
HAL Id: tel-03889983
https://theses.hal.science/tel-03889983v1

Submitted on 8 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

De l’utilité des petits états quantiques : applications à
l’optique linéaire et à la vérification de la position

Andrea Olivo

To cite this version:
Andrea Olivo. De l’utilité des petits états quantiques : applications à l’optique linéaire et à la véri-
fication de la position. Quantum Physics [quant-ph]. Université Paris-Saclay, 2022. English. �NNT :
2022UPASP055�. �tel-03889983�

https://theses.hal.science/tel-03889983v1
https://hal.archives-ouvertes.fr


THE
SE

DE
DO

CTO
RAT

NN
T:2

022
UPA

SP0
55

Leveraging small quantum states:
applications to linear optics and position verification

De l’utilité des petits états quantiques :
applications à l’optique linéaire et à la vérification de la position

Thèse de doctorat de l’université Paris-Saclay

École doctorale n°572 : ondes et matière (EDOM)
Spécialité de doctorat : Physique

Graduate School : Physique, Référent : Faculté des sciences d’Orsay

Thèse préparée dans les unités de recherche : Laboratoire de physique des gaz et
des plasmas (Université Paris-Saclay, CNRS) sous la direction de Jacques ROBERT,
professeur, le co-encadrement de Frédéric GROSSHANS, chargé de recherche et

André CHAILLOUX, chargé de recherche

Thèse soutenue à Paris-Saclay, le 15 juin 2022, par

Andrea OLIVO

Composition du jury

Rosa TUALLE-BROURI Présidente
Professeure, Université Paris-Saclay, France
Matthias CHRISTANDL Rapporteur et examinateur
Professeur, Københavns Universitet, Denmark
Peter VAN LOOCK Rapporteur et examinateur
Professeur, Johannes Gutenberg-Universität Mainz,
Allemagne
Anne BROADBENT Examinatrice
Professeure agrégée, University of Ottawa, Canada
Mercedes GIMENO-SEGOVIA Examinatrice
PhD, PsiQuantum, California
Jacques ROBERT Directeur de thèse
Professeur, Université Paris-Saclay, France



Titre : De l’utilité des petits états quantiques :
applications à l’optique linéaire et à la vérification de la position

Mots clés : optique linéaire, cryptographie quantique, optimisation

Résumé : Cette thèse vise à étu-
dier, en employant des méthodes
tant analytiques que numériques,
l’efficacité de petits systèmes quan-
tiques pour deux applications dans
le domaine de l’information quan-
tique. La première en tant qu’états
auxiliaires pour une mesure de
Bell en optique linéaire, qui est
une primitive d’une importance cru-
ciale pour le calcul quantique avec

des photons et pour la réalisa-
tion de l’internet quantique à ve-
nir. La deuxième en tant que res-
sources intriquées que des atta-
quants peuvent utiliser pour casser
une primitive cryptographique ap-
pelé «vérification de la position»,
qui fait appel simultanément à des
contraintes quantiques et relati-
vistes pour permettre un nouveau
type d’authentification.

Title : Leveraging small quantum states :
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Abstract : This thesis work explores
with both analytical and numerical
methods the power of small quan-
tum systems in two applications
in the field of quantum informa-
tion. The first is as auxiliary states
in linear optical Bell measurement,
which is a primitive of paramount
importance for quantum compu-

ting with photons and the coming
quantum internet. The second is
as entangled resources which atta-
ckers can use to break a cryptogra-
phic primitive known as quantum
position verification, which simul-
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Résumé du manuscrit

Les récentes avancées théoriques et technologiques permettant la manipula-
tion de l’information quantique peuvent donner accès à une vaste gamme
d’applications. Ils promettent d’améliorer les mesures de précision (quantum
metrology), la sécurité des communications numériques (quantum internet)
et la vitesse de certains algorithmes (quantum computing) – transformant
ainsi plusieurs domaines de recherche. Cependant, on ne sait toujours pas
avec certitude s’il sera possible d’obtenir un avantage quantique pour des
problèmes pratiques avec les technologies disponibles aujourd’hui ou dans
un futur proche.

Dans cette thèse de doctorat, nous étudions deux de ces applications :
la mesure de Bell en optique linéaire, une tâche essentielle à la base de la
plupart des protocoles quantiques, et la vérification de la position dans le
cadre quantique (QPV), une primitive cryptographique – inefficace dans
le cadre classique – qui permettrait d’utiliser sa position dans l’espace
comme identifiant. Pour les deux tâches nous analysons dans quelle mesure
l’utilisation de petits états quantiques auxiliaires, relativement simples à
produire dans le laboratoire, peut influencer leurs performances. Dans le
premier Chapitre, nous présentons une brève introduction aux concepts
généraux de la mécanique quantique. Les Chapitres 2 et 3 commencent avec
une introduction plus spécifique des sujets respectifs et une revue de l’état
de l’art dans la littérature, suivie par l’exposition du travail original et une
conclusion.

En optique classique, les outils et matériaux possédant une réponse
linéaire par rapport à l’intensité de la lumière incidente sont de loin le
plus étudiés et utilisés dans le laboratoire. Quand la lumière encode de
l’information quantique, la restriction à ces matériaux (avec l’ajout des
sources et détecteurs de photons) impose une structure dans l’espace des
états réalisables tout aussi simple sur le plan théorique. Même si l’optique
linéaire est en principe suffisante pour arriver au calcul quantique universel,
sa nature probabiliste implique un coût très élevé. Il est donc intéressant de
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se focaliser sur des tâches plus spécifiques pour réduire ce coût, comme la
mesure de Bell analysée dans ce manuscrit.

Une mesure de Bell non ambigüe est la projection d’un état bipartite de
deux qubits sur une base d’états maximalement intriqués. Dans le cas où
seuls les photons à mesurer en entrée peuvent interférer dans le réseau
optique, une borne supérieure à sa probabilité de succès de 50% est connue.
Cependant, il est possible de profiter d’états auxiliaires préparés à l’avance
pour améliorer la probabilité de réussite : nous exposons une revue de
deux stratégies connues dans la littérature en les mettant dans un cadre
commun. En ajoutant une restriction sur le type de réseau optique admis,
nous prouvons une borne supérieure à la probabilité de succès qui dépend
de la forme de l’état auxiliaire employé. Comme cette restriction est difficile
à justifier d’un point de vue expérimental, nous employons une stratégie
computationnelle pour explorer l’espace des réseau optiques génériques.
On expose les difficultés rencontrées pour réduire la taille du problème de
recherche d’une solution à un niveau raisonnable pour le nœud de calcul
dont nous disposons. Enfin, nous présentons nos résultats, qui incluent la
(re)découverte d’une stratégie “intermédiaire” à efficacité 62.5% et l’analyse
de plusieurs types d’états auxiliaires.

La deuxième partie de notre travail concerne la possibilité de vérifier
de manière cryptographique sécurisée la position d’un dispositif (ou d’une
personne) dans l’espace. Dans un tel protocole, des vérificateurs V1, V2, . . .
envoient des messages x1, x2, . . . vers la position P revendiquée par le prou-
veur, et ils reçoivent des réponses f (x1, x2, . . . ) = (y1, y2, . . . ) de sa part. Les
messages sont synchronisés de sorte qu’ils arrivent à P tous simultanément,
et les temps d’arrivée des réponses sont enregistrés. Le protocole exploite la
relativité restreinte (sous la forme du principe de no-signaling) pour borner
la région autour de P d’où les réponses auraient pu être envoyées. Dans le
cas classique, l’impossibilité pour ces protocoles d’atteindre un niveau de
sécurité souhaitable est connue : il est toujours possible pour une coalition
de agents malveillant, dont aucun entre eux se trouve à P, de se coordonner
pour donner les bonnes réponses au bon moment. Cependant, si la fonc-
tion f ainsi que les messages peuvent être quantiques, la meilleure attaque
connue demande aux attaquants une quantité de ressources exponentielle –
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plus précisément, des états intriqués – par rapport à la taille des messages
des vérificateurs. Nous formalisons un protocole simple de QPV paramétré
par un angle θ, et nous développons un langage graphique pour caractériser
ses attaques exactes. Avec une méthode numérique, nous trouvons de nou-
velles attaques pour plusieurs angles, qui dépassent largement en efficacité
ceux présents dans la littérature. En assouplissant la condition d’attaque
exacte, nous trouvons que deux ebit partagés par qubit envoyé sont suffisant
pour permettre aux adversaires de casser tous les angles θ avec une probabi-
lité > 99.5%, et nous discutons les implication expérimentales à court terme
de ces attaques.
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Chapter 1

Introduction

For a physicist working at the end of the 1970s, the successes of quantum
mechanics and its role in fundamental physics were indisputable—in fact,
they were updated by the day. Just a decade before, Bell had “proven Ein-
stein wrong” (quotes intentional) by showing its eponymous inequality,
which at the time was in the process of being experimentally validated in
favor of quantum mechanics. Meanwhile, the Standard Model was in active
development, showing that quantum field theories were a promising road
to the unification of fundamental particles and interactions. Quantum me-
chanics’ role was becoming prominent outside of just fundamental research,
too: technology had fully embraced its counterintuitive properties, enabling
revolutionary applications the likes of lasers, magnetic resonance imaging
and ever smaller integrated circuits.

By contrast, a researcher in computer science of the time could have been
largely unaware of these ongoing successes, shielded by the thought that
their field of research resided on a different abstraction level. They would
have had good reasons for this: building on the work of, among others,
Turing, Shannon and von Neumann, it had been made abundantly clear
that it was possible to treat computation and information as purely mathe-
matical theories, parting ways with their physical implementation. Over
the years analog computers, digital ones, mechanical, electronic, and many
other platforms were all shown to be Turing machines, all fundamentally

1



2 Chapter 1. Introduction

equally powerful. Besides, if they happened to work on cryptography, there
was no shortage of big news; public-key cryptography had recently been
discovered, a new way—counterintuitive in its own terms—of exchanging
messages over public channels, and the advent of computers was giving a
way of proving the usefulness of this and many other results (e.g. in com-
plexity theory) in real-world applications. However, quantum mechanics
was about to, if not revolutionize, at least shake this assumption from its
foundations.

In a pioneering 1982 paper, Feynman noticed the apparent exponential
complexity of simulating interacting quantum systems even approximately,
thus challenging the notion that Turing machines could efficiently simulate
any physical process [Fey82]. For dealing with a “probabilistic nature”, he
proposed, we need a “probabilistic computer”; but since classical probabili-
ties would not do, it should be quantum mechanical. A model for a quan-
tum Turing machine was developed [Ben80; Deu85], and in the following
years it was shown to support (relative to an oracle) efficient algorithms for
problems outside P (Deutsch–Josza [DJ92]), and BPP (Bernstein–Vazirani
[BV97] and Simon [Sim97]). If any of these sounded rather contrived to
the computer scientist of the time, Shor helped clear any doubt with his
work on factorization [Sho94] and the possibility of fault-tolerant quantum
computation [Sho96]. Meanwhile, it was being discovered that quantum
phenomena could support a holy grail of cryptography: quantum key dis-
tribution (QKD [BB84]), an information-theoretic secure protocol to exchange
keys over a public channel.

Forty years after Feynman’s paper, it is clear that quantum information
is going to stay. Its development promises to bring considerable advances in
many areas of research, in academia as well as the industry. QKD has seeded
the whole field of quantum cryptography and quantum communication.
Applications of quantum computing will include the efficient simulation
of quantum systems, a compelling tool for, among others, the develop-
ment of new materials and a better understanding of many-body chemical
processes. However, the journey of bringing universal, error-corrected
quantum computers to light (which, as far as we know, most of the above
requires) is far from over. Many quantum computing platforms have been
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proposed, differing in architecture and in the physical implementations of
the basic units of quantum information processing—qubits and quantum
gates. Broadly speaking, the main challenge all platforms have to overcome
[DiV00] is the design of physical qubits that can be well isolated from the
environment, to preserve the fragile coherence of quantum information,
whilst also providing a mechanism for qubit-qubit interactions, necessary
for the implementation of logic gates.

We are not there yet. Today, the available platforms consist of less than
a hundred noisy qubits, a situation that has been dubbed the “NISQ era”
(acronym of noisy intermediate-scale quantum, [Pre18]). It sees theoreticians
from one side, lowering the amount of resources needed for running useful
algorithms, and experimentalists from the other, raising the capabilities of
quantum hardware. This near-term quantum hardware could enable ad-
vanced sensors, breaking classical limits [DRC17; GLM11] and support the
huge undertaking of building a quantum internet [WEH18]. As private com-
panies join the race alongside academia, NISQ hardware is now available to
researchers in the cloud (among others, [Xan; IBM]).

In this context, this thesis explores the capabilities of small, near-term
quantum systems in two specific tasks. After a brief introduction in Sec-
tion 1.1 below, we tackle the problem of enhancing the success probability of
linear optical Bell measurement via entangled auxiliary states in Chapter 2.
Then, in Chapter 3 we show how small entangled states can be used to
attack a class of protocols implementing a cryptographic primitive known
as quantum position verification. Both problems are presented and motivated
in the respective introductions to the two Chapters.

1.1 A brief toolbox

We assume the reader is familiar with the usual objects of quantum mechan-
ics (QM) and their standard notation, such as pure (|ψ⟩) and mixed (ρ) states,
Hilbert spaces (H), measurements of quantum systems and their effect on
the wavefunction, tensor products (⊗) as a mean to describe joint quantum
systems and other basic notions which can be found in an introductory
course. A (by no means complete) selection of textbooks on the topic is
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Griffiths’ Introduction to quantum mechanics [GS18], which provides a very
general viewpoint on QM, Nielsen and Chuang’s quantum computation and
quantum information [NC10] and Wilde’s from classical to quantum Shannon
theory [Wil13], which focus more on quantum information (QI).

1.1.1 The qubit

The simplest quantum system used in quantum information is the qubit,
which is a two-level state analogous to the classical bit. A useful and
complete representation of the qubit’s state space is the Bloch sphere:

|1⟩

|0⟩

|+⟩
|−⟩

|ψ⟩

Here, |0⟩ and |1⟩ form the computational basis and |±⟩ = |0⟩±|1⟩√
2

is the
Hadamard basis, an example of a superposition of states in the computational
basis. Pure states are found on the surface of the sphere, while the internal
Bloch ball accommodates mixed states; the center is the maximally mixed
state ρ = 1

2 I.

1.1.2 Occupation number representation

One of the nonclassical features of quantum systems that a quantum me-
chanical description of nature has to accommodate is the notion of indis-
tinguishability. Two hydrogen atoms in the ground state are identical, as
in: they are completely described by the very same set of quantum num-
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bers.1 Accounting for indistinguishability puts restrictions on the allowed
quantum states for a collection of identical particles. As a consequence,
writing the state in the computational basis is much less natural, and a
better representation can be used.

Mathematically, the situation can be illustrated as follows. Given quan-
tum systems A and B, the joint state of system A in state |ψ⟩ and system B
in state |ϕ⟩ is described by their tensor product:

|Ψdist⟩AB = |ψ⟩A ⊗ |ϕ⟩B . (1.1)

If A and B are distinguishable, we should expect their joint state to be
different if we swap the two systems. That is indeed the case: the tensor
product is not commutative, so |ϕ⟩A ⊗ |ψ⟩B ̸= |ψ⟩A ⊗ |ϕ⟩B. For identical
systems, on the other hand, the joint state must be invariant (up to an
unobservable global phase) under this exchange, as otherwise we could tell
the systems apart. In three space dimensions, there are two3 ways to do
this:

|Ψid⟩AB = |ψ⟩A ⊗ |ϕ⟩B ± |ϕ⟩A ⊗ |ψ⟩B , (1.2)

depending on which sign |Ψid⟩ acquires after the exchange. For identical
systems, the operator exchanging the two systems commutes with the
Hamiltonian (which is an observable itself), meaning that the sign choice
does not change during the state’s evolution. Two classes of quantum
systems then arise:

• Bosons when choosing +, leading to a symmetric eq. (1.2);

• Fermions, choosing −, are instead antisymmetric under exchange.

1Borrowing a term from an unrelated2 area of physics, they have “no hair”. Even tracking the
two atoms’ worldlines backwards up to their creation can’t always help us: due to the uncertainty
principle, the lines have an intrinsic “fuzziness” which may lead to them switching places without
us noticing [remark from GS18].

2Hopefully not for much longer
3In principle, the only requirement is that observables quantities are unchanged, which allows

|Ψid⟩ to acquire any global phase factor eiθ after particle exchange. In three dimensions, however,
the spin-statistics theorem from relativistic quantum mechanics [Pau40] effectively restricts the
acquired phase after a second exchange to be 1, leaving θ = ±π. In 2D this result does not apply
and θ is an additional continuous degree of freedom, which gives rise to exotic solutions called
anyons [Wil82].
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The most common example of bosons are photons, the protagonists of the
first Section of this thesis (Chapter 2).

When working with k identical particles, the notation in eq. (1.2) quickly
becomes cumbersome as k gets large. It is convenient in this case to switch
to the occupation number representation. Given a basis {|ei⟩}m

i=1 of the single
particle Hilbert spaceH,4 due to indistinguishability we can only keep track
of how many particles are in each state, not which particle. We can capture
this property by using Fock states:

|n1 n2 . . . nm⟩ with
m

∑
i=1

ni = k, (1.3)

where ni is the number of particles, or occupation number, in state |ei⟩. The
single particle basis states |ei⟩ are called modes and they correspond to other
degrees of freedom differentiating the particles (often location in space
or time, or their spin). For fermions, all ni are restricted to {0, 1}: as a
consequence of antisymmetrization, no two particles can occupy the same
state as eq. (1.2) would just be identically zero. Fock states form a basis of
the correct “symmetrized” S(H⊗k) or “antisymmetrized” A(H⊗k) Hilbert
space. Their dimension is as follows:

• For fermions, it is the number of ways k particles can occupy k differ-
ent modes out of m, giving:

dimA(H⊗k) =

(
m
k

)
(1.4)

• For bosons, several of the k particles can occupy the same mode. A
standard combinatorial argument (stars and bars) gives:

dimS(H⊗k) =

(
m + k− 1

k

)
. (1.5)

Both dimensions are reduced compared to the case of distinguishable parti-
cles, giving dimH⊗k = mk. From now on, we focus on bosonic states.

4We assume the dimension of the single particle Hilbert space to be finite, as this is sufficient
for our purpose. With due care, all the definitions generalize to infinite-dimensional systems.
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1.1.3 Second quantization

The k-particle space in eq. (1.5) is convenient when dealing with evolutions
which do not change the number of bosons, for instance the ones allowed by
linear optics (which will be useful later). In full generality however, bosonic
operators live in the symmetric Fock space

F (H) =
∞⊕

k=0

S(H⊗k) = C⊕H⊕ S(H⊗H)⊕ . . . (1.6)

The most important bosonic operators acting in Fock space are the creation
and annihilation operators, which add or remove a boson in mode i:

a†
i |n1 . . . nm⟩ =

√
ni + 1 |n1 . . . (ni + 1) . . . nm⟩ ,

ai |n1 . . . nm⟩ =
√

ni |n1 . . . (ni − 1) . . . nm⟩ .
(1.7)

Together, they provide a way to count the number of systems in mode i, as
well as the total number of bosons:

⟨a†
i ai⟩ = ni ,

〈 m

∑
i

a†
i ai

〉
= k . (1.8)

From eq. (1.7), the canonical commutation relations can be derived:

∀ i, j

[
ai, a†

j
]
= δij,[

ai, aj
]
=
[
a†

i , a†
j
]
= 0.

(1.9)

Notice that eq. (1.7) also means that all Fock states can be built up from the
vacuum by applying powers of the a†

i :

|n1 . . . nm⟩ =
m

∏
i=1

(a†
i )

ni

√
ni!
|0⟩ , (1.10)

while arbitrary superpositions (all bosonic quantum states) can be repre-
sented by a polynomial in the creation operators:

|Ψ⟩ =
∞

∑
n1,...,nm

αn1 ...nm |n1 . . . nm⟩ = Pψ(a†
1, . . . , a†

m) |0⟩ . (1.11)
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This representation, further developed in Section 2.2.3, is at the core of the
notation used in the first part of this work.

When dealing with conceptually distinct groups of modes (e.g. the
input and output modes of an m-port interferometer), in order to keep
a clean notation we will make use of other letters than a for the bosonic
operators. For instance, as it is common in the literature, we use h†

i and v†
i

for the creation operators respectively of a horizontally and of a vertically
polarized photon in the spatial mode indexed by i.

1.1.4 Bogoliubov transformations

In Hilbert space, quantum states evolve through the Hamiltonian, describ-
ing the dynamic of the system:

|ψ(t)⟩ = e−iHt |ψ(0)⟩ = U(t) |ψ(0)⟩ . (1.12)

In order to get meaningful information about a system, we often choose a
convenient basis which diagonalizes the Hamiltonian. In the above con-
struction of the creation and annihilation operators ai, a†

i , we similarly had
to fix, somewhat arbitrarily, a set of modes |ei⟩. How does the change of
basis looks like from the point of view of the bosonic operators? Let us first
introduce a widely-used vectorial notation:

a = (a1, . . . , am)
T a† = (a†

1 , . . . , a†
m)

T (1.13)

A linear transformation of the modes can be written:(
c
c̃

)
= T

(
a
a†

)
=

(
T00 T01

T10 T11

)(
a
a†

)
, (1.14)

where c and c̃ are the creation and annihilation operators on a new set of
modes.5 Not all linear maps are physical: the commutation relations in
eq. (1.9) have to be preserved.6 A full derivation [Bog58] shows that T has

5The new mode operators cj and c̃j are not necessarily mutually adjoint anymore, hence the
difference in notation.

6This is reminiscent of the canonical transformation of coupled modes in classical mechanics
[LL82], which preserve the Poisson brackets.



1.1. A brief toolbox 9

to obey:

TTΩ T = Ω, Ω =

(
0 I
−I 0

)
; (1.15)

namely T ∈ Sp(2m, C), the symplectic group. Equation (1.14) is the general
form of a Bogoliubov-Valatin transformation [Bog58; Val58]. In the special case
of c̃ = c†, eq. (1.15) implies:

T00 = T∗11

T01 = T∗10

T00 TT
01 symmetric

T00 T†
00 − T01 T†

01 = I,
(1.16)

which, for example, include all gaussian operations from continuous variables
quantum optics [Wee+12]. When T01 = T10 = 0, we get operations which
only map creation operators to creation operators and annihilation operators
to annihilation operators, i.e. they conserve the number of bosons. In this
case, the last of eq. (1.16) implies T00 ∈ U(m), the unitary group.

1.1.5 State discrimination

Suppose we are given a quantum system whose state is taken from a set {ρi},
and we are asked to determine the index i. Contrary to classical mechanics,
it is a well known fact that this quantum state discrimination task can be
performed perfectly if and only if the states are all orthogonal. The existence
of non-orthogonal states is central to both information processing, where
it enables advantages over many classical protocols, and foundations of
quantum theory, e.g. playing a central role in ruling out “epistemic-only” in-
terpretations of the wavefunction [PBR12]. A great deal of theoretical effort
has been spent deriving upper and lower bounds on the optimal discrimina-
tion strategy in the general case; unfortunately, with the exception of simple
systems (e.g. two-state discrimination, qubit states), exact analytical results
are hard to come by. For a recent review, see [BK15]. Another interesting
research direction looks at restrictions of QM with reduced power, where
even some sets of orthogonal states are not perfectly distinguishable; this is
the case for linear optics, which we discuss in Chapter 2. When dealing with
non-perfect discrimination, the relevant parameter to optimize depends on
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the application. For example, the discrimination strategy would be different
if multiple copies of the state are available at once, as opposed to sequential
single-shot measurements; and in the latter case, a further distinction could
be made between the adaptive and nonadaptive setting. For our purposes,
we are interested in measurements in which errors in the discrimination are
not allowed: instead, we cope with non-perfect discrimination by adding a
“failure” channel, yielding an indeterminate outcome. This setting is called
unambiguous discrimination, and its main interest is in applications in which
information loss is more prominent than errors. In general, this restriction
leads to a lower overall success probability than in the ambiguous case
(called minimum-error discrimination) [BC09].

Notation and definitions

In a basic setting, a source emits one of the states {ρi}n
i=1 at random, each

with probability qi such that ∑n
i qi = 1. Often, we choose the uniform

distribution, where qi = 1
n ∀i. The state of the source is the ensemble

{qi, ρi}i which corresponds to the mixed state:

ρ =
n

∑
i

qi ρi, (1.17)

and the discrimination procedure can be described by a POVM, i.e. a set of
positive operators {Πj}m

j=1 such that ∑m
j Πj = I and for which

p(j|i) = Tr [Πj ρi] (1.18)

is the probability of getting outcome j when the source outputs ρi. For
minimum-error discrimination, we associate each outcome to one input, i.e.
m = n. The overall success probability is:

pmin err
succ = ∑

i
qi p(i|i) = ∑

i
qi Tr [Πi ρi]. (1.19)

For unambiguous discrimination, we designate one of the outcomes to
represent failure, such that Πfail + ∑n

i Πi = I. Defining the probability of
success in this case requires a bit of care. In order to guarantee that the
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outcome i can be unmistakably associated to state ρi, we need to impose:

p(i|j) = Tr [Πi ρj] = 0 ∀j /∈ {i, fail}. (1.20)

This cannot (in general) be satisfied for all i; however, a sufficient condition
for pure states is their linear independence. The success probability is then
defined the same way as eq. (1.19), summing only over the indices for
which eq. (1.20) is fulfilled, or alternatively, through the probability of the
indeterminate outcome:

punamb
succ = 1− pfail = 1− Tr [Πfail ρ]. (1.21)

Optimal two-state discrimination

A special case which will be useful in the following is the discrimination
of two pure states |ψ1⟩ and |ψ2⟩ with prior probability q1 = q2 = 1

2 . In this
case, the optimal success probabilities, as well as a POVM attaining them,
are analytically known.

• Min-error discrimination
The probability is given by the Helstrom bound for pure states [Hel69]:

pmin err
succ ≤ 1

2

(
1 +

√
1− |⟨ψ1|ψ2⟩|2

)
. (1.22)

• Unambiguous discrimination
In this case we have the Ivanovic–Dieks–Peres limit [Iva87; Die88;
Per88]:

punamb
succ ≤ 1− |⟨ψ1|ψ2⟩|. (1.23)





Chapter 2

Linear optical Bell measurement

2.1 Brief history of optics

Strepsiades:
Have you ever seen this stone in the
chemist’s shops, the beautiful and trans-
parent one, from which they kindle fire?

Socrates:
Do you mean the burning-glass?

Aristophanes, The Clouds, 424 BC

Optics, the field of knowledge that deals with the manipulation of light
and its interactions with the rest of matter, has been on the shelves of
philosophers and scholars since the infancy of natural sciences. As far as
optical artifacts are concerned, we know mirrors and other rudimentary
devices predate the first millennium BC; one of the first written accounts
of glass lenses being used as fire starters (ὕαλον, “burning-glass”) appears
as soon as the 4th century BC in Aristophanes’ play The Clouds. Around
the same time a few thinkers started changing perspective on the everyday
experiences of reflections, rainbows and the very process of human vision
from supernatural explanations to natural ones, beginning what we could
call a theoretical program to explain optical phenomena.

13
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The study of optics as an axiomatic geometrical theory arose in the
Greek world from the likes of Euclid (᾿Οπτικά, “Optics”, ca 300 BC) and
was adapted into a full theory of vision by Ptolemy (Optics, ca 2nd cen-
tury AC).1 Their works resurfaced during the Islamic Golden Age at the
turn of the millennium, when they were studied by Islamic scholars like
Ibn al-Haytam (Q 	£A 	JÖÏ @ H. A�J», “Book of Optics”, 1021), referred to as “the fa-
ther of modern optics”. In the centuries to follow lens-making technology
advanced at a steady pace, which resulted in the invention of vision-aid sys-
tems like reading stones and spectacles (13th century), microscopes (1595)
and refraction-based telescopes (1608). On the theoretical side, we owe the
foundation of modern classical optics to renaissance mathematicians and
astronomers. With Kepler, dedicating a great deal of work on describing
optical phenomena involved in astronomical observations (Astronomie Pars
Optica, 1604) and Snell, giving a proper mathematical description of refrac-
tion almost 1500 years after its first qualitative description by Ptolemy, the
way was paved for Huygens and Newton, whose debate on the nature of
light itself had enormous influence on subsequent theories.

Superseding a purely geometrical view of optics, Newton was concerned
with explaining phenomena like diffraction and dispersion through a the-
ory of physical optics, where the geometric approximation is not valid. In
pure atomistic spirit, he embraces the idea that light is made of indivisible
corpuscles (Opticks, 1704), failing however to completely remove a wave
description of light from all his observations. Indeed, in the same years Huy-
gens had managed to give a satisfactory explanation of many of the same
phenomena by modeling light as a wave, deriving important mathematical
results that are still used today (Traité de la lumière, 1690). Newton’s view
held its ground through the 17th and 18th century, despite the discovery
of more optical phenomena which were difficult to account for—Young’s
1801 double-slit experiment is just one example. Eventually, the matter could
be settled by experiment: in 1850, Fizeau and Foucault [Fou53] measured
the difference between the speed of light in air and water, favoring Huy-
gens’ wave theory by observing a lower velocity through water (while
corpuscular theory predicted the opposite). Only half a century later, the

1An introduction to the history of optics can be found in [Dar12].
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reconciliation of these two views and their extension to the nature of all
matter under the concept of wave-particle duality was one of the main forces
driving forward the quantum revolution.

Today, applications of optics are everywhere: a prime example are the
many uses of lasers for metrology, communication, imaging of the farthest
objects (astronomy) and of the smallest (microscopy), and even manufac-
turing. The modern world of computation seem to have little to share with
light, given the ubiquity of electrical transistor-based devices. However,
as advances in the field of optoelectronics enabled high-speed optical fiber
communication, they are making the case for the further development of
all optical logic which, aside from the promise of faster processing, would
eliminate the inefficiencies associated to the conversion between electri-
cal and optical signals at the interfaces of information processing and its
long-distance distribution. More closely related to the argument of this
Chapter are the promises for optical devices to be a main actor for quantum
processing of information, which range from satellite- and fiber optics-
based entanglement distribution to the development of integrated optics
for computation.

2.1.1 Why linear optics?

In the second half of the 19th century, light was the protagonist of Maxwell’s
unification of electric and magnetic phenomena, forming the foundation
of classical electromagnetism. Now modeled as an electromagnetic wave,
light’s interaction with a known distribution of charges ρ and currents J⃗ can
be derived from Maxwell’s equations:

∇ · E⃗ =
ρ

ϵ0
, ∇ · B⃗ = 0,

∇× E⃗ = − ∂B⃗
∂t

, ∇× B⃗ = µ0

(
J⃗ + ϵ0

∂B⃗
∂t

)
.

(2.1)

The above equations are linear and their solutions E⃗(t) and B⃗(t) enjoy a
simple mathematical structure. At first glance however they seem to be
of little use to describe how light propagates through a medium, where a
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precise description of ρ and J⃗ may be difficult to obtain and may depend
on the electric and magnetic field themselves, i.e. ρ(E⃗, B⃗) and J⃗(E⃗, B⃗). The
contribution to ρ and J⃗ due to the material can be integrated into E⃗ and B⃗
through the auxiliary fields D⃗ and H⃗:

∇ · D⃗ =
ρ

ϵ0
, ∇ · B⃗ = 0,

∇× E⃗ = − ∂B⃗
∂t

, ∇× H⃗ = µ0

(
J⃗ + ϵ0

∂D⃗
∂t

)
,

(2.2)

where now ρ and J⃗ represent only external charges and currents. Now, the
relation between D⃗, H⃗ in the material and the true E⃗, B⃗ has to be specified
in order to solve eq. (2.2). Depending on the material, this dependency can
be arbitrarily complex, breaking linearity. However, it turns out that most
materials approximately satisfy:

D⃗ = ϵE⃗ H⃗ =
1
µ

B⃗ (2.3)

that is, their response is proportional to the fields applied. This restores
the linear form of eq. (2.1), with the new constants ϵ and µ describing
the first-order response of the material. In fact, this approximation was
extremely well justified for a long time: experimental access to nonlinear
optical behavior only became commonplace with the advent of the laser in
1960. A comprehensive overview of linear optical phenomena can be found
in [Dor07].

Superposition

One of the main reason focusing on linear phenomena is particularly inter-
esting is the superposition principle. It states that if E1, E2 are two solutions
of our linear equations, linear combinations of them are solutions too. This
property is immensely useful in many areas, not only in electromagnetism,
and it allows to characterize all solutions in terms of sums of simpler ones.
In the introduction to quantum linear optics that follows, we implicitly
make use of it many times: it allows us for example to completely specify
linear optical elements by only describing their action on a reduced, simple
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set of inputs (Section 2.2.4). It also gives rise to a nice algebraic structure of
linear optical operations which we introduce in Section 2.2.2.

2.2 Quantum linear optics, formally

The following Sections are meant to provide the tools needed for under-
standing our results, and assumes familiarity with the notation and concepts
we briefly reviewed in the Introduction Chapter 1. This is by no means a
complete treatment, which the interested reader can find in introductory
textbooks such as [KL10].

2.2.1 Encodings

Discrete vs. continuous variable encoding

The quantized electromagnetic field supports multiple ways to encode quan-
tum information, depending on the specific degree of freedom used. We can
identify two main categories dividing the space of encodings: continuous
variables (CV) and discrete variables (DV). This subdivision is reminiscent
of the analog vs. digital encoding of classical information and, just like
in that case, it leads to radically different experimental requirements and
theoretical formalisms. In DV systems the fundamental unit of quantum
information is the qubit, and its discrete nature makes algebra the tool
of choice; CV systems [ARL14], on the other hand, deal with continuous
functions and draw fully from the machinery of analysis and calculus for
their manipulation.2 The theoretical simplicity of DV, which only deals
with finite-dimensional Hilbert spaces, made it suited for the design and
early implementation of quantum computing tasks (Section 2.2.8). However,
optical CV systems have been investigated for the practical convenience
they offer for communication and cryptography purposes (a prime example
is continuous variables quantum key distribution, or CV-QKD [LGG10]). Re-
cently, there has been a great deal of effort [Cha21] to bring the experimental
advantages of CV to the field of computation too in the hope that, in the

2This is not to say that the division in mathematical formalism is perfectly net: there are
naturally cases in which the two blend together.



18 Chapter 2. Linear optical Bell measurement

quantum world, analog systems will play a more important role than in the
classical one; though at the time of writing, the computing landscape is still
skewed towards DV. For the purpose of this thesis we only deal with the
discrete variables encoding.

Single vs. dual rail encoding

Choosing the photon as carrier of quantum information in DV still leaves
us with different choices for the physical states representing the logical |0⟩L
and |1⟩L states of the computational basis of a qubit. In single-rail encoding,
the logical states closely match their physical implementation:

|0⟩L = |0⟩p |1⟩L = |1⟩p (2.4)

meaning the orthogonal states of the two-level system are encoded by the
presence or absence of the photon in a single mode of the electromagnetic
field—usually a spatially well-defined location, like a waveguide or a path
in free space. While single-rail qubits seem the most natural representation
as far as state preparation and measurements are concerned, they are clearly
not well-suited for operations which conserve the number of photons like
the linear optical ones. Dual-rail encoding, instead, overcomes this limitation
by exploiting “which-mode” information about the photon. This time a
photon is prepared in a superposition of a pair of distinguishable and not
necessarily spatially separated physical degrees of freedom, such that all
single-qubit states contain exactly one photon. As far as concrete imple-
mentations are concerned, various choices of optical modes can be made.
Among the most widely used we recall:

• Path encoding, where the modes are separated in the spatial degree
of freedom, e.g. in pairs of adjacent waveguides:

|0⟩L = |1⟩p |0⟩p , |1⟩L = |0⟩p |1⟩p . (2.5)

This encoding is often referred to as just “dual-rail” in the literature, as
it’s the one that originally gave the name to this qubit representation.

• Polarization encoding, where the qubit basis states correspond to two
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orthogonal polarizations. These are often taken to be the horizontal
and vertical orientations orthogonal to the wave vector in a chosen
frame of reference:

|0⟩L = |H⟩p , |1⟩L = |V⟩p , (2.6)

but other kinds of polarization states are used (e.g. circular polar-
ization). Multiple qubits are still usually spatially separated, but
polarization encoding halves the spatial modes count compared to
path encoding.

• Time-bin encoding, in which the time of arrival of the photons is
partitioned in discrete time steps (bins), all orthogonal to each other.
This encoding is particularly well-suited for d-level systems (qudits),
where the state space of a single photon is made up of a large number
of orthogonal states instead of just two; however, logical one-qubit
operations are not as readily available as with the other two encodings
[Kok+07].

All of these choices admit a set of optical elements which generate the whole
space of possible transformations allowed by linear optics. The schemes in
this thesis will focus on polarization and path encoding.

2.2.2 Algebraic structure

While linear optics imposes restrictions on the allowed evolution of the
photonic states with respect to full-fledged quantum mechanics, it turns out
these restrictions are captured by a nice algebraic structure. In the following,
we use the notation introduced in Section 1.1.2, where we presented the
formalism to work with identical bosons. In Section 1.1.4 we found these
evolutions to be the special case of a Bogoliubov transformation which
does not mix the creation/annihilation operators, conserving the number of
photons. In particular, the transformation in eq. (1.14) simplifies to:(

c
c†

)
=

(
U 0
0 U∗

)(
a
a†

)
, (2.7)
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where U is a unitary matrix. Letters in boldface stand for formal vectors of
bosonic operators, i.e. a = (a1, . . . , am). Explicitly, we can thus write:

∀i, ci =
m

∑
j=1

uij aj. (2.8)

In Section 2.2.4 we show the most common linear optical components,
alongside the unitary matrix they implement. Chaining single and two-
mode elements together forms an interferometer.3 In a generic multimode
interferometer, the action of these components on the pair of input modes
(j1, j2) to output modes (i1, i2) can be represented by an m×m extended
unitary of this form:



j1 j2
1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

i1 0 · · · u11 · · · u12 · · · 0
...

...
. . .

...
...

i2 0 · · · u21 · · · u22 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (2.9)

i.e. which acts nontrivially only on a 2× 2 subspace. Sequential execution
of components is equivalent to multiplying the extended matrices together,
which preserves unitarity, while parallel execution on separate sets of modes
corresponds to their direct sum (contrasting with the tensor product for
general quantum mechanical evolutions). The converse is also true: any
U(m) unitary decomposes into a series of two-mode optical components
of the form in eq. (2.19), preceded by an array of single-mode components
(phase shifters) on the input modes. Furthermore, the decomposition is

3The name interferometer comes from classical optics, when already around 1850 physicists
like Fizeau and later, Michelson used the interference properties of waves to accurately measure
distances, shapes and velocities.



2.2. Quantum linear optics, formally 21

efficient: in the worst case, it uses(
m
2

)
=

m(m− 1)
2

∼ O(m2) (2.10)

generalized beamsplitters and m additional phase shifters. This important
result was first shown by Reck et. al [Rec+94], establishing an operational
equivalence which lets us abstract away from the optical components and
only look at the structure of the unitary group. Recently, the amount of
resources needed to implement the scheme has been improved [Cle+16].

A tale of two unitaries

At this point, an important clarification has to be made, in order to avoid
confusion. Is not the result in eq. (2.7) trivial, at first glance? After all,
we already know that quantum mechanics allows for unitary evolutions.
Moreover, this seems to contrast the claim made throughout this Section,
that linear optics has limited computational power compared to full-fledged
quantum computers. In fact, this confusion vanish quickly as we realize
that those two unitaries act on very different spaces. In QM, an evolution
involving k qubits in m modes lives in the (infinite-dimensional) Fock space.
Even focusing on photon-number preserving transformations, we get an
Hilbert space of dimension (m+k−1

k ), as in eq. (1.5). Whereas in linear optics,
only the m-dimensional space spanned by the single-photon states a†

i |0⟩ is
involved. In the literature on interferometers, the latter is sometimes called
transfer matrix and written as S or T to distinguish it from the former.4 The
ambiguity cleared out, we will instead default to the use of “unitary” and
the symbol U, when it is clear form the context that we’re talking about
linear optical evolutions.

One might furthermore notice that the action of a linear interferometer
on single photon states on m modes can be modeled by a QM unitary acting
on m-dimensional qudits. This observation leads to an alternative theoreti-
cal framework to study linear optical evolutions, which makes use of the
Schur-Weyl duality to map them to the quantum circuit formalism [MT18].

4The term “transfer matrix” is more general, and can include non-unitary transformations
which may involve photon loss and other non-linear processes.
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2.2.3 Polynomial representation

As seen in Section 1.1.3, it is useful to describe photonic states on m modes
through polynomials in the creation operators:

|Ψ⟩ =
∞

∑
n1,...,nm

|n1 . . . nm⟩ = Pψ(a†
1 , . . . , a†

m) |0⟩ . (1.11)

We will make heavy use of this representation throughout the thesis. For
our purposes, virtually all of the states that we encounter contain a definite
number of photons k, which means they are represented by homogeneous
polynomials of degree k in m variables. The amplitude α for a Fock state out-
come can be computed from the coefficient of the corresponding monomial,
using eq. (1.10):

αn1 ...nm |n1 . . . nm⟩ = αn1 ...nm

m

∏
i=1

(a†
i )

ni

√
ni!
|0⟩

=

(
αn1 ...nm√
∏m

i=1 ni!

) m

∏
i=1

(a†
i )

ni |0⟩ .

(2.11)

When doing so extra care has to be taken in order to properly account for
the bosonic normalization factor 1/

√
∏i ni!, which arises from the indistin-

guishability of multiple photons in the same mode.

2.2.4 Linear optical elements

In Section 2.2.2 we showed how all linear optical transformations can be
built by composing one- and two-mode basic elements. Depending on the
platform, some of them have a direct counterpart on an optical table or in
an integrated optical circuit. In the following, we list the conventions which
we use in the rest of the thesis when drawing optical diagrams and making
calculations. It should be noted that these choices might be different to the
ones used in other works (e.g. [Kok+07], from which we adapted some of
the diagrams); we list a few options when applicable.

Except when noted otherwise we label the input modes with integers
(1, 2, . . . ) and the output modes with primed integers (1′, 2′, . . . ). Spatial
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modes are represented by lines suggesting the optical path of the photons.
We draw them blue when the modes support path-encoded qubits or when
encoding is not important; we instead use red to highlight polarization
modes, which may share the same spatial mode.

Beamsplitter

The beamsplitter (BS) is designed to partially reflect and partially transmit
incident light. It is commonly made from two triangular glass prisms, or by
a thin metal coated optical substrate (a half-silvered mirror). In integrated op-
tics, the beamsplitter can be realized by bringing together two waveguides.
Its diagrammatic representation is:

θ

1

1’

2’

θ

2

2’

1’

with {1, 2} the incident spatial modes, {1′, 2′} the output modes and θ

parametrizing the reflectivity R = (sin θ)2. The unitary associated with the
action of the beamsplitter on the input modes follows somewhat different
conventions throughout the literature, depending whether a dephasing ϕ is
also introduced between the reflected and transmitted modes:

UBS =

(
cos θ −e−iϕ sin θ

eiϕ sin θ cos θ

)
. (2.12)

Common choices for the dephasing include ϕ = π
2 , which leads to the

symmetric beamsplitter, and ϕ = 0 (our choice for this work), resulting in a
real transfer matrix:

ϕ =
π

2
−→

(
cos θ i sin θ

i sin θ cos θ

)
, (2.13)

ϕ = 0 −→
(

cos θ − sin θ

sin θ cos θ

)
. (2.14)



24 Chapter 2. Linear optical Bell measurement

The beamsplitters we use are meant to be polarization-independent, i.e.
they only mix spatial modes and act identically on horizontal and vertical
modes if fed with polarized light. When θ = π

4 we have cos θ = sin θ = 1√
2

,
and the resulting beamsplitter is called balanced or 50:50. In this case, we
omit the angle θ from the diagram and sometimes use the Hadamard matrix
H = 1√

2

( 1 1
1 −1

)
as the beamsplitter unitary.

Phase shifter

This optical element introduces a dephasing of an angle ϕ on the mode
on which it acts. It usually consists of a transparent material with a dif-
ferent index of refraction than free space, where the length of the material
determines the amount of accumulated phase. It is represented as:

1 1’

ϕ

When acting on a single mode, it is described by an element of U(1), i.e. a
unit scalar eiϕ:

a†
1′ = eiϕa†

1 . (2.15)

If applied on one path of a path-encoded dual-rail qubit, it can be used to
rotate the state around the Z direction in the Bloch sphere.

On polarization-encoded qubits on the other hand, we need to selectively
apply a phase to one of the two polarization modes. A solution is to use a
waveplate, which typically consists of a slab of birefringent material with
different indices of refraction along two orthogonal directions, called fast
and slow axis. When the applied phase is exactly half the wavelength of
the incoming photon (ϕ = π), it implements the same transformation as a
beamsplitter of angle 2θ, where θ is the angle between the fast axis and the
horizontal polarization mode. When 2θ = π

4 (corresponding to a balanced
beamsplitter) we will show it as:

|H⟩ |H⟩+|V⟩√
2

λ/2

where λ
2 refers to its name, the half-wave plate.
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Polarizing beamsplitter

The polarizing beamsplitter (PBS) is the bridge connecting spatial and polar-
ization modes. It acts differently depending on the incoming polarization:

|V⟩ 1’ |H⟩

2’

namely, it reflects vertically polarized photons and transmits horizontally
polarized ones (the action is analogous for second spatial input mode, not
shown above). The PBS is not enough to obtain a path-encoded qubit from
a polarization-encoded one (and viceversa); a half-wave plate is needed to
align the polarization of the output arms:

α |V⟩+ β |H⟩ α |1, 0⟩

β |0, 1⟩

λ/2 (2.16)

This step is important, as otherwise the two modes would be distinguishable
and would not interfere anymore on a subsequent beamsplitter.

Mirror

The name says it all:

1 1’

which implements the identity operation U = I.
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Photon sources and detectors

Strictly speaking, these are not linear devices, but are essential to any quan-
tum linear optics experiment. Their physical implementations are very
diverse, depending on the wavelength of operation and required purity or
noise level: a review can be found in [Eis+11]. In our optical diagrams the
sources are omitted, showing instead the initial state of the mode beside
the input paths when useful. As far as detectors are concerned, their main
job is to convert the incoming photons into an electrical signal that can be
read classically. They can have different features, depending on how much
information they can extract from the input. We use:

• Non-photon number resolving detectors, which fire if the mode is
occupied by at least one photon:

1

They implement the Fock space projection {|0⟩ ⟨0| , I − |0⟩ ⟨0|}.

• Photon number resolving detectors (PNRD), capable of counting the
number of photons:

N1

Ideal PNRD measure the observable N = a†a. In practice, their
resolution is usually limited to a maximum number of photons. A
common way to implement a (non-ideal) PNRD is to use a tree of
beamsplitters and regular non-number-resolving detectors:

1 . . .
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• Polarization-resolving detectors, which additionally extract polariza-
tion information:

P1 N
P

1

Physically, they can be realized via a PBS and two non-polarization-
resolving detectors:

P1 =

1

(2.17)

Single-qubit operations

Often, a variable-reflectivity beamsplitter is not available; in practice, the
following setup (the Mach–Zehnder interferometer [Zeh91; Mac92; Kok+07])
can be used to implement it from two balanced beamsplitters and a variable
phase shifter:

1 1’

2 2’

2θ
=

1

1’2

2’

θ (2.18)

With it, a general rotation in the Bloch sphere:

R(θ, ϕ, ψ) =

(
1 0
0 eiϕ

)(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 eiψ

)
, (2.19)

can be implemented by adding with phase shifters of phase ψ and ϕ on one
of the input and one of the output modes. Ignoring the global phase, the
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two-mode transformation looks like this:

1 1’

2 2’

2θ ϕψ
(2.20)

Two-qubit operations

Besides single-qubit gates, any full implementation of a quantum computer
should be able to execute entangling two-qubit operations. The linear optical
platform is at a disadvantage here, due to the lack of direct interaction
between photons, which interact only indirectly through interference. An
entangling gate can nonetheless be achieved by complementing interference
with single-photon measurements, which act as a source of nonlinearity.
The resulting gates are inherently probabilistic [KLM01; Kok+07]; lowering
their failure probability to a manageable level requires dynamic control and
complex auxiliary states. In Section 2.2.8 we briefly review the challenges
and improvements which, in recent years, led to more and more efficient
implementations of these gates. However, another perspective on the matter
is that often we do not need a general purpose quantum computer: in
many useful applications, e.g. quantum metrology [GLM11] and quantum
simulation [GAN14], it makes sense to expect large gains in efficiency if we
focus instead on non-universal schemes dedicated to the specific problem at
hand. Indeed, this turns out to be the case for Bell measurement, the primitive
we explore in Section 2.3.

2.2.5 Auxiliary states

The capabilities of linear optical networks can be augmented by injecting
so-called auxiliary states5 which can be prepared beforehand and are in gen-
eral independent of the rest of the input. Auxiliary states can be arbitrarily

5These are usually called ancillary states or ancillæ in a large fraction of the literature, including
our paper [OG18]. Given its problematic etymological origin [Wie17], we chose a more neutral
term here, which is nonetheless quite commonly used.
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complex and may require nonlinear processes to be produced; however,
they can be prepared offline (i.e. before the actual input is available), lever-
aging for example probabilistic processes. A similar phenomenon in the
theory of quantum computation provides an analogy: there, the celebrated
Gottesman-Knill theorem [Got98] shows how a circuit composed by gates
from a restricted set (Clifford gates) provides no quantum computational
advantage, but injecting so-called magic states restores universality [Kni04;
BK05].

In linear optics, the experimentally-friendly characteristics mentioned
above encourage theorists to asses exactly how well auxiliary states can
replace nonlinear operations on the input. This Chapter is about the power
of linear optics + auxiliary states for performing Bell measurement.

2.2.6 Hong–Ou–Mandel effect

One of the simplest example showcasing a departure of quantum linear
optics from its classical counterpart is the Hong–Ou–Mandel (HOM) ef-
fect [HOM87], which involves a balanced beamsplitter, two single photon
sources and two photon detectors:

1

1’2

2’

(2.21)

The beamsplitter acts on the input modes in this way:(
a†

1′

a†
2′

)
=

1√
2

(
1 1
1 −1

)(
a†

1
a†

2

)
(2.22)

When the two photons which interfere on the beamsplitter are indistinguish-
able (i.e. they have the same frequency, phase and are correctly aligned), a
phenomenon called bunching occurs: they are always both detected in the
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same output mode. In the polynomial representation:

a†
1a†

2
BS50:50−−−→ 1

2
(a†

1′ + a†
2′ )(a†

1′ − a†
2′ ) =

1√
2

[
(a†

1′ )
2

√
2
− (a†

2′ )
2

√
2

]
, (2.23)

which shows that the amplitudes of the coincidence events (both detectors
click) cancel out. Using Fock states, eq. (2.23) is commonly written as:

|11⟩ BS50:50−−−→ 1√
2
(|20⟩ − |02⟩). (2.24)

The more the photons are indistinguishable, the more pronounced is
the effect, which produces the following curve, known as HOM dip, when
one of the photon’s parameters (for example, the time of arrival on the
beamsplitter) is varied:

#
co

in
ci

de
nc

es

time difference

BosonSampling [AA13], which we briefly introduce in Section 2.2.8, can
be viewed as a generalization of the HOM effect. Indeed, its quantum
advantage revolves around the indistinguishability of the photons: above
a distinguishability threshold, BosonSampling can be classically simulated
[Ren+18].

Entangled modes vs. entangled qubits

It is helpful to point out an additional subtlety here which will be relevant
in the following for some of the auxiliary states used in Bell measurement
(Section 2.3.8). Consider the action of a balanced beamsplitter which mixes
the two modes of a dual-rail, path-encoded (eq. 2.5) state of one logical
qubit:

|0⟩L = |1⟩p |0⟩p
BS50:50−−−→ 1√

2

(
|1⟩p |0⟩p + |0⟩p |1⟩p

)
= |+⟩L . (2.25)
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In this encoding, this looks like a regular, deterministic single-qubit opera-
tion. The same physical modes and photons can be used with single-rail
encoding, to represent two logical qubits:

|10⟩L
BS50:50−−−→ 1√

2

(
|10⟩L + |01⟩L

)
. (2.26)

Here, our beamsplitter took an unentangled input and produced a maxi-
mally entangled state! The two situations in eq. (2.25) and eq. (2.26) help
stress an important point, which is that with an encoding, comes an implicit
grouping of the modes. When talking about entangled states only entan-
glement between separate groups is relevant, while the modes of a group
might be “locally” entangled.

In fact, linear operations on the modes might just not keep you inside
the qubit subspace. If we stick to these two encodings, the HOM state in
eq. (2.24) is of difficult interpretation, having two photons in one mode—
which do not correspond to a logical qubit state. Can’t we just use single-rail
encoding for everything, as it lets us create maximally entangled states?
The catch is that we just traded the hardness of creating entanglement with
the possibility of performing simple qubit rotations. As already observed,
in single-rail encoding single qubit gates do not conserve the number of
photons, and can only be implemented probabilistically within linear optics
[Par00].

2.2.7 Linear optical network

Definition 1. We define a linear optical network (Fig. 2.1) as a device com-
posed of the following parts:

• A series of (nonlinear) single photon sources, capable of injecting
photons in a subset of the input modes;

• Any arrangement of linear optical elements (Section 2.2.4), which
form an interferometer implementing the unitary Ui.

• Photon-number-resolving detectors (PNRD), which destructively mea-
sure the number of photons in each mode;
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• The three components above combined to form stages, each possi-
bly depending on the result of the measurements performed in the
previous stage.6

In the following we mainly use single-stage networks, described by a
single U.

N
P

...
...

N
P

N
P

...
...

N
P

...

U1 m1

U2(m1) m2

Figure 2.1: A multi-stage linear-optical network. The single-photon
sources are not shown.

2.2.8 Quantum computation with light

At this point, it should not be difficult to argue that the linear optical plat-
form has several features which renders it a good candidate for quantum
computing purposes. They have a pretty good historical record too, as the
first proposal for a quantum gate implementation involved photonic qubits
[Mil89]. Nonetheless, quantum computing is hard: a physical platform has
to simultaneously possess many desirable properties in order to attain uni-
versality [DiV00]. How well light-based qubits fare against other platforms?
Photons interact very little with the environment even at room temperature,

6In practice, this adaptivity (also known as feedforward) can be implemented by optical switches,
which reroute photons to different static interferometers, or by building a programmable interfer-
ometer [Har+16].
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and their quantum state tends to be almost free from decoherence. They
can be transmitted over long distances, produced in a given fiducial state
with high accuracy, processed at high repetition rates and measured with
a variety of techniques [Eis+11]. Single-qubit operations are readily avail-
able using the linear optical components we just saw, which come straight
from classical optics. Their biggest crux is the realization of the required
two-qubit gates. We already mentioned how these can be implemented
probabilistically, using linear optical evolutions and measurements; other
solutions exists, which include the use of nonlinear elements based on Kerr
nonlinearity [Ker75] or optical-matter interactions [Pey+12]. Here, the catch
is that the strength of these effects in available materials is often really weak,
which imposes other kinds of design constraints. Despite these difficulties,
a great deal of theoretical and experimental efforts have been put in recent
years to try to overcome them. We briefly introduce two examples in the
following.

KLM-like schemes

Do single-photon generation and (destructive) photon detection introduce
powerful enough nonlinearities to actually achieve efficient universal quan-
tum computation? If all we can do are two-qubit gates with a constant
probability of failure, it seems there’s no hope: if we want N gates in a row
to succeed with high probability, we need to replicate the circuit ∼ O(2N)

times, effectively killing any advantage that quantum computation can
bring to the table. To show that efficient linear optical quantum computa-
tion (LOQC) is indeed possible, Knill, Laflamme and Milburn developed the
KLM scheme in 2001 [KLM01]. Their quantum computer is a full-fledged lin-
ear optical network (Definition 1): they cleverly make use of auxiliary states
prepared offline (Section 2.2.5) along with dynamically applied operations
which depend on previous measurements (feedforward) and techniques
like gate teleportation, redundant encoding and error correction. This way,
they can approach near-deterministic gates with a polynomial overhead
in terms of optical components. The original KLM scheme however is all
but experimentally feasible, requiring tens of thousands of components for
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lowering the failure probability of a gate under 5% [KLM01]. Their work
has been nonetheless of huge theoretical importance in the following years,
when various improvements made the requirements for LOQC increasingly
smaller. A thorough overview of this “race” to lower the resource count,
which is ongoing to this day, can be found in Gimeno-Segovia’s PhD thesis
[Gim15, Chapter 2 and Appendix B].

Boson sampling

From the point of view of theoretical computer science, the linear optical
platform has recently proven to be of foundational interest. In 2010, Aaron-
son and Arkhipov [AA13] showed that linear optics supports a restricted
“ballistic” model of computation, whose experimental requirements are
much lower than in the KLM scheme but which nonetheless appears to
efficiently solve BosonSampling, a classically intractable problem. While
traditional complexity classes like P and NP are concerned with decision
problems, this model involves sampling problems: their input is a probability
distribution, and their output is a procedure (that is, a circuit in the model
of computation at hand) to output samples from the distribution. In order
to picture this kind of computation, it can be useful to think in terms of a
classical analog, the Galton board [Gal89, p. 63] (Fig. 2.2), in which a collec-
tion of beads moving through a network of pegs ends up extracting samples
from the binomial distribution.

In BosonSampling, k photons enter the first k modes of an optical network
with m ≫ k modes. After scattering through the interferometer—where
one might think of beamsplitters as analogous to the pegs in a Galton
board—the photons hit some subset of the single photon detectors at the
output of each mode, generating a sample. The distribution of clicks in a
BosonSampling experiment depends on the particular network of optical
elements implemented, the same way the Galton board’s final distribution
is determined by the arrangement of the pegs. We will see in Section 2.2.2
that each linear optical arrangement can be described by a unitary matrix
U, which fully encodes the expected output probability distribution. In
particular, this distribution is linked to the permanent of k× k submatrices
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Figure 2.2: The Galton board.

Ak of U, which is a polynomial of the entries aij defined as:

perm(Ak) = ∑
σ∈Sk

k

∏
i=1

ai,σ(i) (2.27)

where σ ∈ Sk are all the permutations of (1, . . . , k). Valiant had showed
in 1979 that computing permanents is a hard problem, in the complexity
class #P [Val79]. However, the existence of an efficient classical algorithm
for BosonSampling lets us approximate such permanents in the complexity
class BPPNP, which is widely believed to be much less powerful than #P.
Instead, the existence of an efficient quantum algorithm has no such con-
sequence: then, BosonSampling represent a promising separation between
classical and quantum computation.7,8 It is unclear if this restricted model

7Despite its astounding implications on cryptography, we still do not know which conse-
quences a classical polynomial algorithm for factoring would have on the known complexity
classes. In this regard, BosonSampling is better evidence, if probably of low practical value.

8The result in [AA13] actually concerns approximate BosonSampling, which better represent a



36 Chapter 2. Linear optical Bell measurement

of computation (which can be implemented on current NISQ hardware
[Zho+21]) can compute problems which are of practical interest outside the
theoretical applications on establishing quantum computational advantage.
That calculating the output probabilities of an interferometer is hard will be
important in the following, when it will be reflected in the scalability of our
Bell measurement optimization algorithm (Section 2.5.5).

2.3 Bell measurement

Among the features of quantum mechanics which exhibit nonclassical be-
havior, it is hard to find a more compelling and historically significant
example than the existence of the set of maximally entangled two-qubit
states known as the Bell basis.

Definition 2 (Bell basis). The following pure entangled states:

∣∣ϕ+〉 = 1√
2

(
|0⟩ |0⟩+ |1⟩ |1⟩

)
, (2.28a)

∣∣ϕ−〉 = 1√
2

(
|0⟩ |0⟩ − |1⟩ |1⟩

)
, (2.28b)

∣∣ψ+〉 = 1√
2

(
|0⟩ |1⟩+ |1⟩ |0⟩

)
, (2.28c)

∣∣ψ−〉 = 1√
2

(
|0⟩ |1⟩ − |1⟩ |0⟩

)
, (2.28d)

form an orthonormal basis of the Hilbert space of two (logical) qubits. We
collectively refer to them as Bell states and we will use the shorthand |βi⟩,
where i = 1 . . . 4, to label them in the order of eq. (2.28).

A local measurement of any one of the two qubit in a Bell state gives
the outcome 0 or 1 with 1/2 probability, collapsing the other to the same
(for |ϕ±⟩) or opposite (for |ψ±⟩) state; moreover, similar correlations are
present when measured in a different basis than the computational basis,
e.g. the Hadamard basis (|+⟩, |−⟩). The states are also called EPR pairs,
from the 1935 paper by Einstein, Podolsky and Rosen [EPR35] which first

real-world non-ideal experiment, and relies on a few additional conjectures on the distribution of
permanents of random matrices.
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highlighted their relevance concerning foundational questions in quantum
mechanics. In 1964, Bell [Bel64] proved that the measurement correlations
produced by the Bell states reject any explanation in terms of a deeper clas-
sical theory involving local, hidden variables (i.e. obeying “local realism”),
suggesting for the first time the possibility that quantum behavior could be
experimentally discriminated from classical, by looking for the violation
of what is now known as a Bell inequality. Later advancements in theory
[Cla+69] made Bell inequalities accessible to experiments, which settled the
matter in the eighties in favor of quantum mechanics [ADR82] by gener-
ating entangled photons in a Bell state and measuring them in different
bases at spacelike-separated locations. The (possibly) last word, closing all
reasonable loopholes, is from a recent experiment in Delft [Hen+15].

Bell states are used throughout quantum information protocols, in-
cluding communication tasks like teleportation [Ben+93] and quantum
repeaters [San+11], and cryptographic primitives like quantum key distribu-
tion [Eke91] and self-testing of quantum states [ŠB20]. A Bell measurement
also provides a primitive for measurement-based quantum computation
to grow cluster states from smaller entangled states [RHG07; Bar+21]. They
are both an essential resource for these tasks, as they cannot be prepared
remotely by local operations and classical communication (LOCC) [Chi+14],
as well as a theoretical tool in proving the protocols’ correctness: while
today most QKD experimental demonstrations are based on coherent states,
their security is based on an equivalence with their Bell states-based counter-
part. An EPR pair shared among two parties is also known as an ebit; there
exists protocols [Ben+96] which can “distill” ebits from other entangled
resources by LOCC. The corresponding projective measurement, described
by the four orthogonal operators {Πi = |βi⟩ ⟨βi|} is called Bell measurement.
If performed nondestructively, it leaves the system in one of the four Bell
states; in this case, the measurement itself is an entangling operation. In the
circuit model of quantum computation, Bell states can be generated and
measured by the simple circuits shown in Fig. 2.3.
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|a⟩ H
|βi⟩

|b⟩
(a)

H

(b)

Figure 2.3: Quantum circuits for (a) generating the Bell state |βi⟩ de-
pending on the computational basis states at the input; (b) projective
measurement onto the Bell basis.

2.3.1 Bell measurement in linear optics

To work with Bell states in the linear optical setting, we need to write
eq. (2.28) using mode operators. Depending on the chosen encoding:

Path encoding (2.29) Polarization encoding (2.30)∣∣ϕ±〉 = 1√
2

(
a†

1a†
3 ± a†

2a†
4
)
|0⟩∣∣ψ±〉 = 1√

2

(
a†

1a†
4 ± a†

2a†
3
)
|0⟩

∣∣ϕ±〉 = 1√
2

(
h†

1h†
2 ± v†

1v†
2
)
|0⟩∣∣ψ±〉 = 1√

2

(
h†

1v†
2 ± v†

1h†
2
)
|0⟩

where (a†
1, a†

2), (h
†
1, v†

1) and (a†
3, a†

4), (h
†
2, v†

2) are the creation operators on
the modes that support, respectively, the first and the second logical qubit.
Remember that the two encodings can be always converted into each other
by the interferometer in Diagram (2.16); depending on the situation, we
will find more convenient to use one or the other. Typically, a nonlinear
process like spontaneous parametric down-conversion (SPDC) [BP08] can be
used as a source of pairs of polarization-entangled photons, together with
postselection. Deterministic creation of the above states cannot be done in
linear optics; this immediately rules out the possibility of a deterministic,
non-destructive Bell measurement. Nevertheless for most applications, in-
cluding e.g. quantum teleportation, destructive Bell measurement is enough,
which does not leave the photons in an entangled state.

The destructive, non-ideal version of the measurement is described in
general by a POVM. We characterize the success of a measurement strategy
by how well it discriminates the Bell states, when acting on an equal mixture
of them. This motivates the definition of the following linear optical device.
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Definition 3 (Bell analyzer). A (potentially multistage) linear optical net-
work of m ≥ 4 modes, fed with one of the input states:

∀βi, |Ψin
βi
⟩ = |βi⟩ |Γ⟩ = Pβi (a†

1 , . . . , a†
4) Q(a†

5, . . . , a†
m) |0⟩ , (2.31)

each with probability pi, is called Bell analyzer (BA). Pβi is the polynomial
representation of the Bell state |βi⟩, while |Γ⟩ = Q |0⟩ describes an auxiliary
state on the rest of the modes. The aim of a BA is to guess which Bell state
|βi⟩ entered the network. When evaluating the performance (or efficiency) of
a BA, we will always assume each |βi⟩ is chosen with probability pi = 1/4.

After passing through the interferometers the photons hit the PNRDs,
which measure the occupation number of each output mode. A configura-
tion of clicks e := n1 . . . nm is a detection event, and constitute the output of a
Bell analyzer from which we need to deduce the index βi. The quantities
we are interested in are the probabilities p(e|βi) of the event e occurring
conditioned on having Bell state βi at the input. Notice that within each
stage of a Bell analyzers (i.e. considering one interferometer at a time) detec-
tion events are in one-to-one correspondence with Fock states of the output
modes. The probability of each event can be computed by evolving |Ψin

βi
⟩

through the interferometer, obtaining the output state before the PNRD
array:

|Ψin
βi
⟩ U−→ |Ψout

βi
⟩ = Tβi (c

†
1, . . . , c†

m) |0⟩ , (2.32)

where the polynomial Tβi is the result of applying the substitution in eq. (2.8)
to the input creation operators’ monomials in Pβi Q. The probabilities p(e|βi)

are then computed from the coefficients of T, taking care of the bosonic
normalization factor as shown in Section 2.2.3. From them, we can assess the
efficiency of a Bell analyzer B, namely the probability p(B)9 of a successful
unambiguous discrimination (Section 1.1.5).

Remark. As Calsamiglia and Lütkenhaus [LCS99]) point out, a perfect
Bell analyzer (i.e. with unit efficiency) should not be a priori ruled out on
a linear optical basis. It could be possible that a sufficiently large network,

9We will mostly deal with single-stage analyzers described by U, in which case we will indicate
the efficiency as p(U).
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1

1’2

2’

Figure 2.4: The simplest BA is just a beamsplitter, achieving psucc =
1/4. It works by discriminating |ψ−⟩, which is the only state for
which both detectors click, from the other Bell states.

which interferes the states with carefully chosen (and potentially entangled)
auxiliary states, can be used to separate the events in the output space far
enough to allow us to always correctly identify the input βi. Nevertheless,
they show that such no-error discrimination is impossible (Section 2.3.3).

2.3.2 A simple Bell analyzer

Figure 2.4 shows the (arguably) simplest Bell analyzer which achieves non-
zero discrimination probability. This scheme is widely used in experiments
[Bou+97; Pir+15], where its simplicity outweighs the low 25% efficiency.
Moreover, it can be easily upgraded to a 50% scheme (which, as we will
see, is optimal in a specific context) as shown in Section 2.3.5. Let’s look
at out how it works. The setup looks the same as the Hong–Ou–Mandel
experiment, consisting of a beamsplitter and two photon detectors.

The Bell states enter in polarization encoding in spatial modes 1 and
2, and are measured in modes 1’ and 2’. The beamsplitter acts identically
on both sets {h†

1, h†
2} and {v†

1, v†
2} of creation operators, as in eq. (2.22).

The only discriminating event turns out to be a coincidence detection, i.e.
one photon (of any polarization) in each of the two detectors. Introducing
variables b, d ∈ {h, v}, the monomials corresponding to the coincidence
event can be written as (b†

1′ d
†
2′ ). Working backwards, we can get the possible

contributions from the input state:

b†
1′ d

†
2′ →

1
2
(b†

1 + b†
2)(d

†
1 − d†

2) =
1
2
(b†

1d†
1 + b†

2d†
1 − b†

1d†
2 − b†

2d†
2). (2.33)
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The polarization-encoded Bell states have one photon in each spatial mode,
so we can discard b†

1d†
1 and b†

2d†
2 . The remaining terms are nonzero iff b ̸= d,

i.e. when the photons have different polarization. In that case the state is
proportional to |ψ−⟩, which can then be unambiguously discriminated by
witnessing this detection event. Later, we will work forward from the Bell
states and obtain the amplitude for all output events (Section 2.3.5). From
a different viewpoint, |ψ−⟩ is antisymmetric under mode exchange; this
eludes the bunching feature of the HOM effect.

2.3.3 No-go theorem for perfect Bell analyzers

The first general result on the efficiency of a Bell analyzer was given in 1999
by Lütkenhaus, Calsamiglia and Suominen [LCS99]. A similar conclusion
had been reached before by Vaidman and Yoran [VY99] in the much more
restrictive setting of no auxiliary modes (Q = 1) and no feedforward. A few
years later, van Loock and Lütkenhaus derive general criteria to decide if
a specific set of state is (perfectly) distinguishable via linear optics [LL04],
extending the following no-go theorem.

Theorem 1 (No perfect BA [LCS99]). Let B be a Bell analyzer according to
Definition 3. Then within each stage there is at least one detection event e such that
p(e|βi) > 0 for at least two input states βa, βb.

Whereas Theorem 1 is an important theoretical result, by itself it does
not rule out the possibility of a simple, experimentally viable Bell analyzer
with efficiency arbitrarily close to 100%. However, their follow-up result
discussed in the next Section puts a further nail in that coffin.

2.3.4 Calsamiglia–Lütkenhaus 1/2 upper bound

An experimentally interesting subclass of Bell analyzers is the one obtained
by considering networks with vacuum state in the auxiliary modes, i.e.
setting Q(a†

5, . . . , a†
m) = 1 in eq. (2.31). In this case, the input states enjoy

a particularly symmetric description, and a stronger upper bound can be
proven. As this result is important for our work, we report a summarized
version of the proof, adapting it to our notation.
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Theorem 2 ([CL01]). The maximum efficiency of a Bell analyzer B with Q = 1
(no extra photons in the auxiliary modes) is p(B) = 1/2.

Proof. The goal is to obtain an expression for |Ψin
βi
⟩ which is easy to evolve

through the interferometer’s unitary U. Notice that in general, an optical
state containing two photons is described by an homogeneous degree-2
polynomial (Section 2.2.3), which can be written as a symmetric bilinear
form of the “formal” vector10 of degree-1 monomials:

P(a†
1 , . . . , a†

m) =
m

∑
i,j=1

Nij a†
i a†

j = aTN a. (2.34)

In the case at hand, only the modes 1 through 4 are occupied, the rest being
empty. Thus, only a 4× 4 corner of the matrix N is relevant:

N =
1
2


W 0 0

0

0

0

 (2.35)

where the 1/2 factor prevents double counting. For Bell state βi, the block
Wβi is can be written in a compact form:

Wβi =
1√
2


δi1 + δi2 δi3 + δi4

δi3 − δi4 δi1 − δi2

δi1 + δi2 δi3 − δi4

δi3 + δi4 δi1 − δi2

0

0

, (2.36)

where δij = 1 for i = j and 0 otherwise. Notice that, when correcting for the
bosonic normalization factor,

√
2 Wβi is also unitary.

Let’s work out the polynomial T(c†
1, . . . , c†

m) describing the state at the
output of the first stage of transfer matrix U†. We have, by eq. (2.8):

a†
i =

m

∑
j=1

uij c†
j −→ a = Uc, (2.37)

10In order to ease the notation we write a = (a†
1 , . . . , a†

m)
T instead of a† . We will never have to

deal with annihilation operators in the following, so no ambiguity will arise.
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then, substituting in eq. (2.34):

T(c) = (Uc)TN (Uc) = cTUTNβi Uc = cTMβi c. (2.38)

Due to eq. (2.35), Mβi simplifies to

Mβi =
1
2

UTWβi U, (2.39)

with U the 4× n matrix obtained by truncating U at the fourth row.

Now we can compute the output amplitudes from the coefficients of
T(c). In particular, for the case of both photons bunching in the same mode
k we need the coefficient of c†

k
2/
√

2! :

(
Mβi

kk

)
c†

k
2 =

(√
2 Mβi

kk

) c†
k

2
√

2
=

(
1√
2

uT
k Wβi uk

)
c†

k
2
√

2
(2.40)

where uk is the kth column of U, which appears when we use eq. (2.39) to
expand the diagonal element of Mβi . Labeling this kind of detection event
α = 2k , we have:

p(2k|βi) =
1
2

∣∣∣uT
k Wβi uk

∣∣∣2. (2.41)

In order to contribute to the overall success probability these events have to
be discriminating, but it is easy to check that this is not the case. Imposing
eq. (2.41) to be zero for three out of four Bell states is very restrictive on the
elements of U:

uk = (u1k, u2k, 0, 0)T or uk = (0, 0, u3k, u4k)
T, (2.42)

which inevitably give a zero probability for the remaining Bell state too.

Let us move to the other case, namely events where two different de-
tectors click. Given a first detection in mode k (event e = 1k), we can get
the state on the remaining modes before the second detection by summing
all the elements on the k-th row and the k-th column of M, except for the
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two-photon term Mkk on the diagonal. As M is symmetric, we have:

|Φβi
k ⟩ = 2

[
∑j M

βi
jk c†

j −Mβi
kkc†

k

]
|0⟩

=
[
(UTWβi uk) · c− (uT

k Wβi uk) c†
k

]
|0⟩

=
[
(UTsβi

k ) · c− (uk · sβi
k ) c†

k

]
|0⟩

(2.43)

where sβi
k := Wβi uk . They occur with probability:

p(1k|βi) = ⟨Φβi
k |Φ

βi
k ⟩ = |s

βi
k |2 − |uk · sβi

k |2. (2.44)

We can bound the distinguishability of the four |Φβi
k ⟩ by showing that they

are not all linearly independent. It can be easily checked that the determi-
nant of the matrix formed by juxtaposing the four sβi

k is zero. Moreover, they
all have the same nonzero norm |sβi

k |2 = 1
2 |uk|2. Then, the post-detection

states satisfy:
4

∑
i=1

λβi |Φ
βi
k ⟩ = 0, (2.45)

with at least two nonzero λ, i.e. at least two out of four states are linearly
dependent. This implies that for each k, at best, only two states can be
unambiguously discriminated from the others. Assuming we can do this
perfectly for βak and βbk

, the success probability after detection in mode k
averaged over βi is:

psucc(1k) ≤
1
4

[
p(1k|βak ) + p(1k|βbk

) + 0 + 0
]
≤ 1

4
|uk|2 (2.46)

which, summing over all the modes:

psucc =
1
2

m

∑
k=1

p(1k) ≤
1
8

m

∑
k=1
|uk|2, (2.47)

where the additional 1
2 factor avoids double counting the modes, noticing

that a successful discrimination always involve two modes. The last sum is
readily evaluated as the sum of the norm of the first four rows of U, which
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is unitary:
m

∑
k=1
|uk|2 =

m

∑
k=1

( 4

∑
j=1
|ujk|2

)
=

4

∑
j=1

1 = 4. (2.48)

So, finally, psucc ≤ 1/2 and the bound is proven.

2.3.5 A psucc = 1/2 analyzer: the Innsbruck scheme

The bound imposed by Theorem 2 is tight. Indeed, there is a psucc = 1/2 Bell
analyzer which saturates it, which improves upon the scheme presented
in Section 2.3.2. As far as we can tell, this strategy seems to have first
appeared in an article by Weinfurter [Wei94] in 1994, and was seemingly
independently rediscovered the following year by Braunstein and Mann
[BM95]. As such, it is referred to as Innsbruck or Braunstein-Mann scheme
in the literature on Bell measurement. The corresponding interferometer
is shown in Fig. 2.5, in polarization encoding. While the bound is valid for
much more general analyzers, the Innsbruck scheme already saturates it,
despite consisting of just a single stage and not needing any auxiliary mode.
The setup is the same as the psucc = 1/4 protocol of Section 2.3.2, but the
detectors have been upgraded to be capable of resolving polarization of the
incoming photons—for example, using the equivalence in Diagram (2.17).

Instead of working backwards from the detection events, this time we
look at how the Bell states evolve through the beamsplitter unitary (eq. 2.22).
We already know about |ψ−⟩:

1√
2

(
h†

1v†
2 − v†

1h†
2
)
−→ 1

2
√

2

[
(h†

1′ + h†
2′ )(v

†
1′ − v†

2′ )− (v†
1′ + v†

2′ )(h
†
1′ − h†

2′ )
]

=− 1√
2

(
h†

1′v
†
2′ − v†

1′h
†
2′
)
, (2.49)

namely it is unaffected by the transformation (up to a global phase). Con-
versely, the symmetric states |ψ+⟩ , |ϕ±⟩ photons bunch in the same mode:

1√
2

(
h†

1v†
2 + v†

1h†
2
)
−→ 1

2
√

2

[
(h†

1′ + h†
2′ )(v

†
1′ − v†

2′ ) + (v†
1′ + v†

2′ )(h
†
1′ − h†

2′ )
]

=
1√
2

(
h†

1′v
†
1′ − h†

2′v
†
2′
)
, (2.50)
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1

1’2

2’

P

P

Figure 2.5: The Innsbruck scheme.

for |ψ+⟩, and

1√
2

(
h†

1h†
2 ± v†

1v†
2
)
−→ 1

2
√

2

[
(h†

1′ + h†
2′ )(h

†
1′ − h†

2′ )± (v†
1′ + v†

2′ )(v
†
1′ − v†

2′ )
]

=
1

2
√

2

(
h†

1′
2 − h†

2′
2 ± v†

1′
2 ∓ v†

2′
2), (2.51)

for |ϕ±⟩. It seems the situation has not improved, as all symmetric states
still register two photons in the same mode. This time, though, we have
access to the polarization of the output photons. Fortunately, we can see
it is unchanged with respect to the input states. This is not a coincidence:
the beamsplitter is an example of a polarization-preserving transformation. It
is then immediate to distinguish the pair |ϕ±⟩ from |ψ±⟩, by just checking
whether the photons are detected with matching or opposite polarization.
By joining this with photon bunching, it is then possible to single out the
events coming from |ψ+⟩. This scheme thus allows for perfect unambiguous
identification of 2 out of 4 Bell states, matching the upper bound.

2.3.6 Beating the 1/2 limit

The limits imposed by Calsamiglia and Lütkenhaus’ result (Theorem 2)
were without a doubt influential, possibly downsizing, at first, the promises
of the linear optical platform. As with all theorems, the ways around it focus
on relaxing one of the hypotheses. We already discussed how allowing for
more complex components such as squeezing and nonlinear interactions
can help; however, these effects are tiny and present challenges of their
own. For example, Zaidi and van Loock show [ZL13] that reaching the
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probability of 62.5% needs 8.69 dB of squeezing, which is experimentally
quite demanding. One of the most compelling way to circumvent the bound
is the use of auxiliary states. The authors had indeed already noticed [CL01]
that full-fledged LOQC schemes like KLM and its improvements allow for
a Bell analyzer arbitrarily close to perfect. Still, the enormous overhead in
which these techniques incur means no scheme achieving more than 50%
probability could be deemed practical. However, LOQC is general purpose:
the hope was that a scheme focused on Bell measurement could achieve
better efficiencies.

It might seem of very little value to add expensive resources, which
could increase losses and do significantly increase complexity, just to achieve
small gains in efficiency which, realistically, would always be far from 100%.
Many experiments indeed only use the 25% for simplicity, at the cost of
efficiency. After all, an argument could be made that any non-unit success
probability gets quickly reduced to zero in practical applications, where
one needs hundreds, if not thousands of Bell measurements. Yet in many
of those cases (e.g. quantum repeaters [GEW21; HBE21]) any small im-
provement on the quality of the physical primitive leads to an exponential
reduction of the protocol’s total resources. Even better reasons for improv-
ing Bell measurement efficiency are fault tolerance and percolation schemes
[Rud17], where overtaking a target threshold success probability is required
for a phase transition to happen.

2.3.7 Grice’s approach

Indeed, in 2011 a paper by Grice constructs a hierarchy of measurement
strategies whose discrimination probability approaches unity [Gri11]. At
each level of the hierarchy, increasingly complex entangled auxiliary states
are needed, which are not necessarily easy to prepare. Nonetheless, the
importance of Grice’s approach is twofold: from the theoretical point of
view, it is the first scheme breaking through the 1/2 barrier without the
KLM-like overhead, while most of the experimental interest resides in its
relatively practical psucc = 3/4 strategy (“level two” in the following).
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Level one

The starting point of the hierarchy is the Innsbruck scheme, which consists
of a single beamsplitter (Section 2.3.5). As usual, we label the output modes
with a prime, i.e. 1′, 2′. In order to establish a convenient notation when
extending the scheme to higher levels, Grice reclassifies the discriminating
events in terms of nh, nv and n[1′ ], which represent respectively the number
of photons detected with horizontal and vertical polarization and the total
number of photons (of both polarizations) counted by the detector on mode
1′. We can immediately see that:

• nh and nv are odd for |ψ±⟩ and even for |ϕ±⟩;

• n[1′ ] is even for |ψ+⟩ and odd for |ψ−⟩.

Level two: auxiliary Bell pair

Grice realized that part of the degeneracy in the output states corresponding
to |ϕ±⟩ could be lifted by first interfering the unknown input state with a
state from that same set. The rationale here is that he wants to preserve
the “discrimination-by-polarization” feature of the Innsbruck scheme. This
way, by keeping the interferometer polarization-preserving and adding a
pair of auxiliary photons of matching polarization, the parity of nh and nv

1

1’

3

3’
4

4’

2

2’

βi ϕ+ →

P

P

P

P

Figure 2.6: The “level two” Grice scheme, achieving psucc = 75%.
The unknown state is input in modes 1 and 2, while modes 3 and 4
host the auxiliary state |ϕ+⟩. Figure adapted from [Gri11], with a
different layout better matching our presentation in the text.
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is unaffected and will always let us separate |ψ±⟩ from |ϕ±⟩. Referring
to Definition 3 of a Bell analyzer, let us choose the auxiliary polynomial
Q = Pβ1 = 1√

2
(h†

3h†
4 + v†

3v†
4), so that the representation of the input state

is Pβi Pβ1 ∀i. The idea is to first pairwise mix the photons in the unknown
state and the ones in the auxiliary state, i.e. interfere mode 1 and mode 3 at
a 50:50 beamsplitter and likewise mode 2 and 4, and then direct each output
to a “level one” (i.e. Innsbruck) stage. The setup is illustrated in Fig. 2.6,
and the corresponding unitary is11:

b†
1′

b†
2′

b†
3′

b†
4′

 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




b†
1

b†
2

b†
3

b†
4

 , (2.52)

acting the same way on b†
i = h†

i and b†
i = v†

i for i = 1, . . . , 4. The re-
sulting detection patterns show that disambiguation between |ψ±⟩ is also
preserved, this time by checking the parity of n[1′ , 3′ ]—the total number of
photons in modes 1′ + 3′. Now, the advantage over the first level is found
by the outputs of |ϕ±⟩: at variance with the previous case, some monomials
are unique to |ϕ+⟩ or |ϕ−⟩. In particular, they are the terms corresponding
to the detection of two horizontal and two vertical photons, happening
with 50% probability. Then, the parity of n[1′ , 2′ ] can be used as a further
source of discrimination. With this construction, Grice thus showed that an
auxiliary Bell pair is sufficient to cut in half the failure probability, achieving
on average psucc = 3/4 = 0.75.

Levels N ≥ 3

By adding more and more complex auxiliary states, Grice showed that it is
possible to progressively halve the error probability of discriminating |ϕ+⟩
from |ϕ−⟩, while preserving the separability of |ψ±⟩. The interferometer

11For consistency with the rest of the Chapter, we use a real beamsplitter unitary here, as
opposed to the complex one (eq. 2.13) which is used in Grice’s paper, but the conclusions are
otherwise the same.
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unitary for the N-th level is defined by the following recursive relation:

U(N) =
1√
2

(
1 1
1 −1

)
⊗U(N−1) =

1√
2

(
U(N−1) U(N−1)

U(N−1) −U(N−1)

)
, (2.53)

which leads to a network on m = 2N spatial modes. The auxiliary state ΓN

is the product of N − 1 polynomials Υj of the form:

ΓN =
N−1

∏
j=1

Υj =
N−1

∏
j=1

1√
2

[
h†
(2j)+1 . . . h†

2j+1 + v†
(2j)+1 . . . v†

2j+1

]
, (2.54)

where each Υj is a GHZ-like state of 2j photons:

Υj |0⟩ =
1√
2

(
|00 . . . 0⟩+ |11 . . . 1⟩

)
. (2.55)

The only non-discriminating events—that is, the events which have a non-
zero probability of occurring for at least two Bell states—happen when all
photons impinge on the detectors with the same polarization. Grice’s con-
struction is able to suppress the probability of this kind of event happening,
which decreases as 1/2N at level N. This strategy achieves psucc = 1− 1

2N ,
using additional ∑N−1

j=1 2j = 2N − 2 auxiliary entangled photons.

2.3.8 Ewert and van Loock’s approach

Can we get rid of entanglement in the auxiliary state in order to break the
1/2 barrier? In their 2014 paper Ewert and van Loock try to improve on
Grice’s design, providing a positive answer to the question [EL14]. Inspired
by Grice’s approach, they too build an hierarchy of Bell analyzers which
use increasingly complex auxiliary states. Surprisingly, their psucc = 3/4
scheme has a nice extra feature: its auxiliary state can be straightforwardly
generated from 4 single, unentangled photons through a simple linear opti-
cal preprocessing. Higher-order schemes still seem to require entanglement.
Interestingly, they show an unentangled scheme beating 75% (albeit only
slightly), leaving the question open to what is the true limit of Bell analyzers
without feedforward and unentangled auxiliary states.
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At variance with the polarization encoding used in Grice’s paper, the
schemes in [EL14] are presented using path encoding (eq. 2.29), similar to
the original paper by Weinfurter [Wei94]. Nonetheless, we chose to stick to
polarization encoding here, in order to ease the comparison between the
two. This choice also leads to more compact optical diagrams, halving the
number of paths and beamsplitters which need to be drawn.

Level one

When converted to polarization encoding, Ewert and van Loock’s psucc =

1/2 protocol is the same as Grice’s (the Innsbruck scheme), only consisting
of a single beamsplitter and polarization-resolving detectors.

Level two: four auxiliary photons

Instead of building directly on the Innsbruck scheme, we start by going one
step down, remembering what happens in the 25% scheme (Section 2.3.2).
There, we did not look at the photons’ polarization, resulting in only |ψ−⟩
being distinguishable from the other Bell states, as it sends one photon in
each of the two output modes. The other three input states instead result in
one of the following 2-photon states in either one of the two modes after
the beamsplitter:

ψ− −→ h†v† =: α, ϕ± −→ 1
2

[
(h†)2 ± (v†)2

]
=: γ±. (2.56)

The idea here is to figure out a strategy to discriminate those, and then
simply replicate it on both spatial modes—as we do not know a priori in
which arm the photons will be found after the beamsplitter. The situation is
depicted in Fig. 2.7. If we just choose to measure the photons’ polarization,
we recover the Innsbruck scheme. Instead, Ewert and van Loock chose a
different route. They interfere at a beamsplitter the states in eq. (2.56) with
the auxiliary state Υ1 = 1

2 [(h
†
2)

2 + (v†
2)

2] = γ+. A lengthy but straightfor-
ward calculation shows that this lets them resolve γ+ from γ− half of the
time, while α can be discriminated, as usual, by the polarization distribu-
tion. Therefore, two copies of Υ1 (one per arm) enable 75% overall success
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Figure 2.7: The Ewert–van Loock psucc = 75% scheme, without
the auxiliary state preprocessing. Figure adapted to polarization
encoding from [EL14], where it is shown in path encoding.

probability.

So far, their approach looks like a “delayed” Grice, with a different set
of states to be discriminated. If anything, the four-photon auxiliary state
they need looks more complex than Grice’s, which used a two-photon Bell
pair. At second glance however (remembering the remarks about entangled
modes vs entangled qubits in Section 2.2.6), Υ1 turns out to be much more
linear optical-friendly than a Bell pair. Indeed, it can be deterministically
produced from two single, unentangled photons:

v†

h†

γ+λ/2

(2.57)

Remembering that a half-wave plate acts like a beamsplitter on polarization
modes, this is how the HOM effect looks like in polarization encoding.
Through the transformation in Diagram (2.57), they can attain the same 75%
success probability, without using entangled auxiliary states. The authors
further note that this approach is reasonably robust to errors when non-ideal
single-photon sources are employed.
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Level N ≥ 3: additional photons

The main task is to discriminate the states in eq. (2.56) which arise after the
first beamsplitter. Then, similar to what happened in Level 2, the following
only applies to the upper arm and the resource count will have to be doubled
on the lower arm as well. The generalization to near-unit efficiency is
again based on recursively embedding the previous interferometer, each
time adding a more complex auxiliary state. In particular, the Nth level is
built from two copies of the apparatus for the (N − 1)th level (without the
detectors):

1. The first copy acts on the (N − 1)th input state, which is the product
of one of the unknown states {α, γ±} on the first input mode and the
auxiliary state Υ1 · · ·ΥN−2, where

Υj =
1√
2

[ 2j

∏
k=2j−1+1

(h†
k)

2
√

2
+

2j

∏
k=2j−1+1

(v†
k)

2
√

2

]
(2.58)

on modes 2 to 2N−2.

2. The second copy is just fed the next auxiliary state ΥN−1 up to mode
2N−1.

3. The output modes of the two copies are then pairwise mixed at beam-
splitters.

When completed by duplicating on the lower arm, this approach uses
the same number of spatial modes as Grice’s but twice as many auxiliary
photons, respectively m = 2N and k = 2(2N − 2), in order to attain the
same success probability psucc = 1− 1

2N . Unfortunately, the states Υj for
j ≥ 2 do not appear to enjoy the same linear-optical manufacturability of
Υ1. A lengthy calculation shows that a probability of 25/32 ⋍ 0.78 can be
achieved by substituting |Υ2⟩ with |Υ1⟩ |Υ1⟩ in the N = 3 level. Even if this
minuscule improvement over 3/4 requires 2(2 + 4) = 12 single photons, it
shows that the former is not a probability barrier for unentangled auxiliary
states, and gives hope for better Bell analyzers using only single photons.
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Optimality

At variance with the limits imposed by Theorem 2, no probability bound is
known when auxiliary states are introduced. Consequently, the schemes
in Sections 2.3.7 and 2.3.8 are not known to be optimal in terms of photon
consumption, or even assuming the specific auxiliary state used. In fact,
both protocols appear to have arisen from symmetry considerations, while
the space of possible protocols remain largely unexplored.

We now present our research, originally motivated by the desire of collect-
ing evidence, through analytical and numerical means, about the optimality
of known schemes, while potentially looking for better ones.
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2.4 A new polarization-preserving bound

As we already noted, an interesting feature of all the schemes considered
up to now is that the interferometers which implement them preserve the
polarization of the input photons. In particular, they are strictly polarization-
independent, meaning they act identically on photons of any polarization.

Remark. For schemes defined in path encoding, this property does not
look very natural. Formally, if the modes can be divided equally in two
groups A and B which never mix—in other words, if the interferometer’s
unitary U can be decomposed in UA and UB acting on the respective mode
group—then there is an equivalent polarization-preserving interferometer
for polarization-encoded qubits through the conversion in Diagram (2.16).
This is indeed the case in Ewert and van Loock’s original protocols (but
not in the polarization-encoded version we give in Section 2.3.8), where the
interferometer acts the same way on odd- and even-numbered modes.

While clearly not representative of all linear optical transformations, po-
larization-preserving interferometers proved to be useful for a Bell analyzer:
they ensure we can separate |ϕ±⟩ and |ψ±⟩ by looking at the polarization
distribution of the detected photons. It turns out that this subset of interfer-
ometers has nice analytical properties: the condition is restrictive enough
that it is possible to derive a non-trivial upper bound to the discrimination
probability.

However, from the experimental point of view it might be difficult to
justify this restriction. Indeed in a typical setup on an optical table no
significant simplification is achieved if, for example, half- and quarter-wave
plates are not used. Nonetheless, on the integrated optics platform there
might be a tangible advantage in only having to fabricate beamsplitters
(which are often just properly positioned waveguides), especially for a
fixed-function device like a Bell analyzer12

The proof we give is not constructive, and we do not expect the bound
to be saturated by explicit linear optical schemes for all auxiliary states. The
known schemes however match the bound’s value.

12When using path encoded qubits the equivalent requirement of not mixing even and odd
modes looks even more difficult to justify as advantageous.
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Theorem 3 (Polarisation-preserving upper bound). Let B be a Bell analyzer
which preserves the polarization of the input photons, equipped with the k-photon
auxiliary state |Γ⟩. Then the probability of unambiguous Bell-state discrimination
is upper bounded by:

psucc ≤
1
2
+

1
2

k−2

∑
λ=0

min
{
|γλ|2, |γλ+2|2

}
, (2.59)

where the γλ are the coefficients of the expansion |Γ⟩ = ∑k
λ=0 γλ |Υλ⟩ over

orthogonal states |Υλ⟩ of λ horizontally and k− λ vertically polarized photons.

Theorem 3 is not straightforward to use as is, so we will derive later two
corollaries which establish looser bounds based on more easily obtainable
properties of the auxiliary state (e.g. its photon content).

Proof. Schematically, the proof works by disentangling the input states
using a particular projection and then bounding their quantum mechanical
discrimination probability (Fig. 2.8).

First, suppose we run the first stage of B until just before the measure-
ment, and we performed at that point a quantum non-demolition (QND)
measurement of nh, the number of horizontally polarized photons.13 Since
the photon detectors at the end are polarization-resolving by construction,
this information could have been obtained later, meaning that the addition
of the QND projection does not change the output probabilities. Now we
can make use of the polarization-preserving hypothesis, which ensures the
polarization measurement commutes with the action of the interferometer
(Fig. 2.8). As such, we could have performed it immediately on the input
state. We can expand the auxiliary state (consisting of k total photons14) in
terms of states |Υλ⟩, eigenstates of nh of definite number λ of horizontally

13While the reader might have been under the impression that measuring the state of a photon
always destroys it, this is not necessarily the case: indeed, quantum mechanics allows such
non-destructive measurement. Realizing this kind of measurement in the laboratory is really
challenging, due to how fragile photon states are. In 2012, a Nobel prize was awarded to Serge
Haroche for pioneering such experimental techniques [RBH01]. Here, QND measurement is only
used as a proof device.

14The assumption that the auxiliary state has a well defined and known photon number is
not a restriction, as can be easily deduced from the fact that the total photon number operator,
which we measure, commutes with linear optical evolutions, and the fact that the Bell states have
exactly two photons.



2.4. A new polarization-preserving bound 57

N
P

N
P

...
...

N
P

|βi⟩

U

|Γ⟩

N
P

N
P

...
...

N
P

|βi⟩

U
Q
N
D|Γ⟩

N
P

N
P

...
...

N
P

|βi⟩

Q
N
D

U

|Γ⟩

...

|βi⟩

Q
N
D

{Πi}i
|Γ⟩

As detectors are polarization
and number resolving, we
can “factor out“ the QND

measurement of nh

U is polarization-preserving
and commutes with the
measurement

Ignoring linear optics, we
replace U with the best

possible projection
allowed by QM

We obtain an upper bound
to the discrimination
probability psucc(U)

Figure 2.8: Overview of the proof. Nonlinear operations are shaded.
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polarized photons:

|Γ⟩ =
k

∑
λ=0

γλ |Υλ⟩ . (2.60)

For convenience, we define γλ = 0 for λ < 0 and λ > k with a slight
abuse of notation. The four complete inputs to the Bell analyzer are then
(k + 2)-photon states, which we can also write as a sum of eigenstates of nh:

|ϕ±⟩ |Γ⟩ =
[

1√
2
(h†

1h†
2 ± v†

1v†
2) |0⟩

] k

∑
λ=0

γλ |Υλ⟩

=
k+2

∑
λ̄=0

(
γλ̄−2√

2
|HH⟩ |Υλ̄−2⟩ ±

γλ̄√
2
|VV⟩ |Υλ̄⟩

)
,

(2.61)

|ψ±⟩ |Γ⟩ =
[

1√
2
(h†

1v†
2 ± v†

1h†
2) |0⟩

] k

∑
λ=0

γλ |Υλ⟩

=
k+1

∑
λ̄=1

γλ̄−1√
2

[
|HV⟩ ± |VH⟩

]
|Υλ̄−1⟩ ,

(2.62)

where each term in the sum has λ̄ horizontally polarized photons and the
mode numbering is implied.

Notice that after the QND measurement the inputs corresponding to
|ψ+⟩, |ψ−⟩ and |ϕ±⟩ collapse onto three orthogonal subspaces. Clearly,
the Bell analyzer cannot distinguish them better than what is allowed by
quantum mechanics; this way we can get a bound on the discrimination
probability, relaxing the restrictions imposed by linear optics. The orthog-
onal subspaces can be perfectly discriminated, and the only remaining
ambiguity is among the (unnormalized) states |Λ±⟩ arising from input
|ϕ±⟩ |Γ⟩ after the projection:

|Λ±⟩ = γλ̄−2√
2
|HH⟩ |Υλ̄−2⟩ ±

γλ̄√
2
|VV⟩ |Υλ̄⟩ , (2.63)

which are not orthogonal. Their squared norm and overlap are:

∥Λ∥2 = ⟨Λ+|Λ+⟩ = ⟨Λ−|Λ−⟩ = 1
2

(
|γλ̄−2|2 + |γλ̄|2

)
, (2.64)

|⟨Λ+|Λ−⟩| = 1
2

∣∣∣|γλ̄−2|2 − |γλ̄|2
∣∣∣. (2.65)
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As shown in Section 1.1.5, they can be unambiguously distinguished with
probability at most:

pdisc(λ̄) ≤ ∥Λ∥2 − |⟨Λ+|Λ−⟩| = min{|γλ̄−2|2, |γλ̄|2}, (2.66)

where we adapted eq. (1.23) to unnormalized states. Assuming perfect
discrimination of |ψ+⟩ and |ψ−⟩, and summing over λ̄, the total success
probability of the Bell analyzer is upper bounded by:

psucc ≤
1
4

(
1 + 1 + 2

k+2

∑
λ̄=0

min{|γλ̄−2|2, |γλ̄|2}
)

=
1
2
+

1
2

k

∑
λ̄=2

min{|γλ̄−2|2, |γλ̄|2},
(2.67)

where we excluded from the sum the terms which are guaranteed to be zero.
Then, eq. (2.59) follows by the substitution λ = λ̄− 2.

We can derive a more insightful version of the bound by noticing that,
since the minimum is taken every two values of λ, it is useful to split the
sum over even and odd indices:

psucc ≤
1
2
+

1
2 ∑

λ even
min{|γλ|2, |γλ+2|2}

+
1
2 ∑

λ odd
min{|γλ|2, |γλ+2|2}.

(2.68)

Among each group, it is not difficult to convince oneself that every γλ

appear once in the sum except for local maxima, which are excluded, and
local minima, which are counted twice.15 Remembering that ∑λ |γλ|2 = 1,
we have:

psucc ≤ 1− 1
2

(
∑

λ even
|γλ |2 loc max

|γλ|2 − ∑
λ even

|γλ |2 loc min

|γλ|2 + ∑
λ odd

|γλ |2 loc max

|γλ|2 − ∑
λ odd

|γλ |2 loc min

|γλ|2
)

,

(2.69)

15In order to deal with the boundaries (i.e. if they should be counted as minima or maxima),
remember that we defined γλ = 0 for λ < 0 and λ > k. Consecutive optima with the same value
are only included (or excluded) once.
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which leads to the following corollary, establishing a (looser) bound on
psucc.

Corollary 3.1. Under the same notation of Theorem 3, the unambiguous discrimi-
nation probability of a polarization-preserving Bell analyzer with auxiliary state
|Γ⟩ = ∑λ γλ |Υλ⟩ is at most:

psucc ≤ 1− 1
2

(
max

λ even
|γλ|2 + max

λ odd
|γλ|2

)
. (2.70)

Proof. As |γλ|2 = 0 for λ /∈ [0, k] and |γλ|2 ≥ 0 otherwise, the number of
local optima in each index group (λ even and λ odd) is always odd. We
can always pair each local minimum λmin in eq. (2.69) with a neighboring
local maximum λmax such that |γλmax |2 − |γλmin |2 > 0. Therefore, the extra
optimum has to be a local maximum. The corollary is then proved by only
keeping the global maximum for each index group.

The bound reduces to eq. (2.59) whenever there is a single local maxi-
mum among each index group, which is the case for many of the auxiliary
states considered up to now.

2.4.1 Bound based on photon number

In order to compare various schemes which use different auxiliary states, it
is useful to obtain a bound which is independent on the specific form of |Γ⟩,
being instead only function of its photon count k.

• If k is odd, we have at most k+1
2 even and k+1

2 odd values of λ for
which |γλ|2 ̸= 0. Defining ∑λ odd |γλ|2 = Sodd, then (maxλ odd |γλ|2)
has to be at least 2 Sodd

k+1 , and similarly for Seven. Given that Sodd +

Seven = 1, the sum of the maxima in eq. (2.70) is lower bounded by
2

k+1 , and we get:

psucc, k odd ≤ 1− 1
k + 1

, (2.71)

which can for example be saturated by auxiliary states where all
eigenstates |Υλ⟩ are equiprobable, i.e. |γλ|2 = 1

k+1 ∀λ.
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• Similarly, if k is even, we have at most k
2 odd and k

2 + 1 even λs with
|γλ|2 ̸= 0. This time we have:

psucc, k even ≤ 1− 1
k + 2

, (2.72)

which is best saturated when all odd components are zero and the
rest are equiprobable:

|γλ|2 =

 2
k+2 λ even,

0 λ odd.
(2.73)

Merging the two cases, we have our simplest (but “loosest”) bound:

Corollary 3.2 (Photon-number based bound). The unambiguous discrimi-
nation probability of a polarization-preserving Bell analyzer with an auxiliary
k-photon state is at most:

psucc ≤ 1− 1
⌈k + 1⌉even

, (2.74)

where ⌈·⌉even is the smallest even integer greater or equal to its argument.

In the trivial case of no auxiliary photons at all, i.e. k = 0, this result
matches the Calsamiglia-Lütkenhaus 1/2 bound as expected. It is not
difficult to verify that in this case the proof reduces to just a couple of
lines (Section 2.6.1), which when compared to the involved Theorem 2
constitutes further evidence of the strength (for better or for worse) of the
polarization-preserving restriction. Another interesting observation is that,
at least for this kind of Bell analyzers, a single extra photon does not help:
the smallest state beating 1/2 has to contain at least two photons. Despite
all the simplifications made along the way, though, the bound still proves
to be useful! In fact, we know of at least one series of strategies which
saturate it for all k which are powers of 2, namely the Grice schemes in
Section 2.3.7. For the states in Ewert and van Loocks schemes, instead, the
bound in eq. (2.59) is tight, while eq. (2.74) is not. We will come back to this
in Section 2.6.3.
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Figure 2.9: The failure probability of known explicit schemes (solid
lines) and our polarization-preserving (PP) bound (dashed lines).
The green and red curves (the single photons schemes) are based
on a more careful analysis of Ewert and van Loock’s single photons
results, and how our bound can be specialized to them (Section 2.6.3).
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2.5 Computer to the rescue: an optimization approach

Notwithstanding the importance of analytical results like our polarization-
preserving bound, the restriction imposed by the proof technique is not
particularly desirable in a practical setting. While obtaining a non-trivial
upper bound for generic BA would be ideal, the only known proof in this
setting (Theorem 2) does not easily generalize to networks with more than
two photons. Moreover, it is a non-constructive proof: it just so happens
that the bound can be saturated by a simple known scheme (the Innsbruck
scheme). As a matter of fact, to our knowledge the space of possible BA
had not been systematically explored before our work; each new scheme
found would represent a lower bound on the achievable Bell measurement
efficiency for a given auxiliary resource.

With this in mind we built solon (Simulation Of Linear Optical Net-
works), a custom software tailored to the optimization of Bell analyzers.
With it, we set ourselves three main goals:

• Collecting numerical evidence towards the optimality of Grice’s and
Ewert and van-Loock’s strategies;

• Finding new interesting BA, using different kinds of auxiliary re-
sources;

• Implement an easy-to-use tool to work with linear optical networks,
opening the doors to applications other than Bell measurement.16

In the following, we present the inner workings of the program and dis-
cuss some of the challenges we had to overcome in order to decrease its
complexity to a manageable level. We then analyze in detail the results
of the numerical investigation in Section 2.6, comparing the data with the
analytical bound; we organize our findings in Table 2.3.

2.5.1 Overview

Our approach is composed of multiple steps (Fig. 2.10).

16The extension to generic inputs and general packaging and code cleanup was delivered by
Kim Vallée as part of his Licence 3 internship.
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Bell state |βi⟩Input: auxiliary state

Amplitudes’ symbolic expression

Optimized expressions

Compiled amplitudesSample U(n) Figure of merit

Local minimum

Tentative global minimum

repeat for

i = 1, . . . , 4

repeat for

O(104) samples

Figure 2.10: The pipeline used by solon. The yellow boxes are sym-
bolic calculations done in SymPy, while the green ones correspond to
numerical calculations in a combination of numpy and C/theano.
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1. For each auxiliary state we analyze, and for each input Bell state, we
generate a symbolic expression for the amplitudes of all output events
in terms of the entries of the unitary U associated to the BA.17

2. Those symbolic expressions, along with their gradient with respect
to the entries of U, are optimized in order to reduce the number of
elementary operations.

3. The optimized functions are then automatically translated into a low-
level language and compiled.

Due to the heavily non-smooth character of the success probability for
unambiguous measurements, we construct a meaningful figure of merit,
function of the previously obtained probability amplitudes.

4. A constrained numerical optimization using a nonlinear method
is then performed multiple times from randomly sampled starting
points.

All the above steps are automated; the only “manual” input is the
auxiliary polynomial Q. While this can seem at first glance an overkill
brute-force approach, the problem present important symmetries that we
exploit, gaining up to two orders of magnitude in computation time. Once
an optimum has been reached, the output looks like the one in Fig. 2.11,
which is a detailed description of the BA’s performance.

Choice of programming language

In accordance with a rising trend in the scientific domain, we chose to write
solon in Python. As a high-level language, it seems unsuitable for intense
computational tasks; however, it comes with a good selection of open-source
scientific libraries written in C which implement a large portion of the heavy
number crunching we need, and offers tools to automatically produce ef-
ficient compiled code when needed. Additionally, Python enforces good
programming practices and the resulting code is clear and easy to under-
stand, in a way that eases the process of checking its correctness, which is an

17In the following, we only consider single-stage Bell analyzers, i.e. we ignore the possibility of
feedforward operations.
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~$ python 4_modes_no_aux.py

(0, 0, 1, 1) [0.______ 0.______ 0.5_____ 0.______]
(0, 1, 0, 1) [0.______ 0.______ 0.______ 0.______]
(0, 1, 1, 0) [0.______ 0.______ 0.______ 0.5_____]
(1, 0, 0, 1) [0.______ 0.______ 0.______ 0.5_____]
(1, 0, 1, 0) [0.______ 0.______ 0.______ 0.______]
(1, 1, 0, 0) [0.______ 0.______ 0.5_____ 0.______]
(0, 0, 0, 2) [0.25____ 0.25____ 0.______ 0.______]
(0, 0, 2, 0) [0.25____ 0.25____ 0.______ 0.______]
(0, 2, 0, 0) [0.25____ 0.25____ 0.______ 0.______]
(2, 0, 0, 0) [0.25____ 0.25____ 0.______ 0.______]
Discrimination probability (zero=1e-08):

[0.______ 0.______ 1.______ 1.______], p = 0.5

Figure 2.11: The output of the simulator when it finds the Innsbruck
scheme, if initialized with no auxiliary modes. The underscore
“_” replaces the digit “0” in the decimal expansion for improved
legibility. From left to right: the output events and their probability
on the four different inputs, in the order (ϕ+, ϕ−, ψ+, ψ−).

important part of the scientific review process. Following a common design
pattern, we started by building a naïvely written version which (slowly)
worked for a particular use case, which underwent subsequent refining and
generalizations in order to improve speed.18 The identification of the slow
parts of the program was possible thanks to the use of code profiling tools,
which monitor the execution time of the various portions of the code.

2.5.2 Symbolic computation

The purpose of the method presented here is to provide the optimum-
finding algorithm described in the next subsection with a fast, optimized
function returning all the detection event probabilities, along with their
gradients with respect to the entries of U, from which a figure of merit
f (U) will be constructed. We already know a closed formula for the ampli-
tudes, as they are related to the permanents of submatrices of U. However,

18From a Donald Knuth’s catchphrase, “premature optimization is the root of all evil” [Knu74]
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working on optimizing the symbolic expressions separately enabled us
to carefully analyze the specific problem and implement some analytical
shortcuts with which we could speed up the search for optima. Symbolic
operations are significantly slower than their numerical counterpart, but
they have to be performed just once per auxiliary state.

We coded this part of the program in SymPy [Meu+17], an open-source
Computer algebra system (CAS) for Python, which provides similar function-
alities of proprietary tools like Mathematica or Matlab. SymPy is written in
pure python, which makes extending its features easy for us; however, it
is not ideal for large calculations as is, due to the overhead of Python code.
Fortunately, the project PyPy [Ped] provides a Just-in-Time compiler for
Python which helps achieving similar performance to the above mentioned
proprietary software, albeit at the cost of some memory overhead.19 In the
following, we use the same notation conventions for the input and output
polynomials introduced in Definition 3. In particular, we work with the
path-encoded Bell states of eq. (2.29); this choice better reflects the loss of
the polarization-preserving structure for the generic interferometers we
want to explore. Here, m is the number of modes while k refers to the
number of photons in the auxiliary state, making k + 2 the total number of
photons in the BA. Briefly, this section of the code start by taking the sym-
bolic expression of the four input polynomials Pβi (a†

1, . . . , a†
4)Q(a†

5, . . . , a†
m)

and performing the substitution a = Uc of eq. (2.8), where each entry uij

of U is itself defined as a symbolic variable. It automatically expands the
expression in the new indeterminates and collects the coefficients of the
output polynomial T(c†

1, . . . , c†
m), of which there are:

N =

(
m + k + 1

k + 2

)
(2.75)

for each Bell state. The symbolic expressions (in uij) for the amplitudes
αe(U) of each detection event e are obtained after correctly accounting for
the bosonic normalization factor for the monomials containing more than

19As an example, finding the second level of the Ewert–van Loock strategy takes 7 minutes and
30 seconds and about 150 MB of RAM on our laptop (the specifications of which are reported in
Table 2.2), using the standard cPython interpreter. Using PyPy the time is cut down to 45 seconds,
with a memory consumption of 250 MB.
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one photon in the same mode, as in eq. (2.11). We can directly compile an
expression for the probabilities p(e|βi) by taking their square moduli, and
this is indeed the strategy we followed initially. However, it turns out that
dealing directly with the amplitudes at this stage is much more efficient
when the gradients are taken into account.

A simple setup

Let us consider the simplest example, to better understand the principle.
Consider a network with m = 4 modes, with |ϕ+⟩ as input and no auxiliary
state, i.e. Pϕ+ = 1√

2
(a†

1a†
3 + a†

2a†
4), Q = 1 and k = 0. At the substitution step,

solon computes the expression:

T(c†
1, c†

2 , c†
3 , c†

4) =
1√
2

(
∑
j1

u1j1 c†
j1

)(
∑
j2

u3j2 c†
j2

)
+

1√
2

(
∑
j3

u2j3 c†
j3

)(
∑
j4

u4j4 c†
j4

)
.

(2.76)

After expanding all the products, we obtain a polynomial of degree k+ 2 = 2
in four variables, with N = 10 terms. The coefficient of the monomial c†

1c†
3

is, for example, the amplitude of the detection event 1010. After expand-
ing eq. (2.76), all the events’ amplitudes looks something like the ones in
Table 2.1. Analogous expressions are produced for ϕ−, ψ+ and ψ−. While
the above expansion could have been done by hand, the complexity quickly
increases: already the smallest interesting setup with Q = a†

5 (one auxiliary
photon) results in four degree-3 polynomial in 5 variables, with N = 35
terms.

2.5.3 Function compilation

In order to get a compiled, serializable and importable function for the
amplitudes, we wrote a custom routine based on f2py and SymPy internal
code-generation tools, which we later replaced by the third party library
theano [Tea16] once SymPy integration matured enough. The latter imple-
ments additional optimizations based on the construction of a graph-based
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2000 −→ u11u31 + u21u41

0200 −→ u12u32 + u22u42

0020 −→ u13u33 + u23u43

0002 −→ u14u34 + u24u44

1100 −→ (u11u32 + u12u31 + u21u42 + u22u41)/
√

2

1010 −→ (u11u33 + u13u31 + u21u43 + u23u41)/
√

2

1001 −→ (u11u34 + u14u31 + u21u44 + u24u41)/
√

2

0110 −→ (u12u33 + u13u32 + u22u43 + u23u42)/
√

2

0101 −→ (u12u34 + u14u32 + u22u44 + u24u42)/
√

2

0011 −→ (u13u34 + u14u33 + u23u44 + u24u43)/
√

2

Table 2.1: Symbolic expressions for the amplitudes of a low-
dimensional example calculation. The polynomials are hard-
compiled into a fast C expression which will be used by the gradient
descent evaluation routine.

function representation. The two approaches turned out to have similar
performances: while our implementation is more memory-efficient as no
intermediate graph representation has to be built, we chose theano for the
minor speed benefits and the need to maintain less code. To give a sense of
the scale of the polynomials involved, the amplitudes for the largest com-
putation we managed to complete—involving m = 16 modes and 2 + k = 8
total photons20—contains about 1.8 · 106 symbolic operations, while their
Jacobian totals ∼ 17 · 106 operations.

2.5.4 Optimizations and symmetries

Strictly speaking, all the numerical part of the program will need for the
maximizing our figure of merit is an array of functions like those in Table 2.1.
However, there are some insights we can exploit to save computation time
and improve convergence.

20This is for the computation of the N = 3 level of Grice’s schemes
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Gradients

The most expensive part of the gradient descent method we employ is the
computation of the gradient of the objective function f (U) at each iteration.
If it is not provided with an analytical expression, the algorithm can estimate
the partial derivatives by evaluating the figure of merit at nearby points.
Using the finite difference method, this amounts to two additional evaluations
of f (U) per variable, which is fine for most problems for which the objective
is fast to compute, but very expensive in our case. Furthermore, the Jacobian
would only be calculated to some fixed accuracy which depends on the
size of the step chosen for the finite difference, which adds noise to the
optimization algorithm and worsens its convergence. We can exploit the
fact that we have the expensive parts of the figure of merit at our disposal in
symbolic form in order to also obtain a fast, analytical compiled expression
for its gradient. Ultimately, f (U) depends on the square moduli of the
amplitudes |αe(U)|2, which are not differentiable with respect to the entries
uij of U in the complex sense. In general this is not an issue; when dealing
with functions of complex input, a common practice in optimization is to
split the independent variable into a real and an imaginary part, with respect
to which the derivatives of |αe(U)|2 are well defined. While in general the
derivatives involving the square modulus can be cumbersome, the complex-
valued amplitudes αe(U) themselves are always holomorphic functions of
uij—specifically, complex polynomials. We can use this property to obtain a
compact expression for the gradient ∇ f (U).

In general, for a holomorphic function α(u00, u01, . . . ):

∂α

∂uij
=

∂α

∂ℜ{uij}
= −i

∂α

∂ℑ{uij}
(2.77)

and, given |α|2 = αα∗:

∂|α|2
∂ℜ{uij}

=
∂(αα∗)

∂ℜ{uij}
= α

∂α∗

∂uij
+

∂α

∂uij
α∗ = 2ℜ

{
α

∂α∗

∂uij

}
, (2.78)

∂|α|2
∂ℑ{uij}

=
∂(αα∗)

∂ℑ{uij}
= i

(
−α

∂α∗

∂uij
+

∂α

∂uij
α∗
)

= 2ℑ
{

α
∂α∗

∂uij

}
. (2.79)
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We can thus obtain all the information we need from an expression for αe(U)

and all its partial derivatives ∂αe(U)
∂uij

, for each event e and for each Bell state.
A significant fraction of them are identically zero: as a matter of fact, αe(U)

only involves the columns of U which have one or more photons in the
corresponding output mode. Moreover, obtaining the partial derivative of
polynomials automatically can be done very cheaply.

Equivalence under mode permutation

Looking closely at the expression for the amplitudes in Table 2.1, it can
be noticed that they neatly divide in two groups, which are related by a
permutation of the variables uij. For example, the amplitude for the event
1100 is:

α1100(U) =
1√
2

(
u11 u32 + u12 u31 + u21 u42 + u22 u41

)
, (2.80)

and the one for 1001:

α1001(U) =
1√
2

(
u11 u34 + u14 u31 + u21 u44 + u24 u41

)
. (2.81)

If we have a function which computes eq. (2.80) for a given U, we do not
need to build another function for eq. (2.81). We can just evaluate the former
on a different unitary, where we swapped the second column with the
fourth:

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 −→


u11 u14 u13 u12

u21 u24 u23 u22

u31 u34 u33 u32

u41 u44 u43 u42

 .

This is not a coincidence: we expect the amplitudes for two detection events
to be related if one can be obtained from the other by a permutation of the
output modes. This separates the events into equivalence classes, where
only one representative of each class has to be symbolically computed. In
the example of Table 2.1, we only need α2000(U) and α1100(U). It is possible
to get all the others by listing all the unique permutations of each event
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string—formally, they are called multiset permutations.

How much does this helps us? In the example above, we reduced
the functions to compile for each Bell state from 10 to 2. In order to get an
expression for the general case, we need to define the partitions of an integer:

Definition 4. A partition of n ∈N is any set of positive integers which sum
to n.

The number of equivalence classes is exactly the number of unique
partitions of the total number of photons (k + 2). It does not depend on
the number of modes m, and it grows much more slowly than the number
of detection events N (albeit still exponentially). Specifically, its growth is
approximately [HR18]:

#part(k + 2) ∼
k→∞

1
4k
√

3
exp

{
π

√
2k
3

}
, (2.82)

while the binomial coefficient is lower bounded by(
m + k + 1

k + 2

)
>

(
1 +

m− 1
k + 2

)k+2
, (2.83)

which, for the BA we study (m always at least 4 + k), is bounded from
below by (2k+2)—meaning we gain an exponential factor over eq. (2.82)
nonetheless. This optimization enabled us to access Bell analyzers with
many more modes and bigger auxiliary states. For m = 8 and k = 2 (e.g.
the smallest auxiliary state for Grice’s schemes) the number of events per
state is 330, while the number of partitions of k + 2 is just 5, leading to a
minimal set of events:

40000000 31000000 22000000 21100000 11110000. (2.84)

The number of elements of the gradient to compile can be also reduced
through output mode permutation symmetry, from n2 to (at most) n(k + 2).
Clearly, the huge time savings on the symbolic part are met with a slight
increase of the evaluation time of the objective function in the optimiza-
tion step, as it also has to permute at runtime the columns of U at each
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evaluation. While for small BA this is not negligible, having to load fewer
compiled functions is much more cache-friendly and leads to performance
improvements in our tests for all but the smallest cases.

Bell state symmetry

A further factor of four can be gained by noticing that, for a given auxiliary
state, we actually only need the symbolic expression of the amplitudes for
one of the four inputs. This is due to a symmetry in the Bell states, and does
not generalize when solon is used for the discrimination of a different set
of states. Looking at the Bell states in path encoding, eq. (2.29), we can see
that given:

|ϕ+⟩ = 1√
2
(a†

1 a†
3 + a†

2 a†
4) |0⟩ , (2.85)

the others can be obtained by appropriate substitutions:

|ϕ−⟩ : a†
2 −→ −a†

2 |ψ+⟩ : a†
1 −→ a†

2 |ψ−⟩ : a†
1 −→ −a†

2. (2.86)

Similarly to how the output modes are connected to the columns of U, the
input modes are related to the rows. If we only have a function for the
amplitudes from |ϕ+⟩ |Γ⟩, we can use it for the other three by swapping
and/or changing the sign of the first two rows of U, e.g. for |ψ−⟩ |Γ⟩:

u11 u12 . . . u1m

u21 u22 . . . u2m
...

...
...

 −→


−u21 −u22 . . . −u2m

u11 u12 . . . u1m
...

...
...

 .

A similar reasoning applies to the gradient, meaning we can further skip
3/4 of the symbolic work, with analogous (minor) drawbacks as the ones
explained in the previous paragraph.

2.5.5 Numerical optimization

The main task of solon is to search the space of unitaries, finding good can-
didates for Bell analyzers. A possible strategy could be a simple bruteforce
search in a (discretized) space which covers the unitary group U(m), taking
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advantage of the fact that unitary matrices have bounded entries. However
we would face several problems:

• While the dimension of the space of m × m unitaries only grows
quadratically, the complexity of bruteforcing is exponential in the
number of variables, i.e. O(em2

). Raising m would quickly lead to
infeasible running times. Moreover, we have no way of knowing
beforehand which discretization size is reasonable for the problem.

• It is difficult to obtain a good minimal parametrization of unitary
matrices which also preserves the structure of the discretization step
well enough.

• Most matrices, if randomly sampled from a uniform distribution,
will result in zero discrimination probability, due to the unambiguity
requirement. In other words, punamb

succ of eq. (1.21), which has to satisfy
eq. (1.20), is not well suited for optimization. We have to choose
something else as our figure of merit.

These issues are pretty standard in the nonlinear optimization domain, and
there are multiple ways to get around them, each with its advantages and
shortcomings. In general, scalable non-convex numerical methods can only
reach local minima [PS88]. A common strategy (which we follow) is to re-
peat the optimization process with thousands adequately sampled starting
points, only keeping the best optimum found. This kind of global optimiza-
tion process is sometimes called multistart optimization in the literature.

Parametrizing U(m)

The gradient descent needs a way to navigate the space of unitary matrices.
In general, we want to choose a set of real-valued parameters (as they need
to be ordered), from which U can be uniquely reconstructed. The space
U(m)21 can be thought as a subspace of Cm ∼= R2m, of (real) dimension

dimR U(m) = m2. (2.87)

21With some abuse of notation, U(m) will implicitly refer to the representation of the unitary
group as unitary m×m matrices.
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We explore below three different ways to choose the real parameters.

• There exist direct parametrizations of the matrix entries of unitaries
in terms of m2 real parameters. An example are the Givens rota-
tions [Cyb01]. They can be seen as a generalization of the common
parametrization of U(2) in terms of angles (ϕ, ϕ1, ϕ2, θ):

U = ei ϕ
2

(
eiϕ1 cos θ eiϕ2 sin θ

−e−iϕ2 sin θ e−iϕ1 cos θ

)
. (2.88)

However, for m > 2 the analytical form of the entries of U gets more
and more cumbersome to work with, if we want to use it in the
symbolic part of the program to generate the output probabilities.
Furthermore, to the best of our knowledge it is not easy to invert the
transformation, i.e. in order to get the values of the parameters for
a given U with known matrix entries we have to solve a system of
coupled equations. This adds unnecessary complexity: for example,
it becomes difficult to test the code with the known strategies.

The symbolic generation and the numerical optimization are distinct
parts of the program: strictly speaking, we do not need to invert
the parametrization, as we could work with m2 parameters only at
optimization time, always converting them to an explicit U to be input
to the compiled functions. Doing so, however, it becomes significantly
more expensive to use our symbolically computed gradient, which
can only be easily provided with respect to the explicit entries of
the matrix, (ℜ{u00},ℑ{u00}, . . . ) and not with respect to the new
parameters. For these reasons, we pursued a different approach.

• The unitary group U(m) is a Lie group, generated from the associated
Lie algebra u(m) of skew-hermitian matrices through the exponential
map. The elements of the algebra can be represented as iA, with A
hermitian (A† = A).

Hermitian matrices can be constructed by choosing (m2 −m)/2 com-
plex numbers for the upper triangular part and m real numbers for
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the diagonal, totaling

2
m2 −m

2
+ m = m2 (2.89)

real parameters. The lower triangular part is fixed by the hermitian
condition. The matrix exponential can be computed efficiently, with
negligible overhead; more importantly, it is easily invertible (by the
matrix logarithm). However, it is still very difficult to make use of
an analytical gradient. Nonetheless, this approach is easily imple-
mentable if we rely on numerical estimation of the gradient. It is one
of the two strategies we used, along with the next one.

• Unitary matrices can always be seen as the space of complex invertible
m×m matrices satisfying the unitarity condition:

U† = U−1 =⇒ UU† = I. (2.90)

Because the space of m×m complex matrices is spanned by 2m2 real
parameters, using these (non-independent) variables instead of m2

independent ones means doubling the dimension of the space that the
optimization algorithm has to explore. The main advantage however
is that we can use our analytical gradient, because the optimization
variables now coincide with the matrix entries. For this, we need a gra-
dient descent algorithm which supports (quadratic) constraints. We
chose Sequential Least-SQuare Programming, (SLSQP [Kra88]), which
can be directly called from SciPy’s optimization collection [Vir+20].
The entry-by-entry condition on U in eq. (2.90) produces a system of
2m2 equations of 2m2 real variables; given that the number of inde-
pendent variables is m2, this system is overdetermined, which can
cause problems for SLSQP. We can instead get a set of independent
constraints for unitarity by assembling U from a set {u1, u2, . . . , um}
of m orthonormal vectors of length m:

|ui|2 = 1 m real equations, (2.91)

ui · uj = 0
(

m
2

)
complex equations, (2.92)
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giving a total of

m + 2
m!

2!(m− 2)!
= m + m(m− 1) = m2 (2.93)

independent real equations. We get an added benefit, as the gradients
of eq. (2.91) and eq. (2.92) are simple bilinear functions, which can
themselves be analytically derived without the need of numerical
estimation.

Despite needing twice as many parameters, this approach proved
comparable in speed and convergence accuracy to the previous one,
and was our preferred choice.

Sampling from U(m)

In order for multistart optimization to be effective in exploring the space,
we have to make sure the starting points are fairly sampled. Fortunately,
uniformly sampling from the Haar measure over the unitary group amounts
to just two steps [Ozo09; Mez07]:

1. Generate an n× n complex matrix A, sampling the real and imaginary
part of the entries from the standard normal distribution (mean 0 and
variance 1);

2. Through the Gram–Schmidt method applied to the columns of A,
produce a set of orthonormal vectors which will form the columns of
the random unitary matrix U.

In most scientific programming languages, a quick way to get an orthogonal
matrix out of a generic one is the QR decomposition:

A = QR Q unitary R upper triangular, (2.94)

but the decomposition is not unique and there is usually no control on which
algorithm is applied under the hood. For example, using the QR decompo-
sition routine as is in SciPy produces the wrong distribution. The resulting
matrix Q can be however “canonicalized”, by multiplying each column by
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the phase of the corresponding diagonal entry of R. Scipy implements the
correct sampling method in the helper function stats.unitary_group.

Figure of merit

Concretely, the unambiguity condition eq. (1.20) in the Bell measurement
case means that at least one output event has to be discriminating, i.e. has to
occur with nonzero probability for one and only one of the four inputs. The
total probability of successful discrimination we want to maximize is

psucc(U) =
1
4 ∑
(e,β j)∈Sdisc

p(e|β j), (2.95)

where we sum over Sdisc which keeps track of the discriminating events
along with the correspondent discriminated state

Sdisc =
{
(e, β j)

∣∣∣ ∀βi ̸= β j, p(e|β j) = 0
}

. (2.96)

It is tempting to just provide psucc(U) as objective function for the gradient
descent. However, for this to work properly, the function should be at least
continuous over the unitary domain, and differentiable almost everywhere.
From its definition, we can see that not only psucc is not smooth, it is not
even continuous. Moreover, its value is identically zero on a large portion of
its domain: actually, picking a random unitary leads with high probability to
p(e|βi) > 0 for all e, βi (Fig. 2.12). The optimization would stop immediately,
as the gradient would be zero in all directions.

Given that we cannot directly use the success probability, we have to
devise a f (U) that has (ideally) the same extrema of psucc(U), but is at least
continuous with nonzero gradient almost everywhere. The choice of f is not
just a technicality: it might affect the final result, and involves some empiri-
cal tinkering. While we want f and its gradient to be as simple as possible,
we do not have to worry too much about their computational efficiency,
because for big BA the bottleneck will always be the computation time of
the p(e|βi). In the following the dependency of f on U will be understood,
and we will write it instead as a function of the event probabilities.
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~$ python 4_modes_random_unitary.py

(0, 0, 1, 1) [0.002043 0.046756 0.014373 0.078176]
(0, 1, 0, 1) [0.046617 0.047700 0.019362 0.269098]
(0, 1, 1, 0) [0.181250 0.018851 0.168217 0.124671]
(1, 0, 0, 1) [0.306116 0.060476 0.074817 0.056033]
(1, 0, 1, 0) [0.022079 0.086799 0.033373 0.228691]
(1, 1, 0, 0) [0.012422 0.036992 0.010052 0.072311]
(0, 0, 0, 2) [0.072612 0.172534 0.195724 0.048346]
(0, 0, 2, 0) [0.147315 0.173797 0.142019 0.034231]
(0, 2, 0, 0) [0.129856 0.198228 0.151184 0.016960]
(2, 0, 0, 0) [0.079692 0.157867 0.190879 0.071482]
Discrimination probability (zero=1e-08):

[0.______ 0.______ 0.______ 0.______], p = 0

Figure 2.12: Event probabilities for a random unitary. None of the
events is discriminating.

• The first piece we need is something which is “zero if p(e|βi) is
nonzero for at least two values of βi”, which is how psucc(U) be-
haves. In order to enlighten the notation, we switch to Pi

e := p(e|βi)

and pe = (P1
e , P2

e , P3
e , P4

e ). We can start with this sum:

P1
e P2

e + P1
e P3

e + P1
e P4

e + P2
e P3

e + P2
e P4

e + P3
e P4

e =
4

∑
α ̸=β

Pα
e Pβ

e , (2.97)

noticing that it has a positive value as long as only two of the P are
close to zero, but it drops fast to zero when a third one approaches
zero. Minimizing eq. (2.97) for an event e is not exactly what we want,
because it also selects unitaries in which all the probabilities for that
event are zero (in which case the event does not occur and it is not
useful). We modify it by including a direct contribution for the sum
of the probabilities:

fe(pe) =
P1

e + P2
e + P3

e + P4
e√

∑
α ̸=β

Pα
e Pβ

e + ϵ2
. (2.98)
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For one specific event e, maximizing eq. (2.98) ensures we get one
positive probability (if possible). The square root regularizes the
behavior around 0, such that the numerator and the denominator stay
of the same magnitude; the added ϵ ensures good behavior when we
have only one nonzero P and the sum in eq. (2.97) is zero. Then, if
for example P1

e > 0 and P2
e = P3

e = P4
e = 0, fe(pe) ∼ P1

e /ϵ. We can
make the latter large by choosing a small ϵ. However ϵ cannot be
made arbitrarily small, as it serves another purpose: it prevents the
occurrence of numerical overflows (that is, “infinite” values) during
the optimization. We would also like ϵ to have a negligible effect on
the value of fe in the rest of the space (far-from-discriminating events),
so we chose it in such a way that ϵ2 is small compared to the typical
size of the sum under the square root.

We do not know in advance which events will become discriminating
at the (local) optimum. To get a figure of merit which is symmetric
under the choice of discriminating events, we have to sum over all of
them:

f (P) = ∑
e

fe(pe), (2.99)

where P is the (formal) matrix of all probabilities obtained by vertically
stacking the pe, i.e. Pij = p(i|β j).

This figure of merit proved useful for small BA, and was the first
we successfully employed. However when the number N of events
rises, the total probability dilutes among the detection events and
we need to scale ϵ accordingly. Due to the properties of the square
root derivative, which explodes for small values, there is a limit on
how small ϵ can be without causing bad convergence of the gradient
descent.

• In order to solve the latter issue, for bigger BA we substitute fe in
eq. (2.98) with its square, obtaining the objective function:

f (P) = ∑
e

(P1
e + P2

e + P3
e + P4

e )
2

∑α ̸=β Pα
e Pβ

e + ϵ
N

, (2.100)
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which is also easier to compute along with its gradient. This solves
the convergence issue, with most of the starting point now yielding a
“good” optimal unitary at the end of the algorithm.

However when we moved to even higher dimension with non trivial
auxiliary states, where we knew there were schemes breaking the
psucc = 1/2 limit, we noticed that convergence to those schemes
was extremely rare (just a couple in thousands of optimizations).
Now the square at the numerator is giving numerical issues; given
the same total success probability, f (P) is bigger for unitaries that
concentrate that probability in just a few discriminating events rather
than distributing it over many. This introduces an optimization bias
which should be removed. With this figure of merit solon successfully
finds the first iteration of both Grice’s and Ewert–van Loock’s schemes
(p = 0.75, Section 2.3.6).

• If we drop the requirement of smooth gradient, we can access a much
simpler objective function:

f (P) = ∑
e

(
2 max

β j
{Pj

e} −∑
i

Pi
e

)
. (2.101)

This expression is compelling because it is positive with value Pa
e

when Pa
e is the only nonzero probability, making fe = (psucc)e when

(psucc)e ̸= 0. We have to use extra care however, as fe contains the
max function and its gradient is of this form:

∂ fe

∂Pa
e
=

+1 if Pa
e = maxi{Pi

e}
−1 otherwise.

(2.102)

Even if the expression above is not continuous, this choice of figure of
merit improves greatly on the number of iterations needed to reach
convergence, probably due to its (piecewise) linearity.

By choosing an optimization algorithm that operates over the full space
of m×m matrices, we cannot rely on having bounded values for the prob-
abilities Pi

e ; this is an important issue to address for SLSQP, which is al-
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lowed to wander off the unitarity constraints as long as they are satisfied at
convergence. Unfortunately, naturally unbounded (from below) objective
functions like eq. (2.101) suffer greatly from this kind of issue when max-
imized, preventing convergence. At first, the issue was addressed by the
introduction of a regulator,

f ′(P) := f (P) exp
{
−k ∑

i,e
Pi

e

}
, (2.103)

maximizing f ′(P) instead. By tuning k accordingly, the regulator is close to 1
when the total probability is bounded by ∑4

i 1 = 4, while it quickly kills f (P)
when it starts to be evaluated over non-unitary regions. The regulator has to
be incorporated in the gradient too, increasing complexity and adding yet
another parameter to be tuned heuristically. A cleaner approach is to add
a series of box constraints, which SLSQP can strictly enforce, by exploiting
how the unitary subspace is contained in the subset B of matrices with
modulus-bounded entries,

U(m) ⊂ B(m), B(m) :=
{

A ∈ Cm×m
∣∣∣ |Aij| ≤ 1 ∀i, j

}
. (2.104)

Detection events where all photons bunch in the same mode are always
non-discriminating, which we can see by slightly generalizing eq. (2.41) in
the psucc ≤ 1

2 proof of Theorem 2. We could then safely remove such events
from the sum in the objective function, because we know their contribution
is always null. They are however a tiny fraction of all events for big BA,
and accordingly we did not find any measurable difference in performances
after this modification.

We only provided all figures of merit as function of the event probabil-
ities Pi

e , which are available from the symbolic generation via a wrapper
which directly exposes the array P, such that f (U) is actually f (P(U)). How-
ever as far as the gradient is concerned, only the ∂Pi

e

/
∂uij are provided.

We have to compute it through the chain rule for partial derivatives,

∂ f (U)

∂uij
= ∑

i

∂ f (P)
∂Pi

e

∂Pi
e

∂uij
. (2.105)
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Technically, this is suboptimal as we could save some computation by di-
rectly providing a compiled function for f (U). However, this separation
of roles is essential in that it lets us experiment with the objective func-
tion without having to recalculate the computationally intensive symbolic
functions.

We nonetheless have to implement eq. (2.95)—the true efficiency of the
BA—as reference for validating the optimization results. Some numerical
subtleties have to be taken care of here when checking the discrimination
condition eq. (2.96), namely on the definition of “zero” probability. As a
matter of fact, convergence to an optimal unitary is only possible up to a
finite accuracy.22 Even if arbitrary precision numerical techniques exist,23

they incur in a prohibitive overhead for our application. The choice we
make for the bigger ε > 0 we still consider as zero probability can demon-
strably affect our analysis, for example inducing us to be much too severe
in dropping the results of each run if we were to set it to an unreasonably
low value. To be sure to have some leeway, we always compute psucc for
three different choices of ε, [10−4, 10−6, 10−8].

Using f (U) as makeshift psucc(U) we have no guarantee that the ex-
trema of the latter coincide with the ones of the former:

Ep := {U | ∇psucc(U) = 0 } ̸= E f := {U | ∇ f (U) = 0 } . (2.106)

However, from the definition of all the alternatives we discussed above
(eqs. (2.98) to (2.101)) we can at least expect Ep ⊆ E f . Unfortunately, we
did find some explicit instances of “false positives”, where the objective
functions gave a better score for an optimum which actually had a lower
efficiency, i.e. for a pair of optimal unitaries U1 and U2:

f (U1) > f (U2) while psucc(U1) < psucc(U2). (2.107)

22Usually, we are limited by the machine epsilon of the double datatype we use (≃ 10−16), which
is the maximal relative error due to fixed-precision floating point arithmetic. In practice however,
the presence of quadratic expressions in most gradient descent routines limits the achievable
accuracy on the optimization variables to the square root of it (≃ 10−8).

23For example, the GNU multiple precision arithmetic library offers arbitrary-precision integers
and float types, and Julia’s package Optim.jl [MR18] provides interfaces to use them in opti-
mization problems.
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Consequently, we cannot trust the global optima of f (U) to be of any
use, and we will only make use of its local properties. This rules out
global optimization methods such as simulated annealing [NW06]—which
we implemented anyway with little benefit (as expected).

2.6 Optimization results

This Section is devoted to summarizing our numerical and analytical in-
vestigation of Bell analyzers. For various choices of auxiliary states, we
work out the specific upper bound for polarization-preserving BA we de-
rived in Section 2.4 and we compare it to the outcome of the numerical
optimization over generic interferometers. The bulk of our analysis for
different auxiliary states is showcased in Table 2.3. For each one of them,
we collected the local optima from about ten thousand successful maximiza-
tions, from randomly sampled starting points. In the table the maximum
value achieved for each input is shown; For the cases already known in the
literature, we find the same maximal discrimination probability, sometimes
achieved through different schemes. We regard this as (numerical) evidence
of their optimality.

When it converges to a solution, solon reports the corresponding con-
ditional probabilities of unambiguous detection for each Bell state (e.g.
Fig. 2.11). We use the same format in the following to characterize a dis-
crimination scheme, namely a tuple (pϕ+ , pϕ− , pψ+ , pψ− ), when the overall
discrimination probability psucc =

1
4 ∑i pi is not specific enough.

2.6.1 Vacuum and eigenstates of nh

By virtue of Calsamiglia and Lütkenhaus’ result (Theorem 2), the analytical
upper bound psucc ≤ 1/2 is known to hold for unrestricted BA, equipped
with an unlimited number of extra empty modes. We can work out an
extended version of this bound (only valid in the polarization-preserving
case) following the reasoning laid out in Section 2.4, looking at the distin-
guishability of the Bell states in eq. (2.30) after a projection onto the basis of
the “number of horizontally-polarized photons” operator nh. If the auxiliary
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Processor
model

Core
count

Freq.
(GHz)

RAM
(GB)

Laptop Intel Core i7-4710MQ 4 2.5 16

Cluster Intel Xeon E5-2670 12 2.3 256

Table 2.2: Specifications of the two computers we refer to in the text;
the frequency shown is the nominal frequency of the processor. The
cluster is the gmpcs-206 branch of the computing center MésoLUM
of the LUMAT research federation [Més], and the specifications only
refer to a single node.

state is the vacuum or any other state with a fixed number λ̄ of horizontally
polarized photons, γλ̄ is the only nonzero coefficient of the expansion in
eq. (2.60). This leads to just two potentially discriminating outcomes of the
projection:

|HH⟩ |Γ⟩ for |ϕ±⟩, (2.108)

and
+ |VV⟩ |Γ⟩ for |ϕ+⟩, − |VV⟩ |Γ⟩ for |ϕ−⟩. (2.109)

The term in eq. (2.108) is identical for both inputs, while the two in eq. (2.109)
differ by a global phase. Therefore they are not distinguishable at all: in
this case the auxiliary state cannot help resolving the |ϕ±⟩ degeneracy, so
psucc ≤ 1/2.

As a sanity check of our numerical toolchain, the maximum discrimina-
tion probability that we find without extra photons is indeed 1/2, for any
number of modes we could reach. We quickly achieve this maximum on our
laptop (see Table 2.2), and we collect a thousand successful runs in a matter
of minutes for different values of m up to m = 14. With just two photons
in the BA, even in the m = 14 case we spent about an hour of computation
time on a laptop, and a few minutes on a cluster from the LUMAT research
federation (specifications in Table 2.2). The large amount of RAM in the
cluster is needed for some of our biggest optimizations, which is a drawback
of using large compiled functions.
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2.6.2 Extra Bell pairs

The choice of auxiliary resources in this Section are inspired by Grice’s
approach (Section 2.3.7), but motivated by possibly easier-to-implement
schemes. While Grice shows that adding one extra |ϕ+⟩ cuts the degeneracy
of |ϕ±⟩ by half, achieving psucc = 3/4, the auxiliary states used to increase
its success probability past this new ceiling become more complex at each
iteration. From an experimental point of view, it would be interesting to
assess the impact of adding multiple auxiliary Bell pairs, which are less of a
challenge to produce than 2n-GHZ states.

We start by working out our analytic bound, for a slightly more general
auxiliary state, a product of (k/2) copies of24

|Γ1⟩ =
1√
2
(|2H⟩+ |2V⟩), (2.110)

where with |2H⟩ (resp. |2V⟩) we include any state of two horizontally (resp.
vertically) polarized photons. Both Grice’s and Ewert and van Loock’s 3/4
constructions use special cases of |Γ1⟩. We have:

|Γ1⟩⊗(k/2) = 2−k/4(|2H⟩+ |2V⟩)⊗(k/2)

= 2−k/4
k

∑
λ even

√(
k/2
λ/2

)
|Υλ⟩ ,

(2.111)

where |Υλ⟩ is the (normalized) uniform superposition of the terms with
λ horizontally polarized photons, of which there are (k/2

λ/2)—one for every
possible subsystem ordering resulting from the (noncommutative) tensor
product in eq. (2.111). We can now use Theorem 3, in the form of eq. (2.69).
Our auxiliary state only has terms with even λ, therefore

psucc ≤ 1− 1
2

(
∑

λ even
|γλ |2 loc max

|γλ|2 − ∑
λ even

|γλ |2 loc min

|γλ|2
)

, (2.112)

which can be further specialized by instantiating |Γ1⟩, e.g. |Γ1⟩ = |ϕ+⟩. In

24The choice of using (k/2) instead of k is so that |Γ1⟩⊗k/2 is a k-photon state, consistently with
the rest of the notation used in the Chapter.
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this case there are no local minima, and we get:

psucc |ϕ+⟩⊗k/2 ≤ 1− 2−(
k
2 +1)

(
k/2
⌊k/4⌋

)
. (2.113)

Fixing k multiple of 4 for convenience, we can apply a second-order version
of Stirling’s approximation [Rob55],

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e

1
12n , (2.114)

obtaining the asymptotic behavior:

psucc |ϕ+⟩⊗k/2 ≤ 1− 2−(
k
2 +1)

(
1√
πk

2
k
2 +1 e−2/3k

)
= 1− 1√

πk
e−2/3k . (2.115)

When k is even but not a multiple of 4, the inequality (2.115) is invalid, but
we still have

psucc |ϕ+⟩⊗k/2 ≤ 1− 1√
πk

[
1 + O

(
1
k

)]
. (2.116)

The 1/
√

k scaling allowed by the above bound is looser than the 1/k scaling
achieved by Grice schemes. Nevertheless, it does not rule out strategies ap-
proaching success probabilities arbitrarily close to 1 by using such auxiliary
states, much simpler than the ones needed for Grice schemes.

Our numerical search converges in just about a minute to the psucc = 3/4
schemes on our laptop, with a memory consumption of about 300 MB. Using
two auxiliary Bell pairs (k/2 = 2) we could not find any improvement over
k/2 = 1 when including non-polarization-preserving BA. This optimization
uses significantly more resources: we spent about 4 hours with 20 parallel
threads on the cluster, each using 3 GB of RAM, for the collection of a
thousand successful runs. For three Bell pairs, our polarization-preserving
bound in eq. (2.113) gives psucc ≤ 13/16 = .8125, this time allowing for a
scheme beyond 3/4. However, a Bell analyzer this big is barely out of reach
for our program, even on the cluster. For comparison with a similar-sized
case, the second iteration of Grice’s strategy takes about 48 hours for each
run to converge to a local optimum. We could collect just 12 optimizations,
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obtaining psucc = 9/16; unfortunately this is well below the already known
7/8 scheme using this resource.

2.6.3 Extra single photons

The possibility of improving the discrimination probability through the
use of extra unentangled single photons is of great experimental interest,
especially with the recent development of high-efficiency single photon
sources with near ideal indistinguishability [SSW17]. This kind of auxiliary
state would indeed be the first choice for a real-world implementation
of a better-than- 1

2 Bell analyzer. As a matter of fact, without some kind
of initial manipulation of the auxiliary photons, we already know that
polarization-preserving transformations are useless (as they fall under the
case of Section 2.6.1).

Ewert and van Loock explore the use of two single photons per auxiliary
mode pair [supp. mat of EL14, section D] as alternatives to their auxiliary
states (we reviewed their approach in Section 2.3.8). Their trick is to apply a
leading polarization-dependent transformation—which in path-encoding
means mixing together the mode pair forming the qubit—obtaining the
Hong–ou–Mandel state |Γ1⟩EvL = 1√

2
(|20⟩ + |02⟩). Then, the γλ coeffi-

cients for the k-photon state |Γ1⟩⊗k/2
EvL are analogous to the ones for k/2 Bell

states |ϕ+⟩⊗k/2. We can therefore apply the same reasoning laid out in
Section 2.6.2, arriving at the same bound of eq. (2.113):

psucc |1⟩⊗k ≤ 1− 2−(
k
2 +1)

(
k/2
⌊k/4⌋

)
, (2.117)

which is how we obtained the red curve in Fig. 2.9.

We can try to exploit in a different way our bound for k/2 photon
pairs if we subscribe to a similar preprocessing, namely that each photon
enters the network polarized at an angle θ = ±π

4 . With this restriction in
place, starting from k ≥ 4 we get a tighter upper bound to psucc, compared
to e.g. the photon-number based bound in eq. (2.74). For example, with
4 photons the latter gives psucc ≤ 5/6, while eq. (2.117) gives psucc ≤
1− (2−3(2

1)) = 3/4: the latter is actually saturated by Ewert and van Loock’s
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4-single-photon variant. It seems interesting to apply the bound to the
state of 12 single photons |1⟩⊗12 → |Γ1⟩⊗6, which they use to slightly
break the 3/4 barrier. In this case, a direct application of eq. (2.117) leads
to psucc ≤ 1− (2−7(6

3)) = 27/32, which is indeed larger than the 25/32
efficiency they give an explicit scheme for. We can do better if we enforce
the BA to have the same symmetry they use after the first beamsplitter
(Fig. 2.7). In this case, we apply the bound to half of the auxiliary state (and
assume the same probability of discrimination for the other symmetrical
arm). Under this further restriction, psucc ≤ 1− (2−4(3

1)) = 13/16, which is
closer to (but still above) 25/32.

On the numerical side, we indeed find the (1, 1, 1
2 , 1

2 ) scheme when
initialized with a 4 single photon auxiliary state. We do not manage to
improve its probability of success; as before, we regard it as evidence of
optimality even in the polarization-dependent case. This time we find
another scheme achieving the same total success probability with a different
discrimination pattern: (1, 3

4 , 3
4 , 1

2 ). Are there schemes which improve on
1/2 with just two single photons, instead of 4? As a matter of fact we find
two of them, (1, 1, 1

4 , 1
4 ) and (1, 3

4 , 1
2 , 1

4 ), achieving psucc = 5/8 = 0.625.
In retrospect, the first of the two can be easily derived by “halving” the
4-photon Ewert–van Loock scheme, i.e. by just inputting the vacuum in
one of the two symmetric arms; it was indeed independently obtained
by van Loock in [Loo17]. We lay out an explicit interferometer for it in
Fig. 2.13. It is especially relevant experimentally, since it is (as far as we
know) the simplest scheme achieving a success rate above 1/2. It can be
noted that this halving technique can be applied to all of their constructions:
for the 12-photon scheme, which uses (2 + 4) + (2 + 4) single photons and
achieves a probability of 25/32, we can work out a similar intermediate
scheme with (2 + 4) + (2) = 8 extra photons, achieving psucc = 49/64.
While this scheme would be interesting to probe numerically, the size of
this BA (m = 12, k = 8) proved to be computationally unfeasible given our
resources.

An odd number k + 1 of single photons in the auxiliary state does not
improve the discrimination probability over k, in all our numerical experi-
ments. This is in line with the polarization-preserving bound (we already
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Figure 2.13: The first “half” Ewert and van Loock single-photons
Bell analyzer, in polarization encoding. It performs a Bell measure-
ment with psucc = 5/8 using two unentangled extra photons, two
beamsplitters, a polarizing beamsplitter, two phase shifters and three
polarization-resolving detectors.

noticed it at the end of Section 2.4), and was independently observed by
Smith and Kaplan [SK18]. Recently, the latters tackled with a substan-
tially different approach a similar optimization for auxiliary states of single
photons, but for ambiguous measurements: to this aim, they work in full
Fock space and they maximize the classical mutual information between
state preparation and measurement. Remarkably, despite this difference
we find corresponding results for auxiliary states up to five photons. They
find a slight improvement of their mutual information at the six photons
mark (again, for ambiguous measurements [Smi17]). For our part, with
six photons we could not find any scheme which goes beyond psucc = 3/4
(Table 2.3). The polarization-preserving bound allows for a scheme with
psucc ≤ 13/16, which does not exclude an improvement over 3/4.

2.6.4 GHZ and W states

The last kind of auxiliary resource we investigated are some families of
multipartite entangled states. From the start, a 3-GHZ state

|GHZ3⟩ =
1√
2

(
|000⟩+ |111⟩

)
(2.118)
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does not seem to help with respect to a simple Bell pair, and we still only
attain 3/4 discrimination probability. And neither does a 4-GHZ, at the
expense of more computational power; we wrongly expected the latter to
give better results, given its use (along with a companion Bell pair) in the
psucc = 7/8 iteration of Grice’s schemes (Section 2.3.7). The polarization-
preserving bound paints an even grimmer picture: it predicts psucc ≤ 1/2
for all |GHZk⟩ bigger than a Bell pair (k > 2). At least for odd k, pre-rotating
the polarization of one of the photons by ±π

4 (in the polarization-encoding
equivalent scheme) correctly raises the bound to 3/4. The same value can be
achieved by a trivial interferometer applying a π

4 rotation on k− 2 auxiliary
modes, which leaves the remaining two photons in the |ϕ±⟩ state.25 The
latter can then be used as described above to achieve psucc = 3/4.

Another interesting state to investigate is the three-photon W state,

|W3⟩ =
1√
3

(
|100⟩+ |010⟩+ |001⟩

)
. (2.119)

Like |GHZ3⟩, it is a genuine 3-party entangled state but, unlike all other
states studied above, it is neither a graph state nor a stabilizer state. Its
peculiar symmetry is likely the source of the optima we find (end of Ta-
ble 2.3). Having the same number of horizontally polarized photons in
each term, this state is as useless as the vacuum for polarization-preserving
interferometers, as showed in Section 2.6.1. Rotating the polarization of
two photons by π

4 the same way as before results in the more interesting
bound psucc ≤ 2/3, and further manipulation (explained below) raises it to
psucc ≤ 3/4. The best optimum we find numerically, using the minimum
amount of modes (m = 10), is psucc = 5/9, significantly lower than 3/4.
This optimum is extremely rare (it occurred only once in more than 20 000
runs). We observe the figures of merit in this case to heavily suffer from
the issues described in eq. (2.107), about the relationship between f (U) and
psucc(U).

However, in this case we could find a better scheme by manipulating
the state “by hand”. By measuring the last two spatial modes we can apply

25The phase of the Bell pair is determined by the parity of the measurement of the k− 2 photons,
and its effect is to simply exchange the photon patterns for the detection of |ϕ+⟩ and |ϕ−⟩.
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a transformation such that the remaining modes can be, depending on
the result of the measurement, either in the state 1

2
[
(a†

m−1)
2 − (a†

m)
2]|0⟩

or in |ϕ+⟩. Applying to these modes the unitary used in the psucc = 3/4
Grice strategy gives a scheme for |W3⟩ with psucc = 7/12. While solon

correctly identifies this scheme as a local optimum when we put it in as
the starting point of a run, an added Gaussian noise of average magnitude
well below the requested convergence accuracy is sufficient for the gradient
descent to diverge from its narrow valley. This numerical fragility may
be the reason why we could not find this optimum from random starting
points. Applying the analytical bound to such transformed auxiliary state
gives us psucc ≤ 3/4. Interestingly, adding at least two vacuum modes
(m ≥ 12) allows solon to reach the improved discrimination probability of
0.5785508(2), which is slightly below our explicit 7/12 = 0.583.



Table 2.3: Summary of known analytical and numerical results for different auxiliary states. As usual, m
is the number of modes (in path encoding) and k the number of auxiliary photons. pnum

succ is the optimum
obtained through solon; when a fraction is given, it agrees with the optimum found up to 9 decimals.
pana

succ is the best known explicit analytical result. pu.b.
succ is our analytical upper bounds for polarization-

preserving Bell analyzers (Section 2.4), and pu.b.
succ(k) is our bound for arbitrary auxiliary states with the

same number of photons. When matching the best known result, the bounds are marked in bold.

State m k pnum
succ pana

succ pu.b.
succ pu.b.

succ(k)

Auxiliary vacuum modes
|0⟩ 4 – 14 0 1/2 1/2[CL01] 1/2[CL01] a 1/2

k/2 extra Bell pairs

|ϕ+⟩⊗k/2 2k + 4 even — b ≃ 1− 1√
πk

c k + 1
k + 2

|ϕ+⟩ = |Υ1⟩G 8 2 3/4 3/4[Gri11] 3/4 3/4
|ϕ+⟩⊗2 12 4 3/4 d 3/4 5/6
|ϕ+⟩⊗3 16 6 e d 13/16 7/8

k extra photons

|1⟩⊗k k + 4 even — b ≃ 1− 1√
πk

c k + 1
k + 2

|1⟩⊗k k + 4 odd — b same as above, for k− 1

|1⟩ 5 1 1/2 d d 1/2 1/2
|1⟩⊗2 6 2 5/8 5/8 3/4 c (5/8) f 3/4
|1⟩⊗3 7 3 5/8 d d 3/4 c (5/8) f 3/4
|1⟩⊗4 (→ |Υ1⟩⊗2

EvL) 8 4 3/4 3/4[EL14] 3/4 c 5/6
|1⟩⊗6 10 6 3/4 d d 13/16 c 7/8
|1⟩⊗8 12 8 e 49/64 13/16 c (25/32) f 9/10
|1⟩⊗12 16 12 e 25/32[EL14] 27/32 c (13/16) f 13/14

Grice Schemes [Gri11] (including |Υ1⟩G above)

|Υ1⟩G · · · |ΥN−1⟩G 2N+1 2N − 2 —
k + 1
k + 2

k + 1
k + 2

k + 1
k + 2

|Υ1⟩G |Υ2⟩G 16 6 9/16 g h 7/8 7/8 7/8

Ewert–van Loock schemes [EL14] (including |Υ1⟩⊗2
EvL above)

(|Υ1⟩EvL · · · |ΥN−1⟩EvL)
⊗2 2N+1 2(2N − 2) —

k + 2
k + 4

k + 2
k + 4

k + 1
k + 2

(
k + 2
k + 4

)f

GHZ states

|GHZk⟩ 2k + 4 k — 3/4 i 3/4 c 1− 1
⌈k + 1⌉even

|GHZ3⟩ 10 3 3/4 3/4 i 3/4 c 3/4
|GHZ4⟩ = |Υ2⟩G 12 4 3/4 3/4 i 3/4 c 5/6

W State

|W3⟩
10 – 11
12 – 14

3
5/9 h

0.5785508(2) h 7/12 2/3 c (3/4) j 3/4

a Also holds for polarization non-preserving interferometers.
b No generic scheme is known.
c Polarization-preserving bound, obtained after rotating the polarization of some or all modes by π

4 .
d The best known interferometer corresponds to a smaller auxiliary state, together with ignoring extra modes.
e Computation out of reach for our program.
f For networks which start by interfering the unknown state on a balanced beamsplitter, analyzing each half separately.
g Computation at the borderline of our computing capacity: best of a three weeks-long batch of 12 runs.
h Numerical result worse than the best known analytical scheme.
i Achieved by measuring all auxiliary photons and using the remaining state in a “one extra Bell pair” scheme.
j Obtained through a more complex transformation of the input, exposed in the main text.
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2.7 Summary and conclusion

We conclude the Chapter with a review of our results on linear optical Bell
measurement with auxiliary states, and a brief discussion of their future
applications and extensions.

Our findings

After a review of the main theorems and measurement schemes present
in the literature, we started by proving in Section 2.4 an analytical upper
bound to their success probability, in the restricted case of polarization-
preserving Bell analyzers. We have provided various forms of the bound:
a tighter one, based on the distribution of the photons’ polarization in the
auxiliary state, and a looser one, based on just the number of photons. We
noticed that the tight bound matches some published schemes, and the
looser one shows similar performances if the auxiliary state is preprocessed
by applying a very simple rotation in polarization space. While we could
not find a proof this preprocessing is optimal, our numerical results support
this conclusion for the cases we analyzed.

Since analytical results could only take us this far, in Section 2.5 we
have presented the development of solon, a numerical package for the
optimization of Bell analyzers over the space of all interferometers. solon
works in the polynomial representation and is capable of symbolically
evolving a generic input state through the interferometer, computing an
analytical expression for the probabilities of each output detection event.
We discussed how to reduce the overall computational cost, by exploiting
symmetries of the problem. Then, we conducted a numerical search for the
candidate optimal value of psucc(U) for various auxiliary states of interest
(Section 2.6). Our final product is Table 2.3, which also summarizes the
analytical bounds.

Through both the analytical study and the numerical optimization we
find evidence (but no proofs) for the optimality of known small schemes
in the general case. The schemes with two extra photons are the most
promising for near-term implementations: we found no evidence of schemes
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beating Grice’s 75%, which uses an auxiliary Bell pair, but we discovered
the simplest better-than-50% scheme known so far, using two unentangled
auxiliary photons.26 Just as interesting, we showed evidence that employing
many copies of a Bell pair leads to a worse scaling of psucc than the one
achieved with Grice’s |GHZn⟩ states, which may give insights into why the
complex entangled states used in both Grices’s [Gri11] and Ewert and van
Loock’s [EL14] papers seem to be needed to approach psucc → 1 as quickly
as they do.

We built solon to be fast at evaluating Bell analyzers, but the flexibility
of Python meant that it could be readily adapted to other scenarios. As an
example, we have used it during discussions with Chabaud et al. [Cha+18],
helping them to gain insights on the effect of Hadamard networks, helping
in the design of their linear optical swap test.

Computational resources

Some interesting cases lie beyond the computational capabilities at our dis-
posal. There is certainly room for improvement, e.g. by further optimization
of the code or by just employing more CPU time. It is unfortunately unlikely
we could get rid of the inherent exponential scaling, which is tied to the
hardness of calculating permanents (see Section 2.2.8). However the sym-
metry of the Bell states and the unambiguity constraints, which enforce a
structure on the matrix entries—by imposing many null probabilities—may
enable significant speedups (even exponential ones), even if the overall
scaling stays exponential. Recent work in [Tic11, Appendix B] and [Shc13,
Appendix D] suggest optimized algorithms for computing the permanent of
matrices with repeated columns/rows; in the event of a rewriting of solon’s
core, they may help improve our computation time. The very recent (2021)
result in [GGM21] suggest that it might be possible to replace the numerical
optimization gradient descent with an iterative process which converges
more efficiently.

26This scheme was also discovered independently by van Loock [Loo17]
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Similar projects

Given that optimization over interferometers has a wide range of appli-
cations, other projects have implemented similar functionalities since we
wrote solon. As far as we know, none is specifically tailored to Bell mea-
surement. We are aware of linopt [SD18], written in C++ with Python
bindings, and the more recent bolt [MY21], which uses (among other opti-
mizations) fast gradient descent techniques from machine learning. We did
not compare the performances of these approaches, but we can note that
leveraging the latter (bolt) could be useful in finding optimal schemes for
Bell state generation, other than measurement.







Chapter 3

Quantum position verification

Paris-la-neuve, year 2250

FGR22 took off his glasses and left his desk, ready for yet another cup of
coffee.

It had been a long day. It wasn’t just that the police needed his services:
after all, a cryptocommunication expert—be it of the quantum or regular
type—was an obvious choice for this matter. In fairness, he was more used
to dealing with machines than your everyday investigator. His machines,
though, did not usually decide to go crazy and lock an entire floor of the
federal bank, along with twenty-three hostages, on a calm Sunday night. . .

An android, gone rogue! As a robot himself, he found the concept
difficult to grasp. He went through the evidence another time, pondering
the events of the past hours. No one, not even the hostages, had actually
seen the robot, which was likely hiding in one of the many locked offices.
However, it had not been difficult to verify his identity: his name was
ACH46, a recent model. With microsecond speed and cold precision, he
had answered each and every question FGR22 had asked over the reserved
frequency. He wanted money, a lot of it: he was prepared to kill the hostages
with his bare hands if the police didn’t comply. Clearly, some serious
malfunctioning had occurred—usually, robots weren’t even able to lie, let
alone kill. In this situation, the police couldn’t risk an assault to the building.

99
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However, FGR22 felt that something was off about the whole story. How
did ACH46 got there in the first place? The latest records tracked him in
San Francisco, thousands of kilometers away, mere days before he showed
up at the bank. No airport nor spaceport had registered him since. And
even if the police had decided to pay, how on Earth was he thinking to
escape capture? It’s not as if he could just vanish. . . no, there had to be a
bad assumption somewhere.

An idea was starting to form in his head. He was going to need a better
clock.

***

He hopped on the reserved frequency. ACH46 was still there.
“Did you make up your mind? I’m serious about the hostages” he said.
“We are working on it” FGR22 replied. “Now, I need you to answer these
questions. They are simple calculations, and I want you to answer as fast
as you can.” He plugged himself to the atomic clock he managed to find
among his old stuff, and sent the first question. The answer was fast, but
not quite as fast. He asked the second question, for good measure. He did
not need to send a third.

***

FGR22 slammed the door of the precinct, a triumphant grin on his face.
“He tricked us all! He cannot be in the building. He is not there!”

3.1 Introduction

It is difficult to understate how essential cryptographic protocols are in the
modern digital world, where most communication is conducted remotely.
One the main problems they solve is establishing trust and protecting
against a lack thereof: in the first case, through public-key schemes it
is possible to authenticate a user by certifying its possession of a special
secret, without ever needing to reveal it. Then, private (or symmetric)
key schemes ensure communication cannot be understood by unwanted
listeners. Most of these features (with some exceptions) are enabled by
mathematical assumptions which, albeit widely believed to be true, are still
object of debate. This is especially true of public-key schemes, of which the
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most popular (and widely used in applications today) are already in need of
replacement with the advent of quantum computers [Ala+19], due to Shor’s
factorization algorithm [Sho94]. It still isn’t clear if the replacements—which
go by the umbrella-term post-quantum cryptography—will hold ground in
the years to come [BL17].1

However, we can imagine different ways to gain trust in a third party.
One way is through position-based authentication, which aims at using the
physical location of a party as his only token of trust. Position verification,
which refers to the possibility of securely convincing a third party about
one’s position, is the cryptographic primitive at the heart of it.2 The applica-
tions of position-based schemes have some overlap with existing public-key
schemes, but they are not a subset nor a complete replacement of them.
For example, a connection with servers of a bank which can be certified to
be physically located in the bank’s building could be trusted in a similar
fashion (or even more) than one authenticated through their private key,
which might have been stolen—or one of the signing authorities compro-
mised. Many of the services used everyday use self-reported location as an
essential component: from ride-share apps to interactive augmented reality
games.3,4

Finally, as the following review of the literature (Section 3.2) will hope-
fully show, asking whether position verification is even possible in the rel-
ativistic (quantum) setting opened a fruitful research direction, with deep
connection to fundamental questions in both quantum and computational
complexity theory.

1The confidence we can gain about the security of these kind of protocols is ultimately based
on the time and effort spent trying to break them, as rigorous proofs are often hard to come by; it
is the opinion of the author that only the wide availability of error-corrected quantum hardware
would the raise the amount of trust we can put into them to today’s level of confidence in the
security of RSA against classical attacks.

2This Chapter only deals with position verification, from which a position-based authentication
scheme can be constructed [Cha+09].

3Another example is the pizza-delivery problem [Sch11], which requires a weaker version of
position verification called distance bounding and discussed in Section 3.2.1.

4In both cases, the possibility of securely verifying the self-reported position would be useful,
as it would avoid certain kinds of attacks. A driver might want to report itself in multiple
locations at once, in order to get more rides than the competition; or, in the case of augmented
reality games, one of the most popular cheating methods to progress unfairly is to modify GPS
location data on the fly (a weak form of GPS spoofing [Tip+11]).
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3.1.1 General features

While the various position verification protocols discussed in the following
each have their own peculiarity, we can sketch here some general features
of both the protocols and the attack models which should be common to
most of them. If needed, we will be explicit about the exceptions. In this
Section we also define the notation and conventions used throughout the
thesis, which serves the additional purpose of standardizing the overview
of the literature we make in Section 3.2. A potential source of confusion,
for example, is the naming choice for the actors: depending on the focus
of each papers, the prototypical Alice and Bob have been used either for
the protocol’s verifiers, for the prover or for the colluding attackers. When
dealing with 1D protocols, we choose the latter convention.

Protocol

First, the stage of almost all protocols (with the notable exception of [Unr14])
will be flat Minkowski spacetime of D spatial and 1 time dimension. A
(quantum) PV protocol involves two main actors:

• A prover, which publicly claims to control a region P in space. At that
location, which can potentially move around (i.e. P(t)), it is expected
to be able to send and receive classical and/or quantum messages
from and towards all directions, and perform classical and/or quan-
tum computation. How the prover responds to inputs is part of the
protocol, and as such is public knowledge. The prover is assumed
untrusted by the verifiers, which also means it shares no secret with
them which could be used to prove its identity.

• A group of k verifiers, which would like to acquire cryptographical
evidence about the correctness of the prover’s claim. Each verifier
controls a station in a small neighborhood around location Vi, which
we will always assume to be a point—or, equivalently, much smaller
than the distance among them. From there, they send some challenges
in the form of bitstrings or quantum states, timed in such a way to
simultaneously arrive at P (in its frame of reference). Only the regions
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V1 V2P

Figure 3.1: The setting for most of the PV protocols in this thesis is
the 1D real line.

the verifiers control are assumed to be trusted. They share secure
channels among themselves, which they can use to synchronize their
clocks, share resources (often in the form of classical randomness)
and check the prover’s answers. However, the communications with
the (untrusted) prover cross through uncontrolled territory, and their
messages can be modified, jammed and blocked in any way by a
potential attacker impersonating the prover. The verifiers are assumed
to be static: in general, we will refer to them by their location Vi, with
a slight abuse of notation.

Geometrical consideration show that k ≥ D + 1 is needed to ensure the
region P is small. Usually, k is set to the smallest possible value, k = D + 1.
In most of this introduction (and in all of our results), D = 1: all parties
are constrained on a line (Fig. 3.1). In this case, two verifiers V1 and V2

suffice. In order to better take advantage of the restrictions imposed by
special relativity, all communication is expected to occur at the speed of
light and all computation to be performed in negligible time, if compared
to the signals’ round trip time. For completeness, we note that deviations
from this ideal case can still result in functional protocols, usually leading
to a looser bound on the region P that can be authenticated.5 The final
verification process is a collaborative effort by the verifiers which is carried
out over a private channel after interacting with the prover.

Due to the need to accommodate imperfections and catch lucky adver-
saries, a protocol might use either sequential or parallel repetitions of the
same basic challenge-and-response unit, in order to amplify the overall
probability of success. In this work we will sometimes commit abuse of
“definition” by identifying the protocol with one of its rounds, in order to
ease the comparison among them. Nonetheless, it should be kept in mind

5It is not straightforward in general to define the verifiable region for a given configuration of
verifiers; the issue is tackled formally for example in [LL11; Unr14].
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that the security of the single round does not directly translates into the
security of its parallel (or serial) composition. Indeed, this feature has to be
proven on a per-protocol basis, as it is done for example in [BK11].

Attack model

The space around P could be controlled by malicious actors (also called
adversaries). The prover itself could lie about its position, or it could be that
third parties want to fool the verifiers into believing they are also located at
P. We can model their actions by placing them without loss of generality at
a number of locations Ei, anywhere in the space outside of P and the Vi. In
practice, we will assume each adversarial station Ei to be located somewhere
along the geodesic connecting Vi and P. Ideally they are only constrained by
the laws of physics: they are allowed to interfere with any communication,
share any kind of correlation and compute any (computable) function. It
will be clear in the following that allowing this much power turns out to
prevent the possibility of secure PV altogether, albeit at a large resource cost
for the adversaries. In order to design practical protocols, different kinds
of restrictions have been imposed on the adversaries’ resources. The most
common limitation the literature (and us) has focused on is the amount of
quantum correlations—in the form of entangled states—that attackers are
allowed to share at the start of a verification round. Except when explicitly
stated, classical communication and computational power are commonly
considered free resources.

V1 V2PA B

Figure 3.2: The space around V1 and V2 is not trusted: here, adver-
saries A and B set up stations of their own.

3.2 The PV protocol zoo

In this Section we present an overview of the recent results about (quantum)
position verification, including the fascinating history of its origins, pieced
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together from the early papers. It is not intended to be a full review:6 its
aim is to provide justification for our work, and the focus will be on the
papers which had some influence on it—albeit sometimes indirectly.

Remark. While we occasionally mention error-tolerance, most results con-
cerning the other experimental aspect of position verification are absent
from this review. This include its loss-tolerance properties [QS15; CL15;
Lim+16; All+21] and the discussion around its practical implementations
[GLW13; DS21]. This is only justified by the narrow scope of our work, not
by lack of interest in the community.

3.2.1 Proto-PV protocols: distance-bounding

In order to get some intuition about the role played by relativistic constraints
on PV protocols, we briefly introduce distance bounding, a related but weaker
task. As the name suggests, a distance bounding protocol should provide a
certificate that the prover cannot be located farther than a certain distance
r from the verifier. This kind of protocol was first introduced in [BC94],
and it was designed to try to address a class of man-in-the-middle attacks.7

Broadly speaking, distance bounding consists in prepending a signature-
based identification scheme (e.g. Feige–Fiat–Shamir [FFS88]) with carefully
timed call-and-response rounds of communication between the verifier and
the alleged honest prover, which then signs the bits he sent and received.
The physical principle on which its security is based is called no-signalling.
Provided that the laws of nature do not permit faster-than-light communi-
cation, the round trip time (RTT) of the verifier’s challenge can be converted
to an upper bound on the physical distance between the prover and the
verifier. While distance bounding can be performed by entirely classical
means, its implementation in the real world is not trivial, requiring (for the
prover) dedicated electronics to deal with the strict constraints (∼1 ns) on
the processing delays.8 For a recent review, see [Avo+18].

6Which, by the way, the field is definitely in need of!
7In a man-in-the-middle (MITM) attack, a malicious party inserts itself into a conversation

between A and B, playing the role of B when talking to A and vice versa.
8This explains why, in the sci-fi story at the start of this Chapter, FRG22 needed access to an

atomic clock to distance-bound ACH46—providing evidence that, barring a violation of special
relativity or an error on his part, his claimed position was incorrect.
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3.2.2 PV from distance bounding: a no-go theorem

We might be tempted to construct a PV protocol by simply composing two
or more distance bounding protocols and then, similarly to how timing-
based technologies like GPS work, performing a trilateration to obtain the
secure region P. In 1D, this might look something like Fig. 3.3a. One could
argue its security by noticing that any prover which is not entirely located
at P is bound to fail to convince at least one of the two verifiers V1, V2. This
intuition turns out to be wrong when applied to not one, but two colluding
adversaries, which can act in concert—each one separately impersonating
the prover. Now the verifiers have a new option: they could also collaborate,
asking the prover to compute a function f (x, y) = b, sending the inputs x, y
from opposite directions. Unfortunately, this also does not help: it is not
difficult to see from the spacetime diagram in Fig. 3.3b that both attackers
can receive both inputs in time to simulate the prover successfully. Can we
find a secure protocol, or is it the case that adversaries can always break it?
Indeed, the following general result can been proven:

Theorem 4 (Classical PV is impossible [Cha+09]). No classical protocol can
achieve secure PV, even under strict computational assumptions (unrestricted
verifiers, BPP attackers/provers).

This no-go theorem can be circumvented in a couple of ways. One is to
find the correct restriction on the adversaries’ ability to manipulate infor-
mation, one powerful enough to enable PV. The latter is found by the same
authors [Cha+09] in the Bounded Retrieval Model (BRM), which only allows
the attackers to retrieve (i.e. read and process) a constant fraction of the
information passing through their location. While this assumption could be
expected to hold in specific situations, it seems difficult to enforce in most
practical cases.

The structure of the known attacks however suggests a different ap-
proach. In order for both adversaries to correctly compute f (x, y), they
each need a copy of the two inputs. If at least one of them was encoded
in a quantum state, the no-cloning theorem would prevent its duplication,
rendering this specific attack impossible. This kind of observation sparked
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Figure 3.3: Spacetime diagrams of a 1D PV protocol which asks the
prover to compute f (x, y) = b, and a general attack from colluding
adversaries A and B. Lines at 45° represent lightspeed communica-
tion.

the search for secure quantum position verification (QPV) protocols. In the
next Section, we summarize its history and early development.

Finally, a more subtle analysis of the assumptions reveals that Theorem 4
requires all parties to be fully classical, which includes both communica-
tion and computation. Allowing the prover quantum computation enables
classically-verifiable PV protocols, which were recently constructed by Liu et
al. in [LLQ21].

QPV: an origin story

The history of position verification in the quantum setting has been, to
date, relatively short: it mainly involves work published in the last decade.
Nonetheless, its first few years have been quite interesting—one might
say exemplary—from the point of view of scientific research, as protocols
were being proposed as secure just to be broken a short while after with
the development of a new technique. We will present a short summary of
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how the field evolved since; a useful resource to have on hand is Christian
Schaffner’s dedicated webpage [Sch11], where a timeline is maintained.

3.2.3 Malaney and Chandran et al. : a new hope

The very first works on QPV to appear in the scientific literature (as preprint,
in early 2010) are Malaney’s articles on “quantum location verification”
[Mal10a; Mal10b]. He discusses a protocol based on sharing encrypted
entangled states between the verifier and the prover, without giving a
rigorous proof of its security. Nonetheless, he claims it secure on the ground
of a similar no-cloning argument as the observation made in the previous
Section: QM forbids the general attack at the core of the classical no-go result
(Theorem 4). Independently and in parallel, a paper by Chandran et al.9

[Cha+10] appeared as preprint giving an analogous quantum protocol10 but,
this time, providing a rigorous proof. Position verification was becoming,
in the authors’ words:

. . . one of the rare examples besides QKD for which there is a
strong separation between classical and quantum cryptography.

But that feeling did not last for long. In an unexpected turn of events,
Kent, Munro and Spiller [KMS11] responded in August of the same year
with an attack to both protocols, despite their alleged security. How? It
turns out that Kent had been thinking about quantum position verification
since 2002, when he called it quantum tagging. In various discussions, the
authors of [KMS11] had discovered the protocols above and their attacks;
in 2006 they had filed and were granted a patent for a quantum tagging
device [Ken+06]. In the 2010 paper, they observe that both of the previous
results had made the hidden assumption that quantum information always
needs to follow a definite spacetime path due to its unclonability, or in other
words, that it has to be uniquely localized at all times. In fact, they continue,
this might not to be the case: a qubit can be placed in a superposition of
trajectories, its information content tied to a classical (clonable) variable—as

9This work shares most of its authors with the paper containing the classical impossibility
result in Theorem 4 ([Cha+09]).

10The protocol is essentially Protocol 2, defined in Section 3.2.5.
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it happens in the teleportation protocol [Ben+93]. The next Section gives an
overview of their attack, which requires entanglement to be shared among
the colluding adversaries. Was this the only hidden assumption in [Cha+10]?
Indeed, it was. It turns out that assuming unentangled adversaries is enough
to restore security in Chandran et al.’s result, which they show in a massive
update to their paper [Buh+14], presented in Section 3.2.6.

3.2.4 Kent, Munro, Spiller: first insecurity proof

After having introduced the context in which the quantum tagging paper
[KMS11] was published, we summarize one of the example protocols they
formalize, along with its attack. From this paper (along with Lau and Lo’s
[LL11], see Section 3.2.5) stems the generalization we made and analyzed in
this thesis (Section 3.3). The authors discuss a total of six protocols:

• The first three are “sensible” protocols which appear secure following
the (flawed) reasoning of Malaney’s and Chandran et al.’s. They can
all be attacked by a kind of teleportation strategy. Of them, scheme III
is inspired by six-states BB84 [BB84] and is the most interesting to us.

• They then present three protocols which cannot be attacked with their
simple teleportation strategy. They leave the matter of their security
open, but they add some features in the hope it may ease future
security proofs.

In the following, we work in one spatial dimension and we will adapt
the original paper’s notation to the conventions made in Section 3.1.1. All
remarks we noted there about signal timings and computational delay apply
also here. A peculiarity of this protocol with respect to the generic model is
that the verifiers do not need shared randomness, which comes at the cost
of a higher rounds count needed to certify honest behavior.

Protocol 1 (QPVsix-states [KMS11, scheme III]). The verifiers control stations
V1 and V2, respectively to the left and to the right of P. During each round
of the protocol:
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1. From V1, a qubit |ψ⟩ randomly chosen from the set

S = {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i⟩ , |i∗⟩}, (3.1)

where |i⟩ = 1√
2
(|0⟩+ i |1⟩), is sent towards P.

2. An independently chosen classical message b ∈ {0, 1, 2} is sent from
V2, which instructs the prover to measure |ψ⟩ in one of three bases:

B0 = {|0⟩ , |1⟩}, B1 = {|+⟩ , |−⟩}, B2 = {|i⟩ , |i∗⟩}. (3.2)

3. V1 and V2 check they receive the resulting classical bit x on time.

After multiple rounds, on a secure channel the verifiers exchange the bits
they received and check that the measurement statistics agree with the states
and basis information they sent.

Colluding adversaries Alice and Bob have to control stations A and B,
respectively between V1 and P and between P and V2, in order to spoof
the timing check. The naïve security argument goes: as the states S are not
all orthogonal, they cannot be distinguished immediately at A, nor a copy
can be sent to B. Namely, the correct measurement outcome x can only be
obtained at a location in which both b and |ψ⟩ are present at the same time,
so that either A has to wait for b or B has to wait for |ψ⟩, necessarily failing
to answer in time to either V2 or V1.

Teleportation attack

However, Alice and Bob are allowed to also locally manipulate some quan-
tum resources, based on the information they receive. In particular, let them
share a bipartite entangled state, specifically an EPR pair |ϕ+⟩AB. Alice can
then perform a teleportation measurement (a projection onto the Bell basis)
on the joint system formed by the qubit she receives and her half of the en-
tangled pair, which gives her one of four classical outcomes u = 1 . . . 4 and
teleports |ψ⟩ on Bob’s side with an applied teleportation correction—which
depends on u, unknown to Bob—taken from the set U = {I, X, Z, XZ}.
Now, the usual teleportation should be completed by Alice sending u to
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Bob, which will apply the corresponding correction in order to get |ψ⟩;
transmitting u from Alice to Bob however takes time, and we would just
fall back to the naïve argument. Is Bob really powerless before receiving
u? The key insight of KMS is that all the teleportation corrections in U
map the bases Bi to themselves. This enables Bob to make use of the basis
information b as soon as he receives it: he immediately measures his half
of the EPR pair in the corresponding basis. The outcome s ∈ {0, 1} he
obtains still contains no information about |ψ⟩ without u (which would
otherwise violate no-signaling), because the occurrence of X and XZ as
corrections would have flipped the resulting bit. However at this point all
the information Alice and Bob need to correctly output x (namely b, u and
s) is classical, thus can be copied and shared among them. Now both of them
satisfy the timing constraint, spoofing the protocol.

A basis issue The protocol QPVsix-states is flawed by the choice of bases,
which just so happen to be invariant under the action of the standard
teleportation corrections. KMS propose a fix by letting the verifiers choose
|ψ⟩ and the Bi from a set lacking this property. For example, an idealized
protocol could sample the state and the basis at random over the entire
Bloch sphere; we will call it QPVBloch. As a discrete, more realistic version,
they propose to take three bases separated by an angle of π/6, on the basis
that there exist no unitary operation leaving all of them invariant (a rigorous
proof of this fact was only provided later [LL11], see Section 3.2.5). They
leave the security of these protocols against generic adversaries, which
could share more complex resources than a maximally entangled pair of
qubits, to future work.

3.2.5 Lau and Lo: going D > 1 and qutrit security proof

In September 2010 another preprint appeared in response to the flawed
early protocols [Mal10a; Cha+10], by Lau and Lo [LL11]. Independently
from [KMS11], they properly define generalized versions of the protocols
and formalize known entangled attacks. One of the base protocols they
use presents some differences with respect to Kent et al.; instead, they
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more closely follow the one from [Cha+10]. First, in [LL11] (and in all
the protocols we analyze from now on) the verifiers preshare classical
randomness in order to synchronize their basis choice, which ensures that
the expected message from the prover is always deterministic. Second, they
use a simpler version of QPVsix-states which only involves the four BB84
states, eigenstates of the X and Z Pauli operators. As it will come in handy
in the future, we explicitly restate the 1D version here as reference.

Protocol 2 (QPVBB84 [Cha+10]). Under the usual remarks about timings,
etc. (Section 3.1.1), each round of the protocol proceeds as follows:

1. V1 and V2 make use of shared classical randomness to agree on two
bits x and b.

2. V1 sends qubit |ψ⟩ = Hb |x⟩ towards P, where H is the Hadamard
gate. V2 sends the basis information b.

3. At P, the prover is expected to measure |ψ⟩ in the basis specified by b,
i.e. apply (H†)b = Hb and measure in the Z basis, and broadcast the
resulting bit x′ to both verifiers.

4. Each verifier accepts if and only if x′ = x and the timing check is
satisfied.

Lau and Lo’s contribution is at least twofold:

• They address some (but not all, see [Unr14]) of the subtleties which
arise for protocols in multiple spatial dimensions, where more than 2
stations come into play. They show the early protocols to be breakable
for all D, finding the correct generalization of the D = 1 teleportation
strategy in a known cryptographic technique called quantum secret
sharing [HBB99] coupled with cluster state quantum computation
[RBB03].

• They show, under a reasonable attack model, that a version of the
QPVBloch protocol proposed by KMS—which samples the encoding
basis from the Bloch sphere—is indeed safe against exact attacks
from adversaries sharing a single entangled qubit or qutrit pair. For
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the qubit case, they numerically find the attackers’ average success
probability under their model to be about 85%.

Having shown that an entangled qutrit pair is of even less use than a qubit
pair for this kind of attack, Lau and Lo conjecture their protocol to be
secure. We will see in the following (Section 3.2.7) that not long after, a
generic technique was discovered to attack it—which in this case produces
an approximate attack. Part of our work in Section 3.3 was to study QPV(n),
a special case of QPVBloch where the encoding basis is sampled from a
discrete set of n angles spanning a Bloch circle.

QPV is not (unconditionally) secure

3.2.6 Buhrman et al. : good news and bad news

Now aware of the hidden assumption undermining their claim, the authors
of [Cha+10] came up with a new paper in September, teaming up with
Schaffner and Buhrman from the university of Amsterdam [Buh+14]. In
the updated paper, they properly restate their security result. . . while also
showing a universal attack if entanglement is allowed, shattering the dream
of finding a protocol with unconditional security. How much entangle-
ment? A lot: their technique, instantaneous nonlocal quantum computation
(INQC)—based on a result by Vaidman involving nonlocal measurements
[Vai03]—requires the adversaries to share a number of EPR pairs which
is doubly exponential in the number of qubits used in the honest case.
Additionally, they design position-based authentication and key-exchange
protocols building on position verification, which we do not review here,
and generalize the attack to higher dimensions. We will give an overview
of the first two contributions.

First, they show that QPVBB84 (Protocol 2) is secure in the no preshared
entanglement (no-PE) attack model, where the adversaries are not allowed
to share entangled states at the start of each round. The gist of their security
result is the following theorem:

Theorem 5 ([Buh+14], informal). A dishonest prover can successfully spoof one
round of QPVBB84 with a success probability of at most ∼ 0.89.
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The proof of Theorem 5 is surprisingly involved and is based on an entropic
result which had only been proven very recently, the strong complementary
information tradeoff [RB09].

The second result is an attack strategy which shows that no reasonable
PV protocol is secure against attackers sharing a large amount of entangle-
ment. In order to show the universality of their claim, they first define a
general PV scheme which captures a vast class of realistic protocols. We will
report here a slightly simplified and specialized 1D version of it, to better
highlight the connection to INQC.

Protocol 3 (QPVfull). As usual, the generic remarks in Section 3.1.1 apply.
As part of the public specification of the protocol, we choose a family of
quantum channels {Nx,y} acting on an n-qubit register.

1. Before the start of the protocol, V1 (resp. V2) holds subsystem A (resp.
B) of an n-qubit bipartite11 state ρAB. They additionally share random
classical information x, y, which select a transformation Nx,y out of
the family.

2. V1 (resp. V2) sends their local resources {ρA, x} (resp. {ρB, y}) to-
wards P, synchronized to arrive at P at the same time.

3. As soon as the quantum and classical information arrive, the prover
acts on ρAB with Nx,y, obtaining ρ

x,y
AB. He immediately sends back

subsystem A to V1 and subsystem B to V2.

4. By communicating over their private channel, the verifiers accept the
round iff the received state is close (in some measure) to the expected
state Nx,y(ρAB).

It is not difficult to see that QPVfull can be specialized to protocols with
one-sided quantum information; for example, one round of QPVBB84 is
obtained by choosing n = 1, an empty subsystem B and an empty x with
y := b, the pure state Hy |0⟩A as the quantum state ρAB and the projec-
tion ∑i Hy |i⟩⟨i|Hy for Ny, after which register A is left in a classical state.

11The system may be additionally entangled with a local register E of arbitrary size, which
remains with the verifiers during the execution of the protocol.
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QPVfull also includes their parallel repetition, multiplying n by the number
of rounds and similarly accommodating the rest of the parameters.

3.2.7 Doubly-exponential INQC attack

Let Alice and Bob share an n-qubit bipartite state |ψ⟩AB, with n = nA + nB,
which we suppose pure for the sake of simplicity. The goal of instantaneous
nonlocal quantum computation is to apply a unitary Ux,y to the state, where
x = 1, . . . , m is only known to Alice (resp. y = 1, . . . , m to Bob), such that
at the end they hold |ϕ⟩AB = Ux,y |ψ⟩AB with high probability. We can
immediately convince ourselves that:

• Some communication is needed, otherwise completing such a task
would let Alice and Bob violate causality (e.g. U could swap a qubit
from Alice to Bob).

• Two one-way communication rounds suffice: Alice can first send (or
teleport) her subsystem A and x to Bob, which will locally apply Ux,y

on the whole state and send A back in the second round.

INQC deals with the intermediate option: one round of simultaneous two-
way communication. When the communication is classical, this setting has
been recently called local operations and broadcast communication (LOBC) in
[GC20].12 The price to pay with respect to two communication rounds is
the need for Alice and Bob to share many EPR pairs,13 which can be used to
perform a kind of back-and-forth “teleportation-without-communication”,
where the measurement outcomes are not communicated right away but all
at once at the end of the protocol. For brevity, we use quotes in the following
to refer to only the local teleportation measurement, without communication
of the outcome and correction of the teleported state.

In order to get an intuition for how it works, let us consider the case in
which the unitary to compute is independent from x and y, i.e. Ux,y = U. If

12A closely related scenario in the communication complexity world is the simultaneous mes-
sage passing (SMP) model [JK09], where a referee takes up the role of Alice and Bob after the
communication phase.

13That entanglement has to be consumed is to be expected: the unitary U can be an entangling
gate itself and entanglement, by definition, cannot increase under local operations and classical
communication [Wil13].
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we relax the “high probability” constraint, the usual teleportation protocol
will sometimes—very rarely—succeed.

Protocol 4 (INQClow prob).

1. Alice “teleports” her register A to Bob using nA EPR pairs.

2. Bob applies U to the joint system composed by his half of the EPR
pairs and his register B.

3. Bob “teleports”14 back subsystem A via a second group of nA EPR
pairs. Alice and Bob now hold |ϕ′⟩ = ΣbUΣa |ψ⟩, where Σa and Σb

are tensor products of Pauli operators.

Notice that steps 1 to 3 happen locally and simultaneously, as each party is
unaware of the outcomes obtained by the other.

4. They now exchange their teleportation measurement outcomes, which
lets Alice correct at least Σb. While Bob now knows Σa, he still cannot
correct it given that, in general, it does not commute with U. In the
extremely lucky case in which Σa = I ⊗ I ⊗ . . . , which happens with
probability 1/4nA , the protocol has succeeded; otherwise, they abort.

Notice that if Alice and Bob hold the state Σ |ϕ⟩ for any Σ before the
round of mutual communication, they can correct it and obtain |ϕ⟩ after ex-
changing all measurement results. As shown below, the success probability
of INQClow prob can be improved following a trick due to Vaidman [Vai03],
which deals with the fact that, in general, Σa ̸= I. The intuition goes like
this: we can setup many teleportation channels, namely 4n groups of n EPR
pairs each, labeling each group by one of the 4n possible Pauli correction.
Alice teleports the uncorrected state using the channel indexed by their
local correction arising from the previous teleportation, while Bob blindly
applies each possible corrections to each of of his local halves—discarding
all but the correct one when they finally exchange all outcomes. This gives
Alice another try at getting the lucky outcome I ⊗ I ⊗ . . . , leading to:

14At this point, Bob could also directly send the state to Alice via a quantum channel, or use
regular teleportation. This way however it is possible to clearly separate the communication
round from the rest of the protocol.
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Protocol 5 (INQCdouble exp).

1, 2. Same as in Protocol 4.

3. Bob teleports the entire state instead of just Alice’s subsystem. Now
Alice holds |ϕ1⟩ = Σb1

UΣa1 |ψ⟩.

Suppose Σa1 is not the identity, which is the overwhelmingly likely outcome.
Their objective now is to “discard” the run, i.e. revert to something resem-
bling the initial state, and have another chance at getting Σa = I. However,
Alice does not know Σb1

at this point; she needs Bob to correct it.

4. Alice teleports |ϕ1⟩ using the teleportation channel corresponding to
her previous outcome a1, getting a new outcome a2.

Now the state Σa2 |ϕ1⟩ = Σa2 Σb1
U Σa1 |ψ⟩ has appeared on Bob’s channel a1

(which is unknown to him). If they want to end up with |ϕ⟩ = U |ψ⟩, he has
to undo the distortion caused by the previous round.

5. On every channel i, Bob does the following: he first applies ΣiU†Σb1
,

which brings channel a1 back to the state

|ϕ2⟩ = Σa1 U†Σb1
Σa2 Σb1

U Σa1 |ψ⟩
= |ψ⟩ if Σa2 = I.

(3.3)

He then applies U and sends back the state via channel i of a different
batch of 4n channels, recording the outcome b2[i].

Alice now can find the state Σb2[a1]U |ϕ2⟩ on channel a1 of the last batch sent
by Bob. With the same 1/4n probability, her previous outcome Σa2 was the
identity; in this case Alice holds |ϕ⟩ up to Bob’s teleportation corrections
and stops teleporting. Otherwise, she picks one new set of 4n teleportation
channels for each channel involved the previous step, indexed in such a way to
keep track of both corrections. They restart the protocol from step 4.

N. Bob cannot know when Alice would have finally got a good outcome
and stopped teleporting, so he continues up to an agreed number of
iterations. At this point Alice teleports subsystem B to Bob and they
exchange the teleportation corrections.
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Notice that Alice has a constant (small) probability of success with each
iteration. In order to succeed with non-negligible probability (1− ε) overall,
Bob has to continue for an exponential number of iterations. Additionally,
each round requires a factor of 4n more teleportation channels. Therefore,
Protocol 5 consumes a number of EPR pairs which is roughly 2log(1/ε)24n

,
doubly exponential in n.

Remark. INQCdouble exp, when used to attack QPVfull, results in general
in an approximate (and expensive) attack. This contrasts with the special-
ized attacks to QPVsix-states and QPVBB84, which are exact and much more
efficient.

INQC and quantum foundations

The INQC task is a natural evolution of a much older and deeper problem
in the foundation of physics, which concerns the subtle interplay between
quantum constraints on measurements and relativistic effects—as witnessed,
among others, by the famous Bohr–Einstein debate [Boh49] and the EPR
paradox [EPR35]. As early as 1931 Landau and Peierls showed the measure-
ment of the electromagnetic field at a specific location to be nonlocal and,
therefore, deduced its impossibility [LP31]. However, in 1980 Aharonov
and Albert started a line of research investigating how to harness entangle-
ment to perform non-local measurements and operations without violating
causality [AA80]. In 1981, they showed how to perform what we now
call a Bell measurement between two distant particles, using an entangled
pair of qubits [AA81]. These results were generalized to other observables
[AA84a; AA84b; AAV86; PV94; GV01], until Vaidman finally showed in
2003 how to approximate any nonlocal measurement using teleportation
and causal classical communications [Vai03]. Because of its universality, this
turned out to be an effective way to attack QPV protocols and prompted
new, quantitative investigations (which the next Sections will attempt to
describe) into the amount of resources needed.

Giving a well-defined foundation to nonlocal measurements is not the
only direction in which INQC has surprises in store. Since maximally en-
tangled states violate Bell inequalities [Bel64], they give correlations which
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are impossible to achieve in a classical theory. For example, while classical
correlations only allow a 75% probability of success at the CHSH game15

[Cla+69], Bell states raise this to cos(π/8)2, or about 85%. However, a theory
can exhibit even stronger correlations than QM (called supra-quantum correla-
tions) without violating causality. This was shown by Popescu and Rohrlich
[PR94] through the definition of an imaginary nonlocal device which can
win the CHSH game with unit probability. Such strong correlations would
imply the collapse of classical communication complexity, as they enable
two distant parties to compute any boolean function by exchanging only
one bit [Van13], and are thus regarded as implausible. Recently, Broadbent
showed that a similar collapse happens in the context of INQC [Bro16]: if
the adversaries have access to Popescu-Rohrlich boxes, the entanglement
requirement for a universal attack reduces to linear. For protocols which
expect a single qubit (or bit) from the prover, the amount of communication
needed is just two bits (or one).

3.2.8 Beigi and König: a “just exponential” attack

Can the enormous overhead of INQCdouble exp be reduced? The source of
one of the two exponential factors is the recursive nature of the protocol,
which appears to be required to keep track of the Pauli corrections. In
January 2011, Beigi and König [BK11] set out to overcome that issue, by
employing a different kind of teleportation scheme as the main subroutine:
port-based teleportation, another technique which was very recently discov-
ered by Ishizaka and Hiroshima [IH09] (for a recent review, see [Chr+21]).

The idea behind port-based teleportation (PBT) is to make Bob’s life
much easier with respect to standard teleportation, at the cost of more
entanglement and a more complex measurement on Alice’s side. In a PBT
protocol, Alice and Bob share many d-dimensional16 entangled states called
ports, labeled i = 1, . . . , N. In order to teleport a state |ψ⟩, Alice performs
a particular measurement17 involving |ψ⟩ and all of her local ports; her

15In the CHSH game, two non-communicating players are sent respectively a bit x and y and
should respond with bits a and b such that a XOR b = x AND b.

16Here d refers to the dimension of the Hilbert space, i.e. d = 2n for n EPR pairs.
17One option is the pretty good measurement [HW94].
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outcome is the index of a specific port k, where the state has been teleported.
After receiving the index from Alice, Bob just discards all of his local ports
but k. Depending on Alice’s measurement, two scenarios are possible:

1. In probabilistic (or heralded) PBT, the state |ψ⟩ is teleported perfectly to
Bob’s port k but the process is allowed to fail with probability p, i.e.
Alice’s measurement includes a failure outcome ⊥.

2. In deterministic (or approximate) PBT, the state is always teleported but
with non-unit fidelity.

With a finite number of ports N, perfect PBT is impossible. When optimizing
over both the measurement and the resource state, the error at fixed d scales
as 1/N for the heralded protocol and as 1/N2 for the approximate one
[Chr+21].

For the purpose of INQC, port-based teleportation is very appealing
as it lets Bob apply a unitary to a bare |ψ⟩ before waiting for Alice’s port
index to arrive. The state is teleported in one go, without having to recur-
sively build the exponential tree of Pauli corrections used by INQCdouble exp.
However, the number of ports needed to achieve a desired error still scales
exponentially in n. Beigi and König can nonetheless prove the following
improved result about position verification (in)security:

Theorem 6 ([BK11], adapted). Dishonest adversaries can break Protocol 3 with
probability (1− ε) by sharing n(1 + 28n+5

ε2 ) ebits of entanglement.

The second important contribution in [BK11] is the first QPV protocol
with a proof for a lower (nonzero) bound on the amount of ebits required
for an attack (Section 3.2.12).

Specialized attacks

The exponential scaling of the known universal attacks by INQC surely
seems promising: while to date they have not been proven optimal for
any explicit protocol, one can reasonably take that as evidence that PV
could be shown to be secure in the quantum settings for all practical purposes.
On deeper scrutiny, though, even if an exponential lower bound could be
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shown one day for some class of unitaries,18 there is no guarantee that the
resulting protocol will be practical in the honest case. Indeed, most unitaries
have an exponential circuit complexity [Kni95]; it does not seem reasonable
to ask the verifiers and the prover to perform a protocol which involves the
computation of, e.g. Haar-random unitaries on n qubits.

The analysis of variants of QPVfull in which the protocol’s unitaries are
restricted to a particular class serves then two purposes: it ensures we only
deal with practical protocols and it might lead to the discovery of more
efficient attacks. For example, we already know that some protocols (e.g. if
U is in the Clifford group [LL11]) can be attacked with a linear amount of
entanglement. This is the line of research followed by many subsequent
papers [Buh+13; CL15; Spe16; GC20; BCS21] and by us [Oli+20] (Section 3.3).

Remark. Due to scope constraints, we left out the treatment of a major
family of QPV strategies, the qubit routing protocols, despite their importance:
in fact a protocol of this kind was already constructed in Kent’s seminal
work [KMS11]. In these protocols, all the honest prover is asked to do
is reroute an incoming quantum state to one of the verifiers, depending
on a function of incoming classical inputs. We would like to stress that
our omission does not reflect lack of interest in the community: among
other achievements, designing attacks to these kind of protocols motivated
the invention of an entirely new communication complexity measure for
boolean functions—the garden-hose complexity [Buh+13]—which in turn
sparked interest in areas unrelated to PV. Moreover, during the writing
of this dissertation the first lower bound showing unbounded separation
between a prover’s quantum resources the adversaries’ required entangled
system size was shown [Jun+21], precisely for a routing protocol. We
decided to discuss this last result briefly in Section 3.2.13.

3.2.9 Chakraborty–Leverrier: INQC in CH

In July 2015, Chakraborty and Leverrier [CL15] started considering the
INQC implementation of unitaries in the Clifford hierarchy, inspired by

18This could happen sooner rather than later: see Section 3.2.13 for some exciting recent
developments.
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the structure of the original doubly-exponential protocol [Buh+14] in Sec-
tion 3.2.7. The Clifford hierarchy [GC99] on n qubits (CH from now on) is
an infinite sequence of unitary families C1 ⊂ C2 ⊂ C3 ⊂ . . . , defined by the
recursive relation19:

Ck = {U | UΣU† ∈ Ck−1 ∀Σ ∈ Pn } , (3.4)

where Pn is the Pauli group on n-qubits, generated by all possible tensor
products of single-qubit Pauli operators σi ∈ {I, X, Y, Z}. The definition is
completed by setting the Pauli group as the bottom rung of the hierarchy, i.e.
C1 := Pn. Then, C2 is the usual Clifford group. None of the Ck with k ≥ 3
form a group [ZCC08]. Gates from low levels in CH are usually easier to
implement for the honest prover, which motivates the study of their attacks.

The conjugation of a Pauli with U in eq. (3.4) might ring a bell: in fact,
it is reminiscent of the correction that Bob is required to apply during the
recursive step of INQCdouble exp (Protocol 5). Recall that the objective of
Alice and Bob is to obtain |ϕ⟩ = U |ψ⟩ up to Pauli corrections. In case U is at
level k of CH, this leads to an interesting way of modifying the termination
condition which does not rely on luck. At step 3, Alice holds the state:

|ϕ1⟩ = Σb1
UΣa1 |ψ⟩ = Σb1

UΣa1 U† |ϕ⟩ = Σb1
Ũ1 |ϕ⟩ , (3.5)

where by definition of the hierarchy, Ũ1 ∈ Ck−1. Therefore on the first
recursive step Bob holds in channel a1 the state Σa2 |ϕ1⟩, to which he can
apply Ũ†

1 :
Ũ†

1 Σa2 |ϕ1⟩ = Ũ†
1 Σa2 Σb1

Ũ1 |ϕ⟩ = Ũ2 |ϕ⟩ (3.6)

and we went down another level, i.e. Ũ2 ∈ Ck−2. Notice that multiplying Ũ
by any Σ always result in another unitary at the same level of the hierarchy.
Then, at iteration j− 1 the state Alice and Bob are teleporting back and forth
is of the form Ũj |ϕ⟩, with Ũj ∈ Ck−j. Therefore, they can stop at round k− 2:
at this point, the residual unitary in front of Ũk−1 |ϕ⟩ is just another Pauli
correction determined by their measurement outcomes, i.e. Ũk−1 = Σ ∈ C1,
and they can correct it perfectly after the classical communication round.

19We omit specifying the number of qubits n in the following.
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The procedure above also reduces the resources required by univer-
sal INQC to exponential (in n and k). While restricted to unitaries in Ck,
the main advantage with respect to port-based teleportation is that the
resulting attack is not approximate, but exact. By following this argument,
Chakraborty and Leverrier prove an upper bound to the number of EPR
pairs for an instance of QPVfull in which one side sends a computational
state encoded in |ψ⟩ = U |x⟩, the other sends a description of U ∈ Ck and
the prover is asked to invert U, measure and broadcast x. In this case, the ad-
versaries can break the protocol perfectly by sharing 4n 4n(k−2) ebits. They
show similar reductions for protocols selecting U from another practical
family of unitaries, namely those which can be computed with a circuit of a
fixed layout.20

Their second important contribution is to define the interleaved product
protocol. In QPVIP, the verifiers encode the n-qubit secret |x⟩ via the tensor
product of n copies of a one-qubit unitary, sending |ψ⟩ = U⊗n |x⟩. This
ensures the protocol is practical for the honest prover. In order to strengthen
its security, the verifiers send the description of U in a distributed fashion:
V1 sends unitaries u1, . . . , ut and V2 sends v1, . . . , vt, such that

U =
t

∏
i=1

uivi. (3.7)

They notice that all attack techniques known at the time applied to QPVIP

scale polynomially in n, as expected by U’s small size, but exponentially
in the number of terms t in the product (which only represent an amount
of classical information in the honest protocol). They thus conjecture it
secure. Following a trend which might start to become evident at this point,
the claim held for just a few months, before a paper by Speelman [Spe16]
showed otherwise.

20This could be very common if the prover processes the input “ballistically” with e.g. integrated
optics, or in situations in which the selection of U is made by ranging over the values of single
and two-qubit gates in a fixed layout.
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Figure 3.4: A circuit implementing a unitary U with T-count t = 7
and T-depth d = 3, figure adapted from [Spe16]. The compilation
of unitaries to circuits of low T-count/T-depth (and finding lower
bounds on these quantities) is an active field of research [Bev+20], as
the performance of most fault-tolerant quantum computing architec-
tures is mainly determined by non-Clifford operations.

3.2.10 Speelman: a polynomial attack

Are efficient INQC implementation possible for any interesting family of
unitaries, besides Clifford? Speelman set out to answer this question for
the positive, with a new attack on low T-depth circuits [Spe16]. In the cir-
cuit model, general unitary operations are “compiled” into a sequence of
gates picked from some (usually application-dependent) limited set. Gates
in the Clifford group C2 are usually easier to implement, but do not suf-
fice for universal computation [Got98; AG04]; adding any gate from C3

however promotes the set to universal, meaning that any unitary can be
efficiently (approximately) implemented by composing gates from it. A
common choice is the T gate, a π/4 rotation in the Bloch sphere, resulting
in the Clifford+T gate set. A general computation may then be viewed as
alternating blocks of Clifford gates with layers of T gates on one or more
qubits (Fig. 3.4). The total number of T gates is called the T-count, while the
number of T layers is the T-depth. It should be noted that in some cases the
T-depth can be much smaller than the T-count.

An important observation about INQC to keep in mind is its “uncom-
posability”: that is, given a procedure for the nonlocal computation of U1
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and one for U2, an INQC protocol for the product U1U2 is not guaranteed in
general, as the two independently require their own round of classical com-
munication. However, we know of at least one exception: the commutation
properties of the Clifford group with the Pauli corrections imply compos-
ability for U1, U2 ∈ C2. If a circuit for U was only composed of Clifford
operations, Alice could apply all of them in one go to the (still uncorrected)
state, and later compute the correct Pauli after the communication phase.

Otherwise, they need a way to account for the T gates sandwiched
between the Clifford layers, which do not freely commute with the Paulis.
More specifically, TX = PXT up to a global phase, where P is the phase gate;
if Alice wants to apply the next Clifford layer before the communication
round, they need to remove the extra P, which only appears if X is part
of the Pauli corrections—unknown to Alice, known to Bob. In the paper,
Speelman gives two ways of dealing with them:

• By building the usual tree of possible corrections, which doubles in
size for each T gate applied. This leads to an efficient INQC imple-
mentation of unitaries computable by a circuit of low T-count k, which
consumes O(n2k) ebits.

• By a clever application of Buhrman et al.’s garden-hose techniques
[Buh+13]. This leads to an efficient INQC implementation of unitaries
computable by a circuit of low T-depth d, which consumes O((68n)d)

ebits.

It should be noted that the exponential dependence in t and k is crucial: if
they grow at least linearly with n, these attacks are not efficient anymore.
However, having a slowly (i.e. polylogaritmically) growing T-depth or T-
count might be desirable also for the honest prover, if the protocol is to be
considered practical.

Armed with these results, Speelman presents an attack to Chakraborty
and Leverrier’s QPVIP protocol (Section 3.2.9) which uses an amount of
EPR pairs polynomial in both n and the amount of classical information
needed to specify the interleaved product unitaries. Other than further
garden-hose magic, the proof relies on a particularly good (in terms of
T-count vs. accuracy) approximate decomposition of any one-qubit unitary.
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3.2.11 Gonzales-Chitambar: attacking a two-qubit protocol

Things went quiet for a while, and in 2018 a paper by Gonzales and Chi-
tambar appeared in preprint with new attacks and lower bounds [GC20].
First, they formalize the most common attack model (the ground of INQC)
as the task of implementing a unitary through local operations and broadcast
communication (LOBC), in order to make precise statements about entangle-
ment cost separations with respect to the more widely studied LOCC model
(which allows interactive communication).21

For the first result involving two-qubit unitaries, they define the family
L, sporting an ad hoc property which makes it easily implementable by
INQC:

L =

U | ∃ R, Ti, Vi ∈ U(2)

s.t. U(RσiR† ⊗ I) = (Ti ⊗Vi)U ∀σi ∈ P .

 (3.8)

In other words, U ∈ L if the act of commuting it past a Pauli correction,
possibly coming from a teleportation measurement in a rotated basis R,
only results in unwanted local operations. They show an INQC protocol
which implements U exactly, consuming only two ebits. If this property
reminds the reader of the behavior of Clifford operators, they are on the
right track: it turns out that U ∈ L if and only if U is locally equivalent to a
Clifford operator, namely if:

(R1 ⊗ S1)U(R2 ⊗ S2) ∈ C2 for some Ri, Si ∈ U(2). (3.9)

The second result involves hermitian binary-controlled gates, bipartite
unitaries of any dimension dA ⊗ dB where an hermitian unitary V is applied
to the target system if the control system lies in the subspace defined by a
projector Π. QPVBB84 falls under this case, for dA = dB = 2 (promoting the
basis bit b to a quantum state), Π = |1⟩⟨1| and V = H. Gonzales and Chita-
mbar show that one ebit is sufficient for an exact INQC implementation, for
any dA and dB.

21Interestingly, Wakakuwa et al. [WSM19] show a separation in terms of entanglement cost
between 2 and 3 rounds of interactive communication. While beyond the scope of PV, it shows
that the study of these tradeoffs is of wider theoretical interest.
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However, the most interesting result (to us) is the following theorem:

Theorem 7 ([GC20, theorem 1]). There exist approximate INQC implementa-
tions of any two-qubit unitary, parametrized by N, which consume 8N + 1 ebits
and succeed with probability (1− 1

2N )
3.

The INQC protocol which enables a proof of Theorem 7 implies the existence
of an attack to QPVfull for fixed n = 2 and empty x, y, where the attacker’s
failure probability (equivalently, the approximation error ε) drops exponen-
tially with the number of EPR pairs N, i.e. N = O(log 1

ε ). For comparison,
Beigi and König port-based INQC gives O( 1

ε2 ), i.e. the error only drops with
the square root of N. The protocol QPVθ we consider in Section 3.3 is also
subject to this attack.

At the heart of their results lies the decomposition of U in a local and
nonlocal part M, namely U ≃ M up to pre- and post-processing with local
unitaries like in eq. (3.9). It turns out [KC01] that M can be particularly
simple for two-qubit unitaries: it is always diagonal in the so-called magic
basis, a set of four maximally entangled states closely related to the Bell
basis. In this basis M can be completely described by three angles, which
correspond to two local rotations around z and an Ising ZZ two-qubit
rotation:

Izz(β) =

(
Rz(−β)

Rz(β)

)
(3.10)

namely M(α, β, γ) ≃ Izz(β)(Rz(α)⊗ Rz(γ)) (up to a change of basis which
only involves Clifford operations). Therefore, they just have to show how
to implement M(α, β, γ) via INQC, which they do by exploiting the com-
mutation relations between the Pauli corrections and the rotations in M.

For some angles (multiples of π/2N−1), their protocols implements
U exactly (i.e. with unit probability) using a finite number of ebits. We
compare its efficiency in this case with our exact attacks in Section 3.4.4 for
a much more restricted class of unitaries.
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Lower bounds

In parallel with lowering the requirements for attacks, an arguably more
important (and more difficult) task was being researched: proving lower
bounds on the resources needed for breaking QPV protocols. A lower bound
is needed to formalize the claim that a protocol which uses n qubits is
secure against adversaries sharing at most a certain amount of entanglement
f (n). The security of QPVBB84 in the no-PE model (Section 3.2.6) can be
considered the first kind of such lower bounds for a protocol, in this case
with f (n) = 0. While bounds against exact attacks are interesting, usually
security is argued in a more realistic scenario where the prover is allowed
to fail with probability ε: the protocol is secure if and only if the verifiers
can reliably distinguish between an imperfect honest prover and (perfect)
dishonest adversaries.

Unfortunately, strong lower bounds have been hard to come by: with the
possible exception of [Unr14] and more recently [Jun+21], an exponential
gap in resources still stands between the best generic attack and the best
lower bound. In our work we don’t prove any new lower bound, instead
arguing for the optimality of our efficient attacks by means of numerical
evidence. In this light, we will only quickly summarize this ongoing line of
work in the next sections.

3.2.12 Linear lower bounds

This Sections contains entanglement consumption lower bounds which are
linear in the number of qubits n used in the honest protocol.

Beigi and König

To our knowledge, the first result to improve on the no-PE bound is in
[BK11]. The protocol they consider is based on mutually unbiased bases
(MUB). A set of bases {{|xa⟩}x}a of Cd is called mutually unbiased if the
squared overlap between any two basis elements picked from different
bases is 1/d.22 They define a PV protocol—which we call QPVMUB—with

22We already encountered these bases for n = 2: they are the eigenvectors of the Pauli operators
X, Y, Z (the set S in eq. (3.1)). There are always d + 1 such bases if d is a prime power, in particular
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one-sided quantum information where the prover is expected to recover
x from the n-qubit state Ua |x⟩ = |xa⟩, where Ua is the basis change to the
basis {|xa⟩}x. QPVMUB can be considered a d-dimensional generalization
of QPVsix-states. Beigi and König prove QPVMUB secure against adversaries
sharing less than n/2 ebits, but the honest prover has to manipulate n qubits
at a time. Via a general result relating the tolerable error in the no-PE case
with the dimension of the adversaries’ entangled system (used for example
in [Tom+13]), they show that a more practical sequential composition of l
rounds of QPVMUB with fixed d is secure with a similar scaling in l.

Tomamichel et al.

The main result of [Tom+13] is a monogamy-of-entanglement game, with
bounds on its winning probability. Roughly, monogamy of entanglement
(MOE) is a property of entangled states which forbids two maximally-
entangled systems A and B to be also maximally entangled to a third system
C. In the MOE game, a referee receives a subsystem of a tripartite state
prepared by two players and performs a measurement on it in a random
basis. Then the two players, not allowed to collaborate from now on, receive
the choice of basis from the referee and are both asked to correctly guess
the output of her measurement. The authors apply the result to various
cryptographic tasks, including PV. They show that a 1-round parallel rep-
etition of n instances of QPVBB84 is secure against adversaries sharing an
entangled state of at most αn qubits, with α = − log2(cos2(π/8)) ≃ 0.23.
Here quantum communication is also allowed among the adversaries,23

and the protocol only requires that the honest prover manipulate single
qubits. However, the price to pay is a smaller coefficient than in Beigi and
König’s bound (α = 0.5).

for d = 2n in the n-qubit case [Ban+02].
23This is not a small detail, as the restriction to classical communication might be difficult to

justify in a realistic setting if the adversaries are supposed to be able to share entanglement before
the start of the protocol. Most of the other results we discuss require the classical communication
restriction. Notice however that quantum communication can be simulated by sharing additional
EPR pairs and communicating classical outcomes via teleportation, with a linear entanglement
overhead. The interplay between classical and quantum communication among the adversaries
has been recently investigated by Allerstorfer et al. [All+21].
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Ribeiro and Grosshans

Can we keep the experimental advantages of the n-qubit QPVBB84 protocol
while giving a lower bound matching the known best attack of n ebits? In
[RG15] Ribeiro and Grosshans bound the max relative entropy of entanglement
of the resource shared by the adversaries, finding Emax ≥ n−O(log2(n)).
To this aim, they adapt a security proof of a cryptographic task—the weak
string erasure (WSE) protocol—which was given in [DFW15] in the noisy
storage model (NSM), to the noisy entanglement model (NEM). In NSM,
the adversary quantum memory decoheres after a certain time, while in
NEM the adversary is split in multiple spatially separated parties which
communicate via classical channels and share a (possibly mixed) quantum
state. They complete the proof by showing that an attack to QPVBB84

translates to an attack to WSE, thus requiring an essentially linear amount
of entangled resources. At the cost of one ebit per qubit, Kent’s teleportation
attack ([KMS11], Section 3.2.4) saturates the bound, which is thus tight for
QPVBB84.

Gonzales and Chitambar

In addition to the one-ebit attack for hermitian binary controlled gates
(Section 3.2.11), in [GC20] Gonzales and Chitambar prove a linear lower
bound in the non-hermitian case, when the control system is a qubit (dA× 2).
They show the optimal exact INQC strategy requires log2(dA) ebits, which
is linear in n with α = 1 for an n-qubit unitary (dA = 2n). It should be noted
(as they do) that their result is more difficult to convert to a security claim
for a QPV protocol, as approximate implementations are not taken into
account. With respect to the bound for QPVBB84 in [RG15], here we lose the
practicality of qubit-wise operations; an important improvement however
is that the bound is given in terms of required ebits, which is more robust
than bounding the max relative entropy or the dimension of the entangled
state.24

24For example, they show a family of d-dimensional states with Emax(d) → ∞ when d → ∞,
while the entanglement entropy E(d)→ 0.
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Unruh: Quantum Random Oracles

With the possible exception of [Tom+13], all results presented up to now use
some sort of restriction of the attack model (mainly classical communication)
to achieve a better bound. While removing these restriction remains the
primary challenge, an equally interesting question is to identify under
which (potentially strong) assumption other than linear entanglement it
is possible to achieve computational security, matching the best known
universal attack [BK11]. Unruh finds a positive answer [Unr14] in the
(quantum) random oracle model. In classical cryptography, a random oracle
is a black box which is accessible by all parties and returns the output of a
function f chosen uniformly at random. While they give all parties access to
shared randomness, hidden via the exponentially many inputs x ∈ {0, 1}n,
ideal random oracles cannot be simulated efficiently. Nonetheless, they are
used as a proof device in many protocols [KM15], in hope that they can
be replaced with the weaker assumption of cryptographic hash functions.
Unruh’s protocol is similar to the n-qubit parallel QPVBB84 but the basis
information b ∈ {0, 1}n is distributed via two classical inputs x1, x2 coming
from V1 and V2, such that b = f (x1 ⊕ x2). Unruh’s proof—which can be
extended to protocols taking place in general curved spacetime—uses the
reprogrammability of random oracles25 to hide the choice of b until after x1

and x2 cross the region P to be authenticated. At this point, he shows that
the adversaries have to win a version of the monogamy of entanglement
game in [Tom+13] in order to break the protocol, which they can do with at
most exponentially small probability in n. Notice that the security in this
case is of computational nature, meaning adversaries which have access
to exponential (in n) computational power are able to break the protocol
without sharing any entanglement.

25Roughly, reprogramming a random oracle means changing the random function f on the fly
in order to choose the output of a queried input at a desired time. The idea behind it is that for a
true random function, reprogramming is undetectable by the oracle users except with vanishingly
small probability (some care has to be taken in the quantum case, when the oracle can be queried
in a superposition of all inputs). This property can seem particularly unphysical if the oracle
is instantiated with a specific hash function; for example, the reprogramming might happen
“nonlocally” for two users, i.e. on a spacelike surface.
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3.2.13 Recent results

After a 3-year gap (not including our 2020 paper [Oli+20]), during the
redaction of this thesis a series of new preprints [Jun+21; BCS21; All+21;
LLQ21] appeared on the arXiv. All of them provide a substantial leap
forward in the design of secure QPV protocol, both from the theoretical
and practical perspective. We select the two of them which we deem more
relevant to our review and summarize their results in the following.

An exponentially secure protocol

In March, Junge et al. [Jun+21] looked at the connections between quantum
games and geometric functional analysis and their applications to PV. They
study a protocol which is quite more involved than the ones above, using
many of the features allowed in QPVfull such as the distribution of a tri-
partite state additionally entangled with a register local to the verifiers and
an acceptance condition which requires them to later regroup the received
state and apply a joint measurement. Under certain regularity assump-
tions (which are satisfied by known attacks), they show that their protocol
requires an exponential amount of entanglement to break for dishonest
adversaries. Additionally, they provide conjectures in the theory of Banach
spaces which, if proven true, would help lift the regularity assumption and
provide security of their protocol for all practical purposes.

A secure qubit routing protocol

In April 2021, Bluhm, Christandl and Speelman [BCS21] turn their attention
to a particularly simple kind of protocol of the qubit routing type (we briefly
talked about them in the introduction to Section 3.2). In their protocol, the
prover receives two n-bit strings x, y from V1 and V2 as well as a qubit
from V1 which is maximally entangled with a verifiers’ local register. The
prover has to simply reroute the qubit to V1 or V2 depending on the output
of a boolean function f (x, y). This kind of protocol is arguably one the
most practical and simplest possible for the honest prover, as he only has to
manipulate a single qubit irrespective of n. A universal attack consuming
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2n EPR pairs against routing protocols of this kind has been known since
[KMS11]. The appeal of an entanglement lower bound in this case is that
in the honest case the only resource which scales is classical, i.e. the size
n of f ’s inputs. Bluhm et al. manage to prove precisely that: adversaries
sharing less than (n/2− 3) entangled qubits26 can be caught with at least
10−2 probability, showing a potentially unbounded gap between the quan-
tum resources in the honest vs. adversarial case. Improving the chances
of detecting the adversaries can be done via sequential repetition, mean-
ing that unfortunately one loses the desirable one-round nature of other
schemes. Choosing explicitly the function f incurs in similar issues as the
ones discussed for the random oracle model (Section 3.2.12), as there is no
guarantee that it can be efficiently computed. In a subsequent version of
their paper they give examples of explicit efficient functions, at the cost of a
logarithmic (instead of linear) entanglement lower bound.

26Notice that here, too, only the dimension of the quantum resource is bounded, not the ebit
content.
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3.3 Defining QPVθ and its attack model

3.3.1 The protocol

The family of protocols we chose to analyze is not new: indeed, similar
versions of it are already present in early work [KMS11; LL11]. QPVθ is
a 1D protocol using 1 qubit per round, which extends the more common
QPVBB84 by allowing for an arbitrary angle θ between the two measurement
bases in which the verifiers’ bit is encoded. Generic remarks about timings
and verification from Section 3.1.1 apply. We choose QPVθ for multiple
reasons:

• On the practical side, QPVθ shares much of the experimental benefits
with QPVBB84, especially when implemented through linear optics. It
can leverage the current implementations of free-space QKD [Pug+17;
Lia+17; Ave+21], with added timing constraints—albeit losses are a
significant problem for QPV [QS15].

• As shown in [LL11] and discussed in Section 3.2.5, for almost all angles
QPVθ is resistant to exact attacks from adversaries sharing up to a
maximally entangled pair of qutrits. It is natural to ask how well can
attackers do with bigger (while still relatively small) entangled states,
and if relaxing the requirements to approximate attacks changes the
picture significantly.

• From the theoretical standpoint, some of the INQC-based attacks we
reviewed in the literature point to an increased attack complexity
for unitaries at higher levels of the Clifford hierarchy (Sections 3.2.9
and 3.2.10). By tuning the parameter θ we have quick access to any
level of the hierarchy, as well as unitaries outside of it.

• A further reason to explore low-dimensional protocols is that they are
open to be analyzed by numerical methods, on a similar vein as the
work we did in Chapter 2.

We detail our conventions for QPVθ here as reference for the rest of the
thesis.
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Protocol 6 (QPVθ). The verifiers set up stations V1 and V2, collinear with P
(Fig. 3.1). During one round of the protocol:

1. V1 and V2 agree on two random bits x, b ∈ {0, 1} by means of pre-
shared randomness or through a secure classical channel.

2. V1 prepares the state |ψ⟩ = (Rθ)
b |x⟩, where

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
(3.11)

is a real rotation matrix27 defining the encoding basis for |x⟩. Then,
|ψ⟩ is sent towards P through a public quantum channel.

3. V2 sends b towards P through a public classical channel, carefully
timed such that the quantum state and the classical bit arrive simulta-
neously at P.

4. Upon receiving |ψ⟩ and b, the prover applies (R†
θ)

b = Rb
−θ to |ψ⟩ and

measures in the computational basis, recovering x. He immediately
broadcasts x to V1 and V2.

5. The verifiers receive the results, check their correctness and that the
timestamps of the received signals are consistent with the honest
prover being at P.

The above steps are repeated for N rounds. The protocol terminates suc-
cessfully if the answers to the challenges have been accepted often enough.
We will not account for losses in the following,28 but we allow the honest
prover to output the wrong x with probability ε. According to the precision
of their clock, the verifiers bound the prover’s position to a neighborhood
of P.

Remark. We can choose the computational basis for b = 0 without loss
of generality if b ∈ {0, 1}. Indeed, for any pair of single-qubit unitaries
B0 and B1 which the verifier chooses to apply to the secret bit |x⟩, we can

27We choose θ to be akin to the polarization angle, at variance with the convention for a σy
rotation in the Bloch sphere where the corresponding angle would have been θ/2.

28Loss-tolerant protocols have been explored for example in [QS15].
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Figure 3.5: Spacetime diagrams of QPVθ protocol and attack model.
Lines at 45° represent lightspeed quantum (ondulated) and classical
(straight, solid and dashed) channels. (a) When a prover is present
at P, they measure the quantum input in the correct basis and broad-
casts the measurement result x back to V1 and V2. (b) Attackers have
access to locations A and B and to the quantum resource |Φ⟩. They
share the classical outcomes of their measurements and attempt to
reconstruct x in time to be broadcast back to the verifier.

always find an equivalent protocol with B′0 = I and B′1 = Rθ by setting
cos(θ) = ⟨0|B†

0 B1 |0⟩. Up to a global rotation (which can be included in the
protocol), the four quantum inputs can then be described by b, x ∈ {0, 1} as
|ψ⟩ = (Rθ)

b |x⟩.

It can be easily seen from the definition that QPVπ/4 is just the old
QPVBB84. If θ ≡ 0 (mod π

2 ) then Rθ is trivial (i.e. = I or XZ): we call the
resulting QPVθ protocol classical.

3.3.2 Attack model

On top of the common features in Section 3.1.1, we have to specify our own
choice of attack framework. Our model is directly motivated by the way
we chose to implement the numerical search of the attack space. For both
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analytic and numerical results, there is certainly a tradeoff here: considering
more general attackers leads to stronger security evidence but involves
harder proofs or heavier computation, limiting the searchable range. In
the decision, we were primarily inspired by the teleportation attack for the
QPVBB84 protocol [KMS11; LL11], which we recalled in Section 3.2.4. In the
following we will study similar attacks but for different values of θ.

As usual, the attackers Alice and Bob have no access to the location P
to be authenticated, but control two stations A and B respectively located
between V1 and P and between P and V2. A resource quantum state |Φ⟩
is pre-shared between the two stations at the start of each round of the
protocol. QPVθ requires the prover to output a classical message, so we
constrain internal communication to be classical as well. This is in line with
many of the works in the literature, save for a couple of results [Tom+13;
BCS21]; in [GC20] it is called LOBC model (Section 3.2.11).

The focus of our analysis is the dimension d2 of the shared entangled
state |Φ⟩. For this and other technical reason, we make somewhat restrictive
assumptions:

• The quantum operations of Alice and Bob are unitary evolutions or
projective measurements.

• We fix |Φ⟩ as the maximally entangled qudit pair in order to exploit
some of its properties and simplify the analysis.

• Alice and Bob act identically and independently on each round.

We do not look at the (bigger) space of general quantum maps acting on |Φ⟩.
Recall that in general non-unitary operations can be extended to a unitary
one through a Stinespring dilation [Wil13], using only resources local to
Alice and Bob. However we do not factor in these extra local resources
when we look for attacks in the following. It should be noted that this model
includes most of the known attacks, and it is only really relevant in this
work as establishing the security domain of the theorems in Section 3.4.1
and when interpreting the results of our computer search as numerical
evidence for the optimality of our attacks. Moreover, the choice of this
model leads to an optimal attack for QPVBB84 [RG15].
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From the nonlocal computation point of view, attacking QPVθ involves
the INQC implementation of the following two-qubit unitary:

Uθ = cA-XB · cB-(R−θ)A, (3.12)

where cA-XB is a CNOT controlled on Alice’s side and cB-(R−θ)A is a rota-
tion controlled on Bob’s. Uθ is applied on the incoming state Rb

θ |x⟩ ⊗ |b⟩:

Uθ

(
Rb

θ |x⟩ ⊗ |b⟩
)
= |x⟩ ⊗ |x⊕ b⟩ . (3.13)

This embedding is useful to compare known attacks to ours, in particular
the efficient ones in [GC20]. We will give more details about this comparison
in Section 3.4.4.

3.3.3 Circuit picture

The spacetime diagrams in Fig. 3.5 are useful to visualize the timing con-
straints, but they don’t encode information about which operations are
carried out at each point (event) in spacetime. We can upgrade the repre-
sentation to a spacetime circuit, defined in [Unr14], in which we can give
a detailed picture of QPVθ , both in the case of honest prover and cheating
adversaries (Fig. 3.6). In the following, we argue that under our model the
adversarial circuit in Fig. 3.6b describes any attack to QPVθ in full generality.

Alice and Bob’s strategy consists in obtaining clonable classical infor-
mation by interacting the inputs they receive from the verifiers with their
local share of the resource state |Φ⟩. In the end, their goal is to deduce x. As
usual, Alice is unaware of the basis b in which the incoming qubit (Rθ)

b |x⟩
is encoded. Her actions are modeled by a unitary operation V′ acting on the
joint system of the verifier’s qubit |ψ⟩ and her half of the entangled qudit
pair, followed by a measurement in the computational basis. The outcome
she obtains is u ∈ Z2d, which can be forwarded to Bob.

Bob initially only receives the basis bit b ∈ {0, 1}. His only quantum
resource is his half of the qudit pair, to which he can apply a unitary Wb

followed by a measurement in the computational basis. He obtains the
outcome s ∈ Zd, which he forwards to Alice along with b. Now, without
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Figure 3.6: Circuit representation of the spacetime diagrams in
Fig. 3.5, where the actions of the verifier, prover and attackers corre-
spond here to the dashed boxes. The causal relations are enforced
by the wires between the boxes; the final broadcasting of x is not
represented.

loss of generality, we define:

UT := W1W†
0 , where Wb = (UT)b W0. (3.14)

This allows to rewrite Bob’s unitary as a fixed gate W0 followed by a gate
UT classically conditioned on b = 1. In general, the value of x sought can
be a function of all the classical information they have obtained—as they
can share it freely during the protocol. Therefore, the attack is completed by
a classical map f (b, s, u) = x that they each independently compute after
exchanging their measurement results.

Now, we make use of the fact that |Φ⟩ is maximally entangled. We have
in this case:

(I ⊗WT
b ) |Φ⟩ = (Wb ⊗ I) |Φ⟩ , (3.15)

which lets us “shift” Bob’s unitaries W0 and (UT)b to Alice’s side. This
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|ψb(x, s)⟩2d

d

|x⟩ (Rθ)
b

V u
|s⟩ (U)b

Figure 3.7: The reduced circuit. It is no longer a spacetime circuit,
hence we dropped the actors’ labels. It is nonetheless equivalent to
Fig. 3.6b when |s⟩ is chosen uniformly at random and V := V′(I ⊗
WT

0 ). Bob’s measurement of his share of the entangled qudit has
been omitted.

leads to a formally equivalent circuit for the attack, shown in Fig. 3.7. In
this version the unitary WT

0 Ub is performed by Alice on her half of the
entangled state. The actions of Bob are not shown: the only operation left to
him is to measure right away his half in the computational basis, obtaining
outcome s, which collapses Alice’s half into the qudit state |s⟩. We can then
group Alice’s operations in two unitaries V and U, respectively acting on
her “input” qudit |s⟩ and on the whole 2d-dimensional space:

V := V′(I ⊗WT
0 ) (3.16)

This simplified circuit gives a leaner description of the problem, and
reduces the description of an attack to two unitaries and a classical postpro-
cessing function. It should be noted that Fig. 3.7 is no longer a spacetime
circuit, as it does not preserve the spacetime locality of the operations. In-
deed, in the real world Alice has no access to b and cannot decide when to
apply the correction U. The sense in which the reduced circuit is useful is
that a specific (U, V, f ) can be converted to an attack to QPVθ , and viceversa
all attacks under our model are parametrized by a tuple of that kind.

We denote with |ψb(x, s)⟩ the output state of our reduced circuit before
the final measurement:

|ψb(x, s)⟩ := V(Rθ ⊗U)b(|x⟩ ⊗ |s⟩). (3.17)

A pair of unitaries (U, V) defines a set of such states for all s ∈ Zd and
b, x ∈ {0, 1}, of cardinality 4d. As will be clear in the following, the choice
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of f is essentially unique for the exact attacks and suitably chosen (i.e. part
of the definition) for the approximate attacks; we will then omit it from the
attack description. The rest of the Chapter is dedicated to work out various
properties of these states and uncover some symmetries for various values
of d. For now, we can start by characterizing the inner products between
the states in eq. (3.17): for all b, x, y ∈ {0, 1} and s, t ∈ Zd,

⟨ψb(x, s)|ψb(y, t)⟩ = δxyδst, (3.18)

⟨ψ0(x, s)|ψ1(y, t)⟩ = ⟨x|Rθ |y⟩ ⟨s|U|t⟩ . (3.19)

Equation (3.18) shows that all states with the same b are orthonormal, while
eq. (3.19) shows that the inner product of states of different b is independent
of V. From eq. (3.17) we can additionally see that the unitarity of Rθ , U, V
implies that each of the two subsets of states |ψb(x, s)⟩ corresponding to
fixed b have to span the whole output space (≃ C2d), i.e. they form an
orthonormal basis.

3.4 Exact attacks against QPVθ

For Alice and Bob to carry out an exact attack, they need a function f (b, s, u)
which correctly predicts x with unit probability. We can see the conse-
quences of this requirement from Alice’s point of view: her measurement
of |ψb(x, s)⟩ in the computational basis {|u⟩} has to be such that, when
learning b and s, her outcome u unambiguously selects one of the subsets
indexed by x = 0 or x = 1. This imposes the first strong restriction on
the states in eq. (3.17). We call it the deterministic distinguishability condition
(DDC):

Definition 5 (DDC). The set of states |ψb(x, s)⟩ for some (U, V) satisfies the
DDC if and only if, for all u ∈ Z2d, s ∈ Zd and b ∈ {0, 1}:

⟨u|ψb(0, s)⟩ = 0 or ⟨u|ψb(1, s)⟩ = 0. (3.20)

Equivalently:
⟨u|ψb(0, s)⟩ ⟨u|ψb(1, s)⟩ = 0. (3.21)
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When the DDC is satisfied, an f such that f (b, s, u) = x is naturally
constructed by assigning the value of x which has a nonzero probability
of occurring. Notice that f might only need to be partially defined: an
outcome u may not occur at all for some s, b. The DDC has a nice geometrical
interpretation: it says that the states |ψb(0, s)⟩ and |ψb(1, s)⟩ need to have
disjoint supports in the computational basis. Furthermore, the DDC has
another technical consequence on the allowed amplitudes which we prove
below.

Theorem 8. Either QPVθ is classical,29 or the states |ψb(x, s)⟩ have to satisfy:

∑
s
|⟨u|ψb(x, s)⟩|2 =

1
2

, (3.22)

for all b, x ∈ {0, 1} and u ∈ Z2d.

Proof. As noticed above, the families of vectors {|u⟩}, {|ψ0(x, s)⟩} and
{|ψ1(y, t)⟩} form three orthonormal bases of the same space of dimension
2d. We can expand |ψ1(y, t)⟩ in the {|ψ0(x, s)⟩} basis, obtaining:

|ψ1(y, t)⟩ = ∑
x,s
⟨ψ0(x, s)|ψ1(y, t)⟩ |ψ0(x, s)⟩

= ∑
x,s

(⟨x| ⊗ ⟨s|)V†V(Rθ |y⟩ ⊗U |t⟩) |ψ0(x, s)⟩

= ∑
x,s
⟨x|Rθ |y⟩ ⟨s|U|t⟩ |ψ0(x, s)⟩,

(3.23)

which is valid ∀y ∈ {0, 1}, ∀t ∈ Zd. For the second step, we used eq. (3.19).
For brevity, we define the scalar ψu,b(x, s) := ⟨u|ψb(x, s)⟩. The DDC can
thus be seen as imposing

ψu,b(0, s)ψ∗u,b(1, s) = 0, (3.24)

∀u ∈ Z2d, ∀s ∈ Zd and ∀b ∈ {0, 1}. Projecting eq. (3.23) onto |u⟩ we have,

29Recall that this means θ is a multiple of π
2 .
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for all y ∈ {0, 1}:

ψu,1(y, t) = ∑
x,s
⟨x|Rθ |y⟩ ⟨s|U|t⟩ψu,0(x, s)

= ∑
s
⟨s|U|t⟩

[
⟨0|Rθ |y⟩ψu,0(0, s) + ⟨1|Rθ |y⟩ψu,0(1, s)

]
,

(3.25)

substituting y = 0 and y = 1:

ψu,1(0, t) = ∑
s
⟨s|U|t⟩

[
cos(θ)ψu,0(0, s) + sin(θ)ψu,0(1, s)

]
, (3.26)

ψu,1(1, t) = ∑
s
⟨s|U|t⟩

[
cos(θ)ψu,0(1, s)− sin(θ)ψu,0(0, s)

]
. (3.27)

Using the DDC (in form 3.24) for b = 1, i.e. ψu,1(0, s)ψ∗u,1(1, s) = 0, we
obtain along with eqs. (3.26) and (3.27):

∑
s, s′
⟨s|U|t⟩ ⟨s′|U|t⟩∗ ·

[
cos(θ)ψu,0(0, s) + sin(θ)ψu,0(1, s)

]
·
[
cos(θ)ψ∗u,0(1, s′)− sin(θ)ψ∗u,0(0, s′)

]
= 0.

(3.28)

Summing over t gives:

∑
s, s′

(
∑

t
⟨s|U|t⟩ ⟨t|U†|s⟩

)
·
[
cos(θ)ψu,0(0, s) + sin(θ)ψu,0(1, s)

]
·
[
cos(θ)ψ∗u,0(1, s′)− sin(θ)ψ∗u,0(0, s′)

]
= 0,

(3.29)

and since ∑t |t⟩⟨t| = I and ⟨s|s′⟩ = δss′ , we have

∑
s

[
cos(θ)ψu,0(0, s) + sin(θ)ψu,0(1, s)

]
·
[
cos(θ)ψ∗u,0(1, s)− sin(θ)ψ∗u,0(0, s)

]
= 0.

(3.30)

With the DDC for b = 0, this finally simplifies to:

cos(θ) sin(θ)
(

∑
s
|ψu,0(1, s)|2 −∑

s
|ψu,0(0, s)|2

)
= 0 . (3.31)

Now we make use of the assumption of non-classicality of the protocol,
namely θ ̸≡ 0 (mod π

2 ), which ensures cos(θ) sin(θ) ̸= 0. Then, using the
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following “normalization relation” of |u⟩ in the {|ψ0(x, s)⟩} basis:

∑
s
|ψu,0(0, s)|2 + ∑

s
|ψu,0(1, s)|2 = 1, (3.32)

eq. (3.31) implies that:

∑
s
|ψu,0(0, s)|2 = ∑

s
|ψu,0(1, s)|2 =

1
2

, (3.33)

which is the part of the result we seek, for b = 0. The argument above can
be repeated step by step, this time writing |ψ0(x, s)⟩ in the {|ψ1(y, t)⟩} basis.
Eventually, we obtain for a nonclassical protocol:

∑
s
|ψu,b(x, s)|2 =

1
2

(3.34)

for all u ∈ Z2d and b, x ∈ {0, 1}.

Theorem 8 has a number of consequences on the supports of the |ψb(x, s)⟩
states, which will be exploited in the next Section.

3.4.1 Graphical language

The restrictions imposed by the DDC and by Theorem 8 suggest that, for
small Hilbert spaces, we can recover enough structure on the states

|ψb(x, s)⟩ = V(Rθ ⊗U)b(|x⟩ ⊗ |s⟩) (3.17)

to constrain the allowed attacks. To this aim, we introduce a custom repre-
sentation of the 2d-dimensional Hilbert space, in which the states |ψb(x, s)⟩
are embedded. The visualization is loosely based on hypergraphs, a general-
ization of graphs where an edge is allowed to join any number of vertices.
However, we need an additional feature: while in regular hypergraphs the
edges are only described by the vertices they join, we allow our edges a
label (color-coded). This way, two edges can join the same subset of vertices.

Figure 3.8, as well as pairs (3.35) to (3.39) in the proof below, are examples
of the visualization. Each element of the hypergraph has a counterpart:
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b = 0 b = 1

Figure 3.8: An hypergraph pair, describing an (unsuccessful) attack
for d = 3. Each hyperedge marks the support of a |ψb(x, s)⟩, with
its color encoding the index s and its position (whether inside or
outside the vertices “ring”) encoding the index x.

• Each vertex corresponds to an element |u⟩ of the computational basis.

• To each edge joining a specific subset of vertices is assigned a state
|ψb(x, s)⟩ having support in the corresponding subspace.

• Each hypergraph has 2d vertices and d edges in the inner region,
where x = 0, and d in the outer region, where x = 1.

• The color of the edges encodes the different values of the index s.

• A full attack strategy is represented by a pair of graphs drawn side-
by-side, one for b = 0 and one for b = 1.

Remark. The representation is not one-to-one. Important information about
the state is lost: for example, the specific amplitudes ⟨u|ψb(x, s)⟩ are not
encoded in the hypergraph.

As we envisioned above, the restrictions imposed by eqs. (3.18) to (3.22)
can be captured by imposing some structure on the allowed graphs. We
have derived the following necessary (but not sufficient) properties, valid
for all d:

(I) The disjointness of |ψb(0, s)⟩’s and |ψb(1, s)⟩’s supports implies that
any vertex joined by an s-colored inner edge cannot also be joined by
the corresponding s-colored outer edge.
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(II) Equation (3.22), which gives the total “probability budget” for all
inner (outer) edges joining a given vertex, has several graphical impli-
cations:

(a) All vertices have to be part of at least one inner and one outer
edge;

(b) Vertices joined by an inner (outer) edge of length 2 cannot be
part of other inner (outer) edges;

(c) Each edge has to join at least two vertices and, due to Property I,
cannot join more than 2d− 2 vertices.

(III) Due to Properties I and II, no vertex can be covered by all inner edges
or by all outer edges.

(IV) According to eq. (3.17), all states |ψb(x, s)⟩ with the same b are orthog-
onal to each other. This forbids any two edges from having only one
vertex in common.

(V) Finally, while a bit trickier to visualize, eq. (3.19) imposes that if an
s-colored edge on the b = 0 hypergraph does not share any vertex
with a t-colored edge on the b = 1 one, then all four edges of that
color combination (s, t) represent orthogonal states.

Remark. The order of the computational basis elements |u⟩, |x⟩ and |s⟩, as
well as the basis bit b, is irrelevant; clearly, any permutation can be taken
into account in the classical postprocessing step by redefining f (b, s, u) ac-
cordingly. Therefore all hypergraph pairs that can be obtained by swapping
colors, inner edges with outer edges, left graph with right graph and vertex
order30 are equivalent to each other, as shown in Fig. 3.9.

Properties I to V are powerful enough to completely characterize the
exact attacks for d = 2 and d = 3. We prove the two cases in Theorem 9 for
adversaries sharing an ebit and Theorem 10 for a maximally entangled three-
level system. These theorems are nothing new: the same characterization

30Once a vertex assignment is chosen for one of the hypergraphs in a pair, the other cannot
be freely rearranged anymore. Nonetheless, this sometimes allows to “prettify” the graphs by
drawing as many edges as possible which only join consecutive vertices.
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←→

Figure 3.9: Two equivalent d = 3 hypergraphs.

has already been carried out in [LL11], as the reader might recall from
Section 3.2.5. However, our hypergraph objects enable an arguably easier
proof and could be used in the future as an avenue to the d = 4 case, which
we could only partially characterize by means of a computer enumeration.

Theorem 9. Under the assumptions of our attack model (Section 3.3.2), adversaries
sharing a maximally entangled qubit cannot perfectly break QPVθ unless θ is a
multiple of π/4.

Proof. For d = 2, our hypergraphs have four vertices, two inner and two
outer edges. Before even building the attack pair, we can start by ruling
out the allowed hypergraphs which can be part of it for fixed b. Indeed,
Property IIc alone is sufficient to reduce them to only two possibilities:

and

but an application of Property I immediately rules out the second one. Then,
up to vertex reordering, two hypergraph pairs are possible:

b = 0 b = 1

(3.35)
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b = 0 b = 1

(3.36)

but Property V on pair (3.35) implies that the four top edges (inner blue and
outer orange) would correspond to four orthogonal states defined on the
same support of size 2, which is impossible. Therefore, only pair (3.36) is
allowed. Using Theorem 8 we can even recover the absolute value of the
amplitudes for this configuration, which has to be 1√

2
everywhere. Then:

|⟨ψ0(x, s)|ψ1(y, t)⟩| = |⟨x|Rθ |y⟩ ⟨s|U|t⟩| =
1
2

(3.37)

for all x, y and s, t. This implies θ = nπ
4 and U = Rπ/4 up to phases.

Surprisingly, a maximally entangled qutrit (d = 3) gives the adversaries
even less power than in the case above, as already noticed in [LL11]: it turns
out that they can only break classical protocols. In Section 3.5 we will see
that this is not just a quirk of exact attacks, as this “inversion” also occurs
(for θ in some range) in the approximate case.

Theorem 10. Under the assumptions of our attack model (Section 3.3.2), adver-
saries sharing a maximally entangled qutrit cannot perfectly break QPVθ unless θ

is a multiple of π/2.

Proof. For d = 3 we start sifting through the legal hypergraphs by focusing
on the inner edges. We have to place three edges of length ranging from
2 to 4, while satisfying Properties I to IV. We are left with six possibilities,
which we can fortunately all draw using “contiguous” hyperedges:
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The outer edges are subject to the same rules, meaning that they can only be
picked from the same six cases above. However, not all combinations work:
when placing them, we have to be careful to respect Properties II and IV.
We are left with just two non-trivial cases:

We can rule out the second hypergraph because it requires that three states—
for example the ones represented by the inner green, inner orange and outer
blue edges—are all orthogonal on the 2-dimensional intersection of their
supports. Therefore, only the first case can be used to build an attack pair.
Depending on vertex reordering, we obtain two possibilities:

b = 0 b = 1

(3.38)

(3.39)
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but Property V applied to pairs (3.38) and (3.39) shows that either we have
again too many orthogonal states on a support of size two, or that the
supports of two orthogonal states have a 1-dimensional intersection. In
both cases we have a contradiction, so there is no exact attack to QPVθ for
any nonclassical θ for adversaries sharing an entangled qutrit, confirming
the result in [LL11] and proving the theorem.

When applied to the d = 4 case, Properties I to IV are unfortunately
not powerful enough to prove such strong theorems. With the help of a
systematic computer search which we first used to verify our proofs, we
enumerated all compliant d = 4 hypergraphs. Adding a couple of more
refined conditions (which are difficult to check by inspection), we were able
to get the configurations of inner edges down to about a thousand. From
them, we could single out 17 hypergraphs that admit at least one legal set
of outer edges. They are reported in Table 3.1. From them, we tried to
construct attack pairs and use Property V to sift through all the possibilities,
but the legal pairs ended up too numerous to be handled manually. A more
careful analysis of the DDC could give tighter rules, allowing to reduce
them to a manageable number, but we did not pursue further this avenue.
Instead, in the next Section we present an alternative route to find new
attacks.

3.4.2 Numerical optimization: a comeback

Exploiting our circuit simplification of Section 3.3.3, we reduced the problem
of looking for exact attacks which use a pair of maximally entangled qudits
to finding a pair of matrices (U, V) such that the states |ψb(x, s)⟩ in eq. (3.17)
satisfy the DDC. Our hypergraph approach is an attempt to constrain the
allowed attacks without having to directly look at the matrix entries (i.e. the
amplitudes ⟨u|ψb(x, s)⟩).

In analogy with our numerical approach to linear optical Bell measure-
ment, we can pose our search of attacks to QPVθ problem as a nonlinear
optimization over unitary matrices. For exact attacks however, we do not
have to set up a constrained optimization. In the following we will exploit
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Table 3.1: The 17 valid sets of inner edges for d = 4 which can be
extended to at least one set of outer edges without contradicting
Properties I to IV. Due to the symmetry between x = 0 and x = 1,
the outer edges have to be chosen among the above too.
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more of its structure, phrasing it as finding the solution of a system of real
polynomial equations in the entries of U, V and Rθ .

Methods

The DDC can be written (eq. (3.21)) as:

⟨u|ψb(0, s)⟩ ⟨ψb(1, s)|u⟩ = 0, (3.40)

for all s ∈ Zd, u ∈ Z2d and b ∈ {0, 1}. We can obtain polynomial equations
from eq. (3.40) using the definition of the states |ψb(x, s)⟩, which we recall
here:

|ψb(x, s)⟩ := V(Rθ ⊗U)b(|x⟩ ⊗ |s⟩). (3.17)

By writing Ust for ⟨s|U|t⟩, Vu,xs for ⟨u|V
(
|x⟩ ⊗ |s⟩

)
and Rxy for ⟨x|Rθ |y⟩,

expanding the matrix product leads us to:

V∗u,0sVu,1s = 0 (3.41)

for b = 0, and: (
∑
ij

Vu,ijRi0Ujs

)(
∑
kl

V∗u,kl Rk1U∗ls
)
= 0 (3.42)

for b = 1. Additionally, we have to enforce unitarity of U, V:

d

∑
k=1

U∗k,iUk,j = δij ∀i, j ∈ Zd, i ≥ j, (3.43)

2d

∑
k=1

V∗k,iVk,j = δij ∀i, j ∈ Z2d, i ≥ j. (3.44)

These constraints are not polynomial equations as is, due to the presence
of the complex conjugate. They can nonetheless always be written as real
polynomials of real variables, in the real and imaginary parts of U’s and V’s
entries.

It is convenient at this point to properly define what exactly we want to
achieve with a numerical search.
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1. In order to find new attacks, we can search over whatever subset of the
domain we want; in particular, we can restrict U, V to be real matrices,
approximately saving a factor of 2 in the number of variables.

2. In order to gain (numerical) evidence of the nonexistence of attacks
to QPVθ under our model for a specific θ, we have to be as general
as possible. However, for security purposes it makes little sense to
analyze exact attacks; this case is better covered by our search of
approximate attacks in Section 3.5.

We will consider the first scenario here. Numerical tests surprisingly suggest
that this is not restrictive, i.e. even in the approximate case we find the exact
same results when considering real orthogonal matrices vs. general unitary.
Assuming real variables then, eqs. (3.41) to (3.44) become

2d2 + 2d2 +
d(d + 1)

2
+

2d(2d + 1)
2

=
13d2 + 3d

2
(3.45)

equations of the form fi(U, V) = 0, in d2 + (2d)2 = 5d2 scalar variables.
If treating θ as a variable instead of a parameter, e.g. in order to scan for
potentially weak angles without prior assumptions on their form, we need
to add two variables R00 = cos θ and R10 = sin θ as well as the constraint
R2

00 + R2
10 = 1.31 It should be noted that not all these constraints are inde-

pendent: as a matter of fact, they cannot be if solutions exist—their number
quickly outgrows the number of independent variables. We can see hints of
their interdependence already: for example, eq. (3.41) already implies the
orthogonality of at least d among the 2d columns of V. At variance with the
linear optical case, the degree of the system is constant and does not grow
with d. The conditions in eq. (3.42) have the highest total degree, which is 4
or 6 depending if θ is treated as a parameter or as a variable; the rest of the
equations are at most quadratic.

Even if the system looks heavily overdetermined, we know it has at least
a (trivial) solution for all d, namely when the protocol is classical. In the
following, we will tacitly ignore those. In order to look for the nontrivial

31Technically, the numerical method of our choice works with nonlinear functions; in case
we do not strictly require polynomials we only need to add one variable (θ) and no additional
constraints.
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solutions, we define:
Fθ(U, V) = ∑

i
f 2
i , (3.46)

i.e. the sum of the squares of all polynomials. The zeros of the function
in eq. (3.46) are also simultaneous zeros of all the polynomials fi. We can
minimize Fθ with a numerical method such as gradient descent. If we find
zero as minimum, we have found an exact attack for a specific θ. In order to
look for zeros of F, we leveraged a nonlinear least-squares method provided
by the Python library SciPy [Vir+20]. The method is similar to the one we
used for linear optics (Section 2.5.5), with some more details explained in
Section 3.5.

Sum of Squares

While computational algebraic tools for working with symbolic polynomial
equations are available, their inherent exponential scaling makes them
challenging to apply directly to our system. For small(ish) systems it is
in fact possible to obtain a proof of unsolvability, using sum of squares
(SOS) techniques developed by [Par03] in the context of global polynomial
optimization [Las01]. Broadly speaking, these proofs work by providing
a hierarchy of increasingly complex SDPs, such that the existence of a
feasible point of any of them can be turned into a certificate of unsolvability.
An important result in real algebraic geometry, Putinar’s Positivstellensatz
[Put93], guarantees that inconsistent systems will produce a certificate at
some level of the hierarchy; however the resulting SDP may be too large to
be solvable in practice. This was indeed the case for us, where the smallest
interesting case where our hypergraph strategy fails (real matrices, d = 4)
involves 80 variables and 174 polynomials. Inputting this system in a “black-
box” solver with only minor optimizations32 resulted in no certificate being
found for the levels of the hierarchy we could reasonably reach. This does
not rule out a future role of such proofs for QPVθ : these approaches can be
unsuccessful when applied as is, and may prove more effective if coupled
with a more careful analysis which takes more of our problem’s symmetries

32We used the Python’s library PICOS [SS22] and SOSTOOLS [Pap+13].
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into account.

Results

From the behavior of d = 2 and d = 3 and the growing number of con-
straints, Lau and Lo [LL11] expected a bigger entangled state not to help
much for other θs than π/4 —putting aside the huge dimensions required
for the generic attack, which they could not know at the time. We find a
different story: starting from d = 4, every even dimension within reach of
our computation produce new attacks for more and more θs.

For d = 4 we quickly find solutions for all θ multiples of π/8, showing
an attack to a non-Clifford operation (Rπ/8 ∈ C3 is equivalent to a T gate).
In general, we have Rπ/2n ∈ Cn. Therefore, sharing two ebits per round
is strictly more powerful for the adversaries than sharing just one—or an
entangled qutrit pair, for that matter. Based on known attacks to other QPV
protocols (notably Speelman’s [Spe16] and Chakraborty-Leverrier’s [CL15]),
we could conjecture a link between the level of the Clifford hierarchy to
which Rθ belong and the dimension of the entangled state needed to break
it. While this might be the case, we are not constrained to qubits: indeed,
we find that a pair of maximally entangled six-level systems gives an attack
to QPVπ/6, despite the corresponding rotation being completely outside of
the Clifford hierarchy on qubits.

With our program we could tackle pretty big instances: we proceeded
to raise the dimension up to d = 12, which involves finding a solution of
a system of 954 equations in 720 variables. Our findings are collected in
Table 3.2. An interesting pattern emerges: for even d we find an attack for,
among others, all θ multiples of π/2d. Sometimes, we also get extra angles.
For example, π/8 is broken by d = 6 even if a maximally entangled 6-level
system does not necessarily provide two ebits. In line with the d = 3 case,
when the dimension is odd it seems the adversaries get less power, as they
appear to only be capable to break angles which could already be broken by
much smaller d.

A drawback of the numerical strategy is that direct inspection of the so-
lution matrices (U, V) have not offered us a straightforward generalization,
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d 2 3 4 5 6 7 8 9 10 11 12 16∗

k 4 2 8 4 8, 12 4 16 4, 6 20 4 24 32∗

Table 3.2: Exact attacks for QPVθ . Depending on the entangled state
dimension d available to the attackers, we list the values of k for
which a valid pair (U, V) breaking θ = nπ

k is found ∀n.
(∗) For d = 16 we found an explicit attack to θ = π

32 , but we could not reliably
explore the rest of the θ range.

from which an analytic attack strategy for all d could be derived. There are a
variety of discrete symmetries that are difficult to remove; furthermore, for
d > 4 we find that solutions retain continuous degrees of freedom, which
makes extracting a “nice” matrix out of them quite difficult. We were able
to get some structure for some attacks at small d, which we show below.

Explicit solutions

The following pairs (U, V) are examples of explicit exact attacks we found
via inspection of the results of the numerical optimization. We present them
in a “tidied” form, by swapping rows and columns and multiplying by
phases when these operations lead to an equivalent attack. The matrices are
written in terms of 2× 2 blocks for readability. For d = 4, the solutions split
into two types, both of which attack QPVπ/8:

V =
1
2


X I −Z ZX

ZX X I Z
X −I −Z −ZX

ZX −X I −Z



U =
1√
2

(
R−π/8 Rπ/8 Z
−ZRπ/8 R−3π/8

)
,

(3.47)
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and

V =
1√
2


XHX 0 0 I

0 −XHX −I 0
ZX 0 0 −H
0 −ZX H 0



U =
1√
2

(
Rπ/8 −R−π/8 Z

ZR−π/8 R3π/8

)
.

(3.48)

For d = 6, the (U, V) pair below attack QPVπ/12:

V =
1
2



I ⊗
√

2Rπ/6
0
0

X⊗
√

2R−π/3
0
0

H ⊗ I
−Z
X

−ZH ⊗ X
−X
Z

H ⊗ I
Z
−X

−ZH ⊗ X
X
−Z



U =


A − 1

2 ZH 1
3−
√

3
ZX

B 1
2 ZH 1

3+
√

3
ZX

1√
6

Rπ/12
1√
2

Rπ/12
1√
3

ZH

 ,

(3.49)

where A, B are defined as:

A =
2−
√

3
2
√

6
ZX− 1

2
√

2
I, (3.50)

B =
1

2
√

2
XZ− 2 +

√
3

2
√

6
I. (3.51)

The above is a special case of a continuum of solutions with one real degree
of freedom.
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3.4.3 Circuit solutions

Kent’s attack for d = 2 also corresponds to a (U, V) pair:33

|x⟩ Hb H

|s⟩ Hb

V

U
(3.52)

We can show a manifestation of the symmetry which allows the attack to
work—without referring directly to the teleportation protocol. Suppose the
attack works for b = 0, namely Hb = I. Then, it must work for b = 1 too,
through the circuit identity [Lom03]:

H H

H

=

H

(3.53)

which makes it clear that the two cases with b = 0 and b = 1 are the same
up to a permutation of the inputs (which does not change the validity of the
DDC). Can we find an analogous explicit circuit for the d = 4 strategy, such
that the actions of Alice and Bob could be explained as a specific quantum
algorithm instead of a (much more opaque) unitary? A way to do this is
to find a useful decomposition of the (U, V) pair in terms of single qubit
gates and controlled-operations. To this aim, we implemented the quantum
Shannon decomposition (QSD), which is based on the recursive application of
a linear algebra matrix decomposition routine called cosine-sine decomposition
(CSD).

33For the sake of clarity in this example, we used an Hadamard instead of the protocol’s rotation
Rπ/4 = HZ. The main point still stand, as the extra Z can always be absorbed into V.
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Cosine-sine decomposition

We briefly introduce the decomposition, following [SBM06]. Any 2d× 2d
unitary can be decomposed into six d× d matrices this way:

U =

(
A1

B1

)(
C −S
S C

)(
A2

B2

)
(3.54)

where the Ai, Bi are unitaries and C, S are diagonal and real. The name of
the decomposition comes from the relation C2 + S2 = 1, which implies C
and S are of the form:

C =


cos β1

. . .

cos βd

 , S =


sin β1

. . .

sin βd

 . (3.55)

Each of the three terms in eq. (3.54) corresponds to a specific circuit element.
The central term is a multiplexed single-qubit rotation around the y axis
by one of the angles βi, applied to the most significant qubit (i.e. in the
usual circuit representation, the first from the top). Multiplexed refers to a
generalization of a controlled gate where a different unitary is applied for
each value of the control system, which may be more than 2-dimensional.
The corresponding circuit element is written as:

d

Ry
(3.56)

The left and right block-diagonal terms are also multiplexed gates, which
apply Ai or Bi depending on the value of the first qubit:

d
Ai
∣∣ Bi

(3.57)
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The cosine-sine decomposition can be worked out from the generalized
singular value decomposition. We used the LAPACK CSD routine exposed
by Scipy [Vir+20].

Intermediate step

While we could directly apply the CSD again on each of the Ai, Bi, [SBM06]
provides an intermediate step which “demultiplexes” them, namely it fac-
tors out the controlled part:

d
Ai
∣∣ Bi

=
d

Rz

Zi Qi

(3.58)

through the relation:(
Ai

Bi

)
=

(
Qi

Qi

)(
Di

D†
i

)(
Zi

Zi

)
, (3.59)

where Qi, Zi are d× d unitaries and Di is diagonal with d rotation angles
(i.e. phases) around the z axis.34 They can be obtained by diagonalizing
AiB†

i = QiD2
i Q†

i and working out Zi = DiQ†
i Bi. However, this factorization

is not unique and this route (suggested in the paper) did not work well
numerically for us when AiB†

i has degenerate eigenvectors. Luckily, the
generalized Schur (also known as QZ) decomposition—conveniently exposed
by Scipy—can directly give Qi, Zi and Di from Ai, Bi.35

34Remember that the order of the gates is flipped in the circuit vs. matrix representation, a
peculiar quirk of the quantum computation conventions which systematic self-observational
studies have shown to be the primary source of errors and typos in the field.[citation needed]

35Technically, the Schur decomposition of a pair of matrices (A, B) returns Q, Z unitary and
DA , DB upper triangular such that A = QDA Z and B = QDB Z. When A and B are unitary,
DA , DB are unitary too and thus diagonal. However, the requirement DA = D†

B is not guaranteed,
and has to be enforced by pulling out phase factors from the columns of Q.

https://xkcd.com/285/
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R− π
4

H H Z

R π
4 Z R π

4
R π

8
R− 3π

8

Figure 3.10: A compact circuit which implements V in eq. (3.48).
We chose to stick with our convention for Rθ here instead of the one
commonly used in the circuit model, i.e. Rθ = σy(2θ).

Quantum Shannon decomposition

One iteration of QSD on V2d×2d then looks like the following circuit [SBM06,
Theorem 13]:

V =
d

Rz Ry Rz

Z2 Q2 Z1 Q1

(3.60)

The procedure can then be iterated until the only non-controlled operations
are single-qubit gates.

Circuit for π/8 attack

Unfortunately, while these kind of black-box techniques provide the re-
quired decomposition in terms of simple gates, it often happens that sig-
nificant postprocessing is required in order to get the circuit down to a
manageable size. In our case, we applied QSD to the (U, V) pair in eq. (3.48),
obtaining around 80 gates for the 8× 8 unitary V and a dozen for U. We
employed the full arsenal of circuit simplifications we could find, ranging
from lists of known circuit identities [Lom03] to the use of ZX calculus
[CD11; Wet20]. For now, we focus on the simplification of V, which we
could significantly reduce to a handful of gates (Fig. 3.10).

However it is still significantly more complex than in the d = 2 case,
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which hinders an analogous clean interpretation. We can do better by
remembering that the DDC is unaffected by local phases and operations
which permute the computational basis. This way, we obtain an extremely
barebone circuit for a (different) (U, V) pair which still breaks QPVπ/8:

|x⟩ Rb
π/8 H

|s⟩
Hb Rb

π/8

H

V

U

(3.61)

3.4.4 QPVθ in the INQC picture

Our definition of the attack model is tailored to the circuit picture that we
propose and exploit. However, as it is clear from our review in Section 3.2, an
extensive part of the literature [Spe16; Buh+14; BK11; GC20] characterizes an
attack as the much more general INQC implementation of a suitable unitary
UAB on a bipartite quantum input ρAB. In the following, we justify the
mapping from our model to INQC that we gave in eq. (3.13). In particular,
we show how the linear attacks in [GC20] (Section 3.2.11) compare to ours.

During a round of QPVθ , the adversaries receive the quantum-classical
[Wil13] state:

|Ψb(x)⟩AB = (Rθ)
b |x⟩ ⊗ |b⟩ , (3.62)

where x = 0, 1 and b = 0, 1 with equal probability 1/4. At first glance it
seems that in order to get x, they only need to apply via INQC a rotation
R−θ controlled on system B:

cB-(R−θ)A = I ⊗ |0⟩ ⟨0|+ R−θ ⊗ |1⟩ ⟨1| , (3.63)

which leaves them with the state |x⟩A ⊗ |b⟩B. However, at this point only
Alice knows x and cannot send it to Bob: the allowed round of communica-
tion has already been used up by the nonlocal protocol. Indeed, eq. (3.63)
can be applied on |Ψb(x)⟩ without using any entanglement, by just asking
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Bob to forward b to Alice.

The unitary we want to implement then should output enough infor-
mation to retrieve x on both sides. This is realized through a CNOT gate
controlled on Alice’s side, giving the embedding in eq. (3.12)

Uθ = cA-XB · cB-(R−θ)A (3.12)

which leaves them with the state |x⟩A ⊗ |x⊕ b⟩B. In circuit form:

Rb
θ |x⟩ R−θ |x⟩

|b⟩ |x⊕ b⟩

V1

A

V2
B

(3.64)

Now Bob is also able to retrieve x, by measuring in the computational basis
and XORing the result with b—which is also available as a classical bit.
The INQC implementation of the two-qubit unitary Uθ is then an attack to
QPVθ .

The protocol defined in [GC20] gives an INQC implementation of all
two-qubit unitaries, consuming a linear amount of ebits in the desired ap-
proximation accuracy. Through the embedding defined above, all QPVθ

protocols can be attacked in this way. In order to compare their ebit require-
ment to ours, we first need to decompose Uθ . Matching their notation, their
strategy is based on the decomposition, valid for all two-qubit unitaries U
[KC01]:

U = (R1 ⊗ S1)Ω(R2 ⊗ S2), (3.65)

where Ri, Si are single-qubit unitaries. The matrix

Ω = exp
{

i
(
α σx ⊗ σx + β σy ⊗ σy + γ σz ⊗ σz

)}
(3.66)

describes the nonlocal part of U, and is always diagonal in a basis of max-
imally entangled states called magic basis. For a generic U, their strategy
implements Ω with some vanishing probability of failure; comparing it
to our exact attacks would only make sense if we defined a (somewhat
arbitrary) cutoff error ε. However, they give in two special cases a perfect
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implementation of U, provided that α, β, γ are all integer multiples of π/2n:

• If n = 2, consuming 2 ebits [GC20, Proposition 1];

• If n > 2, consuming a finite number of ebits [GC20, Corollary 1].

It turns out that in our case, the angles αθ , βθ , γθ corresponding to Uθ are
particularly simple. We can obtain their values through the Cartan (also
known as KAK) decomposition [DL08]. A solution is:

R1 =
I − iZ√

2
, S1 = Rπ/4,

R2 = R−θ/2, S2 =
Z− iI√

2
H,

(3.67)

which gives a factorization of Uθ in the form of eq. (3.65), with

αθ = 0, βθ = θ/2, γθ = π/4. (3.68)

We fall in the exact case then for θ multiple of π/2n. An explicit count
of the resources used does not seem to be provided in the paper. Going
through their INQC protocol we conclude that a direct application of their
strategy gives an exact attack consuming 4n + 15 ebits, which might be
further optimizable in the specific case at hand. How does this compare to
the attacks we found in Section 3.4.2? From Table 3.2 we can see that for
n = 2, 3, 4, 5 (i.e. k = 4, 8, 16, 32) we need respectively 1, 2, 3, 4 ebits. If our
conjectures on exact attacks holds, there exist an attack for all n requiring just
n− 1 ebits, a fourfold efficiency improvement over [GC20]. We emphasize
though that the gain in ebit consumption is likely due to the large amount
of structure in the family Uθ that we consider, which is reflected for example
by how αθ and γθ are independent of θ.

Remark. In Section 3.5.4 we will define QPV(n), a protocol which uses n
bases distributed in the interval [0, π

2 ) to encode |x⟩ instead of just two. We
can analogously embed QPV(n) into a INQC unitary Un, which now acts
on a (2⊗ n)-dimensional space (as b ∈ Zn). The input state is |Ψb(x)⟩AB =

Rθb
|x⟩ ⊗ |b⟩, where the θb are defined in Protocol 7. Due to the higher

dimensionality, Gonzales and Chitambar’s linear attack does not apply to
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QPV(n), provided that the embedding above is optimal. We do not prove this,
and as a matter of fact the highly structured nature of Un might provide a
direct mapping to [GC20]’s attacks.

3.5 Approximate attacks

We already pointed out in the previous Section that, while exact attacks
are useful to highlight the weaknesses in the specific structure of QPVθ , it
is essential for a practical protocol to analyze its security in the presence
of imperfect provers. Roughly speaking, the main assumption is that the
adversaries could have better equipment than the imperfect prover: this
lets them exploit this gap in capabilities to “hide” the unavoidable mark of
their presence—which is due to the intrinsic security of the ideal protocol.
Imperfections arise in two main ways:

1. As losses during the communication among the honest parties, which
from the verifier’s perspective look like a missed answer to the chal-
lenge

2. As errors during the honest prover’s measurement of |ψ⟩, which result
in the wrong secret bit x̃ being sent back to the verifiers.

Losses are an important concern in protocols implemented with discrete-
variable photons. Qi and Siopsis [QS15] analyze the resilience of a class
of protocols which includes QPVθ , showing that some modifications are
necessary to enable loss-resistance. We instead focus in the next Section on
the other main source of imperfections, measurement errors.

3.5.1 Figure of merit

In order to numerically search for optimal attacks, we have to modify the
strategy used in Section 3.4.2, by accommodating for the presence of errors.
We therefore relax the DDC requirement, and only asks the adversaries to
output their best guess for x, i.e. the one which they deem more probable
given their measurement results.
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Using the notation of Section 3.3.3, we have that for all x, b a measure-
ment result of s (by Bob) and u (by Alice) occurs with probability:

p(x, b, s, u) = |⟨u|ψb(x, s)⟩|2 p(x) p(b) p(s). (3.69)

Their best guess for the value of x is thus

psucc(b, s, u) = max
x

p(x, b, s, u). (3.70)

We focus in the following on the probability of error, perr = 1− psucc. Our
protocol only involves qubits, i.e. x ∈ {0, 1}, therefore

perr(b, s, u) = min{p(0, b, s, u), p(1, b, s, u)}. (3.71)

Recall that in QPVθ x, b are uniformly distributed (with p = 1
2 ) and s is

too (with p = 1
d ) in our attack model, as it comes from measuring half of a

maximally entangled pair. Then, the overall error probability for an attack
strategy can be obtained by summing over b, s, u:

perr(U, V, θ) =
1

2 · 2 · d ∑
b,s,u

min
{
|⟨u|ψb(0, s)⟩|2, |⟨u|ψb(1, s)⟩|2

}
. (3.72)

We can check for consistency that imposing the DDC (eq. 3.20) gives perr = 0,
as expected of exact attacks.

3.5.2 Methods

Our new figure of merit we seek to minimize over all attack strategies
is, therefore, perr(U, V, θ). While the techniques are similar, this case is
somewhat different from the search for exact attacks in Section 3.4.2. For
starter, at variance with the previous case, we have to explore the complex
unitary space, if we are to obtain credible evidence for bounds on perr. Only
looking among orthogonal matrices like we used to do makes little sense
from a security standpoint. Nonetheless, we noticed with some surprise
that when restricting to the orthogonal group, which is much faster to
search, we obtain the exact same results and curves that are presented
below. A possible reason for this phenomenon are symmetries in our attack



3.5. Approximate attacks 167

model: for example, (U, V) and (U∗, V∗) are both attacks with the same
error probability.36

Once minimized at various fixed θ, we can obtain for each size d of
the adversaries’ entangled state a curve perr(θ), showing the best minima
found:

perr(θ) = min
U,V

perr(U, V, θ). (3.73)

Remark. We only need to explore a small range of θ, as symmetries allow
to restrict the relevant values to [0, π

4 ] through the relations:

R π
2 −θ = XRθ Z and R−θ = XRθ X. (3.74)

The other quadrants are covered by similar relations. The extra X and Z can
then be either absorbed into V or taken into account by the adversaries by
flipping their prediction for x.

Here, we ideally want to obtain evidence about the global minimum
of the continuous function (3.72) subject to unitarity constraints, instead
of a solution of perr = 0 like in the exact case. This situation is really
analogous to the linear optics optimization discussed in Section 2.5.5, and
we are similarly faced with the choice between a constrained method and a
parametrization of the search space. In general, the shape of the search space
can heavily affect the effectiveness of the multistart method we use. To this
aim, we separately employ a variety of algorithms and parametrizations:

• Instead of SLSQP, which implements the constraints as lagrangian
multipliers without exploiting sparsity, we use IPOPT, a constrained
sparse interior point method [WB06]. Here, the search space is big:
two arbitrary complex d× d and 2d× 2d matrices.

• L-BFGS, an unconstrained quasi-Newton method [Byr+95]. Here, U
and V are parametrized via skew-hermitian matrices. This reduces
the size of the search space a lot, but has the potential to introduce

36A result by Rudolph and Grover [RG02] that there is a real gate universal for quantum
computation does not help here directly (but may be part of the solution), because it requires an
overhead of one qubit. However, it certainly implies that a unitary attack at dimension d can
always be simulated by an orthogonal one in dimension 2d.
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unwanted additional structure to it. We explore two choices for the
mapping from skew-hermitian to unitary:

– the Cayley transform [Cay46; Zhu17]: U = (I + A)−1(I − A),

– the usual exponential map: U = eA.

In Section 2.5.5, we noticed that a major drawback of parametrizing the
space through the exponential map is that we lose the convenience of a
straightforward analytical gradient. This is where the Cayley transform
helps, as its algebraic structure allows for an easy propagation of the gradi-
ent. Indeed, if our variables are the entries aij of A:

∂U
∂aij

=
∂

∂aij

[
(I + A)−1(I − A)

]
= −

[
(I + A)−1 ∂A

∂aij
(I + A)−1(I − A) + (I + A)−1 ∂A

∂aij

]

= −(I + A)−1 ∂A
∂aij

(U + I),

(3.75)

where we used in the second line the following relation, valid for an invert-
ible matrix K which depends on a parameter x:

∂K−1

∂x
= −K−1 ∂K

∂x
K−1. (3.76)

The term ∂A
∂aij

is just the projector |i⟩ ⟨j|, which means the derivative ends

up being the outer product between the i-th column of (I + A)−1 and the
j-th row of (U + I). Another nice feature of this mapping is the ability to
re-use the result of its most expensive operation (matrix inversion) for the
gradient.

Nonetheless, we found the exponential map implementation (with no
analytical gradient) to be slightly faster for the small cases (d < 4), with
IPOPT and Cayley catching up and outperforming for larger d. Interestingly,
IPOPT manages similar performances than the Cayley method, despite the
bigger search space: we think this is due to the effective exploitation of
the constraints’ sparsity. In terms of number of starting points needed to
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reach the lowest valley, the three methods seem to give comparable results.
For example, for d = 4 we observe convergence to the same (hopefully
global) optimum after between 104 and 105 randomly sampled starting
points. Unfortunately we could not go much further than d = 5 for the
approximate attacks, at variance than with the exact case. At that point the
computation time needed to get reliable curves is beyond the amount we
considered reasonable to invest.

3.5.3 Results

Our results are plotted in Fig. 3.11 for d ≤ 5. Already at first, one can
notice a much richer structure than what could be expected given the fairly
regular behavior of the exact attacks’ angles in Table 3.2. As expected we
find consistent results: perr drops to 0 where the exact attack suggest. The
shapes of the perr(θ) curves we found in Fig. 3.11 merit a consideration, as
they appear to be composed of different sections {p1(θ), p2(θ), . . . , pn(θ)}.
If they represent optimal strategies then this suggests that Alice and Bob’s
best attacks can be very different depending on the protocol’s parameter
θ: at various points in the range [0, π

4 ], a certain strategy becomes more
effective and overcomes the previous one. In the following, we analyze our
results for each dimension d.

d = 1, 2 When the adversaries share just one ebit (d = 2), the curve we
found numerically is reproduced by:

perr(θ) =

sin
(

θ
2

)2
0 ≤ θ ≤ π

8 ,

sin
(

θ
2 − π

8

)2
π
8 ≤ θ ≤ π

4 .
(3.77)

The probability in the first half of the range, the region 0 ≤ θ ≤ π
8 , is the

same that can be attained with no entanglement at all (d = 1 in Fig. 3.11).
As a matter of fact, there is a simple strategy matching the probability for
this section of the curve: it is the ubiquitous pretty good measurement (PGM)
[HW94], which instructs Alice to just measure the unknown |ψ⟩ = (Rθ)

b |x⟩
in the “intermediate” basis Rθ/2 and send the classical result to Bob in the
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Figure 3.11: The numerically minimized perr(θ) for θ ∈ [0, π
4 ], the

other values of θ being deduced by symmetry. Horizontal lines mark
the maximum value of perr attained by each curve. In the inset,
the d = 1 curve corresponding to the best attack for no pre-shared
entanglement is traced analytically.
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broadcasting phase.

In the second half of the range ( π
8 ≤ θ ≤ π

4 ), the ebit starts to help. We
can find an explicit strategy for this region of the curve too: the idea is to
modify the teleportation-based exact attack for QPVπ/4 in eq. (3.52), by
prepending a rotation of half the angle separating θ from π

4 :

|x⟩ Rb
θ

R π
8 − θ

2 H

|s⟩ Hb

V

U
(3.78)

d = 3 Theorem 10 tells us that in this case we do not have exact attacks.
This quirk of entangled qutrits is better detailed in the approximate context,
where it becomes clear that they help lowering the error probability with
respect to qubits in a small region of θ while being less useful around π/4. In
this case, the piecewise function perr(θ) appears to be much more complex:
we can identify six separate curves, with some strategies prevailing only
in tiny parameter regions—namely, the ones flattening the “cusp” around
θ/π ≃ 0.11. Unfortunately, we could not find a clear analytical fit to any of
the sections.

d = 4 This case corresponds to two ebits per round. We can identify five
distinct regions, four of which (all but the first rising curve around θ = 0)
fit to an expression of the type:

(1− t) sin
(

θ

2
− ϕ

)2
+

t
2

. (3.79)

Around θ ≃ π
8 and θ ≃ π

4 , where perr(θ) touches the x axis, we have t = 0
and respectively ϕ = π

16 , ϕ = π
8 . Similarly than in the d = 2 case, the

regions of the curve around the zeros of perr(θ) have a matching strategy
consisting of an appropriately rotated version of the corresponding exact
attack. The region around θ ≃ 0 is interesting, as both d = 3 and d = 4
manage to slightly beat the non-entangled PGM strategy (while d = 2
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does not). We could not find a simple analytical formula reproducing this
behavior, which might be due to numerical inaccuracy; we notice however
that the difference in the value objective function is well above the observed
convergence accuracy (by about three orders of magnitude), hinting at it
being a real effect.

In analogy with the circuit in eq. (3.78) for the d = 2 case, in the region
around π

8 we can find a matching explicit strategy by modifying the exact
attack described in eq. (3.61), prepending a rotation of 1

2 (θ − π
8 ).

d = 5 Continuing the trend of d = 3, in this case too we observe a pair
of maximally entangled five-level systems to yield worse attacks than two
ebits in the region around π

8 .

Comments on security

If we were to only look at the exact attacks in Table 3.2, we could think that
QPVθ is broken for a limited set of angles, and secure otherwise. But as
already noted, if QPVθ is going to be used with non-ideal (honest) provers,
we need guarantees that perfect adversaries can be caught reliably. Even
before looking at the results of this Section, if the conjectured pattern θ =
kπ
2d ∀k for the new “weak” angles holds for all d it is not looking well for
QPVθ security—adversaries can indeed get arbitrarily close to an attack to
any angle fairly quickly in d. The analytical and numerical results above
paint an even grimmer picture: From the data in Fig. 3.11 we can see that just
sharing one ebit lets the adversaries get away with a small sin(π/16)2 ≃
3.8% error probability, even around the best θ = π/8. For two ebits per
round, allowing an honest error of just ∼ 0.5% is already enough to nullify
any security claim across the entire parameter space!

3.5.4 QPV(n): a better protocol with little effort?

Can we modify QPVθ in such a way that the experimental implementation
does not suffer much, with the hopes of making it harder for adversaries
to attack? We chose to analyze QPV(n), a simplified version the QPVBloch

protocol proposed by Kent and analyzed by Lau and Lo (Section 3.2.5). In
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QPV(n), the basis in which |x⟩ is encoded is chosen from n possibilities
around a Bloch circle, instead of just two. The idea is that during an attack,
only the adversary that receives the basis information b can adapt his quan-
tum strategy (represented by Ub in our circuit reduction), while the other
(the unitary V) has to be the same for all b. We would expect thus to find
better error tolerance than what we found for QPVθ if the adversaries are
given the same entangled state.

Protocol 7 (QPV(n)). The setting is the same as QPVθ , with the following
differences:

1. The verifiers now choose a rotation Rθb
, where the basis angle θb is

picked uniformly at random from the set:

Sn =

{
bπ

2n
, ∀b ∈ Zn

}
; (3.80)

2. They send |ψ⟩ = Rθb
|x⟩ from V1 and the basis index b ∈ Zn from V2;

3. The parties then follow the same actions as in QPVθ .

Remark. The restriction to a Bloch circle instead of the entire Bloch sphere is
entirely technical, and is due the possibility of a fairly substantial optimiza-
tion speedup when using a real input state. We expect that a similar analysis
for QPVBloch could yield tighter constraints on the adversaries (which is
the case for non-entangled adversaries), to which our results should be
regarded as lower bounds.

The set Sn is composed of n equally-spaced angles in the range [0, π
2 ),

e.g. n = 3 results in {0, π
6 , π

3 } and n = 7 is {0, π
14 , π

7 , 3π
14 , 2π

7 , 5π
14 , 3π

7 }. As n
grows, the set covers the angle range better and better. The definition of
Sn is chosen so that QPV(2) reduces to QPVπ/4. An interesting feature of
QPV(n) is that it fails to be embedded (at least, trivially) in the Gonzales and
Chitambar’s linear attack [GC20] which we discussed in Section 3.4.4, as b
cannot be stored in a qubit anymore.
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No preshared entanglement

In this case (d = 1) we can compute analytically the optimal error probability.
Similarly to the analogous case discussed for QPVθ , all Alice can do is
measure |ψ⟩ at an angle θ̃ as soon as it arrives, as Bob has no resource state
to act on. Then they try to guess x from sharing b and Alice’s measurement
outcome x̃. The probability of error coming from a measurement of |ψ⟩ =
Rθ |x⟩ in the Rθ̃ basis is:

perr(θ̃ | θb) =
1
2
|⟨1| Rθ̃ Rθ |0⟩|2 +

1
2
|⟨0| Rθ̃ Rθ |1⟩|2 = sin(θ̃ − θ)2. (3.81)

We can immediately look at the asymptotic case for n → ∞, where θ is
picked from the uniform distribution over the interval [0, π

2 ). The average
probability of error can be computed by the integral:

perr(θ̃) =
2
π

∫ π
2

0
sin(θ̃ − θ)2 dθ =

1
2
− 1

π
sin(2θ̃). (3.82)

Minimizing over θ̃, we recover the intuitive result that Alice’s best measure-
ment angle is the interval’s midpoint π/4, which gives perr = ( 1

2 − 1
π ).

In order to get the error probability for a finite value of n, we need to
average eq. (3.81) over the angles θb in Sn:

perr(n, θ̃) =
1
n

n−1

∑
b=0

sin
(

θ̃ − bπ

2n

)2

=
1
n

n−1

∑
b=0

[
1− cos

(
2θ̃ − bπ

n
)

2

]

=
1

2n

[
n−

n−1

∑
b=0

cos
(

2θ̃ − bπ

n

)]
.

(3.83)

The angles inside the cosine are in arithmetic progression. We can evaluate
the sum using the following trigonometric identity:

n−1

∑
b=0

cos(x± by) =
sin
( ny

2
)

cos
(
x± (n−1)y

2
)

sin
( y

2
) , (3.84)
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which leads to:

perr(n, θ̃) =
1

2n

[
n− sin

(
π
2
)

cos
(
2θ̃ − π

2 + π
2n
)

sin
(

π
2n
) ]

=
1

2n

[
n− sin

(
2θ̃ + π

2n
)

sin
(

π
2n
) ]

.

(3.85)

For n → ∞ we get the correct limit, matching the integral in eq. (3.82).
The optimal error probability perr(n) for the adversaries is obtained by
minimizing perr(n, θ̃) over θ̃ ∈ [0, π

2 ). Equation (3.85) reaches its minimum
when sin(2θ̃ + π

2n ) = 1, which occurs for θ̃ = (π
4 − π

4n ). Substituting, we
finally get:

perr(n) = min
θ̃∈[0, π

2 )

{
perr(n, θ̃)

}
=

1
2

[
1− 1

n
csc
( π

2n

)]
. (3.86)

As above, for large n we get perr → ( 1
2 − 1

π ) ≃ 18%, which is therefore
the highest error that QPV(n) can tolerate against unentangled adversaries.
While the convergence is pretty fast in n, the additional implementation cost
might be unjustified, when QPVπ/4 already achieves perr = sin(π/8)2 ≃
14.5%.

Numerical results for d > 2

In Fig. 3.12 we collected the perr(n) of our optimized attacks for d = 2, 3, 4.
Keeping in mind that the numerical minimization only provides upper
bounds, assuming our results are not far from optimal we can see that
the relative gain in error probability grows with d. Indeed, at d = 4 we
already have that, for large n, the tolerable perr is more than double the one
provided by the best parameter for QPVθ .

3.6 Summary and conclusion

We conclude the thesis with a summary of this Chapter, where we analyzed
the resources needed to attack a class of position verification protocols.
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Figure 3.12: The numerically minimized perr(n) representing attacks
to the QPV(n) protocol. For large n, the best attacks found are weaker
(that is, they succeed with lower probability) than in QPVθ , at a mild
implementation cost.

Our findings

We started the Chapter with an introduction to the task of position verifica-
tion, and a review of the recent literature about the topic. We then define in
Section 3.3.1 the QPVθ family, a simple class of protocols already used in pre-
vious work, due to its useful properties. After clarifying our attack model,
we reformulate the protocol and the available attack strategies through the
spacetime quantum circuit in Section 3.3.3. This allows us to reduce it to an
equivalent, smaller regular circuit, which we use to parametrize all possible
attacks in our model via a pair of unitaries (U, V).

Armed with these tools, we look for characteristics of exact attacks. We
formulate the deterministic distinguishability condition (Definition 5), which
we use to prove necessary conditions for an attack to be exact, mainly in the
form of Theorem 8. Through a hypergraph-like representation of states in
Hilbert space, we investigate the consequences of the DDC on exact attacks
with an entangled qubit and qutrit, re-discovering with a simple proof the
result in [LL11] that there exist secure protocols in this case. We try to extend
the result to two ebits, which results in a reduced space of allowed graphs.
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However, this is not enough to lead to a complete characterization.

In Section 3.4.2 we explain how it is possible to numerically search for
exact attacks, by translating the DDC to a set of simultaneous polynomial
equations. We explore the space up to d = 12, finding some regularities in
the expression of the angles which can be broken with a d-level entangled
pair. Notably, we observe a linear relation between d and the level of the
Clifford hierarchy in which the protocol’s rotation Rθ resides. For d = 4,
we obtain a simple attacking circuit by reverse-engineering the numerical
result. We then compare the entanglement consumption of our attacks to
the strategy in [GC20].

Finally, we remove the constraint of exact attacks and show how to
optimize the attackers’ error probability in Section 3.5, in order to ascertain
the error-tolerance properties of QPVθ . We discuss some subtleties, as well
as caveats, of the optimization method and find two ebits to be sufficient to
attack any fixed angle with failure probability < 0.5%. QPV(n), a variant of
QPVθ with modest additional experimental requirements, is observed to
have a slightly better error tolerance.

Future directions

For us, the main motivation for the treatment of QPVθ was the lack of
evidence that adversaries with access to near-term technology could be
effective against a practical near-term protocol. Despite QPVθ being one
of the first protocols to have ever been proposed, even the specialized
attacks present in the literature required the simultaneous manipulation
of an impractical number of ebits for some values of θ—the closest being
the protocols in [GC20]. Some interesting questions are left open, and may
point to future research directions. We (only numerically) found a trend
associating an exact attack of dimension d to all θ multiples of π

2d up to
d ∼ 12, which suggests a generic explicit strategy continuing the trend for
all d could be found. Given the similarities between the gate teleportation
techniques used in measurement-based quantum computation [RHG07]
and the attacks we consider, they could lead to improvements in those areas
too.
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Finally, the situation in quantum position verification at the moment of
writing is much different than when this work started. As we noted in our
literature review, 2021 has been a golden year, with strong theoretical results
on lower bounds for both near-term [BCS21; LLQ21] and future [All+21;
Jun+21] protocols. We hope that the relevance of position-based cryptog-
raphy grows more and more in the coming years, providing a valuable
addition to the already long list of reasons to accelerate the development of
quantum technologies.
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