyse algébrique a ensuite donné lieu à plusieurs généralisations, à
toute classe d’idéaux fractionnaires [CDW17], tous corps cyclotomiques [CDW21] et tout corps
de nombres [PHS19a]. Pour tout idéal challenge b d’un corps de nombres K, toutes ces approches
partent d’une solution au problème du logarithme discret dans le groupe des classes, ou Class
Group Discrete Logarithm Problem (ClDlp). Ce problème de représentation consiste, à partir
d’un ensemble fixé de places finies correspondant à des idéaux premiers

{
p1, . . . , pk

}
de K, à

trouver, s’ils existent, α ∈ K et e1, . . . , ek ∈ Z tels que :

〈α〉 = b ·
∏

1≤i≤k

peii .

Ce problème revient à calculer un certain groupe de S-unités, ce qui selon la discussion précédente
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Résumé en français ix

peut donc être résolu facilement dans un monde quantique. Ainsi, la partie la plus délicate de ces
cryptanalyses réside dans le fait de réduire la norme euclidienne de α, c.-à-d., de trouver une plus
courte solution au ClDlp ci-dessus, ou de manière équivalente, le plus court représentant de la
classe de α modulo le groupe multiplicatif H finiment engendré par les relations de classes entre
les pi’s. En utilisant un plongement logarithmique adapté, cela revient à résoudre une instance
Cvp dans le réseau image de H par ce plongement logarithmique. À la fin, l’espoir est que ce plus
court représentant soit un élément suffisamment petit de l’idéal challenge. Par conséquent, il est
particulièrement important de choisir soigneusement le plongement logarithmique, de telle sorte
qu’il convoie toutes les informations utiles sur la taille de α, et de sorte que la base du réseau
obtenu ne soit pas de trop mauvaise qualité pour l’oracle Cvp. Remarquons que l’algorithme
de [CGS14, CDPR16] suit exactement cette procédure pour k = 0, auquel cas une solution au
ClDlp existe si et seulement si b est principal.

Ces cryptanalyses algébriques peuvent se regrouper en deux lignes de travaux, qui utilisent
des outils différents pour estimer et garantir la taille de leurs sorties, et n’ont pas la même portée :

• L’algorithme CDW, par Cramer, Ducas et Wesolowski [CDW17, CDW21], résout id-

Svp pour un facteur d’approximation exp Õ(
√
n) dans les corps cyclotomiques de degrés n,

en temps quantique polynomial. Ce compromis est prouvé à l’aide d’heuristiques soigneuse-
ment justifiées. L’algorithme utilise l’idéal de Stickelberger d’un corps cyclotomique, un
idéal spécial qui fournit gratuitement des relations courtes dans la partie relative du groupe
des classes. Ces relations courtes permettent de trouver un proche multiple principal de
tout idéal challenge, c.-à-d., un multiple principal dont la norme algébrique, divisée par la
norme de l’idéal challenge, est relativement petite. De là, la routine de [CDPR16] peut
être appliquée à un générateur de ce multiple principal, dans l’espoir que sa sortie soit
suffisamment petite.

• Ces deux étapes peuvent en fait être combinées dans une unique instance Cvp, ce qui a
donné naissance à ce qui est maintenant appelé les attaques par S-unités : l’idée est de
trouver de cette manière un multiple principal qui n’est pas seulement de petite norme
algébrique, mais qui est également généré par un petit élément. C’est l’idée centrale de
l’algorithme PHS par Pellet-Mary, Hanrot and Stehlé [PHS19a], qui s’applique à
tout corps de nombres et que nous détaillons dans la section suivante.

En ce qui concerne l’algorithme CDW, son impact en pratique a été évalué dans [DPW19] grâce
à de nombreuses simulations pour la résolution du Cvp dans chacun des deux réseaux impliqués.
À partir de ces résultats expérimentaux, les auteurs dérivent une borne inférieure volumétrique
[DPW19, Eq. (5) et Tab. 1] et en concluent que l’algorithme CDW devrait battre BKZ300 pour
des corps cyclotomiques de degrés plus grands que 7000.5

Attaques par S-unités

Nous décrivons plus en détails l’algorithme PHS [PHS19a], d’après Pellet-Mary, Hanrot et
Stehlé, qui est à notre connaissance la première attaque par S-unités décrite et prouvée dans
la littérature, même si le formalisme des S-unités n’est pas directement utilisé dans [PHS19a].

La principale caractéristique de leur algorithme est de combiner dans une unique instance
Cvp les deux étapes principales de l’algorithme CDW [CDW17, CDW21], plus précisément le
problème du proche multiple principal ou Close Principal Multiple Problem (Cpmp) d’une part,
et le problème du plus court générateur, ou Shortest Generator Problem (Sgp) d’autre part.
Ceci garantit dans une certaine mesure que la sortie de l’algorithme de résolution du Cpmp

5La première version publiée de [DPW19] présentait un point de rencontre au degré 12000. Après la cor-
rection d’une erreur d’implémentation, découverte par Bernstein et rendue publique le 20 Août 2021 dans une
présentation à la conférence SIAM, ce point de rencontre a été réévalué à 7000 [DPW19, Fig. 5].
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possède un générateur qui n’est “pas beaucoup plus grand” que son plus court élément non nul.
Malheureusement, cela n’est rendu possible qu’au prix d’un précalcul exponentiel, dépendant
uniquement du corps de nombres K. En effet, afin de garantir la taille de la sortie et la complexité
temporelle de l’algorithme, un ingrédient fondamental de la preuve réside dans l’utilisation d’un
oracle Cvp avec données de précalcul dû à Laarhoven [Laa16]. Plus formellement, l’algorithm
PHS se divise en deux phases :

1. La phase de précalcul construit un réseau spécifique, ne dépendant que du corps K, qui
peut être vu comme un réseau log-S-unité sous un plongement logarithmique particulier,
ainsi qu’une donnée permettant de résoudre efficacement Approx-Cvp dans ce réseau. En

notant ∆K le discriminant de K, cette phase s’exécute en temps 2Õ(log|∆K |) et produit une

donnée V de taille 2Õ(log1−2ω|∆K |), où ω ∈
[
0, 1

2

]
paramétrise le compromis entre le temps

d’exécution et le facteur d’approximation obtenu par la phase suivante.

2. La phase de requête réduit chaque challenge pour Approx-id-Svp à la résolution d’une
instance Approx-Cvp dans ce réseau log-S-unité fixé. Elle prend en entrée n’importe
quel idéal de OK , dont la norme algébrique est de taille bornée par 2poly(log|∆K |), ainsi

que la donnée précalculée V, et s’exécute en temps 2Õ(log1−2ω|∆K |) + TSu(K). La sortie
est un élément non nul de l’idéal qui est une solution d’Approx-Svp pour un facteur

d’approximation 2Õ(logω+1|∆K |/n), où n est le degré de K.

Ici, TSu(K) désigne le temps d’exécution des calculs de groupes de S-unités, c.-à-d., dans un

monde quantique, TSu(K) = Õ
(
ln|∆K |

)
est polynomial [BS16], tandis que dans un monde clas-

sique, TSu(K) reste sous-exponentiel en ln|∆K |, soit TSu(K) = exp Õ(lnα|∆K |), où α = 1/2 pour
les corps cyclotomiques [BEF+17],6 et α = 2/3 dans le cas général [BF14], récemment réduit
à α = 3/5 par Gélin [Gél17].

En omettant le coût exponentiel du précalcul, la phase de requête bat la traditionnelle
hiérarchie de Schnorr [Sch87] quand log|∆K | ≤ Õ(n1+ε) avec ε = 1/3 dans le cas quantique,
et ε = 1/11 dans le cas classique [PHS19a, Fig. 5.3]. Cependant, ces bornes sur le discrim-
inant ne sont pas homogènes quand le facteur d’approximation varie, c.-à-d., pour un facteur
d’approximation fixé à 2

√
n, la complexité temporelle de l’algorithme PHS bat asymptotiquement

la hiérarchie de Schnorr uniquement dans le cas quantique et uniquement pour ε ≤ 1/6.

Contributions de cette thèse

Les contributions de cette thèse se placent dans le contexte des attaques par S-unités. Tout
d’abord, nous utilisons le formalisme des S-unités pour définir l’algorithme Twisted-PHS, une
version pondérée de l’algorithme PHS qui se révèle extrêmement puissante en pratique. Puis,
les contributions suivantes font, pour tous les corps cyclotomiques, la jonction entre les deux
lignes décrites précédemment de travaux de cryptanalyse : en utilisant des techniques avancées
portant sur le réseau de Stickelberger, nous supprimons d’une part des étapes quantiques de
l’algorithme CDW, et d’autre part approchons expérimentalement l’algorithme Twisted-PHS en
moyenne dimension, où les phénomènes asymptotiques commencent à s’exprimer pleinement.

Twisted-PHS : utilisation de la Formule du Produit

En fait, le réseau particulier utilisé dans l’algorithme PHS correspond à un réseau spécial appelé le
réseau log-S-unité, c.-à-d., un réseau obtenu à partir des images de S-unités par un plongement

6Pour des raisons historiques, l’article [BEF+17] est écrit spécifiquement pour les corps cyclotomiques de
conducteurs une puissance de nombre premier, mais s’adapte directement au cas général pour le calcul des
groupes de S-unités.
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logarithmique adapté, où S peut être identifié à une base de facteurs FB d’idéaux premiers.
Il s’avère que choisir soigneusement le plongement logarithmique utilisé est particulièrement
important en pratique.

Ainsi, notre première contribution consiste à proposer une nouvelle version tordue de l’algo-
rithme PHS, dénommée Twisted-PHS, dont l’idée principale consiste à identifier un plongement
logarithmique préservant les propriétés algébriques naturelles des S-unités. Plus précisément,
nous incluons les poids standards de la théorie des nombres induits par la Formule du Produit
aux coordonnées du plongement logarithmique. Ainsi, pour tout α du corps de nombres K, nous
partons de la formule suivante :

LogS α =
({

[Kσ : R] · ln|σ(α)|
}
σ∈S∞

,
{
−vp(α) · lnN (p)

}
p∈FB

)
,

où Kσ = R (resp. C) pour tout plongement σ ∈ S∞ réel (resp. complexe) allant de K dans R
(resp. C), et pour tout idéal premier p ∈ FB, N (p) désigne sa norme algébrique et vp(α) désigne
la valuation de α en p. Par contraste, le plongement logarithmique sur lequel se base [PHS19a]
n’inclut pas les poids lnN (p) sur les dernières coordonnées.

En utilisant ce formalisme des S-unités, nous prouvons que notre algorithme Twisted-PHS
réalise le même compromis temps d’exécution v.s. facteur d’approximation que l’algorithme PHS,
grâce au même oracle Cvp avec précalcul dû à Laarhoven [Laa16] pour résoudre efficacement
les instances Approx-Cvp dans le réseau log-S-unité. À titre de contribution secondaire, nous
proposons également plusieurs améliorations de l’algorithme PHS.

Intuitivement, le fait d’ajouter des poids lnN (p) aux valuations entières pour chaque idéal
premier p capture l’idée qu’utiliser une relation augmentant les valuations pour un idéal de grande
norme est plus coûteux qu’utiliser une relation impliquant des idéaux de plus petite norme. Ceci
encode également dans le réseau log-S-unité l’information sur la longueur et la norme algébrique
des S-unités, contrairement au plongement logarithmique utilisé dans [PHS19a] n’impliquant que
les valuations entières. In fine, ces éléments tendent à indiquer que l’oracle Cvp dans le réseau
log-S-unité tordu combine plus efficacement l’objectif de chercher un idéal multiple principal de
petite norme algébrique tout en minimisant la longueur de son générateur.

Une autre conséquence fondamentale de l’utilisation d’un plongement logarithmique conven-
ablement normalisé tient à ce que nous appelons le phénomène de base de facteurs optimale,
c.-à-d., nous prouvons qu’il existe une base de facteurs S pour laquelle la densité du réseau
log-S-unité est maximale, et donnons un algorithme pour la calculer.

Sur le plan pratique, nous fournissons une implémentation de bout en bout de l’algorithme
Twisted-PHS, où l’oracle Cvp de Laarhoven est remplacé par l’algorithme Nearest Plane de Babai
[Bab86]. Cette implémentation est publiquement disponible sur GitHub: ob3rnard/Twisted-PHS7.
Pour la première fois, ceci a permis d’exécuter complètement des attaques par S-unités sur une
palette significative d’exemples concrets. Les résultats de nos expériences suggèrent, pour des
corps cyclotomiques de conducteurs premiers et des corps NTRU Prime de petites dimensions,
plus précisément jusqu’en dimension 70, que :

• avec la normalisation standard de la théorie de nombres, les réseaux log-S-unités présentent
des caractéristiques géométriques très particulières et semblent extrêmement faciles à ré-
duire avec BKZ ;

• les facteurs d’approximation exacts obtenus sont particulièrement petits et croissent très
lentement avec la dimension, “de manière potentiellement sous-exponentielle ou même
meilleure”.

À notre connaissance, il s’agit des toutes premières preuves expérimentales de la particularité
géométrique des réseaux log-S-unités tordus ainsi que du potentiel des attaques par S-unités en

7https://github.com/ob3rnard/Twisted-PHS

https://github.com/ob3rnard/Twisted-PHS
https://github.com/ob3rnard/Twisted-PHS
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pratique. Malheureusement, à cause de la complexité du calcul des S-unités dans un monde clas-
sique, les dimensions atteintes ne permettent pas de conjecturer concrètement le comportement
asymptotique de l’algorithme Twisted-PHS.

Une base courte de l’idéal de Stickelberger

Dans la contribution suivante, nous verrons que calculer explicitement les générateurs de Stickel-
berger est utile dans au moins deux situations : la première intervient pour supprimer la dernière
étape quantique dans l’algorithme CDW [CDW21], la seconde intervient pour approcher le réseau
log-S-unité utilisé dans l’algorithme Twisted-PHS. Dans cette dernière situation, certaines étapes
de calcul, en particulier la procédure de 2-saturation utilisée pour densifier le réseau, deviennent
rapidement irréalisables avec la croissance des coefficients des éléments. Ceci incite à contraindre
à la fois le nombre et la taille des générateurs de Stickelberger impliqués.

C’est ici que notre seconde contribution s’avère particulièrement utile. Notre résultat princi-
pal consiste à décrire pour la première fois une base courte explicite de l’idéal de Stickelberger Sm
du m-ième corps cyclotomique pour tout conducteur m, c.-à-d., une base qui n’est constituée
que d’éléments courts. Par définition, un élément de Z[Gm], où Gm désigne le groupe de Galois
du m-ième corps cyclotomique, est dit court s’il s’écrit sous la forme :∑

σ∈Gm

εσ · σ ∈ Sm ⊂ Z
[
Gm
]
, avec εσ ∈ {0, 1} pour tout σ ∈ Gm.

Dans le cas où le conducteur est premier, notre base courte cöıncide avec la base donnée dans
[Sch08, Th. 9.3(i)]. Un ingrédient d’intérêt indépendant de la preuve consiste à décrire une
vaste famille d’éléments courts de Sm, qui contient l’ensemble identifié dans [CDW21, §4.2].
Cette description utilise un critère arithmétique très simple, dans l’esprit de [Was97, Lem. 16.3]
quand m est une puissance d’un nombre premier impair. Nous obtenons notre base courte en
choisissant astucieusement certains éléments αm(b) parmi cette grande famille d’éléments courts.

Nous montrons également comment calculer explicitement les entiers algébriques qui gé-
nèrent Lαm(b), pour tout idéal premier non ramifié L et tout élément αm(b) de notre base courte.
Ces générateurs s’expriment comme des sommes de Jacobi qui s’avèrent extrêmement plus effi-
caces à calculer que les générateurs donnés p. ex., dans [Was97, §6.2].

Pour terminer, une conséquence théorique intéressante de notre résultat consiste à dériver
une borne supérieure sur le nombre de classes relatives du m-ième corps cyclotomique. La preuve
de notre borne donne également un algorithme pour calculer le nombre de classes relatives grâce
au déterminant d’un multiple d’une matrice de Hadamard : incidemment, cette méthode semble
significativement plus efficace que d’utiliser la formule analytique traditionnelle quand le nombre
de facteurs premiers distincts de m est petit.

Réseaux log-S-unités à partir de générateurs explicites de Stickelberger

Dans notre dernière contribution, nous étendons les expériences de Twisted-PHS à tous les corps
cyclotomiques de degrés allant jusqu’à 210. Ceci fait sauter la barrière des petites dimensions
et permet d’atteindre des tailles de paramètres où les phénomènes asymptotiques, p. ex., la
croissance exponentielle du nombre de classes, commencent à s’exprimer pleinement.

Cette percée est obtenue grâce à des améliorations à la fois théoriques et d’implémentation.
Tout d’abord, nous montrons comment obtenir une famille de S-unités indépendantes et de
rang plein à partir d’un ensemble de S+-unités fondamentales du sous-corps réel maximal, par
l’adjonction de générateurs explicites correspondant à une base de l’idéal de Stickelberger. Grâce
aux techniques avancées développées précédemment sur l’idéal de Stickelberger, il s’avère que
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ces générateurs s’expriment toujours comme des sommes de Jacobi, qui sont particulièrement
petites et faciles à calculer. Cette famille de rang plein génère un sous-groupe des S-unités
d’indice explicitement calculable, dont nous explicitons et prouvons la valeur exacte. Cet indice
contient une large puissance de 2 qui peut être retirée grâce à des techniques classiques de 2-
saturation, pour lesquelles les nouveaux résultats sur l’idéal de Stickelberger sont essentiels. Ainsi,
nous obtenons des sous-réseaux du réseau log-S-unité complet sur lesquels tester l’algorithme
Twisted-PHS. Nous fournissons ici aussi une implémentation complète, publiquement disponible
à l’adresse GitHub: ob3rnard/Tw-Sti8.

Les facteurs d’approximation obtenus par nos expériences ne montrent ni un impact catas-
trophique des attaques par S-unités, ni ne permettent d’écarter la menace. En effet, le mode
approché utilisé au-delà de la dimension 80 donne seulement une borne supérieure sur les perfor-
mances de l’algorithme Twisted-PHS. Néanmoins, nous observons une forte corrélation entre la
densité du sous-réseau log-S-unité utilisé et le facteur d’approximation obtenu par l’algorithme
Twisted-PHS : plus le réseau est dense, meilleures sont les performances. Nous sommes également
en mesure de confirmer la nature géométrique très particulière du réseau log-S-unité déjà ob-
servée en petite dimension, pour tous les corps cyclotomiques, tous les sous-réseaux log-S-unités
et toutes les bases de facteurs considérés. Ces observations récurrentes dans des régimes très
différents suggèrent que ceci est possiblement l’émanation de phénomènes algébriques plus pro-
fonds, une observation qui a été récemment développée par Bernstein et Lange [BL21].

Quoi qu’il en soit, le fait de rassembler toutes ces données en dimensions suffisamment grandes
est d’une importance capitale afin de mieux comprendre les performances des attaques par S-
unités, et doit être vu comme une première étape avant d’obtenir une estimation fiable du
comportement asymptotique de l’algorithme Twisted-PHS, ou plus généralement des attaques
par S-unités dans n’importe quel régime.

Dans un résultat complémentaire, nous utilisons la connaissance explicite de ces générateurs
de Stickelberger, ainsi que le réseau de toutes les relations de classes réelles, pour enlever
presque toutes les étapes quantiques de l’algorithme CDW tout en prouvant le même facteur
d’approximation, sous l’hypothèse relativement inoffensive que la partie réelle du nombre de
classes vérifie h+

m ≤ O(
√
m).

8https://github.com/ob3rnard/Tw-Sti

https://github.com/ob3rnard/Tw-Sti
https://github.com/ob3rnard/Tw-Sti
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Chapter 1

Introduction

O
bliged by the hypothetic threat of the construction of a large scale quantum computer
in the next few decades, the cryptographic community has been driven to consider new

mathematical problems to serve as the security foundations for so-called post-quantum public-
key cryptosystems. In 2016, the U.S. National Institute of Standards and Technology (NIST)
launched the Post-Quantum Cryptography Standardization competition to evaluate and stan-
dardize quantum-resistant public-key algorithms. Around 70 proposals were received, involving
several mathematical objects such as, to name a few, Euclidean lattices, error-correcting codes
or supersingular isogeny graphs.

As shown by the large number of submissions for this family, one of the most promising
post-quantum solution is based on Euclidean lattices. Several hard problems are used to prove
the security of these cryptosystems, such as the Ntru problem [HPS98], the Short Integer
Solution (Sis) problem [Ajt96] or the Learning With Errors (Lwe) problem [Reg05], and their
algebraically structured variants Ring (Ring-Sis [LM06, PR06], Ring-Lwe [SSTX09, LPR10]) or
Module (Module-Sis, Module-Lwe [LS15]). Typically, the structured variants offer the advantage
of a better efficiency, at the price of possibly losing some of the security, which is ultimately relying
on the hardness of the Approximate Shortest Vector Problem (Approx-Svp) in the restricted
corresponding class of algebraically structured Euclidean lattices.

In the case of arbitrary lattices, Svp is a well-studied NP-hard problem [Ajt98]. Its Approxi-
mate version consists, for any lattice of rank n, in finding a non-zero vector of the lattice, whose
Euclidean norm is within a small multiplicative factor from the length of the shortest non-zero
vector in the lattice. The best trade-off in this case is given by Schnorr’s hierarchy [Sch87],

which allows to reach an approximation factor 2Õ(nω) in time 2Õ(n1−ω) for any ω ∈ (0, 1), as
represented on Fig. 1.1a. In practice, the best known algorithm that is close to this trade-off is
the Block Korkin-Zolotarev (BKZ) algorithm [SE94], which can be seen as an improvement of
the well-known LLL algorithm [LLL82] due to A. Lenstra, H. Lenstra and L. Lovász.

However, these structured assumptions (e.g., Ring-Lwe) could become vacuous if the un-
derlying variants of Approx-Svp become easier on the specific class of algebraically structured
lattices. Hence, a natural target for cryptanalysis is the Ideal Shortest Vector Problem (id-Svp)
which focuses on ideal lattices corresponding, under the Minkowski embedding, to fractional ide-
als of the ring of integers OK of a number field K. For a long time, the best known algorithm to
solve Approx-Svp in ideal lattices was the same as for arbitrary lattices, but recently, a series of
works [CGS14, EHKS14, BS16, CDPR16, CDW17, DPW19, PHS19a] tends to show that solving
this problem could be easier in ideal lattices, in particular in the quantum setting.

1
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(d) PHS algorithm [PHS19a] for number fields K

s.t. log|∆K | = Õ(n1+ε)

Figure 1.1 – Trade-offs between runtime and approximation factors reached by algebraic crypt-
analyses of id-Svp.

Quantum Algorithms for Number Theory

Indeed, the discovery of new number-theoretic polynomial-time quantum algorithms showcased
how the strong algebraic structure of these ideal lattices could be used to tackle id-Svp more
efficiently than by relying on traditional lattice reduction algorithms.

Everything started with the buzzing note of Campbell, Groves and Shepherd [CGS14],
that claimed, without proofs, a quantum polynomial-time attack against a scheme named Solil-
oquy, solving specific instances of the Approx-Svp on principal ideal lattices. Their algorithm
has two successive steps:

• the first one is solving the Principal Ideal Problem (Pip) that asks for any generator of a
principal ideal,

• the second one is shortening this generator as much as possible using the algebraic units of
the field, which reduces to solving a Closest Vector Problem (Cvp) in the log-unit lattice.

The former is claimed to run in quantum polynomial-time, and the latter is claimed to be suffi-
ciently easy in the case of cyclotomic fields using circular units to practically break the scheme.

The first claim was proven independently in [EHKS14], where the authors described a gen-
eralization of Shor’s algorithm [Sho97], to compute unit groups of number fields of arbitrary
degree in quantum polynomial time. Later on, building upon [EHKS14], Biasse and Song
[BS16] extended this result to the computation of class groups and S-unit groups of arbitrary
degree number fields. More precisely, they showed how to compute S-units, a generalization of
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the algebraic units of a number field depending on a set S of prime ideals, in quantum polynomial
time in the size of the discriminant ∆K of the number field K and in the size of the factor base S.
They also showed how the Pip resolution, as well as computing class groups or unit groups, can
be reduced to these S-unit computations for adequately chosen prime ideals in S.

Algebraic Cryptanalyses of id-SVP

As for the second claim of [CGS14], Cramer, Ducas, Peikert and Regev [CDPR16] proved
that, in prime-power cyclotomic fields, logarithmic embeddings of circular units [Was97, §8]
yield a sufficiently good basis of a sublattice of relatively small finite index inside the log-unit
lattice. This key property allowed them to conclude that there exists a polynomial-time quantum
algorithm that, on average, solves Approx-Svp on principal ideal lattices for an approximation

factor 2Õ(
√
n), where n is the dimension of the ideal.

Subsequently, this first algebraic cryptanalysis led to several generalizations, extending to
any class of fractional ideal [CDW17], any cyclotomic fields [CDW21] and to any number field
[PHS19a]. For any challenge ideal b of a number field K, all approaches start from a solution
to the Class Group Discrete Logarithm Problem (ClDlp). This representation problem asks,
given a fixed set of finite places corresponding to prime ideals

{
p1, . . . , pk

}
of K, to find, if they

exist, α ∈ K and e1, . . . , ek ∈ Z such that:

〈α〉 = b ·
∏

1≤i≤k

peii .

This problem reduces to some S-unit group computation, hence is not hard to solve in a quantum
world according to the previous discussion. So, the most difficult part of these cryptanalyses
resides in reducing the Euclidean norm of α, i.e., to find a shortest solution to the ClDlp above,
or equivalently, the shortest coset representative modulo the finitely generated multiplicative
group H of class group relations between the pi’s. Using a suitable logarithmic embedding, this
boils down to solve a Cvp instance in the image lattice of H under this logarithmic embedding.
At the end, this shortest coset representative is hoped to be a sufficiently small element of the
challenge ideal. Therefore, the choice of the logarithmic embedding is particularly important,
since it must convey all useful informations on the size of α, and since the obtained lattice
basis must not be too bad for the Cvp solver. Note that [CGS14, CDPR16] exactly follow this
procedure for k = 0, in which case a solution to the ClDlp exist if and only if b is principal.

For our purpose, we will separate these algebraic cryptanalyses between two lines of work,
that use different tools to guarantee the output size, and have different scopes:

• The CDW algorithm, by Cramer, Ducas and Wesolowski [CDW17, CDW21], solves

id-Svp for approximation factors exp Õ(
√
n) in cyclotomic fields of degree n, in quantum

polynomial time. This trade-off, depicted in Fig. 1.1b, is proven under “carefully justified
heuristics”. The algorithm uses the Stickelberger ideal of a cyclotomic field, a special ideal
providing free short relations in the relative part of the ideal class group. These short
relations allow to find a close principal multiple for any challenge ideal, i.e., a principal
multiple whose algebraic norm is relatively small when divided by the challenge ideal
norm. Then, the [CDPR16] routine is applied to a generator of this multiple, hoping that
its output is sufficiently short.

• These two steps can actually be combined in a single Cvp instance, giving rise to what
are now called S-unit attacks: the idea is to find in this way a principal multiple which
is not only of small algebraic norm, but is also generated by a small element. This was
the core idea of the algorithm of Pellet-Mary, Hanrot and Stehlé (PHS) [PHS19a],
which applies to any number field, and which we detail in the next section.
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The practical impact of the CDW algorithm was evaluated in [DPW19] by running numerous
simulations for the Cvp in each of the two lattices involved. From these experimental results,
they heuristically derive a volumetric lower bound [DPW19, Eq. (5) and Tab. 1] and conclude
that the CDW algorithm should beat BKZ300 for cyclotomic fields of degree larger than 7000.13

S-unit Attacks

We describe in more detail the PHS algorithm [PHS19a], by Pellet-Mary, Hanrot and
Stehlé, which is to our knowledge the first S-unit attack described and proven in the liter-
ature, even though this S-unit formalism was not directly used in [PHS19a].

The main feature of their algorithm is to combine in a single Cvp instance the two principal
resolution steps of the CDW algorithm [CDW17, CDW21], namely the Cpmp (Close Principal
Multiple Problem) and the Sgp (Shortest Generator Problem). This provides some guarantee that
the output of the Cpmp solver has a generator which is “not much larger” than its shortest non-
zero vector. Unfortunately, this comes at the price of an exponential amount of preprocessing,
depending only on the number field K. Indeed, in order to guarantee the output size and the
running time of the algorithm, a key ingredient is to use a Cvp with preprocessing hint algorithm
due to Laarhoven [Laa16]. More formally, the PHS algorithm is split in two phases:

1. The preprocessing phase builds a specific lattice, depending only on the field K, which can
be viewed as a log-S-unit lattice under a particular logarithmic embedding, together with
some hint allowing to efficiently solve Approx-Cvp instances inside this lattice. Denoting

by ∆K the discriminant of K, this phase runs in time 2Õ(log|∆K |) and outputs a hint V of

bit-size 2Õ(log1−2ω|∆K |), where ω ∈
[
0, 1

2

]
is the trade-off parameter.

2. The query phase reduces each Approx-id-Svp challenge to an Approx-Cvp instance in
this fixed lattice. It takes as inputs any ideal of OK , whose algebraic norm has bit-

size bounded by 2poly(log|∆K |), the hint V, and runs in time 2Õ(log1−2ω|∆K |) + TSu(K). It
outputs a non-zero element of the ideal which solves Approx-Svp with an approximation

factor 2Õ(logω+1|∆K |/n), where n is the degree of K.

Here, TSu(K) denotes the running time for S-unit groups related computations, i.e., in a quantum

world, TSu(K) = Õ
(
ln|∆K |

)
is polynomial [BS16], whereas in a classical world, it remains

subexponential in ln|∆K |, i.e., TSu(K) = exp Õ(lnα|∆K |), where α = 1/2 for cyclotomic fields
[BEF+17],14 and α = 2/3 in the general case [BF14], recently lowered to 3/5 by Gélin [Gél17].

This trade-off is shown on Fig. 1.1c and 1.1d on resp. cyclotomic fields and number fields
K with log|∆K | ≤ Õ(n1+ε). Ignoring the preprocessing cost, the query phase beats the tradi-

tional Schnorr’s hierarchy [Sch87] when log|∆K | ≤ Õ(n1+ε) with ε = 1/3 in the quantum case,
and ε = 1/11 in the classical case [PHS19a, Fig. 5.3]. It should be noted however that these
bounds on the discriminant are not uniform as the approximation factor varies, e.g., for an ap-
proximation factor set to 2

√
n, the time complexity of the PHS algorithm asymptotically beats

Schnorr’s hierarchy only in the quantum case and only for ε ≤ 1/6.

Contributions of this Thesis

The contributions of this thesis take place in the context of S-unit attacks. First, the S-unit
formalism is used to propose a twisted version of the PHS algorithm that reveals extremely

13The first published version of [DPW19] reported a crossover point at degree 12 000. After fixing a bug in the
implementation, which was pointed out by Bernstein on 20th August 2021 in a talk at SIAM Conference, this
crossover point has been reevaluated to 7000 [DPW19, Fig. 5].

14The article [BEF+17] is written for prime-power cyclotomic fields for historical reasons, but readily adapts
to the general case for class group computations.



1

5

powerful in practice. Then, the following contributions join for all cyclotomic fields the two lines
of cryptanalyses described above, by using extended techniques related to the Stickelberger lattice
to both remove quantum steps from the CDW algorithm and experimentally approximate the
Twisted-PHS algorithm in medium dimensions, where asymptotic phenomena start to express.

Twisted-PHS: using the product formula

In fact, the particular lattice used in the PHS algorithm corresponds to a special lattice called
the log-S-unit lattice, i.e., a lattice obtained by applying some logarithmic embedding on S-units,
where S can be identified to a factor base FB of prime ideals. As it turns out, choosing carefully
the used logarithmic embedding is particularly important in practice.

Hence, our first contribution is to propose in Ch. 3 a new twisted version of the PHS algo-
rithm, that we call Twisted-PHS, whose core idea consists in identifying a logarithmic embedding
preserving the natural algebraic properties of S-units. More precisely, we include the standard
number-theoretic weights coming from the Product Formula (see e.g., §2.1.2) to the coordinates
of the logarithmic embedding, i.e., for any α in a number field K, we start from:

LogS α =
({

[Kσ : R] · ln|σ(α)|
}
σ∈S∞

,
{
−vp(α) · lnN (p)

}
p∈FB

)
,

where Kσ = R (resp. C) for any real (resp. complex) embedding σ ∈ S∞ from K to R (resp. C),
and for any prime ideal p ∈ FB, N (p) is its algebraic norm and vp(α) is the valuation of α
at p. By contrast, the log-embedding on which is based [PHS19a] does not include the lnN (p)
weights.

Using this S-unit formalism, we prove in Th. 3.14 that our Twisted-PHS algorithm reaches the
same asymptotic trade-off between runtime and approximation factor than the PHS algorithm,
using the same Cvp solver with preprocessing hint due to Laarhoven [Laa16] to efficiently solve
Approx-Cvp instances in the log-S-unit lattice. As a secondary contribution, we also propose
several improvements of the PHS algorithm, in an optimized version described in §3.2.3.

Intuitively, adding weights lnN (p) to integer valuations at any prime ideal p captures the fact
that using a relation increasing the valuations at big norm ideals costs more than using a relation
involving smaller norm ideals. This also encodes in the log-S-unit lattice the information on the
length and algebraic norm of the S-units, unlike the log-embedding used in [PHS19a] involving
only the integer valuations. In the end, these rationales indicate that the Cvp solver in the
twisted log-S-unit lattice combines more efficiently the goal of searching for a principal multiple
of small algebraic norm while still minimizing the size of its generator.

Another fundamental consequence of using a properly normalized logarithmic embedding is
what we call the optimal factor base phenomenon, i.e., we prove that there exists a factor base S
for which the density of the log-S-unit lattice is maximal. Such a basis is computed by Alg. 3.3.

On the practical side, we provide a fully functional end-to-end implementation of the Twisted-
PHS algorithm, where Laarhoven’s Cvp oracle is replaced by Babai’s Nearest Plane algorithm
[Bab86]. This implementation is publicly available at GitHub: ob3rnard/Twisted-PHS7. For the
first time, this allowed to run complete S-unit attacks on a significant range of concrete examples.
Our experiments suggested, for prime conductor cyclotomic fields and NTRU Prime fields of small
dimensions, namely up to 70, that:

• under the proper number-theoretic normalization, the log-S-unit lattices at hand have a
very particular geometric behaviour and seem very easy to reduce (see §§3.4.1 and 3.4.2);

• the obtained exact approximation factors increase very slowly with the dimension (see
e.g., Fig. 1.2), “in a way that could reveal subexponential or even better”.

7https://github.com/ob3rnard/Twisted-PHS

https://github.com/ob3rnard/Twisted-PHS
https://github.com/ob3rnard/Twisted-PHS
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To our knowledge, these were the first experimental evidence of the geometric peculiarity of
properly normalized log-S-unit lattices and of the practical potential of S-unit attacks. Unfor-
tunately, due to the classical complexity of computing S-units, the attained dimensions are not
sufficient to conjecture the asymptotic behaviour of the Twisted-PHS algorithm.

Figure 1.2 – Approximation factors reached by Twisted-PHS, Opt-PHS and PHS for cyclo-
tomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

[BR20] Twisted-PHS: Using the Product Formula to Solve Approx-SVP in Ideal
Lattices.
Olivier Bernard and Adeline Roux-Langlois.

Published in the proceedings of Asiacrypt 2020, Part II, vol. 12492 of Lecture Notes in Computer
Science (LNCS) Series, pp.349–380, Springer.

Keywords: Ideal lattices, Approx-SVP, S-unit attacks, Twisted-PHS algorithm.

Links: [ePrint: 2020/10819 |GitHub: ob3rnard/Twisted-PHS7]

A short basis of the Stickelberger ideal

In the next contribution, we shall see that explicitly computing Stickelberger generators is useful
in at least two situations: the first one occurs for removing the last Pip quantum step in the
CDW algorithm [CDW21], the second one occurs when approximating the log-S-unit lattice
used in the Twisted-PHS algorithm. In the latter, some of the computational steps, notably
the 2-saturation procedure to obtain denser lattices, become quickly intractable as the bit size of
the elements coefficients grows. This motivates us to constrain both the number of Stickelberger
generators we use and their size.

This is where our second contribution, given in Ch. 4, reveals extremely useful. Our main
result (see Th. 4.29) is to provide the first explicit short basis of the Stickelberger ideal Sm of

9https://eprint.iacr.org/2020/1081
7https://github.com/ob3rnard/Twisted-PHS

https://asiacrypt.iacr.org/2020/
https://eprint.iacr.org/2020/1081
https://github.com/ob3rnard/Twisted-PHS
https://eprint.iacr.org/2020/1081
https://github.com/ob3rnard/Twisted-PHS
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cyclotomic fields of any conductor m, i.e., a basis containing only short elements. By definition,
an element of Z[Gm], where Gm denotes the Galois group of the m-th cyclotomic field, is called
short whenever it writes as:∑

σ∈Gm

εσ · σ ∈ Sm ⊂ Z
[
Gm
]
, where εσ ∈ {0, 1} for all σ ∈ Gm.

In the prime conductor case, our short basis coincides with the basis given in [Sch08, Th. 9.3(i)].
One ingredient of independent interest in the proof is Pr. 4.15, which describes a large family of
short elements of Sm that encompasses the set from [CDW21, §4.2]. This description uses a very
simple arithmetic criterion in the spirit of [Was97, Lem. 16.3] when m is an odd prime power.
Picking wisely some elements αm(b) in this large family yields our proposed short basis.

We also show how to explicitly compute algebraic integers generating Lαm(b), for any unram-
ified prime ideal L and any element αm(b) of our short basis. These generators can be expressed
as Jacobi sums that turn out to be drastically more efficient to compute than the generators
given e.g., in [Was97, §6.2].

Finally, a nice theoretical consequence of our result is to derive an explicit upper bound on
the relative part of the class number of the m-th cyclotomic field, given in Cor. 4.32. The proof
of our bound also gives an algorithm to compute the relative class number by computing the
determinant of some scaled Hadamard matrix: incidentally, this method seems to be significantly
more efficient than when using the traditional analytic formula (see e.g., Eq. (2.10)), when the
number t of prime factors of m is small.

[BK21] A short basis of the Stickelberger ideal of a cyclotomic field.
Olivier Bernard and Radan Kučera.

Submitted to AMS :: Mathematics of Computation (American Mathematical Society).

2010 MSC classes: 11R18 (Primary), 11R29, 11Y40 (Secondary).

Keywords: Cyclotomic fields, Stickelberger ideal, short basis, relative class number.

Links: [arXiv: 2109.13329 [math.NT]10]

Log-S-unit lattices using explicit Stickelberger generators

In our last contribution, given in Ch. 5, we extend the experiments of Ch. 3 to cyclotomic fields
of any conductor m and of degree up to 210. This effectively breaks the small dimension barrier
and reaches ranges of parameters where asymptotic phenomena, e.g., the exponential growth of
the class number, start to express.

This breakthrough is obtained as the result of both theoretical and implementational im-
provements. First, we prove in Th. 5.14 that a full-rank family of independent S-units can be
lifted from a set of fundamental S+-units of the maximal real subfield by adjoining the explicit
generators corresponding to a basis of the Stickelberger ideal. Using results from Ch. 4, it turns
out these generators are always expressed by Jacobi sums, which are particularly small and easy
to compute. This full-rank family generates an S-unit subgroup of explicitly computable index,
as we also prove in Th. 5.14. This index contains a large power of 2 that can be removed using
classical 2-saturation techniques, for which using the results of Ch. 4 is essential. At the end, we
obtain sublattices of the full log-S-unit lattice on which to test the Twisted-PHS algorithm. We
also provide a full implementation, publicly available at GitHub: ob3rnard/Tw-Sti8.

10https://arxiv.org/abs/2109.13329
8https://github.com/ob3rnard/Tw-Sti

https://www.ams.org/publications/journals/journalsframework/mcom
https://arxiv.org/abs/2109.13329
https://github.com/ob3rnard/Tw-Sti
https://arxiv.org/abs/2109.13329
https://github.com/ob3rnard/Tw-Sti
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Figure 1.3 – Approximation factors comparison for cyclotomic fields Km of degree ϕ(m) ≤ 210
with h+

m = 1, under the Gaussian Heuristic. Our results, labelled as “2-saturated
URS”, bound Twisted-PHS from above.

The approximation factors obtained in our experiments are detailed in Fig. 1.3. We stress
that this graph does neither show a catastrophic impact of S-unit attacks, nor does it clear the
threat. Indeed, the approximated mode used beyond dimension 80 only gives a practical upper
bound on the performance of the Twisted-PHS algorithm. Nevertheless, we observe a strong
correlation between the density of the used log-S-unit sublattice and the approximation factor
obtained by the Twisted-PHS algorithm: the denser, the better. We are also able to confirm the
peculiar geometric nature of the log-S-unit lattice already observed in Ch. 3, across all considered
cyclotomic fields, log-S-unit sublattices and factor bases. These recurrent observations in very
different regimes suggest that this phenomenon has a possibly deep explanation, an observation
that has been recently developed by Bernstein and Lange in [BL21].

Anyhow, gathering these extensive data in meaningful dimensions is of utmost importance to
better understand the performance of S-unit attacks, and should be seen as a first step towards
getting a sound estimation of the asymptotic behaviour of the Twisted-PHS algorithm or S-unit
attacks with any kind of parameters.

As a side result, we use the knowledge of these explicit Stickelberger generators, as well as
the full lattice of real class group relations, to remove almost all quantum steps in the CDW
algorithm, under the mild restriction that the plus part of the class number verifies h+

m ≤ O(
√
m).

[BLNR21] Log-S-unit lattices using Explicit Stickelberger Generators to solve
Approx Ideal-SVP.
Olivier Bernard, Andrea Lesavourey, Tuong-Huy Nguyen and Adeline Roux-Langlois.

Accepted for publication in the proceedings of Asiacrypt 2022, in Lecture Notes in Computer
Science (LNCS) Series, Springer..

Keywords: Ideal lattices, Approx-SVP, Stickelberger, S-unit attacks, Twisted-PHS algorithm.

Links: [ePrint: 2021/138411 |GitHub: ob3rnard/Tw-Sti8 |Blog: H2020Prometheus12]

11https://eprint.iacr.org/2021/1384
8https://github.com/ob3rnard/Tw-Sti

12https://www.h2020prometheus.eu/dissemination/blog

https://asiacrypt.iacr.org/2022/
https://eprint.iacr.org/2021/1384
https://github.com/ob3rnard/Tw-Sti
https://www.h2020prometheus.eu/dissemination/blogs/log-s-unit-lattices-using-explicit-stickelberger-generators-solve-approx-ideal
https://eprint.iacr.org/2021/1384
https://github.com/ob3rnard/Tw-Sti
https://www.h2020prometheus.eu/dissemination/blog
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Chapter 2

Preliminaries

N
umber-theoretic objects and properties required within this thesis are recalled in this
chapter. The first section introduces S-unit groups and the properties of their associated

log-S-unit lattices; in particular, the Product Formula plays a central role in our cryptanalyses.
Then, the special case of cyclotomic fields, for which many remarkable properties are known,
is detailed. The third section deals with algorithmic number theory, including several number-
theoretic bounds that are needed in the complexity proofs, and we finish by a piece of Euclidean
lattices theory, notably on how to evaluate the quality of a lattice basis w.r.t. the Closest Vector
Problem (Cvp).
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Notations. Let Z, Q, R and C denote the integers, rational, real and complex numbers respec-
tively. For any i, j ∈ Z with i ≤ j, let Ji, jK denote the set {k ∈ Z; i ≤ k ≤ j} of all integers
between i and j. For any x ∈ Q, let {x} (resp. [x]) denote its fractional (resp. integral) part,
i.e., such that 0 ≤ {x} < 1 and [x] = x− {x} ∈ Z.

Any vector is designated by a bold letter v, its i-th coordinate by vi and its `p-norm,
for p ∈ N∗ ∪ {∞}, by ‖v‖p. As a special case, the n-dimensional vector whose coefficients
are all 1’s is written 1n. All matrices will be given using row vectors, Dv is the diagonal matrix
with coefficients vi on the diagonal, In is the identity and 1n×n denotes the square matrix of
dimension n filled with 1’s.

2.1 On S-unit Groups

2.1.1 Number fields, ideals and class groups

In this thesis, K always denotes a number field of degree n over Q and OK its maximal order.The
algebraic trace and norm of α ∈ K, resp. denoted by Tr(α) andN (α), are defined as the trace and
determinant of the endomorphism x 7→ αx of K, viewed as a Q-vector space. The discriminant
of K is written ∆K and can be defined, for any Z-basis ω1, . . . , ωn of OK , as det

(
Tr(ωiωj)

)
i,j

.

Most complexities of number-theoretic algorithms depend on ln|∆K |.

Class groups.

The fractional ideals of K are designated by gothic letters, like b, and form a multiplicative
group IK containing the normal subgroup PK :=

{
〈α〉; α ∈ K

}
of principal ideals. The

quotient group IK
/
PK is called the class group of K and denoted by ClK . The class group is

a finite group, whose order hK is called the class number of K. For any ideal b ∈ IK , the class
of b in ClK is denoted by

[
b
]
.

Finally, for any set of prime ideals
{
Li; i ∈ J1, kK

}
, we denote by hK,(L1,...,Lk) the cardinal

of the subgroup of ClK generated by the k classes
[
Li
]
, i.e., the determinant of the kernel of:

fL1,...,Lk :
(
e1, . . . , ek

)
∈ Zk 7−→

∏
1≤i≤k

[
Li
]ei ∈ ClK .

Specific families of number fields.

We will specifically target two families of number fields, widely used in cryptography [Pei16]:
cyclotomic fields Q(ζm), where ζm := e2iπ/m is a primitive m-th root of unity, and NTRU
Prime [BCLV17] fields Q(zq), where zq is a root of xq − x − 1 for q prime. Both families have
discriminants of order nn.

The case of cyclotomic fields is developed in §2.2; in particular, OQ(ζm) = Z[ζm] and their
discriminant is explicitly known from the factorization of m. For NTRU Prime fields, the sit-
uation is marginally more involved, as Z[zq] is maximal if and only if its polynomial discrimi-
nant D0 = qq − (q − 1)q−1 [Swa62, Th. 2] is squarefree [Kom75, Th. 4] :

∆Q(zq) =
∏
p|D0

pvp(D0) mod 2, where pvp(D0) divides exactly D0.

Note however that there is strong evidence that such D0’s are generically squarefree, say with
probability roughly 0.99 [BMT15, Conj. 1.1]. Actually, we checked that the conductor of Z[zq]
is not divisible by any of the first 106 primes for all q ≤ 1000 outside the set {257, 487}, for
which 592 | D0.
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2.1.2 The Product Formula

Places of the number field K are usually split into two parts: the set S∞ of infinite places can
be identified with the embeddings of K into R or C, up to conjugation; the set S0 of finite places
is specified by the infinite set of prime ideals of K.

Let (r1, r2) be the signature of K with n = r1 +2r2. The real embeddings of K are numbered
from σ1 to σr1 , whereas the complex embeddings come in pairs

(
σj , σj

)
for j ∈ Jr1 + 1, r2K.

Each embedding σ of K into C induces an Archimedean absolute value |·|σ on K, such that
for α ∈ K, |α|σ = |σ(α)|; two complex conjugate embeddings yield the same absolute value.
Thus, it is common to identify the set S∞ of infinite places of K with the embeddings of K
into C up to conjugation, so that S∞ =

{
σ1, . . . , σr1 , σr1+1, . . . , σr1+r2

}
. The completion of K

with respect to the absolute value induced by an infinite place σ ∈ S∞ is denoted by Kσ; it is R
(resp. C) for real places (resp. complex places).

Likewise, let p be a prime ideal of OK above p ∈ Z of residue degree f . For α ∈ K, the largest
power of p that divides 〈α〉 is called the valuation of α at p, and denoted by vp(α); this defines
a non-Archimedean absolute value |·|p on K such that |α|p = p−vp(α). This absolute value can
also be viewed as induced by any of the f embeddings of K into its p-adic completion Kp ⊆ Cp,
which is an extension of Qp of degree f .

Hence, any place v ∈ S∞ ∪ S0 induces an absolute value |·|v on K, and Ostrowski’s theorem
for number fields ([Con, Th. 3], [Nar04, Th. 3.3]) shows that all possible absolute values on K
are obtained in this way. A remarkable fact is that all these absolute values are tied together by
the Product Formula ([Con, Th. 4], [Nar04, Th. 3.5]):

∏
σ∈S∞

|α|[Kσ:R]
σ ·

∏
p∈S0⊃pZ

|α|[Kp:Qp]
p =

(
|N (α)| ·

∏
p∈S0

N (p)−vp(α) =

)
1. (2.1)

As all but finitely many of the |α|v’s, for v ∈ S∞ ∪ S0, are 1, their product is really a finite
product. Note that the S∞ part of this product is |N (α)|, and each term of the S0 part can be
written as N (p)−vp(α). This formula is actually a natural generalization to number fields of the
innocuous looking product formula for r ∈ Q, written as: |r| ·

∏
p prime p

−vp(r) = 1.

2.1.3 Logarithmic S-embeddings

The idea of using S-units for the cryptanalysis of id-Svp is implicitly underlying the work of
[PHS19a], and is formalized in [BR20] (see Ch. 3). We introduce log-S-unit lattices and discuss
the proper normalization induced by the Product Formula that was at the heart of the practical
improvements presented in Ch. 3.

S-unit groups structure.

Fix a finite set S of places; in this thesis we shall consider that S always contains S∞, hence S
can be written as S = S∞ ∪

{
p1, . . . , pk

}
, where each pi ∈ S0 corresponds to a prime ideal

of K. For convenience, we sometimes call the finite places of S the factor base, denoted by FB,
i.e., FB = S ∩ S0 =

{
p1, . . . , pk

}
. Note that we allow k = 0, in which case S = S∞ is omitted.

The so-called S-unit group of K, denoted by O×K,S , is the multiplicative subgroup of K
generated by all elements whose valuations are non zero only at the finite places of S. Formally:

O×K,S =
{
α ∈ K; 〈α〉 =

∏
p∈S∩S0

pvp(α)
}
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Note that when S = S∞, we obtain the definition of the unit group O×K as the multiplicative
subgroup of invertible algebraic integers of OK . Both (S-)unit groups always contain the finite
torsion subgroup of roots of unity of K, denoted by µ

(
O×K
)
.

Theorem 2.2 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12, Cor. 1]). The S-unit group is the
direct product of the group of roots of unity µ

(
O×K
)

and a free abelian group with ]S−1 generators.

There exists a fundamental system of S-units ε1, . . . , ε]S−1 s.t. any S-unit ε ∈ O×K,S uniquely

writes as ε = µ ·
∏]S−1
i=1 εkii , where µ ∈ µ

(
O×K
)

is a root of unity and ki ∈ Z.

In particular, using S = S∞, we recover Dirichlet’s unit theorem [Nar04, Th. 3.13], which
states that O×K is a finitely generated abelian group of rank ν := r1 + r2 − 1. We shall assume
that the fundamental elements ε1, . . . , ε]S−1 of Th. 2.2 are ordered so that:

O×K ' µ
(
O×K
)
× εZ1 × · · · × εZν and O×K,S ' O

×
K × ε

Z
ν+1 × · · · × εZν+k.

Log-S-unit lattices.

A fundamental ingredient of the proof of this theorem is to build an embedding of O×K,S into R]S ,

whose kernel is µ
(
O×K
)

and whose image is a lattice of dimension
(
]S − 1

)
. This embedding is

called the logarithmic S-embedding, and its image is called the log-S-unit lattice.
Several equivalent definitions of this logarithmic S-embedding are acceptable for the proof.

However, for cryptanalytic purposes, experimental evidence given in Ch. 3 suggests that it is
crucial to use a properly normalized embedding for the decodability of the log-S-unit lattice.
Thus, we define [Nar04, §3, p.98] the following log-S-embedding from K× to Rr1+r2+k:

LogS α =
(
[Kv : Qv] · ln|α|v

)
v∈S =

({
[Kσ : R] · ln|σ(α)|

}
σ∈S∞

,
{
−vp(α) · lnN (p)

}
p∈FB

)
.

For S = S∞, this corresponds to the classical definition of the logarithmic embedding Log (see
e.g., [Coh93, Def. 4.9.6]) from K to Rr1+r2 .

From the definition of O×K,S and Eq. (2.1), it is easy to see that LogS O×K,S lies in the trace
zero hyperplane orthogonal to 1]S , i.e.:

LogS O×K,S ⊂ R]S0 :=
{
y ∈ R]S ;

∑
i yi = 0

}
.

Showing that its dimension is at least ]S − 1 is more involved. Likewise, for any α ∈ K, the sum
of the coordinates of Log α is precisely ln|N (α)|, so that LogO×K lies in the trace zero hyperplane
orthogonal to 1r1+r2 , i.e., LogO×K ⊂ Rr1+r2

0 =
{
y ∈ Rr1+r2 ;

∑
i yi = 0

}
.

A row basis ΛK,S of the log-S-unit lattice LogS O×K,S is given by the images of the fundamental

system of S-units of Th. 2.2 under the log-S-embedding, i.e., ΛK,S =
(
LogS εi

)
1≤i≤]S−1

. In

particular, let ΛK = (Log εi)1≤i≤ν be any Z-basis of LogO×K . Since for any ε ∈ O×K , LogS ε is
uniformly zero on coordinates corresponding to finite places, the shape of ΛK,S is:

ΛK,S :=



ΛK 0

Log εν+1

...
(
−vpj (εν+i) lnN (pj)

)
1≤i,j≤k

Log εν+k


. (2.3)

Actually, we shall use that for any maximal set of independent S-units, their images under
any logarithmic S-embedding form a full-rank sublattice of the corresponding log-S-unit lattice.



2

2.1. On S-unit Groups 13

Expanded log-S-embeddings.

As mentioned in [PHS19a, BDPW20], a convenient trick in the context of the cryptanalysis
of id-Svp is to consider an expanded version of the log-S-embedding, halving and repeating
twice S∞-coordinates corresponding to complex embeddings, namely, for any α ∈ K×:

LogS α =
({

ln|σi(α)|
}
i∈J1,r1K,

{
ln|σr1+j(α)|, ln|σr1+j(α)|

}
j∈J1,r2K,

{
−vp(α) · lnN (p)

}
p∈FB

)
.

As for j ∈ J1, r2K, |α|σr1+j
= |α|σr1+j

, the image LogK× in Rn spans the (r1 + r2)-dimensional

space L0 =
{
y ∈ Rn; yr1+2j−1 = yr1+2j , j ∈ J1, r2K

}
. Similarly, the image LogS K

× in Rn+k

spans the (r1 + r2 + k)-dimensional space L = L0 × Rk. For convenience, we denote by H0

(resp. H) the span of the log-unit (resp. log-S-unit) lattice under these expanded embeddings,
i.e., H0 = L0 ∩ Rn0 and H = L ∩ Rn+k

0 .

In particular, we shall see in Pr. 2.8 that using these expanded log-S-embeddings reduces the
volume of the log-S-unit lattice. In practice though, we did not observe any significant difference
between the approximation factors obtained using LogS or LogS .

2.1.4 Regulators

The (S-)regulator of K quantifies the density of the (S-)unit group in K. We begin by a technical
linear algebra lemma, whose result reveals particularly useful for the volume computations of
non-square matrices involved in this thesis, e.g., of ΛK,S .

Lemma 2.4. Let n ≥ 1 and a1, . . . , an ∈ R∗. Then, with 1n×n being the square matrix of
dimension n filled with 1’s, and Da1,...,an the diagonal matrix with coefficients ai:

det
(
1n×n +Da1,...,an

)
=
(

1 +

n∑
i=1

1

ai

)
·
n∏
k=1

ak.

Note that the result is also valid if any of the ai’s is zero by expanding the formula and using
the formal simplification ai/ai = 1. Writing it down in this form would only be much more noisy.

Proof. We prove the result for any a1, . . . , an ∈ R by induction using the minor expansion formula
on the last column for the determinant. Let M [a1, . . . , an] := 1n×n + Da1,...,an , and let δj,n be
its (j, n)-minor. The result is obviously true for n = 1 using detM [a1] = 1 + a1 = a1(1 + 1/a1),
the last equality being valid for a1 6= 0.

Suppose the result true for matrices of dimension (n− 1). The minors δj,n, for j ∈ J1, n− 1K
are determinants of matrices M [a1, . . . , aj−1, aj+1, . . . , an−1, 0] whose columns are permuted by
a permutation of sign (−1)n−j+1. Using the induction hypothesis (with

∏
∅ = 1 for n = 2):

∀j ∈ J1, n− 1K, δj,n = (−1)n−j+1
∏

1≤k≤n−1
k 6=j

ak.

Meanwhile, the last minor δn,n is detM [a1, . . . , an−1], which we expand to avoid divisions by 0:

δn,n =
∏

1≤k≤n−1

ak +

n−1∑
j=1

∏
1≤k≤n−1

k 6=j

ak.
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Finally, the determinant of M [a1, . . . , an] is
(
(1 + an)δn,n +

∑n−1
j=1 (−1)n−jδj,n

)
. A bit of calcu-

lation yields the following equation, which is the developed form of the lemma’s formula:

detM [a1, . . . , an] =
∏

1≤k≤n

ak +
∑

1≤i≤n

∏
1≤k≤n
k 6=i

ak.

Definition 2.5 (S-regulator). The S-regulator of K with respect to S, written RK,S , is defined
as the absolute value of any of the (r1 + r2 + k) minors of ΛK,S , i.e., as the absolute value of the

determinant of Λ
(j)
K,S for any j ∈ J1, ]SK, where Λ

(j)
K,S is the submatrix of ΛK,S without the j-th

coordinate.

We stress that the S-regulator could not be consistently defined anymore if the twistings by
the lnN (p)’s were removed from the log-S-embedding definition, as in this case, the property
that all columns sum to 0 disappears.

The value of the S-regulator RK,S is linked to the classical regulator RK of K (obtained
for S = S∞) according to the following proposition:

Proposition 2.6. Let hK,(FB) the cardinal of the subgroup Cl
(FB)
K of ClK generated by classes

of ideals in FB = S ∩ S0. Then, the S-regulator RK,S verifies:

RK,S = hK,(FB)RK ·
∏

p∈FB

lnN (p).

Proof. Note that RK,S is the determinant, e.g., of Λ
(r1+r2)
K,S where the (r1 + r2)-th column is

removed, so is the product of det Λ
(r1+r2)
K = RK and of the determinant of the (unchanged)

square bottom right part of ΛK,S . By definition of O×K,S , the matrix
(
−vpj (εν+i)

)
i,j

generates

the lattice of all relations in ClK between ideals of FB, i.e., is the kernel of the following map:

fFB : (e1, . . . , ek) ∈ Zk 7−→
∏
j

[
pj
]ej ∈ ClK ,

whose image is precisely Cl
(FB)
K . Thus, det(ker fFB) is hK,(FB) = ]

(
Zk/ ker fFB

)
, and twisting

each column by lnN (p) for p ∈ FB yields the result.

Log-S-unit lattice volumes.

The volume of the log-S-unit lattice is tied to the S-regulator RK,S by the following proposition,
which generalizes the classical formula (see e.g., [Neu99, Pr. I.7.5]) linking RK to Vol

(
LogO×K

)
:

Proposition 2.7.

Vol
(
LogS O×K,S

)
=
√

1 + ν + k ·RK,S .

Proof. By definition, Vol
(
LogS O×K,S

)
=
√

det(ΛK,SΛT
K,S). Consider Λ

(r1+r2+k)
K,S , removing the

last coordinate, whose determinant is RK,S . The concatenated matrix P =
(
Iν+k

∥∥−1ν+k

)
verifies ΛK,S = Λ

(r1+r2+k)
K,S · P , and a simple induction shows that det(PPT) = 1 + ν + k (use

Lem. 2.4 with all ai’s equal to 1).

Using expanded log-S-embeddings impacts the volume of the log-S-unit lattices given in
Pr. 2.7. It is given in following proposition, which generalizes [BDPW20, Lem. A.1]:
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Proposition 2.8. Under the expanded log-S-embedding, the log-S-unit lattice has volume:

Vol
(
LogS O×K,S

)
=
√
n+ k · 2−r2/2 ·RK,S .

Using an empty factor basis, this implies Vol
(
LogO×K

)
=
√
n · 2−r2/2 ·RK .

Proof. Let Λ̃K,S be a row basis of LogS O×K,S , whose shape is the same as ΛK,S in Eq. (2.3) except

that Log is systematically used instead of Log. The proof explicits the transition matrix from

the truncated matrix Λ
(ν+1+k)
K,S , whose determinant is RK,S , to Λ̃K,S , and computes its volume.

Let P =
(
Iν+k

∥∥−1ν+k

)
be such that ΛK,S = Λ

(r1+r2+k)
K,S · P . Obtaining Λ̃K,S from ΛK,S

requires to halve and expand the coordinates corresponding to complex places, all other coordi-
nates staying identical. Let F be the transition matrix verifying Λ̃K,S = ΛK,S ·F , i.e., the block
diagonal matrix with three blocks: Ir1 , the (r2× 2r2) block of vectors (. . . , 1/2, 1/2, . . . ), and Ik.

Then Λ̃K,S = Λ
(r1+r2+k)
K,S · (PF ). For k ≥ 1, or k = 0 and r2 = 0, (PF ) writes as

(
F−1

∥∥−1ν+k

)
,

where F−1 is F without its last column and its last row. We compute:

(PF )(PF )T = 1(ν+k)×(ν+k) +D(1r1‖(1/2)·1r2‖1k−1).

Using Lem. 2.4 to obtain that the determinant of this matrix is (n+ k)2−r2 completes the proof,
except in the case k = 0, r2 > 0. In this specific case, (PF ) writes as the first (n − 2) columns
of F−1, concatenated twice with (−1/2) · 1ν , so that (PF )(PF )T = 1

2 ·
(
1ν×ν +D(2·1r1‖1r2−1)

)
.

This last matrix has volume n · 2−r2 as expected.

2.2 Cyclotomic Fields

An important special case of number fields is the family of cyclotomic fields, for which many
additional properties are known.

For any positive integer m > 1, we denote the cyclotomic field of conductor m, or the m-th
cyclotomic field, by Km = Q(ζm), where ζm = e2iπ/m is a primitive m-th root of unity. It has
degree n = ϕ(m), its maximal order is OKm = Z

[
ζm
]

([Was97, Th. 2.6]), and its discriminant,
which has the same order of magnitude as nn, is given precisely by ([Was97, Pr. 2.7]):

∆Km = (−1)ϕ(m)/2 mϕ(m)∏
p|m p

ϕ(m)/(p−1)

For convenience, when it comes to cyclotomic fields, we will index ideal and class groups as
well as class numbers by the cyclotomic field conductor, i.e., by m instead of Km. Hence, the
multiplicative group of fractional ideals of Km is denoted by Im instead of IKm ; likewise, the
normal subgroup of principal ideals is written Pm :=

{
〈α〉; α ∈ Km

}
. The class group of Km is

written Clm, and the class number is simply denoted by hm instead of hKm .

Note that if m is odd, we have that Km = K2m, so we can further assume m 6≡ 2 mod 4 with-
out any loss of generality. We shall also write the prime factorization of m as m = pe11 p

e2
2 · · · p

et
t

and let qi = peii for all i ∈ J1, tK. In particular, m has exactly t distinct prime divisors.

Remark 2.9. Note that we implicitly fix an ordering on the factors qi of m. All our results hold
true for any ordering as long as it stays consistent through all subsets of the qi’s. However, if this
ambiguity was a problem in an application, we could simply fix an ordering by p1 < · · · < pt.
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2.2.1 Two special arithmetic subsets of J1,mK

We recall here from [Kuč92, p.293] the definition of two subsets M+
m and M−m of J1,mK that

are useful to describe resp. a fundamental family of circular units and a short Z-basis of the
Stickelberger ideal of Km.

Let Xm be the set of all positive integers a < m that are either divisible by qi or relatively
prime to qi for each i ∈ J1, tK, i.e.:

Xm =
{
a ∈ Z; 0 < a < m,

(
a, m

(a,m)

)
= 1
}
.

Let M±m ⊆ Xm be the sets of all a ∈ Xm satisfying ([Kuč92, p.293]):15

• for all i ∈ J1, tK, if qi - a then a 6≡ −(a,m) mod qi,

• if a - m, let k = max
{
i ∈ J1, tK; a 6≡ (a,m) mod qi

}
, then

{
a

(a,m)qk

}
< 1

2 ,

• if a | m then the set
{
i ∈ J1, tK; qi - a

}
has an even (resp. odd) number of elements when

defining M+
m (resp. when defining M−m).

Note that M+
m (resp. M−m) contains ϕ(m)

2 − 1 elements (resp. ϕ(m)
2 elements). Both sets are

obviously easy to compute, using only simple arithmetic criteria.

2.2.2 Galois group and maximal real subfield

Let Gm denote the Galois group of Km, which can be written explicitly as ([Was97, Th. 2.5]):

Gm =
{
σm,s : ζm 7−→ ζsm; 0 < s < m, (s,m) = 1

}
'
(
Z/mZ

)×
.

In particular, we denote by σm,s ∈ Gm the automorphism sending any m-th root of unity to
its s-th power. For convenience, the automorphism induced by complex conjugation is writ-
ten τ = σm,−1, and we will omit m most of the time, when no ambiguity is possible.

The algebraic norm of α ∈ Km is defined by N (α) =
∏
σ∈Gm σ(α), hence the absolute norm

element in the integral group ring Z[Gm] writes as Nm =
∑
σ∈Gm σ.

For any positive integers m, r such that r | m we have the usual restriction and corestriction
maps between the group rings Q[Gm] and Q[Gr]:

ResKm/Kr : Q[Gm]→ Q[Gr],

CorKm/Kr : Q[Gr] → Q[Gm].

The restriction map is the ring homomorphism sending each automorphism σ ∈ Gm to its
restriction σ|Kr ; the corestriction map is the linear map determined for any ρ ∈ Gr by:

CorKm/Kr (ρ) =
∑
σ∈Gm
σ|Kr=ρ

σ.

The integral group ring Z[Gm] acts naturally on Im; more precisely, for any b ∈ Im and any
element α =

∑
σ∈Gm aσσ ∈ Z[Gm], we write bα :=

∏
σ∈Gm σ

(
b
)aσ

.

15Actually, the set M+ defined in [Kuč92, p.293] is M+ = M+
m ∪ {0}.
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Maximal real subfield.

The maximal real subfield of Km, denoted by K+
m, is the fixed subfield of Km under complex

conjugation, i.e., K+
m := K

〈τ〉
m = Q

(
ζm+ζ−1

m

)
. Its maximal order is given by OK+

m
= Z

[
ζm+ζ−1

m

]
(see e.g., [Was97, Pr. 2.16]).

By Galois theory, since
〈
τ
〉

is a normal subgroup of Gm, the maximal real subfield of Km is

a Galois extension of Q with Galois group G+
m := Gal

(
K+
m/Q

)
isomorphic to Gm

/〈
τ
〉
. We will

consistently identify G+
m with the following system of representatives modulo τ restricted to K+

m:

G+
m =

{
σs|K+

m
; 0 < s < m

2 , (s,m) = 1
}
.

Technically, each σs|K+
m
∈ G+

m extends in Gm to either σs or τσs = σ−s. For simplicity, we

always choose to lift σs|K+
m
∈ G+

m to σs ∈ Gm and drop the restriction to K+
m which should be

clear from the context. This slight abuse of notation appears to be very practical. For example,
the corestriction CorKm/K+

m

(
σs|K+

m

)
, defined as the sum of all elements of Gm that restricts

to σs|K+
m

, namely σs + τσs, is written using the much simpler expression (1 + τ) · σs.
The class group and class number of the maximal real subfield K+

m are denoted respectively
by Cl+m and h+

m.

2.2.3 Real and relative class groups

One important specificity of cyclotomic fields is that the real class group Cl+m embeds into Clm
via the natural inclusion map, which to each ideal class

[
b
]
∈ Cl+m associates the lifted ideal

class
[
b · OKm

]
∈ Clm [Was97, Th. 4.14]. The relative norm map NKm/K+

m
induces a homomor-

phism from Clm to Cl+m, whose kernel is hence isomorphic to the so-called relative class group,
written Cl−m and of cardinal the relative class number h−m. Thus, by construction, for any b
s.t.

[
b
]
∈ Cl−m, b1+τ ∩K+

m is principal. Concretely, it implies that hm = h+
m · h−m is the product

of the so-called plus part and relative part of the class number.

Relative part of the class number.

As mentioned earlier, not much is generally known about the class number of a number field,
and the analytic class number formula recalled in Eq. (2.34) only allows to obtain a rough upper

bound hm ≤ Õ
(√
|∆Km |

)
.

In the case of cyclotomic fields though, the structure of the relative class group is better
understood [FGW92]. Using analytic means, the relative class number has the following explicit
expression [Was97, Th. 4.17]:

h−m = Qw ·
∏
χ odd

(
− 1

2B1,χ

)
, (2.10)

where w = 2m if m is odd and w = m if m is even, Q = 1 if m is a prime power and Q = 2
otherwise, and B1,χ is defined by 1

f

∑f
a=1 a · χ(a) for any odd primitive Dirichlet character χ

modulo m of conductor f dividing m.
Computing this value is in practice very efficient, using adequate representations of Dirichlet

characters. We shall also introduce in Ch. 4 an algorithmically basic way to obtain h−m via a
determinant computation that is especially competitive when m has few distinct prime divisors.

Plus part of the class number.

The really hard part of cyclotomic class numbers computations is to obtain the plus part h+
m,

and few values are known. We will use the values from [Was97, Tab. §4], [Mil14, Th. 1.1 and 1.2]
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

225 120 1 213 140 1 205 160 2 203 168 1 460 176 1 416 192 1
231 120 1 219 144 1 352 160 1 215 168 1 552 176 1 448 192 1
244 120 1 285 144 1 400 160 1 245 168 1 209 180 1 576 192 1
248 120 4 296 144 1 440 160 5 261 168 1 217 180 1 612 192 1
308 120 1 304 144 1 492 160 1 392 168 1 279 180 1 672 192 1
372 120 1 380 144 1 528 160 1 516 168 1 297 180 1 275 200 1
396 120 1 432 144 1 600 160 1 588 168 1 235 184 1 375 200 1
384 128 1 444 144 1 660 160 1 267 176 1 564 184 1 500 200 1
201 132 1 540 144 1 243 162 1 345 176 1 291 192 1
207 132 1 237 156 1 249 164 1 368 176 1 357 192 1

Table 2.1 – Additional (publicly unavailable) values of h+
m for some m with ϕ(m) ≤ 200.

and [BFHP21, Tab. 1], consistently assuming the Generalized Riemann Hypothesis (GRH) (see
Heur. 2.33). We also provide 58 additional values in Tab. 2.1, easily obtained using SageMath
v9.0 [Sag20], each in less than 3 hours on a Intel® Core™ i7-8650U @3.2GHz CPU.

The fact that the plus part of the class number seems so much smaller than the relative part
is striking. On the theoretical side, Weber’s conjecture claims that h+

2e = 1 for any e > 1, and
Buhler, Pomerance and Robertson [BPR04] argue, based on Cohen-Lenstra heuristics, that for
all but finitely many pairs (p, e), where p is a prime and e is a positive integer, h+

pe+1 = h+
pe ;

hence, for prime power conductors, this conjecture claims that the plus part is asymptotically
constant.

On the practical side, these conjectures are backed up by Schoof’s extensive calculations
[Sch03] in the prime conductor case, and by the above explicit values. In particular, under GRH,
Miller proved Weber’s conjecture up to m = 512, and we note that according to Schoof’s table,
the inequality h+

m ≤
√
m holds for more than 96.6% of all prime conductors m = p < 10000.

2.2.4 Circular units

Circular units are sometimes called cyclotomic units in the literature, as in [Was97, §8]. We
prefer to use the historical terminology from algebraic number theory, see e.g., Sinnott [Sin78,
§4] and Kučera [Kuč92, §2], in order to avoid any confusion with the whole unit group O×Km of
the m-th cyclotomic field.

Definition 2.11 (Circular units [Was97, §8.1]). Let Vm be the multiplicative subgroup of K×m
generated by: {

1− ζam; 1 ≤ a ≤ m
}
.

The group of circular units is the intersection Cm := Vm ∩ O×Km .

Note that Cm contains the torsion of Km, since −ζm =
(
1 − ζm

)/(
1 − ζ−1

m

)
. The circular

units form a subgroup of O×Km of finite index, more precisely:

Proposition 2.12 ([Sin78, Th. p.107]). The index of Cm in O×Km is finite:

[
O×Km : Cm

]
= 2b · h+

m, with b =

{
0 if t = 1,

2t−2 + 1− t otherwise.

where t is the number of distinct prime factors of m.
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Hence, circular units provide a very large subgroup of O×Km : indeed, the real part of the class
number is expected to be small (§2.2.3), and the other factor generically grows linearly in m (see
[HW38, Th. 430 and 431] for a precise statement).

An explicit system of fundamental circular units for any m has been given in [GK89] and
independently in [Kuč92, Th. 6.1]. More precisely, for 0 < a < m, define the following special
circular units, where mi = m/peii [Kuč92, p.176]:

va =


1− ζam if ∀i ∈ J1, tK, mi - a,
1− ζam
1− ζmim

otherwise, for the unique mi | a.
(2.13)

Theorem 2.14 ([Kuč92, Th. 6.1]). The set
{
va; a ∈M+

m

}
is a system of fundamental circular

units of Km: for any circular unit η ∈ Cm, there exist uniquely determined k(a) ∈ Z and root of

unity µ ∈
〈
±ζm

〉
s.t. η = µ ·

∏
a∈M+

m
v
k(a)
a .

A crucial point for the cryptanalysis of id-Svp in [CDW21] is that the logarithmic embedding
of these elements is short. Namely, computing explicitly the constants that appear in the proof
of [CDW21, Lem. 3.5], we have, for any 0 < a < m, that ‖Log(1− ζam)‖2 ≤ 1.32 ·

√
m.

2.2.5 Stickelberger ideal

In this section, we decribe the Stickelberger ideal of a cyclotomic field Km, that provides free
relations in the class group. Following Sinnott [Sin80], for any a ∈ Z, let:

θm(a) =
∑

s∈(Z/mZ)×

{
−as
m

}
· σ−1

m,s ∈ Q
[
Gm
]
, (2.15)

and let Nm be the absolute norm element Nm =
∑
σ∈Gm σ. Hence, an easy observation gives:

a ≡ b (mod m) =⇒ θm(a) = θm(b). (2.16)

Moreover, if m | a, θm(a) = 0, whereas if m - a we get the following relation:

θm(a) + θm(−a) = Nm. (2.17)

Definition 2.18 (Stickelberger ideal [Sin80, p.189]). Let S ′m be the subgroup of the additive

group of Q
[
Gm
]

generated by
{
θ

(m)
r (a); a, r ∈ Z, r > 0

}
, where:

θ(m)
r (a) = CorKm/K(m,r)

(
ResKr/K(m,r)

(
θr(a)

))
.

The Stickelberger ideal of Km is the intersection Sm = S ′m ∩ Z
[
Gm
]
.

In fact, S ′m is Sinnott’s group S′ from [Sin80, p.189], for the abelian field k being the cyclo-
tomic field Km. The following lemma allows us to simplify the previous definition.

Lemma 2.19. For any positive integer m, the group S ′m is the subgroup of Q[Gm] generated by{
θm(a); 0 < a < m

}
∪
{

1
2Nm

}
.
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Proof. On one hand, θm(a) = θ
(m)
m (a) ∈ S ′m. On the other hand, let us consider any positive

integer r 6= m and let d = (m, r). For any a ∈ Z, using [Kuč96, Lem. 12],

ResKr/Kd
(
θr(a)

)
∈
〈{
θd(b); 0 < b < d

}
∪
{

1
2Nd

}〉
.

It is easy to see that CorKm/Kd
(

1
2Nd

)
= 1

2Nm. Considering θd(b), 0 < b < d,

CorKm/Kd
(
θd(b)

)
= CorKm/Kd

( ∑
0<s≤d
(s,d)=1

{
−bs
d

}
· σ−1

d,s

)

=
∑

0<s≤m
(s,m)=1

{
−bs
d

}
· σ−1

m,s = θm

(bm
d

)
. (2.20)

As CorKm/Kd is a group homomorphism, the lemma follows from

θ(m)
r (a) = CorKm/Kd

(
ResKr/Kd

(
θr(a)

))
∈
〈{
θm(a); 0 < a < m

}
∪
{

1
2Nm

}〉
.

Remark 2.21. For clarity, let us explain that even though S ′m is slightly different from Sinnott’s
group S′ from [Sin78], the Stickelberger ideal S = S′∩Z[Gm] defined in [Sin78] coincides with Sm.
Indeed, S′ is defined as the subgroup of Q[Gm] generated by the set

{
θm(a); 0 < a < m

}
, so

Lem. 2.19 implies that S ′m = S′ + 1
2Nm · Z. If m is even, then 1

2Nm = θm(m2 ) ∈ S′, which
implies S ′m = S′. Let us suppose that m is odd. Then all generators of S′ have 2-integral
coefficients, so 1

2Nm /∈ S′, but we have that Nm = θm(1) + θm(−1) ∈ S′. Any β ∈ S ′m can be
written as β = α + k · 1

2Nm, for some α ∈ S′ and k ∈ Z. If β ∈ Z[Gm], then the fact that the
coefficients of α are 2-integral implies that k is even, which means that β ∈ S′. Hence, in this
case we also have Sm = S ′m ∩ Z[Gm] = S′ ∩ Z[Gm] = S.

As in [CDW21], we shall refer to the Stickelberger lattice when Sm is viewed as a Z-module.
Note that in some references, like in [Was97, §6.2], the Stickelberger ideal is defined as the smaller
ideal Z

[
Gm
]
∩ θm(−1)Z

[
Gm
]
, which coincides with Def. 2.18 if and only if m is a prime power

[Kuč86, Pr. 4.3].
One of the most important feature of the Stickelberger ideal is to give free relations in the

class group of Km, as stated by Stickelberger’s theorem, given below.

Theorem 2.22 (Stickelberger’s theorem [Sin80, Th. 3.1]). The Stickelberger ideal Sm of Km

annihilates the class group of Km. Hence, for any ideal b of Km and any α =
∑
σ∈Gm aσσ ∈ Sm,

the ideal bα =
∏
σ∈Gm σ(b)aσ is principal.

An outstanding point is that the proof of this important result is completely explicit, i.e., for
any α ∈ Sm, and any fractional ideal b of Km, an explicit γ ∈ Km such that 〈γ〉 = bα is
constructed. We shall see in §4.5 that when α is a short element of Sm, i.e., when α =

∑
σ∈Gm εσσ

with all εσ ∈ {0, 1}, this explicit generator is very efficiently computable.

On the rank of the Stickelberger lattice.

A consequence of, e.g., [Kuč92, Th. 6.2], is that the rank of Sm in Z
[
Gm
]
, viewed as a Z-module,

is only ϕ(m)/2 + 1 ; in particular, it is not full rank, therefore it cannot be directly used as a
lattice of class relations.

However, as noted in [CDW21, §4.3], the Stickelberger lattice modulo (1 + τ) is a lattice
of class relations for the relative class group, which we recall is the kernel of the relative norm



2

2.2. Cyclotomic Fields 21

map NKm/K+
m

: Clm → Cl+m. We shall follow a quite different exposition here, using Sinnott’s

formalism from [Sin78, Sin80].
Let Rm = Z

[
Gm
]
. For any submodule M ⊆ Rm, the kernel of the multiplication by (1 + τ)

in M is denoted by M−. In particular:

R−m =
{
α ∈ Rm; (1 + τ)α = 0

}
and S−m =

{
α ∈ Sm; (1 + τ)α = 0

}
.

Clearly, we have R−m = (1 − τ)Rm and (1 − τ)Sm ( S−m. Let π : Rm −→ R−m be the natural
projection that associates (1 − τ)α ∈ R−m to any α ∈ Rm. A basis of R−m, as a Z-module, is
given by [Kuč86, Th. 3.1]:{

βs; 0 < s < m
2 , (s,m) = 1

}
, where βs = π

(
σs
)

= σs − σ−s. (2.23)

Hence, R−m is isomorphic, as a Z-module, to Zϕ(m)/2. Note that the map π defined above
corresponds to the projection map Rm → Rm

/〈
1 + τ

〉
of [CDW21], as shown by the expression

given in the proof of [CDW21, Lem. 4.6].

Theorem 2.24 ([Sin78, Th. p.107]). The index of S−m in R−m is finite:

[
R−m : S−m

]
= 2a · h−m, where a =

{
0 if t = 1,

2t−2 − 1 if t ≥ 2.

In particular, S−m has full rank ϕ(m)
2 in R−m. The restriction to the relative class group means

that the action of (1+τ) factors through the projection in S−m, hence S−m can be used as a lattice
of class relations for Gm-orbits of Cl−m.

Remark 2.25. We note that the projected Stickelberger lattice (1 − τ)Sm used in [CDW21] is
strictly smaller than S−m = Sm ∩R−m. In fact, a consequence of the proof of Lem. 5.15 is that its
index is

[
S−m : (1− τ)Sm

]
= 2ϕ(m)/2−1.

Technical lemmata on Sm.

In this paragraph, we recall some technical results that will be useful mainly to explicit and prove
the correctness of our short basis of the Stickelberger ideal. First, the index of the Stickelberger
ideal in S ′m is related to torsion units as follows:

Lemma 2.26. For any integer m > 1, m 6≡ 2 (mod 4), the index w = [S ′m : Sm] is equal to the
number of roots of unity in the m-th cyclotomic field Km, i.e., w = 2m if m is odd, and w = m
if m is even.

Proof. This is a part of [Sin80, Pr. 2.1].

We now introduce auxiliary elements that allow to write relations that are useful for the proof
of Th. 4.2. For any a ∈ Z, we set

ωm(a) =

{
θm(a)− 1

2Nm, if m - a,
0, if m | a.

(2.27)

Adapting Eqs. (2.16), (2.17) and (2.20), we deduce respectively, for d | m and 0 < b < d,

ωm(a+m) = ωm(a) and ωm(−a) = −ωm(a), (2.28)

CorKm/Kd
(
ωd(b)

)
= CorKm/Kd

(
θd(b)− 1

2Nd
)

= ωm
(
bm
d

)
. (2.29)
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The last equality uses that CorKm/Kd is a linear map and CorKm/Kd
(
Nd
)

= Nm. Moreover, by
Lem. 2.19, S ′m is the subgroup of Q[Gm] generated by{

ωm(a); 0 < a < m
}
∪
{

1
2Nm

}
. (2.30)

Lemma 2.31. Let d, r be positive integers and m = rd. Then for any k ∈ Z we have

∑
a=0,...,m−1
a≡k (mod r)

ωm(a) =

d−1∑
i=0

ωm(k + ir) = ωm(kd).

Proof. The lemma follows from the following well-known identity

d−1∑
i=0

{
−s(k + ir)

m

}
=
{
−skd
m

}
+
d− 1

2
,

valid for any s ∈ Z relatively prime to m.

Recall that m = q1q2 . . . qt, where qi = peii > 2 for each i ∈ J1, tK, is the prime factorization
of m. Let `i ∈ Z satisfy pi`i ≡ 1 (mod m

qi
), and `i ≡ 1 (mod qi). Lemma 2.31 implies the

following result:

Lemma 2.32. For the chosen m, for any i ∈ J1, tK and any a ∈ Xm, we have

∑
k≡1 (mod m/qi)

0<k≤m, pi-k

ωm(ka) =

{
ϕ(qi) · ωm(a), if qi | a,
ωm(aqi)− ωm(aqi`i), if qi - a,

where ϕ() is Euler’s totient function.

2.3 Algorithmic Number Theory

In this thesis, we will consistently assume the Generalized Riemann Hypothesis (GRH), on which
rely many useful number-theoretic bounds and algorithmic complexities.

Heuristic 2.33 (Generalized Riemann Hypothesis (GRH)). The Dedekind zeta function of K,
defined for s ∈ C\{1} as ζK(s) =

∑
a⊆OK

1
N (a)s when R(s) > 1 and as its analytic continuation

elsewhere, is zero-free in the half plane R(s) > 1/2.

2.3.1 Number-theoretic bounds

This section presents several number-theoretic bounds that are useful to control namely the
volume of log-S-unit lattices, and the algebraic norm of the factor base prime ideals.

Analytic class number formula.

The residue κK = lims→1(s − 1)ζK(s) is linked to hKRK through the so-called analytic class
number formula [Neu99, Cor. 5.11(ii)], which states that:

κK =
2r1(2π)r2RKhK

wK
√
|∆K |

, (2.34)
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where wK = ]µ
(
O×K
)
. Actually, computing κK is much easier than computing directly hK or RK

(see e.g., [BF15]) and is generally performed as a first step towards these quantities.

The best currently known explicit bound is κK ≤
( e ln|∆K |

2(n−1)

)n−1
by [Lou00, Th. 1]. It implies

the following upper bound on hKRK , as precisely shown in [BDPW20, Lem. 2.3], which can then
be used to control the volume of the log-S-unit lattice:

ln
(√

n
2r2 · hKRK

)
≤ 1

2 ln|∆K |+ n ln ln|∆K |+ n(1− lnn). (2.35)

Class Group Generators.

When picking a set of prime ideals in the algorithms of this thesis, an important feature is that
they generate ClK . It is hence useful to bound both hK and the norms of the generating prime
ideals. Note that, as for any finite group, any non redundant generating set of ClK must have
at most log hK elements. Not much is generically known about the class number, so that the
analytic estimation above is traditionally used to obtain hK ≤ Õ

(√
|∆K |

)
.

Let Lmax be any prime ideal of maximum norm inside a generating set of ClK which has the
smallest possible maximum norm. Bach proved that [Bac90, Th. 4]:

N (Lmax) ≤ 12 ln2|∆K |. (2.36)

In practice though, this upper bound on the ratio tK := N (Lmax)/ ln2|∆K | ≤ 12 seems very
pessimistic. Experimental evidence suggests that tK > 0.7 only occurs in pathological cases
[BDF08, §6], and as noted in [BDF08, p.1186], “it even looks plausible that the average value
of N (Lmax) as the discriminant of K increases is O(ln|∆K |)1+ε for any ε > 0”.

On the other hand, let us consider the relative part Cl−m of the class group of a cyclotomic
field Km. In this case, prime ideals belong to Cl−m only with probability roughly 1/h+

m, so we
expect that searching for generators of the subgroup Cl−m mechanically increases the provable
upper bound on generators. More precisely, writing as L−max the biggest ideal of a generating set

of Cl−m, Wesolowski proved [Wes18, Rem. 2] that N (L−max) ≤
(
2.71h+

m · ln|∆Km |+ 4.13
)2
.

Prime Ideal Theorem.

In order to constitute sufficiently large sets of prime ideals of polynomially bounded norms, it is
useful to know the density of prime ideals in K. This is the object of the Prime Ideal Theorem,
which states that prime ideals have more or less the same asymptotic behaviour as prime numbers.

Let πK(x) = ]
{
p : p prime ideal, N (p) ≤ x

}
, and ϑK(x) =

∑
N (p)≤x lnN (p). In [Lan03,

§II.4–5], Landau proved the following asymptotic equivalences:

πK(x) ∼x→∞
∫ x

2

dt

ln t
, and ϑK(x) ∼x→∞ x. (2.37)

The general rough intuition is that each prime p ∈ Z yields on average one prime ideal in K
of norm p. Of course, this global behaviour is not valid locally: for instance in cyclotomic
fields Q(ζm), ideals of prime norm p come in batches of ϕ(m) elements for primes p ≡ 1 mod m,
whose density is by Dirichlet’s arithmetic progression theorem about 1/ϕ(m).

Unfortunately, whereas even for reasonably small bounds these asymptotic estimations yield
astonishingly good results in practice, only effective versions are rigorously applicable.

Theorem 2.38 (Explicit Prime Ideal Theorem [GM16, Cor. 1.4]). Under GRH, ∀x ≥ 3:∣∣∣∣πK(x)− πK(3)−
∫ x

3

dt

ln t

∣∣∣∣ ≤ √x · [c1(x) · ln|∆K |+ c2(x) · n lnx+ c3(x)
]
,
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with c1(x) =
(

1
2π −

ln ln x
π ln x + 5.8

ln x

)
, c2(x) =

(
1

8π −
ln ln x
2π ln x + 3.6

ln x

)
, c3(x) =

(
0.3+

14
log x

)
.

This can be used to show that a polynomial bound in ln|∆K | yields sufficiently many prime
ideals, like in [PHS19a, Cor. 2.9]. A precise version of that statement is given in [BDPW20,
Lem. A.3]: for x ≥ max

{
(12 ln|∆K |+8n+28)4, 3·1011

}
, πK(x) ≥ x

2 ln x . Note how this theoretical
condition on x seems unnecessarily large in practice.

2.3.2 Hard problems in number theory

For our exposition, the most important problem to be considered is probably the Class Group
Discrete Logarithm Problem (ClDlp). Solving this problem remains the major bottleneck in
the classical query complexity of the Approx-id-Svp algorithms proposed in [CDW17, PHS19a,
CDW21] and in this thesis.

Problem 2.39 (Class Group Discrete Logarithm Problem (ClDlp) [BS16]). Given a set of prime
ideals

{
L1, . . . ,Lk

}
, and a challenge ideal b, find, if they exist, α ∈ K and integers v1, . . . , vk

such that 〈α〉 = b ·
∏
i L

vi
i .

In this definition, we also require an explicit generator α ∈ K, which slightly differs from
the definition of e.g., [CDW17, Pr. 2]. Nevertheless, we note that in both quantum and clas-
sical worlds, the standard way to solve this problem boils down to computing S-units, for S
containing b and the Li’s, so that this explicit element is really a byproduct of the resolution.
Furthermore, it is worth noting that the Principal Ideal Problem (Pip), i.e., that asks for a gen-
erator of b if it exists, is encompassed in this definition of the ClDlp problem, using an empty
set of ideals [BS16, Alg. 2].

Given a principal ideal described by some generator α, the Shortest Generator Problem (Sgp)
asks for the shortest generator α′ such that 〈α〉 = 〈α′〉. The Sgp resolution can be reduced to
a closest vector problem in the log-unit lattice, as is folklore in computational number theory.
Similarly, we define:

Problem 2.40 (Shortest Class Group Discrete Logarithm (S-ClDlp)). Given 〈α〉 = b ·
∏
i L

vi
i

a solution to the ClDlp, find positive w1, . . . , wk ∈ Z≥0 and α′ ∈ K such that α′ is the smallest
possible element such that 〈α′〉 = b ·

∏
i L

wi
i .

The condition for the wi’s to be positive is crucial. Note that all recent algorithms for Approx-
id-Svp that are not bound to principal ideals eventually output an approximate solution of the
S-ClDlp [CDW21, PHS19a, BR20]. If the set of prime ideals is sufficiently large compared to b,
then S-ClDlp is exactly id-Svp.

Finally, we mention the Close Principal Multiple Problem (Cpmp) which, given an ideal b,
asks to find c such that bc is principal and N (c) is “reasonably small” [CDW17, §2.2]. This
specific problem also appears in [CDW21], where the authors prove that under GRH, using a
factor base containing all prime ideals of norm up to m4+o(1), guarantees that a solution c exists
that satisfies N (c) ≤ exp

(
Õ(m1+o(1))

)
[CDW21, §1.3.4].

2.3.3 S-unit groups computations

As shown in [BS16], the computation of class groups, unit groups, class group discrete loga-
rithms and principal ideal generators can all be reduced to S-units computations for appropriate
sets of places S. Thus, we are mostly interested in the running time of S-unit groups related
computations in K, which is denoted by TSu(K). Under the GRH:
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• in the quantum world, TSu(K) = Õ
(
ln|∆K |

)
is polynomial, as shown in [BS16], building

upon generalizations of Shor’s algorithm from [EHKS14];

• in the classical world, it remains subexponential in ln|∆K |, i.e., TSu(K) = exp Õ(lnα|∆K |)
where α = 1/2 for cyclotomic fields [BEF+17],14 and α = 2/3 in the general case [BF14],
recently lowered to 3/5 by Gélin [Gél17].

Note that by abuse of notations, we omit here polynomial factors in ]S and maxp∈S∩S0 lnN (p).

2.4 Euclidean Lattices

Let L be a lattice. For any p ∈ N∗∪{∞} and 1 ≤ i ≤ dimL, the i-th minimum λ
(p)
i (L) of L for the

`p-norm is the minimum radius r > 0 such that {v ∈ L : ‖v‖p ≤ r} has rank i [NV10, Def. 2.13].
For any t in the span of L, the distance between t and L is distp(t, L) = infv∈L‖t− v‖p, and
the covering radius of L w.r.t. the `p-norm is µp(L) = supt∈L⊗R distp(t, L). For the Euclidean
norm, we occasionnally omit p = 2.

2.4.1 Estimating approximation factors

An ideal lattice of K is the full-rank image under the Minkowski embedding in Rn of a fractional
ideal b of K, where n is the degree of K. Its volume is given by Vol(b) = N (b) ·

√
|∆K |. Unlike

generic lattices, a lower bound of the first minimum is implied by the arithmetic-geometric mean
inequality, using that for any α ∈ b, N (b) divides |N (α)|. Thus, we obtain:

√
n · N (b)1/n ≤ λ1(b) ≤

√
n · N (b)1/n

√
|∆K |

1/n
, (2.41)

where the right inequality is Minkowski’s inequality [NV10, Th. 2.4]. More precisely, the first

minimum is bounded by λ1(b) ≤ (1 + o(1))
√

2n
πe · Vol1/n(b), and the Gaussian Heuristic for

full-rank random lattices [NV10, Def. 2.8] actually predicts λ1(b) ≈
√

n
2πe ·Vol1/n(b) on average.

Applying the Gaussian Heuristic to ideal lattices yields a pretty good estimation of the
shortness of vectors, even though λ1(b) is not known precisely in general. This hypothesis is
commonly used for the analysis of cryptosystems based on structured lattices, and the exact
solutions found during the Twisted-PHS algorithm experiments in §3.4.3 match this heuristic.

For any x ∈ b, let γ(x) = ‖x‖2/λ1(b) denote the approximation factor reached by x in the
ideal lattice b. As λ1(b) is not known, the approximation factor af(x) is not directly accessible,
but Eq. (2.41) implies the bounds γinf(x) ≤ γ(x) ≈ γgh(x) ≤ γsup(x), where:

γinf(x) :=
‖x‖2√

n ·Vol1/n(b)
, γsup(x) :=

‖x‖2√
n · N (b)1/n

,

γgh(x) :=
√

2πe · γinf(x).

(2.42)

2.4.2 Computational problems

We will consider the following algorithmic lattice problems. Both problems can be readily re-
stricted to ideal lattices under the labels Approx-id-Svp and Approx-id-Cvp.

Problem 2.43 (Approximate Shortest Vector Problem (Approx-Svp) [NV10, Pb. 2.2]). Given
a lattice L and an approximation factor γ ≥ 1, find a vector v ∈ L such that ‖v‖2 ≤ γ · λ1(L).

14The article [BEF+17] is written for prime-power cyclotomic fields for historical reasons, but readily adapts
to the general case for class group computations.
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Problem 2.44 (Approximate Closest Vector Problem (Approx-Cvp) [NV10, Pb. 2.5]). Given
a lattice L, a target t ∈ L ⊗ R and an approximation factor γ ≥ 1, find a vector v ∈ L such
that ‖t− v‖2 ≤ γ · dist2(t, L).

Actually, it will be more convenient to work with a slightly modified version of Approx-Cvp,
where the output is required to be at distance absolutely bounded by some B, independently
of the target distance to the lattice. By abuse of terminology, we still call this variant Approx-
Cvp. A practical Approx-Cvp oracle is given by Babai’s Nearest Plane algorithm [Bab86],
[Gal12, §18.1, Alg. 26].

2.4.3 Quality of a lattice basis

Evaluating the quality of a lattice basis is actually a tricky task that depends partly on the
targeted problem (see e.g., [Xu13]), and several indicators have been used in the literature to
attempt to measure this quality w.r.t. the Svp or the Cvp.

Let B = (b1, . . . ,bn) be a basis of a full-rank n-dimensional lattice L, and let the Gram-
Schmidt Orthogonalization (GSO) of B be GSO(B) = (b?1, . . . ,b

?
n). Approximation algorithms

usually attempt to compute a good basis of the given lattice, i.e., whose vectors are as short
and as orthogonal as possible. These lattice reduction algorithms, such as LLL [LLL82] or BKZ
[CN11], try to limit the decrease of the Gram-Schmidt norms ‖b?i ‖2: intuitively, a wide gap in
the sequence ln‖b?i ‖2 at i ≥ 2 reveals that bi is rather not orthogonal to the previously generated
subspace

〈
b1, . . . ,bi−1

〉
. We will also consider the following standard quantities:

1. the root-Hermite factor δ0 is widely used to measure the performance of lattice reduction
algorithms [NS06, GN08, CN11], especially for solving Svp-like problems:

δn0 (B) =
‖b1‖2

Vol1/nB
. (2.45)

Experimental evidence suggest that on average, LLL achieves δLLL0 ≈ 1.022 [NS06, GN08]

and BKZ with block size b achieves δBKZb0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

for b ≥ 50 [Che13, CN11].

2. the (normalized) orthogonality defect δ [MG02, Def. 7.5] captures the global quality of the
basis, not just of the first vector, and is especially useful for Cvp-like problems e.g., if the
lattice possesses abnormally short vectors:

δn(B) =

n∏
i=1

‖bi‖2
Vol1/nB

. (2.46)

For purely orthogonal bases δ = 1, and by Minkowski’s second theorem [NV10, Th. 2.5],

its smallest possible value is
(∏

i λi(L)/VolL
)1/n ≤√1 + n

4 .

3. the minimum vector basis angle, defined as [Xu13, Eq. (15)]:

θmin(B) = min
1≤i<j≤n

min
{
θij , π − θij

}
for θij =

arccos
〈
bi,bj

〉
‖bi‖2‖bj‖2

. (2.47)

We propose to consider also the mean vector basis angle θavg(B), which averages over
all min

{
θij , π − θij

}
.
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3.1 Introduction

In 2019, Pellet-Mary, Hanrot and Stehlé [PHS19a] proposed an extended version of the
cryptanalyses of [CDPR16, CDW17], which is proven for any number fieldK. The main feature of
their algorithm is to use an exponential amount of preprocessing, depending only on K, in order
to efficiently combine the two principal resolution steps of the CDW algorithm [CDW17, CDW21],
namely the Cpmp (Close Principal Multiple Problem) and the Sgp (Shortest Generator Problem).
Combining these two steps in a single Cvp instance provides some guarantee that the output of
the Cpmp solver has a generator which is “not much larger” than its shortest non-zero vector.

In order to guarantee the output size and the running time of the PHS algorithm, a key
ingredient is to use a Cvp with preprocessing hint algorithm due to Laarhoven [Laa16], which
represents the most costly part of the preprocessing phase.

3.1.1 Our contributions

Our main contribution is to propose a new “twisted” version of the PHS [PHS19a] algorithm,
that we call Twisted-PHS. As a minor contribution, we also propose several improvements of
the PHS algorithm, in a optimized version described in §3.2.3. On the theoretical side, we prove
that our Twisted-PHS algorithm reaches the same asymptotic trade-off between runtime and ap-
proximation factor as the original PHS algorithm, using the same Cvp solver with preprocessing
hint by Laarhoven [Laa16].

On the practical side though, we provide a full implementation of our algorithm, which
suggests that much better approximation factors are achieved and that the given lattice bases
are much more orthogonal than the ones used in [PHS19a]. To our knowledge, this is the first time
that this type of algorithm is completely implemented and tested for fields of degrees up to 60. As
a point of comparison, experiments of [PHS19a] constructed the log-S-unit lattice for cyclotomic
fields of degrees at most 24, all but the last two being principal [PHS19a, Fig. 4.1]. We shall
also mention the extensive simulations performed by [DPW19] using the Stickelberger lattice in
prime power cyclotomic fields. Adapting these results to our construction is not immediate, as
we need explicit S-units to compute our lattice. This is left for future work.

We explain our experiments in §3.4, where we evaluate three algorithms instantiated with
the same practical Cvp oracle: the original PHS algorithm with the lattice implemented in
[PHS19b]; our optimized version Opt-PHS (§3.2.3), and our new twisted variant Twisted-PHS
(§3.3). We target two families of number fields, namely non-principal cyclotomic fields Q(ζm) of
prime conductors m ∈ J23, 71K, and NTRU Prime fields Q(zq) where zq is a root of xq − x − 1,
for q ∈ J23, 47K prime. These correspond to the range of what is feasible in a reasonable amount
of time in a classical setting. For cyclotomic fields, we managed to compute S-units up to Q(ζ71)
for all factor bases, and all log-S-unit lattice variants up to Q(ζ61). For NTRU Prime fields, we
managed all computations up to Q(z47).

3.1.2 Experiments

We chose to perform three experiments to test the performance of our Twisted-PHS algorithm,
and to compare it with the two other algorithms:
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• We first evaluate the geometric characteristics of the lattice output by the preprocessing
phase: the root Hermite factor δ0, the orthogonality defect δ, and the average vector basis
angle θavg, as described in detail in §2.4.2. The last one seems difficult to interpret as it
gives similar results in all cases, but the two other seem to show that the lattice output by
Twisted-PHS is of better quality than in the two other cases. It shows significantly better
root Hermite factor and orthogonality defect than any other lattice.

• For our second experiment, we evaluate the Gram-Schmidt log norms of each produced
lattice. We propose two comparisons, the first one is before and after BKZ40 reduction to
see the evolution of the norms in each case: it shows that the two curves are almost identical
for Twisted-PHS but not for the other PHS variants. The second one is between the lattices
output by the different algorithms, after BKZ40 reduction. The experiments emphasises
that the decrease of the log norms seems much smaller in the twisted case than in the two
other. Those two observations seem to corroborate the fact that the Twisted-PHS lattice
is already quite orthogonal.

• Finally, we implemented all three algorithms from end to end and used them on numerous
challenges to estimate their practically achieved approximation factors. This is to our
knowledge the first time that these types of algorithms are completely run on concrete
examples. The results of the experiments, shown in Fig. 3.1, suggest that the approximation
factor reached by our algorithm increases very slowly with the dimension, in a way that
could reveal subexponential or even better. We think that this last feature would be
particularly interesting to prove.

Figure 3.1 – Approximation factors reached by Twisted-PHS, Opt-PHS and PHS for cyclo-
tomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

3.1.3 Technical overview

We first quickly recall the principle of the PHS algorithm described in [PHS19a], which is split in
two phases. The first phase consists in building a lattice that depends only on the number field K
and allows to express any Approx-id-Svp instance in K as an Approx-Cvp instance in the lattice.
This preprocessing chooses a factor base FB, and builds an associated lattice consisting in the
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diagonal concatenation of some log-unit related lattice and the lattice of relations in the class
group ClK between ideals of FB, with explicit generators. It then computes a hint of constrained
size for the lattice to facilitate forthcoming Approx-Cvp queries. Concretely, they suggest to use
Laarhoven’s algorithm [Laa16], which for any ω ∈ [0, 1/2] outputs a hint V of bit-size bounded

by 2Õ(log1−2ω|∆K |) that allows to deliver answers for approximation factors Õ(log|∆K |ω) in time
bounded by the bit-size of V [Laa16, Cor. 1–2]. The second phase reduces the resolution of
Approx-id-Svp to a single call to an Approx-Cvp oracle in the lattice output by the preprocessing
phase, for any challenge ideal b in the maximal order of K. The main idea of this reduction is
to multiply the principal ideal output by the ClDlp of b on FB by ideals in FB until a “better”
principal ideal is reached, i.e., having a short generator.

Our first contribution is to propose three improvements of the PHS algorithm. The first one
consists in writing an explicit candidate for the isometry used in the computation of the lattice,
and using its geometric properties to derive a smaller lattice dimension, while still guaranteeing
the same proven approximation factor. The last two respectively modify the composition of the
factor base and the definition of the target vector in a way that significantly improves the approx-
imation factor experimentally achieved by the second phase of the algorithm. Although these
improvements do not modify the core of PHS algorithm and have no impact on the asymptotics,
they nevertheless are of importance in practice, as shown by our experiments in §3.4.

We now explain our main contribution, called Twisted-PHS, which is based on the PHS
algorithm. As in PHS algorithm, our algorithm relies on the so-called log-S-unit lattice with
respect to a collection FB of prime ideals, called the factor base. This lattice captures local
informations on FB, not only on (infinite) embeddings, to reduce a close principal multiple of
a target ideal b to a principal ideal containing b which is guaranteed to have a somehow short
generator. The main feature of our algorithm is to use the Product Formula to describe this
log-S-unit lattice. This induces two major changes in PHS algorithm:

1. The first one is twisting the p-adic valuations by lnN (p), giving weight to the fact that
using a relation increasing the valuations at big norm ideals costs more than a relation
involving smaller norm ideals.

2. The second one is projecting the target directly inside the log-S-unit lattice and not only
into the unit log-lattice corresponding to fundamental units.

Actually, the way our twisted version uses S-units with respect to FB to reduce the solution of
the ClDlp problem can be viewed as a natural generalization of the way classical algorithms
reduce principal ideal generators using regular units.

Adding weights lnN (p) to integer valuations at any prime ideal p intuitively allows to make a
more relevant combination of the S-units we use to reduce the output of the ClDlp, quantifying
the fact that increasing valuations at big norm prime ideals costs more than increasing valuations
at small norm prime ideals. Besides, the product formula induces the possibility to project
elements on the whole log-S-unit lattice instead of projecting only on the subspace corresponding
to the log-unit lattice. As a consequence, it maintains inside the lattice the size and the algebraic
norm logarithm of the S-units. At the end, the Cvp solver in this alternative lattice combines
more efficiently the goal of minimizing the algebraic norm for the Cpmp while still guaranteeing
a small size for the Sgp solution in the obtained principal multiple.

In §3.3, we describe two versions of our Twisted-PHS algorithm. The first one, composed

by A(Laa)
tw-pcmp and A(Laa)

tw-query is proven to reach the same asymptotic trade-off between runtime and
approximation factor as the original PHS algorithm, using the same Cvp solver with preprocess-

ing hint by Laarhoven. In practice, we propose two alternative algorithms A(bkz)
tw-pcmp and A(np)

tw-query

with the following differences. Algorithm A(bkz)
tw-pcmp performs a minimal reduction step of the

lattice as sole lattice preprocessing to smooth the input basis. Algorithm A(np)
tw-query resorts to
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Babai’s Nearest Plane algorithm for the Cvp solver role. Experimental evidence in §3.4 suggest
that these algorithms perform remarkably well, because the twisted description of the log-S-unit
lattice seems much more orthogonal than expected. Proving this property would remove, in a
quantum setting, the only part that is not polynomial in ln|∆K |.

3.2 The PHS Algorithm

This section describes the PHS algorithm, as introduced by Pellet-Mary, Hanrot and
Stehlé in [PHS19a] for solving Approx-id-Svp, and discusses several improvements. The PHS
algorithm extends the techniques from [CDPR16, CDW17] to any number field K and is split in
two phases:

1. the preprocessing phase Apre-proc, described in §3.2.1, builds a specific lattice together with
some hint allowing to efficiently solve Approx-Cvp instances;

2. the query phase Aquery, detailed in §3.2.2, reduces each Approx-id-Svp challenge to an
Approx-Cvp instance in this fixed lattice.

More precisely, under the GRH and several heuristic assumptions detailed in [PHS19a, Heur. 1–6],
they prove the following theorem:

Theorem 3.1 ([PHS19a, Th. 1.1]). Let ω ∈ [0, 1/2] and K be a number field of degree n and
discriminant ∆K with a known basis of OK . Under some conjectures and heuristics, there exist
two algorithms Apre-proc and Aquery such that:

• Algorithm Apre-proc takes as input OK , runs in time 2Õ(log|∆K |) and outputs a hint V of

bit-size 2Õ(log1−2ω|∆K |);

• Algorithm Aquery takes as inputs any ideal b of OK , whose algebraic norm has bit-size

bounded by 2poly(log|∆K |), and the hint V output by Apre-proc, runs in time 2Õ(log1−2ω|∆K |) +

TSu(K), and outputs a non-zero element x ∈ b such that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

We start by describing the preprocessing phase Apre-proc in §3.2.1, then the query phase Aquery

in §3.2.2, and recall the proof of Th. 3.1 in detail. We thereafter discuss several algorithmic and
theoretical minor improvements in §3.2.3.

3.2.1 Preprocessing of the number field

From a number field K and a size parameter ω ∈ [0, 1/2], the preprocessing phase consists
in building and preparing a lattice Lphs that depends only on the number field K and allows
to express any Approx-id-Svp instance in K as an Approx-Cvp instance in Lphs. The most
significant part of this preprocessing is devoted to the computation of a hint of constrained size
that can be used to facilitate those forthcoming Approx-Cvp queries.

We first define the lattice which is used in [PHS19a], discuss how the authors derive its
dimension from volume considerations, and then expose the full preprocessing algorithm.

Definition of the lattice Lphs.

Let FB =
{
p1, . . . , pk

}
be a set of prime ideals generating the class group ClK . The lattice Lphs

proposed in [PHS19a, §3.1] consists in the diagonal concatenation of some log-unit related lattice
and the lattice of relations in ClK between ideals of FB, with explicit generators. Formally, it is
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generated by the (ν + k) rows of the following square matrix:

BLphs :=



c ·BΛ 0

c · fH0
(h(0)
η1 )

... ker fFB =
(
−vpj (ηi)

)
1≤i,j≤k

c · fH0
(h(0)
ηk

)


, (3.2)

• where fH0
is an isometry from H0 ⊂ Rn to Rν , where H0 is the intersection of the span L0

of LogOK , i.e., L0 =
{
y ∈ Rn : yr1+2i−1 = yr1+2i, i ∈ J1, r2K

}
, and of the trace zero

hyperplane Rn0 = 1⊥n ;

• the matrix BΛ is a row basis of fH0

(
LogO×K

)
;

• the bottom right part of BLphs generates the lattice of all relations in ClK between ideals
of FB, i.e., is the kernel of fFB :

(
e1, . . . , ek

)
∈ Zk 7→

∏
j

[
pj
]ej

;

• each row vector vi = (vi1, . . . , vik) of ker fFB is associated to ηi ∈ K s.t. 〈ηi〉·
∏
j p

vij
j = OK ,

thus vij = −vpj (ηi), and h(0)
ηi = πH0

(
Log ηi

)
, where πH0 is the projection on H0 in Rn;

• c is a scaling parameter whose value depends on fH0
(set later to n3/2/k).

Note that this definition differs from the one given in [PHS19a, §3.1] by a sign change in the
last k coordinates. This is a purely editorial detail allowing to use the same convention through
the exposition of the algorithm and its proof.

The condition that the factor base generates ClK guarantees that for any challenge ideal
there exists a solution to the ClDlp on FB. It can be relaxed to some extent to generate only a
small index subgroup of ClK like in [CDW17].

The isometry fH0 happens to play an important role in the proof of Aquery. It forces the
introduction of the scaling factor c, whose value is non-negligible and indirectly implies the use
of a larger factor base. Note that this isometry is not explicitly defined in [PHS19a], whereas
the associated code [PHS19b] uses a pruning strategy which removes the r2 + 1 coordinates
corresponding to the conjugates of complex places plus an arbitrary one. We stress that this
implemented pruning strategy could negatively impact the quality of the Approx-Cvp solver,
as it hides potentially huge size variations of the S-units on the removed coordinate. That’s
the reason why we thoroughly study in §3.2.3 a candidate isometry for fH0

that also induces
lower values for c. Furthermore, note that the projection on H0 removes out of the picture the
logarithm of the algebraic norms of the (non-regular) S-units; hence, it seems that this partial
information prevents Lphs from optimally achieving its initial goal of minimizing the algebraic
norm for the Cpmp while guaranteeing a Sgp solution of small length. Our new algorithm,
detailed in §3.3, aims in particular at fixing these flaws.

Finally, we aggregate the material present in [PHS19a, fn. 3, Lem. 3.1] to propose a simpler
and more concise way to define Lphs; using the same notations as above, let ϕphs be the following
map from K to Rν × Zk:

ϕphs(α) =
(
c · fH0 ◦ πH0

(
Log α

)
,
{
−vpi(α)

}
1≤i≤k

)
. (3.3)

Then, Lphs can be seen as the full-rank lattice generated by the images under ϕphs of the fun-
damental elements generating the S-unit group O×K,S , as given by Th. 2.2, with S = S∞ ∪ FB
and for each i ∈ J1, kK, εν+i = ηi. It is easy to see that both definitions coincide: for regular
units ε ∈ O×K , all finite valuations are zero, so is the last part of ϕphs(ε), and πH0

(
Log ε

)
= Log ε.
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Using the homomorphism properties of ϕphs on K, namely ϕphs(αα
′) = ϕphs(α) + ϕphs(α

′)
and ∀λ ∈ Z, ϕphs(α

λ) = λ · ϕphs(α), proving that each element of Lphs corresponds to an ele-
ment of O×K,S [PHS19a, Lem. 3.1] becomes tautological. Further, we stress that ϕphs is injective

on O×K,S
/
µ
(
O×K
)

and therefore defines an isomorphism between O×K,S/µ
(
O×K
)

and Lphs.

Volume of Lphs and cardinality of FB.

It remains to derive an explicit value for the cardinality k of the factor base FB; in [PHS19a,

§4.1], this is done by considering the smallest k such that the root volume Vol1/(ν+k) Lphs is at
most constant. By Minkowski’s inequality, this quantity bounds the first minimum in `∞-norm,
and under the heuristic that Lphs behaves like a random lattice [PHS19a, Heur. 4], it also controls
the `∞-norm covering radius µ∞(Lphs).

First, we evaluate the volume of Lphs, which writes as cν · detBΛ · det(ker fFB) by definition
of BLphs. The determinant of ker fFB is hK = ]

(
Zk/ ker fFB

)
. On the other hand, remark that BΛ

is the image under fH0
of a basis of LogO×K , whose volume is

√
n ·2−r2/2 ·RK by Pr. 2.8. Finally,

the isometry fH0
stabilizes L0 ∩ Rn0 , thus preserves the volume of BΛ; hence, we get:

VolLphs = cν ·
√
n

2r2/2
· hKRK . (3.4)

Note that [PHS19a] only gives an asymptotic bound on VolLphs, whereas Eq. (3.4) is exact.

The idea is then to choose k such that Vol1/(ν+k) = O(1), e.g., taking (ν + k) = ln VolLphs.
Using the number-theoretic bound given by Eq. (2.35), and using the fact that c will be later set

to n3/2/k, VolLphs is asymptotically bounded by exp Õ
(
ln|∆K |+n ln ln|∆K |

)
; therefore, (ν+ k)

can be set to:
ν + k = max

{
ν + log hK , ln|∆K |+ n ln ln|∆K |

}
. (3.5)

The log hK part is there as a sufficient but not necessary condition ensuring that ClK can be
generated by k ≥ log hK ideals [PHS19a, Lem. 2.7]. As hK ≤ Õ(

√
|∆K |), we remark that the

second term dominates, so the maximum in the above formula can be ignored; in the associated
code [PHS19b], (k + ν) is explicitly set to bln|∆K |c. We stress that in practice the dimension
of Lphs is quite sensitive to small changes in the value of c or the targeted root volume. We refer
to §3.2.3 for more details and examples.

Preprocessing algorithm.

Algorithm 3.1 details the complete preprocessing procedure that, from a number field and some
precomputation size parameter, chooses a factor base FB, builds the associated matrix BLphs,
and processes Lphs in order to facilitate Approx-Cvp queries.

The dimension k of the factor base and the scaling factor c are set in step 1 as in the published
code [PHS19b]. Steps 2 and 3 are a concise version of [PHS19a, Alg. 3.1, steps 1–5]; it basically
enlarges a generating set of ClK of size k′ ≤ log hK by picking (k − k′) random prime ideals of
bounded norms. The crucial point is to invoke the prime ideal theorem to show that taking a
bound which is polynomial in k and log|∆K | [PHS19a, Cor. 2.10] is actually sufficient.

The last step consists in preprocessing Lphs in order to solve Approx-Cvp instances efficiently.
As noted in [PHS19a, p.6], the problem is easy without any constraint on the size of the output
hint. To guarantee a hint size that is not exceeding the query phase time, they suggest to use

Laarhoven’s algorithm [Laa16], which outputs a hint V of bit-size bounded by 2Õ((ν+k)1−2ω),

i.e., 2Õ(log1−2ω|∆K |) using (ν+k) = Õ(log|∆K |), allowing to deliver the answer for approximation
factors (ν + k)ω in time bounded by the bit-size of V [Laa16, Cor. 1–2].
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Algorithm 3.1 PHS Preprocessing Apre-proc

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2].
Output: The basis BLphs with the preimages of its rows in O×K,S , and Laarhoven’s hint V(Lphs).

1: Set k =
(⌊

ln|∆K |
⌋
− ν
)

and c =
(
n3/2/k

)
.

2: Compute ClK =
〈[
p1

]
, . . . ,

[
pk′
]〉

, with k′ ≤ log hK .

3: Randomly extend
{
p1, . . . , pk′

}
by prime ideals of bounded norm to get FB =

{
p1, . . . , pk

}
.

4: Compute fundamental elements ε1, . . . , εν+k of O×K,S as in Th. 2.2.
5: Create the matrix BLphs whose rows are ϕphs(ε1), . . . , ϕphs(εν+k) as defined in Eq. (3.2).

6: Use Laarhoven’s algorithm to compute a hint V = V(Lphs) of size 2Õ(log1−2ω|∆K |).
7: return

(
O×K,S , BLphs, V(Lphs)

)
.

Proof of the first part of Th. 3.1. Costly steps of Alg. 3.1 are steps 2, 4 and 6 that compute the
class group ClK , the S-unit group O×K,S and the hint V(Lphs). The former two are S-unit group

related computations that cost TSu(K) ≤ 2Õ(log2/3|∆K |) each; the latter runs independently of ω

in time 2O(ν+k) = 2Õ(log|∆K |). Note that in a quantum setting, only Laarhoven’s algorithm is
not polynomial in n; in a classical setting, it remains the dominating exponential part.

3.2.2 Query phase: solving id-SVP using the preprocessing

This section describes the query phase Aquery of PHS algorithm; for any challenge ideal b ⊆ K
having a polynomial description in log|∆K |, it reduces the resolution of Approx-id-Svp in b to
a single call to an Approx-Cvp oracle in Lphs as output by the preprocessing phase.

The main idea of this reduction is to multiply the principal ideal output by the ClDlp of b
on FB by ideals in FB until a “better” principal ideal is reached, i.e., having a short generator.
In Lphs, it translates into adding vectors of Lphs to some target vector derived from b until the
result is short, hence into solving a Cvp instance. This is formalized in Alg. 3.2, which rewrites
[PHS19a, Alg. 3.2] to take into account our change of conventions in the definition of Lphs and
the choice of Laarhoven’s algorithm as the Approx-Cvp oracle [Laa16, §4.2].

Algorithm 3.2 PHS Query Aquery

Input: A challenge b, Apre-proc(K,ω) =
(
O×K,S , BLphs,V

)
, and β > 0 s.t. for any t, the Approx-

Cvp oracle using V(Lphs) outputs w ∈ Lphs with ‖t−w‖∞ ≤ β.
Output: A short element x ∈ b \ {0}.

1: Solve the ClDlp for b on FB, i.e., find α ∈ K s.t. 〈α〉 = b ·
∏

pi∈FB pvii .

2: Define the target as t =
(
c · fH0 ◦ πH0

(
Log α

)
,
{
−vi + β

}
1≤i≤k

)
.

3: Use the Approx-Cvp solver with V(Lphs) to output w ∈ Lphs s.t. ‖t−w‖∞ ≤ β.
4: Compute s = ϕ−1

phs(w) ∈ O×K,S , using the preimages of BLphs rows.
5: return α/s.

Note that the output of the ClDlp in step 1 is an S-unit if and only if b is only divisible by
prime ideals in the factor base. Each exponent vi can be expressed as vi = vpi(α)−vpi(b). Then,
the target defined in step 2 can be viewed as a drifted by β image of α in Lphs; using the formalism
we introduced in Eq. (3.3), it writes simply as t = ϕphs(α)+bphs, where bphs = (0, . . . , 0, β, . . . , β)
is non zero only on the k last coordinates. We stress that the role of bphs in the definition of
the target serves a unique purpose: guarantee that α/s ∈ b. In practice, this is not an anecdotic
condition, and choosing β carefully has a significant impact on the length of the output, as we
will see in §3.2.3.
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The rest of this section is devoted to recall the proof of correctness, quality and running time
of Alg. 3.2. These make an extensive use of the following log-unit structure lemma, which is
classical and freely used e.g., in [CDPR16, §6.1]:

Lemma 3.6 ([PHS19a, Lem. 2.11–2.12]). Define h(0)
α := πH0

(
Log α

)
, for α ∈ K. Then we

have Log α = h(0)
α + ln|N (α)|

n · 1n. Further, the length of α is bounded by:

‖α‖2 ≤
√
n · |N (α)|1/n · exp‖h(0)

α ‖∞ ≤
√
n · |N (α)|1/n · exp‖h(0)

α ‖2.

Proof. Recall that Rn0 = 1⊥n and Log α ∈ L0, hence Log α decomposes as πH0

(
Log α

)
+ a · 1n,

with a =
〈
Log α,1n

〉
/‖1n‖22 = ln|N (α)|/n, by definition of the projection on Rn0 . Moreover,

generically we have ‖α‖2 ≤
√
n · ‖α‖∞; using the above decomposition coordinate-wise, the j-th

coordinate of Log α writes
(
Log α

)
j

= (h(0)
α )j + ln|N (α)|

n and therefore:

‖α‖∞ = max
σ∈S∞

|σ(α)| = exp max
σ∈S∞

ln|σ(α)| ≤ exp
[

ln|N (α)|
n + max

1≤j≤n
(h(0)

α )j

]
.

Using maxj (h(0)
α )j ≤ ‖h(0)

α ‖∞ and ‖h(0)
α ‖∞ ≤ ‖h(0)

α ‖2 concludes.

Notice how well the `∞-norm apparently behaves with respect to the logarithm embed-
ding. We stress however that logarithms of small infinite valuations can become large negatives,
so ‖h(0)

α ‖∞ could be really far from max1≤j≤n (h(0)
α )j . This bounding method also somehow hides

the fact that complex valuations count twice in the final Euclidean norm.

Theorem 3.7 ([PHS19a, Th. 3.3]). Given access to an Approx-Cvp oracle that, on any input,
outputs w ∈ Lphs at infinity distance at most β, algorithm Aquery computes x ∈ b \ {0} such that:

‖x‖2 ≤
√
n · N (b)1/n · exp

[
O

(
β · k · ln ln|∆K |

n

)]
.

Proof. Let wi = vpi(s), so that w = ϕphs(s) =
(
c · fH0(h(0)

s ), {−wi}1≤i≤k
)
. The first step

is to prove correctness, i.e., that x = (α/s) is indeed in b \ {0}. By definition, we have 〈s〉 =∏
pi∈FB pwii , thus: 〈α/s〉 = b·

∏
pi∈FB pvi−wii . As ‖t−w‖∞ ≤ β, for each i we have |wi − vi + β| ≤

β, hence 0 ≤ vi − wi ≤ 2β.
The second step is to bound the `2-norm of the output using Lem. 3.6. Hence, it is necessary

to bound |N (α/s)| and ‖h(0)

α/s‖∞. Bounding the former uses again that 0 ≤ vi−wi ≤ 2β, as well

as the fact that the maximal norm N (Lmax) of FB is bounded by Bach’s bound O(ln2|∆K |):

|N (α/s)|1/n ≤ N (b)1/n · N (Lmax)
∑
i(vi−wi)/n ≤ N (b)1/n · exp

[
O

(
β · k · ln ln|∆K |

n

)]
.

As for the latter, ‖h(0)

α/s‖∞ ≤ ‖h
(0)

α/s‖2 = ‖fH0
(h(0)
α − h(0)

s )‖2 ≤
√
n/c · ‖t−w‖∞ ≤

√
nβ/c. The

value of c should then be set so that this bound is not greater than the previous β·k·ln ln|∆K |
n .

Taking c = n3/2

k as in [PHS19a] is sufficient.

Before proving the second part of Th. 3.1, we remark that, taking the least possible values
derived in §3.2.1 for k = ln|∆K | & n lnn and µ∞(Lphs) ≈ 1, and also assuming a perfect CVP
solver in infinity norm for β = µ∞(Lphs), Th. 3.7 can at best only assess for a subexponential nlnn

approximation factor; polynomial approximation factors are not provably reached.
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Proof of the second part of Th. 3.1. It breaks down to plugging k = Õ(ln|∆K |) and a value for β
into Th. 3.7. In [PHS19a, §4.2], deriving this β relies on several heuristics [PHS19a, Heur. 4–6]
implying that µ2(Lphs) = O(

√
ν + k), and that on average ‖v‖∞ ≤ ln ν+k√

ν+k
· ‖v‖2. The Approx-

Cvp solver from Laarhoven’s algorithm using V(Lphs) outputs a lattice vector at Euclidean
distance which is at most O

(
(ν+k)ω ·µ2(Lphs)

)
. Using the above heuristics, the infinity distance

of the output is therefore Õ
(
(ν + k)ω

)
= Õ(lnω|∆K |), giving the claimed bound.

As for the running time of Alg. 3.2, it is essentially determined by those of steps 1 and 3.
Solving the ClDlp problem requires to compute S-units for an extended factor basis contain-
ing FB and prime factors of b, hence costs TSu(K). Note that in a quantum setting, TSu(K)
is polynomial, but in a classical world it remains subexponential in the discriminant; further-
more, since it depends on the challenge, this cost cannot be mitigated by some preprocess-
ing effort. On the other hand, solving Approx-Cvp with Laarhoven’s algorithm runs in time

bounded by 2Õ(log1−2ω|∆K |), the size of V . Finally, the total run time of Aquery is bounded

by 2Õ(log1−2ω|∆K |) + TSu(K).

3.2.3 Optimizing PHS parameters

In this section, we propose three improvements of the PHS algorithm. The first one consists
in writing an explicit candidate for fH0 and using its geometric properties to derive a smaller
lattice dimension, while still guaranteeing the same proven approximation factor. The last two
respectively modify the composition of the factor base and the definition of the target vector in
a way that drastically improves the approximation factor experimentally achieved by Aquery.

Although these improvements do not modify the core of PHS algorithm and have no impact
on the asymptotics, they nevertheless are of importance in practice, as we will see in §3.4.

Expliciting the isometry: towards smaller factor bases.

We exhibit an explicit candidate for the isometry fH0 going from H0 = Rn0 ∩ L0 ⊆ Rn to Rν
and evaluate its effect on the infinity norm; it allows to lower the value of c in the proof of
Th. 3.7 from n

√
n/k to n(1 + lnn)/k, which in turn implies using a smaller factor base for the

same proven approximation factor. We define the isometry fH0
as the linear map represented

by GSO
T

(MH0
), with:

MH0
:=

−1 1

−1 1

. . .
. . .

−1 1





ν + 1

ν ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2





r1 2r2

r
1

r
2

. (3.8)

Actually, MH0 is simply a basis of Rn0 ∩ L0 in Rn, constituted of vectors that are orthogonal
to 1n and to each of the r2 independent vectors vj , j ∈ J1, r2K, that sends any y ∈ L0 to 0 by
substracting yr1+2j from its copy yr1+2j−1 and forgetting every other coordinate.
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Proposition 3.9. Let fH0 be the isometry represented by GSO
T

(MH0). Then:

∀h ∈ H0, ‖h‖∞ ≤ (1 + lnn) · ‖fH0
(h)‖∞,

‖fH0(h)‖∞ ≤ 2
√

2 · ‖h‖∞.

Proof. Let h ∈ Rn0 ∩L0, and v = fH0
(h) ∈ Rν . We prove ‖f−1

H0
(v)‖∞ ≤ (1+lnn) ·‖v‖∞, which is

trivially equivalent. By definition, f−1
H0

(v) = v ·GSO(MH0), hence bounding the `1-norm of each

column of GSO(MH0
) by (1 + lnn) yields the first inequality. Similarly, bounding the `1-norm

of each row of GSO(MH0
) by 2

√
2 proves the second.

Let b1, . . . ,bν be the row vectors of MH0 ; the Gram-Schmidt orthogonalization (resp. or-

thonormalization) vectors of MH0
are denoted by b?i (resp. b

?

i ). Because of the particular

structure of MH0
, b

?

i+1 only depends on bi+1 and b?i . Then, a simple induction shows that:
∀i ∈ J1, r1 − 1K: b

?

i =
(
− 1√

i(i+1)
, . . . ,

√
i
i+1 , 0, . . .

)
,

∀j ∈ J0, r2 − 1K, i = r1 + 2j: b
?

r1+j =
(
−

√
2√

i(i+2)
, . . . ,

√
i√

2(i+2)
,

√
i√

2(i+2)
, 0, . . .

)
,

where in each configuration the first i coordinates are equal, and zeroes pad to dimension n.
Bounding each ‖b?i ‖1 by 2

√
2 is trivial from these formulas, proving the second inequality.

Let c1, . . . , cn be the columns of GSO(MH0
). We claim that ‖cn‖1 ≤ ‖cn−1‖1 ≤ · · · ≤ ‖c1‖1.

Indeed, ‖c1‖1 = ‖c2‖1, and for all i ≥ 2, ‖ci‖1 − ‖ci+1‖1 = |(b?i−1)
i
| + |(b?i )i| − |(b

?

i )i+1| ≥ 0.

Using
√

1
i(i+1) <

1
i and

√
2

i(i+2) ≤
1√
2

(
1
i + 1

i+1

)
yields ‖c1‖1 ≤

∑n−1
i=1

1
i ≤ 1 + ln(n− 1).

As a consequence, we can directly inject this result into the proof of Th. 3.7 to bound the `∞-
norm ‖h(0)

α/s‖∞ by (1 + lnn)/c · ‖t−w‖∞ ≤ (1 + lnn)β/c instead of
√
nβ/c. We also use

the following refined practical bound on the algebraic norm of α/s. Indeed, when conducting
experiments, FB is known and there is no need to suffer from Bach’s generic bound for N (Lmax):

|N (α/s)|1/n ≤ N (b)1/n ·
∏

pi∈FB

N (pi)
(vi−wi)/n ≤ N (b)1/n · exp

[
2β ·

∑
p∈FB lnN (p)

n

]
. (3.10)

Then, as a smaller value of c implies a smaller volume of Lphs hence a smaller factor base, it
should be chosen as the smallest s.t. the former bound (1 + lnn)β/c on ‖h(0)

α/s‖∞ is below the

above
2β·
∑

p∈FB lnN (p)

n , which implies c ≥ (1+lnn)n∑
p∈FB lnN (p) . Nevertheless, as there is no reason to

artificially increase the bound on ‖h(0)

α/s‖∞ using c < 1 when the other already dominates, we

should also ensure c ≥ 1. This finally leads us to choose:

c = max

(
1,

(1 + lnn)n∑
p∈FB lnN (p)

)
. (3.11)

To quantify the gain obtained by this new value of c, we computed factor base dimensions in
different settings for two families of number fields: Tab. 3.1 deals with non-principal cyclotomic
fields Q(ζm) of prime conductors m ∈ J23, 71K; Tab. 3.2 handles NTRU Prime fields Q(zq),
where zq is a root of xq−x− 1, for q prime in J23, 61K. These correspond to the range of explicit
computations feasible within a limited amount of time. By contrast, experiments reported in
[PHS19a, Fig. 4.1] were limited to cyclotomic fields of degree at most 24, most of them being
principal. For each field, we compare the expected factor base dimensions in four situations:
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m
lnV 1/(ν+k) Eq. (3.5) c = n3/2/k

c = (1+lnn)n
k

c = max
(

1, (1+lnn)n∑
lnN (p)

)
[PHS19b] [PHS19a] [PHS19b]

23 0.292 147 55 53 34
29 0.305 204 77 72 50
31 0.304 223 85 79 55
37 0.314 283 109 100 72
41 0.323 324 125 114 84
43 0.323 345 134 121 91
47 0.327 388 151 136 103
53 0.336 453 177 158 122
59 0.341 520 204 181 141
61 0.343 543 213 189 148
67 0.348 611 241 212 168
71 0.350 658 260 228 182

Table 3.1 – Values of k for K = Q(ζm): using Eq. (3.5); using Eq. (3.4) with same root volume
target V 1/(ν+k) as in [PHS19b] and given values of c.

q
lnV 1/(ν+k) Eq. (3.5) c = n3/2/k

c = (1+lnn)n
k

c = max
(

1, (1+lnn)n∑
lnN (p)

)
[PHS19b] [PHS19a] [PHS19b]

23 0.264 159 61 58 37
29 0.285 216 83 77 52
31 0.289 236 91 84 58
37 0.299 296 115 105 75
41 0.306 338 132 119 88
43 0.313 359 140 126 93
47 0.320 402 157 141 106
53 0.325 467 184 164 125
59 0.335 535 211 187 145
61 0.334 557 220 194 151

Table 3.2 – Values of k for K = Q(zq): using Eq. (3.5); using Eq. (3.4) with same root volume
target V 1/(ν+k) as in [PHS19b] and given values of c.

first, for completeness we use Eq. (3.5), taken from [PHS19a, §4.1]; then we report the value

used by [PHS19b], i.e., k = bln|∆K |c − ν, and provide the resulting root volume Vol1/(ν+k) Lphs

corresponding to c = n3/2

k for reference. Finally, we target this reference root volume using on

one hand c = (1+lnn)n
k , hence mimicking the proof of Th. 3.7, and on the other hand using our

recommended value given by Eq. (3.11).

The last experiment, dealing with Eq. (3.11), simulates all factor bases of cardinality k by
taking the k prime ideals of smallest norms. This choice might not be directly suitable for a factor
base, as it gives no theoretical insurance to generate ClK . Nevertheless, in all experiments the
obtained k is well above log hK , the maximum number of generators of ClK [PHS19a, Lem. 2.7],
so that replacing some of these ideals by bigger norm representatives of missing classes until the
set generates ClK would only reduce the value of c by increasing

∑
p∈FB lnN (p). Thus, the given

factor base dimensions remain in any case an upper bound of the correct dimension.

To end this section, we remark that there might exist better `∞-norm preserving isometries
than GSO(MH0

)T; nevertheless, as the value of c derived from Eq. (3.11) is already equal to 1
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most of the time, we cannot expect a substantial gain from this. Furthermore, it should be
stressed that the complexity of known lattice reduction algorithms only depends on the rank
of the lattice, and not on the ambient space dimension, so that this isometry can be removed
in practice. It however serves the theoretical purpose of being able to transpose Minkowski’s
inequalities and heuristics on covering radii that are valid only for full-rank lattices.

Lowering the factor base weight.

Second, we suggest choosing the k elements of the factor base as the k prime ideals of least
possible norm, instead of randomly picking them up to some polynomial bound. As shown by
Eq. (3.10), this incidentally lowers the approximation factor, which depends on

∏
p∈FBN (p).

Formally, this only modifies step 3 of Alg. 3.1 as follows. Let
{
p1, . . . , pk′

}
be a generating

set of ClK , with k′ ≤ log hK , as obtained by the previous step 2. As in Alg. 3.1, using the prime
ideal theorem yields that we can choose some bound B polynomial in k and log|∆K | such that
the set of prime ideals of norm bounded by B contains at least k elements. Then, we order this
set by increasing norms, choosing an arbitrary permutation for isonorm ideals, and remove ideals
that were already present in

{
p1, . . . , pk′

}
. It remains to extract the first (k − k′) elements to

obtain our factor base.
There is one issue to consider, namely adapting the justification of [PHS19a, Heur. 4], relying

on Lphs being a “somehow random” lattice to derive that µ∞(Lphs) is close to λ
(∞)
1 (Lphs). We

argue that in practice (as discussed with more details for Heur. 3.28 in §3.3.2), it is always possible
to empirically upper bound the infinity covering radius of Lphs to verify that this heuristic holds.
For example, as described in [PHS19a, §4.1]: take sufficiently many random samples ti in the span
of Lphs from a continuous Gaussian distribution of sufficiently large deviation; solve Approx-Cvp
for the `2-norm for each of them to obtain vectors wi ∈ Lphs close to ti; finally, majorate µ∞(Lphs)
by maxi‖ti −wi‖∞. Then, if the expected heuristic behaviour is too far from this estimate, we
could still replace one ideal of FB by an ideal of bigger norm and iterate the process.

Minimizing the target drift.

Our last suggested improvement modifies the definition of the target vector to take into account
the fact that valuations at prime ideals are integers. Hence, the condition enforcing α/s ∈ b,
which was written as ∀p ∈ FB, vp(α)− vp(s) ≥ 0, can be replaced by the equivalent requirement
that ∀p ∈ FB, vp(α)− vp(s) > −1. Intuitively, this reduces the valuations at prime ideals of the
output element by one on average, hence lowering the approximation factor bound in Eq. (3.10).
Formally, using the notations of Alg. 3.2, we only modify the definition of the target t in step 2
of Alg. 3.2. For any 0 < ε < 1, let β̃ = (β − 1 + ε) and let b̃phs = (0, . . . , 0, β̃, . . . , β̃) with non
zero values only on the k last coordinates. The modified target is defined as:

t̃ = ϕphs(α) + b̃phs =
(
c · fH0

◦ πH0

(
Log α

)
,
{
−vi + β̃

}
1≤i≤k

)
. (3.12)

The remaining steps of Alg. 3.2 stay unchanged. We have to prove that the output is still correct,
i.e., that α/s ∈ b, where w = ϕphs(s) ∈ Lphs verifies ‖t̃−w‖∞ ≤ β. This is done in the following
Pr. 3.13, which adapts Th. 3.7 to benefit from all the improvements of this section.

Though this adjustment might seem insignificant at first sight, we stress that the induced
gain is of order

∏
p∈FBN (p)1/n, which is roughly subexponential in n, and that its impact

is very noticeable experimentally. In fact, the quality of the output is so sensitive to this β̃
that we implemented a dichotomic strategy to find, for each challenge b, the smallest possible
translation β̃ that must be applied to ϕphs(α) to ensure (α/s) ∈ b.
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Proposition 3.13. Given access to an Approx-Cvp oracle that, on any input, output w ∈ Lphs

at infinity distance at most β, the modified algorithm Aquery using the isometry fH0
defined in

Eq. (3.8), the value c defined in Eq. (3.11), and for any 0 < ε < 1, the modified target t̃ defined
in Eq. (3.12), computes x ∈ b \ {0} such that:

‖x‖2 ≤
√
n · N (b)1/n · exp

[
(β + b2β − 1c) ·

∑
p∈FB lnN (p)

n

]
.

Proof. As in the proof of Th. 3.7, let w = ϕphs(s) =
(
c ·fH0(h(0)

s ), {−wi}1≤i≤k
)
, with wi = vpi(s),

be such that ‖t̃−w‖∞ ≤ β. The main point is proving that x = (α/s) ∈ b. Recall that
〈α/s〉 = b ·

∏
pi∈FB pvi−wii . As ‖t̃−w‖∞ ≤ β, for each i we have −1 + ε ≤ vi −wi ≤ 2β − 1 + ε.

Using that vi, wi are in Z and ε > 0 implies 0 ≤ vi − wi ≤ b2β − 1c, hence x ∈ b \ {0}.
The `2-norm of x is upper bounded using again Lem. 3.6. The previous discussion also

shows |N (α/s)|1/n ≤ N (b)1/n · exp
( b2β−1c·

∑
p∈FB lnN (p)

n

)
. Using the isometry properties given

by Pr. 3.9, we obtain ‖h(0)

α/s‖∞ ≤ (1 + lnn)β/c, and using c ≥ (1+lnn)n∑
p∈FB lnN (p) as implied by

Eq. (3.11) finally yields the result.

3.3 The Twisted-PHS Algorithm

Our main contribution is to propose a twisted version of the PHS algorithm. The main idea
consists in using the natural description of the log-S-unit lattice given in Eq. (2.3) and deduced
from the product formula in Eq. (2.1). This basically adds weights to each p-adic valuation,
which has several valuable consequences.

On the theoretical side, we prove that our Twisted-PHS algorithm reaches the same asymp-
totic trade-off between runtime and approximation factor as the original PHS algorithm, using
the same Cvp solver with preprocessing hint by Laarhoven. Formally, under the GRH and
heuristics:

Theorem 3.14. Let ω ∈ [0, 1/2] and K be a number field of degree n and discriminant ∆K .
Assume that a basis of OK is known. Under GRH (Heur. 2.33) and Heur. 3.28 and 3.29, there

exist two algorithms A(Laa)
tw-pcmp and A(Laa)

tw-query such that:

• Algorithm A(Laa)
tw-pcmp takes as input OK , runs in time 2Õ(log|∆K |) and outputs a hint V of

bit-size 2Õ(log1−2ω|∆K |);

• Algorithm A(Laa)
tw-query takes as inputs any ideal b of OK , whose algebraic norm has bit-size

bounded by 2poly(log|∆K |), and the hint V output by A(Laa)
tw-pcmp, runs in time 2Õ(log1−2ω|∆K |) +

TSu(K), and outputs a non-zero element x ∈ b such that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

On the practical side though, experimental evidence given in §3.4 suggest that we achieve
much better approximation factors than expected, and that the given lattice bases are a lot more
orthogonal than the ones used in [PHS19a].

3.3.1 Preprocessing of the number field

As for the PHS algorithm, the preprocessing phase consists, from a number field K and a size
parameter ω ∈ [0, 1/2], in building and preparing a lattice Ltw that depends only on the number
field and allows to express any Approx-id-Svp instance in K as an Approx-Cvp instance in Ltw.

Theoretically, the only difference between the original PHS preprocessing and ours resides in
the lattice definition and in the factor base elaboration. Its most significant part still consists in
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computing a hint of constrained size to facilitate forthcoming Approx-Cvp queries. In practice
though, we replace this hint computation by merely a few rounds of BKZ with small block size
(see §3.4). In a quantum setting this removes the only part that is not polynomial in ln|∆K |,
and in a classical setting avoids the dominating exponential part.

Defining the lattice Ltw: a full-rank version of the log-S-unit lattice.

Let FB =
{
p1, . . . , pk

}
be a set of prime ideals generating the class group ClK . The lattice Ltw

used by our Twisted-PHS algorithm is basically the log-S-unit lattice LogS O×K,S w.r.t. S,
where S = S∞ ∪ FB, under the expanded log-S-embedding, to which we apply an isometric
transformation to obtain a full-rank lattice in Rν+k.

Formally, Ltw is defined as the lattice generated by the images of the fundamental elements
generating the S-unit group O×K,S , as given by Th. 2.2, under the following map ϕtw from K

to Rν+k:

ϕtw(α) = fH ◦ πH
(
LogS α

)
, (3.15)

• where fH is an isometry from H ⊂ Rn+k to Rν+k, with H the intersection of the trace zero
hyperplane Rn+k

0 = 1⊥n+k, and L =
{
y ∈ Rn+k : yr1+2i−1 = yr1+2i, i ∈ J1, r2K

}
the span

of LogS K;

• πH is the projection on H, in particular it is the identity on the S-unit group.

This map naturally inherits from the homomorphism properties of LogS , i.e., ϕtw(αα′) = ϕtw(α)+
ϕtw(α′) and ∀λ ∈ Z, ϕtw(αλ) = λ·ϕtw(α), and also defines an isomorphism between O×K,S

/
µ
(
O×K
)

and Ltw.

The isometry fH must be carefully chosen in order to control its effect on the `∞-norm.
Nevertheless, it should be seen as a technicality allowing to work with tools designed for full-

rank lattices. Formally, let fH be the linear map represented by GSO
T

(MH), which denotes the
transpose of the Gram-Schmidt orthonormalization of the following matrix:

MH :=

−1 1

−1 1

. . .
. . .

−1 1





ν + 1 + k

ν
+
k ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

Ik





r1 2r2 k

r
1

r
2

k

. (3.16)

Actually, MH is a basis of H = Rn+k
0 ∩ L in Rn+k, constituted of vectors that are orthogonal

to 1n+k and to each of the r2 independent vectors vj , j ∈ J1, r2K that sends any y ∈ L to 0
by substracting yr1+2j from its copy yr1+2j−1 and forgetting every other coordinate. Hence,
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graphically, a row basis of Ltw is:

BLtw :=



Λ̃K 0

Log εν+1

...
(
−vpj (εν+i) lnN (pj)

)
1≤i,j≤k

Log εν+k


·GSO

T
(MH), (3.17)

where the first part is the basis Λ̃K,S of LogS O×K,S defined in Pr. 2.8.

Volume of Ltw and optimal factor base choice.

First, we evaluate the volume of Ltw = fH
(
LogS O×K,S

)
. As the isometry fH stabilizes the span

of the log-S-unit lattice, it preserves its volume, which is given by Pr. 2.8. Using that ideal classes
of FB generate the class group, hence hK,(FB) = hK , yields:

VolLtw =
√
n+ k · 2−r2/2 · hKRK

∏
1≤i≤k

lnN (pi). (3.18)

Certainly, the volume of Ltw is growing with the log norms of the factor base prime ideals, but a
remarkable property is that this growth is at first slower than the lattice density increase induced
by the bigger dimension. The meaning of this is that we can enlarge the factor base to densify
our lattice up to an optimal point, after which including new ideals becomes counter-productive.

Formally, let Vk′ denote the reduced volume Vol1/(ν+k′) Ltw for a factor base of size k′ ≥ k0,
where k0 is the number of generators of ClK . We have:

Vk′+1 = Vk′ ·
(√

1 + 1
n+k′ ·

lnN (pk′+1)

Vk′

)1/(ν+k′+1)

. (3.19)

This shows that Vk′+1 < Vk′ is equivalent to lnN (pk′+1) < Vk′
/√

1 + 1
n+k′ . Using this property,

Alg. 3.3 outputs a factor base maximizing the density of Ltw.

Algorithm 3.3 Twisted-PHS Factor Base Choice Atw-FB

Input: A number field K of degree n.
Output: An optimal factor base FB generating ClK that minimizes Vol1/(ν+k) Ltw.

1: Compute ClK =
〈[
q1

]
, . . . ,

[
qk0
]〉

, with k0 ≤ log hK .

2: Compute P(B) =
{
pi : N (pi) ≤ B

}
\
{
q1, . . . , qk0

}
ordered by increasing norms, where B is

chosen s.t. πK(B) = poly(ln|∆K |) ≥ k0.
3: FB←

{
q1, . . . , qk0

}
.

4: i← 0.
5: while lnN (pi+1) < Vk0+i

/√
1 + 1

n+k0+i do

6: Add pi+1 to FB.
7: i← i+ 1.

8: return FB.

First, for a fixed factor base of size k, we compare the reduced volume Vk of Ltw with the

reduced volume of Lphs, denoted Vphs :=
(√

n
2r2 · hKRK

)1/(ν+k)
.
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Lemma 3.20.
Vk
Vphs

≤ e1/ne

k
·
∑
p∈FB

lnN (p).

This means that the gap between the reduced volume of the twisted lattice and the reduced
volume of the untwisted lattice evolves roughly as the arithmetic mean of the lnN (p). We stress
that this bound is valid for any k, and remark that e1/ne ≤ e1/2e ≈ 1.202.

Proof. The quotient Vk/Vphs is
(√

n+k
n

∏
lnN (p)

)1/(ν+k)

. The square root power is bounded

by
(
n+k
n

)1/(n+k)
, as 1

ν+k <
2

n+k , which reaches when k + n = ne its maximum value e1/ne. On

the other hand, 1
ν+k <

1
k , thus by Jensen’s inequality:( ∏

p∈FB

lnN (p)
)1/(ν+k)

≤
( ∏
p∈FB

lnN (p)
)1/k

≤ 1

k
·
∑
p∈FB

lnN (p).

Although the reduced volume significantly decreases in the first loop iterations, reaching
precisely the minimum value can be very gradual, so that it might be clever to early abort the loop
in Alg. 3.3 when the gradient is too low, or truncate the output to at most k′ = Õ(ln|∆K |). We
quantify the fact that the density loss is at most constant in the worst case in the following result.

Lemma 3.21. Let k′ = C
(
ln|∆K | + n ln ln|∆K |

)
. Let Vmin be the minimum reduced volume

output by Atw-FB, and suppose Vmin is reached for k > k′, then:

Vk′ ≤ e1/C+1/ne · Vmin.

Proof. By Eq. (2.35), this choice of k′ implies
(√

n
2r2 · hKRK

)1/(ν+k′) ≤ e1/C . Lemma 3.20 thus

gives Vk′ ≤ e1/C+1/ne lnN (pk′). The result follows from the fact that by design, lnN (pk′) ≤
Vmin ≤ Vk′ .

In practice, experiments of §3.4 report that the factor bases output byAtw-FB have significantly
smaller dimensions than the dimensions showed in Tab. 3.1 and 3.2 for the (optimized) PHS
algorithm, so that Lem. 3.21 is never triggered.

Proposition 3.22. Algorithm Atw-FB terminates in time TSu(K) + poly(ln|∆K |) and outputs a
factor base of size k = poly(ln|∆K |) using B = poly(ln|∆K |).

Proof. We first show termination. If lnN (p1) ≥ Vk0

/√
1 + 1

n+k0
, the algorithm stops. Other-

wise, by Eq. (3.19), Vk0+i+1 < Vk0+i at best until lnN (pi+1) ≥ Vk0+i. Since there are at most n
prime ideals of a given norm, lnN (pi) must increase, so that at some point Vk0+i+1 > Vk0+i,
where the density of Ltw decreases.

We now bound B and k. For C > 0, let k′ = C
(
ln|∆K |+ n ln ln|∆K |

)
, and let B′ = N (pk′).

By the Prime Ideal Theorem (Th. 2.38), B′ ≤ poly(ln|∆K |). Using the same arguments as in the
proof of Lem. 3.21, we obtain:

Vk′ ≤ e1/C ·
(√

n+k′

n

)1/(ν+k′)

· lnk
′/(ν+k′)N (pk′) ≤ e1/C+1/ne · lnB′.

If lnN (pk′+1) ≥ Vk′ , we take B = B′ and k = k′. Note that this is generically the case in practice.
Otherwise, it is necessary to increase B′ to at most B = `B′, with ` = exp

(
e1/C+1/ne

)
. This

value of ` verifies that if k > k′ is such that N (pk+1) ≥ B ≥ N (pk), then lnN (pk+1) ≥ Vk′ > Vk,
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and by definition ]FB ≤ k. Note that this scaling value ` is small, e.g., for C ≥ 4 and n ≥ 3
we have ` ≤ 4. The key is now to show that this new k = πK(`B′) is not much larger than
k′ = πK(B′). Actually, provided B′ is (polynomially in ln|∆K |) large enough, invoking again

the Prime Ideal Theorem yields k′ = πK(B′) ≥ B′

2 lnB′ [BDPW20, Lem. A.3] and:

k ≤ πK(`B′) ≤ 2n(`B′)
ln `B′ = (4`n) · B′

2 lnB′ ≤ (4`n) · πK(B′) = poly(ln|∆K |).

Note that Bach’s bound (Eq. (2.36)) is poly(ln|∆K |), as B and k. Therefore, steps 2–7 run in
time poly(ln|∆K |), and step 1 computes ClK in time TSu(K).

Preprocessing algorithm.

Algorithm 3.4 details the complete preprocessing procedure that, from a number field and some
precomputation size parameter, chooses a factor base FB, builds the associated matrix BLtw,
and processes Ltw in order to facilitate Approx-Cvp queries.

Algorithm 3.4 Twisted-PHS Preprocessing Atw-pcmp

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2] or b.
Output: The basis BLtw with the preimages of its rows in O×K,S , and Laarhoven’s hint V(Ltw).

1: Get an optimal factor base FB = Atw-FB(K) of size k = ]FB. If needed, truncate the output

to k = Õ(ln|∆K |) as in Lem. 3.21.
2: Compute fundamental elements ε1, . . . , εν+k of O×K,S as in Th. 2.2.
3: Create BLtw, whose rows are ϕtw(ε1), . . . , ϕtw(εν+k) as defined in Eq. (3.17).

4: Use Laarhoven’s algorithm to compute a hint V = V(Ltw) of size 2Õ(log1−2ω|∆K |).
5: (or) Use a BKZ of small block size to reduce the basis of Ltw.
6: return

(
O×K,S , BLtw, V(Ltw)

)
.

This Twisted-PHS preprocessing differs from the original PHS preprocessing given in Alg. 3.1
on two aspects: the factor base, output by Atw-FB in step 1 and which is essentially much smaller
in practice, and the new twisted lattice in step 3.

The last two alternative steps consists in preprocessing Ltw in order to solve Approx-Cvp
instances efficiently. Theoretically, we retain in step 4 the same approach as in step 6 of the orig-
inal PHS preprocessing Alg. 3.1, that guarantees a hint size not exceeding the query phase time

using Laarhoven’s algorithm [Laa16]. This outputs a hint V of bit size bounded by 2Õ(ν+k)1−2ω

,

i.e., 2Õ(log1−2ω|∆K |) using (ν+k) = Õ(log|∆K |), allowing to deliver the answer for approximation
factors (ν + k)ω in time bounded by the bit size of V [Laa16, Cor. 1–2]. This theoretical version

will be denoted by A(Laa)
tw-pcmp.

Nevertheless, in practice the twisted lattice output by Alg. 3.4 incidentally appears to be a
lot more orthogonal than expected. That’s the reason why we suggest to replace the exponential
step 4 of Alg. 3.4 by step 5, which performs some polynomial lattice reduction using a small block
size BKZ. In a quantum setting this removes the only part that is not polynomial in ln|∆K |,
and in a classical setting avoids the dominating exponential part. This practical version will be

denoted by A(bkz)
tw-pcmp.

Proof of the first part of Th. 3.14. The complexity of step 1 is given by Pr. 3.22. Neglecting
terms in poly(ln|∆K |), the other costly steps are steps 2 and 4. The former costs TSu(K) ≤
2Õ(log2/3|∆K |) by §2.3.3; the latter, independently of ω, runs in 2O(ν+k) = 2Õ(log|∆K |) by the
bound on k. Hence, Alg. 3.4 has the same complexity as the original PHS preprocessing, i.e., at
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most 2Õ(log|∆K |). Note that in practice, the dimension of Ltw is much smaller than the one

of Lphs, which directly lowers the practical complexity of A(Laa)
tw-pcmp and A(bkz)

tw-pcmp.

3.3.2 Query phase

This section describes the query phase Atw-query of the Twisted-PHS algorithm. As for the query
phase of the original PHS algorithm, it reduces the resolution of Approx-id-Svp in b, for any
challenge ideal b ⊆ K having a polynomial description in log|∆K |, to a single call to an Approx-
Cvp oracle in Ltw as output by the preprocessing phase. The main idea of this reduction remains
to multiply the principal ideal generator output by the ClDlp of b on FB by elements of O×K,S
until we reach a principal ideal having a short generator. This translates into adding vectors
of Ltw to some target vector derived from b until the result is short, hence into solving a Cvp
instance in the log-S-unit lattice Ltw.

The essential difference of the Twisted-PHS version lies in the definition of this target, which
is adapted in order to benefit from the twisted description of the log-S-unit lattice. This is
formalized in Alg. 3.5.

Algorithm 3.5 Twisted-PHS Query Atw-query

Input: Challenge b, Atw-pcmp(K,ω) =
(
O×K,S , BLtw,V

)
, and β̃ > 0 s.t. for any t, the Approx-

Cvp oracle using V(Ltw) outputs w ∈ Ltw with ‖f−1
H (t−w)‖∞ ≤ β̃.

Output: A short element x ∈ b \ {0}.
1: Solve the ClDlp for b on FB, i.e., find α ∈ K s.t. 〈α〉 = b ·

∏
pi∈FB pvii , for vi ∈ Z.

2: Define the target t as f−1
H (t) = πH

(
Log α,

{
−vi lnN (pi)

}
1≤i≤k

)
+ btw, where the drift

vector btw ∈ H will be defined in Eq. (3.23).

3: Solve Approx-Cvp with V(Ltw) to get w ∈ Ltw s.t. ‖f−1
H (t−w)‖∞ ≤ β̃.

4: (or) Use Babai’s Nearest Plane to get w ∈ Ltw s.t. ‖f−1
H (t−w)‖∞ is small.

5: Compute s = ϕ−1
tw (w) ∈ O×K,S , using the preimages of the rows of BLtw.

6: return α/s.

Note that the output of the ClDlp in step 1 is not an S-unit unless b is divisible only by prime
ideals of FB; for each i, vi = vpi(α)− vpi(b). For convenience and without any loss of generality
we shall assume that b is coprime with all elements of the factor base, i.e., ∀p ∈ FB, vp(b) = 0.
In that case, the target in step 2 writes naturally as t = ϕtw(α) + fH

(
btw

)
. This target definition

calls for a few comments. First, the output of the ClDlp is projected on the whole log-S-unit
lattice instead of only on the log-unit sublattice, hence maintaining its length and algebraic
norm logarithms in the instance scope. Thus, the way our algorithm uses S-units to reduce the
solution of the ClDlp problem can be seen as a smooth generalization of the way traditional
Sgp solvers use regular units to reduce the solution of the Pip as in [CDPR16]. Second, the
sole purpose of the drift by btw is to ensure that α/s ∈ b. Adapting its definition to the twisted
setting is slightly tedious and deferred to the next paragraph. The most notable novelty is that
we force the use of a drift that is inside the log-S-unit lattice span. This somehow captures and
compensates for the perturbation induced on infinite places for correcting negative valuations on
finite places using S-units.

Finally, as already mentioned, Ltw seems much more orthogonal in practice than expected,
so that we advise to resort to Babai’s Nearest Plane algorithm for solving Approx-Cvp in Ltw,
instead of using Laarhoven’s query phase with the precomputed hint. We only keep Laarhoven’s
algorithm to theoretically prove the correctness and complexity of our new algorithm. The

theoretical and practical versions of Atw-query are respectively denoted by A(Laa)
tw-query and A(np)

tw-query.
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We now detail explicitly our target choice and prove the correctness and the output quality
of Alg. 3.5.

Definition of the target vector.

Recall that we assumed that b is coprime with FB, hence f−1
H (t) = πH

(
LogS α

)
+ btw, for

some btw ∈ H that must ensure α/s ∈ b, for s = ϕ−1
tw (w) and when ‖f−1

H (t−w)‖∞ ≤ β̃.
Indexing coordinates by places, we exhibit btw =

(
{bσ}σ∈S∞∪S∞ , {bp}p∈FB

)
, where:{

bσ = − k
n

(
lnN (b)
n+k + β̃

)
+ 1

n

∑
p∈FB lnN (p) for σ ∈ S∞ ∪ S∞,

bp = β̃ − lnN (p) + lnN (b)
n+k for p ∈ FB.

(3.23)

It is easy to verify that all coordinates sum to 0, i.e., btw ∈ H. We now explain this choice, first
showing that under the above hypotheses, Alg. 3.5 is correct.

Proposition 3.24. Given access to an Approx-Cvp oracle that on any input t, outputs w ∈ Ltw

s.t. ‖f−1
H (t−w)‖∞ ≤ β̃, Atw-query outputs x ∈ b \ {0}.

Proof. Recall that x = α/s, where s = ϕ−1
tw (w) ∈ O×K,S and that for the sake of clarity, b is taken

coprime to FB. Therefore, it is sufficient to show that for any fixed p ∈ FB, vp(α/s) ≥ vp(b) = 0.
Indexing coordinates of LogS α by places and using the simplified notation αv := (LogS α)v, we

have that for hα = πH
(
LogS α

)
, (hα)p = αp − lnN (b)

n+k . By hypothesis:∣∣∣αp − lnN (b)
n+k − sp + bp

∣∣∣ =
∣∣∣−(vp(α)− vp(s) + 1

)
lnN (p) + β̃

∣∣∣ ≤ β̃.
Rearranging terms, and using that vp(·) ∈ Z to round integers towards 0:

0 ≤ vp(α/s) ≤
⌊

2β̃

lnN (p)
− 1

⌋
.

This concludes the correctness proof.

The proof of Pr. 3.24 quantifies the intuition that the output element has smaller valua-
tions at big norm prime ideals. In particular, strictly positive valuations occur only for ideals
s.t. lnN (p) ≤ β̃. This has a very valuable consequence: estimating the `∞-norm covering radius
of Ltw allows to control the prime ideal support of any optimal solution. Hence, even if the
Approx-Cvp cannot reach µ∞(Ltw), it is possible to confine the algebraic norm of each query
output by not including in FB the prime ideals whose log-norm would in fine exceed µ∞(Ltw),
and at which the optimal solution provably has a null valuation. Roughly speaking, this is
what Atw-FB tends to achieve in Alg. 3.3.

Translating infinite coordinates. As already mentioned, one important novelty consists in
forcing the drift used to ensure α/s ∈ b to be inside the log-S-unit span. The underlying
intuition is that “correcting” negative valuations at finite primes should only involve S-units.
We modelize this by splitting the weight of the bp’s evenly across the infinite places coordinates,
hence obtaining Eq. (3.23). This heuristically presumes that S-units absolute value logarithms
are generically balanced on infinite places. Let us summarize our target definition:

t = fH

({
ασ − 1

n

[
kβ̃ + lnN (b)−

∑
p∈FB lnN (p)

]}
σ
,
{
αp + β̃ − lnN (p)

}
p∈FB

)
. (3.25)
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Quality of the output of A(Laa)
tw-query.

To bound the quality of the output of Alg. 3.5, the general idea is that minimizing the distance
of our target to the twisted lattice directly minimizes the p-adic absolute values −vp(α) lnN (p)
instead of minimizing the valuations vp(α) independently of lnN (p).

This makes use of the following log-S-unit lattice structure lemma, adapting its log-unit
lattice classical equivalent [PHS19a, Lem. 2.11–2.12], [CDPR16, §6.1]:

Lemma 3.26. For α ∈ K, let hα := πH
(
LogS α

)
. Decompose 〈α〉 on FB as b ·

∏
p∈FB pvp(α),

with b coprime to FB. Then LogS α = hα + lnN (b)
n+k · 1n+k. Furthermore, the length of α is

bounded by:

‖α‖2 ≤
√
n · N (b)1/(n+k) · exp

[
max

1≤j≤n
(hα)j

]
.

Note that using the max of the coordinates of hα instead of its `∞-norm norm acknowledges
for the fact that logarithms of small infinite valuations can become large negatives that should
be ignored when evaluating the length of α.

Proof. By definition of the orthogonal projection on H, LogS α decomposes as hα + a · 1n+k,
with a =

〈
LogS α,1n+k

〉
/‖1n+k‖22. The scalar product is:∑

σ∈S∞∪S∞

ln|σ(α)| −
∑
p∈FB

vp(α) · lnN (p) = lnN
(
〈α〉
/∏

p∈FBp
vp(α)

)
= lnN (b).

Therefore, a = lnN (b)
n+k . Moreover, generically we have ‖α‖2 ≤

√
n · ‖α‖∞; using the above

decomposition coordinate-wise, the j-th-coordinate of LogS α writes (LogS α)j = (hα)j + lnN (b)
n+k

and thus:
‖α‖∞ = exp max

σ∈S∞
ln|σ(α)| ≤ exp

[
lnN (b)
n+k + max

1≤j≤n
(hα)j

]
.

Theorem 3.27. Given access to an Approx-Cvp oracle that on any input t, outputs w ∈ Ltw

s.t. ‖f−1
H (t−w)‖∞ ≤ β̃, Atw-query computes x ∈ b \ {0} such that:

‖x‖2 ≤
√
n · N (b)1/n · exp

[
(n+ k)β̃ −

∑
p∈FB lnN (p)

n

]
.

This outperforms the bound of Pr. 3.13 if (n+k) · β̃ ≤ 2β ·
∑

p∈FB lnN (p). In particular, this

is implied by Lem. 3.20 if β̃
β ≈

Vk
Vphs

for k ≥ n. We will see that under some reasonable heuristics,

this is indeed the case when using the same factor base, and that experiments suggest a much
broader gap. One intuitive reason for this behaviour is that the covering radius of our twisted
lattice grows at a slower pace than the log-norm of the prime ideals of FB.

Proof. The correctness comes from Pr. 3.24. As before, let s = ϕ−1
tw (w), where w verifies

‖f−1
H (t−w)‖∞ ≤ β̃. It is necessary to bound maxσ∈S∞ (hα/s)σ in order to invoke Lem. 3.26.

Note that hα/s = hα − hs, hence:

(hα/s)σ = ασ − lnN (b)
n+k − sσ.

Recalling the target definition given in Eq. (3.23), the σ-coordinate of f−1
H (t−w) writes

(
ασ −

lnN (b)
n+k + bσ

)
− sσ = (hα/s)σ + bσ, and the promise on w yields:

(hα/s)σ ≤ β̃ − bσ =
(n+ k)β̃ −

∑
p∈FB lnN (p)

n
+

k

n(n+ k)
· lnN (b).
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Injecting this bound in Lem. 3.26 using 1
n+k + k

n(n+k) = 1
n ends the proof.

Heuristic evaluation of β̃.

Proving the second part of Th. 3.14 necessitates to evaluate β̃. This evaluation rely on several
heuristics that adapt heuristics [PHS19a, Heur. 4–6]. We argue that the arguments developed in
[PHS19a, §4] to support these heuristics can be transposed to our setting, and both heuristics
are validated by experiments in §3.4.

Heuristic 3.28 (Adapted from [PHS19a, Heur. 4]). The `∞-norm covering radius of Ltw is

bounded by O
(
Vol1/(ν+k) Ltw

)
. Likewise, µ2(Ltw) = O

(√
ν + k ·Vol1/(ν+k) Ltw

)
.

This assumption relies on Ltw to behave like a random lattice, implying its successive minima
and covering radius to be even. In [PHS19a], the randomness essentially comes from the choice
of the factor base, while for Ltw, this choice is deterministic. We argue that heuristically, prime
ideals of FB represent uniformly random classes in ClK ,16 and S-units Archimedean absolute
value logarithms are likely to be uniform in Rn

/
LogO×K . The volumetric arguments of [PHS19a,

§4.1] can also be readily adapted, using lnN (p) ≤ Vol1/(ν+k) Ltw by construction.

Heuristic 3.29 (Adapted from [PHS19a, Heur. 5–6]). With non-negligible probability over the
input target vector t, the vector w output by Laarhoven’s algorithm satisfies ‖f−1

H (t−w)‖∞ ≤
O
(
ln(n+ k)/

√
n+ k

)
· ‖t−w‖2.

This heuristic conveys the idea that coefficients of the output of Laarhoven’s algorithm are
somehow balanced, so that ‖w‖2 ≈

√
n+ k · ‖f−1

H (w)‖∞. Typically, continuous Gaussian vec-

tors y of dimension d verify ‖y‖∞/‖y‖2 = O(ln d/
√
d) with good probability, as shown by

[PHS19a, Lem. 4.1]. In our setting, this is justified by assuming t is uniformly distributed
in
(
R⊗ Ltw

)
/Ltw, and can be randomized by multiplying b by small ideals coprime to FB.

Proof of the second part of Th. 3.14. It breaks down to plugging into Th. 3.27 a value for k and β̃.
Using Lem. 3.21, we take k = Õ(ln|∆K |), so that Vk = O(lnN (Lmax)) = O(ln ln|∆K |) by
Lem. 3.20 and Pr. 3.22. We stress that if Atw-FB terminates with a smaller k, this can by definition
only yield a smaller Vk. By Heur. 3.28, it implies µ2(Ltw) = O(

√
ν + k · ln ln|∆K |), and Heur. 3.29

yield on average ‖f−1
H (v)‖∞ ≤ lnn+k√

n+k
·‖v‖2. The Approx-Cvp solver from Laarhoven’s algorithm

using V(Ltw) outputs a lattice vector at Euclidean distance which is at most O
(
(ν+k)ω ·µ2(Ltw)

)
.

Hence, its infinity distance is Õ
(
(ν+k)ω · ln ln|∆K |

)
, and (k+n)β̃ = Õ

(
(ν+k)ω+1 · ln ln|∆K |

)
=

Õ
(
lnω+1|∆K |

)
, as claimed.

As for the running time of Alg. 3.5, it is essentially determined by those of steps 1 and 3. Solv-
ing the ClDlp problem requires to compute S-units for an extended factor basis containing FB
and prime factors of b, hence costs TSu(K). Note that since it depends on the challenge, this
cost cannot be mitigated by some preprocessing effort. On the other hand, solving Approx-Cvp

with Laarhoven’s algorithm runs in time bounded by 2Õ(log1−2ω|∆K |), the size of V . Finally, the

total run time of A(Laa)
tw-query is bounded by 2Õ(log1−2ω|∆K |) + TSu(K).

In practice, as shown in §3.4, the special properties of our twisted lattice Ltw suggest re-
placing Laarhoven’s Cvp solving by Babai’s Nearest Plane algorithm for solving Approx-Cvp

in Ltw. In this eventuality, A(np)
tw-query would become quantumly polynomial, and classically only

subexponential in ln|∆K |.
16This is at the heart of the analytic class number formula.
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3.4 Experimental Data

This is the first time to our knowledge that this type of algorithm is completely implemented
and tested for fields of degrees up to 60. As a point of comparison, the experiments of [PHS19a]
constructed the log-S-unit lattice Lphs for cyclotomic fields of degrees at most 24 and hK ≤ 3,
all but the last two being principal [PHS19a, Fig. 4.1].

Hardware and library description. All S-units and class group computations, for the
log-S-unit lattice description and the ClDlp resolution, were performed using Magma v2.24-10
[BCP97].17 The BKZ reductions and Cvp/Svp computations used fplll v5.3.2 [FpL16]. All
other parts of the experiments rely on SageMath v9.0 [Sag20]. All the sources and scripts are
available as supplementary material on GitHub: ob3rnard/Twisted-PHS7. The experiments took
less than a week on a server with 36 cores and 768 GB RAM.

Number fields. As announced in §2.1.1, we consider two families of number fields, namely
non-principal cyclotomic fields Q(ζm) of prime conductors m ∈ J23, 71K, and NTRU Prime
fields Q(zq) where zq is a root of xq − x − 1, for q ∈ J23, 47K prime. These correspond to the
range of what is feasible in a reasonable amount of time, as the asymptotics of TSu(K) rapidly
express in a classical setting.

For cyclotomic fields, we managed to compute S-units up to Q(ζ71) for all factor bases in less
than a day, and all log-S-unit lattice variants up to Q(ζ61). For NTRU Prime fields, we managed
all computations up to Q(z47).

Targeted lattices. We evaluate the lattices computed by three algorithms: the original PHS
algorithm, as implemented in [PHS19b]; our optimized version Opt-PHS from §3.2.3, and our
new twisted variant Twisted-PHS described in §3.3. This yields three different lattices, denoted
by resp. Lphs, Lopt and Ltw. There are a few differences between [PHS19a] and its implementation
[PHS19b], but we chose to stick to the provided implementation as much as possible.

In order to separate the improvements due to Atw-FB outputting smaller factor bases from
those purely induced by our specific use of the product formula to describe the log-S-unit lattice,
we also built lattices L(0)

phs and L(0)

opt corresponding to PHS and Opt-PHS algorithms, but using
the same factor base as Ltw.

BKZ reductions and CVP solving. We applied the same reduction strategy to all of our
lattices. Namely, lattices of dimension less than 60 were HKZ reduced, while lattices of greater
dimension were reduced using at most 300 loops of BKZ with block size 40. This yields reasonably
good bases for a small computational cost [CN11, p.2]. The loop limit was in practice never hit.

For Cvp computations, we applied with these reduced bases Babai’s Nearest Plane algorithm,
as described in [Gal12, §18.1, Alg. 26].

Precision issues. Choosing the right bit precision for floating point arithmetic in the experi-
ments is particularly tricky. We generically used at most 500 bits of precision in our experiments
(corresponding to the lattice volume logarithm in base 2 plus some extra margin). There are
two notable exceptions:

17Note that SageMath is significantly faster than Magma for computing class groups, but behaves surprisingly
poorly when it comes to computing S-units.

7https://github.com/ob3rnard/Twisted-PHS

https://github.com/ob3rnard/Twisted-PHS
https://github.com/ob3rnard/Twisted-PHS
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1. The S-units w.r.t. FB can have huge coefficients. Computing the absolute values of their
embeddings must then be performed at very high precision. All our lattice constructions
were conducted using 10000 bits of precision.

2. Computing the target involves the challenge and the ClDlp solution, whose coefficients are
potentially huge rational numbers, up to 225000 for e.g., Q(ζ53). As above, we adjust the
precision in order to obtain sensible values.

In all cases, once in the log space the resulting high precision data can be rounded back to the
generic precision before lattice reduction or Cvp computations.

3.4.1 Geometric characteristics

First, we evaluated the geometric characteristics of each produced lattice, using indicators re-
called in §2.4.2, namely: the root Hermite factor δ0, the orthogonality defect δ, and the mini-
mum θmin (resp. average θavg) vector basis angle. Each of these indicators is declined before and
after BKZ reduction to compare their evolution. We also evaluated experimentally the relevance
of Heur. 3.28 and 3.29. Example results are given in Tab. 3.3 and 3.4 for cyclotomic and NTRU
Prime fields, aside the lattices dimensions d = ν + k and reduced volumes V 1/d. Extensive data
can be found in Tab. 3.5 and 3.6 for both field families.

δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

raw bkz raw bkz raw bkz raw bkz
µ2 µ∞ real H. 3.29

Q(ζ41)

Ltw 59 4.825 1.001 1.001 3.596 1.802 11 47 69 81 12.91 5.186 0.615 0.489
L(0)

opt 59 1.786 1.020 1.005 4.525 1.986 34 55 76 83 5.112 2.245 0.629 0.530
L(0)

phs 59 2.767 1.037 0.997 8.986 1.809 45 55 79 84 8.535 4.039 0.639 0.530

Lopt 103 1.379 1.013 1.006 6.514 2.592 25 48 66 84 5.301 2.052 0.596 0.456
Lphs 144 1.306 1.012 1.004 7.982 3.651 29 49 71 83 6.536 2.772 0.687 0.414

Table 3.3 – Geometric characteristics of log-S-unit lattices for some prime conductor cyclo-
tomic fields.

δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

raw bkz raw bkz raw bkz raw bkz
µ2 µ∞ real H. 3.29

Q(z43)

Ltw 38 4.441 0.911 0.911 1.498 1.357 53 59 82 83 10.64 5.177 0.645 0.528
L(0)

opt 38 5.051 0.937 0.937 4.187 1.865 44 50 81 81 12.50 6.573 0.663 0.590
L(0)

phs 38 9.657 0.952 0.952 7.496 1.877 45 56 81 81 23.73 12.18 0.671 0.590

Lopt 114 1.367 0.979 0.979 5.482 3.256 36 57 79 83 6.119 2.803 0.687 0.443
Lphs 161 1.297 0.987 0.987 9.002 4.135 25 55 79 83 7.484 2.837 0.712 0.400

Q(z47)

Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519
L(0)

opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583
L(0)

phs 40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427
Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Table 3.4 – Geometric characteristics of log-S-unit lattices for some NTRU Prime fields.

Orthogonality indicators.

We first remark that minimum and average vector basis angles seem difficult to interpret. They
are slightly better for Twisted-PHS on NTRU Prime fields but it is harder to extract a general
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tendency for cyclotomic fields.
After a light BKZ reduction, twisted lattices show significantly better root Hermite factor

and orthogonality defect than any other log-S-unit lattice representations, even when the lattices
have the same dimension, i.e., when the same factor base is used. Second, the evolution of the
orthogonality defect before and after the reduction is more restricted in the twisted case than in
the others. In particular, we observe that the BKZ-reduced versions of L(0)

opt and L(0)

phs can have
bigger orthogonality defects than the unreduced Ltw. This last observation is true for all NTRU
Prime fields we tested except Q(z23).

These two phenomenons (better values and small variations) are particularly clear for NTRU
Prime fields. We remark that in this case, the twisted version of the log-S-unit lattice fully
expresses, since for NTRU Prime fields most factor base elements have distinct norms. On the
contrary, factor bases for our targeted cyclotomic fields are composed of one (or two, as for Q(ζ59))
Galois orbits whose elements all have the same norm. Finally, we stress that reducing Ltw lattices
is much faster in practice than reducing L(0)

opt and L(0)

phs. This is corroborated by the graphs of the
Gram-Schmidt log norms in §3.4.2.

Evaluating heuristic on covering radius (Heur. 3.28).

Computing the covering radius of a given lattice is a very difficult problem in general. To evaluate
in practice µ2 and µ∞ for our computed lattices, we used a slightly modified version of the strat-
egy of [PHS19a, §4.1]. More precisely, for each lattice L, we picked 500 random target vectors ti
in the span of L from a continuous Gaussian distribution of deviation σ = 100 ·dimL, then used
Babai’s Nearest Plane algorithm with the reduced basis of L to obtain vectors wi ∈ L close to ti.
Finally, we majorate µ∞(L) and µ2(L) by respectively maxi‖ti −wi‖∞ and maxi‖ti −wi‖2.

Results show that all lattices equally match Heur. 3.28. We noticed, for Lphs and for the
number fields tested in [PHS19a, Fig. 4.1], a significant gap between our estimations and the
published numerical values. We stress that using in our code a standard deviation of only σ = 100
as in [PHS19b] reproduces their results.

Evaluating heuristic on infinity norm (Heur. 3.29).

In order to support Heur. 3.29, we compared the average ‖f−1
H (ti −wi)‖∞

/
‖ti −wi‖2 with the

expected value
(
ln(n+k)/

√
n+ k

)
for Ltw. The evolution of Heur. 3.29 from [PHS19a, Heur. 5–6]

is quantified by relating, for all four PHS log-S-unit variants, the ratio ‖ti −wi‖∞
/
‖ti −wi‖2

to their expected ratio
(
ln(ν + k)/

√
ν + k

)
.

The data show that all lattices follow exactly the same behaviour w.r.t. [PHS19a, Heur. 5–6]
and Heur. 3.29. All these values are tagged with a unique label “‖·‖∞/‖·‖2 (real/H. 3.29)” in the
tables, but correspond to Heur. 3.29 for Twisted-PHS and to [PHS19a, Heur. 5–6] for PHS.

3.4.2 Plotting Gram-Schmidt log norms

For our second experiment, we evaluate the Gram-Schmidt norms of each produced lattice. We
propose two comparisons, the first one is before and after BKZ reduction to see the evolution
of the norms for each case at iso factor base in Fig. 3.2; the second one is between the different
lattices (after BKZ reduction) in Fig. 3.3. Again, extensive data for other examples can be found
in §3.5.2 for both cyclotomic fields and NTRU Prime fields.

We first remark that in Fig. 3.2 the two curves, before and after BKZ reduction, are almost
superposed for the Twisted-PHS lattice. This does not seem to be the case for the two other
PHS variants we consider here.
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Figure 3.2 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms before and after BKZ40

reduction at iso factor base Atw-FB(K) for: (a) Ltw; (b) L(0)

opt; (c) L(0)

phs.

Figure 3.3 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms after BKZ40 reduction:
(a) at iso factor base Atw-FB(K); (b) at designed factor bases.

Since the volume of Ltw is bigger, by roughly the average log norm of the factor base elements
by Lem. 3.20, the Gram-Schmidt log norms of our bases have bigger values. The important
phenomenon to consider is how these log norms decrease. Figure 3.3 emphasises that the decrease
of the Gram-Schmidt log norms is very limited in the twisted case, compared to other cases (with
iso factor bases on the left, and the original algorithms on the right), where the decrease of the
log norms seems significant. This observation seems to corroborate the fact that the Twisted-
PHS lattice is already quite orthogonal. Finally, we note that both phenomenons do not depend
on the lattices having the same dimension.

3.4.3 Approximation factors

We implemented all three algorithms from end to end and used them on numerous challenges
to estimate their practically achieved approximation factors. This is to our knowledge the first
time that these types of algorithms are completely run on concrete examples.

Ideal SVP challenges and ClDLP computations.

For each targeted field, we chose 50 prime ideals b of prime norm q. Indeed, these are the most
interesting ideals: in the extreme opposite case, taking b inert of norm qn implies that q reaches
the lower bound of Eq. (2.41), as ‖q‖2 =

√
n · q, hence the id-Svp solution is trivial.
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Figure 3.4 – Approximation factors reached by Twisted-PHS, Opt-PHS and PHS for cyclo-
tomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

Figure 3.5 – Approximation factors reached by Twisted-PHS, Opt-PHS and PHS for NTRU
Prime fields of degrees 23, 29, 31 and 37 (in log scale).

We then tried to solve the ClDlp for these challenges w.r.t. all targeted factor bases. We
stress that, using Magma, S-units computations for the ClDlp become harder as the norm
of the challenge grows. This is especially true when the factor base inflates, hence providing
an additional motivation for taking as small as possible factor bases. Therefore, we restricted
ourselves to challenges of norms around 100 bits. Computing the ClDlp solutions for these
challenges revealed much harder than computing S-units on all factor bases, which contain only
relatively small prime ideals. As a consequence, we were able to compute the ClDlp step only
up to Q(ζ53) (partially) and Q(z47).
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Query algorithm.

We exclusively used Babai’s Nearest Plane algorithm on the BKZ reduced bases of all log-S-unit
lattices to solve the Approx-Cvp instances. Actually, the hardest computational task was to
compute the output α/s, which necessitates a multi-exponentiation over huge S-units.

As a particular point of interest, we stress that using directly the drift proposed in [PHS19a]

would be especially unfair. Hence, for a challenge b, the target drifts bphs, b̃phs and btw were

all minimized using an iterative dichotomic approach on β and β̃, taking a bigger value if the
output x /∈ b, and a smaller value if x ∈ b. After 5 iterations, the shortest x that verified x ∈ b
is returned.

Exact approximation factors.

Figures 3.4 and 3.5 report the obtained approximation factors. Note that for these dimensions,
it is still possible to exactly solve id-Svp in the Minkowski space, so that these graphs show real
approximation factors. We stress that we used a logarithmic scale to represent on the same graphs
the performance of the Twisted-, Opt-PHS and PHS algorithms. The figures suggest that the
approximation factor reached by our algorithm increases very slowly with the dimension, in a way
that could reveal subexponential or even better. This feature would be particularly interesting
to prove.

As a final remark, we point out that increasing the factor base for our Twisted-PHS algorithm
has very little impact on the quality of the output. This is expected, since the log norm of the
prime ideals constrain the valuation of the output, as in the proof of Pr. 3.24. On the contrary,
increasing the factor base for the PHS and Opt-PHS variants clearly sabotages the quality of
their output, as their lattice description is blind to these prime norms.

3.5 Supplementary Experimental Data

This section provides extensive additional data for all targeted fields.

3.5.1 Geometric characteristics

First, Tab. 3.5 and 3.6 extend the example given in Tab. 3.4 to respectively all targeted cyclotomic
and NTRU Prime fields.

δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

raw bkz raw bkz raw bkz raw bkz
µ2 µ∞

real H. 3.29

Q(ζ23)

Ltw 32 3.796 0.999 0.999 1.667 1.437 31 50 69 77 7.637 4.349 0.636 0.570

L(0)
opt 32 1.515 1.030 1.009 2.477 1.615 40 60 76 81 3.120 1.706 0.676 0.612

L(0)

phs 32 2.083 1.056 0.998 4.689 1.490 34 60 75 81 4.287 2.621 0.690 0.612

Lopt 44 1.334 1.023 1.009 2.711 1.843 37 58 76 82 3.244 1.451 0.640 0.570

Lphs 65 1.246 1.021 1.002 3.141 2.067 21 58 76 82 3.703 1.588 0.640 0.517

Q(ζ29)

Ltw 41 4.175 1.001 1.001 1.622 1.579 47 50 77 81 9.594 4.214 0.633 0.537

L(0)
opt 41 1.616 1.025 1.005 2.742 1.870 40 41 78 82 3.772 1.925 0.660 0.580

L(0)

phs 41 2.333 1.047 0.996 5.885 1.664 34 48 77 83 5.850 3.175 0.675 0.580

Lopt 63 1.350 1.018 1.006 3.116 2.143 43 48 78 83 3.910 1.546 0.617 0.522

Lphs 90 1.271 1.017 1.005 4.211 2.560 36 30 77 82 4.547 2.123 0.664 0.474
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δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

raw bkz raw bkz raw bkz raw bkz
µ2 µ∞

real H. 3.29

Q(ζ31)

Ltw 20 4.144 1.004 1.004 1.682 1.330 16 48 77 79 6.877 4.026 0.753 0.597

L(0)
opt 20 10.36 1.051 0.930 3.029 1.269 41 58 76 82 26.93 18.10 0.808 0.669

L(0)

phs 20 21.14 1.071 0.897 4.168 1.186 30 62 76 84 70.21 49.41 0.825 0.669

Lopt 69 1.353 1.017 1.006 4.438 2.120 26 48 69 82 4.049 1.911 0.610 0.509

Lphs 99 1.273 1.016 1.005 5.606 2.650 23 30 70 83 4.699 2.341 0.660 0.461

Q(ζ37)

Ltw 53 5.092 0.999 0.999 6.393 1.688 3 48 53 82 13.16 5.894 0.651 0.504

L(0)
opt 53 1.694 1.020 1.007 6.969 1.977 8 55 61 82 4.481 2.079 0.635 0.545

L(0)

phs 53 2.621 1.040 0.998 9.801 1.767 28 55 74 83 7.578 3.901 0.641 0.545

Lopt 89 1.369 1.015 1.004 9.976 2.371 8 41 52 83 4.735 1.870 0.592 0.475

Lphs 126 1.292 1.013 1.005 11.80 3.082 10 37 53 83 5.938 2.567 0.682 0.430

Q(ζ41)

Ltw 59 4.825 1.001 1.001 3.596 1.802 11 47 69 81 12.91 5.186 0.615 0.489

L(0)
opt 59 1.786 1.020 1.005 4.525 1.986 34 55 76 83 5.112 2.245 0.629 0.530

L(0)

phs 59 2.767 1.037 0.997 8.986 1.809 45 55 79 84 8.535 4.039 0.639 0.530

Lopt 103 1.379 1.013 1.006 6.514 2.592 25 48 66 84 5.301 2.052 0.596 0.456

Lphs 144 1.306 1.012 1.004 7.982 3.651 29 49 71 83 6.536 2.772 0.687 0.414

Q(ζ43)

Ltw 62 5.413 1.000 1.000 19.05 1.800 0 48 50 82 15.12 6.541 0.647 0.483

L(0)
opt 62 1.773 1.018 1.005 19.51 2.019 2 60 53 83 5.165 2.246 0.622 0.524

L(0)

phs 62 2.826 1.035 0.997 21.51 1.806 7 55 62 84 9.056 4.253 0.641 0.524

Lopt 111 1.377 1.012 1.005 38.17 2.678 2 48 36 84 5.320 2.358 0.594 0.447

Lphs 154 1.307 1.012 1.007 48.72 3.997 2 56 32 82 6.968 2.796 0.709 0.405

Q(ζ47)

Ltw 68 5.896 0.999 0.999 38.31 1.736 0 47 50 83 17.09 7.888 0.664 0.471

L(0)
opt 68 1.819 1.017 1.007 39.31 2.171 1 60 52 83 5.525 2.597 0.618 0.511

L(0)

phs 68 2.952 1.033 0.999 41.95 1.940 3 60 57 84 10.09 4.343 0.645 0.511

Lopt 125 1.385 1.011 1.005 89.69 2.961 0 32 34 84 5.817 2.006 0.614 0.431

Lphs 173 1.316 1.011 1.004 137.8 4.360 1 55 26 83 7.570 2.862 0.713 0.391

Q(ζ53)

Ltw 77 5.385 1.002 1.002 149.6 1.891 0 47 49 83 15.71 6.309 0.617 0.455

L(0)
opt 77 1.928 1.016 1.005 152.0 2.315 0 60 49 83 6.381 2.382 0.611 0.495

L(0)

phs 77 3.145 1.030 0.998 154.6 2.053 0 47 51 84 11.88 5.677 0.635 0.495

Lopt 147 1.397 1.010 1.005 526.7 3.265 0 43 28 84 6.613 2.024 0.609 0.411

Lphs 202 1.330 1.010 1.006 763.2 5.214 0 56 22 83 8.930 3.166 0.708 0.373

Q(ζ59)

Ltw 144 6.871 0.999 0.999 813.3 2.045 0 46 33 85 28.12 7.960 0.570 0.391

L(0)
opt 144 1.490 1.010 1.004 821.0 3.301 0 37 34 84 7.091 2.378 0.602 0.414

L(0)

phs 144 1.785 1.016 1.003 831.9 3.064 0 48 34 85 9.122 2.849 0.575 0.414

Lopt 169 1.404 1.009 1.004 1181. 3.637 0 41 28 84 7.213 2.427 0.620 0.394

Lphs 232 1.338 1.009 1.006 1753. 6.011 0 55 21 83 10.30 3.598 0.723 0.357

Q(ζ61)

Ltw 89 6.550 1.000 1.000 868.4 1.763 0 46 49 84 21.69 7.293 0.614 0.437

L(0)
opt 89 1.971 1.014 1.005 881.5 2.425 0 57 49 84 7.081 2.807 0.610 0.475

L(0)

phs 89 3.365 1.027 0.999 895.4 2.192 0 57 50 84 14.36 6.576 0.637 0.475

Lopt 177 1.407 1.009 1.004 4765. 3.766 0 36 28 84 7.639 2.451 0.632 0.389

Lphs 242 1.342 1.008 1.006 7948. 6.408 0 49 21 83 10.74 4.002 0.732 0.352

Table 3.5 – Geometric characteristics of log-S-unit lattices for all non-principal cyclotomic
fields Q(ζm) of prime conductor m ≤ 61.
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δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

raw bkz raw bkz raw bkz raw bkz
µ2 µ∞

real H. 3.29

Q(z23)

Ltw 15 2.728 0.831 0.831 1.314 1.161 51 58 81 82 4.686 3.245 0.701 0.634

L(0)
opt 15 14.70 0.879 0.879 2.923 1.241 45 49 80 80 25.14 18.09 0.766 0.699

L(0)

phs 15 19.18 0.888 0.888 3.470 1.252 47 66 78 81 32.44 22.05 0.773 0.699

Lopt 48 1.298 0.958 0.958 2.949 1.966 32 57 76 81 3.480 1.702 0.657 0.558

Lphs 72 1.220 0.976 0.976 3.780 2.229 28 54 75 82 3.991 1.709 0.656 0.504

Q(z29)

Ltw 21 3.333 0.863 0.863 1.357 1.219 55 60 81 83 6.592 3.923 0.679 0.597

L(0)
opt 21 9.010 0.904 0.904 3.315 1.377 47 58 79 80 16.87 9.879 0.730 0.664

L(0)

phs 21 14.68 0.917 0.917 4.538 1.428 47 55 79 80 27.83 18.60 0.735 0.664

Lopt 66 1.329 0.967 0.967 3.733 2.336 38 56 77 82 4.184 1.972 0.665 0.515

Lphs 97 1.252 0.981 0.981 5.385 2.745 27 55 76 82 4.794 2.098 0.678 0.464

Q(z31)

Ltw 21 3.487 0.860 0.860 1.339 1.193 55 59 82 82 6.811 4.599 0.675 0.593

L(0)
opt 21 13.52 0.898 0.898 3.113 1.456 43 57 81 79 26.65 16.66 0.728 0.664

L(0)

phs 21 22.25 0.909 0.909 4.039 1.463 43 57 80 80 42.47 25.75 0.738 0.664

Lopt 73 1.333 0.970 0.970 3.906 2.423 34 57 78 82 4.526 2.064 0.656 0.502

Lphs 106 1.258 0.982 0.982 5.677 2.920 30 53 77 82 5.179 2.195 0.681 0.452

Q(z37)

Ltw 30 4.069 0.893 0.893 1.405 1.313 58 60 82 83 9.299 5.202 0.653 0.556

L(0)
opt 30 6.056 0.925 0.925 3.773 1.703 42 56 81 80 14.23 7.068 0.687 0.621

L(0)

phs 30 11.46 0.940 0.940 6.147 1.692 41 53 80 80 24.99 15.60 0.688 0.621

Lopt 93 1.348 0.975 0.975 4.627 2.897 38 55 78 82 5.337 2.247 0.662 0.470

Lphs 133 1.277 0.985 0.985 7.306 3.506 25 52 78 82 6.147 2.677 0.695 0.424

Q(z41)

Ltw 32 4.406 0.896 0.896 1.474 1.268 53 62 82 84 9.595 5.355 0.645 0.545

L(0)
opt 32 7.279 0.925 0.925 3.895 1.740 41 58 81 81 17.06 8.830 0.690 0.612

L(0)

phs 32 14.89 0.939 0.939 6.352 1.709 41 54 81 80 33.76 19.22 0.684 0.612

Lopt 108 1.355 0.978 0.978 5.385 3.073 35 58 79 83 5.740 2.448 0.686 0.450

Lphs 152 1.288 0.987 0.987 8.442 3.834 29 55 79 83 6.751 2.768 0.712 0.407

Q(z43)

Ltw 38 4.441 0.911 0.911 1.498 1.357 53 59 82 83 10.64 5.177 0.645 0.528

L(0)
opt 38 5.051 0.937 0.937 4.187 1.865 44 50 81 81 12.50 6.573 0.663 0.590

L(0)

phs 38 9.657 0.952 0.952 7.496 1.877 45 56 81 81 23.73 12.18 0.671 0.590

Lopt 114 1.367 0.979 0.979 5.482 3.256 36 57 79 83 6.119 2.803 0.687 0.443

Lphs 161 1.297 0.987 0.987 9.002 4.135 25 55 79 83 7.484 2.837 0.712 0.400

Q(z47)

Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519

L(0)
opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583

L(0)

phs 40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427

Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Table 3.6 – Geometric characteristics of log-S-unit lattices for all targeted NTRU Prime
fields Q(zq), for prime q ∈ J23, 47K.

These extensive data confirm the discussion made in §3.4.1. Note that these observations are
especially valid for NTRU Prime fields. An explanation of this phenomenon might lie in the fact
that for NTRU Prime fields, the norms of the factor base prime ideals are almost all distinct, so
that the twisted characteristic of our lattices is fully used.
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3.5.2 Gram-Schmidt norms of the lattice bases

We also provide the graphs showing the log norms of the Gram-Schmidt vectors for each field
and each log-S-unit lattice variant. These graphs confirm the discussion in §3.4.1, namely that in
the twisted case, the BKZ reduction has very little impact and that the sequence of norms does
not vary much. This corroborates the claim that our twisted lattices are much more orthogonal
than expected.

In the case of PHS and its variants, there is always a significant gap between the Gram-
Schmidt norms before and after the small block BKZ reduction, and the decrease of the log
norms is very pronounced and going down to 0.

Prime conductor cyclotomic fields.

Figure 3.6 – Log-S-unit lattices for Q(ζ23), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.7 – Log-S-unit lattices for Q(ζ29), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Figure 3.8 – Log-S-unit lattices for Q(ζ31), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.9 – Log-S-unit lattices for Q(ζ37), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.10 – Log-S-unit lattices for Q(ζ41), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Figure 3.11 – Log-S-unit lattices for Q(ζ43), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.12 – Log-S-unit lattices for Q(ζ47), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.13 – Log-S-unit lattices for Q(ζ53), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Figure 3.14 – Log-S-unit lattices for Q(ζ59), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.15 – Log-S-unit lattices for Q(ζ61), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

NTRU Prime fields.

Figure 3.16 – Log-S-unit lattices for Q(z23), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Figure 3.17 – Log-S-unit lattices for Q(z29), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.18 – Log-S-unit lattices for Q(z31), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.19 – Log-S-unit lattices for Q(z37), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Figure 3.20 – Log-S-unit lattices for Q(z41), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.21 – Log-S-unit lattices for Q(z43), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Figure 3.22 – Log-S-unit lattices for Q(z47), Gram-Schmidt log norms: (a) before and after
BKZ40 reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after BKZ40

reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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4.1 Introduction

A popular choice for lattice-based cryptography is to consider fractional ideals in some cyclotomic
field Km = Q[ζm] of conductor m 6≡ 2 (mod 4), e.g., m = 2048. In the last decade, there has
been a significant cryptanalytic effort trying to benefit from this additional algebraic structure
to solve Approx-Ideal-Svp, giving rise to a long series of works [CGS14, CDPR16, CDW17,
DPW19, PHS19a, BR20, CDW21]. All approaches start from a solution to the Class Group
Discrete Logarithm Problem (ClDlp), which is, given a fixed set of finite places corresponding
to prime ideals

{
p1, . . . , pk

}
of Km, and any challenge ideal b whose class in the class group of Km

belongs to the subgroup generated by the classes of the pi’s, to find α ∈ Km and e1, . . . , ek ∈ Z
such that:

〈α〉 = b ·
∏

1≤i≤k

peii .

In a quantum world, this problem is not hard to solve [EHKS14, BS16], so the most difficult
part of these cryptanalyses resides in reducing the Euclidean norm of α.

In the case of cyclotomic fields Km of conductor m, the Stickelberger ideal Sm of Km anni-
hilates its class group, by Stickelberger’s theorem. Thus, it was proposed in [CDW17, CDW21]
to use these free relations to help to reduce the algebraic norm of the ClDlp solution. More
precisely, since by [Sin78] (1 − τ)Sm, viewed as a Z-module, has full rank in (1 − τ)Z

[
Gm
]
,

where Gm = Gal(Km/Q) and τ ∈ Gm is induced by complex conjugation, it is a lattice of class
relations for the relative class group. Therefore, choosing a challenge ideal b and prime ideals
for the ClDlp in the relative class group, e.g., exactly one Galois orbit

{
pσ
}

for all σ ∈ Gm,

it is possible to express the reduction of a solution 〈α〉 = b · p
∑
eσσ as a closest vector problem

in (1− τ)Sm, where the target is the vector (eσ − eτσ)σ.

As noticed in [CDW21, Lem. 4.4 and 4.6], this lattice contains many short elements, i.e., ele-
ments of Z[Gm] of the form

∑
aσσ, where all aσ ∈ {0, 1}. In fine, this yields a good description

for finding sufficiently close vectors. Also, the plus part of the class group seems to be much
smaller than the relative part,18 hence every challenge b can be reduced to this case by randomly
searching for a small norm ideal c such that the class of cb belongs to the relative class group
[CDW21, Alg. 5].

4.1.1 In praise of short Stickelberger bases

Unfortunately, while in the prime conductor case the exhibited set of short elements from
[CDW21, §4.2] form a Z-basis of Sm, in the general case this family is only known to gener-
ate Sm as a Z-module. This comes at the expense of constructing a linearly independent subset
of vectors [CDW21, 2.2]. Whereas this is certainly possible without any geometric loss, using
e.g., [MG02, Lem. 7.1], it induces a slight growth of the Euclidean norm of the obtained basis
vectors. For some applications, this can have dramatic consequences and it is not clear whether
it is always possible to find a basis among all subsets of such a short generating set.

A very important point is that the proof of Stickelberger’s theorem, i.e., that the Stickelberger
ideal annihilates the class group, is completely explicit [Was97, §6.2]. Namely, for any prime
ideal p, and any α ∈ Sm, it builds an explicit γ ∈ Km such that 〈γ〉 = pα. However, if α has even
moderately large coefficients, this has an exponential impact on the height of the coefficients of γ,
that renders its computation rapidly intractable. On the contrary, having only short elements

18This is backed up by several theoretical and computational observations, see e.g., Weber’s conjecture h+
2e = 1,

Buhler, Pomerance and Robertson’s conjecture for odd prime powers [BPR04], and Schoof’s extensive calculations
in [Was97, Tab., §4] and [Sch03].
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in the basis keeps the algebraic norm of the generators as low as possible, namely N (p)ϕ(m)/2.
Explicitly computing Stickelberger generators is useful in at least two situations:

1. the first one is when reducing the algebraic norm of the ClDlp solution as in [CDW21], as
knowing explicit generators prevents to perform a quantum step – or, a classically costly
step – to recover the generator of the reduced ideal (see [CDW21, Th. 5.1] for the complete
workflow);

2. the second one occurs when one wants to use the knowledge of the Stickelberger relations
to approach some log-S-unit lattice. Indeed, suppose the finite places of S correspond to
one split Galois orbit

{
pσ
}

for all σ ∈ Gm. Then, from a maximal set of independent real

S+-units, where the finite places of S+ correspond to all relative norm ideals NKm/K+
m

(
pσ
)
,

adding explicit generators corresponding to a basis of the Stickelberger ideal, besides the
absolute norm, yields a maximal set of independent S-units, at the much smaller cost of
finding generators in the maximal real subfield.

In the latter case, note that knowing merely a short generating set of Sm instead of a Z-basis is
not sufficient to provide a full-rank family of independent S-units. Building a basis from such
a generating set using e.g., the Hermite Normal Form, an LLL reduction or [MG02, Lem. 7.1],
increases dramatically the size of the (possibly rational) coefficients of the respective generators.
Not to mention the computational burden to manipulate such elements, this significantly hinders
their potential use: for example, in the saturation process (see e.g., §5.2.4) that allows to approach
further log-S-unit lattices, it is vital to constrain both the number of elements and their size.
Hence, having in the first place an explicit short basis of Sm as a Z-module is particularly useful.

Historical results.

The first explicitly known basis of Sm, viewed as a Z-module, for any conductor m was given in
[Kuč92, Th. 6.2], but elements of this basis have rather large coefficients. In the prime conductor
case, a short basis can be found in [Sch08, Th. 9.3(i)], the shortness being proven in [Sch08,
Ex. 9.3]. This result has been extended to prime-power conductors in [CDW17], at the price of
allowing slightly larger coefficients [CDW17, Lem. 4(2)]. Finally, a large set of short generators
has been given in [CDW21, §4.2] in the general case for any conductor.

4.1.2 Contributions

In this work, our main result (see Th. 4.29) is to provide the first explicit basis of the Stickelberger
ideal Sm for any conductor m, viewed as a Z-module, that is constituted only of short elements,
i.e., elements of the form∑

σ∈Gm

aσσ ∈ Sm ⊂ Z
[
Gm
]
, where aσ ∈ {0, 1} for all σ ∈ Gm.

Actually, besides the absolute norm element, all other members of this short basis have ex-
actly ϕ(m)/2 non-zero coordinates. In the prime conductor case, our short basis coincides with
the basis given in [Sch08, Th. 9.3(i)]. One ingredient of independent interest in the proof is
Pr. 4.15, which describes a large family of short elements of Sm that encompasses the set from
[CDW21, §4.2], using a very simple arithmetic criterion in the spirit of [Was97, Lem. 16.3] when
m is an odd prime power. Picking wisely some elements αm(b) in this large family yields our
proposed short basis.

We also show how to explicitly compute algebraic integers generating Lαm(b), for any unram-
ified prime ideal L and any element αm(b) of our short basis. These generators can be expressed
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as Jacobi sums that turn out to be drastically more efficient to compute than the generators
given e.g., in [Was97, §6.2].

Finally, a nice theoretical consequence of our result is to derive an explicit upper bound on the
relative part h−m of the class number of Km. More precisely, for any conductor m 6≡ 2 (mod 4),
Cor. 4.32 gives that

h−m ≤ 21−a ·
(ϕ(m)

8

)ϕ(m)/4

,

where

a =

{
0 if m is a prime-power,

2t−2 − 1 if m has t > 1 prime divisors.

To our knowledge, the best explicit upper bound on the relative class number which is valid
for any conductor is given by [Lou14, 6]. However, whereas our bound is given by a simple
formula and easy to manipulate, Louboutin’s bound is difficult to instantiate for comparison in
the general case. As an example, the special case m = 4p, where p ≥ 3 is an odd prime, is
concretely treated in [Lou14, Th. 2], which results in the following upper bound:

h−4p ≤ 8
√
p ·
( p

16

)(p−1)/2

.

We stress that in this example, this upper bound is sharper than ours.
We should also mention that the proof of our bound indirectly gives an algorithm to com-

pute the relative class number by computing the determinant of some scaled Hadamard matrix:
incidentally, this method seems to be significantly more efficient than when using the traditional
analytic formula [Was97, Th. 4.17], when the number t of prime factors of m is small.

4.2 On Bases of S ′m
Recall that m > 1 is a positive integer such that m = q1q2 . . . qt 6≡ 2 (mod 4), where q1, . . . , qt
are pairwise coprime prime powers greater than 2.

4.2.1 A first basis of S ′
m

We first give a basis of S ′m constructed in the spirit of [Kuč92, Th. 4.2]. Let Xm and M−m be the
subsets of J1,mK defined in §2.2.1, and recall that M−m is exactly the set M− defined in [Kuč92,
p.293]. This set M−m has the following stability property:

Lemma 4.1. Let r | m, 0 < r < m, such that
(
r, mr

)
= 1. Let the set M−m

r
be defined using the

ordering of prime power divisors of m
r induced by the chosen ordering of prime power divisors

of m. Then {
a ∈M−m; r | a

}
=
{
rb; b ∈M−m

r

}
= r ·M−m

r
.

Proof. For any integer b, 0 < b < m
r , we have b ∈ Xm

r
if and only if for each i ∈ J1, tK such

that qi | mr , either (qi, b) = 1 or qi | b. This is the case if and only if for each i ∈ J1, tK, either
(qi, rb) = 1 or qi | rb, thus if and only if rb ∈ Xm.

If qi | mr for some i ∈ J1, tK then (qi, r) = 1, and so qi - rb if and only if qi - b, moreover
b 6≡ −(b, mr ) (mod qi) if and only if br 6≡ −(br,m) (mod qi).

If b - mr then for any i ∈ J1, tK such that qi | mr we have b 6≡ (b, mr ) (mod qi) if and only if
br 6≡ (br,m) (mod qi). Therefore we get the same k for b ∈ Xm

r
and for br ∈ Xm. Moreover

b
(b,mr )qk

= br
(br,m)qk

.

If b | mr then
{
i ∈ J1, tK; qi | mr , qi - b} =

{
i ∈ J1, tK; qi - rb}.
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Theorem 4.2. For any integer m > 1, m 6≡ 2 (mod 4), the set{
ωm(a); a ∈M−m

}
∪
{

1
2Nm

}
(4.3)

is a Z-basis of S ′m.

Proof. This can be proved similarly to the part of [Kuč92, Th. 4.2] about the Stickelberger ideal,
using Lem. 2.19, 2.31 and 2.32 instead of [Kuč92, Lem. 3.1, 3.2 and 3.4]. Indeed, the proof of
[Kuč92, Th. 4.2] about the Stickelberger ideal and its preparatory statements [Kuč92, Lem. 3.3
and 4.1 (for Ψ)] need the validity of only the following facts (using notations ω(a) and ω∗ from
[Kuč92]):

• the Stickelberger ideal is generated by
{
ω(a); 0 < a < m

}
∪
{
ω∗
}

as a group ([Kuč92,
Lem. 3.1]);

• these generators satisfy the relations of Lem. 2.31, where we write ω(a) instead of ωm(a)
([Kuč92, Lem. 3.2]);

• these generators satisfy the relations of Lem. 2.32, where we write ω(a) instead of ωm(a)
([Kuč92, Lem. 3.4]).

Therefore, this proof can be used mutatis mutandis to get a basis for any group generated by
generators satisfying these relations. Hence, plugging ω∗ = 1

2Nm and ω(a) = ωm(a), we deduce
the theorem from Lem. 2.19, 2.31 and 2.32.

The above basis inherits the stability property given in Lem. 4.1.

Proposition 4.4. For any given b ∈ Z, 0 < b < m, let rb be the maximal divisor of (b,m)
satisfying

(
rb,

m
rb

)
= 1, i.e., rb is the product of all qi, i ∈ J1, tK which divide b, and write

ωm(b) ∈ S ′m as a unique Z-linear combination of basis elements (4.3). Then for each a ∈ M−m
such that rb - a, the coefficient of ωm(a) in this Z-linear combination is equal to zero.

Proof. For brevity’s sake, let r = rb. By Eq. (2.29), ωm(b) = CorKm/Km
r

(
ωm
r

( br )
)
. Using Th. 4.2

for m
r implies ωm

r
( br ) ∈ S ′m

r
is a unique Z-linear combination of{

ωm
r

(a); a ∈M−m
r

}
∪
{

1
2Nm

r

}
.

Since by Eq. (2.29), CorKm/Km
r

(
ωm
r

(a)
)

= ωm(ra) and CorKm/Km
r

(
Nm

r

)
= Nm, and since the

corestriction map CorKm/Km
r

is a linear map, the proposition follows from Lem. 4.1.

In particular, for any positive r | m, 1 < r < m, such that
(
r, mr

)
= 1, the corestriction

subgroup CorKm/Km/r
(
S ′m/r

)
of S ′m has the following Z-basis{
ωm(a); a ∈ r ·M−m

r

}
∪
{

1
2Nm

}
.

4.2.2 An alternative basis of S ′
m: the prime-power case

In this section we shall suppose that m is a prime power q = pe, where p is a prime and e is
a positive integer. Let us mention explicitly that the case p = 2 is allowed whenever e ≥ 2 to
ensure q 6≡ 2 (mod 4). We set

M ′q = M ′pe =
{

1, . . . , ϕ(pe)
2

}
. (4.5)
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Theorem 4.6. For any prime power q = pe > 2, the set{
ωq(a); a ∈M ′q

}
∪
{

1
2Nq

}
(4.7)

is a Z-basis of S ′q.

Proof. We shall prove the theorem by induction with respect to e. If q is an odd prime or q = 4,
we have M ′q = M−q so this is just a special case of Th. 4.2.

Let us suppose that the theorem has been proved for pe > 2 and let us prove it for q = pe+1.
Let H be the subgroup of S ′q generated by the set (4.7). We shall show that H contains all ωq(a),
0 < a < q, so that it generates S ′q by Eq. (2.30).

Since ωq(q − a) = −ωq(a) by Eq. (2.28), the subgroup H contains also ωq(a) for each a ∈ Z
satisfying q − ϕ(q)

2 ≤ a < q. Suppose a = bp, using Eq. (2.29) we get

ωq(a) = CorKq/Kq/p
(
ωq/p(b)

)
.

Since CorKq/Kq/p is an injective linear map, the induction hypothesis implies ωq(a) is a linear

combination of 1
2Nq and of CorKq/Kq/p

(
ωq/p(t)

)
= ωq(tp) for t ∈ M ′q/p, which implies tp ∈ M ′q.

Thus, H contains ωq(a) whenever p | a. As for the remaining cases, let a ∈ Z be such that
ϕ(q)

2 < a < q − ϕ(q)
2 and p - a. Lemma 2.31 states that∑

t=0,...,q−1
t≡a (mod q/p)

ωq(t) = ωq(ap) ∈ H.

Since
(
q − ϕ(q)

2

)
− ϕ(q)

2 = q
p , there is only one t in the sum on the left hand side satisfying

ϕ(q)
2 < t < q− ϕ(q)

2 , namely t = a. All other summands are known to belong to H, and since we
just proved that ωq(ap) ∈ H, we deduce ωq(a) ∈ H.

We have shown that H generates S ′q. Since
∣∣M ′q∣∣ =

∣∣M−q ∣∣, the theorem follows.

4.2.3 An alternative basis of S ′
m: the general case

Now, we return to the general case where m = q1q2 . . . qt 6≡ 2 (mod 4). Let us fix i ∈ J1, tK.
Lemma 4.1 gives that{

a ∈M−m; m
qi
| a
}

= m
qi
·M−qi =

{
mb
qi

; pi - b, 0 < b < qi
2

}
.

Since CorKm/Kqi is an injective linear map, Pr. 4.4 and respectively Th. 4.6 combined with
Eq. (2.29) imply that the sets {

ωm(a); a ∈ m
qi
·M−qi

}
∪
{

1
2Nm

}
and {

ωm(b); b ∈ m
qi
·M ′qi

}
∪
{

1
2Nm

}
are Z-bases of the same subgroup CorKm/Kqi

(
S ′qi
)

of S ′m, so that there is an integral transition

matrix between these bases of determinant ±1. We stress that the sets m
qi
·M−qi (resp. m

qi
·M ′qi)

for i ∈ J1, tK are pairwise disjoint. Hence, it is natural to define

M ′m =
(
M−m \

t⋃
i=1

m
qi
·M−qi

)
∪
( t⋃
i=1

m
qi
·M ′qi

)
=
{
a ∈M−m; ∀i ∈ J1, tK, mqi - a

}
∪
( t⋃
i=1

{
mb
qi

; 1 ≤ b ≤ ϕ(qi)
2

})
. (4.8)
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which agrees with the previous definition of M ′pe . Easily adapting the proof of Lem. 4.1 gives

that for any r | m, 0 < r < m, such that
(
r, mr

)
= 1, we have{

a ∈M ′m; r | a
}

=
{
rb; b ∈M ′m

r

}
= r ·M ′m

r
.

Thus, we have proved that Th. 4.2 and Pr. 4.4 implies the following:

Theorem 4.9. For any integer m > 1, m 6≡ 2 (mod 4), the set{
ωm(a); a ∈M ′m

}
∪
{

1
2Nm

}
(4.10)

is a Z-basis of S ′m.

Proposition 4.11. For any given b ∈ Z, 0 < b < m, let rb be the maximal divisor of (b,m)
satisfying

(
rb,

m
rb

)
= 1, i.e., rb is the product of all qi, i ∈ J1, tK which divide b, and write

ωm(b) ∈ S ′m as a unique Z-linear combination of basis elements (4.10). Then, for each a ∈M ′m
such that rb - a, the coefficient of ωm(a) in this Z-linear combination is equal to zero.

Finally, keeping in mind that ωm(a) = θm(a)− 1
2Nm if m - a, we stress that all results of this

whole section are equally valid when replacing ωm(·) by θm(·), for example:

Corollary 4.12. For any integer m > 1, m 6≡ 2 (mod 4), the set{
θm(a); a ∈M ′m

}
∪
{

1
2Nm

}
(4.13)

is a Z-basis of S ′m.

Corollary 4.14. For any given b ∈ Z, 0 < b < m, let rb be the maximal divisor of (b,m)
satisfying

(
rb,

m
rb

)
= 1, i.e., rb is the product of all qi, i ∈ J1, tK which divide b, and write

θm(b) ∈ S ′m as a unique Z-linear combination of basis elements (4.13). Then, for each a ∈ M ′m
such that rb - a, the coefficient of θm(a) in this Z-linear combination is equal to zero.

4.3 Short Basis of the Stickelberger Ideal

Elements of Z[Gm] are called short if they are of the form∑
σ∈Gm

aσσ ∈ Z
[
Gm
]
, where aσ ∈ {0, 1} for all σ ∈ Gm.

We first exhibit a large family of short elements of Sm. Choosing carefully elements from this
family yields a basis (4.22) of S ′m with almost only short elements and also our short basis (4.30)
of the Stickelberger ideal Sm = S ′m ∩ Z

[
Gm
]
.

4.3.1 A family of short elements of Sm
In this section, we construct numerous short elements of Sm ⊂ S ′m which we shall use later on.

Proposition 4.15. Let a, b, c ∈ Z satisfy m - a, m - b, m - c, m | a+ b+ c. Then

α = θm(a) + θm(b) + θm(c)−Nm

is a short element of Sm. Moreover (1 + σm,−1)α = Nm, so exactly one half of the coefficients
of α are zeros.
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Proof. Using θm(c) + θm(−c) = Nm when m - c (see Eq. (2.17)), we obtain

α = θm(a) + θm(b)− θm(−c) =
∑

0<s≤m
(s,m)=1

({
−asm

}
+
{
− bsm

}
−
{
cs
m

})
σ−1
m,s.

Since 0 ≤ {x} < 1, every coefficient in the above sum is trivially bounded by

−1 <
{
−asm

}
+
{
− bsm

}
−
{
cs
m

}
< 2.

Moreover, let [x] = x− {x} ∈ Z be the integral part of x for any x ∈ Q. Then,{
−asm

}
+
{
− bsm

}
−
{
cs
m

}
= − (a+b+c)s

m −
[
−asm

]
−
[
− bsm

]
+
[
cs
m

]
∈ Z,

which proves that α is short. The last equality of the proposition follows again from Eq. (2.17)
and an easy observation that σm,−1θm(a) = θm(−a).

4.3.2 Bases of S ′
m with many short elements

We first describe the map αm, which associates to any b ∈ Z, 0 < b < m, one short element from
the family of Pr. 4.15. For any given b ∈ Z, let rb be the maximal divisor r of (b,m) satisfying
the condition (r, mr ) = 1. In other words,

rb =
∏
i∈Jb

qi, where Jb =
{
i ∈ J1, tK; qi | b

}
.

Let J ′b = J1, tK \ Jb =
{
i ∈ J1, tK; qi - b

}
, and let us suppose that 0 < b < m so that J ′b 6= ∅. We

define αm(b) as follows:

• If
∣∣J ′b∣∣ > 1, let u = qmin J′b

, and v = m
urb

. Since (u, v) = 1, the equation

ux+ vy = −1

has a solution x, y ∈ Z, where x is well-defined modulo v and y modulo u, so bux and bvy
are well-defined modulo m. Let

αm(b) = θm(b) + θm(bux) + θm(bvy)−Nm. (4.16)

• If J ′b = {j} then b = mc
qj

for a unique c ∈ Z, 0 < c < qj . If c > 1 we define

αm(b) = θm(−b) + θm
(
b− m

qj

)
+ θm

(
m
qj

)
−Nm, (4.17)

whereas if c = 1, so that b = m
qj

, we put

αm(b) = 2θm
(m·ϕ(qj)

2qj

)
+ θm

(
m
pj

)
−Nm. (4.18)

Intuitively, αm(·) is constructed by means of layers on
∣∣J ′b∣∣, similarly to what happens for M−m

as shown by Lem. 4.1. For
∣∣J ′b∣∣ = 1, we follow the prime power case of Th. 4.6, which is very

similar to [Sch08, Th. 9.3(i)] when m = p. For
∣∣J ′b∣∣ > 1 we use Bezout’s equality to write −b as

the sum of two summands bux and buy in such a way that both
∣∣J ′bux∣∣ and

∣∣J ′bvy∣∣ are strictly

smaller than
∣∣J ′b∣∣, so that both θm(bux) and θm(bvy) are generated by basis elements that were

already chosen in the previous layers. Any way of achieving this property works. In particular,
note that in the case

∣∣J ′b∣∣ > 1 we could use any other decomposition of m
rb

into the product of
relatively prime integers u > 1, v > 1.
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Lemma 4.19. For any integer m > 1, m 6≡ 2 (mod 4), the element αm(b) is short and satisfies
(1 + σm,−1)αm(b) = Nm for each positive integer b < m.

Proof. In the former case
∣∣J ′b∣∣ > 1, we have b + bux + bvy = 0. Since u - b, we have u - bvy;

similarly v - b implies v - bux. Hence αm(b) is short by Pr. 4.15. In the latter case J ′b = {j} for
some j ∈ J1, tK, we have that b writes as mc

qj
with c ∈ Z and 0 < c < qj , then αm(b) is short by

Pr. 4.15 again, because −b+ (b− m
qj

) + m
qj

= 0 and 2 · m·ϕ(qj)
2qj

+ m
pj

= m.

Theorem 4.20. For any integer m > 1, m 6≡ 2 (mod 4), the sets{
αm(b); b ∈M ′m,

∣∣J ′b∣∣ > 1
}
∪
{
θm(b); b ∈M ′m,

∣∣J ′b∣∣ = 1
}
∪
{

1
2Nm

}
, (4.21){

αm(b); b ∈M ′m \
{
m
q1
, . . . , mqt

}}
∪
{
θm
(
m
q1

)
, . . . , θm

(
m
qt

)}
∪
{

1
2Nm

}
(4.22)

are Z-bases of S ′m.

Proof. By definition of αm(b) in Eqs. (4.16) and (4.17), we know that all elements of these sets
belong to S ′m. We shall show that the transition matrices from the set (4.13) to the set (4.21) and
from the set (4.21) to the set (4.22) are, after a suitable reordering of elements of M ′m, triangular
with ±1 on the diagonal, which will prove the theorem.

At first, we deal with the transition matrix from the set (4.13) to the set (4.21) and we shall use
induction with respect to

∣∣J ′b∣∣. If
∣∣J ′b∣∣ = 1 then θm(b) belongs to both sets (4.13) and (4.21). So

suppose that
∣∣J ′b∣∣ > 1. Then the transition from θm(b) to αm(b) given in Eq. (4.16) uses θm(bux)

and θm(bvy) and the coefficient of θm(b) is 1. By Cor. 4.14, θm(bux) is a Z-linear combination
of θm(a) for a running over M ′m such that rbux | a. For these a’s, we have that

J ′a ⊆ J ′rbux = J ′bux ( J ′b,

since min J ′b /∈ J ′bux by definition of u. Hence, all these θm(a) are covered by induction, and so
is θm(bux). The case of θm(bvy) can be treated similarly.

Now, let us consider the transition matrix from the set (4.21) to the set (4.22). Suppose

that J ′b = {j} and b = mc
qj

for some c ∈ Z, 1 ≤ c ≤ ϕ(qj)
2 . If c = 1 then θm(b) belongs to both

sets (4.21) and (4.22). If c > 1 then the transition from θm(b) to αm(b), by Eqs. (4.17) and (2.17),
writes as

αm(b) = −θm(b) + θm
(
b− m

qj

)
+ θm

(
m
qj

)
.

Since J ′b−m/qj = J ′m/qj = J ′b, both θm
(
b− m

qj

)
= θm

(
m
qj

(c− 1)
)

and θm
(
m
qj

)
were already covered

by induction. The coefficient of θm(b) is −1.

4.3.3 A basis of Sm with only short elements

Recall that the Stickelberger ideal of Km is the intersection Sm = S ′m ∩ Z[Gm]. Let S ′′m be the
subgroup of S ′m generated by the set{

αm(a); a ∈M ′m
}
∪
{

1
2Nm

}
. (4.23)

We shall prove that S ′′m = Sm + 1
2Nm · Z and that Eq. (4.23) is its basis. We shall start by

computing its finite index in S ′m. First, we treat the prime power case.
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Lemma 4.24. Let q = pe > 2, where p is a prime and e is a positive integer. Then the index of
S ′′q in S ′q is finite and

[S ′q : S ′′q ] =

{
q
2 if p = 2,

q if p > 2.

Proof. To obtain the index [S ′q : S ′′q ], let us compute the transition matrix from{
θq(a); a ∈ Z, 1 ≤ a ≤ ϕ(q)

2

}
∪
{

1
2Nq

}
, (4.25)

which is a Z-basis of S ′q by Cor. 4.12, to the system of generators of S ′′q , i.e.,{
αq(a); a ∈ Z, 1 ≤ a ≤ ϕ(q)

2

}
∪
{

1
2Nq

}
. (4.26)

This transition matrix is given by Eqs. (4.18) and (4.17). More precisely, using also Eq. (2.17),
we obtain in the studied special case that

αq(a) =

{
θq
(
pe−1

)
+ 2θq

(ϕ(q)
2

)
−Nq if a = 1,

θq(1) + θq(a− 1)− θq(a) if 2 ≤ a ≤ ϕ(q)
2 .

Since 1
2Nq belongs to both sets (4.25) and (4.26), we can ignore this element in the computation

of the determinant of the transition matrix.
At first, let us assume that p > 3. Then pe−1 < pe−1 · p−1

2 = ϕ(q)
2 . We shall compute the

determinant of the following square matrix of dimension ϕ(q)
2

0 0 0 0 · · · 1 · · · 0 0 2
2 −1 0 0 · · · 0 · · · 0 0 0
1 1 −1 0 · · · 0 · · · 0 0 0
1 0 1 −1 · · · 0 · · · 0 0 0
...
...

...
...

...
...
...

...
1 0 0 0 · · · 0 · · · 1 −1 0
1 0 0 0 · · · 0 · · · 0 1 −1


, (4.27)

where the 1 in the first row belongs to the pe−1th column (which is the first column if e = 1).
The sum of all rows but the first one, multiplied by 2, equals(

ϕ(q) 0 0 0 · · · 0 · · · 0 0 −2
)
.

We add this row to the first row of our matrix. If e > 1, we also add to the first row the sum of
all rows from the second one to the pe−1th one, i.e.,(

pe−1 0 0 0 · · · −1 · · · 0 0 0
)
.

After this computation we get a lower triangular matrix of determinant ±q. As this determinant
is nonzero, the set (4.26) is a Z-basis of S ′′q and the index [S ′q : S ′′q ] equals the absolute value of
the determinant. The lemma follows for p > 3.

Now, suppose p = 3. Then pe−1 = ϕ(q)
2 and the square transition matrix of dimension 3e−1

writes as 

0 0 0 0 · · · 0 0 3
2 −1 0 0 · · · 0 0 0
1 1 −1 0 · · · 0 0 0
1 0 1 −1 · · · 0 0 0
...
...

...
...

...
...

...
1 0 0 0 · · · 1 −1 0
1 0 0 0 · · · 0 1 −1


.
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If e = 1 then the only entry of our matrix of dimension 1 is 3. If e > 1, the sum of all rows but
the first one, multiplied by 3, is equal to(

3e 0 0 0 · · · 0 · · · 0 0 −3
)
.

Adding this row to the first row, we again get a lower triangular matrix of determinant ±q, which
gives the lemma in the case p = 3.

Finally, we treat the case p = 2. Then, by Eqs. (2.16) and (2.17), we have

θq(2
e−1) = θq(2

e−1 − q) = θq(−2e−1) = Nq − θq(2e−1),

so θq(2
e−1) = 1

2Nq. Therefore we have got almost the same matrix as written in Eq. (4.27),
except that in the first row the only non-zero element is the 2 at the very end. By the same
approach as above, we obtain that the determinant of this matrix is equal to ±ϕ(q) = ± q2 and
the lemma in the case p = 2 follows.

Proposition 4.28. For any integer m > 1, m 6≡ 2 (mod 4), the set (4.23) is a basis of S ′′m,
whose finite index in S ′m is given by

[S ′m : S ′′m] =

{
m
2 if m is even,

m if m is odd.

Proof. This is similar to the proof of Th. 4.9. The following sets are pairwise disjoint for i ∈ J1, tK{
mb
qi

; b ∈M ′qi
}

=
{
a; a ∈M ′m, m

qi
| a
}
.

Since CorKm/Kqi is an injective linear map, the transition matrix from the Z-basis (4.21) of
S ′m, given by Th. 4.20, to the system of generators (4.23) of S ′′m is a block diagonal matrix,
having (besides plenty of trivial blocks of dimension 1 containing 1) one nontrivial block for each
i ∈ J1, tK. For a given i, the nontrivial block is equal to the matrix considered in Lem. 4.24 for
q = qi. Since the determinant of this transition matrix is equal to the product of determinants
of these nontrivial blocks, it is nonzero and the proposition follows.

We are now ready to state our main theorem, which in particular implies the afore-mentioned
relation S ′′m = Sm + 1

2Nm · Z.

Theorem 4.29. For any integer m > 1, m 6≡ 2 (mod 4), the set{
αm(a); a ∈M ′m

}
∪
{
Nm
}

(4.30)

is a Z-basis of the Stickelberger ideal Sm of Km having only short elements.

Proof. Let S̃m denote the subgroup of S ′m generated by the set (4.30). Each element of (4.30) is
short by Lem. 4.19, in particular it belongs to Z[Gm], so that

S̃m ⊆ Z[Gm] ∩ S ′m = Sm. (4.31)

The indices [S ′m : Sm] = w and [S ′m : S ′′m] = w
2 are given by Lem. 2.26 and Pr. 4.28, respectively.

In particular, by Pr. 4.28, the set (4.23) is linearly independent; comparing with the set (4.30),

we see that the set (4.30) is also linearly independent and that S̃m is a subgroup of S ′′m of index

[S ′′m : S̃m] = 2. Hence,

[S ′m : S̃m] = [S ′m : S ′′m] · [S ′′m : S̃m] = w = [S ′m : Sm],

and the inclusion (4.31) gives S̃m = Sm. The theorem follows.
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4.4 An Upper Bound on the Relative Class Number

Our short basis of the Stickelberger ideal Sm, given in Th. 4.29, allows to derive a simple upper
bound on the relative class number of any cyclotomic field.

Corollary 4.32. Let m > 1 be an integer satisfying m 6≡ 2 (mod 4), let t be the number of
primes dividing m. The relative class number h−m of the m-th cyclotomic field satisfies

h−m ≤ 21−a ·
(ϕ(m)

8

)ϕ(m)/4
,

where ϕ() is Euler’s totient function and

a =

{
0 if t = 1,

2t−2 − 1 if t ≥ 2.
(4.33)

Proof. Recall that, for any integer s relatively prime to m, σm,s ∈ Gm denotes the automorphism
of the m-th cyclotomic field Km sending any m-th root of unity to its s-th power. In particular,
σm,−1 is the restriction of the complex conjugation. Following Sinnott, let Rm = Z[Gm] and

R−m = {α ∈ Rm; (1 + σm,−1)α = 0},
Am = {α ∈ Rm; (1 + σm,−1)α ∈ NmZ}.

Moreover, for any submodule M ⊆ Rm we define M− = M ∩ R−m. Using [Sin80, Lem. 1.2(a)],
multiplication by 1 + σm,−1 gives

[Am : Sm] = [(1 + σm,−1)Am : (1 + σm,−1)Sm] · [A−m : S−m].

It is clear that (1 + σm,−1)Am = (1 + σm,−1)Sm = NmZ and that A−m = R−m. Therefore, using
[Sin78, Th., p.107] and the remark following Lem. 2.19, we have

[Am : Sm] = [R−m : S−m] = 2a · h−m, (4.34)

where a is defined by Eq. (4.33).
We use our short basis Eq. (4.30) of Sm given in Th. 4.29 to get a bound on [Am : Sm]. First,

a Z-basis of Am is given by{
βm(s); 1 ≤ s < m

2 , (s,m) = 1
}
∪
{
γm
}
, (4.35)

where βm(s) = σm,s − σm,−s and

γm =
∑

1≤s<m
2

(s,m)=1

σm,s.

An easy calculation gives

Nm = 2γm −
∑

1≤s<m
2

(s,m)=1

βm(s).

For each b ∈M ′m, let us define integers ab,s, where 1 ≤ s < m, (s,m) = 1, by

αm(b) =
∑

1≤s<m
(s,m)=1

ab,sσm,s.
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By Lem. 4.19, we have ab,s + ab,m−s = 1, so that

αm(b) = γm +
∑

1≤s<m
2

(s,m)=1

(ab,s − 1)βm(s).

The index [Am : Sm] is given by the absolute value of the determinant of the transition matrix
from the basis (4.30) of Sm to the basis (4.35) of Am, i.e.,

[
Am : Sm

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

2 −1 . . . −1

1

...

1




(
ab,s − 1

)
b∈M′m

1≤s<m
2
, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We subtract one half of the first row from each of the other rows to get

[
Am : Sm

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

2 −1 . . . −1

0

...

0




(
ab,s − 1

2

)
b∈M′m

1≤s<m
2
, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2 ·

∣∣∣∣∣∣∣∣∣∣∣
det




(
ab,s − 1

2

)
b∈M′m

1≤s<m
2
, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣
. (4.36)

By Lem. 4.19 we know that ab,s ∈ {0, 1}, and so ab,s − 1
2 ∈

{
− 1

2 ,
1
2

}
. So the length of each

row of this matrix, as a vector in the Euclidean space of dimension ϕ(m)
2 , is equal to 1

2

√
ϕ(m)

2 .

Therefore, by Hadamard’s inequality,

[Am : Sm] ≤ 2 ·
(

1

2

√
ϕ(m)

2

)ϕ(m)/2

.

A comparison with Eq. (4.34) gives the corollary.

Remark 4.37. For the marginal cases where 4 - ϕ(m)
2 , better bounds exist for these scaled

Hadamard matrices (see [BEHC21]) that directly translate into slightly better bounds for h−m.
We do not dive into the details here.

4.5 Effective Short Stickelberger Generators

Let m > 1 satisfy m 6≡ 2 (mod 4). Let ` be any prime such that (`,m) = 1 and let L be a fixed
(unramified) prime ideal above ` of inertia degree f in the m-th cyclotomic field Km. The aim
of this section is to describe an algebraic integer of Km generating the principal ideal Lαm(b) for
each b ∈M ′m.

Of course, we shall use Gauss sums. Recall that for any positive integer r, we let ζr = e2πi/r.
Let F = Z[ζm]

/
L be the finite field of cardinality N (L) = `f , and let χL be the m-th power

Legendre symbol with respect to L, i.e., for any a ∈ F×, the m-th root of unity χL(a) ∈
〈
ζm
〉

is
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determined by the condition that χL(a) belongs to the class a(N (L)−1)/m. We extend as usual
characters to F by setting χL(0) = 0. For any integer b, we have the following Gauss sum,
where Tr : F→ F` is the trace map in the field extension F

/
F`,

gL(b) = −
∑
y∈F

χL(y)bζ
Tr(y)
` ∈ Z[ζm`].

For any integers u ≡ 1 (mod m), ` - u, and v ≡ 1 (mod `), (v,m) = 1, an easy computation
gives (see e.g., [Sin80, (3.3) and (3.5)])

σm`,u
(
gL(b)

)
= χL(u)−b · gL(b), (4.38)

σm`,v
(
gL(b)

)
= gL(vb). (4.39)

Hence, gL(b)m ∈ Z[ζm] by Eq. (4.38). Moreover, we have the well-known Stickelberger factoriza-
tion (see e.g., [Sin80, (3.4)])

gL(b)m · Z[ζm] = Lmθm(b). (4.40)

We want to describe an explicit generator of the principal ideal Lαm(b) for each b ∈ M ′m.
Since each αm(b) is given by the general construction from Pr. 4.15 (see the proof of Lem. 4.19),
we shall start more generally.

Proposition 4.41. For any a, b ∈ Z such that m - a, m - b, m - a+ b, let

α = θm(a) + θm(b)− θm(a+ b) ∈ Z[Gm]

be one of the short elements given by Pr. 4.15. Then the Jacobi sum

JL(a, b) = −
∑
y∈F

χL(y)aχL(1− y)b ∈ Z[ζm]

satisfies JL(a, b) · Z[ζm] = Lα.

Proof. By [Was97, Lem. 6.2(d)], we have

JL(a, b) =
gL(a)gL(b)

gL(a+ b)
.

Thus, the result directly follows from Eq. (4.40) and the fact JL(a, b) ∈ Z[ζm].

As an example of application of Pr. 4.41, let us consider any b ∈ M ′m such that
∣∣J ′b∣∣ > 1.

Then the short element αm(b) is given by Eq. (4.16), so that

Lαm(b) = JL(bux, bvy) · Z[ζm],

where u = qmin J′b
, v = m

urb
, and x, y ∈ Z satisfy ux+ vy = −1.

Furthermore, it is clear that u, v, x, y do not depend on b but only on J ′b. Therefore, having
another c ∈ M ′m such that J ′c = J ′b, there is an integer s relatively prime to m satisfying c ≡ sb
(mod m), so that Eq. (4.39) gives

JL(cux, cvy) = JL(sbux, sbvy) = σm,s
(
JL(bux, bvy)

)
.

Hence, computing generators of Lαm(b), for all b ∈M ′m with
∣∣J ′b∣∣ > 1, comes down to the compu-

tation of exactly one representative Jacobi sum per set J ′b, then applying a suitable automorphism
to obtain the generator for Lαm(c) whenever J ′c = J ′b.
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4.6 Practical Results

We implemented in practice the computation of our short Stickelberger bases from Th. 4.29 using
SageMath [Sag20] on an Intel® Core™ i7-8650U @3.2GHz.

All involved algebraic criteria are very easy to compute, so that obtaining the short bases
is actually a matter of seconds for any reasonable conductor. We verified, for all conductors
m < 10000, m 6≡ 2 (mod 4), such that ϕ(m) ≤ 2000, that the Hermite Normal Form (HNF) of
the short basis from Th. 4.29 coincides with the HNF of the large basis from [Kuč92, Th. 6.2].

We stress that using a naive trial-and-error strategy to extract a short basis from a large set
of short vectors, e.g., from the set W of [CDW21, §4.2], may converge only after a huge number of
iterations, each involving the computation of a costly HNF. This is especially hazardous when the
number of prime divisors of m grows, e.g., our brute force experiment for m = 780 = 22 · 3 · 5 · 13
never finished despite the relatively small dimension ϕ(m) = 192.

More interestingly, we used the determinant formula for
[
Am : Sm

]
given in Eq. (4.36) to

derive the relative class number h−m from Eq. (4.34). We checked, for the same range of conductors
as above, that the obtained values coincide with the values given by the analytic class number
formula given in Eq. (2.10). Surprisingly, we observed that the determinant computation is
very competitive, especially when the number of distinct prime factors of m is small. Some
comparative timings are provided in Tab. 4.1.

m q1 . . . qt ϕ(m)
Time h−m (s)

Analytic [Am : Sm]

1139 17 · 67 1056 12.6 8.1
1495 5 · 13 · 23 1056 7.6 7.9
4140 22 · 32 · 5 · 23 1056 4.8 8.5

2283 3 · 761 1520 25.1 21.8
2865 3 · 5 · 191 1520 16.3 21.0

1951 1951 1950 78.8 60.3

2171 13 · 167 1992 57.6 35.6
2495 5 · 499 1992 53.8 41.7
6012 22 · 32 · 167 1992 28.3 40.2

Table 4.1 – Comparative timings for computing the relative class number h−m using resp. the
analytic formula Eq. (2.10) and the index formula for [Am : Sm] in Eq. (4.36), for
a few representative examples.

Finally, we verified that relations Lαm(b) = JL(a1, a2) · Z[ζm] hold true in small dimensions
(up to ϕ(m) = 80). We note that computing explicitly such generators using the Jacobi sum
formalism is very easy for any m. For instance, taking m = 2003 and ` = 48073 ≡ 1 (mod m),
the computation of all ϕ(m)/2 generators corresponding to Lαm(b), for all b ∈ M ′m and some L
above ` takes under 15 minutes, i.e., less than 1 second per generator.

By contrast, using suitable combinations of Gauss sums to obtain e.g., generators for the
relations L(a−σm,a)·θm(−1) of [Was97, 6.9] imposes to work in Q

[
ζm`
]
. Even using all available

algorithmic tricks, such as using sparse polynomials modulo xm` − 1, replacing divisions by the
use of the identity gL(b) · gL(−b) = ±N (L) [Was97, 6.1(b)] and profitting from Eq. (4.39), this
is arguably intractable in the above case when m` = 96 290 219, and still takes over 39 seconds
per generator when restricting to the first split prime ` = 4007.
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5.1 Introduction

Even though the theoretically proven trade-off between runtime and approximation factor is the
same for the Twisted-PHS algorithm as for the PHS algorithm (see Th. 3.1 and 3.14), experimen-
tally, very significant improvements compared to the original PHS algorithm are illustrated in
Fig. 3.4 and 3.5. In particular, the implementation provided in GitHub: ob3rnard/Twisted-PHS7

allowed us to test the Twisted-PHS algorithm in number fields of degree up to 60, while achiev-
ing much better approximation factors than the original [PHS19a] implementation. However,
reaching larger degrees was limited by the classical complexity of the algorithm.

5.1.1 Our contributions

Our first contribution is to succeed in performing new experiments on the Twisted-PHS algo-
rithm, in almost all cyclotomic fields up to degree 210, thanks to a novel approach which allows
us to significantly improve the running time of the preprocessing phase. The approximation
factors obtained in our experiments, as detailed in Fig. 5.1, show that the Twisted-PHS algo-
rithm performs much better (over the considered experimental range) than the CDW algorithm,
which was the previously best-known algorithm. More interestingly, the obtained approximation
factors are comparable to the volumetric lower bound for the CDW algorithm experimentally
obtained in [DPW19] in the prime conductor case, and sometimes even smaller.

Figure 5.1 – Approximation factors comparison for cyclotomic fields Km of degree ϕ(m) ≤ 210
with h+

m = 1, under the Gaussian Heuristic. Our results, labelled as “2-saturated
URS”, bound Twisted-PHS from above.

We stress that one main goal of our experiments is to break the small dimension barrier and
reach ranges of parameters where asymptotic phenomena — e.g., the exponential growth of the

7https://github.com/ob3rnard/Twisted-PHS

https://github.com/ob3rnard/Twisted-PHS
https://github.com/ob3rnard/Twisted-PHS
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class number — start to express. Though experimental data as the one we obtain are not enough
to provide an asymptotical result concerning the approximation factor, we stress that pushing
experiments up to degree 210 is a significant breakthrough, and to our knowledge, no other ex-
periments of S-unit attacks beyond degree 70 have been publicly reported two years after those
presented in Ch. 3. We run the (practical version of the) Twisted-PHS algorithm using full-rank
log-S-unit sublattices on simulated random targets to see how the final approximation factor
evolves with the dimension in our regime. Additionally, we compute several geometrical param-
eters on the basis obtained by our implementation to study their quality, as done in §3.4: the
root-Hermite factor δ0, the orthogonality defect δ and the logarithm of the Gram-Schmidt norms.
We are able to confirm the peculiar geometric nature of the log-S-unit lattice already observed
in §§3.4.1 and 3.4.2, across all considered cyclotomic fields, sublattices and factor bases. These
recurrent observations in very different regimes suggest that this phenomenon has a possibly deep
explanation, an observation that has been recently developed by Bernstein and Lange [BL21].
For example, to give an idea of the striking ease of reduction of these log-S-unit sublattices, we
report that in our biggest field example, BKZ40 terminates in around 7 minutes (resp. 30) for our
lattices in dimension 1154 (resp. 1574), which is unusually fast at these dimensions. Moreover,
we provide a full implementation, which is publicly available at GitHub: ob3rnard/Tw-Sti8.

Due to the classical complexity of computing S-units, reaching degrees beyond 100 is not
directly possible using the algorithms given in Ch. 3, and is the result of both theoretical and
implementational improvements. We compute full-rank sublattices of the log-S-unit lattice for
cyclotomic fields Km of any conductor m from degree 20 up to degree 210. To obtain these
results, our main theoretical contribution is to exhibit in §5.2 a full-rank family of independent S-
units lifted from the maximal real subfield K+

m of Km. One step of this construction is to use
explicit Stickelberger generators that are easy to compute using Jacobi sums, as shown in §4.5
and specialized in §5.2.1 with additional insights. Hence, we obtain a full-rank sublattice of the
log-S-unit lattice, at the much lower cost of computing class group relations in the maximal
real subfield of half degree. We also provide in Th. 5.14 a closed formula for the multiplicative
index of this full-rank family inside the whole S-unit group. This index allows to quantify the
comparison between our new approach and the previous one from Ch. 3. Though we first obtain
sublattices of large index in the full log-S-unit lattice, we are able to mitigate it by using classical
saturation techniques recalled in §5.2.4.

As a minor contribution, we apply these results to show in §5.3 how to benefit from these
explicit Stickelberger generators to remove most quantum steps of the CDW algorithm [CDW21].
Namely, we remove the last Pip resolution, and also, under a relatively harmless restriction
that the plus part of the class number verifies h+

m ≤ O(
√
m) (Hyp. 5.18), the random walk to

the relative class group, replaced with a single call to a quantum class group computation in
dimension ϕ(m)/2. The latter should also yield in practice better approximation factors, by
allowing to choose the finite places of S of smallest possible norms.

5.1.2 Technical overview

Let S be a set of places where the finite places correspond to a collection of full Galois orbits of
split prime ideals. Our full-rank family F of independent S-units is composed of three parts:

1. circular units, defined e.g., in [Was97, §8] and for which an explicit basis can be found in
[Kuč92, Th. 6.1];

2. Stickelberger generators, as explicitly given by the proof of Stickelberger’s theorem, see for
example [Sin80, Eq. (3.4)];

8https://github.com/ob3rnard/Tw-Sti

https://github.com/ob3rnard/Tw-Sti
https://github.com/ob3rnard/Tw-Sti
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3. real S+-units (apart from real units), where S+ is the set S ∩K+
m of places of S restricted

to the maximal real subfield K+
m of Km.

In the context of the cryptanalysis of id-Svp, the set of circular units has already been used to
reduce the size of principal ideal generators in [CDPR16, CDW17] for m being a prime power,
in [HWB17] when m has two distinct prime factors and finally in [CDW21] in the general case.
Using free relations in the class group Clm coming from Stickelberger’s theorem was suggested
in [CDW17, CDW21], where many short relations were identified [CDW21, Lem. 4.4]. For the
first time, we use for cryptanalysis the main results from Ch. 4:

• the knowledge of an explicit short Z-basis of the Stickelberger ideal for any conductor from
Th. 4.29,

• the effective computation of generators corresponding to these short relations, using Jacobi
sums as in §4.5.

Compared to [CDW17, CDW21], we stress that only knowing a short generating set of the
Stickelberger ideal is not necessarily sufficient for our purpose. Indeed, though it would be
possible to build a basis from such a generating set to solve the Cvp like in [CDW21, Cor. 2.2]
without any geometric loss, using e.g., [MG02, Lem. 7.1], the slight Euclidean norm growth
of the obtained basis vectors however translates into a dramatic increase of the size of the
(possibly rational) coefficients of the corresponding generators, in a way that significantly hinders
subsequent computations. In particular, in order to climb dimensions as far as possible and best
approach log-S-unit lattices using the saturation process described in §5.2.4, it is crucial to
constrain both the number of elements we use and their size, i.e., to use a short basis of the
Stickelberger lattice. As for the last part, obtaining a full-rank lattice of class relations was done
in [CDW17] using relative norm relations NKm/K+

m
(L) = L1+τ , where the L’s are chosen in the

relative class group, to obtain the so-called “extended Stickelberger lattice”. We extend this
result by considering the lattice of all real class relations between the relative norms of ideals of
any class.

The multiplicative index of this family in the full S-unit group is explicitly given by our
Th. 5.14. This index contains a large power of 2 that can be removed using classical 2-saturation
techniques of §5.2.4, leading to a family Fsat.

Removing quantum steps from the CDW algorithm.

In the context of the CDW algorithm, we first propose in §5.3 an equivalent rewriting of [CDW21,
Alg. 7] that enlightens some hidden steps that reveal useful for subsequent modifications. Then,
we plug the explicit Stickelberger generators and real generators described above to remove the
last call to the quantum Pip solver. Finally, by considering the module of all real class group
relations, we remove the need of a random walk mapping any ideal of Km into Cl−m, at the small
price of restricting to cyclotomic fields such that h+

m ≤ O(
√
m) (Hyp. 5.18), whereas [CDW21,

Ass. 2] uses h+
m ≤ poly(m). Then, only two quantum steps remain: the first is performed only

once in dimension ϕ(m)
2 to compute real class group relations and generators, the second is for

solving the ClDlp for each query.

Simulating the Twisted-PHS algorithm.

Finally, we apply the practical version of the Twisted-PHS algorithm from §3.3 on our full-rank
sublattices of the log-S-unit lattice. This is actually an approximated mode of the Twisted-PHS
algorithm, as Twisted-PHS normally uses the full log-S-unit lattice for an optimal number of
orbits d = dmax maximizing the density of the full log-S-unit lattice, as predicted by Alg. 3.3,
which we estimated using the analytic class number formula. However, in our case, the family Fsat
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has index roughly (h−m)d−1, which is sufficiently large so that this optimal factor base phenomenon
does not hold. More precisely, the density of the log-S-unit sublattice associated to Fsat decreases
as soon as d > 1.

We fully implement the construction of the lattices associated to F, Fsat and to fundamental
elements of the full S-unit group Fsu when available (up to degree 80) for the first d split
prime orbits with d ∈ J1, dmaxK, including the computation of Stickelberger generators and real
generators. We evaluate the geometry of all these lattices with standard indicators described in
§2.4.3, and observe consistently the same phenomenons already observed in §§3.4.1 and 3.4.2, that
indicate close to orthogonal lattices. Moreover, as computing ClDlp solutions for random ideals
is not possible, we simulate the query phase via random targets. The approximation factors
obtained in this mode give an upper bound on what can be expected when using Twisted-PHS.
Notably, they are already much smaller than the ones obtained using the CDW algorithm, and
sometimes beat the volumetric lower bound experimentally derived in [DPW19]. We stress that,
up to degree 80 when the full S-unit group is computable, our results match, under the Gaussian
Heuristic, the exact approximation factors obtained by Fig. 3.4.

Remark 5.1. Similar techniques for the construction of S-units may be used in a concurrent work
by Bernstein, Eisenträger, Rubin, Silverberg and van Vredendaal, as announced in a
talk by Bernstein on 20th August 2021 at SIAM Conference in the power of 2 conductor case
up to degree 64 assuming h+

2e = 1.

5.2 An Explicit Full-Rank Family of Independent S-units

In this section, we exhibit a full-rank family of independent S-units, where the finite places of S
correspond to a collection of full Galois orbits of split prime ideals. As mentioned in introduction,
this family is composed of three parts:

1. Circular units are given in §2.2.4 using the material from [Kuč92, Th. 6.1];

2. Stickelberger generators are given in §4.5 in the general case, and specialized in §5.2.1 in
the split case together with additional remarks on their complex embeddings and on how
our short basis relates to the results of [CDW17, CDW21];

3. Real S+-units (apart from real units), where S+ = S ∩K+
m, are in §5.2.2.

Considering real S+-units and proving in §5.2.3 the multiplicative index of our family in the full
S-unit group constitute our main theoretical contributions. Finally, the saturation process used
to mitigate this index is described in §5.2.4.

Remark 5.2. Recall that the prime factorization of m 6≡ 2 mod 4 is written as m = q1q2 · · · qt,
where qi = peii > 2 for i ∈ J1, tK. The rest of the section uses the subsets M+

m and M ′m of J1,mK
from resp. §2.2.1 and Eq. (4.8) to describe resp. a fundamental family of circular units and a
short Z-basis of the Stickelberger ideal of Km.

5.2.1 Stickelberger generators

Recall from §2.2.5 that the Stickelberger ideal provides free relations in the class group of Km,
by Stickelberger’s fundamental theorem Th. 2.22. In this section, we essentially rephrase Pr. 4.15
and Th. 4.29, giving additional insight on how these results relate to [CDW17, CDW21].

A short basis of the Stickelberger lattice.

An element of the integral group ring Z[Gm] is called short if it is of the form
∑
σ∈Gm aσσ

in Z[Gm], where aσ ∈ {0, 1} for all σ ∈ Gm. Short elements of Sm have been identified in
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[Sch08, Th. 9.3(i) and Ex. 9.3] in the prime conductor case, and the proof has been adapted to
any conductor in [CDW21, Lem. 4.4] to prove the shortness of the following generating set:

W =
{
wa; a ∈ J2,mK

}
, with wa = θm(1) + θm(a− 1)− θm(a). (5.3)

Note that using θm(a)+θm(−a) = Nm whenm - a, we obtain wa = wm−a+1 whenever 1 < a < m,
and that wm = Nm using also θm(m) = 0. Hence, W is the set

{
wa; 2 ≤ a ≤

⌈
m
2

⌉}
∪
{
Nm
}

.
We emphasize that only knowing a generating set of short elements as in [CDW21] is not

necessarily sufficient. Indeed, though it would be possible to build a basis from this generating
set to solve the Cvp like in [CDW21, Cor. 2.2] without any geometric loss using e.g., [MG02,
Lem. 7.1], the slight Euclidean norm growth of the obtained basis vectors however translates
into a dramatic increase of the size of the (possibly rational) coefficients of the corresponding
generators, in a way that significantly hinders subsequent computations. In particular, in order
to climb dimensions as far as possible and best approach log-S-unit lattices using the saturation
process described in §5.2.4, it is crucial to constrain both the number of elements we use and
their size, i.e., to use a basis of the Stickelberger lattice containing only short elements. Such a
basis has been explicitly given in Th. 4.29, and can be computationally easily extracted from a
very large family of short elements Pr. 4.15 encompassing W \ {Nm} by Eq. (5.3):

Proposition 5.4 (Adapted from Pr. 4.15). Let a, b ∈ Z satisfying m - a, m - b and m - (a+ b).
Then α = θm(a) + θm(b)− θm(a+ b) is a short element of Sm. Moreover, (1 + τ) · α = Nm, so
exactly one half of the coefficients of α are zeros.

Note that the second part of the proposition actually specifies [CDW21, Lem. 4.4(3)]: it
implies that the `2-norm of any w ∈ W \ {Nm}, viewed as a vector in Zϕ(m) 'Z Z[Gm], is
exactly

√
ϕ(m)/2.

Theorem 5.5 (Adapted from Th. 4.29). There exists efficiently computable elements αm(b),
for b ∈ J1,mK, such that αm(b) is a short element from Pr. 5.4 and

{
αm(b); b ∈ M ′m

}
∪
{
Nm
}

is a Z-basis of the Stickelberger lattice Sm of Km.

We stress that when m is a prime, this basis coincides with the one given by [Sch08, Th. 9.3(i)]
and with the set W described in Eq. (5.3).

Effective Stickelberger generators using Jacobi sums.

As previously mentioned, the proof of Stickelberger’s theorem (see Th. 2.22) is explicit, i.e., for
any α ∈ Sm and any fractional ideal b of Km, it builds an explicit γ ∈ Km such that 〈γ〉 = bα

[Was97, §6.2], [Sin80, §3.1]. Moreover, when α is a short basis element from Th. 5.5, it turns out
that γ has a suprisingly simple expression using Jacobi sums as in §4.5.

We briefly specialize §4.5 to the split case here. Let ` ∈ Z be a prime such that ` ≡ 1 mod m,
and let L be any fixed (split) prime ideal of Km above `. Let a, b be such as in Pr. 5.4, then
for α = θm(a)+θm(b)−θm(a+b), we have that Lα is a principal ideal generated by the following
Jacobi sum (see Pr. 4.41:

JL(a, b) = −
∑

u∈OKm/L

χaL(u)χbL(1− u) ∈ Km, (5.6)

where χL(u) ∈
〈
ζm
〉

verifies χL(u) ≡ u(`−1)/m mod L, for any u ∈
(
OKm/L

)×
, and χL(0) = 0.

When α = αm(c) for c ∈ M ′m, we shall write γ−L,c for the generator of Lαm(c). Using a discrete

logarithm table for elements of OKm/L×, the computation, for a fixed prime L, of all Jacobi
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sums corresponding to the short basis
{
αm(c); c ∈ M ′m

}
is very fast. As noted in §4.5, the

Galois group also acts on the involved Jacobi sums in a way that allows to replace some of the
Jacobi sum computations by the application of a suitable automorphism.

Finally, as a direct consequence of [Was97, Lem. 6.1], all these Jacobi sums are `-Weil numbers,
i.e., they verify the Weil relation JL(a, b)JL(a, b) = `, for a and b as above. This implies that
for all σ ∈ Gm, we actually have

∣∣σ(JL(a, b)
)∣∣ =

√
`, meaning that any of these elements is the

shortest generator of its corresponding ideal Lα, which has algebraic norm `ϕ(m)/2.

Remark 5.7. By Eq. (5.3), generators corresponding to the short relations of W write as:

JL(1, a) · OKm = Lwa , for any a ∈ J2,m− 1K.

5.2.2 Real S+-units

Since ]M ′m = ϕ(m)
2 , a consequence of Th. 5.5 is that the Stickelberger lattice has rank ϕ(m)

2 + 1
in Z

[
Gm
]
; in particular, it is not full rank, hence cannot be directly used as a lattice of class

relations. In previous works, obtaining a full-rank lattice in Z[Gm] from Sm was done by pro-
jecting into (1 − τ)Sm [CDW21, §4.3], or by the adjonction of (1 + τ)Z[Gm] [CDW17, Def. 2].
Both can be used as a lattice of class relations for the relative class group Cl−m. In particular, the
so-called augmented Stickelberger lattice Sm + (1 + τ)Z[Gm] annihilates the relative class group
and has full rank in Z[Gm], as shown in [CDW17, Lem. 2].

We generalize this result by considering the module of all real class group relations between
relative norm ideals of ideals from the entire class group Clm. In §5.2.3, we shall prove that
the Stickelberger lattice augmented with these real class group relations yields a lattice of class
relations for the whole class group. Note that, as opposed to other modules like (1 − τ)Sm
or Sm+(1+ τ)Z

[
Gm
]
, real class group relations actually depend on the underlying prime ideals.

On one hand, this affects negatively the shortness of the obtained relation vectors: putting
those in Hermite Normal Form, we shall see later that each relation, viewed as a vector of integer
valuations, has `2-norm at most h+

m. On the other hand, removing the constraint to belong to
the relative class group brings a significant practical and theoretical gap: first, it allows to choose
prime ideals of smallest possible norms, which as shown in §3.2.3 or [CDW21, Th. 4.8] lowers in
practice the obtained approximation factor; second, whereas prime ideals of norm at most Bach’s
bound are sufficient to generate the entire class group, prime generators for the relative class
group are only proven to be of norm bounded by the larger bound (2.71 · h+

m · ln ∆Km + 4.13)2

from [Wes18].

Lifting real class group relations.

Let `1, . . . , `d be distinct prime integers satisfying `i ≡ 1 mod m, so that `i splits in Km. For
each i ∈ J1, dK, fix a prime ideal Li | `i in Km of norm `i, and let li = NKm/K+

m

(
Li
)

= L1+τ
i ∩K+

m

be the relative norm ideal of Li. Since Li is a split prime ideal of Km dividing `i, the ideal li is a
split prime ideal of K+

m of norm `i, and by Kummer-Dedekind’s theorem we have li ·OKm = L1+τ
i .

This justifies the slight abuse of notation of writing lσi = L
(1+τ)σ
i ∩K+

m, for any σ ∈ Gm.
We are interested in the real class group relations between all prime ideals in the G+

m-orbits
of the li, i.e., between the following prime ideals of K+

m:{
lσsi ; i ∈ J1, dK, 0 < s < m

2 , (s,m) = 1
}
. (5.8)

The important point is that any class group relation in K+
m between ideals from Eq. (5.8) trans-

lates to a class group relation in Km using repeatedly that lσi · OKm = L
(1+τ)σ
i . More precisely,
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let
(
r1, . . . , rd

)
∈ Z

[
G+
m

]d
represent a real class group relation in K+

m between ideals
{
lσsi
}

of

Eq. (5.8), i.e., there exists γ+
r ∈ K+

m such that γ+
r · OK+

m
=
∏d
i=1 l

ri
i . Then, this real class group

relation naturally lifts to a class group relation
(
(1+τ) ·r1, . . . , (1+τ) ·rd

)
in Km between prime

ideals in the Gm-orbits
{
Lσi ; i ∈ J1, dK, σ ∈ Gm

}
as:

γ+
r · OKm =

d∏
i=1

L
(1+τ)ri
i . (5.9)

Let C+
l1,...,ld

denote the lattice of all real class group relations between elements of the G+
m-

orbits of {li; i ∈ J1, dK}. Concretely, it is the kernel of the following map:

fl1,...,ld :
(
ri,s
)

1≤i≤d,
0<s<m/2,(s,m)=1

∈ Zd·
ϕ(m)

2 7−→
∏
i,s

[
lσsi
]ri,s ∈ Cl+m . (5.10)

Using the canonical isomorphism of Z-modules Zd·
ϕ(m)

2 'Z Z[G+
m]d, the lattice of real class group

relations C+
l1,...,ld

may be viewed as a Z-submodule of Z[G+
m]d. Lifting all these relations back

to Km as in Eq. (5.9), we therefore obtain the submodule (1 + τ) · C+
l1,...,ld

⊆ (1 + τ)Z[Gm]d, that
we shall call the lattice of real class group relations between the Gm-orbits of {Li; i ∈ J1, dK}.

Remark 5.11. When h+
m = 1, C+

l1,...,ld
is isomorphic to d copies of the integral group ring Z[G+

m]

and the lattice of real class relations is simply (1 + τ)Z[Gm]d.

Euclidean norm of real class relations.

We now identify a real class group relation from C+
l1,...,ld

to a vector in Zd·
ϕ(m)

2 . In other words,

we consider only the valuations of these relations on the G+
m-orbits of the prime ideals l1, . . . , ld.

Furthermore, C+
l1,...,ld

is put in Hermite Normal Form, conveniently for the proof, but better
bounds might easily be obtained using e.g., the LLL algorithm.

Proposition 5.12. Suppose the lattice C+
l1,...,ld

of real class relations is in HNF. Then, for

all w ∈ C+
l1,...,ld

⊆ Z[G+
m]d, we have ‖w‖2 ≤ ‖w‖1 ≤ h+

m.

This means that (1 + τ) ·C+
l1,...,ld

can be used in the CDW algorithm instead of (1 + τ)Z[Gm],
as we will see in §5.3, while still reaching the same asymptotic approximation factor as long
as h+

m ≤ O
(√

ϕ(m)
)

(Hyp. 5.18). This slightly more restrictive (see the discussion in §2.2.3)
hypothesis will be more than compensated by the fact that it removes the need for the li’s to be
principal, which has a significant impact in practice on the algebraic norm of the chosen ideals,
and thus on the final approximation factor reached in [CDW21, Alg. 6].

Proof. The image of the map fl1,...,ld given in Eq. (5.10) is a subgroup of Cl+m, so the volume of its
kernel C+

l1,...,ld
is at most h+

m. By definition of the Hermite Normal Form,19 C+
l1,...,ld

has diagonal
elements h1, . . . , hϕ(m)/2 > 0, and the j-th column contains integers cij such that 0 ≤ cij < hj
for i < j and cij = 0 for i > j. We shall prove hi +

∑
i<j cij ≤ hi ·

∏
i<j hj for any row of fixed

index i ∈ J1, ϕ(m)
2 K, which yields the result. This is done by induction on the dimension, using

repeatedly the fact that for any integers x, y ≥ 1, x+ (y − 1) ≤ (xy).

19In this proof, we consider an upper-triangular HNF with row vectors.
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Explicit real generators.

For each relation r =
(
r1, . . . , rd

)
∈ C+

l1,...,ld
, we compute an explicit γ+

r ∈ K+
m ( Km that

verifies Eq. (5.9). Together with the unit group O×
K+
m

of K+
m, they form a fundamental system of

S+-units, where the finite places of S+ are the G+
m-orbits of the relative norm ideals li.

In the next section, we shall see that adding the explicit Stickelberger generators of §5.2.1 to
these real generators yields a maximal set of independent S-units in the degree ϕ(m) cyclotomic
field Km, at the much smaller cost of computing a fundamental system of real S+-units in K+

m

of degree only ϕ(m)
2 .

In practice, though this remains the main bottleneck of our experimental setting, it allows
us to push effectively our experiments up to degree ϕ(m) = 210, whereas the (full) S-units
computations of §3.4 were bound to ϕ(m) = 70.

5.2.3 An S-unit subgroup of finite index

As in §5.2.2, let `1, . . . , `d be prime integers satisfying `i ≡ 1 mod m; for each i, fix a (split)
prime ideal Li | `i in Km and let li = Li ∩K+

m. Let S be a set of places containing, apart the
infinite places of Km, all Gm-orbits of the Li’s. Combining the results of §§2.2.4, 5.2.1 and 5.2.2,
we get the following family of S-units:

F =
{
va; a ∈M+

m

}
∪
{
γ−Li,b; i ∈ J1, dK, b ∈M ′m

}
∪
{
γ+
r; r ∈ C+

l1,...,ld

}
(5.13)

where the first set is the set of circular units given by Th. 2.14, the second is the set of explicit
Stickelberger generators stated at the end of §5.2.1 and the last one is the set of real generators
as in Eq. (5.9).

This family has
(
ϕ(m)/2−1

)
+d ·ϕ(m) elements, which matches precisely the multiplicative

rank of the full S-unit group modulo torsion O×Km,S
/
µ
(
O×Km

)
.20 In this section, we prove that

these S-units are indeed independent and we compute the index of the subgroup of O×Km,S
generated by those elements.

Theorem 5.14. Let hm,(L1,...,Ld) (resp. h+
m,(l1,...,ld)) be the cardinal of the subgroup of Clm

(resp. Cl+m) generated by the Gm-orbits of L1, . . . ,Ld (resp. the G+
m-orbits of l1, . . . , ld). The

family F given in Eq. (5.13) is a maximal set of independent S-units. The subgroup generated
by F in O×Km,S

/
µ
(
O×Km

)
has index:

(
hm · h+

m,(l1,...,ld)

hm,(L1,...,Ld)

)
· 2b ·

(
h−m
)d−1 ·

(
2
ϕ(m)

2 −1 · 2a
)d
,

where a = b = 0 if m is a prime power, and a = 2t−2 − 1, b = 2t−2 + 1 − t whenever m has t
distinct prime divisors.

Note that when the Gm-orbits of the Li’s generate Clm, the first term in this index equals
h+
m. As we shall see in §5.2.4, the powers of 2 can be killed by standard saturation techniques,

so the real problem comes from the (h−m)d−1 part, which has generically huge prime factors.
Intuitively, this comes from the fact that the Stickelberger relations miss all class group relations
that exist between two (or more) distinct Gm-orbits.

First, we show that the lattice obtained by adding one copy of the Stickelberger ideal for
each Gm-orbit, to the lattice (1 + τ) ·C+

l1,...,ld
of real class relations, yields a full-rank submodule

20Note that for our purpose, the torsion units play no role and can thus be put aside.



5

88 Chapter 5. Using Explicit Stickelberger Generators

of Z[Gm]d. Hence, we have obtained a full-rank lattice of class relations for the union of all
the Gm-orbits above `1, . . . , `d.

We begin by restricting our attention to the case d = 1. We need the following lemma, which
extends and proves an observation already made in [DPW19, Rem. 3] in the prime conductor
case:

Lemma 5.15. The index of Sm + (1 + τ) · Z[G+
m] in Z[Gm] is finite:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2ϕ(m)/2−1 · 2a · h−m,

where a = 0 if t = 1 and a = 2t−2 − 1 otherwise, where m has t prime divisors.

Proof. The proof is due to R. Kučera. First, note that (1 + τ) · Z[G+
m] contains Nm, hence by

Th. 5.5, Sm + (1 + τ) · Z[G+
m] is generated by the following ϕ(m) elements:{

αm(b); b ∈M ′m
}
∪
{

(1 + τ)σs; 0 < s < m
2 , (s,m) = 1

}
.

Therefore, its index is given by the absolute value of the determinant of the transition matrix
from the canonical basis of Z[Gm] to the above generating set:

[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

1 1
...

. . .

1 1





{
ab,s

}
b∈M′m

0<s<m, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where for any b ∈ M ′m, we write αm(b) =
∑
σs∈Gm ab,sσs. Subtracting suitable combinations of

rows of the lower half of this matrix to rows of the upper half to cancel the upper right block, this

is the absolute value of the determinant of the square matrix of dimension ϕ(m)
2 with coefficients{

ab,s−ab,−s
}

, for b ∈M ′m and s prime with m such that 0 < s < m
2 . By Pr. 5.4, ab,s+ab,−s = 1,

which implies that ab,s − ab,−s = 2ab,s − 1, therefore we recognize the matrix appearing in
Eq. (4.36) at the very end of the proof of Cor. 4.32 with each coefficient being multiplied by 2.
Combining this with Eq. (4.34), we obtain:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2
ϕ(m)

2 · 1
2

[
R−m : S−m

]
,

and the result follows from Sinnott’s theorem (see Th. 2.24).

When h+
m = 1, the lattice of real class relations is always (1 + τ) ·Z[G+

m], and Lem. 5.15 gives
the whole story. In the general case h+

m 6= 1, we deduce:

Lemma 5.16. Let ` be a prime integer that splits in Km, let L | ` in Km and let l = L1+τ ∩K+
m.

Let h+
m,(l) be the cardinal of the subgroup of Cl+m generated by the G+

m-orbit of l in K+
m. The Z-

module generated by Sm and the lattice (1 + τ) ·C+
l of real class group relations of the Gm-orbit

of L, has finite index in Z[Gm]:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
= 2ϕ(m)/2−1 · 2a · h−m · h+

m,(l),

where a = 0 if t = 1 and a = 2t−2 − 1 otherwise, where m has t prime divisors.
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Proof. By definition of C+
l as the kernel of the map fl of Eq. (5.10), we have:[

Z[G+
m] : C+

l

]
= h+

m,(l) =
[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Note also that Nm belongs to (1 + τ) ·C+
l ⊆ (1 + τ) ·Z[G+

m], hence, again by means of transition
matrix: [

Sm + (1 + τ) · Z[G+
m] : Sm + (1 + τ) · C+

l

]
=
[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Finally, putting things together with Lem. 5.15, the result comes from:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
=
[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

·
[
Sm + (1 + τ) · Z[G+

m] : Sm + (1 + τ) · C+
l

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)
·
[
Z[G+

m] : C+
l

]
.

Finally, for the case where there are d ≥ 1 orbits, a reasoning very similar to the proofs of
Lem. 5.15 and 5.16 leads to:

Proposition 5.17. Let h+
m,(l1,...,ld) be the cardinal of the subgroup of Cl+m generated by all G+

m-

orbits of l1, . . . , ld. Then, the Z-module generated by the lattice (1+τ) ·C+
l1,...,ld

⊆ (1+τ) ·Z[G+
m]d

of real class relations between the Gm-orbits of the Li’s, and the diagonal block matrix of d copies
of
(
Sm \NmZ

)
, verifies:[

Z[Gm]d : Sdm + (1 + τ) · C+
l1,...,ld

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)d · h+
m,(l1,...,ld).

Proof of Th. 5.14. The independence comes from Pr. 5.17 and the trivial fact that circular units
are independent from Stickelberger and real generators. The index of the subgroup generated
by F in O×Km,S

/
µ
(
O×Km

)
is given by:

[
O×Km : Cm

]
·
[
Z[Gm]d : Sdm + (1 + τ) · C+

l1,...,ld

]∣∣det
(
ker fS

)∣∣ ,

where ker fS is the lattice of all class group relations between finite places of S. The first term
is given by Pr. 2.12, the numerator of the second term is given by Pr. 5.17, and by definition
of O×Km,S , the denominator is precisely hm,(L1,...,Ld). Rearranging terms adequately yields the
result.

5.2.4 Saturation

Saturation is a standard tool of computational algebraic number theory that has been used in
various contexts like unit and class group computations, and can be traced back at least to
[PZ89, §5.7].

Intuitively, the e-saturation procedure applied to F consists in detecting e-th powers in the
subgroup generated by F, including their e-th roots in the set, using e.g., the generalized Mont-
gomery’s e-th-root algorithm from [Tho12, §3], and rebuilding a basis of multiplicatively inde-
pendent elements. At the end, the index of the new basis is no longer divisible by e. Remark
that the output size does not depend on e, but only on the number and size of the elements of F.
However, as the relative class number h−m in the index of Th. 5.14 hides huge prime factors, this
strategy is at first glance hopeless in general to obtain the full S-unit group from F.

As the index given by Th. 5.14 is divisible by a large power of 2, it is nonetheles natural to 2-
saturate F in order to mitigate its exponential growth, obtaining the 2-saturated family Fsat. In
the following, we briefly describe the 2-saturation procedure we use, and refer to e.g., [BFHP21,
§4.3] for a formal exposition.
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Recognizing squares.

Let U =
〈
g1, . . . , gk

〉
be a finitely generated multiplicative subgroup of O×Km,S . The first step

of the 2-saturation process is to recognize squares in U ∩ (O×Km,S)2. This is done by using local
information provided by quadratic characters.

Fix a prime p /∈ S such that N (p) ≡ 1 mod lcm(m, 2). Define χp as the Legendre symbol
such that χp(a) ≡ a(N (p)−1)/2 mod p for any a ∈ U . As p /∈ S and a ∈ O×Km,S , we have
that χp(a) ∈ {−1, 1}. If a is a square, χp(a) = 1 as a is still a square modulo p. The converse is
not true, but by considering many characters χp1

, . . . , χpN as above, it is expected that at least
one of them evaluates to −1. Hence, recognizing squares boils down to compute the kernel of:

log−1,χ : U −→ FN2
a 7−→

{
log−1 χpi(a); i ∈ J1, NK

}
.

An element of this kernel is still not guaranteed to be a square. Nevertheless, a standard heuristic,
first stated in the context of integer factorization [BLP93, §8] and also used in multiquadratic
fields [BBV+17, §4.2], [BV18, Heur. 4.3], is to assume that if the pi are all distinct (split) prime
ideals, then the log−1 χpi behave as independent uniform random elements of Hom

(
U
/(
U ∩

(K×m)2
)
,F2

)
. Concretely, this means that these should span this dual with probability at least(

1 − 1/2N−k
)

[BLP93, Lem. 8.2]; in that case, any element of the kernel of log−1,χ is indeed
a square. In other words, if

∑
1≤i≤k vi log1,χ gi = 0, then with high probability the product

g =
∏

1≤i≤k g
vi
i indeed belongs to U ∩ (O×Km,S)2.

Square roots algorithm.

Once we have identified combinations of elements of U that are S-unit squares, it remains to
compute their square roots explicitly. First, we note that it is useful to systematically reduce
those products modulo all squared circular units C2

m to contain the coefficients size. This is
done as usual by projecting the logarithmic embedding Log g of the obtained g ∈ (O×Km,S)2

into 2 · Log Cm, finding a closest vector y = Log u2 and replacing g by g/u2.
The traditional method to compute the square root of an element g ∈ (K×m)2 is to factor

the polynomial x2 − g in Km[x], using e.g., Trager’s method [Coh93, Alg. 3.6.4] or Belabas’ p-
adic method [Bel04]. As, according to Th. 5.14, we have many square roots to compute, we
choose instead to use a batch strategy in the spirit of [LPS20, Alg. 5] using complex embeddings
approximations.

Since LLL seminal paper [LLL82], it is known that one can retrieve an algebraic number
from approximations of one of its complex embeddings. Indeed, fix an embedding σ ∈ Gm and
a Q-basis

(
ω1, . . . , ωn

)
of OKm , and LLL-reduce:

Bκ :=


−σ(ω1) C 0 . . . 0

−σ(ω2) 0 C
.. .

...
...

...
. . .

. . . 0
−σ(ωn) 0 . . . 0 C

 .

where C > 0 is a constant and approximations are computed at precision κ ∈ N. Then, for
any g ∈ OKm , applying e.g., Babai’s Nearest Plane algorithm on the LLL basis of Bκ and
target

(
σ(g), 0, . . . , 0

)
gives a combination (g1, . . . , gn) such that g =

∑n
i=1 giωi. As explained in

[LPS20], it is possible to mutualize the computation of Bκ and reuse the unitary transformation
to hasten computations when increasing κ is required.
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We use an improvement that benefits from the existence of the maximal real subfield K+
m.

Each g ∈ Km = K+
m[ζm] can be uniquely written as g = g0 + g1 · ζm, with g0, g1 ∈ K+

m. For
each σ ∈ G+

m, the relative Minkowski embedding of σ w.r.t. to the extension Km/K
+
m is defined

by σKm/K+
m

(gσ0 , g
σ
1 ) =

(
gσ , gσ

)
∈ C2. This is a linear homomorphism of C2. When g = h2,

its square root h0 + h1ζm can be retrieved from approximations of hσ0 and hσ1 instead of hσ, as
follows:

1. Compute σKm/K+
m

(gσ0 , g
σ
1 ) =

(
gσ , gσ

)
∈ C2;

2. Choose one complex square root z of gσ and apply σ−1

Km/K
+
m

to (z, z) to get potential

approximations
(
h̃σ0 , h̃

σ
1

)
of hσ0 and hσ1 respectively;

3. Using LLL as above in K+
m on h̃σ0 and h̃σ1 , obtain

(
h̃0, h̃1

)
in K+

m, which are candidates for
resp. h0 and h1.

4. If (h̃0 + h̃1 · ζm)2 6= g, then increase κ using the fast method of [LPS20].

Hence, this method amounts to LLL reducing a matrix of size n
2 × (n2 + 1) and decoding using

e.g., Babai’s Nearest Plane algorithm. This offers a great speed-up compared to reducing a
matrix of size n × (n + 1). For further details and generalizations to higher order polynomial
roots, we refer the interested reader to [Les21].

Rebuilding a basis.

After the square root step, we obtain new elements h1, . . . , hr, where r = dim
(
ker log−1,χ

)
. In

order to extract a set of k independent elements from the extended set
{
h1, . . . , hr, g1, . . . , gk

}
,

we compute an LLL-basis of the matrix constituted of their valuations at the places of S. Note
that this matrix can be computed entirely from the valuations of the initial set {gi} and the
basis of ker log−1,χ. Using the same trick as for matrix A in [BBV+17, Alg. 5.2], this contains
the height of the transformation matrix, sufficiently for our needs.

At the end of this process we obtain a maximal set of independent S-units of index given by
Th. 5.14 where no factor 2 remains.

5.3 Removing Quantum Steps from the CDW Algorithm

The complete material for this section is given in [BLNR21, §B], and the main points are briefly
summarized here. The CDW algorithm for solving Approx-Svp was introduced in [CDW17] for
cyclotomic fields of prime power conductors, and extended to all conductors in [CDW21]. Its
main feature is the use of some short relations of the Stickelberger ideal.

In this section, we show how to benefit from the results of §5.2.1 and §5.2.2 to remove most
quantum steps of [CDW21]. More precisely, we first propose in [BLNR21, §B.2] an equivalent
rewriting of [CDW21, Alg. 7] that enlightens some hidden steps that reveal useful for subsequent
modifications. Then, in [BLNR21, §B.3], we plug the explicit generators of §5.2.1 and Eq. (5.9),
for relative class group orbits, to remove the last call to the quantum Pip solver. Finally, by
considering the module of all real class group relations, using Pr. 5.17, we remove in [BLNR21,
§B.4] the need of a random walk mapping any ideal of Km into Cl−m, at the (small) price of
restricting to cyclotomic fields such that h+

m ≤ O(
√
m) (Hyp. 5.18).

An equivalent rewriting of CDW ([BLNR21, §B.2]).

Omitting details, the CDW algorithm works as follows, for any challenge ideal a of Km [CDW21,
Alg. 7]:

1. Random walk to Cl−m: find b such that
[
ab
]
∈ Cl−m.
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2. Solve the ClDlp of ab on Gm-orbits of the prime ideals L1, . . . ,Ld of Cl−m. This gives a
vector α = (α1, . . . , αd) ∈ Z[Gm]d such that ab ·

∏
i L

αi
i is principal.

3. Solve the Cpmp by projecting each αi in π(Sm) = (1− τ)Sm, find a vector vi = yi · π(Sm)
close to π(αi), and then lift vi to get some βi s.t. π(βi) = vi, ‖α− β‖1 is small with positive

coordinates and ab ·
∏
i L

αi−βi
i is principal.

4. Apply the Pip algorithm of [BS16] to get a generator of this principal ideal.

5. Reduce the obtained generator by circular units like in [CDPR16].

This eventually outputs h ∈ a of length ‖h‖2 ≤ exp
(
Õ(
√
m)
)
· N (a)1/ϕ(m). [CDW21, Th. 5.1].

We focus on the lift procedure of Step 3. In [CDW21], a vector v ∈ π(Sm) is lifted to β by
keeping positive coordinates for βσ and sending opposite of negative coordinates to βτσ . This
works because for any c ∈ Cl−m, [c]−1 = [cτ ], but hides which exact product of relative norm
ideals is involved.

We propose a totally equivalent lift procedure: from v = y · π(Sm), consider the preimage
vector β̃ = y · Sm, from which we remove min

{
β̃σ , β̃τσ

}
to each β̃σ coordinate to obtain β. Now,

it is obvious that β is a combination y of relations in Sm, and of relative norm relations given
by the min part. Details are given in [BLNR21, Alg. B.6].

Using explicit Stickelberger generators ([BLNR21, §B.3]).

Each element wa of the generating set W of Sm corresponds to a generator JL(1, a − 1) (see
§5.2.1). Similarly, each relative norm ideal writes 〈γ+

s 〉 = L(1+τ)σs (see §5.2.2). Hence, from
an (explicit) ClDlp solution 〈g〉 = ab · Lα, and given, as rewritten above, a Cpmp solution
as β = y · W + u · (1 + τ) · Z[G+

m], we have that a generator of ab · Lα−β is directly given
by g

/(∏
a JL(1, a − 1)ya

∏
s(γ

+
s )us

)
. Knowing this allows us to remove the quantum Pip in

dimension n in step 4 (for each query). In exchange, we need to compute (only once) all real
generators for relative norm relations, which can be done in dimension ϕ(m)/2 by [BS16, Alg. 2].

Avoiding the random walk ([BLNR21, §B.4]).

Finally, note that several quantum steps are performed (for each query) in the random walk that
maps ideals to Cl−m. Using the results of §5.2.2, we replace the module (1 + τ) · Z[Gm]d by the
module of all real class group relations.

Asymptotically, we prove in [BLNR21, Pr. B.7] as a direct consequence of Pr. 5.12 that this
does not change the bound on the approximation factor, as long as:

Hypothesis 5.18. We restrict to cyclotomic fields Km verifying h+
m ≤ O(

√
m).

Remark 5.19. This assumption is certainly not true in general. Nevertheless, by the discussion
in §2.2.3, it is expected to be valid for a very large proportion of cyclotomic fields and is likely
to hold when m is a power of 2.

On the other hand, this slightly more restrictive hypothesis is largely compensated by the
fact that only two quantum steps remain: one is performed only once in dimension ϕ(m)/2 to
compute real class group relations and generators, and the second is solving the ClDlp for each
query (see [BLNR21, Tab. B.1]). Moreover, this removes the need for the factor base prime ideals
Li to be in the relative class group Cl−m, which happens with probability only roughly 1/h+

m.
Therefore, we can choose a factor base of prime ideals having the smallest possible norms, which
has in practice a significant impact on the algebraic norm of these Li’s (see also Wesolowski’s
bound on N (L−max) in §2.3.1), and thus on the final approximation factor reached by the CDW
algorithm in [CDW21, Alg. 6].
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5.4 Computing Log-S-unit Sublattices in Higher Dimen-
sions

Our main goal is to simulate the Twisted-PHS algorithm for high degree cyclotomic fields. To
this end, we compute full-rank sublattices of the full log-S-unit lattice using the knowledge of
the maximal set F of independent S-units defined by Eq. (5.13) and its 2-saturated counterpart
Fsat from §5.2.4. These sets are lifted from a complete set of real S+-units (see §5.2.2), hence
are obtained at the classically subexponential cost of working in the half degree maximal real
subfield. We note that by Th. 5.14, the index of these families grows rapidly as the number of
orbits increases, hence these approximated modes give an upper bound on the approximation
factors that can be expected when using Twisted-PHS.

Our experimental setting is detailed in §5.4.1. Then, we analyse in §5.4.2 the geometric
characteristics of our log-S-unit sublattices and the obtained approximation factors in §5.4.3.

5.4.1 Experimental settings

Computing the full group of S-units in a classical way is rapidly intractable, even in the case
of cyclotomic fields; therefore, the experiments performed on Twisted-PHS in §3.4 were bound
to ϕ(m) ≤ 70. We apply the Twisted-PHS algorithm using our full-rank sublattices of the
whole log-S-unit lattice induced by the independent family F of Eq. (5.13), its 2-saturated coun-
terpart Fsat (§5.2.4) and, when possible, a fundamental system Fsu for the full S-unit group.
Approximated modes with F or Fsat give a glimpse on how Twisted-PHS scales in higher dimen-
sions, where asymptotic phenomena like the growth of hm start to express.

Source code and hardware description. All experiments have been implemented using
SageMath v9.0 [Sag20], except for the full S-unit groups computations for which we used
Magma [BCP97], which appears much faster for this particular task and also offers an indis-
pensable product (“Raw”) representation. Moreover, fplll [FpL16] was used to perform all lattice
reduction algorithms. The entire source code is provided on GitHub: ob3rnard/Tw-Sti8.

Most of the computations were performed in less than two weeks on a server with 72 Intel®

Xeon® E5-2695v4 @2.1GHz with 768GB of RAM, using 2TB of storage for the precomputations.
Real class group computations were performed on a single Intel® Core™ i7-8650U @3.2GHz CPU
using 10GB of RAM.

Targetted cyclotomic fields. We consider cyclotomic fields of any conductor m s.t. 20 <
ϕ(m) ≤ 210 with known real class number h+

m = 1, including those from Tab. 2.1. The restriction
to h+

m = 1 is only due to technical interface obstructions, i.e., we are not aware of how to access
the non-trivial real class group relations internally computed by SageMath. Additionally, for
some of the conductors, we were not able to obtain the real class group within a day. Thus, we
are left with 210 distinct cyclotomics fields, and Tab. 5.1 lists all ignored conductors.

Finite places choice. The optimal set of places computed by Alg. 3.3 yields a number dmax

of split Gm-orbits of smallest norms maximizing the density of the corresponding full log-S-unit
lattice. However, the index of our log-S-unit sublattices, given by Th. 5.14, grows too quickly,
roughly in (h−m)d−1, so that their density always decreases as soon as d > 1. This remark
motivates us to compute all log-S-unit sublattices for d = 1 to dmax first split Gm-orbits.

8https://github.com/ob3rnard/Tw-Sti

https://github.com/ob3rnard/Tw-Sti
https://github.com/ob3rnard/Tw-Sti
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

136 64 2 408 128 2 205 160 2 356 176 † 520 192 4 265 208 †
212 104 5 268 132 † 328 160 † 376 184 † 840 192 † 424 208 †
145 112 2 284 140 † 440 160 5 191 190 11 303 200 † 636 208 †
183 120 4 292 144 † 163 162 4 221 192 † 404 200 †
248 120 4 504 144 4 332 164 † 388 192 † 309 204 †
272 128 2 316 156 † 344 168 † 476 192 † 412 204 †

Table 5.1 – List of ignored conductors (†: failure to compute Cl+m within a day).

Full rank log-S-unit sublattices. The first maximal set of independent S-units that we
consider is F from Eq. (5.13). The 2-saturation process of §5.2.4 mitigates the huge index of F,
yielding family Fsat. A fundamental system Fsu of the full S-unit group O×Km,S (modulo torsion)
is also used whenever it is computable in reasonable time, i.e., up to ϕ(m) < 80. As noted in
§2.1.3, their images under any log-S-embedding ϕ form full-rank sublattices resp. Lurs, Lsat, Lsu,
generated by resp. ϕ(F), ϕ(Fsat), ϕ(Fsu), of the corresponding full log-S-unit lattice ϕ(O×Km,S).

We consider several choices of the log-S-embedding ϕ. Namely, we tried to evaluate the
advantage of using the expanded LogS (exp) over LogS , labelled tw (as twisted by [C : R] = 2).
We also considered versions with (iso) or without (noiso) the isometry fH of Eq. (3.16). This yields
four choices for ϕ, e.g., tag noiso/tw is ϕ = LogS and iso/exp gives the original ϕtw = fH ◦LogS .

Compact product representation. In order to avoid the exponential growth of algebraic
integers viewed in Z[x]

/〈
Φm(x)

〉
, we use a compact product representation, so that any element α

in F (resp. Fsat or Fsu) is written on a set g1, . . . , gN of N small elements as α =
∏N
i=1 g

ei
i .

Hence, besides the gi’s, each α is stored as a vector e ∈ ZN , and for any choice of ϕ, we have
that ϕ(α) =

∑N
i=1 ei · ϕ(gi). This allows us to compute ϕ without the coefficient explosion

encountered in §3.4, which unlocks the full log-S-unit lattices computations beyond degree 60.

Lattice reductions. For each of the constructed log-S-unit sublattices, i.e., for each number
of orbits d ∈ J1, dmaxK, for each family of independent S-units F, Fsat and (when available) Fsu,
and for each choice of log-S-embedding, we compare several levels of reduction: no reduction
(“raw”), LLL-reduction and BKZ40-reduction.

5.4.2 Geometry of the lattices

For all described choices of log-S-unit sublattices, we first evaluate several geometrical parameters
(see §2.4.3): reduced volume V 1/k, root-Hermite factor δ0, orthogonality defect δ. For clarity’s
sake, we only give here a few examples giving a glimpse of what happens in general, and additional
data can be found in §5.5.1.

Table 5.2 contains data for cyclotomic fields Q(ζ152) and Q(ζ211) of degrees resp. 72 and
210. All values correspond to the iso/exp log-S-embedding, i.e., ϕ = ϕtw. Indeed, as illustrated
by Tab. 5.4, we experimentally note that using (no)iso/exp seems geometrically slightly better
than using (no)iso/tw. Notice how small is the normalized orthogonality defect after only LLL

reduction, unambiguously below the tight Minkowski bound
√

1 + k
4 given in §2.4.3.

We then look at the logarithm of the Gram-Schmidt norms, for every described choice of
log-S-unit sublattices. Figure 5.2 plots the Gram-Schmidt log norms before and after BKZ
reduction of the lattices Lsat, using the original iso/exp log-S-embedding ϕtw. As in Fig. 3.6–
3.15, for each field the two curves are almost superposed. We also checked the impact of the
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

152

1
urs 107 8.691 2.016 1.570 1.551 45.007 38.466 38.202
sat 107 6.928 4.398 1.787 1.822 752.306 23.280 21.720
su 107 6.928 28.396 1.805 1.828 3163.723 21.953 21.446

2
urs 179 9.683 2.157 1.623 1.590 48.754 41.313 41.404
sat 179 7.384 7.670 1.885 1.896 6273.562 23.280 22.772
su 179 6.816 65.355 2.226 2.322 3427.134 23.221 24.741

211

1
urs 314 14.325 2.672 2.291 2.257 96.068 97.930 96.569
sat 314 11.386 9.998 2.581 2.562 9742.552 59.387 59.578

5
urs 1154 18.232 3.118 2.542 2.497 118.124 119.160 115.888
sat 1154 13.341 19.443 2.918 2.901 32067.612 71.428 72.752

7
urs 1574 18.976 3.161 2.557 2.512 120.838 121.129 119.020
sat 1574 13.771 26.841 2.927 2.910 530646.708 71.428 72.752

Table 5.2 – Geometric characteristics of Lurs, Lsat and Lsu for Q(ζ152) and Q(ζ211) using
log-S-embedding ϕtw (of type iso/exp). For all bases, the root-Hermite factor
verifies |δ0 − 1| < 10−3.

log-S-embedding choice among all four options on the Gram-Schmidt logarithm norms of the
unreduced basis ϕ(Fsat). As expected, the isometry fH has absolutely no influence on the Gram-
Schmidt norms. On the other hand, using LogS or LogS seems to alter only the first norms, very
slightly, as can be seen in Fig. 5.8. Again, increasing the number of orbits does not influence
these behaviours.

We stress that these very peculiar geometric characteristics — shape of the logarithm of
the norms of the Gram-Schmidt basis, ease of reduction, very small orthogonality defect (after
LLL) — already observed in §§3.4.1 and 3.4.2, are consistently viewed across all conductors,
degrees, log-S-unit sublattices and number of orbits. To give a concrete idea of e.g., the striking
ease of reduction of these log-S-unit sublattices, we report that for m = 211, BKZ40 terminates
in around 7 minutes (resp. 30 minutes) on the log-S-unit sublattice of dimension k = 1154
(resp. 1574) corresponding to d = 5 (resp. dmax = 7), which is unusually fast.

This very broad phenomenon suggests that the explanation is possibly deep, an observation
that has been recently developed by Bernstein and Lange [BL21].

5.4.3 Evaluation of the approximation factor

In §3.4.3, evaluating in practice the approximation factors reached by Twisted-PHS is done by
choosing random split ideals of prime norm, solving the ClDlp for these challenges and comparing
the length of the obtained algebraic integer with the length of the exact shortest element. As
the degrees of the fields grow, solving the ClDlp and exact id-Svp becomes rapidly intractable.
Hence, we resort to simulating random outputs of the ClDlp, similarly to [DPW19, Hyp. 8], and
estimate the obtained approximation factors with inequalities from Eq. (2.42).

Simulation of ClDLP solutions.

To simulate targets that heuristically correspond to the output α of the ClDlp, we assume that
for each ideal Li ∈ S, the vector

(
vLσi (α)

)
σ∈Gm

of Z[Gm] is uniform modulo the lattice of class

relations, and that after projection along the 1-axis,
(
ln|σ(α)|

)
σ

is uniform modulo the log-unit
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Figure 5.2 – Lsat lattices for Q(ζ152) and Q(ζ211): Gram-Schmidt log norms before and after
reduction by BKZ40.

lattice. These hypotheses have already been used in [DPW19, Hyp. 8] or Heur. 3.28, and are
backed up by theoretical results in [BDPW20, Th. 3.3].

Drawing random elements modulo a lattice of rank k is done by following a Gaussian distri-
bution of sufficiently large deviation. Concretely, we first choose a random split prime p in the
range J297, 2103K. Then, for each L ∈ S∩S0, we pick random valuations vL(α) modulo the lattice
of class relations of rank ](S ∩ S0) and random elements (uσ)σ∈G+

m
∈ Rϕ(m)/2 in the span of the

log-unit lattice of rank ϕ(m)
2 − 1. Finally, we simulate (ln|σ(α)|)σ by adding

ln p+
∑

L∈S vL lnN (L)

ϕ(m)

to each coordinate uσ , so that their sum is indeed ln|N (α)|
2 . For each field we thereby generate 100

random targets on which to test Twisted-PHS on all lattice versions.

Reconstruction of a solution.

For any simulated ClDlp solution α, given as a random vector
(
{ln|σ(α)|}σ∈G+

m
, {vL(α)}L∈S∩S0

)
,

it is easy to compute ϕ(α) for any log-S-embedding ϕ and to derive a target as in Eq. (3.25),
including a drift parameterized by some β. Then, considering e.g., Lsat = ϕ(Fsat), given by the
BKZ40-reduced basis Ubkz · ϕ(Fsat), we find a close vector v = (y · Ubkz) · ϕ(Fsat) to this target
using Babai’s Nearest Plane algorithm, and from y, Ubkz and Fsat we easily recover, in compact
representation, s ∈ O×Km,S s.t. v = ϕ(s) and also α/s.

The purpose of the drift parameter β is to guarantee vL(α/s) ≥ 0 on all finite places. As
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mentioned in §3.4.3, the length of α/s is extremely sensitive to the value of β, so that they
searched for an optimal value by dichotomy. However, this positiveness property actually does
not seem to be monotonic in β, and in practice, using the same β on each finite place coordinate is
too coarse when the dimension grows, which induces unnecessarily large approximation factors.
We instead obtained best results using random drifts in `∞-norm balls of radius 1 centered
on the 1 axis. A first sampling of O(ϕ(m)) random points β · 1 + B∞(1) for a wide range of
random β’s allows us to select a β0 around which we found the best ‖α/s‖2 with all vL(α/s) being
positive. Then we sample O(ϕ(m)) uniform random points in the neighbourhood of β0, namely
in [0.9β0, 1.1β0] · 1 + B∞(1), and output the overall optimal ‖α/s‖2 having all vL(α/s) ≥ 0.

Estimator of the approximation factor.

Since we do not have access to the shortest element of a challenge ideal, we cannot compute an
exact approximation factor as is done in §3.4.3. Instead, we estimate the retrieved approximation
factor using the inequalities implied by Eq. (2.42). We focus on the Gaussian Heuristic, which
gives in small dimensions consistent results with the exact approximation factors found in §3.4.3.
For each cyclotomic field, the plotted points are the means, over the 100 simulated random
targets, of the minimal approximation factors obtained using options iso/noiso and exp/tw. For
each family F, Fsat and Fsu, we chose to keep only the factor base that gives the best result.
This systematically translated into using d = 1 Gm-orbit for F and Fsat, whereas we had to
use d = dmax for Fsu, as predicted by the Twisted-PHS algorithm.

Figure 5.3 shows the approximation factor γgh obtained for all lattices Lurs, Lsat and Lsu (when
applicable) after BKZ40 reduction. Figure 5.4 is a zoom of Fig. 5.3 that focuses on Lsat and Lsu

on small dimensions.
First, we remark that using family F from Eq. (5.13), the retrieved approximation factors

are increasing rapidly. Using the 2-saturated family Fsat yields much better results, and looking
closely at Fig. 5.4 shows that using a basis Fsu of the full S-unit group, when available, even
improves the picture if dmax > 1, in which case Lsu is denser than Lsat. For Lsu, we stress that
we obtain estimated approximation factors very similar to the exact ones observed in §3.4.3.

More generally, we observe a very strong correlation between the density of our lattices and
the obtained approximation factors — the denser, the better. As an important related remark,
the variance seen for γgh in Fig. 5.3 for distinct fields of same degree follows the variations of the
norm of the first split prime, thus of the reduced volume of the considered log-S-unit sublattice.
We expect this variance to be smoothed through conductors for the full log-S-unit lattice.

Furthermore, considering m = 211, the F family gives Vol1/314 Lurs ≈ 14.325 and an es-
timated γgh ≈ 13170, for Fsat we get Vol1/314 Lsat ≈ 11.386 and a much smaller estimated
γgh ≈ 16.4, whereas the optimal number of orbits predicted by the Twisted-PHS Factor Base
Choice Algorithm (Alg. 3.3) is dmax = 7, which yields a full log-S-unit lattice of reduced volume

only Vol1/1574 Lsu ≈ 9.635.

Comparison to the CDW algorithm.

Using the same experimental setting, we compute the approximation factors obtained using the
CDW algorithm as implemented in [DPW19] (“Naive version”) with additional BKZ40 lattice
reductions, as well as the experimentally derived volumetric lower bound from [DPW19, Eq. (5)
and Tab. 1]. Those values are also represented in Fig. 5.3 and 5.4.

Our experimental results using the Fsat family clearly outperform the CDW algorithm over
the experimental range considered, and are even comparable to its volumetric lower bound.
Moreover, for some fields, e.g., in dimensions 96, 160, 168, 200, this lower bound is defeated by
the (approximated version of the) Twisted-PHS algorithm. Note that this does not invalidate the
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Figure 5.3 – Approximation factors, with Gaussian Heuristic, reached by Twisted-PHS for cy-
clotomic fields of degree up to 210, on lattices Lurs, Lsat and Lsu.

Figure 5.4 – Approximation factors, with Gaussian Heuristic, reached by Twisted-PHS for cy-
clotomic fields of degree up to 100, on lattices Lsat and Lsu.

lower bound itself, which is stated for the two-phase CDW algorithm, but indicates the power
of combining both steps in only one lattice as in the Twisted-PHS algorithm.

5.5 Supplementary Experimental Results

5.5.1 Geometry of log-S-unit sublattices

In the following, we provide data regarding the geometry of the log-S-unit sublattices Lurs and Lsat

for additional cyclotomic fields.
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

159

1
urs 155 11.291 2.177 1.702 1.686 71.228 62.253 60.096

sat 155 8.989 6.143 1.898 1.921 3168.773 35.391 35.703

2
urs 259 12.576 2.350 1.781 1.739 72.069 62.357 60.675

sat 259 9.572 6.902 2.028 2.036 3168.773 36.062 35.703

3
urs 363 13.364 2.419 1.798 1.750 75.913 65.973 63.701

sat 363 9.978 7.602 2.066 2.066 3168.773 37.480 37.132

149

1
urs 221 12.192 2.828 2.091 1.999 74.637 71.073 68.291

sat 221 9.697 12.473 2.305 2.244 12554.466 44.327 44.326

2
urs 369 13.353 3.134 2.233 2.149 78.906 74.039 71.298

sat 369 10.150 14.472 2.507 2.467 12554.466 47.719 46.438

3
urs 517 13.962 3.269 2.271 2.190 80.529 76.289 76.007

sat 517 10.410 22.211 2.569 2.531 85211.593 47.719 48.556

4
urs 665 14.415 3.327 2.300 2.223 83.176 78.268 77.926

sat 665 10.632 20.731 2.606 2.576 85211.593 47.768 48.556

516

1
urs 251 11.815 2.535 2.026 2.013 77.904 73.051 72.993

sat 251 9.395 6.508 2.341 2.359 4850.233 44.290 43.783

2
urs 419 12.921 2.833 2.156 2.129 82.452 76.629 75.586

sat 419 9.818 8.208 2.550 2.565 5761.443 46.559 46.426

3
urs 587 13.850 2.945 2.202 2.167 91.958 84.961 86.487

sat 587 10.321 10.348 2.620 2.623 9544.834 49.096 49.971

4
urs 755 14.445 2.998 2.222 2.188 93.457 86.198 87.794

sat 755 10.650 12.682 2.652 2.652 26820.239 54.045 52.543

181

1
urs 269 12.855 2.747 2.308 2.146 81.230 79.924 79.204

sat 269 10.220 7.486 2.537 2.499 5185.677 49.694 48.264

2
urs 449 14.033 2.958 2.456 2.268 87.161 85.755 84.008

sat 449 10.661 9.849 2.736 2.706 5185.677 50.406 51.466

3
urs 629 14.823 3.064 2.508 2.311 92.620 90.665 88.578

sat 629 11.045 12.340 2.801 2.778 9957.084 52.207 51.880

4
urs 809 15.330 3.096 2.529 2.330 93.988 91.158 89.982

sat 809 11.300 12.307 2.829 2.814 9957.084 53.598 53.519

209

1
urs 269 10.796 2.678 2.239 2.238 70.154 70.428 68.371

sat 269 8.583 8.273 2.599 2.609 8920.663 42.887 42.683

2
urs 449 12.651 2.921 2.320 2.300 92.739 89.996 88.251

sat 449 9.612 14.860 2.729 2.722 45374.160 53.927 53.643

217

1
urs 269 12.110 2.608 2.137 2.115 83.336 76.670 76.186

sat 269 9.629 6.814 2.420 2.410 4415.772 47.546 46.464

2
urs 449 13.741 2.857 2.270 2.251 96.095 87.194 87.023

sat 449 10.440 10.474 2.630 2.623 14735.404 56.381 56.328

3
urs 629 14.646 2.941 2.319 2.313 99.437 89.912 93.209

sat 629 10.913 11.667 2.696 2.696 14735.404 56.381 57.135

279 1
urs 269 12.059 2.573 2.080 2.064 81.546 76.724 84.960

sat 269 9.588 11.575 2.391 2.397 12586.042 51.509 50.663
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

279

2
urs 449 13.528 2.836 2.212 2.195 92.187 86.744 96.124

sat 449 10.278 12.899 2.603 2.604 12586.042 57.098 57.696

3
urs 629 14.378 2.965 2.263 2.250 96.095 89.520 96.124

sat 629 10.713 16.966 2.677 2.683 25638.489 57.098 57.696

4
urs 809 14.971 3.010 2.285 2.268 99.014 92.948 99.817

sat 809 11.036 17.733 2.709 2.713 25638.489 58.977 58.807

5
urs 989 15.396 3.053 2.302 2.280 100.238 93.692 99.817

sat 989 11.271 18.878 2.729 2.731 26995.083 61.123 59.322

297

1
urs 269 12.331 3.169 2.074 2.005 86.980 81.006 81.451

sat 269 9.804 21.668 2.308 2.319 94056.513 48.941 48.984

2
urs 449 13.513 3.676 2.252 2.148 90.321 83.985 85.236

sat 449 10.266 36.211 2.540 2.546 94056.513 50.795 51.447

3
urs 629 14.165 3.895 2.327 2.196 92.913 86.090 85.236

sat 629 10.555 37.241 2.645 2.640 94056.513 51.969 51.524

4
urs 809 14.674 4.007 2.356 2.224 96.821 89.321 87.488

sat 809 10.816 40.952 2.688 2.685 94056.513 52.120 53.167

235

1
urs 275 11.873 2.631 2.183 2.132 80.433 77.904 79.127

sat 275 9.439 7.618 2.479 2.470 5297.502 47.586 46.684

2
urs 459 13.287 2.936 2.347 2.275 91.190 87.506 82.926

sat 459 10.094 12.645 2.706 2.699 28003.197 51.044 51.229

3
urs 643 14.178 3.061 2.398 2.328 96.709 91.765 91.485

sat 643 10.563 13.258 2.780 2.772 28003.197 52.348 52.334

4
urs 827 14.743 3.099 2.423 2.349 98.093 93.292 92.979

sat 827 10.867 13.861 2.815 2.807 28003.197 55.931 54.179

564

1
urs 275 12.264 2.551 2.035 2.061 82.573 77.166 76.021

sat 275 9.750 14.624 2.390 2.370 39653.048 46.848 46.757

2
urs 459 13.384 2.831 2.193 2.230 87.333 81.561 80.426

sat 459 10.168 15.707 2.655 2.637 39653.048 50.285 49.290

3
urs 643 14.393 2.984 2.240 2.274 98.851 90.926 90.825

sat 643 10.724 17.342 2.727 2.714 39653.048 53.003 53.868

4
urs 827 15.032 3.029 2.256 2.292 100.234 91.997 92.037

sat 827 11.080 18.829 2.757 2.744 39653.048 55.358 55.921

Table 5.3 – Geometric characteristics of Lurs, Lsat and Lsu for some cyclotomic fields using
log-S-embedding ϕtw (of type iso/exp). For all bases, the root-Hermite factor
verifies |δ0 − 1| < 10−3.

m d ϕtw-type k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

159 1

iso/exp 155 8.989 6.143 1.898 1.921 3168.773 35.391 35.703
iso/tw 155 10.088 7.533 2.117 2.143 4481.257 38.437 37.421

noiso/exp 155 8.989 6.143 1.894 1.905 3168.773 34.229 34.689
noiso/tw 155 10.088 7.533 2.119 2.139 4481.257 37.723 38.596
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m d ϕtw-type k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

159

2

iso/exp 259 9.572 6.902 2.028 2.036 3168.773 36.062 35.703
iso/tw 259 10.258 8.805 2.313 2.337 4481.257 38.437 37.670

noiso/exp 259 9.572 6.902 2.024 2.024 3168.773 35.579 35.802
noiso/tw 259 10.258 8.805 2.317 2.334 4481.257 37.723 38.596

3

iso/exp 363 9.978 7.602 2.066 2.066 3168.773 37.480 37.132
iso/tw 363 10.484 9.857 2.373 2.397 4481.257 39.327 39.938

noiso/exp 363 9.978 7.602 2.064 2.064 3168.773 38.643 38.255
noiso/tw 363 10.484 9.857 2.376 2.392 4481.257 39.286 41.548

149

1

iso/exp 221 9.697 12.473 2.305 2.244 12554.466 44.327 44.326
iso/tw 221 10.883 15.626 2.672 2.602 17754.669 49.653 49.399

noiso/exp 221 9.697 12.473 2.307 2.266 12554.466 43.736 45.013
noiso/tw 221 10.883 15.626 2.668 2.612 17754.669 49.143 48.693

2

iso/exp 369 10.150 14.472 2.507 2.467 12554.466 47.719 46.438
iso/tw 369 10.878 18.958 2.982 2.936 17754.669 52.622 53.154

noiso/exp 369 10.150 14.472 2.509 2.483 12554.466 48.576 47.820
noiso/tw 369 10.878 18.958 2.982 2.949 17754.669 54.041 50.666

3

iso/exp 517 10.410 22.211 2.569 2.531 85211.593 47.719 48.556
iso/tw 517 10.938 29.658 3.084 3.050 120507.386 52.788 53.154

noiso/exp 517 10.410 22.211 2.569 2.552 85211.593 48.576 48.778
noiso/tw 517 10.938 29.658 3.085 3.058 120507.386 54.041 52.131

4

iso/exp 665 10.632 20.731 2.606 2.576 85211.593 47.768 48.556
iso/tw 665 11.050 27.968 3.149 3.117 120507.386 53.017 53.154

noiso/exp 665 10.632 20.731 2.606 2.594 85211.593 48.576 48.778
noiso/tw 665 11.050 27.968 3.149 3.128 120507.386 54.041 52.385

516

1

iso/exp 251 9.395 6.508 2.341 2.359 4850.233 44.290 43.783
iso/tw 251 10.544 8.112 2.739 2.733 6859.195 49.680 50.548

noiso/exp 251 9.395 6.508 2.342 2.354 4850.233 42.774 44.385
noiso/tw 251 10.544 8.112 2.730 2.739 6859.195 52.260 50.964

2

iso/exp 419 9.818 8.208 2.550 2.565 5761.443 46.559 46.426
iso/tw 419 10.522 10.682 3.059 3.062 8147.832 51.931 53.538

noiso/exp 419 9.818 8.208 2.549 2.557 5761.443 46.306 47.683
noiso/tw 419 10.522 10.682 3.055 3.064 8147.832 52.534 51.448

3

iso/exp 587 10.321 10.348 2.620 2.623 9544.834 49.096 49.971
iso/tw 587 10.845 13.713 3.168 3.167 13498.373 56.763 56.892

noiso/exp 587 10.321 10.348 2.617 2.615 9544.834 51.019 51.870
noiso/tw 587 10.845 13.713 3.169 3.167 13498.373 54.998 57.177

4

iso/exp 755 10.650 12.682 2.652 2.652 26820.239 54.045 52.543
iso/tw 755 11.068 16.973 3.221 3.219 37929.528 58.551 56.892

noiso/exp 755 10.650 12.682 2.649 2.650 26820.239 51.019 51.870
noiso/tw 755 11.068 16.973 3.221 3.220 37929.528 57.437 57.177

Table 5.4 – Geometric characteristics of Lsat for some cyclotomic fields. Comparison between
choices iso/noiso and exp/tw.
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5.5.2 Gram-Schmidt logarithm norms

Here, we provide figures showing the Gram-Schmidt log norms for other cyclotomic fields and
number of orbits, comparing values before and after reduction.

Figure 5.5 – Lsat lattices for Q(ζ209) and Q(ζ181): Gram-Schmidt log norms before and after
reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.
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Figure 5.6 – Lsat lattices for Q(ζ187) and Q(ζ249): Gram-Schmidt log norms before and after
reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.
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Figure 5.7 – Lsat lattices for Q(ζ235) and Q(ζ297): Gram-Schmidt log norms before and after
reduction by BKZ40, for d = 2 and d = 4 Gm-orbits.
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Finally, Fig. 5.8 shows the impact of the four choices of log-S-embedding on the Gram-Schmidt
logarithm norms of the unreduced basis ϕ(Fsat).

Figure 5.8 – Lsat lattices for Q(ζ149) and Q(ζ211): effect of the log-S-embedding choices
iso/noiso and exp/tw.
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Conclusion and Perspectives

E
ventually, the results of this thesis take place in the broad context of S-unit attacks
against the Shortest Vector Problem (Svp) in ideal lattices. First, we propose in Ch. 3

a new Twisted version of the PHS algorithm [PHS19a], using the S-units formalism and the
Product Formula to twist the log-S-embedding with natural number-theoretic weights at finite
places. This so-called Twisted-PHS algorithm provably reaches the same asymptotic trade-off
between runtime and approximation factor than the PHS algorithm. On the practical side
though, we provide the first experimental evidence that under this proper normalization, the
log-S-unit lattices at hand seem to behave much better in lattice reduction algorithms, as well
as displaying very peculiar geometric characteristics, close to those of orthogonal lattices. The
exact approximation factors obtained by our Twisted-PHS algorithm in small dimensions are
strikingly small, hinting at a possible subexponential (or better) growth. In order to reach
meaningful dimensions where asymptotic phenomena start to express, we exhibit in Ch. 4 a
short basis of the Stickelberger ideal of any cyclotomic field, and show how the corresponding
explicit algebraic generators are easily computed via Jacobi sums. Finally, using in Ch. 5 these
extended Stickelberger techniques and the lattice of all real class group relations, we were able
on one hand to remove almost all quantum steps in the CDW algorithm, and on the other hand
to approximate the Twisted-PHS algorithm in all cyclotomic fields of degree up to 210. These
large degree experiments confirmed our initial observations about the geometric peculiarities of
the log-S-unit lattices in all cyclotomic fields of degree up to 210, and allowed us to obtain an
upper bound of the performance of Twisted-PHS in meaningful medium dimensions.

Nevertheless, at this point the obtained approximation factors are not sufficient to derive an
asymptotic general behaviour for S-unit attacks. Although our results do not show a catastrophic
impact of S-unit attacks, they do neither allow to dismiss this particular threat. Whereas gath-
ering these experimental data is of utmost importance to better understand concretely S-unit
attacks and back up discussions on the hardness of id-Svp, further investigation is still needed
to derive a sound asymptotic estimator.

Hence, we identify two axes for further research: the first is extending the range and scope of
experiments to better circumscribe the relevant parameters needed to evaluate the performance
of S-unit attacks; the second is to work towards obtaining a sound asymptotic estimator relying
on properly identified and verified heuristics.

Further Concrete Experimental Data

At the moment, our experiments constitute a first important step towards assessing the per-
formance of S-unit attacks. There are several directions to explore in order to strengthen our
observations in the general case.
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Other cyclotomic fields. The simplest improvement is to capture results for cyclotomic
fields Km such that h+

m > 1. Indeed, the lattice of real class group relations in the case h+
m = 1

is equivalent to the concatenation of two identity matrices and solving Cvp in this lattice can
be done in an optimal way. We therefore expect on one hand a greater gap between the CDW
algorithm and the Twisted-PHS algorithm, and on the other hand a noticeable effect of the h+

m

part on the approximation factor in both cases. At the moment, this case has not been dealt
with for the only technical reason that the real class group relations matrix seems not to be
easily accessible in SageMath.

The second obvious improvement would be to make further progress to fields of higher degrees.
This necessitates to tweak the parameters of the Pari/GP routine for computing class groups,
and to work on a parallelized implementation of the Buchmann algorithm for the search of class
group relations. A nice target would be to reach e.g., Q(ζ512), which has degree 256.

Densify log-S-unit sublattices. Due to the h−m part in the index of our full-rank families
of independent S-units, our log-S-unit sublattices in medium dimensions are still far from the
full log-S-unit lattice. A regrettable consequence is that our log-S-unit lattices reach maximal
density for d = 1 orbit of split prime ideals, whereas the Twisted-PHS generally predicts a greater
optimum d = dmax w.r.t. the log-S-unit lattice density.

Hence, some significant effort should be put to improve the saturation step in order to capture
as many prime factors of h−m as is reasonably possible. There are two bottlenecks: the compu-
tation of e-th-root characters, which at first glance costs O(

√
e), and the e-th-root computation

itself. The latter could be virtualized by considering only the absolute values of the complex
embeddings while discarding their complex arguments. However, it seems illusory to expect to
capture prime factors of h−m significatively larger than 64 bits. For our range of computations,
this might still be interesting in a non-negligible proportion of the fields, but note e.g., that h−197

is divisible by 9398302684870866656225611549, a 93-bit prime!
This would in fine allow to verify in medium dimensions the behaviour of the Twisted-PHS

algorithm when the density of the log-S-unit lattice is increasing with d > 1.

Guarantee that all finite valuations are positive. A very painful requirement of the
algorithm is that the solution vector corresponds to an element of the challenge ideal. In Ch. 3,
this was done by applying a diagonal drift on finite place coordinates, searching for an optimum
value by dichotomy. As seen in Ch. 5, this method does not scale properly, and we had to use
a randomized strategy applying O(n) random drifts in `∞-norm balls of radius 1 centered on
guessed diagonal values. This is quite costly and still not satisfactory as we observe a noticeable
variance between two random runs on the same target.

In an ideal world, one could hope for a specifically designed algorithm, like a modified or
backtracking Babai’s Nearest Plane Algorithm, that guarantees that the close solution which is
returned lies in the correct cone w.r.t. the target.

Obtain verifiable examples in medium dimensions. The exact approximation factors
shown in Ch. 3 for Twisted-PHS are completely verifiable examples, as the ClDlp step is con-
cretely performed. However, this still represents in practice the main bottleneck in high dimen-
sions, where obtaining a single relation involving a challenge prime ideal of big norm and many
small prime ideals in the factor base is significantly harder in practice than obtaining many
relations involving only ideals of the factor base. This is why in Ch. 5 we use random targets
simulating the output of the ClDlp step. Hence, obtaining verifiable concrete examples would
be very useful in order to confirm that the approximation factors estimated via random targets
still match the reality beyond the small dimensions reached in Ch. 3.
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We could think of two possible ways of performing this ClDlp step, that can even be combined
together. The first would be to use a special-q strategy, like in the General Number Field Sieve
(GNFS) context. However, this requires to sieve in large dimensions, and the algebraic norm of
the elements grows extremely rapidly. The second way aims at reducing the dimension of the
ClDlp by generalizing the Gentry-Szydlo algorithm to this problem. This Gentry-Szydlo method
would probably allow to double the reachable dimension for explicit ClDlp computations, hence
this would currently reach dimensions 100 to 120, since we did not yet succeed in performing
explicit ClDlp computations beyond dimensions 50 to 60.

Towards an S-unit Attack Asymptotic Simulator

The works of this thesis altogether allowed to reach a state where it becomes possible to extract
the meaningful properties of log-S-unit lattices that are not bound to small dimensions patho-
logical phenomena. At this point, we need to address two theoretical questions: first, explain
the striking ease of reduction and orthogonality defects of our obtained log-S-unit lattices, then
obtain an heuristic estimation of the final approximation factor. The former would allow to
establish the concrete running time of the preprocessing phase for these specific lattices, and the
latter should give, at least, a lower bound of the performance of the Twisted-PHS algorithm.

The first question can be explored as follows. On the one hand, it seems possible to ob-
tain sensible estimations of the size of the log-S-embeddings of S-units from easily computable
number-theoretic values. Further, the Gram-Schmidt orthogonalization matrix has a very spe-
cific structure that can be made explicit, due to the special shape of all the vectors of the basis.
Indeed, the basis vectors have two fixed balanced parts whose sum is equal to the logarithm
of the algebraic norm of the corresponding S-units: on the infinite places, this weight is borne
evenly by at most n coordinates; on finite places, this weight is borne by k ≥ n distinct places,
each non-zero coordinates being weighted by some lnN (p), a particular distortion which possibly
has noticeable consequences.

A pending question is to determine whether this particular shape of the basis vectors is
sufficient to explain the geometric behaviour of the log-S-unit lattices, or whether a deeper
number-theoretic explanation is mandatory. Simulating the distribution of the coordinates could
give important insights. If the approximation factors obtained with these virtual lattices coincide
with those of Ch. 5 in medium dimensions, this would allow to extrapolate the performance of S-
unit attacks in cryptographically relevant dimensions. This would also offer much freedom to
test a wide variety of parameters. In particular, it would allow to test whether extending the
factor base beyond the point of maximum density is indeed helpful, as claimed by Bernstein
in his talk at SIAM Conference on 20-th August 2021.
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[PHS19a] A. Pellet-Mary, G. Hanrot, D. Stehlé: Approx-SVP in ideal lattices with pre-processing.
In EUROCRYPT (2), vol. 11477 of LNCS, pp. 685–716, Springer, 2019.

[PHS19b] A. Pellet-Mary, G. Hanrot, D. Stehlé: Published code of “Approx-SVP in ideal
lattices with pre-processing”, 2019, available at https://apelletm.pages.math.cnrs.fr/

page-perso/code/code-approx-ideal-svp.zip.

[PR06] C. Peikert, A. Rosen: Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC, vol. 3876 of LNCS, pp. 145–166, Springer, 2006.

[PZ89] M. Pohst, H. Zassenhaus: Algorithmic Algebraic Number Theory. Encyclop. Math. Appl.,
Cambridge University Press, 1989.

[Reg05] O. Regev: On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pp. 84–93, ACM, 2005.

[Sag20] Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.0), 2020,
available at https://www.sagemath.org.

[Sch87] C. Schnorr: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Com-
put. Sci., 53, pp. 201–224, 1987.

[Sch03] R. Schoof: Class numbers of real cyclotomic fields of prime conductor. Math. Comp.,
72(242), pp. 913–937, 2003.

[Sch08] R. Schoof: Catalan’s Conjecture. Universitext, Springer, 2008.

[SE94] C. Schnorr, M. Euchner: Lattice basis reduction: Improved practical algorithms and solv-
ing subset sum problems. Math. Program., 66, pp. 181–199, 1994.

[Sho97] P. W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput., 26(5), pp. 1484–1509, 1997.

[Sin78] W. Sinnott: On the Stickelberger ideal and the circular units of a cyclotomic field. Ann.
Math., 108(1), pp. 107–134, 1978.

[Sin80] W. Sinnott: On the Stickelberger ideal and the circular units of an abelian field. Invent.
Math., 62, pp. 181–234, 1980.
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Résumé : Les travaux de cette thèse portent sur
les attaques par S-unités contre le Problème du
Plus Court Vecteur (SVP) dans les réseaux idéaux.
Tout d’abord, nous proposons une version Tordue
de l’algorithme PHS, utilisant le formalisme des S-
unités et la Formule du Produit pour pondérer
le S-plongement logarithmique avec les poids stan-
dards de théorie des nombres sur les places
finies. Sur le plan théorique, cet algorithme nommé
Twisted-PHS réalise le même compromis temps-
facteur d’approximation que l’algorithme PHS. Sur
le plan pratique, nous fournissons la première
preuve expérimentale qu’avec cette pondération,
les réseaux log-S-unités ont des caractéristiques
géométriques très particulières. De plus, les fac-
teurs d’approximation exacts obtenus en petite di-
mension sont remarquablement petits, potentielle-
ment sous-exponentiels ou mieux.

Afin d’atteindre des dimensions où les phéno-
mènes asymptotiques s’expriment, nous exhibons
une base courte de l’idéal de Stickelberger pour
tout corps cyclotomique, et montrons comment
calculer les générateurs explicites correspondants
via des sommes de Jacobi.
Finalement, grâce à ces résultats avancés sur
l’idéal de Stickelberger, et à l’aide de toutes les
relations du groupe de classe réel, nous sup-
primons presque toutes les étapes quantiques
de l’algorithme CDW, et approximons l’algorithme
Twisted-PHS pour tous les corps cyclotomiques de
degré jusqu’à 210. Cela a permis de confirmer
les particularités géométriques des réseaux log-
S-unités pondérés, ainsi que d’obtenir une borne
supérieure sur les performances de notre algo-
rithme Twisted-PHS en moyenne dimension.

Title: Algebraic Cryptanalysis of the Shortest Vector Problem in Ideal Lattices

Keywords: Ideal lattices, Shortest Vector Problem, Stickelberger, S-units, Twisted-PHS Algorithm

Abstract: The results of this thesis take place
in the broad context of S-unit attacks against the
Shortest Vector Problem (SVP) in ideal lattices.
First, we propose a new Twisted version of the
PHS algorithm, using the S-units formalism and the
Product Formula to twist the log-S-embedding with
standard number-theoretic weights at finite places.
This so-called Twisted-PHS algorithm provably
reaches the same asymptotic trade-off between
runtime and approximation factor than the PHS al-
gorithm. On the practical side, we provide the first
experimental evidence that using this normaliza-
tion, the log-S-unit lattices have very peculiar geo-
metric characteristics. Exact approximation factors
obtained in small dimensions are strikingly small,

in a way that could be subexponential or better.
In order to reach dimensions where asymptotic
phenomena start to express, we exhibit a short
basis of the Stickelberger ideal of any cyclotomic
field, and show how its explicit algebraic genera-
tors can be computed via Jacobi sums.
Finally, using these extended Stickelberger tech-
niques and all real class group relations, we were
able to remove almost all quantum steps in the
CDW algorithm, and to approximate the Twisted-
PHS algorithm in all cyclotomic fields of degree up
to 210. This allowed us to confirm the geometric
peculiarities of twisted log-S-unit lattices, and to
obtain an upper bound of the performance of the
Twisted-PHS algorithm in medium dimensions.
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