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ABSTRACT

In this thesis we bring new physical insights in parametric instabilities that can occur in
dynamical systems with a natural cycle which natural time scale could be periodically mod-
ulated. Our approach is based on the development of experimental and theoretical proofs of
concept.

In a first part, we study parametric instabilities as parametric amplifiers. We develop
a new experimental setup at the macroscopic scale to go beyond the tip of the instability
tongues. As a result of experimental and numerical observations, a geometrical design rule
is developed to control high order parametric instabilities. This geometrical design is ex-
perimentally validated, and high order parametric instabilities are triggered and observed.
Finally, by changing the shape of the modulation function, we show that it is possible to use
parametric instabilities to trigger and sustain the natural oscillation of a dynamical system.

In the second part, we revisit the concept of dynamic stabilization. An experimental and
numerical proof of concept is developed to show that it is possible to stabilize a system with
a driven frequency closer to the natural time scale of a naturally diverging system and even
go over the first stability region, unlike the classic Kapitza approach. By way of a numerical
study, we show that we can dynamically stabilize a system by synchronizing the period of
modulation to its natural time scales. However, this region is difficult to observe with the
classical stability analysis. To access it in a simpler way, we pass by an analogy between
initial and boundary value problem and this way develop pseudo-analytical master curves to
predict dynamical stabilization. Finally, these pseudo-analytical solutions are validated by
experimental observations.

Keywords:
Parametric instabilities, dynamical systems, instabilities for functionalities, dynamical stabi-
lization, parametric oscillators
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RÉSUMÉ

Dans cette thèse, nous apportons de nouvelles connaissances physiques dans le domaine
des instabilités paramétriques qui peuvent survenir dans des systèmes dynamiques dont les
échelles de temps naturelles sont périodiquement modulées. Notre approche se base sur des
preuves de concept théorique et expérimentale.

Dans une première partie, nous développons un nouveau setup expérimental (à l’échelle
macroscopique) pour aller au-delà de la pointe des langues d’instabilité. Grâce aux observa-
tions expérimentales et à un modèle numérique associé, une règle de conception géométrique
est déduite pour contrôler les instabilités paramétriques d’ordre élevé. Cette conception
géométrique est validée expérimentalement, et des instabilités paramétriques d’ordre élevé
sont déclenchées et observées. Finalement, en changeant la forme de la modulation, nous
montrons qu’il est possible d’utiliser les instabilités paramétriques pour déclencher et main-
tenir les oscillations naturelles d’un système dynamique.

Dans la deuxième partie, nous revisitons le concept de stabilisation dynamique. A partir
d’une preuve de concept expérimentale et numérique, nous observons qu’il est possible de
stabiliser un système avec une fréquence de modulation plus proche de l’échelle de temps
naturelle du système et même d’aller au-delà de la première région de stabilité, contraire-
ment à l’approche classique dite de Kapitza.
Avec une étude numérique, nous montrons que nous pouvons stabiliser un système en syn-
chronisant simplement la fonction de modulation avec les échelles de temps naturelles du
système à stabiliser. Cependant, cette limite asymptotique est difficile à observer avec
l’analyse classique de stabilité de système dynamique. Pour y accéder de manière plus sim-
ple, nous faisons l’analogie entre problème aux conditions initiales et problème aux limites
et développons ainsi des courbes maîtresses pseudo-analytiques pour prédire cette stabili-
sation dynamique synchronisée. Finalement, ces solutions théoriques sont validées par des
observations expérimentales.

Mots clés:
Instabilités paramétriques, système dynamique, instabilités pour des fonctionnalités, stabili-
sation dynamique, oscillateur paramétrique
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INTRODUCTION

A dynamical system consists of two main components: a starting point or initial “state" and a
specific rule or “dynamics" which describes its evolution through time. The most successful
types of rules to describe physical phenomena are differential equations. We are particularly
interested in the family of dynamical systems which have a natural time scale that can be
periodically modulated. This family of system is extensive: trapping and levitating particles,
a child on a swing, the sinking of ships, cardiac rhythms, or business cycles, just to name a
few.
Depending on the system, the periodic modulation can do two things: either amplifying
the motion of the system at rest, this is parametric resonance, or decreasing existing high
amplitudes of motion and make it steady, this is dynamical stabilization. Both functionalities
have been studied and implemented in this family of dynamical systems. However, as any
physical phenomenon, there is still a lot to be studied. In this manuscript, we will show that
there still exist limitations to their implementations at the macroscopic scale and we will
provide new physical insights on how we can overcome these limitations and extend our use
of parametric instabilities for functionalities.

A brief history of dynamical systems and instabilities

The subject of dynamical systems was introduced in the mid-1600s when Newton invented
differential equations, discovered his laws of motion, universal gravitation and combined
them to solve the problem of calculating the motion of the Earth around the Sun, solving the
two-body problem [1]. Trying to translate his theory to the three-body problem did not give
the same results and for years the three-body problem was thought impossible to solve until
the late 1800s with Henri Poincaré. Poincaré realised this problem was essentially impossi-
ble to solve in the sense of obtaining explicit formulas for the motions of the three bodies.
Instead of focusing on the explicit formulas and doing the usual quantitative approach, he
proposed a qualitative approach focusing on the global stability behaviour of the system [2].
Poincaré’s novel qualitative approach introduces the notion of phase portrait. A phase por-
trait is a geometric representation of the trajectories of a dynamical system in the phase
space and each set of initial conditions is represented by a different curve, or point [2, 3].
The study of these different trajectories helps deduce important properties of the system.
For example Fig 1.a showcases the phase portrait of an undamped pendulum defined by
θ̈(t) + ω2

0 sin θ(t) = 0. For some initial conditions the trajectories are circles, these circles
correspond to the oscillatory motion of a pendulum. If the initial conditions surpass a certain
limit, the trajectories show how the pendulum will lose the oscillatory motion and how it
will continuously turn through the vertical planar circle. Besides describing the motion of
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the system, the phase portrait showcases the different equilibrium points of the system and
gives the nature of each one. When one or more trajectories converge to a given equilibrium,
this equilibrium is said stable (blue dots in Fig 1.a). On the contrary, if the trajectories are
escaping the equilibrium point, that equilibrium is said to be unstable (red dots in Fig 1.a). At
higher dimensions in the phase space, new behaviours can appear in the system. For example
Fig 1.b shows a dynamical system with a chaotic behaviour, the famous Lorenz attractor [4].
The Lorenz attractor is obtained with the Lorenz equations which are a three-dimensional
simplified model of convection rolls in the atmosphere. This simple-looking deterministic
system has extremely erratic dynamics: the trajectories oscillate irregularly, never exactly
repeating but always remaining in a bounded region of the phase space. This bounded region
is a strange attractor (the first one ever observed) and it is represented in Fig 1.b.
These are some examples of the versatility and importance of Poincaré’s approach. Besides
introducing this novel qualitative (geometrical) theory to study differential equations, he de-
veloped the basis for the local and global analysis of nonlinear differential equations and the
importance of the sensitivity to initial conditions of the behaviour of a deterministic system
(possibility of chaos). These ideas are considered the cornerstone of the interdisciplinary
study of today’s dynamical systems. Because of the importance of his work and their appli-
cations, Henri Poincaré is recognised as the true founder of the study of dynamical systems
[5, 6].

b)

𝑥

𝑧
𝑦

a)

𝜃

𝜃̇

Figure 1: Examples of a qualitative study of dynamical systems a) Two dimensional phase
portrait of the dynamical motion of a pendulum showcasing stable and unstable equilibrium
points in blue and red respectively. b) Three-dimensional phase portrait of the first strange
attractor, the Lorenz attractor.

On a day-to-day basis nobody likes unpredictable events. If you go to the doctor for your
yearly check-up, you never want them to find an unexpected black mass. Or if you study for
an exam, you do not want to be the one the teacher asks his famous questions out of topic
just to see if you really understood the lesson. No, you expect everything to go according
to plan. Physics and engineering are not the exception. We want to prevent any unpleasant
surprise. And in a system the source of an unpredictable behaviour is often an instability.
For example one classical example of an instability can be the buckling of a beam or shell:
if a slender structure is under some important constraint (compression, tension or thermal
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effects) the system can buckle making the structure unstable and dangerous [7]. The reper-
cussions of these phenomena are catastrophic and can lead to the destruction of the entire
system. A storage tank collapsed because of a buckling instability induced by the pressure
inside the tank (Fig 2.a). Another example to show the danger of instabilities can be the fall
of the Tacoma Narrows bridge in 1940 [8]. The Tacoma Narrows bridge in Washington state
was at the time the lighter and one of most flexible bridges in the world. The one of a new set
of bridges to be build. However, the 7th of November 1940 a strong wind put the bridge into
a series of torsional oscillations. The amplitude of the oscillations steadily increased until
the convolutions tore several suspenders and the span broke up, resulting in the complete
collapse of the bridge (Fig 2.b).
One last example of the fatalities of instabilities can be seen in the navy, more specifically
in the transport of large container ships. The 9th of October 2011, the container ship MV
RENA, which can carry a capacity of 3351 containers and has an approximative length of
236 meters and a depth of 18.8 meters, experienced periodic high amplitude rolls over 20◦

while sailing from Napier to Tauranga ( northern coast of New Zealand). This high ampli-
tude coupled with an unfavourable periodicity of the waves made the system unstable and
several containers collapsed (Fig 2.c). This incident provoked the breaking in half of the
ship, the loss of 88 containers and the leak of 130 to 350 tonnes of oil, declaring it as New
Zealand’s worst ever maritime environmental disaster [9, 10].

a) b) c)

Figure 2: Examples of the risk of instabilities a) Buckling of liquid storage tanks under uni-
form pressure at Penuelas, Puerto Rico. Image credit: Luis A. Godoy [7]. b) Collapsing of
the Tacoma Narrows bridge due to strong winds. Image credit: The United State Govern-
ment, retrieved from the data of the 7th of November 1940. c) MV Rena cargo ship broken
in half and loss of containers due to the periodicity and high amplitude of the waves. Image
credit: Maritime New Zealand.

To work around these problems and avoid any instability to appear we had to study them.
One of the most important theories to study buckling was introduced at the end of the 18th

century, the Euler-Bernoulli theory [11]. Ignoring the effects of shear deformation and ro-
tatory inertia, this theory let us calculate the load-carrying and deflection characteristics of
beams. Since then, various models were introduced but one of the major improvements of
the Euler-Bernoulli theory was developed by Timoshenko in the 1920s [12, 13]. The Tim-
oshenko model proposed a beam theory taking in consideration shear as well as the effect
of rotation to the Euler-Bernoulli theory, making it applicable for slender and non-slender
beams and for high-frequency responses where rotary effects or shear are not negligible.
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The Euler-Bernoulli and Timoshenko theories for the dynamics of beams and shells are used
widely in engineering [14, 15, 16, 17] and thus the buckling of storage tanks can now be
avoided. However, the cause of the collapse of the Tacoma bride was a topic of debate and
confusion for years [8, 18]. After further studies it was understood that the cause of the
instability was aeroelasticity which is the coupling between aerodynamics and elastic forces
on deformable bodies subject to a flow [19]. This field of research has been vastly applied in
aerospace engineering [20]. For instance, to avoid the flutter instability, composite materials
are used as a better alternative to build the structures [21, 22].
Finally, the example of the rolling of a ship was thought as a resonance case but the actual
reason of this instability is the amplitudes and the timing of the waves which modulate the
metacentric height of the ship (distance between the centre of gravity of a ship and its meta-
centre, a measurement of the initial static stability of a floating body). The vessel will roll
over to one side but when the wave reaches the middle of the ship, the increased stability
will push the vessel quickly to its upright position. At this point the wave’s crest reaches the
middle of the ship again and the metacentric height value is again reduced which results in
rolling the vessel in the opposite direction. Provided that few consecutive waves will be of
the same length the vessel will develop a parametric resonance. To avoid it, areas of naviga-
tion investigated where parametric rolling is important [23, 24], and different numerical and
experimental works have been conducted to avoid parametric rolling [25, 26].

Towards the end of the 20th century, the study of instabilities started to focus on how
they can be used to bring new functionalities in mechanical systems. Buckling can be
used to adapt the characteristics of different systems and provide new mechanical proper-
ties [27, 28, 29, 30]. For example it can bring robustness to a structure [31, 32] or on the
contrary the use of a buckling-induced kirigami on a sheet can provide stretchability and
higher bending rigidity [33] (Fig 3.a). Another important method to use instabilities as a
functionality are geometrical re-organization systems, for example shape-morphing struc-
tures [34, 35, 36, 37]. A morphable structure is a system capable of changing shape to
improve its performances or enable new functions. The action to modify the structure can
be of many sorts. For example Siefert et al. [38] can control complex shape transformations
using buckling transitions in elastomers under pressure (Fig 3.b).

a)

b)

1cm

Figure 3: Examples of instabilities for functionalities a) Buckling-Induced Kirigami in-
creases stretchability and higher bending rigidity. Image credit: Rafsanjani [33]. b) 3D
shape-morphing elastomers induced by pressure. Image credit: Siefert [38].
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Geometrical re-organization and controlled buckling are not the only candidates to ex-
ploit instabilities. Controlling parametric instabilities can also lead to exploiting them. They
can be used as parametric resonance for example to trigger and sustain the motion of a sys-
tem [39], or as dynamical stabilization for example to suppress aeroelastic flutter [40] or in
mass spectrometry [41]. For example, Fig 4.a shows a linear electrodynamic Ion Trap where
charged molecules are trapped along a central line by sending a dc voltage which is then
periodically modulated by a precise rf voltage at a particular frequency. Finally, parametric
instabilities have even been used to observe analogies between quantum mechanics and the
macroscopic scale: waves formed spontaneously when a bath of liquid is vibrated period-
ically offers a new framework to study a particle-wave interaction at a macroscopic scale.
Indeed, drops placed on such a bath form “dual walkers” which enable the study of classical
orbits [42, 43] or the phenomenon of interference [44] (Fig 4.b).

a) b)

Figure 4: Examples of parametric instabilities for functionalities. a) Photograph of charged
particles trapped by periodically modulating the electric field surrounding them. Image
credit: Newtonian Labs [45]. b) Photograph of a droplet in a vertically vibrated bath (a
“walker") showing how its trajectory is deflected by the interference with reflected waves.
Image credit: Y. Couder [44].

Parametric instabilities
Parametric instabilities occur in a dynamical system whose natural time scales are periodi-
cally modulated in synchrony with one of its natural time scales [46]. The first experimental
observation of parametric instabilities was made by M. Faraday in 1831 [47]. His experiment
consisted in creating a surface wave spontaneously in fluids by vertically vibrating a layer of
a fluid on top of a membrane. Since then, parametric instabilities were observed in a plethora
of dynamic systems, at the macroscopic scale [48, 49] and the microscopic scale [39, 50].

The most frequent equation to study them is a linear second order differential equation
with periodic coefficient that reads

d2y(τ)
dτ 2 +

(
α2 + β2g(τ)

)
y(τ) = 0, (1)
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where α2 represents a constant portion of the coefficient of y, β2 accounts for the magnitude
of the time variation and g(τ) = g(τ + T ) expresses the T -periodic modulation function.
Eq (1) is most commonly known as Hill’s equation [51, 52] and can be found in a plethora
of physical examples. The periodic modulation function g(τ) can be of any shape. The most
known example is when g(τ) is a harmonic modulation, i.e g(τ) = cos (τ). In this case Eq
(1) is known as Mathieu equation in reference to Emile Mathieu who theoretically showed
in 1868 that the surface waves in elliptic-shaped lakes are governed by an ordinary differ-
ential equation (ODE) with periodic coefficients [48]. Another important contribution in the
domain of parametric instabilities was done by E. Meissner in 1918 [53]. He showed that
when g(τ) is a square wave modulation function, Eq (1) has an analytical solution because
it can be viewed as a pair of constant coefficient equations each valid in alternating time
intervals. Finally, the mathematical theory to study the stability of Eq (1) was introduced in
the nineteenth century by Gaston Floquet [54]. He introduced the foundation to study the
stability of any ODE with periodic coefficients which is today known as Floquet theory. In
this thesis we will study both types of modulations.

Floquet theory
In 1883, Gaston Floquet introduced an elegant method to analyze the stability of time-
periodic systems [54]. We present here the explanation for the particular 2-dimensional
system which we will focus on throughout this manuscript. However, this theory can be
generalized to N -dimensional systems [54, 55, 56, 57].

Let’s define the state vector y = [y, ẏ]> and introduce it into Eq (1). The dynamical
equation then reads

ẏ(τ) = J(τ)y(τ), (2)

where J(τ) is the Jacobian matrix defined as J(τ) =
 0 1
− (α2 + β2g(τ)) 0

.

Floquet’s theory [54] says that for a time-periodic equation of the shape ẏ(τ) = J(τ)y(τ)
with a T -periodic Jacobian matrix the solutions can be sought in the form

y(τ) =
2∑

n=1
cnyn(τ) (3)

where yn(τ) are called the fundamental solutions and cn are two constants determined by the
initial conditions. We remind the reader that in Eq (3) the summation goes until 2 because it
is the dimension of our state vector y. Furthermore using the T -periodicity of the Jacobian
matrix we have

ẏn(τ + T ) = J(τ + T )yn(τ + T ) = J(τ)yn(τ + T ), (4)

so that the yn(τ +T ) also verifies equation (2). This shows that the solutions yn(τ +T ) can
be expressed as a linear combination of the two independent fundamental solutions yn(τ).
Therefore it exists a 2 × 2 constant matrix Φ, called the Monodromy matrix, that maps a
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particular set of fundamental solution Y (τ) = [y1(τ) ,y2(τ)]> at time τ into their respective
values at time τ + T :

Y (τ + T ) = Y (τ)Φ. (5)

The matrix Φ called the Monodromy matrix maps the solution from τ to time τ+T . It is used
to study the stability of the trivial solution by computing its eigenvalues ρn and eigenvectors
yn(τ). For an eigenvector of Φ we have:

yn(τ + T ) = yn(τ)ρn. (6)

The ρn are therefore called Floquet multipliers [46, 54] which are independent on the choice
of the fundamental matrix Φ. This property will be very useful for the numerical study be-
cause by putting the initial condition as Y (0) = 1 and using Eq (5) the Monodromy matrix
simply reads Φ = Y (T ).

Finally Floquet’s theory [54] tells us that we can express the fundamental solutions yn(τ )
in the so-called Floquet normal form :

yn(τ) = rn(τ)esn(τ) (7)

where rn(τ+T ) = rn(τ) is a 2-dimensional complex vector of period T and sn is a complex
number called the Floquet exponent. Then, from Eq (6) and from the T -periodicity of rn we
have

yn(τ + T ) = rn(τ + T )esn(τ+T ) = yn(t)esnT . (8)

By identifying Eq (6) with Eq (8), we have a direct relation between the Floquet exponents
sn and the Floquet multipliers ρn that reads

ρn = esnT ⇐⇒ sn = 1
T

ln ρn + iωm (9)

where ω is the fundamental frequency defined as ω = 2π/T , i is the imaginary number and
m is an integer from 0,±1,±2, .... So, we can determine the stability of the equilibrium state
by studying the value of the Floquet multiplier ρn or the values of the Floquet exponent sn.

The stability of the equilibrium state for a system described by ẏ(τ) = J(τ)y(τ) can be
determined either by the absolute value of the Floquet multipliers (|ρn|) or the real part of the
Floquet exponents (<(sn)). The following statements are very similar to Lyapunov’s theory
[58] except that, in the present case of Floquet theory [54], the nature of the instability we
encounter are different since Eq (1) has a periodic coefficient and are no more constant in
time:

• If <(sn) < 0 (or |(ρn)| < 1) : for all n, all fundamentals solutions yn(τ) converge
towards zero as time increases, so does any perturbation y(τ). The trivial equilibrium
state is said to be asymptotically stable.

• If ∃ k such that <(sk) > 0 (or |(ρk)| > 1), the corresponding fundamental solution
increases exponentially, so does the perturbed y(τ). The trivial equilibrium state is in
this case unstable and three different scenarios must be considered:
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– If =(sk) = mω for m = 0,±1,±2, ... ( or =(ρk) = 0 and <(ρk) > 0) : the
perturbed motion will be a T -periodic oscillation that will exponentially grow in
the direction of the kth mode rk(τ).

– If =(sk) = ω/2 +mω for m = 0,±1,±2, ... (or =(ρk) 6= 0 and <(ρk) < 0): the
perturbed motion will be a 2T -periodic oscillation that will exponentially grow
in the direction of the kth mode rk(t).

– If =(sk) 6= ω/2 + mω for m = 0,±1,±2, ... (or =(ρk) 6= 0) the perturbed
motion is a periodic or quasi-periodic oscillation that exponentially grows in the
direction of the the kth mode rk(τ).

Stability diagrams

The eigenvalues of the Monodromy matrix depend on the parameters (α2, β2). To study
them, we use a stability diagram [46, 59]. A stability diagram shows the evolution of the
maximum value of the real part of the Floquet exponent <(sn) in the (α2, β2) space. As we
have seen with Floquet theory, the system is stable only if <(sn) < 0. The stability diagram
for the Mathieu equation (g(τ) = cos (τ)) is represented in Fig 5.a and the stability diagram
for the Meissner equation (g(τ) = +1 during T /2 and −1 during the remaining T /2) is
represented in Fig 5.b.

Figure 5 shows that the stability of the equilibrium state depends on the modulation
parameters (α2, β2). For any diagram there is an alternation between unstable and stable
tongues represented by coloured and white regions respectively. For the one degree of free-
dom system we are studying in Eq (1), these tongues never cross or overlap, even at high
values of β2 [46, 52]. Finally, we observe that the shape of the tongues depends on the type
of modulation. Fig 5.b shows that for a square wave modulation, the instability tongues are
tailored in discrete pockets meanwhile the instability tongues for the harmonic modulation
are continuous tongues (Fig 5.a).

Figure 5: Stability diagram of a time-varying dynamical system without dissipation in
the modulation parameter space (α2, β2). The colour bar represents the evolution of
max(<(sn)). Coloured regions are the instabilities tongues and white regions are the stabil-
ity tongues. Green dots: tip of the instability regions defined by α2 = (0.5k)2 with k ∈ N∗.
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Let’s discuss the variations of α2 and β2 in these stability diagrams. Depending on α2

and β2 we have different physical scenarios (cases A-D in Fig 5). To interpret them, let’s
consider a mass in a potential energy which is defined as Ep = 1

2(α2 + β2g(τ))y2 (black line
in Fig 6).
The particular case β2 = 0 corresponds to the classic harmonic oscillator where the system
is either marginally stable when α2 > 0 (harmonically oscillating with natural period 2π/α)
or locally unstable when α2 < 0. The generalized case β2 > 0 models parametric oscillators.
For α2 < 0, it is eventually possible to dynamically stabilize a naturally unstable equilibrium
but only if β2 > |α2|, i.e. if the curvature of the potential Ep is at least shortly positive (see
cases A and B in Fig 6) The other case is when α2 > 0. The region where α2 > β2 (case D
in Fig 6) corresponds to classic parametric resonance where a response is enhanced. Finally,
when α2 > 0 and β2 > α2 corresponds to periodic modulations that are so large, that the
curvature of the potential is shortly negative (case C in Fig 6). So, the two main physical
functionalities of parametric instabilities are either parametric resonance, focusing on the
instability tongues in cases D and C in Fig 5, or dynamical stabilization focusing on the
stability tongues in case B in Fig 5.

y
𝛼! < 0, 𝛽! < |𝛼!| 𝛼! < 0, 𝛽! > |𝛼!| 𝛽! > 𝛼! > 0 𝛼! > 𝛽! > 0

Figure 6: Four qualitative physical scenarios for a mass in a varying potential Ep = 1
2(α2 +

β2g(τ))y2. Black lines show Ep = 1
2α

2, red dashed lines Ep = 1
2(α2 +β2)y2 and blue dashed

lines Ep = 1
2(α2 − β2)y2.

Damping in parametric instabilities
By ways of an asymptotic study [60, 61, 62], the beginning of the instability regions can be
deduced. For β → 0, the tips of the instability regions are defined as α2 = (0.5k)2 with k a
positive integer (green dots in Fig 5). The kth instability region indicates the emergence of 2T
or T -periodic motions if k is odd or even, respectively [46]. Having a simple access to the tip
the unstable regions, parametric resonance can be used in various physical domains: from a
child on a swing [49] to Micro Electro Mechanical Systems (MEMS) [39, 63] or plasma [64].

In a real system there are dissipations that tend to stabilize a system. Dissipation can be
introduced in the system with the term 2ζdy/dτ added to the left-hand side of Eq (1) where
ζ is the damping factor. Figure 7.a represents the stability diagram for the damped Math-
ieu equation and Fig 7.b the stability diagram for the damped Meissner equation, both for
ζ = 0.1. Figure 7 shows that, compared to the undamped case in Fig 5, the instability regions
start to vanish at low values of β2 and by consequence the stability regions grow larger in
the (α2, β2) space. This means the possible use of high order instability regions seems very
difficult in domains with dissipation, at least for low values of β2 or globally in case D.
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a) b)Damped Mathieu equation Damped Meissner equation

Figure 7: Using parametric instabilities for parametric resonance. Green dots are the tip of
the unstable regions defined by α2 = (0.5k)2 with k ∈ N∗. a) Undamped stability chart fo
the Mathieu equation. b) Damped Mathieu equation for damping ratio ζ = 0.1. Damping in
the domain limits instabilities pushing the tip of the unstable tongues to higher values of β2.

The presence of dissipation in macroscopic systems is one of the most important limita-
tions to exploit parametric instabilities. Dissipation drastically changes the stability diagram
at small β2 reducing the instability tongues. However, at large modulations β2, there are still
a predominance of instability tongues (case “C” in Fig 7). To overcome the drawbacks of
dissipation and expand the use of parametric instabilities at the macroscopic scale we pro-
pose to explore the region of large β2: high order parametric resonance.

Dynamical stabilization
Instead of enhancing a response using the instability regions, we can use the stability regions
to stabilize a naturally unstable equilibrium. We focus here on the stable tongues for α2 < 0
(white regions in Fig 8). The most famous and first theoretical approach to stabilize a system
using parametric instabilities was by Kapitza [65] in the Mathieu case (g(τ) = cos (τ)). In
1951, he showed that the upward position of a pendulum can be stabilized if the suspension
point is oscillated vertically at a sufficiently fast frequency. By using a fast frequency of
modulation he studied Eq (1) dividing it in two times scales (one slow and one fast) and
deduced a theoretical approximation of the bottom of the first stability region [65] which is
famously known as the Kapitza limit. In the (α2, β2) space the Kapitza limit is β2 =

√
2α2

and is represented by a green curve in Fig 8 for α2 < 0. This theoretical limit is exploited in
a plethora of systems from the stabilization of microscopic inverted pendulums [66] to the
development of ion traps [67].
Nevertheless, this theoretical approximation is only valid for fast frequencies of modulations
compared to the natural time scale of the system and for small modulations (β2 → 0) as we
can see in both stability diagrams in Fig 8. Beyond β2 ≈ 0.75 the theoretical limit does not
longer describe the bottom of the first stability region for the harmonic modulation (Fig 8.a)
and it is no longer valid for β2 ≈ 0.2 for the square wave modulation (Fig 8.b).
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a) b)Mathieu equation Meissner equation

Figure 8: Using parametric instabilities for dynamical stabilization: focus on the white
regions. Green curve is the theoretical Kapitza limit which follows the lower edge of the
first stability region. It is limited to fast frequency of modulation and small amplitude of
modulation β2.

For dynamical stabilization, dissipation does not have a strong influence as a limitation.
Indeed, case B in Fig 7 is almost not affected by dissipation. For dynamic stabilization,
the limitation is that at large values of β2 the stability regions are thinner and thinner, so
it is more difficult to deduce the set of parameters (Fig 8). Moreover, the only theoretical
approach currently existing is limited to a specific region: small β2 and fast frequencies of
modulation with respect to the natural time scale of the system (Fig 8). We think this ap-
proach might be preventing us from exploring stabilization for higher modulations or even
explore other stability regions.
Instead of using fast modulation frequencies to dynamically stabilize a system, we propose
to use frequencies of modulations close to the natural time scale of the system and investi-
gate if it is possible to stabilize a system for higher values of β2 or if we can observe other
stability regions with this approach.

Outline of the manuscript
Throughout this thesis we wish to provide new physical insights to overcome the existing
limitations in parametric instabilities to extend the domain of use in the macroscopic scale.
Our investigations are based on the development of experimental and theoretical proofs of
concept. For parametric resonance we will explore the feasibility of triggering and exploiting
large values of modulations in macroscopic systems. For dynamic stabilization, we propose
to investigate the use of frequencies closer (or synchronized) to the natural time scale of the
system to explore dynamical stabilization outside of the Kapitza approach.

In chapter 1 we focus on exploring the idea of using high modulations (large values of β2)
to exploit parametric resonance in macroscopic systems. By physical understanding different
systems governed by parametric instabilities we want to infer what are the current limitations
preventing us to achiever large β2, i.e explore high order of parametric resonance. We ob-
serve that the systems are currently limited at the tip of the unstable regions. We develop and
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validate a new experimental setup at the macroscopic scale to go beyond the tip of the in-
stability tongues. Then, a geometrical design rule is developed and experimentally validated
to observe, control and trigger high order parametric instabilities. Finally, by changing the
shape of the modulation function, we show that it is possible to use parametric instabilities
to trigger and sustain the natural oscillation of a dynamical system.

In chapter 2 we revisit the current approach to dynamic stabilization. We analyze dif-
ferent experiments where we observe how dynamic stabilization is possible using Kapitza’s
approach. An experimental and numerical proof of concept is developed and we show that it
is possible to stabilize a system with a modulation frequency closer to the natural time scale
of the naturally diverging system and even go beyond the first stability region. However, the
complete access to this region is difficult due to the small size of the stability regions. To ac-
cess it in a simpler way, we use an analogy between initial and boundary value problem. By
doing so, we introduce a pseudo-analytical resolution giving us a discrete number of master
curves to deduce the parameters to stabilize an unstable system. Finally, these master curves
are validated with our experimental setup.
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CHAPTER 1. BEYOND THE TIPS OF THE PARAMETRIC INSTABILITIES TONGUES

One important functionality of parametric instabilities is parametric resonance. They ap-
pear when a parameter of the dynamical system is periodically varied in synchrony with one
of its natural time scales, typically a multiple from the natural frequency of the system [46].
A typical example is observed when a person is on a swing and periodically stands and squats
to increase the amplitude of the oscillations [49]. In this case the "up-and-down“ movement
vary the moment of inertia of the swing and amplifies the oscillations.

At the macroscopic scale the use of high order parametric instabilities is limited. To
the best of our knowledge, the most common explanation is the presence of dissipation in
the system. Dissipation tends to stabilize a system and reduce the presence of the unsta-
ble regions, as seen in Fig 7 of the Introduction. Nevertheless, dissipation may not be the
only limitation on the use of high order parametric resonance. It is possible that the usual
experimental setups for parametric resonance are also not facilitating the use of high or-
der parametric resonances. To observe if the limitations to explore high order parametric
resonance are not only caused by dissipation, we analyze the implementation of parametric
instabilities in a variety of mechanical systems: solid and fluid mechanics at the macroscopic
scale as well as one example at the microscopic scale. After the analysis, we will highlight
that there are other physical and/or geometrical limitations preventing systems to trigger high
order parametric resonance.
These limitations are rationalized and a new experimental concept is proposed to overcome
these limitations and explore higher parametric resonances. This general concept is then im-
plemented in a macroscopic experimental setup. We explain in detail our experimental proof
of concept and show that we can observe high order parametric resonance at the macroscopic
scale in the presence of dissipation. Moreover, studying the different experimental responses
we deduce a geometrical relation to control and trigger a precise parametric resonance for
the square wave modulation.
Finally, by changing the shape of the square wave it is possible to control and explore new
and exciting dynamical responses using parametric resonances. For instance, by approxi-
mating the square wave modulation to an “impulse" train it is possible to trigger and sustain
a natural oscillation.

1 Rationalizing parametric instabilities in a variety of ex-
perimental systems

As presented in the Introduction, Fig 5 shows how the stability of a linear parametric os-
cillator needs a complex stability diagram to be studied (numerous instability and stability
regions strongly dependent on the parameters). The most used linear equation to describe
the evolution of a position y which is periodically modulated is:

d2y(τ)
dτ 2 +

(
α2 + β2g(τ)

)
y(τ) = 0, (1.1)

where α2 represents a constant portion of the coefficient of y, β2 accounts for the magnitude
of the time variation and g(τ) = g(τ + T ) represents the T -periodic modulation parameter.

Experimentally, in the presence of dissipation, the easiest instability tongue to reach is
the first one (Fig 7 of the Introduction). Thus, parametric resonance is limited to appear only
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1. RATIONALIZING PARAMETRIC INSTABILITIES IN A VARIETY OF EXPERIMENTAL SYSTEMS

if the driving frequency is two times faster than the natural frequency of the system. We want
to show that there are other physical and/or geometrical reasons preventing us from going
over the tip of the instability regions, besides dissipation.
To fully understand the scope of parametric instabilities we examine a variety of examples:
one example in a macroscopic system (the parametric pendulum [68]), one example in fluid
mechanics (Faraday waves [47, 69, 70, 71]) and one last example in microelectronics, to
enhance the response of a Micro Electro Mechanical Systems (MEMS) [72, 73].

1.1 The parametric pendulum: the classical example of a parametric
system

The most typical parametric oscillator we might use to illustrate this phenomenon is a para-
metric pendulum. An example of a parametric pendulum is a child pumping a playground
swing by periodically standing and squatting to increase the amplitude of the swing’s oscil-
lations. In this case the standing and squatting motion is modulating the center of mass so
that at the correct frequency the oscillations will increase [49, 74]. Instead of modulating
the center of mass, one can modulate the length of the pendulum. An example can be a
pendulum which is attached over a pivot point and it is cyclically pumped by pulling at the
supporting rope [68]. The methods are different, but the outcome is the same, in both cases
parametric instabilities are used to enhance the motion of the pendulum.
A classic experimental setup of the modulation of the length is presented in Fig 1.1.a: a
pendulum is attached to a pivot point and its length is modulated by pulling at the supporting
rope. The natural frequency of the system is defined as

√
g/L, so by modulating the length

of the pendulum L the natural frequency of the system is modified. If the modulation is per-
formed with the correct frequency the amplitude of the oscillations will increase, providing
the pumping energy overcomes dissipation.

a) b)

𝐿
𝜃(𝑡)

𝐴 cos 𝜔𝑡

𝑔

𝑚

Figure 1.1: Parametric pendulum. a) Classical experimental setup of the modulation of
the length of a pendulum. With L and m the length and the mass of the pendulum, ω the
frequency of excitation, A the amplitude of excitation and g the gravitational acceleration. b)
Apostles are modulating the rope to swing the Botafumeiro during the mass in the Cathedral
of Santiago de Compostela. Image credit: c© Catedral de Santiago de Compostela.
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CHAPTER 1. BEYOND THE TIPS OF THE PARAMETRIC INSTABILITIES TONGUES

The dynamics of a parametric pendulum has been extensively studied [46, 49, 68, 74].
Based on these studies, the classical undamped nonlinear equation of motion describing the
dynamics of this system reads

I
d2θ(t)
dt2

+mL
(
g − Aω2 cosωt

)
sin θ(t) = 0, (1.2)

where θ(t) is the angular displacement measured from the vertical position, L is the length
of the pendulum, m the mass and I the moment of inertia. The parametric modulation is
characterized by the frequency of modulation ω and the amplitude of modulation A. We
linearize Eq (1.2) near the equilibrium position θ = 0 (approximation of small angles for the
angular displacement θ(t)). We approximate the moment of inertia as I ≈ mL2 and upon
the change of variable τ = ωt, we are able to write Eq (1.2) in the standard dimensionless
form of Eq (1.1) with a harmonic modulation, giving us the Mathieu equation [46, 48]

d2θ

dτ 2 +
(
α2 − β2 cos(τ)

)
θ(τ) = 0,

with α2 = g

L

1
ω2 , and β2 = A

1
L
.

(1.3)

An example of a parametric pendulum described by Eq (1.3) is the giant censer (O Bota-
fumeiro) that hangs in the roof of the cathedral of Santiago de Compostela [68]. The censer
has a mass m of 56.5 kg and a rope of length L equal to 20.6 m. To put it in motion by
applying an external force is not a possible solution. Instead, several monks modulate the
length of the pendulum (Fig 1.1.b). They have to pull and let go at the correct frequency to
obtain the best energy transfer and trigger the motion.
To rationalize this type of systems we take the experimental values from [68]: the length of
the pendulum is L = 20.6 m, the mass is m = 56.5 kg and the gravitational acceleration is
g = 9.81 m.s−2, and for a given modulation ( frequency of modulation ω = 2πf and ampli-
tude of modulation A) we rewrite them in the dimensionless modulation parameter (α2,β2)
defined by Eq (1.3). The dimensionless parameters used by San Martin [68] are presented
in Table 1.1 and the corresponding experimental point is reported in the stability diagram of
Fig.1.4.

Table 1.1: Experimental parameters used by San Martin [68] and the corresponding values
of the dimensionless modulation parameters α2 and β2. This experimental data is presented
in Fig.1.4.

Experimental parametric parameters α2 β2

f = 0.22 Hz ; A = 2.9 m 0.244 0.141

Using the experimental values we deduce the proper frequency of the giant censer ω0 =√
g/L ≈ 0.69 rad.s−1 which give us f0 ≈ 0.11 Hz. We observe that the frequency of ex-

citation is twice the proper frequency of the pendulum (Table 1.1). This explains why San
Martin data is in the first instability region in the stability diagram in Fig 1.4. With the ex-
pression of α2 and β2 in Eq (1.3) and the value of the experimental parameters we infer that
the limitation we have in this system is related to the value of amplitude of modulation i.e
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1. RATIONALIZING PARAMETRIC INSTABILITIES IN A VARIETY OF EXPERIMENTAL SYSTEMS

the value of β2: A = 2.9 m. If we keep the same length of pendulum and we want to reach
β2= 0.25 (which is close to doubling the current value of β2), using Eq (1.3) we deduce that
the amplitude of excitation should be close to 5.9 m, a value that seems difficult to obtain
manually. Furthermore, for this value of β2 we are still in the first instability region, we are
still unable to escape from it.

This first study shows that even if we do not consider dissipation, the modulation of the
system performed by a geometrical parameter (in this case the modulation of the length of
the pendulum) brings some physical limitations to the exploration of high order parametric
instability regions.

1.2 Faraday waves, the pioneer of parametric instabilities

Although the parametric pendulum is one of the most common examples to explain paramet-
ric instabilities, it is not the first system where they were observed. The first experimental
observation of a parametric modulation was made by M. Faraday in 1831 [47]. The exper-
iment consists in spontaneously creating a surface wave by vertically vibrating a layer of a
fluid on top of a membrane, thus modulating the effective local gravity felt by the perturbed
surface waves [70, 71]. A classical experimental setup to observe Faraday waves is presented
in Fig.1.2.

Γ
"𝐴𝜔! cos 𝜔𝑡

Shaker

h

𝜆(𝜔)𝑔

𝜌, 𝛾

𝑎(𝑡)

a) b)

Figure 1.2: Faraday waves. a) Classical experimental setup: A fluid is placed on a cell over
a shaker with a frequency of excitation ω and an acceleration of the excitation Γ. The fluid is
characterized by: a(t) the amplitude of displacement of the surface, h the depth of the fluid,
γ the surface tension, ρ the density of the fluid, λ the wavelength and g is the gravitational
acceleration. b) Observation of Faraday Waves for water containing Kalliroscope. Image
credit: S. Douady [70].

Considering only the first mode of the waves and based on the work of Sir. Taylor [69],
the evolution of the amplitude of displacement of the surface of the fluid in Fig 1.2.a reads

d2a(t)
dt2

+ k tanh(kh)
(
k2γ

ρ
+ g − Γ cos(ωt)

)
a(t) = 0 (1.4)

19



CHAPTER 1. BEYOND THE TIPS OF THE PARAMETRIC INSTABILITIES TONGUES

and the dispersion relation for capillaro-gravitational waves is

ω0 =

√√√√k tanh (kh)
(
g + k2γ

ρ

)
, (1.5)

where ω0 is the proper frequency of oscillation, k is the wavenumber, h is the depth of the
fluid, γ is the surface tension and ρ is the density of the fluid. The modulation is defined by
the frequency of excitation ω and the acceleration of excitation Γ. By implementing a change
of variable τ = ωt and using Eq (1.5) we write Eq (1.4) in the standard dimensionless form
of Eq (1.1) with a harmonic modulation, giving us the classical Mathieu equation [48, 61]

d2a(τ)
dτ 2 +

(
α2 − β2 cos(τ)

)
a(τ) = 0

with α2 =k tanh (kh)
ω2

(
g + k2γ

ρ

)
, and β2 = k tanh (kh)Γ

ω2 .
(1.6)

An experimental study of Faraday waves is presented for example in the work of Pro-
tière [71]. The fluid used is silicone oil with the following physical properties: surface
tension γ = 0.0209 N.m−1, density ρ = 0.965 × 103 kg.m−3, the depth of the fluid is
h = 4 × 10−3 m and the gravitational acceleration is g = 9.81 m.s−2. Using the dispersion
equation of capillaro-gravitational waves Eq (1.5), the relation between the wavelength and
the wavenumber (k = 2π/λ) and the experimental parameters (f,Γ) used by Protière [71]
we calculate the dimensionless parameters (α2, β2) using Eq (1.6). The experimental param-
eters used by Protière [71] and their corresponding values in our (α2, β2) space are presented
in Table 1.2. Finally they are reported in the stability diagram in Fig 1.4 with green dots.

Table 1.2: Experimental parameters for the Faraday waves used by Protière [71] with the
corresponding dimensionless modulation parameters α2 and β2. Data points are presented
in Fig.1.4.

Experimental parametric parameters α2 β2

f = 20 Hz ; Γ = 1g m.s−2 0.249 0.196
f = 80 Hz ; Γ = 4g m.s−2 0.250 0.201
f = 120 Hz ; Γ = 7.5g m.s−2 0.251 0.232
f = 160 Hz ; Γ = 12.5g m.s−2 0.250 0.267

In this example the relation between the experimental parameters and the dimensionless
(α2,β2) parameters is more complicated. Because of the nature of the experiment we have
a more intertwined expression of (α2, β2). With Protière’s study [71] we find that all the
experimental points in Fig 1.4 are in the first unstable region. But surprisingly with this
setup one is capable of reaching β2> α2, as it can be seen in the last line of Table 1.2 and in
Fig 1.4. This is remarkable because it means that the effective gravity is negative for a short
time, i.e. the fluid tends to vertically escape the recipient against gravity. For this particular
point we entered the “C‘" domain in Fig 1.4. Looking at the values of the parameters, we
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can safely assume we are at the limit of the acceleration of excitation before the fluid is
spilled over the experiment, the acceleration is already at 12.5g. So we observe that going to
larger values of (α2, β2) can be difficult with this experimental setup due to the complicated
dependence of the parameters.

1.3 Microscopic example: Micro Electro Mechanical Systems
For now, we have focused on experimental examples at the macroscopic scale, but paramet-
ric instabilities have been exploited at the microscopic scale as well. Notably, they are used
to amplify the movement of micro electro mechanical systems (MEMS) [72, 73].
In [73], the authors place a microscopic membrane (radius of 3.5mm) inside a vacuum to
reduce friction and dissipation in the environment (the viscous damping ratio is ζ = 0.1).
The final fabricated MEMS chip is 12 mm by 12 mm and it is placed on top of a vibra-
tional platform where the movement of the system is enhanced by vertically vibrating the
membrane. A sketch of a MEMS and a photograph are presented in Fig 1.3. The interest
in parametric modulations at the microscopic size is well-founded since at this scale, the
vacuum packing makes it possible to remove dissipation. By eliminating dissipation in the
environment, the tip of high order parametric regions is reachable at lower values of β2 (Fig
5 in the Introduction).

Γcos(𝜔𝑡)
12

 m
m

Vibrational platform

Mass

MembraneVacuum 
package

a) b)

Figure 1.3: MEMS. a) Schematic representation of a MEMS. The system is a chip composed
of a mass installed over a disk membrane which is then sealed by a vacuum package. The
system is placed over a vibrating platform with a frequency of excitation ω and acceleration
of excitation Γ. b) Photograph of a MEMS system besides a crown coin for scale. Image
credit: Y. Jia et al. [63].

The equation to describe the motion of the MEMS is presented for example in the work
of Jia et al. [73], where the motion of the membrane is described using a Duffing oscillator:

d2x(t)
dt2

+ 2ζ1ωm
dx(t)
dt

+ ζ2|
dx(t)
dt
|dx(t)
dt

+ bx3(t) +
(
ω2

0 − ξΓ cosωt
)
x(t) = 0, (1.7)

where x(t) is the vertical displacement of the membrane, ω0 is the natural frequency of
the system, ζ1 is the viscous damping ratio, ζ2 is the nonlinear quadratic damping coefficient,
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b is the mass normalized Duffing coefficient, ξ is a standard coefficient relating the external
excitation to the parametric excitation, ω is the frequency of excitation and Γ is the acceler-
ation of the excitation.
To adapt this equation to our framework we make the same assumptions presented in Jia et
al. [73]. We consider no damping, and we neglect non-linear terms, i.e we consider only
small displacements around the equilibrium position. Taking these considerations into ac-
count and upon the change of variable τ = ωt, Eq (1.7) can be written in the standard
dimensionless form of the Mathieu equation:

d2x(τ)
dτ 2 +

(
α2 − β2 cos(τ)

)
x(τ) = 0

with α2 = ω2
m

ω2 and β2 = Γ ξ

ω2 .

(1.8)

The experimental parameters we focus on are the one presented in Jia et al. [73]. The
natural frequency of the membrane is f0 = 980 Hz and the value of the standard coefficient
is ξ = 1.7744 × 106. The dimensionless experimental parameters are calculated using the
experimental values of Jia et al. [73] and Eq (1.8). The corresponding experimental points
are reported in Table 1.3 and shown in the stability diagram in Fig 1.4 with red crosses. The
experimental data in Table 1.3 correspond to the first four unstable regions. This is confirmed
with the experimental points in Fig 1.4. It also interesting to point out, the frequencies of
modulations in Table 1.3 are respectively 2 times the proper frequency f0, then equal to f0,
followed by f = 2/3f0 and finally f = 1/2f0, showing that the theoretical approximation
of the tip of the instability regions is a very useful experimental tool.

Table 1.3: Experimental parameters used by Jia et al. [73] and values of the corresponding
dimensionless modulation parameters α2 and β2. Data points are presented in Fig 1.4.

Experimental parametric parameters α2 β2

f = 1960 Hz ; Γ = 0.4 m.s−2 0.25 0.0047
f = 980 Hz ; Γ = 0.5 m.s−2 1.0 0.023
f = 650 Hz ; Γ = 6 m.s−2 2.27 0.64
f = 480 Hz ; Γ = 8 m.s−2 4.17 1.56

1.4 Discussion
As presented with those three examples, classic parametric instabilities can appear in various
physical domains. The macroscopic examples are limited to the first instability tongue (green
dots and blue triangle in Fig 1.4). This means that to trigger a response at the macroscopic
scale the frequency of modulation is approximatively two times faster than the natural fre-
quency of the system. In the case of the Faraday waves [71], because the relation between the
dimensionless parameters (α2,β2) and the experimental parameters is complicated, reaching
further stability regions can be challenging.
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Figure 1.4: Linear stability diagram of the Mathieu equation in the dimensionless modula-
tion (α2,β2) space with experimental data points. Blue triangle represent the experimental
result for a parametric pendulum [68], green dots are the experimental results for Faraday
waves [71] and red crosses are the experimental results for a MEMS resonator[73].

To explore further instability regions, one first practical idea is to put the frequency of modu-
lation equal to the proper frequency of the system (f = f0). By doing so we know we should
reach the second instability region [46]. Then because we know the properties of the fluid,
we can use the relation on Eq (1.6) to deduce the acceleration of the excitation. Taking the
experimental values of Protière [71] for this example we deduced that the acceleration of the
vibrating pot has to be higher than 12.5 times the gravitational acceleration. By imposing a
higher acceleration, the fluid will start to spill out of the cell and be ejected all over the setup
making it impossible to properly perform the experiment.
So, to access further instability regions, the other route is to increase the depth of the fluid
bath, i.e we need a huge shaker, making the experiment unfit to explore high order of para-
metric instabilities. This shows that to be able to explore the full stability diagram we need
a system where the dependence of parameters is easy to modulate.

In a similar way, this reasoning can be translated to the example with the O Botafumeiro.
The experimental amplitude used by San Martin [68] in Table 1.1 is near the maximum phys-
ical limit for a human being. The monks are performing an amplitude of modulation close
to three meters and they are six people pulling the rope (Fig 1.1.b). If we would like to reach
the second instability region we should have the modulation frequency equal to the proper
frequency of the system [46]. Let’s suppose we do it for the experimental values of San
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Martin [68] (same mass and length of the pendulum). This means that to be in the second
unstable region α2 ≈ 1 and using Eq (1.3) it can be deduced that the amplitude of excita-
tion should be close to the length of the pendulum (A ≈ L = 20 m). It has to be at least
equal to the length of the pendulum because the dissipation in the domain “erases" the tip of
the instability regions at small values of β2, so we should need to have β2 ≈ 1. This new
value is close to seven times the current amplitude they are imposing, we should pass from
A = 3 m to A ≈ 20 m. So, the implementation is not feasible. The reasoning is also valid
for a small pendulum, making amplitudes of modulation of the same length of the geometry
of the system is difficult.
This shows that if we modulate the evolution function of the system with a geometrical pa-
rameter (change of length in this example) this could lead to important limitations. Can we
modulate the evolution function of the system with an external component instead of chang-
ing its geometry?

At the microscopic scale it is possible to go beyond the first unstable region because they
can work at low damping [63]. This has been observed in MEMS systems [72, 73] and their
experimental results are presented by red crosses in Fig 1.4. We show only the first four
instability regions but it is important to point out that working in a undamped environment
allowed them to explore the 28th instability region [73] (an actual record stablished in 2016).
Currently, MEMS experiments can be done in ultrahigh vacuum chamber where the quality
factorQ ≈ 2×106 giving us a damping ration ζ = 1/2Q ≈ 2.5×10−7 [75]. For comparison
at the macroscopic scale, in a classical experimental setup the quality factor is Q ≈ 1× 103

giving ζ = 5 × 10−4 [76]. By working at extremely low values of damping we can trig-
ger high order parametric resonances. The vacuum packaging is feasible at the microscopic
scale, but it is not a viable solution at the macroscopic scale. A second characteristic is that
MEMS systems use an external component to trigger parametric instabilities. Indeed, they
do not change the geometry of the membranes.

We have learned about the various physical limitations to trigger high order parametric
instabilities at the macroscopic scale. To be able to explore them, we know the modulation
should not be a geometrical modulation it should be an external field and the control of
the external field must be independent form the primary setup. Finally, it is easier for this
implementation if the relation between parameters is simple and direct.

2 Going beyond the tip of the parametric instability re-
gions

In this section we are presenting an experiment inspired by the previous analysis. In par-
ticular, the goal is to experimentally observe high order of parametric instabilities at the
macroscopic scale.
Firstly, we present the experimental setup, followed by the characterization of our system.
Then, we present our experimental approach to explore high order (extreme) parametric
resonances. Based on the experimental responses and physical arguments we develop a geo-
metrical relation to control and trigger a precise instability region. We validate this geometric
relation experimentally and we reach the 36th instability tongue.
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Finally, by reshaping the square wave modulation into an impulse train we observe that it
is possible to trigger a “natural" limit cycle sustained with a small amount of energy input.
This use of parametric resonance could bring new and exciting implementations to dynami-
cal systems.

2.1 Experimental setup
After analyzing the experimental limitations of previous setups for triggering parametric in-
stabilities (Section 1), we know that to achieve high order of parametric resonance we need
a system where its natural time scale can be drastically modulated with ease, without chang-
ing its geometry and the modulation should be from an external component. So, the setup is
composed of one main mechanical system which natural time scale is modulated.

The main mechanical system we choose is a pendulum with a metallic marble (Fig 1.5).
The pendulum is one, if not, the most well-known mechanical oscillator. The natural fre-
quency of the system is defined as ω0 =

√
g/l (and natural time scale T0 = 2π/ω0) where

g is the gravitational acceleration and l it is the length of the string. As previously said,
we cannot change the length of the pendulum. As we have seen, a geometrical modulation
brings limitations to the exploration of high order parametric regions (Table 1.1). So instead
of changing the length of the pendulum to modulate ω0 we are going to modulate the local
gravitational field near the pendulum.
For this, we symmetrically place the metallic marble, of radius r = 0.6 cm, in the middle of
two attracting electromagnets (with typical holding force of 1000 N) that are separated by a
distance d = 4 cm (Fig 1.5). The pendulum is attached with two strings in V-shape, to ensure
the oscillations remain in a plane, and has an effective length of l = 4.3 cm. The electro-
magnets are connected to a generator which fixes the value of the electrical current I . The
electrical current is responsible of the intensity of the local electromagnetic field surround-
ing the pendulum. The stronger the value of I the stronger the electromagnetic field. Using
a Controllino card we can turn ON and OFF the electromagnets by sending a T -periodical
square wave function. Finally, to record the motion of the electromagnetic pendulum we use
a Basler camera capable to record until 120 frames per second. To follow the marble, we
place it in front of a white LED light to have a nicer contrast image (Fig 1.5). In order to
obtain reproducible experiments, it is crucial to respect the following constraints:

• 1) The pendulum is placed symmetrically between the two electromagnets and the
initial position has to be the same at each experience (closest possible).

• 2) The electromagnets have to be parallel and equidistant from the marble. This assure
to have an homogenous electromagnetic field surrounding the marble.

To fulfill the first constraint, we put a stabilizer below the marble every time a new exper-
imental observation or recording is made. The stabilizer is then pulled back down manually
to keep the pendulum in its initial position. The second constraint is taken in account using
the camera. Once connected to the computer we have access to a grid, and we can correctly
place the electromagnets parallel and equidistant from the marble. Finally, to assure we have
the same ω0 and we are only modulating the gravitational field and not the geometry of the
system, the string is fixed (taped) to the support and well tied on the pendulum.
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Figure 1.5: Experimental macroscopic setup to explore high order parametric instabilities.
The system is a planar pendulum of length l with a metallic marble that is symmetrically
placed between two identical attracting electromagnets whose attracting force depends on
the imposed electrical current I . A Controllino card is used to send T -periodic square wave
modulations.

2.2 Characterization of the system

Before exploring parametric instabilities, we need to understand how the modulation param-
eter affects the system. The electromagnets are both using an attracting force pulling the
pendulum towards them, i.e there will be a competition between the electromagnetic force
(pulling up the marble) and the gravitational force (pushing down the marble).
This competition between forces can be interpreted as a variation of the local gravitational
field surrounding the pendulum. Once the electromagnets are turned ON, the pendulum is
under a local effective gravitational field, geff . The natural frequency of a pendulum is de-
fined by the gravitational acceleration, so in presence of an effective gravitational field the
natural frequency should change. We investigate how the electromagnetic field, controlled
by the electrical current I , affects the natural frequency. The evolution of the electromagnetic
field around the pendulum is not our main interest for this study, it is a tool to implement a
strong modulation of the time scale.

The experimental protocol is the following: the geometry of the pendulum is intact and
does not change over the set of the experiments (the length of the pendulum is fixed). With
the Controllino card we send a continuous signal, the electromagnets are turned ON (Figure
1.6). We fix a value of the electrical current I and locally perturb the pendulum from its
vertical equilibrium position with a small initial angle θ(0) at time t = 0. Then we record
the motion of the pendulum and obtain a response for every value of I .
To obtain an experimental response, first we turn ON the white LED and take a photograph
of the background without the marble. Then, we follow the protocol described above. We
record the motion of the marble using the Basler camera and having the white LED ON. We
obtain a sequence of images well contrasted where the motion of the marble can be tracked.
Before tracking the motion of the marble, we subtract the photograph of the background to
every image to eliminate any potential reflection and only have the marble at each image.
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Finally, we track the motion of the marble and obtain the response of the pendulum for a
fixed value of the electrical current I .

𝑡0

𝐼
ON

Figure 1.6: Continuous signal to characterize the effect of the electrical current I in the
natural frequency of the system. The electromagnets are always ON.

We introduce the scalar ω(I) to characterize the experimental evolution of the frequency
of oscillation for this given value of I . This scalar represents the natural time scale of the
electromagnetic pendulum and gives us the effect of the modulation of the local gravitational
field in our system. The value of ω(I) is obtained by doing a Fast Fourier Transformation
(FFT) of the response.
To validate our protocol and our post processing, we will first observe the motion for I = 0A.
Without electrical current there is no local electromagnetic field, so the local gravitational
field is equal to the gravitational acceleration. The system should be a simple pendulum
oscillating at its natural frequency ω0 =

√
g/l ≈ 15.1 rad.s−1. To validate our post-process,

we should track correctly the oscillatory motion and obtain an experimental frequency close
to 15.1 rad.s−1. The experimental response is presented in Fig 1.7.

Figure 1.7: Experimental validation and post-processing for the natural response of the
pendulum (I = 0A). We obtain an oscillatory harmonic response validated with a FFT
having only one peak at 15 rad.s−1.

The experimental response in Fig 1.7 shows an oscillatory motion of a pendulum and
with the corresponding FFT the response has one peak, confirming the harmonic motion.
Finally the peak it placed at ω(0) ≈ 15 rad.s−1, which is in perfect agreement with the value
found with the geometrical parameters. Thus, our protocol to obtain the motion of the pen-
dulum is validated. Figure 1.8 presents the experimental responses for three different values
of the electrical current I .
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c)

a)

b)

Figure 1.8: Experimental responses of the electromagnetic pendulum for different values of
the control parameter I using a continuous signal. The FFT is performed for each oscillatory
response to obtain the value of ω(I). a) I = 0.4 A. Slower oscillatory response with ω(0.4) ≈
12 rad.s−1. b) I = 0.65 A. Even slower oscillatory response with ω(0.65) ≈ 5.5 rad.s−1. c)
I = 0.75 A. No longer an oscillatory response but a divergent response, the value of ω(I) is
deduce using an exponential fitting, we have ω(0.75) ≈ i0.5 rad.s−1.

In Fig 1.8 we have I 6= 0, i.e the system is under an effective gravitational field geff . Fig-
ure 1.8.a presents the experimental response for I = 0.4 A. It is an oscillatory response but
this time it is slower than before. With the FFT we deduce that ω(0.4) ≈ 12 rad.s−1 which is
smaller than ω(0). So, we do have a variation on the frequency of the system depending on
the control parameter I . Physically, as said before, the impact of the electromagnetic force
can be translated as the effective gravitational field. Let’s define them by ω(I) =

√
geff/l.

Then, from the value of ω(0.4), and because the length of the pendulum is not changed, we
can deduce that geff (0.4) ≈ 6.2 m.s−2. As expected, when I 6= 0, the effective gravitational
field decreases due to the competition of the electromagnetic force and the gravitational
force. Then we have the experimental response for I = 0.65A in Fig 1.8.b. We have an even
slower experimental response characterized by ω(0.65) ≈ 5.5 rad.s−1 and this is translated
by a corresponding geff (0.65) ≈ 1.3 m.s−2. The electromagnets are pulling more strongly
the system as I increases. Finally, Fig 1.8.c shows the experimental response for I = 0.75
A. This time the pendulum does not have an oscillatory response. For this value of I the
electromagnetic force is stronger than the gravitational force making the pendulum attach to
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one of the electromagnets. Thus, the system does no longer oscillates but instead it locally
diverges. This shows that the control parameter I allows the system to change to different
types of responses. To take in consideration both responses (oscillatory and divergent) the
linear angular responses of the system can be written in the form θ(t) = θ(0)e−iω(I)t. For a
divergent response, we fit an exponential into our experimental response to deduce the value
of ω(I). Therefore for the response in Fig 1.8.c we deduce that ω(0.75) ≈ i0.5 rad.s−1.
With the control parameter I we can strongly modulate the natural time scale of the electro-
magnetic pendulum and the scalar ω2(I) can characterize this evolution. To have a proper
evolution of ω2(I) we do the previous analysis for more values of I (Fig 1.9).

Figure 1.9: Characterization of the system as a function of the control parameter I . The
scalar ω2(I) characterize the local evolution function of the electromagnetic pendulum which
drastically depends on I . There is a specific value of the electrical current Ic where we pass
from an oscillatory system (I < Ic) to a diverging system (I > Ic).

With the diagram in Fig 1.9 we observe indeed the existence of a critical value Ic of
the electrical current for which the system is no longer oscillating (I < Ic) but is now a
diverging system (I > Ic). As presented with the experimental responses in Fig 1.7 and Fig
1.8a.b when I → Ic we have an oscillatory response with a decreasing ω2(I). Above this
critical electrical current Ic, the pendulum locally diverges eventually choosing one electro-
magnet depending of initial symmetry imperfections, as we can see in Fig 1.8.c. Finally, for
I ≈ Ic the bifurcation is sub-critical, there is always a “jump" of ω2(I) around Ic, making
the recording of responses difficult.

2.3 Experimental observation of extreme parametric instabilities
In this second set of experiments, we want to observe and trigger high order parametric
instabilities. To do so we modulate ω2(I) in a square wave fashion using the Controllino
(Fig 1.5). The electromagnets are turned OFF (I = 0) and ON (I 6= 0) during T1 and T2
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seconds respectively, so that the modulation period is T = 2π/ω = T1 + T2 (Fig 1.10). We
need to have I < Ic (Fig 1.8) to be in the case “D" of the stability diagram in Fig 1.4. This
means our system is an oscillator with frequency ω2(0) during T1 (electromagnets are OFF
so the system oscillates at the natural frequency ω2(0) ) and ω2(I) during T2 (electromagnets
are ON with a particular value of I and the system oscillates with a frequency ω2(I) deduced
from Fig 1.9).

𝑡0

𝐼

𝑇!𝑇" 𝑇!𝑇"

OFF ON OFF ON OFF

𝑇

Figure 1.10: Experimental T -periodic square wave modulation to investigate parametric
instabilities. The electromagnets are turn OFF and ON during T1 and T2 respectively.

To study the onset of instabilities we need linear equations about equilibrium θ = 0. In
our case of a two-state oscillator it reads

d2θ(t)
dt2

+ ω2(0)θ(t) = 0 during T1,

d2θ(t)
dt2

+ ω2(I)θ(t) = 0 during T2,

(1.9)

where θ(t) is the angular displacement of the pendulum placed in the middle of the electro-
magnets (Fig 1.5). With this model we can study the experimental values of the couple (I, T )
to trigger parametric instabilities. Equation (1.9) can be cast in the dimensionless form

d2θ(t)
dt2

+ (α2 + β2g(τ))θ(t) = 0, (1.10)

by introducing the dimensionless time τ = ωt, the square wave modulation function g(τ) =
+1 during T1 = 2πT1/T and g(τ) = −1 during T2 = 2πT2/T and the dimensionless
modulation parameters

α2 = ω2(0) + ω2(I)
2ω2 , β2 = ω2(0)− ω2(I)

2ω2 . (1.11)

To observe parametric instabilities, we fix a value of the electrical current I and then vary
the value of the period of modulation T and observe if we are able to trigger the response.
It is important to emphasize that for this set of experiments T1 = T2, i.e the time spent in
each oscillatory state is equally distributed during the period of modulation T . By fixing
the period of modulation T we ensure the values of T1 and T2. We fix I = 0.6A and infer
ω(I) ≈ 6.8 rad.s−1 from Fig 1.9 and we have ω(0) = 15.15 rad.s−1 so the proper period of
the system is T0 ≈ 0.41s.
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The first experimental tests we perform are for T close to half of T0. If an instability is
triggered, it should be the first (principal) instability region. For the majority of T values
we tested, the response of the system is not enhanced, we have a harmonically damped
oscillatory response (Fig 1.8). We increase the period of modulation to T = 0.33s and
then we observe an amplification of the response. This experimental response is presented
in Fig 1.11.a. We observe that the response is amplified after 1.2 seconds and it reaches
its maximum at t = 2s, where the marble has been attached to the pendulum. After the 2
seconds the response reaches a 2T -periodic limit cycle (the pendulum is alternately attached
between the left and the right electromagnet). A 2T periodicity is a property of the first
instability region [46] so this is a first good indicator that we trigger in fact the first instability
region.
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Figure 1.11: Experimental observation of high orders parametric resonances when ω2(I)
is modulated in a square wave fashion with T1 = T2 = T/2. Red background represents
the electromagnets are turned ON and blue background represents when the electromagnets
are turned OFF. a) Classical first parametric amplification obtained for ω(I) ≈ 6.8 rad.s−1

and T ≈ 0.33s. b) Second parametric amplification obtained for ω(I) ≈ 6.8 rad.s−1 and
T ≈ 0.62s. c) Extreme parametric pumping obtained for ω(I) ≈ 6.5 rad.s−1 and T ≈ 6.02s.

Trying to explore the second instability tongue is not a problem with this setup: we keep
the same value of the electrical current I , i.e we have the same ω(I) ≈ 6.8 rad.s−1 but this
time we need to have a period of modulation T close to the T0 value. We try multiple values
of T close to T0 but, compared to the first region, it is much more complicated to find an
amplified response. The values of the parameters (I, T ) need to be very accurate. We finally
obtain an amplification of the response for I = 0.58A and T ≈ 0.62s. This experimental
response is presented in Fig 1.11.b. With these parameters, the parametric response triggers
a T -periodic limit cycle which is a characteristic of the second instability region (there is an
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alternation of 2T and T periodicity over the instability regions [46]).

Having been able to trigger the second unstable region at the macroscopic scale is already
an achievement but our goal is to try to observe even higher order of parametric resonances.
This time we are trying to observe a parametric response where the period of modulation
is at least ten times the proper period of the system. Our quest starts at I = 0.6 A and the
period of modulation T = 5s > 10× T0. We need to give the system more time to see if the
amplification would manifest because the modulation period is longer. After lots of trials and
errors for different values of (I, T ) we were able to trigger a high order parametric response
for I = 0.62 A and T = 6.02s. This experimental extreme parametric pumping is presented
in Fig 1.11.c. Compared to the two previous responses (Fig 1.11.a-b), we had to record the
responses 10 times longer before the nonlinear regime is established. We observe that dur-
ing T1 (blue background) the system does 7.5 oscillations and during T2 (red background)
the systems does 3.5 oscillations. Once the pendulum becomes close enough to one of the
electromagnets the metallic marble attaches to the electromagnet and the system enters in a
2T -periodic limit cycle.
Finally, the last proof to validate that we correctly trigger the first, the second and an ex-
treme parametric resonance is to observe them in a stability diagram. We can determine the
corresponding values of (α2, β2) for each experimental response using Eq (1.11) and then
represent them in the stability diagram in Fig 1.12.

I =
 I c 

Figure 1.12: Stability diagram of the Meissner equation in the extended (α2, β2) space.
Coloured regions represent the instability tongues. Green crosses represent the experimental
parameters of Fig 1.11 expressed in the (α2, β2) space. Inset zooms on the classic first
instability regions.
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For the experimental response in Fig 1.11.a we have α2 = 0.39 and β2 = 0.24. This
experimental point is in the inset in Fig 1.12 and we validate that the given parameters are
in fact in the primary instability region k = 1. So, we triggered the first parametric insta-
bility with our experiment setup. Secondly, for the experimental response in Fig 1.11.b we
have α2 = 1.24 and β2 = 0.99. This experimental point is also in the inset in Fig 1.12 and
we observe that the experimental point is located precisely in the second instability region
k = 2. Proving that with this experimental setup we are able to go beyond the first insta-
bility region. Finally, for the last experimental response in Fig 1.11, we have α2 = 128.4
and β2 = 82.5. In this case, the values of (α2, β2) are higher. To observe this experimental
point, we have to go beyond the classic first instability regions (inset in Fig 1.12). We have
to observe it in the extended stability diagram in Fig 1.12. At large values of (α2, β2) we
observe the stability diagram is different from the usual classic stability diagram in the inset.
When we explore further instability regions (for the square wave modulation) the tongues
are tailored into pockets. We observe the experimental point is in one instability pocket. For
this experimental response we can not deduce to which region it corresponds because in the
extremely extended domain we have a large number of instability pockets (Fig 1.12). So,
for the moment we are not sure which k unstable region we have triggered. We know we
have triggered an extreme parametric instability making a mode (7.5, 3.5) (the number of
oscillations in the respective T1 and T2 periods).

These experimental results validate our concept of extreme parametric oscillators. By
implementing a symmetrical external component capable of strongly modulating the natural
time scale of the system with ease (Fig 1.9) we are capable of eliminating the previous
limitations found in macroscopic systems and trigger extreme parametric resonance, even in
the presence of dissipation. Compared to the experimental points in the stability diagram
in Fig 1.4 which were limited to the tip of the first instability region, we show in Fig 1.12
that we are no longer limited to the tip of the first instability region. We are capable to
trigger parametric instabilities beyond the tip of the parametric regions (green cross in Fig
1.12). Nevertheless, navigate this new type of charts is not evident or simple. A strategy to
navigate them is essential. For the particular modulation we are studying (the square wave),
we believe that rationalizing the emergence of the pockets could be a great way to navigate
the chart. It will be interesting to be able to go over the different instability regions with ease.

3 Controlling high order parametric instabilities

3.1 Rationalizing the instability regions for a square wave modulation
From the extensive theoretical work done in parametric instabilities we know that to be at
the tip of the kth instability region the frequency of modulation needs to be 0.5k the natural
frequency of the system [46, 48, 54]. This is observed for the harmonic modulation with
the experimental results of Jia et al. [73] presented in Table 1.3 where the authors used 0.5k
multiples of the proper frequency of the membrane to trigger the first four parametric modes
(red crosses in Fig 1.4 respectively placed in the first four instability regions for the harmonic
modulation).
For the square wave modulation this relation is also valid. To trigger the first two parametric
instabilities regions, we fixed the period of modulation as a multiple of the natural period of
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the system (Fig 1.11). This property for the tip of the instability regions gives us an important
insight: there is a proper timing well defined for each parametric region. So, to rationalize
the instability pockets in the stability diagram of the square wave modulation and have a
broader understanding on how to control extreme parametric instabilities we need to under-
stand this timing (or synchronization) between the frequency of modulation and the proper
time scale of the system. We believe the appearance of these pockets must be connected to
the number of oscillations the system is doing during the corresponding periods of the square
wave (Fig 1.11).

To understand this relation between the frequency of modulation and the natural time
scale of the system we use our electromagnetic pendulum as an example. We have observed
that to trigger parametric instabilities we modulate the natural frequency of the system by
periodically turning ON and OFF the electromagnets. With Eq (1.10), we deduce that the
dimensionless modulating frequencies of the system are

√
α2 + β2 during T1 and

√
α2 − β2

during T2 as presented in Fig 1.13.
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Figure 1.13: Dimensionless parameters of the electromagnetic pendulum modulated by a
T -periodic square modulation function between +1 and−1 where T1 and T2 represent when
the electromagnets are turned OFF and ON respectively.

Physically, this modulation directly affects the potential energy of the system. Which
can be defined as Ep = 1

2(α2 + β2g(τ))θ2 with g(τ) the square wave modulation function.
Let’s analyze the potential energy evolution during one oscillation of the electromagnetic
pendulum. At its equilibrium position, a small perturbation sets the system in motion. In
terms of potential energy, this indicates that the system will climb a potential (“hill") of a
particular slope. The system needs to ascend a potential with a mild slope in order to maxi-
mize its amplification. Thus, it is preferable for the mass to go up when the electromagnets
are turned ON since the curvature has a flatter slope (α2 − β2), as the red curvature in Fig
1.14 shows. Once the potential energy Ep is at its maximum value, the mass has reach its
maximum amplitude. The curvature must have the steepest slope to return to the center most
efficiently. This is the case when the electromagnets are turned OFF and the curvature is
defined by (α2 + β2), as shown by the blue curve in Fig 1.14.
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Figure 1.14: Schematic representation of the evolution of the curvature of the potential
energy of the system Ep = 1

2(α2 + β2g(τ))θ2 during the square wave modulation.

So, this analysis of the potential’s curvature to amplify the motion shows that every time
the pendulum passes the center position (minimum value of Ep) the electromagnets should be
turned ON (flatter slope: easier to ascend) and every time it reaches its maximum amplitude
(maximum value of Ep) the electromagnets should be turned OFF (steeper slope: improve
the descend).

The first synchronization to enhance the amplification of the response during one oscil-
lation is presented in Fig 1.15. Each time the pendulum passes the center the electromagnets
should be turned ON physically meaning we are locally decreasing the value of the effective
gravitational field surrounding the pendulum, helping the pendulum to ascend (red colour
background in Fig 1.15). Each time the pendulum reaches its maximum amplitude, the elec-
tromagnets should be turned OFF physically meaning we are eliminating the help to go up
and we are now helping it to descend by putting back the effective gravitational field at its
maximum value: geff = g (blue colour background in Fig 1.15).
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Figure 1.15: Schematic representation of the first input-output synchronization required for
parametric pumping. One needs to decrease effective gravity (turn the electromagnets ON )
when the potential energy is at its minimal (before the mass goes up) and put back a strong
gravity (turn the electromagnets OFF) when the potential energy is at its maximum (before
the mass goes down).
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The first possible synchronisation happens when we fit one quarter of oscillation at every
period T1 and T2 respectively (Fig 1.15). This choice can be seen as a mode (1, 1) and it
represents the first possible parametric modulation to pump a dynamical response. This is
the case of our experimental response in Fig 1.11.a where we trigger the primary instability
region k = 1. However, it is also possible to attempt to fit more than one quarter of period
during T1 and T2 respectively. This generalized synchronization can be a (m,n) mode, with
m corresponding to the number of times the system passes the center during T1 and n the
number of times the system passes its maximum amplitude during T2 before changing to the
other state. Figure 1.16 shows two possible examples for this synchronization.
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Figure 1.16: Representation of two possible synchronizations to amplify the response of a
system using a 2π-periodic square modulation. a) Representation of the (m = 3, n = 2)
mode. The system does 5 quarter periods of oscillations during T1 and 3 quarter periods of
oscillations during T2. b) Representation of the (m = 4, n = 1) mode. The system does 7
quarters and 1 quarter of periods of oscillations during T1 and 1 and T2 respectively.

The synchronization presented in Fig 1.16.a is a (m = 3, n = 2) mode. So the system
passes m = 3 times the center (minimum value of the potential energy) during T1 and does 5
quarter periods of oscillations before turning ON the electromagnets (blue line in Fig 1.16.a).
Then while the electromagnets are ON during T2 (red line in Fig 1.16.a), the system reaches
its maximum amplitude n = 2 times (maximum value of the potential energy) and does 3
quarter periods of oscillations before turning OFF the electromagnets. Figure 1.16.b shows
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a (4, 1) mode. This means that during T1 (electromagnets OFF) the system crosses m = 4
times the value θ = 0 before turning ON the electromagnets and it does 7 quarter of oscil-
lations (blue line in Fig 1.16.b). The n = 1 means we are letting the system reach only one
time its maximum amplitude during T2 before turning OFF the electromagnets, i.e it does 1
quarter of oscillations (red line in Fig 1.16.b).

We know that during T1 the period of the system is 2π/
√
α2 + β2 and during T2 the

period of the system is 2π/
√
α2 − β2 (Fig 1.13). Then, with Fig 1.16 we infer that the

number of quarter of oscillations the system does only depends on the values of the (m,n)
mode. So combining both observations we deduce the following relation:


m = 3⇒ 5

4
2π√

α2 + β2 = π

n = 2⇒ 3
4

2π√
α2 + β2 = π

and


m = 4⇒ 7

4
2π√

α2 + β2 = π

n = 1⇒ 1
4

2π√
α2 + β2 = π

(1.12)

where we can deduce that the number of quarter periods we can fit during the modulation
period T1 is equal to (2m − 1) and equal to (2n − 1) during T2. So, this synchronisation
can be rationalized and we can infer a new discrete design rule in the (α2, β2) as the mode
numbers (m,n) are varied:

(2m− 1)2π
4
√
α2 + β2 = π and

(2n− 1)2π
4
√
α2 − β2 = π. (1.13)

In Fig 1.17a. we superpose the values of (α2,β2) calculated using this new geometric law
Eq (1.13) with the extended stability diagram of the Meissner equation. This simple design
rule gives the correct values of (α2, β2) (grey dots) to be in the (m,n) instability pockets.
The value of (m,n) and the kth instability region are numbered as follows k = m + n − 1.
Finally this geometric rule is only valid for m > n which is translated by α2 > β2, as we
can see in Fig 1.17.a

Exploring the stability diagram using the number of modes (m,n) is easier than having
to compute the entire stability diagram. The value of m corresponds to the instability region
counting from the origin and going over the α2 = β2 curve. Once the value of m is fixed,
the value of n corresponds to the number of pocket we are counting down from the α2 = β2

curve. For example in the stability chart in Fig1.17 a) we have the mode (15, 7) which cor-
responds to the 15th region counting form the origin and we go down to the 7th pocket. This
means we are at the k = 15 + 7− 1 = 21th instability tongue.
Using this new notation, we are able to rationalize our previous experimental results of Fig
1.11, which are again represented in the stability diagram in Fig 1.17 with green crosses.
The first experimental response in Fig 1.11.a is a (m,n) = (1, 1) unstable parametric mode
correctly placed in the k = 1 unstable tongue (green cross in inset in Fig 1.17). The second
experimental response in Fig 1.11.b is a (m,n) = (2, 1) unstable parametric mode correctly
placed in the k = 2 instability region (green cross in inset of Fig 1.17). The experimen-
tal response in Fig1.11.c is the mode (15, 7) located in the k = 21th instability region and
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represented by a green cross in Fig 1.17. It does 7.5 oscillations during T1 (OFF in blue)
meaning it passed 15 times the minimum value of the potential energy before turning ON the
electromagnets and does 3.5 oscillations during T2 (ON in red) meaning it passed 7 times
the maximum value of the potential energy before turning OFF the electromagnets. The
reported experimental data (green crosses) in the stability diagram of Fig 1.17 have an ex-
cellent agreement with the expected (m,n) parametric pumping mode.
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Figure 1.17: Controlling extreme parametric instabilities. a) Stability diagram of the Meiss-
ner equation in the extremely extended (α2, β2) space. Gray dots (m,n) represent the dis-
crete geometrical relation of Eq (1.13). Inset zooms on the classic first instability regions.
Green crosses represent the experimental parameters expressed in the (α2, β2) space shown
in Fig 1.11 and Fig 1.17b). b) Experimental response of the (25, 12) parametric amplifica-
tion obtained using the geometrical relation of Eq (1.13). The experimental parameters are
ω(0) ≈ 15.15 rad.s−1 , ω(I) ≈ 7 rad.s−1 and T ≈ 10.16s.

So, with the geometrical rule of Eq (1.13) we can trigger a precise parametric instability.
One can choose the number of oscillations of the system during T1 (related to the value ofm)
and the number of oscillations during T2 (related to the value of n) and the values of (α2, β2)
are deduced using Eq (1.13). Finally having the corresponding values of (α2, β2), the values
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of the experimental parameters can be deduced.

To show the use of the geometric rule of Eq (1.13) as a tool to trigger extreme parametric
modulations we are using our electromagnetic pendulum. We fix the value ofm = 25 and the
value of n = 12. Using Eq (1.13) we deduce the corresponding values of (α2 = 366.25, β2 =
234.0). Then using Eq (1.11) we deduce the value of the experimental parameters (T =
10.15s, ω2(I) = 50.6 (rad.s−1)2) which using Fig 1.9 correspond to I ≈ 0.62A. We use
these experimental parameters and we are able to obtain an extreme parametric response for
T = 10.16s, ω2(I) ≈ 49 (rad.s−1)2. The experimental response is shown in Fig 1.17.b and
the dimensionless experimental point (α2 = 365.7, β2 = 235.16) is represented with a green
cross in Fig 1.17.a. We have a perfect agreement between the experimental values and the
theoretical values of (α2, β2). In the stability diagram in Fig 1.17.a the experimental point
is perfectly placed in the instability pocket (25, 12). Furthermore the experimental response
in Fig 1.17.b shows that while the electromagnets are OFF (blue background) the response
passes 25 times the minimum value of the potential energy (the zero axis) and while the
electromagnets are ON (red background) the responses passes 12 times the maximum value
of the potential energy before turning OFF the electromagnets again. Finally, this parametric
pumping triggers a 2T -periodic limit cycle. Knowing there is an alternation between 2T and
T periodic instability tongues, we infer that a 2T -periodic limit cycle is triggered when m
is odd. This is validated with the experimental responses in Fig 1.11.a, Fig 1.11.c and Fig
1.17.b where we respectively have m = 1, 15, 25. Whereas in Fig 1.11.b m = 2 is even
and we trigger a T -periodic limit cycle. Finally, since the instability region number follows
k = m + n − 1, the response in Fig.1.11.b is actually located in the 36th instability tongue
as shown in Fig 1.11.a. An achievement since, to our knowledge, the record k = 28 was
observed in a MEMS in 2016 [73].

3.2 Triggering and sustaining a natural oscillation
The previous study has been conducted with the assumption that T1 = T2 = T/2, i.e the
periodic system spends the same amount on each oscillatory state. Instead of using this clas-
sical square wave modulation, we send an “impulse train" to trigger the system’s motion.
This type of signal is illustrated in the sketch in Fig 1.18. This time the system is a longer
time in its natural state defined by ω2(0). Only at precise periods the electromagnets are
turned ON during T2 and the system is at the modulated frequency ω2(I).
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Figure 1.18: The square function as an “impulse train" with T1 = 0.98T and T2 = 0.02T .
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We still have a square wave modulation, thus the Meissner equation can still be used
to define the stability diagram for this modulation [53]. The analytical resolution of the
Meissner equation [77] takes in consideration the change of values for (T1, T2) so the stability
diagram will adapt to the giving square wave modulation. The stability diagram for this type
of modulation is presented in Fig 1.19.

T = 6 T0  

T = 3 T0  

T = 4.5 T0  I =
 I c 

Figure 1.19: Stability diagrams for an “impulse train" with T1 = 0.98T and T2 = 0.02T .
Black lines show T = 0.5kT0 and green dots show α2 = (0.5k)2 where k is a positive
integer. Green crosses represent the experimental modulation parameters associated with the
response of Fig 1.20 and Fig 1.21.

Figure 1.19 displays the stability diagram for T1 = 0.98T and T2 = 0.02T (which corre-
sponds to the square wave function represented in Fig 1.18). In particular when T1 → T , the
instability pockets disappear and we have thin parallel lines for each instability parametric
tongue with their tips still at α2 = 0.5k as can be seen with the green dots [46] (Figure 1.19).
Since the Meissner equation has an analytical resolution [77], the definition of the edge of
the lines can be derived theoretically. By introducing the limits T1 → T and T2 → 0 in
the analytical calculation of the trace of the monodromy matrix (Tr(Φ)) for the Meissner
equation, we are able to deduce that the bottom edge of instability regions correspond to√
α2 + β2 = 0.5k. They are represented by black lines in Fig 1.19. Physically, these black

lines show that to parametrically amplify a giving system with a natural period T0, the pe-
riod of modulation should be T ≈ 0.5kT0, where k is a positive integer representing the
k-instability region. Figure 1.19 shows a perfect agreement between the black lines and the
edges for every k unstable region. To amplify a response using an impulse train, we can use
the defined black lines to deduce the value of the period of modulation T . However, when
T1 → T and T2 → 0 the growth rate (colour bar in Fig 1.19) decreases considerably if we
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compare it with the stability diagram for the classic square wave modulation (Fig 1.17). To
trigger parametric amplifications experimentally, we have to be close or even over the limit
I = Ic, i.e we are making our system slightly divergent during a short period T2.

We put this theory to the test using our experimental setup: the electromagnets are al-
most continuously OFF (T1 ≈ T ) and are turned shortly ON during T2 with an electrical
current I (Fig 1.18). The system is a locally stable pendulum, characterized by a harmoni-
cally damped oscillating response with natural period T0 = 2π/ω(0), except every period T2
where the local evolution function of the pendulum is shortly but drastically changed. The
local evolution of the system was characterized in Fig 1.9.

First, we impose T1 = 3T0 ≈ 1220 ms (with T0 the natural period of the pendulum: T0 =
2π/

√
g/l = 412 ms and its natural frequency f0 = 1/T0 = 2.43 Hz). Our camera records

a maximum of 70 frames per second so the minimum value to assure a good recording of
the period is 20 milliseconds. Also, it is important to point out that, to give enough time
to the electromagnets to be turned ON and have an electromagnetic field surrounding the
pendulum while ON, we cannot have T2 < 20ms. While testing the setup, we observed that
below this value the electromagnetic field was not acting on the pendulum. Taking these
considerations, we ensure T2 ≈ 25 ms which means we have T1 = 0.98T and T2 = 0.02T
(the corresponding stability diagram is the one presented in Fig 1.19). Finally, we impose
I = 1.2 A to have a positive growth rate. The experimental response and its corresponding
FFT are shown in Fig 1.20.
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Figure 1.20: Triggering and sustaining a “natural oscillation" using parametric instabilities.
Experimental response and the corresponding FFT of the permanent regime observed when
the electromagnetic pendulum is OFF during T1 ≈ 1.22 s (blue background) and ON during
T2 ≈ 0.025 s (red lines) with I ≈ 1.2 A. Inset zooms on the T -periodic limit cycle. Black
dashed line in the FFT represents the value of the natural frequency of the pendulum when
the red ones represent the secondary harmonics f0±hf , where f = 1/T and h is an integer.

The experimental response in Figure 1.20 shows that we are capable of parametrically
amplify a response using an experimental “impulse train". We have a transient regime dur-
ing the first forty seconds of the response; after which we enter a permanent regime with a
limit cycle highlighted in the inset in Fig 1.20. To understand this limit cycle we express
the experimental parameters ω(0) = 2πf0, ω(I) and ω = 2π/T in the dimensionless space
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(α2, β2) using Eq (1.11) and we report the experimental data (green cross) in the stability
diagram in Fig 1.19. We find that the limit cycle of Fig 1.20 results from a parametric reso-
nance of order k = 6, which is expected since the applied modulation period T is six time
slower than half the natural period of the pendulum. Since k is even, we expect to trigger a
T -periodic limit cycle. This is confirmed by the FFT of the experimental permanent regime
in Fig 1.20 that shows spectral rays located every f0 ± hf with h an integer and f = 1/T .
Interestingly, the limit cycle is very close to a purely sinusoidal motion with a fundamental
frequency f0 since the amplitude of the secondary harmonics are no more than 3% of the
fundamental one. As illustrated by the inset in Fig 1.20 that displays the last three periods
of the recorded experimental response, the triggered limit cycle is nothing else but the free
damped oscillation of the pendulum with natural period T0 that is “reset’" every 3T0 thanks
to the synchronized impulse of input energy represented by red vertical lines.

To verify the robustness of this parametric pumping phenomenon, we now impose T1 =
6T0 ≈ 2463 ms, T2 ≈ 25 ms and I = 1.25 A. The experimental response as well as the FFT
of the permanent regime are presented in Fig 1.21.
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Figure 1.21: Triggering and sustaining a “natural oscillation" using parametric instabilities.
Experimental response and the corresponding FFT of the permanent regime for T1 ≈ 2.5
s (blue background) and T2 ≈ 0.025 s (red background) with I ≈ 1.25 A and an inset
zooms on the T -periodic limit cycle. Black dashed-line in the FFT represents the value of
the natural frequency of the pendulum and the red ones represent the secondary harmonics
f0 ± hf , where f = 1/T and h is an integer.

Same as for T1 = 3T0, we were capable to parametrically amplify the response. The re-
sponse requires more time to be amplified because the value of T1 is considerably larger than
before, but once it has done so, a limit cycle can be maintained with a minimal input of en-
ergy. We are sending an electrical current during 25 ms every 2.5 s. Looking at the inset and
the FFT in Fig1.21 we see that the triggered limit cycle is the free damped oscillation of the
pendulum with a natural period T0 that is "reset” every 6T0. Because we let the system do
more oscillations between every impulse, the damping on the response is much more notice-
able. Also, in order to trigger the response we had to use an even larger value of the electrical
current that for T = 3T0, I = 1.25 > Ic. This is explained by the fact that the growth rate of
the transient oscillations decreases with k, as mentioned in the stability diagram in Fig 1.19.
This creates a limitation of the maximal k region we can trigger, because at one point the
growth rate will not be enough to produce a proper exchange of energy and the instability
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will not trigger.

We have experimentally demonstrated that a “natural limit cycle" can be triggered us-
ing parametric instabilities with an impulse with T1 ≈ 0.5kT0. To increase the maximum
order of observed parametric resonance k, one could increase the Q factor in the setup or
in our case the value of electrical current I . Interestingly, unlike the classic resonance phe-
nomenon, the bandwidth of this parametric resonance, i.e. the width of the instability region
of Fig.1.19 depends on the “width” of the imposed impulse train (value of T2) and not on the
Q factor. The shorter the impulse train, the shorter the periodic energy exchange (spend less
energy) and the thinner the instability region. This is an exciting idea because if the period
of modulation is slightly changed then the response is no longer amplified. This could be
used to precisely trigger the response of a system or use it as an atomic scale.
Another useful property is the tuning capabilities offered by this concept. As presented by
the experimental diagram in Fig 1.9, by externally modulating the system we can explore the
full stability diagram (cases A − D in Fig 1.4). We have shown that we are able to trigger
and sustain the natural oscillation of the system by sending a modulation between ω2(0) and
ω2(I) (Fig 1.18). If we modulate the system between two different values of the electrical
current (I1 and I2), we obtain a modulation between ω2(I1) and ω2(I2). By doing so, theo-
retically, one could efficiently trigger and sustain any sinusoidal oscillation. Experimentally,
the range of frequencies will be delimited by ω(0) (the geometry of the system) and almost
0, as suggested by the characterization done in Fig 1.9.
For systems like MEMS that are tiny beams or plate resonators with very largeQ factors (be-
cause they operate in Ultra High Vacuum [72, 73, 75]) and driven by periodic electrostatic
fields, an application of this particular parametric pumping could allow to efficiently generate
highly super-harmonic sinusoidal signals with extremely tunable fundamental frequencies.

43





CHAPTER 1. BEYOND THE TIPS OF THE PARAMETRIC INSTABILITIES TONGUES

46



2| Anti-resonance tongues: stabilising in
synchrony a naturally unstable system

Contents
1 Physical framework: systems with a naturally unstable equilibrium . 49

1.1 Linear stabilization using parametric modulations . . . . . . . . . 49

2 Classical attempts to stabilize a natural equilibrium system using para-
metric modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Macroscopic example: inverted pendulum . . . . . . . . . . . . . 51

2.2 Microscopic example: Ion trap . . . . . . . . . . . . . . . . . . . 53

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Experimental stabilization beyond the Kapitza approach . . . . . . . 56

3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Experimental stabilisation . . . . . . . . . . . . . . . . . . . . . 61

4 Numerical study of the tip of the stability regions . . . . . . . . . . . . 64

4.1 Basin of attraction . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Study of the responses . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Resolution in a unit cell . . . . . . . . . . . . . . . . . . . . . . 67

5 Pseudo-analytical solutions at the tip of the stability tongue . . . . . . 69

5.1 Analog problem . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Pseudo-analytical solutions near the tip of the stability tongue . . 72

5.3 Re-introducing the second time scale to the master curves . . . . 73

6 Experimental validation of the master curves: synchronized dynami-
cal stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Experimental stabilization at TD = 25%T . . . . . . . . . . . . . 76

6.2 Experimental stabilization at TD = 70%T . . . . . . . . . . . . . 77

47



CHAPTER 2. ANTI-RESONANCE TONGUES: STABILISING IN SYNCHRONY A NATURALLY
UNSTABLE SYSTEM

In this chapter we study the second main functionality of parametric instabilities: the
dynamical stabilization of a naturally unstable system. To do so, we focus on the study of
the stability tongues (anti resonance tongues).
One of the most famous system showcasing the use of a parametric modulations to stabilize
a naturally unstable system is the study of Kapitza’s inverted pendulum [65]. He showed that
by vertically vibrating the inverted pendulum, stabilization can be achieved if the frequency
of oscillation is sufficiently fast as compared to the natural time scale of the system. This
study also gives a theoretical limit to deduce the parameters to dynamical stabilize a system
[65]. This concept can be apply in a plethora of physical systems: from the study of the levi-
tation of fluids [78] and the suppression of flutter in airplanes [40] to the trapping of particles
[67, 79] or atomic clocks [80].
These systems employ the theoretical Kapitza limit, which is located at the bottom edge
of the first stability region and is therefore only valid for small amplitudes of modulations
(Fig 8 of the Introduction). Moreover, the Kapitza limit is only valid for fast frequencies of
modulations, i.e the system receives a large amount of energy per period to be stabilize. If
we leave the Kapitza approach, stabilization could be achieved at lower frequency of modu-
lation and the spending of energy should decrease. The modulation is sent at precise times
to ensure stabilization. So, exploring beyond the Kapitza limit means we could dynamically
stabilize a system spending the least amount of energy.
To investigate this idea of going beyond the Kapitza limit, we are conducting a theoretical and
experimental study. First, we establish the physical systems we are analysing. Following it,
an analysis of the implementation of dynamical stabilization in a couple of mechanical sys-
tems is presented. One case at the macroscopic scale with the Kapitza’s pendulum [65, 66]
and one example at the microscopic scale with the use of ion traps [67, 79]. Studying the
similarities of these experiments and with our experimental knowledge of the previous chap-
ter, we developed an experimental setup to go beyond the Kapitza approach.
We achieved experimental stabilization of a natural unstable system beyond the Kapitza
limit. Nevertheless, leaving the Kapitza limit means we have thinner stability regions mak-
ing it complicated to reach the tip of the stability regions experimentally. These are regions
of interest because at the tips we spend the least amount of energy to stabilize a system. At
this point we do a numerical study of the response at the tip of the stability region. This nu-
merical analysis demonstrates that our system’s response can be analysed as a unit cell with
boundary conditions. These observations allow us to deduce a pseudo-analytical solution to
deduce the parameters to stabilize the system without having to use the stability diagrams,
avoiding the difficulty of the thin size of the regions. With this theoretical study we develop
pseudo analytical solutions (master curves), that are valid in the entire stability regions, not
only at the tip.
Finally, these theoretical master curves are validated with our experimental proof of concept.
We can stabilize a system with parameters closer to the tip of the stability region and spend-
ing the least amount of energy. This new approach of dynamical stabilization could open
the door to new functionalities in mechanics and in our reasoning of thinking experimental
setups to use parametric instabilities.
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1 Physical framework: systems with a naturally unstable
equilibrium

Physically, any nonlinear dynamical system having a natural unstable equilibrium can be de-
fined by having a potential energy with at least a negative curvature [81, 82]. For example, an
inverted pendulum is a nonlinear system with a natural unstable equilibrium. The evolution
of this potential is presented in Fig 2.1. The equilibrium position of the mass is unstable
because a perturbation will make it depart from the original position and not be able to come
back, goes down the hill.
We can also be interested in the linear study of this potential, i.e the small perturbations. The
linear study is represented by the zoom near the mass in Fig 2.1. In this scenario we suppose
the curvature (curve of the hill) is −α2. Our goal is that after applying a small perturbation
to the natural equilibrium, we use parametric modulations to keep the mass on top of the hill
(near its equilibrium position).

-α2 y

0° +180°-180°

Figure 2.1: Schematic representation of the nonlinear potential of a system with a natural
unstable equilibrium. We zoom in the closest region of the unstable equilibrium (small
displacements) where the linear analysis take place. −α2 represents the negative value of the
curvature.

With the linear approximation we can use Floquet theory to deduce the stability diagram
of the system and obtain the anti-resonance tongues to stabilize the system [54]. However,
the linear study only presents the existence of some initial conditions or perturbations for
which the true nonlinear system will be stable. Linear analysis is necessary but not sufficient
to know whether the true system will be stable because we need to know what size of imper-
fection or perturbation is acceptable (basin of attraction) [3]. Thus, in this Chapter we are
conducting a linear and nonlinear study.

1.1 Linear stabilization using parametric modulations
We have a system with an unstable equilibrium. The curvature is negative, and its value is
defined by −α2, represented by a black line in Fig 2.2. A periodic function g(τ) is used to
modulate this curvature and the parametric amplitude is β2. The system is then periodically
modulated between −α2 + β2 and −α2 − β2 respectively represented by a red dashed line
and a blue dashed line in Fig 2.2.
To stabilize the system, the curvature of the potential needs to be positive during the modula-
tion. If the curvature is positive then the system is an oscillatory system where the equi-
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librium point is stable [81]. A positive curvature can occur only if β2 > α2, meaning
−α2 + β2 > 0 (dotted red line in Fig 2.2). In this case, if the mass is disturbed it will
oscillate and come back to the equilibrium position. During the other part of the modulation
the system is a diverging system when −α2 − β2 (dotted blue line in Fig 2.2).

-α2+β2

-α2-β2

-α2 y

Figure 2.2: Schematic representation of the linear potential of a mass in an unstable equilib-
rium stabilized using parametric modulations. The black line represents the natural negative
curvatures of the system −α2, blue dashed line shows the modulation at −α2 − β2 and red
dashed line shows the modulation −α2 + β2 which can have a positive curvature if β2 > α2.

!!!" !!!" !!!" !!!"

a) b)

Figure 2.3: Shape of two different parametric modulation functions to stabilize an unstable
equilibrium. To have a positive curvature we need β2 > α2. a) 2π-periodic harmonic modu-
lation of the shape g(τ) = −β2 cos τ . b) 2π-periodic square wave modulation equal to −β2

during T1 = π and equal to +β2 during T2 = π.

Figure 2.3 represents how different periodic functions can physically stabilize a natural
unstable equilibrium. Figure 2.3.a shows the modulation of the curvature of the potential us-
ing a harmonic modulation and Fig 2.3.b shows the modulation with a square wave function.
Here β2 > α2 so −α2 + β2 > 0. It is interesting to observe that no matter the used value for
β2, the diverging state will always have a steeper curvature. This is seen by the distances to
the zero value in the y-axis (black dotted line in Fig 2.3). In the examples in Fig 2.3 we have
-α2=-1 and β2= 2 giving us −α2 + β2 = 1 (oscillatory state) and −α2− β2 = −3 (diverging
state). This can also be seen in Fig 2.2 where the blue dotted line (diverging state) is sharper
than the red dotted line (oscillatory state). Thus, we find that the stabilization of a natural
unstable system is possible but difficult.

The system described in Fig 2.2 is a linear time-varying periodic system with an unstable
equilibrium. The equation to describe its motion can be written:

d2y(τ)
dτ 2 +

(
−α2 + β2g(τ)

)
y(τ) = 0, (2.1)
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which is the general dimensionless expression of an ordinary differential equation with a
parametric coefficient [46]. With this equations we can use Floquet’s theory [54] and have
the stability diagram of the system. Figure 2.4 shows the stability diagram of the Mathieu
equation focusing on the first stability regions with also negative values of -α2. As we have
seen with Fig 2.2 and Fig 2.3, to stabilize the system, we need to have β2> α2which is the
case “B" of the stability diagram in Fig 2.4.
The theoretical Kapitza limit [65] is defined as β2 =

√
2α2 and it is represented by a green

line in Fig 2.4. It is an indicator for small values of β2, it correctly follows the lower edge
of the first stability region until β2 ≈ 0.5. This theoretical limit is no longer valid for
larger values of the modulation. Nevertheless, Kapitza’s theoretical limit has been applied
in various systems. So, we want to understand how different dynamical systems can use
parametric modulation to stabilize their naturally unstable equilibriums.

Figure 2.4: Linear stability diagram for the Mathieu equation, representing the evolution
of the maximum value of the real part of the Floquet exponent. Coloured regions are the
instability tongues and white regions are the stability tongues. Green line represents the
Kapitza limit β2 =

√
2α2.

2 Classical attempts to stabilize a natural equilibrium sys-
tem using parametric modulations

2.1 Macroscopic example: inverted pendulum
The first study is on the famous Kapitza’s pendulum [65]. We are interested in this experi-
ment not only because it is a pioneer work of the domain but because the physical insights
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are applicable in a variety of systems. The idea presented by Kapitza is to stabilize an in-
verted pendulum by vertically oscillate the pivot point at a fast frequency of oscillation larger
than the natural time scale of the system. A schematic representation of the current setup is
presented in Fig 2.5, where the inverted pendulum is vertically modulated by a driving fre-
quency ω and an acceleration of excitation Γ.
This concept can be applicable in a plethora of systems. For example Apffel et. al [78]
adapted this physical insights to levitate a fluid. They use the Rayleigh–Taylor instabil-
ity, which occurs at the interface between two fluids whenever a denser fluid is placed over a
lighter one [83, 84], and by vertically oscillate the system with a fast frequency they achieved
dynamical stabilization of the lower horizontal interface of the liquid.

!𝐴𝜔! cos 𝜔𝑡
Γ

𝑔
𝜃(𝑡)

𝐿

𝑚

Figure 2.5: Schematic representation of the experimental setup of an inverted pendulum.
The inverted pendulum is placed over a shaker with a frequency of excitation ω, an amplitude
of excitation A and an acceleration of excitation Γ = Aω2. The pendulum is characterized
by its length L, mass m and θ(t) is the angular displacement measured from the vertical
position. The gravitational acceleration is g

Based on the multiple work conducted on the inverted pendulum [46, 65, 85], the un-
damped equation of motion is well stablished and reads

I
d2θ(t)
dt2

−mL
(
g + Aω2 cosωt

)
sin θ(t) = 0, (2.2)

where θ(t) is the angular displacement measured from the vertical position, L is the length of
the pendulum,m the mass and I the moment of inertia. The external modulation is character-
ized by the frequency of modulation ω, the amplitude of modulationA and the acceleration of
modulation Γ = Aω2. Eq (2.2) can be linearised near the equilibrium position, the moment
of inertia is approximated as I ≈ mL2 and upon the change of variable τ = ωt, Eq (2.2)
can be written in the standard dimensionless form of Eq (2.1) with a harmonic modulation,
giving us the Mathieu equation [48, 46]

d2θ

dτ 2 +
(
−α2 − β2 cos(τ)

)
θ(τ) = 0

where α2 = g

L

1
ω2 , and β2 = Γ

ω2
1
L
.

(2.3)
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For this system, an experimental example is presented in the work of Smith [66]. In this setup
Smith opted to use a small pendulum due to some experimental limitations: difficulties with
the transducer (too powerful and noisy) and easy to disturb the system using the operator’s
finger[66]. The setup consists on a pendulum with length L = 8 × 10−3 m, mass m =
0.19 × 10−3 kg and the gravitational acceleration is g = 9.81 m.s−2. The experimental
parameters used by Smith [66] can be translated into the dimensionless space (α2, β2). They
are presented in Table 2.1 and the experimental point is reported in the stability diagram in
Fig.2.7.

Table 2.1: Experimental parameters used by Smith [66] and the corresponding values of
the dimensionless modulation parameters α2 and β2. This experimental data is presented in
Fig.2.7.

Experimental parametric parameters α2 β2

f = 157.17 Hz ; Γ = 61.3 m.s−2 0.05 0.31

2.2 Microscopic example: Ion trap
The idea of implementing dynamical stabilization into microscopical systems was just a
matter of time. During the 1950s Wolgang Paul developed the technique and developed the
first experiments on trapping atoms and charged particles using electric quadrupoles fields
[67]. This work awarding him, Norman F. Ramsey and Hans G. Dehmelt the Nobel prize in
physics in 1989 [86]. These concepts lunched a great number of experimental studies. Some
of the most famous ones are the experimental measurements of Serge Haroche [87, 88]:
they control and measure trapped photons or particles of light by sending atoms through a
trap. We can also name the experimental work of David J. Wineland [89, 90], who takes the
opposite approach: he traps electrically charged atoms, or ions, controlling and measuring
them with light or photons. They were awarded the Nobel prize in physics in 2012 “for
ground-breaking experimental methods that enable measuring and manipulation of individ-
ual quantum systems” [91]. This theory has applications in ion traps and mass spectrometry
[41] and more recently in the entanglement of electrons in quantum computers [92, 93] and
the development of atomic clocks [80].

In the following study, we describe a Paul’s trap (ion trap) [67] which consists on iso-
lating a particle using an electric field. To achieve it, an average confining force around
the particles is imposed by periodically changing the sign of the electric field. This is a
quadrupole ion trap and a sketch is presented in Fig 2.6. A quadrupole can be created by
using four hyperbolically shaped electrodes linearly extended where the opposite one has
the same sing but different form the one besides it (Fig 2.6).

In cylindrical coordinates and taking in consideration the Laplace condition [67], the
expression of the potential is

φ = φ0 (r2 − 2z2)
r2

0 + 2z2
0

. (2.4)
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Figure 2.6: Schematic view of the quadrupole mass spectrometer or ion trap. Four
quadrupoles of opposite signs which have a dc voltage U are periodically modulated by a rf
voltage V with driving frequency ω. With a particular value of ω we can filter and collect a
particular particle (orange one in this example) or we can trap a particular particle.

φ0 is the voltage applied between the electrode pairs, r0 is the radius of the particle and
2z0 = r0. A periodic voltage of the shape φ0 = U + V cosωt is applied where U is the dc
voltage, V is the rf voltage and ω is the driving frequency. Based on the work of [67, 79], the
differential equations of the motion of a particle of a charge-to-mass ratio e/lm under this
periodic potential field read

d2z(τ)
dτ 2 + e

m

U

z2
0
z − e

m

V

z2
0
z cosωt = 0,

d2r(t)
dt2

− e

m

U

z2
0
r − e

m

V

z2
0
r cosωt = 0.

(2.5)

The motion of the particles is over the (z, r) plane and Eq (2.5) shows that their motion
on each direction is independent form each other. For each component, by introducing the
change of variable τ = ωt, Eq (2.5) can be reduced in the dimensionless form of the Mathieu
equation [48, 46]:

d2z(t)
dt2

+
(
α2 − β2 cos τ

)
z(τ) = 0,

d2r(t)
dt2

+
(
−α2 − β2 cos τ

)
r(τ) = 0,

where α2 = Ue

mr2
0ω

2 , and β2 = V e

mr2
0ω

2 .

(2.6)

The expressions of α2 and β2 in Eq (2.6) show us that if we work at fixed values of r0, U, V, ω
the ratio β2/α2= V/U is independent of the mass of the particle m. So the different ions with
a same mass have the same value β2/α2in the (α2, β2) stability diagram [67]. If U and V are
simultaneously and proportionally changed in a way that the ratio β2/α2remains constant,
we can browse the different masses of the particles and filter the one we wish to trap. Thus,
by varying the imposed voltage, we have a mass spectrometer or an ion trap. In this case
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the motion is in 2D, along the z-axis and the r-axis, and the motion of both axis are defined
by the Mathieu equations (Eq (2.6)), so the stability region to stabilize this system is the
superposition of the two diagrams, as it can be seen in [41, 67].

An experimental study of an Ion trap is presented in the work of Wuerker [41]. The
particles he used are charged iron and aluminium particles. The particles have a radius of
r0 ≈ 7.23 µm and the charge-to-mass ratios e/m are between 5.3 × 10−3 and 6.25 × 10−3

C.kg−1. The rf voltage V = 500v is fixed but the driving frequency ω and the dc voltage U
can be varied. The experimental parameters used can be translated into the dimensionless
space (α2, β2) using Eq (2.6). These experimental values are presented in Table 2.2 and are
reported in the stability diagram in Fig.2.7 by blue triangles.

Table 2.2: Experimental parameters used by Wuerker [41] and the corresponding values of
the dimensionless modulation parameters α2 and β2. This experimental data is presented in
Fig.2.7.

Experimental parametric parameters α2 β2

U = 0.0 V ; ω = 1256 rad.s−1; e/m = 5.3× 10−3 C.kg−1 0.0 0.232
U = −77 V ; ω = 930 rad.s−1; e/m = 6.25× 10−3 C.kg−1 -0.045 0.50
U = −45 V ; ω = 930 rad.s−1; e/m = 6.25× 10−3 C.kg−1 -0.072 0.50

2.3 Discussion
As presented in the two previous examples, the dynamical stabilization of a naturally un-
stable system using parametric modulation is possible in multiple domains in physics. We
presented one at the macroscopic scale with Kapitza’s pendulum and one at the microscopic
scale with an ion trap. The experimental results are translated into the dimensionless space
(α2, β2) and are presented in the stability diagram in Fig 2.7. As expected, the experimental
points are in a stable region (white region) and, more precisely they are in the first stability
region. Moreover, we do have negative values of α2 and we have β2 > α2, correctly placing
us in the case “B" of the stability diagram. Furthermore, we know that for this specific region
of the stability diagram, stabilizing a naturally unstable system is challenging. As we can
observe in Fig 2.7, the experiments achieve stabilization only at the first stability region and
close to the theoretical Kapitza limit [65], represented by a green line in Fig 2.7.

Finally, it is interesting to observe that in both experimental setups the dynamical stabi-
lization is obtained by modulating the system using an external field (different from Chapter
one where they also use geometrical modulation to enhance a response). We have seen that
modulating using an external field (electrical field, electromagnetic field) is the most advan-
tageous technique to achieve further regions. So, it is interesting that in neither example they
leave the Kapitza limit (first stability region). This means that to explore further stability
regions, we need to try new frequencies of modulation that are closer to the natural time
scale. Also, we need to be able to do strong modulations of the natural time scale of the
system. Using our experimental knowledge developed in the first Chapter, we present a new
experiment to explore dynamical stabilization beyond the Kapitza approach.
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Figure 2.7: Linear stability diagram of the Mathieu equation in the dimensionless modula-
tion space (α2,β2) with experimental data points trying to stabilize a natural unstable system.
Blue triangles represent the experimental result of the Wuerker [41] and red square is the ex-
perimental results of the inverted pendulum done by Smith [66]. Green line represents the
Kapitza limit β2 =

√
2α2 for α2 < 0.

3 Experimental stabilization beyond the Kapitza approach
Our goal is to experimentally stabilize a macroscopic system beyond the theoretical Kapitza
limit [65] , i.e with a frequency of modulation close to the natural time scale of the system.
To do so, first the experimental setup is presented with the different parametric parameters
used for the stabilization. In our case it is an electromagnetic inverted pendulum modulated
by a square wave function, and the parametric parameters are the electrical current I and the
period of modulation T . Then we characterize how the electrical current I affects the natural
time scale of the system. Once this is properly understood, we fix a value of the electrical
current I and we send different T -periodic square wave modulations to try to stabilize the
system. Finally, we define a numerical model, and we compare them to validate our experi-
mental results and we analyse the frequency of modulation used and observe that the value of
the electrical energy on the system decreases the further we are from the Kapitza approach.

3.1 Experimental setup
With Chapter 1, we now know that to take advantage of high order parametric tongues (either
stable or unstable) we need a system where the dynamics and the modulated parameter have
an uncomplicated relationship. Most importantly we need a system where the natural time
scale of the system can be drastically varied with ease and without modifying the geometry.
To honor one of the pioneers of this domain we use an inverted pendulum. However, instead
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of using a shaker like Kapitza’s pendulum, our pendulum has a metallic marble symmetri-
cally placed under an attracting electromagnet. The experimental system and a schematic
representation of the electromagnetic inverted pendulum are represented in Fig 2.8. The
metallic marble has a radius of 0.95 cm and it is attached to a rod of length l = 5.2 cm. The
rod is then connected to another rod allowing him to oscillate from left to right. The marble
is centred with the electromagnet (with typical holding force of 1000 N) at a distance h = 6
mm. By means of a Controllino card we can turn ON and OFF the electromagnet by sending
a T -periodical square wave function. For the recording of the experimental responses, we
place the electromagnetic inverted pendulum in front of a white LED to enhance the contrast
and record the motion of the metallic marble with a Basler camera CMOS capable to record
until 220 frames per second.
The electromagnet is connected to a generator where we can select the value of the electrical
current I . The electrical current is responsible of the intensity of the electromagnetic force
near the inverted pendulum. The stronger the value of I the stronger the electromagnetic
field. We know the typical diverging time scale of the system is defined as 2π/ω0 = 2π/

√
g/l

where g is the gravitational acceleration and l it is the length of the rod. By turning ON the
electromagnet, the electromagnetic force will modify the effective gravitational field near the
inverted pendulum, directly affecting the natural time scale of the inverted pendulum.

𝑙

Controllino
(𝑇!, 𝑇")

𝑚
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Electromagnet 
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Generator LED Controllino
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inverted pendulum Basler camera

Figure 2.8: Experimental macroscopic setup. The system is a planar inverted pendulum of
length l with a metallic marble that is symmetrically placed under an attracting electromagnet
whose attracting force depends on the imposed electrical current I . An Arduino card allow
us to send a T -periodic function to turn ON and OFF the electromagnet during TO and TD
respectively.

Characterization of the system

We first need to characterize how the electromagnetic field affects the natural frequency
of the system, i.e how the control parameter I affects the system. By varying the electrical
current I the inverted pendulum is under various electromagnetic fields. This is translated as
an effective gravitational field geff surrounding the inverted pendulum. This effective gravi-
tational field will then change the curvature of potential energy of the system (Fig 2.9). When
the electrical current is close to zero (I = 0), Fig 2.9.a, the system has a natural negative
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curvature: any perturbation will make the mass go down the hill and cannot come back to
its equilibrium, the system diverges. While the electromagnet is ON, there is a competition
between the electromagnetic force (pulling up) and the gravitational force (pulls down). This
is translated by a smoother curvature of the potential as presented in Fig 2.9.b. Then at some
critical value I = Ic, the electromagnetic force is larger than the gravitational force and the
system will have a positive curvature: a small perturbation will make the system oscillates
near this equilibrium position and does not leave it (oscillatory system), as shown in Fig 2.9.c.
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Figure 2.9: Three continuous signal with different values of the electrical current I and a
sketch of the corresponding shape of the potential energy modulated by the electromagnetic
field. After a critical value Ic the electromagnetic force is stronger than the gravitational
force. a) I ≈ 0 A the system has a natural negative curvature. b) 0 < I < Ic the negative
curvature is less steep; the electromagnetic force is stronger. c) I > Ic the system has a
positive curvature; the system has a stable equilibrium with an oscillatory response.

With the parameter I we can change the effective gravitational field near the pendulum. We
introduce the scalar ω(I) = √geff/l to characterize the experimental evolution of the fre-
quency of oscillation for a giving value of I . This scalar represents the natural time scale of
the electromagnetic inverted pendulum and give us the effect of the modulation of the local
gravitational field in our system.
To characterize the evolution of ω(I) we use the Controllino card to send a continuous signal
(electromagnet is ON) (Fig 2.8). We fix a value of the electrical current I and we keep the
inverted pendulum at its unstable equilibrium by holding it from the rod. We let the pen-
dulum go and we record the response of the system. The recording and post processing of
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the motion of the metallic marble are the same as the one used in Chapter 1. Finally, it is
important to always stay under the electromagnet, so that the electromagnetic force is as uni-
form as possible over the inverted pendulum. To do so the initial condition must be smaller
than 10◦. Different experimental responses are presented in Fig 2.10 and every response is
recorded using 150 frames per second.

a)

b)

c)

d)

Figure 2.10: Experimental responses of the inverted electromagnetic pendulum for different
values of the control parameter I . a) I = 0 A: diverging response characterized by the
natural frequency ω(0). We fit an exponential to deduce its value, ω(0) ≈ −11 rad.s−1. b)
I = 0.45 A: oscillatory response, i.e we have crossed the Ic limit. We have ω(0.45) ≈ 17
rad.s−1. c) I = 0.55 A: faster oscillatory response with ω(0.55) ≈ 23 rad.s−1. d) I = 0.70
A: even faster oscillatory response, we have ω(0.70) ≈ 33 rad.s−1.

Fig 2.10.a shows the experimental response for the natural case: when the local gravi-
tational field is not modulated, i.e there is no electrical current I = 0 A (there is no local
electromagnetic field). The system should be an inverted pendulum diverging with a natural
frequency ω0 =

√
g/l ≈ 12 rad.s−1. As expected, we observe a diverging response. The

experimental response is close to an exponential, thus we deduce ω(I) fitting an exponential

59



CHAPTER 2. ANTI-RESONANCE TONGUES: STABILISING IN SYNCHRONY A NATURALLY
UNSTABLE SYSTEM

of shape θ(0)eω(I)t. We deduce that ω(I = 0) ≈ −11 rad.s−1 which is in good agreement
with the value calculated with the geometrical parameters of the system. We then modulate
the local gravitational field surrounding the pendulum I 6= 0 (Fig 2.10.b-d). The experi-
mental response for I = 0.45 A is presented in Fig 2.10.b. We have an oscillatory response
meaning the electromagnetic force is stronger than the gravitational force. So, the inverted
pendulum is stabilized and the shape of the local potential energy is the one described in Fig
2.9.c (positive curvature). Doing a Fast Fourier Transformation (FFT) of the experimental
response we observe that ω(0.45) ≈ 17 rad.s−1 which is higher than ω(0). For larger values,
the system should continue to have an oscillatory response. And because the electromagnetic
field is stronger when I increases, the value of the positive curvature of the potential should
increase which this is translated by an increase of ω(I). This is validated in Fig 2.10.c-d,
where respectively the electrical current is I = 0.55A and I = 0.70 and ω(I) increases from
ω(0.55) ≈ 23 rad.s−1 to ω(0.70) ≈ 33 rad.s−1. Experimentally the increase of ω(I) allows
the system to resist a more important perturbation and still holds the upward position with-
out diverging. It also shows that the system will come back faster to the centre. This is also
controlled by the damping on the system. So, with the control parameter I it is possible to
stabilize the natural unstable equilibrium of the inverted pendulum.

To have a proper evolution of the impact of the control parameter I on the system we
repeat this study for multiple values of I and the corresponding values of ω(I) are presented
in Fig 2.11. Indeed, it exists a critical value Ic of the electrical current for which the system
is no longer diverging but it is now an oscillatory system (Fig 2.11). As presented in Fig
2.10.b-d, when I > Ic we have an oscillatory response with an increasing ω(I). This is
the domain we are interested to be able to stabilize the inverted pendulum. By modulating
the negative curvature of the potential into a positive one periodically we could stabilize the
system.

Figure 2.11: Characterization of the system as a function of the control parameter I . The
scalar ω(I) characterize the local evolution function of the electromagnetic inverted pendu-
lum. There is a specific value of the electrical current Ic where we change from a diverging
system (I < Ic) to an oscillatory system (I > Ic).
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3.2 Experimental stabilisation

Physical model

The electrical current I is the appropriate parameter to have a varying effective gravitational
field on our system. To try to stabilize the experimental system we modulate the system in a
square wave fashion (Fig 2.12.b). We can turn the electromagnets OFF (naturally divergent:
I = 0) and ON (oscillatory I > Ic) during TD and TO respectively. The diverging system
is now a periodically oscillatory-divergent system: the four parameters of the system are the
natural time scale of the diverging state −ω(0), the frequency of the oscillatory state ω(I),
TO and TD which are respectively the period for which the system is in the oscillatory state
and in the diverging state (Fig 2.12.b).

Physically, the system can be interpreted in terms of the evolution of the potential energy.
The potential energy of this periodic oscillatory-divergent system can be defined as V(θ, t) =
f(θ)V(t) where f(θ) = cos(θ) is a curvature function of the position θ and V(t) is a piece-
wise potential function of time, as presented in Fig 2.12.a and Fig 2.12.b respectively. We
are focused on the evolution of the curvature and the period of the modulation, so we assume
we have a system with a unitary inertia (ml2 = 1).

𝜃
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0

a) b)
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Figure 2.12: Potential energy of a periodically oscillating-diverging system defined by the
function V(θ, t) = f(θ)V(t) where f(θ) = cos (θ) is the curvature function of the position
θ and V(t) is a square wave potential function of time. a) Curvature function f(θ) = cos θ.
Red line is the oscillatory state and blue line is the natural diverging state. b) Experimental
T -periodic square wave modulation used to stabilize the electromagnetic inverted pendulum.
The electromagnet is turned ON during TO and the system is characterized by ω(I)2 (oscil-
latory state) and it is turned OFF during TD characterized by the natural −ω(0)2 (natural
divergent state). Blue background is used in all the figures to showcase the divergent state
and red to showcase the oscillatory state.

The kinetic energy of the system is T (p) = 1
2p

2 with p the momentum. Having the kinetic

energy and the potential energy we express the Hamiltonian of our system: H(θ, dθ
dt
, t) =

61



CHAPTER 2. ANTI-RESONANCE TONGUES: STABILISING IN SYNCHRONY A NATURALLY
UNSTABLE SYSTEM

T (p) + V(θ, t). Using the Hamiltonian we deduce the Hamiltonian equations [94]:
dp

dt
= − sin (θ)V(t),

dθ

dt
= p.

(2.7)

From the Hamiltonian equations (2.7) one can deduce the dynamical equations of the
periodic oscillatory-diverging system. They read

d2θ(t)
dt2

+ V(t) sin θ(t) = 0 during T ⇐⇒


d2θ(t)
dt2

− ω(0)2 sin θ(t) = 0 during TD,

d2θ(t)
dt2

+ ω(I)2 sin θ(t) = 0 during TO,
(2.8)

where V(t) is the square wave modulation defined in Fig 2.12.b.
Finally, a first approach to stabilize the system is to study the linearised system. We approx-
imate sin θ(t) in Eq (2.8) near the equilibrium position, so the linear equation of motion of
the electromagnetic inverted pendulum reads

d2θ(t)
dt2

+ V(t)θ(t) = 0 during T ⇐⇒


d2θ(t)
dt2

− ω(0)2θ(t) = 0 during TD,

d2θ(t)
dt2

+ ω(I)2θ(t) = 0 during TO.
(2.9)

Experimental investigation to stabilize the inverted pendulum

To try to experimentally stabilize the system with a period of modulation closer to the natural
time scale of the system we have to vary the value of the period of modulation T = TO+TD.
The experimental protocol to explore this idea is the following: we fix a value of the electri-
cal current I and the values of TD and TO will be varied. For a given set of parameters, we
do a small perturbation to the system, and we observe if the inverted pendulum stays in the
upward position. The different experimental observations are represented in Fig 2.13. If the
system stays in the upward position the response is considered stable (blue squares in Fig
2.13) and if the system falls down the response is considered unstable (white squares in Fig
2.13). Finally, Eq (2.9) is a linear ordinary differential equation with a periodic coefficient,
it is the Meissner equation [53, 77]. We can study the linear stability of the system using
Floquet’s theory [54]. We superpose the corresponding stability diagram to our experimen-
tal observations in Fig 2.13.

Figure 2.13 shows we can stabilize the inverted pendulum for multiple values of (TO, TD).
We also have an excellent agreement between the experimental results and the theoretical
stability diagram: we have a good superposition of the experimental points with the cor-
responding stable or unstable region. We observe we were able to achieve the 5th stability
region (blue regions). This is already an achievement knowing that in the previous setups
they were limited to the first stability region (Fig 2.7). Then, we now the natural time scale
of the system is T0 = 2π/ω(0) ≈ 0.57 s. The maximum period of modulation we were
capable to achieve to stabilize the system is for TD = 40%T and TO = 0.1s, i.e the period of
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Figure 2.13: Experimental investigation to dynamical stabilize an inverted pendulum on
the (TO, TD) space with the electrical current fixed at I = 0.48 A. Blue squares are the
experimental stable responses and white squares are the experimental unstable responses.
We superpose the stability diagram where the stability regions are in blue, and the instability
regions are in white. Black dots used for the numerical simulations at TD = 95%T : First
stability tongue: TO ≈ 0.053 s. Second stability tongue: TO ≈ 0.213s

modulation is T = 0.17s. We have a modulation with the same order of magnitude than the
natural frequency of the system. As comparison, in the experiment conducted by Smith [66],
the natural time scale of their system is Tsmith ≈ 0.18 s and the period of modulation is
T = 6.4× 10−3 s (Table 2.1) they do have a much faster modulation compared to the natural
time scale of their system. This shows that we have achieved dynamical stabilization without
using the Kapitza approach. To keep going further away from the Kapitza limit, we should
try to be the closest possible to the tip of the stability regions. The periods of modulations
will be larger, and we can continue to study this new approach for stabilization.

As we get closer to the tip of the stability region, the value of TD is closer to the value
of the period of modulation T and TO is closer to impulses as presented in Fig 2.14. This
is physically interesting because the electrical energy used during a period to stabilize the
system is defined as Eelec = RI2TO with R the resistance of the generator. So, when we
are closer to the tip of the stability region, TO decreases so the electrical energy spend Eelec
decreases too. Physically this means we are spending more time in the natural diverging
state (TD takes more “place" in the period T ) and at precise periods TO we send an impulse
of energy Eelec to change to the oscillatory state and periodically stabilize the system.
For example, if we had stabilized the inverted pendulum during one hour with a continuous
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signal (first case in Fig 2.14) we would have spent Eelec0 = 5.35 W.h. Now if we do it with
our best case TD = 40%T , the energy spent will be Eelec = 60%Eelec0 = 3.2W.h.
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Figure 2.14: Schematic representation of the evolution of the shape of the square modulation
function. To decrease the value of Eelec and still be stable the period TD should take more
“place" in the period T than TO.

4 Numerical study of the tip of the stability regions
Dynamical stabilization using a period of modulation close to the natural time scale of the
system is not only possible (Fig 2.13) but it can even be more energetically advantageous
(Fig 2.14). However, access them with the current approach is difficult and experimentally
challenging, the stability regions are thinner close to the tip. Our goal is to analyse the
numerical responses in this particular region and try to deduce some characteristics helping
us to reach them in an easier way.

4.1 Basin of attraction
The linear analysis is necessary but not sufficient to know whether the true system will be
stable. We need to know what size of imperfection or perturbation is acceptable (basin of
attraction). To have this information we need to study the attractor of the nonlinear system
at the tip of the stability region. So, we use Eq (2.8) to perform this numerical study.
For this numerical study at the tip of the stability region we fix a point at TD = 95%T ,
TO = 0.053s. It is represented by a black dot in the stability diagram in Fig 2.13 and Fig
2.15a), showing how near the tip the region gets thinner and thinner. To deduce the basin of
attraction we analyse the response for multiple initial conditions ((dθ/dτ)|0, θ0). The criteria
to define if a couple of initial conditions returns to a stable response is if the absolute value
of the response is smaller than two times the initial condition θ0 (blue dots in Fig 2.15.b). If
the numerical response is over this limit the response is considered unstable (grey dots in Fig
2.15.b) and each response is calculated for one hundred periods.
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a) b)

Figure 2.15: Study of the tip of the first stability region. a) Linear stability diagram of the
first stability region showed in blue. Black dot is the point near the tip of the stability region
we use for our numerical study (TO = 0.053 s, TD = 95%T ). b) Shape of the basin of
attraction at the tip of the stability region. Blue region shows the stable initial conditions.

Figure 2.15.b shows that at the tip of the stability region the basin of attraction is small
and centred at the (0, 0) point. This means that to be stable at the tip of the stability region
the system cannot resist large initial conditions. This agrees with the fact that at the tip
of the stability region we are a longer amount of time, during the period T , in the natural
diverging state (unstable) and only a small time in the oscillatory state (stable). So, any strong
perturbation will make the inverted pendulum to fall from the upward position (diverge).
This physical behaviour is characteristic of being close to the tip of the stability region,
and independent of the choice of the stability region. So, we can assume that this basin of
attraction is the same for the others stability regions near the tip. Know that we now which
initial conditions are acceptable to have a stable response, we can analyze the numerical
nonlinear responses.

4.2 Study of the responses
We study the evolution of the nonlinear response near the tip of the first stability tongue using
the nonlinear equation described with Eq (2.8) and we use the parameters defining the black
point in Fig 2.15.a (TO = 0.053 s, TD = 95%T ). The initial conditions are chosen randomly
from the basin of attraction in Fig 2.15.b. We run one hundred periods of the response and
we present the first twenty-five periods in Fig 2.16.
First of all we observe a stable response. Then, by introducing black dotted horizontal lines
at each t = nT + TD/2, with n the number of the period, we observe that between two
consecutive black dotted lines the response can always be decomposed in three parts: an
exponential diverging motion, followed by exactly one oscillation during TO and finally an
exponential convergent motion towards the x-axis. Let’s denominate the domain between
two consecutive black dotted lines a unit cell. Between two consecutive unit cells the local
maximum does not have the same value. This maximum is noted ρn. By colouring coding
each maximum inside the unit cells (chronologically ordered from white to black) and con-
necting them by an interpolation, we observe that the evolution of ρn follows a harmonic
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evolution over time (Fig 2.16.b). Finally, for the same set of parameters we observe the
corresponding linear response defined by Eq (2.9) and it is superposed with a dashed white
line to the nonlinear response in Fig 2.16.a. We observe that the linear response perfectly
describes the evolution of the nonlinear response near the tip of the stability region.

a)

b)

Figure 2.16: Numerical nonlinear response for the first stability region for (ω(0), I =
0.48 A, TO = 0.053 s, TD = 95%T , black dot in Fig 2.13). a) Black line represents
the nonlinear system. Black dotted lines represent the boundaries of a unit cell defined at
t = nT + TD/2, with n ∈ N. Coloured points are the maximum of the response at each unit
cell (chronologically ordered from white to black). White dashed line is the linear response
for the same set of parameters. b) Evolution of the maximum amplitude ρn at each unit cell.
Red dashed line is an interpolation of ρn showing a harmonic motion.

So, the complete nonlinear response near the tip of the stability region can be interpreted
as a particular mode in a unit cell with different amplitudes ρn. Fig 2.17.a shows the first
25 periods of the response in the corresponding unit −TD/2 to TD/2. The coloured lines
correspond to the given period T chronologically ordered from white to black and following
the same colours as in Fig 2.16). Then, Fig 2.17.b shows the 25 first periods of the nonlinear
response near the tip of the second stability region (black dot in Fig 2.13: TO = 0.213 s,
TD = 95%T ). We observe that the response during the different periods has the same shape
but not the same amplitude, the response does two oscillations during TO.

Lastly, we have seen that the nonlinear response can be perfectly described with the re-
sponse of the corresponding linear model (Fig 2.16) and Fig 2.17 shows that each stability
region has a particular mode. To validate it, now that we have a linear model, we can take
the linear response of Fig 2.16 (which is exactly the nonlinear response) and multiply it by
the given ρn in Fig 2.16 b) to scale the response at each period and collapse them in the unit
cell (Figure 2.18). Indeed, Fig 2.18 shows that we do have a particular mode at the tip of
each stability region. At the boundaries of the unit cell the response tends towards zero, but
it is not exactly zero due to the periodicity of the response.
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a) b)

Figure 2.17: First 25 periods chronologically ordered from white to black of the nonlinear
response near the tip of the stability region in a unit cell. a) First stability region characterized
with one oscillation during TO. b) Second stability region characterized with two oscillations
during TO. The parameters are the ones of the black dots in Fig 2.13.

a) b)

Figure 2.18: First 25 periods chronologically ordered from white to black of the nonlinear
response near the tip of the stability region multiplied by the given ρn at each period defined
in the unit cell. a) Collapse of the response of the first stability region characterized with one
oscillation during TO. b) Collapse of the response of the second stability region characterized
with two oscillations during TO. The parameters are the ones of the black dots in Fig 2.13.

4.3 Resolution in a unit cell

The previous numerical observations, conducted for the electromagnetic inverted pendulum,
showed that close to the tip of the stability diagram the motion of the nonlinear periodic
oscillatory-diverging system can be described by a linear combination of a particular mode
in a unit cell periodically multiplied by a constant (Fig 2.18). This means, the system can be
reduced to the study of the motion in the unit cell which is defined with the four parameters
of the system (Fig 2.19). Moreover, the collapsing of the responses in Fig 2.18 shows at each
period the response tends to 0 at the boundaries of a unit cell defined in Fig 2.19. Finally,
the study of the basin of attraction in Fig 2.15.b shows that to have a stable response the
perturbation needs to be small and close to the (0, 0) point in the phase space. Taking in
consideration these observations, we propose that the initial value problem (IVP) governing
the motion of the system can be approach as a linear boundary value problem (BVP) on a
unit cell (Fig 2.19). The corresponding boundary value problem reads
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Figure 2.19: The study of the nonlinear response of the dynamical system near the tip of the
stability region is approached to a boundary value problem in this unit cell defined between
−TD/2 and TD/2.



d2θ(t)
dt2

− ω(0)2θ(t) = 0 for t ∈ Outside,

d2θ(t)
dt2

+ ω(I)2θ(t) = 0 for t ∈ [−TO/2, TO/2],

θ(−TD/2) = θ(TD/2) = 0,

(2.10)

with Outside = [−TD/2,−TO/2] ∪ [TO/2, TD/2].
To validate our approximation, we numerically solve Eq (2.10) using the parameters of Fig
2.18 (black dots in Fig 2.13). We superpose the nonlinear IVP response collapsed into the
unit cell with the BVP solutions in Fig 2.20.

a) b)

Figure 2.20: First 25 periods of IVP defined with Eq (2.8) (chronologically ordered from
white to black) superposed to the solution of the BVP defined with Eq (2.10) in green cal-
culated with the same parameters (black dots in Fig 2.13). a) First stability region near
the tip (TO = 0.053 s,TD = 95%T ). b) Second stability region near the tip (TO = 0.213
s,TD = 95%T )

Figure 2.20 shows a perfect agreement between the solution of the BVP (in green) and
the nonlinear IVP in the unit cell (coloured lines). So, near the tip of the stability regions the
characteristic mode defining the IVP can be deduced soling the BVP defined in Eq (2.10).
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Thus, the parameters to stabilize a system near the tip of the stability tongues can be inferred
with the solution of a boundary value problem. In this case it will be finding the correct
values of TO to stabilize the system at a fixed electrical current I and TD the closest possible
to the period of modulation T .

5 Pseudo-analytical solutions at the tip of the stability tongue

5.1 Analog problem
Near the tip of the stability region, we showed that the nonlinear IVP can be approximated
with a linear BVP defined by Eq (2.10) (Fig 2.19). For all the stability regions, in the unit
cell the response can be decomposed in the following three parts: an exponential diverging
motion in [−TD/2,−TO/2] defined by ω(0)2, followed by exactly m oscillations during
TO (with m the number of the stability region) defined by ω(I)2, and finally an exponential
convergent motion towards the x-axis during [TO/2, TD/2] defined by−ω(0)2. Interpreted in
this manner, the BVP defined in Eq (2.10) has the same physical behaviour of another well-
known physical problem: the problem of finding the quantised energy levels of a particle
trapped under a square finite potential well [95, 96, 97]. We are interested in this problem
because it is an eigenvalue problem where the eigenvalues and eigenfunctions have a pseudo-
analytical solution [95, 98, 97]. The physical parameters of this problem are presented in
Fig 2.21, where the motion of the particle can be decomposed in the same three parts as
before (divergence, oscillation, divergence) and the motion of the particle is defined by the
dimensionless time-independent Schrödinger equation that reads [95, 97]

d2ψ

dχ2 − (u2 − v2)ψ(χ) = 0 for χ ∈ Outside,

d2ψ

dχ2 + v2ψ(χ) = 0 for χ ∈ L,

ψ(−∞) = ψ(∞) = 0,

(2.11)

withOutside = [−∞,−L/2]∪[L/2,∞], χ = 2π/L,u =
√

2mV0L/2~ and v =
√

2mEL/2~.

−∞ ∞𝐿
Oscillatory

Outside Outside

DivergentDivergent

0
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Figure 2.21: Schematic representation of the problem of a particle in a finite potential well.
For a giving potential V0 and box of length L we search the quantized energies levels E.
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We need to rewrite our BVP defined in Eq (2.10) to be in the same form as the dimen-
sionless equation of the analog problem (Eq (2.11)) to use its pseudo-analytical solutions.
To do so firstly we observe that in Eq (2.11) there is only one time scale: the size of the box.
To take this in consideration in our system we assume that the boundaries of the BVP are
also ±∞. Thus, TD → ±∞. This is an important consideration because we are reducing
our number of unknowns by one, we only have (ω(0), ω(I), TO), and physically it means we
are eliminating a time scale. Secondly, we introduce the dimensionless parameter τ = ωt
into the BVP of Eq (2.10), with ω = 2π/T and T the period of modulation.
Finally, we observe that the shape of the unit cell defined in Fig 2.19 is not the same as the
one we should have (Fig 2.21). Comparing both unit cells, we observe that at the Outside
domain (in Fig 2.19) our system is at −ω(0)2, meaning we cross the 0 value, whereas the
particle in the finite potential well does not cross the 0 value and the potential is in fact at its
maximum value (Fig 2.21). Moreover, at the oscillatory state, we should be at the minimum
value of the potential but instead we are at the maximum value for our case. Identifying
these differences, we introduce the variable ∆Ω2 = |ω2(I) + ω2(0)|/ω2 to modify our cur-
rent potential and we propose a new potential U(τ) represented in Fig 2.22 and defined as

U(τ) = −V(τ) + ω(I)2, (2.12)

to have the same evolution as the analog potential in Fig 2.21.

−∞ ∞𝒯!
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0
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Figure 2.22: Expression of the potential U(τ) at the tip of the stability region to deduce the
stability parameters with a pseudo analytical relation.

Introducing the new potential U(τ) (Fig 2.22) and the different observations we previously
made into Eq (2.10), the new BVP reads



d2θ(τ)
dτ 2 − (∆Ω2 − ω2(I)/ω2)θ(τ) = 0 for τ ∈ Outside,

d2θ(τ)
dτ 2 + (ω2(I)/ω2)θ(τ) = 0 for τ ∈ TO = 2πT0/T ,

θ(−∞) = θ(∞) = 0,

(2.13)

with Outside = [−∞,−TO/2] ∪ [TO/2,∞].
The expression of the BVP in Eq (2.13) is the same as the analog problem of Eq (2.11)
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The general pseudo analytical solutions for this type of problem are [95, 98]:

√
γ2

0 − η2 =
{

η tan (η) symmetric case,
−η cot (η) anti-symmetric case,

(2.14)

where for a fixed γ0, the pseudo-analytical solutions ηm are the intersections between this
demi-circle and these trigonometric functions. We can express these dimensionless parame-
ters as a function of our parameters:

γ0 =
√
ω2(0) + ω2(I)TO/2, η = ω(I)TO/2, (2.15)

where the eigenvalue η will give the value of the period TO needed to stabilize the system
for a giving electrical current I and the corresponding eigenfunction should give the proper
mode. To test if the approximation is valid, we search for the value of TO using the same
parameters we used for the stability chart in Fig 2.13 (I = 0.48A and ω(0) ≈ 11 rad.s−1)
which correspond to the parameters of the numerical simulations for the IVP of Eq (2.8) and
the previous BVP of Eq (2.10), so the eigenfunction should be the same as the mode found
in Fig 2.20.
We calculate the two first eigenfunctions and the eigenvalues solution of Eq (2.13), i.e we
solve the two first intersections of the curves in Eq (2.14) for this set of parameters. With the
two eigenvalues ηm we deduce that for the first stability region the value of TO to stabilize the
system is TO = 0.053014s and for the second stability region it is TO = 0.213873s. Which
are in perfect agreement with the x-coordinate of the two black points in the tip of the sta-
bility chart in Fig 2.13. The corresponding pseudo-analytical eigenfunctions are presented
in Fig 2.23. They are the same solutions obtained with the BVP of Eq (2.10) showed in
Fig 2.20 only this time the resolution is pseudo-analytical, and we can deduce the parameter
TO to stabilize the system.

1 2

a) b)

Figure 2.23: Pseudo-analytical eigenfunctions found with Eq (2.14) for I = 0.48A and
ω(0) ≈ 11 rad.s−1. a) Eigenfunction for the first intersection of Eq (2.14) with a correspond-
ing eigenvalue η1 = 0.517683 and we can infer TO = 0.053014 s. b) Eigenfunction for the
second intersection of Eq (2.14) with a corresponding eigenvalue η2 = 2.088479 and we can
infer TO = 0.213873 s.

With this approach, the actual position of the system is not predicted by Eq (2.13). How-
ever it can be deduced from a successive repetition of the pseudo-analytical eigenfunction
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(Fig 2.23) periodically scaled by the value of ρn in Fig 2.16.b. In Fig 2.24, we superpose the
nonlinear response of Fig 2.16.a with the corresponding pseudo-analytical eigenfunctions
multiplied by ρn and the boundaries of the eigenfunction in Fig 2.23 are scaled to match the
boundaries of the unit cell defined as TD = 95%2π. We have a perfect agreement between
the nonlinear response and the scaled pseudo analytical mode.

a)

b)

Figure 2.24: Comparison of the numerical nonlinear responses for the first two stability
zones at TD = 95%2π in black lines (parameters used are the black dots in Fig 2.13) with
the scaled pseudo-analytical eigenfunctions solution of Eq (2.14) in dashed green line.

These two numerical examples validate the pseudo-analytical solutions of Eq (2.13) as a new
method to deduce the value of the period TO to stabilize an unstable system near the tip of
the stability regions and we infer the shape of the response with the eigenfunction.

5.2 Pseudo-analytical solutions near the tip of the stability tongue
Previously, we solved the pseudo-analytical equation Eq (2.14) for one value of γ0 coming
from the experimental values. Now we solve Eq (2.14) for multiple γ0 and plot them as
functions of the eigenvalues ηm. Thus, we have a direct access to the eigenvalues of Eq (2.14)
to stabilize a natural unstable equilibrium. The first four curves are represented in Fig 2.25.
For our stabilization problem, the red curves in Fig 2.25 correspond to the value of TO we
need to use to stabilize the inverted pendulum (ω(0) fixed) for a giving electrical current
I . We can use these master curves to deduce the complete set of parameters to dynamical
stabilize any natural unstable system near the tip of the stability region using a periodic
square wave modulation.
For each value in the master curves presented in Fig 2.25 we have a corresponding eigen-
function. For each m-master curve the eigenfunction have the same shape, for example Fig
2.23 shows the modes for the first two intersections master curves.

We demonstrated that it exists a pseudo-analytical solution, Eq (2.14), to deduce the
value of the parameters to stabilize a natural unstable equilibrium near the tip of the stability

72



5. PSEUDO-ANALYTICAL SOLUTIONS AT THE TIP OF THE STABILITY TONGUE

1

2

3

4

𝜔(𝐼)𝑇!/2

𝜔
"
0
+
𝜔
" (
𝐼)
𝑇 #
/2

Figure 2.25: First four pseudo-analytical solutions in the (γ0, ηm) space. Red curves are the
master curves for every m-mode of the mth stability region. Dotted black lines represent the
solutions for the infinite potential.

regions (in our case the value of TO). Then with the eigenfunctions of these master curves
(Fig 2.25) we can have the qualitative behavior of the response which only depends on the
choice of the master curve.

5.3 Re-introducing the second time scale to the master curves

To obtain these master curves (Fig 2.25), we started form the hypothesis that at the tip of
the stability region the IVP can be studied as a BVP in a unit cell where the boundaries are
defined at ±∞. By doing this approximation we reduced our problem from four variables to
three variables. We re-introduce the time scale TD because in a real setup we can stabilize
the system far from the tip (Fig 2.13). Fig 2.26 shows that at a fixed value of TD the stability
region has a width. Because the master curves are calculated near the tip, the width is
practically inexistent. However, if we get away from this limit, the width of the regions
grows larger. For example, if TD = 25%T , Fig 2.13 shows that the size of this width is more
important compared to the one for TD = 75%T (green dotted lines in Fig 2.26). This width
can be important experimentally because being at lower value of TD means we have a larger
width of values TO to stabilize the system. So, we want to observe if the master curves are
still good indicators far the tip of the stability region.

To analyse the impact of TD in the master curves, we fix its value to two different per-
centages. For example TD = 25%T and TD = 70%T , that way we have two very different
widths. We translate the widths (green dotted lines in Fig 2.26) of the stability diagram into
the dimensionless space (γ0, η). The pseudo-analytical master curves with the corresponding
widths are represented in Fig 2.27.
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Figure 2.26: Stability diagram of the Meissner equation showcasing the first stability tongue.
Two dashed green lines at TD = 25%T and TD = 75%T show how the width of the stability
decreases as we get closer to the tip of the stability region.

Fig 2.27.a shows a thinner colored region than Fig 2.27.b which is expected because the
percentage of TD is larger. Secondly, we observe that no matter the percentage used, the red
pseudo-analytical master curves are always at the middle of the stability regions. This shows
that the master curves can be used to dynamical stabilize a system for any value of TD, not
only at the tip of the stability region.
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Figure 2.27: First two master curves solution of Eq (2.14) in the (γ0, η) space with the
evolution of the width of the stability region for two different values of TD. For both cases
the red curves are at the middle of the regions. a) TD = 70%T has a more restricted area
converging to the red curves showing that the stabilization can be done for values of (γ0, η)
closer to the master curves. b) TD = 25%2π shows a wider region (dark blue) allowing more
values of (γ0, η) to have a stable solution.

So, the master curves defined in Eq (2.14) let us navigate all the stability tongues in a
simpler way. With these approach, instead of having a continuously diagram, we have a
discrete number of pseudo-analytical curves to deduce the parameters to stabilize a system

74



6. EXPERIMENTAL VALIDATION OF THE MASTER CURVES: SYNCHRONIZED DYNAMICAL
STABILIZATION

for any value of TD. They can be a new powerful tool to explore dynamic stabilization
with frequencies of modulations closer to the natural time scale of the system, giving an
alternative to the Kapitza approach.

6 Experimental validation of the master curves: synchro-
nized dynamical stabilization

We want to observe if the theoretical master curves defined in Eq (2.14) and presented in
Fig 2.27 can be used to dynamical stabilize a macroscopic system. To do so we use our peri-
odically oscillatory-divergent experimental system: the electromagnetic inverted pendulum
presented in Fig 2.8 and defined by the linear model

d2θ(t)
dt2

− ω2(0) sin θ(t) = 0 during TD,

d2θ(t)
dt2

+ ω2(I) sin θ(t) = 0 during TO.
(2.16)

Without the master curves, the largest value of TD we achieved was TD = 40%T and we
had a period of modulation of the same order of magnitude as the natural time scale of the
system. This is already an achievement, however with the master curves we hope to achieve
higher percentages.

During the numerical analysis we defined the dimensionless parameters (γ0, η) as func-
tion of our experimental parameters (ω(I), ω(0) and TO) (Eq (2.15)). The relation is :

γ0 = TO
2
√

(ω(0)2 + ω(I)2, η = TO
2 ω(I). (2.17)

The experimental protocol to validate the master curves is the following: we fix the value
of TD to a given percentage of the experimental period T . By doing so we can use Fig 2.27
to have the master curves with the corresponding width of the stability for this percentage
of TD. Finally, we fix the value of the electrical current I . Having a fixed framework, we
can select a couple (γ0, η) belonging to the master curves or to the coloured stability region.
Having this couple, we use Eq (2.17) to deduce the value of the period TO to have an exper-
imental stable response (the value of ω(0) is fixed with the geometry of the system). Once
the value of TO is deduced, the value of TD is calculated according to the selected percentage
we wanted it to have in the modulation period T .
With the characterization of the system presented in Fig 2.11, we know that the minimum
electrical current to stabilize the system is I = 0.39A. Also due to the specification of our
electromagnet, the maximum voltage to avoid damages is 12V. So, we know that the maxi-
mum electrical current we should use for long recordings of a response is I = 0.55A. This
provides us with a maximum and a minimum electrical current. For the recording of the mo-
tion of the marble, our system has a natural diverging time equal to T0 = 2π/ω0 ≈ 0.57s, so
we use 150 frames per second i.e one image every 0.007 s to capture it. The post processing
is the same one we previously used. Finally, to assure the system is stable, each experimental
response is recorded during one minute, so we will record at least 200 periods for each ex-
perimental response, which we consider sufficient to confirm the stabilization of the system.
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6.1 Experimental stabilization at TD = 25%T
The goal is to stabilize the system for the largest possible value of TD because we will be
able to have a frequency of modulations closer to the time scale of the system and explore a
stabilization approach different from the one presented by Kapitza.

Before doing a high percentage of TD in the period T , we want to validate the master
curves of Eq (2.14) for a relatively small percentage. With a small percentage, there is a
wider value of TO to stabilize the system (Fig 2.27). We choose to have TD = 25%T . Then,
we choose to work with the minimum possible value of I , but still having an oscillatory
system during TO. In our case we fix I = 0.40A. Finally we use the master curves in Fig
2.27.b and take multiple values of (γ0, η) and deduce the corresponding period TO. The
experimental results for multiple (γ0, η) are presented in Fig 2.28.
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Figure 2.28: Experimental validation of the use of the master curves to stabilize a system for
TD = 25%T . a) First two master curves with the corresponding width of the stability region
in dark blue. White squares represent the experimental stable points. b) Two experimental
responses enumerated 1 and 2 in the diagram. Point 1 is in the first stability region and the
experimental parameters are I = 0.40 A, TO = 105 ms and TD = 35 ms. In the inset we
observe the response has the shape of the mode 1. Point 2 is in the second stability region
and the experimental parameters are I = 0.40A, TO = 309 ms and TD = 155 ms. The inset
shows the response has the shape of the mode 2.

White squares in Fig 2.28.a demonstrate that we can stabilize a naturally unstable sys-
tem using the theoretical master curves. We also observe that the (γ0, η) chosen in the blue
stability region give us a stable solution (Fig 2.28.a). We have obtained a general dimension-
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less space to study the stabilization of a dynamical system. Furthermore, the experimental
responses (Fig 2.28.b) show that when we are in the first or second stability region the shape
of the response changes. As we can see in the top zoom of Fig 2.28.b the point 1 the stable
response during the oscillatory state (pale red background) does one oscillation, characteris-
tic of the mode appearing at the first stability region (see Fig 2.20.a). In the bottom zoom,
the response numbered 2 which is placed in the second stability region does two oscillations
during the oscillatory state (pale red background), characteristic of the mode appearing in
the second stability region (see Fig 2.20.b).

These multiple experimental points prove that our theoretical study for deducing the pa-
rameters to stabilize an initial value problem with a boundary value problem in a unit cell (Eq
(2.14)) is valid. Also, we can use it to experimentally explore beyond the first stability region
(Fig 2.28). Finally for the top experimental response in Fig 2.28.b the period of modulation
is T = 0.14s and for the bottom experimental response in Fig 2.28.b the period of modula-
tion is T = 0.47s. The natural period of the system is T0 = 0.57s. So, we observe that for
both experimental results we are modulating close to the natural time scale of the inverted
pendulum, we are no longer on the Kapitza approach. We can stabilize a natural unstable
system exploring a new approach. We are conducting a synchronized dynamic stabilization.

6.2 Experimental stabilization at TD = 70%T
We now choose TD = 70%T . A larger percentage means the width of the stability region
is going to be smaller and the values of (γ0, η) will be limited and closer to the red master
curves (Fig 2.27.a). This means that it will be more difficult to stabilize the experimental
system. Most of the the values of (γ0, η) with I ≈ 0.40 are no longer in the light blue stable
region: for a higher percentage of TD we need a stronger electric current. Indeed, if TD gets
larger it means the system has more time to diverge (fall down) and in order to bring it back
up we need a stronger electromagnetic field and thus a higher value of the electrical current
I (Fig 2.11).

We follow the same protocol described previously for the case TD = 25%T . The only
difference is that for this experimental study we use I = 0.55 A (the maximum experimental
value for I). The different values of (γ0, η) experimentally observed are shown in Fig 2.29.
White squares represent stable responses and black crosses represent unstable responses.
The values of (γ0, η) over the red curve as well from the stability region (light blue) do sta-
bilize the system (white squares in Fig 2.29.a). However, when we step out of the region
the inverted pendulum falls down, the system is no longer stabilized (black crosses in Fig
2.29.a.) We observe a perfect agreement between the experiments and the theoretical stabil-
ity regions.

Figure 2.29 b) presents two different experimental stabilization showing we can stabilize
the system using a large percentage of TD. We also observe the response does one oscilla-
tion, characteristic of the mode appearing in the first stability region as observed in Fig 2.20.
For the top experimental response in Fig 2.29.b the period of modulation is T = 0.12s and
for the bottom experimental response in Fig 2.29.b the period of modulation is T = 0.15s.
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Figure 2.29: First two theoretical master curves of Eq (2.14) with the light blue region
corresponding to the stability region accepted for TD = 70%2π. White squares are the
experimental stable responses for TD = 70%T . Black crosses are the chosen (γ0, η) outside
of the region and in fact do not stabilize the system. b) Two experimental stable responses
enumerated 1 and 2 in the diagram. Point 1 has the experimental parameters I = 0.55A, TO
= 36 ms and TD = 85ms. Inset shows the response has the shape of the mode 1. Point 2:
experimental parameters I = 0.55A, TO = 45 ms and TD = 106 ms. Inset shows a mode 1
shape.

The natural period of the system is T0 = 0.57s, so we show again that we are using periods of
modulation of the same order as the natural time scale of the system. Showing once more and
proving that with this new approach we are stabilizing no longer using the Kapitza approach.
We can stabilize a natural unstable system doing a synchronized dynamic stabilization.

Finally we observed that the experimental point in the second stability region in Fig
2.28.a had the period of modulation closest to the natural time scale of the system and this
particular point is the highest point studied in the master curves. Showing us that to have
a period of modulation closest to the natural time scale of the system you do not only need
large values of TD but you also need large values of γ0. Experimentally, TD = 70%T is the
maximum percentage we were able to achieve to dynamical stabilize the system and these
experimental points are the highest we could achieve to go in the master curves. This means
we are letting the system stay a longer time per period in its natural state and sending an
“impulse" of electrical energy during 30% of each period. Without the master curves for
an electrical current of I = 0.48A we achieved a maximum stabilization for TD = 40%T
and this gives an electrical energy spend of Eelec = 3.2 W.h. With the master curves we
used a higher electrical current I = 0.55A but we achieved a maximum stabilization for
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TD = 70%T and this gives an electrical energy spend of Eelec = 2.1 W.h.

So, using these discrete number of pseudo-analytical master curves defined in Eq (2.14)
does not only let us deduce the experimental values of TO to stabilize the system while having
TD the highest possible, it also let us stabilize the system with a period of modulation closer
to the natural time scale of the system and the stabilization is more energy efficient. In Fig
2.28 and Fig 2.29 we presented the maximum values we could reach in the dimensionless
space (γ0, η). We are limited by the electrical current we can use and by the geometry of
the system. We believe that with another setup build to explore these master curves it can
be possible to go at higher percentages of TD and reach larger values in the master curves at
the macroscopic scale. As a result, we will be able to improve the shape of the experimental
responses, having better exponentials during TD and cleaner oscillations during TO. But also,
explore new responses with this approach of synchronized dynamic stabilization, which now
is an alternative to the fast frequency approach.
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3| Conclusions & perspectives

In this thesis, to obtain new physical insights on parametric instabilities we conducted an
experimental and theoretical study. The first studied aspect of parametric instabilities was
their use as parametric amplifiers. This involved understanding the current macroscopic
limitations making us to use them only at the tip of the instability tongues. We then devel-
oped and validated a new concept to experimentally trigger high order parametric resonance
and to fully control them using an original geometric relation. The second aspect of the
investigation dealt with the dynamical stabilization of a system using parametric pumping.
An experimental proof of concept coupled with numerical simulations and a physical com-
prehension of the core of the phenomenon lead to the development of a pseudo-analytical
approach to dynamically stabilize a naturally unstable equilibrium. With this approach, the
periods of modulations can be close to the natural time scale of the system, proposing an
alternative to the current Kapitza’s approach.

Parametric resonance
In the first part of the thesis, a new concept to control parametric instabilities at the macro-
scopic scale is presented. The proposed concept is to have a system where its natural time
scale can be strongly varied in a simple manner and without modifying the geometry. To
achieve this, the component providing the modulation must be symmetrically placed outside
of the main mechanical setup whose responses will be amplified.
The system used as a proof of concept is an electromagnetic pendulum (Fig 3.1.a). The natu-
ral frequency of the pendulum can be drastically changed by the electromagnetic field which
is controlled by the electrical current I and its evolution is characterized by the scalar ω(I)
(Fig 3.1.b). With this control parameter I , it is even possible to have a diverging response
after a critical value Ic, physically meaning the system is on a potential with a negative cur-
vature (red curves in Fig 3.1.b).

By periodically modulating the electrical current I with a T -periodic square wave modu-
lation function, it has been possible to trigger and observe high order parametric resonances
(green crosses in Fig 3.2). Rationalizing the physical responses of this parametric oscillator
led us to predict the location of the instabilities tongues in the modulation space (grey dots
in Fig 3.2). We are no longer at the tip of the classic regions (inset in Fig 3.2), we can now
explore large periods and high amplitudes of modulations. In particular it is interesting to
highlight that we were able to trigger the 36th instability region at the macroscopic scale. An
achievement since, to our knowledge, the record was the 28th region observed in a MEMS in
2016 [73].
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Figure 3.1: Proof of concept to better control parametric instabilities. a) Electromagnetic
pendulum: a metallic marble is symmetrically placed in the middle of two attracting electro-
magnets controlled by the electrical current I and modulated by a T -periodic square wave
function. b) Sketch of the evolution of the curvature of the potential energy Ep of the linear
pendulum characterized by the scalar ω(I). Black line is the natural state (I = 0). Blue lines
are oscillating responses (I < Ic) and red lines are diverging responses (I > Ic).

Lastly, the idea of sending an “impulse" train instead of sending the classical square wave
modulation was analyzed. This type of modulation can be relevant because the response
of the system will be triggered using less amount of energy than a traditional modulation.
Using our experimental system in Fig 3.1.a we were able to observe the outcome of this type
of signal. With the experimental ‘impulse" train we were able to enhance the amplitude of
oscillations of the electromagnetic pendulum and once at the permanent regime the system
enters a limit cycle where the frequency of oscillation corresponds to the natural frequency
of the pendulum. We were able to trigger a “natural oscillation" using parametric instabilities
and using a low amount of electrical energy.
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Extreme instability regions

Classical instability regions

Figure 3.2: Beyond the tip of the parametric instability tongues. Stability diagram of the
Meissner equation showing the evolution of the maximum value of the real part of the Floquet
exponent up to 2.3 in the extremely extended (α2,β2) space. Gray dots (m,n) represent a new
discrete geometrical relation to be at each instability pocket. Inset zooms on the classic first
instability regions. Green crosses represent the instability regions reached experimentally.

Dynamical stabilization

In the second chapter of the thesis, we get new physical insights in dynamical stabiliza-
tion. Unlike parametric resonance, dynamical stabilization focuses on the stability regions
of the stability diagram. We revisit the concept presented by Kapitza where stabilization
can be achieved if the frequency of modulation is faster than the natural time scale of the
system[65]. This approach is limiting us to the bottom edge of the first stability region. An
experimental and numerical proof of concept is developed to show that it is possible to stabi-
lize a system with a driven frequency closer to the natural time scale of a naturally diverging
system developing the idea of synchronized dynamical stabilization.

An experimental setup was developed to understand and observe dynamical stabiliza-
tion. The system is a planar inverted pendulum with a metallic marble symmetrically placed
under an attracting electromagnet whose attracting force depends on the imposed electri-
cal current I (Fig 3.3.a). Same as before, the electromagnetic field is an efficient tool to
drastically modify the natural time scale of the perturbed response and is characterized with
the scalar ω(I). This time the increase of the electrical current tends to stabilize the ver-
tical unstable equilibrium and for a critical value Ic, the system changes to an oscillatory
state. Physically this can be interpreted as a change of the curvature of the potential energy
varying from a negative curvature (divergent) to a positive curvature (oscillatory) (Fig 3.3.b).
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Figure 3.3: Proof of concept to dynamically stabilize a system beyond the Kapitza approach.
a) Electromagnetic inverted pendulum: a metallic marble is symmetrically placed under
an attracting electromagnet controlled by the value of the electrical current I . b) Sketch
of the evolution of the curvature of the potential energy of the linear inverted pendulum
characterized by the scalar ω(I). Black line is the natural unstable state (I = 0). Red lines
are diverging responses (I < Ic and blue lines are oscillating responses (I > Ic).

By periodically modulating the electromagnetic pendulum with a (TD + TO)-periodic
square wave modulation function, it has been possible to stabilize a naturally unstable equi-
librium with a period of modulation close to the natural time scale of the system (Fig 3.4),
proving that a synchronized dynamic stabilization can be possible by spending more time in
the natural unstable state during TD and sending short periods of electrical energy during TO.
Figure 3.4 shows that this new approach is possible and does not limit us to the first stability
region since we achieved stabilization up to the fifth stability region.
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Figure 3.4: Experimental dynamical stabilization of a natural unstable system with frequen-
cies of modulation close to the time scale of the system and reaching beyond the first stability
region. Blue squares are experimental stable responses and white squares are experimental
unstable responses.
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By ways of a numerical study, we showed that to reach higher values of TD we can use
an analogy between initial and boundary value problems. With this approach we can develop
pseudo-analytical master curves to predict the parameters to dynamically stabilize a system
(Fig 3.4) and deduce the experimental values of TO at a fixed electrical current I to stabilize
the inverted pendulum for even higher values of TD (Fig 3.5). We achieved a stabilization of
TD = 70%T with a period of modulation of the same order as the natural time scale of the
system (T = 0.15s and T0 = 0.57s).
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Figure 3.5: Dimensionless pseudo-analytical master curves (in red) deduced by approximat-
ing the response of the system to a fundamental unit cell. Blue and white squares represent
stable and unstable experimental observations respectively. We achieved stabilization for
TD = 70%T with T the period of modulation.

Thus, we can now navigate the entirety of the stability regions in a simpler way. Instead
of having a continuous diagram, we have a discrete number of pseudo-analytical curves to
deduce the parameters to stabilize a system for any value of TD. They are a new powerful
tool to explore synchronized dynamical stabilization with frequencies of modulations closer
to the natural time scale of the system and decreases the energy consumption for stabilization.

Perspectives
We hope our work will bring some useful insights to further studies on the control of para-
metric instabilities. We believe the adaptability of the presented experiments and the wide
range of physical domains to which one can apply these ideas (any dynamical system with a
natural time scale which could be periodically varied) makes it a formidable tool not only for
research but for teaching too. In this section, we discuss a potential application for MEMS.
We open the discussion to different approaches to continue the study. We propose one ex-
perimental setup to explore the idea of a system with multiple degrees of freedom under
a periodic modulation. Then, we introduce an idea for an experimental setup to explore a
system with one degree of freedom capable to be under multiple shapes of the same periodic
modulation function.
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Possible MEMS application

Concerning parametric resonance, as mentioned previously in the manuscript, a very good
candidate to take advantage of our validated theory to control the instability regions are
MEMS. For systems like MEMS that are tiny membranes with enormous Q factors (be-
cause they operate in Ultra High Vacuum) and driven by periodic electrostatic fields, an
application of this particular parametric pumping could allow to efficiently generate highly
super-harmonic sinusoidal signals with extremely tunable fundamental frequencies. A first
experimental setup at the microscopic scale is developed by the team at the Laboratory for
Analysis and Architecture of Systems (LAAS-CNRS) in Toulouse (Fig 3.6). They are adapt-
ing our experimental approach to their system: they symmetrically positioned a MEMS be-
tween two plates creating an electrostatic field to enhance and control extreme parametric
modulations.

Figure 3.6: Photograph of a preliminary MEMS setup using a symmetric electrostatic fields
to enhance and control the response. Image credit: LAAS-CNRS, L.Nicu and F. Mathieu.

Multi-body system under parametric modulation

Our model and theoretical design rules (for either parametric resonance or dynamical stabi-
lization) were obtained for a system with one degree of freedom. We wonder if they are still
valid for a system with multiple degrees of freedom. To investigate it, we propose to place a
series of electromagnetic pendulums which metallic marbles are attached to the same beam
(Fig 3.7). By changing the geometry of the beam we can change the coupling between the
pendulums: the more flexible the beam the more coupled the pendulums will be.

With this setup, it could be interesting to study the transfer of information between pen-
dulums by varying the geometrical parameters (for instance the thickness of the beam) and
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Figure 3.7: Preliminary experimental setup to study parametric instabilities in a multi-body
system. Two electromagnetic pendulums coupled through a beam inside a black box for
recording their motion. They are painted with fluorescent light and illuminated with a violet
light.

thus observe the role of the coupling on the responses. If we send the same periodic mod-
ulation to the pendulums, do we trigger the expected instability mode? Do they enter the
expected limit cycle? If they do, do they reach it at the same time? What is the impact of
the number of pendulums for the previous questions? Lastly this system could be adapted
to study the dynamical stabilization of a multi-body systems by exchanging the pendulums
with inverted pendulums.

Finally, if we have multiple coupled pendulums and send a random signal, to be sure
they are not in phase lock, could the pendulums exchange information to adapt their motions
and enter a particular state? If they do enter a given particular state, could this system be
use to observe the particular behaviour of a Floquet time crystal in a macroscopic system
[50, 99, 100]? Of course, the coupled pendulums had an energy input to trigger the response,
but at one point if they enter this “organized" state and the electromagnets are turned OFF,
they could be in a state that has a motion “without energy". Could they be seen as masses
arranged periodically in both space and time? We think this would be an exciting approach
to take for the study of a multi-body system under a periodical modulation function.

Multi-shaped modulation function

With our study, we were able to control and observe the shape of the response for one modu-
lation function. However, we do not know what happens if we send a T1-periodic modulation
function followed by a T2-periodic modulation function. Will the total response be the sum
of the two modes corresponding to each modulation function or will a new response appear?
We propose an experimental concept to explore this new question. The system is a metallic
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marble symmetrically placed between a Helmholtz coil which is powered by two generators
connected to a control card (Fig 3.8). With the control card we can send different periodic
modulations functions at once and the multiple generators provide different intensities, i.e
different thresholds, for the modulation functions. Finally, the Helmholtz coil will provide
the possibility to use an attracting or repulsing electromagnetic field on the metallic marble.

LEDControl card Metallic marble Helmholtz coil Generators

Figure 3.8: Preliminary experimental setup to study a one degree of freedom system under
multiple shapes of the same modulation function. The system is a metallic marble symmet-
rically placed between a Helmholtz coil connected to a control card capable to send different
periods of modulations functions. The multiple generators are used to have different intensi-
ties to be able to have different thresholds on the multiple modulations functions.

This system can still be seen as a mass trapped in a potential, only this time there are var-
ious potentials. The pseudo-analytical master curves we deduced to obtain the parameters
to stabilize a natural unstable equilibrium came from an analogy with a quantum mechanics
problem. We propose a similar approach to obtain the solution of this new problem, this
time using the concept of quantum superposition. Quantum superposition is a property that
affirms that quantum states can be added (“superposed") and the result will be another valid
quantum state. For the problem of a particle trapped in a potential, the quantum states are the
eigenfunctions solution of the stationary Schrödinger equation. At the macroscopic scale,
these eigenfunctions could represent a corresponding mode for this new system. If we add
two or more different T -periodic square waves modulations, could the response be the sum
of the corresponding eigenfunctions? Could we deduce the response of the system directly
using this property instead of having to solve them numerically?

There have been various quantum analogs observed at the macroscopic scale. For ex-
ample the use of the quantum harmonic oscillator at the macroscopic scale [101], similar
observation of the phenomenon of quantum tunneling [102], the phenomenon of interference
[44, 103] and the quantization of classical orbits [43]. We wonder if this new experimental
setup could add quantum superposition to this list.
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