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INFORMATIQUE ET INGÉNIERIE
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Titre : Électrophorèse en non-équilibre d’une microparticule selective en

ions

Résumé :

Les travaux de cette these sont consacrés à l’étude théorique et numérique du mouve-

ment d’une particule sphérique sélective de cations dans un électrolyte sous l’action d’un

champ électrique externe d’intensités diverses. La région externe de l’électrolyte n’est pas

limitée, par conséquent, l’influence des parois n’est pas prise en compte.

Les principaux résultats suivants ont été obtenus dans les travaux:

1. La solution asymptotique et numérique du problème de l’électrophorèse dans un

champ électrique d’intensité faible.

2. Dans le cas limite d’une faible intensité de champ électrique, la dépendance de

la vitesse électrophorétique de l’intensité du champ électrique est établie, ce qui est une

généralisation de la formule de Helmholtz-Smoluchowski pour une particule diélectrique

(condition d’équilibre) à une particule sélective d’ions (condition non-équilibre).

3. Une solution analytique du problème est obtenue dans le cas limite d’un champ

électrique de haut intensité dans chacune des couches limites minces.

4. L’émergence d’une instabilité électrocinétique dans la région du flux entrant de

cations a été trouvée. Un scénario de transition de flux d’un régime régulier à chaotique

est obtenu.

Aussi bien la compréhension de la dépendance de la vitesse des particules au champ

électrique que le phénomène d’instabilité électrocinétique dans la région de charge sont

d’une importance pratique. Cet effet peut être utilisé pour créer de nouveaux dispositifs

microfluidiques pour mélanger des liquides à la micro-échelle. Les données de simula-

tion numérique peuvent être utiles pour évaluer l’efficacité de l’utilisation de l’instabilité

électrocinétique dans la création et l’utilisation de tels dispositifs.

Mots clés : Microparticule ionique sélective, électrophorèse, électroosmose, électrolyte,

équations de Nernst-Planck-Poisson-Stokes, vitesse électrophorétique, électrophorèse du

second type, électrophorèse non linéaire, gradient de conductivité électrique, instabilité

électrohydrodynamique

Institut de Mécanique et d’ Ingénierie de Bordeaux (I2M, CNRS UMR 5295)

ENSCBP bat A, 16 avenue Pey-Berland, 33607 PESSAC Cedex
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Title : Non-equilibrium electrophoresis of ion-selective microparticle

Abstract :

The work is devoted to the theoretical and numerical study of the motion of a spherical

cation-selective particle in an electrolyte under the action of an external electric field of

various strengths. The outer electrolyte region is not limited, so the problem is completely

free from the possible influence of the walls.

The following main results were obtained in the work:

1. Asymptotic and numerical solution of the electrophoresis problem in a weak electric

field.

2. In the limiting case of the weak electric field, the dependence of the electrophoretic

velocity on the electric field strength is derived, which is a generalization of the Helmholtz-

Smoluchowski formula for a dielectric particle (an equilibrium process) to the ion-selective

particle (non-equilibrium process).

3. An analytical expansion of the problem is obtained for the limiting case of a strong

electric field in each of the thin boundary layers.

4. The emergence of electrokinetic instability in the region of the incoming cations

flux was found. A scenario of the flow transition from regular to chaotic is obtained.

Both the understanding of the dependence of the particle velocity on the electric field

strength and the discovered phenomenon of electrokinetic instability of the space charge

region are of practical importance. The electrokinetic instability can be used to create

new microfluidic devices for mixing liquids on a micro-scale. Numerical simulations data

can be useful for evaluating the efficiency of using electrokinetic instability in the creation

of such devices.

Keywords : Ion-selective microparticle, electrophoresis, electroosmosis, electrolyte, Nernst-

Planck-Poisson-Stokes equations, electrophoretic velocity, electrophoresis of the second

kind, non-linear electrophoresis, electric conductivity gradient, electrohydrodynamic in-

stability

Institut de Mécanique et d’ Ingénierie de Bordeaux (I2M, CNRS UMR 5295)

ENSCBP bat A, 16 avenue Pey-Berland, 33607 PESSAC Cedex
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Résumé

Les phénomènes électrocinétiques sont couramment utilisés dans le domaine de la pro-

duction de systèmes de petite taille (de l’ordre du micro ou nanomètre) et des perspectives

technologiques de création de ”laboratoires sur chips” microfluidiques. La plupart de ces

dispositifs ont un fluide de travail conduction qui doit être mis en mouvement.

Les méthodes utilisées pour mettre en œuvre un mouvement fluide à une échelle

conventionnelle sont souvent basées sur les forces d’inertie. A l’échelle microscopique,

les forces visqueuses dominent et le mouvement du fluide a plus de mal à être initié.

Les phénomènes électrocinétiques constituent l’un des moyens non mécaniques les

plus répandus et les plus efficaces pour faire bouger un fluide à l’échelle micro et na-

nométrique. L’idée principale est la suivante : un liquide dans lequel se trouvent des

ions d’une substance dissoute (électrolyte) est adjacent à une surface solide chargée. Un

nuage de diffusion d’ions de charge opposée s’accumule près de cette surface. Un champ

électrique externe produit alors une force agissant sur la couche de diffusion chargée,

ce qui provoque un écoulement de fluide par rapport à la surface chargée. L’écoulement

électrocinétique près d’une surface fixe (paroi) est appelé écoulement électroosmotique,

et le mouvement électrocinétique des particules chargées en suspension dans un fluide est

appelé électrophorèse. L’électroosmose et l’électrophorèse ont de nombreuses applications

en chimie analytique, dans les problèmes de mélange de liquides, de modification des

propriétés thermoconductrices d’une substance, de séparation des particules se déplaçant

dans un liquide par les taille et par d’autres propriétés ou dans le domaine biomédical

pour n’en citer que quelques-unes.

L’objectif dans cette thèse est d’étudier théoriquement et numériquement le mouve-

ment d’une microparticule sphérique sélective aux ions dans un champ électrique constant

dans une large gamme d’intensités.

Pour atteindre cet objectif, il était nécessaire de :

1. Formuler théoriquement le problème du mouvement d’une microparticule sélective

d’ions (perméable à un type d’ions) dans une solution d’électrolyte binaire (ions positifs

et négatifs) lorsqu’un champ électrique externe est appliqué.

2. Trouver une solution analytique au problème posé dans le cas limite d’une faible

intensité de champ électrique ; obtenir la relation analytique de la vitesse de la micropar-

ticule (basée sur l’état de l’équilibre des forces agissant sur la particule) en fonction de

l’intensité du champ électrique appliqué.

3. Trouver une solution analytique dans le cas d’un champ électrique de grande am-

plitude avec une formation de couches limites imbriquées les unes après les autres et

dans le volume externe de l’électrolyte ; obtenir une expression analytique de la vitesse
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de glissement électroosmotique à la limite de la couche de diffusion et de la vitesse

électrophorétique.

4. Développer un algorithme numérique pour résoudre le problème complet non-linéaire

dans une formulation axisymétrique en coordonnées sphériques et effectuer des simulations

numériques du problème pour une large gamme de paramètres.

5. Etudier l’effet de la charge de surface d’une particule sur la solution du problème ;

établir les limites d’applicabilité des approches analytiques pour les champs électriques

de faible et forte amplitude.

6. Identifier les principales transitions de bifurcation lorsque l’on modifie les paramètres

du problème.

7. Tester les relations théoriques obtenues : les comparer avec les résultats obtenus par

simulation numérique directe du problème et faire également une comparaison avec les

données expérimentales disponibles.

Au début, une étude bibilographique de l’état de l’art actuel du problème est faite du

point de vue de la théorie et des expériences. Ensuite, la formulation mathématique du

problème est discutée. Le modèle géométrique consiste en une microparticule sphérique,

échangeuse de cations à travers sa surface, de rayon a, située dans un réservoir infiniment

étendu rempli d’un fluide visqueux de type Newtonien incompressible, considéré comme

un électrolyte hautement dilué. Dans ce cas, un électrolyte est un liquide diélectrique dans

lequel des ions d’un certain sel sont dissous (par exemple, NaCl ou KCl). Le problème est

étudié sur la base des hypothèses suivantes : un électrolyte binaire (ne contenant que 2

types d’ions) et symétrique (les nombres de charges ou les valences d’ions sont identiques

en module, z+ = −z− = 1), les coefficients de diffusion des ions positifs et négatifs sont les

mêmes (D+ = D− = D), la particule est idéalement sélective (le flux d’anions à travers

la particule est totalement absent). Dans ce système, un champ électrique d’intensité

constante E∞ agit, ayant des composantes normales et tangentielles par rapport à la

surface de la particule. La composante normale provoque une augmentation de la charge

d’espace sur la surface et la composante tangentielle provoque le mouvement du fluide le

long de la surface de la particule. Lorsqu’un champ électrique est appliqué, la particule

commence à se déplacer et acquiert la vitesse électrophorétique U∞. Cette vitesse peut

être obtenue à partir de l’équilibre des forces agissant sur la particule, à savoir les forces

visqueuses et électriques. Il convient de noter ici qu’un courant électrique traversant la

particule est provoqué par le flux d’ions, en l’occurrence de cations.

La description mathématique du problème est basée sur un modèle continu. Le modèle

mathématique du problème correspond à un système non linéaire d’équations aux dérivées

partielles. L’équation de Poisson décrit la distribution du potentiel électrique. Le mou-
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vement d’un fluide est décrit par l’équation de Stokes (très faibles vitesses). Le transfert

d’ions est décrit par l’équation de Nernst-Planck, qui inclut les trois mécanismes de trans-

fert d’ions possibles : diffusion, convection et électromigration.

Le problème est formulé pour le cas axisymétrique dans un système de coordonnées

sphériques (r, θ), se déplaçant avec la vitesse de la microparticule avec l’origine au centre

de la particule. Le système d’équations est transformé en une forme sans dimension dans

laquelle apparâıt deux paramètres : le nombre de Debye ν et le coefficient de couplage des

propriétés électrostatiques et hydrodynamiques de l’électrolyte, κ.

Les conditions limites suivantes sont définies à la surface de la microparticule : le

potentiel est égal à une constante qui, sans perte de généralisation, peut être égal à

zéro ; les composantes de la vitesse du fluide satisfont aux conditions d’imperméabilité et

d’adhérence ; la concentration en ions positifs est fixée (égale à une constante empirique

p), le flux d’ions négatifs à la surface de la particule est nul.

Loin de la particule, à l’infini, les conditions aux limites suivantes sont définies : le

champ électrique externe – E∞ est appliqué, les composantes de la vitesse à l’infini tendent

vers la vitesse de la particule U∞, la concentration en ions tend vers celle de l’équilibre.

Les conditions initiales suivantes sont considérées : t = 0 : c+ = c− = 1, où c+ et c− –

sont les concentrations en ions chargés positivement et négativement, respectivement.

Ce problème est résolu à l’aide de méthodes analytiques et numériques. Il reste néan-

moins non linéaire à cause des équations de transport ionique. Le système reste fortement

associé à un petit paramètre apparaissant dans l’équation de Poisson – le nombre de Debye

ν. Physiquement, cela signifie la présence de fines couches ioniques près de la surface de la

microparticule. La solution numérique du problème repose sur la méthode des différences

finies.

La simulation numérique directe (par différences finies) du problème est complétée par

une analyse analytique par le biais de la stabilité linéaire d’un écoulement stationnaire.

Cette solution analytique est basée sur une approche asymptotique et est conçue pour

deux cas limites – un champ électrique de faible amplitude (E∞ → 0) et un champ

électrique de très forte amplitude (E∞ →∞). La solution analytique est également basée

sur le fait que l’épaisseur de la double couche électrique est faible par rapport au rayon

de la microparticule, ce qui signifie que ν → 0.

Pour un champ électrique de faible amplitude, la méthode asymptotique raccordée a

été utilisée avec le petit paramètre E∞ → 0 et les solutions à l’ordre zéro et à l’ordre 1 ont

été obtenues. Comme ν << 1, le domaine a été subdivisé en deux : interne et externe. Près

de la surface de la particule, la décomposition interne est utilisée, le développement d’une

nouvelle variable est introduit. Quant à la solution externe, elle est prise électriquement
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neutre, ρ = c+ − c− = 0 ou c+ = c−. Cette analyse permet de trouver ainsi les champs

de concentration en ions et la distribution du potentiel électrique. Pour déterminer la

vitesse électrophorétique U∞, en l’absence d’inertie, on écrit l’équilibre entre les forces

de contraintes visqueuses et celles de contraintes électrostatiques de Maxwell. Les calculs

prédisent une réponse linéaire de la vitesse des microparticules au champ électrique ap-

pliqué (de faible intensité) et est analogue à la formule de Helmholtz-Smoluchowski pour

les particules diélectriques.

La prochaine étape est consacrée à la solution semi-analytique du problème de l’électro-

phorèse d’une particule sélective en ions dans un champ électrique de forte intensité, i.e.

E∞ → ∞. La principale différence par rapport au cas précédemment étudié de faible

intensité réside dans la modification de la structure de la région chargée électriquement

près de la surface de la particule. Dans le cas d’un champ électrique de faible intensité,

la base du nuage ionique chargé autour de la particule est une double couche électrique

(DCE) et le flux ionique à travers la particule peut être négligé. Dans le cas où E∞ →∞,

la situation change radicalement : maintenant, la charge dans la DCE peut être négligée

par rapport à la charge déposée par les ions. Une structure complexe de couches imbriquées

est formée. Une double couche électrique mince d’épaisseur O(ν), ν → 0, est adjacente

directement à la surface de la microparticule. Au-dessus de la DCE, il y a la zone dite de

charge d’espace, qui a une épaisseur de l’ordre de ν
2
3 log(ν), beaucoup plus épaisse que

la double couche électrique avec, de plus, une charge beaucoup plus grande (ρ > 0) dans

cette couche. Cette couche est hors équilibre et est formée par le flux d’ions entrants. Dans

cette zone de charge d’espace, la concentration en sel est très faible, K = c+ + c− ≈ 0

(c’est pourquoi, dans la théorie des membranes, on parle de zone de solution appauvrie).

Cette zone de charge d’espace est suivie d’une mince couche de diffusion électriquement

neutre (ρ ≈ 0), la concentration en sel K varie de K ≈ 0 (à la frontière avec la zone de

charge d’espace) à la valeur d’équilibre K = 2. L’analyse asymptotique est basée sur la

non prise en compte de la double couche électrique. Ces 3 couches dépendent de l’angle

et disparaissent en un point correspondant à l’angle critique θ = θ0. L’analyse de stabilité

linéaire a été réalisée pour chaque couche séparément. Pour la région de charge d’espace,

il a été possible d’obtenir une solution totalement analytique et une formule permettant

d’estimer l’épaisseur de cette couche. La solution dans la région de la couche de diffusion

a conduit à un système non linéaire complexe, qui a été résolu numériquement. Il n’a pas

été possible d’obtenir une expression analytique pour l’épaisseur δ de cette couche, mais

il s’est avéré qu’elle était de l’ordre de O(E−1
∞ ). Dans la région externe de ces 3 couches

(dans l’électrolyte), on suppose la neutralité électronique, c’est-à-dire ρ = 0, mais aussi

l’équilibre de la solution saline, c’est-à-dire K = 2.
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La vitesse électrophorétique est trouvée sur la base de l’équilibre des contraintes vis-

queuses et des contraintes électrostatiques de Maxwell agissant sur la particule comme

dans le cas d’un champ électrique de faible intensité. Cependant, son obtention sous forme

analytique est difficile en raison de la non-linéarité du système d’équations, ce qui nous a

conduit à la recherche d’une solution auto-similaire. L’étude de la stabilité linéaire d’un

écoulement stationnaire a plusieurs objectifs : 1) identifier les mécanismes physiques de

base du comportement du système ; 2) identifier le mécanisme responsable de l’apparition

d’une instabilité ; 3) obtenir des données pour la vérification d’expériences numériques.

Pour discrétiser le problème stationnaire et le problème de stabilité linéaire le long d’une

coordonnée spatiale dirigée perpendiculairement à la surface de la frontière, la méthode

de Galerkin a été appliquée.

Parmi les résultats les plus significatifs, il convient de mentionner le détachement de la

couche de diffusion sous un angle θ = θ0 (ce résultat a été prédit par Levich pour d’autres

problèmes) et la découverte de l’instabilité d’une solution stationnaire en couches.

La modélisation numérique a montré un bon accord avec les résultats analytiques.

Sur la face frontale de la particule (la région des ions entrants), une zone de dessale-

ment est formée, où K ≈ 0. Comme le prévoit la théorie, une mince couche de diffusion

électroniquement-neutre se forme à la limite de la zone de dessalement. L’analyse asymp-

totique prédit la séparation de la couche limite avec un angle θ = θ0 ≈ 70 − 75◦. Il a

également été montré que, dans la région du flux de cations entrant, une zone de dessale-

ment se formait, que la charge d’espace se déformait et finissait par atteindre un maximum

à une certaine distance de la surface de la particule. Une telle charge est appelée une charge

sortante en électrochimie.

La distribution de la fonction de courant Ψ montre la formation du très connu vor-

tex électroconvectif de Dukhin-Mishchuk à θ ≈ θ0. L’intensité du vortex augmente avec

l’augmentation de E∞. Les résultats sont en bon accord qualitatif avec les expériences de

Mishchuk et Takhistov. La cause de la formation d’un vortex toröıdal est l’inhomogénéité

de la répartition de la charge à la surface et, par conséquent, l’inhomogénéité de la vitesse

de glissement à la surface de la particule.

La modélisation numérique a confirmé le phénomène intéressant et jusqu’alors inconnu

pour les petites particules de la perte de stabilité de la solution à zéro nombre de Reynolds.

Lorsque le champ électrique externe dépasse une certaine valeur critique, E∞ > E∗∞, la

solution numérique du problème non stationnaire n’atteint pas une solution stationnaire

lorsque t → ∞. De petites perturbations superposées aux données initiales simulant

l’augmentation du bruit externe entrâınent une solution non stationnaire : l’instabilité

électrocinétique se manifeste alors. Dans les membranes planes, cette instabilité a été
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découverte par Rubinstein et Zalzmann. Pour une membrane échangeuse de cations, cette

instabilité apparâıt du côté de la surface par laquelle les ions pénètrent dans la particule.

Le côté opposé de la surface est stable.

Les résultats de nos simulations numériques et des analyses semi-analytiques ont été

comparés aux données expérimentales. Les données expérimentales des travaux de Barani

et al., Mishchuk et Takhistova, Mishchuk et Dukhin, Mishchuk et Barinova ont été utilisés.

Dans ces travaux, le rayon de la particule échangeuse de cations varie entre 0.5 et 600

µm ; la concentration de la solution de NaCl, pour laquelle des comparaisons ont été faites,

est de 10−4mol/l. L’intensité du champ électrique externe est comprise entre 1 V/m et

100 kV/m. De plus, les particules échangeuses d’ions utilisées dans les expériences étaient

fabriquées à partir de divers types de matériaux. La dépendance de la vitesse des particules

avec le champ électrique possède un grand intérêt pratique, de sorte que la comparaison

est effectuée pour la vitesse électrophorétique et la mobilité de ces particules. Un bon

accord a été trouvé pour les forces de champs électriques de faibles et fortes intensités.

En particulier, pour un champ électrique de forte intensité, la formule de Dukhin, U∞ =

2κE2
∞, a montré un écart avec les données expérimentales. Dans le travail présent, on a

montré que U∞ ∼ E
4/3
∞ et est en très bon accord avec les données expérimentales.
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Nomenclature

Roman Symbols

a Radius of the Particle (characteristic length)

D Diffusivity of Ions

R Universal Gas Constant

T Absolute Temperature

F Faraday’s Constant

Re Reynolds Number

Du Dukhin Number

E∞ Electric Field Strength

U∞ Electrophoretic Velocity

z+ Charge number of positive ions

z− Charge number of negative ions

c+ Molar concentration of positive ions

c− Molar concentration of negative ions

Um Slip velocity

Φ0 Thermic Potential

c∞ The unperturbed ion concentration far from the particle

Abbreviations

AC Alternating Current

DC Direct Current

EDL Electric Double Layer

EOF Electro-osmotic flow

SCR Space Charge Region

Greek Symbols

ε Electric Permittivity of Water

ε0 Vacuum Permittivity

µ Dynamic Viscosity

ν Debye Number

κ Coupling coefficient between electrostatic and hydrodynamic parts

λD Debye Length

ζ zeta potential

ρ charge density
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Chapter 1

Introduction to Electrokinetics

Electrokinetics utilize the electric fields to cause electrostatic forces acting on charged or

polarizable fluids and suspended particles. These electrostatic forces induce the motions

of fluids and particles.

Electrokinetic phenomena are currently widely used. This is primarily due to the latest

developments in the production of micro-scale devices and the technological capabilities

of creating microfluidic “labs on a chip”. Most of these devices have a working fluid that

needs to be set in motion.

Methods that are used in practice to bring fluid into motion on a conventional scale

are often based on fluid instability caused by inertia. However, at the microscale, this

phenomenon is suppressed by viscous forces. Thus, the liquid should not be set in motion

due to turbulence, but due to the forces of molecular diffusion. On a very small scale,

molecular diffusion is fast enough, however, in microfluidic devices with a typical size in

the range from 10 to 100 µm, it will take about 100 seconds to mix liquids with a diffusion

coefficient of the order of 10−10m2/s [1]. Therefore, there is a need for new methods of

pumping, mixing, manipulating, and separating liquids and particles at the microscale.

The development of microfabrication technology in the last decades makes it possible

to scale down the electric fields to micro and even nanoscale. At these scales, the effects

of electrokinetics become dominant, which makes it one of the most promising methods

for manipulating particles. One of the remarkable distinction of electrokinetics is that it

does not require the creation of mechanical moving parts, which is extremely difficult on

a small scale. Since the propulsion of both liquid and particles occurs due to the electric

field, the devices based on electrokinetic effects are much reliable than mechanical devices.

In fact, the electrokinetic phenomena provide one of the most popular and effective non-

mechanical ways to bring fluid into motion at the micro and nanoscale. The main idea is

as follows: a liquid in which there are ions of a dissolved substance (electrolyte) adjoins
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a charged solid surface. A diffusion cloud of oppositely charged ions gets collected near

this surface. An external electric field produces a force acting on the charged diffusion

layer, which causes the fluid to flow relative to the particle or solid surface. The elec-

trokinetic flow near a fixed surface is called the electroosmotic flow, and the electrokinetic

movement of particles suspended in a fluid is called electrophoresis. Electroosmosis and

electrophoresis have a wide range of applications in the field of analytical and colloidal

chemistry, mixing the liquids, separating particles moving in a liquid by size and other

properties.

In many microfluidic devices, transport is caused by using electric current through the

ion-selective material placed in aqueous electrolytes. This type of material is a principal

part in many applications such as water desalination [2, 3, 4], separation of synthetic

particles and biological cells [5], preconcentration of samples [6], and fuel cells [7]. The

most commonly used in practice with selective property is permselective membranes [8].

They can be classified into cation-selective (cation-exchange) and anion-selective (anion-

exchange) membranes. Since negative-charged groups are fixed inside the cation exchange

membrane, anions are rejected by the negative charge and cannot permeate through the

cation exchange membrane (see Fig. 1.1). This is because cation exchange membranes

are only permeable for cations. The anion exchange membranes perform the opposite way

compared to cation exchange membranes (see Fig. 1.1).

Figure 1.1 – Scheme of cation and anion exchange membrane.



Chapter 2

An overview of electrokinetic

phenomena

2.1 Historical overview

Electrokinetic phenomena are one of the oldest fields of science of disperse systems and

surface phenomena that occur at the interface between liquid and solid surface. The

discovery of electrokinetic phenomena such as electrophoresis and electroosmosis gave

rise to the concept of an electric double layer (EDL), which, in turn, played an important

role in the understanding of colloid chemistry issues, and now plays an important role in

micro- and nanofluidics.

After 1798, when A. Volta created the first stable source of electric current, many

experiments with an electric field followed. One of them was the experiments conducted

in Moscow by F. Reuss, who published his discovery in 1809 [9]. The two types of

experiments were conducted. In the first one, the clay plug was placed in a U-shaped

tube and under applied voltage, the water level in one part of the tube rises [10]. In

the second experiment, the silica sand particles migrated in the electric field. So the

phenomena of electroosmosis and electrophoresis were discovered, respectively.

After the Reuss experiments, there were plenty of experiments related to electroosmo-

sis. The first quantitative experiments were carried out by G. Wiedemann, whose first

work [11] on electroosmosis was published in 1852. He studied electroosmosis in tubes

and found out, for example, that the ratio of the mass of water transferred to the elec-

tric current does not depend on the applied voltage and the tube radius. This is in full

accordance with the Smoluchowski equation obtained 60 years later [12]. Wiedemann’s

research was an important step towards a quantitative understanding of electroosmosis.

The phenomenon inverse to electroosmosis was discovered experimentally and reported

19



20

by G. Quincke [13] in the work published in 1859. In this experiment, the water was

pumped through the tube and the potential difference between its ends was observed.

This phenomenon was called the streaming potential (or the Quincke effect). Quincke

has found that the potential difference varies for different systems, but it has the same

sign. It follows from the fact that many natural materials on the phase interface acquire

a negative charge in an aqueous solution. Another fact discovered by Quincke is that

the potential difference at water pumped through the tube does not depend on the cross-

section and thickness of the plug and, furthermore, streaming potential depends linearly

on the applied pressure. As a result, Quincke postulated the existence of a charge outside

the charged solid surface. The sign of this charge is opposite to the sign of the surface

charge, i.e. it screens the surface charge from the liquid side. The presence of this charge

was a prerequisite for a qualitative explanation of both electroosmosis and the streaming

potential. The introduction of this charge was crucial for colloidal science and essentially

meant the discovery of the electric double layer (EDL). On the basis of Quincke’s EDL

idea, H. Helmholtz in 1879 derived a quantitative theory of electrokinetic phenomena.

The study of electrokinetic phenomena was continued by E. Dorn, who publish results

in 1880 [14]. The experimental setup was composed of a vertical glass tube with electrodes

at two vertical levels, filled with water and grains of sand that settled in the tube. The

potential difference between the two electrodes was measured by Dorn during the pro-

cess of sand grains sedimentation. This potential difference is called the sedimentation

potential or the Dorn effect.

By 1880, four classical electrokinetic phenomena were discovered, namely electrophore-

sis, electroosmosis, streaming potential (Quincke effect), and sedimentation potential

(Dorn effect).

From the Reuss experiments, it was clear that the clay particles were charged, but

the origin of this charge was unclear until 1886 when it was shown by J. Hoff that the

osmotic pressure of a solution of a monovalent salt was actually twice the expected value

for an undissociated salt. Thus, it became clear that dissociation of salts into ions occurs

in aqueous solutions.

The theory of EDL continued to be developed and in 1910 Gouy has proposed [15]

the structure of EDL which included a diffuse layer of charge near solid surface. In 1913,

Chapman independently formulated an equivalent theory [16]. Although Gouy’s theory

of EDL has been mentioned by Smoluchowski in the footnote, it has not been used in

the derivation of the Helmholtz-Smoluchowski formula for electroosmotic velocity since it

does not depend on the exact structure of EDL. Otherwise, Helmholtz and Smoluchovsky

could not have received a sufficiently correct relation between velocity and electric field
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strength. The theory of Helmholtz was published in 1879 and improved by Smoluchowski

in 1903 [12]. Thus, the Helmholtz-Smoluchowski theory precedes the Gouy-Chapman

theory of EDL.

The Gouy-Chapman model of EDL introduces an important parameter, which char-

acterizes the thickness of EDL and is usually called Debye length. It gives the thickness

estimation of the ionic shell surrounding each sufficiently large particle in the electrolyte

and this thickness depends on the ions concentration and the temperature,

λD =

√
εRT

z2F 2c∞
(2.1)

where ε is the dielectric permittivity; R is the gas constant; T is the absolute temperature;

z is the valence of ions; F is Faraday’s constant and c∞ is the concentration of ions in the

bulk.

EDL

- -
-

-
-

-

-
-
-

--

-

Figure 2.1 – Scheme of EDL for (a) flat surface and (b) spherical surface.

Due to a lack of knowledge about the EDL structure, the particles were considered

to be electrically neutral (without surface charge), in spite of the fact they can migrate

in the electric field. It has been proven later [17, 18] that dielectric particles cannot be

electrically neutral.
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2.2 Modern theoretical and experimental works

Electrophoresis is a fundamental phenomenon not only for electrokinetics but also for

theoretical physics. Significant efforts have been made to understand this phenomenon,

starting with the works of Smoluchowski and Helmholtz [12, 19]. The ultimate goal of

these works is to find the dependence of the particle velocity on the applied external

electric field. Such knowledge is necessary, in particular, for the design of new methods

of characterizing, separating, and transporting particles [20].

The electrophoretic velocity strongly depends on both the physical properties of the

particle itself and the electrolyte in which it is located. Distinctive results were obtained

for different types of particles studied in the literature: dielectric, metal, and ion-selective

(see Fig. 2.2).

dielectric particle

  immobile
 surface
 charge

metal particle

mobile
space
charge

electric field E∞

ion-selective particle

  immobile
space charge

cations
 flux

(a) (b) (c)

Figure 2.2 – Three types of particles in an electrolyte solution under the influence of an
external electric field: (a) dielectric particle, (b) metal particle and (c) ion-
selective particle.

There is also a relatively new type of particle for colloidal science – Janus particles

with non-uniform distributed surface or bulk properties in an electric field. Currently,

they are widely used in electronic displays, medicine and diagnostics, chemical catalysis.

The classical case of dielectric particles has been studied for over a hundred years. The

mathematical description of the electrophoresis of particles with a thin electric double

layer (EDL) formed near its surface is based on the classical theory of EDL, developed by

Helmholtz and Smoluchowski [12, 19],

U∞ =
εζ

µ
E∞, (2.2)

that is, the electrophoretic velocity U∞ is linearly proportional to the strength of the



23

applied electric field E∞ and the zeta potential ζ. Moreover, it is independent of the

particle radius a. The velocity also depends on the properties of the electrolyte, namely,

the dielectric permittivity ε and the dynamic viscosity of the liquid µ.

The relation (2.2) describes the so-called ”linear” electrophoresis or electrophoresis of

the first kind since the velocity is linearly proportional to E∞. This formula is valid for

the weak electric field. With a sufficiently large electric field strength, the validity of this

formula is violated due to the non-linearity of the original equations.

There are many experimental and theoretical works devoted to the study of the motion

of dielectric particles suspended in the electrolyte under the influence of an external

electric field. The effects of surface conductivity, the thickness of EDL and surface charge

were studied by Van Der Put et al. [21] and Lyklema [22]. Wiersema et al. [23] obtained

a numerical solution for a spherical particle. Assuming the symmetry of the problem,

O’Brien and White [24] numerically calculated the dependence of the electrophoretic

mobility of the particle on the zeta potential on its surface.

The special mention among the modern works deserves the theoretical studies con-

ducted by Yariv’s group. Hamed and Yariv [25] and Yariv [26] used the expansion in a

small parameter (electric field strength) to analyze the stationary electrokinetic flow near

a perfectly polarized spherical nanoparticle. The small value of this parameter means a

significant Debye length in comparison with the particle radius.

Yariv and Davis [27] used the macroscale model proposed by Yossifon et al. [28] to

analyze the electrokinetic flow around the dielectric surface for the case of thin EDL. The

authors developed and analyzed electrical effects where polarization changes the zeta-

potential distribution. They have found that the non-linearity has a slowing down effect,

i.e. the increase of the external electric field makes the microparticles to move slower than

predicted by the Helmholtz–Smoluchowski theory.

According to Smoluchowski’s theory, the particle velocity linearly depends on the value

of the zeta potential (Eq. (2.2)). But this dependence is valid only for small and moderate

values of the zeta potential and becomes invalid for high values [29, 30]. Nevertheless,

Schnitzer and Yariv [29] have analytically proven that this relationship is also valid for

moderate zeta potentials. In their next work, Schnitzer and Yariv [30] presented a general

analysis of the electrokinetic transport near a strongly charged dielectric particle under

the assumption of a thin EDL, which is not limited to the case of the weak electric field.

In a strongly non-linear mode, another formula must be used for electrophoretic mobility

(not the Smoluchowski formula). Schnitzer et al. [31] generalized the results of [30] to

the case of large zeta potential values, when the surface conductivity becomes significant.

In all problems associated with dielectric particles, the charge on the particle is as-
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sociated only with EDL. In this case, the effect of the electric field is neglected. Such

processes are called processes of the “first kind” by Dukhin (Rubinstein and Shtilman

[32] call these processes “underlimiting”). Since the influence of electric current can be

neglected, these processes are in electrochemical equilibrium.

Electrokinetic phenomena for metal particles have also been studied for a long time

both theoretically and experimentally [33, 34, 35, 36, 37]. The behavior of metal particles

strongly depends on the external field. In weak fields, particles behave like dielectric

ones. However, in strong fields, these particles behave very differently from the dielectric

particles. In the high-intensity electric field, a qualitatively new effect arises: an electric

charge in a liquid near a particle is created by an electric current passing through the

particle, and not by the surface charge. Such processes in electrochemistry are called

non-equilibrium, and Dukhin called this electrokinetic phenomenon of the “second kind”.

In this case, according to Dukhin, a quadratic dependence of the particle velocity on E∞

appears, as well as the dependence on the particle radius a. The latter is very important

for practical applications, as it make possible to sort particles by size. There is currently

no mathematical models describing the movement of metal particles.

The third type of particles is ion-selective particles. The electrokinetic flow near an

ion-selective particle is associated with the non-equilibrium behavior of the space charge.

The surface of an ion-selective particle allows one type of ion to penetrate through it and

hence to create an electric current. At the weak electric field strength, the ion flux through

the surface is negligible and therefore a quasi-equilibrium EDL is formed. The electroos-

mosis associated with the sliding of the electrolyte, which is the result of the tangential

component of the electric field on the charge of the quasi-equilibrium EDL, is called the

electroosmosis of the “first kind” [22], which is similar to the classical electroosmosis for

dielectric particles (Fig. 2.2a). With an increase in the electric field strength, the ion flux

through the surface of the particle becomes significant and can no longer be neglected.

The structure of the EDL at the interface is transformed from quasi-equilibrium to non-

equilibrium. A distinctive feature of this new structure is that an expanded space charge

region (SCR) is added to the charge of the quasi-equilibrium EDL. This non-equilibrium

electroosmosis associated with the space charge region is called electroosmosis of the “sec-

ond kind” and is described in the works of Dukhin and Mishchuk [38, 39]. It refers to a

similar action of a tangential electric field on the charge inside SCR. In accordance with

the Newton’s third law, electroosmosis ultimately leads to the movement of a microparticle

and electrophoresis of the first or second kind, respectively.

Experimental studies of electrophoresis and electroosmosis of an ion-selective particle

were performed by Mishchuk and Takhistov [39], Barinova et al. [37], Mishchuk and
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Barinova [40], as well as Barany [41]. The main result of these studies is that at the

transition from electrophoresis of the first kind to electrophoresis of the second kind, the

linear dependence of the electrophoretic velocity on the electric field is transformed to a

quadratic one

U∞ ∼
εa

µ
E2
∞. (2.3)

In addition, in accordance with the work of Dukhin and Mishchuk, the dependence of the

electrophoretic velocity on the particle radius a also arises. In contrast to the case of the

dielectric particle, non-linear effects increase the velocity of electrophoresis. The formula

(2.3) was derived from dimensional analysis.

The mathematical formulation of the problem near an ion-selective flat surface was

carried out by Rubinstein and Shtilman [32]. This statement was successfully used in the

works of Rubinstein and Zaltzman [42], Zaltzman and Rubinstein [43], Demekhin et al.

[44, 45, 46], Pham et al. [47], Druzgalski et al. [48] for a theoretical study of electrokinetic

phenomena near a flat ion-selective surface. Unlike plane geometry, the case of curved

microparticle interface is one of the conditions for the non-linear electrokinetic phenom-

ena emergence [38]. The experimental works [39, 40, 41] are devoted to electrokinetic

phenomena that arise near the curved ion-selective surface of a spherical particle. These

works also give estimated ratios (for example, for the electrophoretic velocity) for some

limiting cases. However, some theoretical aspects of the motion of such particles remain

unclear.

2.3 Mathematical formulation

The principles of conservation of momentum, mass, and charge are used to define the

state of a problem. The conservation laws are applied in an assumption of a continuum

fluid.

The electrolyte is assumed to be a dielectric Newtonian fluid in which ions of a certain

substance (salt, acid or alkali) are dissociated. An example of such an electrolyte is

distilled water with sodium chloride (NaCl) dissolved in it. The NaCl easily dissociates

into positively charged sodium ions Na+ (cations) and negatively charged chlorine ions

Cl− (anions).
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2.3.1 Mass transport in electrolyte: diffusion, convection and

electromigration

Suppose that some substance is dissolved in a volume V of the liquid. The closed surface

of this volume denotes as S. The concentration c(x, y, z, t) of this substance depends on

space and time. Since the flow of substance through the surface in general is non-zero,

we have to write the following relation,∫
S

~j · ~n ds+
∂

∂t

∫
V

c(x, y, z, t) dv = 0 (2.4)

According to Ostrogradsky-Gauss theorem,∫
S

~j · ~n ds =

∫
V

∇ ·~j dv (2.5)

It means, ∫
V

(
∂c

∂t
+∇ ·~j

)
dv = 0 (2.6)

This equality must be true for any volume V , so the integrand function must be zero,

∂c

∂t
+∇ ·~j = 0 (2.7)

The ionic flux ~j can be represented by three mechanisms of mass transfer: diffusion,

convection and electro-migration. All of them must be taken into account.

Diffusion

The transport of mass or diffusion takes place in an electrolyte with two or more species

if there exists a concentration gradient. Mass diffusion in the electrolyte is a consequence

of the Brownian motion of ions.

Consider an electrolyte solution consisted of i ion species. The two basic concentration

units – mass concentration and molar concentration can be defined, respectively, by,

ρi =
mi

V
=

mass of species i

volume of solution
(kg · m−3) (2.8)

ci =
ni
V

=
number of moles of species i

volume of solution
(mol · m−3) (2.9)

In the present work we will use only molar concentration ci.

The diffusion flux of ions arises due to the inhomogeneous distribution of ion con-
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centrations in the volume of the electrolyte. At constant temperature and pressure, the

diffusive flux is related to the concentration through Fick’s first law as,

~jD = −Di∇ci (2.10)

where Di is the diffusion coefficient of i-th species with units m2 · s−1. In general for i > 2

the system will have several concentration gradients and the diffusive flux of each species

can be affected by other concentration gradients. The exception is the case of a dilute

solution (or weak solution) for which flux for each species is unaffected by the presence

of the other. So (2.10) is valid only for weak solutions.

Convection

The next mechanism of the mass transfer is convection. It is the mass transfer due

to the bulk motion of a fluid. The velocity of ions undergoing mass transfer has both

diffusive and convective components. The difference between these two is the following:

the convection is a mass transfer due to the average velocity of all ions, and diffusion is

due to the instant velocity of a particular ion, compared to the average velocity of the

fluid as a whole.

By means of an appropriate choice of the reference velocity, it is possible to define

the convective flux. For mass transfer of dilute species, the solvent (water for aqueous

solutions) prevails in the momentum of the system and it is natural to take the velocity

of the liquid as a reference velocity. Thus, the convective flow is due to ion transport by

fluid motion and is proportional to the fluid velocity,

~jC = ~U · ci (2.11)

where ~U is the velocity of the liquid.

Electromigration

For the electro-migration according to Coulomb’s law the electric field ~E is the negative

gradient of the electrostatic potential ~E = −∇Φ. The force exerting on a particle is the

magnitude of the particle charge multiplied by the charge number zi and the electric field

~E. The force per one mole should be written as −ziNA e∇Φ, where NA is the number

of ions in one mole of substance; e is elementary charge for one ion; F = NA · e is the

Faraday’s constant.

Electro-migration flux is proportional to the force acting on the particle multiplied by
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the concentration of ions ci. The proportionality factor νi is a transport property called

the molar mobility of the ith ionic species (νi = Di/RT ).

~jE = −νi zi F ci∇Φ (2.12)

Combining all three transport mechanisms,

~j = −Di∇ci − νi zi F ci∇Φ + ~U ci (2.13)

∂ci
∂t

+∇ ·~j =
∂ci
∂t

+∇ · (−Di∇ci − νi zi F ci∇Φ + ~U ci) = 0 (2.14)

or
∂ci
∂t

+ ~U · ∇ci = Di∇2ci +
ziDi F

RT
∇ · (ci∇Φ) (2.15)

Equation (2.15) is called the Nernst-Planck equation or the ion transport equation.

In the general case, this equation should be supplemented by the source term, which is

responsible for the ion flux due to chemical reactions with the generation of new ions.

In this work, we restrict ourselves to the following assumption: chemical reactions with

the generation of new ions occur only on the electrodes, and since the case of infinitely

distant electrodes is considered, the source term in the volume of the electrolyte is zero.

2.3.2 Flow velocity and electrostatic fields

It is assumed that the electrolyte is symmetric, binary and monovalent, i.e. it contains

only two types of ions (with concentrations c+ and c−) and the charge numbers (valence)

of ions are equal in modulus (z+ = −z− = 1), the diffusion coefficients of cations and

anions are equal (D+ = D− = D). The liquid is regarded as incompressible and has a

dynamic viscosity µ and electrical permittivity ε. Then the ion transport in the electrolyte

is described by the following equations,

∂c±

∂t
+ ~U · ∇c± = D

(
± F

RT
∇ · (c±∇Φ) +∇2c±

)
. (2.16)

Since the problem has an electric field, the system must include the electrostatic part,

which is described by the Poisson equation,

ε∇2Φ = −F (c+ − c−). (2.17)

where F (c+ − c−) – is the electric charge density.

For the velocity field consider the Navier-Stokes equation describing the motion of a
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viscous fluid in the general form,

ρ

(
∂~U

∂t
+ (~U · ∇)~U

)
−∇P + µ∇2~U + ~f = 0 (2.18)

∇ · ~U = 0, (2.19)

where ~f is the volume force and P is the pressure.

Let us simplify this equation in accordance with the conditions of the problem. First

of all we need to estimate the Reynolds number. In our case, the characteristic length is

the microparticle radius. From the experimental work [39], devoted to electroosmosis of

the second kind around ion-selective particles, it follows that the electroosmotic velocity

near sufficiently large particle with a radius of 210µm in an electric field strength 1000

V/m reaches 3.5 ·10−4 m/s. Then the Reynolds number is estimated as Re ≈ 0.08, which

is a negligible value, and therefore the inertial terms in the Navier-Stokes equation can be

neglected and the equation can be taken in the Stokes approximation [49]. The volume

force is the electric force acting on the liquid, which is equal to F (c+− c−)∇Φ [50]. Thus,

the equation for hydrodynamics, taking into account the volumetric electric force, takes

the form,

−∇P + µ∇2~U = F (c+ − c−)∇Φ, (2.20)

∇ · ~U = 0 (2.21)

The system of equations has to be converted in dimensionless form. To do that the

following characteristic quantities were used,

a: characteristic length (particle radius);

a2/D: characteristic time;

D/a: characteristic velocity;

Φ0 = RT/F : thermal potential;

c∞: equilibrium concentration of ions away from the particle;

µD/a2: characteristic pressure;

Typical values of the physical quantities and constants of the problem are given in

Table 2.1.

When the system becomes dimensionless, two additional parameters appear: ν is the

Debye number, which is the ratio of the Debye length λD to the particle radius a (ν � 1

is a small parameter of the problem),

ν =
λD
a
, λD =

(
εΦ0

Fc∞

) 1
2

,
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Parameter Symbol Value

Faraday constant F 96485.33 A · s/mole

Universal gas constant R 8.314 m2 · kg/s2 · K · mole

Absolute temperature T 298.15 K

Thermal potential Φ0 2.569 ×10−2 m2 · kg/s3 · A

Particle radius a 5 ×10−6 m

Ion diffusion coefficient D 1.994 ×10−9 m2/s

Dynamic viscosity µ 8.93 ×10−4 kg/m · s

Absolute permittivity ε 7.08 ×10−10 s4 · A2 / m3 · kg

Concentration c∞ 0.1 mole/m3

Debye length λD 4.34 ·10−8 m

Electric field strength E∞ 102 – 104 V/m

Table 2.1 – Typical values of the physical quantities and constants of the problem. The
ion diffusion coefficient and concentration is given for sodium chloride (NaCl).

and κ - parameter connecting the hydrodynamic and electrostatic parts of the problem.

κ =
εΦ2

0

µD
.

The parameter κ characterizes the physical properties of the electrolyte solution and does

not change for a fixed electrolyte.

Finally, the system of dimensionless equations have the following form,

∂c±

∂t
+ ~U · ∇c± = ±∇ · (c±∇Φ) +∇2c±, (2.22)

ν2∇2Φ = c− − c+, (2.23)

−∇P +∇2~U = (c+ − c−)
κ
ν2
∇Φ = −κ∇2Φ∇Φ, (2.24)

∇ · ~U = 0. (2.25)

Hereinafter, all values will be given in dimensionless form, unless otherwise indicated.

Since it is assumed that the microparticle has a spherical shape, it is convenient to

carry out our calculations in a spherical coordinate system, the origin of which is at the

particle center, i.e. the motion is considered in the coordinate system associated with the

particle. The problem statement for spherical coordinates (r, θ) in the axisymmetric case
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(no dependence on the azimuthal angle) is written as follows,

∂c+

∂t
+ U

1

r

∂c+

∂θ
+ V

∂c+

∂r
=

[
1

r2 sin θ

∂

∂θ

(
sin θc+∂Φ

∂θ

)
+

1

r2

∂

∂r

(
r2c+∂Φ

∂r

)]
+

+

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂c+

∂θ

)
+

1

r2

∂

∂r

(
r2∂c

+

∂r

)]
, (2.26)

∂c−

∂t
+ U

1

r

∂c−

∂θ
+ V

∂c−

∂r
= −

[
1

r2 sin θ

∂

∂θ

(
sin θc−

∂Φ

∂θ

)
+

1

r2

∂

∂r

(
r2c−

∂Φ

∂r

)]
+

+

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂c−

∂θ

)
+

1

r2

∂

∂r

(
r2∂c

−

∂r

)]
, (2.27)

ν2

r2

[
∂

∂r

(
r2∂φ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)]
= c− − c+; (2.28)

− 1

r

∂P

∂θ
+
∂2U

∂r2
+

2

r

∂U

∂r
+

1

r2

∂2U

∂θ2
+

cot θ

r2

∂U

∂θ
− u

r2 sin2 θ
+

2

r2

∂V

∂θ
=

= (c+ − c−)
1

r

κ
ν2

∂Φ

∂θ
; (2.29)

− ∂P

∂r
+
∂2V

∂r2
+

2

r

∂V

∂r
+

1

r2

∂2V

∂θ2
− 2V

r2
+

cot θ

r2

∂V

∂θ
− 2U

r2
cot θ − 2

r2

∂U

∂θ
=

= (c+ − c−)
1

r

κ
ν2

∂Φ

∂r
. (2.30)

∂

∂θ
(sin θ r U) +

∂

∂r

(
sin θ r2 V

)
= 0. (2.31)

To completely close the mathematical formulation, the system of equations (2.22)–

(2.25) must be supplemented with boundary conditions.

2.4 Boundary conditions

2.4.1 Boundary conditions at solid/liquid interface

For definiteness, we assume that the particle is cation exchange, that is, it does not pass

anions. On the surface of the particle with r = 1, the boundary conditions are:

r = 1 : c+ = p; c−
∂Φ

∂r
− ∂c−

∂r
= 0; Φ = 0; U = 0. (2.32)
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The first BC in Eq. (2.32) was introduced in the paper by Rubinstein and Shtilman

[32] (see also Rubinstein and Zaltzman [43], Zaltzman and Rubinstein [42], and Chapter

6 in the book by Probstein [50]). In order to better understand this BC, let us consider

the structure of the membrane. The cation-exchange membrane is an organic polymer

consisting of a matrix and pores. In the matrix, the anions (ca) are fixed and immobile

[51], which create a fixed membrane charge p (ca = p). When the membrane is placed in

the electrolyte without any electrical field, the pores are filled with this electrolyte and

ions of the opposite sign (c+) get accumulated. Moreover, their number is practically

equal to the charge of the membrane (c+ = p), that is, the membrane, as a whole, is

screened from the inside. If the membrane charge is large enough (p � 1), it is more

difficult for external forces to change the amount of cations inside the membrane and

c+ = p is assumed inside the membrane and at its surface with the electrolyte (see Eq.

(2.32)). Studies of planar membranes [42, 43, 44, 45, 46, 47, 48] show that the solution is

practically independent of the value of p for p� 3 (see also [52]).

The second boundary condition in (2.32) means the absence of anions through the

particle surface. The third condition defines a constant potential on the surface, which

can be set to zero without loss of generality. The last condition in (2.32) is the no-slip

condition a solid surface, i.e. flow velocity is equal to zero.

Note that since positively charged ions can pass through the surface of a particle, their

flow creates an electric current through the surface,

r = 1 : j = c+∂Φ

∂r
+
∂c+

∂r
. (2.33)

We suppose the membrane to be ideal, i.e. it is able to withstand the accumulation of

ions inside. Therefore the current density is zero over the surface,

π∫
0

j sin θdθ = 0. (2.34)

2.4.2 Boundary conditions away from the interface

Far from the particle, at r → ∞, the electrolyte solution is electrically neutral, and the

salt concentration is in equilibrium. The electric field tends to the external value E∞, the

fluid velocity tends to the electrophoretic velocity U∞ (see 2.3),

c± → 1;
∂Φ

∂r
→ −E∞ cos θ; U → −U∞ sin θ; V → U∞ cos θ. (2.35)
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θ = 180
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θ = 0
o

Figure 2.3 – Schematic of the flow near the granule under the external electric field, E∞
and the fluid flow velocity U∞ at infinity which are directed along the x-
coordinate. The electrophoretic velocity of the particle has an opposite di-
rection. In the spherical polar system, x = r cos θ and y = r sin θ, U = Uθ is
the tangential velocity at the particle surface and V = Ur is the normal ve-
locity at the particle surface. At the co-moving reference frame, the far-field
velocity condition is U → −U∞ sin θ and V → U∞ cos θ.

The system is closed by imposing conditions on the concentration at the initial time:

t = 0 : c+ = c− = 1 (2.36)



34



Chapter 3

Numerical methodology

The solution of the system is sought on a non-uniform staggered grid using the finite

difference method. The scalar values like electrostatic potential Φ and the ion concen-

trations c± are taken at the centers of the grid cells, and the vector values - the velocity

components U and V , in the middle of their lateral faces. Derivatives are calculated using

second-order two-point difference schemes with an offset. The numerical method is based

on the works of Nikitin [53, 54, 55, 56, 57].

3.1 Discretization

Let us give an example of a program code that defines a grid. Consider a grid of Im cells

along the variable r = 1÷ R max and Jm cells along θ = 0÷ π. Cell nodes are numbered

from i = 0 to Im and from j = 0 to Jm, respectively. Further we will call them ”nodes”

for simplicity. The centers of the cells correspond to ”center nodes”, which in the code

are numbered from 1 to Im and Jm, respectively.

The stretching of the mesh is set, respectively, by the functions ξ and ζ so that

the nodes are ri = rn(i) = ξ
(

i
Im

)
and θj = tn(j) = ζ

(
j

Jm

)
. Accordingly, ξ(0) = 1,

ξ(1) = Rmax, ζ(0) = 0, ζ(1) = π. For center nodes, the relations take the form ri−1/2 =

rm(i) = ξ
(
i−1/2
Im

)
and θj−1/2 = tm(j) = ζ

(
j−1/2
Jm

)
.

The indices i and j actually define a uniform grid in the new variables x and z: r = ξ(x)

and θ = ζ(z). Numerical differentiation of scalar functions is carried out as follows,

∂c

∂r
=
∂c

∂x

/dξ
dx

= (c(i + 1, j)− c(i, j)) /Im /
dξ

dx
+ O

(
1

Im2

)
,

where the indices i and j correspond to center nodes, and the value of the derivative

itself is determined in the node with the index i. Array indexing is hereinafter specified

35
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by parentheses. The value Im/ dξ
dx

taken in the same center node i is precomputed and

stored in the array element rn1(i) (The number 1 hereinafter means that the array stores

the distance between two adjacent points since the grid is irregular). To differentiate by

θ, a similar array tn1 is created. For velocity functions, the difference scheme changes

slightly,
∂V

∂r
= (V(i, j)− V(i− 1, j)) /rm1(i) + O

(
1

Im2

)
,

where the i index for the V array now corresponds to the node, and for the rm1 array -

to the center node. For θ, the tm1 array is created in the same way.

It should be noted that linear interpolation is used to shift the functions themselves to

another grid. Thus, the concentration values c(i, j) are defined as (c(i + 1, j) + c(i, j)) /2,

moreover, this is the second order approximation.

For example, the first derivative of the function defined in the nodes:

f ′(i) =
1

rm1(i)

f(i)− f(i− 1)

hr

The first derivative of the function defined in center nodes (i− 1/2):

g′(i) =
1

rm1(i)

g(i + 1)− g(i)

hr

Fig. 3.1 illustrates the example of staggered grid. A staggered mesh is used to represent

the mesh functions corresponding to continuous functions: electric potential, two velocity

components, and two concentrations. The potential-nodes and concentration-nodes are in

the geometrical centers of the cells. The velocity-nodes are at the centers of faces of the

cell, shifted from the center-nodes at the half-cell distance towards the r or θ directions.

Figure 3.1 – Staggered grid for numerical scheme. The electrostatic potential is defined in
nodes i− 1, i and i + 1. The velocity component is defined in center nodes
i− 1/2 and i + 1/2.
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3.2 Numerical method for Poisson equation

Poisson equation in spherical coordinates has the form,

∂

∂r

(
r2∂Φ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
=
r2

ν2
(c− − c+) (3.1)

In this equation first term depends only on r and the second – only on θ, therefore we

can write,

ai Φi−1,j + bi Φi,j + ci Φi+1,j + dj Φi,j−1 + ej Φi,j + fj Φi,j+1 = gi,j (3.2)

where Φi,j = Φ(ri, θj)

ai, bi, ci – coefficients depending on r, and dj, ej, fj – coefficients depending on θ. The

details of the calculation of the coefficients are presented in Appendix A.

Independence of the coefficients a(i), b(i), c(i) from the angle θ is violated only in

the last layer of nodes at i = Im, because the boundary condition Φ = −E∞ r cos θ is

dependent on θ. In order to eliminate this feature we make the following substitution,

Φ̃ =
Φ

cos θ
, ⇒ ∂Φ̃

∂r

∣∣∣∣∣
Rmax

= −E∞ r (3.3)

and we solve the equation with respect to Φ̃. In both parts of equation, we multiply by
1

cos θ
and we get,

1

cos θ

∂

∂r

(
r2∂(Φ̃ cos θ)

∂r

)
+

1

cos θ sin θ

∂

∂θ

(
sin θ

∂(Φ̃ cos θ)

∂θ

)
=

r2

ν2 cos θ
(c− − c+) (3.4)

∂

∂r

(
r2∂Φ̃

∂r

)
+

1

cos θ sin θ

∂

∂θ

(
sin θ

∂(Φ̃ cos θ)

∂θ

)
=

r2

ν2 cos θ
(c− − c+) (3.5)

with the boundary conditions,

Φ̃
∣∣∣
r=1

= 0,
∂Φ̃

∂r

∣∣∣∣∣
Rmax

= −E∞ r (3.6)

This equation is solved using spectral decomposition (in terms of eigenvectors and
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eigenvalues). Let us introduce the notation for the operators regarding variables r and θ,

Tr =
∂

∂r

(
r2 ∂

∂r

)
(3.7)

Tθ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
(3.8)

then we can write the Poisson equation in the form,

(Tr + Tθ)[Φ̃] = R (3.9)

where R is the right part of Poisson equation.

We need to simplify one of these operators to the diagonal form. After that, we will

have a system of equations with the second operator. For this purpose, we use the spectral

decomposition of the matrix of the operator Tθ,

Tθ = XΦΛΦX
−1
Φ (3.10)

where Λ – diagonal matrix, the elements of which are the eigenvalues of Tθ. They need

to be real. The column vectors of X are the eigenvectors of Tθ.

Tr[Φ̃] + Tθ[Φ̃] = R (3.11)

using relation (3.10), we get,

Tr[Φ̃] +XΦΛΦX
−1
Φ [Φ̃] = R (3.12)

Multiply this equation by X−1
Φ from the right side and we get,

Tr[X
−1
Φ Φ̃] + ΛΦ[X−1

Φ Φ̃] = X−1
Φ R (3.13)

which leads to,

(Tr + ΛΦ)[X−1
Φ Φ̃] = X−1

Φ R (3.14)

This equation is solved with respect to X−1Φ̃ and then this solution is multiplied by

X and cos θ to find the final solution for Φ. The details of the calculation of matrix for

operator (Tr + ΛΦ) see in Appendix A.
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3.3 Numerical method for Stokes equation

For the Stokes equation,

−∇P +∇2~U =
κ
ν2

(c+ − c−)∇Φ

we will use the following property,

curl curl ~U = ∇(∇ · ~U)−∇2~U

Let us express the second term from the Stokes equation,

∇2~U = ∇(∇ · ~U)− curl curl ~U

and take into account that from the continuity equation ∇ · ~U = 0. Denote ~ω = curl ~U .

Then,

−∇P − curl ~ω =
κ
ν2

(c+ − c−)∇Φ

Consider the general case curl of ~U = (u1, u2, u3), ∇ · ~U and ∇P in arbitrary curvi-

linear orthogonal coordinates,

~ω = curl ~U =

=

(
h1

h

[
∂(h3u3)

∂x2

− ∂(h2u2)

∂x3

]
;
h2

h

[
∂(h1u1)

∂x3

− ∂(h3u3)

∂x1

]
;
h3

h

[
∂(h2u2)

∂x1

− ∂(h1u1)

∂x2

])

∇ · ~U =
1

h

[
∂

∂x1

(
hu1

h1

)
+

∂

∂x2

(
hu2

h2

)
+

∂

∂x3

(
hu3

h3

)]

∇P =

(
1

h1

∂P

∂x1

;
1

h2

∂P

∂x2

;
1

h3

∂P

∂x3

;

)
where h = h1 · h2 · h3; h1, h2, h3 are the Lame coefficients. For the spherical coordinates

the Lame coefficients are: h1 = hr = 1, h2 = hθ = r, h3 = hϕ = r sin θ, and h = hr hθ hϕ =

r2 sin θ. For our case of axisymmetrical flow, azimuthal velocity component u3 = 0, and

there is no dependence on angle ϕ. Denote U = u1 and V = v1, then,

~ω =

(
0; 0;

r sin θ

r2 sin θ

[
∂(rV )

∂r
− ∂U

∂θ

])
=

(
0; 0;

1

r

[
∂(rV )

∂r
− ∂U

∂θ

])
∇ · ~U =

1

r2 sin θ

[
∂

∂r

(
r2 sin θ · U

)
+

∂

∂θ
(r sin θ · V )

]
∇P =

(
∂P

∂r
;
1

r

∂P

∂θ
; 0

)
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Since ω1 = ω2 = 0 we can rewrite curl ~ω in the following way,

curl ~ω =

(
hr
h

∂(hϕω3)

∂θ
;−hθ

h

∂(hϕω3)

∂r
; 0

)
or substituting the Lame coefficients,

curl ~ω =

(
1

r sin θ

∂(sin θω3)

∂θ
;−1

r

∂(rω3)

∂r
; 0

)

Let us omit the index 3 for ω3 and substitute curl, divergence and gradient into Stokes

and continuity equations. Then one can get the following system,

− ∂P

∂r
− 1

r sin θ

∂(sin θ ω)

∂θ
=

κ
ν2

(c+ − c−)
∂Φ

∂r
(3.15)

− 1

r

∂P

∂θ
+

1

r

∂(rω)

∂r
=

κ
ν2

(c+ − c−)
1

r

∂Φ

∂θ
(3.16)

ω =
1

r

(
∂(rv)

∂r
− ∂u

∂θ

)
1

r2

∂(r2u)

∂r
+

1

r sin θ

∂

∂θ
(sin θ · v) = 0 (3.17)

Denote the right parts of Stokes equation as,

Fr =
κ
ν2

(c+ − c−)
∂Φ

∂r
; Fθ =

κ
ν2

(c+ − c−)
1

r

∂Φ

∂θ

and multiply Eq. (3.15) by

(
−1

r

∂

∂θ

)
and Eq. (3.16) by

(
1

r

∂

∂r
(r)

)
. Then,

1

r

∂2P

∂r∂θ
+

1

r2

∂

∂θ

(
1

sin θ

∂(sin θω)

∂θ

)
= −1

r

∂Fr
∂θ

(3.18)

− 1

r

∂2P

∂r∂θ
+

1

r

∂

∂r

(
∂(rω)

∂r

)
=

1

r

∂(rFθ)

∂r
(3.19)

By adding Eq. (3.18) and (3.19),

1

r

∂

∂r

(
∂(rω)

∂r

)
+

1

r2

∂

∂θ

(
1

sin θ

∂(sin θω)

∂θ

)
=

1

r

∂(rFθ)

∂r
− 1

r

∂Fr
∂θ
≡ Ω

Let us introduce the stream function in spherical coordinates,

U = − 1

r sin θ

∂Ψ

∂r
; V =

1

r2 sin θ

∂Ψ

∂θ
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and substitute the stream function into ω,

ω = −1

r

∂

∂r

(
−r
r sin θ

∂Ψ

∂r

)
− 1

r

∂

∂θ

(
1

r2 sin θ

∂Ψ

∂θ

)
(3.20)

By multiplying Eq. (3.20) by r3 sin θ gives,

r2∂
2Ψ

∂r2
− sin θ

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)
= ω r3 sin θ

Substitute ω into Stokes equation, and after some simplification it leads to a fourth-order

equation in Ψ,

− 1

r sin θ

∂4Ψ

∂r4
− 1

r

∂2

∂r2

(
1

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

))
+

1

r3

∂

∂θ

(
1

sin θ

∂

∂θ

(
∂2Ψ

∂r2

))
−

− 1

r5

∂

∂θ

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)))
= Ω (3.21)

where Ω =
1

r

∂(rFθ)

∂r
− 1

r

∂Fr
∂θ

. For this equation it is possible to separate variables r and

θ by multiplying Eq. (3.21) by r5 sin θ, which leads to,

r4∂
4Ψ

∂r4
+ sin θ

∂

∂θ

(
1

sin θ

∂

∂θ

)[
r4 ∂

2

∂r2

(
1

r2

)
+ r2 ∂

2

∂r2

]
Ψ+

+ sin θ
∂

∂θ

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

(
1

sin θ

∂

∂θ

)))
Ψ = −Ω r5 sin θ

For the numerical solution we use the same method as for Poisson equation – the

spectral decomposition. We end up with the same operator Tθ regarding the angle as for

Poisson equation,

Tθ = sin θ
∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)
then,

r4∂
4Ψ

∂r4
+

[
r4 ∂

2

∂r2

(
1

r2

)
+ r2 ∂

2

∂r2

]
TΨ + T 2Ψ = R (3.22)

where Tθ = XΛX−1, Λ is a diagonal matrix. By multiplying Eq. (3.22) by X−1 leads to,

r4 ∂
4

∂r4
(X−1Ψ) +

[
r4 ∂

2

∂r2

(
1

r2

)
+ r2 ∂

2

∂r2

]
Λ(X−1Ψ) + Λ2(X−1Ψ) = X−1R (3.23)

The discretization of Eq. (3.23) is detailed in Appendix B.
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3.4 Time advancement (Nernst-Plank equation)

The spatial discretization with sufficiently fine resolution leads to stiff problems and re-

quires implicit methods for time advancement. Semi-implicit methods, where only a part

of the Nernst-Plank operator is treated implicitly, are most efficient.

To solve the Nernst-Planck equation, a semi-implicit Runge-Kutta scheme of the third

order of accuracy [53, 54] was compiled. An implicit operator is a parameter to this

method. After each step, its error is estimated and the step size is adjusted.

dw

dt
= F (t, w)

where w(t) is an unknown vector function, t is an independent variable (time), and F is

a non-linear operator. A semi-implicit method to advance from wn at time tn to wn+1 at

time tn+1 = tn + τ is based on the following explicit third-order accurate Runge-Kutta

method,
w∗ − wn

τ
=

2

3
Fn (3.24)

w∗∗ − wn
τ

=
1

3
Fn +

1

3
F ∗ (3.25)

wn+1 − wn
τ

=
1

4
Fn +

3

4
F ∗∗ (3.26)

where Fn ≡ F (tn;wn), F ∗ ≡ F (tn + 2τ/3;w∗), and F ∗∗ ≡ F (tn + 2τ/3;w∗∗).

This particular method is selected from a 2-parameter family of the third-order accu-

rate Runge-Kutta methods according to some requirements. First, the third step of the

method (3.26) does not include F ∗. This is essential for the following construction of the

semi-implicit scheme. Second, the method has the coincident abscissas (F ∗ and F ∗∗ are

evaluated for the same time moment tn + 2τ/3).

The semi-implicit scheme is constructed by perturbing (3.24)–(3.26) taking into ac-

count the following relations,

w∗ = w(tn + 2τ/3) +O(τ 2)

w∗∗ = w(tn + 2τ/3) +O(τ 3)

wn+1 = w(tn+1) +O(τ 4)

We assume, that the implicit terms are linear and denote the corresponding operator L

(implicit operator, some approximation to the Jacobian ∂F/∂w) and γ – positive number.
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Consider the following implicit scheme,

w∗ − wn
τ

=
2

3
Fn + γ L(w∗ − wn) (3.27)

w∗∗ − wn
τ

=
1

3
Fn +

1

3
F ∗ + γ L(w∗∗ − w∗) (3.28)

wn+1 − wn
τ

=
1

4
Fn +

3

4
F ∗∗ + γ L(wn+1 − w̃n+1) (3.29)

where w̃n+1 is some O(τ 2) approximation to w(tn+1) (i.e. w̃n+1 = w(tn+1) +O(τ 3)).

It is easy to see, that the right-hand side of (3.27) is a O(τ) perturbation to the

right-hand side of (3.24), which leads to a O(τ 2) variation in w∗ and in F ∗. Then, the

right-hand side of (3.28) is a O(τ 2) perturbation to the right-hand side of (3.25), which

leads to a O(τ 3) variations in w∗∗ and in F ∗∗. At last, the right-hand side of (3.29) is a

O(τ 3) perturbation to the right-hand side of (3.26), causing a O(τ 4) variation in wn+1.

Thus, the local error of the scheme wn+1−w(tn+1) is still O(τ 4), so that the scheme retains

the third order of accuracy. Note that the absence of F ∗ in the right-hand side of (3.29)

is a necessary condition for this.

The specific form of the implicit operator does not affect the order of accuracy of

the scheme but determines its stability properties. In the trivial case of L ≡ 0, the

scheme turns into a simple third-order accurate explicit Runge-Kutta scheme. Generally

speaking, the stability is the higher, the closer L is to the Jacobian of the Nernst-Plank

operator. An important criterion for choosing L is how effectively may be solved the

corresponding set of Eq. (3.27)–(3.29).

The Nernst-Plank equation in the spherical coordinate system has the following form,

∂c±

∂t
+ U

1

r

∂c±

∂θ
+ V

∂c±

∂r
=

1

r2

1

sin θ

∂

∂θ

[
sin θ

(
∂c±

∂θ
± c±∂Φ

∂θ

)]
+

+
1

r2

∂

∂r

[
r2∂c

±

∂r
± r2c±

∂Φ

∂r

]
We suppose that F (w) can be split in two operators F (w) = G(w) + H(w), where

operator H(w) creates instability,

w1 − w0

∆t
= G(w0) +H(w1)

w1 −∆tH(w1) = w0 + ∆tG(w0)

and the system w1−∆tH(w1) can be easily solved. The simplest case is when H(w) = Aw

with a band matrix A. If H(w) = Aw then (I −∆tA)w1 = w0 + ∆tG(w0).
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The main problem here is to choose the right operator, which will be treated implicitly

because it has a strong influence both on the stability and on the time step.

The proposed Runge-Kutta scheme has 4 steps. At each step will be solved the linear

system associated with the implicit operator and will calculate the values of Φ, U , V .

We don’t describe here in detail the formation of the operator of the Nernst-Planck

equation but indicate which part of this operator is treated implicitly. The following

terms of Nernst-Planck equation is treated implicitly,

U
1

r

∂c±

∂θ
; V

∂c±

∂r
;

1

r2

1

sin θ

∂

∂θ

[
± sin θc±

∂Φ

∂θ

]
;

1

r2

∂

∂r

[
r2∂c

±

∂r
± r2c±

∂Φ

∂r

]
The matrix of this operator is block-tridiagonal; therefore, the solution of the corre-

sponding system is quite simple. Nevertheless, this part of the algorithm takes up to 80%

of the whole calculation time.



Chapter 4

Electrophoresis of an ion-selective

particle in a weak electric field

It was experimentally observed that at low electric field strength E∞, the ion-selective par-

ticle behaves qualitatively similar to dielectric impermeable particle and its electrophoretic

velocity is proportional to the external electric field strength (U∞ ∼ E∞). In this thesis,

the analysis of the ion-selective particle behavior begins with asymptotic analysis for the

case of the weak electric field when E∞ << 1. The expansion of unknown functions in a

series with regards to the small parameter E∞ will be regular.

f = f0 + E∞f1 + E2
∞f2 + ...

At the same time, there is another small parameter in the problem – the Debye number

ν. Moreover, the analysis at ν << 1 leads to a singular decomposition since ν is in front

of the highest derivative in the Poisson equation (2.23). Physically, this is associated with

the formation of a thin EDL. The singular decomposition implies the separation of the

solution region into two: the inner (corresponding to a thin layer in which the functions

change dramatically) and the outer one (corresponding to the bulk of electrolyte), followed

by the matching of the inner and outer solutions [58].

Let us consider in more detail the mechanism of the formation of a thin boundary layer

arising near a ion-selective particle. Since the cation selective particle is a membrane with

the deficit of cations in its structure, it has a negative charge in total (due to deficit of

cations and excess of anions). When this particle is placed in an electrolyte, which contains

positive and negative ions, the positively charged ions are attracted to the particle surface

in order to compensate for the net negative charge inside the particle. These ions gather

around the particle and a well-ordered and immovable layer covers the surface of the

45
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particle. This layer is called the stationary layer or the Stern layer. Cations in this layer

neutralize some part of the particle negative charge. However as ions are often surrounded

by water molecules (in the case of NaCl/water solution); these are rather big and cannot

neutralize the surface charge completely. The remaining charge attracts additional ions

from the bulk of the electrolyte so that a second layer forms around the particle. This

layer is located farther from the surface of the particle. The Coulomb force becomes

weaker with distance from the particle and therefore, the second layer, called the diffuse

or Gouy-Chapman layer, is much less ordered and mobile. These two layers together form

the Electric Double Layer (EDL). At the interface between the liquid and solid, EDL is

always present, even in the absence of an external applied electric field (Fig. 4.1).

Figure 4.1 – Structure of electrical double layer in weak electric field.

This structure of EDL is in equilibrium since it is not related to the passing of electric

current through the EDL. When an external electric field is applied, the structure of EDL

is changed. In a weak electric field, EDL does not undergo significant qualitative changes,

since the current through the particle surface is negligible.

The existence of two small parameters requires to define the ratio between them. In

our case, the relation ν/E∞ << 1 naturally arises, which allows us, at the beginning, to

consider the regular expansion regarding E∞ and to analyze separately the case ν << 1

for each approximation.

The purpose of the asymptotic study is to describe the stationary regime. Therefore,

in this section, we consider the case ∂
∂t

= 0.

We perform an asymptotic expansion for ν → 0 (small Debye numbers) for a weak
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electric field, E∞ → 0.

4.1 The zeroth-order steady-state approximation with

respect to E∞

In the absence of an external electric field (E∞ = 0), there is no particle motion and the

electric current through the particle surface is zero. Therefore, the decomposition of the

main functions can be represented as,

c± = c±0 + E∞ c
±
1 +O(E2

∞), Φ = Φ0 + E∞Φ1 +O(E2
∞), (4.1)

U = E∞ U1 +O(E2
∞), V = E∞ V1 +O(E2

∞), j = E∞j1 +O(E2
∞). (4.2)

The particle velocity U∞ is also an unknown parameter and, according to experimental

observations, it can be assumed that U∞ = O(E∞) for E∞ << 1. This velocity will be

found at the end of the present analysis from the balance of forces acting on the particle.

Using the expansions (4.1) – (4.2) after substituting them in (2.22) – (2.25), it is possible

to solve the system one by one starting from the zeroth-order approximation and then

moving on to terms of a higher-order with respect to E∞. The main result of this section

is to look for the particle velocity U∞, so for this purpose, it will be enough to consider

the zero and first-order approximations.

E∞u1 · ∇(c±0 + E∞c
±
1 +O(E2

∞)) = (4.3)

= ±∇
[
(c±0 + E∞c

±
1 +O(E2

∞))∇(Φ0 + E∞Φ1 +O(E2
∞))
]

+∇2(c±0 + E∞c
±
1 +O(E2

∞))

ν2∇2(Φ0 + E∞Φ1 +O(E2
∞)) = c−0 + E∞c

−
1 +O(E2

∞)− c+
0 − E∞c+

1 −O(E2
∞) (4.4)

For the zeroth-order approximation, only terms of the zeroth-order with respect to

E∞ are taking into account.

The equations (4.3) – (4.4) with the corresponding boundary conditions in the zeroth-

order steady-state approximation take the form,

±∇ · (c±0∇Φ0) +∇2c±0 = 0 (4.5)

ν2∇2Φ0 = c−0 − c+
0 (4.6)

r = 1 : c+
0 = p, c−0

∂Φ0

∂r
− ∂c−0

∂r
= 0, Φ0 = 0, (4.7)
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r →∞ : c+
0 → 1, c−0 → 1,

∂Φ0

∂r
→ 0. (4.8)

The system of equations above do not contain the applied electric field E∞, therefore

∂Φ0/∂θ = 0. After applying the Laplace operators and divergence in spherical coordinates

and in steady state,

1

r2

∂

∂r

(
±r2c±0

∂Φ0

∂r

)
+

1

r2

∂

∂r

(
r2∂c

±
0

∂r

)
= 0 (4.9)

ν2 1

r2

∂

∂r

(
r2∂Φ0

∂r

)
= c−0 − c+

0 (4.10)

with the same boundary conditions (4.7) and (4.8).

The solution of this system will be carried out based on a singular asymptotic approach

for ν << 1. And, as it was mentioned earlier, it will require the separation of regions into

inner and outer regions. General ideas of the method are presented in [58].

4.1.1 Inner expansion (ν → 0)

In order to find the inner solution, it is necessary to stretch the thin EDL region near the

granule surface r = 1 by the change of variable, z =
r − 1

ν
. Then,

∂

∂z
=

1

ν

∂

∂r
(4.11)

The system for the inner expansion, where r ≈ 1, is as follows,

∂

∂z

(
c+

0

∂Φ0

∂z
+
∂c+

0

∂z

)
= 0, (4.12)

∂

∂z

(
−c−0

∂Φ0

∂z
+
∂c−0
∂z

)
= 0, (4.13)

∂2Φ0

∂z2
= c−0 − c+

0 , (4.14)

z = 0 : Φ0 = 0, c+
0 = p, −c−0

∂Φ0

∂z
+
∂c−0
∂z

= 0. (4.15)

Here and in what follows, the upper bar denotes the inner solution (solution inside the

EDL). Thus for this inner solution, only the boundary condition at z = 0 can be used.

In the zeroth-order approximation with respect to ν there is no influence of the spher-

ical geometry (no dependence on the angle θ) and the system (4.12) – (4.15) can be solved
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or the solution for the flat geometry [43] can be used:

Φ0 = ζ + 2 ln

(
e−ζ/2 + 1 + (e−ζ/2 − 1)e−z

√
K∞

0

e−ζ/2 + 1− (e−ζ/2 − 1)e−z
√
K∞

0

)
, (4.16)

∂Φ0

∂z
=

4
√

2 e−z
√
K∞

0 (e−ζ − 1)

e−2z
√
K∞

0 (e−ζ/2 − 1)2 − (e−ζ/2 + 1)2
, (4.17)

c+
0 =

K∞0
2

(
e−ζ/2 + 1− (e−ζ/2 − 1)e−z

√
K∞

0

e−ζ/2 + 1 + (e−ζ/2 − 1)e−z
√
K∞

0

)2

, (4.18)

c−0 =
K∞0

2

(
e−ζ/2 + 1 + (e−ζ/2 − 1)e−z

√
K∞

0

e−ζ/2 + 1− (e−ζ/2 − 1)e−z
√
K∞

0

)2

, (4.19)

the K∞0 and ζ should be taken at the outer edge at z →∞: K∞0 = c+
0 + c−0 , ζ = Φ0.

The unknown constants must be defined by matching inner and outer solutions. The

idea of matching is that the inner and outer solutions should agree on an intermediate

(or overlap) region, where O(ν)� z � +∞. This condition is that the outer limit of the

inner solution has to match the inner limit of the outer solution,

lim
z→∞

solutioninner = lim
r→1

solutionouter (4.20)

Therefore the matching condition can be written as,

K0|r=1 = K0

∣∣
z→∞ = K

∞
0 (4.21)

Φ0|r=1 = Φ0

∣∣
z→∞ = ζ (4.22)

ρ0|r=1 = ρ0|z→∞ = 0 (4.23)

4.1.2 Outer expansion (ν ≡ 0)

Since ν → 0, the first approach is to make the approximation ν ≡ 0, and hence find the

solution of the problem,
1

r2

∂

∂r

(
r2c+

0

∂Φ0

∂r
+ r2∂c

+
0

∂r

)
= 0 (4.24)

1

r2

∂

∂r

(
−r2c−0

∂Φ0

∂r
+ r2∂c

−
0

∂r

)
= 0 (4.25)

c−0 − c+
0 = 0 (4.26)
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Adding and subtracting Eq. (4.24) and (4.25), we obtain,

1

r2

∂

∂r

(
r2(c+

0 − c−0 )
∂Φ0

∂r
+ r2∂(c+

0 + c−0 )

∂r

)
= 0 (4.27)

1

r2

∂

∂r

(
r2(c+

0 + c−0 )
∂Φ0

∂r
+ r2∂(c+

0 − c−0 )

∂r

)
= 0 (4.28)

The change of variables has been made for the convenience of solving the problem c+
0 −c−0 =

ρ0 and c+
0 + c−0 = K0, then,

1

r2

∂

∂r

(
r2ρ0

∂Φ0

∂r
+ r2∂K0

∂r

)
= 0 (4.29)

1

r2

∂

∂r

(
r2K0

∂Φ0

∂r
+ r2∂ρ0

∂r

)
= 0 (4.30)

From the Eq. (4.26) it follows that ρ0 ≡ 0. Physically that means absence of charge in

the bulk of electrolyte, i.e. electroneutrality,

∂

∂r

(
r2∂K0

∂r

)
= 0 (4.31)

∂

∂r

(
r2K0

∂Φ0

∂r

)
= 0 (4.32)

The system is complemented by the following boundary conditions:

r →∞ : K0 → 2,
∂Φ0

∂r
→ 0 (4.33)

From the equation (4.31) function K0 =
c1

r
+ c2. From the solution for inner region and

matching conditions (4.21) – (4.23) one can get the following zeroth-order solution:

ρ0 ≡ 0, K0 ≡ 2, Φ0 ≡ ζ, ζ = ln p (4.34)

4.2 The first-order approximation with respect to E∞

The first-order approximation with respect to E∞ is described by the following system,

u1 · ∇c±0 = ±∇ · (c±0∇Φ1 + c±1∇Φ0) +∇2c±1 , (4.35)

ν2∇2Φ1 = c−1 − c+
1 , (4.36)
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−∇P1 +∇2u1 = −κ(∇2Φ0∇Φ1 +∇2Φ1∇Φ0), ∇ · u1 = 0 (4.37)

with the boundary conditions:

r = 1 : c+
1 = 0, c−1

∂Φ0

∂r
+ c−0

∂Φ1

∂r
− ∂c−1

∂r
= 0, Φ1 = 0, (4.38)

u1 = 0, (4.39)

r →∞ : c+
1 → 0, c−1 → 0,

∂Φ1

∂r
→ − cos θ, (4.40)

U1 → −
(
U∞
E∞

)
sin θ, V1 →

(
U∞
E∞

)
cos θ. (4.41)

Since the solution of the system depends on E∞, the charge distribution inside the

EDL will be inhomogeneous with respect to the angle θ (Fig. 4.1). Consequently, an

electroosmotic flow is formed near the particle u1 6= 0. Note that the system (4.35) –

(4.41) is a linear system of equations taking into account the previously obtained functions

of zeroth-order c+
0 , c

−
0 , Φ0.

4.2.1 Inner expansion (ν → 0)

The system (4.35) – (4.41) with respect to the variable z = r−1
ν

in the inner expansion

can also be simplified by cancelling terms of a higher-order in ν. As a result, the system

takes the form,

∂

∂z

(
c+

0

∂Φ1

∂z
+ c+

1

∂Φ0

∂z
+
∂c+

1

∂z

)
= 0, (4.42)

∂

∂z

(
c−0
∂Φ1

∂z
+ c−1

∂Φ0

∂z
− ∂c−1

∂z

)
= 0. (4.43)

After integrating and using the condition (4.38) and defining j1 = c+
0

∂Φ1

∂r
+c+

1

∂Φ0

∂r
+
∂c+

1

∂r
,

c+
0

∂Φ1

∂z
+ c+

1

∂Φ0

∂z
+
∂c+

1

∂z
= νj1 → 0 (4.44)

c−0
∂Φ1

∂z
+ c−1

∂Φ0

∂z
− ∂c−1

∂z
= 0 (4.45)

∂2Φ1

∂z2
= c−1 − c+

1 (4.46)

z = 0 : c+
1 = 0, c−1

∂Φ0

∂z
+ c−0

∂Φ1

∂z
− ∂c−1

∂z
= 0 (4.47)
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Φ1 = 0. (4.48)

From the outer electrically neutral solution, we can write,

z →∞ : c+
1 − c−1 → 0. (4.49)

Note that unknown variables in the system depend on the angle θ, but this dependence

is parametric.

For the uniqueness of the solution of the system (4.44) – (4.48), it is necessary to

specify four boundary conditions (two for the function Φ and one for c+ and c−), but the

boundary conditions (4.47) – (4.49) are only three. The fourth boundary condition will

be determined from the matching condition of the outer expansion with the inner.

By introducing new variables,

E0 =
∂Φ0

∂z
, E1 =

∂Φ1

∂z
, ρ1 = c+

1 − c−1 , K1 = c+
1 + c−1 . (4.50)

Adding and subtracting the equations (4.42) and (4.43), the following system can be

obtained,

K0E1 +K1E0 +
∂ρ1

∂z
= 0, (4.51)

ρ0E1 + ρ1E0 +
∂K1

∂z
= 0, (4.52)

∂E1

∂z
= −ρ1. (4.53)

The equation (4.52) can be represented in the form (using also Eq. (4.14)):

∂K1

∂z
=
∂E0

∂z
E1 +

∂E1

∂z
E0 =

∂E1E0

∂z
, (4.54)

after a single integration, one can get,

K1 = E1E0 + A, (4.55)

where A is the integration constant. For z →∞ E0 → 0 and therefore,

A = K1

∣∣
z→∞ ≡ K1

∞
. (4.56)

Substituting (4.55) and (4.56) into (4.54) one can obtain a second-order differential equa-
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tion,
∂2E1

∂z2
− (E0

2
+K0)E1 = K1

∞
E0. (4.57)

The boundary conditions (4.47) – (4.49) on the particle can be transformed into the form,

z = 0 :
∂E1

∂z
− E0E1 = K∞1 , z →∞ :

∂E1

∂z
→ 0 (4.58)

After introducing the new unknown F (z) = E1/K∞1 , the boundary-value problem (4.57)

– (4.58) turns into,
d2F

dz2
− (E2

0 +K0)F = E0, (4.59)

z = 0 :
dF

dz
− E0F = 1, z →∞ :

dF

dz
→ 0. (4.60)

Integrating E1 = K∞1 F from zero to infinity and using the boundary conditions (4.58),

one can obtain,

∞∫
0

∂Φ1

∂z
dz = Φ1

∣∣
z→∞ = K∞1

∞∫
0

F dz,
(

Φ1

∣∣
z=0

= 0
)

The solution of the system (4.59) – (4.60) leads to,

∞∫
0

F dz = −1

2
, (4.61)

and the matching conditions impose the following equality on the boundary between the

inner and outer decompositions,

z →∞ : K1 = −2Φ1. (4.62)

The solution for the inner expansion is not given explicitly since it is obtained numerically

by integrating the equations (4.59) – (4.60).

4.2.2 Outer expansion

The system (4.35) – (4.41) with respect to K1 = c+
1 + c−1 together with the matching

condition for the decompositions (4.62) can be written as,

u1 · ∇K0 = ∇2K1, ∇ · (K0∇Φ1 +K1∇Φ0) = 0, (4.63)
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r = 1 : K1
∂Φ0

∂r
+K0

∂Φ1

∂r
− ∂K1

∂r
= 0, (4.64)

2Φ1 = −K1, (4.65)

r →∞ : K1 → 0,
∂Φ1

∂r
→ − cos θ. (4.66)

Taking into account that from zeroth-order solution K0 ≡ 2 and Φ0 ≡ ζ,

∇2K1 = 0, ∇2Φ1 = 0, (4.67)

r = 1 : 2
∂Φ1

∂r
=
∂K1

∂r
, 2Φ1 = −K1, (4.68)

r →∞ : K1 → 0,
∂Φ1

∂r
→ − cos θ. (4.69)

The solution to the system (4.67) – (4.69) can be easily found,

Φ1 =

(
−r +

1

4r2

)
cos θ, K1 =

3

2r2
cos θ. (4.70)

and the following relations are true,

r = 1 : Φ1 = −3

4
cos θ,

∂Φ1

∂θ
=

3

4
sin θ, K1 =

3

2
cos θ. (4.71)

The electric current j(θ) on the particle’s surface at r = 1,

j = j1E∞ =
E∞
2

( ∂K1

∂r
+K0

∂Φ1

∂r
+K1

∂Φ0

∂r

)∣∣∣∣
r=1

+O(E2
∞) =

= −3E∞ cos θ +O(E2
∞). (4.72)

In a first approximation, the current is symmetrical regarding the y axis; j disappears at

the poles of the particle at θ = ±π
2
.

Thus, we can write out the first order approximation for the functions K and Φ

according to the expansions (4.1):

K = K0 +K1E∞ = 2 +
3

2r2
E∞ cos θ (4.73)

Φ = Φ0 + Φ1E∞ = ζ +

(
−r +

1

4r2

)
E∞ cos θ (4.74)

We do not write out the approximation for ρ explicitly, but note that the expansion inside

the EDL (zeroth-order) can be obtained from the equations (4.18) – (4.19), and in the

outer region ρ = 0. These approximations (4.73) – (4.74) will be used in the future for
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comparison with the results of numerical simulations.

4.3 Electroosmotic flow and slip velocity

From the solution in the previous paragraph, it was shown that the electrostatic problem

can be solved independently of the hydrodynamic part.

The Stokes equation (4.37) with the boundary conditions (4.40) and (4.41) can now

be solved. For inner decomposition, the system (4.37) has the form,

− ν2∂P1

∂θ
+
∂2U1

∂z2
= −κ

(
∂2Φ0

∂z2

∂Φ1

∂θ

)
,
∂P1

∂z
=

κ
ν2

∂

∂z

(
∂Φ1

∂z

∂Φ0

∂z

)
, V1 = 0, (4.75)

with boundary conditions,

z = 0 : U1 = 0, z →∞ :
∂U1

∂z
= 0. (4.76)

After eliminating the pressure P1 from the system, one can obtain the following equation,

∂2U1

∂2z
= −κ ∂2Φ0

∂z2

∂Φ1

∂θ
+ κ

∂2Φ1

∂θ∂z

∂Φ0

∂z
, (4.77)

After integrating this expression and using the second boundary condition (4.76), one can

obtain,

∂U1

∂z
= −κ∂Φ0

∂z

∂Φ1

∂θ
− 2κ

∞∫
z

∂2Φ1

∂θ∂s

∂Φ0

∂s
ds.

The second integration with respect to z will lead to,

∞∫
0

∂U1

∂z
dz = −κ

Φ0
∂Φ1

∂θ

∣∣∣∣∞
0

−
∞∫

0

Φ0
∂2Φ1

∂θ∂z
dz

− 2κ
∂

∂θ

∞∫
0

∞∫
z

E1E0 ds dz.

Taking into account that U1

∣∣
z=0

= 0, Φ0

∣∣
z=0

= 0 and Φ0

∣∣
z→∞ → ζ, one can find the

following expression for the slipping velocity Us,

Us = U1

∣∣
z→∞ = −κ ζ ∂Φ1

∂θ

∣∣∣∣
z→∞

+ κ
∞∫

0

Φ0
∂2Φ1

∂θ∂s
ds− 2κ

∂

∂θ

∞∫
0

∞∫
z

E1E0 dsdz =

= −κ ζ ∂Φ1

∂θ

∣∣∣∣
z→∞

+ κ
∂

∂θ

 ∞∫
0

Φ0E1ds− 2

∞∫
0

∞∫
z

E1E0dsdz

 =
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= −2κ

ζ
2

+

∞∫
0

Φ0 Fds− 2

∞∫
0

∞∫
z

F E0 dsdz

 ∂Φ1

∂θ

∣∣∣∣
z→∞

.

From the equation (4.71),

∂Φ1

∂θ

∣∣∣∣
z→∞

=
∂Φ1

∂θ

∣∣∣∣
r=1

=
3

4
sin θ

denoting the integrals,

S1 =

∞∫
0

Φ0 Fds, S2 = −2

∞∫
0

∞∫
z

F E0 dsdz,

the slip velocity is,

Us = −κ ζ δ(p) ∂Φ

∂θ

∣∣∣∣
r=1

(4.78)

In our case, the equation turns into,

Us = −3

4
ζκ sin θ δ(p). (4.79)

Here δ(p) = 1 + 2(S1 + S2)/ζ is the function of p, which can be calculated numerically.

It is possible to give an approximation of the function δ(p) using a simple analytical

expression,

δ ≈ 1− 0.11 ln(p) = 1− 0.11 ζ. (4.80)

The outer solution for the velocity field is described by the system,

−∇P1 +∇2u1 = 0, ∇ · u1 = 0 (4.81)

with boundary conditions

r = 1 : V1 = 0, U1 = Us = −3

2
κ δ sin θ, (4.82)

r →∞ : U1 = −U∞
E∞

sin θ, V1 =
U∞
E∞

cos θ. (4.83)

After introducing the stream function Ψ in spherical coordinates,

U = − 1

sin θ

1

r

∂Ψ

∂r
, V =

1

sin θ

1

r2

∂Ψ

∂θ
(4.84)
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and corresponding transformations, the system (4.81) – (4.83) turns into the following,

∇4Ψ1 = 0, (4.85)

r = 1 : Ψ1 = 0,
∂Ψ1

∂r
=

3

4
κ ζ δ sin2 θ, (4.86)

r →∞ :
∂Ψ1

∂θ
= r2 U∞

E∞
sin θ cos θ,

∂Ψ1

∂r
= r

U∞
E∞

sin2 θ. (4.87)

The general solution of the equation (4.85) can be written as,

Ψ1 =
∞∑
n=1

[
Anr

n+3 +Bnr
n+1 + Cnr

2−n +Dnr
−n]Qn(cos θ), (4.88)

where Qn are the Gegenbauer polynomials (see [59, 60]), the coefficients An, Bn, Cn and

Dn can be found from the boundary conditions (4.86) – (4.87). The solution of the system

(4.85) – (4.87) has finally the following form,

Ψ1 =

[(
−r2 +

3

2
r − 1

2r

)
U∞
E∞
− κ

3

4
ζδ

(
r − 1

r

)]
Q1(cos θ), (4.89)

where Q1 is the first Gegenbauer polynomial,

Q1(cos θ) =
1

2
(cos2 θ − 1).

4.4 Electrophoretic velocity

To find the electrophoretic velocity U∞, the general formulation (2.26) – (2.35) must be

supplemented by imposing the condition of zero force acting on the particle [59, 60]. The

balance of viscous stress forces FV and Maxwell stresses FM on the particle surface Σ has

the form,

FV + FM =

∫
Σ

(−Pn + τnnn + τnl l + τMnnn + τMnl l)dσ = 0 (4.90)

The projection of the normal unit vector n on the x axis is nx = cos θ, and the

projection of the tangent unit vector l is lx = − sin θ, see fig. 4.2. Hence,

τnnn = τrrnx + τrθlx; τMnnn = τMrr nx + τMrθ lx (4.91)

nx = cos θ, lx = − sin θ, dσ = 2πr2 sin θdθ, dl = rdθ,
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Figure 4.2 – The geometry of the projections of normal and tangential vectors to the
particle surface r = 1.

τrr = 2
∂V

∂r
, τrθ =

1

r

∂V

∂θ
+
∂U

∂r
− U

r
, (4.92)

τMrr =
κ
2

[(
∂Φ

∂r

)2

− 1

r2

(
∂Φ

∂θ

)2
]
, τMrθ = κ

1

r

∂Φ

∂r

∂Φ

∂θ
. (4.93)

After substituting (4.84), (4.91) – (4.93) into (4.90) and after some transformations,

one can obtain the expression for viscous and Maxwell stresses,

FV = π

π∫
0

(
− sin θ

∂3Ψ

∂r3
− sin θ

∂3Ψ

∂r∂θ2
+ 2 sin θ

∂2Ψ

∂r2
+ 5 cos θ

∂2Ψ

∂r∂θ

−4 sin θ
∂Ψ

∂r
− 8 cos θ

∂Ψ

∂θ

)
dθ, (4.94)

FM = −πκ
π∫

0

(
cos θ sin θ

(
∂Φ

∂r

)2

+ sin2 θ
∂Φ

∂θ

∂2Φ

∂r2
+ sin2 θ

∂Φ

∂θ

∂2Φ

∂θ2

)
dθ. (4.95)

The balance of viscous and electric forces should be performed on any closed curve around

the particle. But it is more convenient to take it at the edge of the EDL, which corresponds

to the outer solution. Then,

FV + FM = π

(
3κ ζδ − 6

U∞
E∞

)
= 0. (4.96)
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Electrophoretic velocity is found from this expression, namely,

U∞ = κ
ζδ

2
E∞, (4.97)

Taking into account the expression (4.80), one can get,

U∞ =
1

2
κζ(1− 0.11ζ)E∞ (4.98)

that in dimensional form has the form,

U∞ =
εζ

2µ

(
1− 0.11

ζF

RT

)
E∞. (4.99)

One can emphasize that this formula differs from the well-known Helmholtz-Smoluchowski

formula for dielectric particles,

U∞ = κζE∞ (4.100)

which in dimensional form has the expression,

U∞ =
εζE∞
µ

. (4.101)

4.5 Numerical results

The numerical solution of the time-dependent system (2.22) – (2.25) is presented in this

section. It is assumed that the electrolyte is an aqueous solution of sodium chloride

(NaCl). For this solution the parameter κ is fixed and κ = 0.26. The solution to the

problem depends on the Debye number, but the main results are presented for ν =

0.0087 and ν = 0.002, which corresponds to a particle size radius of 5 µm and 21 µm

correspondingly. The problem substantially depends on the external electric field E∞ and

the results are divided into three cases: for a weak, moderate and strong electric field

[52, 61, 62, 63]. In this section, the results for the weak and moderate electric field are

presented. The numerical results for the weak electrical field is also compared with the

analytical solution and experiments.

A numerical simulation of the complete system of equations was carried out. The

results presented for κ = 0.26 and ν = 0.0086, which corresponds to a solution of NaCl

with an equilibrium concentration of c̃∞ = 0.1 mol/m3 and the particle radius of ã =

5 µm.

Fig. 4.3(a) shows the space charge distribution ρ(r, θ) = c+ − c− at E∞ = 0.05. This

value of E∞ is considered to be small, therefore ρ should correspond to the analytical



60

r
1 1.005 1.01 1.015 1.02

ρ

0

0.5

1

1.5

2

2.5

r
1.0011 1.0011 1.0012 1.0012

ρ

1.7

1.72

1.74

1.76

1.78

θ = 0°

θ = 180°

θ = 0°
θ = 180°

1

b )

E
∞

= 0.05

Figure 4.3 – (a) Space charge distribution, ρ(r, θ) = c+ − c−, for a weak electric field,
E∞ = 0.05 and p = 3. (b) The cross-section of ρ(r) for the angle θ = 0 (solid
line) and θ = 180◦ (dashed line); 1 is the solution obtained from first-order
expansion.

solution at E∞ → 0 and maintains a quasi-equilibrium structure. The space charge

density distribution is independent of the angle θ and is positive for the cation exchange

particle, ρ > 0. It exponentially decreases at r → ∞. Comparison with the analytical

solution in Fig. 4.3(b) shows a very good agreement between the two approaches.

r
1 1.5 2 2.5 3 3.5 4 4.5

K

2

2.2

2.4

2.6

2.8

3

3.2

r
1 1.005 1.01 1.015 1.02

K

2

2.5

3

θ = 0°
1θ = 180°
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Figure 4.4 – (a) Electrical conductivity, K(r, θ) = c+ + c−, for a weak electric field, E∞ =
0.05 and p = 3. (b) The cross-section of K(r) for the angle θ = 0 (solid line)
and θ = 180◦ (dashed line); curve 1 is the solution obtained by first-order
expansion. The behavior inside the EDL is shown in the insets.

In Fig. 4.4 the spatial distribution of salt concentration K = c+ − c− is given at

E∞ = 0.05. The value of K can also be interpreted as the electrical conductivity of an

electrolyte (see Probstein [50]). Inside the EDL, the value of K decreases with increasing

r to the value of K = 2+3/2E∞ cos θ in accordance with the analytical solution (4.70). In
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the outer region of the electrolyte, K − 2 decays like 1/r2 and for r →∞ K → 2 (see the

equation (4.70)). As can be seen from fig. 4.4(a), two electroneutral clouds symmetrically

located about the y axis form near the particle on the left and right sides. The cloud on

the right side of the particle, i.e. in the region of the incoming ion flux, contains enriched

electrolyte (with K > 2), and the cloud on the left side is depleted electrolyte (K < 2) or

desalination zone.

The behaviour of charge density ρ and salt concentration K in Fig. 4.3 and Fig. 4.4,

where the cross-sections for the angles θ = 0◦ and θ = 180◦ are given, differs. This

difference in the behaviour of the functions can be explained as follows. In the first-order

approximation, ρ = ρ0 + ρ1E∞ + O(E2
∞) and ρ1 has the same order of magnitude as

E∞, which is small (E∞ = 0.05). Therefore, ρ ' ρ0, which can be seen in Fig. 4.3 (b).

At the same time for electrical conductivity, the first-order approximation has the form

K = K0 + K1E∞ + O(E2
∞) and is no longer a small value and therefore K 6= K0, as can

be seen from Fig. 4.4.

With an increase in the electric field strength E∞, the nonequilibrium effects become

more significant and the results of numerical analysis begin to deviate from the analytical

one derived for small values of E∞. In Figs. 4.6 and 4.5 are shown the distribution of the

space charge density ρ and the concentration of salt K near the surface of the ion-selective

microparticle. The charge density distribution (or EDL thickness) becomes asymmetric.

In the region of the incoming ion flow, at 90◦ < θ < 180◦, the charge density ρ, and the

EDL thickness are increasing, while in the region of the outgoing ion flow, at 0◦ < θ < 90◦,

both the charge density and the EDL thickness are reduced. In this case, the charge in

the region 90◦ < θ < 180◦ remains positive, while in the region 0◦ < θ < 90◦ it changes

sign and becomes negative. This fact is associated with the influence of the ions flow into

and out of the surface, that is, it is a typical non-equilibrium effect.

With the increase in the electric field strength, the symmetric electrically neutral

clouds of the enriched and depleted electrolyte lose their symmetry (see Fig. 4.6(a)). The

zone of depleted electrolyte also called the desalination zone, due to salt concentration

here is much lower than in the bulk or it even tends to zero. In addition to the loss of

symmetry, these clouds expand, and the zone of the depleted solution expands faster. In

general, however, the law of conservation of mass is still valid,∫ ∞
0

∫ π

0

(K − 2) r2dr dθ = 0. (4.102)

The relation (4.102) also serves to control the accuracy of the calculations. In the

depletion zone of EDL, the total ion concentration decreases exponentially from K ≈ p
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Figure 4.5 – (a) Space charge distribution, ρ(r, θ), for moderate electric field strength,
E∞ = 3, p = 3. (b) The section ρ(r) for θ = 0◦ (solid line) and θ = 180◦

(dashed line).
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Figure 4.6 – (a) Electrical conductivity, K(r, θ) = c+ + c−, for moderate electric field
strength E∞ = 3, p = 3. (b) The cross-section K(r) for θ = 0 (solid line)
and θ = 180◦ (dashed line). The behavior inside the EDL is shown in the
insets.

(equilibrium value) to a very small value, K ≈ 0 (Fig. 4.6(b)). With increasing E∞,

the region with K ≈ 0 expands, as in the case of flat membranes [42, 43, 45], and the

electrical resistance of this zone increases. In the outer region of the electrolyte, K slowly

increases with distance from the surface of the particle and reaches the equilibrium value

of K = 2. Inside the EDL of the enriched electrolyte region, the total ion concentration

slowly decreases and also reaches the equilibrium value of K = 2 in the outer region of

the electrolyte.

Recall that for small electric field strength E∞, the charge inside the EDL is positive

and does not depend on the angle θ (see Fig. 4.3). In the case of higher values of electric

field the tangential component of the electric field Es =
∂Φ

∂θ
at the boundary of the EDL
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is subject to the equation (4.71) and it is proportional to sin θ. The quasi-equilibrium slip

velocity is directed clockwise for angle 0◦ < θ < 180◦, reaches a maximum at θ = 90◦ and

disappears at θ = 0◦ and θ = 180◦ (see Fig. 4.7), where the tangential component of the

electric field is zero (see equation (4.79)).

Figure 4.7 – Direction of electroosmotic slip velocity along the particle.

As will be shown in Chapter 6, when E∞ = 0.05, the numerical solution for the slip

velocity shows good agreement with the analytical solution. For sufficiently large values of

E∞, non-linear and non-equilibrium effects significantly change the distribution of charge

density ρ in the EDL. Recall that in the region of the incoming ion flux, the charge remains

positive, while in the region of the outgoing ion flux, it becomes negative (Fig. 4.5). As

a result, for E∞ = 3 and E∞ = 5, the profile of the electroosmotic slip velocity changes

dramatically: the maximum of Us shifts to larger angles and reaches the value θ = 135◦.

In addition, for small values of the angle θ, the electroosmotic velocity changes direction

for relatively small values of E∞ = 0.05 and 3.

For small values of E∞, the electrokinetic effects are in a quasi-equilibrium state and

are completely controlled by the concentration of positive ions on the particle surface

(parameter p).

The problem has a parameter p representing the concentration of ions inside the pores

of the membrane near the surface. It is only known that p > 1 [32]. The value of

p is difficult to measure experimentally. Therefore, the fact of independence (or weak

dependence) on p for sufficiently large values of E∞ is very important.

Fig. 4.8 represents the dependence of the electrophoretic velocity on the external

electric field for various values of the parameter p. The curves for different values of p

approach each other with increasing electric field strength and ultimately collapse into

one (at the value E∞ ≈ 5). Consequently, electrokinetic phenomena are now completely
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Figure 4.8 – Electrophoretic mobility vs the electric field strength E∞ for different values
of p.

controlled by the flow of ions (and not by concentration of positive ions p on the surface,

as it was for small values of E∞), and non-equilibrium effects become predominant.
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Figure 4.9 – The dependence of the particle velocity on the cations concentration p on its
surface for electric field strength E∞ = 5.

Fig. 4.9 complements the picture of Fig. 4.8. The particle velocity U∞ dependence on

parameter p at the fixed electric field strength E∞ = 5 becomes almost independent on p

from some point [52]. Thus, it can be assumed that for moderate electric field strength,

the particle velocity U∞ does not depend on this parameter for sufficiently higher values

of p.



Chapter 5

Electrophoresis of an ion-selective

particle in strong electric field

As was noted earlier, the Smoluchowski theory predicts a linear increase in the particle

velocity with an increase in the ζ potential. However, this dependence was deduced under

the assumption of small values of the zeta potential and a weak electric field and becomes

invalid for a sufficiently large value of the zeta potential or electric field [29, 30].

In a high-intensity electric field, the electric current passing through the particle

becomes significant, and the EDL changes its structure qualitatively, acquiring a non-

equilibrium state (Fig. 5.1).

Figure 5.1 – The structure of a non-equilibrium EDL near a cation-selective particle in a
strong electric field.

65
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Fig. 5.1 illustrates the behavior of an ion-selective particle when a quite strong electric

field is applied. First, consider the area to the left of the particle. Cations moving in a

direction of the electric field (from left to right), when they reach the left side of the

particle’s surface, they can enter inside it and exit from the backside, thus creating a

positive electric current through the particle. At the same time, the anions move in the

opposite direction. Thus, a low concentration of both cations and anions is formed in this

area, i.e., local desalination of the electrolyte occurs.

Cations do not accumulate inside the particle despite the force of attraction to the

negatively charged functional groups of the particle’s material since the strength of the

applied external electric field significantly exceeds the forces of attraction between ions

of different signs. Thus, the electro-migration mechanism is dominant. Cations move

out from the particle from the right side and continue to move in the direction from the

particle, i.e. the concentration of cations is increased here. Anions, in turn, move towards

the particle’s surface, and since they cannot pass through it, some of them ”stick” to the

particle’s surface, despite the repulsive forces with the negatively charged particle. The

remaining anions bypass the particle and continue to move from right to left. Thus, in

the region to the right of the particle, there is an increased concentration of both anions

and cations (enriched electrolyte solution).

For a flat ion-exchange membrane, the regions of the incoming and outgoing ion flux

are separated by an electrolyte layer (see Fig. 1 in [43]). An interesting feature of the

problem with the ion-selective particle is that the topology of the problem changes and

both regions are located on the same boundary, and the flows of incoming and outgoing

ions are separated by points 1 and 1′, in which the electric current disappears, j(θ0) = 0

(Fig. 5.2). These points separate the EDL with a positive charge for the region of the

incoming stream and the EDL with a negative charge for the outgoing stream of ions.

The space charge zone exists only for the region of the incoming flow and disappears when

approaching the point θ = θ0. The electroosmotic velocity at the boundary of the space

charge region creates a thin diffusion layer. At θ = θ0, the diffusion boundary layer is

expected to detach (see Levich [64]).

Let us give the estimation of the thickness of thin inner layers at ν → 0 and E∞ →∞,

without considering the relationship between the order of ν and E∞. The thickness of the

EDL is estimated as O(ν), the estimate of the thickness of the SCR ym, taken from [42],

is ym = O(ν2/3E
1/3
∞ ). It will be shown later that the thickness of the diffusion layer is

estimated as δ = O(E−1
∞ ). Note that all three estimations of the thicknesses of the layers

are much smaller than the particle radius. The thickness of the EDL, in turn, is much

smaller than the thickness of the SCR ym (this is true if E∞ ≤ O(ν−2)) and ym/δ is of
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the order of O(ν2/3E
4/3
∞ ), where δ is the thickness of the diffusion layer (see Fig. 5.2). In

what follows, it will be shown that both layers (SCR and diffusion layer) have the same

order of magnitude, and the last ratio is O(1).
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r

q

EDL

SCR

Diffusion layer

Bulk

Figure 5.2 – I, II, and III correspond to thin boundary layers embedded in each other:
EDL, space charge region, and diffusion layer, respectively. IV corresponds
to the electrically neutral bulk of the electrolyte, where K = 2. The points
1 and 1′ separate the areas of incoming and outgoing ion fluxes. Inset A:
Typical structure of the incoming ion flux region. Inset B: Typical structure
of the outgoing ion flux region.

For convenience, it can be introduced a new variable y = r − 1 which is reckoned

from the interface between the liquid and the particle surface. In Fig. 5.2, the region

under consideration is 0 < y <∞ and 0 < θ < 180◦ which in turn is divided into several

subregions (layers). Thin layers of I, II and III are described by the inner solution, while

the outer solution is associated with region IV. The region I is EDL and it forms on the

interface between solid particle and electrolyte. The region II is a space charge region

with a thickness of ym, it follows just after EDL. The next region III following up SCR

is a diffusion layer with a thickness of δ, which is the last in the structure of boundary

layers nested in each other. After this structure is located the electrically neutral outer

region IV of the electrolyte with dimensionless equilibrium electrical conductivity K = 2.

Note that in the region of outgoing ion flow (see later Fig. 5.6 (a)) forms a jet with

high electrical conductivity where the advection of salt ions becomes comparable with
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diffusion. A similar form of the far-field singularity was found for the case of a strongly

charged colloidal particle [31].

The earliest analysis of the Nernst-Planck-Poisson system was carried out by Felici

[65, 66]. Asymptotic analysis for boundary value problems of the Nernst-Planck-Poisson

equation system with regards the small parameter ν was carried out by Urtenov [67].

5.1 Analytical solution in space charge region

5.1.1 Electrostatic part

Now the case of high electric field strength, E∞ →∞ is under consideration. An electric

charge near the particle surface is created due to the “sticking” of cations at a non-

equilibrium ion flow through the particle. The first layer is formed near the charged

surface (EDL), and a space charge region is formed behind it. The net charge in SCR is

much greater than the net charge of EDL, so it is possible to neglect the EDL during the

asymptotic analysis.

Since the thickness of the SCR is small compared to the radius of the particle, one can

take r ≈ 1. The solution can be considered as time-independent, i.e. ∂/∂t = 0, and the

change in the solution with respect to the radial direction occurs much more strongly than

in the angular direction, therefore, the derivatives with respect to θ can be neglected, i.e.

∂/∂r � ∂/∂θ.

All these considerations could be obtained exactly by stretching the variables in a thin

layer, as was done in the previous chapter. However, here, due to the complex structure

of the layers, it is more convenient not to introduce a multitude of stretched variables,

but to operate in the usual system (r, θ) only by compiling the equations applicable in

the corresponding layers.

Thus, from the Nernst-Planck and Poisson equations one can obtain the following

system,
1

r2

∂

∂r

(
r2∂c

±

∂r
± r2c±

∂Φ

∂r

)
= 0

ν2

r2

[
∂

∂r

(
r2∂Φ

∂r

)]
= c− − c+

Since it was assumed that the influence of spherical geometry is insignificant within the

space charge region (where r ' 1), then one can obtain,

∂

∂r

(
∂c±

∂r
± c±∂Φ

∂r

)
= 0
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ν2

[
∂

∂r

(
∂Φ

∂r

)]
= c− − c+

Denote
∂Φ

∂r
= E, then,

∂

∂r

(
c+E +

∂c+

∂r

)
= 0

∂

∂r

(
c−E − ∂c−

∂r

)
= 0

ν2∂E

∂r
= c− − c+ (5.1)

From the boundary condition (2.32),

c−E − ∂c−

∂r
= 0 (5.2)

And from condition (2.33),

c+E +
∂c+

∂r
= j (5.3)

Adding and subtracting equations (5.2) and (5.3), one can get,

(c+ + c−)E +
∂

∂r
(c+ − c−) = j (5.4)

(c+ − c−)E +
∂

∂r
(c+ + c−) = j (5.5)

and make the following substitution for the equations (5.2) and (5.3),

c+ − c− = −ν2∂E

∂r
(5.6)

Introducing a new variable y = r − 1, then
∂

∂r
=

∂

∂y
and using Eq. (5.1), Eq. (5.4) can

be written as,

(c+ + c−)E − ν2∂
2E

∂y2
= j (5.7)

and Eq. (5.7) leads to,

− ν2∂E

∂y
E +

d

dy
(c+ + c−) = j or j =

d

dy

(
−1

2
ν2E2 + c+ + c−

)
(5.8)

From the equation (5.8) by means of integration one can obtain,

− 1

2
ν2E2 + c+ + c− = j(y − ym) (5.9)
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where ym is an unknown integration constant. By substituting (5.9) into (5.7),(
j(y − ym) +

1

2
ν2E2

)
E − ν2∂

2E

∂y2
= j

ν2∂
2E

∂y2
−
(
j(y − ym) +

1

2
ν2E2

)
E + j = 0

or

ν2∂
2E

∂y2
+

(
j(ym − y)− 1

2
ν2E2

)
E + j = 0 (5.10)

Since ν → 0 and
d

dy
= O(1), the first term in (5.10) has a higher order of smallness.

At the same time, the term
1

2
ν2E3 cannot be neglected, because E > O(ln 1

ν
) [43], which

means that E → ∞. It follows from (5.8) that j = O(1) and j can be neglected with

respect to the second term in the equation (5.10). As a result, one can obtain the cubic

algebraic equation in E, (
j(ym − y)− 1

2
ν2E2

)
E = 0, (5.11)

which was previously obtained and analyzed for the case of flat membranes by Urtenov

and Babeshko [67].

The first trivial solution E1 = 0 makes sense only if y > ym. When solving the

equation,

−1

2
ν2E2 + j(ym − y) = 0

we get two more roots: E2 and E3

E2 = −1

ν

√
2j(ym − y), E3 =

1

ν

√
2j(ym − y)

E2 < 0 has no physical meaning.E =
1

ν

√
2j(ym − y), 0 < y < ym

E = 0, y ≥ ym

(5.12)

It follows from the system above that the integration constant ym is the boundary of

the SCR. From the solution in SCR, i.e. at 0 < y < ym,

ν
dΦ

dy
=
√

2
√
j(ym − y)
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E
b) 

E

yy y
m

a) 

Figure 5.3 – Schematic diagrams of bifurcation. (a) The solution of the equation (5.11)
has an imperfect pitchfork bifurcation, which is structurally unstable [68] (b)
In the solution of the equation (5.10) for small but finite values of ν, this
type of bifurcation is destroyed. The solid line corresponds to the solution
that has physical meaning.

we can find Φ by integrating it in the limits from zero to y,

ν

y∫
0

dΦ

dy
dy =

√
2

y∫
0

√
j(ym − y)dy

ν∆Φ = ν(Φ(y)− Φ(0)︸︷︷︸
=0

) = − 2
√

2

3j
(j(ym − y))3/2

∣∣∣∣∣
y

0

= −2
√

2

3j
(j(ym − y))3/2 +

2
√

2

3j
(jym)3/2

∆Φ =
2
√

2

3jν
(jym)3/2 − 2

√
2

3jν
(j(ym − y))3/2 (5.13)

At the SCR boundary (y = ym), the equation above turns into,

∆Φ|y=ym
=

2
√

2

3ν
j1/2y3/2

m = ∆Φm (5.14)

and we can express the thickness of SCR,

y3
m =

9

8
ν2 ∆Φ2

m

j
(5.15)

Here ∆Φm = Φ(ym)− Φ(0) is the potential drop in the SCR.

It is possible to find ρ and K (or c+ and c−). From (5.1) ρ = −ν2 ∂E
∂y

, and from (5.9)

K = j(y − ym) + 1
2
ν2E2. Thus, from Eq. (5.12),

ρ = −ν2 ∂

∂y

(
1

ν

√
2j(ym − y)

)
= −ν

√
2
∂

∂y

(
(jym − jy)1/2

)
=

= −ν
√

2
1

2
(−j)(jym − jy)−1/2 =

ν
√
j√

2
(ym − y)−1/2
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K = j(y − ym) +
1

2
ν2 1

ν2
(2j(ym − y)) = 0

So finally, c
+ − c− =

ν
√
j√

2
(ym − y)−1/2

c+ + c− = 0

From the system above we can express the concentrations,

c+ =
ν
√
j

2
√

2
(ym − y)−1/2 and c− = −ν

√
j

2
√

2
(ym − y)−1/2

Finally, we present the solution in the space charge region,

∆Φ =
2
√

2

3jν
(jym)3/2 − 2

√
2

3jν
(j(ym − y))3/2

ρ =
ν
√
j√

2
(ym − y)−1/2 and K ≈ 0

5.1.2 Hydrodynamic part

Let us consider the Stokes equation in spherical coordinates in accordance with the fol-

lowing assumptions:
∂

∂θ
� ∂

∂r
and V � U (see Fig. 2.3). Then,

−1

r

∂P

∂θ
+
∂2U

∂r2
= ρ

1

r

κ
ν2

∂Φ

∂θ

−∂P
∂r

= ρ
1

r

κ
ν2

∂Φ

∂r

Using the following relations: X = π − θ, ∂
∂X

= − ∂
∂θ

, y = r − 1,, ∂
∂r

= ∂
∂y

, ρ = −ν2 ∂E
∂y

and r ≈ 1 inside EDL, one can obtain,

− ∂P
∂X

=
∂2U

∂y2
− κ

∂E

∂y

∂Φ

∂X

− ∂P

∂y
= κ

∂E

∂y
E (5.16)

From the second equation (5.16) it follows that,

P =

∫
κE

∂E

∂y
dy =

1

2
κ
∫
∂E2

∂y
dy =

1

2
κE2 + c
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Substituting P in the first equation (5.16),

− ∂

∂X

(κ
2
E2 + c

)
=
∂2U

∂y2
− κ

∂E

∂y

∂Φ

∂X

−κ
2

∂E2

∂X
=
∂2U

∂y2
− κ

∂E

∂y

∂Φ

∂X

1

κ
∂2U

∂y2
=
∂E

∂y

∂Φ

∂X
− 1

2

∂E2

∂X

To find the velocity, the above equations is integrated twice,

1

κ

ym(X)∫
y

∂2U

∂y2
dy =

ym(X)∫
y

∂E

∂y

∂Φ

∂X
dy − 1

2

ym(X)∫
y

∂E2

∂X
dy (5.17)

After substituting expressions for Φ and E,

Φ =
1

ν

2
√

2

3j

[
(jym)3/2 − (j(ym − y))3/2

]
, E =

√
2

ν

√
j(ym − y)

When calculating the solution for electrostatics, j and ym are constants because
∂

∂r
>>

∂

∂θ
. These quantities are slowly varying functions of the angle θ. In the analysis of

electrostatics, this did not affect the solution, while for hydrodynamics this becomes

important since otherwise U ≡ 0.

The equation (5.17) will turn into,

1

κ

ym(X)∫
y

∂2U

∂y2
dy =

4

3ν2

ym(X)∫
y

∂

∂y
(
√
j(ym − y))

∂

∂X

(
(jym)3/2 − (j(ym − y))3/2

)
dy−

− 1

ν2

ym(X)∫
y

∂

∂X
(j(ym − y))dy (5.18)

Let us consider each integral separately,

1

κ

ym(X)∫
y

∂2U

∂y2
dy =

1

κ

∂U∂y (ym)︸ ︷︷ ︸
=0

−∂U
∂y

(y)

 = − 1

κ
∂U

∂y



74

− 1

κ

ym(X)∫
0

∂U

∂y
dy = − 1

κ
(U(ym)− U(0)︸︷︷︸

=0

) = − 1

κ
Um

After calculating the right-hand side of Eq. (5.18), we obtain a formula similar to that

obtained for a flat membrane 0 < y < ym(X),

Um =
κ
8

∆Φ2 1

j

∂j

∂X
+

κ
2

∂

∂X
∆Φ2 (5.19)

In contrast to the case of a flat membrane, for the spherical particle, it is also necessary

to take into account the component V of the velocity, which can be obtained from the

continuity equation,
∂

∂y
(V sinX)− ∂

∂X
(U sinX) = 0

ym(X)∫
0

∂

∂y
(V sinX)dy −

ym(X)∫
0

∂

∂X
(U sinX)dy = 0

V (ym(X)) sinX =
∂

∂X

 ym(X)∫
0

U(y) sinXdy

−
− U(ym(x)) sinX

∂

∂X
ym(X)

We use the boundary conditions U(0) = V (0) = 0 and V (ym) = Vm, U(ym) = Um, then,

Vm sinX =
∂

∂X
(U(ym(X)) sinX ym)− Um sinX

∂ym
∂X

or

Vm + Um
∂ym
∂X

=
1

sinX

∂

∂X
(Um sinX ym) (5.20)

substitute Um from Eq. (5.19), ∆Φ and ym from Eq. (5.14) – (5.15),

Um =
κ
8

∆Φ2 1

j

∂j

∂X
+

κ
2

∂

∂X
∆Φ2, y3

m =
9

8
ν2 ∆Φ2

j
∆Φ2 =

8

9

1

ν2
y3
mj

Um =
κ
8

8

9

1

ν2
y3
m j

1

j

∂j

∂X
+

κ
2

∂

∂X

(
8

9

1

ν2
y3
m j

)
=

κ
ν2

(
1

9
y3
m

∂j

∂X
+

4

9
j
∂y3

m

∂X

)
Finally, the electroosmotic slip velocity,

Um =
κ
ν2

(
1

9
y3
m

∂j

∂X
+

4

3
y2
m j

∂ym
∂X

)
(5.21)



75

Substituting (5.21) into (5.20), one can obtain the normal velocity component on the edge

of SCR,

Vm = −Um
∂ym
∂X

+
κ
ν2

1

sin θ

∂

∂X

[
sinX

(
1

9
y4
m

∂j

∂X
+

4

3
y3
m j

∂ym
∂X

)]
(5.22)

5.2 Self-similar solution in diffusion layer

A thin electrically neutral diffusion layer is located behind the space charge zone for

y > ym and has a characteristic thickness δ(X). In this layer, occurs the convection of the

concentration of salt K along the particle surface with an electroosmotic velocity and at

the same time K diffuses in this layer from K ≈ 0 in the depleted region to the equilibrium

value K = 2 in the outer region of the electrolyte. Adding the equations (2.26) – (2.27)

and assuming that the thickness of the diffusion layer is small compared to the radius of

the particle, one can obtain the convection-diffusion equation in the approximation of the

boundary layer,
∂K

∂t
+ U

∂K

∂X
+ V

∂K

∂y
=
∂2K

∂y2
. (5.23)

At y = ym at the boundary of the desalination zone, the salt concentration is assumed to

be zero, and the ion flux normal to the particle surface and determined by diffusion is,

y = ym : K = 0,
∂K

∂y
= j. (5.24)

At the outer boundary of the diffusion layer, the salt concentration tends to an equilibrium

value,

y − ym � δ : K = 2. (5.25)

In a thin diffusion layer, the tangential velocity can be set equal to a constant with

respect to y, equal to the electroosmotic slip velocity, U = Um(X), but it varies along the

surface of the particle. To find the normal component of the velocity V , one needs to use

the equation of mass balance (2.31),

∂

∂y

(
V sinX

)
+

∂

∂X

(
U sinX

)
= 0. (5.26)

Integrating (5.26), one can get,∫ y

ym(X,t)

∂

∂y

(
V sinX

)
dy −

∫ y

ym(X,t)

∂

∂X

(
U sinX

)
dy = 0, (5.27)
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which implies the relation for V ,

V sinX = Vm sinX + η
∂

∂X

(
Um sinX

)
, (5.28)

where η ≡ y− ym, and the velocity component V is formed by the electroosmotic part of

Vm (in fact, this is the intake of liquid from the space charge region) and by the change

in the longitudinal component Um along the particle surface.

The equation (5.23) after substituting (5.28) turns into a linear partial differential

equation for K,

∂K

∂t
sinX − Um sinX

∂K

∂X
+ η

∂

∂X

(
Um sinX

)∂K
∂η

+ Vm sinX
∂K

∂η
=
∂2K

∂η2
sinX, (5.29)

where Um and Vm are determined by the relations (5.21) and (5.22), with the boundary

conditions,

η = 0 : K = 0,
∂K

∂η
= j; η/δ →∞ : K = 2. (5.30)

The necessity for a solution (5.29) – (5.30) even for the stationary case, ∂/∂t = 0,

would greatly complicate the model if the problem did not have an analytic self-similar

solution. One can look for a solution to the equation (5.29) in the following self-similar

form,

K = K(Y ) where Y =
η − b(X, t)
δ(X, t)

and
d2K

dY 2
+ 2Y

dK

dY
= 0, (5.31)

where b(X, t) is an arbitrary self-similar function. After substituting (5.31) into (5.29)

and separating b-terms and δ-terms, one can obtain a one-dimensional partial differential

equation,
∂δ

∂t
sinX − ∂

∂X

(
um δ sinX

)
=

2

δ
sinX, (5.32)

∂b

∂t
sinX − ∂

∂X

(
um b sinX

)
= Wm sinX. (5.33)

The third algebraic equation can be obtained from the solution of the ODE (5.31), K =

const1erf(Y ) + const2 by substituting the boundary condition, (5.30) in (5.31),

j δ =
4√
π

exp (−b2/δ2)

1− erf(−b/δ)
(5.34)

Let us stretch the unknowns so that they have O(1) in a new form,

um = E2
∞Um, vm = E2

∞Vm, ψ = E2
∞Ψ, u∞ = E2

∞U∞,

∆φ = E∞F, φ = E∞Φ, j = E∞J, ∂/∂t = E2
∞ ∂/∂T, (5.35)
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b = ν2/3E1/3
∞ B, ym = ν2/3E1/3

∞ Ym, δ = E−1
∞ ∆.

The system (5.32) – (5.34) after substituting the expressions (5.21) and (5.22) for um

and vm turns to the following system,

∂∆

∂T
sinX − κ

∂

∂X

(F 2 ∆

8 J

∂J

∂X
+

∆

2

∂F 2

∂X

)
=

2

∆
sinX, (5.36)

∂B

∂T
sinX − κ

∂

∂X

[(F 2

8J

∂J

∂X
+

1

2

∂F 2

∂X

)
B sinX

]
=

= κ
38/3

16

∂

∂X

[( 7

20

F 8/3

J4/3

∂J

∂X
+
J

5

∂

∂X

(F 8/3

J4/3

))
sinX

]
(5.37)

−32/3

2
sinX

∂

∂T

(F 2/3

J1/3

)
,

J ∆ =
4√
π

exp (−χ2B2/∆2)

1− erf(−χB/∆)
, (5.38)

with respect to four unknown functions J , F , ∆ and B. The boundary conditions for the

unknown are the conditions of symmetry at the pole,

∂∆

∂X
= 0,

∂F

∂X
= 0,

∂J

∂X
= 0,

∂B

∂X
= 0 at X = 0. (5.39)

At X → X0, which corresponds to θ → θ0, the electric current J → 0 by definition. After

a brief analysis of the equation (5.38), it can be shown that ∆→∞ for X → X0, because

the right side of the equation (5.38) is always positive. Thus, the left side of the equation

cannot tend to zero for X → X0, therefore ∆ should tend to infinity. In turn, this means

the separation of the diffusion boundary layer. The separation of the boundary layer of

this kind was originally predicted by Levich [64] and is shown in Fig. 4.5 (a) and 5.6 (a)

obtained by direct numerical simulation. Thus, theoretical justification now exists for the

problem of separation of the diffusion boundary layer.

Two small parameters of the problem – ν and A−1
∞ – can be combined into one pa-

rameter χ = O(1),

χ = ν2/3E4/3
∞ =

O(ym)

O(δ)
.

Note that χ is the ratio of the characteristic length of the space charge region, ν2/3E
1/3
∞

and the characteristic length of the diffusion layer, E−1
∞ (see stretching parameters in the

equations (5.35)).

This ratio χ is estimated in table 1 with λ̃D = 10 nm, ã = 25 µm – 500 nm and

E∞ = 10–103.
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ã E∞ ν χ

25µm 10 4× 10−4 0.117

25µm 1000 4× 10−4 54.3

500µm 10 2× 10−5 0.0159

500µm 1000 2× 10−5 7.368

Table 5.1 – Typical parameter values.

5.3 Solution in the bulk of electrolyte

The derived system (5.36) – (5.38) of the three equations has four unknown variables: J ,

F , ∆ and B. The fourth equation will be deduced from the solution in the outer region

1 < r <∞. In this region, K = 2 and ρ = 0, so the Poisson equation,

ν2∇2Φ = c− − c+

turns into the Laplace equation (since c+ = c−) with two boundary conditions,

∇2ϕ = 0 (5.40)

with two boundary conditions. Here ϕ = Φ/E∞. The first boundary condition for r = 1

should be taken from the solution for the inner region (inside the space charge region).

The electric potential ϕ in the inner region varies from ϕ = 0 on the particle surface to

ϕ = F at the boundary of the diffusion layer. This implies the boundary condition,

r = 1 : ϕ = F (5.41)

The far field boundary condition,

r →∞ :
∂Φ

∂r
→ −E∞ cos θ

turns into,

r →∞ :
∂(ϕE∞)

∂r
→ −E∞ cos θ ⇒ ∂ϕ

∂r
→ − cos θ
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Solution of the Laplace equation in spherical coordinates,

1

r2

[
∂

∂r

(
r2∂ϕ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)]
= 0 (5.42)

can be found by the separation of variables,

ϕ = −r cos θ +

π∫
0

(F (s) + cos s)
∞∑
k=0

2k + 1

2rk+1
Pk(cos s)Pk(cos θ) sin sds (5.43)

where Pk(cos θ) are Legendre’s polynomials.

The boundary condition follows from,

c−
∂ϕ

∂r
− ∂c−

∂r
= 0

c+∂ϕ

∂r
+
∂c+

∂r
= j

Add the last two equations,

K
∂ϕ

∂r
+
∂ρ

∂r
= j (5.44)

The relation for ion flux (5.44) is need to be used to get the dependency between J

and F . In the electroneutral region of the electrolyte K = 2 and ρ = 0, then,

r = 1 : J = 2
∂ϕ

∂r
(5.45)

The dependency between J and F can be obtained if Eq. (5.43) substitute into Eq. (5.45),

J = −2 cos θ −
∫ π

0

(F (s) + cos s)
∞∑
k=0

(2k + 1)(k + 1)Pk(cos s)Pk(cos θ) sin s ds. (5.46)

r = 1 : J = 2
∂ϕ

∂r
. (5.47)

The system of equations (5.36) – (5.38) with boundary conditions (5.39) is closed with

respect to the unknown functions J , F , ∆ and B.

5.3.1 Electrophoretic velocity

Consider the hydrodynamic part at ρ = 0 and K = 2. Now one can solve the flow problem,

consisting of homogeneous Stokes equations taken for the equation of the stream function
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Ψ (see [60]),

D2(D2Ψ) = 0, D2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
, (5.48)

together with the slip condition for r = 1, which is derived from,

r = 1 : U = V = 0

U at ym is equal to,

Um = − 1

r sin θ

∂Ψ

∂r
⇒ ∂Ψ

∂r
= −Um sin θ, r ≈ 1 in SCR

r = 1 : Ψ = 0

r = 1 : Ψ = 0,
∂Ψ

∂r
= −Um sin θ, (5.49)

and the condition for the velocity at infinity, which is obtained from,

r →∞ : u→ −U∞ sin θ; v → U∞ cos θ.

u = − 1

r sin θ

∂Ψ

∂r
= −U∞ sin θ ⇒ ∂Ψ

∂r
= U∞ r sin2 θ

v =
1

r2 sin θ

∂Ψ

∂θ
= U∞ cos θ ⇒ ∂Ψ

∂θ
= r2 U∞ cos θ sin θ

r →∞ :
∂Ψ

∂θ
= r2U∞ sin θ cos θ,

∂Ψ

∂r
= rU∞ sin2 θ. (5.50)

Since the problem (5.48) – (5.50) is linear, it is convenient to present the solution as

a superposition of two solutions, Ψ = Ψ∞ + Ψ1, where Ψ∞ is a solution with zero slip

velocity, Um = 0, and Ψ1 is a solution with zero velocity for r → ∞, U∞ = 0. The first

solution has a simple form,

Ψ∞ = −U∞
(
r2 − 3

2
r +

1

2r

)
sin2 θ

2
. (5.51)

The second solution can be represented as,

Ψ1 = −(r2 − 1)

∫ π

0

Um(s)
∞∑
k=1

k(k + 1)(k + 2)

4rk
Qk(cos s)Qk(cos θ)ds, (5.52)

where Qk(cos θ) are the Gegenbauer’s polynomials. The distribution of Um is described

by the equation (5.21).

The value of U∞ is not determined a priori. It is determined from the condition of
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the absence of forces per particle (or balance of forces), taking into account the internal

decomposition. Despite its simplicity, this flow problem is technically complex, and one

can deform the integration surface to the outer side of the space charge region, where

ρ = 0. For a particle that is not affected by volume forces, it is convenient to apply Leel’s

theorem instead of this restriction (see [60], formula 4-180): to obtain the condition for

the absence of forces acting on the particle, the stream function Ψ = Ψ∞ + Ψ1 must be

orthogonal to the first Gegenbauer polynomial Q1 = cos θ. In our case, the consequent of

this theorem finally lead to the following dependence,

U∞ = −1

2

∫ π

0

Um(θ) sin2 θdθ, (5.53)

which for fixed κ is a function of only the variable χ.
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5.4 Numerical results for moderate and strong elec-

tric fields

The electrophoresis velocity with increasing E∞ begins to deviate very much from the

linear behavior shown in the previous chapter.

Let us first present the results for the salt concentration K (or electrical conductivity).

Fig. 5.4 shows the distribution of K at E∞ = 5 (moderate electric field). In a thin EDL,

K(r) decays exponentially, but its change slows down outside the EDL.
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Figure 5.4 – (a) The electric conductivity K(r, θ) for the moderate electric field strength
E∞ = 5. The dashed line stands for the outer edge of the diffusion layer. (b)
Cross-section K(r) at fixed angles θ = 0◦ and θ = 180◦. The behavior inside
the EDL (the depleted and enriched regions correspondingly) is shown in the
insets.

As shown by the theory of Rubinstein-Zaltzman [42] for flat membranes, when E∞

increases, the effect of EDL becomes insignificant, and the role of electric current (ion flux

through the particle surface) is the main one in the formation of a special electric layer –

the space charge region in Rubinstein’s terminology [32].

On the left side of the microparticle in the region of the incoming ion flux, an elec-

trically neutral desalination zone with K ≈ 0 is formed. In this region, K varies from

K ≈ 0 near the particle surface to K = 2 at the outer boundary of the diffusion layer

(denoted by the dashed curve in Fig. 5.4(a)). The diffusion layer increases downstream

and at θ ≈ θ0 its separation occurs, as predicted by the analytical model at E∞ → ∞
(such kind of separation was first predicted by Levich [64]).

On the right side of the particle in the region of the outgoing ion flux, near θ = 0◦

a region of high salt concentration K is formed. Note that if the distance y = r − 1

from the particle surface increases, then the salt concentration tends to the equilibrium

value K = 2 in the bulk. Moreover, on the right side of the particle, this tendency
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to the equilibrium value is much sluggish than on the left side (see Fig. 5.4(b)). The

decrease in salt concentration in the depleted region is compensated by the increase of

salt concentration in the enriched electrolyte region, so the expression (4.102) is still valid.
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Figure 5.5 – (a) The electric conductivity K(r, θ) for E∞ = 10. The dashed line stands for
the outer edge of the diffusion layer. The values have been clipped from the
actual maximum down to K = 5 in order to achieve contrast with the diffu-
sion layer. (b) Cross-section of K(r) at fixed angles θ = 0◦ and θ = 180◦. The
behavior inside the EDL (the depleted and enriched regions correspondingly)
is shown in the insets.
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Figure 5.6 – (a) The electric conductivity K(r, θ) for E∞ = 20. The dashed line stands for
the outer edge of the diffusion layer. The values have been clipped from the
actual maximum down to K = 5 in order to achieve contrast with the diffu-
sion layer. (b) Cross-section of K(r) at fixed angles θ = 0◦ and θ = 180◦.The
behavior inside the EDL (the depleted and enriched regions correspondingly)
is shown in the insets.

As E∞ increases, both regions change, but they do it differently. The thickness of the

diffusion boundary layer at θ = 0◦ in a depleted region of the electrolyte increases with

a rise of E∞ (see the dashed lines in Fig. 5.4(a), 5.5(a) and 5.6(a)). The outer edge of
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the diffusion layer for E∞ = 5 at θ = 180◦ is located at r ≈ 1.5, then for E∞ = 10 it is at

r ≈ 1.2 and for E∞ = 20 at about r = 1.1 (see inserts in Fig. 5.4(b), 5.5(b) and 5.6(b)).

The salt concentration in the electrically neutral region to the right of the particle

increases rapidly with increasing E∞. Moreover, the shape of this region is also strongly

deformed from the cloud-like structure at E∞ ≤ 5. As E∞ increases to a gradually

elongated structure resembling to a jet (E∞ ∼ 20), in which the salt is pushed out of the

particle at high velocity.

The next important function is the charge density ρ(r, θ) = c+−c−. It is the density of

the charge under the action of the electric field that brings the liquid into hydrodynamic

motion. At moderate values of the electric field strength, E∞ = 5 the positive charge

region is formed to the left of the particle in the region of the incoming ion flow θ0 < 180◦.

The angle θ0 corresponds to the limit point when the SCR disappears with an electric

current j = 0 (see Eq. (2.34)). The numerical estimation of this angle is θ0 ≈ 76◦. At

moderate and large values of E∞, the non-equilibrium effects become dominant and are

responsible for the formation of space charge. The space charge consists of a thin double

layer (EDL) and the space charge region itself with a maximum located far from the

particle surface (see Fig. 5.7(b)).
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Figure 5.7 – (a) The charge density ρ(r, θ) for the moderate electric field strength E∞ = 5.
(b) Cross-section of ρ(r) at fixed angles θ = 0◦ and θ = 180◦ near the particle
surface.

The formation of the SCR for limiting currents is a well-known phenomenon, which

was theoretically predicted by Rubinstein and Shtilman [32] (see also [42] and [43]). Note

that the total charge in the SCR is much higher than in the EDL. The SCR coincides with

the region of the depleted electrolyte solution, where K ≈ 0. Far from the SCR ρ→ 0 and

the electrolyte solution becomes electrically neutral. To the right of the particle surface,

in the region 0◦ < θ < θ0, where cations go out of the particle, the EDL with a negative
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charge density is formed. There is no SCR in this region (see Fig. 5.7(b)).
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Figure 5.8 – (a) The charge density ρ(r, θ) for E∞ = 10. (b) Cross-section of ρ(r) at fixed
angles θ = 0◦ and θ = 180◦ near the particle surface.

With the increase of the external electric field strength E∞, the charge density value

inside the SCR also increases (see Fig. 5.8 and Fig. 5.9). The point of local charge density

maximum ρ at rmax = ymax + 1 moves farther and farther from the particle surface and

the maximum value itself increases (see Fig. 5.7(b), 5.8(b), 5.9(b)). At the same time,

the ion outflow area narrows: for E∞ = 5 the critical angle is θ0 = 76◦, and for E∞ = 20

this angle is θ0 = 59◦.
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Figure 5.9 – (a) The charge density ρ(r, θ) for E∞ = 20. (b) Cross-section of ρ(r) at fixed
angles θ = 0◦ and θ = 180◦ near the particle surface.

Let us proceed to consider the flow pattern near the surface of an ion-selective particle.

The stream function for an axisymmetric flow is defined as,

u = − 1

sin θ

1

r

∂ψ

∂r
, v =

1

sin θ

1

r2

∂ψ

∂θ
.
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Figure 5.10 – Theoretical stream function distribution for (a) E∞ = 5, (b) E∞ = 10,
(c) E∞ = 20. (d) The picture of electrokinetic flow from [69] around a
1-mm cation selective particle at Ẽ∞ = 100 V/cm, which corresponds to
dimensionless E∞ = 200 and Debye number ν ≈ 8.68 · 10−5.

The distribution of the stream function ψ(r, θ) for E∞ = 5, 10 and 20 is shown in

Fig. 5.10 (a), (b) and (c). An interesting phenomenon can be noted: large vortices form

on the right side of the particle. These vortices were experimentally discovered by Dukhin

et al. [69] and called the Dukhin-Mischuk vortices. They are formed at a sufficiently high

electric field strength. The physical reason for their occurrence is quite simple: a positive

electric charge in the SCR in combination with the tangential component of the electric

field to the particle surface creates the Coulomb force, which, in turn, forces the charged

liquid to move near the particle (electroosmotic velocity). The tangential component

of the velocity decreases (the fluid flow slows down), and the normal component of the

velocity field increases due to the conservation of mass (Eq. (2.31)). The consequences of

this increase and decrease in the components of the velocity field lead to the formation of

the vortex.

The results of the numerical simulation presented in Fig. 5.10(a)-(c) show good qual-

itative agreement regarding the appearance of the Dukhin-Mischuk vortices.
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When the applied electric field is strong enough, this creates a more sophisticated

electrokinetic flow mechanism called ”electroosmosis of the second kind” [38]. Dukhin in

his work [38] suggested that the well-known Smoluchowski slip formula can be applied

to electroosmosis of the second kind under extreme conditions if the zeta potential is

taken into account as the voltage drop inside the SCR. Using these heuristic arguments,

Dukhin obtained [38] an electrophoretic velocity, which is proportional to the square of

the applied electric field. This analysis has been improved in [39]. In another recent work,

asymptotic methods were used to obtain approximate current-voltage characteristics of a

one-dimensional model of the problem. Using these characteristics to describe the transfer

process in the cation-selective particle, the authors obtained a more complex model for

solving the problem of electrophoresis. In their recent work, Ben et al. [70] have found that

U∞ ∼ E
2/3
∞ , in the high Peclet number limit. Both of these predictions of the velocity

proportionality degree with the applied electric field strength are in some qualitative

agreement with the existing experimental data for different modes [38, 71]. There is

another work by Rubinstein and Zaltzman [42], in which they show that U∞ ∼ E
1/3
∞ .

5.4.1 Electrokinetic instability and the transition to chaotic regime

When the external electric field becomes greater than a certain critical value E∞ >

E∗∞ (E∗∞ ≈ 27 for ν = 0.0087), the numerical solution of the non-stationary problem

effectively time dependent as t → ∞. Small perturbations superimposed on the initial

fields, simulating external noise, grow and the solution is changed to some non-stationary

solution: the electrokinetic instability manifests itself. In flat membranes, this instability

was discovered by Rubinstein and Zaltzman [32, 42]. For a cation-exchange membrane,

this instability manifests itself in the region of incoming cation flux, where ions enter the

particle. The opposite side of the particle surface is stable.

Three factors make the case of the spherical particle more complicated than the case of

a flat membrane: 1) the stationary solution is not one-dimensional; 2) convection of salt

and liquid takes place; 3) both surfaces corresponding to the incoming and outgoing ion

fluxes are parts of the same surface and the place of their separation θ = θ0 is a singular

point (see the analytical solution).

Instability is possible only in the region of the SCR and the adjacent diffusion layer (see

the results of linear stability analysis in [62]). The numerical solution shows that at low

supercriticality E∞ > E∗∞ in the vicinity of the angle θ = 180◦ the flow loses stability and

small sinusoidal disturbances propagate in the direction of smaller angles and disappear

at θ ≈ θ0. The flow to the right of the particle for these values of parameters remains

stable [63].
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(a) (б)(b)

Figure 5.11 – (a) The charge density ρ = c+−c− distribution and (b) electric conductivity
K = c++c− distribution at E∞ = 30. I and II – regions of the standing and
travelling waves, respectively. Arrows show the direction of propagation.

Fig. 5.11 shows the charge density ρ and the salt concentration K far from the instabil-

ity threshold for a strongly non-linear regime, E∞ = 30. Periodic oscillations of the charge

density and salt concentration arise in the region I (see Fig. 5.11). These oscillations are

perpendicular to the surface of the microparticle and are quite strong. They completely

destroy the classical structure of the SCR, the depletion region of the electrolyte, and the

diffusion layer, but these oscillations do not affect the EDL. They can be interpreted as

highly non-linear standing waves. At the boundaries of the region I, as well as in the

region II, these standing waves cause non-linear traveling waves. Fig. 5.11(a) shows that

the propagating perturbations of the charge density ρ take the form of spikes, as it was

first described in the papers [44, 45, 46, 72] devoted to the study of flat membranes. The

boundary between the SCR and the diffusion region is quite sharp. The salt concentration

K of traveling waves forms ”cloud-like” structures.

Fig. 5.12 compares the small neighbourhood of region II of the SCR shown in Fig. 5.11(a)

with the ρ distribution calculated numerically for a flat membrane (see [45, 72]).

A striking similarity of space charge density distributions is seen: inside the spikes, the

charge density ρ is lowered (the spikes are ”empty” of charge). Spike-like structures are

connected by thin areas with a large space charge. The work of Shelistov et al. [73] showed

that the opening angle of the spike does not depend on the parameters of the problem and

is about θs ≈ 120◦. This estimation is applicable not only for flat membranes but also for

the more complex case of a pleated membrane (see [74], Fig. 4). In this case, the spike-like

coherent structures are not stationary: they propagate in the direction of smaller angles,

and, therefore, they must be distorted by convection. Nevertheless, the opening angle of

θs is close to 120◦, this angle did not change in other numerical calculations with different
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~ 120˚

Figure 5.12 – (a) Blow-up of region II of Fig. 5.11(a). (b) Spikes for a flat membrane
[45, 72]. The normal to the membrane coordinate is strongly compressed in
comparison to the direction along the membrane.

values of E∞.

In the region I in Fig. 5.11, all unknowns change periodically with time, forming a

standing wave near the pole of the particle. The charge density ρ and the salt concentra-

tion K at θ = 180◦ as a function of the radius r for different times are shown in Fig. 5.13.

Without loss of generality, the initial time can be considered equal to zero, t = 0.

At t = 0, the space charge (see Fig. 5.13(a)) with a large amplitude is located near

the interface at r = 1 and moves in the direction of increasing r, i.e. away from the

surface of the particle. At t = 0.005, the charge propagates in space, it is located far

from the interface and its amplitude decreases significantly. At t = 0.03 the charge with

a small amplitude comes back to the particle surface, and at t = 0.07 it returns to the

same position and restores its profile and value. This time is, in fact, a period, since the

process is repeated periodically.

At t = 0, the salt concentration (see Fig. 5.13(b)) has a small flat region with K ≈ 0

(depletion region) and a flat region of electrically neutral solution with K = 2. Between

these two regions exists an intermediate region in which forms a frontal concentration

wave. The frontal concentration wave moves away from the surface of the microparticle

towards an increase in r and the depleted region of the electrolyte expands. The concen-

tration in EDL does not change during this process. This kind of concentration wave is

similar to the shock waves, which was found and described by Bazant [75]. At t = 0.03,
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Figure 5.13 – (a) Cross-sections of ρ(r) at θ = 180◦ at different time instants. (b) Cross-
sections of K(r) at θ = 180◦ at different time instants. The wave is bouncing
back from the outer edge of the diffusion layer, which thickness defined by
δ.

the concentration shock wave unfolds and eventually returns to the same position and

restores its profile and value. This process is also repeated periodically.

If the particle radius changes from 25 µm to 250 µm, then for an aqueous solution

NaCl the dimensional period changes from 0.05 sec. up to 5 sec. (the corresponding

typical oscillation frequency ranges from f = 20 Hz to f = 0.2 Hz).

The velocity field around the particle completes the picture. An image of the stream

function for an unstable regime is shown in Fig. 5.14. A standing wave at θ = 180◦

creates Rubinstein-Saltzman microvortices in the region I, which move towards a decrease

in the angle θ. As for the flat membrane [44, 72], these microvortices are located in the

diffusion layer. When the angle θ = θ0 is reached, the Rubinstein-Zaltzman microvortices

ultimately merge with the Dukhin-Mischuk (region II) vortices and completely disappear.

Microvortices in region I cannot pass through the Dukhin-Mischuk vortices (II), and

therefore the region of the outgoing ion flux 0 < θ < θ0 is completely motionless.

The dependence of the electric current j created by the cation flow through the particle

surface and normalized to its maximum jmax on the angle θ is shown in Fig. 5.15 for various
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Figure 5.14 – Stream function distribution for the unstable regime at E∞ = 30. Here
I corresponds to the Rubinstein-Zaltzman micro-vortices and II stands
for the Dukhin-Mishchuk vortices. The arrows show the direction of the
Rubinstein-Zaltzman micro-vortices propagation.

values of the electric field strength E∞.

The area of the incoming ion flux at E∞ = 30 is approximately twice as large as the

area of the outgoing ion flux, since θ0 ≈ 63◦. This angle is the angle of separation between

the inlet and outlet regions. The maximum absolute value of the current in the area of

the outgoing ion flow is three to five times greater than in the area of the incoming flow.

The depicted profile of the electric current for an unstable regime (at E∞ = 30) is given

for a certain time instant t = t0.

Oscillations associated with electrokinetic instability are clearly visible in the figure.

Instability begins at θ = 180◦ and ends at θ = θ0. Curves of different color gradation

on the inset represent the electric current at successive time moments, t = t0 + ∆t,

∆t = 1.5 · 10−4. The velocity of the propagating wave can be estimated as cv ≈ 250.

The non-linear electrophoresis velocity U∞ depending on the value of E∞ is shown in

Fig. 5.16.

At E∞ = 10 the stationary solution is established and U∞ = 18.72 does not change

in time. At E∞ = 27, the steady-state electrophoresis velocity U∞ is not constant any

more, but it is a function of time with sinusoidal oscillations. The average velocity is

〈U∞〉 = 94.9 and the oscillation amplitude ∆Umax = 0.06. With the increase of E∞ to 28,

the oscillations lose their sinusoidal nature but remain periodic. With a further increase of

E∞ to 29, a period-doubling bifurcation or subharmonic transition occurs. Soon after the

first doubling of the period, regular oscillations give way to chaotic ones at E∞ = 30. It is

reasonable to assume that this transition is described by Feigenbaum’s scenario [76, 77],
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Figure 5.15 – The electric current normalized to its maximum value along the particle
surface 0 < θ < 180◦ for different strengths of the external electric field
E∞. The inset shows the variation of the ion flux j/jmax in time for the
unstable case, which shows a travelling wave. In this inset, all subsequent
curves are for t0 +n∆t, n = 0, 1, 2, 3 (red arrow shows the direction of wave
propagation).

since there is a period-doubling on the velocity graph. Note that, due to the high viscosity,

the oscillations of velocity U∞, both periodic and chaotic, have quite small amplitude, no

more than 5% - 6% of the average velocity. Therefore, their detection in experiments is

difficult.

Another important characteristic of the problem is θ0 – the diffusion layer separation

angle. Fig. 5.17 compares the angle θ0 obtained using the semi-analytical approach with

similar results of numerical simulation.

For the parameter χ > 1.28 the stationary semi-analytical solution is in good agree-

ment with the numerical results. As noted above, the oscillations of unknowns, both

periodic and chaotic, have a small amplitude, which is no more than 6% of the average

value. In Fig. 5.17, the averaged values of 〈θ0〉 = 1/(t2 − t1)
∫ t2
t1
θ0 dt are shown for a

sufficiently long averaging interval.

The discrepancy between the numerical and analytical approaches for χ < 1.28 can
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be explained by the fact that the analytical results go far beyond the limits of numerical

modeling and relate to the regime of overlimiting currents (for a fixed ν and for small

values of χ, the value E∞ will be small, which contradicts the hypothesis E∞ →∞ used

in the analytical approach).

The potential distribution represented by the stretched variable F = ∆φ/E∞ (see

equations (5.35)) is shown in Fig. 5.18 as a function of the variable χ, equal to the ratio

of the SCR and diffusion layer thickness. In fig. 5.18 Fm = F (ym)− F (0).
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Figure 5.18 – The normalized drop of the electrical potential F inside the region 0 <
y < ym as a function of χ at θ = 180◦, F = Fm, at κ = 0, 26. The solid
line stands for the semi-analytical solution and the triangles stand for the
numerical results. The inset shows Fm along the particle surface at χ = 1.

As can be seen from the figures, the analytical and numerical show the identical

behavior: the drop of potential F decreases with increasing χ. The first marker point

of the numerical results, which strongly deviates from the others, corresponds to a low

electric field strength, which does not correspond to analytical considerations. The inset

shows the potential distribution over the angle θ for χ = 1. The potential is zero for

0 < θ < θ0, increases at θ > θ0 and reaches its maximum at θ = 180◦.

The potential drop in the EDL and the SCR (in fact, this is the potential drop in

the electroosmotic slip region between the points Y and Ym) is shown in Fig. 5.18. The

potential drop takes place both inside the EDL and inside the SCR, which is taken into

account in the numerical solution. However, this is not the case for a semi-analytical

solution. The influence of EDL is neglected and only the influence of the SCR and

diffusion layer are taken into account.

The SCR is formed at 0 < Y < Ym and exists in the region of the incoming ion flux. In
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the region of outgoing ion flux, the SCR does not exist. Numerically, the SCR thickness Ym

was calculated at the point of maximum charge density. For non-stationary calculations,

averaging was performed. The comparison of Ym from the numerical calculations and by

using a semi-analytical approach are shown in Fig. 5.19.
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Figure 5.19 – The thickness Ym of the SCR at different points of the particle surface. The
solid line stands for the semi-analytical solution and the triangles joined by
the dashed line stand for the numerical results.

The SCR thickness is equal to zero in the region of outgoing ion flux. The results of

the numerical and analytical approaches are in agreement.

The ion flux J(θ) through the microparticle surface for several values of parameter χ

is shown in Fig. 5.20. One can notice an almost perfect correspondence of the numerical

and semi-analytical solutions with increasing χ for the incoming ion flux region, where

J(θ) > 0. However, for the outgoing ion flux region, there is a significant discrepancy

between the two approaches. This discrepancy is due to the fact that in the course of

the analytical solution the jet with high electrical conductivity, which is formed behind

the particle in the outgoing ion flux region (near angle θ = 0◦), was excluded from

consideration. The existence of such a jet is shown in Fig. 5.6(a) and 5.11(b). Despite

the significant discrepancy in this area, it does not have a significant effect on other

unknowns.

The quantity that is of the greatest practical interest is the electrophoretic velocity

U∞ of the particle (see the stretching of variables (5.35)). Fig. 5.21 shows the dependence
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of the electrophoretic velocity U∞ normalized by the parameter κ vs parameter χ. For

the semi-analytical approach, the dependencies are shown for κ = 0.1 and 1 (curves 1 and

2, respectively). This range of the parameter κ was chosen because it covers the most

commonly used in practice in electrolyte solutions. Fig. 5.21 also shows the dependence

obtained from the numerical solution (curve 3 for κ = 0.26). There is good agreement

between the numerical and analytical approaches, except for the range of small values of

χ. But, as noted above, this is since the assumption of the analytical approach E∞ →∞
is not fulfilled (the interval of small values of χ, according to Dukhin’s terminology,

corresponds to electrophoresis of the first kind).

Based on physical considerations, Dukhin derived the well-known formula for elec-

trophoresis of the second kind [38], which in dimensional form is the following:

u∞ = 2
εaE2

∞
µ

. (5.54)

In our dimensionless formulation, this formula (5.54) becomes the following form:

U∞
κ

= 2. (5.55)
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Chapter 6

Comparison of analytical and

numerical approaches with

experimental data

6.1 Weak and moderate electric field

The theoretical predictions of the electrophoretic velocity U∞ are compared with experi-

mental data (the values of all physical properties at concentration c̃∞ = 0.1 mol/m3 are

given in the table 2.1). The peculiarity is that the formulation (2.26)–(2.35) contains an

unknown empirical constant: the cations concentration p on the particle surface, which

is the membrane material property. This parameter p affects only the solution in a weak

electric field. We are forced to choose this concentration based on experimental data. It

was found that the best value of p for comparison with experiments is p = 15. The particle

velocity U∞ and mobility are presented in Fig. 6.1 as a function of p. The comparison

shows satisfactory agreement with the experimental data [40, 41] for quasi-equilibrium

(E∞ ∼ 1) and weakly non-equilibrium (E∞ > 1) electrokinetic phenomena.

Table 2.1 gives dimensional physical quantities that are closest to the different ex-

perimental values. It should be noted that in experimental works a fairly wide range of

electrolyte concentrations from 0.01 to 1 mol/m3 is taken. However, at such low concen-

trations the electrolyte can still be considered highly diluted and the changes in dynamic

viscosity µ̃ and absolute electrical permittivity ε̃, compared to the water, can be neglected.

The most important quantities – the electrophoretic velocity U∞ and the particle

mobility U∞/E∞ are shown in Fig. 6.2.

For E∞ < 1, the analytical dependence gives a good approximation with the experi-

mental data. The significant discrepancy between the numerical and analytical curves can
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be easily explained: it is obvious that the assumption E∞ → 0, proceeding from which

the analytical solution was obtained, is not satisfied.

In addition to the comparison of the particle velocity itself, we also compared the

electroosmotic slip velocity, which is shown in Fig. 6.3. The numerical distribution of

the electroosmotic slip velocity vs the angle θ is given both for a weak electric field

(E∞ = 0.05) and for the moderate one (E∞ = 3 and 5). For E∞ = 0.05 the numerical

solution practically coincides with the analytical formula (4.79).

In the moderate electric field strength, non-linear and non-equilibrium effects signif-

icantly change the distribution over the angle of charge density ρ inside the EDL. As

shown earlier, in the incoming ion flux region, the charge density remains positive, and
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in the outgoing ion flux region, it becomes negative. As a result, the velocity profile

of electroosmotic slip changes dramatically: the maximum velocity shifts towards large

angles θ and is reached at θ ≈ 135◦. Moreover, for small angles the velocity changes its

direction at E∞ = 3 and 5.

6.2 Strong electric field

The results of direct numerical simulation and semi-analytical analysis for the strong

electric field were compared with experimental data. Experimental data from the works

of Barani et al. [78], Mishchuk and Takhistov [39], Mishchuk and Dukhin [79], Mishchuk

and Barinova [40] were taken and analyzed. In these works, the radius of the cation-

exchange particle, ã, varies in the range from 0.5 to 600 µm; the concentration of the

NaCl solution is 10−4 mol/l. The external electric field strength ranges from 1 V/m to

100 kV/m. In addition, the ion-exchange particles in the experiments were fabricated

from various types of ion-selective materials.

The dimensional slip velocity, ũm, along the particle surface is shown in Fig. 6.4. The

velocity field from the numerical simulation is taken at the point ỹm. The experimental

points are taken from the work of Mishchuk and Takhistov [39]. In the incoming ion flux

region, the maximum velocity is reached at an angle θ ≈ 60◦. The theoretical maximum

velocity at this point, as well as the profile of the dependence, are in good agreement with

the experimental results. In the outgoing ion flux region, the electroosmotic velocity is
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zero and this velocity cannot be measured experimentally.
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The dependence of the electrophoretic velocity on the electric field is of great practical

interest, therefore, all data on particle radii, electric field strengths, and works from which

these values were taken were grouped in Table 6.1.

Fig. 6.5 shows the comparison of the velocity u∞ with the experimental data. For bet-

ter clarity, all experimental points are presented in dimensionless logarithmic coordinates,

u∞ vs E∞.
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Figure 6.5 – The experimental dimensionless velocity u∞ as a function of E∞. Regions
I, II and III stands for the regions of the electrophoresis of the first kind,
transition region and the region of the electrophoresis of the second kind
respectively. Lines 1, 2 and 3 stands for u∞ ∼ const1E∞, u∞ ∼ const2E

4/3
∞

and u∞ ∼ const2E
2
∞, respectively.
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Marker Radius, µm Papers E∞
+ 600 Baran et al. [78], Barany et al. [71] 2.5 - 8 kV/m
• 375 Baran et al. [78], Barany et al. [71, 41],

Mishchuk et al. [79]
2.5 - 30 kV/m

H 250 Baran et al. [78], Barany et al. [71, 41],
Mishchuk et al. [79]

0.5 - 100 kV/m

× 112.5 Baran et al. [78] 10 - 90 kV/m
� 100 Baran et al. [78], Barany et al. [71, 41],

Mishchuk et al. [79]
0.5 - 100 kV/m

O 62.5 Baran et al. [78] 15 - 90 kV/m
� 50 Baran et al. [78], Barany et al. [71, 41],

Mishchuk et al. [40, 79]
0.5 - 100 kV/m

N 25 Baran et al. [78], Barany et al. [71, 41],
Mishchuk et al. [40, 79]

2.5 - 90 kV/m

4 5 Baran et al. [78], Barany et al. [71, 41],
Mishchuk et al. [40, 79]

1 - 10 kV/m

♦ 2.5 Baran et al. [78], Barany et al. [71, 41],
Mishchuk et al. [40]

1 - 10 kV/m

� 0.5 Baran et al. [78], Barany et al. [71, 41],
Mishchuk et al. [40]

0.2 - 10 kV/m

Table 6.1 – Experimental data from different papers (indicated).

The region I of electrophoresis of the first kind is clearly seen since the velocity here

is linearly proportional to E∞. After the transition region II, the region III of strongly

non-linear electrophoresis, predicted by Dukhin, appears. According to Dukhin’s pre-

diction (see Eq. (5.54)) u∞ = 2κE2
∞, which corresponds to the line 3 in Fig. 6.5.

The experimental data deviation from the Dukhin’s prediction is seen. The dependence

u∞ ∼ const2E
4/3
∞ (line 2) from our work fits much better the experimental data.

For a better understanding, let us present the normalized experimental and theoretical

electrophoretic velocity U∞ = u∞/E
2
∞ as a function of the universal variable χ = ν2/3E

4/3
∞ .

This dependence is shown in Fig. 6.6.

As in the previous graph, the vertical dotted lines represent the conventional bound-

aries of low I, medium II, and high III electric field strength regions. The numerical

solution does not work at a sufficiently high electric field strength, so in Fig. 6.6 the

solid line breaks off at χ ≈ 8. Meanwhile, the semi-analytical solution complements the

numerical one and can be extended to any arbitrarily large value of parameter χ. The

discrepancy between the analytical and numerical solutions for small values of χ is almost

two times, but as χ grows, this difference rapidly decreases to almost zero. For χ > 8,

only the analytical method works, which is in very good agreement with the experimental
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data.

As shown earlier, the entire semi-analytical solution and, in particular, the elec-

trophoretic velocity, strongly depends on the phenomenon of diffusion-convection in the

diffusion layer. As a result, for a fixed value of the parameter κ, the normalized elec-

trophoretic velocity U∞ is a function of the χ parameter,

U∞ = f(χ). (6.1)

The semi-analytical approach for large values of χ show that for χ → ∞ the following

expression holds:

U∞ ∼
1
√
χ
. (6.2)

Unfortunately, it was not possible to derive a simple analytical expression relating the

ion-selective particle velocity to the strength of the applied electric field. In Dukhin’s

approach, the influence of the diffusion layer is neglected and there is no dependence

on χ (see equation (5.55)). This may be the main reason for the discrepancy between

Dukhin’s prediction (5.55) and experiments. In the experiments shown in Fig. 6.6, one

can see that U∞ is not constant at χ→∞, but decreases as χ increases, which is in full
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compliance with the semi-analytical approach. The expression (6.2) can also be written

in the following form,

U∞ ∼ E−2/3
∞ or u∞ ∼ E4/3

∞ ,

It is in good agreement with experiments (see inset B of Fig. 6.6).

Thus, it can be concluded that the electrophoretic velocity is proportional to E
4/3
∞ ,

and not to E2
∞, as it is assumed in Dukhin’s works.
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Conclusion

In the present work, the electrostatics and hydrodynamics near an ion-selective mi-

croparticle in an electrolyte solution are studied analytically for the limiting cases of a

weak and strong electric field, and numerically in a wide range of parameters. Mathemat-

ically, this problem is described by a complex system of partial differential equations –

the Nernst-Planck-Poisson-Stokes system. The presented solution of this problem shows

a qualitative and quantitative picture of the ion concentration and charge density fields,

electric field, and hydrodynamic field in the vicinity of the microparticle. The loss of sta-

bility of space charge near the particle surface at sufficiently high electric field strengths

and the subsequent transition to the chaotic motion has been revealed. It should be

emphasized that the instability was obtained at zero Reynolds numbers. The analytical

and numerical values of the electrophoretic velocity, electroosmotic velocity, and electroki-

netic potential have been successfully compared with the experimental data available in

the literature.

The list of main new results presented in this work are as follows:

1. Analytical solutions of the problem applicable for weak electric fields (the first kind

phenomena) have been found.

2. An analytical formula for the electrophoretic velocity for the first kind phenomena

is derived. This formula is a generalization of the well-known Helmholtz-Smoluchowski

formula for the case of ion-selective microparticles.

3. The semi-analytical solution of the electrophoresis problem in a strong electric field

(the second kind phenomena) has been found.

4. A correction to the semi-empirical dependence of the electrophoretic velocity vs

electric field strength (Dukhin’s quadratic dependence) was obtained for the limit E∞ →
∞.

5. Exact numerical solutions of the problem applicable to a wide range of parameters

have been found.

6. A previously unknown result of a special type of electrohydrodynamic instability

on the surface of a microparticle was analysed.

7. Successful comparisons of analytical models with the numerical solutions and ex-

perimental data have been carried out.

Prospects for further development of the topic

The next stage in the study of ion-selective particle electrophoresis can be a theoretical

study of the effect of increased ion concentration in the region of outgoing ion flux. This

effect was discovered during this research and appears only at a sufficiently high electric

field strength (above a critical one). However, its impact on the problem was not taken
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into account. This effect is interesting since it can find direct application in the field

of medical diagnostics, namely, it can be used for the preconcentration of samples and

subsequent detection of substances in trace amounts. Such substances, in particular, can

be markers of various diseases, which are actually charged particles and at an early stage

of the development of the disease, their concentration is excessively low. Thus, this effect

is an directly related to this potential application.

It is also linked to the desalination problem as at the rear pole of the sphere, the

concentration is very high in opposite to the front pole of the particle.
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Appendix A. Calculation of matrix operator for Pois-

son equation

Let us show how to determine these coefficients. Function Φ is defined in center nodes in

r and θ directions. The first derivative with respect to r is defined as,(
∂Φ

∂r

)
i,j

=
Φ(i + 1, j)− Φ(i, j)

rn1(i)
, rn1(i) = rn1(i) · hr (A.1)

multiplying by r2 we get,(
r2∂Φ

∂r

)
i,j

= rn2(i)
pΦ(i + 1, j)− Φ(i, j)

rn1(i)
(A.2)

and finally, the second derivative takes the form,(
∂

∂r

(
r2∂Φ

∂r

))
i,j

=
1

rm1(i)
·

·
[
rn2(i)

Φ(i + 1, j)− Φ(i, j)

rn1(i)
− rn2(i− 1)

Φ(i, j)− Φ(i− 1, j)

rn1(i− 1)

]
(A.3)

Let us group the coefficients for each Φ,

Φ(i− 1, j) :
rn2(i− 1)

rm1(i) rn1(i− 1)
= ai (A.4)

Φ(i, j) : − rn2(i)

rm1(i) rn1(i)
− rn2(i− 1)

rm1(i) rn1(i− 1)
= bi (A.5)

Φ(i + 1, j) :
rn2(i)

rm1(i) rn1(i)
= ci (A.6)

For the Poisson equation, the matrix of the operator with regards to the variable r

has three-diagonal form. The system of equations is the following for fixed index j:

a1Φ0,j + b1Φ1,j + c1Φ2,j = g1,j

a2Φ1,j + b2Φ2,j + c2Φ3,j = g2,j

... ... ... ... ... ... ... ...

aImΦIm−1,j + bImΦIm,j + cImΦIm+1,j = gIm,j

where Φ0 and ΦIm+1 have to be defined from the boundary conditions.
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Function Φ is defined in the center nodes, but for the boundary conditions, it must be

defined in nodes. The cosine and sine functions at nodes and center nodes from angle θ

are denoted as follows,

stn(j) = sin(tn(j))

stm(j) = sin(tm(j))

ctn(j) = cos(tn(j))

ctm(j) = cos(tm(j))

At r = 1 the electric potential Φ = 0

Φ(1, j) + Φ(0, j)

2
= 0 ⇒ Φ(0, j) = −Φ(1, j) (A.7)

At r →∞ the electric potential Φ = −E∞r cos θ

Φ(Im, j) + Φ(Im + 1, j)

2
= −E∞rn(Im) · ctm(j) (A.8)

We need to correct the coefficients b1 and bIm according to the boundary conditions.

i = 1 : a(1) Φ(0, j) + b(1) Φ(1, j) + c(1) Φ(2, j) = R(1) (A.9)

where R is the right hand side of Poisson equation. From the boundary condition,

Φ(0, j) = −Φ(1, j) (A.10)

− a(1) Φ(1, j) + b(1) Φ(1, j) + c(1) Φ(2, j) = R(1) (A.11)

That means that we need to reassign the coefficient b(1) in the following way b(1) →
b(1)− a(1)

In the last layer of nodes at i = Im we have,

a(Im) Φ(Im− 1, j) + b(Im) Φ(Im, j) + c(Im) Φ(Im + 1, j) = R(Im) (A.12)

After substitution of Φ(Im + 1, j) from Eq. (A.10) in the Eq. (A.14) one can get,

a(Im) Φ(Im− 1, j) + b(Im) Φ(Im, j)+

+ c(Im)(−Φ(Im, j)− 2E∞ rn(Im) · ctm(j)) = R(Im) (A.13)
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a(Im) phi(Im− 1, j) + (b(Im)− c(Im))phi(Im, j) = R(Im)+

+ 2E∞ rn(Im) · ctm(j) (A.14)

Then coefficient at Φ(Im, j) needs to be changed as well as the R(Im),

b(Im)→ b(Im)− c(Im)

R(Im)→ R(Im) + 2E∞ rn(Im) · ctm(j)

Let us discretize the second term of Poisson equation.

∂Φ

∂θ
=

Φ(i, j + 1)− Φ(i, j)

tn1(j)
(A.15)

sin θ
∂Φ

∂θ
= stn(j)

Φ(i, j + 1)− Φ(i, j)

tn1(j)
(A.16)

∂

∂θ

(
sin θ

∂Φ

∂θ

)
=

1

tm1(j)
·

·
[
stn(j)

Φ(i, j + 1)− Φ(i, j)

tn1(j)
− stn(j− 1)

Φ(i, j)− Φ(i, j− 1)

tn1(j− 1)

]
(A.17)

1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
=

1

stm(j) tm1(j)
·

·
[
stn(j)

Φ(i, j + 1)− Φ(i, j)

tn1(j)
− stn(j− 1)

Φ(i, j)− Φ(i, j− 1)

tn1(j− 1)

]
(A.18)

Φ(i, j− 1) :
stn(j− 1)

stm(j) tm1(j) tn1(j− 1)
= dj (A.19)

Φ(i, j) : − stn(j− 1)

stm(j) tm1(j) tn1(j− 1)
− stn(j)

stm(j) tm1(j) tn1(j)
= ej (A.20)

Φ(i, j + 1) :
stn(j)

stm(j) tm1(j) tn1(j)
= fj (A.21)

Consider the matrix operator in the equation (3.14). The coefficients ai and ci remain

unchanged, and bi must be corrected as follows: bi = bi + λ in the outer loop over j and

the inner loop over i.

In this case, the coefficients d(j), e(j), f(j) are not involved in the process of solving

equation, they needed only for defining the operator Tθ and its eigenvectors and eigenval-

ues. Eventually, we end up with the tridiagonal matrix, which is solved by the tridiagonal

matrix algorithm for each column of the right-hand matrix.
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Appendix B. Calculation of matrix operator for Stokes

equation

Consider the numerical scheme for Eq. (3.23). The four-order term r4 ∂
4

∂r4
in this equation

can be approximated by a five-point stencil,

a5(i)ψ(i− 2, j) + b5(i)ψ(i− 1, j) + c5(i)ψ(i, j) + d5(i)ψ(i + 1, j) + e5(i)ψ(i + 2, j)

The second-order term

[
r4 ∂

2

∂r2

(
1

r2

)
+ r2 ∂

2

∂r2

]
Ψ can be approximated by a three-

point stencil,

b3(i)ψ(i− 1, j) + c3(i)ψ(i, j) + d3(i)ψ(i + 1, j)

Boundary conditions,

r = 1 : Ψ =
∂Ψ

∂r
= 0

r = Rmax : Ψ = −1

2
U∞R

2
max sin2 θ;

∂Ψ

∂r
= −U∞Rmax sin2 θ

Function Ψ defined in nodes for radial direction and the boundary conditions must be

defined in nodes.

a1ψ−1,j + b1ψ0,j + c1ψ1,j + d1ψ2,j + e1ψ3,j = R1,j

a2ψ0,j + b2ψ1,j + c2ψ2,j + d2ψ3,j + e2ψ4,j = R2,j

a3ψ1,j + b3ψ2,j + c3ψ3,j + d3ψ4,j + e3ψ5,j = R3,j

a4ψ1,j + b4ψ2,j + c4ψ3,j + d4ψ4,j + e4ψ5,j = R4,j

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

aIm−2ψIm−5,j + bIm−2ψIm−4,j + cIm−2ψIm−3,j + dIm−2ψIm−2,j + eIm−2ψIm−1,j = RIm−2,j

aIm−1ψIm−4,j + bIm−1ψIm−3,j + cIm−1ψIm−2,j + dIm−1ψIm−1,j = RIm−1,j

aImψIm−3,j + bImψIm−2,j + cImψIm−1,j = RIm,j

We should write the boundary conditions, i = 1 :

a5(1)ψ(−1, j) + b5(1)ψ(0, j) + c5(1)ψ(1, j) + d5(1)ψ(2, j)+

+e5(1)ψ(3, j) = R(1, j)
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i = 2 :

a5(2)ψ(0, j) + b5(2)ψ(1, j) + c5(2)ψ(2, j) + d5(2)ψ(3, j)+

+e5(2)ψ(4, j) = R(2, j)

From the boundary condition at r = 1 the stream function ψ(0, j) = 0. We can write

the following relation in order to express unknown ψ(−1, j),

∂Ψ

∂r

∣∣∣∣
r=1

=
1

2

(
ψ(0, j)− ψ(−1, j)

rm1(0)
+
ψ(1, j)− ψ(0, j)

rm1(1)

)
= 0

ψ(−1, j) =
rm1(0)

rm1(1)
ψ(1, j)

We need to correct the coefficient c5(1)

c5(1) = c5(1) +
rm1(0)

rm1(1)
a5(1)

Let’s write the formulas for the coefficients a5, b5, c5, d5, e5. The first derivative for

the function is defined in nodes.

∂2Ψ

∂r2

∣∣∣∣
i

=
1

rn1(i)

(
ψ(i + 1, j)− ψ(i, j)

rm1(i + 1)
− ψ(i, j)− ψ(i− 1, j)

rm1(i)

)
=

= α(i)ψ(i− 1, j) + β(i)ψ(i, j) + γ(i)ψ(i + 1, j)

α(i) =
1

rn1(i) rm1(i)
; γ =

1

rn1(i) rm1(i + 1)
; β = −α(i)− γ(i)

∂4Ψ

∂r4

∣∣∣∣
i

=
∂2

∂r2

(
∂2Ψ

∂r2

)
= α(i)

∂2

∂r2
(ψ(i− 1, j)) + β(i)

∂2

∂r2
(ψ(i, j))+

+γ(i)
∂2

∂r2
(ψ(i + 1, j)) =

= α(i)[α(i− 1)ψ(i− 2, j) + β(i− 1)ψ(i− 1, j) + γ(i− 1)ψ(i, j)]+

+β(i)[α(i)ψ(i− 1, j) + β(i)ψ(i, j) + γ(i)ψ(i + 1, j)]+

+γ(i)[α(i + 1)ψ(i, j) + β(i + 1)ψ(i + 1, j) + γ(i + 1)ψ(i + 2, j)] =

= α(i)α(i− 1) · ψ(i− 2, j) + (α(i) β(i− 1) + β(i)α(i)) · ψ(i− 1, j)+

+(α(i) γ(i− 1) + β2(i) + α(i + 1) γ(i)) · ψ(i, j)+

+(β(i) γ(i) + β(i + 1) γ(i)) · ψ(i + 1, j) + γ(i) γ(i + 1) · ψ(i + 2, j)
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So the four-order term r4 ∂
4

∂r4
can be expressed in the following way,

a5(i)ψ(i− 2, j) + b5(i)ψ(i− 1, j) + c5(i)ψ(i, j) + d5(i)ψ(i + 1, j)+

+e5(i)ψ(i + 2, j)

where coefficients defined as follows, a5(i) = rn4(i) · α(i)α(i− 1)

b5(i) = rn4(i) · α(i) (β(i− 1) + β(i))

c5(i) = rn4(i) · (α(i) γ(i− 1) + β2(i) + α(i + 1) γ(i))

d5(i) = rn4(i) · γ(i) (β(i) + β(i + 1))

e5(i) = rn4(i) · γ(i) γ(i + 1)

Now consider the second-order term

[
r4 ∂

2

∂r

(
1

r2

)
+ r2∂

2

∂

]
Ψ,

rn4(i)

[
α(i)

ψ(i− 1, j)

rn2(i− 1)
+ β(i)

ψ(i, j)

rn2(i)
+ γ(i)

ψ(i + 1, j)

rn2(i + 1)

]
+

+rn2(i) [α(i)ψ(i− 1, j) + β(i)ψ(i, j) + γ(i)ψ(i + 1, j)] =

= rn2(i)α(i)

(
1 +

rn2(i)

rn2(i− 1)

)
ψ(i + 1, j) + 2rn2(i) β(i)ψ(i, j)+

+rn2(i) γ(i)

(
1 +

rn2(i)

rn2(i + 1)

)
ψ(i + 1, j) =

= b3(i)ψ(i− 1, j) + c3(i)ψ(i, j) + d3(i)ψ(i + 1, j)

where,

b3(i) = rn2(i)α(i)

(
1 +

rn2(i)

rn2(i− 1)

)
c3(i) = 2 rn2(i) β(i)

d3(i) = rn2(i) γ(i)

(
1 +

rn2(i)

rn2(i + 1)

)

The boundary conditions at the outer edge of calculation domain were found from the

relations,

U = − 1

r sin θ

∂Ψ

∂r
; V =

1

r2 sin θ

∂Ψ

∂θ

U = U∞ sin θ, V = −U∞ cos θ

∂Ψ

∂r

∣∣∣∣
r=Rmax

= −U r sin θ = −U∞ r sin2 θ
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Ψ|r=Rmax
=

∫
∂Ψ

∂r
dr = −U∞ sin2 θ

∫
rdr = −1

2
U∞ r

2 sin2 θ + C

We assume the integration constant equal to zero. From the boundary conditions at

r = Rmax one can get,

ψ(Im, j) = −1

2
U∞ rn2(Im) stn2(j)

ψ′(Im + 1, j) = −U∞ rn(Im) stn2(j)

For i = Im− 2 : a5(i)ψ(Im− 4, j)+b5(i)ψ(Im− 3, j)+c5(i)ψ(Im− 2, j)+d5(i)ψ(Im− 1, j)+

e5(i)ψ(Im, j) = R(Im− 2, j)

We need to correct the right part of equation in the following way, R(Im− 2, j) →
R(Im− 2, j)− e5(i)ψ(Im, j).

For i = Im− 1 : a5(i)ψ(Im− 3, j) + b5(i)ψ(Im− 2, j) + c5(i)ψ(Im− 1, j) + d5(i)

ψ(Im, j) + e5(i)ψ(Im + 1, j) = R(Im− 1, j)

We can write the following relation in order to express ψ(Im + 1, j),

∂Ψ

∂r

∣∣∣∣
r=Rmax

=
1

2

(
ψ(Im, j)− ψ(Im− 1, j)

rm1(Im)
+
ψ(Im + 1, j)− ψ(Im, j)

rm1(Im + 1)

)

ψ(Im + 1, j) =
rm1(Im + 1)

rm1(Im)
ψ(Im− 1, j) +

(
1− rm1(Im + 1)

rm1(Im)

)
ψ(Im, j)+

+2 rm1(Im + 1)
∂Ψ

∂r

∣∣∣∣
r=Rmax

=
rm1(Im + 1)

rm1(Im)
ψ(Im− 1, j)+

+

(
1− rm1(Im + 1)

rm1(Im)

)
ψ(Im, j) + 2 rm1(Im + 1)ψ′(Im + 1, j)

We need to correct the coefficient c5(Im− 1) and the right part of the equation,

i = Im− 1 :

c5(i) → c5(i) +
rm1(Im + 1)

rm1(Im)
e5(i)

R(Im− 1, j) to R(Im− 1, j)− d5(i)ψ(Im, j)−

−e5(i)

[(
1− rm1(Im + 1)

rm1(Im)

)
ψ(Im, j) + 2 rm1(Im + 1)ψ′(Im + 1, j)

]
−

−d3(i) sin θ
∂

∂θ

(
1

sin θ

∂

∂θ

)
ψ(Im, j)

For the final five-diagonal matrix a(i) and e(i) remain unchanged.

b5(i) → b5(i) + λj · b3(i)

c5(i) → c5(i) + λj · c3(i) + λ2
j

d5(i) → d5(i) + λj · d3(i)
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