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If people do not believe that mathematics is
simple, it is only because they do not realize how

complicated life is.

John von Neumann
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Résumé

Dans cette thése, nous développons une méthode générale pour établir les relations
de distribution horizontales et verticales pour des cycles spéciaux dans les variétés de
Shimura. Nous utilisons les cycles unitaires dans les variétés orthogonales impaires de
Shimura comme exemple principal. Nous présentons aussi quelques autres exemples, comme
les variétés de Shimura GSp(4) et les variétés unitaires de Shimura. Ces cycles spéciaux
avec relations de distribution sont une généralisation en dimension supérieure des points de
Heegner. Ils peuvent être utilisés pour construire un système d’Euler, en vue d’applications
arithmétiques.

Mots-clés

cycles spéciaux, relations de distribution, variétés de Shimura
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Abstract

In this thesis, we develop a general method to establish tame and norm relations for
special cycles in Shimura varieties. We use unitary cycles in odd orthogonal Shimura varie-
ties as a guiding example. We also list some other examples like GSp(4) Shimura varieties
and unitary Shimura varieties. Such special cycles with desired distribution relations is
a higher dimensional generalization of Heegner points. It can be applied to construct an
Euler system to do arithmetic applications etc.

Keywords

special cycles, distribution relations, Shimura varieties
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Chapitre 1

Introduction

• A classical example : Heegner points

Special cycles on Shimura varieties is an important topic and has significant applications
to number theory, representation theory, arithmetic geometry and so on. Among them, a
classical example is Heegner points on modular curves. Before we state the main results of
this thesis, we would like to illustrate this basic example as a motivation.

Let N be a positive integer and K/Q be an imaginary quadratic field with ring of
integersOK . Suppose that all primes ofN split inK (Heegner hypothesis) and letN denote
an ideal of OK with norm N . For any positive integer m prime to N , let Om = Z+mOK

denote the corresponding order of K and K[m] denote the ring class field with conductor
m, then there is a Heegner point xm lying in X0(N)(K[m]) corresponding to the isogeny
C/Om −→ C/(N ∩Om)−1. Define HeegK = {xm : m prime to N }. Among this family of
special points, they satisfy the following distribution relations :

Theorem 1.1. (Distribution relations)

Let m be a positive integer and l be a prime unramified in K. Suppose ml is prime to
N , then we have

(1) Tame relations : If l ∤ m, let λ denote a prime of K that lies over l, then

Card(
O∗

m

O∗
ml

)× TrK[ml]
K[m]

(xml) =

{
Tlxm, if l is inert in K,

(Tl − Frobλ − Frob−1
λ )xm, if l splits in K.

Here Frobλ denotes the geometric Frobenius in Gal(K[m]/K) corresponding to λ, Tl
denotes the usual Hecke operator associated to the double coset

[GL2(Zl)diag{l, 1}GL2(Zl)].

(2) Norm relations : If l | m, then

11
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TrK[ml]
K[m]

(xml) = Tlxm − xm
l
.

Here Tl is the same Hecke operator as above.

We refer to [18] (proposition 3.10) and [29] for more details.
The distribution relations play a basic role in Kolyvagin’s work on modular elliptic

curves, which is an important progress towards Birch and Swinnerton-Dyer conjecture for
elliptic curves. See [18] (chapter 10) and [29] for more details. Kolyvagin’s work needs
the modularity assumption, but due to Wiles’ school’s great work ([67] and [10]), this
assumption holds for any elliptic curves over Q.

The famous BSD conjecture can be generalized to the Bloch-Kato conjecture, see [5].
There is no doubt that the Bloch-Kato conjecture is one of the most fundamental problems
in modern number theory and arithmetic geometry. And since the seminal work of Kolyva-
gin ([35]), Euler systems play an important role in the study of the Bloch-Kato conjecture.
It is a powerful tool to bound Selmer groups. See Rubin’s book [61] for more details.

Moreover, the Heegner points have many other important applications :
(i) Let E denote an elliptic curve over Q with conductor N . By the modularity theorem,

there exists a modular parametrization X0(N) −→ E. For an imaginary quadratic field K
satisfying Heegner hypothesis (all primes of N split in K), the Gross-Zagier formula relates
the first derivative of the L-function for E over K at the central point s = 1, L′

(E/K, 1),
to the height of the corresponding Heegner point PK ∈ E(K) (see [31]), thus (together
with Kolyvagin’s work) proves the BSD conjecture for such elliptic curve E over K with
analytic rank one.

(ii) A closely related problems about Galois representations is the Iwasawa theory, the
study of variation of Selmer groups along p-adic extensions. Heegner points can help to
prove (anti-cyclotomic) main conjecture, see [57], [58] and [33] for more details.

(iii) There is an important Mazur conjecture about Heegner points and it is proved in
[14]. That non-triviality theorem can be used to study Selmer groups etc. See the intro-
duction of [14] for more details.

......
Therefore it is an important task to generalize Heegner points to higher dimensional

cases, which is the main task of this thesis.
• Main results : higher dimensional generalizations
In this thesis, we will investigate a general method to construct special cycles satis-

fying certain distribution relations (tame relations and norm relations) on other Shimura
varieties, which can be seen as higher dimensional generalizations of Heegner points. As we
mentioned above, these distribution relations can be used to construct an Euler system,
which is an important tool to study the Bloch-Kato conjecture. And in fact, the tame rela-
tions are used to construct the so called "derived classed", which form a Kolyvagin system,
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see [16] and [49] for more details. The norm relations can be used to construct norm com-
patible systems of Galois cohomology classes (under certain ordinary conditions), which
may also have applications to the related problems in the Iwasawa theory.

In this thesis, the tame relations are expressed through the Hecke polynomial (see
section 2.2), which is related to the Shimura variety by the congruence conjecture in [4].
There are many results towards this conjecture already. For example, see [41] and [68]. In
particular, this conjecture holds for Hodge type Shimura varieties.

For simplicity, we use orthogonal Shimura varieties as the main example.

The starting point is to consider an embedding of Shimura data ShH −→ ShG,
where H −→ G is an embedding of reductive groups over Q inducing compatible maps
ResC/RGm(R) −→ H(R) −→ G(R). Our main example is as follow :

Fix a totally real number field F and fix a real place f0 ∈ SpF = Spec(F )(Q) =

Spec(F )(R) = Spec(F )(C), here Q is the algebraic closure of Q in C. For a positive integer
n, let (V, ϕ) denote a quadratic F -vector space of dimension 2n + 1. Define (Va, ϕa) =

(V, ϕ)⊗F,a R (a ∈ SpF). Then we require the following signature condition :

sign(Va, ϕa) =

{
(2n− 1, 2), if a = f0,

(2n+ 1, 0), if a ̸= f0.

Now we define G = SO(V, ϕ), it is a reductive group over F . Define G = ResF/QG,
it is a reductive group over Q. The signature condition determines GR =

∏
a

Ga with

Ga = SO(Va, ϕa), so that

SO(Va, ϕa) =

{
SO(2n− 1, 2) (non-compact), if a = f0,

SO(2n+ 1, 0) (compact), if a ̸= f0.

Now we define the associated Hermitian symmetric domain. Let X denote the space
of oriented negative R-planes in (Vf , ϕf ). The action of Gf,R(R) = SO(2n − 1, 2) on
(Vf , ϕf ) induces a transitive action of G(R) on X, and the stabilizer of any point is a
maximal compact and connected subgroup. We can view X as a G(R)-conjugacy class of
maps h : ResC/R(R)(Gm) −→ G(R). In this way we get a Shimura variety ShG(K) =

G(Q)\X ×G(Af )/K (for K small enough) (see [16]).

Now we define the unitary subgroup H. Let E denote a totally imaginary quadratic
extension of F which splits (V, ϕ). Then (V, ϕ) contains E-hermitian F -hyperplanes and
all of them are conjugate under G(Q) = SO(V, ϕ) (see [16] section 9.2). We choose one
such E-hermitian space (W,ψ) and define H = U(W,ψ) (a subgroup of G), H = ResF/QH
(a subgroup of G). We can compute its signature over R. Define (Wa, ψa) = (W,ψ)⊗F,aR
(a ∈ Sp). Then HR =

∏
a

Ha with Ha = U(Wa, ψa), these factors are as follow :
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U(Wa, ψa) =

{
U(n− 1, 1), if a = f0,

U(2n+ 1), if a ̸= f0.

The complex embedding f0 : F −→ C has two extensions to E, and we fix one choice
f+0 : E −→ C and denote by f−0 its conjugation. Identify Ef0 = E⊗F,f0 R with C using f+0 .
Let Y denote the space of negative C-lines (via this identification) in (Wf , ψf ). Similarly,
we obtain a Shimura varieties ShH(K1) = H(Q)\Y ×H(Af )/K1. The natural inclusion
H −→ G will induce a map between their Shimura varieties ShH(K1) −→ ShG(K) (if
K1 ⊂ K).

The image of a geometric connected component of the unitary Shimura varieties de-
fines a special cycle on the orthogonal Shimura varieties (for suitable K, this is a closed
embedding already, although we will not need this fact). Then the basic idea is to apply
G(Af ) translation to get a family of special cycles. More precisely, for any g ∈ G(Af ), the
ZK(g) = [Y × gK] defines a cycle in ShG(K) (here notice that Y is already connected),
then we get a family of special cycles ZK(G,H) = {ZK(g)}. Moreover, it has the following
parametrization :

ZK(G,H) = H(Q)Hder(Af )\G(Af )/K.

The main object of this paper will be R[ZK(G,H)], here R is a suitable coefficient ring
such as Z or Zl etc.

The first problem is to understand the Hecke action and the Galois action on this
family of special cycles. We will use Deligne’s reciprocity law on the set of geometric
connected components to describe the Galois action. To construct special cycles with the
desired tame relations and norm relations, we will first study them locally. In the local
case, we need to study the H-action on the Bruhat-Tits buildings of G. One important
tool for both relations is the Boumasmoud’s relation, see theorem 2.3. Inspired by work of
Boumasmoud and Loeffler, we first obtain some purely group theoretical relations ("the
abstract relations"), see theorem 4.3 and theorem 5.4.

The next problem is to translate these purely group theoretical relations into "true"
distribution relations ("the realization"), which are our main results. For this step, we
require more conditions.

For the tame relation, we have the following main result (theorem 4.6) unconditio-
nally. However, to do arithmetic applications (e.g. construct an Euler system), we need the
congruence conjecture in [4] to relate the Hecke polynomial with the Galois polynomial.

Theorem 1.2. tame relations
There exists a family of special cycles {z(m)|m ∈ N}, such that for any m ∈ N,

the special cycle z(m) is defined over E[m], and for any v ∈ P with v ∤ m, we have
TrE[mv]

E[m]

(z(mv)) = HepµG,v(Frobv+)(z(m)).

Here P is a subset of primes ("good primes") in F that split in F −→ E, v+ is a
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chosen prime of E above v, Frobv+ is the corresponding geometric Frobenius, N is the set
of square-free products of elements in P, E[m] is an abelian extension of E, HepµG,v

is the
Hecke polynomial associated to the Shimura datum (G,X) over Fv (see section 2.2).

For the norm relations, we need conductor growth conditions, and ordinary conditions.
The main result is theorem 5.5 :

Theorem 1.3. norm relations
For any positive integer m, there is a special cycle zm defined over the field Ẽ(m), such

that
N∑
i=0

CiAiTr Ẽ(m+i)

Ẽ(m)

(zm+i) = 0.

Here Ẽ(m) is an abelian extension of E and Ẽ(∞) = ∪Ẽ(m) is a nontrivial anticycloto-
mic p-adic extension of Ẽ(1), Ci are constant integers, Ai are Hecke operators determined
by the related Hecke polynomial for µ (a chosen cocharacter) in section 5.1 and N is the
degree of that Hecke polynomial. And because we need the computation about conductors
in [15], we will work over an inert prime in the norm relations.

The resulting special cycles with norm relations can be used to construct a norm com-
patible family (under ordinary condition) of Galois cohomology classes. Such translation
technique is standard and it is stated as the lemma 5.6 in section 5.2.
• Other examples
Although for simplicity, we only discuss orthogonal Shimura varieties in the main part,

this approach is flexible and works in other cases. We give some other examples as an
application, GSp4 Shimura varieties and unitary GGP pair Shimura varieties :

(i) Special cycles inside the Siegel threefold,

H = GU(1)×Gm GL2 −→ G = GSp4

(where GU(1) = ResE/QGm,E and E is an imaginary quadratic field).
(ii) The usual unitary GGP pair

U(n− 1, 1) −→ U(n, 1)× U(n− 1, 1).

(iii) The similitude version of this unitary GGP pair,

H = GU(1, n− 1)×Gm GU(0, 1) −→ G = GU(1, n− 1)×GU(1, n).

(iv) Special cycles inside the GU(1, 2n− 1) Shimura variety,

H = GU(1, n− 1)×Gm GU(0, 1)n −→ G = GU(1, 2n− 1).

Here the products are all over Gm through the similitude factor map.
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• comparison with previous results

We make a comparison with previous results in the literature.

The idea of applying G(Af ) translation is a common technique. Loeffler, Cornut and
many other people have already used this idea to construct Euler systems, for example see
[47], [46], [28], [16], [9], [34]. Our method is different from Loeffler’s methods. He changes
the level group of G(Af ) to realize the Galois action, and for the tame relations, one of
the key point is to use a multiplicity one result (branching law), which does not hold in
our setting. Instead we follow the method of Cornut, use geometric connected components,
and the Galois group acts on this set through Deligne’s reciprocity law.

The main advantage of our method is that it works in a general setting. For both sides
(tame and norm), the purely group theoretical relations are established using Boumasmou-
d’s "Seed Relation". We then connect these abstract local relations to genuine relations.
For the tame relations, this is about understanding the Galois action on π0(ShH). Bou-
masmoud also uses his "Seed Relation" to establish tame relations (over split primes)
for the unitary GGP pair Shimura varieties in [9]. Our method can recover his results
(see section 6.2). Cornut deduces tame relations for our main example over inert primes
by explicit and complicated computations in [16]. His method is totally different (no
"Seed Relation" etc) and use special properties of Buildings of orthogonal groups etc,
while our method solves tame relations over split primes. For the norm relations, Loef-
fler has developed a general method to construct norm compatible systems (see [44]),
our method is inspired by that paper. But we follow a similar pattern as tame relations
and still use "Seed Relation", which is new. And our ordinary conditions may be dif-
ferent from Loeffler’s ordinary conditions. And among other examples we construct, the
GSp4 example and the similitude version of unitary GGP pair are new. Regarding the
(GU(1, n− 1)×Gm GU(0, 1)n, GU(1, 2n− 1)) example, Andrew Graham and Syed Waqar
Ali Shah considered a similar pair (GU(1, n−1)×GmGU(0, n), GU(1, 2n−1)) in [28]. They
also construct a family of special cycles with tame relations and norm relations over split
primes using the methods of Loeffler’s school.

• A byproduct : the stabilizer conjecture

Along the study of norm relations via spherical pairs, we find some special properties
about the stabilizer group associated to such pairs, and we conjecture it holds in general.
This stabilizer conjecture will help us calculate conductors. For example it is used in the
computation of the conductors in the norm relations for our main example in section 5.2.
We put this conjecture in the appendix (section A.1) because it may have independent
interest in representation theory. In that section, we prove this conjecture for our main
examples, and for symmetric pairs etc.

• Applications

As we mentioned above, one of the main arithmetic applications of such special cycles is
to construct an Euler system, then deduce results about Bloch-Kato conjecture. Regarding
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the main example, Cornut has deduced rank one result for Selmer group in our setting
under some technical conditions (see [16]). His result needs nontriviality conditions, which
is widely open at present. We would need an explicit reciprocity law, or a Gross-Zagier
formula, to relate the resulting special cycles to L-functions (p-adic or complex). Compared
to his results, our tame relations are over split primes. Kolyvagin’s original argument
uses tame relations over inert primes, thus we can’t apply his method directly. However,
very recently, Jetchev, Nekovar and Skinner have managed to solve this problem by using
split primes instead of inert primes in [23]. The Kolyvagin systems obtained in this way
are refered to as split Kolyvagin systems. Our main example and other examples will
produce such split Kolyvagin systems, and then can be used to study related Bloch-Kato
conjectures.

Another important application is the Iwasawa theory. The norm compatible system
will help us study related problems. Thus we may wish to use such family of special cycles
to study Iwasawa Main conjectures, higher dimensional analogue of Mazur conjectures etc.
• Outline
The structure of this paper is as follow :
In chapter 2, we give the general setting. In its first subsection, we work globally,

establish some properties of such family of special cycles and show how to translate global
problems into local setting. In its second subsection, we work in a local setting, state
Boumasmoud’s relation (theorem 2.3), which is the key tool for both relations.

In chapter 3, we introduce some background knowledge on cohomology theory. This
will be used to do arithmetic applications in chapter 6.

In chapter 4, we consider the tame relations. We first establish an abstract version of
the tame relation as theorem 4.3, then we deduce the main result as theorem 4.6.

In chapter 5, we consider the norm relations and follow the same pattern as in chapter
3. The abstract version of norm relations is established as theorem 5.4 and the main result
is theorem 5.5.

In chapter 6, we look at other examples and arithmetic applications. We construct other
examples, for GSp4 or unitary type Shimura varieties. Then we discuss some arithmetic
applications, such as Euler system and related problems.

In chapter 7 (appendix), we discuss the stabilizer conjecture and prove it for some
important cases, including our main example and for symmetric pairs (H,G). And we also
prove some miscellaneous facts to make this thesis more self-contained.
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Chapitre 2

General Setup

2.1 Global setting

First we recall the definition of a Shimura datum briefly and refer to [50] for more
details.

Let S = ResC/RGm denote the Deligne torus. A Shimura datum is a pair (G, X)

consisting of a reductive group G over Q and a G(R)-conjugacy class X of homomorphisms
h : S −→ GR satisfying the following conditions :

SV1 : for all h ∈ X, the Hodge structure on Lie(GR) defined by Ad ◦ h (Ad denotes
the adjoint action) is of type {(−1, 1), (0, 0), (1,−1)};

SV2 : for all h ∈ X, ad(h(i)) is a Cartan involution of the adjoint quotient group Gad
R ;

SV3 : the group Gad has no Q-factor on which the projection of h is trivial.

The space X is a finite disjoint union of hermitian symmetric domains, and in this
thesis, it will be clear according to the text. Thus we also write a Shimura datum (G, X)

as ShG or Sh(G) for simplicity.

Some Shimura datum satisfy more conditions and there are the following additional
axioms :

SV4 : the weight map w : Gm,R −→ S −→ GR (this map is independent of choice of
the point h ∈ X) is defined over Q, we say that the weight is rational.

SV5 : the group ZG(Q) is discrete in ZG(Af ) (here Af denotes the finite adeles of Q).

SV6 : the central central torus Z0
G splits over a CM field.

For a compact open subgroup K ⊂ G(Af ) (we will call K a level subgroup) that is
small enough, the double coset space G(Q)\X × G(Af )/K can be seen as an algebraic
variety over C and has a canonical model over its reflex field (a number field), we call it a
Shimura variety and denote it as ShG(K).

We illustrate the following standard example :

Example (modular curve)

19
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Let G = GL2 over Q andX denote theGL2(R) conjugates of the map ho : S −→ GL2,R,

ho(a+
√
−1b) =

(
a b
−b a

)
.

Then (G, X) is a Shimura datum. And there is a natural bijection betweenX and C−R. For
an integer N ≥ 6, let KN denote the kernel of the reduction map GL2(Af ) −→ GL2(Z/N),
then KN is an example of level group. The resulting Shimura variety is an open modular
curve, Y (N).

The starting point of this thesis is an embedding of Shimura data ("relative ver-
sion"),

ShH −→ ShG,

where H −→ G is an embedding of reductive groups over Q inducing compatible maps

S −→ HR −→ GR.

Example (special points on a modular curve)

Still let (G, X) denote the Shimura datum of the modular curve as above. Let H
denote ResQ(

√
−1)/QGm, the associated hermitian symmetric domain Y is a single point,

corresponding to the identity map, S ∼= HR. We can think of Q(
√
−1) as a two dimensional

Q-space, with an ordered basis {1,−
√
−1}. Through this basis, we can embed H into

G (over Q). And this group embedding is compatible with their associated hermitian
symmetric domains. Thus we get an embedding of Shimura data. It is an example of
special points on a modular curve.

Now we will state a general strategy to produce special cycles on the ambient Shimura
variety.

Consider an embedding of Shimura data, ShH −→ ShG, where ShH is short for the
Shimura datum (H,Y ) and ShG is short for the Shimura datum (G,X). Let Y 0 denote
a connected component of Y . For a small enough level group K of G(Af ) we obtain
Shimura varieties ShG(K) = G(Q)\X ×G(Af )/K and ShH(H(Af )

⋂
K) = H(Q)\Y ×

H(Af )/(H(Af )
⋂
K). For g ∈ G(Af ), the image ZK(g) = [Y 0×gK] of Y 0×gK in ShG(K)

defines a cycle (irreducible and closed). We thus obtain a family of special cycles

ZK(G,H) = {ZK(g)|g ∈ G(Af )},

which has the following parametrization :

Lemma 2.1. The natural map StabG(Q)(Y
0)\G(Af )/K −→ ZK(G,H) is a bijection.

Démonstration. It is obviously surjective, so we only need to establish injectivity.

Take g1, g2 ∈ G(Af ) with ZK(g1) = ZK(g2). Then, for any y ∈ Y 0, there exists g ∈
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G(Q)
⋂
g1Kg

−1
2 such that y ∈ gY 0, therefore Y 0 =

⋃
g∈G(Q)

⋂
g1Kg−1

2

Y 0
⋂
gY 0. Notice that

Y 0 and its translation g(Y 0) are closed submanifolds of X, each intersection Y 0
⋂
g(Y 0) is

closed in Y 0 and this is a countable union, so by the Baire Category theorem, there exists
some g in G(Q)

⋂
g1Kg

−1
2 such that Y 0

⋂
gY 0 contains a non-empty open subset U of Y 0.

Take a point y ∈ U , we get equalities among tangent spaces TyY 0 = TyU = Ty(gY
0) by

dimension reason. Because both Y 0 and gY 0 are totally geodesic submanifolds, this implies
gY 0 = Y 0. Therefore g ∈ StabG(Q)(Y

0).

Now we can introduce the main object of this paper, the free R-module generated by
ZK(G,H), R[ZK(G,H)], where R is a suitable coefficient ring (such as Z or Zp). We will
endow it with a Galois-Hecke action.

For the Hecke action, we can use the geometric Hecke action on cycles, or equivalently
(see [16] section 5.16), think of the global Hecke algebra as EndG(Af )(R[G(Af )/K]), which
then has a right action on this module formally (via the parametrization). We will use this
second description for the Hecke action. For the Galois action, we will use the reciprocity
law for the set of geometric connected components. We have another description of ZK(g)

as follow :

Consider K1 = gKg−1
⋂

H(Af ), we have natural maps

ShH(K1) −→ ShG(gKg−1)
[∗g]−−→ ShG(K).

These maps are defined over the reflex field E for ShH and ZK(g) is the image of the
connected component [Y 0 ×K1] of ShH(K1)Q in ShG(K)Q. The Galois group GalE will
act on π0(ShH(K1)) by Deligne’s reciprocity law (see [22]), then it acts on the set of special
cycles ZK(G,H).

Now let’s come to the main example. We will illustrate the above ideas through this
example.

We first introduce the ambient Shimura datum ShG.

Take a totally real number field F and fix a real place f0 in

SpF = Spec(F )(Q) = Spec(F )(R) = Spec(F )(C),

here Q is the algebraic closure of Q in C. Fix a positive integer n and let (V, ϕ) denote a
quadratic F -vector space of dimension 2n+ 1. Define

(Va, ϕa) = (V, ϕ)⊗F,a R

for a ∈ SpF. We require the following signature condition :
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sign(Va, ϕa) =

{
(2n− 1, 2), if a = f0,

(2n+ 1, 0), if a ̸= f0.

Define G = SO(V, ϕ), it is a reductive group over F . Define G = ResF/QG, it is a
reductive group over Q. The signature condition determines GR =

∏
a

Ga with Ga =

SO(Va, ϕa), so that

Ga = SO(Va, ϕa) =

{
SO(2n− 1, 2) (non-compact), if a = f0,

SO(2n+ 1, 0) (compact), if a ̸= f0.

Now we define the associated space X.

Let X denote the space of oriented negative R-planes in (Vf0 , ϕf0) : the set of all
pairs x = (Dx, θx) where Dx is a two dimensional negative R-plane of (Vf0 , ϕf0) and θx

is an orientation on Dx. The action of Gf0(R) = SO(2n − 1, 2) on (Vf0 , ϕf0) induces a
transitive action of G(R) on X, and the stabilizer of any point is a maximal compact
and connected subgroup. Moreover, we can view X as a G(R)-conjugacy class of maps
h : ResC/R(Gm)(R) −→ G(R) as follow :

Recall S = ResC/R(Gm), let S1 ⊂ S denote the kernel of the norm map N : S −→ Gm,R,
and let vm : S −→ S1 be the homomorphism which maps z ∈ C∗ = S(R) to vm(z) = z

z ∈
S1(R). Thinking of the orientation θx on the plane Dx as being given by an isomorphism

θx : S1
∼=−→ SO(Dx),

we define a morphism hx : S −→ GR by hx = ux ◦ vm where

ux : S1 θx−→ SO(Dx) ↪→ SO(Dx)× SO(D⊥
x ) ↪→ Gf0 ↪→ GR.

Therefore through the map x 7→ hx, we can identify X with a G(R)-conjugacy class
of maps h : S −→ GR. And it satisfies the axioms SV1-3 for Shimura varieties in [50].
In this way we get a Shimura datum ShG = (G, X). Moreover, this Shimura datum
also satisfies the additional axioms SV4-6. For a level group K, we get a Shimura variety
ShG(K) = G(Q)\X ×G(Af )/K.

Now we define the sub-Shimura datum.

Let E denote a totally imaginary quadratic extension of F which splits (V, ϕ), i.e.
such that the quadratic space (V, ϕ)⊗F E over E contains a totally isotropic E-subspace
of dimension n. Then (V, ϕ) contains E-hermitian F -hyperplanes, and all of them are
conjugate under G(Q) = SO(V, ϕ) (see [16] 9.2). We choose one such E-hermitian space
(W,ψ) and define H = U(W,ψ) (a subgroup of G), H = ResF/QH (a subgroup of G).
We can compute its signature over R. Define (Wa, ψa) = (W,ψ) ⊗F,a R (a ∈ SpF). Then
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HR =
∏
a

Ha with Ha = U(Wa, ψa), these factors are as follow :

Ha = U(Wa, ψa) =

{
U(n− 1, 1), if a = f0,

U(2n+ 1), if a ̸= f0.

The complex embedding f0 : F −→ C has two extensions to E, and we fix one choice
f+0 : E −→ C and denote by f−0 its conjugation. Identify Ef0 = E ⊗F,f0 R with C using
f+0 . Let Y denote the space of negative C-lines (via this identification) in (Wf0 , ψf0).
Similar to the ambient orthogonal case, we can view Y as a H(R)-conjugacy class of maps
h : S −→ HR. In this way we get a Shimura datum ShH = (H, Y ). Moreover, the natural
map

ShH −→ ShG

is an embedding of Shimura data. For a level group K1 ⊂ H(Af ) we obtain a Shimura
variety ShH(K1) = H(Q)\Y ×H(Af )/K1. And the natural inclusion H −→ G will induce
a map between their Shimura varieties ShH(K1) −→ ShG(K) (if K1 ⊂ K).

Compared with the general setting above, this pair has some advantages. For example,
Y 0 = Y (Y is already connected), and the stabilizer in the parametrization of lemma 2.1
is exactly H(Q) :

Let g ∈ StabG(Q)Y , for any negative Ef0-line D in (Wf0 , ψf0), g maps D to a negative
Ef0-line g(D) in (Wf0 , ψf0). Consider the restriction of g on D, g : D −→ g(D), because
the action of g is an orthogonal map and it keeps the orientation, therefore this map is
Ef0-linear (this is just an identification SO(2) ∼= U(1) in fact). Notice that these negative
lines span Wf0 , therefore g preserves Wf0 and acts on this subspace Ef0-linearly. Therefore,
g lies in the intersection G(Q) with Hf0(R)×

∏
a̸=f0

Ga(R) inside G(R), which is exactly
H(Q).

Next we will explicit the related Galois action on these special cycles.

We first do some preparations to compute their reflex fields, reflex norms etc.

Define SpE = Spec(E)(C) = Spec(E)(Q). Consider the torus

T = ResE/QGm = ResF/QT,

where T = ResE/FGm. It has a sub-torus

T1 = ker(T Norm−−−−→ ResF/QGm) = ResF/QT1,

where T1 = ker(T Norm−−−−→ Gm,F ). Through the natural determinant map, det : H −→ T1,
we can identify T1 with the maximal abelian quotient Hab. And det will induce a map
between Shimura data ShH −→ ShT1 . This quotient map det has non-canonical sections
T1 ↪→ H, thus for any Q-algebra R, the map det : H(R) −→ T1(R) is surjective. Moreover,



24 CHAPTER 2

we can describe the cocharacter group of T1 over C as follow :

{f : SpE −→ Z|f(c) + f(c) = 0} ∼= X∗(T1
C),

where c is the conjugation of c. This isomorphism is given by f 7→ µf where for all z ∈ C∗

and c ∈ SpE,

µf (z) : c 7→ zf(c) in T1(C) ⊂ T(C) = (E ⊗ C)∗ = (
∏

c∈SpE

C)∗ = Fun(SpE,C∗).

Here Fun(A,B) denotes the set of all maps from set A to set B. And this isomorphism is
Aut(C)-equivariant.

Let β = (v1, ..., vn) denote an orthogonal E-basis for (W,ψ). Then

T(β)
def
= ResF/Q(U(Ev1)× ...× U(Evn)) ⊂ H ⊂ G

is a maximal Q-subtorus of both H and G, and

T(β) = ResF/QU(Ev1)× ...× ResF/QU(Evn) ∼= (T1)n.

Thus similarly we have an Aut(C)-equivariant isomorphism

{f : SpE −→ Zn|f(c) + f(c) = 0} ∼= X∗(T(β)C).

Let S+
n = {±1}n ⋊ Sn be the group of signed permutations, acting on Zn by

(ϵ⋊ σ) · (λ1, ..., λn) = (ϵ1λσ−1(1), ..., ϵnλσ−1(n)).

The Weyl groups of H and G with respect to T(β) are then respectively equal to

W (H, β) = Fun(SpE, Sn) ⊂W (G, β) = Fun(SpE, S+
n )

with actions on X∗(T(β)C) ⊂ Fun(SpE, Zn) given by (w.f)(c) = w(c) · f(c) (c ∈ SpE).

Now we can compute their reflex fields.

Let β0 = (w1,0, ..., wn,0) be the orthogonal Ef0-basis of (Wf0 , ψf0) obtained from β by
base change along f0 : F ↪→ R. Because the signature of (Wf0 , ψf0) is (n−1, 1), there exists
a unique i in {1, ..., n} with ψf0(wi,0, wi,0) < 0, for simplicity we assume that i = 1. Then
w1,0 spans a negative Ef0 line yβ in (Wf0 , ψf0), giving rise to a special point yβ ∈ Y : the
corresponding map hβ : S −→ HR (or GR) factors through T(β)R ↪→ HR. The induced
cocharacter µβ : Gm,C −→ T(β)C defined by

µβ = (hβ)C ◦ ι : Gm,C −→ Gm,C ×Gm,C ∼= SC −→ T(β)C
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(where ι(z) = (z, 1)) will correspond to the function fβ as follow :

fβ : SpE −→ Zn, c 7→


(+1, 0, ..., 0) if c = f+0 ,

(−1, 0, ..., 0) if c = f−0 ,

(0, ..., 0) otherwise.

By definition, the conjugacy class of Shimura cocharacter for Sh(G), [µG], is exactly
the G(C)-conjugacy class of µβ : Gm,C −→ GC. And the reflex field E(G, X) is the field of
definition of this conjugacy class. By a standard argument, it is also the field of definition of
the W (G, β)-orbit of µβ ∈ X∗(T(β)C). By the above description of the W (G, β)⋊Aut(C)-
module X∗(T(β)C), we find that the reflex field is

E(G, X) = f0(F ) ⊂ R.

Similarly we find that the reflex field for ShH is

E(H, Y ) = f+0 (E) ⊂ C.

Now we turn to the Shimura datum for torus T1, which will produce zero dimensional
Shimura variety that is closely related with geometric connected components of the unitary
Shimura variety for ShH. It is easy to see that the cocharacter µT1 = det(µβ) defined by

Gm,C
µβ−→ T(β)C ↪→ HC

det−−→ T1
C

is independent of β and it is exactly the Shimura cocharacter for ShT1 . This cocharacter
corresponds to the function f̃µ : SpE −→ Z given by

c 7→


+1 if c = f+0 ,

−1 if c = f−0 ,

0 otherwise.

Then the field of definition of µT1 , i.e. the reflex field of ShT1 is also exactly f+0 (E). For
simplicity, from now on, we identify the abstract number fields F and E with the embedded
reflex fields f0(F ) and f+0 (E) using respectively f0 : F −→ f0(F ) and f+0 : E −→ f+0 (E).
By definition, the reflex norm for ShT1 is the following composition

T = ResE/QGm,E
µT1−−→ ResE/Q(T1

E)
Norm−−−−→ T1.

By a standard argument (see section A.2), this map is given by r = res(r), where

r : T −→ T1, z 7→ z

z
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is a morphism over F and recall T = ResF/QT, T1 = ResF/QT1.

Now we relate π0(ShH) with ShT1 . It is simpler than the general case because the
derived subgroup Hder is simply connected, see [50] 5.17. By the strong approximation
theorem, Hder(Q) is dense in Hder(Af ). Because E is a CM field, T1(Q) is discrete (thus
closed) in T1(Af ). Combining this, we obtain

H(Q)Hder(Af ) ⊂ H(Q) ⊂ (det−1)(T1(Q)) = H(Q)Hder(Af )

inside H(Af ), so
H(Q) = H(Q)Hder(Af ).

For a small enough level group K1 ⊂ H(Af ), the quotient map det : H −→ T1 induces a
natural map for Shimura varieties, ShH(K1) −→ ShT1(det(K1)). This natural map induces
a natural isomorphism on the set of connected components,

π0(ShH(K1)) = H(Q)\H(Af )/K1 = T1(Q)\T1(Af )/det(K1) = π0(ShT1(det(K1))).

Moreover, for a small enough level group K ⊂ G(Af ), similarly we can rewrite the para-
metrization as follow :

ZK(G,H) = H(Q)Hder(Af )\G(Af )/K.

Finally we can explicit the Galois action.

Let F ab and Eab denote the maximal abelian extensions of F and E in Q. Let E[∞]

denote the subfield of Eab which is fixed by the image of the transfer map, or equivalently
it is the union of all ring class fields of E. By class field theory we have the following
commutative diagram with exact rows

1 > ResF/QGm,F (Af ) > T(Af )
r

> T1(Af ) > 1

1 > Gal(F ab/F )

ArtF∨
> Gal(Eab/E)

ArtE∨
> Gal(E[∞]/E)

Art1E∨
> 1

where ArtF and ArtE are the Artin maps sending a local uniformizer to a geometric
Frobenius, and the last vertical map induces an isomorphism

Art1E : T1(Af )/T1(Q) ∼= Gal(E[∞]/E).

Then the Galois group GalE acts on ZK(G,H) as follows :

For any ρ ∈ GalE and s ∈ H(Af ), if Art1E(det(s)) = ρ|E[∞], then

ρ(ZK(g)) = ZK(sg) for all g ∈ G(Af ).
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It is also possible to describe the Galois action by GalF in a similar way. Because we
won’t use this fact in this thesis, we refer to [16] section 5 for more details.

We also need some preparations on ring class fields to realize abstract relations. For
more explanations we refer to [16] section 7 and [9] section VI, VII.

Fix the level group K, choose a special cycle z̃ = ZK(g) and take a finite set S′
1 =

S
′
1(K, z̃) ("bad primes") of primes of Q large enough such that
• S′

1 contains {2}.
• For any prime q /∈ S′

1, Q −→ E, G and H are all unramified at q.
• K = K

S
′
1
×KS

′
1 with KS

′
1 =

∏
q /∈S′

1

Kq, KS
′
1

is a compact open subgroup of G(Af,S1)

(Af,S1 =
∏
t∈S1

Qt), Kq is a compact open subgroup of G(Qq) for any q /∈ S′
1. And moreover,

g = ⊗tgt with gq ∈ Kq for any q /∈ S′
1.

• For any q /∈ S′
1, Kq (resp Kq

⋂
H(Qq)) is hyperspecial in G(Qq) (resp H(Qq)).

Take a prime l /∈ S′
1 (we will consider l-adic etale cohomology in 3 to do arithmetic

applications of tame relations) and define S1 to be S′
1

⋃
{l}. Let S ("bad places") denote

the finite set of places of F above S1. Let AS1
f =

∏′

p/∈S1
Qp.

By the assumption on S1 and our parametrization of special cycles, the natural decom-
position

G(Af,S1)×G(AS1
f ) −→ G(Af )

will induce the following natural map :

Z[Hder(Af,S1)\G(Af,S1)/KS1 ]
⊗⊗

p/∈S1

′

Z[Hder(Qp)\G(Qp)/Kp] −→ Z[ZK(G,H)].

And by our assumption on S, this natural map can be rewritten as

Z[Hder(Af,S1)\G(Af,S1)/KS1 ]
⊗⊗

w/∈S

′

Z[Hder(Fw)\G(Fw)/Kw] −→ Z[ZK(G,H)],

here Kw is the corresponding component of K (Kp =
∏
p|p

Kp for p /∈ S1) and we use res-

tricted tensor products. Thus roughly speaking, we can think of Z[Hder(Fw)\G(Fw)/Kw]

(w /∈ S) as a local version of our module for special cycles. We will use this natural map
many times in this these. Roughly speaking, we usually construct an element zcyc in the
left side, then its image in the right side (Z[ZK(G,H)]) will give us a special cycle. For
simplicity we will also use zcyc to denote this special cycle. Moreover, in application, we
may need to use an extension of Z, Z −→ R, as our coefficient ring. It is easy to state the
corresponding R-linear maps.

Let P denote the set of primes of OF that don’t belong to S and split in F −→ E, N
denote the set of square-free products of elements of P. For any ideal m of OF belonging
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to N, we will associate a finite abelian extension E[m] of E that lies in E −→ E[∞].

Choose a compact open subgroup U1
S ⊂ T1(Af,S1). For other primes of F (v /∈ S), we

define a filtration on T1(Fv) (by local conductor),

U1
v (c) = {

a

a
, a ∈ (OFv +mc

Fv
OEv)

∗},

where Ev = Fv⊗F E and OEv is the integral closure of OFv inside Ev = Fv⊗F E, c is a non-
negative integer. Moreover, for any positive integer c, U1

v (c) is also equal to r(ker(red1)) :

T(OFv)
r
> T1(OFv)

T(OFv/π
m
v )

red1
∨

> T1(OFv/π
m
v )

red2∨

here πv is a uniformizer of OFv and for simplicity we also denote by T1 and T the canonical
Néron models of T1 and T. In other words, the above diagram is just the same as the
following diagram :

(OEv)
∗ r

> T1(OFv) ⊂ (OEv)
∗

(OEv/π
c
v)

∗

red1
∨

> T1(OFv/π
m
v ) ⊂ (OEv/π

c
v)

∗.

red2∨

Because T1(Q) is discrete in T1(Af ), we can require U1
S to be small enough such that

T1(Q)
⋂

(U1
S ×

∏
v/∈S

U1
v (0)) = 1.

Moreover we can assume U1
S ×

∏
v/∈S

U1
v (0) ⊂ det(gKg−1

⋂
H(Af )) due to our assumptions

on S.

Now for an ideal m as above, we define U1(m) = U1
S ×

∏
v/∈S U

1
v (v(m)). We define

E[m] to be the subfield of E[∞] fixed by Art1E(U1(m)). Take m ∈ N, with prime factor h,
through direct computation, we have the following lemma :

Lemma 2.2. local-global

The Artin map Art1E induces an isomorphism U1
h(0)

U1
h(1)
∼= Gal(E[m]/E[mh ]).

Although this lemma is simple, it is essential to translate the global distribution relation
problem into local problems. By our assumption on U1(1), the cycle z̃ = ZK(g) is defined
over the field E[1]. In section 4.2, we will extend it into a family of special cycles defined
over some E[m] with suitable tame relation.
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2.2 Local setting (Boumasmoud’s Relation)

To state Boumasmoud’s Relation, we will introduce the Hecke polynomial briefly. See
section A.2 for more details about related properties (background on Satake transform,
rationality of the Hecke polynomial etc) and some explicit examples.

Let F denote a p-adic field with ring of integers OF , a uniformizer π ∈ OF and residue
field OF /π = Fq with q elements.

Let G denote a reductive group scheme over OF . By [27] (XXVI 7.15) and Lang’s
theorem [40], G is quasi-split over OF : there is a maximal torus T of G contained in
a Borel subgroup B with unipotent radical N and Levi decomposition B = T ⋉ N. Let
S denote the maximal split subtorus of T, X∗(S) the group of cocharacters of S and
X+

∗ (S) ⊂ X∗(S) the cone of B-dominant cocharacters. Let K denote the hyperspecial
subgroup G(OF ), B denote B(F ), G denote G(F ) ; we have the Iwasawa decomposition
G = BK.

Consider the G module Z[G/K], where G acts on G/K via left multiplication. We get
the Hecke algebra

He
def
= EndGZ[G/K] = Z[K\G/K].

It has a right action on Z[G/K]. More precisely, for a double coset KgK =
∐

i giK, this
operator [KgK] will act on Z[G/K] as follows :

[KgK] : 1bK 7→
∑
i

1bgiK .

Here we make a remark about the notation. Another usual method to define the Hecke
algebra is to describe it as the ring of locally constant, compactly supported functions
f : G −→ Z which are K-biinvariant. And the multiplication is given by the convolution
product of functions (under the unique Haar measure on G with K having volume 1). For
example we will adopt this description in the appendix A.2. The resulting ring is naturally
isomorphic to (EndG(Z[G/K]))opp. However, because we are working under unramified
assumptions and K is a hyperspecial subgroup of G, the Hecke algebra is commutative. In
other words, the identity map is a ring isomorphism :

EndG(Z[G/K]) ∼= EndG(Z[G/K])opp.

Therefore these two definitions are indeed the same thing.

For a cocharacter µ ∈ X+
∗ (S), there is an associated U -operator Uµ ∈ EndB(Z[G/K]).

Let I ⊂ K denote the Iwahori subgroup determined by K and B, with positive part
I+ = N(OF ). In other words, I ⊂ K is the inverse image of B(OF /π) under the reduction
map K −→ G(OF /π),

By the Iwasawa decomposition, Z[G/K] is generated by elements of the form 1bK
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(b ∈ B), Uµ acts on these elements as follows :

Uµ(1bK) =
∑

z∈ I+

µ(π)I+µ(π)−1

1bzµ(π)K (2.1)

More generally, fix an algebraic closure F of F and let F un denote the maximal un-
ramified extension of F inside F . For a conjugacy class of cocharacters [µ] for GF , we
also have an associated U -operator. Let µ ∈ X∗(TF ) denote the unique BF -dominant co-
character of TF in this conjugacy class. Both [µ] and µ have the same field of definition,
a finite extension F (µ) ⊂ F of F . In fact, GF is an unramified reductive group over F
by [27] XXVI 7.15, it splits over F un, thus F (µ) ⊂ F un. Let n(µ) = [F (µ) : F ] be the
degree of this extension. We still denote the descended cocharacter Gm,F (µ) −→ TF (µ) by
µ. Consider its norm, µ0 = NormF (µ)/F (µ), it is a cocharacter for TF . Therefore it factors
through the maximal split torus SF , we still denote this cocharacter Gm,F −→ SF by µ0.
There is a unique cocharacter for S extending µ0. And it lies in X+

∗ (S). Therefore we can
attach to this cocharacter a U -operator as above. We still denote the resulting operator by
Uµ.

Here we make three remarks :

• In this section we start with a reductive group scheme G over the integer ring OF .
This amounts to give an unramified reductive group G over F and a hyperspecial subgroup
K of G(F ).

In application, we usually starts from an unramified reductive group G over F and
construct an integral model G over OF for it. We state a standard strategy to construct
such a integral model that will be used latter in this thesis. The idea is to embed G into the
general linear group GLN and then extend this embedding into integral level. Notice that
GLN even has a model over Z. In this thesis, we will encounter other groups like orthogonal
groups and symplectic groups. These groups have standard representations. Through such
a representation, we can view can such a group as the closed subgroup scheme of GLN over
F that fixes an associated quadratic form. When the quadratic form satisfies certain good
properties, which can be detected via discriminant etc, the corresponding closed subgroup
scheme of GLN over OF will provide an integral model for our group.

• For simplicity, we pin down everything (K,B, µ...). In fact, this U -operator has a
more intrinsic and geometric explanation via Bruhat-Tits building theory. We refer to [9]
(section III and section V) for more details.

• For any non-negative integer i, we have Uµi = (Uµ)
i.

For the above conjugacy class of cocharacters [µ], we can also define a Hecke polynomial
Hepµ(X) ∈ He[X]. There is an issue about the coefficient ring. To realize the Satake
transform, we need to enlarge the coefficient ring Z into a larger ring R such that Z[q±

1
2 ] ⊂

R. We still denote the R-coefficient Hecke algebra R[K\G/K] by He. By scalar extension,
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we get a R[G]-module R[G/K], and an associated U -operator Uµ ∈ EndBR[G/K].
Let Γ denote Gal(F un/F ) with σ ∈ Γ being the geometric Frobenius of F . Let

ρ ∈ X∗(TF )⊗Q be the half-sum of all positive roots of (TF ,BF ).
Let 1 −→ Ĝ −→ LG −→ Γ −→ 1 be the Langlands dual of GF . Fix a Γ-invariant

pinning (T̂ , B̂, ...) of Ĝ so that LG = Ĝ⋊Γ. We get a Γ-equivariant isomorphism X∗(TF )
∼=

X∗(T̂ ). It maps µ to a B̂-dominant character of T̂ fixed by Γn(µ), which we also denote
by µ. Let rµ : Ĝ⋊ Γn(µ) −→ GL(Vµ) be the unique irreducible representation of L(GF (µ))

whose restriction to Ĝ is the irreducible representation with highest weight µ, and such
that Γn(µ) acts trivially on the highest weight space. For ĝ ∈ Ĝ, consider the polynomial

det(X − qn(µ)d(µ)rµ((ĝ ⋊ σ−1)n(µ))),

where d(µ) = ⟨ρ, µ⟩. We denote it by Hepµ and it is our Hecke polynomial. Its coefficients
are regular functions on Ĝ fixed by σ-conjugation. Through Satake transform, we can view
these functions as elements in the Hecke algebra (with suitable coefficient ring). The Hecke
polynomial only depends on the conjugacy class [µ], it does not depend on our pinning
down data (B,T, µ...).

Remark :
Here we will use the usual ("untwisted") Satake transform and we make a remark

about the coefficient issue and refer to section A.2 for more details. If µ is minuscule,
Wedhorn showed that the coefficients of its Hecke polynomial lie in the Hecke algebra with
Z[q−1]-coefficient, see [66] section 2.8. Because the Shimura cocharacter is minuscule, in the
application to tame relations, we can relax the requirement Z[q±

1
2 ] ⊂ R into Z[q−1] ⊂ R.

Now we can state Boumasmoud’s result.

Theorem 2.3. (Seed Relation)
The operator Uµ is a right root of the Hecke polynomial Hepµ(X) in EndB(R[G/K]),

in other words, in that ring, Hepµ(Uµ) = 0.

We refer to Boumasmoud’s thesis (see [9] section IV) for its proof.
There are many occurences of the Hecke polynomial in the literature. Different papers

may use different notations. To avoid such notation confusion, we conclude this section
with some remarks :
• In this paper, the word "Frobenius" will always means geometric Frobenius except

in the appendix (section A.2), while some papers are using arithmetic Frobenius to define
Hecke polynomial, like [9], [16].
•We are using the usual Satake transform. In Boumasmoud’s thesis, he used the usual

Satake transform and a "twisted" version, but he named the latter "untwisted Satake
transform", see [9] section III and section IV.
• In the definition of the Hecke polynomial, we consider the representation Vµ, but

some papers are using the dual space of Vµ, see [41] remark 2.1.3.
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• For such module R[G/K], we always equip it with left G-action and right He-action,
like [9]. Some papers may define the Hecke algebra as EndG(R[G/K]), while we’re using
the opposite identification He = (EndG(R[G/K]))opp. Especially there are some notation
confusion when comparing our "formal" Hecke action with geometric Hecke action. See
[41] remark 6.1.7.
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Cohomology theory

In this section, we will relate cycles to cohomology theory. We will work with global
objects like Shimura varieties and use the same notations as in section 2.1. The general
method is to apply l-adic Abel-Jacobi map. We will use the usual spectral sequence to
construct it. See [54] and [51] section 23 for more details. The lecture [51] also provides
some necessary background on etale cohomology.

l-adic Abel-Jacobi map

Let X1 denote a smooth variety which is equidimensional of dimension d over a field k
(char(k) ̸= l). Let X1 denote X1 ×k k

sep where ksep is a separable closure of k. For each
k ⊂ k′ ⊂ ksep, we have the Hochschild-Serre spectral sequence

Ei,j
2 = H i(Galk′ , H

j(X1,Zl(n)))⇒ H i+j(X1 ×k k
′
,Zl(n)),

which degenerates at E2 and gives a map

ker(H2i(X1 ×k k
′
,Zl(n)) −→ H2i(X1,Zl(n))) −→ H1(Galk′ , H

2i−1(X1,Zl(n))).

Thus we get the l-adic Abel-Jacobi map

AJl : (Zn(X1 ×k k
′
))0 −→ H1(Galk′ , H

2n−1(X1,Zl(n))),

here Z i(X1×kk
′
) is the Chow group of codimension n cycles, (Zn(X1×kk

′
))0 is the kernel of

the cycle class map Zn(X1×k k
′
) −→ H2n(X1,Zl(n)). We call elements in (Zn(X1×k k

′
))0

cohomologically trivial cycles. And for simplicity we will use X1,k′ to denote X1 ×k k
′ .

Applying this method to our main example ShH −→ ShG, the ambient Shimura va-
riety X1 = ShG(K) is 2n − 1-dimensional (suppose that the quadratic space is 2n + 1-
dimensional), and our resulting special cycles (constructed through ShH) on it are n − 1

dimensional. Suppose we have a suitable canonical way to make these special cycles coho-
mologically trivial, in a Galois and Hecke-equivariant way. Then we can use them to study
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H1(GalE′ , H2n−1(X1,Zl(n))) (here E is the reflex field for ShH and E′ will be a suitable
abelian extension of E). Therefore first we need some techniques to make our special cycles
cohomologically trivial.

Here we make two remarks.

For our main example, the embedding ShH −→ ShG is an example of a special pair of
Shimura data (see [70] section 3.1). Usually the middle degree cohomology of Shimura varie-
ties, H2n−1(X1,Zl(n)), is more complicated and important than other degree. This can be
seen from the following Matsushima’s formula. The following localization method is a good
illustration of this phenomenon. There are many problems around this middle degree coho-
mology. Among them, its Galois cohomology is an important topic. By dimensional rea-
sons, we can exactly expect to use our special cycles to studyH1(GalE′ , H2n−1(X1,Zl(n))).
What’s more, our other examples also have such an advantage by direct computation about
dimensions.

The l-adic cohomology theory is most suitable for proper (or equivalently projective)
Shimura varieties. Suppose that the ambient Shimura variety X1 = ShG(K) is projective,
let X1 denote its base change over C. We can also view its space of complex points, X1(C),
as a compact complex manifold (endow it with complex topology). Pick up an isomorphism
Ql
∼= C, we have a natural comparison theorem,

H∗(X1,Zl)⊗Zl
Ql
∼= H∗(X1(C),C),

for example see [51] section 21. In fact this comparison theorem holds more generally
without properness assumption. Therefore through this comparison theorem, we can study
the cohomology group on the right side to gain knowledge about l-adic cohomology of
Shimura varieties. We can use some analytic methods (relative lie algebra cohomology,
spectral decomposition etc), and we have the following Matsushima’s formula,

H∗(X1(C),C) ∼=
⊕

Π=Πf⊗Π∞

m(Π)(ΠK
f ⊗H∗(g,K∞; Π∞)).

Here

• Π runs through the automorphic representations of G(A), i.e. the irreducible repre-
sentations of G(A) in the automorphic spectrum L2(G(Q)\G(A),C), and m(Π) is the
corresponding multiplicity of Π ;

• g is the Lie algebra of G(R) ;

• K∞ is the maximal connected compact modulo center subgroup of G(R).
We refer to [8] section VII for its proof. This formula is quite useful to do explicit

analysis and it connects l-adic cohomology of Shimura varieties to automorphic represen-
tations of G(A). For example, we can take of Πf -component (Πf is fixed) of the whole
cohomology groupH i(X1,Ql), the resulting space is still a Galois representation. Moreover,
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in many cases, cuspidal representations tend to appear in the middle degree cohomology
while parabolic induced representations tend to appear in other degrees. This formula re-
quires the properness assumption. There are some generalizations without such properness
assumption, for example,

(1) Replace the left side by the L2-cohomology of the Baily-Borel compactification, see
[7].

(2) Consider the same cohomology group, but modify the representations that show up
in the decomposition of the right side, see [26].

However, these generalizations are more complicated. Unfortunately, for our main
example, the ambient Shimura variety ShG(K) is proper if and only if its reflex field
F is not Q. Other examples in this thesis have similar non-properness issues.

General methods to produce cohomologically trivial cycles

Here we mention two standard methods.

One possible method is to apply a parity projector whose existence is the subject
of the standard sign conjecture. The idea is that there exists a canonical rational Hecke
correspondence

e ∈ HeQ = EndG(Af )Q[G(Af )/K]

such that it induces the projector to odd degree cohomology,

H∗(X1,Ql) −→
⊕

i≡1 mod 2

H i(X1,Ql).

We refer to [53] for more details. See also [60] (section 6.2) for unitary Shimura varieties.
With the help of such projector e, for any special cycle zcyc, we know that e(zcyc) is
cohomologically trial due to dimension reasons.

Another standard method is to use localization at a suitable maximal ideal of the Hecke
algebra. The idea is that after such suitable localization, the cohomology will concentrate
on the middle degree. And such problem is an important topic concerning cohomology of
Shimura varieties. This technique is widely used when such vanishing results away from
the middle degree are available. Here we will use our main example to state the rough idea.
Then we list some related results.

The global Hecke algebra is not commutative and we will use a partial Hecke algebra.
Let

HeS1 =

′⊗
p/∈S1

Z[Kp\G(Qp)/Kp]

be the partial Hecke algebra. By our assumption on the finite set S1, each Kp is a hyper-
special subgroup of G(Qp) and GQp is unramified over Qp, then the local Hecke algebra
Z[Kp\G(Qp)/Kp] is commutative and thus the Hecke algebra HeS1 is commutative.

By the above Matsushima’s formula, we can decompose the l-adic cohomology of X1
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(recall that X1 is the ambient Shimura variety ShG(K)) as direct sum of automorphic
representations. For each such Π appearing in the cohomology, we can attach a homomor-
phism

ϕΠ : HeS1 −→ C

determined by the Satake parameters of Π at each place outside S1. This is due to the
decomposition theorem of Flath, Πf =

⊗′

pΠp (Πp is an irreducible representation of
G(Qp)), see [25]. And we assume that Π is cuspidal from now on.

What’s more, such π has the so called strong C-arithmetic property. We refer to [62]
(especially proposition 2.15) for more details. In particular, the image of ϕΠ is contained
in a number field E0. We further assume that its image is contained in the ring of integers,
OE0 . Thus we have a map, ϕΠ : HeS1 −→ OE0 . Let λ be a prime of E that lies above the
prime l and let Oλ denote the valuation ring of E0,λ. Then ϕΠ induces a morphism

ϕΠ,λ : HeS1 −→ Oλ.

Now we introduce the following ideal of HeS1 given by

m = ker(HeS1
ϕΠ,λ−−−→ Oλ −→ kλ).

Here kλ is the residue field of Oλ.

Notice that H∗(X1,Oλ) is a HeS1 module and thus we can consider its localization at
the ideal m. We expect the following vanishing result :

Assumption The localization H i(X1,Oλ)m = 0 for i ̸= 2n− 1 (middle degree).

Moreover, usually the middle degree H2n−1(X1,Oλ)m is a finite free Oλ (although this
is not needed for trivialization).

Under such vanishing assumption and since the localization is an exact functor, the
natural map

H2n(X1,E′ ,Oλ) −→ H2n(X1,E′ ,Oλ)m −→ H2n(X1,Oλ)m

(here E′ is an abelian extension of E) is zero because the last term is zero, and it induces
the following natural map

H2n(X1,E′ ,Oλ) −→ H1(GalE′ , H2n−1(X1,Oλ)m).

Therefore we can use our special cycles to construct suitable Galois cohomology classes
under such map.

Under some mild assumption on m (or Π etc), such as generic assumptions, large image
assumptions etc, these vanishing assumptions have been proved for many cases. Here we
list some examples :
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• For Siegel modular varieties, such results have already been proved in [52]. Their work
depends on the existence of a Galois representation attached to Π. Recently this technical
assumption has been verified by [62]. Therefore this technique is very suitable for our GSp4
example (see section 6.1).

• For some unitary Shimura varieties, Ana Caraiani and Peter Scholze made important
breakthrough towards its cohomology and got such vanishing results. See [11] (compact
cases) and [12] (non-compact cases). Their ideas provide a new framework towards such
problems. And recently, Teruhisa Koshikawa did some generalizations and simplifications,
see [36] and [37]. In particular his paper [37] throws some new insight. It is established by
the great work [24], which works very generally. Therefore it maybe reasonable to expect
such vanishing results for other Shimura varieties.

• For some Hilbert modular varieties, such vanishing resulting are known due to [42]
section 4.

What’s more, in the last part of section 5.2, lemma 5.6, we need to translate our special
cycles with norm relations into a norm compatible system, this localization method is very
suitable for that translation. It needs to pick up a map from local Hecke algebra to C first,
our map ϕΠ,λ will provide such a specialization exactly.

More precisely, let the coefficient ring R = Oλ. Consider the R-coefficient Hecke algebra
HeS1

R = HeS1 ⊗Z R and still denote the resulting map by ϕΠ,λ,

ϕΠ,λ : HeS1
R −→ Oλ.

Apply the tensor functor − ⊗
He

S1
R

R (or equivalently consider the functor of modulo
ker(ϕΠ,λ)) to the spectral sequence used to define Abel-Jacobi map, we get the following
natural map :

H2n(X1,E′ ,Oλ) −→ H1(GalE′ , H2n−1(X1,Oλ)/ ker(ϕΠ,λ)),

and the Hecke algebra HeS1
R will acts on the right side via scalars. This provides the

preparation to apply the translation lemma 5.6. Here we make an explanation for the
above map. Usually the tensor functor − ⊗

He
S1
R

R is not exact, but our above vanishing
assumption helps us to avoid such problem. We may also construct this map in the following
equivalent way. The map ϕΠ,λ has the following factorization :

ϕΠ,λ : HeS1
R −→ HeS1

R,mR
−→ Oλ

Here mR is the corresponding maximal ideal of HeS1
R , ker(HeS1

R −→ Oλ −→ kλ). As we
explained earlier, the first map (localization) gives us the following natural map,

H2n(X1,E′ ,Oλ) −→ H1(GalE′ , H2n−1(X1,Oλ)mR).
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Apply the tensor functor −⊗
He

S1
R,mR

Oλ to this natural map, we get the desired map

H2n(X1,E′ ,Oλ) −→ H1(GalE′ , H2n−1(X1,Oλ)/ ker(ϕΠ,λ)).

Further development

Finally we make some remarks.

First, we only consider the simplest cohomology theory, l-adic cohomology with trivial
coefficient (plus suitable Tate twist), as we mentioned above, this theory is most suitable
for proper Shimura varieties. When the ambient Shimura variety is not proper, it is more
convenient to consider some compatifications and consider cohomology theory over that
compatifications. Then it is more suitable to consider intersection cohomology theory etc
due to the fact that some natural compactifications (such as the Baily-Borel compactifica-
tions) are very singular. But then it will be more difficult to relate special cycles to such
cohomology theory.

Another important thing is to consider non-trivial coefficients. We refer to [28] section
4 for more details. See also [1] and [64] etc.

Roughly speaking, there is a canonical additive tensor functor

AncG,K : RepQl
(GQl

) −→ Et(ShG(K))

from the category of algebraic representations of GQl
to the category of etale sheaves on

ShG(K) with coefficients in Ql. And it is also possible to vary the level group K to get an
equivariant version,

AncG : RepQl
(GQl

) −→ Et(ShG).

Here the right side denotes the category of equivariant sheaf. It is also possible to an
integral version.

The trivial coefficient system corresponds to the trivial representation. And the general
coefficients cohomology will provide more applications to number theory and representation
theory.

The above functors also have functoriality for the group G, therefore very suitable
to consider our relative setting, the embedding of Shimura datum, ShH −→ ShG. The
pullback between sheaves will correspond to restriction of representations. Therefore, it is
necessary to consider such branching law for algebraic representations,

RepQl
(GQl

) −→ RepQl
(HQl

).

Certain pair of groups (G,H) have a very nice property : any irreducible algebraic
representation of G contains the trivial representation of H with multiplicity one. For
example, see lemma 5.1 in [28]. In that lemma they consider a special kind of algebraic
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representations of G with such nice property and it is already enough to do arithmetic
applications in their setting. Our main example also has this nice property, see [38]. That
paper works for compact real groups and that proof can be adapted to algebraic setting.
Therefore, it is a desirable and accessible development to consider non-trivial coefficients
for our main example.
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Chapitre 4

Tame relation

Cornut has already established the tame relation for inert places (see [16] section 7,8),
which is sufficient for the main arithmetic applications, i.e. the construction of an Euler
system. However, here we want to establish tame relations for split places via the seed
relation, because this method can be applied to other Shimura varieties (such as GSp4 lift
and so on).

4.1 Abstract relation

In this section, we still work over a local field and use the same notations as in the
previous section 2.2.

Recall F is a p-adic field with ring of integers OF , a uniformizer π ∈ OF and residue
field OF /π = Fq with q elements.

Recall G is the reductive group scheme overOF . For simplicity in this section we require
it to be split. Then the maximal split subtorus S is the maximal torus T. Notice that the
natural map X∗(T) −→ X∗(TF ) is an isomorphism. Consider a cocharacter µ ∈ X∗(TF ),
we also use µ to denote its unique extension to integral level. We require µ to be BF -
dominant (µ ∈ X+

∗ (T)) and minuscule.

The quotient map O∗
F −→ F∗

q has a natural section F∗
q −→ O∗

F . Combining it with
the cocharacter µ, we obtain a group map F∗

q −→ O∗
F −→ T(OF ) −→ G(OF ). Because µ

is minuscule, this map is injective. We identify F∗
q with µ(F∗

q) inside G(OF ). And we let
µ(F∗

q) act on R[G/K] through our left G action and denote elements 1bK by [b].

We have the following divisibility lemma :

Lemma 4.1. q − 1|Hepµ(µ(π))([1]) in R[µ(F∗
q)\G/K] .

Démonstration. There is a natural T(F )-Hecke equivariant map pr : R[G/K] −→ R[µ(F∗
q)\G/K].

Recall that we have the seed relation (theorem 2.3), Hepµ(Uµ) = 0 in EndBR[G/K]. To
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prove our lemma, we need to show :

q − 1|pr{Hepµ(Uµ)([1])−Hepµ(µ(π))([1])}.

Suppose the Hecke polynomial Hepµ equals
∑

iAiX
i (Ai ∈ He) and recall that U i

µ = Uµi .
It is enough to show the following :

For each positive integer i, we have

q − 1|pr{(Uµi − µi(π))([1])} in R[µ(F∗
q)\G/K].

Recall our formula for the Uµi operator (formula (2.1)), we have :

Uµi([1]) =
∑

z∈ I+

µ(π)iI+µ(π)−i

[zµ(π)i].

Denote this indexing set by In, we need to analyze it. Recall I+ = N(OF ). Over Spec(OF ),
for each positive root α, there is an associated root subgroup Nα ⊂ N and a T-equivariant
isomorphism Rα : Ga −→ Nα, here T acts on Ga through the cocharacter α : T −→ Gm

and T acts on Nα through conjugation. Let Φ+ denote the set of positive roots and consider
the T-equivariant product map :

Gn
a =

∏
α∈Φ+

Ga
∼=
∏

α∈Φ+

Nα −→ N.

This map is not compatible with the group structures, but it is an isomorphism of schemes
for any ordering on the factors.

Divide these factors into two part, define A =
∏

(α,µ)=1

Nα, B =
∏

(β,µ)=0

Nβ . The above

isomorphism induces an isomorphism A(OF )×B(OF ) ∼= N(OF ).
Notice that for positive root α and γ with (α, µ) = 1 = (γ, µ), there is no positive root

ξ in the form of aα + bγ (a and b are positive integers). Therefore, A is a commutative
subgroup of N. For any positive integer i, we have a natural isomorphism A(OF /π

i) ∼=
A(OF )

µ(π)iA(OF )µ(π)−i . The inclusion A(OF ) ↪→ N(OF ) also induces a natural isomorphism
A(OF )

µ(π)iA(OF )µ(π)−i
∼= N(OF )

µ(π)iN(OF )µ(π)−i .
In summary, for the indexing set, we have found a T(OF )-equivariant isomorphism

∏
(α,µ)=1

Nα(OF /π
i) ∼= In.

Define In∗ to be In− {1}. Then Uµi([1])− µ(π)i([1]) =
∑
z∈In∗

[zµ(π)i].

For any x ∈ In∗, write x =
∏

(α,µ)=1

Rα(xα). For any t ∈ F∗
q , µ(t)xµ(t)

−1 =
∏

(α,µ)=1

Rα(txα).
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There is at least one α such that xα is non-zero, so the group µ(F∗
q) acts on In∗ freely.

Notice that in µ(F∗
q)\G/K we have

pr([xµ(π)i]) = pr([µ(t)xµ(π)iµ(t)−1]) = pr([µ(t)xµ(t)−1µ(π)i]),

here we use µ(F∗
q) ⊂ K. Because the cardinality of µ(F∗

q) is q − 1, we get q − 1|pr{(Uµi −
µi(π))([1])}.

We make a remark. In fact, we can replace the element [1] by any element [t], where t
is an element in T(F ), this lemma still holds with the same proof.

Now we will translate this lemma into the relative setting.
Suppose there exists a closed reductive subgroup H ⊂ GF and a character v : H −→

Gm,F such that they satisfy the following conditions (∗) :
• The cocharacter µ : Gm,F −→ GF factor through H and we still denote this cocha-

racter Gm,F −→ H by µ.
• v ◦ µ is the identity map for Gm,F .
By the second condition, the map v : H −→ Gm is a quotient map (surjective). Moreo-

ver, taking F -points, we see that the induced map H(F ) −→ Gm(F ) = F ∗ is also surjective
and if we equip H(F ) and F ∗ with the induced p-adic topology, this map is an open map.

Consider the following conductor filtration on Gm(F ) : For any non-negative integer
m, define

Gm(m) =

O∗
F if m = 0

1 + πmOF if m > 0
.

We will use v to define a conductor filtration on H(F ), just define H(m) = v−1(Gm(m)).
By the second condition, we get µ(F∗

q) ⊂ H(0). Now we can translate the above lemma as
this theorem :

Theorem 4.2. divisibility

q − 1| Hepµ(µ(π))([1]) in R[H(0)\G/K].

This divisibility can be translated as a kind of abstract relation. And it will also explain
another reason behind the appearance of q − 1.

Define Hd = ker(H(F )
v−→ Gm(F )) and consider the module R[Hd\G/K], which

will be a local analogue of our module of special cycles (see next section 4.2). For an
element x ∈ Hd\G/K, we denote its corresponding element in R[Hd\G/K] by [x]. We
have a distinguished element [1]. Since Hd is a normal subgroup of H(F ), the latter group
acts on Hd\G/K, and this action factors through v. We thus obtain an H(F )-action on
R[Hd\G/K] which factors through v.

Theorem 4.3. abstract relation
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The element Hepµ(µ(π))([1]) ∈ R[Hd\G/K] lies in the image of the trace map

Tr1,0
def
= TrH(0)

H(1)

: R[Hd\G/K]H(1) −→ R[Hd\G/K]H(0).

Démonstration. Because µ(Gm(0)) ⊂ K, so H(0) fixes [1]. And the H(0)-action commutes
with the operator Hepµ(µ(π)), thus the element Hepµ(µ(π))([1]) lies in R[Hd\G/K]H(0).

Notice that each H(0)-orbit in R[Hd\G/K] is finite, we obtain an R-linear isomorphism

R[H(0)\G/K] ∼= R[Hd\G/K]H(0).

Denote the projectionHd\G/K −→ H(0)\G/K by pr0. For any element C ∈ H(0)\G/K,
the above map is given by sending [C] to

∑
x∈pr−1

0 (C)

[x].

Similarly, denote the projectionHd\G/K −→ H(1)\G/K by pr1, denoteH(1)\G/K −→
H(0)\G/K by pr. We get a R-linear isomorphism R[H(1)\G/K] ∼= R[Hd\G/K]H(1).

Consider the following commutative diagram :

R[H(1)\G/K]
∼=
> R[Hd\G/K]H(1)

R[H(0)\G/K]

Tr
∨ ∼=

> R[Hd\G/K]H(0)

Tr1,0∨

Here Tr is the map induced by Tr1,0, not the map induced by pr. Now let’s explicit this
map Tr :

For any C ∈ H(1)\G/K, let S(C) denote the cardinality of its stabilizer group in
H(0)
H(1) . Then we have S(C)|q − 1, because q − 1 is the cardinality of H(0)

H(1) . And Tr([C]) =

S(C)[pr(C)].
Now in R[H(0)\G/K], write Hepµ(µ(π))([1]) =

∑
D aD[D], where D runs over ele-

ments in H(0)\G/K with non-zero aD. For each D, choose an element CD ∈ H(1)\G/K
such that pr(CD) = D. By our divisibility theorem 4.2, for each D, q − 1|aD, thus there
exists bD ∈ R such that aD = (q − 1)bD. Define S1 =

∑
D bD[CD], then Tr(S1) =

Hepµ(µ(π))([1]). We’re done.

As in our previous lemma, we can also replace [1] by [t] (t ∈ T(F )) with the same
proof.

Finally we propose a variant. This theorem is already enough for our main example in
next section 4.2. For more general cases, we only need a slight change, see section 6.1 and
section 6.2.

Suppose we have the following integral version conditions (♠) of conditions (*) :
♠ Suppose there exists a closed reductive group H ↪→ G over Spec(OF ) and a character

v : H −→ Gm over Spec(OF ) such that
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• The cocharacter µ : Gm −→ G factor through H and we still denote this cocharacter
Gm −→ H by µ.
• v ◦ µ is the identity map for Gm.
And we will define the conductor filtration on H(OF ) instead of the whole group H(F ).

For any non-negative integer, define H(m) = v−1(Gm(m)). Next we replace the group Hd

by Hder = Hder(F ). Other things remain the same, then we get the following version of
abstract tame relation :

Theorem 4.4. variant abstract relation
The element Hepµ(µ(π))([1]) ∈ R[Hder\G/K] lies in the image of the trace map

Tr1,0
def
= TrH(0)

H(1)

: R[Hder\G/K]H(1) −→ R[Hder\G/K]H(0).

4.2 Realization

In this section, we will show that the abstract relation can be translated into "real"
tame relations for special cycles. This section is in global setting, we will use notations in
section 2.1 again.

First we enlarge the coefficient ring Z into R. Here we take R to be an l-adic integer
ring. Recall we have taken a finite set S1 ("bad primes") containing this prime l. Then
for any prime p /∈ S1, we have p−1 ∈ R, so by the discussion about coefficients for Hecke
algebra in section 2.2 (or see section A.2), R is large enough, i.e. the coefficients of the
Hecke polynomial belong to the Hecke algebra with coefficients in R.

Next we will use the previous section’s theorems to deduce a local result for our main
example.

Recall that F is a totally real field with a quadratic CM extension F −→ E. And V is a
2n+1-dimensional F -space with a quadratic form ϕ. Inside (V, ϕ), we have a n-dimensional
E-hermitian space (W,ψ). We have a pair of F -reductive groups (G,H) = (SO(V ), U(W ))

and our main example is

(G,H) = (ResF/QG,ResF/QH).

In the previous section, we work with split groups. Thus we can’t apply the results in
that section to our main example directly. We will do a two step reduction to overcome
this problem.

Let v be a finite place of F which splits in F −→ E and does not belong to the set S
("bad places"). Let p be the underlying prime of Q, so that p /∈ S1. Fix an isomorphism

F ⊗Qp
∼=
∏
p|p

Fp,

for simplicity, we require the first factor to be Fv.
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Consider the base change of our pair (G,H) to Qp. The above isomorphism F ⊗Qp
∼=∏

p|p

Fp will induce an isomorphism

GQp
∼=
∏
p|p

ResFp/Qp
GFp

,

and for simplicity we define Gp = GQp , Gp = ResFp/Qp
GFp

. Similarly we have

HQp
∼=
∏
p|p

ResFp/Qp
HFp

and define Hp = HQp , Hp = ResFp/Qp
HFp

.

Extend the embedding F −→ Fv into an embedding Q −→ Fv = Qp. Along this way,
we pick up a prime v+ of E lying over v and identify Ev+ with Fv. Denote the conjugation
of v+ by v− and denote Ev− by Fv. Under this isomorphism E ⊗F Fv

∼= Fv × Fv, the
conjugation on the left side will correspond to the involution of swapping factors on the
right side.

Recall our Shimura cocharacter conjugacy class [µG] and now transfer it into the p-adic
setting. The embeddings between fields C←↩ Q ↪→ Fv induce isomorphisms

HomQ(F,C) ∼= HomQ(F,Q) ∼= HomQ(F, Fv),

and conjugacy classes of cocharacters

C∗(GC) ∼= C∗(GQ)
∼= C∗(GFv

).

The isomorphism Gp
∼=
∏
p

Gp induces an isomorphism C∗(Gp,Fv
) ∼=

∏
p

C∗(Gp,Fv
), and

our conjugacy class of Shimura cocharacter [µG] will correspond to an element

[µG,v] = ([µv], 1, ..., 1).

Denote Gp(Qp) by Gp with associated Hecke algebra Hep and Gp(Qp) by Gp with asso-
ciated Hecke algebra Hep. Through the natural isomorphism Hep ∼=

⊗
p|p

Hep, we have an

identity for their Hecke polynomials

HepµG,v
= Hepµv

(also see [16] section 10.2). This finishes the first step reduction.

To apply previous section’s theorems, we next analyze our subgroup Hv.

Recall Hv = ResFv/Qp
HFv

. Because v is a split prime and we have fixed Ev+
∼= Fv, the
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unitary group HFv
splits. More precisely, through E ⊗F Fv

∼= Fv × Fv, we have WFv =

W ⊗F Fv
∼=Wv ⊕Wv, where Wv =W ⊗E Fv and Wv =W ⊗E Fv. Then we get

HFv
∼= GL(Wv)Fv .

Similarly we have
TFv

∼= Gm,Fv ×Gm,Fv

and
T1

Fv
∼= Gm,Fv .

Under these isomorphisms, the determinant map det : HFv
−→ T1

Fv
corresponds to the

determinant map for general linear groups

det : GL(Wv) −→ Gm,Fv .

And for any Fv-algebra Al, (x, y) ∈ Al∗ ×Al∗, the map r is as follow

r : (x, y) −→ x

y
,

and the inclusion T1
Fv
(Al) ↪→ TFv

(Al) becomes

x −→ (x, x−1).

Now let Gv be the reductive integral model over Spec(OFv) for GFv
such that Gv(OFv)

equals Kv. By our assumption, Kv
⋂

HFv
(Fv) is a hyperspecial subgroup of HFv

(Fv), we
can take a Borel pair (Bv, T v) for Gv such that (Bv,Fv

⋂
HFv

, T v,Fv

⋂
HFv

) is a Borel pair
for HFv

. This Borel pair for HFv
will give us an ordered Fv-basis (x1, ..., xn) for Wv such

that Bv,Fv

⋂
HFv

corresponds to upper triangular matrices and T v,Fv

⋂
HFv

corresponds
to diagonal matrices. Now define a cocharacter µv,0 : Gm,Fv −→ HFv

by sending t to
(t, 1, ..., 1) under this ordered basis. Composing it with the embedding HFv

↪→ GFv
, we

get a cocharacter for GFv
factoring through its maximal torus T v,Fv

and this cocharacter
has a unique extension to T v over Spec(OFv), for simplicity we still denote them by µv,0.

Now we relate µ0,v to [µv]. Recall Gv = ResFv/Qp
GFv

, then over Fv = Qp, we have an
isomorphism for conjugacy classes of cocharacters,

C∗(Gv,Fv
) ∼=

∏
δ∈HomQp (Fv ,Fv)

C∗(Gv,δ,Fv
),

here Gv,δ,Fv
= GFv

⊗Fv ,δ Fv and for simplicity we assume the first factor corresponds to
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our fixed inclusion Fv ↪→ Fv. Then

[µv] = ([µv,0], 1, ..., 1).

For (GFv
, [µv,0]) we have the Hecke polynomial Hepµv,0 ∈ Hev[X], where Hev is the Hecke

algebra R[Kv\GFv
(Fv)/Kv] = Hev, then

Hepµv,0 = Hepµv

by [16] section 10.2.

Therefore we have finished the second reduction and we can now apply the results of
the previous section.

Because det(µv,0) is the identity map for Gm,Fv , the pair (HFv
, det) satisfies conditions

(*) in previous section. The map det induces a conductor filtration {Hv(m)|m ≥ 0} on
HFv

(Fv) = Hv(Qp) and its kernel is exactly Hder
Fv

(Fv). Denote this kernel by Hd
v and

define Hv(m) = Hv(m). Take a uniformizer πv ∈ OFv and apply theorem 4.3 to this pair
(HFv

,Gv), we get the following local result :

Theorem 4.5. local tame relation

The element Hepµv,0(µv,0(πv))([1]) ∈ R[Hd
v\Gv/Kv] lies in the image of trace map

Trv,1,0
def
= TrHv(0)

Hv(1)

: R[Hd
v\Gv/Kv]

Hv(1) −→ R[Hd
v\Gv/Kv]

Hv(0).

Here R[Hd
v\Gv/Kv] is exactly the local version of our module for special cycles and

µv,0(πv) can be seen as an analogue of the Frobenius :

Still denote the image of µv,0(πv) (resp. πv) under the inclusion H(Fv) ↪→ H(Af ) (resp.
T1(Fv) ↪→ T1(Af )) by µv,0(πv) (resp. πv). Here recall we have identified T1

Fv
with Gm,Fv

and πv ∈ Gm,Fv(Fv). Denote the class of πv in T1(Af )/T1(Q) by [πv]. We have

det(µv,0(πv)) = πv = r((..., 1, πv, 1, ...))

and
Art1E([πv]) = Frobv+ |E[∞].

According to the reciprocity law, for any special cycle ZK(g̃), we have

Frobv+(ZK(g̃)) = ZK(µv,0(πv)g̃).

We also notice that the two conductor filtrations for torus (defined in section 2.1 and
section 4.1) are indeed the same. For any positive integer m, we have the following exact
sequences :
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1 > Gm(OFv) > T(OFv)
r
> T1(OFv) > 1

1 > Gm(OFv/π
m
v )

red0
∨

> T(OFv/π
m
v )

red1
∨

> T1(OFv/π
m
v )

red2∨
> 1

These three vertical reduction maps (red0, red1, red2) are surjective, then the snake
lemma implies r(ker(red1)) = ker(red2). And this equality holds for any prime of F . The
zero step in both filtrations are T1(OFv). In summary these two filtrations are the same.

Now recall our base cycle z̃ = ZK(g) with g = gS1 × gS1 , by our assumption for S1 and
S, we can assume z̃ = z̃S ⊗ 1S (here 1S =

⊗
w/∈S

1) through the following natural map :

R[Hder(Af,S1)\G(Af,S1)/KS1 ]
⊗⊗

w/∈S

′

R[Hder(Fw)\G(Fw)/Kw] −→ R[ZK(G,H)].

For each prime v ∈ P, by the above theorem, there exists an element ẑv ∈ R[Hder(Fv)\G(Fv)/Kv]
Hv(1)

such that
Trv,1,0(ẑv) = Hepµv,0(Frobv+)([1]).

For any ideal m ∈ N, we define an element z(m) in the left side of the above natural
map,

z(m) = z̃S ⊗ (
⊗
v|m

ẑv)⊗ (
⊗

v∤n,v /∈S

1)

and we also use z(m) to denote the resulting cycle in R[ZK(G,H)]. Putting everything
together, we finally obtain the following result :

Theorem 4.6. tame relation
We have z(1) = z̃. For any m ∈ N, the special cycle z(m) is defined over E[m], and

for any v ∈ P that does not divide m, we have TrE[mv]
E[m]

(z(mv)) = HepµG,v(Frobv+)(z(m)).

Démonstration. Inside ZK(G,H), the special cycle z(m) is fixed by U1(m), thus it is
defined over the field E[m] and by definition z(1) = z̃.

Notice that for any prime w /∈ S
⋃
{v}, we have z(m)w = z(mv)w (w-"component").

Applying the previous results, we get

TrE[mv]
E[m]

(z(mv))
lemma 2.2
======== TrU1

v (0)

U1
v (1)

(z(mv))

== z̃S ⊗ (Trv,1,0(ẑv))⊗ (
⊗

w/∈S
⋃
{v}

z(m)w)

theorem 4.5
========= z̃S ⊗ (HepµG,v

(Frobv+)([1]))⊗ (
⊗

w/∈S
⋃
{v}

z(m)w)
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= HepµG,v
(Frobv+)(z(m)).

Finally we make two remarks :
• For simplicity, we have taken z̃ = ZK(g) as our base cycle. The result easily generalize

to any base cycle z′
=
∑

i ZK(gi).
• In this paper, we always use double coset description for Hecke algebra and use

"formal" Hecke action. The geometric Hecke action is through the Geometric Hecke cor-
respondence. These two actions are the same, we refer to Cornut’s [16] section 5.16 for
details.



Chapitre 5

Norm relation

5.1 Abstract relation

In this section, we come back to the local setting again.

Let F denote a p-adic local field with a uniformizer π. Denote the cardinality of the
residue field OF /π by q. Let G denote a reductive group scheme over Spec(OF ) and H a
closed subgroup scheme of G. We assume this pair (G,H) to be spherical over Spec(OF ) :
there exists a Borel subgroup scheme B of G such that the H-orbit of [1] in G/B is open,
equivalently, Lie(H) + Lie(B) = Lie(G). Take a maximal torus T inside B and denote
by B the Borel subgroup of G opposed to B with respect to T. Here we use notations
compatible with those of Loeffler’s [44] section 4. Loeffler considers a more general situation
where B is replaced by a parabolic subgroup QG and [1] is replaced by [u] (u ∈ G(OF )).
Our method can be generalized similarly but here this simplification is sufficient for our
application.

Example (spherical pair)

There are many spherical pairs. Here we mention a standard example : (GLn×GLn, GLn).

Consider the diagonal embedding GLn −→ GLn × GLn. We take G = GLn × GLn,
H = GLn. Take T1 ⊂ H to be the maximal torus corresponding to the set of diagonal
matrix, B1 ⊂ H to be the Borel subgroup of H that corresponds to the set of upper
triangular matrix, B2 ⊂ H to be the Borel subgroup of H that corresponds to the set of
lower triangular matrix. Then (T1 × T1,B1 × B2) is a Borel pair for G, and the related
opposite Borel subgroup B1 ×B2 is B2 ×B1. It is easy to verify that Lie(H) +Lie(B2 ×
B1) = Lie(G), thus (GLn×GLn, GLn) is a spherical pair. In fact, it is a kind of symmetric
pair, in the appendix A.1, we will encounter this example again.

Now we come back to our topic.

Denote G = G(F ), H = H(F ), K = G(OF ) and KH = H(OF ) = H
⋂
K. Denote the

Hecke algebra for G by He = R[K\G/K], here R is a suitable coefficient ring to realize
Hecke polynomial (i.e. contains Z[q±

1
2 ]). Now we will define a filtration on G and H ("level

51
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group filtration").

Denote the unipotent radical of B and B by N and N, so we have B = T⋉N and B =

T⋉N. Take a strict B-dominant cocharacter µ ∈ X+(T), here strict means the associated
parabolic group Pµ for µ is exactly B. Set τ = µ(π) and thus we have τN(OF )τ

−1 ⊂
N(OF ), τ−1N(OF )τ ⊂ N(OF ). Let Hepµ ∈ He[X] and Uµ ∈ EndB(F )R[G/K] be the
associated Hecke polynomial and U -operator. Now for any integer m ≥ 0, define

Gm = K
⋂
τmKτ−m, Hm = Gm

⋂
H(F ).

So G0 = K, H0 = KH . For a positive integer m, Gm lies in the OF -points of the "Big
Bruhat cell" N×T×N and decomposes as

Gm = τmN(OF )τ
−m ×T(OF )×N(OF ).

It follows that Gm ⊃ Gm+1 and Hm ⊃ Hm+1 for every m. Moreover, define

Nm = N(F )
⋂
Gm,

then Nm = τmN(OF )τ
−m and Nm ↪→ Gm induces a bijection

Nm/Nm+i = Gm/Gm+i

for every positive integer m and i.

Regarding these level group filtrations, we have the following comparison :

Lemma 5.1. comparison 1

For m, i ≥ 1, the natural inclusion Hm ⊂ Gm induces an isomorphism Hm/Hm+i =

Gm/Gm+i.

Démonstration. This map is obviously injective and we only need to establish surjectivity.

Take an element x ∈ Gm and denote its class in (G/B)(OF ) by [x]. Consider the
reduction (or specialization) map red : G(OF ) −→ G(OF /π). Then red(x) ∈ B(OF /π).
Therefore red([x]) = red([1]), here red also denotes the reduction map for our flag scheme
(G/B)(OF ) −→ (G/B)(OF /π).

Let Ψ : H −→ G/B be the H-orbit map of [1]. By our spherical assumption (Lie(H)+

Lie(B) = Lie(G)), this map is a smooth map. Because red([x]) = red([1]) = Ψ(1) and
OF is Henselian, there exists an element y ∈ H(OF ) such that Ψ(y) = [x] and red(y) = 1

(here red is for H). Then x = y · c, where c ∈ B(OF ). Since c ∈ Gm+i, it follows that y
belongs to Hm, and we have [y] = [x] in Gm/Gm+i.

Therefore we can identify Hm/Hm+i with Nm/Nm+i through these isomorphisms.
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Now consider our module R[G/K]. Denote x0 = [1] = 1K and define xm = [τm] = 1τmK

(m is any positive integer). Through H ↪→ G, the group H acts on the set G/K by left
multiplication, and for each non-negative integer m, Hm fixes the element xm inside G/K.

For any integer m > 0, i ≥ 0, we have the following lemma :

Lemma 5.2. comparison 2
Tr Hm

Hm+i

(xm+i) = Uµi(xm) in R[G/K], here Tr Hm
Hm+i

(xm+i)
def
=

∑
δ∈Hm/Hm+i

δ(xm+i).

Démonstration. If i = 0, both operator are the identity. For positive integer i, it is a
corollary of the above lemma 5.1 :

Through the identifications Hm/Hm+i = Nm/Nm+i = τm(N0/Ni)τ
−m, we find that

Tr Hm
Hm+i

(xm+i) =
∑

δ∈Nm/Nm+i

δ(xm+i) =
∑

z∈ N(OF )

τiN(OF )τ−i

[τmzτ i] = Uµi(xm),

where the last equality comes from the explicit formula (2.1) for U -operator, there I+ =

N(OF ).

Now suppose the Hecke polynomial Hepµ =
∑

iAiX
i, where Ai ∈ R[K\G/K] (Hecke

algebra). Since Uµi = (Uµ)
i, applying Boumasmoud’s relation (theorem 2.3), we have the

following relation :

Lemma 5.3.
∑

iAiTr Hm
Hm+i

(xm+i) = 0 in R[G/K].

Now recall the local analogue of our modules for special cycles is R[Hder\G/K] where
Hder = Hder(F ). Through the natural projection G/K −→ Hder\G/K, the above relation
also holds in the second module. More precisely, define

Hab =
H

Hder
, Hab

m = Im(Hm).

All fibers of the map Hm/Hm+i −→ Hab
m /H

ab
m+i have the same cardinality, which we denote

by c(m, i). Then we get :

Theorem 5.4. abstract norm relation∑
i c(m, i)AiTr Hab

m
Hab
m+i

(xm+i) = 0 in R[Hder\G/K].

Finally we make a remark. For many spherical pairs (G,H), we find that Hm =

H
⋂
τmKτ−m. In other words, the H-stabilizer of xm ∈ G/K also stabilizes x0 ∈ G/K.

We conjecture that this holds in the general setup of this section (stabilizer conjecture)
and verify it in many cases in appendix A.1. In particular, it holds for our main example.
This observation will be used in next section 5.2 for the calculation of c(m, i).
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5.2 Realization

We return to the global setting again and to the notations in section 2.1.

Recall that we have chosen a special cycle z = ZK(g) ∈ R[ZK(G,H)] and z is defined
over the field E[1], which is the fixed field by U1(1). Choose a prime v of F that doesn’t
belong to S and v ∤ disc(W ), v ∤ disc(V ) (discriminant of W and V ).

First we verify the spherical condition over v to apply previous section’s theorems.

Denote OEv = OE ⊗OF
OFv . Because v is an unramified prime, there exists an ele-

ment η ∈ O∗
Ev

such that Tr(η) = η + η = 0. Denote (Vv, ϕv) = (V, ϕ) ⊗F Fv, (Wv, ψv) =

(W,ψ)⊗F Fv. Because v ∤ disc(W ) and the unitary group HFv
is unramified, there exists

an orthogonal Ev-basis {w1, ..., wn} for WFv = W ⊗F Fv, such that ϕv(wi, wi) ∈ O∗
Fv

.
Suppose Vv = Wv ⊥ Fvvn, we can assume ϕv(vn, vn) ∈ O∗

Fv
due to v ∤ disc(V ). Be-

cause Norm(O∗
Ev

) = O∗
Fv

, we can rescale {w1, ..., wn} so that ϕ(wn, wn) + ϕ(vn, vn) = 0,
ϕ(wi, wi) + ϕ(ηwi+1, ηwi+1) = 0 (1 ≤ i ≤ n− 1). Define vi−1 = ηwi (1 ≤ i ≤ n), we get an
orthogonal Fv-basis for Vv

Bv = (v0, w1, v1, w2, ..., wn, vn).

Such a basis is called a special basis in Cornut’s [15] section 5.1.5. It defines two orthogonal
decomposition of Vv,

Vv = Evw1 ⊥ ... ⊥ Ewn ⊥ Fvvn = Fvv0 ⊥ H1 ⊥ ... ⊥ Hn,

where Hi = Fvwi ⊥ Fvvi is an hyperbolic Fv-plane whose isotropic Fv-lines are spanned
by e±i =

1
2(vi ±wi). Consider the ordered basis (en, ..., e1, v0, e−1, ..., e−n) of Vv, it defines

an embedding
GFv

↪→ GL(Vv)Fv = GL(2n+ 1)Fv

and defines a Borel pair (Tsv,Bv) for GFv
, here Tsv corresponds to diagonal matrices and

Bv corresponds to upper triangular matrices. Consider the OFv -lattice Lv spanned by the
above basis, it is a self-dual lattice and extends our embedding over Spec(OFv),

SO(Lv) ↪→ GL(Lv).

Through this embedding, we get a reductive integral model Gv for GFv
with the associated

Borel pair (Tsv,Bv). Consider theOEv -lattice L̃w spanned by (w1, ..., wn), this is a self-dual
lattice in Wv and it extends the embedding HFv

↪→ GFv
over Spec(OFv),

U(L̃w) ↪→ SO(Lv),
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and we get a reductive integral model Hv for HFv
. It is easy to check that

Hv

⋂
Bv = 1

(Bv is the Borel group opposite to Bv with respect to Tsv) and then (Hv,Gv,Bv) satisfies
the spherical condition by dimension reason.

Here we make some remarks. In fact, since the intersection of Hv and Bv is trivial, the
action of Hv(OFv) on the open orbit of [1] in Gv/Bv(OFv) is transitive. In other words,
any Borel group B̃v ⊂ Gv with Lie(Hv)+Lie(B̃v) = Lie(Gv) can be constructed as above.

Now we can apply previous section’s results. Take a uniformizer πv for OFv and choose
a strict Bv-dominant cocharacter µv ∈ X+

∗ (Tsv) in the form of (sn, ..., s1, 0,−s1, ...,−sn)
where si are integers with 0 < s1 < ... < sn. In other words, for any OFv algebra Al and
any t ∈ Al∗, the map µv is given by

t 7→ (tsn , ..., ts1 , 1, t−s1 , ..., t−sn) ∈ Tsv(Al) ⊂ Gv(Al) ⊂ GL(Lv)(Al).

Still define Gv = G(Fv) with the hyperspecial group Kv = G(OFv). Notice that we already
chose a global level group K with v-component "Kv". We can require these two notations
defines the same group to avoid notation confusion. This can be done either by modifying
the v-component of the global level group K or by changing our local integral model. Such
slight change influences nothing. Let τ = µv(πv) and define xm = [τm] = 1τmKv ∈ Gv/Kv

for any non-negative integer m. Applying theorem 5.4, we get the following relation (for
positive integer m) :∑

i

c(m, i)AiTr T1
v,m

T1
v,m+i

(xm+i) = 0 ∈ R[Hder
v \Gv/Kv], (5.1)

here Hv = Hv(Fv), Hder
v = Hder

v (Fv) and T 1
v,m = Hab

v,m with other notations defined in the
previous section.

Now we describe these constants c(m, i). We will need Cornut’s explicit computation
in [15]. That paper works under inert assumption therefore from now on we assume v to
be inert in E. By Cornut’s computation in [15] section 5.1.14, for any non-negative integer
m, we have

T 1
v,m = det(Hv,m) = U1

v (ms1),

here U1
v (ms1) is the conductor filtration defined in global setting 2.1. For the benefit of

readers, we make some remarks about this computation. The case m = 0 is trivial, we
only need to care about m > 0. We use similar notation (special basis etc) as Cornut’s
[15]. The related computation can be found in [15] section 5.1.5-5.1.14. He dealt with more
general cases there but we only need to use a very good case. The elements xm correspond
to hyperspecial vertices in the Bruhat-Tits building of Gv = GFv

(Fv). Cornut implicitly
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described this building via self-dual norms on the orthogonal space (Vv, ϕv). There he
studied the conductor of the stabilizer of xm in Hv = HFv

(Fv). By the stabilizer conjecture
(see appendix A.1), this group is exactly the level group for Hv that we defined in previous
section. In his notations, our element xm will correspond to a norm α determined by the
n-tuple (ms1, ...,msn). Because 0 < ms1 < ... < msn, this n-tuple satisfies his condition
(SP) (see [15] section 5.1.6). And this n-tuple determines another n-tuple (c1, ..., cn) ∈
Zn, c1 = ms1, ci = msi + msi−1 (2 ≤ i ≤ n). By [15] section 5.1.9, we have ω(α) =

[ms1, ...,msn]D. Then the lemma in [15] section 5.1.14 tells us detU(α) = Ur (in his
notation) with r = c1 = ms1. In our notations, this group is exactly U1

v (ms1).

For any positive integersm and i, recall we have a natural identificationHv,m/Hv,m+i =

Nv,m/Nv,m+i, here Nv,m = τmNv(OFv)τ
−m (Nv is the unipotent radical of Bv). Denote

its cardinality by y(m, i), then y(m, i) only depends on i. Moreover, using the root group
map for Nv, we can also compute it explicitly. We have

y(m, i) = q
⟨iµv ,2ρv⟩
Fv

,

here qFv is the cardinality for the residue field OFv/πv and ρv is the half sum of positive
roots of Gv. Now for each m, we introduce the following definition of conductor :

con(m) = min{cc|cc ∈ N, Hab
v,m = det(Hv,m) ⊃ U1

v (cc)}

Here by the above computation, we already know con(m) = ms1. Moreover, we have an
equality in fact :

det(Hv,m) = U1
v (ms1).

Thus in this situation, we obtain the following explicit formula for c(m, i),

c(m, i) = Card(Hv,m/Hv,m+i)/Card(H
ab
v,m/H

ab
v,m+i)

=
y(m, i)

q
con(m+i)−con(m)
Fv

= q
i(⟨µv ,2ρv⟩−s1)
Fv

= q
i(
∑n

j=1(2n−2j+1)sn+1−j−s1)

Fv
.

Here we make an important remark :

In fact, the key outcome of the above computations is that our main example satisfies
the following conditions :

♣ For large enough integer m, the numbers c(m, 1) are constant.

♡ The conductor con(m) grows to infinity.

We make some comments on these two conditions. The condition ♡ will cut out a non-
trivial p-adic (suppose v|p) extension for our resulting special cycles. We have a general
strategy to verify this condition, avoiding explicit calculation. For positive integer m, the
image of Gv,m in Gv(OFv/π

m
v ) lies in Bv(OFv/π

m
v ). Because we know Hv

⋂
Bv = 1 ("small
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intersection"), it follows that the image of Hv,m in Gv(OFv/π
m
v ) is trivial. Then its abelian

quotient lies in U1
v (m), so con(m) ≥ m and the condition ♡ is satisfied. For general Shimura

pair Sh
H̃
−→ Sh

G̃
we may not have such trivial intersection property, but we can use a

similar argument, see GSp4 example in section 6.1 and the similitude version unitary GGP
pair in section 6.2. The condition ♣ is needed to turn abstract norm relations into a norm
compatible family (under ordinary condition). At present the author doesn’t know how to
verify it formally without explicit computation. Here the large enough assumption on m

is a very mild assumption in the study of norm relations. It will simplify the study about
c(m, 1) under condition ♡.

Now we continue the discussion of our main example.
Due to condition ♣, we define C1 = c(m, 1) and we have Ci

1 = c(m, i) and denote it by
Ci. Now we construct a family of special cycles. Recall we have the following natural map

R[Hder(Af,S1)\G(Af,S1)/KS1 ]
⊗⊗

p/∈S1

′

R[Hder(Qp)\G(Qp)/Kp] −→ R[ZK(G,H)],

through this map, we write the base cycle z̃ = zv⊗ 1v. For any non-negative integer m, we
define

zcy(m) = zv ⊗ [τm], U1(cg(m)) = U1,v × T 1
v,m = U1,v × U1

v (ms1) = U1((v)ms1)

and denote the corresponding fixed subfield inside E[∞] by Ẽ(cg(m)). We have the follo-
wing realization :

Theorem 5.5. norm relation
We have zcy(0) = z̃. And for m > 0, the cycle zcy(m) is defined over the field Ẽ(cg(m)),

they satisfy ∑
i

CiAiTr Ẽ(cg(m+i))

Ẽ(cg(m))

(zcy(m+i)) = 0.

Démonstration. This is a translation of the above results.
The first two statements are obvious. Notice that U1(1)

⋂
T1(Q) = 1, similar to tame

relation case (lemma 2.2), we also have a local-global connection in norm case,

Gal(Ẽ(cg(m+ i))/Ẽ(cg(m))) =
T 1
v,m

T 1
v,m+i

.

Now apply the above relation 5.1, we’re done.

This norm relation can be used to get a norm compatible family (under ordinary condi-
tions). There is a standard technique. For example, in Heegner point case, see [55] section
1.5. We will state the general form as a lemma.

The general form
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In view of the norm relation 5.5, our special cycles {zcy(m)} are related by a polynomial

P̃ ol =
∑
i

CiAiX
i ∈ R[Kv\Gv/Kv][X]

with coefficients in the Hecke algebra R[Kv\Gv/Kv]. We wish to produce a norm compa-
tible family of special cycles which are linear combination of these cycles. To do so, we
usually map P̃ ol to a numerical polynomial (e.g. polynomial with complex coefficients) Pol
first, this can be done (assume R ⊂ C) by taking an R-algebra homomorphism

R[Kv\Gv/Kv] −→ C,

such specialization map is determined by the associated Satake parameters. Under such a
map, we get Pol ∈ C[X] and suppose it has the following decomposition :

Pol =
k∑

i=0

eiX
i = (X − b)(

k−1∑
i=0

piX
i),

where ek, pk−1, b are nonzero complex numbers. It is possible to turn elements related by
Pol into a norm compatible family.

We state a simple analogue in the appendix A.2. The reader may also see that analogue
to understand the key point.

Fix an embedding ιp : Q ↪→ Qp. Suppose we have a polynomial Pol ∈ Q[X] and denote
the completion of its splitting field through ιp by PF . Denote the integer ring of PF by O
with a uniformizer π and suppose Pol has a root b ∈ O∗ (ordinary condition). Suppose
it decomposes as

Pol =
k∑

i=0

eiX
i = (X − b)(

k−1∑
i=0

piX
i).

Now suppose the Galois group GalE acts on a PF -space VLa continuously (p-adic Galois
representation) with a Galois stable O-lattice La. Consider another Galois lattice La′

=
1

πckLa, here ck is a suitable integer such that pi(La) ⊂ La
′ and ei(La) ⊂ La

′ . Now for
simplicity we denote by Trl,r the corestriction map in Galois cohomology from Gal

Ẽ(cg(l))

to Gal
Ẽ(cg(r))

, then we have the following lemma :

Lemma 5.6. translation

Suppose that for each integer m ≫ 0, we have an element Ym ∈ H1(Gal
Ẽ(cg(m))

, La)

such that
k∑

i=0

eiTrm+i,m(Ym+i) = 0
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in H1(Gal
Ẽ(cg(m))

, La
′
). Then define

Xm = b−m
k−1∑
i=0

piTrm+i,m(Ym+i)

(for m≫ 0) in the latter group. We have

Trm+1,m(Xm+1) = Xm.

Démonstration. This is a routine check. Notice

Trm+1,m(bm+1Xm+1)− b(bmXm) =

k−1∑
i=0

piTrm+i+1,m(Ym+1+i)− b
k−1∑
i=0

piTrm+i,m(Ym+i)

=
k∑

i=0

eiTrm+i,m(Ym+i) = 0.

Because b ∈ O∗, we’re done.

Usually the main obstruction to produce norm compatible family is whether Pol has a
root b that is invertible in O. This is exactly our ordinary condition :

vp(b) = 0.

Here vp is the normalized valuation of Qp such that vp(p) = 1.

Now we show how these things, VLa, Pol etc come naturally.

In practice, we need to construct the p-adic Galois representation VLa with local Hecke
action via scalars. This preparation can be done through considering p-adic cohomology
(recall p is the underlying prime of the place v) of the related Shimura varieties. See section
3 (in particular the localization method) for related knowledge.

Here we use our main example to show how to relate our special cycles to Galois
cohomology classes in the lemma 5.6.

Again we use similar notations as in section 3. And for simplicity we ignore the problem
of adding suitable Tate twist to cohomology.

Denote the ambient Shimura variety ShG(K) (2n−1 dimensional) as X1 (over its reflex
field F ), and use X1 to denote the resulting variety over Q.

Pick up an isomorphism Qp
∼= C, we have the following Matsushima’s formula :

H∗(X1,Qp) ∼=
⊕

Π=Πf⊗Π∞

m(Π)(ΠK
f ⊗H∗(g,K∞; Π∞)).

In particular, we chose a cuspidal representation Π appearing in the middle cohomology
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group H2n−1(X1,Qp) and the Πf -component of the whole middle cohomology group is still
a p-adic Galois representation. By the so called strong C-arithmetic property of Π, the
defining field of Π is a number field E0. Take a finite place λ of E0 that lies above the prime
p, and denote the corresponding valuation ring of E0,λ by Oλ. Then we can consider the
p-adic cohomology group H2n−1(X1, E0,λ) and our p-adic representation will be a suitable
Galois-Hecke quotient of its Πf -component :

H2n−1(X1, E0,λ)[Πf ] −→ VLa,

and the Galois lattice La will the corresponding image inside VLa of integral cohomology
group H2n−1(X1,Oλ). In general, the natural map H2n−1(X1,Oλ) −→ H2n−1(X1, E0,λ)

may not be injective (torsion parts exists for integral cohomology group), this will influences
nothing.

In particular, the representation Π will determine an unramified representation of Gv,
Πv, and the local Hecke algebra acts on VLa via scalars determined by Πv,

ϕΠ,λ,v : Z[Kv\Gv/Kv] −→ E0,λ.

Moreover, we usually have further integrality result, its image lies in the valuation ring Oλ.
Then let the coefficient ring R = Oλ, we still denote the resulting map by ϕΠ,λ,v,

ϕΠ,λ,v : R[Kv\Gv/Kv] −→ Oλ.

Then we can take the second lattice La′
= La due to such integrality.

Through the cycle map, our special cycle zcy(m) will be mapped into an element in
the cohomology group H2n(X

1,Ẽ(cg(m))
,Oλ). Therefore we need to consider some canonical

methods to make cycles cohomologically trivial. See section 3. In particular, the localization
at some Hecke ideal is very suitable for our such translation. Take that localization as
example, it provides a natural map

H2n(X
1,Ẽ(cg(m))

,Oλ) −→ H1(Gal
Ẽ(cg(m))

, H2n−1(X1,Oλ)/ ker(ϕΠ,λ)).

Therefore, we can take VLa as suitable Galois-Hecke quotient ofH2n−1(X1, E0,λ/ ker(ϕΠ,λ))

and take La as the corresponding lattice inside it. And we can use our special cycles to get
Galois cohomology classes and apply the above lemma now.

computation of the "universal" ordinary conditions
Now we will figure out an explicit ordinary condition for our main example. And after

this computation, we will see that there exists a "universal" ordinary condition on Satake
parameters, such that this condition does not depend on the choice of the strict dominant
cocharacter.

The original polynomial P̃ ol only differs from the related Hecke polynomial by a
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constant. More precisely, we have

P̃ ol = Hepµv(c(m, 1)X) = Hepµv(C1X).

As explained above, we want to find a root of the polynomial Pol (Pol will be a suitable
specialization of P̃ ol) which is a p-adic unit. The idea is to first relate Pol with Weyl
character formula (just differ by some normalization constants), and we will choose a
"canonical" factor to get the ordinary condition.

Recall our notation, over the local field Fv, GFv
is split. The Galois action on the dual

group ĜFv
is trivial and thus we can ignore it. Then the representation Vµv that is used

to define the Hecke polynomial is just the highest weight representation of ĜFv
∼= Sp(2n)

with highest weight µv, here we think of µv as a character of the dual torus T̂sv.

A Satake parameter is an element in T̂sv(C) ∼= (C∗)n. Here we choose an isomorphism
compatible with our previous pinning data. More precisely, take any Satake parameter sa
associated to the n-tuple (st1, ...stn) ∈ T̂sv(C), under the natural pairing

X∗(T̂sv)× T̂sv(C) −→ C∗,

we have

(µv, sa) =
n∏

i=1

stsii ,

here recall that µv is associated to the n-tuple (s1, ..., sn). We make a remark on the word
"Satake parameter". In strict sense, a Satake parameters is an element in T̂sv(C)/W (ĜFv

, T̂sv)
(equivalent classes under the action of the Weyl group), here for simplicity we also use a
Satake parameter to denote an element in T̂sv(C) (its lift).

Let p denote the prime of Q that underlies the place v of F . Fix an isomorphism Qp
∼= C

to calculate p-adic valuations of the Satake parameters etc. We assume that the valuation
vp is normalized so that vp(p) = 1 and set kv = vp(qFv).

Denote the Satake mapHe(GFv
) −→ He(Tsv) as S, here both sides are complex-valued

Hecke algebras. Denote the unramified principal series associated to the Satake parameter
sa as πsa. Then for any element f in the Hecke algebra, we have

(Sf, sa) = (f, πKv
sa ).

Here the pairing on the left side is determined by the above natural pairing, the pairing on
the right side denotes the action of the Hecke algebra on the one-dimensional space πKv

sa .

Therefore, through this equality, we can first apply Satake map to translate our Hecke
polynomial Hepµv as an element in He(Tsv)[X], then evaluate it with sa to get a polyno-
mial in C[X]. However, recall our definition of Hecke polynomial, after such Satake map,
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it is exactly ∏
λ

(X − q⟨µv ,ρv⟩
Fv

λ)m(λ).

Here q⟨µv ,ρv⟩
Fv

is the normalization factor, λ runs over the weights of T̂sv in the highest
weight representation Vµv and m(λ) is the corresponding multiplicity. Thus we can write
down this polynomial with the help of Weyl character formula. In fact, we don’t need to
write down all factors because one root is enough. Obviously, this polynomial will have a
"canonical" factor

X − q⟨µv ,ρv⟩
Fv

µv

(the weight µv will always appear with multiplicity one).

Combining all things together, the polynomial Pol will have a factor

C1X − q⟨µv ,ρv⟩
Fv

n∏
i=1

stsii .

This linear factor will contribute to a root b for Pol. Denote the evaluation

vp(sa) = (vp(st1), ..., vp(stn)).

Then the ordinary condition
vp(b) = 0

is exactly
vp(C1) = ⟨µv, vp(sa)⟩+ kv⟨µv, ρv⟩.

Now recall the formula

C1 = q
(⟨µv ,2ρv⟩−s1)
Fv

= q
(
∑n

j=1(2n−2j+1)sn+1−j−s1)

Fv
,

we thus obtain
⟨µv, vp(sa)⟩ = ⟨µv, kvρv − kv(1, 0, ..., 0)⟩.

In particular, we get a "universal" ordinary condition, which holds for all µv, namely :

vp(sa) = kv(ρv − (1, 0, ..., 0)) =

{
0, if n = 1,

kv(0, 3, ..., 2n− 1), if n > 1.

Finally we make some general remarks.

The above computation of ordinary condition doesn’t require any special properties of
orthogonal groups etc, the only requirement is the splitting condition. Thus this arguments
holds for any split cases. In particular, we can work out ordinary conditions similarly in
other examples (such as examples in section 6.1 and section 6.2).
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It is also possible to express the ordinary condition through some Hecke operators. For
example, see the assumption 9.1 and remark 9.2 in [28]. Their ordinary condition is stated
via some Hecke operators and their remark explains the connection between those Hecke
operators and Satake parameters. This relations relies on the work [56], which holds in
very general situations (including for all split reductive groups). Such translation is off the
topic of this thesis, therefore we leave this work for interested readers.



64 CHAPITRE 5. NORM RELATION



Chapitre 6

Other examples and arithmetic
applications

6.1 GSp4 example

We will consider the following embedding :

H = GU(1)×Gm GL2 −→ G = GSp4

(where GU(1) = ResE/QGm,E and E is an imaginary quadratic field).

Consider the 4-dim Q-space V with a symplectic form J , we choose a suitable ordered
basis (e1, e2, e3, e4) for V so that J corresponds to the matrix

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 .

For simplicity, we will use E = Q(
√
−1) as an example, the general case is similar. Then

GU(1) can be embedded into GL2, sending a+ b
√
−1 to the matrix

(
a b
−b a

)
.

Now we can embed H into G, it will correspond to the following matrices (where
a2 + b2 = xw − zy) inside GSp4 : 

a 0 0 b

0 x y 0

0 z w 0

−b 0 0 a

 .

In fact, this group embedding has a factorization H −→M = GL2×GmGL2 −→ G. The
embedding M −→ G is obtained by replacing

(
a b
−b a

)
with

(
l p
q r

)
in the above expression.

65
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These group maps will induce maps between Shimura varieties. Recall the torus GU(1)

defines a Shimura variety, the map from Deligne torus ResC/RGm(R) to GU(1)(R) is an
identification, sending x+y

√
−1 to x+y

√
−1 (x, y ∈ R). And the inclusion GU(1) −→ GL2

will induce a map between their Shimura varieties. This is the usual map defining a CM
point inside the modular curve. Similarly, we have maps ShH −→ ShM −→ ShG.

Loeffler, Skinner and Zerbes have used the embedding GL2 ×Gm GL2 −→ GSp4 to
construct an Euler system (see [47]). The first embedding H −→M can be seen as a kind
of "base change" of Heegner points. Roughly speaking, we can think of Shimura varieties
forShH as a family of Heegner points or product of Heegner points with the modular curve.

What’s more, for E = Q(i), this pair can be seen as a kind of lift for our pair
(U(1, 1), SO(3, 2)). Consider the standard representation V for GSp4 and let ρ be the
induced representation of GSp4 on the 6-dimensional space ∧2V . Twist ρ by v−1, where v
is the standard 1-dimensional character defining GSp4, J(g(x), g(y)) = v(g)J(x, y). There
is a quadratic form on ∧2V defined by the wedge product

∧2V × ∧2V −→ ∧4V ∼= Q.

Then the representation ρv−1 is an orthogonal representation for GSp4. And it fixes the line
generated by e1∧ e4+ e2∧ e3. Then the orthogonal complement L for this line will provide
a 5-dimensional orthogonal representation of GSp4. In this way, we obtain a morphism
GSp4 −→ SO(3, 2) whose kernel is the center of GSp4, Z(GSp4) = Gm.

Then we need to construct a 2-dimensional E-hermitian space inside this 5-dimensional
quadratic Q-space. This is equivalent to define a "complex" structure (linear map S with
S2 = −1) compatible with the quadratic form (S is orthogonal) on a suitable 4-dimensional
subspace W . We choose W to be the space generated by {e1 ∧ e2, e2 ∧ e4, e3 ∧ e4, e1 ∧ e3}.

Consider the following central element S of H ⊂ G :
0 0 0 −1
0 −1 0 0

0 0 −1 0

1 0 0 0

 .

Then S also acts on ∧2V and we can check that S stabilizes W and induces the desired
hermitian structure.

Consider the conjugation of S on GSp4 (this is a four-order automorphism), its fixed
subgroup is exactly H = GU(1) ×Gm GL2. Moreover, here is an additional interesting
fact. The fixed subgroup for conjugation by S2 is exactly M = GL2 ×Gm GL2. Therefore
we get two symmetric pairs, M −→ G and H −→ M. Because H commutes with S, its
action on ∧2V also commutes with S. Then W is an H representation, and we get the map
H −→ U(W ). This is a surjection with kernel Gm. We have the following commutative
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diagram :

H = GU(1)×Gm GL2−→G = GSp4

↓ ↓

U(1, 1) −→ SO(3, 2)

Moreover, it induces maps between Shimura datum, thus we can think of ShH −→ ShG

as a kind of lift for ShU(1,1) −→ ShSO(3,2). This lift allows us to replace the abelian type
Shimura variety for SO(3, 2) by the much more familiar Siegel threefold, and thus opens
the way to a study of these special cycles using PEL type moduli spaces.

Now we study this pair in the framework of this paper.

We first compute the stabilizer involved in the parametrization lemma 2.1. It is well
known that the associated Hermitian symmetric domain for the Siegel modular variety is
the Siegel half-space. More precisely, we can rearrange the chosen ordered basis (e1, e2, e3, e4)
into (e1, e2, e4, e3) so that the symplectic form J is

(
0 I2

−I2 0

)
. Then GSp4(R) will act on

the Siegel half-space

H2 = {Z ∈M2(C), ZT = Z, Im(Z) > 0},

the matrix
(
A B
C D

)
sends Z into (AZ + B)(CZ + D)−1. This is the hermitian symmetric

domain X for Sh(G). The hermitian symmetric domain Y for Sh(H) is the positive half
plane, it is already connected (unlike in the GL2 case). Inside X, Y will correspond to(√

−1 0
0 z

)
, where z = a + b

√
−1(b > 0) lies in the positive half plane. A direct argument

shows that StabG(Q)(Y ) = H(Q). Choosing a suitable neat level group K ⊂ G(Af ), we
obtain a similar parametrization :

ZK(G,H) = H(Q)\G(Af )/K.

Now let’s consider the reciprocity law for π0(ShH). The derived subgroup Hder = SL2

is simply connected, and the abelian quotient map is the projection to the first factor

pr : H = GU(1)×Gm GL2 −→ Hab = GU(1).

Then E is the common reflex field for ShH and ShHab and the reciprocity law for ShHab

is the identity map,
ResE/QGm

=−→ GU(1).

As in our main example, we also have H(Q) = H(Q)Hder(Af ) inside H(Af ). Here we
use a special property about imaginary quadratic field, Hab(Q) is closed (in fact discrete)
in Hab(Af ), this is not true for more general CM fields. And we also have the following
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natural map induced by pr :

π0(ShH(K1)) ∼= π0(ShHab(pr(K1))).

Now everything is similar to our main example, we have the Hecke action on the right,
and the Galois action through left multiplication by H(Af ) via reciprocity law. And we
can rewrite the parametrization as follows :

ZK(G,H) = H(Q)Hder(Af )\G(Af )/K.

Choose a special cycle z̃ = ZK(g) and take a finite subset S = S(K, z) ("bad primes") of
primes of Q large enough such that
• S contains {2}.
• For any prime q /∈ S, Q −→ E, H, G are all unramified at q.
• K = KS ×KS with KS =

∏
q /∈S

Kq, KS is a compact open subgroup of G(Af,S) and

Kq is a compact open subgroup of G(Qq) for any q /∈ S. Moreover, g = ⊗tgt with gq ∈ Kq

for any q /∈ S.
• For any q /∈ S, Kq (resp Kq

⋂
H(Qq)) is hyperspecial in G(Qq) (resp H(Qq)).

Then we also have the following natural map :

Z[Hder(Af,S)\G(Af,S)/KS ]
⊗⊗

p/∈S

′
Z[Hder(Qp)\G(Qp)/Kp] −→ Z[ZK(G,H)].

Therefore we can apply our general strategy to this pair now.
We first introduce a one dimensional torus quotient of Hab to define conductor filtra-

tions. Define T1 = U(1) = ker(GU(1)
Norm−→ Gm,Q) and consider the map r : GU(1) −→ T1

over Q by sending z to z
z . Then for tame relations, over a split prime p, we will use this

map r(pr) : H −→ T1 to define conductor filtrations and apply theorem 4.4 to get abstract
tame relations. Following the arguments in section 4.2 (realization of tame relations), we
can produce special cycles for ShG(K) with the desired tame relations.

For norm relations, the first task is to construct a suitable Borel subgroup to establish
the spherical condition for this pair. Suppose the base local field is Qp with p /∈ S.

Here we can work over the global field Q directly in fact, the construction is uniform.
Recall we have chosen a suitable ordered basis (e1, e2, e3, e4) so that J corresponds to

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 .

Then consider a new ordered basis (γ4, γ3, γ2, γ1) = (e1 + e2, e3 − e4, e1 − e2, e3 + e4). This
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ordered basis defines a Borel pair (T,B) for G over Q. And we will use B to denote the
Borel subgroup of G opposite to B with respect to T. We have H

⋂
B = Gm,Q = Z(G). For

all but finitely many primes p for Q, we can extend these groups over Spec(Zp), and denote
(Hp,Gp,Bp, Tp,Bp) for the integral models of (HQp ,GQp ,BQp ,TQp ,BQp). Then (Hp,Gp) is
a spherical pair (with respect to Bp) by dimension reason.

Recall our torus T1 = U(1) over Q, we will still use it to define conductors for norm
relations. Take a good unramified odd prime p so that we have a reductive integral model
T 1
p for T1

Qp
and extend the quotient maps H pr−→ GU(1)

r−→ T1 over Spec(Zp) (still denote
these maps by pr, r). From now on, we will work over Qp. We will do some explicit matrix
calculations first.

Under this ordered basis (γ1, γ2, γ3, γ4), the Borel subgroup Bp will correspond to up-
per triangular matrices. Take a strictly Bp-dominant cocharacter µ = (a1, a2, a3, a4) ∈
X+

∗ (Tp)(where a1 > a2 > a3 > a4 and a1 + a4 = a2 + a3). Take τ = µ(π), where π is a
uniformizer for Qp, for example π = p). The elements of H(Qp) given by

a 0 0 b

0 x y 0

0 z w 0

−b 0 0 a


under the ordered basis (e1, e2, e3, e4) correspond to the elements of G(Qp) given by

1

2


w + a −b− z w − a z − b
b− y a+ x −y − b a− x
w − a b− z w + a b+ z

b+ y a− x y − b a+ x


under the ordered basis (γ1, γ2, γ3, γ4). Then it is easy to see that H(Qp)

⋂
τmGp(Zp)τ

−m

lies in Hp(Zp), in other words, the stabilizer conjecture holds. Then for any non-negative
integer m, we define Hp,m = H(Qp)

⋂
τmGp(Zp)τ

−m as in section 5.1. The next task is to
compute the numbers c(m, i) involved in the abstract norm relations (theorem 5.4).

Consider the conductor filtration on T 1
p (Zp). As usual, T 1

p (m) = { zz , z ∈ Zp+πmOEp}.
And we similarly define conductors for Hp,m, con(m) is defined to be the minimal non-
negative integer cc with r(pr)(Hp,m) ⊃ T 1

p (cc).

We first make a formal argument. Because the intersection H
⋂

B = Gm lies in the
kernel of r(pr), the conductors con(m) grows to infinity, just like in our main example.
Thus condition ♡ (in section 5.2) is satisfied.

To check condition ♣ (in section 5.2), we will explicit these numbers c(m, i). As in our
main example, this involves computing conductors.

For any positive integer m, consider the elements in Hp,m, through their matrices
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under the ordered basis (γ1, γ2, γ3, γ4). We find vp(a) = 0 and vp(b) ≥ m(a1 − a2). Thus
pr(Hp,m) ⊂Wm = Z∗

p+
√
−1πm(a1−a2)Zp. Let us now see that this is actually a surjection,

i.e. pr(Hp,m) =Wm.

For any a ∈ Z∗
p and b ∈ pmZp, consider this element xa,b ∈ H(Qp) given by

a 0 0 b

0 a −b 0

0 b a 0

−b 0 0 a


under the ordered basis (e1, e2, e3, e4). Computing xa,b in the ordered basis (γ1, γ2, γ3, γ4),
we find that xa,b ∈ Hp,m. Notice that pr(xa,b) = a+ b

√
−1, thus pr(Hp,m) =Wm.

Then the conductor con(m) equals m(a1−a2) and condition ♣ holds. And we have the
following explicit formula for c(m, i) :

c(m, i) = pi(2a1+a2−2a3−a4).

Thus we can apply the same idea as in section 5.2 to construct special cycles with norm
relations along the anticyclotomic extension.

The explicit computation of ordinary condition is similar to our main example and
there also exists a "universal" ordinary condition (independent of the choice of the strict
dominant cocharacter).

Fix an isomorphism Qp
∼= C and use the normalized valuation vp so that vp(p) = 1.

Suppose the Satake parameter sa ∈ T̂Qp(C) is associated to the tuple (s1, s2, s3, s4) ∈ (C∗)4

with s1s2 = s3s4, here we use the fact that the dual group ĜSp4 is isomorphic to GSp4
and we embed it into GL4 so that we can view the dual torus T̂Qp as a subtorus of G4

m

(diagonal torus in GL4). Denote the p-adic valuation as vp(sa) = (vs1, vs2, vs3, vs4). Then
the universal ordinary condition is :

(vs1, vs2, vs3, vs4) = (
1

2
, 1,−1,−1

2
).

Finally we make a remark. We have another "dual" version embedding. We can swap
factors to get H = GL2 ×Gm GU(1) −→ GSp4. Everything is similar. Moreover, the
resulting family of special cycles is the same in fact. These two embedding are conjugated
by an element g ∈ GSp4(Q), where g is

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .
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Therefore ZK(G,H) is the same as ZK(G,H). But we can’t do such automorphic trans-
lation inside Sh(M) (g doesn’t belong to M(Q)). In this viewpoint, Sh(GSp4) is a better
ambient Shimura variety and we can expect some interesting results about these special
cycles.

6.2 Unitary GGP pair and some variants

The usual unitary GGP pair U(n) −→ U(n + 1) × U(n) has already been studied by
Boumasmoud in his thesis (especially tame relations, see [9]). Therefore we won’t repeat
details and refer to his thesis.

The construction of embedding is standard. And the unitary group is similar to our
unitary subgroup :

Fix a totally real field F , and an imaginary quadratic extension F −→ E. Fix a real
place f of F . For a positive integer n, let W denote an n-dimensional E-hermitian space
with quadratic form ψ and consider the n + 1-dimensional E-hermitian space V=W ⊥
Een+1 and denote its quadratic form as ϕ. Similar to our main example, we define H =

U(W,ψ), H = ResF/QH. Define (Wa, ψa) = (W,ψ)⊗F,a R (a is any real place of F ). Then
we put the following signature condition, notice that HR =

∏
a

Ha with Ha = U(Wa, ψa),

these factors are as follow :

U(Wa, ψa) =

{
U(n− 1, 1), if a = f,

U(2n+ 1), if a ̸= f.

We also require the signature for Een+1 to be (1,0) at any real place of F .

Now we have a natural embedding U(W ) −→ U(V ) × U(W ) (the second factor map
is identity). Taking Weil restriction, we get H = ResF/QU(W ) −→ G = ResF/Q(U(V ) ×
U(W )). The construction of Hermitian symmetric domain is similar to our main example.
And the inclusion will induce a morphism between Shimura datum Sh(H) −→ Sh(G).
Then we can apply our general method.

The parametrization (here the involved stabilizer is NG(H)(Q), larger than H(Q))
and reciprocity law for geometric connected components can be found in Boumasmoud’s
thesis [9]. Over a split prime, similarly to our main example, we can reduce to the split
reductive case, which corresponds to GLn −→ GLn+1 ×GLn. We just point out that the
split assumption is enough to apply the general argument via root groups. We don’t need
to analyse H\G/K explicitly as in Boumasmoud’s thesis.

For norm relations, the first thing is still to construct a suitable Borel subgroup. We
will work over a split prime v of F and the involved embedding becomes (Hv, Gv) =

(GLn, GLn+1×GLn), after fixing isomorphismsE⊗FFv
∼= Fv×Fv, U(WFv)

∼= GL(WFv), U(VFv)
∼=

GL(VFv) etc like in our main example (see section 4.2 for these isomorphisms). Here Hv
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(resp. Gv) is the v-component of HQp (p is the underlying prime) (resp. GQp).
Choose an ordered basis (e1, ..., en) for WFv and (v1, ..., vn, vn+1) (vi = ei, 1 ≤ i ≤ n)

for VFv . Then the embedding GLn −→ GLn+1 ×GLn is given by sending the matrix A to(
A

1

)
×A.

The ordered basis (en, ..., e1) for WFv defines a Borel pair (T2, B2) for GL(n) and we
use B2 to denote the Borel subgroup of GL(n) that is opposed to B2 with respect to T2.
Consider the ordered basis (v1, ...vn, v1 + v2 + ...+ vn+1) for VFv , similarly we get a Borel
pair (T1, B1) for GL(n+ 1) and the opposite Borel subgroup B1.

Consider the Borel pair (T,B)=(T1 × T2, B1 × B2) for GL(n + 1) × GL(n) and the
opposite Borel subgroup B = B1×B2. Then the subgroup Hv has trivial intersection with
B. Extending them to integral level, we can verify the spherical condition for (Hv,Gv)
(integral models of (Hv, Gv)) by a dimension argument.

As in the GSp4 example, we will use explicit matrix computations to calculate conduc-
tors.

Set the vector ve = (1, ..., 1)T (n elements), the elements of Hv(Fv) given by the matrix
A under the ordered basis (e1, .., en) for WFv corresponds to the elements of Gv(Fv) given
by (

A (A− In)ve
0 1

)
×A

under the ordered basis (v1, ..., vn, v1 + ...+ vn+1); (e1, ..., en) for VFv ×WFv .
Take a strictly B1-dominant cocharacter µ1 = (b1, ..., bn+1) ∈ X∗(T1) and a strictly

B2-dominant cocharacter µ2 = (an, ..., a1) ∈ X∗(T2), where b1 > b2 > ... > bn+1 and
a1 < a2 < ... < an. Then µ = (µ1, µ2) ∈ X∗(T1 × T2) is a strictly B-dominant cocharacter.

Set τ = µ(π) (again π is a uniformizer of Fv), then the stabilizer conjecture holds by
the following direct argument :

For any non-negative integer m, define the subgroup Hv,m = Hv(Fv)
⋂
τmGv(OFv)τ

−m.
The stabilizer conjecture says that Hv,m ⊂ Hv(OFv). The case m = 0 is trivial, thus we
only need to deal with m > 0.

Now for any element x ∈ Hv,m, suppose it corresponds to a matrix A under the ordered
basis (e1, .., en) for WFv . Let xi,j denote the (i, j) entry of the matrix A. By the above
computation about changing basis and x ∈ τmGv(OFv)τ

−m, we get

vFv(xi,j) ≥ 0

for i ̸= j. And because each entry of the vector (A− In)ve also belongs to OFv , we get

vFv(

n∑
j=1

xi,j) ≥ 0

for any 1 ≤ i ≤ n, therefore each entry xi,j ∈ OFv , A is an integral matrix, x ∈ Hv(OFv).



6.2. UNITARY GGP PAIR AND SOME VARIANTS 73

As in our main example, we have a formal argument for condition ♡ (section 5.2), the
trivial intersection property implies that the conductor grows to infinity. Now we explicit
the numbers c(m, i) involved in the abstract norm relation (theorem 5.4).

The main task is still computing conductors of Hv,m. Suppose m > 0. Set w =

min{ai+1 − ai, bj − bj+1}. Then we have det(Hv,m) = 1 + πmwOFv , so the conductor
is exactly mw and the condition ♣ is also satisfied. Denote by q the cardinality of the
residue field. Then the explicit formula for c(m, i) is

c(m, i) = qi(
∑n+1

k=1 (n+2−2k)bk+
∑n

k=1(n+1−2k)an+1−k−w).

Then we can apply the general method in section 5.2 to construct special cycles with norm
relations.

Here is the detailed computation for the conductor :

First, we will bound the conductor det(Hv,m) ⊂ 1 + πmwOFv .

Denote the matrix A ∈ Hv,m byx1,1 ... x1,n

... ... ...

xn,1 ... xn,n

 .

By the definition of Hv,m, we get

vFv(xi,j) ≥ max{m(ai − aj),m(bi − bj), 0}.

Thus under the reduction map red : GLn(OFv) −→ GLn(OFv/π), red(A) is a diagonal
matrix (lies in the diagonal torus). Therefore A lies in the "Big Bruhat cell" for GLn(OFv).
Inspired by this fact, we divide det(A)− 1 into two parts

det(A)− 1 = Pa1 + Pa2,

where

Pa1 =

n∏
i=1

xi,i − 1, Pa2 =
∑

λ∈Sn,λ ̸=Id

sgn(λ)

n∏
i=1

xi,λ(i).

For the second part, apply the fact vFv(xi,j) ≥ max{m(ai − aj),m(bi − bj), 0}, we get
vFv(Pa2) ≥ mw.

For the first part, use the definition of Hv,m again, we get

vFv(xi,i − 1 +
∑
j ̸=i

xi,j) ≥ m(bn+1 − bi).
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Therefore we rewrite

Pa1 =
n∏

i=1

xi,i − 1 =
n∏

i=1

(xi,i − 1 + 1)− 1.

Then we get vFv ≥ mw. Combine them together, vFv(det(A)− 1) ≥ mw.

Second, we next establish the equality by constructing suitable elements.

To do this, we will specify "regions" for w. For any 1 ≤ i ≤ n − 1, we call the set of
parameters {(b1, ..., bn+1); (a1, ..., an)|w = ai+1−ai} a "region". Similarly for any 1 ≤ j ≤ n,
we also have a "region" for w = bj − bj+1. Different "regions" are not disjoint, but any
parameter will lie in some "regions".

For each 1 ≤ i ≤ n − 1 and any parameter in the "region" for "w = ai+1 − ai",
and any yi+1,i ∈ πmwOFv , we can define the following matrix A : set xi+1,i = −yi+1,i,
xi+1,i+1 = 1 + yi+1,i, xdia,dia = 1 (here 1 ≤ dia ≤ n, dia ̸= i+ 1) and set other entries xl,r
to be 0 :


1 0 ... ... 0

... ... ... ... ...

0 ... −yi+1,i 1 + yi+1,i ...

... ... ... ... ...

 .

Then we can verify that A ∈ Hv,m and det(A) = 1 + yi+1,i.

For each 1 ≤ j ≤ n − 1 and any parameter in the "region" for w = bj − bj+1, we can
construct the desired element similarly to reach the bound of conductor.

For any parameter in the "region" for w = bn − bn+1, the idea is similar and the
resulting matrix is in fact simpler. Still take any yn,n+1 ∈ πmwOFv , set the matrix A to be
the diagonal matrix : set xn,n = 1 + yn,n+1 and set other diagonal elements to be 1, 1 ... 0

... ... ...

0 ... 1 + yn,n+1

 .

In conclusion, the bound can always be reached, thus det(Hv,m) = 1 + πmwOFv .

Finally, we also have a similar method as in our previous examples to do explicit
computations about the ordinary condition. However, the result is not "universal". The
problem is due to the fact that w = min{ai+1 − ai, bj − bj+1} is not a "linear" function
of the parameter (b1, ..., bn+1); (an, ..., a1). The resulting ordinary condition is constant on
each "region" for w.

Next we consider the similitude version. For simplicity we work over Q and suppose
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the quadratic imaginary field is E. The similitude version is

H = GU(1, n− 1)×Gm GU(0, 1) −→ G = GU(1, n− 1)×GU(1, n).

This pair is similar to the usual unitary GGP pair. The advantage is that they are the
usual PEL type GU Shimura varieties (the U(n) Shimura variety is only an abelian type
Shimura variety).

As in the GSp4 example (section 6.1), we introduce

T1 = U(1) = ker(GU(1)
Norm−→ Gm,Q)

and consider the quotient map

q : H −→ T1, (A, z) 7→ det(A)

zn

to get a one dimensional torus quotient.

The argument for tame relations is the same as in our previous examples. For norm
relations, like in the usual unitary case, we also work over a split prime p. This pair will
split as

(GL(n)×GL(1))×Gm −→ GL(n)×Gm ×GL(n+ 1)×Gm,

where the three copies of Gm correspond to the similitude factor. Such similitude factor will
influence nothing and we can ignore it. Then we will only need to consider the embedding

GL(n)×GL(1) −→ GL(n)×GL(n+ 1).

Then it is very similar to the above usual unitary GGP example. The construction of
maximal torus, Borel subgroups etc are the same. Although in this case, we don’t have
trivial intersection property, the intersection is GL(1) diagonally embedded in the center
of GL(n) × GL(1), but this intersection lies in the kernel of our map q, thus just as in
our GSp4 example, the conductor also grows to infinity (condition ♡ in section 5.2 holds).
Moreover, the computation of conductors are also the same. Then condition ♣ in section
5.2 also holds. Thus we can apply the same argument to produce special cycles with norm
relations.

There is another possible variant. We can also consider the embedding

H = GU(1, n− 1)×Gm GU(0, 1)n −→ G = GU(1, 2n− 1).

Here the product are all over Gm through the similitude map. And we will use the map

q : H −→ U(1), (A, z1, ..., zn) 7→
det(A)∏n

i=1 zi
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to cut out a one dimensional torus quotient. Similar argument will produce special cycles
with tame relations and norm relations over split primes. Here for norm relations, there
is a slight change. To obtain the spherical condition, we can not use Borel subgroups (too
small), so we will instead work with a suitable parabolic subgroup of GL(2n) corresponding
to the partition (n, n) of 2n. Direct matrix computations show that the conditions ♣ and
♡ of section 5.2 hold. Then the general method still works. And finally we make a remark.
This pair is very similar to the pair (GU(1, n− 1)×Gm GU(0, n), GU(1, 2n− 1)), which is
already studied by Andrew Graham and Syed Waqar Ali Shah in [28]. They also construct
cycles with tame relations and norm relations over split primes using the methods of
Loeffler’s school.

6.3 Arithmetic applications

The special cycles can be used to construct Galois cohomology classes and then study
related Selmer groups.

In the section 3, we introduce cohomology theory with trivial coefficients and show how
to relate special cycles to cohomology classes (Abel-Jacobi map, trivialization methods
etc). With the help of tame relations in section 4.2 and norm relations in section 5.2,
we hope to construct an Euler system through our special cycles. Our tame relations are
over split primes and thus need to use the machine of split Kolyvagin systems, see [23].
The standard application of Euler systems is to give upper bound for the related Selmer
groups. For example, Christophe Cornut has deduced a rank one result in [16] under some
assumptions. As we mentioned earlier, his tame relations are over inert primes.

Our tame relations involve the Hecke polynomial. Under the congruence conjecture of
Blasius-Rogawski (see [4]), this polynomial is related with the characteristic polynomial
of the Frobenius, which corresponds to the requirement of tame relation in Euler systems.
This conjecture has now been established in many cases. For example, Si Ying Lee proved
this conjecture for Hodge type Shimura varieties under some assumptions in [41]. More
recently, Zhiyou Wu proved this conjecture for all Hodge type Shimura varieties in [68]
as a corollary of the S = T conjecture (see [69]). This covers the GSp4 example, and the
GU analogues of the GGP-pair examples, but it seems that for our main example, where
ShG(K) is an abelian type Shimura variety, the congruence conjecture remains unknown.

The norm relations can also be used to construct a norm compatible family under
ordinary conditions, which may have potential other applications to Selmer groups and
related Iwasawa theory. For example, regard Heegner points, see [55] for such an application
towards parity of Selmer group and see also [2] for applications to Iwasawa theory.

For any applications of Euler system, we first have to show that the resulting Euler
system is nontrivial. Such thing is very difficult to verify. The main idea is to connect
special elements to L-function. Such connection is already an important topic and has



6.3. ARITHMETIC APPLICATIONS 77

independent interest. We list four usual ideas.
• One method is complex Gross-Zagier formula. For example in the Heegner points

case, we have Gross-Zagier formulae relating heights of Heegner points with derivatives of
L-functions. Regarding the examples in this paper, unfortunately the Gross-Zagier formula
for them is still widely open. The GGP program can be seen as an attempt to generalize
the Gross-Zagier formula. For unitary GGP pair, there are many developments now, such
as the arithmetic fundamental lemma program, the relative trace formula method etc. We
refer to [70] for more details.
• Another strategy to study special cycles is to consider p-adic Gross-Zagier formula.

For example, Henri Darmon and Victor Rotger developed a p-adic Gross-Zagier formula
to study the generalised Gross-Kudla-Schoen diagonal cycles (see [19],[20]).
• What’s more, we can also investigate explicit reciprocity laws. For example, Loeffler

and Zerbes established an explicit reciprocity law for their Euler system of GSp4 (not
constructed by cycle class from special cycles), and they proved new cases of the Bloch-
Kato conjecture (see [48]). They used higher Hida theory to study p-adic L-functions (see
[45]).
• There is another different routine to get explicit reciprocity laws, it is (arithmetic)

level raising. The work [3] is a classical example. We also refer to [65] for more details
about such method for the triple product of Shimura curves. See [42] for Hilbert modular
varieties. See also the recent breakthrough, [43]. They consider unitary Shimura varieties.
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Annexe A

Appendix

A.1 The stabilizer conjecture

In this section we will work in a local setting. First let’s recall our setting in section
5.1.

Let F be a p-adic field (p is an odd prime) with a uniformizer π and denote its residue
field OF /π by k. Let G denote a reductive group scheme over Spec(OF ) and let H be
a closed reductive subgroup scheme of G. We assume this pair (G,H) to be spherical
over Spec(OF ) : there exists a Borel subgroup scheme B of G such that the H-orbit of
[1] in G/B is open, equivalently, Lie(H) + Lie(B) = Lie(G). Take a maximal torus T
inside B and denote by B the Borel subgroup of G opposed to B with respect to T.
Denote G = G(F ), H = H(F ), K = G(OF ) and KH = H(OF ) = H

⋂
K. Choose a

strict B-dominant cocharacter µ of T defined over OF and set τ = µ(π). For any non-
negative integer m, define Hm = τmKτ−m

⋂
H(F ), Hm = Hm

⋂
K. Denote their images

in Hab = H
Hder by Hab

m and Hm
ab. And define xm = [τm] ∈ G/K. We consider the following

two properties :

(1) For any m, we have Hm = Hm.

(2) For any m, we have Hab
m = Hm

ab.

Obviously we know Hm ⊂ Hm, Hab
m ⊂ Hm

ab and property (1) implies property (2).
Property (1) is equivalent to say that the H-stabilizer of xm ∈ G/K also stabilizes x0 ∈
G/K. We propose the following conjectures :

Stabilizer Conjecture : Property (1) always holds.

Weak Stabilizer Conjecture : Property (2) always holds.

In section 5.2, we needed to compute conductors and constants c(m, i). The weak
version is sufficient for our application to norm relations. At present we don’t know how to
deal with this weaker conjecture in general directly. We will propose some methods for the
stabilizer conjecture. The first observation is that we may assume that G is split. Because
we can take a finite unramified extension F −→ F0 to split G, and consider the spherical
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pair (HOF0
,GOF0

). If (HOF0
,GOF0

) satisfies the stabilizer conjecture, then (H,G) also
satisfies the stabilizer conjecture.

In fact, our main example has a stronger property than property (1). To state it, we
first need some preparation about filtrations and Bruhat-Tits building theory. We refer to
[21] for filtrations, [63] for buildings, [17] for some generalization and relations between
buildings and filtrations.

Let B(GF ) denote the extended Bruhat-Tits building of GF . Assume GF is semisimple,
then there is a G(F ) invariant metric (unique up to scalar) on B(GF ),

d : B(GF )×B(GF ) −→ R≥0.

And (B(GF ), d) is a complete CAT(0)-space. For general reductive groups, there also exists
such invariant metric but it may not be unique up to scalar. See [17] section 6.2 for more
details. Now we fix such a metric. In our situation, we can identify G/K with a G-orbit
of hyperspecial vertices in B(GF ) and thus view xm as an hyperspecial vertex in B(GF ).
Through H(OF ) ⊂ G(OF ), we can embed the building B(HF ) for HF into a H-stable
closed convex subset of B(GF ) and x0 = [1] becomes a common origin. See [39] for more
details (functoriality property). Because B(HF ) is a closed convex set, there is a convex
projection

pr : B(GF ) −→ B(HF ),

sending x to its closest point in B(HF ). Now we consider the following property :

(0) We have pr(xm) = x0.

Because the projection pr is H-invariant, property (0) implies property (1). We will
verify property (0) for our main example. Then it satisfies the stabilizer conjecture. We
will use tools about buildings and filtrations from [17]. First we will translate property (0)
into a property about filtrations.

Following [17], let Γ = (Γ,+,≤) denote a totally ordered commutative group, D
S̃
(Γ)

denote the diagonalized multiplicative group over a base scheme S̃ with character group
Γ. For a reductive group G̃ over S̃, Cornut defined and studied the following sequence
between S̃-schemes in [17] section 2

GΓ(G̃)
Fil−→ FΓ(G̃)

t−→ CΓ(G̃),

here GΓ(G̃) = Hom(DS(Γ), G̃). Also see [17] section 1 for some motivations. Here we will
only work over S = Spec(R) with R equal to one of the local rings F , OF or k and
Γ = (R,+,≤). For simplicity we denote F(G̃) = FR(G̃)(R) (filtrations). According to [17]
section 4.1.15, there is an additive structure on F(G̃),

F(G̃)× F(G̃) +−→ F(G̃).
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The choice of a faithful finite dimensional representation ρ induces a G̃(R)-invariant scalar
product

⟨−,−⟩ρ : F(G̃)× F(G̃) −→ R.

See [17] section 4.2 (especially section 4.2.2 and section 4.2.10) for more details. Here in
application we will always fix such a representation first and simplify ⟨−,−⟩ρ as ⟨−,−⟩.
Moreover, according to corollary 87 in [17] (see section 4.2.10), any embedding between
groups H̃ ↪→ G̃ will induce an embedding of filtrations F(H̃) ↪→ F(G̃). Especially for
classical groups, we can use their standard embedding to GL(V ) to view their filtrations
as a (closed convex) subspace of F(GL(V )).

Now we connect filtrations and buildings. There is an action of F(GF ) on B(GF )

B(GF )× F(GF )
+−→ B(GF ).

And B(GF ) becomes an affine F(GF )-space. However, this action is not compatible with
the addition map on F(GF ). See [17] section 6.2 for more details. Be careful about the
following sign issue : for x0 and τ = µ(π) as above, we have τ(x0) = x0 + Fµ−1 , where
Fµ−1 is the filtration determined by µ−1 (Fµ−1 = Fil(µ−1)). This can be traced back to
the definition of buildings, see [63], section 1. By [17] section 6.4.8, there is a reduction
map

F(GF )
∼=←− F(G)

red−→ F(Gk).

Through this reduction map, according to [17] section 6.4.13, section 5.5.2 and section
5.5.12, the property (0) is equivalent to the following property :

(A) Over the residue field k, for any filtration F ∈ F(Hk) ⊂ F(Gk), we have ⟨F , red(Fµ−1)⟩ ≤
0.

We will prove that our main example satisfies property (A) in the following. Before
that, we first briefly take GL(m) as an example for the above concepts. This example is
already widely explained, such as in [17] section 6.1. Here we illustrate it for the benefit of
readers.

Example (GL(m))
Consider a m-dimensional space V over F and the general linear group G̃ = GL(V ).

And we will always fix its standard representation to compute scalar products of filtrations.
Its building can be identified with the space of F -norms on V . And the subset of

hyperspecial vertices hyp(G̃) can be identified with the set of OF -lattices in V .
A filtration on V is a decreasing map with special properties

F : R −→ {F -subspaces of X}, x −→ Fx.

Here the set of subspace of V is partially ordered by inclusion and we require F to satisfy
the following two conditions :
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(i) There exists x ∈ R such that Fx = (0) and F−x = V , i.e. the filtration is exhaustive
and separating.

(ii) Let Fx−
=
⋂
y<x

Fy, then Fx = Fx− (left continuous).

Denote F>x = Fx+
=
⋃
y>x

Fy , F≥x =
⋃
y≥x

Fy = Fx and grxF (V ) = F≥x/F>x. And we

refer to elements in {x|grxF (V ) ̸= 0} as the breaks (or jumps) of F . Suppose these elements
are yl > yl−1 > ... > y1, we may also denote F as a tuple (yl, F

yl , yl−1, F
yl−1 , ..., y1).

For example, (0) is the filtration with a single jump at 0. If all these breaks are integers,
then we call F a Z-filtration, and the subset FZ(G̃) = FZ(G̃)(F ) consists of Z-filtrations.
For a subspace Ṽ ⊂ V , we can restrict F to Ṽ and denote it by F|

Ṽ
, with F|x

Ṽ
=

Fx
⋂
Ṽ . For a quotient ∆ : V ↠ V we can also define F|V , x −→ ∆(Fx). Combining

these, we can define a filtration F|V ′ for any sub-quotient of V . Now we describe the
map GZ(G̃)(F )

Fil−→ FZ(G̃)(F ). The elements in the left side correspond to cocharacters
α : Gm −→ GL(V ). Through such α, V has a weight decomposition, V = ⊕iV (i), where
V (i) = {v ∈ V, α(t)(v) = ti(v)}. For any x ∈ R, define V x =

⊕
y≥x,y∈Z

V (y), then the map

F : x −→ Fx = V x is a Z-filtration and it is exactly Fil(α). If we take a Borel pair (B̃, T̃ ),
then the map Fil : X+(T̃ ) −→ F(G̃) is compatible with the addition maps. Now we
describe the scalar product. For a filtration F , we define deg(F|V ) =

∑
x x dim(grxF (V )).

For two filtrations F1, F2, their scalar product is as follow

⟨F1,F2⟩ =
∑
x,y

xy dim
Fx
1

⋂
Fy
2

F>x
1

⋂
Fy
2 + Fx

1

⋂
F>y
2

=
∑
x

x deg(F2|grxF1
(V )) =

∑
x

x deg(F1|grxF2
(V )).

Notice that we can rewrite deg(F|V ) = ⟨F , (0)⟩.
Now we illustrate the relation between filtrations and buildings. The action of FZ(G̃) =

FZ(G̃)(F ) on Hyp(G̃) is as follow

L+ F =
∑
i∈Z

1

πi
L
⋂
F i.

Take a lattice L0, it will give a reductive integral model G = GL(L0) over Spec(OF ). The
reduction map for filtrations is as follows

red(F) : x −→ (Fx
⋂
L0)/π.

Now let’s come back to the proof of (A) for our main example. First let’s recall its
construction in section 5.2. Let F −→ E denote a quadratic unramified extension (E is
a field or split as F × F ) and let OE denote the integral closure of OF in E. Let (V, ϕ)
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denote a 2n+ 1-dimensional quadratic F -space with an n-dimensional hermitian E-space
(W,ψ). Our main example (over generic fiber) is (SO(V ), U(W )). Now recall the notation
of special basis (see section 5.2). Take an element η ∈ O∗

E with η + η = 0, we have the
following orthogonal F -basis for V ,

β = (v0, w1, v1, w2, ..., wn, vn),

where {w1, ..., wn} is an orthogonal E-basis for W , V =W ⊥ Fvn, vi−1 = ηwi (1 ≤ i ≤ n)
and ϕ(wi, wi) + ϕ(vi, vi) = 0. And we assume that ψ(vi, vi), ψ(wj , wj) all belong to O∗

F .
This special basis defines two orthogonal decomposition of V ,

V = Ew1 ⊥ ... ⊥ Ewn ⊥ Fvn = Fv0 ⊥ H1 ⊥ ... ⊥ Hn,

where Hi = Fwi ⊥ Fvi is an hyperbolic F -plane with isotropic lines spanned by e±i =
1
2(vi ± wi). Define e0 = v0 and consider the ordered basis (en, .., e−n). Consider the OF -
lattice L0 spanned by this basis, it is a self-dual lattice and gives us a reductive integral
model G = SO(L0) over Spec(OF ). Through SO(L0) ↪→ GL(L0) we get a Borel pair (T,B)

for G (B corresponds to upper triangular matrices under this ordered basis). Consider the
OE-lattice L̃ spanned by (w1, ..., wn), it defines a reductive integral model H = U(L̃). It is
easy to check H

⋂
B = 1 (B is the Borel group opposite to B with respect to T) and then

(H,G,B) satisfies the spherical condition by dimension reason.

Fix the standard representation for the orthogonal group to compute scalar products of
filtrations. Take a strict B-dominant cocharacter µ ∈ X+

∗ (T) associated to (sn, ..., s1, 0,−s1, ...,−sn),
where si are integers with 0 < s1 < ... < sn, we will verify property (A) for red(Fµ−1).
We first make some simplifications to our notations. Let Vk denote the 2n+1-dimensional
quadratic k-space L0/π, h denote OE/π, θ denote η/π ∈ h∗, Wk denote the n-dimensional
hermitian h-space L̃/π, Gk denote the orthogonal group Gk = SO(Vk) and Hk denote
the unitary group Hk = U(Wk). Define the ordered basis (fn, ..., f−n) = (e−n, ..., en) for
Vk and define a cocharacter ζ = (sn, ..., s1, 0,−s1, ...,−sn) under this ordered basis. Then
red(Fµ−1) = Fζ .

Through the natural embedding SO(Vk) ↪→ GL(Vk), we embed F(Gk) into F(GL(Vk)).

Denote s0 = 0, s−i = −si (1 ≤ i ≤ n). For each −n ≤ i ≤ n, define Vi = ⊕j≥ik(fj).
The filtration Fζ corresponds to the tuple (sn, Vn, ..., s−n). It satisfies a self-dual property,
i.e. V−i = V ⊥

i+1 (0 ≤ i ≤ n− 1) and s−i = −si (0 ≤ i ≤ n). In fact, any filtration in F(Gk)

has this property.

The following observation shows that the filtration Fζ is "orthogonal" to the h-linear
structure.

Lemma A.1. For any vector v =
∑m

i=1 cifi with 1 ≤ m ≤ n − 1 and cm ̸= 0, we have
θ(v) ∈ V−m−1 − V−m.
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Démonstration. For any 0 ≤ m ≤ n− 1, we have V−m = ⊕n
j=m+1k(fj)⊕ k(θ(wm+1))⊕m

j=1

h(wj) : The right side is a subspace of the left side and they have the same dimension
(n+m+ 1 dimensional), thus they are equal.

Now for such vector v, we have

θ(v) =

m−1∑
i=1

ciθ(fi) + cm(θ2(wm+1)− θ(wm)).

Then it lies in V−m−1. Because cmθ2 is nonzero elements in k and wm+1 /∈ V−m, thus

θ(v) ∈ V−m−1 − V−m.

Now we first verify property (A) for filtrations of minimal type, namely those with at
most three jumps. For any isotropic h-subspace X ⊂Wk and a positive real number x, we
have a filtration FX,x ∈ F(Hk), FX,x = (x,X, 0, X⊥,−x). We have the following lemma :

Lemma A.2. We have deg(Fζ |X) ≤ 0.

Démonstration. Denote the breaks set of Fζ |X as Se. Then Se ⊂ {sn, ..., s−n}. And we
divide it into two parts, Se = Se+

∐
Se−, where Se+ = {si ∈ Se, 1 ≤ i ≤ n}, Se− =

{si,−n ≤ i ≤ 0}. Denote the degree deg(Fζ |X) as S, so that S =
∑

si∈Se si = S+ + S−

with S+ =
∑

si∈Se+ si, S
− =

∑
si∈Se− si. Then S+ ≥ 0 and S− ≤ 0.

If S+ = 0, we’re done. If S+ > 0, then Se+ ̸= ∅ and we will cancel its contribution
through S−.

Now define a function Ma : V − 0 −→ Z.
For any nonzero vector v, denote v =

∑i
l=−n clfl with ci ̸= 0, then define Ma(v) = i.

We next define a "reverse" function r : Se+ −→ Z.
Take any si ∈ Se+, then i ≤ n− 1, and we define r(si) = min

v∈(Vi
⋂

X−Vi+1
⋂

X)
Ma(v).

By definition we know r(si) ≥ i and it is injective :
Suppose there exists i < j, with r(si) = r(sj). By definition, there exists vi ∈ Vi

⋂
X−

Vi+1
⋂
X (resp vj ∈ Vj

⋂
X − Vj+1

⋂
X) such that vi =

∑r(si)
l=i clfl (resp vj =

∑r(sj)
l=j dlfl)

with cr(si) ̸= 0 (resp dr(sj) ̸= 0). Then consider the vector v = dr(si)vj− cr(sj)vi ∈ Vi
⋂
X−

Vi+1
⋂
X, but Ma(v) < Ma(vi), this contradicts the definition of r.

For each si ∈ Se+, there exists vi ∈ Vi
⋂
X − Vi+1

⋂
X such that vi =

∑r(si)
l=1 clfl with

cr(si) ̸= 0. By the above lemma A.2, θ(vi) ∈ V−r(si)−1 − V−r(si). Then s−r(si)−1 ∈ Se−.
Consider the sum

S
′
=

∑
si∈Se+

si − sr(si)+1.

Then S = S
′
+ S

′′ with S
′′ ≤ 0, S′

< 0 (due to r(si) ≥ i). Thus the degree is non-
positive.
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By self-dual properties, we have ⟨FX,x,Fζ⟩ = 2x(deg(Fζ |X)). Thus this lemma verifies
property (A) for minimal type filtrations. Moreover, it also helps us to reduce the general
case into the minimal case.

Theorem A.3. For any F1 ∈ F(Hk), we have ⟨F1, Fζ⟩ ≤ 0.

Démonstration. The case F1 = (0) is trivial. For other cases, the tuple corresponding to
F1 will be of the form (am, Xm, ..., a−m), where am > ... > a−m, ai+ a−i = 0, X−i = X⊥

i+1

(0 ≤ i ≤ m − 1), Xi (1 ≤ i ≤ m) are isotropic h-spaces. We have shown the case m = 1.
Now we do induction for m ≥ 2.

Consider another filtration F2 ∈ F(Hk), defined by the tuple (am−1, Xm−1, ..., a−(m−1)).
By self-duality properties, we have ⟨F1,Fζ⟩ = ⟨F2,Fζ⟩ + 2(am − am−1) deg(Fζ |Xm). Be-
cause am − am−1 > 0, by lemma A.2 and induction argument, we’re done.

We make some remarks.
• We can relax the condition (for cocharacter ζ) s1 < ... < sm into s1 ≤ ... ≤ sm, the

above theorem still holds by an analogous proof.
• Property (A) holds for any µ which is stricly dominant with respect to a Borel

subgroup in the open H-orbit. Indeed, property (A) only depens upon the filtration Fµ−1 ,
and any such filtration is split by some special basis β as above. In other words, property
(A) is an intrinsical property of our spherical pair (H,G).

Now we discuss other cases, especially the eight infinite families of indecomposable
pairs (H,G) in [44] section 6. Using similar methods, we can show that the following four
kinds of families also have property (A) :
•(GL(n), Sp(2n))
•(SO(n), GL(n))

•(SO(n)× SO(n+ 1), SO(2n+ 1))

•(SO(n)× SO(n), SO(2n))

But in general, we shouldn’t expect property (A) for spherical pairs. Below is a classical
counterexample.

Suppose the pair is (G0, G0 × G0) over Spec(OF ) with G0 being semi-simple. Take a
Borel pair (T , B1) forG0 and let B2 be the Borel subgroup ofG0 opposed to B1 with respect
to T . Then B1×B2 is a Borel subgroup of G0×G0 and (G0, G0×G0) is a spherical pair. This
is a standard example. Consider a strict B1-dominant cocharacter µ1 ∈ X∗(T ) and a strict
B2-dominant cocharacter µ2 ∈ X∗(T ) ; then for any positive integer N , we have a strict
B1×B2-dominant cocharacter µN = ((µ1)

N , µ2) ∈ X∗(T×T ). The corresponding filtration
involved in property (0) is FµN = (N(Fµ−1

1
),Fµ−1

2
) ∈ F(G0,F×G0,F ) = F(G0,F )×F(G0,F ).

To do computation about filtrations, choose an embedding G0,F ↪→ GLN and the induced
embedding G0,F×G0,F ↪→ GLN×GLN ↪→ GL2N . Consider the filtration FN = N(Fµ−1

1
) ∈

F(G0,F ), then
⟨FN ,FµN ⟩ = N2⟨Fµ−1

1
,Fµ−1

1
⟩+N⟨Fµ−1

1
,Fµ−1

2
⟩;
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since ⟨Fµ−1
1
,Fµ−1

1
⟩ > 0, this scalar product will be positive for N ≫ 0. Similar argument

over the residue field k will produce a counterexample to property (A).
Moreover, we can produce counterexamples to property (A) for the three remaining

families (the idea is similar except for the last family) :
•(GL(n), GL(n)×GL(n+ 1))

•(SO(n), SO(n)× SO(n+ 1))

•(Sp(2n), SL(2n+ 1)).
Now we turn to our original conjecture concerning property (1). We have a general

strategy to verify it for symmetric pairs.
The starting input is a reductive group scheme G over Spec(OF ) with a nontrivial

involution θ. Let H denote the θ fixed subgroup. Such a pair (H,G) is called a symmetric
pair. We assume that there exists a Borel subgroup B of G such that θ(B) = B is opposed
to B. Then T = θ(B)

⋂
B is a θ-stable maximal torus and (G,H) is a spherical pair (see

[32]).
Here we make some remarks :
• A parabolic group P such that θ(P) is opposed to P is called a θ-split parabolic

subgroup. In general, we can replace B by a minimal θ-split parabolic subgroup, our
argument below still works.
• Over a field F , there are many studies about symmetric pairs. For example, there

always exists a θ-stable maximal torus and under suitable conditions, there exists a non-
trivial minimal θ-split parabolic subgroup, we refer to [32] for more details. Moreover, the
connected component of the fixed subgroup is a reductive group by [59].

Now take a strictly B-dominant cocharacter µ of T and define τ = µ(π), we will show
that property (1) holds.

Because µ is strictly B-dominant, the cocharacters η = θ(µ) and µ−1η are all strict
B-dominant. Define ξ = (µ−1η)(π). Let N be the unipotent radical of B and N be the
unipotent radical of B.

For any positive integer m, take an element x ∈ Hm = H(F )
⋂
τmG(OF )τ

−m and
write x = τmyτ−m with y ∈ G(OF ).

Then we know x = θ(x), thus τmyτ−m = θ(τ)mθ(y)θ(τ)−m.
Therefore y = ξmθ(y)ξ−m. Since y and θ(y) belong to G(OF ), this implies that y lies

in the big Bruhat cell N×T×N, and moreover y decomposes as ξmn1ξ−m × t× n2 with
n1 ∈ N(OF ) and n2 ∈ N(OF ).

Thus x = τmyτ−m = η(π)mn1η(π)
−m× t× τmn2τ−m. Then property (1) holds since η

is B-dominant and µ is B-dominant.
Now we list some examples to which this method applies. Consider the diagonal embed-

ding mentioned above, G0 −→ G0×G0. Here we don’t need G0 to be semisimple. Consider
the involution θ on G0 ×G0 defined by swapping factors, (x, y) −→ (y, x). Then the fixed
subgroup is exactly G0 and the Borel subgroup B ×B is a θ-split minimal parabolic sub-
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group. Thus we can apply the above method to show property (1). Another example is
SO(n) −→ GL(n) and the involution θ is given by A −→ A−T .

Involutions can also be used to study property (A). If there exists an involution θ

of F(Gk) that preserves the scalar product, fixes F(Hk) and such that θ(red(Fµ−1)) +

red(Fµ−1) = 0, then property (A) holds : According to [17] corollary 92, we have

2⟨F1, red(Fµ−1)⟩ = ⟨F1, red(Fµ−1)⟩+⟨F1, θ(red(Fµ−1))⟩ ≤ ⟨F1, red(Fµ−1)+θ(red(Fµ−1))⟩ = 0.

Finally, we mention that in some concrete cases beyond symmetric pairs, we can also
use explicit calculations to show property (1). See the example (GU(1) ×Gm GL2, GSp4)

in section 6.1 and the unitary GGP pair in section 6.2. In particular, we have the following
example that satisfies property (1) but doesn’t satisfy property (A) :

•(GL(n), GL(n)×GL(n+ 1))

It is just the spherical pair appearing in section 6.2.

A.2 Miscellaneous facts

To make this thesis more self-contained, in this section we prove some facts used in the
main part.

1. computation of the reflex norm

In this section, we explain the reflex norm used in our main example.

This is a standard exercise with tori.

Let F1 denote a field and fix a separate closure F s
1 . Let F2 ⊂ F s

1 denote a finite sparable
extension of F1 and denote the set GalF1/GalF2 by Se. The set Se has a distinguished
element [1].

Consider a torus T2 over F2 and another torus T1 = ResF2/F1
T2 over F1. Over F s

1 , we
have the following natural isomorphism

X∗(T1,F s
1
) ∼= Z[GalF1 ]⊗Z[GalF2

] X∗(T2,F s
1
).

Through this isomorphism we get a GalF2-equivariant map i : X∗(T2,F s
1
) −→ X∗(T1,F s

1
),

sending x to [1]⊗ x. This map will induce a map between torus over F2, i : T2 −→ T1,F2 .

Now suppose there is a cocharacter µ2 for T2 over F2, composing it with i, we get a
cocharacter µ1 = i(µ2) for T1,F2 . We have the following lemma :

Lemma A.4. norm

The following diagram is commutative :
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ResF2/F1
Gm

res(µ1)
> ResF2/F1

T1,F2

ResF2/F1
T2

res(µ2)

∨
=

> T1

NormF2/F1∨

Démonstration. It is equivalent to check commutativity of this diagram over F s
1 for their

corresponding cocharacter groups.
Under the following identifications,

X∗((ResF2/F1
Gm)F s

1
) ∼= Z[GalF1 ]⊗Z[GalF2

] Z,

X∗((ResF2/F1
T1,F2)F s

1
) ∼= Z[GalF1 ]⊗Z[GalF2

] X∗(T1,F s
1
),

X∗(T1,F s
1
) ∼= Z[GalF1 ]⊗Z[GalF2

] X∗(T2,F s
1
),

we have
res(µ1)(

∑
ρ∈Se

aρ([ρ]⊗ 1)) =
∑
ρ∈Se

aρ([ρ]⊗ µ1),

NormF2/F1
(
∑
ρ∈Se

aρ([ρ]⊗ µ1)) =
∑
ρ∈Se

aρρ(µ1),

res(µ2)(
∑
ρ∈Se

aρ([ρ]⊗ 1)) =
∑
ρ∈Se

aρ([ρ]⊗ µ2).

Since ρ(µ1) = [ρ]⊗mu2, our diagram is indeed commutative.

Applying this lemma to our main example, we obtain the reflex norm.
2. Some facts about the Hecke polynomial
This section is mainly a complement for section 2.2 thus we will use similar notations.

However, for simplicity in this section we will use arithmetic Frobenius.
From now on let F denote a p-adic field with ring of integers OF , choose a uniformizer

π ∈ OF and denote the cardinality of the residue field OF /π by q. Fix an algebraic closure
F of F and let F un denote the maximal unramified extension of F inside F .

Let G denote a reductive group scheme over OF , then G is quasi-split over OF . Thus
we can choose a Borel pair (T,B) for G, where T is a maximal torus and the Borel group
B contains T. Let the unipotent radical of the Borel subgroup B be N, we have a Levi
decomposition B = T⋉N. Let S denote the maximal split subtorus of T, X∗(S) the group
of cocharacters of S and X+

∗ (S) ⊂ X∗(S) the cone of B-dominant cocharacters.
Let K denote the hyperspecial subgroup G(OF ), B denote B(F ), G denote G(F ),

T denote T(F ), T 0 denote T(OF ) = T ∩ K, N denote N(F ). Then T 0 is a maximal
compact subgroup of T , the natural inclusion SF ↪→ TF will identify X∗(S) = X∗(SF ) with
XF,∗(TF ), the F -rational cocharacter for TF , or equivalently the subgroup of X∗(TF ) fixed
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by Gal(F/F ). Moreover, we can identify X∗(S) with T/T 0 by sending λ (a cocharacter)
to the coset of λ(π).

Now we introduce the Hecke algebra. Let dg denote the unique Haar measure on G

with K having volume 1. The Hecke algebra He is the ring of locally constant, compactly
supported functions f : G −→ Z which are K-biinvariant, f(kg) = f(gk) = f(g) for any k
in K. The multiplication in He is given by the convolution product :

f1 · f2(z) =
∫
G
f1(g) · f2(g−1z)dg.

The characteristic function of K is the unit element.
Notice that the characteristic functions char(KgK) give a Z-basis for He, and it is easy

to check that this definition of the Hecke algebra is equivalent to the previous definition
via endomorphism algebra. Moreover, we have the following Cartan decomposition :

G =
∐

λ∈X+
∗ (S)

Kλ(π)K.

For each such λ, let cλ denote the corresponding characteristic function char(Kλ(π)K).
For any ring R, we will denote the R-valued Hecke algebra He ⊗ R as He(G,K,R).

Equivalently, we can also think of it as the ring of locally constant, compactly supported
R-valued functions on G.

For the torus T, obviously its Hecke algebra He(T, T 0, R) is commutative and we can
identify it with the group algebra R[X∗(S)] due to X∗(S) ∼= T/T 0 as we mentioned above.
The following Satake transform will identify the Hecke algebra for G to a subalgebra of
the Hecke algebra of T. In particular, it is also a commutative ring.

Satake transform
Although we work with unramified groups, the Satake transform can be defined more

generally for any reductive group. In that setting the idea is similar. We refer to Cartier’s
paper [13] for such generalization. Also see [30] for some concrete examples etc.

The usual Satake transform is an isomorphism

S : He(G,K,R0) −→ He(T, T 0, R0)
ΩF ,

here R0 is a ring containing Z[q±
1
2 ] and ΩF is the relative Weyl group of T in G.

Let dn be the unique Haar measure on the group N with N(OF ) = N ∩ K having
volume 1. Let δ : B −→ R∗

+ be the modulus factor for B, defined by the formula

d(bnb−1) = δ(b) · dn.

Obviously δ is trivial on N , thus defines a character T −→ R∗
+. Let δ

1
2 be the positive

square-root of this cocharacter.
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Let ρ ∈ X∗(TF ) ⊗ Q denote the half sum of all positive roots of (TF ,BF ), ⟨−,−⟩
denote the natural pairing

X∗(TF )⊗Q×X∗(TF )⊗Q −→ Q.

For the element t = λ(π), where λ ∈ X∗(S), we have the following formula :

δ
1
2 (t) = |det(adt|Lie(N))|

1
2

= |π⟨λ,2ρ⟩|
1
2 = q−⟨λ,ρ⟩,

here adt denotes the adjoint action. In particular, its value lies in the subgroup q
1
2
Z.

For any element f ∈ He(G,K,R0), the Satake transform will define S(f) as a function
on T by the following integral

Sf(t) = δ(t)
1
2

∫
N
f(tn)dn.

Then obviously Sf is a function on T/T 0 = X∗(S) with values in R0 (recall R0 contains
q±

1
2 ). Therefore Sf lies in He(T, T 0, R0) = R0[X∗(S)]. Moreover, this transform is an

injective ring map whose image is the ΩF -invariant submodule of He(T, T 0, R0). We refer
to Cartier’s paper [13] for the proof of these facts.

Twisted version

From the integral formula, we see that the usual Satake transform will involve issues
about the coefficient ring, this is due to the factor δ

1
2 . In many papers (especially those

about the Hecke polynomial), it is convenient to introduce the twisted version Satake
transform S•. It will normalize the Satake transform by δ

1
2 to keep "rationality". We will

follow Wedhorn’s notation in [66]. The twisted Satake transform is a ring map

S• : He(G,K,Z) −→ He(T, T 0,Z),

sending any element f to a function S•(f) on T by the following integral

S•f(t) =

∫
N
f(nt)dn = δ(t)

∫
N
f(tn)dn.

The advantage is that this twisted Satake transform can be defined over any coefficient ring.
This map is also an injection and if we require that the coefficient ring R0 contains Z[q−1]

then its image is the submodule of "ΩF " invariants, here we have to use a "dot-action" of
ΩF on the Hecke algebra, which is defined as follow (also see [66] section 1.8) :

For w ∈ ΩF , λ ∈ X∗(S) and view λ as an element in R0[X∗(S)], then we define

w • λ = q⟨λ−w(λ),ρ⟩w(λ).
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Notice that ⟨λ− w(λ), ρ⟩ ∈ Z, so this action is well-defined due to R0 contains Z[q−1].

Consider the following C-linear map

α : C[X∗(S)] −→ C[X∗(S)],

λ 7→ q−⟨λ,ρ⟩λ.

It is an isomorphism between these two group algebras and we have the following relation
between our two Satake maps :

α ◦ S = S•.

Now we introduce the dual viewpoint for the Satake transform.

Let Γ denote Gal(F un/F ) with σ ∈ Γ being the arithmetic Frobenius of F . By
our assumption for G, the group GF will split over F un. Therefore we can consider the
unramified version of Langlands dual group :

1 −→ Ĝ −→ LG −→ Γ −→ 1,

here Ĝ is the dual group, a reductive group over C with root datum dual to the root datum
defined by (TF ,BF , ...) of GF .

Fix a Γ-invariant pinning (T̂ , B̂, ...) of Ĝ so that LG = Ĝ⋊Γ. There is a Γ-equivariant
isomorphism X∗(TF )

∼= X∗(T̂ ). Then we can identify C[X∗(S)]ΩF as the algebra of regular
functions on Ĝ which are invariant under σ-conjugation, see Borel’s paper [6] section 6. In
particular, through the Satake transform

S : He(G,K,C) −→ He(T, T 0,C)ΩF ,

we can view such a function as an element of the complex Hecke algebra.

In the split case, we have ΩF = Ω (absolute Weyl group), S = T, and we can also
view the Hecke algebra as the representation ring of the dual group Ĝ,

C[X∗(S)]ΩF ∼= Rep(Ĝ,C).

The irreducible representation of Ĝ is a highest weight representation Vλ determined by
the highest weight λ ∈ X∗(T̂ ). Let χλ = Trace(Vλ) be the corresponding element in
C[X∗(T̂ )]Ω. Then {χλ} is a natural basis for the representation ring. Therefore it is natural
to explicit the Satake transform under these two basis {cλ} and {χλ}. We have the following
result :

S(cλ) = q⟨λ,ρ⟩χλ +
∑
η<λ

aλ(η)χη.

We refer to [13] and [30] for its proof. In particular if λ is a minuscule (minimal) weight
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for Ĝ, then we have
q⟨λ,ρ⟩χλ = S(cλ).

In the general case, these coefficients aλ(η) are related to Kazhdan-Lusztig polynomials,
we refer to [30] for more details.

Now we have the following explicit example for G = GL(n).

Example

For G = GL(n), take T to be the diagonal torus, B to be the group of upper triangular
matrices.

For each 1 ≤ i ≤ n, let µi denote the cocharacter of T given by

t 7→ (t, .., t, 1, ..., 1) (the first i terms are t).

It corresponds to a minuscule weight of the dual group Ĝ ∼= GL(n), and the corresponding
highest weight representation is

∧iCn, where Cn denotes the standard representation.
Thus we have the following formula :

S(cµi) = q
i(n−i)

2 Trace(
i∧
Cn).

Hecke polynomial

Now we recall the Hecke polynomial.

Let µ be a conjugacy class of cocharacters of GF and we also use µ to denote the unique
BF -dominant cocharacter of TF . Both variants of µ have the same field of definition, a
finite unramified extension F (µ) ⊂ F un of F . Let n(µ) = [F (µ) : F ] be the degree of
this extension. Through our identification X∗(TF )

∼= X∗(T̂ ), we can also view µ as a
B̂-dominant character of T̂ that is fixed by Γn(µ). Consider the following representation :

rµ :L (GF (µ)) = Ĝ⋊ Γn(µ) −→ GL(Vµ),

where the restriction to Ĝ is the highest weight representation with weight µ and Γn(µ)

acts trivially on the highest weight space. Now for any ĝ ∈ Ĝ, consider the characteristic
polynomial

det(X − qn(µ)d(µ)rµ((ĝ ⋊ σ)n(µ))),

where d(µ) = ⟨µ, ρ⟩). Its coefficients, viewed as functions on Ĝ, are regular functions on Ĝ
which are invariant under σ-conjugation. Thus through the Satake transform, there exists a
polynomial Hepµ ∈ He(G,K,C)[X] such that S(Hepµ) corresponds to this characteristic
polynomial.

Notice that for a linear transform ϕ on a n-dimensional vector space V , we can expand
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the characteristic polynomial as follow :

det(X − ϕ) =
n∑

i=0

Xn−i(−1)iTrace(ϕ| ∧i V ).

Therefore we have an explicit example for GL(n) : Because the group splits, the Galois
action is trivial. Recall our above example for GL(n), for µ = µ1, the corresponding repre-
sentation is exactly Cn (standard representation), then through the above computation of
Satake transforms, we have

Hepµ =
n∑

i=0

(−1)iq
i2−i
2 cµiX

n−i.

Rationality property of the Hecke polynomial

As we mentioned earlier, the Hecke polynomial has certain rationality properties. For µ
minuscule, in [66] Wedhorn showed that the Hecke polynomial in fact lies inHe(G,K,Z[q−1])[X].
In fact we have a similar result in the general case, where µ is not necessarily minuscule.

Suppose GF splits over F1, and let d denote the degree [F1 : F ], R denote the ring
Z[q−1, ζd] (ζd is a primitive d-th root of unity). Then we have the following theorem :

Theorem A.5. (rationality)
The Hecke polynomial lies in He(G,K,R).

Démonstration. Through the Satake transform S, we can view Hepµ as an element in
C[X∗(S)][X]. Now we restrict the representation rµ as a representation of the dual torus
T̂ and consider its weight decomposition and the Galois action, σn(µ) acts on the set of
weights.

Notice that (1⋊σ−n(µ))(t̂⋊ 1)(1×σn(µ)) = (σ−n(µ)(t̂)⋊ 1), for each weight λ ∈ X∗(T̂ )

that appears in Vµ, we have an isomorphism

Vµ(λ) ∼= Vµ(σ
n(µ)(λ))

(Vµ(λ) is the corresponding weight space) given by

v 7→ rµ(1⋊ σn(µ))(v).

Suppose the size of the orbit {σn(µ)k(λ)|k ∈ Z} is m, in particular σn(µ)m(λ) = λ. Then
the linear operator rµ(1 ⋊ σn(µ)m) acts on Vµ(λ) and it will generate a cyclic subgroup
of the general linear group with order d1 dividing d. In particular this linear operator is
diagonalizable. Take a basis {v1, ...vk} for Vµ(λ) consisting of eigenvectors of rµ(1⋊σn(µ)m).

Now suppose rµ(1⋊σn(µ)m)v1 = ζv1, where ζ is a d1-th root of unity. Then consider the
space W generated by the ordered basis {v1, rµ(1⋊ σn(µ))(v1), ..., rµ(1⋊ σn(µ)(m−1))(v1)}.



94 ANNEXE A. APPENDIX

Then rµ(1⋊ σn(µ)) acts on W , and the corresponding matrix is
0 0 ... ζ

1 0 ... 0

0 1 ... 0

... ... ... ...

... ... ... 0

 .

Notice that (t̂⋊σ)n(µ) = (
∏n(µ)−1

i=0 σi(t̂))⋊σn(µ), the corresponding operator rµ((t̂⋊σ)n(µ))
will acts on W , in particular its determinant polynomial on W (denote it as Pλ,v1) will
contribute to a factor of the Hecke polynomial, and this factor lies in C[X∗(T̂ )][X], it is

Xm − qn(µ)d(µ)mζ(
n(µ)m∏
i=1

(σi−n(µ)(λ))).

Notice that the character
∏n(µ)m

i=1 (σi−n(µ)(λ)) ∈ X∗(T̂ ) is fixed by σ, thus through the
identification X∗(T̂ ) ∼= X∗(TF ), we can think of it as an element in X∗(S). Now apply the
normalization map α,

α(

n(µ)m∏
i=1

(σi−n(µ)(λ))) = q−⟨
∑n(µ)m

i=1 (σi−n(µ)(λ)),ρ⟩
n(µ)m∏
i=1

(σi−n(µ)(λ)).

Notice that q−⟨
∑n(µ)m

i=1 (σi−n(µ)(λ)),ρ⟩ = q−n(µ)m⟨λ,ρ⟩, combine with the factor qn(µ)d(µ)m,
and apply the highest weight property of Vµ, we know that µ− λ =

∑
α∨ c(α∨)α∨, where

α∨ is positive root of T̂ , c(α∨) is an integer, and ⟨α∨, ρ⟩ is also an integer. Therefore we
know that after the normalization map α, this polynomial lies in R[X∗(S)].

By definition of the determinant polynomial, we have a decomposition

Hepµ =
∏
λ,v

Pλ,v.

Finally recall that S• = α◦S, and the twisted Satake transform S• keeps the coefficient
ring, therefore we’re done.

If µ is minuscule, Wedhorn claimed that each root of unity appearing in the above
argument is always 1 in [66]. Therefore his result is a little stronger : the coefficient R is
only require to contain Z[q−1]. This happens in many cases. We list some examples :
• If each weight space Vµ(λ) is one dimensional (this includes minuscule cases), then

each related root of unity belongs to {±1} ⊂ Z, so we get the stronger result. The reason
is that the complex representation Vµ has a model over Q. Working over Q, we still have
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weight decompositions etc. And for a one dimensional Q-space, a cyclic subgroup of the
automorphism group GL1(Q) = Q∗ can only be {±1} or {1}.

• For groups of the form ResF1/FG1, where G1 is a split reductive groups over F1. In
particular this includes split reductive groups ;

• If the degree d of the splitting field is 2, then the corresponding roots of unity ±1
already lie in the integer ring Z, in particular unitary groups satisfy such condition.

3. A simple analogue

In the last part of section 5.2, lemma 5.6, we explained how to modify our special cycles
with norm relations into a norm compatible family. For the readers who are not familiar
with this idea, we describe here a simple analogue : how to obtain a constant sequence
from a sequence satisfying a certain type of linear relations.

Let R denote a ring, M be a R-module, Pol ∈ R[X] denote a polynomial with degree
larger than one. Suppose Pol =

∑k
i=0 eiX

i with ek ̸= 0. We also assume that Pol has a
root b ∈ R∗. In other words, we also have the following expansion :

Pol = (X − b)(
k−1∑
i=0

piX
i).

Now let {xi|i ∈ N} ⊂ M̃ denote a sequence of elements that are related by Pol, in
other words, for each integer m > 0, they satisfy

k∑
i=0

eixm+i = 0.

Now define a sequence of elements inside M (for m > 0) :

x̂m = b−m
k−1∑
i=0

pixm+i,

then this sequence is constant :
x̂m+1 = x̂m.

The proof is straightforward :

k−1∑
i=0

pixm+i+1 − b(
k−1∑
i=0

pixm+i) = 0

bm+1x̂m+1 − b(bmx̂m) = 0

bm+1(x̂m+1 − x̂m) = 0,

because b−1 lies in R, we have x̂m+1 = x̂m.
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Formally, we can think of the element Trm+i,m(Ym+i) in the lemma 5.6 as an analogue
of xm+i. Then the key idea hidden in the lemma 5.6 is exactly the same as the above idea.
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