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Résumé xiii

ANOMALY DETECTION AND OBJECT TRACKING BY FUTURE PREDICTION USING GENERA-
TIVE METHODS FOR TRANSPORTATION

Résumé

Actuellement, le traitement automatiquement des problèmes de transport devient un sujet actif. Dans le
cadre de ce travail, nous visons à relever un défi spécifique dans ce domaine : la détection et le suivi des
anomalies. Notre objectif est de construire un système flexible et efficace produisant des performances
élevées sur diverses bases de données publiques. Le contexte de notre recherche est l’amélioration des
approches précédentes pour obtenir de meilleurs résultats. Nous traitons deux scénarios conduisant à
deux méthodes mentionnées dans les parties suivantes : (1) la segmentation et le suivi des véhicules et des
piétons par des prédictions utilisant des méthodes génératives classiques basées sur des descripteurs a
priori (hand crafted) et sur l’estimation des flux optiques ; (2) la détection des anomalies par des prédictions
utilisant des systèmes génératifs multicanaux profonds et l’apprentissage supervisé.
Notre première recherche vise à l’évaluation des performances de l’approche générative classique pour les
prévisions et la détermination des ses capacités à améliorer la segmentation et le suivi d’objets. Récemment,
divers détecteurs d’apprentissage profond ont été proposés e.g. Mask R-CNN qui permettent une approche
efficace du problème de suivi : le suivi par détection. A l’exception de tout autre information visuelle,
ce type de tracker rapide ne prend en compte que l’intersection-sur-union (IOU) entre les boîtes de
délimitation pour apparier les objets. Ainsi, l’absence d’informations visuelles du tracker IOU combinée
avec les possibles défaillances des détecteurs créent des trajectoires fragmentées. Nous proposons alors
un tracker amélioré basé sur la détection par suivi et sur l’estimation du flux optique. Notre solution
génère de nouvelles détections ou segmentations basées sur une translation temporelle en avant et en
arrière des résultats des détecteurs CNNs en utilisant les vecteurs de flot optique. Cette étape permet de
combler une première partie des lacunes des trajectoires. Les résultats qualitatifs montrent alors que notre
solution a obtenu des performances stables avec différentes méthodes d’estimation du flot optique. Les
lacunes résiduelles au sein des trajectoires sont traitées en utilisant des caractéristiques SURF. La base de
données DAVIS est utilisée pour évaluer la meilleure façon de générer de nouvelles détections. Enfin, le
tracker résultant est testé sur la base de données DETRAC. Les résultats qualitatifs montrent que notre
approche diminue très significativement la fragmentation des trajectoires. Pour les travaux futurs associés
à ce tracker, nous prévoyons d’appliquer les réseaux CGAN développés dans le cadre de la seconde partie
de notre travail afin de proposer un système compétitif de suivi d’objet basé prévision.
Malgré les résultats tangibles de cette première approche, les méthodes classiques présentent des limitations
importantes concernant la détection d’anomalies qui est l’un de nos objectifs principaux. La fréquence
plus faible des événements anormaux donne un scénario déséquilibré et leurs caractéristiques ne suivent
généralement aucune relation spatiale ou temporelle. Face à ces défis, la plupart des méthodes de l’état-de-
l’art se basent sur des réseaux prédictifs et utilisent les erreurs entre informations générées et réelles comme
caractéristiques de détection. Inspirés par cette approche, d’une part, nous proposons un cadre multicanal
flexible pour générer des caractéristiques multitypes au niveau image. D’autre part, nous étudions la
possibilité d’améliorer les performances de détection par un apprentissage supervisé. Notre système
est ainsi basé sur quatre GAN conditionnels (CGAN) prenant en entrée différents types d’informations
d’apparence et de mouvement et produisant des informations de prédiction. Ces CGAN représentent la
distinction entre événements normaux et anormaux. Ensuite, la différence entre les informations générées
et les vérité-terrains est encodée par le pic du rapport signal / bruit (PSNR). Nous classons alors ces
caractéristiques dans un contexte supervisé en construisant un petit ensemble d’entrainement à partir de
quelques échantillons anormaux de l’ensemble de test original. C’est un Séparateur à Vaste Marge (SVM)
qui est appliquée pour la détection des anomalies au niveau trame. Enfin, nous utilisons Mask R-CNN
comme détecteur pour effectuer la localisation d’anomalies centrées objet. Notre solution est largement
évaluée sur les bases de données Avenue, Ped1, Ped2 et ShanghaiTech. Nos résultats démontrent que les
caractéristiques de PSNR combinées avec le SVM supervisé sont meilleures que les cartes d’erreurs calculées
par les méthodes précédentes. En particulier, pour la base de données la plus difficile qu’est Shanghaitech,
notre modèle surpasse jusqu’à 9% l’état-de-l’art des methodes non-supervisées. En perspective, nous
prévoyons de construire une base de données pour la détection d’anomalies dans un cadre semi-supervisé,
et d’intégrer un classifieur one-class SVM pour proposer un système "de bout en bout".

Mots clés : détection d’anomalies, apprentissage profond, modèle génératif, application au transport
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xiv Résumé

Abstract

Today, automatic solving transportation problem becomes active subject. In our PhD project, we aim
to address a specific challenge in this domain: anomaly detection and tracking. Our ultimate goal is
constructing a flexible and effective framework producing high performance on various public datasets.
The context of our research is applying and improving previous successful approaches to achieve
better results. We deal with two scenarios leading to two methods mentioned in following parts: (1)
vehicles and road users segmentation and tracking by future predictions using classical hand-crafted
generative methods based on optical flow estimation; (2) anomaly detection by future predictions using
multi-channels deep generative frameworks and supervised learning.

Our first research is evaluating the performance of the classical hand-crafted generative approach in
future prediction and its capability for improving segmentation and tracking. Recently, there existed
various strong deep learning detectors e.g. Mask R-CNN lead to an effective approach for tracking problem:
tracking-by-detection. This very fast type of tracker considers only the Intersection-Over-Union (IOU)
between bounding boxes to match objects without any other visual information. In contrast, the lack
of visual information of IOU tracker combined with the failure detections of CNNs detectors create
fragmented trajectories. We propose an enhanced tracker based on tracking by-detection and optical flow
estimation in vehicle tracking scenarios. Our solution generates new detections or segmentations based on
translating backward and forward results of CNNs detectors by optical flow vectors. This task can fill in
the gaps of trajectories. The qualitative results show that our solution achieved stable performance with
different types of flow estimation methods. Then we match generated results with fragmented trajectories
by SURF features. DAVIS dataset is used for evaluating the best way to generate new detections. Finally,
the entire process is tested on DETRAC dataset. The qualitative results show that our methods significantly
improve the fragmented trajectories. For future work, we plan to apply CGANs streams of second work for
the first task to propose a new competitive process of future prediction for segmentation and tracking.

Despite the moderate success of the first work, there is significant limitations of classical approaches
to deal with our main task: anomaly detection. The lower frequency of abnormal events leads to an
unbalanced scenario and the features of abnormal events usually do not follow any spatial or temporal
relationship. It is also difficult to pre-define the structure or class of abnormal events. Facing to those
challenge, most of state-of-the-art (SOTA) anomaly detection methods are based on apparent motion and
appearance reconstruction networks and use error estimation between generated and real information as
detection features. These approaches achieve promising results by only using normal samples for training
steps. In this thesis, our contributions are two-fold. On the one hand, we propose a flexible multichannel
framework to generate multi-type frame-level features. On the other hand, we study how it is possible
to improve the detection performance by supervised learning. The multi-channel framework is based on
four Conditional GANs (CGANs) taking various types of appearance and motion information as input and
producing prediction information as output. These CGANs provide a better feature space to represent
the distinction between normal and abnormal events. Then, the difference between those generative and
ground-truth pieces of information is encoded by Peak Signal-to Noise Ratio (PSNR). We propose to classify
those features in a classical supervised scenario by building a small training set with some abnormal
samples of the original test set of the dataset. The binary Support Vector Machine (SVM) is applied for
frame-level anomaly detection. Finally, we use Mask R-CNN as a detector to perform object-centric anomaly
localization. Our solution is largely evaluated on Avenue, Ped1, Ped2 and ShanghaiTech datasets. Our
experiment results demonstrate that PSNR features combined with supervised SVM are better than error
maps computed by previous methods. We achieve SOTA performance for frame-level AUC on Avenue,
Ped1 and ShanghaiTech. Especially, for the most challenging Shanghaitech dataset, a supervised training
model outperforms up to 9% the SOTA on unsupervised strategy. Furthermore, we keep in progress several
promising ways: building a new dataset for semi-supervised anomaly detection containing both normal
and abnormal samples in its training set and applying one-class SVM to propose an end-to-end framework.

Keywords: anomaly detection, deep learning, generative model, transportation application
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Chapitre1
Introduction

This chapter introduces a general overview about our research project. First, we present

the scientific context and scenario of our works. This part shows the definition of abnormality

and how we consider the tasks of anomaly detection. Then we present the objective of this

project in term of scientific researches and its application in real-world context. In order to

achieve those goals, various approaches will be largely taken into account for both classical

hand-crafted features methods and modern deep learning approaches. On the one hand, we

analyse and compare them to show the advantage of recent deep learning models that inspired

us to apply. On the other hand, we find the limitations of those state of the art models. Our

solutions to improve those drawbacks will be introduced in the next part. Then we highlight our

contributions along this project. Finally, we end this chapter by presenting the structure of our

PhD thesis.
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2 CHAPITRE 1. Introduction

1.1 Context and Scenario

In this work, we study the problem of discovering and modelling the interactions between

users and transport infrastructures by the analysis of video surveillance streams. This challen-

ging work leads to the ability to recognise particular and abnormal activities in traffic. That

can facilitate various applications targeted to improve the safety of vulnerable road users, the

security of transport networks or supporting the autonomous car driving. We cast our works as

a visual action recognition and understanding problem and we apply different solutions that

have been proved being effective in many computer vision tasks. We plan to benefit from the

promising results of deep learning in detection and segmentation tasks to detect, segment and

track all the elements participating in traffic networks. Thus, we entirely extract all their infor-

mation for the purpose of constructing a new model for unlearned behaviours or interactions.

Our works address the problem of analysing the information obtained from video surveillance

streams. This is an interesting problem because behaviours modelling of individuals and their

interactions thanks to the analysis of audio and video streams acquired from surveillance systems

is a very active research topic in the scientific community. It is directly related to "Big data"

problem which is a common aspect to many application areas such as monitoring the health of

elderly people while enforcing their safety and security. Within the area of this research project,

we focus on the transportation field. The objects we are searching for are all the ones and all

the things that participate to the traffic network : pedestrians, bicyclists, motorbikes, trucks,

traffic lights and signs, etc. We particularly concentrate on vulnerable road users (VRU) and

their interactions with other actors inside the transportation network.

Actually, there are a lot of successful researches in transportation domain [113, 10, 29, 3, 6,

11, 112], especially for autonomous driving cars. But they are almost only addressing the first

step of video information analysis for answering the question about detection and localisation of

all objects inside a video signal. In this thesis, we want to continue the next step that is using

the information extracted from the first step to model the interactions between them. In a naive

way, it can be considered as a visual action recognition and understanding task. But in this case,

the set of actions needed to be classified is very challenging due to the very occlusive scenarios

attached to traffic networks. Additionally, the occurrence of abnormal and randomly performed

actions also raises the difficulty of our context because those actions are totally unlearned by

traditional methods.

In details, we particularly work with two scenarios : (1) vehicles and road users segmentation

and tracking by future predictions using classical hand-crated generative methods based on

optical flow estimation ; (2) anomaly detection by future predictions using multi-channels deep

generative frameworks and supervised learning. Both research scenarios are evaluated on various

public benchmarks in the off-line working mode. To evaluate the performances of our approaches,
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we consider both qualitative and quantitative measurements. The experimental setup for these

two scenarios as well as our proposed methods for each one is precisely presented in the next

chapters.

1.2 Objective

In term of scientific objectives, we aim to address a specific challenge in transportation do-

main : anomaly detection and tracking. Our ultimate goal is constructing a flexible and effective

framework producing high performances on various public datasets. As a context of this research

project, we focus on applying and improving previous successful approaches to achieve better

results rather than proposing brand-new methods or innovative network architectures.

For the first scenario, our purpose is to evaluate the capability of classical hand-crafted

generative methods for improving segmentation and tracking tasks as well as its potential to deal

with further challenging e.g. future prediction and anomaly detection. Naturally, hand-crafted

methods without training a complex deep learning models are always the first priority for each

system due to its simple pipeline. Supposing that classical hand-crafted methods can treat well

almost all tasks, we benefit from the reduction of time consumption and, particularly, we also

avoid the preparation of a large dataset for deep learning. In contrast, it is necessary to take

the deep learning approaches into consideration when classical ones can not provide sufficient

performances to us.

For the second scenario, we cast this challenging problem as our main task. Our purpose is

to build a flexible and strong deep learning model for anomaly detection at frame-level. Then

we develop a suitable pipeline for abnormality localisation at object-centric level. On the one

hand, the most important request for our work is obtaining high performances. We expect our

models to surpass state-of-the-art performance in various public datasets. On the other hand,

the flexibility of our approach is based on the fact we would like to build a model adapted

for various types of input information (i.e. RGB, grayscale, optical flow). As a consequence, it

could be easily extended or lightened for further developments. We also demand our model to

create distinct features for representing the characteristics of abnormal activities that can be

comfortably fed into various classification models.

1.3 Definition of Anomaly Detection

As previously defined in [89] and retrieved in [80], we define an abnormal event as "the oc-
currence of unusual appearance or motion attributes or the occurrence of usual appearance
or motion attributes in unusual locations or times". It clearly appears that the description of

an abnormal event can be different from one scene to another because of the environment context
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or because of the intrinsic and extrinsic camera parameters (location, pose, focal length etc.).

Moreover, different types of anomalous events may occur. An appearance based event can be

illustrated by a car or a pedestrian moving in a forbidden area. Short or long-term motion event

can be respectively illustrated by a pedestrian jumping over a barrier or by a bicycle zigzagging

around pedestrians. For these reasons, we easily imagine that it will be difficult to compute a

unique model with high performance for all the situations and for all the environments.

Abnormal events occur (fortunately) rarely in the real-life, and it is unrealistic to video

caption all anomalous events we could encounter. Even if it is always possible to come across

anomalous events in video surveillance, huge resources are required (in terms of time and

human work load) to manually detect and annotate each one. The common approach used in

most of the state-of-the-art methods is to model the normal activities because they are easy to

collect from the video camera. Moreover, the annotation task is reduced to making sure that the

"normal events" dataset is not corrupted by anomalous events. We follow this assumption, and

we propose to analyse the gain of adding a supervised learning step regarding abnormal events,

the final objective being to reach the trade-off between performance and required resources

linked to dataset annotation.

1.4 Classical approaches

Generally, there are relatively large differences between classical approaches and modern ones

in terms of considering the anomaly detection problem. Before the existing of specific datasets

for anomaly detection mentioned in some works [58, 53, 66], most of the researches considered

abnormal actions as a particular set of normal activities. All the public datasets [44, 92] during

this period was constructed for the classical action recognition problems by combining all types

of actions without highlighting some abnormalities. By this way, the abnormality was similarly

considered as normality. To solve this classical problem in computer vision, we can apply various

techniques for the discriminative task such as : image classification, video detection, segmenta-

tion and tracking, etc. Following classical hand-crafted methods [104, 105, 16, 1], first, activities

are densely tracked to create smooth and continuous trajectories. Then, points of interest are

detected around objects and activities. Various types of feature (SIFT [57], HOG [17], HOF [9],

MBH [104], etc.) are extracted at the points of interest’s locations along trajectories to help

representing the distinction between activities. Finally, they construct suitable inference models

to classify the corresponding features. Applying this technique to the transportation domain

leads our problem to be simply treated as a detection and tracking task. Intuitively, if we can

detect all the users and vehicles involved in a scenario, then we can smoothly and continuously

track them frame by frame. In turn, we can extract features around those objects such as velocity,

motion vector, etc to model the interactions between them. The first part of our research is for

the purpose of doing this work.
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Thanks to the recent successful CNNs model for object detection and segmentation [85, 107,

29, 83] we can almost retrieve the full spatial information about all users and objects involved in

a traffic networks related scene captured by a camera. Those strong CNN models outperform all

the previous traditional methods that use hand-crafted features in combination with learning

representation. Among them, Mask R-CNN [29] is our best candidate because we can benefit from

various types of information (object class, localisation and segmentation at instance level) using

only one network. We observe that object tracking is an important proxy task towards action

recognition. Most of the effective methods for normal daily action recognition [105, 90, 108]

starts with a tracking step for obtaining objects’ trajectories. Intuitively, the more information we

get from objects, the more effective solution we have for the tracking step. Thanks to the strong

performances of Mask R-CNN, we have a simple and effective approach for object tracking :

tracking-by-detection. This type of tracker is an active topic in object tracking and achieves many

successful works from early researches [8, 2, 32]. Tracking-by-detection method first applies

an object detector to each video frame then associates these detections to tracks. One of the

most representative and popular tracker of that kind is IOU Tracker [7]. It is the core tracker of

winning solutions for multi-objects tracking challenge in AVSS 2018 [65].

1.4.1 Limitations

Instead of using visual information to match the objects locations, IOU Tracker takes into

account the Intersection Over Union (IOU) between bounding boxes to associate them together.

This feature first makes the performance of the tracker completely dependent from the perfor-

mance of the detector itself. Second, the lack of visual information can lead to confusion between

objects in overlapping cases.

IOU =
Area of Intersection

Area of Union
(1.1)

Class Person Rider Car Truck Bus Train Bicylce
AP 34.8 27.0 49.1 30.1 40.9 30.9 18.7

Tableau 1.1 – Performance of instance segmentation by Mask R-CNN on CityScapes dataset. Eva-
luation metric is the COCO-style mask AP (average precision on region level).All performances
are state-of-the-art.

On the other hand, Mask R-CNN shows its drawback in the case of false negative error on

usual objects (see Figure 1.1) although it yields strong performances on COCO dataset [50] and

particularly on transportation related domain datasets such as the Cityscapes dataset [15] (see

Table 1.1). These false negative results or missing detections from Mask R-CNN can lead to
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(a) (b)

(c) (d)

Figure 1.1 – Common missing detection of Mask R-CNN in consecutive frames from (a) to (d) :
(a) detection ; (b) non-detection ; (c) detection ; (d) non-detection

cases of failure in the next step of object’s tracking because the object trajectories get "broken".

Obviously, confusing detections between object’s classes from Mask R-CNN can also produce

wrong tracks, for instance when creating new tracking processes instead of maintaining existing

ones.

1.4.2 Solution and contributions

Our work aims to build an improved tracker that can limit the drawback of fragmented

trajectories by Mask R-CNN detector on IOU Tracker while keeping the advantage of being

fast as a tracker. The first step is filling in the gaps of fragmented detections using a generative

approach. The next step consists in combining the generated results with the current results

from the detectors. Then, by applying the idea of IOU trackers, IOUs between the bounding

boxes are used to eliminate the overlapping results. The final step is performed by associating

the trajectories with SURF feature [5], which is a high-performance feature for image matching.

Our contributions are the following :

— Introduction of a fast and efficient generative approach using optical flow for filling in

the discontinuities of object tracking. Our solution is stable with different types of flow

estimation.

— An enhanced tracker integrating Mask R-CNN based IOU tracker with visual information.
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1.5 Abnormality centric approaches

Naturally, in human behavior analysis, we might consider anomaly detection as an action

recognition problem. But this classical point of view leads us to an unbalanced situation where

the number of samples for each class is significantly different. Beside, it is difficult to predefine

the structure of abnormal events because there is usually not any spatial and temporal relations

between those events. Hence, we should tackle this challenge in a specific way. Generally, from

the first successful works until now, they proposed three solutions : one-class classification

based [109, 106], changing detection based [22, 27, 38] and future prediction based [72, 53].

One-class learning first constructs the representation for events then fit a model to data for

which annotations are available only for a single class. In anomaly detection, those are labels

for abnormal samples. This solution is only appropriated for binary classification, and it has

limitations when we need further information as type and localisation. Changing detection is

a classical way where each event is compared with its neighbours to find the most different

ones. By this way, we could get trouble when abnormal event always or never happens in a

sequence. The future prediction based techniques casts abnormal events as unpredicted events.

A generative model to produce future information from previous frames is computed and a

model is trained from normal frames and noisy ones ; usually, noisy frames are more blurred

than the ground truth.

1.5.1 Limitations and Solutions

Most of recently successful researches [27, 62, 63, 38, 53, 72, 36] have tackled this challenge

in specific unsupervised ways. They only use normal samples from training set to generate the

standards for normal actions then try to enlarge the deviation between abnormal samples in test

set and theirs standards. Using unsupervised strategy naturally follows the structure of popular

benchmarks datasets containing only normal samples that do not require annotation task.

The state of the art proposes two approaches for defining the anomalous feature that

are respectively based on changing detection [22, 27, 38] and reconstruction/prediction er-

rors [53, 72, 36]. The first solution is a natural approach where each event is compared with its

neighbours to find the most different ones. The weakness of this solution appears when abnormal

event always or never happens in a sequence. Besides, this solution is mainly appropriated for

binary classification, and it has the limitations when we need further information as type and

localisation. The second approach deals with these limitations and achieves state-of-the-art per-

formance. Technically, they generate the future prediction or reconstruct current information for

each action by GANs models and Convolutional Auto Encoder-decoder (CAE) models. Intuitively,

the models trained by only normal samples from the training set will reconstruct better images
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for normal frames than abnormal ones in test set. Inspired by the promising results following this

approach and the benefits from the rise of CGANs and CAE models, we continue to extend the

architecture of reconstructing models by integrating four pix-to-pix Image Translation CGAN

models [39] as four parallel channels. This 4-channels framework processes both appearance

and motion information in grayscale or color format.

In term of features extractions and descriptors encoding, previous anomaly detection frame-

works proposed various reasoning approaches related to the features types : at object-centric or

local level [66, 58, 62, 36], at frame level [53, 72] or at both [27]. On the one hand, some methods

encode their features to calculate abnormality scores ; the decision is done thanks to a threshold

or a peak estimation [53, 72]. In fact, by integrating all features into one score value, spatial and

temporal information are discarded and a simple comparing decision model is learned. On the

other hand, some keep their large scale features [38, 36] to train a classifier. If these solutions

maintain the wealth of information of the features, the learning process is more complex and

takes a long time to converge. To solve this problem, we propose to integrate the complete wealth

of the features produced by each of the channels of our framework into a 10-dimensions vector

by PSNR technique. The implementation details will be introduced in subsection 4.1.5. Our

descriptors bring specific information of each channel but are light enough for fast learning

models.

1.5.2 Contributions

In this work we first have modified the state-of-the-art unsupervised GAN-based abnormality

detection approach by increasing the feature space. Second, we have added a supervised final

step to improve the detection rate. In summary, our contributions are as follows :

— We introduce a flexible and powerful framework containing a multi-channel CGANs (4

streams with 9 output channels in our case) to generate multi-type future appearance

and motion information. Our architecture considers more consecutive frames forward

translation from t to (t+2) than previous methods with only encode-decode reconstruction

[36] or translation from t to (t + 1) [72, 53]. The number of channels can be freely inserted

or removed for multiple purposes.

— We experimentally prove the effectiveness of PSNR in image comparison task. Based

on PSNR method, a useful descriptor of output from our generative framework and

ground-truth is proposed. The size of the descriptor is also flexible, as well as the number

of channels and quite small to adapt to fast classifiers.

— We demonstrate the improvement we get on anomaly detection by adding a supervised

stage exploiting the feature extractor proposed by our unsupervised architecture. We

add a SVM stage that we train on a subset of abnormal samples from the test dataset.

We achieve at least competitive performances on all benchmarks : Avenue, Ped1, Ped2 in

term of frame-level AUC and a huge improvement on the most challenging datasets such
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as Shanghaitech.

1.6 Manuscript Organization

Our thesis manuscript is organized by following a classical structure. It contains five chap-

ters : Introduction, Related Works, Proposed Methods, Experiments and Conclusion.

After the first part introducing general information of our thesis, we present our results of

searching for related work. We begin with the background of recent state-of-the-art deep learning

models for all classical tasks of computer vision applying in transportation domain. The basis of

the convolutional neural network following with various effective models for action recognitions,

object detection, segmentations, optical flow estimation is introduced in both supervised and un-

supervised contexts. Besides the presentation of existing discriminative models, we focus on the

development of recent deep learning generative models to search for their capability of solving

our problems. To improve segmentation and tracking framework, we mention two state-of-the-

art models : Mask R-CNN and IOU object tracker as baseline methods. Then, we propose some

useful add-on modifications to minimise its drawbacks. Then we continue with state-of-the-art

solutions for our main task : anomaly detection. As explained before, we follow recent successful

generative models for future prediction. We highlight their strengths and limitations. We end

this chapter with a brief conclusion on the state-of-the-art models and the solutions that we apply.

The third chapter presents the essentials of our first work in detail. In the proposed methods

section, we sequentially introduce two frameworks corresponding to two stages : (i) Generating

object segmentation by Mask R-CNN and Optical flow estimation and (ii) improving IOU Tracker

with generated information and SURF features. We begin with theoretical presentation of Mask

R-CNN [29], Optical flow estimation by LDOF [9], Full Flow [13] and SURF features [5]. Then

we introduce our methods to generate future detection and segmentation. We apply this classical

hand-crafted generative information to improve detection and tracking. In the experiments

section, we present our implementation of generating object segmentation and the quantitative

results on DAVIS dataset we get using it. Then we show qualitative improvements of enhanced

trackers with generated information and optical flow on UA-DETRAC dataset. We end this

chapter with some analysis about strengths and limitations of our first work.

The fourth chapter introduces the second research : anomaly detection. This is our main

task and our most important achievements are included. We begin this chapter with the basis

of GAN [25], Conditional-GAN [39] and U-Net models [87] . Then, we precisely describe our

multi-channels network architecture to learn abnormality centric features as well as supervised

inference models by SVM binary classifier. We end the first section with some conclusion and

analysis on strengths and limitations of our proposed methods. In the second section, we begin by
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briefly introducing 4 of the public datasets and some evaluation metrics for anomaly detection.

Then, we provide some tutorials of our network implementations in a step by step manner.

We precisely show our results in terms of both quantitative and qualitative performances to

illustrate the effectiveness of our approach for all of 4 datasets. We end this chapter with some

discussion related to experimental strengths and weaknesses of our frameworks.

The last chapter provides the global conclusion of our thesis and gives tracks for our future

work. We mention the significant contributions of our two frameworks and give some final

evaluation regarding its advantages and limitations. We end this chapter as well as this thesis

with some promising idea to continue improving this research in the future.

Version intermédiaire en date du 26 novembre 2022



Chapitre2
Related work

This chapter largely presents the successful state-of-the-art models related to our problems :

(1) Improving segmentation and tracking with classical generative methods and (2) Anomaly

detection with deep learning generative methods and supervised inference models.

We begin with the background of successful works in both classical and deep learning me-

thods. We introduce the principle of Convolutional Neural Network (CNN) then all classical

hand-crafted methods and modern deep learning models for popular computer vision tasks in

transportation domain are mentioned in the next sections.

After that, we focus on the baseline methods that provide us promising solution to deal

with our challenging problem : future prediction. There are two approaches we are dealing

with : (i) classical hand-crafted future generating based on optical flow and (ii) deep learning

multi-channels Conditional Generative Adversarial Network (C-GAN) for future prediction. We

analyse their successful performances as well as their drawbacks to find suitable candidates and

to propose some improvements to go beyond its limitations.

11
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Figure 2.1 – AlexNet architecture [43] - The first successful CNN model with 7 layers. This
architecture is a basic model for most of the recent innovative CNN architectures.

2.1 Background

2.1.1 Convolutional neural network

By now, video information analysis is an important challenge in computer vision and machine

learning research. This challenging research domain has been largely driven by the advances

in various topics : action recognition and localisation ; object detection, segmentation, and lo-

calisation, etc. The rise of Convolutional Neural Networks (CNNs) recently provides us lots

of efficient approaches for this problem, not only for learning task but also for robustly ex-

tracting representation information for elements in videos. In comparison with traditional

approaches without CNNs architectures, CNNs achieve outstanding performances in almost all

the ways : they are faster, stronger, more flexible, while being adapted to massive data challenges.

The first successful CNN model is AlexNET [43] with 8 layers (Figure 2.1) proposed by Alex

Krizhevsky et al. that won the ImageNet ILSVRC 2012 challenge. Then, CNNs architecture

becomes deeper and stronger with VGG-Net [91] featuring 16 an 19 layers, GoogLeNet [95]

providing 22 layers. The state-of-the-art ResNet [31] contains more than a hundred layers, and

gives us a powerful model for image classification tasks.

To build AlexNet [43], Krizhevsky et al. trained a large, deep convolutional neural network

to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into

the 1000 different classes. On the test data, they achieved top-1 and top-5 error rates of 37.5%

and 17.0% which was considerably better than the previous state-of-the-art results. The neural

network, which has 60 million parameters and 650,000 neurons, consists of five convolutional

layers, some of which are followed by max-pooling layers, and three fully connected layers with

a final 1000-way softmax. To make training faster, they used non-saturating neurons and a very

efficient GPU implementation of the convolution operation. To reduce overfitting in the fully
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connected layers, they employed a regularisation method called “dropout”, the was recently

developed at that time, that proved to be very effective. They also entered a variant of this

model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

compared to the 26.2% achieved by the second-best entry.

In VGG-Net[91], Simonyan et al. investigated the effect of the convolutional network depth

on its accuracy in the large-scale image recognition setting. Their main contribution was a

thorough evaluation of networks of increasing depth using an architecture with very small (3×3)

convolution filters, which shows that a significant improvement on the prior-art configurations

can be achieved by pushing the depth to 16–19 weight layers. These findings were the basis of

their ImageNet 2014 Challenge submission, where their team secured the first and the second

places in the localisation and classification tasks respectively. They also shown that their repre-

sentations generalises well to other datasets, where they achieve state-of-the-art results. They

have made their two best-performing ConvNet models publicly available to facilitate further

researches on the use of deep visual representations in computer vision.

Continuing to extend the depth of layers, Szegedy et al. proposed GoogLeNet [95]. They

introduced a deep convolutional neural network architecture called Inception that achieved the

new state of the art for classification and detection in the ImageNet Large-Scale Visual Recogni-

tion 2014 Challenge (ILSVRC14). The main hallmark of this architecture is the improved use of

the computing resources inside the network. By a carefully crafted design, they increased the

depth and width of the network while keeping the computational budget constant. To optimise

quality, the architectural decisions were based on the Hebbian principle and the intuition of

multi-scale processing. One particular incarnation used in their submission for ILSVRC14 is

called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of

classification and detection.

Recently, He et al. introduced a very deep residual learning architecture called ResNet [31].

Because deeper neural networks are more difficult to train, they presented a residual learning

framework to ease the training of networks that are substantially deeper than those used pre-

viously. They explicitly reformulated the layers as learning residual functions with reference

to the layer inputs, instead of learning unreferenced functions. They provided comprehensive

empirical evidence showing that these residual networks are easier to optimise and can gain

accuracy from considerably increased depth. On the ImageNet dataset they evaluated residual

nets with a depth of up to 152 layers, about 8× deeper than VGG-Nets, while still having lower

complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set.

This result won the 1st place on the ILSVRC 2015 classification task. They also presented analysis

on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for

many visual recognition tasks. Solely due to their extremely deep representations, they obtained
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a 28% relative improvement on the COCO object detection dataset. Deep residual nets are the

foundations of their submissions to ILSVRC and COCO 2015 competitions, where they also won

the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and

COCO segmentation.

What is the reason of such very strong performances of CNNs models ? Zeiler and Fergus [114]

in their work tried to visualise and understand convolutional networks activations (Figure 2.2).

They studied the characteristics of the represented information in each layer. Investigating 7-

layers CNNs models inspired by AlexNET, they use the information in each layer as features then

use non-CNNs learning models such as Support Vector Machine (SVM) to classify as a normal

visual recognition task. According to their results, the first layer relates to simple low-level

characteristics such as simple edges or color. The second layer provides more complex low level

information as corner or center-surround. The semantic information exists from the third layer. It

roughly corresponds to various objects’ parts. In the fourth and fifth layers, we can find selective

units for entire objects or large parts of them. Generally speaking, the deeper the layer, the

more semantic the information. Comparing with low-level hand-crafted features whose filters

are fixed before the learning tasks, the CNNs features are more adaptive to the learning tasks

because all filters parameters are updated at each iteration during the training task.

2.1.2 Action understanding

In terms of naive approach, we can consider our problem as a traditional visual action

recognition task. A classical solution scheme begins with features extraction, continues with in-

formation aggregation to have spatio-temporal representation then finishes with model learning.

From first success of Space Time Interest Point - STIP [46] to the state-of-the-art low-level dense

trajectories descriptors method [104], they proposed various types of hand-crafted features :

SIFT [57], HOG [17], HOF [9], MBH [104], MpegFlow [40], SURF [5], HOG3D [42], etc. Especially,

by adding some techniques to improve dense trajectories by explicit camera motion estimation,

detecting human to remove outliers matches for homography estimation, and stabilising optical

flow to eliminate camera motion, Wang et al. [105] achieved state-of-the-art performances with a

low-level descriptor on Hollywood2 [67], HMDB51 [44] and UCF101 [92].

Recently, there existed some successful models for action recognition using CNNs architec-

ture (Figure 2.3). Simonyan et al. [90] proposed a two-streams CNNs models combining spatial

stream as single image input and temporal stream as multi-frame optical flow input. Tran et
al. [97] constructed a 3D convolutional network to learn spatio-temporal features. Wang et
al. [108] continued to improve the dense trajectories method by trajectories pooled convolutional

descriptors.

In the two-streams CNNs model [90], they investigated architectures of discriminatively

Version intermédiaire en date du 26 novembre 2022



2.1. Background 15

Figure 2.2 – Visualization of features in fully trained AlexNet model [114].
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trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge

is to capture the complementary information on appearance from still frames and motion bet-

ween frames. They also aimed to generalise the best performing hand-crafted features within

a data-driven learning framework. Their contribution was three-fold. First, they propose a

two-stream ConvNet architecture that incorporates spatial and temporal networks. Second, they

demonstrated that a ConvNet trained on multi-frame dense optical flow is able to achieve very

good performance in spite of limited training data. Finally, they proved that multitasks learning,

applied to two different action classification datasets, could be used to increase the amount of

training data and improve the performance on both. Their architecture is trained and evaluated

on the standard video actions benchmarks of UCF-101 and HMDB-51, where it is competitive

with the state of the art. It also exceeds by a large margin previous attempts to use deep nets for

video classification.

Similar to the idea of integrating CNNs features to action recognition, Tran et al. [97] learned

spatiotemporal features with 3D Convolutional Networks. They proposed a simple, yet effective

approach for the spatio-temporal features learning using deep 3-dimensional convolutional

networks (3D ConvNets) trained on a large-scale supervised video dataset. Their findings were

three-fold : first, 3D ConvNets were more suitable for the spatio-temporal features learning

compared to 2D ConvNets ; second, a homogeneous architecture with small 3×3×3 convolution

kernels in all layers was among the best-performing architectures for 3D ConvNets ; and third,

their learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperfor-

med state-of-the-art methods on 4 different benchmarks and are comparable with current best

methods on the other 2 benchmarks. In addition, the features were compact : achieving 52.8%

accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to

the fast inference of ConvNets. Finally, they were conceptually very simple and easy to train and

use.

To improve previous effective approaches of dense trajectories, Wang et al. [108] introduced

Trajectory-Pooled Deep-Convolutional Descriptors. Because visual features are of vital impor-

tance for human action understanding in videos, they investigated a new video representation,

called trajectory-pooled deep convolutional descriptor (TDD), which shares the merits of both

hand-crafted features and deep-learned features. Specifically, they used deep architectures to

learn discriminative convolutional feature maps and conducted trajectory-constrained pooling

to aggregate these convolutional features into effective descriptors. To enhance the robustness

of TDDs, they designed two normalisation methods to transform convolutional feature maps,

namely spatiotemporal normalisation and channel normalisation. The advantages of their fea-

tures came from : first, TDDs are automatically learned and contain high discriminative capacity

compared with those hand-crafted features ; second, TDDs take into account the intrinsic cha-

racteristics of the temporal dimension and introduce the strategies of trajectories constrained
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Figure 2.3 – Two types of features in action recognitions : Hand-crafted and Deep features [108].

sampling and pooling for aggregating deep learned features. They conduct experiments on two

challenging datasets : HMDB51 and UCF101. Experimental results show that TDDs outperfor-

med previous hand-crafted features and deep-learned features. Their method also achieved

superior performance to the state of the art on these datasets.

Although all these methods achieved promising results, they focused only on common

single activities with simple backgrounds and few participants. In contrast, our context is more

challenging because many simultaneous actions appear in traffic networks with a disorderly

scenario, and the activities involve multiple phases and multiple objects. A better solution is

detection, segmentation and tracking of all the relevant elements in the video then using other

specific techniques to model the interaction and to define the class of actions.

2.1.3 Object detection

Recent state-of-the-art object detectors are based on CNNs. R-CNN [24] casts the object

detection task as a region-proposal classification problem based on features extracted from

AlexNET pre-trained model and SVM classifiers. SPP-Net [30] provide a flexible input image

size due to pooling features techniques. Fast R-CNN [23] extended previous works on R-CNN

and SPP-Net to efficiently classify object proposals using an end-to-end architecture with several

innovations to improve training and testing speed while also increasing detection accuracy. Fast
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R-CNN trained the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time,

and achieves a higher mAP (that stands for mean Average Precision) on PASCAL VOC 2012.

Faster R-CNN [85] extends this approach by generating bounding box proposals with a fully

convolutional Region Proposal Network (RPN). RPN considers a set of densely sampled anchor

boxes, that are scored and regressed. Moreover, it shares convolutional features with proposal

classification and regression branches. These branches operate on fixed-size features obtained

using a Region-of-Interest (RoI) pooling layer. In a similar spirit, YOLO [82] and SSD [51] also

use a set of anchor boxes, which are directly classified and regressed without a RoI pooling layers.

In YOLO, all scores and regressions are computed from the last convolutional feature maps,

whereas SSD adapts the features to the size of the boxes. Features for predicting small-sized

boxes come from early layers, and features for big boxes come from the latter layers, with larger

receptive fields. All these object detectors rely on anchor boxes.

Figure 2.4 – The pipeline of R-CNN [24]. This is the first successful deep learning model for
object detection.

In more details, the first successful model is R-CNN, proposed by Ross Girshick et al. The

idea is quite natural by integrating CNNs features into interesting regions extracted by previous

region proposal methods (Figure 2.4). Those CNNs features were easy to outperform all previous

handcrafted features and show the promising possibilities of CNNs features when applied to

the object detection task. Object detection performances, as measured on the canonical PASCAL

VOC dataset, have plateaued in the last few years. The best-performing methods are complex

ensemble systems that typically combine multiple low-level image features with high-level

context. In their works, they proposed a simple and scalable detection algorithm that improves

the mean average precision (mAP) by more than 30% relative to the previous best result on VOC

2012 achieving a 53.3% mAP. Their approach combines two key insights : first, one can apply

high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order

to localise and segment objects and second, when labeled training data is scarce, supervised

pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant
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performance boost. Since they combined region proposals with CNNs, they call their method

R-CNN : Regions with CNN features. They also compared R-CNN to OverFeat, a previous pro-

posed sliding-window detector based on a similar CNN architecture. They found that R-CNN

outperforms OverFeat by a large margin on the 200-class ILSVRC2013 detection dataset.

To reduce time consumption in R-CNN, He et al. proposed Spatial Pyramid Pooling archi-

tecture called SPP-Net [30]. Existing deep convolutional neural networks (CNNs) required a

fixed-size (e.g., 224 × 224) input image. This requirement was artificial and may reduce the

recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, they

equipped the networks with another pooling strategy, called "spatial pyramid pooling”, to

eliminate the above requirement. The new network structure, called SPP-net, can generate a

fixed-length representation regardless of image size/scale. The pyramid pooling is also robust to

object deformations. With these advantages, SPP-net should in general improve all CNN-based

image classification methods. On the ImageNet 2012 dataset, they demonstrated that SPP-net

boosts the accuracy of a variety of CNN architectures, despite their different designs. On the

Pascal VOC 2007 and Caltech101 datasets, SPP-net achieved state-of-the-art classification results

using a single full-image representation and no fine-tuning. The power of SPP-net is also signifi-

cant in object detection. Using SPP-net, they computed the feature maps from the entire image

only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length

representations for training the detectors. Their method was up to a hundred times faster than

the R-CNN method while achieving a better or comparable accuracy on Pascal VOC 2007. In

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, their method ranks 2 in

object detection and 3 in image classification among all the 38 teams. This manuscript also

introduces the improvement made for this competition.

Improving the depth and speed of R-CNN, Girshick proposed the Fast R-CNN architec-

ture [23] with many significant contributions. This paper proposed a Fast Region-based Convo-

lutional Network method (Fast R-CNN) for object detection. Fast R-CNN was built on previous

work to efficiently classify object proposals using deep convolutional networks. Compared to

previous work, Fast R-CNN employed several innovations to improve training and testing speed

while also increasing detection accuracy. As we stated, Fast R-CNN trained the very deep VGG16

network 9× faster than R-CNN, is 213× faster at test-time, and achieves a higher mAP on PASCAL

VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3× faster, tests 10× faster, and is

more accurate. The advantages of Faster R-CNN were : Higher detection quality (mAP) than

R-CNN, SPPnet ; Training was single-stage, using a multi-task loss ; Training can update all

network layers ; No disk storage was required for the feature caching.

A huge improvement towards Real-Time Object Detection was introduced by Ren et al. in

Faster R-CNN [85] using Region Proposal Networks. In their work, they proposed a Region Pro-
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Figure 2.5 – Network architecture of Faster R-CNN [85]. RPN is a key module to construct an
unified end-to-end model for object detection.

posal Network (RPN) that shares full-image convolutional features with the detection network,

thus enabling nearly cost-free region proposals (Figure 2.5). An RPN is a fully convolutional

network that simultaneously predicts object bounds and objectness scores at each position. The

RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast

R-CNN for detection. They further merged RPN and Fast R-CNN into a single network by sharing

their convolutional features—using the recently popular terminology of neural networks with

“attention” mechanisms, the RPN component tells the unified network where to look. For the

very deep VGG-16 model, their detection system has a frame rate of 5fps (including all steps)

on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007,

2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015

competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in

several tracks.

An alternative approach using anchor box and regression problem is YOLO [82]. Redmon et al.
proposed YOLO, a new approach to object detection. Prior work on object detection repurposes

classifiers to perform detection. Instead, they framed object detection as a regression problem to

spatially separated bounding boxes and associated class probabilities. A single neural network

predicts bounding boxes and class probabilities directly from full images in one evaluation.
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Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on

detection performance. Their unified architecture was extremely fast. Their base YOLO model

processes images in real-time at 45 frames per second. A smaller version of the network, Fast

YOLO, processes an outstanding 155 frames per second rate while still achieving twice the

mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO made

more localisation errors but is less likely to predict false positives in the background. Finally,

YOLO learned very general representations of objects. It outperformed other detection methods,

including DPM and R-CNN, when generalising natural images to other domains like artwork.

2.1.4 Object segmentation

Object detection is the tasks that lists the objects appearing in an image or a video sequence

and that locates them. Intuitively, the first step of discovering the interactions between users and

transports infrastructures is detecting and localising all users and vehicles existing in videos.

Further steps, as modelling or classifying those interactions, need more information at pixel-level

understanding. Assigning each pixel to an object or background category is the aim of object

segmentation. Recent improved techniques of object segmentation proposed efficient approaches

for semantic and instance segmentation of moving object, that is the priority input for learning

model.

CNNs are driving advances in recognition, not only improving for whole-image classification

[43, 91, 95, 31] but also making progress on local tasks with structured output. These include

advances in bounding box object detection [24, 23, 85, 82, 51], part and keypoint prediction,

and local correspondence. The natural next step in the progression from coarse to fine inference

is to make a prediction at every pixel. FCNs [54] proposed by J.Long et al. in 2015 is the first

end-to-end CNNs model achieving state-of-the-art performances without further machinery.

Fully convolutional versions of existing networks predict dense outputs from arbitrary-sized

inputs. Both learning and inference are performed whole-image-at-a-time by dense feedforward

computation and backpropagation. In-network upsampling layers enable pixel-wise prediction

and learning in nets with subsampled pooling.

Following the idea of making fully convolutional architectures, an improvement of the FCNs

model was proposed by DeepLab [12]. A Deep Convolutional Neural Network such as VGG-16

or ResNet-101 was employed in a fully convolutional fashion, using atrous convolution to reduce

the degree of the signal downsampling (from 32x down 8x). A bilinear interpolation stage

enlarged the feature maps to the original image resolution. A fully connected CRF was then

applied to refine the segmentation result and better capture the object boundaries.

However, repeated subsampling operations like pooling or convolution striding in deep

CNNs lead to a significant decrease in the initial image resolution. Lin et al. proposed RefineNet
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[49], a generic multi-path refinement network that explicitly exploits all the information avai-

lable along the down-sampling process to enable high-resolution prediction using long-range

residual connections. In this way, the deeper layers that capture high-level semantic features

could be directly refined using fine-grained features from earlier convolutions. The individual

components of RefineNet employed residual connections following the identity mapping mind-

set, which allows for effective end-to-end training. Further, they introduced chained residual

pooling, which captures rich background context in an efficient manner.

In terms of instance object segmentation, Mask R-CNN [29] achieved state-of-the-art per-

formance in a general context. This method efficiently detects objects in an image while simul-

taneously generating a high-quality segmentation mask for each instance. It is extended from

Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing

branch for bounding box recognition (Figure 2.6). The technique for providing object masks

can be considered as semantic segmentation that shared the same spirit with FCNs [54] inside a

bounding box with binary classes : object or background.

Despite significant progressing steps in object segmentation in a static image, the problem of

determining whether an object is in motion, irrespective of camera motion, is far from being

solved. MP-Net [96] proposed by Tomakov et al. in 2017 addressed this challenging task by

learning motion patterns in videos. The core of their approach is a fully convolutional network,

which was learned entirely from synthetic video sequences, and their ground-truth optical

flow and motion segmentation. This encoder-decoder style architecture first learned a coarse

representation of the optical flow field features and then refined it iteratively to produce motion

labels at the original high resolution. They further improve this labeling with an objectness map

and a conditional random field, to account for errors in optical flow, and also to focus on moving

“things” rather than “stuff”. The output label of each pixel denotes whether it has undergone

independent motion, i.e. irrespective of camera motion.

2.1.5 Optical flow

Optical flow is the apparent motion of brightness patterns in the image. Because the motion

field is the projection of the 3D scene motion into the image, the optical flow would be ideally

the same as the motion field. As a promising result of MP-Net, we consider using an optical flow

map as an adding input channel for CNNs model in order to enhance information.

The first efficient way to solve this equation with two unknowns was proposed by B.Lucas

and T.Kanade in 1981 [60]. Another algorithm was proposed by Horn and Schuck in 1981 [34] by

adding smoothness constraint. In 2011, Brox and Malik proposed Large Displacement Optical

Flow (LDOF) [9] estimation method by adding into the energy function a matching term that

penalises the difference between flows and HOG matches. MDP-Flow 2 [64] proposed by Xu et
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Figure 2.6 – The Mask R-CNN framework for instance segmentation [29].

al. in 2012 continued to extend this approach with the expensive fusion of matches (SIFT +

PatchMatch) and estimation flow at each level. Inspired by the rise of CNNs models, many

researchers proposed theirs approaches linked with CNNs architectures. In the case of DeepFlow

[110] proposed by Weinzaepfel et al. in 2013, they combined deep matching and flow refinement

with a variational approach. Feature information is aggregated from fine to coarse using sparse

convolutions and max-pooling. However, it did not perform any learning and all parameters

were set manually. The successive work of [86] termed EpicFlow had put even more emphasis on

the quality of sparse matching as the matches from DeepFlow were merely interpolated to dense

flow fields while respecting image boundaries.

Recently, FlowNet [19] only used a variational approach for the optional refinement of the

flow field predicted by the convolutional net and did not require any handcrafted methods for

aggregation matching and interpolation. P.Fischer et al. constructed appropriate CNNs which

were capable of solving the optical flow estimation problem as a supervised learning task. They

proposed and compare two architectures : a generic architecture and another one including a

layer that correlates feature vectors at different image locations (Figure 2.7). However, FlowNet

did not outperform traditional methods. The state of the art with regard to the quality of the

flow had still been defined by traditional methods. Particularly on small displacements and

real-world data, FlowNet cannot compete with variational methods. FlowNet 2.0 [35] proposed

by Eddy Igg et al. in 2017 advanced the concept of end-to-end learning of optical flow and made

it work really well. The large improvements in quality and speed are caused by three major

contributions : first, they focused on the training data and show that the schedule of presenting

data during training was very important. Second, they developed a stacked architecture that

includes the warping of the second image with intermediate optical flow. Third, they elaborated

on small displacements by introducing a subnetwork specializing in small motions. The lighter

Version intermédiaire en date du 26 novembre 2022



24 CHAPITRE 2. Related work

Figure 2.7 – Network architecture of Flow-Net [19]. This is the first successful deep learning
model for optical flow estimation.

version of FlowNet 2.0 is PwCNet [94] with an encode-decode architecture.

Usually, optical flow is a basement for action recognition. On the other hand, Lucet al. [59]

introduced a new utilisation of optical flow for predicting future segmentation. This first

work suggests to us a promising way to exploit optical flow for generating the missing video

information.

2.1.6 Supervised context Summary

Method Description Performance

AlexNET 2012 [43] Image classification, single

image, end-to-end architec-

ture, 7 layer

17% top-5 err on ILSVRC12 ;

15.3% top-5 err on ILSVRC10

VGG 2014 [91] Image Classification, single

image, end-to-end architec-

ture, 16 or 19 layers

8.43% top-5 err on ILSVRC14

GoogLeNet 2014 [95] Image Classification, single

image, end-to-end architec-

ture, inception module, 22

layer

7.89% top-5 err on ILSVRC14
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ResNet 2015 [31] Image Classification, single

image, end-to-end architec-

ture, residual learning func-

tion, more than a hundred

layers

4.49% top-5 err on ILS-

VRC14, 3.57% top-5 err on

ILSVRC15

Dense trajectories 2012

(DT) [104]

Action Recognition, video le-

vel

83.5% ACC on UCF101,

58.2% on Hollywood2, 46.6%

on HMDB51

Improved DT 2013 (IDT)

[105]

Action Recognition, video le-

vel

85.9% ACC on UCF101,

66.8% on Hollywood2, 60.1%

on HMDB51

2-streams CNNs 2014 [90] Action Recognition, video le-

vel

88.0% ACC on UCF101,

59.4% on HMDB51

Convolutional 3D 2014

[97]

Action Recognition, video le-

vel

85.2% ACC on UCF101

TDD and IDT 2015 [108] Action Recognition, video le-

vel

91.5% ACC on UCF101,

65.9% on HMDB51

R-CNN 2013 [24] Object Detection, AlexNet ar-

chitecture, multi stages pipe-

line

62.4% mAP PASCAL VOC12

Fast R-CNN 2015[23] Object Detection, end-to-end,

VGG-16 architecture

68.4% mAP PASCAL VOC12,

test time 0.5 fps on GPU Ti-

tan X

Faster R-CNN 2015 [85] Object Detection, end-to-end,

ResNet architecture

73.8% mAP PASCAL VOC12,

test time 5 fps on GPU Titan

X

YOLOv2 2016 [83] Object Detection, end-to-end 73.4% mAP PASCAL VOC12,

test time 40 fps on GPU Titan

X

SSD 2015 [51] Object Detection, end-to-end 74.9% mAP VOC12, test time

19 fps on GPU Titan X

FCN 2014 [54] Image Segmentation, sematic

level

65.3% mIOU Cityscapes

SegNet 2015 [3] Image Segmentation, seman-

tic level

57.0% mIOU Cityscapes

DeepLab 2016 [12] Image Segmentation, seman-

tic level

70.4% mIOU Cityscapes
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RefineNet 2016 [49] Image Segmentation, seman-

tic level

73.6% mIOU Cityscapes

MP-Net 2017 [96] Moving Object Segmentation,

only segment moving object,

first successful

69.7% mIOU DAVIS

Mask R-CNN 2017 [29] Image Segmentation, Ins-

tance level

58.1% AP50 Cityscapes

LDOF 2011 [9] Optical Flow estimation 18.19 AEE KITTI15

DeepFlow 2013 [110] Optical Flow estimation 10.63 AEE KITTI15

EpicFlow 2015 [86] Optical Flow estimation 9.27 AEE KITTI15

FlowNet2 2016 [35] Optical Flow estimation 8.94 AEE KITTI15

Tableau 2.1 – Supervised context summary

Top-5 error rate is the fraction of test images for which the correct label is not among the five

labels considered most probable by the mode.

Accuracy (ACC) is the fraction between true prediction (both true positive and true negative)

and total prediction.

For searching or detection problems, precision is the fraction of retrieved elements that are

relevant to the searching query. Recall is the fraction of the elements that are relevant to the

searching problem that is successfully retrieved. By computing precision and recall at every

position, one can plot a precision-recall curve, plotting precision p(r) as a function of recall

r. Average precision (AP) computes the average value of p(r) over the interval from r = 0 to

r = 1. Mean average precision (mAP) for a set of searching elements is the mean of the average

precision scores for each searching element.

For image segmentation, Intersection over Union (IOU) score for each class is the fraction

between true positive pixels and the sum of true positive, false negative and false positive pixels.

The mean IoU (mIOU) is the mean of IOU for all classes. Especially, for instance-level segmenta-

tion, performance on this task is measured by the COCO-style mask AP (average precision on

region level) and AP50 (average precision when overlap at region level is at least 50%).

For optical flow estimation, Endpoint Error (EE) is defined as the scalar length of different

vector ||Vest − Vgt || between estimated optical flow vector Vest and ground- truth optical flow

vector Vgt . Average Endpoint Error (AEE) is average of EE for all optical flow vector.
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2.1.7 Unsupervised context

Despite the promising results in supervised context for action recognition and localization,

the researches in unsupervised or weakly-supervised context are still challenging. Oneata et
al. [74] extend 2D object proposal method to produce spatio-temporal proposals by mean of a

randomized supervoxel merging process. Kwak et al. [45] tackle the discovery and localization

problem using a part-based region matching approach [14] then extended to spatio-temporal

tubes by tracking. Both methods used hand-crafted features with several complementary process

so take long time compared with CNNs approaches. Besides, the context was simple with a

single object or co-localization and the action was only localized by tracking.

Recently, we can benefit from a promising CNNs architecture adapted for unsupervised

context : Generative Adversarial Networks (GANs) [25]. GAN is an unsupervised generative

model, that learns to generate the true data distribution by implicit density estimation. GAN

is composed of a generator and a discriminator. In training, the generator is trained in a way

the discriminator cannot distinguish fake images produced by the generator from the real ones.

Meanwhile, the discriminator learns to distinguish fake images from real images. Through this

adversarial competition, the generated images from GAN become harder to distinguish from

the reals. The successful results of GANs leads to various application in generative model :

learning unsupervised representation [79], image translation [39] and synthesis [84], video

gererating [100]. In spite of promising achievements in generative tasks, GANs have not been

adapted to discriminative task such as the one of our context yet.

2.2 Future prediction

2.2.1 State of the art

Future video information prediction recently has became an active topic due to significant

progresses in deep learning, especially in generative adversarial networks (GANs) and Convo-

lutional Auto-Encode (Conv-AE) models. They predicted various types of future information

for specific applications. [68] trained a classical 7-layers CNN to generate future frames given

an input sequence. To deal with the inherently blurred predictions obtained from the standard

Mean Squared Error (MSE) loss function, they proposed three different and complementary

features learning strategies : a multi-scale architecture, an adversarial training method, and an

image gradient difference loss function. [103] built a 7-layers CNN for predicting the future

motion of each and every pixel in the image in terms of optical flow given a static image. [20]

developed a Long-Short Term Memory (LTSM) based action-conditioned video prediction model

that explicitly models pixel motion to learn about physical object motion without labels, by

predicting a distribution over pixel motion from previous frames. Inspired by the same idea, [55]

constructed the LTSM based PredNet network which learned to predict future frames in a video
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sequence, with each layer in the network making local predictions and only forwarding devia-

tions from those predictions to subsequent network layers. [98] built a deep neural network for

the prediction of future frames in natural video sequences upon the Conv-AE and Convolutional

LSTM for pixel-level prediction, which independently capture the spatial layout of an image and

the corresponding temporal dynamics. In [73], the authors introduced an architecture based on

recurrent Conv-AEs to deal with the network capacity and error propagation problems for future

video prediction. It consisted of a series of bijective Gate Recurrent Unit (GRU) layers, which

allowed for a bidirectional flow of information between input and output : they considered the

input as a recurrent state and update it using an extra set of gates. [21] proposed an approach

using Conv-AE that hallucinated the unobserved future motion implied by a single snapshot to

help static-image action recognition. The key idea was to learn prior over short-term dynamics

from thousands of unlabeled videos, infer the anticipated optical flow on novel static images,

and then train discriminative models that exploit both streams of information. Obviously, most

recent researchers build their model upon a Conv-AE model to reconstruct the future informa-

tions.

Generative modelling of future RGB video frames has recently been studied using a variety

of techniques : prediction of future human pose [99], generative adversarial training model [68],

forecasting convolutional features [59]. All their works focus on predicting future information

which they never can not achieve. This context is a bit different than our work where we address

the problem of generating only the missing information the detector failed to produce. We can

freely generate backward and forward segmentation or bounding boxes based on some current

results from the detectors. Despite the difference between those contexts, we apply the simple

baseline approach from Luc et al. [59] that translated a segment on the basis of flow vectors.

2.2.2 Generative Adversarial Network

Generative Adversarial Network (GAN) proposed by Ian Goodfellow et al. [25] is a framework

estimating generative models via an adversarial process. By now, GANs are built as deep neural

network models and they are used to generate synthetic images. Generally, the architecture

comprises two deep neural networks, a generator and a discriminator, which work against each

other (thus, “adversarial”). The generator generates new data instances, while the discriminator

evaluates the data for authenticity and decides whether each instance of data is “real” from

the training dataset, or “fake” from the generator (Figure 2.8). GANs models focus to solve the

difficulty of approximating many intractable probabilistic computations that arise in maximum

likelihood estimation and related strategies, and difficulty of leveraging the benefits of piecewise

linear units in the generative context.

Theoretically, let G denotes a generative model that captures the data distribution, and

D denotes a discriminative model that estimates the probability that a sample came from

the training data rather than G. The training procedure for G is to maximize the probability
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Figure 2.8 – GAN principle : The generator generates new data instances, while the discrimi-
nator evaluates the data for authenticity. The loss is applied to updated both generator and
discriminator.

of D making a mistake. This framework corresponds to a minimax two-player game. In the

space of arbitrary functions G and D, a unique solution exists, with G recovering the training

data distribution and the probability of D making a mistake being 1
2 everywhere. In the case

where G and D are defined by multilayer perceptrons, the entire system can be trained with

backpropagation. There is no need for any Markov chains or unrolled approximate inference

networks during either training or generation of samples. In the proposed adversarial nets

framework, the generative model is pitted against an adversary : a discriminative model that

learns to determine whether a sample is from the model distribution or the data distribution. The

generative model can be thought of as analogous to a team of counterfeiters, trying to produce

fake currency and use it without detection, while the discriminative model is analogous to the

police, trying to detect the counterfeit currency. Competition in this game drives both teams to

improve their methods until the counterfeits are inseparable from the genuine articles.

2.3 Improving Detection and Tracking

2.3.1 Mask R-CNN

Mask R-CNN [29] is a conceptually simple, flexible, and general framework for objects

instances segmentation. In principle, Mask R-CNN is an extension of Faster R-CNN [85] that

constructs a third branch as FCN [54] for segmentation (Figure 2.9). Therefore, we find Mask

R-CNN is an effective combination of elements from the classical computer vision tasks for
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object detection and semantic segmentation. Mask R-CNN surpasses all previous state-of-the-art

single-model results on the COCO dataset for both instance segmentation and bounding box

detection tasks. Though, it has a limitation in implementation for other datasets. In particular,

when applied to video sequences the detection can get unstable when the object is rapidly

changing its appearance. Such events frequently occur in transportation based video sequences,

for instance when a vehicle is turning right or left or when its apparent size increase or decrease

owing to its relative move with respect to the camera.

Figure 2.9 – Network architecture of Mask R-CNN based on very deep ResNet [29].

2.3.2 IOU object tracker

Before the rise of CNNs models, almost all successful trackers performed object location

based on hand-crafted features : IHTLS [18], H2T [111], CMOT [4], etc. Because of the use of

(so called) too simple concepts, these trackers show their limited performances when facing

difficult scenarios from recent multi-object tracking challenges [65]. Recently, IOU Tracker [7]

based on the strong performances of CNN based detector surpassed all previous methods in

both easy and difficult scenarios. Bochinski et al. considered only the overlaps between bounding

boxes obtained from detector to associate them (Figure 2.10). It benefits from the fast and strong

performance of CNNs-based detector without any other visual information. As a consequence,

this can be seen as a bit risky process due to the complete dependence of the tracking task to

the accuracy of the detector : as discussed above, both false positive and negative error of the

detector can cause fragmented trajectories.

2.4 Anomaly Detection

2.4.1 Evaluation metrics for Anomaly Detection

Generally, one usually uses Equal Error Rate (EER) and Area Under Curve (AUC) to evaluate

quantitative performance of an anomaly detection model.

Version intermédiaire en date du 26 novembre 2022



2.4. Anomaly Detection 31

Figure 2.10 – IOU Tracker principle : Associating detections by their spatial overlap between
time steps based on high accuracy detections at high frame rates [7].

Equal error rate (EER) is a popular measurement metric in biometric security system that

used to predetermine the threshold values for its false acceptance rate (FAR) and its false re-

jection rate (FRR). When the rates are equal, the common value is called the equal error rate.

The value represents the point where the proportion of false acceptances is equal to the propor-

tion of false rejections. The lower the equal error rate value, the higher the accuracy of the system.

Area Under Curve (AUC) of Receiving Operation Characteristic (ROC) curve is more popular

than EER. ROC curve is plotted with True Positive Rate (TPR) against the False Positive Rate

(FPR) where TPR is on the y-axis and FPR is on the x-axis. AUC is the area under this curve.

Higher the AUC, the better the model is. AUC is precisely presented in section 4.1.6.

From frame-level to object-centric level, we can also apply the AUC and EER as potential

evaluation metric by adding some bounding box level conditions. Following the definition

of [101, 58], a candidate frame will be considered as abnormal frame if the intersection between

its detected boxes and the ground-truth boxes is greater than 40%. To have a fair comparison,

we apply this evaluation metric. In contrast, we find that the bounding box AUC and EER is not

enough good for evaluating object-centric level performance. It is still similar to frame-level

rather than purely bounding box level. Hence, we also define ourself some alternative evaluation
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metrics that more adaptive to object-centric level : IOU50Rate, IOU75Rate and mIOU . Those

metric are presented in detail in section 4.1.6.

2.4.2 Early works with hand-crafted features

Before Convolutional Neural Networks (CNNs) became popular, most of the early methods

were based on the extraction of hand-crafted features to estimate the models of normal and

abnormal events. Motion trajectories were used as the principal features [69, 115] because of

their fast extraction and simple implementation. However, the single motion information was

not sufficient to represent all the spectrum of abnormal events and the motion estimator was

easily confused in crowed and complex scenes.

To improve these limitations, both appearance and motion were extracted along the tra-

jectories. Kim et al. [41] used Histogram of optical flow to build space-time Markov Random

Fields (MRF) graph for detecting abnormal activities in video. The nodes in the MRF graph

corresponded to a grid of local regions in the video frames, and neighbouring nodes in both

space and time were associated with links. They captured the distribution of typical optical

flow with a mixture of probabilistic principal component analyzers to learn normal patterns of

activity at each local node. For any new optical flow patterns detected in incoming video clips,

they applied the learned model and MRF graph to compute a maximum a posteriori estimate of

the degree of normality at each local node. Further, they proposed the incremental update of

the current model’s parameters as new video observations stream in, so that their model could

efficiently adapt to visual context changes over a long period of time. Qualitative performances

illustrated that their space-time MRF model robustly detected abnormal activities both in a local

and global sense.

Mahadevan et al. [66] learned the Mixture of Dynamic Textures (MDT) during training then

computed negative log-likelihood of the spatio-temporal patch at each region at test phase (Fi-

gure 2.11). They proposed three properties for designing their models : (1) joint modelling of

appearance and dynamics of the scene, and the abilities to detect (2) temporal and (3) spatial ab-

normalities. The model for normal crowd behaviour was based on mixtures of dynamic textures,

and outliers under this model were labelled as anomalies. Temporal anomalies were equated

to events of low-probability, while spatial anomalies are handled using discriminant saliency.

To evaluate their models, they presented new datasets : USCD Pedestrians Ped1 & Ped2. They

achieved state-of-the-art performances on their dataset at the moment of publication.

Developing the capability of motion representations, Histograms of optical flow orientation

(HOFO) was extracted by Wang et al. [109] to classify abnormal events by one-class SVM or

kernel PCA. The details of the histogram of the optical flow orientation descriptor were illus-

trated for describing movement information of the global video frame or foreground frame.
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Figure 2.11 – Learning MDTs for temporal abnormality detection by Mahadevan et al. [66].

By combining one-class SVM and kernel PCA methods, the abnormal events in the current

frame can be detected after a learning period characterizing normal behaviours. They achieve

impressive performance AUC = 0.99on several parts of UMN dataset [76].

Figure 2.12 – Discriminative framework combining HOG, HOF, MBH for anomaly detection
proposed by Giorno et al. [22].

More recently, Giorno et al. [22] built a combination of HOG, HOF, MBH to train their classi-
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fiers then took the average classification scores to draw the output signal (Figure 2.12). They

worked on a specific unsupervised scenario where training sequences were unavailable and

anomalies were scored independently of temporal ordering. By defining anomalies as examples

that can be distinguished from other examples in the same video, their definition inspired a

shift in approaches from classical density estimation to simple discriminative learning. They

also achieved state-of-the-art performance AUC = 0.91 on Avenue dataset [58] at the moment of

their publication.

Generally, most of those methods achieved good performance on some simple datasets

without changing the camera orientation, illumination or dealing with complex activities. For

more challenging datasets, they just yielded moderate performance due to the limitation of

hand-crafted features in case of large datasets and complex scenarios.

2.4.3 Recent successful models with Discriminative Deep learning model

Recently, the existing of powerful deep learning models leads to many successful approaches

in anomaly detection. Hinami et al. [33] solved the problem of environment-dependent nature

by integrating a generic Fast R-CNN model and environment-dependent anomaly detectors.

They learned CNN with multiple visual tasks to exploit semantic information that is useful

for detecting and recounting abnormal events and then appropriately plugged the model into

anomaly detectors (Figure 2.13). They achieved AUC = 0.898 on Avenue and AUC = 0.922 on

Ped2 dataset.

Figure 2.13 – Environment-dependent anomaly detectors proposed by Hinami et al. [33]. The left
part illustrates learning procedures of two types of models : generic and environment-specific
models, and right part shows testing procedure of joint detection and recounting abnormal
events.

Ionescu et al. [38] introduced a framework without requirements of training data by applying

unmasking techniques. They combined the motion features computed from 3D gradients at each
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spatio-temporal cube with conv5 layer of VGG-net with fine-tuning as appearance features. Then

a binary classifier was trained to distinguish between two consecutive video sequences while

removing at each step the most discriminant features. The higher training accuracy rates of the

intermediately obtained classifiers represented abnormal events. They achieved AUC = 0.806

on Avenue dataset.

Figure 2.14 – Stack RCNN framework for anomaly detection proposed by Luo et al. [63]. The
blue boxes represent the input of stacked RNNs. The green and orange boxes represent coding
vectors. The yellow circles are similarities between neighbouring frames.

During this period, Luo et al. also proposed another model in [63] in which they mapped a

Temporally-coherent Sparse Coding where they enforced similar neighbouring frames being

encoded with similar reconstruction coefficients with a special type of stacked Recurrent Neural

Network (sRNN). By taking advantage of sRNN in learning all parameters simultaneously, the

nontrivial hyper-parameter selection to TSC could be avoided, meanwhile with a shallow sRNN,

the reconstruction coefficients could be inferred within a forward pass, which reduced the

computational cost for learning sparse coefficients (Figure 2.14). They achieved AUC = 0.82 on

Avenue, 0.92 on Ped2 and 0.68 on ShanghaTech datasets.

Recently, Hamdi et al. [26] proposed an efficient method based on deep learning and handcraf-

ted spatio-temporal feature extraction for anomaly detection using a pre-trained CNN and HOF

(Histogram of Optical Flow) features. Abnormal motion was picked by relative thresholding.

Then they trained One-class SVM with spatial features for robust classification of abnormal

shapes. Moreover, they applied a decision function to correct the false alarms and the missed

detections. Their method had a high performance in terms of speed and accuracy. It achieved

anomaly detection with good efficiency in simple datasets (EER = 0.145 on USCD Ped2 and

EER = 0.035 on UMN) and reduced computational complexity compared to state-of-the-art

methods at the moment of publication.
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2.4.4 State-of-the-art models with Generative Deep learning

Hasan et al. [27] learned all motion trajectories features (HOG, HOF, MBH) then built autoen-

coder to reconstruct the scene. They first leveraged the conventional handcrafted spatio-temporal

local features and learned a fully connected autoencoder on them. Then they built a fully convo-

lutional feed-forward autoencoder to learn both the local features and the classifiers as an

end-to-end learning framework (Figure 2.15). Their model could capture the regularities from

the multiple more challenging datasets (AUC = 0.80 on Avenue dataset and 0.61 on Shan-

ghaiTech dataset). The idea of using reconstruction error to measure the regularity score was

promising and has been extended by almost recent state-of-the-art methods.

Figure 2.15 – Generative framework combining motion features or learned features with autoen-
coder to reconstruct the scene for anomaly detection proposed by Hasan et al. [27].

Luo et al. [62] integrated a ConvNet encoding appearance features for each frame and a

ConvLSTM memorising motion features for all past frames with Auto-Encoder to learn the

regularity of appearance and motion for the ordinary moments. Compared with 3D Convolutio-

nal Auto-Encoder based anomaly detection, their main contribution lied in that they propose

a ConvLSTM-AE framework which better encodes the change of appearance and motion for

normal events, respectively. They achieved AUC = 0.77 on Avenue, 0.88 on Ped2 and 0.75 on

Ped1 datasets.

At the same time, Liu et al. [53] introduced a first work of future prediction based anomaly

detection. They adopted CGAN techniques with U-Net model as generator to predict the next

frame (Figure 2.16). To generate high-quality image, they made the constraints in terms of

appearance (intensity loss and gradient loss) and motion (optical flow loss). Then the difference

between a predicted future frame and its ground truth was used to detect an abnormal event.

They achieved AUC = 0.85 on Avenue, 0.95 on Ped2, 0.83 on Ped1 and 0.73 on ShanghaiTech

datasets.

Continuing of this approach, Ravanbakhsh et al. [81] proposed a GAN architecture for ano-

maly detection in particular crowd scenes. Their model is trained using normal frames and
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Figure 2.16 – Anomaly detection based on future frame prediction proposed by Liu et al. [53].

corresponding optical-flow images in order to learn an internal representation of the scene

normality. Since their GANs are trained with only normal data, they are not able to generate

abnormal events. At testing time, the real data were compared with both the appearance and the

motion representations reconstructed by GANs and abnormal areas are detected by computing

local differences. They achieved AUC = 0.97 on Ped1 and 0.93 on Ped2 dataset.

Developing this approach, Nguyen et al. [72] designed a model as a combination of a re-

construction network and an image translation model that share the same encoder. The former

sub-network determined the most significant structures that appear in video frames and the

latter one attempted to associate motion templates to such structures. The training stage was

performed using only videos of normal events and the model was then capable to estimate

frame-level scores for an unknown input. They achieved AUC = 0.869 on Avenue and 0.96 on

Ped2 dataset.

Matching a single autoencoder network with classification sub-network to build a hybrid

network, Nguyen et al. [71] proposed a model adapted from a typical auto-encoder working on

video patches under the perspective of sparse combination learning. Their model focused on un-

supervised learning common characteristics of normal events with the emphasis of their spatial

locations (by supervised losses). This was the first work that directly adapts the patch position

as the target of a classification subnetwork. The model is capable to provide a score of anomaly

assessment for each video frame. They achievedAUC = 0.83 on Avenue and 0.84 on Ped2 dataset.

Lee et al. [47] used ConvLSTM to build spatio-temporal adversarial networks (STAN). They

installed a spatio-temporal generator which synthesized an inter-frame by considering spatio-

temporal characteristics with bidirectional ConvLSTM. A proposed spatio-temporal discrimina-

tor determined whether an input sequence was real-normal or not with 3D convolutional layers.

Then they trained these two networks in an adversarial way to effectively encode spatio-temporal

features of normal patterns. After the learning, they independently use the generator and the
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discriminator as detectors, and deviations from the learned normal patterns were detected as

abnormalities. They achieved AUC = 0.87 on Avenue, 0.965 on Ped2, 0.82 on Ped1 datasets.

Expecting to build an end-to-end generative model for anomaly detection, Sabokrou et al. [88]

proposed a mix architecture of GAN and CNN for one-class classification. Their architecture

contained two deep networks, each of them trained by competing with each other while collabo-

rating to understand the underlying concept in the target class, and then classified the testing

samples. One network worked as the novelty detector, while the other supported it by enhancing

the inlier samples and distorting the outliers. The intuition was that the separability of the

enhanced inliers and distorted outliers were much better than deciding on the original samples.

They achieved EER = 0.16 on Ped2 dataset.

Figure 2.17 – Object-centric framework for anomaly detection proposed by Ionescu et al. [36].

Recently, Ionescu et al. [36] achieved state-of-the-art performance on various popular bench-

marks [66, 58, 53] by building a reconstruction error model that learned both appearance and

temporal gradient feature at object-centric levels then combined K-means clustering with SVMs

techniques to produce abnormality scores (Figure 2.17). First, they installed an unsupervised

feature learning framework based on object-centric convolutional auto-encoders to encode both

motion and appearance information. Then, they proposed a supervised classification approach

based on clustering the training samples into normality clusters. They applied one-versus-rest

abnormal event classifier to separate each normality cluster from the rest. For the purpose of

training the classifier, the other clusters is treated as dummy anomalies. During inference, they
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decided an object as abnormal if the highest classification score assigned by the one-versus-rest

classifiers was negative.

Continuing the approach of using an additional classifier layer to inference abnormality,

instead of training SVMs with only normal samples from training dataset, Liu et al. proposed

an interesting alternative supervised scenario [52]. Classical semi-supervised video anomaly

detection assumes that only normal data are available in the training set because of the rare and

unbounded nature of anomalies. It is obviously, however, these infrequently observed abnormal

events can actually help with the detection of identical or similar abnormal events, a line of

thinking that motivates us to study open-set supervised anomaly detection with only a few types

of abnormal observed events and many normal events available. Under the assumption that

normal events can be well predicted, they propose a Margin Learning Embedded Prediction

(MLEP) framework. There are three features in MLEP- based open-set supervised video anomaly

detection : i) they customize a video prediction framework that favors the prediction of normal

events and distorts the prediction of abnormal events ; ii) The margin learning framework learns

a more compact normal data distribution and enlarges the margin between normal and abnormal

events. Since abnormal events are unbounded, their framework consequently helps with the

detection of abnormal events, even for anomalies that have never been previously observed.

Therefore, our framework is suitable for the open-set supervised anomaly detection setting ;

iii) their framework can readily handle both frame-level and video-level anomaly annotations.

Considering that video-level anomaly detection is more easily annotated in practice and that

anomaly detection with a few anomalies is a more practical setting, their work thus pushes the

application of anomaly detection towards real scenarios.

Inspired by the idea of adding supervised learning classifiers into the unsupervised features

extraction framework of Liu et al. [52], we would like to go further by three aspects. Firstly,

we propose a strong and flexible framework that provide more distinctive features for the fol-

lowing classifiers. Secondly, we investigate the effect of supervised classifiers corresponding

to the number of abnormal samples transfered from original test set into training set. Thirdly,

instead of going from frame-level to video-level, we have an local approach from frame-level

to object-centric level. All of those aspects have their own significant improvements for our

performances.

2.5 Conclusion

In this chapter, we largely present the state-of-the-art methods targeted to solve our two

main tasks : (1)Improving segmentation and tracking with classical generative methods and (2)

Anomaly detection with deep learning generative methods and supervised inference models. We
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also provide the necessary knowledge of fundamental convolutional neural network models for

various computer vision tasks in transportations domain. For the first problem, we focus on two

baseline methods : Mask R-CNN and IOU Tracker. For the second problem, we are inspired by

the modern approaches of future prediction for anomaly detection.

In the first part, although achieving impressive performance, both baseline methods have

limitations in case of broken detection leading to fragmented trajectories. To deal with this

drawback, we propose some interesting add-on modification based on simple hand-crafted

generative methods. In the second part, we continue to develop the successful deep generative

models of future prediction for anomaly prediction by proposing a flexible and strong framework

to adapt with various challenging problems : the integration of both appearance and motion

information in terms of RGB and grayscale at the input side ; the simplification of feature

encoding dealing with supervised abnormality inference model, the capability of going from

frame-level detection to object-centric level detection.
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Improving detection and tracking

using future prediction based on

optical flow

In this chapter, we introduce the essential of our first contribution in details. The structure

contains two parts : (1) Improving detection using future generated object segmentation based

on optical flow, and (2) Enhanced Tracker with IOU-Tracker, Mask R-CNN and Optical flow.

Then we present experimental results for both qualitative and quantitative evaluation.

Our first research is an initial work for evaluating the performances of the classical hand-

crafted generative approach in future prediction and its usability for improving segmentation

and tracking. Based on the two baseline methods of Luc et al. [59] to generate future segmenta-

tion by using optical flow vectors, we propose an extension beyond the original transforms. We

investigate the generated information not only for both backward and forward directions but

also for longer sequences of frames. This simple but useful generative framework leads to the

improvement of the objects tracking task. Applying generated information with adding SURF

features allow us to enhance the performances of IOU Tracker [7] by connecting fragmented

pieces of trajectories.

The experiments are installed for evaluating two scenarios corresponding to two stages of

the methods we proposed in previous parts. For each scenario, we begin with the introduction of

the public datasets and evaluation metric where we setup the experiments on. Then we describe

our experimental implementations in details : the basic framework for installing our models, the

execution environment, the parameters setting, the evaluation metric, etc. Next, we introduce

our experimental results in both qualitative and quantitative evaluation. Finally, we analyze our

41
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strengths and our limitations regarding to our results.
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3.1 Proposed methods

3.1.1 Instance segmentation by Mask RCNN

Mask R-CNN [29] proposed by He et al. is a state-of-the-art deep neural network for solving

instance segmentation problem in computer vision. Given an input image, Mask R-CNN infers

the object bounding boxes, classes and masks. Generally, there are two stages in Mask R-CNN (Fi-

gure 3.1). First, it generates region proposals where there might be an object based on the input

image. Second, it predicts the object classes, refines the bounding box and generates a mask at

the pixel level of the object based on the first stage proposal. Both stages are connected to the

backbone structure.

Figure 3.1 – General pipeline of Mask R-CNN. It contains two stages : First, it generates region
proposals where there might be an object based on the input image. Second, it predicts the object
classes, refines the bounding box and generates a mask at the pixel level of the object based on
the first stage proposal.

First, input image is fed through the Convolutional layers to generate the feature maps.

Region Proposal Network(RPN) uses a small CNN brand to generate the multiple Region of

Interest (RoI) using a lightweight binary classifier. Generally, Mask R-CNN uses 9 anchors boxes

over the image to detect multiple objects, objects of different scales, and overlapping objects in

an image. This improves the speed and efficiency for object detection. Anchor boxes are a set of

predefined bounding boxes of a certain height and width. These boxes are defined to capture the

scale and aspect ratio of specific object classes needed to detect. To predict multiple objects or

multiple instances of objects in an image, Mask R-CNN makes thousands of predictions. Final

object detection is done by removing anchor boxes that belong to the background class and the
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remaining ones are filtered by their confidence score. They choose the anchor boxes with IOU

greater than 0.5. They applied Non-Max suppression strategy to select anchor boxes with the

greatest confidence score. Non-Max Suppression removes all bounding boxes obtaining IOU less

than or equal to 0.5 and take the bounding box with the highest value of IOU and suppress the

other bounding boxes for identifying the same object.

Then the RoI Align network outputs multiple bounding boxes rather than a single definite

one and warps them into a fixed dimension. Warped features vectors for each region are then fed

into fully connected layers to make classification using softmax. At the same time, boundary

box localization is further refined using the regression model. Warped features vectors are

also fed into Mask Generator. It is another Fully Convolutional part acting like FCN [54] for

segmentation, which consists of two CNN’s to output a binary mask for each RoI. Mask generator

allows the network to generate masks for every class without competition among classes.

3.1.2 Optical flow estimation by LDOF

Large Displacement Optical Flow (LDOF) [9] is an optical flow extraction method proposed

by Brox et al. This method combines the advantages of two possible ways for establishing point

correspondences between images with moving objects : one side, energy minimization methods

that yield very accurate, dense flow fields, but fail as displacements get too large. Other side,

there is descriptor matching that allows for large displacements, but correspondences are very

sparse, have limited accuracy, and experience many outliers due to missing regularity constraints

. LDOF establishes a region hierarchy for both images. Descriptor matching on these regions

provides a sparse set of hypotheses for correspondences. These are integrated into a variational

approach and guide the local optimization to large displacement solutions. The variational

optimization selects among the hypotheses and provides dense and subpixel accurate estimates,

making use of geometric constraints and all available image information.

Region segmentation : The first stage of LDOF is region computation. To create the image

region, Brox et al. relied on a segmentation methods based on the boundary detector instead of

simple edge detector. The advantage of using boundary detector over simple edge detection is

that it takes texture into account. Boundaries due to repetitive structures are damped whereas

strong changes in texture create additional boundaries. Consequently, boundaries are more likely

to correspond to objects or parts of objects. Then, it increases the stability of the regions to be

matched.

The segmentation method returns a boundary map g(x) as shown in Figure 3.2. Strong edges

correspond to more likely object boundaries. It further returns a hierarchy of regions created

from this map. Regions with weak edges are merged first, while separations due to strong edges

persist for many levels in the hierarchy. They generally take the regions from all the levels in the
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hierarchy into account. From the regions of the first image, however, they only keep the most

stable ones, i.e. those which exist in at least 5 levels of the hierarchy. Unstable regions are usually

arbitrary subparts of large regions. They also ignore extremely small regions (with less than 50

pixels) from both images. These regions are usually too small to build a discriminative enough

descriptor for reliable matching.

Figure 3.2 – Region segmentation in LDOF [9]. Left : Segmentation of an image. A region
hierarchy is obtained by successively splitting regions at an edge of certain relevance. Dark edges
are inserted first. Right : Zoom into the hand region of two successive images.

Region descriptor and matching : To each region they fit an ellipse and normalize the area

around the centroid of each region to a 32 × 32 patch. The normalized patch then serves as

the basis for a descriptor. They build two descriptors S and C in each region. S consists of 16

orientation histograms with 8 bins, like in SIFT [56]. C comprises the mean RGB color of the

same 16 subparts as the SIFT descriptor. While the orientation histograms consider the whole

patch to take also the shape of the region into account, the color descriptor is computed only

from parts of the patch that belong to the region.

Correspondences between regions are computed by nearest neighbours matching. We com-

pute the Euclidean distances of both descriptors separately and normalize them by the sum over
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all distances :

d2(Si ,Sj ) =
‖Si − Sj‖22

1
N

∑
k,l ‖Sk − Sl‖22

(3.1)

d2(Ci ,Cj ) =
‖Ci −Cj‖22

1
N

∑
k,l ‖Ck −Cl‖22

(3.2)

where N is the total number of combinations (i, j). This normalization allows to combine the

distances such that both parts in average have equal influence :

d2(i, j) =
1
2

(d2(Ci ,Cj ) + d2(Si ,Sj )) (3.3)

They can exclude potential pairs by adding high costs to their distance. They do this for

correspondences with a displacement larger than 15% of the image size or with a change in scale

that is larger than factor 3. Depending on the needs of the application, these numbers can be

adapted. Smaller values obviously produce fewer false matches, but restrict the allowed image

transformations.

Hypotheses refinement by deformed patches : Rather than deciding on a fixed correspon-

dence at each keypoint, which could possibly be an outlier (Figure 3.3), they propose to integrate

several potential correspondences into the variational approach. For this purpose, a good confi-

dence measure is of great importance. They found that the distance between patches globally

separates good and bad matches much better than the above descriptors. The main problem

with direct patch comparison (classical block matching) is its sensitivity to small shifts or de-

formations. Once the deformation’s corrected, the Euclidean distance between patches is very

informative, particularly when considering only pixels from within the region.

The optimum shift and deformation needed to match two patches can be estimated by

minimizing the following cost function :

E(u,v) =
∫

(P2(x+u,y + v)− P1(x,y))2dxdy +α
∫

(|∇u|2 + |∇v|2)dxdy (3.4)

where P1 and P2 are the two patches, u(x,y),v(x,y) denotes the deformation field to be estimated,

and α = 10000 is a tuning parameter that steers the relative importance of the deformation

smoothness. The energy is a non-linearized, large displacement version of the Horn and Schunck

energy and is sufficient for this purpose. The regularizer gets a very high weight in this case, as

without regularization every patch can be made sufficiently similar to any other.

As the patches are very small and a simple quadratic regularizer is applied, the estimation is

quite efficient. Nevertheless, it would be a computational burden to estimate the deformation for
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Figure 3.3 – Region matching with outliers existing in LDOF [9]. Displacement vectors of the
matched regions drawn at their centroids. Many matches are good, but there are also outliers
from regions that are not descriptive enough or their counterpart in the other image is missing.

each region pair. To this end, they preselect the 10 nearest neighbours for each patch using the

distance from the previous section and compute the deformation only for these candidates. The

five nearest neighbours according to the patch distance are then integrated into the variational

approach described in the next part. Each potential match j = 1, ...,5 of a region i comes with a

confidence :

cj (i) =


d2(i)− d2(i, j)

d2(i, j)
if d2(i) > 0

0 else
(3.5)

where d2(i, j) is the Euclidean distance between the two patches after deformation correction and

d2(i) is the average Euclidean distance among the 10 nearest neighbors. This measure takes the

absolute fit as well as the descriptiveness into account. They restrict the distance to be computed

only at patch positions within the region. Hence the changing background of a moving object

part would not destroy similarity of a correct match.

Variational flow : Although most of the correspondences are correct, the flow field derived
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from these by interpolation, is far from being accurate. This is because they have a hard decision

to make when selecting the nearest neighbour. Moreover, a lot of image information is neglected

and substituted by a smoothness prior. In order to obtain a more accurate, dense flow field, we

integrate the matching hypotheses into a variational approach, which combines them with local

information from the raw image data and a smoothness prior.

The energy following function is optimised with an additional data constraint that integrates

the correspondence information :

E(w(X)) =
∫
Ψ (|I2(X +w(X))− I1(X)|2)dX

+γ
∫
Ψ (|∇I2(X +w(X))−∇I1(X)|2)dX (3.6)

+ β
5∑
j=1

∫
ρj (X)Ψ ((u(X)−uj (X))2 + (v(X)− vj (X))2)dX

+α
∫
Ψ (|∇u(X)|2 + |∇v(X)|2 + g(X)2)dX

Here, I1 and I2 are the two input images, w = (u,v) is the sought optical flow field, and

X = (x,y) denotes a point in the image. (uj ,vj )(X) is one of the motion vectors derived at position

X by region matching (j indexing the 5 nearest neighbours). If there is no correspondence at

this position, ρj(X) = 0. Otherwise, ρj(X) = cj , where cj is the distance based confidence in

previous formula. α = 100, β = 25, and γ = 5 are tuning parameters, which steer the importance

of smoothness, region correspondences, and gradient constancy, respectively. They use the

robust function Ψ (s2) =
√
s2 + 10−6 in order to deal with outliers in the data as well as in the

smoothness assumption. They also integrate the boundary map g(X) in order to avoid smoothing

across strong region boundaries. Rather than a straightforward three step procedure with (i)

interpolation of the region correspondences, (ii) removal of outliers not fitting the interpolated

flow field (iii) optical flow estimation initialized by the interpolated inlier correspondences, the

above energy combines all three steps in a single optimization problem. The energy is non-convex

and can only be optimized locally. They can compute the Euler-Lagrange equations, which state

a necessary condition for a local optimum.

3.1.3 Optical flow estimation by Full Flow

Full Flow [13] proposed by Chen et al. is a global optimization approach to optical flow

estimation. The approach optimizes a classical optical flow objective over the full space of

mappings between discrete grids. No descriptor matching is used. The highly regular structure

of the space of mappings enables optimizations that reduce the computational complexity of

the algorithm’s inner loop from quadratic to linear and support efficient matching of tens of

thousands of nodes to tens of thousands of displacements.
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Figure 3.4 – Optical flow over regular grid in Full Flow method [13]. Each pixel p in I1 is spatially
connected to its four neighbors in I1 and temporally connected to (2ζ + 1)2 pixels in I2.

Model : Let I1, I2 : Ω→ R3 be two color images, where Ω ⊂ Z2 is the image domain. Let

f = (f 1;f 2) :Ω→ [−ζ;ζ]2 be a flow field that maps each pixel p in I1 to (p+ f p) in an augmented

domain Ω ⊃Ω, which contains Ω and a large surrounding buffer zone. The buffer zone absorbs

pixels that flow out of the visual field. The augmented domain Ω ⊃ Z2 is the Minkowski sum of

Ω and [−ζ;ζ]2 ∩Z2, where ζ is the maximal empirical displacement magnitude. The maximal

empirical displacement magnitude is measured by taking the maximal displacement observed

in a training set. For example, the maximal displacement magnitude on the KITTI training set

is 242 pixels. They perform the optimization on1/3-resolution images, so ζ = 81 for the KITTI

dataset.
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The objective function is :

E(f ) =
∑
p∈I1

(ρD (p,fp, I1, I2)) +λ
∑
p,q∈N

wp,qρS (fp − fq) (3.7)

whereN ⊂Ω2 is the 4-connected pixel grid illustrated in Figure 3.4. The data term (ρD (p,fp, I1, I2))

penalizes flow fields that connect dissimilar pixels p and (p+ fp). They use truncated normalized

cross-correlation :

ρD (p,fp, I1, I2) = 1−max(NCC,0) (3.8)

where NCC is the normalized cross-correlation between two patches, one centered at p in I1 and

one centered at (p+ fp) in I2, computed in each color channel and averaged. The truncation at

zero prevents penalization of negatively correlated patches. If (p+ fp) is in the buffer zone ΩΩ,

the data term is set to a constant penalty ζ.

Their optimization approach assumes that the regularization term has the following form :

ρS (f ) = min(ρ(f 1) + ρ(f 2), τ) (3.9)

where f 1, f 2 are the two components of vector f and ρ(·) is a penalty function, such as the

L1 norm or the Charbonnier penalty. Their formulation and the general solution strategy can

accommodate non-convex functions ρ, such as the Lorentzian and the generalized Charbonnier

penalties. They apply the reduction of message passing complexity from quadratic to linear. The

highly efficient min-convolution algorithm will assume that the function ρ is convex. Note that

the regularization term couples the horizontal and vertical components of the flow. They apply a

Laplace weight to attenuate the regularization along color discontinuities :

wp,q = exp(−
‖I1(p)− I2(q)‖

β
) (3.10)

Optimization : Objective function 3.7 is a discrete Markov random field with a two-dimensional

label space. The label space of the model is [−ζ;ζ]2∩Z2. To optimize the model, they use TRW-S,

which optimizes the dual of a natural linear programming relaxation of the problem. They

choose TRW-S due to its effectiveness in optimizing models with large label spaces. Note that

TRW-S optimizes the dual objective and will generally not yield the optimal solution to the

primal problem.

3.1.4 Generating object segmentation by Mask R-CNN and Optical flow

Luc et al. [59] proposed two baseline methods to generate future segmentation based on flow

vector Ft−1→t from frame t−1 to t and the current instance segmentation It at frame t. They were
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called Shif t and Warp (Figure 3.5a).

— Warp approach translates each pixel of instance mask independently using the flow vector

at the corresponding position inside this mask. To yield the new mask, the object class and

the confident score is copied from the previous one. The predicted mask and flow field

are used to make the next prediction, and so on. This approach is suitable for longtime

prediction because of the ability of rescaling objects based on flow vector. In contrast,

predicted mask suffers from an accumulated error phenomenon and has many holes

inside its boundaries. To fill in those gaps, a post-processing step with morphological

operator is necessary.

— Shift approach, in brief, entirely shifts instance mask using the average flow vector cal-

culated inside the mask. Then the object class and the confident score are also copied

from the previous mask. While this approach can avoid accumulating errors and gene-

rating holes inside the mask, it is not really suitable for longtime prediction due to the

non-rescaling of the mask.

We propose an extension beyond the two original baselines. Instead of only predicting future

segmentation (forward), we also generate past segmentation (backward) by projecting the flow

vector in opposite direction (Figure 3.5b). Intuitively, the missing detection of Mask R-CNN does

not last along many frames so we can generate new segmentation in both forward and backward

directions.

Furthermore, we also consider the development of flow vector beyond one time step. Given

instance results It , It+N of frame t and t +N achieved from Mask R-CNN detector, we have

(Figure 3.5c) :

It+j;0<j<N =
∑

pt+j w.r.t Ft→t+j (pt) = pt+j and Ft+j→t+N (pt+j ) = pt+N (3.11)

where pi is the pixel of instance Ii , Fi→l is a translation by flow vectors from frame i to frame

l. To avoid the accumulated errors of optical flow estimation methods, we minimize N = 2, j = 1.

This condition maintain the continuity of trajectories along the flow vectors when we generate

new masks. We apply this extension in both forward and backward directions with both Shif t

and Warp approaches. Therefore, we have 8 ways to generate object segmentation to fill in the

gaps of trajectories.

3.1.5 Extracting SURF feature

Speed Up Robust Feature (SURF) [5] is a scale and rotation invariant interest point detector

and descriptor proposed by Bay et al. It respects to repeatability, distinctiveness, and robustness.

Moreover, SURF can be computed and compared much faster.
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(a)

(b)

(c)

Figure 3.5 – Generating object segmentation (a) Shift and Warp translation ; (b) Forward and
backward translation ; (c) Combined results beyond one time step

SURF’s interesting performance is achieved by relying on integral images for image convolu-

tions ; by building on the strengths of the leading existing detectors and descriptors they use a

Hessian matrix-based measure for the detector and a distribution-based descriptor. Simplifying

these methods to the essential, this leads to a combination of novel detection, description, and

matching steps.
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Fast Hessian detector : Given a point p = (x,y) in an image I , the Hessian matrix H(p,σ ) in p

at scale σ is defined as follows :

H(p,σ ) =

Lxx(p,σ ) Lxy(p,σ )

Lxy(p,σ ) Lyy(p,σ )

 (3.12)

where Lxx(p,σ ) is the convolution of the Gaussian second order derivative ∂2

∂x2 g(σ ) with the image

I in point p, and similarly for Lxy(p,σ ) and Lyy(p,σ ).

Generally, SURF is a speed up version of SIFT [56] proposed by David Lowe. Gaussians are

optimal for scale-space analysis. In practice, however, the Gaussian needs to be discretized and

cropped (Figure 3.6 left half) and even with Gaussian filters aliasing still occurs as soon as the

resulting images are sub-sampled. As Gaussian filters are non-ideal in any case, and given Lowe’s

success with LoG approximations [56] in extracting SIFT, Bay et al. pushed the approximation

even further with box filters (Figure 3.6 right half). These approximate second order Gaussian

derivatives, and can be evaluated very fast using integral images, independently of size. One big

advantage of this approximation is that, convolution with box filter can be easily calculated with

the help of integral images. And it can be done in parallel for different scales. Also the SURF rely

on determinant of Hessian matrix for both scale and location.

Figure 3.6 – Basic of Laplacian of Gaussian with Box Filter in SURF detector with Hessian
matrix [5]. Left to right : The (discretized and cropped) Gaussian second order partial derivatives
in y-direction and xy-direction, and approximations thereof using box filters. The grey regions
are equal to zero.

In practice, the 9× 9 box filters in Figure 3.6 are approximations for Gaussian second order

derivatives with σ = 1.2 and represent highest spatial resolution). Denote the approximations by

Dxx,Dyy ,Dxy , the weights applied to the rectangular regions are kept simple for computational

efficiency, but they need to further balance the relative weights in the expression for the Hessian’s

determinant with coefficient :
|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F

≈ 0.9 (3.13)

where |x|F is the Frobenius norm. Finally, they achieved :

det(Happrox) =DxxDyy − (0.9Dxy)2 (3.14)
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Furthermore, the filter responses are normalized with respect to the mask size. This guaran-

tees a constant Frobenius norm for any filter size. Scale spaces are usually implemented as image

pyramids. The images are repeatedly smoothed with a Gaussian and subsequently sub-sampled

in order to achieve a higher level of the pyramid.

In order to localize interest points in the image and over scales, a non-maximum suppression

in a 3×3×3 neighborhood is applied. The maximum of the determinant of the Hessian matrix are

then interpolated in scale and in image space. Scale space interpolation is especially important

in this case, as the difference in scale between the first layers of every octave is relatively large.

Orientation assignment : The proposed SURF descriptor is based on similar properties as

SIFT, with a complexity stripped down even further. The first step consists in fixing a reprodu-

cible orientation based on information from a circular region around the interest point. SURF

uses wavelet responses in horizontal and vertical direction (Figure 3.7)for a neighbourhood of

size 6s, with s the scale at which the interest point was detected. Also the sampling step is scale

dependent and chosen to be s. In keeping with the rest, also the wavelet responses are computed

at that current scale s. Accordingly, at high scales the size of the wavelets is big. Therefore,

they use again integral images for fast filtering. Only six operations are needed to compute the

response in x or y direction at any scale. The side length of the wavelets is 4s.

Figure 3.7 – Localizing interest points and using Haar wavelet for orientations assignments and
descriptor extraction in [5]. Left : Detected interest points for a Sunflower field. This kind of
scenes shows clearly the nature of the features from Hessian-based detectors. Middle : Haar
wavelet types used for SURF. Right : Detail of the Graffiti scene showing the size of the descriptor
window at different scales.

Once the wavelet responses are calculated and weighted with a Gaussian (σ = 2.5s) centered

at the interest point, the responses are represented as vectors in a space with the horizontal

response strength along the abscissa and the vertical response strength along the ordinate. The

dominant orientation is estimated by calculating the sum of all responses within a sliding

orientation window of angle 60 degrees. Interesting thing is that, wavelet response can be found

out using integral images very easily at any scale. For many applications, rotation invariance

is not required, so no need of finding this orientation, which speeds up the process. SURF

provides such a functionality called Upright-SURF or U-SURF. It improves speed and is robust
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up to ±15°. If it is 0, orientation is calculated. If it is 1, orientation is not calculated and it is faster.

Feature descriptor components : the first step consists in constructing a square region cente-

red around the interest point, and oriented along the orientation selected in the previous section.

For the upright version, this transformation is not necessary. The size of this window is 20s.

Examples of such square regions are illustrated in Figure 3.7.

In detail, a neighbourhood of size 20s × 20s is taken around the key point where s is the size.

It is divided into 4× 4 subregions. For each subregion, horizontal and vertical wavelet responses

are taken and a vector is formed like this, v = (
∑
dx,

∑
dy ,

∑
|dx |,

∑
|dy |). This when represented

as a vector gives SURF feature descriptor with a total of 64 dimensions. Lower the dimension,

higher the speed of computation and matching, but provide lower distinctiveness of features.

Then, for more distinctiveness, SURF feature descriptor has an extended 128 dimensions

version. The sums of dx and |dx | are computed separately for dy < 0 and dy ≥ 0. Similarly, the

sums of dy and |dy | are split up according to the sign of dx , thereby doubling the number of

features. It does not add much computation complexity.

Another important improvement is the use of the sign of the Laplacian (trace of Hessian

Matrix) for underlying interest point. It adds no computation cost since it is already computed

during detection. The sign of the Laplacian distinguishes bright blobs on dark backgrounds

from the reverse situation. In the matching stage, they only compare features if they have the

same type of contrast. This minimal information allows for faster matching, without reducing

the descriptor’s performance.

3.1.6 Improving IOU Tracker with generated informations and SURF fea-
tures

Intuitively, the more boxes we have, the more accurate the IOU Tracker is. Despite the strong

performances of Mask R-CNN, the missing detections in some frames are inevitable. The tech-

nique of generating new segment can be similarly applied for generating new bounding boxes.

We proposed 2 methods of translation (Shift and Warp) with 2 directions (backward, forward)

and 2 optical flow methods (LDOF, FullFlow), so we have 8 methods to generate bounding box.

Each box is generated by one of the 8 methods. We consider each box as a special mask which

contains only four pixel corresponding to four vertices of box and then the process is repeated.

After applying generative approach, we get a situation where we have more overlapping boxes.

To eliminate those redundant boxes, we apply the idea of IOU tracker that takes into account

the IOU between boxes. Let BtG denote the set of generated boxes bitG and BtM denote the set of

instance boxes bitM directly detected by Mask R-CNN at frame It (Figure 3.8). To combine the

two sets, we compare the overlapping region with a threshold σIOU by running the algorithm 1 :
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Algorithm 1 Eliminate overlapping boxes

for i = 1→ ||BtG || do
count← 0
for j = 1→ ||BtM || do

if IOU (bitG,b
i
tM ) ≥ σIOU and class(bitG) = class(bitG) then

count← count + 1
end if

end for
if count = 0 then

add bitG to BtM
else

discard bitG
end if

end for

It means that we trust more in the results provided by the Mask R-CNN detector (this asser-

tion is based on the analysis of the experimental results described in section 5.1). After this step,

we have only one set Bt containing the box bit of frame It .

The next stage consists in applying the IOU Tracker. Each box bit is compared with all the

boxes from the L previous frames, where L is the length of the tracker. We associate a box to

the previous box which obtains the same class and the maximum overlapping region. If we can

not find any IOU value greater than the threshold σIOU along all L frames, the current tracking

process is terminated and we start a new track.

To enhance our tracker, we propose to use SURF [5] to verify the matching boxes. This feature

have shown its efficiency on image matching problem. By applying SURF to match the similar

boxes, we can avoid the fragmented trajectories. We extract SURF points for each bounding boxes.

Each box bit is compared with all boxes of L previous frames. If we find two boxes associated to

two different classes but with their IOU value and the number of matching SURF points greater

than threshold σIOU and σSURF , respectively, we associate them together. To avoid the negative

effect caused by extracting SURF features from a too small box, we set another threshold σS to

select the suitable boxes which exhibit a value greater than this threshold. For all the boxes with

a value smaller than σS , we do not extract SURF and we only take into account IOU value for the

association step. The whole process is illustrated by Figure 3.8.
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Figure 3.8 – Improving IOU-Tracker with generated information and SURF features. To combine
the two sets : generated set BtG and Mask R-CNN instances set BtM , we compare the overlapping
region with a threshold σIOU . After this step, we have only one set Bt containing the box bit of
frame It . Then Each box bit is compared with all boxes of L previous frames. If we find two boxes
associated to two different classes but with their IOU value and the number of matching SURF
points greater than threshold σIOU and σSURF , respectively, we associate them together.

3.2 Experiments

We separately evaluate each stage using different datasets. First, we compare the techniques

for generating objects segmentation stages using the DAVIS dataset [77]. Then, we chose the

most suitable methods to apply for the tracking stage. The qualitative evaluation regarding

the improvement of the IOU Tracker is performed using the UA-DETRAC dataset [65]. Some

samples of those datasets is illustrated in Figure 3.9.

Figure 3.9 – Illustration of several samples in DAVIS dataset [77] and UA-DETRAC dataset [65].
First row : DAVIS dataset. Second row : UA-DETRAC dataset.
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Method Bus Car

S W W-M R S W W-M R
Backward 79.31 75.59 81.76 89.46 65.13 59.21 70.92 92.10
Forward 79.05 75.84 82.07 89.46 65.04 60.33 69.15 92.10
Combine-B 79.35 71.47 77.35 89.46 66.87 46.91 57.86 92.10
Combine-F 79.03 71.76 77.35 89.46 65.36 48.44 56.37 92.10

Tableau 3.1 – Results of generating new segmentation on DAVIS 2016 by LDOF with "car" and
"bus" classes. S : Shift ; W : Warp without morphological post-processing ; W-M : Warp with
morphological post-processing ; R : True masks of Mask R-CNN which are eliminated to make
the missing detection context ; Combine-B : Extension case in backward direction ; Combine-F :
Extension case in forward direction

3.2.1 Improving detection using future generated object segmentation ba-
sed on optical flow

DAVIS 2016 consists of fifty high quality, Full HD video sequences, spanning multiple

occurrences of common video object segmentation challenges such as occlusions, motion blur

and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and

per-frame ground truth segmentation. Because the UA-DETRAC only takes into account three

classes (bus, van and car) we restrict the use of the DAVIS sequences to the ones that deal with the

same types of vehicles. Unfortunately, only a few sequences within the DAVIS dataset satisfy this

constraint. Worst, those sequences are not challenging enough to generate the missing detections

from Mask R-CNN we want to cope with. Thus, in order to prepare the situation of false negative

errors, we run Mask R-CNN for each frames, then randomly discard some of the generated

detection. The original annotation of discarded frames are utilized as ground-truth to compare

with the generated results. The performance is measured with the mean Intersection-over-Union

(mIOU) metric, which first computes the IOU for each semantic class and then computes the

average over classes. IOU is defined as follows :

IOU =
T rueP ositive(T P )

T rueP ositve(T P ) +FalseNegative(FN ) +FalseP ositive(FP )
(3.15)

First, Mask R-CNN is applied to each frames. Next, we use LDOF [9] and Full Flow [13] to

extract the optical flow vectors from pairs of frames. Then, we do the Shift and Warp translation

in both backward and forward directions. Morphological operators are only applied as a post-

processing step with the Warp method. The extension beyond more than one step time that we

call "combined results" in Figure 3.5c is also evaluated in both directions. Here, we choose the

simplest case with N = 2 and j = 1. Our results with LDOF optical flow is illustrated in Table 3.1

and Table 3.2 ; with Full Flow optical flow in Table 3.3 and Table 3.3 .

Quantitative evaluation : We observe that the morphological operators are important with

the Warp method. After adding this post-processing, the performances are significantly increa-
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Method Bus Car

S W W-M R S W W-M R
Backward 79.24 76.72 82.36 89.46 65.66 60.16 70.55 92.10
Forward 79.05 76.63 81.96 89.46 65.34 61.00 68.94 92.10
Combine-B 79.31 72.42 77.57 89.46 66.41 48.03 57.33 92.10
Combine-F 79.06 72.64 77.48 89.46 65.63 49.19 56.66 92.10

Tableau 3.2 – Results of generating new segmentation on DAVIS 2016 by Full Flow with "car"
and "bus" classes on missing frames i.e. discarded frames.

Method LDOF Full Flow Mask R-CNN

Shift Warp Warp-M Shift Warp Warp-M
Backward 72.22 67.40 76.34 72.45 68.44 76.46 90.78
Forward 72.05 68.08 75.61 72.19 68.81 75.50 90.78
Combine-B 73.11 59.19 67.60 72.86 60.23 67.45 90.78
Combine-F 72.20 60.10 66.86 72.35 60.192 67.07 90.78

Tableau 3.3 – Average performance of generating new segmentation on DAVIS 2016 with "car"
and "bus" classes on missing frames i.e. discarded frames.

sed. While Shift works stably for all of the methods, this is not the case with the Warp based

approach. In a simple case, where we only consider optical flow within two consecutive frames

in both direction, Warp significantly outperforms Shift. Conversely, when we take into account

the development of optical flow along many frames, Shift gives us better results. This difference

can be explained by the accumulated error of optical flow. The more frames we process, the

more optical flow error we integrate. Shift is chosen to reduce this issue. Furthermore, we did

not see any significant differences for each method when we performed LDOF or Full Flow

optical flow estimation. Most of the average results in Table 3.3 are similar (Full Flow is slightly

better) despite Full Flow significantly outperforms LDOF in the original task of optical flow

estimation for both MPI Sintel and KITTI Dataset. We draw that the performance of generating

new segmentation depends on how we use the flow vector, not on the type of flow. Therefore,

our methods allow us to get a benefit regardless of the optical flow estimation methods, then fast

methods are highly prioritized. On the other hand, we find that the original masks created by

Mask R-CNN always give us better accuracy than the optical flow generated masks. This analysis

suggests us to put more confidence in the discriminative results from Mask R-CNN than in the

generative results from optical flow when we combine those results for the next tracking stages.

Qualitative evaluation : Figure 3.10 and Figure 3.11 show the comparison of qualitative

performance on optical flow estimation between LDOF and Full-Flow methods. We can see

the significant differences in both bus and car classes. Despite the obvious out-performance

of Full Flow over LDOF, the performance of generating new segmentation is almost stable.
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Input frames LDOF Full-Flow

Figure 3.10 – Comparison of optical flow estimation performance between LDOF and Full-Flow.
Results are reported on bus class of DAVIS dataset. Obviously, the difference of quality between
two methods is significant, not only for flow localization but also for flow intensity and direction.
Best viewed in color

This interesting qualitative results is illustrated in Figure 3.12 and Figure 3.13. Once again, we

draw that the performance of generating new segmentation depends on how we use the flow

vector, not on the type of flow calculation. On the other hands, the importance of morphological

operators integrated in Warp translation is confirmed by qualitative illustrations in both bus

and car classes.
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Input frames LDOF Full-Flow

Figure 3.11 – Comparison of optical flow estimation performance between LDOF and Full-Flow.
Results are reported on car class of DAVIS dataset. Obviously, the difference of quality between
two methods is significant, not only for flow localization but also flow intensity and direction.
Best viewed in color

3.2.2 Enhanced Tracker with IOU-Tracker based Mask R-CNN and Optical
flow

Based on the results from previous stages, we choose the Shift generator to create the new

bounding boxes from optical flow. Although Combine backward and Combine forward are better

for Shift translation, the difference between those performances and Forward method is not

significant. Additionally, tracking only in forward direction is more natural and simpler. Thus,

we perform the Shift generator in forward direction. Full Flow [13] is used for estimating optical
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Original frame Ground-truth mask

Optical flow by LDOF Optical flow by Full-Flow

Shift mask by LDOF Shift mask by Full-Flow

Warp mask by LDOF Warp mask by Full-Flow

Warp-M mask by LDOF Warp-M mask by Full-Flow

Figure 3.12 – Qualitative performance of generating object segmentation for bus class along
forward direction. Optical flow is estimated by Full flow and LDOF. Warp-M denotes the Warp
translation with Morphological operator. Despite the obvious out-performance of Full Flow over
LDOF in optical flow estimation, the performance of generating new segmentation is almost
stable. We draw that the performance of generating new segmentation depends on how we
use the flow vector, not the type of flow. On the other hands, the importance of morphological
operators integrating in Warp translation is confirmed by filling in all holes in Wrap mask.

flow vectors. The discriminative boxes of Mask R-CNN and the generative boxes of Shift are

combined thanks to a IOU mapping (and its σIOU ) to discard all the generative boxes matching
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Original frame Ground-truth mask

Optical flow by LDOF Optical flow by Full-Flow

Shift mask by LDOF Shift mask by Full-Flow

Warp mask by LDOF Warp mask by Full-Flow

Warp-M mask by LDOF Warp-M mask by Full-Flow

Figure 3.13 – Qualitative performance of generating object segmentation for car class along
forward direction. Optical flow is estimated by Full flow and LDOF. Warp-M denotes the Warp
translation with Morphological operator. Despite the obvious out-performance of Full Flow over
LDOF in optical flow estimation, the performance of generating new segmentation is almost
stable. We draw that the performance of generating new segmentation depends on how we
use the flow vector, not the type of flow. On the other hands, the importance of morphological
operators integrating in Warp translation is confirmed by filling in all holes in Wrap mask.

a discriminative box w.r.t its location and its object class. As discussed above, we trust more

in discriminative boxes provided by Mask R-CNN. For the IOU tracking step, we choose L = 5
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and use the same parameter σIOU as for the previous step. All the parameters σIOU , σSURF , are

determined by experiment. The results show us that σIOU = 0.5, σSURF = 1 and σS = 50× 50 are

the best choices. The qualitative results are shown in Figure 3.14. We observe that the trajectories

are less fragmented after applying our techniques.

3.3 Conclusion

In this chapter, we presented our proposed methods for improving vehicle tracking in detail.

The first section focuses on classical hand-crafted generative methods based on optical flow

estimation while the second section presents anomaly detection based on future prediction

framework. Generally, our first work is an extension of previous state-of-the-art segmentation

and tracking frameworks for going beyond their limitations. In this part, our interesting add-on

almost help them improving the qualitative performance aspect. We try to keep the source

algorithms being stable then our extensions can be easily integrated into original algorithms.

The strengths of this first work is to provide several simple but interesting techniques to

enhance the qualitative performances in some aspect of two classical tasks in computer vision.

The computational complexity is quite low due to the hand-crafted solutions obtained without

training or fine-tuning any deep network. In contrast, this work has limitations in term of

proposing innovative framework. Besides, the possibility to reapply this methods as it is to

specific task such as anomaly detection is not significant enough.
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Sequence 1a Sequence 1b Sequence 2a Sequence 2b

Figure 3.14 – Qualitative results of our solution for improving IOU Tracker based Mask R-CNN
detector ; the trajectories of the car inside the red circle are improved : (1a)(2a) Original IOU
Tracker based Mask R-CNN detector, for sequence 1a we can track only one frame over 8 frames
and sequence 2a achieves 3 frames over 8 frames ; (1b)(2b) Improved IOU Tracker based Mask
R-CNN detector with Shift generator and SURF matching, both sequences now achieve 6 frames
over 8 frames. Those sequences are illustrated in large size in Annexe A.
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Chapitre4
Anomaly detection by future

prediction using multi-channels

generative framework and supervised

learning

Our second work is the main contribution and is directly targeted to solve our ultimate

goal : anomaly detection. We distinguish between anomaly recognition and classical action

recognition by considering abnormal activities as unpredictable activities. Due to the difficulties

of anomaly detection in case of unbalancing scenarios and the unavailable pre-defined spatial-

temporal structure of abnormal activities, classical methods have various limitations in practical

experiments. By now, most of the state-of-the-art [53, 36] anomaly detection methods are

based on apparent motion and appearance reconstruction networks like Generative Adversarial

Network (GAN). These methods use the error estimation between generated and real information

as a detection feature.

In this thesis, our contributions are two-fold. On the one hand, we propose a flexible mul-

tichannel framework to generate multi-type frame-level features. Our method is based on the

prediction of the motion and the appearance of image streams and exploits errors of prediction

to detect the abnormalities. We define a multi-channel framework based on Conditional GAN

(CGAN) to produce feature maps for better-representing appearance and motion. On the other

hand, we study how it is possible to improve the detection performance by supervised learning

i.e. by adding some labeled data and a SVM based classifier.

In the first part of this chapter, we present the generalities about GAN and CGAN and

introduce the pix2pix CGAN we implement in our architecture. In the second part, we present
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how we add supervised strategy in the last step to improve the detection rate and how the objects

related to the abnormality are localized in each frame. The last part is dedicated to the results

of our experiments. We begin with the introduction of the public datasets and the evaluation

metric we use. Next, we introduce our experimental results in both qualitative and quantitative

evaluations with regards to the training parameters. Finally, we analyze our strengths and our

limitations regarding to our results.
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4.1 Proposed generative backbone architecture

Our general pipeline is illustrated in Figure 4.1. It is based on 4 conditional GANs (CGAN)

which inputs are defined in the caption section of the figure. Conditional GAN will be presented

later in the chapter. A GAN is a machine learning framework that produces a generative model.

It is an unsupervised method that does not need labeled training data. Its goal is to model how

the training data look like to be able to generate new examples of what it has learned. In our

anomaly detection application, by presenting input from normal image sequences, the GAN

should be able to construct (or predict) what should be the next image content for normal context.

We assume that a situation can be qualified as a normal or abnormal situation by analyzing the

objects types moving in the scene and their dynamics. Both informations are carried by optical

flow and appearance : thus, our architecture is predicting optical flow and image appearance. To

detect abnormality in a sequence, we make the assumption that the prediction (output of the

GAN) will sufficiently differ from the real image data for the abnormal situations. As introduced

in figure 4.1, our architecture is based on conditional GAN that is a type of GAN that involves

the conditional generation of images by a generator model [70]. CGAN is better adapted to our

application because it uses additional information (annotated input data w.r.t. random noise

input of GAN)to generate new predicted data. By training a CGAN on images acquired from

"normal" situations, the generative model is able to predict the images and the optical flow at

time t + 1 by inputting images and optical flow acquired at time t. In the first experimental

section, we will show that our CGAN based backbone yields state-of-the-art performance.

4.1.1 From GAN to Conditional GAN

Generative Adversarial Nets [25] were recently presented as an effective way to train gene-

rative models. For the purpose of taking advantage of labels during the training process, they

feed the conditional data to both the generator and the discriminator. The term label here is not

the ultimate abnormal label but the meaning of pixel of training images. This model is called

Conditional GAN (CGAN) [70], a conditional version of generative adversarial nets.

GAN consists of two adversarial models : a generative model G that represents the data

distribution, and a discriminative model D that calculates the probability when a sample came

from the training data (i.e. real sample) rather than G (i.e. fake sample). Both G and D could

be a non-linear mapping function, such as a multi-layer convolutional neural networks. To

learn the distribution pg over data x, the generator builds a mapping function from a prior

noise distribution pz(z) to data space as G(z). And the discriminator, D(x), produces a single

scalar representing the probability when x is real samples rather than pg . G and D are both

trained simultaneously : adjusting parameters for G to minimize log(1−D(G(z)) and adjusting

parameters for D to minimize logD(x). They are following the two-player min-max game with

value function V (G;D) :
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Figure 4.1 – Our multi-channels pix2pix-CGANs framework for anomaly detection. In each
CGAN stream, the number of channels and the type of each channel for input image (i.e. source
image I) and output image (i.e. generated or predicted image Ig ) are different. CGAN1 takes
2 grayscale channels as input and generates 2-dimensional optical flow channels as output.
CGAN2 takes 1 grayscale channel and a 2-dimensional optical flow channel as input and
generates 1 grayscale channel and 2-dimensional optical flow channel as output. CGAN3 takes a
3-dimensional RGB channels as input and 3-dimensional RGB channel as output. CGAN4 takes
2-dimensional grayscale channels as input and generates 1-dimensional grayscale channel as
output. The configuration is described in detail in Table 4.1. The channels of generated images
are similar to the channels of ground-truth images (i.e. target images It). Best viewed in color.

min
G

max
D
V (D,G) = Ex∼pg (x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))] (4.1)

Generative adversarial nets can be extended to a conditional model by letting both the

generator and the discriminator be conditioned on some extra information y. The extra y could

be any kind of auxiliary information, such as class labels. They can perform the conditioning by

feeding y into both the discriminator and the generator as additional input layer. In the generator

the prior input noise pz(z) and y are combined in joint hidden representation, and the adversarial

training framework allows for considerable flexibility in how this hidden representation is

composed. In the discriminator x and y are presented as inputs and to a discriminative function.

In this conditional context, the objective function of a two-player minimax game would be as
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following :

min
G

max
D
V (D,G) = Ex∼pg (x)[logD(x|y)] +Ez∼pz(z)[log(1−D(G(z|y)))] (4.2)

The Conditional GAN allows us not only to reconstruct from input noise to output image

but also to extend to image-to-image translations. It means that we are capable of generating

a target image which is not only expected to be similar to a training image but also expected

to be similar to the transformation of a training image. This ability of CGAN is the key feature

to help us constructing a framework of future predictions. We need the generated image to be

similar to the future predicted image, not to the current one. For this reason, we choose CGAN

as a suitable model.

Owing to its capacity to generate image, we a take U-Net architecture into account to construct

the Generator G of the CGAN model. The U-Net architecture is shortly presented in the next

section. The description of our network structure is presented in detail in section 4.1.3.

4.1.2 U-Net architecture

U-Net [87] is the convolutional neural network that was developed by Ronneberger et al. for

biomedical image segmentation. U-Net is based on the fully convolutional network (FCN) [54]

and its architecture was developed to work with less training samples and to obtain a higher

segmentation quality.

By replacing pooling layers of usual CNN by upsampling operators, the main idea of U-Net

is to supplement a usual contracting network by successive layers. Hence, these layers increase

the resolution of the output. Furthermore, a successive convolutional layer can then learn to

assemble a finer output based on this information.

There are a large number of feature channels in the upsampling part. This modification al-

lows the network to propagate context information to higher-resolution layers. As a consequence,

the expansive path is more or less symmetric to the contracting part and yields a u-shaped archi-

tecture (Figure 4.2). The network does not apply any fully connected layers but only uses the

valid part of each convolution. The missing context is extrapolated by mirroring the input image

to predict the pixels in the border region of the image. This tiling strategy is important to apply

the network to large images, since otherwise the resolution would be limited by the GPU memory.

The U-Net architecture contains a contracting path and an expansive path which give it the

U-shaped architecture. The contracting path is a typical convolutional neural network with

successive typical blocks containing convolutions operations, each followed by a rectified linear

unit (ReLU) and a max pooling operation. During the contraction, the spatial information is

reduced while feature information is increased. In contrast, the expansive pathway joins the
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Figure 4.2 – Two possible network architecture of CGAN generator : Encode-Decode and U-Net
with skip connection [39].

feature and spatial information through a sequence of upsampling operations and concatenations

with high-resolution features from the contracting path.

4.1.3 Fundamental of Pix2pix CGAN framework

Image-to-Image Translation with Conditional Adversarial Networks (pix2pix CGANs) is a

generative model proposed by Philip Isola et al. [39]. They investigated conditional adversarial

networks as a general-purpose solution to image-to-image translation problems. These networks

not only learn the mapping from input image to output image, but also learn a loss function to

train this mapping. This makes it possible to apply the same generic approach to problems that

traditionally would require very different loss formulations.

For the network architecture of the generator, many previous solutions to the problems in this

area have used an encoder-decoder network (Figure4.2). In such a network, the input was passed

through a series of layers that progressively downsample, until a bottleneck layer, at which point

the process is reversed. Such a network required that all information flow passes through all the

layers, including the bottleneck. For many image translation problems, there is a great deal of

low-level information shared between the input and output, and it would be desirable to shuttle

this information directly across the net. For example, in the case of image colorization, the input

and output share the location of prominent edges. To give the generator a mean to circumvent

the bottleneck for information like this, they add skip connections, following the general shape

of a “U-Net”. Specifically, they add skip connections between each layer i and layer n− i, where

n is the total number of layers. Each skip connection simply concatenates all channels at layer i

with those at layer n− i.

Theoretically, GANs are generative models that learn a mapping from random noise vector x
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Figure 4.3 – Conditional-GAN principle : The generator - Given a label and random noise
as input, this model generates data with the same structure as the training data observations
corresponding to the same label. The discriminator - Given batches of labeled data containing
observations from both the training data and the generated data from the generator, this network
attempts to classify the observations as "real" or "fake".

to output image z,G : x→ z. In contrast, conditional GANs learn a mapping from observed image

y and random noise vector x, to z, G : x|y→ z. The generator G is trained to produce outputs that

cannot be distinguished from “real” images by an adversarially trained discriminator, D, which

is trained to do as well as possible at detecting the generator’s “fakes” (Figure 4.3).

The objective of a conditional GAN can be expressed as :

LcGAN (G,D) = Ey,x[logD(x|y)] +Ey,z[log(1−D(x,G(z|y)))] (4.3)

where G tries to minimize this objective against an adversarial D that tries to maximize it, i.e.

G∗ = argminGmaxD LcGAN (G,D). To test the importance of conditioning the discriminator, we

also compare to an unconditional variant in which the discriminator does not observe y :

LGAN (G,D) = Ez[logD(z)] +Ey,z[log(1−D(G(z|y))] (4.4)

Previous approaches have found it beneficial to mix the GAN objective with a more traditional

loss, such as L2 distance . The discriminator’s job remains unchanged, but the generator is tasked

to not only fool the discriminator but also to be near the ground truth output in an L2 sense. We
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also explore this option, using L1 distance rather than L2 as L1 encourages less blurring :

L(G) = Ex,y,z[‖z −G(x|y)‖1] (4.5)

The final objective is

G∗ = argmin
G

max
D
LcGAN (G,D) +λLL1(G) (4.6)

4.1.4 Multi-channel pix2pix-CGAN framework

Our framework combines 4 parallel streams that represent 9 image channels as output. Each

CGAN stream is based on a pix2pix-CGANs [39] architecture described in Figure 4.4.

Figure 4.4 – Our pix2pix-CGAN architecture. Encoder blocks CEk are from first block 256×
256×Ni to bottleneck block 1× 1× 512 of Generator. Decoder blocks CDk are from bottleneck
block 1×1×512 to last block 256×256×No of Generator. Ni , No denote the number of input and
output image channels of Generator. Discriminator blocks Ck are from block 256×256×(Ni +No)
to block 16× 16× 1. Because of the skip connection, the total channels pass to Discriminator is
Ni +No. Best viewed in color.

Pix2pix-CGAN : The Generator model is based on an encode-decode U-Net architecture with

skipped connections. The Discriminator is based on 4 convolutional blocks to provide a real or
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fake decision. Each convolutional block of the Generator encoder and the Discriminator includes

a convolution, a batch normalisation and an activation layer. One extra dropout layer with a

dropout rate of 50% is added to define one block of the decoder. Let Ck, CEk and CDk denote

respectively a Discriminator block, an Encoder block and a Decoder block with k filters. The

model architecture is defined as :

— Encoder : CE64-CE128-CE256-CE512-CE512-CE512-CE512-CE512

— Decoder : CD512-CD512-CD512-CD512-CD512-CD256-CD128-CD64

— Discriminator : C64-C128-C256-C512

The last CE512 block only has no batch normalization layer. All the convolutional layers of

Encoder are based on 4× 4 kernel filters with stride 2 to downsample the input source image to

the bottleneck layer. Then, Decoder uses transpose convolutional layers for upsampling from

bottleneck output size to the predicted output size. We also add skip connections between the

layers of Encode-Decode corresponding to the same size of feature maps. The source image is

considered as the input of the Generator and it is concatenated with the target image to produce

the first input for the Discriminator. The output image of the Generator concatenated with

the source image is fed to the Discriminator as second input. We apply L1 loss to measure the

distance between target image It and generated image Ig from source image I :

LG = Eg‖It − Ig‖1 (4.7)

The adversarial loss of Discriminator D is calculated using the Conditional GAN strategy

(LcGAN (G,D)) :

LD = Et logD(It |I) +Eg log(1−D(Ig |I)) (4.8)

where D(It |I) is the discriminator’s estimate of the probability that target image It is real w.r.t.

input image I (i.e. the image contains Nt +Ni channels) ; D(Ig |I) is the discriminator’s estimate

of the probability that predicted image Ig is real w.r.t. input I (i.e. the image contains No +Ni
channels).

The final loss is the sum of both loss with ponderation factors λG and λD :

L = λDLD +λGLG (4.9)

In our systems, we apply the default weights for λG and λD as in the original architecture of [78].

Multi-channel pix2pix-CGAN : In order to achieve richer and more sensitive features of

appearance and motion to the anomaly to detect, we propose 4 parallel pix2pix-CGANs with

different input and output configuration as mentioned in Table 4.1. We separately investigate the

temporal evolution of motion and appearance (in both grayscale and RGB format) by CGAN-1,

CGAN-3 and CGAN-4 while CGAN-2 explores the relation between appearance and motion

between two consecutive time stamps t and t + 1. About temporal length modeling, CGAN-1
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Channel Input (I) Ni Output Ig & Target It No =Nt
CGAN-1 Gt , Gt+1 2 F

x,y
t→t+1 2

CGAN-2 Gt , F
x,y
t→t+1 3 Gt+1, Fx,yt+1→t+2 3

CGAN-3 RGBt 3 RGBt+1 3
CGAN-4 Gt , Gt+1 2 Gt+2 1

Tableau 4.1 – Configuration of input I , output (i.e. predicted images Ig ) and target images It
for each pix2pix-CGAN stream. Ni , No, Nt denote the dimension of the input, output and target
image channels. Gt , F

x,y
t→t+1 and RGBt equal to grayscale image at frame t, optical flow from

frame t to t + 1 along axis x, y and RGB color frame at frame t. All channels are taken into
account for calculating loss functions.

and CGAN-3 learn from the current frame to the next frame while CGAN-2 and CGAN-4 study

the evolution from t to t + 2.

Before passing into CGAN streams, all source image channels are resized to 256 × 256

resolution. We also normalise optical flow maps along both x and y axis to range [0,1] by the

following equation :

Fnormm,n =


0.5−Fm,n ×

0.5
Fmin

, for Fm,n 6 0

Fm,n ×
0.5
Fmax

+ 0.5, for Fm,n > 0
(4.10)

where Fm,n is the flow value at pixel (m,n), Fmax and Fmin are the maximum and the minimum

value of optical flow over all videos. Due to the optical flow normalization, negative flow values

are mapped to [0,0.5] while positive values are mapped to [0.5,1]. By this way, we can maintain

the difference between motion directions. All pix2pix-CGAN streams are then trained by Adam

optimizer [43] with learning rate of 0.0002 and momentum parameter β1 = 0.5, β2 = 0.999 for

both the Generator and the Discriminator. We test with different activation functions (LeakyReLU,

ClippedReLU, eLU) and other hyper-parameters such as mini-batch size to find the most suitable

parameters values for each stream and dataset.

4.1.5 Feature extraction with PSNR

Each CGAN predicts the outputs for which it has been trained as described in the table 4.1.

Then it is possible to measure the difference between the predicted output and the target data

to decide if the situation is different of what it should be. Generally, in order to measure the

distance between two images, we can use two metrics : Mean Square Error (MSE) and Peak Signal

to Noise Ratio (PSNR). In signal processing, PSNR is an expression defined by the ratio between

the maximum possible power of a signal and the power of distorting noise that affects the quality

of its representation. In statistics, the mean squared error (MSE) or mean squared deviation

(MSD) of a predictor or an estimator equals to the average of the squares of the errors i.e. the

average squared difference between the predicted/estimated values and the real value.
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Given the original image It containing N pixels without noise and its noisy version Ig , MSE

and PSNR are calculated as :

MSE(I, Is) =
1
N

N∑
i=0

(I it − I ig )2 (4.11)

P SNR(It , Ig ) =
[I imax]2

MSE(It , Ig )
(4.12)

where we denote I imax as the maximum value of a pixel of original image I .

The work of Mathieu et al. [68] shows that PSNR is a promising way to compare the quality

of a target image It with a generated Ig , a higher PSNR value indicating a generated image

conformed to the target image we reach. The authors define the PSNR between It and Ig from

equation 4.12 but in db as :

P SNR(It , Ig )(dB) = 10log10
[max(It)]2

1
N

∑N
i=0(I it − I ig )2

(4.13)

We follow the conclusions of Mathieu et al. and we apply PSNR metric to evaluate the

difference between the generated output and the target one for each CGAN. The generated

output are the predicted optical flows and the images predicted by each of the CGAN. The target

data are the available measures i.e. the acquired frames and the optical flow calculated from

two consecutive frames. Obviously, if we accumulate all PSNR values along all channels and all

streams to learn a threshold, we might lose the benefits carried by each stream. So we apply a

late fusion strategy by separately calculating PSNR for each one and we decide by analysing the

obtained equivalent PSNR vector.

Our 4-streams architecture provides 9 output channels. Thus, we obtain 9 PSNR values

encoded as 9-dimensional features vector. The vectors are normalised to range [0,1] for all 9

dimensions in all videos sequences. By considering all the training sequences, we obtain a feature

map that defines a sub-space that corresponds to the 9-dimensional vectors related to normal

situations. Consequently, each new features vector of this sub-space (i.e. a vector obtained from

an unseen image sequence), could be linked to a normal event.

4.1.6 CGANs backbone loss evaluation

In this section, we analyse the quality of the training step through 4 popular datasets used

for anomaly detection in the state-of-the-art : CUHK Avenue [58], USCD Pedestrian 1 and 2 [66]

and ShanghaiTech [53]. Some samples of those datasets are illustrated in Figure 4.5. First of all,

we briefly introduce those benchmarks. Then we present our step by step implementation of the

multi-CGANs backbone.
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Datasets and evaluation metric

CUHK Avenue : It contains 16 training sequences with some outliers and 21 testing videos

containing 47 irregular events as throwing objects, loitering and running. The size of the people

is changing because of the camera position and angle. The normal samples of the test set are

more numerous than abnormal ones.

Several outlier frames exist in Avenue training set as presented in [58]. All the state-of-the-art

works that use this dataset [53, 72, 36] have manually removed these outliers to avoid training

the CGANs for normal cases with abnormal input data. We apply this task to be fair for compari-

son.

USCD Ped1 & Ped2 : Ped1 has 34 training and 36 testing videos with 40 abnormal events.

Ped2 is smaller with 16 training and 12 testing videos. Almost abnormal events are related

to moving vehicles. Ped1 seems to be more challenging than Ped2 due to the different camera

angles used. Both have more abnormal events than normal ones in their test sets.

ShanghaiTech : This is a very large benchmark containing 13 scenes integrating complex

lightning conditions and camera angles. There are 130 abnormal events and over 270000 training

frames. Moreover, pixel level ground truth of abnormal events is also annotated. Normal samples

are more numerous than abnormal ones in the test set.

Figure 4.5 – Illustration of several samples in CUHK-Avenue dataset [58], USCD-Pedestrian
datasets [66] and ShanghaiTech dataset [53]. First row : Avenue dataset. Second row : Pedestrian
dataset. Third row : ShanghaiTech dataset. ShanghaiTech is more challenging than other due to
multiple captured views and flexible abnormal samples.
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Implementation details

Implementation frameworks : To build each Pix2pix CGAN stream, we implement our

architecture based on framework [78] on Matlab. Optical flow images are needed as input and

as output (Ground-truth) during training. Optical flow is extracted by applying the Full Flow

technique [13] for Avenue, Ped1 and Ped2 datasets. Because ShanghaiTech is much larger, we

use the simple Lucas-Kanade [61] optical flow algorithm implemented in OpenCV to reduce

time processing.

(a)

(b)

Figure 4.6 – Comparison of loss convergence between different parameters for CGAN-2 on
Avenue dataset. Figure (a) shows the case where the loss are not convergent after 40 epochs,
Minibatch size 64 and leakyReLU activation function while Figure (b) illustrates a good set of
parameters E = 20,M = 128,A = eLU corresponding to a good loss convergence. We find that the
total loss is stable from the 1000th iteration and each loss is almost convergent. Best viewed in
color.

Loss evaluation during the CGAN training : For each CGAN stream, we investigate the

effect of the Mini-batch size (M), the activation function (A) and the number of training epochs

(E). We start from E = 20 for Avenue, Ped1 and Ped2 with M = {32,64,128,256} and A =

{leakyRELU (α = 0.2), clippedReLU (α = 0.5), eLU (α = 1)} . Then we increase E up to 30, 40 and

observe the convergence of each loss function to choose the most suitable parameters according

to the balance between time consumption and loss convergences. An example is illustrated on

Figure 4.6. Particularly, because ShanghaiTech has a very large training set, we train at only 1

epoch and optimize parameters for CGAN-2 then adapt those parameters for the other CGANs to

reduce processing time. We choose CGAN-2 as the reference stream for all optimization processes

because CGAN-2 can learn the relation between both appearance and motion evolution. The

final training results for all CGAN-streams are illustrated in Figures 4.7, 4.8, 4.9 and 4.10. Due
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to the balance of layout for illustration of each part and for the purpose of clarity, we need to

keep the figures as near as possible to their corresponding parts, so for the other datasets, the

training convergences are shown in Annexe A.

Figure 4.7 – Illustration of training CGAN-1 on Avenue dataset. We achieve good loss conver-
gences for epoch E = 20, mini batch size M = 128 and activation function A = eLU . The total loss
gets rapidly small and each loss is convergent from early iterations.

Figure 4.8 – Illustration of training CGAN-2 on Avenue dataset. We achieve good loss conver-
gences at E = 20, M = 128 and A = eLU . We find that the total loss is stable from the 1700th

iteration while each loss is almost convergent from early iterations.
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Figure 4.9 – Illustration of training CGAN-3 on Avenue dataset. We achieve good loss conver-
gences at E = 20, M = 128 and A = eLU . We find that the total loss is stable and each loss is
almost convergent from the 1000th iteration.

Figure 4.10 – Illustration of training CGAN-4 on Avenue dataset. We achieve good loss conver-
gences at E = 20, M = 128 and A = eLU . We find that the total loss is stable and each loss is
almost convergent from the 3000th iteration.

Outliers removing on Avenue : As previously presented, some outlier frames have been

manually removed from the training set to avoid degrading loss function convergence. As a first

feasibility evaluation to detect abnormality, we use the trained CGAN-2 to automatically detect

these outliers. For that, we accumulate MSE values calculated between the predicted output of

Version intermédiaire en date du 26 novembre 2022



82 CHAPITRE 4. Anomaly detection

the CGAN-2 and the target data for the 3 channels (i.e. the 2-dimensional optical flow and the

gray image) and we draw the values as presented on figure Figure 4.11. We can easily observe

some peaks occurring exactly at the abnormal frames appearing on the training videos and that

have been manually removed. This result shows clearly that CGAN-2 is able to highlight parts of

a sequence that differ from the normal cases for which the CGAN-2 has been trained. But if the

CGAN-2 has been sufficient for detecting the outliers it is because, it has been trained on the

same sequence in which we aim at detecting the outliers. In an operational context, the goal is

to detect the abnormalities in an unknown image sequence. To propose a better classification

model, we have to analyse the distribution of features vectors for normal and abnormal frames.

This analysis is presented in the next section.

Figure 4.11 – Example of outliers removing on Avenue dataset. In order not to do it manually,
we train CGAN-2 on training set to produce output images. Then we accumulate MSE values
between output and ground-truth images for all of the 3 channels and we draw the corresponding
values. We can easily observe some peaks occurring at the abnormal frames on training videos.
We remove the outlier images corresponding to the peaks to obtain a new clean Avenue training
set. Best viewed in color.

Qualitative evaluations : To measure the efficiency of the features vectors to discriminate
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a normal and an abnormal frame, we visualise the distribution of feature vectors extracted

from test samples on each dataset. For the visualisation to be possible, we do it for each of the

CGAN separately. Figures 4.12, 4.13, 4.14 and 4.15 show the distribution of test vectors infer for

respectively Avenue, Ped1, Ped2 and ShanghaiTech dataset. The axes of each figures denote the

value of PSNR before normalization. Because we use PSNR based feature vector, by definition

normal and abnormal samples are respectively associated to high and low values.

Ped1 and Ped2 datasets contain only grayscale images. Thus, CGAN-3 that is based on RGB

images is reduced to gray level content and we observe a straight line distribution. All other

points plots respect the dimension given in table 4.1.

For all plots we observe that two clusters appear in the distributions. Unfortunately, it is clear

that both of these clusters are not linearly separable in this raw space : normal and abnormal

points distribution partly occupied the same part of the space. Figure 4.16 is another illustration

of this non-linearly separation problem for each CGAN.

Figure 4.12 – Distribution of normal and abnormal samples in Avenue dataset. The axes of each
figure denote the value of PSNR before normalization. For CGAN-2 and CGAN-3, normal points
are blue and abnormal points are black. For CGAN-1 and CGAN4, normal = light blue and
abnormal = red.
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Figure 4.13 – Distribution of normal and abnormal samples in Ped1 dataset. The axes of each
figure denote the value of PSNR before normalization. For CGAN-2 and CGAN-3, normal points
are blue and abnormal points are black. For CGAN-1 and CGAN4, normal = light blue and
abnormal = red.

The multi-channel CGANs backbone defines a feature space in which the images content

is projected and in which abnormality can be detected. Generally, the SOTA proposed two

natural approaches for assigning abnormal labels for image samples as described in works

applying future prediction approach [53, 72, 52, 36, 101]. On the one hand, an abnormal score

is computed by thresholding the error map [53, 72, 101]. On the other hand, authors propose to

use learning model to classify the input into normal and abnormal classes [36, 52].

Table 4.2 shows the performance for both kind of methods. It clearly appears that the methods

based on learning classifiers yield better results even on challenging dataset such as Avenue and

ShanghaiTech.

In our work, we propose to train a Support Vector Machine to separate the normal and

abnormal features vectors. From this point, we leave the unsupervised learning to adopt a

semi-supervised strategy. The next section describes this part of our pipeline and the evaluation

results we obtained for all the selected datasets.
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Figure 4.14 – Distribution of normal and abnormal samples in Ped2 dataset. The axes of each
figures denote the value of PSNR before normalization. For CGAN-2 and CGAN-3, normal points
are blue and abnormal points are black. For CGAN-1 and CGAN4, normal = light blue and
abnormal = red.

4.2 Abnormality detection by Support Vector Machine

In this second part of the work, we describe how we can perform abnormality detection from

the PSNR based feature map inferred from our multi-CGANs backbone. The analysis of the

distribution proposed in the previous section clearly shows that both class cannot be linearly

separated. Thus, we proposed to use a kernel based technique to discriminate the two classes. In

this work, we propose to use Support Vector Machine (SVM) by following a supervised strategy.

A binary SVM is used as the final layer to design the supervised classifier. It takes the feature

maps provided by our network backbone as input after a PSNR transformation. In this section

we show that a SVM is able to accurately detect the abnormal frames of a video. We go further

and our experimental results will show how the accuracy is improved with regards to the size of
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Figure 4.15 – Distribution of normal and abnormal samples in ShanghaiTech dataset. The axes
of each figure denote the value of PSNR before normalization. For CGAN-2 and CGAN-3, normal
points are blue and abnormal points are black. For CGAN-1 and CGAN4, normal = light blue
and abnormal = red.

the dataset used to train the SVM. We finally propose a framework to localise the objects of the

scene that generate the detected anomaly.

The next two sub-sections are respectively dedicated to the description of this SVM layer

(section 4.2.1) and of the abnormal object localisation ( (section 4.2.2)). In the last sub-section

(section 4.2.3) are presented the quantitative evaluation of the SVM based abnormality detection

and the quantitative evaluation of abnormal object localisation task.

4.2.1 SVM based frame-level anomaly detection

In [36], Ionescu et al. "...believe that including any form of supervision is an important step

towards obtaining better performance...". In this paper, the authors propose to train a supervised

one-versus-rest classifier on feature maps representing different kinds of normality defined by

different clusters obtained on the training samples. On the contrary, instead of training SVMs

with only normal samples from training dataset, Liu et al. proposed an interesting alternative

supervised scenario [52]. Classical semi-supervised video anomaly detection assumes that only
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Methods Avenue Ped1 Ped2 SHT

Thresholding
methods

Liu et al. [53] 0.85 0.83 0.95 0.73
Nguyen et al. [72] 0.87 0.96
Vu et al. [101] 0.72 0.82 0.99

Learning classifiers
methods

Ionescu et al. [36] 0.90 0.98 0.85
Liu et al. [52] 0.93 0.77

Tableau 4.2 – Comparison of Frame level AUC on 4 datasets between simple thresholding
inference models and complex learning inference models. All reported methods constructed
their features space by future prediction networks.

Figure 4.16 – Distribution of testing samples in Avenue dataset corresponding to our CGANs
feature space. The first row illustrates the distribution of all samples by green point. The second
row separates the distribution of abnormal and normal samples by different color : normal =
blue ; abnormal = black or red.

normal data are available in the training set because of the rare and unbounded nature of

anomalies. It is obvious that these infrequently observed abnormal events can actually help

detecting identical or similar abnormal events when taken into account during he training. This

is a line of thinking that motivates us to study open-set supervised anomaly detection with only

a few types of abnormal observed events and many available normal events.

In this work, we use the feature maps provided by PSNR values computed on unsupervised

multi-channel pix2pix CGANs output to train a supervised binary SVM classifier. As described

previously, the training parts of the used datasets contain only normal samples. Because training

the SVM requires negative and positive samples, we split each test set into two parts : a first

part for learning and a second part for testing the performance of the trained model. The test

part of the used dataset contains both abnormal and normal samples. During the evaluation,

we analyze how the performance is modified regarding the size of the dataset used for training

i.e. regarding the used test set ratio. We aim at defining a trade-off between the performance
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improvement and the amount of work required for the annotation task.

In detail, by extracting a part of the test set from one dataset, we have two typical classes for

each frame : one frame can be normal or abnormal. Each frame is represented by its features

vector i.e. the PSNR feature vector extracted from the output of the multi-CGANs backbone.

The full size of features vector is 9-dimensional corresponding to the 9-streams of CGANs when

all the streams are considered. During the experiments, we analyse the performance by using

each stream separately and by combining them. In practice, the feature vector can be from

1-dimensional to 9-dimensional vector depending on which combinations are evaluated. Before

training the binary SVM classifier, all features vectors are normalised.

Support Vector Machine description

Theoretically, the SVM based binary classification algorithm allows to categorise an unseen

object into two separate groups. This classification is based on the properties of the objects and of

a set of known samples, which are already classified and that has been used to construct the SVM

model. The properties are defined by a n-dimensional features vector, and the model is achieved

by creating a linear partition of the feature space into the two classes. An unseen sample is

classified by calculating the position of the features vector relatively to the linear model. SVM is

not only restricted to linear the discriminative problem. Thanks to a technique known as the

kernel trick, it is possible to estimate various types of non-linear decision boundaries. This trick

performs a mapping of the original feature space to a higher-dimensional space, in which the pro-

blem of binary classification becomes near a linearly separable one. However, even if a kernel is

applied, the boundary is always defined in the original space by the training set of feature vectors.

In a n-dimensional space the SVM algorithm constructs an optimal hyperplane that discrimi-

nates the samples from two classes, and the optimal hyperplane equation is given by :

xβ +b = 0 (4.14)

where :

— x is a sample vector

— β contains the coefficients that define an orthogonal vector to the hyperplane.

— b is the bias term

This hyperplane splits the feature space into two parts for which the sign of the function

f (x) = xβ + b is negative or positive. Once the model is obtained, classifying a new sample

consists in determining the part of the space where its feature vector is located.

The SVM model, defined by parameters β and b, is estimated by applying a training algo-

rithm on a set of positive and negative training samples (~xi,yi) where ~xi is the feature vector

of the ith sample. yi is equal to 1 or −1 with regards to the class to which the sample belongs.

Version intermédiaire en date du 26 novembre 2022



4.2. Abnormality detection by Support Vector Machine 89

The training algorithm finds and sets up the maximum margin length while keeping samples in

the positive (y = 1) or negative (y = −1) part of the space. The optimal hyperplane is separating

the two sets of samples such as it is the farthest from any training observations. The smallest

perpendicular distance to a training observation from the hyperplane is known as the margin.

The optimal hyperplane depends on the margin defined by a subset of the positive and negative

training samples known as support vectors. It appears clearly that the optimal hyperplane and

thus the classification accuracy depends on the support vectors.

The SVM training is based on an optimization and relies on a primal and a dual formalization

of the SVM problem.

— For separable samples, the objective function is defined by solving argmin‖β‖ with

respect to the β and b such that yjf (xj) ≥ 1, for all j = 1, ..,n.

— For non-separable samples, the objective function is defined by solving argmin(0.5‖β‖2 +
C
∑
θj) with respect to the β, b, and θj such that yjf (xj) ≥ 1 − θj and θj ≥ 0 for all

j = 1, ..,n and for a positive scalar box constraint C. The algorithm applies slack variables

(θj) to penalize the objective function for samples that cross the margin boundary for

their class. θj = 0 for samples that do not cross the margin boundary for their class,

otherwise θj ≥ 0.

The algorithm applies the Lagrange multipliers to optimize the objective function, which pre-

sents n coefficients α1, ..,αn. For both separable and non-separable cases, the dual formalization

for a linear SVM is as follows :

— For separable samples,

L = argmin(0.5
n∑
j=1

n∑
k=1

αjαkyjykxjxk −
n∑
j=1

αj) (4.15)

w.r.t.α1, ..,αn subject to
∑
αjyj = 0,αj ≥ 0 for all j = 1, ..,n and Karush-Kuhn-Tucker (KKT)

Complementarity Conditions.

— For non-separable samples, the objective function is similar to separable classes, except

for the additional condition 0 ≤ αj ≤ C for all j = 1, ..,n.

The final resulting score function is :

f̃ (x) =
n∑
j=1

α̃jyjxxj + b̃ (4.16)

where b̃ is the estimate of the bias and α̃j is the jth estimate of the vector α̃ for j = 1, ...,n. Written

this way, the score function is free of the estimate of β as a result of the primal formalization.

When classes discrimination requires the non-linear boundary, SVM is looking for an optimal

separating hyperplane but in a transformed predictor space obtained by applying a kernel trick.
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This extension to the non-linear case results in increasing the feature space dimension through

the use of functions known as kernels φ. For nonlinear SVM, the algorithm constructs a Gram

matrix using the rows of the predictor data X . The dual formalization replaces the inner product

of the observations in X with corresponding elements of the resulting Gram matrix. The Gram

matrix of a set of n vectors x1, ..,xn;xj ∈ Rp is an n − by −n matrix with element (j,k) defined

as G(xj ,xk) =< φ(xj),φ(xk) >, an inner product of the transformed predictors using the kernel

function φ. Various kernel functions exist like the following :

— Gaussian kernel : G(xj ,xk) = exp(− ‖xj−xk‖
2

2σ2 )
— Radial basis function for γ > 0 : G(xj ,xk) = exp(−γ‖xj − xk‖2)
— Linear kernel : G(xj ,xk) = xjxk + c
— Polynomial kernel for integer q > 0 : G(xj ,xk) = (αxjxk + c)q.

— Sigmoid kernel : G(xj ,yk) = tanh(αxjxk + c)

In this case, the dual formalization for nonlinear SVM is :

L = argmin(0.5
n∑
j=1

n∑
k=1

αjαkyjykG(xj ,xk)−
n∑
j=1

αj) (4.17)

w.r.t. α1, ..,αn subject to
∑
αjyj = 0, 0 ≤ αj ≤ C for all j = 1, ..,n and Karush-Kuhn-Tucker (KKT)

Complementarity Conditions. G(xj ,xk) are elements of Gram matrix. By this way, the final

resulting score function is :

f̃ (x) =
n∑
j=1

α̃jyjG(x,xj) + b̃ (4.18)

The KKT complementarity conditions are optimization constraints required for optimal

nonlinear programming solutions. In SVM, the KKT complementarity conditions are :αj[yjf (xj)− 1 +θj] = 0

θj(C −αj) = 0
(4.19)

for all j = 1, ..,n where f (xj) = φ(xj)β + b with φ(xj) is a kernel function and θj is a slack

variable. If the classes are fully distinguishable, then θj = 0 for all j = 1, ..,n.

As it will be presented in the next section about evaluation results, we have evaluated

different kernels to reach the best results. To enhance performance of SVM classifiers, we also

apply k− f old cross-validation strategy. This strategy proposed to divide the training dataset

into k subsets and to apply the following procedure for each of the k subsets :

— A model is trained using k− 1 of the folds as training data ;

— The model performance is evaluated on the remaining subset (i.e. the one that has not

been used for training)

The performance measure reported by k-fold cross-validation is then the average of the values
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computed in the loop. In our experiment, we set k = 5.

4.2.2 Abnormality object localisation

The objective of this last task is to localise the object related to the abnormal event detec-

ted at the frame-level. For each abnormal frame, we run a fast detector to compute bounding

boxes (BB) for each object in the sequence. Each BB is considered as a new input and a PSNR

score is computed for each one by taking the normal sum of 9 PSNR scores corresponding to 9

channels. To decide if one BB is or not one object that is producing the anomaly, we assume that

heat region appears at the position of the BB in the error map. Thus, the BBs yielding the mi-

nimum values for PSNR scores or values smaller than a threshold refer to the abnormality objects.

After calculating PSNR score for each CGAN stream to encode feature vectors, we learn

binary SVM classifier using the Classification Learner Toolbox on Matlab.

To reduce the computational complexity in practical experiments, we do not re-pass each BB

throughout the whole framework but we apply directly each BB to the error maps. The error

map of each frame is the subtraction of the generated images (optical flow and gray or color

images) and the corresponding target frames as illustrated in Figure 4.17.

We compare our method with the state-of-the-art object-centric model (Figure 2.17) proposed

by Ionescu et al. [36]. Ionescu et al. propose to extract object-centric features at the first step and

then use those features for the rest of their pipeline. Their work helps them in neutralising the

effect of background information which is usually stable throughout the sequence and highlights

the distinctions around the objects. In a trade-off, their method increases the complexity of

feature space and time consumption for every task. In our side, we apply the object detector after

inferring the CGAN streams and after classifying normal/abnormal frames by SVM. Obviously,

normal frames appear more often than abnormal ones. Hence, we avoid object detection task in

normal frames and thus significantly reduce time processing. Second, we apply a simple PSNR

score for both frame-level and object localization model instead of applying K-means clustering

to generating the normal classes for unsupervised SVM as their method [36]. By reusing the error

maps at frame-level classification stage, we accelerate our process by directly calculating PSNR

score of bounding boxes on the error maps. Obviously, our methods look more natural because

we apply global features for the global task (i.e. frame-level classification) and object-centric

metrics for abnormality object localization.

Generally, this framework applies a hard-decision strategy to localize the abnormal objects. It

leads to the issue that the final performance highly depends on the accuracy of the bounding box

detector. The missing detections or confusing detections can affect the final decision. Another

problem is how to pre-define the number of abnormal objects in cases of hard-decision. In

popular datasets, this number should be one or two objects. Then we could search for two
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Figure 4.17 – The pipeline of abnormality object localisation framework. After the frame-level
anomaly detection stage, we obtain the labels for each frame. For each abnormal frame, we
run a fast detector to compute bounding boxes (BB) for each object in the sequence and we
directly apply each BB to the error maps. PSNR scores are computed for each one by taking the
normal sum of 9 PSNR scores and BBs yielding minimum values for PSNR scores refer to the
abnormality objects.

candidates BBox obtaining minimum PSNR scores. It is based on the fact that the key object in

our real-world scenario is abnormal one, so the false positive decision is more acceptable than

false negative one. We could also go beyond this limitation by searching for a soft threshold of

PSNR score.

During evaluation, we apply the Mask R-CNN [29] as the object detector. This model is based

on a Resnet101 architecture trained on Imagenet dataset. All steps are implemented on Matlab

with Nvidia GeForce GTX 1080.

4.2.3 Evaluation results

Evaluation metrics

As in the literature, we use frame-level Area-Under-Curve (AUC) metric as main measure-

ment for quantitative evaluation and fair comparison with state-of-the-art methods. The type of

AUC that we applied is AUC of Receiver Operating Characteristic (ROC) curve. AUC of ROC

curve is an evaluation measurement for the classification problems at various threshold settings.

ROC curve is a probability curve and AUC represents the degree or measure of the classifier
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performance. AUC introduces how much the model is capable of separating between classes.

The higher the AUC, the better the model at predicting negative sample as negative and positive

sample as positive. The ROC curve is plotted with True Positive Rate (TPR) against the False

Positive Rate (FPR) where TPR is on the y-axis and FPR is on the x-axis (Figure 4.18).

T PR =
T rue P ositive (T P )

T rue P ositive (T P ) +False Negative (FN )
(4.20)

FPR =
T rue Negative (TN )

T rue P ositive (T P ) +False Negative (FN )
(4.21)

A strong classification model has its AUC near to 1 which means it has a good measure of

separability (Figure 4.18). A weak model has its AUC near to 0 which means it has the worst

measure of separability. In case of AUC = 0, the model is predicting all positive samples as

negative and vice versa. Particularly, when AUC = 0.5, it means the model has not the ability of

distinguishing between class or the model is achieving the performance at randomize level. For

the EER, the best system achieves the lowest EER. For quantitative evaluation of abnormality

localization, we use the same bounding box AUC and EER metrics reported in [101]. If the

intersection between a detected box and the ground-truth box is smaller than 40% of the area of

ground-truth box, the detected box is removed.

Figure 4.18 – An illustration of AUC-ROC. This performance belong to a good model based on
AUC metric. The ROC curve is rapidly asymptotic to 1 while FPR is still small.

Besides, we propose some alternative evaluation metrics that are more adaptive to object-
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level. We find that the bounding box condition above is not good enough for evaluating the

object-centric systems because it tends to report us how many frames are true positive w.r.t. the

size of the intersection, so it is still frame-level. It cannot directly illustrate the bounding box

performance. Hence, we define three other metrics as following :

IOU50 Rate =
Number of B50

Number of detected boxes
(4.22)

IOU75 Rate =
Number of B75

Number of detected boxes
(4.23)

mIOU =
∑
IOU

Number of detected boxes
(4.24)

where B50 and B75 denote the boxes that have the IOU with ground-truth boxes greater than

50% and 75%. For mIOU , there are two possible ways to treat the true negative frames (i.e.

detected box = ground-truth box = 0). One way, we remove true negative frames and report only

true positive cases. Other way, we set IOU = 1 for each true negative frame.

Evaluation of SVM based abnormality detection

In this section, we present the evaluation of the supervised part of our solution. We recall

that the proposed solution is based on a multi CGANs backbone whose outputs are used to

decide if the input frame is containing an anomaly or not. The network learning is based on a

semi-supervised strategy i.e. the network weights and the PSNR based decision is trained with

only normal image sequences.

To train the supervised SVM of our architecture, the training set has to contain anomaly

samples. Only the test parts of the used datasets contain the required positive samples. To be

fair during evaluation, we split the test set of each of the datasets into two subsets respectively

called SVM-train and SVM-test set for respectively the training and the inference phase. To

explore the effect of the supervised scenario on the performance, SVM-train is built by extrac-

ting from 10% up to 80% of the samples of the test set, the SVM-test being the remaining samples.

As proposed at the end of the section 4.2.1, we optimise the classifier with regards to the

used kernel function i.e. we run the optimisation process on the SVM learner with the following

kernel functions : polynomial, gaussian and linear functions. Thus, the SVM-train is splitted

into a train and a validation set for 5-fold cross-validation. Similarly to multi-CGANs backbone

evaluation, for ShanghaiTech dataset, we run the optimisation process only once when SVM-train

equal 80%. Then we apply optimised parameters for the rest of the evaluation (i.e. from 10% to

80%).
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As for multi-CGANs backbone, the effectiveness of the supervised layer is measured by the

value of AUC. By sequentially increasing the SVM-train set size from 10% of the original test

set size up to 80%, we report the evolution of performance on Figure 4.19. We clearly observe

that the larger the size of the SVM-train set we create, the better the performance we obtain. We

compare our best results for each benchmark with recent state-of-the-art methods in Table 4.5.

We split those methods in two groups. The first group contains the fully unsupervised methods

without adding extra abnormal samples from original test set to training set. We notice that while

the method of Ionescu et al. [36] is unsupervised, they calculated abnormals scores by supervised

SVM strategy. The second group contains the semi-supervised and supervised methods that

insert abnormal samples into training set. Generally, it is difficult to compare the methods in

different scenarios, especially methods from the second group, because the number of testing

samples is not the same. Our solution gets promising results on all of the 4 datasets. We achieve

a moderate 2% improvement on Ped1 dataset while producing a competitive result on Ped2 and

Avenue datasets. Particularly, it outperforms by 9% compared with state-of-the-art method [36]

on the challenging ShanghaiTech dataset. Considering the effect of the supervised scenario, we

show that from 50% of the original test set size, we surpass state-of-the-art performance on

Avenue, Ped1 and ShanghaiTech.

Figures 4.20,4.21,4.22 and 4.23 show the minimum classification error curve during the

optimization process of the SVM parameters for each dataset. The optimization process is time

consuming and depends on the size of the dataset, from 30 minutes for Pedestrian dataset to

6 hours for ShanghaiTech. As we previously mentioned, optimisation if done once. Based on

those figures, we confirm the necessity and effective performance of SVM optimisation process.

Thanks to the optimisation, we sharply reduce the minimum classification errors after a certain

number of iterations. We also achieve best results for each dataset using various set of parameters.

After having the optimised model, we draw the ROC curve and calculate AUC performance.

Results are illustrated in Figure 4.24,4.27,4.30 and 4.33 for all of the four datasets. The shape of

the curve expresses the good performances we get. All of the ROC curves are rapidly asymptotic

to 1 while False Positive Rate is still very small.

Then we present the confusion matrix in Figure 4.25,4.28,4.31 and 4.34. We find that most of

the wrong decisions are False Positive while False Negative Rate is much lower. It can explain

the high performance on AUC metric of our models. In real word transportation scenario, if we

consider the abnormal activities are the dangerous activities then False positive is acceptable and

we must reduce the False Negative Rate. It means that our models are very adaptive to real-world

applications.

Besides, we draw the samples distributions for each class in Figure 4.26,4.29,4.32 and 4.35.
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Almost all normal samples situate in higher values than abnormal ones. This distribution cor-

responds to the fact that PSNR techniques produce high scores if predicted images tend to be

similar to the source images.

Figure 4.19 – Evolution of AUC performance according to the size of the SVM-train set. The
vertical axis shows the AUC performances and the horizontal axis shows the size of the SVM-
train set corresponding to how many samples of original test set are taken. By sequentially
increasing the SVM-train set size from 10% of the original test set size up to 80%, we report
the evolution of performance. Obviously, the larger the size of the SVM-train set we create, the
better performance we obtain. Considering the effect of the supervised scenario, we show that
from 50% of the original test set size, we surpass state-of-the-art performance on Avenue, Ped1
and ShanghaiTech. Best viewed in color.

MSE and PSNR comparison : We do the first experiments to evaluate the performance of

feature encoding using PSNR and MSE. We choose Avenue benchmark as the reference dataset

because it involves color images with acceptable dataset size (Pedestrian dataset have only

grayscale frames and ShanghaiTech is too large). Results are illustrated in Table 4.3. The large

margin about 10% on all streams and combination shows that PSNR technique is significantly

better for frame level anomaly detection task.

Next, we apply PSNR technique for the other benchmarks. We go further by investigating
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Figure 4.20 – Illustration of optimization process when we train SVM binary classifier on Avenue
dataset. The minimum classification error is sharply decreased after 6 iterations then becomes
stable. We achieve optimized parameters at box constraint level 0.05 with the cubic kernel.

various combinations of our 4 streams. Multi-stream is combined by concatenating PSNR fea-

tures of each stream to produce a new vector. Results are shown in Table 4.4. On two grayscale

datasets Ped1 and Ped2, CGAN-3 and CGAN-4 produce almost the same performance. The longer

temporal horizon of prediction of CGAN-4 brings us a small improvement 1∼2% with respect

to CGAN-3. On the other RGB datasets, CGAN-3 surpasses CGAN-4 with a huge difference of

10%. Generally, CGAN-2 achieves best performance among the 4 streams. It shows that learning

both appearance and motion evolution can help us generating better features. Obviously, the

combination of CGAN-1 (flow) and CGAN-4 (grayscale) produces similar or slightly better

performance than CGAN-2 (combines flow with grayscale). This result also proves that taking

into account longer temporal horizon of prediction, as CGAN-4, improves performance. Besides,

when several streams are combined, better performance is achieved. A four streams combination

always produces the best results : that is a strong experimental proof of the relevance of our

proposed idea about multi-channel framework.
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CGAN Stream MSE PSNR
CGAN-1 0.72 0.82
CGAN-2 0.69 0.81
CGAN-3 0.73 0.79
CGAN-4 0.62 0.67
CGAN-(1+2+3+4) 0.81 0.90

Tableau 4.3 – Frame-level AUC performance comparison between two methods of prediction
error encoding : PSNR and MSE. Results are reported on Avenue dataset. 80% samples of test set
are used for training SVM.

CGAN Stream Avenue Ped1 Ped2 SHT
CGAN-1 0.82 0.75 0.89 0.68
CGAN-2 0.81 0.78 0.92 0.78
CGAN-3 0.79 0.64 0.75 0.73
CGAN-4 0.67 0.65 0.77 0.62
CGAN-(1+2) 0.83 0.80 0.93 0.80
CGAN-(3+4) 0.86 0.70 0.77 0.81
CGAN-(1+4) 0.86 0.79 0.93 0.76
CGAN-(1+2+3) 0.86 0.83 0.95 0.87
CGAN-(1+2+4) 0.83 0.83 0.93 0.83
CGAN-(1+2+3+4) 0.92 0.85 0.96 0.94

Tableau 4.4 – Frame-level AUC performance on all 4 benchmarks using PSNR encoding. 80%
samples of test set are used for training SVM. SHT = ShanghaiTech
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Methods Avenue Ped1 Ped2 SHT

Unsupervised
methods

Luo et al. [62] 0.77 0.88
Nguyen et al. [72] 0.87 0.96
Hinami et al. [33] 0.89 0.92
Vu et al. [101] 0.72 0.82 0.99
Ouyang et al. [75] 0.89 0.97 0.81
Ionescu et al. [36] 0.90 0.98 0.85

Semi and
supervised
methods

IVC with OS [52] 0.83 0.56
IVC with OS & FL [52] 0.83 0.50
IVC with OS & FL &2streams [52] 0.81 0.50
TripleLoss + OCSVM [52] 0.80 0.50
Hasan et al. [27] 0.80 0.75 0.85 0.61
Luo et al. [63] 0.82 0.92 0.68
Ionescu et al. [38] 0.81 0.68 0.82
Liu et al. [53] 0.85 0.83 0.95 0.73
Liu et al. [52] 0.93 0.77
Ours 0.92 0.85 0.96 0.94

Tableau 4.5 – Comparison of Frame level AUC on the 4 datasets between ours solution and
recent state-of-the-art methods that reported their performance on at least 2 similar datasets. We
split those methods in two groups. The upper group contains the fully unsupervised methods
without adding extra abnormal samples from original test set to training set. The second group
contains the semi-supervised and supervised methods that insert abnormal samples into training
set. Generally, it is difficult to compare the methods in different scenarios, especially in the
second group, because the number of testing samples is not the same. In our case, all the output
channels of our model are used. 80% samples of test set are used for training SVM. SHT =
ShanghaiTech
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Figure 4.21 – Illustration of optimization process when we train SVM binary classifier on Ped1
dataset. The minimum classification error is sharply decreased after 11 iterations then becomes
stable. We achieve optimized parameters at box constraint level 262.3 with Gaussian kernel.

Evaluation of abnormality objects localization

Quantitative evaluation : We evaluate the quantitative performance of our abnormality

object localization models on Avenue dataset. We use AUC and ERR metrics at pixel-level. The

obtained results are reported in Table 4.6. Most of the state-of-the-art researches [53, 72, 36]

have not reported quantitative performance for abnormality localization task. These authors

only propose a qualitative analysis to show that the error maps are relevant i.e. heat scores are

located where abnormality objects are localised. Hence, we compare our quantitative results

with recent methods of Vu et al. [102, 101] that applied the same evaluation metrics.

We achieve significant improvements on both metrics. We also report our performance on

IOU50 Rate, IOU75 Rate and mIOU in Table 4.7. A half of true positive boxes are acceptable

boxes with IOU greater than 0.5. The similar rate of IOU50 and IOU75 shows that most of the

acceptable boxes (i.e. B50) are detected with high accuracy (i.e. B75). For mIOU , there is a large
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Figure 4.22 – Illustration of optimization process when we train SVM binary classifier on Ped2
dataset. The minimum classification error is sharply decreased after 24 iterations then becomes
stable. We achieve optimized parameters at box constraint level 994.76 with the cubic kernel.

margin between both performances because there are more true negative samples than true

positive samples.

Single abnormal object localization : Our method achieves promising performance when a

single object is generating the anomaly. We investigate the bounding box for which the PSNR

score is minimum. Figure 4.36 shows the qualitative results of single abnormal object localization

on Avenue dataset. Each row represents a type of abnormality : running, dancing, throwing

object, moving to wrong direction. We can exactly detect the abnormal object in every frame.

Due to the inaccuracy of Mask R-CNN, the bounding boxes are not perfect in some cases, e.g. 4th

image of the first and the second row, and the 2nd image of the third row.

Figure 4.37 shows the qualitative results of single abnormal object localization on Pedestrian

datasets. Those datasets are more challenging than Avenue dataset because the camera view

is quite far, most of the objects are small and overlapped, and only grayscale images are avai-
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Figure 4.23 – Illustration of optimization process when we train SVM binary classifier on
ShanghaiTech dataset. The minimum classification error is sharply decreased after 15 iterations
then becomes stable. We achieve optimized parameters at box constraint level 92.50 with the
Gaussian kernel.

lable. There are two typical types of abnormality in Pedestrian datasets : wrong vehicles (car,

bicycle,etc.) moving near pedestrians and in wrong direction. Generally, the abnormal vehicles

are easier to detect than the wrong moving direction. While all abnormal vehicle are localized in

the first, second and fourth row, there are some false positive errors in the third row where the

abnormal person are crossing the road. For Pedestrian dataset, Mask R-CNN detector provides

the same detection/classification errors on bounding boxes that already appends in Avenue

dataset.

Figure 4.38 illustrates the qualitative results of single abnormal object localization on Shan-

ghaiTech dataset. There are two types of abnormality illustrated in this figure : jumping (first

row) and wrong vehicles (all other rows). All abnormal objects are detected, but there are still

some flaws due to detection/classification errors of Mask R-CNN, especially in the last row :

instead of localising all the persons with a bicycle, our algorithm reports only the umbrella as
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Figure 4.24 – Illustration of AUC performance achieved at optimized SVM model on Avenue
dataset. The ROC is rapidly asymptotic to 1 while False positive rate is still very small. It means
that our model achieves good performance.

the abnormality object.

Generally, we can exactly detect and localise the abnormal object in various types of abnorma-

lity : running, jumping, dancing, throwing object, moving to wrong direction, abnormal vehicles,

etc. Interestingly, our method performs pretty well when occlusion occurs and in overlapped

scenarios. In contrast, there are also some flaws related to the size and position of bounding

boxes. Sometimes, they are too large or too small. In several other cases, the boxes only belong

to parts of abnormal object, e.g. the umbrella existing in figure 4.38. Most of the imperfect

cases come from the fact that our anomaly object localisation depends on the accuracy of the

Mask R-CNN detector. Sometimes, overlapped objects are detected by Mask R-CNN at the same

location, e.g. bicycle, person and umbrella in ShanghaiTech samples. When one of those objects

achieves minimum PSNR score, our algorithm chooses only this box but not the total location.
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Figure 4.25 – Illustration of confusion matrix achieved with optimized SVM model on Avenue
dataset. We find that most of the wrong decisions are False Positive while False Negative Rate is
much lower. It can explain the high performance on AUC metric of our models. In real word
transportation scenario, if we consider the abnormal activities are the dangerous activities then
the False positive is acceptable and we must reduce the False Negative Rate. It means that our
model is very adaptive to real-world applications.

Multiple abnormal objects localization : In the case of existing multiple abnormal objects,

the maximum number of objects to detect is 2. It means that we report the minimum and second

minimum PSNR objects. Figure 4.39 illustrates the qualitative results of multiple abnormal

objects localizations. Generally, our methods achieve moderate performance. We successfully

detect the first object (i.e. the minimum PSNR score) while the second object are sometimes false

positives. Those errors often happens when the false positive object are near the main abnormal

object. We can explain this problem by investigating the motion features and the inaccuracy of

Mask R-CNN.

On the one hand, the optical flow estimation is not perfect. The motion errors are accu-

mulated throughout our pipeline, from flow estimation to flow reconstruction. Obviously, the

difference of optical flow is always an important part of the PSNR score. Combining with the
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Figure 4.26 – Illustration of sample distribution achieved at optimized SVM model on Avenue
dataset. Almost all of the normal samples situate in higher values than abnormal ones. This
distribution corresponds to the fact that PSNR techniques produce high scores if predicted
images tend to be similar to the source images.

existing drawback of Mask R-CNN (i.e. bounding boxes are too large or too small), the impact of

motion score can be spread out and causes the effect on neighbour objects. By this way, the boxes

near the first object tend to obtain lower PSNR score than the second real abnormality object.

On the other hand, overlapped objects are detected by Mask R-CNN at a same location, e.g.

bicycle and person in pedestrian samples. Obviously, both objects usually obtain lower PSNR

score than the rest. Therefore, our algorithm chooses the two objects at the same location instead

of searching for a new position.

Figure 4.40 shows us several examples selected from Avenue, Ped1, Ped2 and ShanghaiTech

to demonstrate true positive and failure cases of anomaly object localization. Obviously, we can

strongly detect various types of abnormal events in the crowed and cluttered background, for

different camera angles and involving not only single but also multiple objects. Failure cases
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Figure 4.27 – Illustration of ped1 performance achieved with optimized SVM model on Avenue
dataset. The ROC is rapidly asymptotic to 1 while False positive rate is still very small. It means
that our model achieves good performance.

appear when abnormality objects are too close to the other normal boxes : the PSNR score of

those boxes is affected by the features of the near abnormality object. Other common errors

are directly caused by false negative abnormality of the frame-level detection. Generally, those

problems come from two reasons. On the one side, SVM cannot classify frames as abnormal and

produces false negatives : for those frames the object detector is not applied. On the other side,

some frames are true negatives (i.e. SVM is correct) but the PSNR score is not relevant enough for

localising the abnormality objects. A promising solution is proposing an adaptive thresholding

rather than the hard-decision strategy.

4.3 Conclusions and discussions

In this chapter, a CGAN based SVM anomaly detector is proposed. The multi-CGANs back-

bone predicts the future information : it is based on four CGANs taking various types of

appearance and motion information as input and producing prediction of similar information as
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Figure 4.28 – Illustration of confusion matrix achieved with optimized SVM model on ped1
dataset. We find that almost all of the wrong decisions are False Positive while False Negative
Rate is much lower. It can explain the high performance on AUC metric of our models. In real
word transportation scenario, if we consider the abnormal activities are the dangerous activities
then the False positive is acceptable and we must reduce the False Negative Rate. It means that
our models is very adaptive to real-world applications.

output. These CGANs combined to PSNR metric provide a relevant feature space to discriminate

normal and abnormal events. The discriminative model is based on a Support Vector Machine

trained following a classical supervised strategy. While the binary SVM is applied for frame-level

anomaly detection, we propose an anomaly object localisation based on a Mask R-CNN detector.

Our evaluations highlight our good achievements for anomaly detection on 4 reference

datasets. Our experiments show that we achieve very promising results although we have not

optimised all of the steps. For example, Full-Flow [13] and Lucas-Kanade [61] could be replaced

by recent SOTA methods to reach better performance.

Strengths : Our anomaly detection framework is very flexible. It can be easily extended

by adding, removing or replacing any of the CGAN streams and inference methods. About
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Figure 4.29 – Illustration of sample distribution achieved with optimized SVM model on ped1
dataset. Almost all of the normal samples situate in higher values than abnormal ones. This
distribution corresponds to the fact that PSNR techniques produce high scores if predicted
images tend to be similar to the source images.

computational complexity, our CGANs stage has the same complexity as the SOTA. The inference

stage has moderate complexity : higher than [53] using simple threshold but more simple

than [36] using very high-dimension features classified by K-means with multi-class SVM.

Limitations : On the one hand, the mix of unsupervised CGAN streams with supervised

SVM helps us obtain impressive performances on off-line cases where all test data are prepared

and well pre-processed. For online works, we will get troubles when brand-new abnormal

actions suddenly occur without existing in the previous learned databases. On the other hand,

the anomaly object localisation is significantly affected by the detector we use (Figure 4.41).

Sometimes, bounding boxes is imperfectly generated regarding its size and its labels. We can

go beyond this limitation by not applying a high-level detector such as Mask R-CNN but only

a low-level region proposal network. Moreover, the proposed framework is not an end-to-end

network structure at the moment. An end-to-end approach will be more globally optimal by

avoiding several optimisation process done locally.
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Figure 4.30 – Illustration of optimization performance achieved with optimized SVM model on
ped2 dataset. The ROC is rapidly asymptotic to 1 while False positive rate is still very small. It
means that our model achieves good performance.

Methods AUC EER
OC-SVM [102] 33.16 47.55
GMM [102] 43.06 43.13
Multilevel Representations [101] 52.82 38.83
Ours 74.43 30.21

Tableau 4.6 – Pixel-level AUC and EER performance of abnormal object localization on Avenue
dataset.
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Figure 4.31 – Illustration of confusion matrix achieved with optimized SVM model on ped2
dataset. We find that almost all of the wrong decisions are False Positive while False Negative
Rate is much lower. It can explain the high performance on AUC metric of our models. In real
word transportation scenario, if we consider the abnormal activities are the dangerous activities
then the False positive is acceptable and we must reduce the False Negative Rate. It means that
our models is very adaptive to real-world applications.

Metric Performance
IOU50 Rate 0.49
IOU75 Rate 0.41
mIOU 0.42
mIOU + TN 0.86

Tableau 4.7 – Pixel-level performance of abnormal object localization on Avenue dataset. We
report mIOU in both cases : i,mIOU denotes the performance without true negative samples and
ii, mIOU + TN denotes the performance with true negative samples i.e. for each true negative
box, we set IOU = 1.
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Figure 4.32 – Illustration of sample distribution achieved with optimized SVM model on ped2
dataset. Almost all of the normal samples situate in higher values than abnormal ones. This
distribution corresponds to the fact that PSNR techniques produce high scores if predicted
images tend to similar source images.
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Figure 4.33 – Illustration of optimization performance achieved with optimized SVM model on
ShanghaiTech dataset. The ROC is rapidly asymptotic to 1 while False positive rate is still very
small. It means that our model achieves good performance.
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Figure 4.34 – Illustration of confusion matrix achieved with optimized SVM model on Shan-
ghaiTech dataset. We find that almost all of the wrong decisions are False Positive while False
Negative Rate is much lower. It can explain the high performance on AUC metric of our models.
In real word transportation scenario, if we consider the abnormal activities are the dangerous
activities then the False positive is acceptable and we must reduce the False Negative Rate. It
means that our models is very adaptive to real-world applications.
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Figure 4.35 – Illustration of sample distribution achieved with optimized SVM model on
ShanghaiTech dataset. Almost all of the normal samples situate in higher values than abnormal
ones. This distribution corresponds to the fact that PSNR techniques produce high scores if
predicted images tend to be similar to the source images.
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Figure 4.36 – Qualitative results of single abnormal object localization on Avenue dataset. Each
row represents a type of abnormality. From the top row to the bottom row : running, dancing,
throwing object, moving to wrong direction. We can exactly detect the abnormal object in every
frame. Due to the drawback of Mask R-CNN, the bounding boxes are not perfect in some cases,
e.g. 4th image of the first and second rows, 2nd image of the third row.
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Figure 4.37 – Qualitative results of single abnormal object localization on Ped1 and Ped2
datasets. There are two typical types of abnormality in Pedestrian datasets : wrong vehicles (car,
bicycle,etc.) and moving to wrong direction. Generally, the abnormal vehicles are easier (to
detect) than the wrong moving direction. While all abnormal vehicles are localized in the first,
second and fourth row, there are some false positive errors in the third row where the abnormal
persons are crossing the road. The same drawback of Mask R-CNN bounding boxes still happens
as in Avenue dataset.
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Figure 4.38 – Qualitative results of single abnormal object localization on ShanghaiTech dataset.
There are two types of abnormality illustrated in this figure : jumping (first row) and wrong
vehicles (all other rows). All abnormal objects are detected, but there are still some flaws due to
the drawback of Mask R-CNN, especially in the last row. Instead of localizing all the persons
with a bicycle, our algorithm chooses only the umbrella.
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Figure 4.39 – Qualitative results of multiple abnormal objects localization on Pedestrian and
ShanghaiTech datasets. We set the number of abnormal object to 2. While the first object (i.e.
obtaining minimum PSNR score) is almost always true, the second object (i.e. obtaining the
second minimum PSNR score) is false positive when its is near the first object. This drawback
comes from the accumulated errors of the optical flow in estimating and generating steps.
Besides, overlapped objects are detected by Mask R-CNN at the same location, e.g. bicycle and
person in pedestrian samples. Obviously, both objects usually obtain lower PSNR score than the
rest. Therefore, our algorithm chooses the two objects at the same location instead of searching
for a new position.
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Figure 4.40 – Qualitative results of abnormal objects localization on Avenue, Ped1, Ped2 and
ShanghaiTech dataset. The left side contains correct localizations and the right side shows the
failure cases with two main errors : false negative frames and detection of wrong objects. The
true objects are marked by green boxes. Best viewed in color.

Figure 4.41 – Several imperfect cases of anomaly localisations affected by Mask R-CNN detector.
Left : Too large bounding box ; Middle : Too small box ; Right : Wrong object. Best viewed in
color.
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Chapitre5
Conclusion and Future works

This chapter summarises the essentials of my PhD thesis as well as presents some potential

ideas for future works. The first section is dedicated to conclude the thesis. We briefly remind

the general context and objectives of this project and synthesize our remarkable achievements

for our proposed methods. The second section introduces what we plan to do to improve some

limitations of our current works and to develop our frameworks to real-world applications.

5.1 Conclusion

This PhD thesis addresses two challenging problems in computer vision for the transportation

applications : (1) vehicles and road users segmentation and tracking and (2) anomaly detection.

By largely reviewing state-of-the-art methods for each task, we decide to follow the future

prediction approaches through two possible scenarios. The first one deals with the classical

hand-crafted generative methods based directly on optical flow estimation while the second one

applies deep learning CGANs model to build a multi-channel generative framework that learned

competitive features from both appearance and motion information.

For hand-crafted strategy, our purpose is to evaluate the capability of classical hand-crafted

generative methods for improving segmentation and tracking. About the second strategy, we aim

at making the most with the available deep generative model to improve SOTA performances

obtained for various public datasets. The innovation relies on the flexibility of our model

that is based on a combination of several conditional GAN, accepting various types of input

information (i.e. RGB, grayscale and optical flow images). By producing features suitable for

various classification techniques like Support Vector Machine, our model can be easily extended

or lightened for further developments.
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5.1.1 Improving segmentation and tracking by classical hand-crafted me-
thods

Our first research is an initial work for evaluating the performance of the classical hand-

crafted generative approach in future prediction and its capacity to improve segmentation and

tracking of moving objects. By searching for a strong baseline among state-of-the-art methods,

Mask R-CNN [29] has been chosen because of the promising performance for detection and

instance segmentation of the objects. Tracking-by-detection approach has been adopted for

tracking step. We focus on the impressive speeding-up performance of the IoU tracker that

takes into account only the Intersection-Over-Union (IOU) between bounding boxes to match

objects within consecutive frames. On the contrary, because this method does not use other

visual information [7] and because of the failure detection of Mask R-CNN detectors, fragmented

objects trajectories appear.

We propose to fill broken trajectories by predicting instance segmentation using Optical flow

and then propose an enhanced tracker based on connecting fragmented trajectories by SURF

feature [5].

Our solution first generates new detections or instance masks by translating backward and

forward current information using optical flow vectors. We extend two methods proposed

by [59] : Shift and Warp. The predicted/generated masks obtained by Warp method are then

denoised by morphological operations. After this stage, the gaps of trajectories can be filled

in. We use DAVIS dataset [77] with two popular classes of vehicles (bus and car) for evaluating

the quantitative and qualitative performance of generating new detections. The quantitative

results show that Shift-translation outperforms Warp-translation for long trajectories while

Warp-translation integrated with morphological is more adaptive with short tracking. It also

confirms the necessity of morphological operators for post-processing. The qualitative results

show that our solution achieved stable performance with different types of flow estimation

methods.

Generated segmentation and bounding boxes are matched along all the sequence by using SURF

features. An IOU-matching algorithm is proposed to automatically fill fragmented parts of the

trajectories. The entire process is appliued on DETRAC dataset [65]. We only realize a qualitative

evaluation. At this stage of the work, quantitative evaluation was not required. The qualitative

results show that our methods significantly improve the fragmented trajectories in particular

sequences.

5.1.2 Anomaly detection by multi-channel deep generative neural networks

Although the results obtained for filling fragmented trajectories seems to be usable for easy

tasks, for anomaly detection, the obtained performance is not sufficient. Obviously, there are

important differences between anomaly detection and general action recognition problem. Firstly,

the abnormal events rarely appear unlike normal event : it leads to an unbalanced scenario where
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the number of samples in each class is significantly different. Secondly, the features of abnormal

events usually do not necessarily follow any spatial or temporal relationship so that it raises

the difficulty of pre-defining the structure or class of abnormal events. In order to tackle those

challenges, we propose to train a generative model based on the observation of the apparent

motion and appearance for the normal scenes. This model computes predicted images from

past images. The abnormal situations are then detected by using error estimation between the

generated output of the model and both appearance and optical flow provided by the sequence

at the same time.

The proposed network is based on a multi pix-2-pix Conditional GAN (CGAN) [39] archi-

tecture with U-Net model. The Generator is an Encode-Decode network for generating future

information based on appearance and optical flow images at previous time. The Discriminator

tries to classify whether the generated samples are fake. We evaluate a four CGAN streams : each

CGAN takes various types of appearance and motion information as input for which it produces

a future prediction.

This multi-CGAN backbone provides a better feature space to project the specificities of

normal and abnormal events. The SOTA proposed to infer the nature of event by unsupervi-

sed function. We decide to do that by using a supervised Support Vector Machine trained on

the multi-outputs of the network encoded by Peak Signal-to Noise Ratio. The binary Support

Vector Machine (SVM) is applied for frame-level anomaly detection. Finally, we jointly use a

Mask R-CNN detector and the mutli-CGAN backbone to localize the obnormality object in each

abnormal frame.

Our methods are largely evaluated on CUHK Avenue [58], USCD Pedestrians [66] and Shan-

ghaiTech [53] datasets. Our experiment results demonstrate that PSNR features are better than

mean square error maps computed by previous methods. For the strong performance objective,

we achieve state-of-the-art frame-level AUC on Avenue, Ped1 and ShanghaiTech. Especially,

for the most challenging Shanghaitech dataset, a supervised training model outperforms up to

9% the state-of-the-art on unsupervised strategy. We achieve those impressive results without

optimization all steps in the pipeline, particularly optical flow extraction. We apply a very simple

flow estimator pre-installed from OpenCV and classical Full-Flow [13] estimator. For the flexibi-

lity objective, we confirm the efficiency of integrating more channels because the performances

of the unified network are significantly surpassing every single channel’s result. Our model is

also free to extend or lighten without any exigency due to the independent architecture of each

channel. Each combination of various channels can be taken into account for different purposes.

Our features are quite simple and suitable for many classification models in the inference phase.
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5.2 Future works

We always keep our work in progress for improving both problems : vehicle segmentation-

tracking and anomaly detection. There are many promising tasks to continue in perspectives :

replacing classical optical flow estimators with recent state-of-the-art models, constructing a new

dataset for anomaly detection, re-applying CGANs for the first problem, installing an end-to-end

network for the second problem, etc. We discuss these prospects in the following parts.

Optimization of Optical flow extraction : Although we have evaluated LDOF [9] and Full-

Flow [13] for the first problem to confirm the independence of our methods regarding the type

of flow, the second problem is still waiting for a better optical flow estimator. In both cases, all

optical flow methods are classical and hand-crafted. Actually, there are many state-of-the-art

models using deep learning techniques e.g. FlowNet-2 [35], PwC-Net [94], etc. Intuitively, the

better the flow vectors are, the higher accuracy we could finally achieve. The first improvement

could be to use one of these optical flow networks to infer the motion content for the multi-CGAN

network. We will have to define if the output of the optical flow net is sufficiently accurate for

anomaly detection.

Semi-supervised Dataset for Anomaly Detection : Actually, we evaluated our anomaly de-

tection method for the unsupervised scenarios. Multi-CGAN backbone is trained with only

normal samples while the SVM classifier is trained on a dataset containing both types obtained

by splitting the test dataset. For unsupervised anomaly benchmark, this dataset is only used for

the final evaluation. Even if we don’t use the training part of the test dataset to blindly evaluate

the model, to be completely fair we plan to build a new dataset adapted for semi-supervised

scenarios. Moreover, one next step for evaluation will be to apply our methods on more data-

sets [93, 28, 48] that are more suitable for the supervised scenarios.

CGANs for Improving Segmentation and Tracking : A natural prospect for the first work

is re-apply CGANs model of the second work for generating missing segmentations or bounding

boxes in broken trajectories. There is always a trade-off here. On the one side, the combining of

two strong deep learning models (i.e. Mask R-CNN and CGANs) can sharply increase qualitative

and quantitative performance. On other side, we might consume much more time running for

those deep networks. We have to deal with the balance between speed and accuracy.

From binary SVM to one-class SVM : For the second work, we also plan to evaluate our

framework in the unsupervised scenario. Obviously, we could almost keep all parts of our model

except the inference phase based on supervised binary SVM. By replacing binary SVM with

one-class SVM, our classifiers will learn the boundary of normal samples and therefore be able

to classify any points that lie outside the boundary as outliers or abnormal samples.
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From hybrid model to end-to-end model : The ambitious goal for extending our second

framework to the end-to-end model is replacing SVM inference phase by a sub neural network

for detection/segmentation. To my personal knowledge, there have not existed successful models

connecting CGANs to a discriminative segmentation/detection model yet. Recently, Nguyen et
al. proposed a promising way to add a small brand of CNN models for classification into

encode-decode model [71]. We might follow this approach in the future.
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Figure A.1 – Larger illustration of Sequence 1a in Figure 3.14
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Figure A.2 – Larger illustration of Sequence 1b in Figure 3.14
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Figure A.3 – Larger illustration of Sequence 2a in Figure 3.14
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Figure A.4 – Larger illustration of Sequence 2b in Figure 3.14
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Figure A.5 – Illustration of training CGAN-1 on Ped1 dataset. We achieve good loss convergences
at E = 40, M = 128 and A = eLU .

Figure A.6 – Illustration of training CGAN-2 on Ped1 dataset. We achieve good loss convergences
at E = 40, M = 128 and A = eLU .
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Figure A.7 – Illustration of training CGAN-3 on Ped1 dataset. We achieve good loss convergences
at E = 40, M = 128 and A = eLU .

Figure A.8 – Illustration of training CGAN-4 on Ped1 dataset. We achieve good loss convergences
at E = 40, M = 128 and A = eLU .
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Figure A.9 – Illustration of training CGAN-1 on Ped2 dataset. We achieve good loss convergences
at E = 40, M = 128 and A = eLU .

Figure A.10 – Illustration of training CGAN-2 on Ped2 dataset. We achieve good loss conver-
gences at E = 40, M = 128 and A = eLU .
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Figure A.11 – Illustration of training CGAN-3 on Ped2 dataset. We achieve good loss conver-
gences at E = 40, M = 128 and A = eLU .

Figure A.12 – Illustration of training CGAN-4 on Ped2 dataset. We achieve good loss conver-
gences at E = 40, M = 128 and A = eLU .
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Figure A.13 – Illustration of training CGAN-1 on ShanghaiTech dataset. We achieve good loss
convergences at E = 1, M = 128 and A = eLU .

Figure A.14 – Illustration of training CGAN-2 on ShanghaiTech dataset. We achieve good loss
convergences at E = 1, M = 128 and A = eLU .
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Figure A.15 – Illustration of training CGAN-3 on ShanghaiTech dataset. We achieve good loss
convergences at E = 1, M = 128 and A = eLU .

Figure A.16 – Illustration of training CGAN-4 on ShanghaiTech dataset. We achieve good loss
convergences at E = 1, M = 128 and A = eLU .
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ANOMALY DETECTION AND OBJECT TRACKING BY FUTURE PREDICTION USING GENERA-
TIVE METHODS FOR TRANSPORTATION

Résumé

Actuellement, le traitement automatiquement des problèmes de transport devient un sujet actif. Dans le
cadre de ce travail, nous visons à relever un défi spécifique dans ce domaine : la détection et le suivi des
anomalies. Notre objectif est de construire un système flexible et efficace produisant des performances
élevées sur diverses bases de données publiques. Le contexte de notre recherche est l’amélioration des
approches précédentes pour obtenir de meilleurs résultats. Nous traitons deux scénarios conduisant à
deux méthodes mentionnées dans les parties suivantes : (1) la segmentation et le suivi des véhicules et des
piétons par des prédictions utilisant des méthodes génératives classiques basées sur des descripteurs a
priori (hand crafted) et sur l’estimation des flux optiques ; (2) la détection des anomalies par des prédictions
utilisant des systèmes génératifs multicanaux profonds et l’apprentissage supervisé.
Notre première recherche vise à l’évaluation des performances de l’approche générative classique pour les
prévisions et la détermination des ses capacités à améliorer la segmentation et le suivi d’objets. Récemment,
divers détecteurs d’apprentissage profond ont été proposés e.g. Mask R-CNN qui permettent une approche
efficace du problème de suivi : le suivi par détection. A l’exception de tout autre information visuelle,
ce type de tracker rapide ne prend en compte que l’intersection-sur-union (IOU) entre les boîtes de
délimitation pour apparier les objets. Ainsi, l’absence d’informations visuelles du tracker IOU combinée
avec les possibles défaillances des détecteurs créent des trajectoires fragmentées. Nous proposons alors
un tracker amélioré basé sur la détection par suivi et sur l’estimation du flux optique. Notre solution
génère de nouvelles détections ou segmentations basées sur une translation temporelle en avant et en
arrière des résultats des détecteurs CNNs en utilisant les vecteurs de flot optique. Cette étape permet de
combler une première partie des lacunes des trajectoires. Les résultats qualitatifs montrent alors que notre
solution a obtenu des performances stables avec différentes méthodes d’estimation du flot optique. Les
lacunes résiduelles au sein des trajectoires sont traitées en utilisant des caractéristiques SURF. La base de
données DAVIS est utilisée pour évaluer la meilleure façon de générer de nouvelles détections. Enfin, le
tracker résultant est testé sur la base de données DETRAC. Les résultats qualitatifs montrent que notre
approche diminue très significativement la fragmentation des trajectoires. Pour les travaux futurs associés
à ce tracker, nous prévoyons d’appliquer les réseaux CGAN développés dans le cadre de la seconde partie
de notre travail afin de proposer un système compétitif de suivi d’objet basé prévision.
Malgré les résultats tangibles de cette première approche, les méthodes classiques présentent des limitations
importantes concernant la détection d’anomalies qui est l’un de nos objectifs principaux. La fréquence
plus faible des événements anormaux donne un scénario déséquilibré et leurs caractéristiques ne suivent
généralement aucune relation spatiale ou temporelle. Face à ces défis, la plupart des méthodes de l’état-de-
l’art se basent sur des réseaux prédictifs et utilisent les erreurs entre informations générées et réelles comme
caractéristiques de détection. Inspirés par cette approche, d’une part, nous proposons un cadre multicanal
flexible pour générer des caractéristiques multitypes au niveau image. D’autre part, nous étudions la
possibilité d’améliorer les performances de détection par un apprentissage supervisé. Notre système
est ainsi basé sur quatre GAN conditionnels (CGAN) prenant en entrée différents types d’informations
d’apparence et de mouvement et produisant des informations de prédiction. Ces CGAN représentent la
distinction entre événements normaux et anormaux. Ensuite, la différence entre les informations générées
et les vérité-terrains est encodée par le pic du rapport signal / bruit (PSNR). Nous classons alors ces
caractéristiques dans un contexte supervisé en construisant un petit ensemble d’entrainement à partir de
quelques échantillons anormaux de l’ensemble de test original. C’est un Séparateur à Vaste Marge (SVM)
qui est appliquée pour la détection des anomalies au niveau trame. Enfin, nous utilisons Mask R-CNN
comme détecteur pour effectuer la localisation d’anomalies centrées objet. Notre solution est largement
évaluée sur les bases de données Avenue, Ped1, Ped2 et ShanghaiTech. Nos résultats démontrent que les
caractéristiques de PSNR combinées avec le SVM supervisé sont meilleures que les cartes d’erreurs calculées
par les méthodes précédentes. En particulier, pour la base de données la plus difficile qu’est Shanghaitech,
notre modèle surpasse jusqu’à 9% l’état-de-l’art des methodes non-supervisées. En perspective, nous
prévoyons de construire une base de données pour la détection d’anomalies dans un cadre semi-supervisé,
et d’intégrer un classifieur one-class SVM pour proposer un système "de bout en bout".

Mots clés : détection d’anomalies, apprentissage profond, modèle génératif, application au transport
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Abstract

Today, automatic solving transportation problem becomes active subject. In our PhD project, we aim
to address a specific challenge in this domain: anomaly detection and tracking. Our ultimate goal is
constructing a flexible and effective framework producing high performance on various public datasets.
The context of our research is applying and improving previous successful approaches to achieve
better results. We deal with two scenarios leading to two methods mentioned in following parts: (1)
vehicles and road users segmentation and tracking by future predictions using classical hand-crafted
generative methods based on optical flow estimation; (2) anomaly detection by future predictions using
multi-channels deep generative frameworks and supervised learning.

Our first research is evaluating the performance of the classical hand-crafted generative approach in
future prediction and its capability for improving segmentation and tracking. Recently, there existed
various strong deep learning detectors e.g. Mask R-CNN lead to an effective approach for tracking problem:
tracking-by-detection. This very fast type of tracker considers only the Intersection-Over-Union (IOU)
between bounding boxes to match objects without any other visual information. In contrast, the lack
of visual information of IOU tracker combined with the failure detections of CNNs detectors create
fragmented trajectories. We propose an enhanced tracker based on tracking by-detection and optical flow
estimation in vehicle tracking scenarios. Our solution generates new detections or segmentations based on
translating backward and forward results of CNNs detectors by optical flow vectors. This task can fill in
the gaps of trajectories. The qualitative results show that our solution achieved stable performance with
different types of flow estimation methods. Then we match generated results with fragmented trajectories
by SURF features. DAVIS dataset is used for evaluating the best way to generate new detections. Finally,
the entire process is tested on DETRAC dataset. The qualitative results show that our methods significantly
improve the fragmented trajectories. For future work, we plan to apply CGANs streams of second work for
the first task to propose a new competitive process of future prediction for segmentation and tracking.

Despite the moderate success of the first work, there is significant limitations of classical approaches
to deal with our main task: anomaly detection. The lower frequency of abnormal events leads to an
unbalanced scenario and the features of abnormal events usually do not follow any spatial or temporal
relationship. It is also difficult to pre-define the structure or class of abnormal events. Facing to those
challenge, most of state-of-the-art (SOTA) anomaly detection methods are based on apparent motion and
appearance reconstruction networks and use error estimation between generated and real information as
detection features. These approaches achieve promising results by only using normal samples for training
steps. In this thesis, our contributions are two-fold. On the one hand, we propose a flexible multichannel
framework to generate multi-type frame-level features. On the other hand, we study how it is possible
to improve the detection performance by supervised learning. The multi-channel framework is based on
four Conditional GANs (CGANs) taking various types of appearance and motion information as input and
producing prediction information as output. These CGANs provide a better feature space to represent
the distinction between normal and abnormal events. Then, the difference between those generative and
ground-truth pieces of information is encoded by Peak Signal-to Noise Ratio (PSNR). We propose to classify
those features in a classical supervised scenario by building a small training set with some abnormal
samples of the original test set of the dataset. The binary Support Vector Machine (SVM) is applied for
frame-level anomaly detection. Finally, we use Mask R-CNN as a detector to perform object-centric anomaly
localization. Our solution is largely evaluated on Avenue, Ped1, Ped2 and ShanghaiTech datasets. Our
experiment results demonstrate that PSNR features combined with supervised SVM are better than error
maps computed by previous methods. We achieve SOTA performance for frame-level AUC on Avenue,
Ped1 and ShanghaiTech. Especially, for the most challenging Shanghaitech dataset, a supervised training
model outperforms up to 9% the SOTA on unsupervised strategy. Furthermore, we keep in progress several
promising ways: building a new dataset for semi-supervised anomaly detection containing both normal
and abnormal samples in its training set and applying one-class SVM to propose an end-to-end framework.

Keywords: anomaly detection, deep learning, generative model, transportation application
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