
HAL Id: tel-03889593
https://theses.hal.science/tel-03889593

Submitted on 8 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Numerical Simulation of Scour Erosion Around An
Obstacle
Wei Zhang

To cite this version:
Wei Zhang. 3D Numerical Simulation of Scour Erosion Around An Obstacle. Fluids mechanics
[physics.class-ph]. Université Paris-Est, 2019. English. �NNT : 2019PESC2092�. �tel-03889593�

https://theses.hal.science/tel-03889593
https://hal.archives-ouvertes.fr


                                                                                   

 

École Doctorale SIE 

Laboratoire d’Hydraulique Saint-Venant 

 

Thèse 

 Présentée pour l’obtention du grade de DOCTEUR  

DE L’UNIVERSITE PARIS-EST 

par 

ZHANG Wei 

 

3D Numerical Simulation of Scour Erosion 

Around an Obstacle 

Spécialité : Mécanique des fluides 

 

 

Soutenue le 13 Septembre 2019 devant le jury composé de: 

GUILLOU Sylvain         Université de Caen Normandie Rapporteur 

THUAL Olivier        INP - Université de Toulouse Rapporteur 

GONDRET Philippe  FAST - Université Paris-Sud  Examinateur 

CHEVALIER Christophe IFSTTAR - Ecole des ponts ParisTech Examinateur 

PHAM-VAN-BANG Damien INRS – Université du Québec Directeur de thèse 

NGUYEN Kim Dan Laboratoire d’Hydraulique Saint-Venant Co-Directeur de thèse 

Uh ZAPATA Miguel Centro de Investigación en Matemáticas Co-encadrant 

 



ii 

 

 

 

       

Thèse effectuée au sein du Laboratoire d’Hydraulique Saint-Venant 

De l’Université Paris-Est 

6, quai Watier 

BP 49 

78401 Chatou cedex 

France 

 

 

 

Financements: CSC (China Scholarship Council) 

                         ENPC (École des Ponts ParisTech)



i 

 

 

Acknowledgements 

 

I would like to express my sincere appreciation to my supervisors Prof. Damien PHAM-

VAN-BANG, Dr. Xin BAI, Prof. Kim Dan NGUYEN and Dr. Miguel UH ZAPATA for their 

continuous guidance, advice, support and last but not the least, their transfer of knowledge.  

 

I would like to thank China Scholarship Council (CSC) and Ecole des Ponts ParisTech, 

which gave me this very great opportunity for the PhD study in France and gave me the 

scholarship during three years. Special thanks go to the administration and supporting staffs 

who have provided continuous maintenance and update on the high performance computers 

at Électricité de France Recherche & Dévelopment (EDF R&D).  

 

I also thank all my colleagues, friends and staff from Saint-Venant Hydraulics Laboratory, 

in particular Adrien BOURGOIN, Athanasios MOKOS, Camille JOURDAIN, Daniel 

MILANO, Dena KAZERANI, Florian CORDIER, Konstantin KUZNETSOV, Marissa 

YATES, Marina OUKACINE, Minh Hoang LE, Pablo TASSI, Roberto FRAU, Steven 

ALLSOP, Sofiane MARTEL, Thomas FONTY, and Vincent VIDAL for their assistance and 

good moment, especially at the café corner.  

 

I also thank the interns involved in this topic, Qinjun FU, for the discussions and help in 

direct numerical simulations of channel flow; and Jonathan BRANS, for the report of 

numerical modelling of 2D flow around an obstacle. 

  

Finally, I am thankful to my entire family, for their sacrifice, continuous support and 

understanding during the course of this study. 



ii 

 

  



iii 

 

 

Abstract 

The foundations of offshore wind turbines and bridge piers impact the surrounding flow 

and the sediment transport around the obstacles. This will then cause structural instability. To 

better understand this phenomenon, this work is built on a newly developed code (NSMP3D) 

using an unstructured finite volume method (UFVM) to simulate the flow and the scour 

process around a circular cylinder. A sigma-coordinate system is employed in order to obtain 

an accurate representation of the evolution of the free surface or of the interface between 

fluid and sediment. To avoid the checkerboard problem caused by collocated grid, a 

momentum interpolation scheme is used by introducing face-normal velocities at the mid-

points of cell faces. Required by Large Eddy Simulation (LES), a central scheme combined 

with semi-implicit Adams-Bashforth scheme are proposed in this model to get second-order 

accuracy in time and in space. A pressure-correction projection method is employed to 

decouple the velocity and pressure fields.  

First, this work validates second-order accuracy, numerical stability and computational 

efficiency and capacity of the numerical model using several benchmark test cases. The 

proposed model has been used for simulating 3D turbulent open-channel flows, 2D and 3D 

lid-cavity flows, standing wave in a closed basin, and 3D turbulent flows around a vertical 

cylinder. The proposed model is able to correctly reproduce the characteristic flow features in 

all test cases. Second, simulation of channel flow driven by suspended sediment is conducted 

to study the interaction of sediments and turbulence. With the increase of the settling velocity, 

flow turbulence is less able to keep the sediments in suspension, and the flow in the channel 

tends towards the laminar solution. Finally, large eddy simulations of flows around a vertical 

cylinder for free-slip bed, rigid bed and live bed cases are carried out. Bed erosion is 

simulated by solving the sediment continuity equation using a mass-conservative sand-slide 

algorithm and a bedload transport rate, which is based on a description of physical processes 

(Engelund & Fredsøe, 1976). The mean velocity profile and shear stress validate the accuracy 

of this model. Horseshoe vortex and lee-wake vortex shedding structure are simulated and 

compared with reference. The formation and the temporal development of the scour hole and 

other topographic bed features are successfully reproduced. 

 

Keywords: Large Eddy Simulation (LES), Turbulent flow, free surface flow, local scour  
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Résumé 

Les fondations des éoliennes en mer et des piliers de pont ont un impact sur l’écoulement 

environnant et le transport des sédiments autour des obstacles, ceci entraîne une instabilité 

structurelle. Pour mieux comprendre ce phénomène, ce travail présente un code nouvellement 

développé (NSMP3D) utilisant la méthode des volumes finis non structurés (UFVM) pour 

simuler l'écoulement et le processus d'affouillement autour d'un cylindre circulaire. Un 

système de coordonnées sigma est utilisé afin d'obtenir une représentation précise de 

l'évolution de la surface libre ou de l'interface entre le fluide et le sédiment. Pour éviter le 

problème de damier causé par une grille co-localisée, un schéma d'interpolation de moment 

est utilisé en introduisant des vitesses normales au niveau des points centraux des faces des 

cellules. Nécessaire par la Simulation des grandes échelles (SGE), un schéma centré combiné 

à un schéma semi-implicite Adams-Bashforth est proposé dans ce modèle pour obtenir une 

précision de second ordre en temps et en espace. La méthode de projection avec correction de 

pression est utilisée pour découpler les champs de vitesse et de pression. 

Premièrement, ce travail valide l'exactitude du second ordre, la stabilité numérique, 

l'efficacité et la capacité de calcul du modèle numérique à l'aide de plusieurs cas de tests de 

référence. Le modèle proposé a été utilisé pour simuler des écoulements 3D à canaux ouverts 

turbulents, des écoulements 2D et 3D à cavités de couvercles, des ondes stationnaires dans un 

bassin fermé et des écoulements 3D turbulents autour d'un cylindre vertical. Le modèle 

proposé est capable de reproduire correctement les caractéristiques de l’écoulement pour tous 

les cas de test. Deuxièmement, une simulation du débit du chenal entraîné par les sédiments 

en suspension est réalisée pour étudier l'interaction des sédiments et de la turbulence. Avec 

l'augmentation de la vitesse de sédimentation, la turbulence de l'écoulement est moins en 

mesure de maintenir les sédiments en suspension et l'écoulement dans le canal tend vers la 

solution laminaire. Enfin, de grandes simulations d'écoulement tourbillonnaire autour d'un 

cylindre vertical sont respectivement effectuées pour les caisses à lit libre, à lit rigide et à lit 

vivant. L'érosion du lit est simulée en résolvant l'équation de la continuité des sédiments en 

utilisant un algorithme de glissement de sable conservateur de la masse et un taux de 

transport de charge du lit basé sur une description des processus physiques (Engelund & 

Fredsøe, 1976). Le profil de vitesse moyen et la contrainte de cisaillement valident la 

précision de ce modèle. La structure de délestage de vortex en fer à cheval et de vortex lee-

wake sont simulées et comparées à la référence. La formation et le développement temporel 
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du trou de lavage et des autres caractéristiques du lit topographique sont reproduits avec 

succès. 

 

Mots-clés: Simulation des Grandes échelles (SGE), Écoulement turbulent, écoulement à 

surface libre, affouillement local 
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Introduction 

1.1. Motivations and Objectives 

In recent years, the world has become increasingly aware that renewable energy and 

energy efficiency are not only the key for addressing climate change, but also for creating 

new opportunities for economic development and helping billions of people without modern 

energy services. At the same time, the technology of extracting renewable energy from 

natural environment becomes popular. Modern renewable energy technology dates back to 

the late 20th century and is estimated to provide 10.4% of global total final energy 

consumption as of 2016. REN21 (2018) reported that the current European target is to 

provide 20% of the Europe's energy from renewable sources by 2020, among which, France 

was given a target to meet 23% of the energy demand from renewable sources. An estimated 

17 countries generated more than 90% of their electricity with renewable sources in 2017. 

Extracting energy from the marine environment is possible using following several 

methods: one can extract wave energy, tidal energy (both marine and fluvial) or extract the 

kinetic energy from the wind using offshore wind turbines. Among these methods,  

1) Extraction of wind energy is one of the most efficient and inexpensive technologies. 

By 2017, there are 15.8 GW of installed offshore wind power capacity in the Europe. Wind 

energy now accounts for 18% of Europe’s total installed power generation capacity (EWEA, 

2017).  

2) Tidal energy is highly predictable and this advantage gives tidal energy development 

an important potential for further electricity generation (Bahaj and Myers, 2003; Watchorn 

and Trapp, 2000). World energy council (2016) reported three tidal stream commercial 

projects accounting for 17 MW of the capacity, two are in Scotland and one in France.  



 2                                                                                                           Chapter 1  Introduction 

 

 

The horizontal axis turbine and the cross axis turbine are the main types of marine current 

and offshore wind convertors. The former is of the propeller type with a horizontal axis, 

which is more reliable in predictable flows and usually more suitable for installation in 

shallow waters (20-30m water depth). Figure 1.1 shows the horizontal axial turbines in the 

SeaGen project in Northern Ireland in July, 2008. The cross axis turbines are of Darrieus type 

with a vertical axis which can operate in either direction and in both shallow and deep waters 

(greater than 50m depth). Both the horizontal and cross axis turbines have a significant 

anchorage in the seabed. Figure 1.2 shows a typical offshore wind turbine with the lower 6m 

of total 25m high structure slides over the top of the monopole. A J-tube is inserted to insure 

the scour security in the upstream side of the piles.  

 

Figure 1.1: SeaGen (world’s first commercial-scale tidal turbine commissioned in 

Northern Ireland’s Strangford Lough in July 2008, from Marine Current Turbines Ltd. 
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Figure 1.2: Overview of the offshore wind turbine terminology, from Hoeksema (2014). 

The foundations of the offshore turbines have impacts on the surrounding 

morphodynamic flow and on the sediment transport around the pile which may cause 

structural instability. This impact has been recognized as an engineering issue. In order to 

avoid this phenomenon, some solutions adopted by engineers such as increasing the depth of 

the foundations or the pile’s diameter (Matutano et al., 2013). However, these solutions are 

not economic.  

To date, no clear information exists on the mechanisms causing the edge scour 

development around scour protections at offshore wind turbine foundations. More generally, 

the scour phenomenon encountered around marine current turbines piles and offshore wind 

turbines piles is similar to the one observed around the bridge piers in rivers, such as the 

collapse of the Wilson bridge in 1978 (see Figure 1.3). Bridge scour is one of the three main 

causes of bridge failure (the others being collision and overloading). It has been estimated 

that 60% of all bridge failures result from scour and other hydraulic-related causes (Huber, 

1991). It is the most common cause of highway bridge failure in the United States, where 46 

of 86 major bridge failures resulted from scour near piers from 1961 to 1976 (Levy & 

Salvadori, 2002). 
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Thus, an improvement in the scour understanding and predictions will bring advances in 

the design of fluvial or estuarine civil engineering (Sumer, 2014). Moreover, an accurate and 

efficient model, capable to solve the three-dimensional turbulent flow for localized 

engineering applications, is in great need. 

 

Figure 1.3:  An example of a bridge collapse due to scour erosion at the foundations: 

Loire River, Tours, 1978. 

Based on this background, this PhD thesis work is part of Soils, Structures and Hydraulics: 

Expertise and Applied Research (SSHEAR) project funded by the ANR, which is an agency 

intended to focus research projects on the economic and societal priorities fixed by the 

government. The agency funds the project and allows partnerships between different national 

or international organizations. For the SSHEAR project, the partners are the French Institute 

of Science and Technology for Transport, Spatial and networks (IFSTTAR), the laboratory 

FAST (CNRS), the French National Railways Company (SNCF), Cofiroute (a Vinci Group 

subsidiary), the Technology Research Institute (IRT Railenium) and the CEREMA. The 

project aims to improve our knowledge and practices on scour erosion at the foundation of 

transport structures. 

1.2. Methodologies of the study 

In this work, a numerical code called Navier-Stokes Multi-Phase three-Dimensional 

(NSMP3D) was used to study the 3D phenomenon of local scour of sediment transport, 

which was newly developed at Saint-Venant Hydraulics Laboratory (LHSV). This code is 

written in Fortran90 and it is built on the successes of the 2D code (Chauchat et al, 2013; Uh 
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Zapata et al., 2018). It solves the Navier-Stokes equations on a collocated grid and combines 

the finite volume method with the sigma-transformation method. It is written in sequential or 

in parallel with the MPI library that can run on the multiple processors such as high 

performance computer (EDF Athos, Intel Xeon E 22000 CPUs).  

The interest to develop this code can be explained by different reasons:  

1) It is preferable to work on an open source code for facilities and economic reasons. 

2) Few models gather the method of unstructured FVM and the sigma-transformation, 

which allows to work on free surface flow or flow over mobile bed with complex geometry.  

3) A two-dimensional model is not sufficient to capture the phenomenon responsible for 

scour erosion. The long computation necessity has restricted the development of three-

dimensional code, but now, both the computing power and the turbulence modelling led to 

reduce the computational time and enable the development of such a new model.  

1.3. State of art 

This part aims to describe the basic principles and different modes of sediment transport 

around an obstacle and the previous research of the phenomenon of scour erosion around an 

obstacle. 

1.3.1. Flow around a vertical cylinder on the flat bed 

The flow pattern will change when it encounters a solid object such as an offshore wind 

turbine pile or a bridge pier. There will be a three-dimensional flow separation in front of the 

pier, mainly due to the strong adverse pressure gradient induced by the structures presence. 

This flow separation generates streamlines contraction on each side of the object, leading to 

flow acceleration around the solid body. A boundary layer at the solid structure forms and the 

lee-wake vortices (usually under vortex-shedding form) are generated in the structure wake. 

In front of the pile, a plunging flow impacts the sediment bed similar to a jet, generating the 

formation of a horseshoe vortex (HV) near the bed. Figure 1.4 attempts to represent the flow 

pattern occurring when a flow encounters an obstacle, which is characterized by Roulund et 

al. (2005):  

1) Horseshoe vortices in front of the pile;  
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2) Vortex shedding in the separation zone and wake flow downstream of the pipe;  

3) Water surface roller and down in front of the pile.  

These characters will be discussed as following subsections. 

 

Figure 1.4: Flow pattern and scour near a vertical pile, from Roulund et al. (2005). 

1.3.1.1. Oscillating Horseshoe vortex (HV) upstream of a cylinder 

Different regimes can be observed upstream of the cylinder depending on the cylinder 

Reynolds number:  

ReD

u D


 ,                                                       (1.1) 

where D is the cylinder diameter, u∞ is the far-field free-stream velocity , ρ is the fluid density 

and μ is the dynamic viscosity of the fluid. Baker (1979) is one of the first to investigate 

experimentally three-dimensionality of the formation of vortex around an obstacle in order to 

explain the erosion that occurs around the base of a cylinder. He firstly identified three steady 

system composed of 2, 4 and 6 vortices (Figure 1.5) according to the Reynolds number and 

the boundary layer thickness. The horseshoe vortex exists at the minimum achievable 

Reynolds number at 1000. With the increase of ReD and δ, the number of the horseshoe 

vortex increases and the appearance of a chaotic system shows from a regular oscillatory 

motion to an unsteady irregular behavior.  
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Figure 1.5: Variation in laminar horseshoe vortex number, δ is the boundary layer 

thickness, from Baker (1979). 

Baker (1979) also realized the unsteady phenomenon of vortex shedding formed when the 

flow encounters a cylinder. He studied the oscillation of a laminar horseshoe vortex system, 

classifying them into two types: a) the oscillation due to an oscillation of the entire separated 

flow system upstream, and b) the oscillation due to an oscillation of the vortex core of the 

primary vortex. These hypotheses were used to identify the frequency of the different 

oscillation and the parameters to which the frequency was sensitive. Launay (2016) showed 

that the characteristics of the HV system only depend on three non-dimensional parameters: 

Reynolds number, the confinement rate of the boundary layer (h/δ), and the ratio of the wet 

part of the upstream face of the obstacle (W/h). The oscillation of the horseshoe vortex 

system at the configuration: ReD =4271, h/δ=2.70, W/h=0.79 was in shown Figure 1.6a while 

W/h=1.23 in Figure 1.6b. Four vortex cores are shown in the mean velocity field with colored 

streamlines representing the magnitude of the velocity, where blue is for vortex centers, red 

for counter-rotating vortex centers and yellow for saddle points. The green line represents the 

cut of the disengagement surface in the plane of symmetry. The HV system is oscillating, but 

the number of HV system remains the same and the vortex centers remain on the pseudo-

shear layer, starting at the point of detachment and ending at the position of the main vortex 

V1. The areas of the saddle points show the same characteristics as the vortex centers, 

showing that this oscillating movement is well observed by the entire structure of the HV 

system. The movement of the critical points in Figure 1.6c shows a regular back and forth of 

the main vortex V1 upstream.  
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Figure 1.6: Mean velocity field in the vertical plane of symmetry: (a) a steady state 

configuration, (b) an oscillating regime configuration, (c) The evolution of the position of the 

critical points for case (b), from Launay (2016). 

1.3.1.2. Vortex shedding in the near wake downstream of a cylinder 

The unsteady phenomenon of vortex shedding formed can also be observed downstream 

of the cylinder. The periodic vortex detachment behind the obstacle, alternating each side, 

creates a vortex path called the von Kármán vortex street. Williamson (1989) realizes a 

synopsis of the different data known at that time on the formation of vortices downstream of 

a cylinder on a flat bed. Different regimes can be observed downstream of the cylinder 

depending on the Reynolds number as Figure 1.7. 

(a)  

No separation 

Creeping flow 
ReD < 5 

(b)  

A fixed pair of 

symmetric vortices 
5 < ReD < 40 

(c) 

 

Laminar 

vortex 

street 

40 < ReD < 200 

V1 V2 

Vc1 



Chapter 1 Introduction                                                                                                             9 

 

 

(d) 

 

Transition 

to turbulence 

in the wake 

200 < ReD < 300 

(e) 

 

Wake completely 

turbulent. 

A: Laminar boundary layer 

separation 

300 < ReD < 3×105 

Subcritical 

(f) 

 

A: Laminar boundary layer 

     separation 

B: Turbulent boundary 

     layer separation; the 

     boundary layer partly  

     laminar partly turbulent 

3×105 < ReD < 3.5×105 

Critical(Lower transition) 

(g) 

 

B: Turbulent boundary  

     layer separation; the  

     boundary layer partly  

     laminar partly turbulent 

3.5×105 < ReD < 1.5×106 

Supercritical 

(h) 

 

C: Boundary layer 

     completely turbulent at 

     one side 

1.5×106 < ReD < 4×106 

Upper transition 

(i) 

 

C: Boundary layer   

     completely turbulent at  

     two sides 

ReD > 4×106 

Transcritical 

Figure 1.7: Flow regimes around a smooth circular cylinder, depending on the number of 

Reynolds, from Sumer and Fredsøe (1997). 

The vortex alternately detaches from either side of the symmetry plane. Thus, we can 

determine a vortex frequency (f) changing as a function of Reynolds number. The Strouhal 

number allows us to normalize this frequency with the flow velocity and the cylinder 

diameter given as below:  

fu
St

D

 .                                                        (1.2) 

The change in pressure around the cylinder is characterized by the pressure coefficient Cp 

defined as:  
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21

2

p

p p
C

u






 ,                                                         (1.3) 

where p∞ are the far-field free-stream pressure. Streamwise and spanwise forces applied to the 

cylinder are used to define respectively the lift coefficient (Cl) and the drag coefficient (Cd).  

21

2

l
l

F
C

U A 

 ,
21

2

d
d

F
C

U A 

 ,                                          (1.4) 

where Fl is the lift force, Fd is the drag force, and A is the projected area of the cylinder 

normal to the flow.  

When the frequency of the vortex shedding matches the resonance frequency of the 

structure, the structure will begin to resonate and the structure’s movement can become self-

sustaining. The failure of Tacoma Narrows Bridge (1940) and the collapse of three towers at 

Ferry bridge power station (1968) during high winds are examples caused by vortex shedding 

(Othmar H et al., 1941). Due to the periodic feature of the vortex shedding process, the lift 

force, drag force and pressure on the cylinder should share the same oscillating period. 

Braza et al. (1986) present the numerical results for these coefficients for a Reynolds 

number ReD ranging from 100 to 1000. Williamson (1989) performed experiments in a wind 

tunnel and investigated the discontinuities observed on the Strouhal Reynolds curve and 

showed that they are due to the phenomenon of oblique vortex shedding. The detaching 

vortex downstream of the cylinder differs from the mode called parallel vortex shedding and 

created waves are oblique. He explains that this phenomenon is caused by the different 

boundary conditions used by various authors, such as the boundary conditions used in towing 

tank or in a wind tunnel. 

1.3.1.3. The turbulent structures around a cylinder 

Vortices are often viewed as “the sinews and muscles of turbulence”. Most local vortex 

identification criteria are based on the kinematics implied by the velocity gradient tensor, ∇u, 

thereby making them Galilean invariant. Q-criterion is one of the most popularly used local 

criteria to show the main coherent structures present in the flow (Zhou et al, 1999). The Q-

criterion defines a vortex as a coherent fluid region with positive second invariant (Q > 0) of 

the velocity gradient tensor, Aij=∂ui/∂xj, Q =1/2(|Ωij|
2-|Sij|

2)>0 that is the region where the 

magnitude of vorticity tensor, Ωij=1/2(∂ui/∂xj -∂uj/∂xi), prevails over the magnitude of strain-

rate tensor Sij.     
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Figure 1.8: sketch of hairpin vortex structures, from (Nezu et al., 1994).  

Hairpins and coherent structures have been studied and noticed in data since the 1930s, 

and have been since cited in thousands of scientific papers and reviews. Figure 1.8 sketches 

hairpin structures with a pair of counter-rotating quasi-streamwise vortices near the wall, 

which is a central flow feature in the development of the turbulent wall layer (Robinson, 

1991). First, the long quasi-streamwise legs of the hairpin structures particularly explain the 

near-wall low-speed streaks. Second, passage of a rapidly lifting hairpin head and the strong 

pumping of fluid between the hairpin legs create a burst event with associated second 

quadrant velocity fluctuations. Third, Near-wall shear layers can be explained as the result of 

the low-speed near-wall fluid pumped up between the vortex legs encountering the high-

speed free-stream fluid. Last, the spanwise spacing of low-speed streaks is associated with 

the spanwise width of the hairpin legs, and the characteristic 30° to 50° angle seen in the 

structure of wall turbulence is associated with the angle at which hairpins incline with respect 

to the wall. These structures are independent of the generating conditions of the wake and 

have a shallower inclination than the vorticity vectors (Chakraborty et al., 2005). 

1.3.1.4. Free-surface flows around a cylinder 

The interface with the air of the flow around a cylinder is qualified as surface free. In 

general, there is a run-up in front of the cylinder and a depression around the side edge and at 

the back of the cylinder on top (Figure 1.4). In experimental results (Graf & Yulistiyanto, 

1998; Johnson & Ting, 2003), it has been observed that the free surface exhibits a variation 



 12                                                                                                           Chapter 1  Introduction 

 

 

near the cylinder. The Froude number (Fr) of the flow mostly influences the free surface 

elevation close to the cylinder.  

u
Fr

gh
 ,                                                            (1.5) 

where h is the channel depth, g is the gravitational acceleration. The higher the Froude 

number, the bigger is the observed effect on the flow around a cylinder. This number 

compares the kinetic energy of the fluid with its potential energy of gravity, or still the 

velocity of the fluid with that of the surface waves. In low Froude number channel flow, 

usually Fr<0.5, the surface deformations are very small, thus the free surface is usually 

approximated as a free slip rigid-lid. In this case, the rigid-lid free-surface acts like a wall and 

restrain the surface-normal velocity component. Despite the limitations of the assumption, 

previous numerical studies have shown that a rigid free-slip wall approximation allows the 

prediction of many of the phenomena seen in experiments with wave-fewer interfaces 

(Broglia et al., 2003; Pan & Banerjee, 1995). However, for supercritical flow (Fr>1), the 

surface-normal turbulent intensity had a tendency to increase and the effects of the surface 

deformation could no longer be neglected (Komori et al., 1989, Nezu et al., 1994). Thus, an 

accurate representation of the physical free surface is necessary. 

Now the process of the sediment bed erosion in the channel flow is first illustrated in 

section 1.3.2 before to address the erosion around an obstacle in Part 1.3.3. 

1.3.2. Sediment transport in the channel flow 

1.3.2.1. The threshold of the sediment 

In the channel flow, sediment transport is usually caused by the bottom friction, induced 

by near-bed shear flow, through particle inter granular interactions and fluid turbulent 

suspension (Hsu, 2004). When a flow passes over a sediment bed, shear stress is generated 

and can be determined from the fluid friction velocity: 

2u  ,                                                           (1.6) 

where τ is the shear stress, uτ is the fluid friction velocity. For a given solid particle, if the 

shear stress exceeds a threshold value, the particle is destabilized, mobilized, and the 

sediment transport begins. The destabilizing force generated by the flow on the particle is 

proportional to τd2, where d is the medium diameter of the particles deposited on the bed. 
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Shields number (Shields, 1936) is used to compare this destabilizing force with the stabilizing 

forces that correspond to the grains weight ∝ (ρs-ρ)gd3 as: 

2

50( 1)

u

s gd

 


 ,                                                                        (1.7) 

where θ is the Shields number, s=ρs/ρ is the specific gravity of the sediment grains, ρs is the 

particle density and g is the gravitational acceleration.  

 

Figure 1.9: Single moving particle on a sloping bed. FD is the combination of drag force 

and lift force, Wsinβ is the gravity force component tangential to the bed, uτ is the friction 

velocity and ub is the mean velocity of a particle, assumed to have the same direction as 

friction velocity, from Roulund et al. (2005). 

For a given particle type, its threshold of motion is given by the critical Shields number θc 

with relationship to the bed slope (Engelund & Fredsøe, 1976): 

2 2

0 2

sin tan cos sin
cos 1c c

s s

   
  

 

 
   

 
 

,                          (1.8) 

where θc0 is the critical Shields number for a horizontal bed, μs is the static friction coefficient. 

In practice, one can consider that θc0 = 0.05 (Fredsøe & Deigaard, 1992). The grains 

mobilization is facilitated if they are placed on an inclined sediment bed. β is defined as the 

angle of steepest decent calculated from the longitudinal bed elevation gradient as follows: 

1 1tan ( ) tan ,b b
H b

z z
z

x y
    
  

 
,                                                  (1.9) 

where ∇H is the horizontal gradient operator. β should be smaller than the angle of repose 

of the sediment βs. For β > βs, a pile of grains become unstable and avalanches mobilizing a 
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few layers of grains on the bed surface is triggered. These avalanches will continue until the 

angle of the slope is again equal to or lower than βs. α is the angle between the flow-velocity 

vector ub at the top of bed-load layer and the direction of the steepest bed slope. Figure 1.9 

shows the simple schematic of α and β. 

 

 
cos

H b b

H b b

z u

z u


 



.                                                 (1.10) 

1.3.2.2. The different modes of sediment transport 

 

Figure 1.10: Three modes of particle transport are usually distinguished: bed-load, saltation 

and suspension, from McKnight and Hess (2000). 

Usually, shown as Figure 1.10, three modes of particle motion are distinguished: (1) 

Rolling and sliding motion (2) saltation motion; and (3) suspended particle motion.  

The bedload transport occurs when the local shields number exceeds critical shields 

number (θ >θc), and corresponds to the grains movement of rolling and sliding and in 

continuous contact with the sediment bed (McKnight and Hess, 2000). The saltation occurs 

when the bed-shear velocity and the local shields number decrease. The particles motion is 

made of successive jumps in the flow direction. Unlike bedload, the contact with the bed is 

not continuous but rather punctual. The jump height reached by a grain generally is within the 

order of magnitude of its diameter. It is generally included in the bedload definition and these 

two modes of transport are usually considered as a single type of particle motion. The 

distinction is therefore only made between bed load and suspended load. Indeed, for the bed 

load, the fluid puts the grains into motion horizontally whereas the suspension of the particles 

is acting in the vertical direction. 
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The suspended load occurs when the bed-shear velocity exceeds the fall velocity of the 

particles, the sediment particles will be lifted to a level, at which the upward turbulent forces 

will be of higher order than the submerged weight of the particles. Once lifted, the particles 

are not deposited again on the bottom. It is usually described by Rouse number (Van Rijn, 

1984) : 

zV

u
  ,                                                            (1.11) 

Where Vz is the settling velocity of the particles in the still water. When settling velocity 

is smaller than friction velocity (ζ<<1), the flow is intense enough to keep the particles in 

suspension. This phenomenon concerns only the smallest particles, light enough to be 

transported by flow turbulent velocity fluctuations. 

1.3.3. Local scour around a cylinder on a mobile bed 

 

Figure 1.11: Development of local scour depth with time and flow velocity around a cylinder, 

from Melville and Chiew (1999). 

The origin of the scouring process was attributed to the formation of the necklace-like 

horseshoe vortex system when the flow encounters an obstacle. A lot of research has been 

carried out, both experimentally and numerically to characterize the formation of these 

vortices. The lee-wake vortices and the horseshoe vortex (HV) lead to a local increase of the 

fluid bed shear stress and cause the local scour around the pier.  
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Local scouring is classified into the clear-water or live bed conditions depending on 

whether sediment transport occurs upstream of the cylinder. If the upstream flow does not 

erode sediment (θ < θc), then the scouring situation at the obstacle corresponds to clear water: 

the scour depth increases monotonously. Oppositely, when sediment transport (bed-load or 

suspended load) occurs upstream of the structure, the scouring is in the lived-bed condition. 

In this case, the scour hole is under dynamic equilibrium between erosion and deposition 

from sediment transport upstream: the scour depth presents oscillation with time. 

In both cases, local scour is triggered by the horseshoe vortex at the base of the cylinder, 

provided that local shear stresses exceed the critical shear stress of the sediment (θ > θc) 

(Ettema et al., 2011). As the scour hole deepens, the erosive strength of the horseshoe vortex 

decrease until an equilibrium condition. Figure 1.11 shows the typical time evolution of the 

equilibrium scour depth observed in laboratory experiments of these two types of scours 

(Melville and Chiew, 1999). In the clear-water case, the concept of equilibrium is not clear 

and is still a matter of controversy (Lança et al., 2013). Whereas some authors support that 

equilibrium is reached randomly finite time (Melville and Chiew, 1999; Kothyari et al., 2007) 

and other researchers agreed that equilibrium can be reached only asymptotically and suggest 

that equilibrium scour depth should be estimated by extrapolation of scour depth time 

evolution to infinity (Sheppard et al, 2004). Manes and Brocchini (2015) proposed the 

relationship between the scaling of the equilibrium scour depth and the phenomenological 

theory of turbulence for the first time. In live bed condition, equilibrium conditions are 

dictated by a balance between ingoing and outgoing sediment fluxes (Melville and Chiew, 

1999) and is reached very rapidly and the corresponding scour depth oscillates due to the 

passage of bed-forms. In both cases, the equilibrium depth corresponds to the elevation 

difference between the deepest point of the scour hole and the interface of the undisturbed 

sedimentary bed. In laboratory, under well-controlled conditions, the scour depth is of order 

of the pile diameter.  

The detailed study of the interactions between the horseshoe vortex and the scour erosion 

was made by Dargahi (1990), under a clear-water regime with Reynolds number ReD = 

39,000.  
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Figure 1.12: Schematic sketch of a clear-water scour hole formation under the effect of 

the horseshoe vortex, from Dargahi (1990). 

The first scour triggered by the horseshoe vortex (V1) appears in the wake of the cylinder 

at the base of the pile (Figure 1.12). The scour occurs simultaneously under the other vortices 

(V2, V3, V4, V5) soon. Subsequently, the erosion pits forms under V2 and V4 and extend 

rapidly towards the upstream face of the cylinder. The sediment is eroded under the effect of 

V2 and V4 and fed into V3 and V5. The sediment trapped is then deposited in the form of 

two sediment bumps (see Figure 1.12c). The position of V1 is almost fixed over time, while 

the vortices V2, V3, V4 and V5 were oscillating back and forth in the plane of symmetry. As 

a result, the erosion holes generated by V2 and V3 and the deposition zones vary spatially 
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over time. When the scour depressions at the sides of the cylinder deepen, the side slopes 

develop into the scour hole and the whole sediment process becomes very unstable. The 

instability causes a further increase in rate of the transport. The depth increase of the scour 

hole related to V2 has an influence on the hydrodynamics. The V1 and V2 vortices are 

merging (Figure 1.12f and Figure 1.12g) and the slope of the associated erosion hole has a 

concave shape near the cylinder. The depressions under vortices V2 and V4 develop into two 

small slopes (Figure 1.12h). With the time development, the system tends to a single erosion 

hole with two different slopes of similar length (Figure 1.12k). These two slopes are the 

result of the two main vortices: V2 and V4. If V3 and V5 are still present, their intensity and 

importance for long time are greatly reduced. Zhao et al. (2010) investigated the local scour 

around a submerged vertical cylinder in steady currents by the experiment and numerical 

study. The pattern of the scour, the evolution of the scour and the HV states in the scour hole 

are shown. However, the detailed relationship between HV and scouring is not present. 

Concerning the live bed case, the scour dynamics is also affected by the HV system and 

the vortex shedding, however the literature does not show a thorough investigation of the 

interaction between these coherent structures and the erosion dynamics such as the study by 

Dargahi (1990) for the clear-water scour case. To date, not to mention that the actual 

engineering is under complex configurations, even the case of scour around a cylinder in a 

steady flow is not fully understood. Comprehensive studies on the variables controlling the 

maximum scour depth have been conducted since the state-of-the-art paper by Breusers et al. 

(1977). Sumer et al. (1992) studied the scour around a vertical pile under waves or tidal 

condition. Debnath & Chaudhuri (2010) focused on the local scour around cylinder for clay 

and clay-sand mixed beds by experiments. Graf & Istiarto (2002) studied the relationship 

between turbulence intensity in the cylinder wake and transmission intensity of the sediment. 

It is found that the increase of turbulence intensity could enhance the erosion and 

transmission intensity of the sediment. It has recently been observed that, in a clear-water 

case, the vortex-shedding erosion triggering condition is weaker than that for the HV. In that 

case, for a small range of flows, the erosion is mainly related to the vortex-shedding 

downstream of the cylinder but not the horseshoe vortex in front of it (Lachaussée et al., 

2018).  
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1.3.4. Numerical modelling for scouring around a cylinder 

Due to the spatial scale of real situation or the complex physics involved in sediment 

transport process near structures and the capacity of computing power, traditional numerical 

efforts devoted to the geophysical flow problems, are usually confined into 2D modelling and 

hydrostatic approaches (Wu, 2004; Horvat et al., 2015). These models can provide rough 

estimation for future scenarios but lack the capability to handle with 3D real conditions of 

near-field flows at large scale at large scale, at tri-dimensionality and the non-hydrostatic 

expense. By definition, they are not able to capture vertical velocity effect or 3D coherent 

structures of the flows, which are fundamental to explain scouring processes (Dargahi, 1990). 

In addition, their turbulence model are mainly based on Reynolds averaging method which is 

not well-suited for capturing large coherent structure (Zhu et al., 2013). With the 

development of high performance computer, nowadays Large Eddy Simulation (LES) has 

been largely used to simulate high turbulent geophysical flows by massive parallel (Huang et 

al., 2018; Steijl and Barakos, 2018; Capuano et al., 2017).  

In order to tackle these difficulties with actual performance of computing, this work 

proposes an accurate, robust and efficient solver for the incompressible Navier-Stokes 

equation using LES in collocated (non-staggered) unstructured grids. It’s well-known that a 

collocated grid arrangement for incompressible flows could generate unrealistic pressure 

oscillations, so-called checkerboard problems, due to the pressure and velocity coupling, 

unless  a treatment by a Momentum Interpolation Method (MIM) would be used (Rhie and 

Chow, 1983; Zang et al., 1994). In the past few years, finite volume methods with collocated 

unstructured grid have been used for both steady and unsteady flow (Kim and Choi, 2000; 

Jan and Sheu, 2007; Dalal et al., 2008; Liang et al., 2013). In these works, the mass fluxes 

were calculated by introducing a face-normal velocity, defined at the mid-point of each cell 

face. These mass fluxes or face-normal velocities are interpolated from the cell centers and 

later corrected using the pressure gradient, which is obtained by using a least squares 

technique. Depending on the applications, both first order interpolation (Mahesh et al., 2004; 

2006; Davidson, 1996) and second order interpolation  (Kim and Choi, 2000; Jan and Sheu, 

2007; Dalal et al., 2008; Ducros et al., 2000) could be used.   

The numerical description of scour is still difficult as any mathematical problem with 

flow-structure interaction in moving (sediment bed and free surface) boundaries. One well-

known difficulty with regard to scour studies is the local description of flow properties close 
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to singularities (Baker, 1979; Dargahi, 1990; Kirkil et al., 2008; Kirkil & Constantinescu, 

2010, 2015; Nishioka & Sato, 1974; Park, et al., 1998; Williamson, 1989). Indeed, due to the 

presence of obstacles, the flow forms a Horseshoe Vortex system upstream and a boundary 

layer detachment as well as complicated vortex shedding at the wake of the structure. These 

features significantly affect the scour as it evolves around the cylinder. Another difficulty 

arises when free-surface deformation could modify flow properties near the local problem. 

Due to the progress in the availability of computational power, numerical studies on 

scour around a vertical cylinder are now well documented. However, the development of 

accurate and efficient models for the scour process is still very challenging when the 

motivation is to compute sediment transport by water directly or with a minimum of 

empirical parameter. First, hydrodynamic and sediment transport models are coupled such 

that a closure equation for the bedload estimation is required. Second, the sand-slide 

processes play an important role during the formation of a scour hole, thus the local bed slope 

and friction angle of the bed material should be incorporated in the model. Third, a mesh 

adaptation around the cylinder boundary is required to capture the bed deformation 

(Khosronejad et al., 2011, 2012). Finally, turbulence models are obviously necessary to 

simulate the coherent structures of flow fields with the presence of a HV system. These 

factors must be overcome to if better models are to be obtained. 

Roulund et al. (2005) presented a major advance in simulating local scour around a 

vertical cylinder by using a structured finite volume code to solve the Reynolds Average 

Navier-Stokes (RANS) equations with a k–ω turbulence closure (where k is the turbulent 

kinetic energy and ω is the specific dissipation rate).  Overall, their numerical results coincide 

with their experimental data and the study serves as reference to many studies  in a lot of 

existing studies (Baykal et al., 2014, 2017; Stahlmann, 2013; Zhou, 2017). The work of 

Kirkil et al. (2008) and Kirkil & Constantinescu (2010, 2015) applied a Large-Eddy 

Simulation (LES) to analyze the coherent structure of flow fields with the presence of a HV 

system upstream and a wake region behind a vertical cylinder. However, their simulations 

started from an equilibrium hole obtained from experimental results such that no scour 

evolution was analyzed. Khosronejad et al. (2011, 2012) developed a Fluid-Structure 

Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method with a k-ω closure 

model. Their work has shown that the bluntness of the pier significantly influences the 

predictive capabilities of models. Link et al. (2012) used a detached-eddy simulation (DES) 

to simulate scour hole evolutions around circular and rectangular piers. Kim et al. (2017) 

studied scour erosion around two cylinders using LES coupled with a morphodynamic model 



Chapter 1 Introduction                                                                                                             21 

 

 

in a Lagrangian framework (immersed boundary method to track the sediment and fluid 

interface). More recently, new technique appeared to study the sediment particle: Nagel 

(2018) used a Eulerian two-phase model to study the live bed erosion around a cylinder, 

while Liu et al. (2018) used LES-DEM technical to simulate the sediment saltation in a 

rough-wall turbulent boundary layer. They showed the flow structures behind the cylinder at 

equilibrium scour hole. In this work, a 3D numerical study is present on local scour around a 

vertical cylinder using the Engelund & Fredsøe (1976) bedload formula in Roulund et al. 

(2005), which is classified as a live bed case (Melville & Chiew, 1999). A second-order 

unstructured finite-volume model combined with a sigma-coordinate system is applied to 

describe the dynamic shape of the sediment-water interface. In order to prevent the bed slope 

from exceeding the angle of repose in the sediment material, a mass conservative sand-slide 

model is developed. Large Eddy Simulation is applied in order to simulate the HV-system 

structure at the base of a vertical cylinder. Large-scale coherent structures in the presence of 

an HV system in the near-bed region as well as vortex shedding in the wake region are 

observed and discussed here. Table 1.1 provides highlights on the present study by giving an 

overview of different terms handled in the aforementioned studies.  

Table 1.1  List of methods used in scouring simulations of different references 

Reference Numerical model 
Turbulence 

model 

Sand slide 

model 

Water-sediment 

interface 
ReD Physical phenomenon 

Roulund 

(2005) 

Structured finite 

volume method 

(FVM) 

RANS 

(k-ω) 

Updated 

particle 

velocity 

Multigrid mesh 4.6×104 
Scour hole evolution 

(Live bed erosion) 

Kirkil 

(2008, 

2010,2015) 

Structured finite 

volume method 

(FVM) 

LES 
Fixed 

bed(no) 
Fixed bed(no) 1.6×104 

HV System 

No scour evolution 

Khosronejad 

(2012) 

Unstructured 

finite volume 

method (UFVM) 

RANS 

(k-ω) 

Mass-

conservative 
FSI-CURVIB 4.95×104 

Scour hole evolution 

(Live bed erosion) 

Link et al. 

(2012) 

Structured finite 

volume method 

(FVM) 

DES No 
Lagrangian 

model 
3.15×104 

Scour hole evolution 

(Clear-water erosion) 

Kim et al. 

(2017) 

Structured finite 

volume method 

(FVM) 

LES No 
Lagrangian 

model 
4.0×104 

Scour hole evolution 

(Clear-water erosion) 

Baykal et al. 

(2014,2017) 

Structured finite 

volume method 

(FVM) 

RANS 

(k-ω) 

Updated 

particle 

velocity 

Multigrid mesh 1.7×104 
Scour hole evolution 

(Clear-water erosion) 

Zhou 

(2017) 

Structured finite 

volume method 

(FVM) 

RANS 

(k-ω) 

Mass-

conservative 

Dynamic mesh 

deformation 
4.6×104 

Scour hole evolution 

(Live bed erosion) 

Nagel  

(2018) 

Structured finite 

volume method 

(FVM) 

RANS 

(k-ω) 
No 

Two-phase 

model 
4.6×104 

Scour hole evolution 

(Live bed erosion) 

Current 

work 

(2019) 

Unstructured 

finite volume 

method (UFVM) 

LES 
Mass-

conservative 

Sigma 

transformation 
4.6×104 

HV System 

Scour evolution 

(Live bed erosion) 
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The originality of this work is based on the construction of Projection Methods (PM) 

using Adams-Bashforth scheme formulation, in combining the momentum interpolation 

method (MIM) for determining face-normal velocity with central schemes for both advection 

and diffusion terms. MIM allows us to overcome checkerboard problems in pressure and 

velocity fields. In addition, the approximation of the cross diffusion terms is improved to 

handle non-orthogonal, unstructured grids with moderate skewness by introducing an 

additional correction term. By this way, we can get the second-order accuracy in space and in 

time, required by LES, for simulating flows at moderate Reynolds numbers. The current 

paper reports the first known investigation of both scour evolution and coherent structure 

using an unstructured finite volume method. 

1.4. Organization of the manuscript 

This work contributes to the knowledge improvement of the interactions between 

offshore wind turbine or bridge pier and its environment, and is organized as follows. 

Chapter 2 focuses on the numerical methodology of a three-dimensional solver using 

unstructured finite volume method (UFVM) for Navier-Stokes equations. The non-

dimensional scaling and the discretization schemes using LES on 3D unstructured collocated 

grid are presented. Projection method is used to decouple velocity and pressure, and Adams-

Bashforth scheme is used for time stepping. Equations in sigma-transformation coordinate, 

different boundary conditions and parallel methods are also demonstrated. Then, a sediment 

bed deformation model using the Engelund & Fredsøe (1976) bedload formula in Roulund et 

al. (2005) is presented. In order to prevent the bed slope from exceeding the angle of repose 

in the sediment material, a mass conservative sand-slide model is developed. 

Parts of these methods are published in Uh Zapata et al. (2019) in Appendix C1. 

NSMP3D has been validated by several test cases in Chapter 3 to check the accuracy 

orders of the used numerical techniques and its ability in turbulent flow simulations. The test 

case of 2D decaying vortex shows that NSMP3D has second order of accuracy in space and 

in time, which permits simulations of free-surface and non-hydrostatic flows at high 

Reynolds numbers and different Froude numbers. The test case of lid-driven cavity flows 

shows that NSMP3D can provide the results equivalent to those obtained from previous 

numerical studies with capturing well the secondary vortices. The test case on standing waves 

in closed basin prove the capacity of NSMP3D in computing with accuracy free-surface and 
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non-hydrostatic flows, while the test case of wave propagation over a submerged bar can 

examine the performance of our algorithm in modelling wave deformation over uneven 

bottoms. At last, speed-up test case is used to test the parallel performance of the proposed 

model.  

Parts of these results are under minor revision in Zhang et al. (2019b) in Appendix C2. 

Chapter 4 presents a 3D numerical study on local scour around a vertical cylinder using 

the Engelund & Fredsøe (1976) bedload formula in Roulund et al. (2005), which is classified 

as a live bed case (Melville & Chiew, 1999). In order to prevent the bed slope from 

exceeding the angle of repose in the sediment material, a mass conservative sand-slide model 

is developed. Large Eddy Simulation is applied in order to simulate the HV-system structure 

at the base of a vertical cylinder. Large-scale coherent structures are observed and discussed 

here in the presence of an HV system in the near-bed region as well as vortex shedding in the 

wake region. The discussions on large-scale coherent structures with the presence of the HV 

system in the near-bed region and vortex shedding in wake region are given here.  

Parts of these results are published in Zhang et al. (2019a) in shown in Appendix C3. 

Appendix A presents the technology on the coding about the periodic boundary condition 

in parallel computation. The modifications of the memory structure and the communication 

technique from previous code are described.  

Appendix B presents dilute turbidity currents in an inclined channel flow driven by 

suspended sediments. The suspended sediments under the influence of gravity drive the flow 

in the channel and simultaneously settle towards the bed. The interaction of sediments and 

turbulence lead to (i) skewing of the streamwise driving force towards the bed, and (ii) stable 

stratification that damps bed-normal momentum and mass transport. With increasing the 

settling velocity, flow turbulence is less able to keep the sediments in suspension, and the  

flow in the channel tends towards the laminar solution.





 

                                                                                   

  

Numerical Methods 

2.1. Governing equations 

In Computational Fluid Dynamics (CFD), the Navier-Stokes equations for incompressible 

flow express the conservation laws of mass and momentum in fluid flows. Within an 

incompressible volume of fluid, the governing equations of motion are: 

0 u ,                                                            (2.1) 

1
( ) ep

t



 

 
       

  

u
uu u f ,                                   (2.2) 

where u= (u, v, w) is the velocity components in three directions (x, y, z) in Cartesian 

coordinate. P is the pressure, μ is dynamic viscosity, and fe is any other external forces. The 

pressure is given by P=pa+ ρg(η-z)+p, where g is the gravitational acceleration, pa is the 

atmospheric pressure, η is the free-surface elevation, p is the non-hydrostatic pressure 

component. In this work, we always consider pa = 0. The flow field for an incompressible 

fluid including viscous and turbulence effects can be fully described by solving above two 

equations numerically.  

2.1.1. Non-dimensional scaling 

Using dimensionless parameters such as Reynolds number and Froude number, similar 

flow patterns in different fluid flow situations can be easily predicted using numerical 

simulation and allow the comparison between similar flow physics carried out at different 

scales and with different fluid properties.  

In order to obtain the non-dimensional equations, the following substitutions are made by 

using reference velocity V and length H.  
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u uV , x xH ,
H

t t
V

 , 2p pV ,
2

e e

V
f f

H
 ,                (2.3)                                                                        

where variables with tilde are the dimensionless quantities. Introducing the substitution above 

into Eq.(2.2), take x direction as example, the following equation can be obtained.  

2 2 2 2 2 2 2

2 2 2 2 ex

V u V u u u V p V u u u V
u v w v w f

H t H x y z H x H x y z H





         
          

          
. (2.4) 

As V and H are both constants once selected, the above equation can then be simplified as 

2 2 2

2 2 2 ex

u u u u p u u u
u v w v w f

t x y z x VH x y z





         
          

          
,         (2.5) 

with the dimensionless Reynolds number defined as 

Re
VH VH

 
  .                                                      (2.6) 

In NSMP3D, we can also put the numerical viscosity into dimensionless variable by  

  
1

ReVH


   .                                          (2.7) 

When running a numerical case to reproduce an experimental result, we first select the 

reference velocity and reference length, based on the physical kinematic viscosity, the 

Reynolds number can be calculated using Eq. (2.7). Then the dimensionless numerical 

viscosity   is evaluated as 1/Re and other variables can be non-dimensional respectively. 

2.1.2. Unstructured finite volume method 

To solve Eqs. (2.1), (2.2), the NSMP3D code uses the finite volume method to discretize 

the governing equations. Thus, the computational domain is divided into a number of control 

volumes where variables as velocities and pressure are located at the center of each control 

volume. Then the differential forms of the governing equations are integrated over each 

control volume. Using the divergence theorem, the volume integral can be recast into surface 

integrals at cell faces in order to calculate the flux change over the whole control volume. In 

NSMP3D, each control volume is prism with a triangle base (see Figure 2.1).  
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Figure 2.1: 3D sketch of geometry entities (a) 2D schematic variables stored in the cell center 

for collocated grid (b) Horizontal neighbor cells, and (c) Vertical neighbor cells. 

 

Figure 2.2: 2D sketch of geometry entities. 

The integral forms of non-dimensional Navier-Stokes equations are:  

  
1

Re

i i
i j j eifV S V S V

fi

u up
dV u u n dS dV dS f dV

t x n

   
     

   
     ,  (2.8) 

 0i i
S
u n dS  ,                                                     (2.9) 

where the subscript i, j = 1,2,3 represent the three directions in the Cartesian coordinates, and 

the subscript f denotes the interpolated value on the cell face. V denotes the volume of the cell, 

S denotes the cell surface, n is the vector unit normal to each face, and u n   represents the 

outward velocity normal gradient on the face shared by two cells.  
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To simplify, in the following section, if not specify, we ignore the tilde, which indicates 

the dimensionless quantities. As suggested by Kim and Choi (2000), the face normal velocity, 

which is defined at the center of each cell face, given  by 

  f i if
U u n ,                                                      (2.10) 

where (ui)f is the ith component of velocity at the midpoint of face f. Substitute Eq.,                                                      

(2.10) into Eqs. (2.8) and (2.9), yields: 

  
1

Re

i i
i f eifV S V S V

fi

u up
dV u U dS dV dS f dV

t x n

   
     

   
     ,          (2.11) 

 0f
S
U  .                                                        (2.12) 

The discretization of the governing equations is performed on triangular prism based on 

unstructured grids. The three-dimensional formation of geometry entities are shown in Figure 

2.1.   

2.1.2.1. Convection Flux 

The Momentum Interpolation Method (MIM) is used to determine the face-normal 

velocity in the convection flux term  i ffS
u U dS . Figure 2.2 shows the 2D formation of the 

geometry entities, where I,J are the centers of two cells sharing a face, and O is the 

intersection point between line  and the sharing face, and E is the face midpoint. The value 

ϕf  at the face midpoint can be obtained by second-order interpolation: 

    1
(1 )

2
f IJ I IJ J I J

OE              ,                         (2.13) 

where ϕ denotes velocity components, αIJ = |OJ|/|IJ|,  is the gradient at the cell center, 

which is calculated using the least squares method, similar to the case presented in Shi et al. 

(2013). This centered interpolation scheme insures the second order accuracy. The value at 

the vertical face midpoints is calculated by the same way as in 2D formation because all 

horizontal cell-centers are located at the same height (Figure 2.1c). Vertically, as O and E are 

located at the same point, thus OE  = 0 in Eq. (2.13). 

IJ


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2.1.2.2. Diffusive Flux  

The normal face derivatives in the diffusive flux 
1

Re

i

S
f

u
dS

n

 
 

 
 are calculated as the 

original work of Kim and Choi (2000). The diffusive flux at the face midpoint is 

approximated by using linear interpolation of two components, principle diffusion and cross 

diffusion as follows: 

 
   1 2 1 2 1

2

2 1 2 1

J I V V
e V V

e
n IJ V V V V

     
  


 ,                                 (2.14) 

where 1e  and  2e  are the two components of the face-normal vector 1 2fn e e   as shown in 

Figure 2.2. For orthogonal grid, 1e  is the same as fn  and the second term should always 

equal to zero.  

By introducing the cross diffusion term, the scheme above can handle non-orthogonal, 

unstructured grid with a moderate skewness. For problems with high skewness grids, such as 

the real estuary, the approximation of the cross diffusion term still needs to be improved to 

insure the accuracy. Xue and Barton (2013) proposed an additional term using the value at a 

shifted position from cell center. As the intersection point between the line connecting two 

nearby cell centers and the cell face does not necessarily coincident with the face center, two 

projected points (I’ and J’) parallel to the connecting line are constructed by moving the 

corresponding cell centers along the distance vector ( OE ). By using linear interpolation, the 

values of the projected points can be obtained and used to calculate the diffusion term in Eq. 

(2.14). While the cross-diffusion term is for treating non-orthogonality of the mesh, the added 

high order term can be used to ensure the diffusion from skewness of the grid, as follows: 

 
   ' ' 1 2 1 2 1

2

2 1 2 1

J I V Ve V V
e

n IJ V V V V

     
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
.                                  (2.15)

 

Thus,
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For 3D control volume, horizontally, the face center gradient value is similar as 2D cases. 

Vertically, as O and E are located at the same point and all face mid-points are vertical, thus OE  

= 0 and 2e  = 0 in the Eq. (2.15).  

2.1.3. Projection method reconstruction using Adams-Bashforth 

scheme 

The Projection Method (PM) to decouple the velocity and pressure fields, was proposed 

by Chorin (1968). Later, Perot (1993) showed that PM is still first-order accuracy in time. So 

he proposed another form of the PM by a block LU factorization of the fully discretized 

equations and the second order of accuracy in time would be insured by using the Crank-

Nicholson scheme for diffusion terms and the Adams-Bashforth scheme for convection terms. 

In this work, the convection and diffusive fluxes are explicitly solved at each time step. Thus, 

an intermediate velocity field ui
* can be obtained.  

  
* 1/2

1/2 1/2 1/21

Re

n n
n n ni i i
i f eifV S S V

f

u u u
dV u U dS dS f dV
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
    

    
  

    ,      (2.17) 

where superscript n is the variables at the discrete time tn, and t is the time step.   

The velocity at the next time step is calculated from 

1 * 1/2n n

i i

V V
i

u u p
dV dV

t x

  
 

   .    (2.18) 

The Pressure Poisson Equation (PPE) can be obtained implicitly by taking the 

divergence-free condition: 

1/2 1n

f
S S

f

p
dS U dS

n dt


 

 
 

  ,                                        (2.19) 

where  *

f i if
U u n   is the intermediate face-normal velocity. The resulting linear system is 

solved using a preconditioned Biconjugate Gradient Stabilized Method (BICGSTAB). 

The Adams–Bashforth scheme formulation, the right hand side of Eq. (2.17) is given 

explicitly insuring second-order accuracy in time under the following form: 

1/2 1 23 1
( )

2 2

n n nRHS RHS RHS t     ,                                (2.20) 
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The preconditioned BICGSTAB solver was used to solve Eq.(2.19) and the pressure at 

time tn+1 is also obtained by using the Adams–Bashforth scheme: 
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,                                      (2.22) 

The obtained pressure field is then used to correct the final velocity field. The divergence 

free condition is enforced on the face-normal velocities, and a strong coupling between 

pressure and velocity is ensured: 
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In the current study, the Courant-Friedrichs-Lewy (CFL) number is specified according to 

the original definition given by Kim and Choi (2000), 

2
f ff

dt
CFL U A

V
  ,                                              (2.24) 

where Af is the cell face area. 

2.1.4. Boundary condition 

 

Figure 2.3: The description of ghost cell on a solid boundary (a) general boundary cell (b) 

corner boundary cell 
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A ghost cell method was used to enforce the boundary condition as Figure 2.3. For the 

cells on the physical boundaries, ghost cells with a distance Δd away from the physical 

boundaries were constructed, which corresponds to the distance between the cell-cantered 

node and the boundary in the normal direction.  

Generally, for Dirichlet boundary condition, boundary conditions are imposed on both the 

fictitious cells and the boundary vertex points, with Φghost=2C-Φc and ΦV,bc=C, where C is the 

constant value given by the boundary condition. For Newmann boundaries, only the fictitious 

cells are updated using Φghost=Φc, while the values on the boundary vertex points are 

interpolated using only the inside cell centers. For periodic boundaries, boundary conditions 

are imposed on two corresponding cells respectively on inflow and outflow boundary, with 

Φout,ghost=Φin  and at the same time Φin,ghost=Φout.  

More specifically, we have the following different boundary conditions: 

1) At the rigid non-adhesive surface (free slip wall). The partial derivative of the velocity 

is equal to zero in tangent wall directions as ∂u/∂σ=∂v/∂σ=0; the vertical velocity normal to 

the wall is equal to zero as w=0; the partial derivative of the pressure is always equal to zero 

as ∂p/∂σ=0.  

2) At the rigid adhesive bed (no-slip wall), the velocities are equal to zero: u = v = w = 0, 

as well as the partial derivative of the pressure: ∂p/∂σ = 0. 

3) At the free surface, the tangential stress equals zero resulting in ∂u/∂σ = ∂v/∂σ = 0; the 

velocity component satisfies the kinematic boundary condition, w = ∂η/∂t + u ∂η/∂x + v∂η/∂y; 

and the pressure condition p = 0 is applied when the Poisson equation is solved. 

4) At inlet boundary, velocity is specified as u = u1, v = v1, w = w1, where u1, v1, w1 are 

values set by user, and pressure condition ∂p/∂x = 0 is applied. 

5) At outlet boundary, ∂u/∂x = ∂v/∂x = ∂w/∂x = 0 and ∂p/∂x = 0 is applied. To avoid any 

wave reflection from the downstream end of computation domain, we use a combination of a 

combination of a sponge layer technique (Park et al., 1999) and a Sommerfeld-type radiation 

boundary condition. Thus, the following artificial damping terms are added to the right-hand 

side of horizontal momentum Eq. (2.40). 

22
* * * *
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d d
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 ,     (2.25) 

https://en.wikipedia.org/wiki/%CE%94
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where *

0x  and *

0y  denote the starting point of the damping zone of length Lx and Ly at the x∗ 

and y∗ directions, respectively; zb and zs represent the bottom and the free surface, 

respectively; and the damping strength parameter, αd, determines the damping rate. At the 

end of the sponge layer, the Sommerfeld-type radiation condition is used to further enhance 

wave absorption. We refer to Yuan and Wu (2004) for more details. 

2.1.5. Parallelization 

The parallelization of the finite volume discretization is based on a domain decomposition 

method with overlapping sub-domains. The computational domain is divided into several 

sub-domains of almost the same number of elements by the partitioning utility called Chaco 

(Lien, 2000). Each subdomain is calculated independently for a processor. The NSMP3D 

links cell-cantered and vertex unknowns assigned by different sub-domains. Therefore, the 

transmission of data between processors is necessary to perform the calculations in parallel. 

Standard MPI is used to implement the algorithm.  

To ensure efficient data communication, every sub-domain is extended to create an 

overlapping region with each of its neighboring sub-domains. The subdomain extension 

overlap is that all the elements surrounding boundary vertex points are included, see Figure 

2.4. Thus, the overlapping region guarantees that all unknown variables used in the finite 

volume discretization scheme are included. Another advantage of these overlapping regions 

is that no vertex communication is needed. For communication implementation, the number 

of communication must be minimized in order to minimize overhead. Thus, the data changed 

through overlapping points are grouped in vectors to reduce communication.  

The computation of the Poisson equation is an important element in an incompressible 

code, which consumes most of the CPU time. In particular, the referenceS (Zhao & Wang, 

2012; Gorobets, 2015) talking about the technology of the parallelization of BiCGSTAB by 

domain decomposition is recommended . 
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Figure 2.4: Configuration of the overlapping subdomains for the MPI, from Uh Zapata et al. 

(2014). 

2.2. Numerical simulation of turbulence 

Turbulent flow refers to the high Reynolds number flows, which are characterized by 

velocity fluctuations in all directions and over a large range of scales. In most CFD 

simulations, it is usually a computational challenging to solve the turbulent flow in full 

resolution because finer resolution is required for higher Reynolds numbers (Ferziger & Perić, 

2002). Depending on the treatment or the averaging procedure to overcome the complexity of 

turbulence, numerical simulations of turbulence flows can be classified into three most used 

categories: the Direct Numerical Simulation (DNS), the RANS-based simulation (RANS) and 

the Large Eddy Simulation (LES). DNS will simulate every turbulent cascade without any 

assumption. The major difficulty when performing DNS resides in the fact that a tree-

dimensional DNS requires a number of mesh points N3 > Re9/4. Therefore, the computational 

cost of DNS is very high even at low Reynolds numbers. RANS simulates only time-

averaged quantities and is designed to work outside the viscous sublayer, where viscous 

effects are negligible compared to inertial effects. LES is the intermediate category between 

DNS and RANS. Large scale effects of turbulence are solved like DNS, but small scale 

effects are handled with subgrid scale model. 

In this study, we use the Smagorinsky subgrid scale model and the effects of 

Smagorinsky constants in LES are discussed. At this stage, the development is limited to the 

fluid phase but validated for the academic test cases, which require the implementation of the 

second-order schemes in time and in space, periodic boundary conditions with MPI 

technology. 
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For incompressible flow, the space-filtered Navier-Stokes equations can be written as 

1
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where the bar over quantities denotes space-filtered quantity, iu are the resolved components 

of the velocity vector, p is the resolved pressure, and 

sg

ij i j i ju u u u   ,                                                     (2.28) 

is the Sub-Grid Stress (SGS) tensor, which are used to take in account the effect of 

unresolved length scales. 

As suggested by Smagorinsky, the smallest turbulent eddies are almost isotropic and 

Boussinesq eddy viscosity assumption can be used to provide an accurate approximation of 

the effects of these unresolved smallest eddies. According to the Boussinesq assumption, the 

momentum transfer caused by turbulent eddies can be modelled with an eddy viscosity, and 

the relationship between the eddy viscosity and the sub-grid stress tensor can be described as: 

1
2

3

sg sg

ij t ij ii ijS      ,                                           (2.29) 

where δij is the Kronecker delta, and 
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juu
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x x

 
     

 is the resolved rate-of-strain tensor.  

The SGS Model should be employed to take into account the small filtered-out eddies and their 

interaction effect between the large resolved eddies by providing an accurate approximation of 

the SGS viscosity. One of the most widely used SGS models is the constant Smagorinsky model, 

which is as 

2

t sg Sl  ,                                                       (2.30) 

where 
1

2(2 )ij ijS S S , and lsg is the sub-grid length scale. In the near wall region, the length 

scale of the sub-grid scale motions cannot be described with a constant value, but will 

decrease as the wall is approached. Thus, a wall damping function must be implemented in 

addition to the standard or constant Smagorinsky SGS model to capture this boundary layer 
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effect. Among all of the damping functions available, the Van Driest’s function is most 

commonly used: 

1
wl

A
sg sl C e




 

   
 
 

,                                                 (2.31) 

where l
+ 

w  is the non-dimensional distance from the center of a control volume to the wall as 

 l
+ 

w  = lwuτ/ ν) and A+=26 is the damping coefficient.  Δ is the averaged spacing Δ=V1/3 with V 

being the volume of the element, and Cs is the Smagorinsky constant. Lilly (1967) provided 

a theoretical analysis of the decay rate of the isotropic turbulent eddies in the inertial 

subrange of the energy spectrum and suggested a value for Cs between 0.17 and 0.21. For 

channel flow, there are strong anisotropic turbulent eddies in the near wall region, Deardorff 

(1970) suggested an optimal value for Cs which equals to 0.1. The differences in the 

suggested Cs values indicates that the behavior of the small eddies are not universal as 

assumed in the SGS model and a more sophisticated adjustment should be performed to 

provide a good turbulent approximation. 

To further improve the near-wall asymptotic behavior of the eddy viscosity, the 

following wall damping function (Pope, 2000) was proposed to use the near wall distance 

instead of a constant sub-grid length scale 

1
wl

A
sg wl l e




 

  
 
 

,                                                  (2.32) 

and κ is the von Kármán constant which is usually taken as 0.4. 

Although Eq.(2.32) will provide us with a good approximation of the sub-grid length 

scale for the Smagorinsky SGS model, l
+ 

w  can be difficult to obtain as the friction velocity at 

each location is unknown. For multi-dimension problems with complex geometries, this can 

pose a challenge to the simulation because it needs to be calculated at every time step. At a 

flow separation point or a flow reattachment point, the friction velocity can be very small or 

close to zero which will expand the effective region of the wall damping function leading to 

inaccuracy and instability. 

In this thesis, the near wall damping model of Mason & Thomson (1992) is used to 

achieved a modified length scale. According to Mason and Thomson, the modified length 

scale can be described by: 

https://en.wikipedia.org/wiki/%CE%94
https://en.wikipedia.org/wiki/%CE%94
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where n is the Mason wall matching power, which in most of following LES simulations, is 

taken as two. Having obtained the length scale, the turbulent viscosity at every location can 

be calculated using Eq.(2.30). 

2.3. Sigma-transformation configuration 

2.3.1. Sigma-coordinate 

The sigma-coordinate has been developed by Phillips (1957). It is a method that allows 

working on configurations meaning with varying vertical boundaries like free surface and 

sediment bed interface. This method is employed to link the irregular physical domain to the 

actual computational domain, see Figure 2.5. The conventional sigma-coordinates map the 

total water depth that measures from the mobile bottom to the water surface onto a fixed 

range σ = [0, 1] in the computational domain.  

 

Figure 2.5: Vertical mesh before and after the sigma-transformation 

The Cartesian coordinate system is then changed from (x, y, z, t) to the sigma-coordinate 

(x*,y*,σ,t*) as followings 

,  y ,  ,  
z h

x x y t t
H

   
    ,                               (2.34) 

where H(x*,y*,t*) = h+ η is the total water depth with h(x*,y*) being the water depth and 

η(x*,y*,t*) being the free surface. z=[-h, η] is the vertical coordinate for flowing water in the 

physical domain that has the origin zs=η on the free surface level and zb=-h on the bottom 

bed level. Using the principle of chain differentiation and the definition of the sigma 
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transformation (2.34), the partial differentiation of a variable Φ(x*,y*,σ,t*) in the physical 

domain is transformed as follows:  

t
t t
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where the partial derivatives of the transformation are given by 
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2.3.2. Equations in sigma-coordinate 

The Navier-Stokes equations, constructed in Cartesian coordinate, have to be modified in 

the transformed computational domain. Eqs. (2.1), (2.2) in the new coordinate (x*, y*, σ) are 

given by 
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,                                                    (2.39) 
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where  
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The right-hand side terms are given by 
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Further details of sigma-transformation applied to all the terms in N-S equations can be 

found in the work of Uh Zapata et al. (2014, 2016). 

2.4. Sediment bed deformation 

In this chapter, the basic framework of the morphodynamic model is outlined. The 

mathematical equation that governs the temporal variation of the sediment-water interface 

and a numerical model for solving this equation are presented. The numerical framework for 

coupling the morphodynamic model with the previously described hydrodynamic model is 

presented then in the subsequent section. The current work is focused on the numerical 

simulation of bedload transport and the suspended load is negligible. Free surface is also 

ignored because small Froude numbers are accounted for in our model (Roulund et al., 2005).  

2.4.1. Continuity equation for sediment 

The morphodynamical component modelled by the Exner-Polya equation is a solid 

transport discharge formula that depends on the hydrodynamical variables. The bed evolution 

caused by bedload transport is given by the Exner-Polya equation:  

(1 ) 0b
b

z
q

t



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
,                                                 (2.43) 

Here zb(x,y,t) is the local bed level, η is sediment material porosity, and qb is the bedload 

transport rate depending on the hydraulic and sediment variables. The porosity of the granular 

material correlates to the particle arrangement (close and random) and monodispersity of 

materials. For really monodisperse material of identical beds, the solid volume fraction could 

vary between 0.54 and 0.74 depending on cubical arrangement or maximum hexahedral 

packing. With preparation of the sediment bed in water, the value is usually 0.6 and porosity 

η is taken as 0.4 (Pham Van Bang et al, 2008).   

After application of the Green’s theorem, the integral of the right hand side becomes 
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where A indicates a triangular element, while Lj and nj (j=1,2,3) represent an edge and its 

corresponding unit normal vector of the triangular element. The formula to calculate qb is 

presented in the following section. 
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2.4.2. Bedload formula 

A two-dimensional bedload formula based on a description of physical processes 

proposed by Engelund and Fredsøe (1976) has been developed. The bedload transport rate qb, 

is given by 

1

6
b EF bq dp u ,                                                       (2.45) 

where d is the grain size, and pEF is the percentage of particles in motion on the bed surface. ub 

is the mean velocity of a sediment particle in movement. With the experiment data from 

studies of Fernandez Luque and Van Beek (1976) and Meland and Norrman (1966), the 

particle velocity ub has been determined as follows: 

(1 0.7 / )b cu a u   ,                                               (2.46) 

where θ is the Shields parameter associated with the skin friction, θc is the critical value of θ 

for the initiation of sediment motion on the bed, and a is an empirical constant. Experimental 

predictions are largely confirmed for a = 10 and a suitable choice of θc (Fernandez Luque & 

Van Beek, 1976; Meland & Norrman, 1966). The friction velocity uτ is determined from 

method by Nikuradse (1933) based on bed roughness in logarithmic velocity profile: 
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,                                                    (2.47) 

where z is the distance to the wall, and z0 is the distance from the boundary, at which the 

idealized velocity given by the wall law goes to zero, < > represents time-averaged character 

(Rodi et al., 2013). According to Nikuradse (1933), z0 is equal to ks /30 , in which ks is the 

Nikuradse equivalent sand roughness. 

        Engelund and Fredsøe (1976) gave a semi-empirical expression for pEF, when the bed 

shear stress exceeds the critical value so that the sediment particles on the bed will start to 

move. 
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where μd = 0.51 represents the dynamic friction coefficient corresponding to value 27° for the 

angle of repose of sediment material. 

In this work, the bedload is assumed to move in the same direction as the tangential shear 

stress on the bed. The present bedload model reduces the algorithm to simple calculation as 

shown by Zhou (2017). 

2.4.3. Sand-slide model 

Without a sand-slide model, an unrealistic bed-slope which is larger than the physical 

value of the angle of repose will occur, and large mesh distortion especially will appear, 

especially around the vertical cylinder. Consequently, the sigma-transformation will lose its 

ability to simulate scour holes. In order to prevent the bed slope from exceeding the sediment 

angle of repose, a mass-conservative-based algorithm for sand-slide has been applied 

successfully (Khosronejad et al., 2011, 2012). The bed slope is defined by the elevation 

gradient between point p and any point i (i=1, 2, 3) of the neighbouring cell centers, see 

Figure 2.6(a). If the slope angle exceeds the material angle of repose, the sediment particles 

will slide down to the angle of repose, see Figure 2.6(b). The correction to bed elevations is 

given by: 
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,                                      (2.49) 

where φ is the material angle of repose, zbp and zbi are the bed elevations at points p and ith 

neighbour; Δzbp and Δzbi are the corresponding corrections, and Δlpi is the horizontal distance 

between these two points. The bed elevation corrections are obtained by the mass 

conservation as follows: 

3

1

0hp bp hi bi

i

A z A z


    ,                                               (2.50) 

where Ahp and Ahi are the projection of cells p and i, respectively. Since the mesh points move 

only in the vertical direction, the bed cells projected onto the horizontal plane have the same 

cell area. 

https://en.wikipedia.org/wiki/%CE%94
https://en.wikipedia.org/wiki/%CE%94
https://en.wikipedia.org/wiki/%CE%94
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Figure 2.6: Sand-slide algorithm: (a) an unstructured triangular bed mesh, and (b) definition 

of quantities used to adjust the computed bed slope. 

2.4.4. Morphological update routine 

The procedure of calculating the scour around a cylinder in the computations was as 

follows:  

i. Obtain the flow field by solving the three-dimension unsteady Navier–Stokes Eqs. 

(2.1) and (2.2) with a LES coupled with the sigma-transformation method;  

ii. Calculate the sediment transport due to bedload using the bedload formula (2.45) 

proposed by Roulund et al. (2005), which is valid for low particle Reynolds numbers;  

iii. Update the new bed elevations using Exner–Polya formula (2.43) which relates the 

gradient of the bedload flux and time variation of the bed surface;  

iv. Check the sand-slide model. The entire bed is swept to identify bed cells at which the 

maximum bed slope is larger than the angle of repose. The algorithm (2.49) and (2.50) 

is applied iteratively until all slopes are smaller than the material angle of repose. The 

bed sweeping sequence during each iteration of this algorithm is alternated between 

the upstream-to-downstream and downstream to upstream directions. For each time 

steps the land-slide algorithm to converge within 6 iterations. For more details the 

reader is referred to Khosronejad et al. (2012).  

v. Check the mass conservation. It’s critical to conserve the volume at each time step as 

the bed elevation and consequently the domain geometry change in a coupled 

hydraulic and sediment transport model. In our work, we impose global mass 

conservation by checking the rate of volume change associated with the bed 
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deformation, keeping track of the position of the triangular bed mesh at the current 

and previous time steps.  

vi. Return to step 1. The overall flow chart for the numerical model is shown in Figure 

2.7. 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Flow chart for the numerical model.     

2.5. Conclusion 

In this chapter, a three-dimensional solver using unstructured finite volume method 

(UFVM) for Navier-Stokes equations is presented on an unstructured collocated grid. The 3D 

physical domain is composed of an arbitrary domain in the horizontal direction and is 

bounded by the irregular bottom and free surface in the vertical direction. Sigma-coordinate 

system, as shown in Uh Zapata et al. (2014), is extended for physical problems with free 

surface and mobile bed. The Momentum Interpolation Method (MIM) is used to avoid the 

check-board problem caused by the un-staggered grid. This is achieved by introducing face 
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normal velocities at the mid-points of the corresponding cell faces. The dynamic pressure is 

solved in an iterative approach for free surface flows.



 

                                                                                   

 

  

Validations of the hydraulic 

model  

In this section, the proposed model is tested with several benchmark problems, in which 

analytical or experimental solutions exist to quantify the numerical error. The order of 

accuracy are calculated as in Zlamal (1978). They are defined as: 

 
 

1 2

2 1

log /
order = ,

log /

N N

N N

                                                (3.1) 

where 
N

 denotes the norm error with a grid resolution of reference number N. This 

number is used to refer the number of subdivisions in each direction. The l  and l2 norms are 

used in this study. The l2 norm is given by:  

1/2

2

2
1

1
 = 

cellN

i

icell

e e
N 

 
 
 

 ,                                               (3.2) 

where Ncell is the total number of cell-cantered points and ei =|Φnu -Φan|, where Φnu and 

Φan are the numerical and analytical, respectively. 

3.1. 3D pure advection problem 

This test aims to check the performance of the proposed scheme for a pure advection 

problem. We consider the 3D advection equation as: 
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t





  


u ,                                                    (3.3) 

where φ is the variable, and u  is a prescribed flow field. In the following, the accuracy is 

quantified for the analytical cases of solid-body cosine bell and Zalesak’s sphere advection. 

The effect of the MIM scheme on smooth and discontinuous solutions is examined by 

comparing the test cases at different resolutions. 

For all test simulations, the computational domain was set as [-1, 1] × [-1, 1] × [-1, 1]. 

The horizontal domain is firstly divided into N×N uniform rectangles and then each rectangle 

is split into two right-angled triangles to represent the non-orthogonal grids. The vertical 

direction is also divided into N layers. The total number of grid points are ranging from 

65,536 (N=32) to 33,554,432 (N=256). A constant time stepping, dt = 0.0001, is used. Wall 

boundary condition is imposed at all boundaries. 

3.1.1. Cosine-Bell test 

In the cosine bell advetion simulation, a cosine bell is advected using the initial condition 

as: 

2cos (2 ) 0.25,

0 ,

r r

otherwise




 
 


                                              (3.4) 

where r represents a sphere: 

2 2 2 2( 0.5 / 2) ( 0.5 / 2) ( 0.5 / 2)r x y z      ,                         (3.5) 

and the velocity is given as a rotation flow field, given by: 

2 2 2
 = ( ), ( ), ( )

3 3 3
z y x z y x

   
   

 
u .                                   (3.6) 

The cosine bell is continuously advected until a full revolution is completed at t=1.0. 

Figure 3.1 shows the numerical solution at different time steps for N=128. Although a slight 

deformation is observed when the sphere moves around the domain, the central scheme 

exhibits a very good performance in terms of absolute error. Table 3.1 analyses the accuracy 

using l  and l2 norm computed for the whole domain and the numerical and analytical peak 

values. It shows that the numerical errors reduces as the resolution increases. Note that MIM 

gets closer to a second order of accuracy by increasing the grid resolution.  
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Table 3.1  Norm errors, numerical order of accuracy and peak values 

N l  norm Order l2 norm Order 
Numerical 

peak value 

Analytical 

peak value 

Error 

peak value 

32 0.724E+00 - 0.268E-01 - 0.51378 0.92732 0.41353 

48 0.560E+00 0.638 0.195E-01 0.797 0.77838 0.97581 0.19744 

64 0.415E+00 1.044 0.134E-01 1.312 0.92961 0.99556 0.06594 

96 0.236E+00 1.407 0.695E-02 1.636 1.01686 0.99680 0.02006 

128 0.146E+00 1.712 0.432E-02 1.692 1.00452 0.99579 0.00520 

192 0.666E-01 1.885 0.211E-02 1.704 0.99062 0.99904 0.00842 

256 0.381E-01 1.941 0.131E-02 1.657 0.99887 0.99982 0.00095 

 

 

Figure 3.1: 3D cosine bell and Zalesak’s sphere for advection term. 

3.1.2. Zalesak’s sphere test 

In the previous test, the proposed scheme has shown to accurate recover an advection test 

case with a smooth function as the cosine bell. However, a more challenge test is the 

Zalesak’s sphere  with steep gradient (Enright et al, 2002, Zalesak, 1979). A sphere of r=0.25 

radius with a slot of (2/5)r width and (8/5)r depth and undergoes a rigid body rotation. In this 

test case, the center location and the advection direction are the same as those used in the 

solid-body cosine bell advection case. The Zalesak’s sphere has an initial height of φ = 1. 

This test case is similar that used in Kawano (2016); however, the velocity field is 

represented by equation (3.6) instead of a 2D vertical rotation.  
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Figure 3.2: 3D contour for φ = 0.9 and the contour levels for the slice plane at z = 

0.5 / 2 for different resolutions. 

The Zalesak’s sphere completes one revolution after one unit of time. Figure 3.1 shows 

the evolution of the test using a grid resolution of N=128, and the time step Δt=0.0001. The 

sphere at t=1 coincides with its initial position. The original shape is preserved during the 

evolution of the Zalesak’s sphere. However, the interface loses its initial shape for coarse 

grids (not shown here). Three different sets of grids (N=128, 192 and 256) were used to 

check the grid dependency of each method. Figure 3.2 shows the tree dimensional contour for 

φ=0.9 and the contour levels for the slice plane z= 0.5 / 2 corresponding to the initial center 

position of the sphere. The numerical solution away from sharp gradient regions remains 

close to the analytical solution. However, the solution is dispersive near sharp gradients. 

Figure 3.3 compares the analytical and the numerical solution at the line located at x=

0.5 / 2 . Note that by increasing the grid resolution, the numerical solution is closer to the 

analytical solution. However, there still exhibits oscillations near the interface of the 

https://en.wikipedia.org/wiki/%CE%94
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Zalesak’s sphere. This is expected as central schemes could typically generate spurious 

oscillation at strong gradients.  

 

Figure 3.3: Analytical and the numerical solution at the line located at x = 0.5 / 2 . 

3.2. 2D and 3D Taylor-Green decaying vortex 

The decaying vortex has been investigated by various researchers as a benchmark test for 

two-dimensional unsteady flow, in which both the temporal and spatial accuracy can be 

demonstrated. In the present study, it is also selected as one of the validation case. For this 

classical test, the analytical solution of the velocity and pressure field at a certain time can be 

given as 

    
22 /Re( , , ) cos sin tu x y t x y e     ,                                     (3.7) 

    
22 /Re( , , ) sin cos tv x y t x y e    ,                                      (3.8) 

    
24 /Re1

( , , ) cos 2 sin 2
4

tp x y t x y e     ,                                 (3.9) 

The computational domain was set as [-1, 1] in both x and y direction and only five 

vertical layers are used. Periodic condition is imposed at all boundaries to represent a 2D case, 

and thus to avoid any problem related to boundary conditions. In this study, the horizontal 

domain is firstly divided into uniform rectangles and then each rectangle is split into two 

right-angled triangles to represent the non-orthogonal grids. Here Reynolds number is defined 
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as Re=UmaxL/ν, where Umax is the initial maximum velocity and L=1 is the size of a vortex. 

The Reynolds number for 2D simulation is set as 20. To check the spatial accuracy, three 

different grids spacing are used ranging from 0.0625 to 0.01563 while a fixed time stepping 

size is used for all simulations and the calculated velocity field is compared to the analytical 

solution for t = 0.5. To allow for maximum time step size, the semi-implicit Crank-Nicholson 

method is employed for both the convection and diffusion term. To check the temporal 

accuracy, five different time stepping sizes are used, ranging from 0.015 to 0.1. 

Figure 3.4 shows that the current scheme is clearly second order for both spatial and 

temporal accuracy as expected. For 3D simulations, at Re = 1600, a mesh resolution of 

128×128×128 is used and time step equals to 0.001. Figure 3.5 shows the evolution of the 

iso-surface of the Z-component of vortices. We can see the flow transitions to turbulence, 

with the creation of small scales, followed by a decay phase, similar to decaying 

homogeneous turbulence.   

(a)  (b)  

Figure 3.4: Spatial (a) and temporal (b) accuracy plots. As the slopes show the position of 1st 

and 2nd accuracy order of numerical schemes. 

 

Figure 3.5: Iso-surface of the Z-component of vorticity at different time. 
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3.3. Lid-driven cavity flow 

Another test case selected for NSMP3D is the lid-driven cavity problem, in which the top 

wall moves with a uniform velocity in its own plane and is a classic benchmark problem for 

testing and evaluating numerical techniques. Since the paper by Ghia et al. (1982), much 

researches have taken place using simulation or by experiment (Kim and Choi, 2000; Jan and 

Sheu, 2007; Mahesh et al., 2004). Although this test case is usually limited for two-

dimensional and incompressible laminar flow, recent researches have shown that it can also 

be used in relatively high Reynolds number and three-dimensional problems using DNS or 

LES (Bouffanais et al., 2007). 

The typical 2D computational domain for the lid-driven cavity problem is a square 

domain with four wall boundaries. On the top wall, a fixed constant horizontal velocity is 

imposed, serving as the moving lid that drives the flow. The rest of the walls are set as no-slip 

boundaries. In order to test NSMP3D, this problem is extended into a three-dimensional 

cubic domain. Two sets of boundary conditions are tested for this problem: 1) periodic 

boundary condition was imposed in the spanwise (Y) direction, representing a 2D problem; 2) 

wall boundary condition was imposed in the spanwise (Y) direction, representing a fully 3D 

problem. At low Reynolds numbers, the flow is expected to reach a steady state and the flow 

remains two-dimensional.  

As report by Bouffanais et al. (2007), the critical value for onset turbulence is around 

2000 to 3000, where instability appears in the downstream corner. In the present test cases, 

we keep the Reynolds number within the laminar regime to avoid the complication of 

turbulence eddies and DNS is also used to simulate a higher Reynolds number Re=1000 

which is experimentally and numerically studied by former researchers. The non-dimensional 

horizontal velocity at the top wall is set to be one, whereas velocity field inside the 

computational domain is initialized to be zero. The steady state is achieved after a sufficient 

time for a 3D simulation. In horizontal direction (X-Y plane), the domain is discretized into 

32×32 rectangles, for which is then divided into four triangles, representing an unstructured 

grid arrangement for Re=100 and Re=400, while a refined mesh is used in the corner for 

Re=1000 to capture the secondary vortex. On the vertical, uniform layers are used for all the 

tests. 

Figure 3.6 shows the velocity profiles at the horizontal and vertical midsections for both 

2D and 3D problem with the same grid resolutions with the point number in vertical NZ= 64. 
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The results of Ghia et al. (1982) using fine grid configuration are also plotted for comparison. 

For 2D simulation, it can be seen that our results from NSMP3D with periodic boundary 

condition matches exactly with the reference data even with fewer mesh points. Close to the 

top boundary, the gradient of the streamwise velocity is relatively small, which indicates very 

weak shear stress. As we move close to the center, the streamwise velocity drops rapidly, 

indicating the presence of a vortex structure and adverse pressure gradient. Close to the 

bottom wall, a nearly parabolic distribution of the streamwise velocity was observed, 

implying that the shear stress is the dominating factor in maintaining these velocity fields. 

For the vertical velocity distribution (see Figure 3.6b), a nearly symmetric profile and mild 

velocity gradient are observed from the left to the right wall, indicating that the vertical 

midsection is not significantly disturbed by the vortex structure at the top but mostly affected 

by the confinement of the side walls. 

 

Figure 3.6: Profile of horizontal midsection velocity (u) and vertical midsection velocity (w) 

at Re = 100. 

Figure 3.7 shows similar results for Reynolds number equal to 400 for both 3D and 2D 

problem with similar resolution, NZ = 64. For the 2D problems, a close match was again 

observed between NSMP3D and reference data. For the 3D problem, as no direct reference 

data was available, another 3D finite-volume method based code CgLES (Thomas and 

Williams, 1995; Ji et al., 2012) used in DNS mode was employed for validation. The 

reference code was run using the same geometry setting and boundary condition, but with a 

much finer grid resolution of 256×256×256. The results obtained from NSMP3D and 

reference code were almost identical despite the difference in mesh resolutions and both have 

difference with the 2D data. This means that at Re = 400, the boundary wall has affected the 

flow field and the problem becomes fully three-dimensional.  
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Figure 3.7: Profile of horizontal midsection velocity (u) and vertical midsection velocity (w) 

at Re = 400. 

The steady state results at a vertical plane obtained from NSMP3D (at y = 0.5) at Re = 

1000 is shown in Figure 3.8. From the plots, we can see that driven by the top lid, the 

velocity field has formed a rotational pattern with the main vortex slightly shifting into the 

top right section and a pair of secondary vortex near the bottom corners. From the top wall to 

the vortex center, the streamwise velocity gradually decreases and becomes negative as it 

moves away from the vortex center towards the bottom wall. The highest vertical velocity 

was observed to be near the top-left and top-right corner, indicating a change of flow 

direction due to the confinement of the sidewalls.  The velocity profile given by NSMP3D 

compared very well with the results of  Tang et al. (1995). 
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Figure 3.8: 3D cavity driven flow at Re = 1000. (a) Unstructured mesh with refinement 

resolusion in the corner; (b) 2D streamlines; (c) Streamwise velocity; (d) Vertical velocity; (e) 

3D streamlines; (f) Profile of midsection velocity distribution. 
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3.4. Standing wave in a closed basin 

In the above-mentioned test cases, all simulations were done with rectangle domains 

where a wall boundary condition is applied or the free surface is approximated by using a 

stress free lid. To test the capability of simulating 3D linear waves with sigma transformation 

scheme, the test case of standing wave in a closed basin was selected, as it is a good example 

for testing mass and energy conservation when computing transient flows. Furthermore, this 

test case has been studied by various researchers in Cartesian coordinates system (Chen et al., 

2003; Casulli, 1999; Stelling and Zijlema, 2003) and sigma-coordinate system (Ma et al., 

2012; Koçyigit et al., 2002; Yuan and Wu, 2004) reproducing accurate waves with relatively 

few vertical layers. 

For this test, we consider linear wave analytical solution based on potential flow theory, 

an inviscid fluid of constant density is confined in a closed basin with length L=10m and 

width W=10m. The undisturbed water level is h=10m. The wave amplitude, A, is set to 0.1m, 

1% of the water depth so that small amplitude linear wave theory applies. The fluid is 

inviscid fluid of constant density. A zero initial velocity is assumed and the initial free 

surface elevation is given by 

( , , 0) cos( )x y t A kx   ,                                               (3.10) 

where k is the wave number of the first sloshing mode in the x direction, i.e., k = π/L.  

At the free surface, the tangential stress equals zero, the vertical velocity w satisfies the 

kinematic boundary conditions and zero pressure condition is applied. Free-slip boundary 

condition is employed on all the side and bottom walls, where the Neumann boundary 

condition is used for dynamic pressure. The frequency ω of the resulting wave is given by 

positive root of ω2 = gktan(kh) where h is the equilibrium depth. The period of oscillations 

for this problem is T=3.55s. The analytical solution for free surface elevation η is given by: 

( , ) cos( ) cos( t)x y A kx  .                                           (3.11) 

Similarly, the velocity components and dynamic pressure can be derived by, 

 cosh ( )
( , , z, ) sin( )sin( )

sinh( )

k z h
u x y t A kx t

kh
 


 ,                            (3.12) 
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 sinh ( )
( , , z, ) cos( )sin( )

sinh( )

k z h
w x y t A kx t

kh
 


  ,                           (3.13) 

 cosh ( )
( , , z, ) cos( )cos( )

cosh( )

k z h
p x y t g gA kx t

kh
   


   .                  (3.14) 

The computational domain and the initial free surface profile is shown in Figure 3.9. The 

basin is discretized with triangles of the horizontal plane, which are extended for the three-

dimensional case in the form of prisms. The type of grid used in this simulation consists of 

four triangles for each of the 400 squares in the X-Y plane and the space step in the vertical 

direction is Δz = 0.5m, which is the same distance as the longest side of any horizontal 

triangle. A small-time step of Δt = 0.001s is used for higher accuracy. The number of vertical 

layers used for this simulation is similar to the ones used by other authors (Chen et al., 2003; 

Koçyigit et al., 2002). The NSMP3D code requires that Δz is close to the maximum length of 

the triangular mesh to reach the desired accuracy. There are other numerical methods using 

fewer layers (five layers) such as the NHWAVE code developed by Ma et al. (2012) which is 

based on Finite Difference method. However, the velocity and pressure accuracy are not 

reported.  

 

Figure 3.9: Domain discretization and initial free-surface profile for the standing wave 

problem in a closed basin. 

Figure 3.10 shows the computed and analytical surface elevation for t = T/2 and t = T 

during one period of oscillation. For better illustration, the three dimensional water elevations 

shown here were obtained by multiplying the solution by a scale factor of 25. As can be seen, 

the numerical results convincingly correspond to the analytical solution for short period 

waves. The greatest difference occurs close to the boundary, where the gradient of the 

horizontal velocity at the free surface was set as zero. We can also notice that there is no 
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wave propagation along the spanwise direction, which means the current numerical algorithm 

based on unstructured collocated grid is not interfering with extra numerical noise. 

To demonstrate the behavior of the numerical solution with and without the hydrostatic 

pressure assumption after several periods of oscillation, comparisons between the 

numerical and analytical water surface elevation at (x,y) = (2.5m, 2.5m) and (x,y) = (0.25m, 

0.25m) over four wave periods are shown in Figure 3.11. Using NSMP3D, the hydrostatic 

pressure is explicitly computed from the free surface elevations and the local fluid density, 

i.e., no Poisson equation is solved. As expected, the hydrostatic model fails to predict the 

wave period and a lag time between numerical and analytical results has been observed. In 

contrast, the surface elevations computed under the non-hydrostatic assumption are in good 

agreement with the analytical solution and no lag time is observed. We also notice that the 

approximations for the point (x,y) = (0.25m, 0.25m) are less accurate than the ones of (x,y) 

= (2.5m, 2.5m). The difference in the accuracy is directly related to the boundary 

conditions of the water elevation in the horizontal direction as we discussed previously. 

Figure 3.12 shows a comparison between the analytical and numerical solutions of the 

velocity components u,v,w and pressure p along the vertical section of the basin with the 

non-hydrostatic model at different time instances: t = T/2 and t = T. Agreement has been 

achieved between numerical and analytical solutions. The greatest difference occurs in the 

pressure field, due to the difference in the boundary conditions at the free surface. We 

remark that the normalized pressure is used for displaying, which is defined as the dynamic 

pressure divided by the constant water density. For better visualization, the velocity vectors 

shown are displayed using the magnitude and are multiplied for a factor of 10 (100 for T/2 

and T). Furthermore, comparisons of the velocity components and pressure field between 

the analytical solutions and numerical results at position (x,y) = (2.25m, 2.25m) at the same 

four time instances are presented in Figure 3.13. Fair comparisons are obtained for the 

velocity components and the dynamic pressure, which demonstrates the capability and 

accuracy of the present model.  
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Figure 3.10: Comparison between numerical and analytical solutions of water level for: t = 

T/8, t = T/2, t = 5T/8 and t = T. 
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Figure 3.11: Comparisons of the free surface elevation at (x,y) = (2.25m, 2.25m) and (x,y) = 

(0.25m, 0.25m) between analytical solutions and numerical results with hydrostatic and non-

hydrostatic models. 
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Figure 3.12: Comparison between numerical and analytical solutions of velocity and 

hydrodynamic pressure fields in the vertical section for: t = T/8, t = T/2, t = 5T/8 and t = T.  
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Figure 3.13: Comparison of the velocity and pressure between the analytical solutions (solid 

lines) and numerical results (dotted lines) at the position (x,y) = (2.25m, 2.25m) in four 

different time instances (T is the period). 

3.5. Wave propagation over a submerged bar 

In this example, we aim to examine the performance of our algorithm in modelling wave 

deformation over uneven bottoms. The test case is in a wave flume with a submerged 

trapezoidal bar following the experiment from Beji & Battjes. (1994). This case has been 

used to verify a number of non-hydrostatic free surface models (Ma et al., 2012; Cui et al., 

2012). The wave flume has a length of 30 m and still water depth of 0.4 m. In this example, 

the wave flume has a width of 1 m. The bottom geometry consists of a submerged bar with 

upward slopes of 1:20 and a 2m horizontal crest followed by a downward slope of 1:10. The 

deep region is 0.4m and reduced to 0.1 m in the shallowest region, as shown in Figure 3.14. 

 

Figure 3.14: Sketch of the geometry for the Beji and Battjes test. 
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The surface elevation and wave velocity distribution over water depth at the incoming 

boundary is imposed using the Stokes’ first order solution as 

cos( )
2

h
kx t   ,

 cosh ( )
cos( )

2 sinh( )

k h zh
u kx t

kh
 


  ,                     (3.15) 

where H is the incoming wave height,  is the wave frequency, h is the still water depth and 

k is the wave number obtained from the linear wave dispersion relationship ω2 = gk tanh(kh). 

A wave with period of 2.02s and amplitude of 1.0cm is considered. At the outflow boundary, 

a 5m sponge layer with a radiation boundary is applied. The spatial gradients of water surface 

and velocities were set to zero at the two lateral boundaries. The computational domain is 

discretized by 48000 triangles with an average side length of 0.0125m. The time step is 

0.005s and the implicit fractional-step algorithm is used to perform the simulations. 

Figure 3.15 shows the comparisons of free surface elevation at six measurement 

locations between numerical results and experimental data: x=10.5m; x=12.5m; x=13.5m; 

x=14.5m; x=15.7m; x=17.3m. Fair comparisons are obtained indicating the model’s capability 

to simulate complex interactions between waves and uneven bottoms. The results indicates 

that the surface elevation at locations x=10.5m and x=12.5m have been well simulated by our 

model. The secondary wave mode at locations x=14.5m; x=15.7m is also well predicted. 

Some discrepancies arise at x=14.5m and x=15.7m, located at the back of the bar. The same 

discrepancies have also been found by other non-hydrostatic models (Stelling and Zijlema, 

2003; Cui et al., 2012). Despite those discrepancies, the overall agreement with the 

experimental data is good. 
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Figure 3.15: Comparisons between numerical and experimental surface elevations at x = 

10.5m; x = 12.5m; x = 13.5m; x = 14.5m; x = 15.7m; x = 17.3m. 

3.6. Channel flow 

Channel flow represents a great interest to the engineering and science community, as 

most applications can be simplified into either circular or rectangular in cross section. This 

can also serve as a case for testing the turbulent model used in NSMP3D. 

3.6.1. 2D laminar channel flow  

Fully developed channel flows have been studied extensively to deepen our 

understanding on the mechanics of wall-bounded turbulent flows (J. Kim, Moin, & Moser, 

1987). As a result, a huge number of experimental and computational studies of channel flow 

have been carried out, which provides us plenty of comparable results to test the computation 

capacity of our code in high Reynolds numbers.  

The 2D laminar flow on an inclined bed driven by gravity is studied. For the channel flow 

with small slope α=sinα, the flow velocity on top can be obtained analytically, 
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where ν is the kinematic viscosity of water, h is the water depth and g is gravitational force. 

At low Reynolds numbers, the laminar flow in a channel can be described by Poiseuille’s law, 

following a parabolic equation: 
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where z denotes the vertical distance from the bed. In this study, the channel slope is set as α 

= 0.0113m/m. Body force (fx, fz) is used to represent the gravity force. Normalized by the bed 

friction velocity ( u gh  ) and the water depth, this non-dimensional body force can be 

calculated as 
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The channel’s dimension is 6h×4h×2h in x, y, z direction. Periodic boundary condition is 

imposed in the streamwise and spanwise direction. Both the top and bottom boundaries were 

set as no-slip wall. The Reynolds number based on the friction velocity (Reτ=uτh/νw) of 5 was 

used for the current simulation and non-dimensional velocity u+ on top can be obtained by 
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The Reynolds number based on the velocity on top (Re=uh/νw =u+Reτ) can be found to be 

12.5. The mesh is composed of 64×64 grid points (Figure 3.16), resulting Δx+=0.2344 and 

Δy+=0.1563.  The initial flow field is set to zero for the entire domain and is driven by the 

horizontal body force in the water region. The time step is fixed at dt =0.0005, the simulation 

duration is T=40 non-dimensional time units. The final steady velocity field is achieved when 

the streamwise velocity profile at each cross-section has become identical. 
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Figure 3.16: Mesh description for 2D Channel flow. 

Figure 3.17 shows the contour of streamwise velocity field and velocity vectors with a 

parabolic profile at steady state. Velocity profiles shown in Figure 3.18a are compared with 

the analytical solution. It can be seen that the velocity profiles from the present computation 

match exactly with the analytical solution at t = 40, and the normalized free surface velocity is 

found to be 2.5. Normalized by the analytical shear stress (τ = ρuτ
2) at the bottom wall, shear 

stress compared with analytical solution is shown in the Figure 3.18b. It can be seen that the 

velocity profiles from current simulation match exactly with the theoretical results except the 

bottom boundaries in the shear stress profile.   

 

Figure 3.17: Steady streamwise velocity vector field for 2D channel flow. 
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(a) (b)  

Figure 3.18: 2D laminar channel flow: (a) Streamwise velocity profile at x = 2.5, y = 0; (b) 

Shear stress profile. 

3.6.2. Turbulent channel flow 

Periodic boundary condition was applied in the streamwise and spanwise directions and a 

constant body force fx of 1.0 was used to drive the flow. No-slip boundary condition is used 

on bottom surface and free-slip boundary on the top. The initial velocity fields are set as 

random perturbation field. 

3.6.2.1. Direct numerical simulation (DNS) of turbulent channel flow  

The Reynolds number based on the friction velocity (Reτ=uτh/νw) is set as 180 to match 

Kim et al. (1987). The Reynolds number based on the mean surface velocity (Us) and half 

channel depth (h) is given by Re=Ush/νw=Us/uτReτ=3258, where Us/Uτ is determined from the 

simulation. The computational domain is set as 6h×4h×2h in x, y, z direction respectively. 

The horizontal plane is discretized on structured triangle grid of 128×84 while 128 irregular 

layers are used in the vertical direction. The values of the grid spacing in terms of wall units 

is found to be Δx+=16, Δy+=11 and Δz
+ 

max=4.2. The center of the first layer grids is located at 

z + ≈ 0 . 7 ,  which is within the laminar boundary layer. The time step is fixed at dt =0.0003 to 

keep the Courant number smaller than 1.0 during the whole simulation. The case is run for 

100 non-dimensional time units and plane-averaged turbulence statistics values are gathered 

from t+=70 to t+=100.  

The mean velocity profile at different vertical layers is shown in Figure 3.19 along with 

the reference DNS data of Kim et al. (1987). In general, the current result exhibits good 

capability in capturing the mean flow field, with the first point sits in the viscous sub-layer. In 

the buffer region, small discrepancy with the reference data can be observed in this region 
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with a smaller mean velocity. In the region (z+ > 20), the computed results closely follows the 

log-law, denoting a full developed turbulent flow. Clearly, our DNS results show the 

capability of the proposed model in simulating turbulent flows. Using the iso-surface Q-

criterion of instantaneous flow, Figure 3.20 shows tube-like vertical structures, which are 

randomly distributed over the turbulent flow field (Nagaosa, 1999). 

 

Figure 3.19: Mean streamwise velocity distribution in wall units by direct numerical 

simulation. 

 

Figure 3.20: Iso-surface of Q-criterion field showing direct simulation of turbulent structure 

in the channel flows. 
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3.6.2.2. Large eddy simulation (LES) of turbulent channel flows  

Large eddy simulation is carried out at the friction Reynolds number as 395. 

Computations have been performed using the constant coefficient Smagorinsky sub-grid 

scale model (Cs = 0.1). The initial condition and boundary condition are set as the same as the 

above DNS cases, while computational domain is 2πh×πh×2h in x, y, z direction with two 

computational grids are 64×64×64 and 96×96×96 respectively. The wall normal grid is 

stretched by using a hyperbolic-tangent type stretching function: 

                                (3.20) 

The grid spacing for coarse mesh in the streamwise and spanwise directions are Δx+ = 38, 

Δy+ = 19 and the first mesh point away from the wall is at z + ≈ 1 . 4  and Δz
+ 

max = 28.2; while 

for fine mesh, the grid space is Δx+ = 26, Δy+ = 13, Δz
+ 

min = 0.86, Δz
+ 

max = 18.92. The time step 

is fixed at dt = 0.0005, the simulation duration is 80 non-dimensional time units. The plane-

averaged turbulence statistics values are gathered from t+ = 60 to t+ = 80. 

Jarrin (2008) and Okong’O et al. (2000) are chosen as references, in which LES has been 

used in an unstructured grid. Figure 3.21 shows the planar average of time-averaged velocity, 

normalized by the friction velocity. The experimental log-law from Eckelmann (1974) is u+ = 

2.65Inz++5.9 for a nearby friction Reynolds number cases. Obviously, our LES result using 

coarse mesh has excellent agreement with experimental data of Eckelmann (1974) and 

unstructured numerical data from Okong’O et al. (2000) and Jarrin (2008). Using fine mesh, 

Our LES result is close to numerical results of Jarrin (2008) with the same mesh, the 

predicted velocities from both are very slightly higher than the log law u+ = 2.5Inz++5.5 

given by Kim et al. (1987) using DNS. A discrepancy of about 6% between DNS and 

Experimental results from Eckelmann (1974) has been observed. The explanation about this 

discrepancy can be found in Kim et al. (1987)..  
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Figure 3.21: Large eddy simulation of mean streamwise velocity distribution in wall units. 

(a) (b)  

Figure 3.22: Large eddy simulation of the turbulent channel flow: (a) Streamwise turbulence 

intensity using coarse mesh and (b) Reynolds stress 

The computed streamwise turbulent intensity (urms, vrms, wrms) and Reynolds stress using 

fine mesh are shown in Figure 3.22. The tendency of our results are in good agreement with 

the reference data, with a very slightly difference of the turbulent intensity, compared with 

the references in streamwise direction. Our results exhibit increased turbulence generation in 

the buffer region, which leads to a higher turbulence intensity and a higher mean velocity 

profile. Using iso-surface Q-criterion of instantaneous flow in the lower half part, Figure 3.23 

shows hairpin structures, which are randomly distributed over the turbulent flow field and an 

instantaneous velocity profile in the full channel. 
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Figure 3.23: Large eddy simulation of of the turbulent channel flow: (a) Iso-surface of Q-

criterion field showing turbulent structure and (b) Instantaneous velocity profile. 

3.7. Speed-up test 

In this section, some numerical results are reported to demonstrate the effectiveness of 

the proposed parallel methods. Different number of processors are performed to measure the 

parallel efficiency and the results have been obtained after averaging over several simulations 

of the same problems. Performances are evaluated in terms of speedup and efficiency. The 

speedup Sp is defined as Sp = T1/Tp and the efficiency E is defined as Ep = T1/(npTp) where T1 

is the execution time of the serial algorithm and Tp is the execution time of the parallel 

algorithm with np processors. 

We applied our parallel solver to standing wave in a closed basin case corresponding to 

the solitary wave propagation in a channel problem. In this case, we can easily control the 

size and distribution of the sub-domains, and measure their influence on the parallel 

performance. To test the performance of the solvers, a mesh of 80 000, 320 000 and 5 120 

000 prisms have been generated, (right triangular elements and 20 layers) and Δt = 0.01s. The 

sub-domains are taken by dividing np times the 3D domain in the x-direction. 

The performance of the parallel methods is investigated in Figure 3.24. It shows the total 

CPU time, the speedup and efficiency up to t = 0.5s starting from 2 up to 20 processors. Inner 

calculations in each sub-domain are reduced as the number of processors increases and the 
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total CPU time decreases as the number of processors increases. It can also be noticed that 

the speedup deviates from the ideal speedup line as the number of processors increases 

because an increased communication time between blocks. Nevertheless, the speed up 

improves with the size of the problem. Such effect is due to the growth of the computational 

time spent in the inner computations with the problem size. 

 

Figure 3.24: Performance of the solitary wave propagation in a channel problem using 

different number of processors and mesh resolutions. 

3.8. Conclusion 

The proposed scheme is tested by several benchmark test cases for accuracy and 

computational efficiency and can be applied to unsteady flow problems with a complex 

geometry. The test case of 2D decaying vortex shows that NSMP3D gets second order of 

accuracy in space and in time and is used in comparison with the analytical solution. The test 

case of lid-driven cavity flows shows that NSMP3D can provide the results equivalent to 

those obtained from previous numerical studies, even they used finer computational meshes. 

3D standing wave in a closed basin checks the ability of NSMP3D in simulating free-surface 

and non-hydrostatic flow using sigma-coordinates system in comparison with small 

amplitude linear wave theory. From the validation on selected and relevant test cases, the 

proposed scheme yields an accurate and robust solution for three-dimensional problems at 

relatively low cost.  



 

                                                                                   



 

                                                                                   

  

3D simulations of scour 

around an obstacle  

In order prove the capacity of NSMP3D in handling unsteady flows and vortex shedding, 

the classic test case of 2D flows around a cylinder is carried out with increasing Reynolds 

numbers. The numerical results are compared with experimental and numerical data given in 

the literature (Ghia et al., 1982; Thom, 1933; Nishioka and Sato, 1974). Then, a test case on 

3D free-surface, non-hydrostatic flows around a cylinder will be presented. The comparison 

between our numerical results with experimental results obtained with high Reynolds 

numbers and different Froude number will be given. 

4.1. Flow around a cylinder on flat bed with rigid surface 

The flows around a circular cylinder, significantly varying with cylinder Reynolds 

numbers, have long been a benchmark problem (Kim & Choi, 2000) for validating          

external flows. It is known that at lower Reynolds numbers (ReD < 47), the flow will form a 

stable recirculation bubble behind the cylinder. When ReD increases up to 200, a stable vortex 

shedding formed and the flow remains two-dimensional. While ReD are higher than 1000, 

flows become fully three-dimensional. 

4.1.1. Low Reynolds number cases 

A various number of Reynolds numbers have been selected for this benchmark test, 

ranging from 50 to 3,900. The diameter for the cylinder is set as one. The computational 

domain is set as [-10, 20] in the streamwise direction, [-15, 15] in the spanwise direction to 

develop a free outflow. A uniform Dirichlet inflow boundary condition is imposed at the inlet, 



74                                                          Chapter 4 3D simulation of scour around an obstacle 

 

 

with a non-dimensional unit velocity. In the spanwise direction, free slip boundary condition 

is used to minimise the effect of wall boundaries. In the vertical direction, periodic boundary 

condition is used to mimic an infinite long cylinder. The element counting for the 

computational domain in X-Y direction is about 20,000 with 20 layers are used in vertical. To 

ensure the first layer points lie within the boundary layer, 157 mesh points are constructed 

around the cylinder and the distance from the first layer cell centers to the wall is about 

δ=0.01. In a recent numerical study carried out by (Qu et al., 2013), a rectangle domain of 

similar dimension as the present study was used but with a closer distance of the first grid 

point away from the wall (δ=0.005). All the simulations are initially run for a duration of 100 

time units (D/U) until the solution is statistically stable and then the simulation is restarted for 

another 300 time units to gather the time averaged data.  

The steady state recirculation bubble and pressure near the cylinder at ReD = 40 is shown 

in Figure 4.1. The present result shows smooth instantaneous pressure contours, indicating 

few pressure oscillations in the proposed scheme.  

 

Figure 4.1: Bubble characteristics for ReD= 40.  

The evolution of the recirculation-area length as a function of the Reynolds number is 

shown in Figure 4.2a. From the time-averaged stats, it can be seen that the length of the 

recirculation area moves towards the cylinder body as the Reynolds number increases. The 

calculated recirculation-area length is compared to the experimental measurement of 

Nishioka and Sato (1974) and the computational result of Park et al. (1998), who have used a 

fine mesh consisting of 641×241 grid points. A fair agreement was found between the present 

result and the reference data. Figure 4.2b shows the Strouhal number as a function of the 

Reynolds number, which indicates the vortex shedding frequency for each case. Williamson 
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(1989) studied the oblique and parallel vortex shedding in the wake of a circular cylinder at 

low Reynolds numbers and pointed out that the Strouhal-Reynolds number relationship are 

closely related to the transition of the mode of vortex shedding. In a recent numerical study 

carried out by Qu et al. (2013), a rectangle domain, similar in size to that of  the present study, 

was used but with a closer distance to the first grid point away from the wall (δ= 0.005). An 

excellent agreement is found among all three results. 

 

Figure 4.2: Evolution of (a) Reattachment length and (b) Strouhal number. 

Figure 4.3 shows the time averaged pressure coefficient around the cylinder surface for 

two different Reynolds numbers, plotted along with measurement from Homann (1936) and 

Thom (1933) and numerical result from Rajani et al. (2009). The current result agrees well 

with the reference data. For ReD>47, with the increase of Reynolds number, an increase of 

the negative pressure was noticed, especially from the base suction point at the back of the 

cylinder. The point of the largest negative pressure coefficient moved upstream, indicating a 

shift in the mean separation point, due to the decreasing thickness of the wall shear layers and 

increasing vortex shedding. This finding is also supported by the reduction of the length of 

the recirculation bubble as shown in Figure 4.2. At the frontal stagnation point, the decrease 

in time averaged pressure coefficient is smaller when compared with the base suction points, 

which means the base pressure is more sensitive to the dynamics of wake.  
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Figure 4.3: Time averaged pressure coefficient at different Reynolds numbers. 

Results on drag and lift coefficient and vorticity contour are shown in Table 4.1 and 

Figure 4.4, respectively. For drag and lift coefficient, the first value is the time averaged 

mean value, and the values after ‘ ’ denote the maximum deviation from the time averaged 

value. From Table 4.1, the mean drag coefficients decrease with the increase of Reynolds 

numbers, while the oscillation amplitude increases continuously. Quantitatively, the present 

scheme tends to have over-predicted values as compared with other numerical results, 

especially with data from Qu et al. (2013) for low Reynolds numbers. This deviation can be 

explained due to the difference in the size of computational domain, spatial/temporal 

resolution, as well as the boundary conditions.  

Table 4.1 Drag and lift coefficients for unsteady flow past a cylinder at various Reynolds 

numbers 

ReD 
Present results Park et al. (1998) 

Mittal 

(2005) 

Qu et al. 

(2013) 

Cd Cl Cd Cl Cd Cd 

50 1.476 0.005  0.062 - - 1.416 1.397 

60 1.432 0.006  0.146 1.39  0.1344 - 1.377 

80 1.389 0.007  0.340 1.35  0.2452 - 1.336 

100 1.374 0.044  0.341 1.33  0.3321 1.322 1.317 

120 1.361 0.018  0.420 1.32  0.4103 - 1.306 

150 1.357 0.028  0.526 - - - 1.305 

200 1.347 0.045  0.673 - - 1.327 1.316 
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Figure 4.4: Instantaneous plot of the vortex shedding at ReD= 200. 

A comparison between our numerical and experimental results is presented on a free slip 

bed at ReD=3,900. The vertical mean streamwise (u/U) and spanwise velocity (v/U) 

components at five different stations, x=1.06, 2.02, 3.0, 4.0 and 5.0, are plotted in Figure 4.5. 

A U-shaped profile is observed near the wake region. The experimental data LS93 and OW93 

were obtained from Lourenco (1993) and Ong & Wallace (1996), respectively. LES B16 

corresponds to numerical results from Bai et al. (2016). We notice that our numerical results 

largely correlate with the experimental data, except at x=1.06, where the uncertainties in 

measurements are high. For the purpose of demonstrating this discrepancy, the numerical 

result obtained by Tremblay et al. (2000) using the DNS is also included in Figure 4.5 (b). 

We notice that the present numerical results are actually very close to the DNS prediction.  

 

Figure 4.5: Mean velocity on a free slip bed at different streamwise positions (x/D) at ReD = 

3,900: (a) streamwise (u/U) and (b) spanwise (v/U) velocities. 
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4.1.2. Moderate Reynolds number case 

Turbulent flows around a vertical cylinder are a complex phenomenon in computational 

fluid dynamics. The phenomenon of horseshoe vortex oscillation has been studied intensively 

by many researchers both experimentally and computationally and can serve as reference data 

for the current test case. LES was performed at a Reynolds number of 4,460 and 46,000 for a 

systematic study of the 3D horseshoe vortex and the wake behind the cylinder, with a much 

finer grid resolution in both horizontal and vertical directions.  

A sketch of the computational geometry for the numerical simulations around a circular 

cylinder is shown in Figure 4.6. The origin of the coordinate system is located at the cylinder 

center on the bottom, with the x, y and z axis corresponding to the streamwise, spanwise and 

ascendant vertical direction, respectively. The computational domain is kept the same as 2D 

case, while in the vertical direction, to make the 3D phenomenon more obvious, the bottom 

boundary is set a no-slip wall and the top boundary is set as a free slip wall. Inflow velocity is 

given by a Poiseuille profile with the mean value as unit velocity.  

 

Figure 4.6: Sketch of the geometry of the computational domain and specification of the 

boundary conditions. 

For ReD=4460 case, the boundary layer thickness δ/D in the inflow is set to be 0.59D. 

The element in the computational domain in X-Y direction is about 41202 with 424 points 

along the cylinder surface, the first row of cells is situated at 0.003D away from the cylinder 

surfaces, corresponding to 0.75 wall units. While for ReD = 46000 case, the boundary layer 

thickness δ/D in the inflow is set to be 0.5D, The computing domain is discretised into the 

order of three million  finite volumes. 128 layers with finer resolution close to the bottom are 

employed to capture the oblique pattern of vortex shedding in the vertical direction. 

Horizontally, the first row of elements is situated at 0.003D away from the cylinder surfaces 

corresponding to 14 wall units.   
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The HV system is attributable to the separation of the incoming boundary layer induced 

by adverse pressure gradients, which are generated by the cylinder obstruction. The 

turbulence driven by the resulting flows will create a number of necklace-like structures 

around upstream the cylinder. Because of the lateral pressure gradients, these structures 

stretch when they fold around the cylinder (Kirkil et al., 2008). Their legs are approximately 

parallel to the direction of the incoming flow. 

Figure 4.7a shows the main coherent structures in an instantaneous flow associated to a 

HV system on a rigid bed using Q criterion. We can see that the 2D parallel vortex shedding 

has transformed into a 3D mode, with dislocations present in both streamwise and vertical 

directions. The three non-dimensional vortices (DV1, PV1, CV1) and two counter-rotating 

bottom-attached vortices (BAV1 and BAV2) are clearly observed. As Kirkil & 

Constantinescu (2012), the figure illustrates the development of smaller-scale instabilities 

along the legs of BAV2. Figure 4.7b presents 3D streamlines, which clearly illustrate the HV 

system around the cylinder as shown in Figure 4.7a. It’s observed that thanks to used fine-

mesh resolution, numerical results can show rotational movements of HV around themselves. 

   

Figure 4.7: (a) Detailed view of the HV coherent structure; (b) and 3D streamlines. 

Figure 4.8 shows the streamlines in front of the cylinder on a vertical plane (at the central 

axis, y=0) at 14 different instants during an oscillating cycle of the HV system, compared 

with experiment of Lin et al. (2003). We can remark that there are three primary clockwise 

vortices (PV) close to the bottom, forming a necklace vortex system. As reported by Kirkil 

and Constantinescu (2010), a typical horseshoe vortex system can consist of six individual 

vortices and its dynamics depend largely on the Reynolds number and on the characteristics 

of the incoming boundary layer. According to the smoke tunnel study by Baker (1979), it is 

also expected that counter-clockwise vortex should exist in the adjoining region between the 

cylinder and the bottom corresponding to each of the main vortex. We compare the structure 
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of the computed HV system with one observed in an experiment conducted at a Reynolds 

number of 2250 by Lin et al. (2003), the HV system was in the breakaway sub-regime. A 

nearly perfect agreement on HV system pattern has been obtained. The three main vortex are 

correspondingly: 1) the developing vortex (DV1) located at the upstream-most position of the 

flow domain, 2) the primary vortex (PV1) at the middle, and 3) the corner vortex (CV1) at 

the right. The overall process, illustrated in Figure 4.8, is that: DV1 is first formed at the 

upstream position among these three vortices, and DV1 originates from the position where 

the separated boundary layer starts to evolve, and moves downstream to become a new 

primary vortex (PV2). Subsequently, as the PV1 moves closer to the juncture of the vertical 

cylinder, it then becomes a new corner vortex (CV2). The similar expression of HV system is 

due to the similar relative thickness of the incoming boundary layer and similar Reynolds 

number. 



Chapter 4 3D simulation of scour around an obstacle                                                          81 

 

 

 

  

Figure 4.8: Streamline patterns in the upstream comparing the LES numerical results  with 

experiment of Lin et al. (2003) at a time interval of 0.0769T, where T is the period of the 

breakaway cycle. 

4.1.3. High Reynolds number case 

Figure 4.9 shows the main coherent structures in an instantaneous flow associated to a 

HV system on a rigid bed using h=4D and ReD=46,000. Clearly there exists two primary 

necklace vortices and two bottom-attached vortices. A U-shaped Primary Vortex (PV1) 

wraps around the upstream part of the cylinder, along which a small, but very coherent, 
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junction vortex appears at the base of the cylinder (JV). Another U-shaped Primary Vortex 

(PV2) is observed upstream of PV1. The formation of Bottom-Attached Vortices, BAV1 and 

BAV2, are induced upstream by the presence of the primary vortices PV1 and PV2. 

Secondary Vortices (SV) are observed towards PV2. 

 

Figure 4.9: Detailed view of the coherent structure with a HV system on a rigid bed. 

The location, size, and intensity of the turbulent HV highly vary in time. Figure 4.10 

shows four instances of a cycle of oscillation. The main vortex cores show in different 

positions. Clockwise-rotating primary vortices (PV1, PV2) and counter-rotating bottom-

attached vortices (BAV1, BAV2) appear at all times during the oscillation cycle, exhibiting a 

relatively stable behaviour. Smaller secondary vortices (SV) are shed randomly from the 

separation region of the incoming boundary layer. These SV are convected toward PV2 and 

can interact and merge with it. The direction of the oscillate centers of PV1 and PV2 are 

found to be oppositely positioned to one another: at t=T/2 they move closer, and at t=T/4 and 

t=3T/4 move far away from each other. The amplitude of oscillation in the direction of flow 

is about 0.1D. We remark that the structure of HV system, observed by our model using 

h=4D and ReD=46,000, is similar to the ones of Kirkil et al. (2008) using h=1.12D and 

ReD=16,000.  
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Figure 4.10: Instantaneous streamlines on the longitudinal section upstream the cylinder at 

five instants in time for the rigid bed case. 

Figure 4.11 shows mean streamlines on a longitudinal plane located behind the cylinder 

in the wake. S, F and N denote the saddle points, the centers of foci and nodal points, 

respectively. The arrows represent the direction of the flow. It is noticed that there exists a 

nodal point of attachment N1, corresponding to the merging point of shear layers emanating 

from both sides of the vertical cylinder to form a spanwise-oriented vortex. As a consequence, 

fluid particles situated close to the bed are first entrained into the core of this vortex, and then 

from there toward the surface by an upwelling anti-clockwise vortex, shown by a foci point 

F1. This counter-clockwise rotating vortex is responsible for the scour mechanisms 

downstream of the cylinder. 

Figure 4.12 shows mean flow streamlines on different spanwise cross-sections located at 

four different stations: x/D=0.5, 1.0, 1.5 and 2.0. The streamline patterns are almost 

symmetric, except for the lee wake just behind the cylinder. There is a pair of vortices near 

the bed corresponding to the primary vortex legs. We notice that even at x =2D, these legs 

are still maintained. The shear layers, emanating from the side edges of the cylinder, roll up 

to form vortices in the lee wake of the cylinder. These vortices engender upwelling motion of 
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fluid particles toward the surface. The upwelling motions inside the wake region are 

compensated by down-welling motions on the outside.  

 

Figure 4.11: Mean flow streamlines on the longitudinal section behind the cylinder for the 

rigid bed case. The direction of the flow is indicated by the arrows.  

 

Figure 4.12: Mean flow streamlines on the vertical cross-sections behind the cylinder for the 

rigid bed case. 
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Figure 4.13: Mean streamlines on different horizontal planes for the rigid bed case. 

Figure 4.13 presents mean flow streamlines on horizontal planes at z/D = 0.05, 1.0, and 

2.0 in the wake region. The flow separation points are located at φ =90°, 105° and 110° at 

z/D=0.05, 1.0 and 2.0, respectively. It’s noticed that these separation points move 

downstream as z/D increases. This observation is also recorded by Kirkil & Constantinescu 

(2015). Moreover, Figure 4.13 shows that the wake region becomes bigger as it rises to the 

surface. Saddle points, S2 and S3 indicate the end of the wake region at planes z/D = 0.05 and 

1.0 and the corresponding detachment lengths are 0.9D and 1.9D, respectively. Foci points F4 

(x=0.55, y=0.13), F5 (x=1.24, y=0.2) and F6 (x=2.05, y=-0.22) show the position of 

upwelling vortexes V1, V2 and V3. 
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Figure 4.14 gives the bed shear-stress iso-values, obtained from the mean flow simulation 

and compared with the results of Roulund et al. (2005). The model reproduces most of the 

characteristics observed by Roulund et al. (2005) in the vicinity of the cylinder but with very 

slight discrepancies far away from it. The average distribution of the shear stress is fairly 

axisymmetric. High values are found for shear stress on the two sides close to the cylinder, 

approximately corresponding to the position where the velocity is highest, just before the 

flow separation line. 

 

Figure 4.14: Non-dimensional bed shear stress distribution at ReD=46,000.  

(a) Results from Roulund et al. (2005) and (b) Current numerical simulation. 

4.2. Flow around a cylinder on flat bed with free surface 

4.2.1. Low Froude number case 

Roulund et al. (2005) established that there is no significant Froude (Fr) number effect on 

the flow in the radial direction when relatively small values Fr are used. It was based on their 

numerical simulations of rigid bed flows (Fr=0.14). The comparison between their results 

with the experimental results of (Hjorth, 1975) (Fr=0.21) and of Dargahi (1989)(Fr=0.19). 

Dargahi (1989) shows that in these cases, Froude number effect was practically non-existent. 

Roulund et al. (2005) also indicates that the difference Δh in the surface elevation between 

the front and side edges of the cylinder may be written, for small Fr, as  

 2/ / 2h h Fr  ,     (4.1) 
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where h is the total depth. Using this relationship, it can be seen that the relative difference is 

so small when Fr < O(0.2), making no significant impact in the simulations. However, this 

formula was not even numerically demonstrated because Roulund et al. (2005)’s model 

cannot handle free-surface flows. Using NSMP3D for this case, we impose no-slip conditions 

on the bottom to only focus on free-surface level evolution. The same discretization as in the 

3D cylinder case is used for the numerical simulations.     

                 

Figure 4.15: Velocity magnitude and streamlines for unsteady flow simulation using a free 

surface (left) and a rigid surface (right) for Fr=0.075, ReD=3032 and h/D=1.0. 

Figure 4.15 depicts the predicted horizontal velocity-magnitude field and streamlines 

around the cylinder, obtained from NSMP3D at the level z/D = 0.5 and different times, where 

z is the water depth level. The Froude number, the Reynolds number and relative water depth 

in these simulations are Fr = 0.075, ReD = 3032 and h/D = 1.0, respectively. There are vortex 

shedding in the both cases. However, this phenomenon occurs with a lag time between the 

free-surface case and the rigid surface one. We notice the vortex shedding in the free-surface 

case evolves faster than the rigid-surface case, making that the individual vortices are 

perceptible at early times in the first case. Notice that the simulation at t = 7 in the free 

surface case is nearly similar to the one at t = 10 in the case of rigid surface. This can be 

explained by the fact that the free surface imposes less constraints on velocity fields than the 

rigid surface.   

 

Free surface                                               Rigid surface 
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Figure 4.16: Numerical simulation of the water surface elevation between front and side (0 to 

90°) and between front and back (0 to 180°) as a function of the time using Fr = 0.075, ReD = 

3032 and h/D = 1.0. 

Figure 4.16 presents the variation in water surface elevation from the front to the side (0 

to 90°), and from the front to the back (0 to 180°) of the cylinder, respectively, in function of 

time using the same flow parameters as above mentioned. Differential water surface elevation 

results have been normalized by the cylinder diameter. NSMP3D results show that the 

average water elevation difference at the side is about Δh/h = 5.6e-03 meanwhile Eq. (4.1) 

gives a value of 2.81e-03. Obviously, the numerical value corresponds to the one predicted 

by NSMP3D. We also notice that more turbulent behaviour is observed at the back of the 

cylinder than at the side, as expected.   
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Figure 4.17: Velocity streamlines at the back of the cylinder and water surface elevation in 

the horizontal and vertical direction (amplified 50 times) at different times using Fr = 0.075, 

ReD = 3032 and h/D = 1.0. 

Figure 4.17 shows three-dimensional streamline plots at the back of the cylinder. Even 

though the water surface elevation is very small and the rigid lid approximation seems to be 

acceptable, we notice the influence of water surface elevation on the component of flow 

velocity in the radial direction, especially close to the free surface. In horizontal and vertical 

view, numerically predicted water elevations around the cylinder are also shown in Figure 

4.17. The water surface elevation was highest in front of the cylinder, and lowest behind it, in 
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agreement with the experimental results. The water elevation has been amplified 50x to make 

visible this profile. Similar results are obtained for other small values of the Froude number. 

4.2.2. High Froude number case 

For large Froude numbers, the differential water surface elevation Δh/h is expected to be a 

function of not only Fr but also h/D, as presented by Johnson and Ting (2003) in their 

experimental results. In this paper, we follow similar test cases as Johnson and Ting (2003) 

and shown in the Table 4.2. 

Table 4.2 Numerical conditions and surface elevation for the test cases with large Froude 

numbers and high Reynolds number 

Fr ReD h/D dh/D (90°) dh/D (180°) 

0.18 7.60E+03 1.04 0.032 0.047 

0.20 7.90E+03 0.97 0.039 0.043 

0.27 1.15E+04 1.03 0.085 0.079 

0.29 1.67E+04 2.02 0.108 0.083 

0.34 1.41E+04 1.03 0.137 0.123 

0.36 1.50E+04 1.03 0.146 0.119 

0.43 2.52E+04 2.06 0.251 0.135 

0.44 1.85E+04 1.06 0.216 0.199 

0.57 2.33E+04 1.00 0.325 0.250 

Comparisons of the free surface elevations obtained from the experimental study and 

numerical predictions by NSMP3D, are given in Figure 4.18. It presents the variation in 

water surface elevation from the front to the side (0 to 90°), and from the front to the back (0 

to 180°) of the cylinder, respectively, as a function of Fr and h/D. As seen from Figure 4.18, 

the tendency of the relationship between Froude number and water relative elevation shows 

good agreement between the numerical and experimental results. The results show that the 

value of dh/D increases when the Froude number increases. However, NSMP3D cannot 

handle with Fr > O(0.6) and Re > 25 000 due to high Reynolds number values. In these cases, 

the diffusion term is almost zero resulting in a strongly degenerate parabolic problem. Future 

research is focus on the implement new numerical techniques to solve this issue. 
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Figure 4.18: Comparison of the relative variation of different water surface elevation between 

the numerical model and the experimental results with large Froude numbers. 

We present the NSMP3D results for Fr = 0.44, ReD = 18,500 and h/D = 1.06 as an 

example for large Froude number values. Figure 4.19 shows dh/D from the front to the side 

(0 to 90°), and from the front to the back (0 to 180°) of the cylinder, respectively, as a 

function of time. The average water elevation difference at the side and back are dh/D = 0.21 

and dh/D = 0.19, respectively. Although, the value at 180º has more oscillations, both values 

remain stable since t = 5.     

 

Figure 4.19: Numerical simulation of the water surface elevation between front and side (0 to 

90°) and between front and back (0 to 180°) as a function of the time using Fr=0.44, ReD 

=18,500 and h/D=1.06. 
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Figure 4.20: Velocity streamlines at the back of the cylinder and water surface elevation in 

the horizontal and vertical direction (amplified 5 times) at different times using Fr=0.44, ReD 

=18,500 and h/D=1.06. 

Figure 4.20 presents the three-dimensional streamlines plots and the water surface 

elevation at the horizontal and vertical direction. Clearly three-dimensional streamlines 

represent deviation-deflexion to form horseshoe vortex near the bottom and ascending flows 

combined with wake in the area behind the cylinder. The relative difference between the 

surface elevation in front and at the side edge of the cylinder is now almost 20% of the total 

water depth. This difference and therefore the induced-pressure gradient generates a strong 

down flow with a very strong component of flow velocity in the radial direction, as observed 

in the streamlines in Figure 4.20. NSMP3D results show that the water surface elevation was 
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also highest in front of the cylinder and lowest behind or side it, as expected. In Figure 4.20, 

the water elevation has been amplified 2x to observe the vertical profile (compare with the 

50x used in the previous case). 

4.3. Flow around a cylinder with scour erosion 

The boundary conditions for the flow field are defined as follows: at the inlet, transverse 

and vertical velocities are specified as zero. The inflow velocity is given by a Poiseuille 

profile with a unit mean non-dimensional value and boundary layer thickness δ/D=0.5. At the 

outlet, zero-gradient conditions were applied for all variables. The boundary in the spanwise 

direction is set as Neumann conditions.  As it was pointed out in the previous section, a rigid 

surface is used on the top. Finally, no-slip wall boundary conditions are applied for the 

cylinder surface and the bottom bed. A detailed view of the deformed mesh close to the 

cylinder is shown in Figure 4.21. 

 

Figure 4.21: Detailed view of the deformed mesh close to the cylinder with scouring. 

In this paper, a numerical study similar to Roulund et al. (2005) is adopted. The diameter 

of the cylinder is D = 0.1m. The water depth is set to be h = 4D. The undisturbed mean flow 

velocity is U = 0.46m.s-1. The sand size is d = 0.26mm. The equivalent roughness height for 

the rough wall function is set to be ks=2.5d, which determines the skin friction velocity in 

turn. A live bed scour with ReD = 46,000 is applied to test the morphological model. The 

initial condition for live bed scour is from the final results of rigid bed simulation. The 

conditions in the last two cases are summarized in Table 4.3. 
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Table 4.3 Test conditions for scour around a cylinder 

Bed Loose sand 

Water depth, h  0.4 m 

Cylinder diameter, D  0.1 m 

Boundary layer thickness, δ 0.2 m 

Mean flow velocity, U  0.46 m/s 

Reynolds number, ReD   46,000 

Froude number, Fr 0.23 

Sediment density, ρs 2,600 kg/m3 

Fluid density, ρ 1,000 kg/m3 

Grain size, d  0.26 mm 

Sand roughness due to skin friction, ks 0.65 mm 

 

4.3.1. Horseshoe vortex system 

Figure 4.22 shows the main necklace vortices inside the scour hole by using the Q 

criterion. Similar to the rigid bed case, U-shape necklace vortices also appear in the live bed 

case. They contain two Primary Vortices (PV1 and PV2), a Bottom-Attached Vortex (BAV) 

and a Joint Vortex (JV) (Dey & Raikar, 2007). The HV system is in a close relationship with 

the scour process. According to Baker (1979) and Kirkil et al. (2008), the number of these 

necklace vortices and their extent in the polar direction may change with the Reynolds 

number. Necklace-like structures detach from the incoming bottom boundary layer over a 

certain range of polar angles and then interact with other secondary vortices or with the 

primary one. Some of these vortices merge with the main or another secondary necklace 

vortex; others will lose their coherence rapidly. Consequently, the intensity of the overall HV 

system varies substantially across time. In many cases, the interaction with another necklace 

structure takes place only over a limited area of the total length of two vortices. 
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Figure 4.22: Visualization of the main necklace vortices inside the scour hole for the live 

bed case. 

Figure 4.23 provides more details on the temporal evolution of the streamlines in the 

scour hole upstream the cylinder. The present model successfully simulates the dynamics of 

the initial stages of erosion by the unsteady coherent structures of the HV system. As the 

scour hole gets deeper and extends, the HV system grows in size but decreases in strength 

until reaching the conditions for equilibrium. Such a state of equilibrium is reached when the 

shear stresses are reduced down to a local threshold value for the sediment-particle 

entrainment. Once the scour hole has formed, the HV system becomes more stable. During 

the scour process, PV1 still oscillates around at x = 0.5D upstream the cylinder, as with the 

rigid bed case, and slips down into the middle of the hole to adapt to a new position in the 

bed. PV2 grows bigger and increases in coherence. With the development of PV1 and PV2, a 

BAV is generated and grows between them. The vortices corresponding to JV grows bigger 

as the scour domain develops close to the cylinder.   
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Figure 4.23: Horseshoe vortex system in the scour hole development around the cylinder 

in front of the cylinder. 

4.3.2. Near wake flow 

Figure 4.24 shows time-mean streamlines for the live bed case on a longitudinal plane 

behind the cylinder in the wake region. A large recirculation zone is generated due to the 

changes in bed topography as we move downstream. As with the rigid bed cases, there exists 

a nodal point N2 of attachment positioned at (x/D = 0.875, z/D = -0.1785). The negative sign 

indicates that this level is below the initial bed level. N2 corresponds to the merging point of 

the streamlines issued from the convergence of both lateral sides of the cylinder. Thus, 

sediment particles situated close to the bed are entrained by the flow: first in the spanwise 

direction and later toward the surface by an upwelling anti-clockwise vortex, indicated by 

foci F7. The presence of foci and nodal points in the wake region has already observed in 

experimentation using h = 6D and ReD = 7000 (Sahin & Ozturk, 2009). 
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Figure 4.24: 3D streamlines of the mean flow for the live bed case. 

Figure 4.25 presents a 3D view of time-averaged streamlines around the cylinder. Clearly, 

a down flow can be observed at the upstream side of the cylinder which generates a primary 

vortex, as discussed in the preceding paragraphs. The flow structure in the wake region are 

also showed in this figure. Streamlines wrap the cylinder from both lateral sides. Then, flow 

in spanwise converges at nodal point N2. From N2, due to an upwelling vortex (F7), an 

important patch of fluids rises up into the surface layers, entraining sediment particles 

situated on the bed, and bringing them out the wake. This phenomenon induces the scour 

process behind the cylinder. 

 

Figure 4.25: 3D streamlines of the mean flow for the live bed case. 

4.3.3. General erosion patterns and maximum erosion depth 

prediction 
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Figure 4.26 illustrates the evolution of the scour hole across time as obtained by the 

present study at four instances: 30s, 120s, 300s and 750s. The pattern exhibited by the scour 

hole closely resembles the results observed in Roulund et al. (2005). The deepest part of the 

main scour hole occupies upstream and spanwise sides of the cylinder. A maximum angle for 

the bed slope is fixed inside this region, equal to the prescribed angle of repose: 32°. Exact 

localization of the maximum angle corresponds to regions where sand-slide algorithm 

functions and where the avalanching process is produced by the model. Additionally, sands 

are deposited in the downstream part of the cylinder. Some small bed changes are observed 

far from the main scour hole. The evolution of sand deposition downstream the cylinder is 

almost symmetric with the presence of sandpits. These sandpits tend to decrease with time 

without being fully erased at t = 750s.  

 

Figure 4.26: Scour development simulation results at time t = 30s, t = 120s, t = 300s and t = 

750s. 

 Figure 4.27 shows the time evolution of the scour depth at the upstream and downstream 

side of the cylinder compared with Roulund et al. (2005). At the beginning of the scour, both 

numerical models slightly over-predict the depth at the upstream side while under-predict the 

depth at the downstream side, compared to experimental data. Roulund et al. (2005) 

explained the reasons of the downstreram discrepancy between simulation and experiment. 

One is that the suspended load process is not covered in the model, therefore the model scour 
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depth remains rather small during this stage. Another is that the vortex shedding in the lee 

wake of the cylinder is ignored, which will decrease the predicted scour depth downstream of 

the pile (Sumer et al., 1988). Here, the second factor has been taken in consideration in our 

model. Clearly, our numerical results on the hole evolution are in a better agreement with the 

experiments both in the upstream and in the downstream direction, compared with Roulund et 

al. (2005). The simulation results from reference have reached the equilibrium condition at 

about 1000s, but with scoured depth values smaller than the experiment. Our results are 

closer to the experiment in both upstream and downstream part. 

    

Figure 4.27: Numerical (Num.) and experimental (Exp.) results of the scour depth evolution 

at the (a) upstream, and (b) downstream side of the cylinder for the live bed case. 

4.4. Conclusion  

In this chapter, large eddy simulation is conducted to study the hydrodynamics and the 

scour process around a circular cylinder. Sigma-coordinates system is employed to follow 

sediment-water interface. Bed erosion is simulated by solving the sediment continuity 

equation in the bedload layer using a mass-conservative-based algorithm for sand-slide, and a 

bedload transport rate, which is based on a description of physical processes (Engelund & 

Fredsøe, 1976). This model has been rigorously validated for the rigid bed case by comparing 

with the previous studies (Kirkil et al., 2008, 2010, 2015; Sahin and Oztzurk, 2009; Roulund 

et al., 2005). Simulation of scour process around a cylinder for the live bed case proposed by 

Roulund et al. (2005), with H = 4D at ReD = 46,000 until the equilibrium condition is then 

carried out.  
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In the rigid bed case, the HV system composed by U-shape necklace vortices such as 

Primary Vortex (PV), Bottom-Attached Vortices (BAV) and Secondary Vortex (SV) is 

relatively stable and under a oscillating cycle. Moreover, along the upstream face of the 

cylinder, there is a small, but very coherent, junction vortex appears at the base of the 

cylinder (JV). The number of PV, BAV depends on the Reynolds number and relative 

thickness of boundary layers. For H = 4D at ReD = 46,000, in the instantaneous flows, there 

are two PV, two BAV. During an oscillating cycle, two PV move oppositely, and at the end, 

find again nearly the same places where initially they are. The oscillating distance is about 

0.1D. The legs of PV are nearly parallel to the incoming flow. They still maintain 

downstream the cylinder until the position x = 2D. It seems that the flow coherent structure is 

not depending on the relative water depth H/D. Indeed, the HV system structure in our 

studied cases has the same than that of Kirkil et al (2008) for H/D = 1.12.  

In the live bed, the HV system also composed of PV and BV. The HV system is in a close 

relationship with the scour process, and unstable. It becomes more stable when the scour hole 

is formed. The HV system is responsible for the scour process. Indeed, the cylinder 

obstruction generates the local redistribution of pressure, and induces down flows at the 

upstream face of the cylinder. That generates primary vortex (PV). On the other hand, 

following the HV, streamlines wrap the cylinder from both lateral sides, converging at a 

nodal point. From there, thanks to an upwelling vortex, fluids rises up into the free surface 

layers, entraining sediment particles situated on the bed, and bringing them downstream to 

deposit somewhere. This generates the scour process. The current work has focused on the 

coherent structure of flow fields and the scour process until its equilibrium state. Simulations 

performed with the NSMP3D model better reproduce the scour evolution as the experiment 

and show HV oscillation than the simulations of Roulund et al (2005), who rest on a model of 

turbulence (κ - ω) which can’t capture the oscillations of wake vortices.  



 

                                                                                   

  

Conclusions and Perspectives 

An accurate and efficient numerical solver, named as NSMP3D, has been developed for 

modelling non-hydrostatic turbulent flows using unstructured finite volume method with 

large eddy simulation. NSMP3D has been validated by several test cases to check the 

accuracy order of the proposed numerical techniques and its ability in turbulent flow 

simulations. The test case of 2D decaying vortex shows that NSMP3D got second order of 

accuracy in space and in time, which permits the simulations of non-hydrostatic flows at 

moderate Reynolds numbers. The vertical profiles of velocity computed by NSMP3D from 

turbulent channel flows using DNS and LES are in a good agreement with the previous 

studies. The test case of lid-driven cavity flows shows that NSMP3D can provide the results 

equivalent to those obtained from the previous numerical studies, even they used finer 

computational meshes. In the test case of flows around a vertical cylinder, the time averaged 

pressure coefficient for 2D problem and horseshoe vortex oscillation for 3D problem at 

moderate Reynolds number calculated by NSMP3D have been compared with previous 

experimental and numerical studies. Fair agreements have been obtained. Coherent structure 

of flows has been shown. Clearly, the proposed PM construction using a combination of 

momentum interpolation and center schemes has been proved to be robust, accurate and 

reliable for further researches and applications 

A Navier-Stokes solver based on projection method and a second-order unstructured 

finite-volume mesh, using LES is newly developed to simulate the hydrodynamics and the 

scour process around a circular cylinder. A sigma-coordinate system is employed to follow 

the sediment-water interface. Bed erosion is simulated by solving the sediment continuity 

equation in the bedload layer using a mass-conservative-based algorithm for sand-slide and a 

bedload transport rate based on a description of physical processes (Engelund & Fredsøe, 

1976). The present model has been rigorously validated for free slip bed case and the rigid 

bed case through comparison with previous studies. Then, the simulation of scour process 
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around a cylinder for the live bed case with h=4D and ReD=46,000 is then carried out until its 

equilibrium state.  

Our model reproduces the shear stress observed by Roulund et al. (2005) in the vicinity of 

the cylinder with very slight discrepancy far away from it. The HV system is relatively stable 

and under an oscillating cycle. It is composed of primary, bottom-attached and secondary 

necklace vortices and a small coherent junction vortex. For h = 4D and ReD = 46,000, there 

are two primary and two bottom-attached vortices in instantaneous flows. During an 

oscillating cycle, two primary vortices move in opposite directions, and in the end, they 

return to approximate their initial positions. The oscillating distance is about 0.1D. The legs 

of primary vortices are nearly parallel to the incoming flow and they are still maintained 

downstream the cylinder until the position x = 2D. Indeed, the HV structure in the case we 

document has almost the same structure as Kirkil et al. (2008) for h/D = 1.12.   

The HV system is in a closely related to the scour process. It is unstable at the initial stage 

of scour and then becomes more stable as the scour hole is formed. The obstruction caused by 

the cylinder generates the local redistribution of pressure and induces down flows at the 

upstream face of the cylinder generating primary vortices. Streamlines wrap the cylinder 

from both lateral sides, converging at a nodal point at the downstream. From there, due to an 

upwelling vortex, fluids rise up into the surface, entraining the sediment particles situated on 

the bed, bringing them downstream to deposit somewhere else. This generates the scour 

process behind the cylinder. 

Concerning the scour around a vertical cylinder, this work bring an evident novelty in 

comparing with the previous studies. Indeed, while Kirkil et al. (2008, 2010, 2015) have 

described the HV system without the scour process, and Roulund et al. (2005) had only 

studied the scour process without talking about the HV system, this work has described on 

both the HV system and the scour process until its equilibrium state in detail. Moreover, the 

3D wake region behind the cylinder has also been shown up to deepen our knowledge during 

evolution of the scour process 

In the future work, two phase modules will be implemented by introducing the Eulerian-

Eulerian approach to provide solutions for renewed issues in real engineering applications. 
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Appendix A.  

Periodic boundary condition in 

parallel computation 

In turbulent channel flows, it is necessary to have a periodic boundary condition to 

represent a computational domain with infinite length or width. From that, both steady and 

unsteady flow simulations can be considered and analysed, avoiding the difficulty and effort 

to construct a very large domain. 

This appendix details the implementation of periodic boundary conditions for problems 

with simple geometry but unstructured mesh. The implementation is done by using MPI 

library to enable distribution of computing effort on cluster of CPU or supercomputing 

facility. 

(a)          (b)  

Figure A.1: Memory structure in the original MPI code. 

In the parallel scheme of NSMP3D, the computational domain is first divided into a 

number of smaller subdomains (number i, or #i). Each subdomain is then mapped onto 

independent processor of a computer cluster. Therefore, each processor only deals with the 

task of field computation of a much smaller subdomain, relieving the burdens on both the 

computer memory and the CPU time, in comparison to that experienced when attempting to 



 120                                    Appendix A   Periodic boundary condition in parallel computation 

 

 

solve the original problem using a single processor. Data communication between processors 

is carried out by using the Message Passing Interface (MPI) library. 

In Figure A.1, additional group of cells at each subdomain are introduced: Extra and 

ghost cells. Extra cells are in the inner subdomain, which contain the information of the 

overlapping boundaries, are computed or updated by MPI subroutines. Ghost cells are outside 

of the domain, which contain the information of the physical boundaries such as wall, 

discharge or free surface boundaries. 

I. Modification of memory structure 

The (initial) memory structure for each subdomain (#i) is illustrated in Figure A.2. For a 

subdomain i (which is handled by processor #i), the inner (N_Celli) and ghost 

(N_CELLghost) cells are stored as local variables. The information of the overlapping cells 

(Extra cell) are stored as global variables since they are obtained from other neighbouring 

processors. 

 

Figure A.2: Memory structure in the original MPI code. 

Now, for the implementation of periodic boundary conditions, the category of ghost cells 

are divided in two subcategories: the previous ghost cells with information stored as local 

variables; the new ghost cells with information of periodic boundary. These ‘periodic’ ghost 

cells are stored as global variables since information are shared variables like the extra cells. 

Figure A.3 presents the modified structure of ghost cells with similar legend as in Figure A.2: 

brown colour for local variables and yellow colour for global variables. 

LOCAL LOCAL  S      H       A       R      E 

Individual proc #i 

N_CELLi N_CELLghost N_CELLextra 

From proc #1 From proc #2 From proc #n 
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Figure A.3: New memory structure for the ghost cells with potential periodic boundary. 

In the modified structure, the ghost cell are arranged in a specific order which is not 

definitely contiguous, for unstructured mesh in particular. However, it is better to consider 

contiguous variables to enhance efficiency of MPI communications between processors. A 

specific rearrangement of shared (i.e. global) variables are later introduced (see end of section 

2.2) to fulfil this requirement. 

II. Modification of the communication technique 

In the original version, only extra cells (or information of the overlapping cells) are stored 

as global variables and shared between processors. Figure A.4 shows the SEND and 

RECEIVE (initial) procedure for processor #i having domain overlapping with processors #1, 

#2 and #3. 

At the beginning of any communication cycle, the information from the inner cells of 

processor #i are send to the overlapping cells (extra cells) of processors #1, #2 and #3. Then, 

the overlapping cells of processor #i will receive from them information to update its own 

value. 

As the overlapping cells are contiguous in the initial version (no periodic boundary 

conditions), the updating of extra cells is easy: we only need to know the initial location and 

size of the data to be transferred from local memory of other processors. 

proc #i 

From proc #0 From proc #2 

N_CELLghost:       

Local variable 

From proc #n 

From proc #n-1 

Not contiguous! 
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Figure A.4: Schematic of Communication in original NSMP3D. 

In the modified NSMP3D (with periodic boundary conditions), the sending procedure is 

similar to the original code, but the received data also contains information of the ghost cells 

(Figure A.5).  

 

Figure A.5: Scheme plot of Communication process with periodic boundary condition. 

The memory structure (Figure A.3) is rearranged into a contiguous array by grouping the 

global or shared information (coming from periodic or overlapping cells) and indexing the 

local position in original memory. During the SEND procedure, the global information (from 

ghost and extra cells) are packed and sent together. During the RECEIVE procedure, the 

transmitted data is first saved to a contiguous array, then split into ghost and extra cells in the 

named processor. Figure A.5 shows the structure of the contiguous array and the receiving 

process.  

N_CELLextra 

LOCAL LOCAL S   H   A   R      E 

N_CELLi N_CELLghost 

SEND: 

Individual Proc #i 

Proc #1 Proc #2 Proc #3 Proc #1 Proc #2 Proc #3 

RECV: 

SEND: 

Proc #1 Proc #2 Proc #3 

Extra Ghost Extra Ghost Extra Ghost 

Update: 

N_CELLextra 

LOCAL LOCAL 

N_CELLi N_CELLghost 

Ghost Ghost Ghost Extra Extra Extra 

N_CELLi N_CELLi N_CELLi 

RECV: 

Individual Proc #i 

Contiguous! 



 

                                                                                   

Appendix B.  

Suspended load transport 

The suspended load in an inclined channel with a slope of φ is studied. Monodisperse 

particles are transported by suspension leading to vertical profile of concentration in 

equilibrium between deposition and re-suspension (Figure B.1). The advection-diffusion 

model often solves it with a reference concentration given at a certain reference height. 

Empirical models of sediment entrainment usually give the reference concentration. Two 

entrainment models commonly used can be found in Van Rijn (1984) and Garcia and Parker 

(1991).  

 

Figure B.1: Schematic representation of the model of a turbidity current. The model preserves 

the most essential features of turbidity currents, i.e. the flow is entirely driven by the 

suspended sediments and the settling of sediments self-stratifies the flow, from Shringarpure 

et al. (2012). 

The flow is assumed to be entirely driven by the suspended sediments and the settling of 

sediments. The turbidity current is modelled in an inclined channel with a slope. The particle-

laden flow is assumed to be dilute so that collision between sediment particles and rheology 

effects can be neglected, settling velocity is independent of concentration at the dilute limit, 

and Boussinesq approximation can be employed. Under these circumstances, the suspended 

flow is governed by continuous equation and the following equations:  
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where c is the volumetric concentration of sediments, ρ is the density of water, ρmix=(1-

c)ρ+cρs is the density of mixture and ρs is the density of the sediments. u={ux, uy, uz} is the 

velocity vector and V={Vx, 0, -Vz} is the terminal settling velocity of an isolated sediment 

particle in a quiescent ambient, and D  is the diffusivity of the sediment. Solid particles are 

assumed to be non-cohesive and large enough to consider them as non-Brownian particle. It 

is now well established that even such large particles effectively diffuse due to long-range 

hydrodynamic interactions mediated by particle number density fluctuations (Segrè et al., 

2001; Mucha and Brenner, 2003). Thus, D  is taken to be the effective constant diffusivity of 

the sediments. The diffusive term in (B.2) also provides a mechanism to re-suspend 

sediments from the bed (Garcia and Parker, 1993). The corresponding settling velocity for 

sediment diameters 70μm and 120μm are V = 0.004m/s and V = 0.01m/s (Parker, 2008). 

I. Mean flow equations 

The mean flow equations obtained by averaging the momentum and concentration 

equations over time and over two homogeneous direction (i.e. x, y direction), with 

substituting Reynolds decomposition 'u u u   and 'c c c  . The ensemble-averaged 

quantities are only functions of the bed-normal z direction. According to Shringarpure et al. 

(2012), the mean momentum equations in x, z directions and concentration equation reduce to 
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where R=(ρs -ρ)/ ρ. Integrating the above equations from the bottom to top boundary in z 

direction, the mean pressure distribution and the Reynolds stress u w   is zero at the bottom 

boundary condition are respectively obtained by:  
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where p  is a relative averaged pressure to insure the incompressibility condition. According 

to Eq. (B.7), a velocity scale is defined as ( )v

xu Rg c h  , where
( )

0

1
( )

h
vc c z dz

h
  .  

According to the work by Geyer (1993), turbulent sediment fluxes can be approximated as 

  t

dc
c w
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  D  ,                                                  (B.8) 

Where (1 / )t u z z h D the turbulent diffusivity, and κ is is the constant in the velocity log 

law. Eq. (B.5) can be integrated to the Rouse equation (Rouse, 1937): 
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 ,                                               (B.9) 

where  is Rouse number given by 
*

zV

u



 , ac is the mean sediment concentration at a 

conventional elevation a. Normally the sediment reference concentration is taken at a = 0.05h, 

h is the total depth of the channel, where the top of the bed load layer is assumed. 

II. Non-dimensional equations  

Three scales are employed to define dimensionless variables: velocity uτ, channel depth h, 

( )vc for concentration of sediments, and ρuτ
2 for pressure. The dimensionless equations for 

Eqs. (B.1)- (B.2) are 
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 , eg ={1,0,-gz/gx}, Sc is Schmidt number, defined as /cS  D, where  is 

the non-dimensional variable. Based on the findings of Necker et al. (2005) and Cantero et al. 

(2008), the simulation results of turbidity currents are insensitive to the precise values of 

Schmidt number as long as it’s O(1), the present simulations employ Sc =1.  

It is not possible for the finite-sized sediments to stay in suspension without the presence 

of turbulent mixing and turbulent sediment resuspension from the bed. The laminar flow is 

assumed to be one-dimensional, steady and uniform. This means that v = w =0, ∂/∂ t =∂/∂ x

=∂/∂ y =0. In this case the above governing equation simplify to  
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Integrating this with boundary condition yields exp( Re )z cc A V S z  and the system is closed 

with the criterion
1

0
1cdz  . As pointed by Shringarpure et al. (2012), in the limited case of 

very large settling velocity, i.e. V  , the sediments settle to the bottom and the 

concentration profile is given by a Dirac delta function located at 0z   and at the same time 

maximum velocity max 0u  . Therefore, the flow ceases to exist. Figure B.2 shows the laminar 

velocity for V =0.0265, Reτ =395 and Sc= 1 (Case 7).  

III. Computational conditions  

In this simulation, the initial condition for fluid field is extracted from turbulent channel 

flow with friction Reynolds number as Reτ=395. Large eddy simulation with 64×64×64 mesh 

is conducted until the non-dimensional simulation time t=60, to be the initial velocity and 

pressure fields. A uniform concentration c=1.0 distributed within the whole channel is used 

as the initial condition for suspended solid field, as that has been used in the reference. 

Neumann boundary conditions are used in both top and bottom surface for concentration. 

Table B.1 List of the parameters in the simulation.  

 zV  β bc  tc  κ B 

Case 1 0.0 - 1.0 1.0 0.41 7.6 

Case 2 0.0048 - 0.993 1.012 0.405 7.5 

Case 3 0.005 0.6 0.908 1.138 0.355 5.9 

Case 4 0.01 0.63 0.799 1.306 0.335 5.3 
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Case 5 0.02 0.85 0.511 1.811 0.300 4.4 

Case 6 0.026 0.9 0.260 2.505 0.250 2.9 

Case 7 0.0265 0.58 0.196 3.013 0.230 2.4 

Note: zV is dimensionless settling velocity of the sediments, 
bc and 

tc are the dimensionless mean volume 

concentration of sediments at the bed and the top boundary, and κ (Von Karman variables) and B are the best fit constants 

for the velocity log law. β is the parameter from Rouse profile.  

Table B.1 lists all the different simulations analysed in this work to address the 

mechanism of turbulence damping in turbidity currents. Six different cases of stratified flows 

are considered. Cases 2–7 correspond to the simulations where the settling velocity of 

sediments is increased from zV = 0.48×10−2 to zV  = 2.65×10−2. Case 1 with zV = 0, is the 

reference case, since its solution corresponds to turbulent channel flow driven by a uniform 

body force. The corresponding velocity profile is shown in Figure B.2 (the group of green 

triangles), and in wall units. A very good agreement is observed regarding to the wall law 

(u+=z+) for z+ < 5, and with a slightly over-predicted mean velocity in the region of the log 

law for z+ > 30. 

IV. Mean values and turbulent flux in the stratified flows 

Figure B.2 presents the velocity profiles on log-linear scales. The logarithmic law of the 

wall u+=1/κ log (z+) +B for case 0 and 5 with adjusted constants is also included in this 

figure. The best-fit values of κ and B for all cases are listed in Table B.1. The velocity 

profiles for cases 1–6 show a definite turbulent nature with a definite logarithmic region for 

z+>30. The deviation from the fully turbulent logarithmic law (case 1) is only in terms of the 

constant values. This change in the constants can be attributed to the damping of turbulence 

because of stratification (Cantero et al., 2009). Case 7, on the other hand, does not display a 

logarithmic region. Figure B.2 also shows the laminar solution computed for the same set of 

parameters used for case 7. 
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Figure B.2: Mean velocity profiles in wall units. The red color corresponds to log law. 

The balance between the settling flux of sediments zV c and turbulent flux of sediments 

 w c  can be obtained from Eq.(B.11) as 
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(a)  
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(b)  

Figure B.3: (a) Profiles of the ratio of sediment turbulent flux to settling flux (b) profiles of 

Reynolds stress. 

The settling flux of sediments will increase when settling velocity increases. In order to 

keep the sediments well mixed in the flow ( / 0dc dz  ), there must be a proportional increase 

in the turbulent flux of sediments. In other words, in a well mixed channel the ratio of 

turbulent flux to settling flux of sediments approaches 1. The relative importance of turbulent 

flux of sediments can be seen in Figure B.3(a), which shows the variation of the ratio of 

turbulent flux to settling flux in the bed-normal direction. From Figure B.3(a) it is evident 

that the increase in turbulent flux is not proportion to settling flux for all the cases. This ratio 

shows a decreasing trend with increasing settling velocity of sediments. In addition, the 

decrease is not uniform throughout the channel: it is more pronounced near the top boundary 

than near the bed. This asymmetry is due to reduction of turbulent transport from near the bed, 

where turbulence production occurs, to the upper part of the channel. Figure B.3(b) shows 

profiles of the Reynolds stress -u w   for cases 1-5. The small reduction in Reynolds stress 

with increasing settling velocity of sediments suggests that the effect of stratification is weak. 

The corresponding DNS results of Kim et al. (1987) for pure channel flow are also shown in 

this figure. The good enough agreement between our results and the DNS ones, for no 

suspension case using coarse mesh serves as validation of the simulation procedure and the 

grid resolution employed in this work. 

Turbulent intensity velocity fluctuations are shown in Figure B.4. The variation of all 

r.m.s. velocity fluctuations becomes smaller for case 1 to case 7. Thus, the stratification 
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effects successful suppress the wall-normal and spanwise velocity fluctuations, and thereby 

all momentum and mass transportbv in wall-normal and spanwise directions. 
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Figure B.4: Turbulence intensity: (a) urms; (b) vrms; (c) wrms. 

 

Figure B.5: Sediment concentration surface at middle value ( c =1.0). 

Sediment concentration iso-surfaces at middle value ( c =1.0) are shown in Figure B.5 

and the mean concentration profiles of the selected cases given in Table B.1 are shown in 

Figure B.6. As the settling velocity of sediments increases, the resulting concentration profile 

increasingly deviates from the reference profile c =1.0. The resulting non-uniform mean 

concentration of sediments is skewed towards the bed, which affects the flow in two ways. 

First, the streamwise driving force is also correspondingly skewed towards the bed. Second, 

the stable stratification induced by concentration gradients tends to dampen turbulence. The 
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effect of a skewed driving force is not so strong, and the stratification effect is the dominant 

mechanism responsible for complete turbulence suppression. All the cases show a well-mixed 

concentration profile, compared with their corresponding Rouse profiles (B.9). Rouse profile 

is an approximation for the concentration profile achieved by characterising the turbulent 

mixing term in Eq.(B.5) by eddy diffusivity. Rouse profiles here are evaluated using the 

modified von Karman constant given in Table B.1. This quantifies the effect of stratification 

on the turbulent mixing in the channel. From the figure it is clear that when zV =0.02 and zV

=0.026, our simulations are closer to Rouse profile with β closer to 1, while the other cases 

over-predict the turbulent mixing in stratified flows, leading to fuller concentration profiles.  

 

Figure B.6: Sediment concentration profile. 

Figure B.7 plots of streamwise velocity ( u ), bed-normal velocity ( w ) and concentration 

( c ) fluctuations for cases 6 ( zV =0.026) in the x-y (streamwise–spanwise) plane at z+≈ 12, 

where maximum turbulent kinetic energy production and maximum Reynolds stress happens. 
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The plots of concentration and streamwise velocity fluctuations show long streamwise 

aligned streaky structures in both cases. It can be observed that u  and c  distributions are 

negatively correlated. In other words, the sediment concentration is higher (lower) along the 

low-speed (high-speed) streaks. The bed-normal velocity fluctuations are also well correlated 

with the streamwise velocity and concentration fluctuations. But since w  does not show a 

long streaky structure, the correlation is not as obvious. In the concentration contours, the 

regions of positive large values are long and spread over the entire plane.  

(a)  

(b)  

(c)  

Figure B.7: (a) Streamwise velocity fluctuations. (b) Bed-normal velocity fluctuations. (c) 

Fluctuations in the concentration of sediment. Results for case 6 ( zV =0.026) at z+≈ 12. 

Figure B.8 shows iso-surfaces of Q criterion for cases 3 and 6, presenting the vertical 

structures of the turbulent flow at a selected time instant. Both cases show a dense 
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distribution of tube-like and inclined quasi-streamwise vortices in the flow. With increasing 

settling velocity, the stratification of the flow increases and the structures become sparse, 

showing the turbulence suppression. A substantial decrease in the density of the structures is 

seen but the flow remains turbulent. This implies that some of the existing structures in the 

flow are intense enough to spawn the next generation of structures to sustain turbulence. 

 

Figure B.8: Iso-surface of Q =400 for case 3 ( zV =0.005) and case 6 ( zV =0.026). 

 The vertical profiles of velocity computed by NSMP3D from turbulent channel flows 

using DNS and LES are in a good agreement with previous studies, which permits 

simulations of non-hydrostatic flows at moderate Reynolds numbers.  

 Dilute turbidity currents driven by suspension of sediments in an inclined channel flow 

are modelled. The suspended sediments under the influence of gravity drive the flow in the 

channel and simultaneously settle towards the bed. The interaction of sediments and 

turbulence lead to (i) skewing of the streamwise driving force towards the bed, and (ii) stable 

stratification that damps bed-normal momentum and mass transport. Several simulations 

using NSMP3D were carried out to understand the two effects and their role in turbulence 

suppression.  

 Stratification is the manifestation of the balance between turbulent mixing and the 

settling of the sediments. With increasing the settling velocity, flow turbulence is less able to 

keep the sediments in suspension, and the flow in the channel tends towards the laminar 

solution, which is clearly shown by the mean velocity and mean concentration profiles.
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