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Introduction

The research presented in this work is part of a project in collaboration between CNES, the French national space agency, ONERA, the French national office for studies and research in aerospace, and the Jean Le Rond d'Alembert Institute at Sorbonne Université. The main topic of the project is the design of stiffened composite structures for space-launcher applications.

Industrial context

Satellites are essential devices of our contemporary technical macro-system and fulfill a number of applications among the observation of the earth and of outer space, weather forecasting, telecommunications, navigation, etc. Their multiplication leads to an increasing need for space launchers to place them in orbit. The growing offer of launcher solutions in the past years has led to a significant increase of the competition among the companies of the sector, e.g. NASA, SpaceX, Longue Marche, United Launch Aliance, Ariane Espace, etc.

To stay competitive in this domain, the European space partners aim to reduce the price of the launch of a kilogram of payload into orbit. The Ariane 6 project, due to first fly in 2022, has achieved a 50 % cost reduction compared to its predecessor Ariane 5. This reduction has been achieved by optimizing the manufacturing processes, increasing the production volumes, and offering multiple launcher configurations to provide just the right performance for reliable and successful launches. For the next generation of launchers, further cost reductions are sought to be achieved. Among the multiple strategies that can be explored for this purpose, the present work focuses on the reduction of the mass of launcher primary structures.

Designing space launcher structures

Primary structures bear the principal loads introduced on a launcher and thus constitute its main body to which the payload, tanks, boosters, etc. are attached. Reducing the mass of such structures is however challenging because it should not impede its ability to withstand the loads to which it will be submitted. Indeed, space-launcher primary structures withstand massive compression loads mainly generated by the propulsion forces that are opposed to aerodynamic loads and gravity (Ariane 5 take-off weight is approximately 780 t). In addition, the very high loads coming from the boosters are applied locally at the attachments to the main launcher body, generating singular force fluxes. These can propagate and generate local stress concentrations potentially damaging the structure or ruining part junctions (e.g. bonded or mechanically fastened joints) by exceeding the shear loads the latter can bear. The structure also withstands loads that tend to deform it from its original cylindrical shape, e.g. the local loads generated by the Introduction steering of the launcher, or more uniform bending loads coming from the wind when the launcher is static on the launch pad. The induced deformations can generate difficulties in steering the launcher by closed-loop interactions with the automated command system.

Therefore, three main structural requirements are identified for the design of space launcher structures. First, the structure should be stable with respect to buckling, as it has a high probability of occurring under the compression loads considered. The structure must also distribute the loads within a short distance of the load introductions in order to reduce the stress levels in the parts, ensure their resistance, and uniformize as much as possible the loads at their interfaces. A final requirement is the high stiffness of the structure to limit the deformations perturbing the launcher's control system.

Faced to these competing structural and mass objectives, stiffened structures appear to be a natural solution. These structures provide significant bending stiffness with a limited quantity of material, and manage to efficiently distribute the compression loads. A typical example of such parts is shown in Figure 1, which mainly consist of a large cylindrical shell stiffened by frames and stringers.

One of the main challenging aspects of designing such structures is the great difference in the order of magnitude existing between the sizes of the structural elements. The cylindrical shells typically have a diameter of 3 m to 6 m, a height of 3 m to 4 m and shell thickness of 1 mm to 30 mm while the frames and stringers are on average 100 mm to 300 mm high by 1 mm to 10 mm thick. This hence calls for suitable models in order to evaluate the structural responses of the parts. For this purpose, a widely spread practice in the aerospace industry consists in modeling the structures using structural elements, i.e. shell elements for the skin of the cylinder and beam elements for the stiffeners, which present a good performance-to-accuracy ratio.

In this respect, stringer-frame stiffening architectures remain relatively simple to both design and manufacture, thereby effectively lowering the overall costs of the parts. However, aluminum stringer-frame stiffened structures are already well optimized and close to being the lightest achievable hence giving little prospect of further lightening the structures using such architectures. 

Towards lighter structures

A now common idea across many industries to obtain lightweight structures is to resort to the use of laminated composite materials, mainly carbon-fiber reinforced polymers. These materials present higher specific moduli than metallic materials and offer the possibility of tuning their anisotropic material properties: significant weight reductions can be achieved compared to metallic structures, for equivalent structural performances. The introduction of composite materials for space launcher parts has already been carried out for certain secondary structural parts, for example the double launch system for Ariane (SYLDA1 ) that allows to load two payloads on the same launch. These applications make use of sandwich structures that substantially increase the bending-stiffness-to-mass ratio of a laminate, and are therefore competitive alternatives to stiffened structures. These structures are however avoided in primary structural applications as they are subject to specific modes of ruin which are difficult to handle and can be sensitive to moisture in the tropical zones from were the launches take place.

In comparison, the aeronautic industry has privileged stiffened composite concepts for fuselage parts, where the stringer-frame stiffening architecture is adopted considering laminates with almost isotropic material properties. These solutions reduce the weight of the structure almost solely thanks to the higher specific modulus of composites, and are suited for large scale production with stringent certification requirements. Furthermore, the added costs related to the use of composite materials, mainly their higher price and more complex manufacturing processes, are often largely compensated by the lower fuel consumption generated by the weight reduction. However, the same economic gain has not been achieved in launcher applications.

The aforementioned conventional stringer-frame stiffened composite structures do not take full advantage of the possibility of tailoring the local anisotropic properties of the structure, offered both by the stiffening structure and the composite materials. Advantageously, the space industry allows for a greater freedom in the design of the structures: smaller production series enable manufacturing processes with lower design constraints, and the qualification of the parts is based on the experimental verification of their functionality, with lower requirements on their life span (relative to fatigue, creep, etc.) compared to the certification processes in the aeronautic industry. This background therefore presents an opportunity to explore innovative design concepts of stiffened composite structures, where the stiffening structure and composite layups are less conventional.

In the case of industrial applications, the aim is to determine whether or not resorting to these innovative design concepts allows to obtain viable stiffened composite structures that are sufficiently lightweight so that they form an economically interesting alternative compared to stiffened metallic structures. Since different structural concepts (metallic, composite, monolithic, stiffened, sandwich) imply complex design processes that are radically different from one another, a trade-off between them must be established in preliminary design stages. At this stage of the design, simple analytic models and low fidelity finite element models are used in order to efficiently explore and compare a great number of potential solutions. The applications are focused on the best candidates for reducing the mass of the structure by locally tailoring its anisotropic properties, which here corresponds to parts with singular loading conditions, such as the interstage skirt presented in Figure 1, where the booster attachment generates very Introduction local load introductions on the skirt. While methods for the preliminary design of conventional stiffened metallic structures are well established, methods capable of handling the added complexity of designing unconventional stiffened composite structures are less mature.

Objective

In this context, the objective of this work is to develop a preliminary design method capable of simultaneously optimizing the stiffening structure and composite layups, in order to find lighter space-launcher structures satisfying a set of structural requirements.

Outline of the thesis

The separate problems of optimizing either the stiffening structure or the composite layups have been extensively addressed in the literature. Chapter 1 reviews the state of the art of optimization methods in both domains in order to establish the outlines of an optimization strategy which can handle the simultaneous optimization. The rest of the research work revolves around two main axes of development. The first axis aims at developing a method for the optimization of the stiffener layout, adapted to large cylindrical shell structure models made of isotropic materials, and compatible with the use composite materials. The first axis aims at developing a method for the optimization of the stiffener layout, adapted to large cylindrical shell structures: the development and applications are shown in the case of isotropic constitutive materials, but the approach is compatible with the use of composite laminates. This is carried out through Chapters 2, 3 and 4. The second axis combines the optimization methods of stiffener layout and composite layups in order to perform their simultaneous optimization in Chapters 5 and 6. Finally, in Chapter 7 the proposed method is applied to a real-life launcher structure provided by CNES in order to establish a preliminary optimized design.

The first axis of this study originates from the observation that methods available in the literature for the optimal design of unconventional stiffener layouts are for the most part not adapted to the use of composite materials nor to the modeling of large shell structures.

Chapter 2 therefore develops the foundations of a new optimization method compatible with the aforementioned needs. The capabilities of the method are assessed on simple stiffened plate optimization problems: compliance minimization is performed and the results of optimizations considering a mass constraint are compared to the ones issued from other methods in the literature.

Chapter 3 extends the method by developing advanced features aimed at improving the convergence of the method and finding lower compliance designs. Each feature is then used to solve a standard optimization test case in order to assess their influence on the optimization outcome and select those that are the most appropriate in the framework of this study.

Chapter 4 addresses technical aspects that are more specific to the design of space launcher structures, and more generally to cylindrical shells withstanding compression loads. The mass-constrained compliance minimization problem is extended to deal with constraints on the critical buckling load factor of the structure as well as on the force flux transiting through the part interfaces. The method is also adapted to handle the optimization of the stiffener layout on a cylindrical surface rather than on a flat plate. The new capabilities of the method are verified on the sizing test case of a simplified launcher structure.

The aim of the second axis is to further improve the designs by simultaneously optimizing the composite layups forming the skin of the structure and the layout of the stiffeners. The composite layup optimization is carried out in a two-step sequential process: the first step determines the optimal thickness and elastic properties of the laminates and the second step retrieves the layups that correspond to those optimal properties.

In Chapter 5, the optimization of the stiffener layout and the first step of the optimization of the composite laminated shell structure are performed simultaneously. The formulation of the first-step optimization for the composite shell structure is then finely tuned in order to improve the convergence of the entire process.

Chapter 6 focuses on the retrieval of composite stacking sequences. Three different strategies are benchmarked with the objective of quickly, accurately and robustly finding layups that reproduce the optimized macroscopic stiffness properties issued from the first level, without shrinking too much the overall design domain that can be explored in the first level.

Chapter 7 aims at verifying the capability of the developed method to pre-size a composite stiffened launcher structure. The numerical implementation is detailed and completes the method in order to ensure that feasible solutions are found. A comparison with a reference metallic stiffened design also provided by CNES allows to evaluate the benefits of simultaneously designing the stiffener layout and the composite layups in the objective of finding lighter designs for launcher structure. 

Introduction

The objective of this thesis is to formulate a global strategy for the simultaneous optimization of the stiffener layouts and of the composite material properties on large shell structures. In the literature, many studies can be found on the optimization of either stiffened structures or of composite laminated structures, but few works are devoted to tackle both aspects. For this reason, the literature review presented in this chapter starts by introducing existing methods for the optimization of composite laminated structures, and then reviews methods for the optimization of stiffener layouts on stiffened structures. Finally, the last section of the chapter is devoted to state-of-the-art methods that simultaneously optimize stiffener layouts and composite material properties and also introduces the research objectives of this work, of which the main novelty is to combine both the state-of-the-art optimization methods for composite laminates and for stiffener layouts.

Optimization of composite laminates

Methods for the design of composite laminated structures are reviewed in this section. After introducing basic concepts for design and optimization, the review focuses on the design of parts with locally varying stiffness properties and details the associated design rules.

Basic concepts

Composite laminates are a sub-class of composite materials, obtained by stacking thin plies (typically 10 µm up to 0.3 mm) made out of two basic constituents: continuous high-stiffness (and strength) fibers aligned in a common direction, bounded together by a weaker polymer matrix. They are mainly used to design structural elements made of thin walls, typically thin-walled beams and shell structures [START_REF] Nikbakt | A review on optimization of composite structures Part I: Laminated composites[END_REF]. This comprises face-sheets of sandwich panels and stiffened structures.

The use of composite laminates in structural applications is motivated by the increasing demand for lightweight structures across many industries. Indeed, their high stiffness-to-mass and strength-to-mass ratios make them an attractive alternative to metallic structures. Furthermore, they introduce new degrees of freedom in the design of structures: by tailoring the stacking sequence of the laminate, specific stiffness or strength properties can be sought for. Indeed, the properties of a laminate can be designed by tuning the following ply characteristics: number, sequence of orientations, thickness and constitutive material properties. Such a design problem can be formulated as an optimization aiming at improving the structural performances, e.g. stiffness, strength, bucking resistance, natural frequency, etc. or decreasing the mass [START_REF] Abrate | Optimal design of laminated plates and shells[END_REF].

To solve this kind of optimization problems, two types of algorithms may usually be adopted: gradient-based methods and meta-heuristics. The former are employed to obtain a fast convergence to a solution, thereby minimizing the number of evaluations of usually costly structural analyses, and are capable of handling large numbers of variables and constraints, but can be trapped into converging towards local optima. The latter are privileged to find a global optimum, with algorithms capable of exploring the highly non-convex design domain and handling the highly combinatorial nature of the Chapter 1 | Literature Review problem. Furthermore, meta-heuristics algorithms are compatible with discrete variables such as thickness corresponding to an integer number of plies or prescribed sets of orientations, bearing in mind manufacturing aspects. However, for these algorithms the number of evaluations of the objective function significantly increases with the number of variables, consequently limiting the total number of variables they can handle for given computational costs. An extensive review of algorithms used for the optimization of composite laminates is found in [START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part I: Constant stiffness design[END_REF][START_REF] Julien | Conception Optimale de l'Anisotropie Dans Les Structures Stratifiées à Rigidité Variable Par La Méthode Polaire-Génétique[END_REF][START_REF] Xu | A review on the design of laminated composite structures: Constant and variable stiffness design and topology optimization[END_REF].

To design a structure made of composite materials, the simplest method consists in assigning the same laminate to the entire structure: this is referred to as constantstiffness design. This type of designs is well suited for structures that are subject to uniform loading without particular geometrical singularities (holes, attachments, etc), and the methods available to solve the associated design problem are nowadays quite mature. Nevertheless, in the case of more complex applications, constant-stiffness design does not allow to significantly improve the performances of the structure compared to metallic design, in which thickness variations are usually made. Alternatively, laminates and by extension stiffness properties can be defined point-wise on the structure in a variable-stiffness design strategy. The variation of stiffness is realized by local variations of either thickness, ply orientations, fiber volume fraction or fiber paths within each ply (variable-angle-tow plies). On one hand, this enables the exploration of a wider design domain which in turn allows to find designs with significantly improved performances compared to constant-stiffness designs. On the other hand, this makes the optimization more complex: variable-stiffness design is characterized by a much higher number of variables and the optimization functions (objectives and constraints) are highly nonconvex. In addition, some integrity and manufacturability conditions must be considered in order to ensure the continuity of fibers and plies between adjacent zones of the laminated structure. The variable-stiffness design strategy is privileged in this work for the potential gain in performance it can bring to structures with singular loads and geometries, despite the aforementioned drawbacks, which can be mitigated thanks to a variety of strategies, as will be reviewed in the following sections.

Finally, general strategies have been developed for the optimization of composite laminates, depending on how the composite laminates are parametrized. Most of the strategies found in the literature can be classified into two categories: direct methods and bi-level approaches. While most of these strategies were initially developed with constant-stiffness designs in mind, the following sections review both these strategies applied in the framework of variable-stiffness design.

Variable-stiffness design: direct methods

Direct methods for the optimization of composite laminates are parametrized in terms of the explicit characteristics of a stacking sequence: ply orientations, ply thickness, etc. Hence, a set of variables is defined for each ply (or group of plies) in the stacking sequence. Considering variable-stiffness designs, these variables are furthermore defined independently on different areas of the laminated structure, usually either for each element of a finite element mesh or for small sets of elements. In this way, [START_REF] Thomsen | Optimization of composite discs[END_REF] optimizes a cantilever beam by varying the orientation of a cross-ply laminate and the fiber volume fraction in the longitudinal and transverse plies elementwise. [START_REF] Fukunaga | Optimum Design of Composite Structures for Shape, Layer Angle and Layer Thickness Distributions[END_REF] optimize the orientations and thickness of two plies, highlighting that the number of variables rapidly increases even when solving such sim-Chapter 1 | Literature Review ple problems. Indeed, the number of variables directly depends on the number of plies in each laminate and on the level of refinement of the mesh. The number of variables becomes substantially large in the study of [START_REF] Stegmann | Discrete material optimization of general composite shell structures[END_REF] where Discrete Material Optimization is used to optimize both the orientation and the material of each ply forming a laminate with several plies. In order to address the problem of the number of variables, the authors have used a patch approach, similar to the strategy introduced by [START_REF] Hyer | The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes[END_REF]. By grouping small numbers of adjacent elements together which share the same variable values, the total number of variables is reduced.

Nevertheless, zone-based designs lead to strong discontinuities of the variables at the interfaces, especially ply orientations, resulting in manufacturing issues and stress concentrations. Therefore, a higher level parametrization of the fiber orientations is adopted in order to force fiber continuity between contiguous areas. [START_REF] Gurdal | In-plane response of laminates with spatially varying fiber orientations -Variable stiffness concept[END_REF] proposed to vary the orientations of the fibers linearly along the x direction of a plate. The method was improved by [START_REF] Waldhart | Analysis of tow placed, parallel fiber, variable stiffness laminates[END_REF] which considered linear variations of the orientation along any direction and ensured that the fiber paths remained strictly parallel. [START_REF] Alhajahmad | Design Tailoring for Pressure Pillowing Using Tow-Placed Steered Fibers[END_REF] considered non-linear curve formulations and [START_REF] Parnas | Optimum design of composite structures with curved fiber courses[END_REF] represented the fields of orientations and thicknesses by Bezier splines and surfaces respectively. Other parametrizations of the fiber-path curves by non-linear functions (Lagrange polynomials, Bezier curves, splines, etc.) are found, as reviewed by [START_REF] Peeters | Optimal design, manufacturing and testing of non-conventional laminates[END_REF]. The advantages of using a higher order parametrization is that the variations from one zone to the next can be controlled, typically by imposing a maximum curvature of the fibers. Furthermore, it reduces the number of variables as the entire distributions of the variables are characterized by only a few control points.

Similarly, [START_REF] Stanford | Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings[END_REF] and [START_REF] Singh | Optimal Design of Tow-Steered Composite Laminates with Curvilinear Stiffeners[END_REF] have used the definition of curvilinear fiber paths to also design curvilinear stiffener paths, which is relevant for the problem of optimizing the stiffening layout, as will be reviewed in Section 1.3.4.

Variable-stiffness design: bi-level framework

The parametrization of the laminate design problems in terms of the explicit stacking sequence characteristics remains highly non-convex and non-linear. Furthermore, the number of variables is dependent on the number of plies in the laminate. Hence, an alternate strategy consists in parametrizing the optimization of composite laminates by their macroscopic stiffness properties: the variables of the optimization are the terms of the stiffness tensors in membrane (A), bending (D) and membrane-bending coupling (B) of the laminate, issued from the Classical Laminated Plate Theory (CLPT). In this way, the number of variables is independent of the number of plies and the design space usually becomes convex. The explicit stacking sequences are retrieved by a post-processing step, conducted by solving a second optimization problem that is most of the time parametrized as in the aforementioned direct methods.

This methodology is referred to as the bi-level framework and represents one of the most effective methods to optimize composite laminates [START_REF] Albazzan | Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art[END_REF]. Due to the convexity of the definition space of the stiffness terms, the first level (structural optimization at the homogenized laminate level) can be efficiently solved with gradientbased algorithms in order to limit the computational cost related to the evaluation of structural models. In contrast, the second level (design of optimal stacking sequences) is a highly combinatorial problem making use of discrete variables, but only requires Chapter 1 | Literature Review to evaluate the CLPT, a computationally cheap calculation, in order to match a stacking sequence to target material properties. In this case, meta-heuristics are the most appropriate algorithms for the resolution.

Parametrization of the first-level optimization

Tensors A, B and D issued from the CLPT are usually expressed in the Cartesian base. However, this representation is impractical to parametrize the anisotropic stiffness properties, as the Cartesian components of tensors A, B and D are intrinsically linked and are dependent on the reference frame they are expressed in. Hence, two better suited representations of the stiffness matrices have been used to derive efficient parametrizations of the first-level optimization: Lamination Parameters and Polar Parameters.

Lamination Parameters (LP) where introduced by [START_REF] Tsai | Invariant properties of composite materials[END_REF]. In the specific case of composite laminates, each tensor (A, B or D) can be expressed as a linear combination of seven Tsai and Pagano material parameters weighted by four LP that depend solely on the stacking sequence. Hence, the stiffness response of a laminate can be represented by twelve LP, which are sufficient to fully parametrize the first-level optimization, regardless of the number of plies. [START_REF] Miki | Material design of composite laminates with required in-plane elastic properties[END_REF] was among the first to use the LP to parametrize an optimization and [START_REF] Yamazaki | Two-level optimization technique of composite laminate panels by genetic algorithms[END_REF] one of the first to apply them in a bi-level framework, assuming a finite number of possible ply orientations (0°/±45°/90°). As covered by the review of [START_REF] Albazzan | Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art[END_REF], many studies have been carried out using this parametrization, progressively lifting the a priori assumptions on ply angles towards more unconventional stacking sequences [START_REF] Bloomfield | Optimisation of Anisotropic Composite Plates Incorporating Non-Conventional Ply Orientations[END_REF][START_REF] Bloomfield | On feasible regions of lamination parameters for lay-up optimization of laminated composites[END_REF][START_REF] Peeters | Design Guidelines in Nonconventional Composite Laminate Optimization[END_REF]. Other notable developments are the formulation of strength-based failure criteria directly in the first-level optimization, while the stacking sequences are not explicitly defined [START_REF] Ijsselmuiden | Implementation of Strength-Based Failure Criteria in the Lamination Parameter Design Space[END_REF]) and extensions of the LP formulation to higher-order shear deformation theories in order to handle thick laminates and sandwich structures [START_REF] Balabanov | Optimal Design of a Composite Sandwich Structure Using Lamination Parameters[END_REF][START_REF] Irisarri | A general optimization strategy for composite sandwich structures[END_REF].

Polar Parameters (PP) are issued from the polar representation of a planar tensor of the elasticity type introduced by [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]. By this representation, any material can be characterized by six PP: two isotropic moduli, two anistropic moduli and two polar phases. The advantage of this formulation is that the four moduli and the difference of the two polar phases are intrinsic properties of the material, being invariant through a change of the reference frame. In the case of composite laminates made of identical plies, similarly to LP, twelve parameters (four per stiffness matrix) are sufficient to parametrize the laminate optimization as the isotropic moduli are independent of the stacking sequence.

The PP were first used in order to find laminates with particular properties without making any assumptions on the stacking sequence, such as uncoupling or homogeneity of the membrane and bending behaviors [START_REF] Vannucci | Stiffness design of laminates using the polar method[END_REF][START_REF] Vincenti | Anisotropy and symmetry for elastic properties of laminates reinforced by balanced fabrics[END_REF]. They were also used to solve the optimization of laminate sequences in the bilevel framework [START_REF] Jibawy | Hierarchical structural optimization of laminated plates using polar representation[END_REF]Montemurro et al. 2012a,b) named as the MS2L method by [START_REF] Montemurro | A New Paradigm for the Optimum Design of Variable Angle Tow Laminates[END_REF], readily considering unconventional ply Chapter 1 | Literature Review orientations. Similarly to the formulations in LP, strength-based criteria were formulated in the polar method by [START_REF] Catapano | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF] and first-and third-order shear theories were implemented in terms of PP by Montemurro (2015a,b).

The parametrizations in LP and PP are very similar in the case of composite laminates, both in terms of formulation and capabilities, which is even more so true as the relationship between them is straightforward [START_REF] Vannucci | Anisotropic Elasticity[END_REF]). However, the PP have advantages that make them more convenient to use. First, they have a physical interpretation which allows to easily characterize material symmetries (orthotropy, isotropy) and anisotropic elastic properties. Furthermore, the angle between the material axis and the reference frame appears explicitly in the polar formulation and can thus be directly used as a design variable, while in the case of LP it requires an additional angular variable that involves first-order trigonometric functions [START_REF] Hammer | Parametrization in laminate design for optimal compliance[END_REF]. Finally, in a more general sense PP are not limited to the representation of composite laminates but can be used to characterize any elastic material as well as general anisotropic behaviors that can be reduced to a planar response.

The first works where the first-level optimization was parametrized by stiffness terms in the framework of variable-stiffness design were conducted using the formulation with LP. The simplest strategy consists in defining the LP element-wise in a finite element mesh [START_REF] Hammer | Parametrization in laminate design for optimal compliance[END_REF]. To avoid abrupt changes of the material properties between contiguous zones, ultimately resulting in discontinuous fiber path, [START_REF] Setoodeh | Design of variable-stiffness laminates using lamination parameters[END_REF][START_REF] Ijsselmuiden | Optimization of Variable-Stiffness Panels for Maximum Buckling Load Using Lamination Parameters[END_REF] and [START_REF] Khani | Design of variable stiffness panels for maximum strength using lamination parameters[END_REF] defined the LP at the nodes of the finite element mesh. However, in these problems the number of variables is proportional to the number of elements forming the mesh and thus results in a significant number of variables in the case of refined meshes. Therefore, [START_REF] Julien | Conception Optimale de l'Anisotropie Dans Les Structures Stratifiées à Rigidité Variable Par La Méthode Polaire-Génétique[END_REF] proposed to parametrize the distributions of the anisotropic polar moduli over the structure by using Bezier surfaces: the number of each stiffness variable is then restricted to the number of control points over the surface. [START_REF] Montemurro | A New Paradigm for the Optimum Design of Variable Angle Tow Laminates[END_REF] extended this work also considering the distribution of the polar phases, while similar developments were made in the LP formulation by [START_REF] Wu | Framework for the Buckling Optimization of Variable-Angle Tow Composite Plates[END_REF].

Families of laminates

One of the main challenges of parametrizing the first-level optimization in terms of stiffness components (either using the LP or the PP) resides in ensuring that the optimized macroscopic stiffness properties correspond to the ones of a composite laminate. This entails that the stiffness matrices A, B and D must be both individually and collectively realizable by the same laminate, which is achieved by formulating compatibility constraints in the first-level optimization.

The complete set of compatibility constraints is still unknown to the best of the author's knowledge. However, when assuming particular properties of the laminates, some compatibility constraints may be derived. A first assumption made in the vast majority of the works is that the laminate is constituted of plies made out of the same orthotropic material. In this way, [START_REF] Miki | Material design of composite laminates with required in-plane elastic properties[END_REF] derived the feasible bounds on the LP for the membrane matrix A considering an orthotropic behavior. [START_REF] Hammer | Parametrization in laminate design for optimal compliance[END_REF] generalized the previous work and derived the compatibility constraints that the LP of A, B and D must respectively verify to be individually realizable by a laminate. Based on these results, [START_REF] Vannucci | A Note on the Elastic and Geometric Bounds for Composite Laminates[END_REF] derived the same bounds in the polar formalism, nam-Chapter 1 | Literature Review ing them the geometrical bounds. By considering laminates made of a restricted number of orientations, [START_REF] Diaconu | Layup Optimization for Buckling of Laminated Composite Shells with Restricted Layer Angles[END_REF] were able to establish compatibility conditions relating the LP of A, B and D collectively. These conditions are numerous and make the problem rapidly intractable in the framework of variable-stiffness design. Most of the time, the number of compatibility conditions is reduced by considering uncoupled laminates (conveniently, uncoupling is also a property which is generally sought for in many industrial applications). In addition, to avoid the restrictions on ply angles that significantly reduce the design domain, the works based on the polar formalism introduced the assumption of homogeneous membrane-bending behavior, described as A = 12 /h 2 D where h is the laminate thickness. Combined with uncoupling, such laminates are qualified as quasi-homogeneous [START_REF] Vannucci | Designing the elastic properties of laminates as an optimisation problem: A unified approach based on polar tensor invariants[END_REF].

To obtain these particular properties (uncoupling, orthotropy, homogeneity) when retrieving laminates in the second-level, the stacking sequences are usually limited to specific families. Most commonly, sequences are symmetrical and balanced, i.e. the laminates contain each orientation δ k and its opposite -δ k in the same proportion. The former condition (symmetry of stacks) forces the uncoupling of the laminate; the latter ensures the orthotropy of the membrane behavior. However, the bending behavior is not orthotropic in most cases, hence inducing bending-twist coupling.

This limitation can be resolved by adding the homogeneity assumption. A first family of laminates is constituted of the so called Quasi-Trivial laminates, unveiled by Vannucci and Verchery (2001a) using the polar formalism. The laminates found by [START_REF] York | Stacking Sequences for Extensionally Isotropic, Fully Isotropic and Quasi-Homogeneous Orthotropic Laminates[END_REF] can also be linked with this family. Quasi-Trivial laminates can satisfy properties of either uncoupling, homogeneity or quasi-homogeneity and they are described as specific arrangements of ply orientations into so-called saturated groups. The plies of a given saturated group share the same orientation and the desired properties are obtained regardless of the chosen orientations. Since finding these stacking sequences is not trivial, especially for larger numbers of plies, [START_REF] Garulli | Quasi-trivial stacking sequences for the design of thick laminates[END_REF] developed an efficient search algorithm.

More recently, the new family of Double-Double laminates was introduced by Tsai and Rainsberger (2018), which is not strictly, but tends to be quasi-homogenenous. Double-Double laminates are obtained by repeating a four-ply sub-laminate which is itself a combination of two angle-plies: [±α/±β]. By repeating the sub-laminate at least 5 times [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF]) the coupling and the difference between the membrane and bending tensors tend towards zero. These laminates have the advantage of greatly easing ply additions and ply drops, as the latter are realized by simply adding or removing a complete sub-laminate to the sequence. In addition, the manufacturing process is simplified.

Laminate design rules

Assuming particular families of laminates greatly facilitates obtaining specific laminate properties, which can then be posed as conditions in the first-level optimization in order to ensure the compatibility of the stiffness matrices. However, supplementary constraints on the sequence of plies are often formulated as general design rules that the stacking sequences must verify. The nature of these rules is twofold: in the framework of variable-stiffness design, continuity rules ensure the integrity and the manufacturability of the structure; in the general framework of laminate design, rules based on in-Chapter 1 | Literature Review dustrial practices aim to ensure the integrity of the laminates once they are mechanically stressed.

Continuity constraints seek to force the continuity of fibers at the interfaces of contiguous zones in order to ensure a strong junction between the latter. Two main typologies of continuity constraints can be characterized: blending of adjacent laminates and continuity of the fiber paths and curvatures.

The first type is encountered when thickness variations occur: in order to blend panels of different thickness, the orientations of the thinnest laminate must be included within the stacking sequence of any contiguous thicker laminate [START_REF] Kristinsdottir | Optimal design of large composite panels with varying loads q[END_REF]. Since these constraints are applicable only when the ply sequences are explicit, the blending strategies, that have been developed so far, mainly focus on the secondlevel optimization. In this respect, [START_REF] Adams | Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness[END_REF] proposed to use a guide-based approach where plies are dropped from a guide sequence. This method was extended to consider industrial laminate design guidelines by [START_REF] Irisarri | Optimal design of laminated composite structures with ply drops using stacking sequence tables[END_REF], where the use of stacking-sequence tables allows for ply drops anywhere in the sequence. Other strategies consist in patch-based approaches proposed by [START_REF] Zehnder | A methodology for the global optimization of laminated composite structures[END_REF] which were brought to an industrially usable strategy by [START_REF] Irisarri | A novel design method for the fast and cost-effective manufacture of composite parts employing the Quilted Stratum Process[END_REF]. However, considering laminate blending only in the second-level optimization can lead to a significant discrepancy between the optimal stiffness properties identified in the first level and the resulting properties of the second level. Indeed, the possible variation of stiffness from one zone to the next are limited by the magnitude of the thickness variations. Hence [START_REF] Macquart | Derivation and application of blending constraints in lamination parameter space for composite optimisation[END_REF] derived constraints in the first-level optimization which limit the variations of the LP. [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF][START_REF] Picchi Scardaoni | New blending constraints and a stack-recovery strategy for the multi-scale design of composite laminates[END_REF] extended the derivation of these constraints to PP.

The second type of blending conditions concerns the design with variable-angletow plies, i.e. where the fiber orientations vary continuously within a ply. This type of laminate is manufactured by fiber placement processes and entails design rules that are reviewed by [START_REF] Lozano | A review on design for manufacture of variable stiffness composite laminates[END_REF]. When designing the stacking sequences using the bi-level framework, the main challenges are to ensure the continuity of the fibers, and constrain their curvature for manufacturing. Indeed, these constraints can often only be taken into account at the laminate retrieval step. A common method to solve this type of problems is to normally conduct the second-level optimization in order to retrieve local stacking sequences. The optimized layups then serve to intialize a third optimization step, which consists in optimizing the fiber orientations of variable-angletow plies, thereby ensuring the continuity and maximum curvature of the fibers paths. This additional problem was solved by van Campen et al. ( 2012) using a cellular automata method, constraining the curvature via the gradient of the orientations between contiguous nodes. [START_REF] Khani | Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints[END_REF][START_REF] Khani | Optimum tailoring of fibre-steered longitudinally stiffened cylinders[END_REF] used a gradient-based approach and reconstructed smooth fiber paths from the local distribution of orientations by using stream function theory. [START_REF] Peeters | Effect of steering limit constraints on the performance of variable stiffness laminates[END_REF] optimized the fiber angle distribution of the retrieved layups in the second level, using approximations of the structural model built upon the sensitivities of the stiffness terms (LP), and incorporating manufacturing constraints. The third level consisted in a post-processing step, based on a dedicated CAD tool, in order to retrieve the fiber paths for manufacturing. Alternativly, Montemurro and [START_REF] Montemurro | A New Paradigm for the Optimum Design of Variable Angle Tow Laminates[END_REF] solved the second-level problem of the bi-level framework by parametrizing the fiber orientations by B-spline surfaces. In this way, the continuity of the fibers and the curvature can be ensured, while no supplementary optimization Chapter 1 | Literature Review is required. Finally, [START_REF] Montemurro | On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates[END_REF] integrated a constraint on the fiber curvature in the first-level problem, by considering a skin made of a single stacking sequence that is locally rotated.

Constraints issued from industrial practices are generally applied to the design of composite laminates, and are drawn from experience in designing and manufacturing composite laminates [START_REF] Bailie | A summary and review of composite laminate design guidelines[END_REF]MIL-HDBK-17 2002). The most common design constraints on the stacking-sequences are the following:

• uncoupling: it avoids warping of the laminates during the manufacturing process.

It is commonly enforced by considering only symmetrical laminates even though it is not a necessary condition as noted in Section 1.2.3.

• orthotropic stiffness: it avoids tension-shear and bending-twist coupling. It is commonly enforced by considering balanced stacking sequences, which ensures that the membrane properties are orthotropic, but not those in bending in the general case. By considering only 0°/±45°/90°ply orientations, bending orthotropy can be achieved with a better precision, even if not always exactly.

• disorientation: constrains the maximum change of orientation between two consecutive plies. The objective is to reduce inter-laminar shear that can cause crack propagation and delamination.

• contiguity: it constrains the maximum number of adjacent plies that have the same orientation, in order to avoid thick layers which favor transverse crack initiation.

• damage tolerance: it consists in placing ±45°plies on the outer-faces of the laminate, in-order to protect the more stressed layers from small impacts and scratches.

• 10 % rule: it corresponds to the minimum proportion of plies that the laminate should have in each of the 0°/±45°/90°directions. This restrains crack propagation and ensures the integrity of the structure with respect to secondary loadings (i.e. load cases that are not taken into account in the sizing of the part because they are not dominant or have not been anticipated, or that are induced by thermal expansion, creep, etc.).

The design constraints on uncoupling and orthotropy concern the stiffness properties of the laminate and are straightforwardly taken into account in the first-level optimization. This is not the case for the rest of the aforementioned constraints that concern the ply-wise definition of the laminate and therefore intervene only in the second-level optimization. Hence, the optimal target stiffness properties obtained at the first-level may not be achievable at the second-level because of these ply-based design rules, highlighting the significant impact that the latter may have on the accuracy of the stacking retrieval.

Optimization of stiffened structures

This section aims at providing an overview of optimization methods for the design of stiffened structures, with a particular focus on the design of the stiffener layout. After introducing general design concepts, the techniques used to model the stiffeners for structural analysis and their implementation in optimization procedures are detailed.

Basic Concepts

Stiffened structures are widely spread in many applications: in the aeronautical field for the design of fuselage and wing sections, in the space industry for the design of launcher structures, in naval constructions for the design of hulls or in the domain of civil engineering (bridges, buildings, etc.). These applications have in common the need to sustain significant out-of plane, compression or shear loads and are hence designed against requirements on stiffness, strength and stability to buckling. On the other hand, these structures are sought to be as light as possible. In this respect, stiffened structures are an efficient way of conciliating these competing structural and mass design objectives.

To obtain this particular type of structures, multiple beam-like elements (stiffeners) are attached to a thin panel (plate or shell), as illustrated in Figure 1.1. This greatly increases the local moment of inertia of the panel with much less added material than would be needed to achieve the same end result by thickening the skins. The properties of these structures are determined by the cross-sections of the stiffeners -usually made out of thin-skin profiles with different shapes such as blade, T, C, Ω, etc. -and their layout over the skin. The layout of the stiffening structure is characterized by the number of stiffeners it contains, their paths (straight or curvilinear) and their locations on the panel. The locations can be constrained to regular patterns such as linear or grid layouts (orthotropic/isotropic/anisotropic/curvilinear) or let free, as illustrated in Figure 1.1. Regular grid patterns are well suited for structures that are uniformly loaded, or loaded from a random direction (e.g. effect of wind on a launcher) and have good damage tolerance properties. However, for more singular load cases, a free layout seems more adapted in order to position stiffeners only where they are the most useful, in Chapter 1 | Literature Review analogy with the design of structures in composite materials with variable stiffness properties.

Designing a stiffened panel thus consists in selecting and sizing the appropriate profiles of the stiffener cross-sections as well as determining the layout of the stiffeners on the panel. The objective is usually to find the lightest structure possible with respect to criteria on the structural responses in stiffness, buckling, vibration, etc.

The evaluation of the structural responses of the stiffened structure are conducted by structural analysis methods. However, these methods are based on simplifying assumptions that often constrain the possible stiffening geometries that can be modeled. In the following, the structural analysis methods and their modeling capabilities are reviewed.

Methods for structural analysis

To evaluate the structural responses of a stiffened structure, the first methods that were available were to establish closed-form solutions based on plate and beam theories, as extensively reviewed by [START_REF] Bedair | Analysis and Limit State Design of Stiffened Plates and Shells: A World View[END_REF]. The advantage is that these methods provide very simple evaluations of the structural responses and are thus efficient to use for pre-sizing stiffened structures [START_REF] Weingarten | NASA SP-8007 Buckling of Thin Walled Circullar Cylinders[END_REF][START_REF] Block | Minimum weight design of axially compressed ring and stringer stiffened cylindrical shells[END_REF]. Initially developed based on linear and ortho-grid layouts, [START_REF] Totaro | Optimal design of composite lattice shell structures for aerospace applications[END_REF] derived closed-form solutions considering aniso-grid lattice shell structures. The main drawback of this kind of methods is that the establishment of closed-form solutions is very specific to a given load case and boundary conditions, as well as to a given stiffener layout: stiffeners are located in linear or grid patterns, with equal spacing between the stiffeners and identical cross-sections for stiffeners in the same direction.

In order to explore stiffener layouts with more complexity and generality, finite-strip methods were developed and significantly improved to be used as robust pre-sizing tools: [START_REF] Wittrick | Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings[END_REF] developed the VIPSA code which was latter improved by [START_REF] Anderson | Buckling and vibration of any prismatic assembly of shear and compression loaded anisotropic plates with an arbitrary supporting structure[END_REF] in the VICON code. This method proved to have a very low computational cost for an acceptable level of precision on the evaluation of the structural responses, compared to the finite element method. These models allow each stiffener to have its own cross-sectional properties, different from other stiffeners, but the locations of the stiffeners remain constrained to linear or ortho-grid layouts.

The Finite Element (FE) method allows to model explicitly the stiffening structures: this enables modeling any type of cross-section or layout, hence offering the greatest design freedom with respect to the previous methods. Furthermore, it provides a general analysis framework, capable of handling a wide range of structural responses and boundary conditions, which makes it the privileged analysis method in many industrial design processes. The main challenges related to this method are the high computational costs, and the necessity to generate a dedicated finite element model for each new geometry of the stiffening structure.

To lower the computation costs due to repeated structural analyses, mainly in the case of the finite element method, surrogate models are used to approximate the structural responses. Such a model is a mathematical approximation of the problem, expressing the responses of the structure as a function of its configuration (here the stiffener layout) and constructed by solving finite element analyses on various design points. [START_REF] Hao | Adaptive Approximation-based Optimization of Composite Advanced Grid-stiffened Cylinder[END_REF] established a kriging model in order to optimize an aniso-grid layout pattern. Mulani et al. (2010b) and [START_REF] Hao | Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[END_REF] optimized curvilinear stiffener paths using methods respectively based on response surfaces or Convolutional Neural
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Networks. The advantage of surrogate modeling is that the computational costs related to the structural analyses within an optimization are significantly reduced. However, the number of structural analyses a priori needed to construct an accurate surrogate model for different stiffener configurations highly increases with the number of design variables. Therefore, most of the studies using surrogate models only handle a small number of variables, which is not compatible with stiffeners in a free layout.

Finally, it is worth mentioning the iso-geometric analysis method, which is comparable in accuracy to the finite element method, while greatly simplifying the generation of the structural model [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF]. This method is closely related to computer assisted design (CAD) models, and is particularly suited for complex panels and stiffening geometries as shown by [START_REF] Hirschler | Isogeometric sizing and shape optimization of thin structures with a solid-shell approach[END_REF][START_REF] Hirschler | The embedded isogeometric Kirchhoff-Love shell: From design to shape optimization of non-conforming stiffened multipatch structures[END_REF].

In order to evaluate the structural responses of stiffening structures in a free layout design concept, the finite element and iso-geometric methods seem to be the most adapted. In this work, the finite element method is privileged as it benefits from more hindsight, is commercially available off-the-shelf and is compatible with most engineering design methods. Hence, the following section reviews the two main techniques to model stiffening structures, namely by explicit models or by smeared models, and the strategies set forth to address the challenges related to the finite element method in the framework of stiffener layout optimization.

Models for Finite Element Analysis

Explicit Models

Finite element models are able to explicitly represent the complex and various geometries of both the profiles and the layout of the stiffeners. In explicit models, the stiffeners can be represented by a mesh of idealized structural elements, such as beams and shells, or by solid elements.

Beam elements idealize stiffeners based on beam theories as the width and height of a stiffener's cross-section are much smaller than its length. The layout of the stiffeners is determined by the positions of the beam elements in the mesh and the cross-sections are defined by the properties of the beams (area, second moment of inertia, torsional constant, etc.). The profiles of the stiffener can thus be easily modified without modifying the mesh, which is adapted to pre-sizing stiffener profiles in a fixed layout.

Shell elements are adapted to model explicitly the stiffener cross-section profiles made of thin walls. This implies that both the layout and the geometry of the crosssections are determined by the mesh, but they enable tailoring the thickness and material properties of each zone of the stiffeners (e.g. flanges, web). This makes these models particularly adapted for considering composite materials.

These two modeling strategies highlight that the layout of the stiffeners is intrinsically linked to the mesh. Additionally, the meshes of the stiffeners and the panel must be tied together. This is generally achieved by having common nodes on both the stiffener and the panel meshes. In order to vary the layout of the stiffeners considering this constraint, a first strategy consists in pre-determining the locations where common nodes can be ensured, and thus stiffeners can be placed (Montemurro et al. 2012a;[START_REF] Putra | Structural optimization of stiffener layout for stiffened plate using hybrid GA[END_REF]). However, this highly constrains the possible locations of the stiffeners and it is mainly used for linear layouts. In order to explore more innovative layouts with curvilinear stiffeners, [START_REF] Mulani | EBF3PanelOpt: An optimization framework for curvilinear blade-stiffened panels[END_REF] used a re-meshing strategy: a new mesh of the Chapter 1 | Literature Review stiffeners and the panel is established for each new layout. However, re-meshing is usually a difficult and computationally expensive process to automate, while being prone to generating non-conform elements. Furthermore, this generates numerical noise on the structural responses that can mislead optimization algorithms, especially gradient-based methods. Hence, mesh-tie techniques have been proposed, allowing non-conformal meshes between the stiffeners and the skins: only the mesh of the stiffeners needs to be updated [START_REF] Singh | Buckling Load Maximization of Curvilinearly Stiffened Tow-Steered Laminates[END_REF]. These methods are available in most finite element softwares and constitute a special case of contact conditions. The drawback of the method is mainly the higher computational cost or lower accuracy depending on the mesh-tie technique used (Multi-Point Constraints (MPC) based on Lagrangian multipliers, penalty methods, augmented Lagrangian methods, etc. [START_REF] Wriggers | Finite element algorithms for contact problems[END_REF][START_REF] Liu | The Finite Element Method[END_REF]).

Finally, the structures can be modeled explicitly by solid elements. For thin-walled structures this requires very refined meshes in order to provide accurate structural responses and is therefore computationally too expensive to be used in an optimization process. An alternative usage is found in topology optimization models, where the stiffeners are not explicitly modeled, but rather interpreted from zones where the material density is non-zero. In this way, the mesh remains identical during the optimization, and the stiffener layout is updated by modification of the material density in each element. Nevertheless, it remains difficult to model a stiffener with a profile size two to three orders of magnitude smaller than the rest of the structure.

Smeared models

Smeared models, also named equivalent models, consist in modeling the stiffening structure by an unstiffened panel with equivalent stiffness properties. Hence any modification to the stiffener layout translates into an update of the equivalent stiffness of the shells. Initial developments focused on equivalent orthotropic plate models to establish closed form solutions. This required to have evenly and uniformly spaced stiffeners on the panel and was gradually improved to treat more advanced grid structures with greater accuracy [START_REF] Jaunky | Buckling Analysis and Optimum Design of Multidirectionally Stiffened Composite Curved Panel[END_REF]. The smearing technique was introduced in finite element models by considering composite materials: the CLPT conveniently allows to establish the equivalent plate model [START_REF] Chen | Analysis and Optimum Design of Composite Grid Structures[END_REF]. Another method to find an equivalent stiffness model consists in exploiting homogenization theories for structures made of periodic sub-elements, as done by [START_REF] Wang | Global and local buckling analysis of grid-stiffened composite panels[END_REF]. This increases the accuracy of the stiffness evaluation and enables [START_REF] Wang | Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures[END_REF] to design non-uniform curvilinear grid stiffened structures.

In an attempt to expand the method to model stiffening structures with free layouts, some authors propose to smear stiffeners locally. [START_REF] Sun | An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components (MMCs)[END_REF] make use of an equivalent stiffness approach, initially developed by [START_REF] Shi | Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[END_REF] considering aniso-grid stiffening patterns. Alternative methods originate from truss-structure optimization and consist in transferring the stiffness of a truss to a background mesh of shell elements via a Stiffness Spreading Method [START_REF] Wei | The stiffness spreading method for layout optimization of truss structures[END_REF]. These methods form an equivalent stiffness matrix of the stiffener by interpolating displacements. Based on this idea, Li et al. (2017a) developed the Stiffness Transformation Approach to model stiffened structures.

The main advantage of smeared methods compared to explicit models, is that the layouts are not explicitly modeled and thus easily modified by updating the stiffness Chapter 1 | Literature Review properties of the equivalent shell elements. Therefore, re-meshing the structure is not necessary. Furthermore, it also reduces the computation costs as no additional elements are required to model the stiffeners. However, uniform and regular stiffening patterns are required to ensure the accuracy of the global structural responses. The accuracy of locally stiffened structures is not well established yet.

Optimization strategies

This final section reviews the optimization strategies used to optimize stiffening structures. These are organized according to the three categories commonly employed to describe structural optimization methods: parametric, shape and topology. In parametric optimizations, the patterns and the shape of the stiffeners are predefined, and only geometric variables such as stiffener spacing, orientation or size are modified. Shape optimizations are mainly characterized by the modification of curvilinear paths of the stiffeners. Topology optimizations formulate no a priori on the layout: stiffeners can be added or removed, the paths may become joint or disjoint, etc.

Parametric optimization

Parametric optimization was the first type of methods available to optimize stiffening structures. These initial developments, reviewed by [START_REF] Bedair | Analysis and Limit State Design of Stiffened Plates and Shells: A World View[END_REF], consisted in optimizing a small number of variables such as the dimensions of a stiffener profile or the spacing between stiffeners in linear or ortho-grid patterns. The structural responses were mainly evaluated by analytical or finite strip models to avoid the high computational cost and difficulties with mesh compatibility. Some of the most advanced optimization tools were the VICONOPT program [START_REF] Williams | VICONOPT -Program for exact vibration and buckling analysis or design of prismatic plate assemblies[END_REF] based on the finite strip analysis code VICON, or the PANDA2 program [START_REF] Bushnell | PANDA2 -Program for minimum weight design of stiffened, composite, locally buckled panels[END_REF]) which resorts to both analytical and finite strip method. In more recent years, the finite element method has been privileged in order to analyze bigger and more complex structures: [START_REF] Vankan | Efficient optimisation of large aircraft fuselage structures[END_REF] and [START_REF] Izzi | Multi-scale optimisation of thin-walled structures by considering a global/local modelling approach[END_REF] use a global-local approach to size stiffeners in a fuselage structure, while [START_REF] Tian | Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces[END_REF] size stiffeners on an undevelopable surface.

This type of optimization methods was also extended to optimize the more advanced layout in grid patterns: [START_REF] Gurdal | Optimal design of geodesically stiffened composite cylindrical shells[END_REF] optimized a geodesically stiffened cylinder, which was the premise of the so called iso-grid and aniso-grid patterns [START_REF] Jaunky | Buckling Analysis and Optimum Design of Multidirectionally Stiffened Composite Curved Panel[END_REF][START_REF] Vasiliev | Anisogrid lattice structures -survey of development and application[END_REF][START_REF] Shi | Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[END_REF][START_REF] Belardi | Design, analysis and optimization of anisogrid composite lattice conical shells[END_REF]). These optimizations handled the additional angular variables, present in such grid-designs.

Finally, parametric optimizations are also used to interpret and fine-tune topology optimization results: [START_REF] Lam | Automated rib location and optimization for plate structures[END_REF] and [START_REF] Afonso | Structural optimization strategies for simple and integrally stiffened plates and shells[END_REF] first conduct a topology optimization which identifies zones of interest where stiffeners could be placed. Then, they solve a second optimization step in order to size the cross-sections of stiffeners modeled explicitly.

Parametric optimizations are hence well suited when stiffener layouts are defined a priori of the optimization (grid-like or interpreted from topology optimization). The results can usually be directly interpreted, with little impact on the structural responses. They usually involve a limited number of variables and can be efficiently solved using many types of algorithms (gradient, meta-heuristics, etc.).

Shape optimization

In order to explore designs that are not grid-like, [START_REF] Kapania | Optimal Design of Unitized Panels with Curvilinear Stiffeners[END_REF] optimized the paths of four curvilinear stiffeners on a plate, using finite element structural analysis with explicitly modeled stiffeners. The EBF3PanelOpt framework [START_REF] Mulani | Optimization of Stiffened Electron Beam Freeform Fabrication (EBF3) panels using Response Surface Approaches[END_REF](Mulani et al. , 2010a[START_REF] Mulani | EBF3PanelOpt: An optimization framework for curvilinear blade-stiffened panels[END_REF] formalized the method, where CAD models of the stiffener layout are generated and meshed successively. Because of the difficulties related to the re-meshing process, [START_REF] Singh | Buckling Load Maximization of Curvilinearly Stiffened Tow-Steered Laminates[END_REF] and [START_REF] Zhao | Thermal Buckling Analysis and Optimization of Curvilinearly Stiffened Plates with Variable Angle Tow Laminates[END_REF] adapted the process to the use of mesh-tie techniques. Alternatively, [START_REF] Li | Rib-reinforced Shell Structure[END_REF] and [START_REF] Chu | Simultaneous size, layout and topology optimization of stiffened panels under buckling constraints[END_REF] modify the stiffener paths by deformation of the mesh of the panel. This also allows the latter to simultaneously optimize the height of the section along the length of the stiffener. In order to avoid the aforementioned issues relative to the finite element mesh, [START_REF] Hirschler | The embedded isogeometric Kirchhoff-Love shell: From design to shape optimization of non-conforming stiffened multipatch structures[END_REF] proposed an optimization method in the iso-geometric framework.

The curvilinear concept was also made compatible with grid-like concepts, where [START_REF] Mulani | Grid-Stiffened Panel Optimization Using Curvilinear Stiffeners[END_REF] optimized a uniformly distributed grid of curvilinear stiffeners. By increasing the number of stiffeners and defining independent control point for each of the latter, [START_REF] Wang | Buckling optimization design of curved stiffeners for grid-stiffened composite structures[END_REF][START_REF] Wang | Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures[END_REF] and [START_REF] Alhajahmad | Minimum weight design of curvilinearly grid-stiffened variable-stiffness composite fuselage panels considering buckling and manufacturing constraints[END_REF] optimized the paths of stiffeners in a curvilinear grid, without forcing the grid to remain uniform. Finally, [START_REF] Liu | On the integrated design of curvilinearly grid-stiffened panel with non-uniform distribution and variable stiffener profile[END_REF] added the simultaneous optimization of the dimensions of the stiffeners' rectangular profile.

Shape optimization allows to optimize stiffening structures by tailoring the paths of curvilinear stiffeners. By the explicit definition of the stiffeners, the results are easily interpreted in terms of a CAD design. The methods seems however limited to the handling of a small number of stiffeners, which stays constant during the optimization, i.e. no introduction nor deletion of stiffeners is possible.

Topology optimization

In topology optimizations, the objective is to determine an optimum distribution of material across the structure. The variation of density can be realized by the continuous evolution of a micro-structure, however this is usually difficult to interpret in terms of manufacturable material. Therefore many methods aim to obtain a design with binary 0 or 1 material densities, where 0 represents void regions, and 1 represents regions where the material should be present. Applied to stiffened structures, the principle is to interpret the 1-density zones as regions that should be stiffened. These methods can be divided into three sub categories: classical density-based methods, component-based methods (also referred to as feature mapping or explicit topology optimization), and ground-structure-based approaches.

Classical methods refer to the density-based topology optimization methods such as the Solid Isotropic Material Penalization (SIMP) method, where the density of material is optimized in each element of a solid mesh [START_REF] Bendsøe | Generating optimal topologies in structural design using a homogenization method[END_REF]. Based on this principle, [START_REF] Luo | A systematic topology optimization approach for optimal stiffener design[END_REF] optimized the material distribution across a flat panel meshed with two-dimensional elements. However, retrieving a consistent CAD from the results of topology optimization is a difficult task, even more so to interpret them as realistic stiffening structures. Therefore, the authors optimized the principle direction of bending orthotropy in a second step to determine the optimal orientation of the stiffeners in each zone of the structure. Such a secondary optimization step is often conducted on the interpreted model in order to obtain a structure that both meets the design requirements and is feasible with respect to manufacturing processes. Indeed, the direct interpretation of topology optimization results is generally not manufacturable and usually introduces significant discrepancies on structural responses that are sensitive to the geometry of the structure such as stress or buckling. [START_REF] Lam | Automated rib location and optimization for plate structures[END_REF] and [START_REF] Afonso | Structural optimization strategies for simple and integrally stiffened plates and shells[END_REF] placed stiffening ribs on the high density zones and ran a sizing optimization on them. [START_REF] Dugré | A design process using topology optimization applied to flat pressurized stiffened panels[END_REF] interprets each discernible member according to its functionality to better constrain a second topology optimization. [START_REF] Niemann | The use of topology optimisation in the conceptual design of next generation lattice composite aircraft fuselage structures[END_REF] and [START_REF] Liu | Detailed design of a lattice composite fuselage structure by a mixed optimization method[END_REF][START_REF] Liu | Topology optimization of a novel fuselage structure in the conceptual design phase[END_REF] found new stiffening concepts for a fuselage structure, and interpreted the results of the topology optimization with grid-like structures. Finally, [START_REF] Liu | H-DGTP-a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures[END_REF] and [START_REF] Feng | Stiffener layout optimization of shell structures with B-spline parameterization method[END_REF] found a stiffening structure by using a mesh of three-dimensional solid elements, and imposing a direction of extrusion to avoid overhangs. In this case the cross-sections of the stiffeners were not standardized and varied continuously across the structure.

To facilitate the post-processing phase, methods using explicitly defined components have been developed, as reviewed by [START_REF] Wein | A review on feature-mapping methods for structural optimization[END_REF]. The principle of this type of methods is to project geometrically defined components on a fixed finite element mesh, thereby determining the mesh elements that have a density of 1. The variables hence become the components' positions and shapes in place of the element densities. Two research groups [START_REF] Guo | Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework[END_REF]Zhang et al. 2017) and [START_REF] Norato | A geometry projection method for continuum-based topology optimization with discrete elements[END_REF]Zhang et al. 2016a) have extensively developed component-based methods applied to topology optimization, respectively the Moving Morphable Components (MMC) and the Geometry Projection (GP). These methods were generalized into a Generalized Geometry Projection (GGP) strategy by [START_REF] Coniglio | Generalized Geometry Projection: A Unified Approach for Geometric Feature Based Topology Optimization[END_REF]. By defining stiffener-like components geometries, these methods are capable of optimizing the layout of stiffening structures. [START_REF] Zhang | Optimal Design of Panel Reinforcements With Ribs Made of Plates[END_REF] and [START_REF] Smith | A Geometry Projection Method for the Design Exploration of Wing-box Structures[END_REF] optimized the locations of components with a blade-like cross-section using the GP. [START_REF] Zhang | A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints[END_REF] used rectangular cross-sections in the MMC framework. [START_REF] Bai | Hollow structural design in topology optimization via moving morphable component method[END_REF] defined components with hollow cross-sections to optimize frame-structures which could model stiffeners with more complex profiles. The drawback of these methods is that a very refined mesh of 3D solid elements is required in order to accurately represent the stiffeners. Hence, the computation cost soars when these methods are applied to large structures. To reduce these computation costs, [START_REF] Zhang | Adaptive mesh refinement for topology optimization with discrete geometric components[END_REF] have developed an adaptive mesh refinement technique. In order to avoid the use of solid 3D elements to mesh the stiffeners, [START_REF] Sun | An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components (MMCs)[END_REF] proposed to locally smear the stiffeners defined as components in the MMC approach. Li et al. (2021a) adapted the MMC method to an Element-Free Galerkin structural analysis, in order to simultaneously optimize the layout of the stiffeners and the dimensions of their profiles.

Alternative methods that avoid the use of solid 3D elements are inspired by the ground structure approach: the skin of the structure is meshed with a regular lattice of structural elements modeling potential stiffeners, and the optimization consists in sizing each element individually. By this method [START_REF] Chung | Optimal design of rib structures using the topology optimization technique[END_REF] and [START_REF] Huang | An engineering method for complex structural optimization involving both size and topology design variables[END_REF] determined stiffening patterns while sizing the thickness of blade stiffeners. [START_REF] Li | Concurrent topology optimization design of stiffener layout and cross-section for thin-walled structures[END_REF] improved the method by optimizing the density of the beam elements in the ground mesh simultaneously with a topology optimization of their cross-sections. The results of these optimizations are usually a lattice of stiffeners, not necessarily compatible with manufacturing requirements. To avoid lattice-like stiffening structures, [START_REF] Ding | Adaptive growth technique of stiffener layout pattern for plate and shell structures to achieve minimum compliance[END_REF], [START_REF] Xue | Venation-Like Rib Layout Design in Plate under Bending Loads[END_REF] and [START_REF] Li | An Innovative Layout Design Methodology for Stiffened Plate/Shell Structures by Material Increasing Criterion[END_REF] proposed to make the stiffening network grow within the ground structure: from user-defined sprouting points, beam elements with initially negligible cross-sections, are added to the stiffening structure by increasing their cross-sections. The principle is inspired by the growth of leaf venation. However, the ground structure constrains the directions of the stiffeners to a limited set of directions. Therefore, Li et al. (2017a[START_REF] Li | Stiffness design of plate/shell structures by evolutionary topology optimization[END_REF], used the stiffness transformation approach (local smearing method) so the stiffeners can be freely placed over the panel. In this way, at each iteration a beam element is added to the extremities of the stiffening structure in an optimal direction, and the thickness distribution of each stiffener cross-section is updated.

Topology optimization methods have the potential of proposing the most innovative stiffening structures, as no a priori is formulated on the stiffener layout. Furthermore some methods manage to optimize simultaneously the cross-sections of the stiffeners. Nevertheless, the majority of these methods still require some expertise to interpret the results towards a detailed design phase, and are usually fine-tuned by a second parametric optimization. Finally, gradient-based methods are privileged in most of the studies as they require a low number of finite element analyses (usually the most computationally expensive step in an optimization loop) compared to non-gradient approaches [START_REF] Sigmund | On the usefulness of non-gradient approaches in topology optimization[END_REF], especially when the problems contain a large number of variables.

Optimization of stiffened composite structures

This final section focuses on the methods that combine the optimization of composite laminates and of stiffened structures. Based on the state of the art of the simultaneous optimization of composite laminates and stiffened structures, the main axes of development of this work are precised.

State of the art

Initial methods to simultaneously optimize the stiffening structure and composite laminates consisted in fixing the layout of the stiffening structure, while optimizing the composite laminates of both the panel's and the blade stiffeners' skins, as well as the dimensions of the stiffener cross-sections (rectangular profile). [START_REF] Nagendra | Improved genetic algorithm for the design of stiffened composite panels[END_REF] optimize the height of stiffeners in a linear layout simultaneously with the composite laminates of the skins where ply orientations are restricted to 0°/±45°/90°. [START_REF] Gurdal | Optimal design of geodesically stiffened composite cylindrical shells[END_REF] conduct a similar study on geodesically stiffened cylinders, also considering the width of the stiffener cross-sections.

The addition of the simultaneous optimization of the layout is carried out by [START_REF] Chen | Analysis and Optimum Design of Composite Grid Structures[END_REF] who consider iso-grid patterns on a flat panel. The panels are defined with ribs and plies fixed at 0°and 90°while the optimization variables concern stiffeners and plies oriented at ±θ. [START_REF] Jaunky | Optimal Design of Grid-Stiffened Composite Panels[END_REF] focus on adding design freedom to the stiffening structure. By considering the stiffening structure as a repetition of a unit cell, they optimize the size of the cell, which acts on the spacing, orientation, height and width of the stiffeners, as well as the presence of stiffeners in each direction (axial, transverse, diagonal, none). The laminates are selected by the optimizer among predefined 0°/±45°/90°configurations. On the other hand, Montemurro et al. (2012a,b) focus on introducing more elaborate composite laminates. By using the bi-level framework, the laminates of both the panel and the stiffeners are not restricted to the 0°/±45°/90°configurations. Furthermore, the optimization variables also include the number of blade Chapter 1 | Literature Review stiffeners in a linear pattern, where the height and the laminate's stacking sequence are determined for each stiffener (varying number of variables).

Further developments focus on the shape optimization of the stiffening layout, exploring free layouts made of curvilinear stiffeners. Singh andKapania (2018, 2019) and [START_REF] Stanford | Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings[END_REF] optimize curvilinear stiffening paths simultaneously with composite laminates made of variable angle tow plies. The concept is extended to curvilinear grid-patterns on cylindrical panels by [START_REF] Alhajahmad | Minimum weight design of curvilinearly grid-stiffened variable-stiffness composite fuselage panels considering buckling and manufacturing constraints[END_REF]. In order to optimize laminates made of a greater number of plies, [START_REF] Zhao | Multiobjective Optimization of Composite Flying-wings with SpaRibs and Multiple Control Surfaces[END_REF] consider laminates made of straight fiber plies, where the orientation of each ply is selected within a pre-defined set. Blending between different zones is ensured by a stacking sequence table strategy.

Topologically determined stiffening paths are considered in more recent research works. [START_REF] Smith | Topology optimization with discrete geometric components made of composite materials[END_REF] optimize the spatial distribution of components with material properties equivalent to a unidirectional composite ply, in the GP framework. [START_REF] Sun | An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components (MMCs)[END_REF] optimize the positions of stiffeners made of composite materials on a panel with fixed anisotropic properties, in the MMC framework. In these two studies the material properties are fixed, but the choices made on the latter influence the final positions of the components. [START_REF] Talele | Concurrent stringer topology and skin steered fiber pattern optimization for grid stiffened composite shell structures[END_REF] optimize a topologically defined stiffening structure simultaneously with the fiber angles of a 12-ply symmetrical laminate. The stiffening structure is obtained by a ground structure method, where the heights of the beam elements are the variables of the optimization and unnecessary members are removed by the heights approaching zero.

Finally, it is worth taking a step back into methods less specific to the design of stiffening structures, that aim to simultaneously optimize the topology of a structure together with composite layups or material properties. In this sense, [START_REF] Setoodeh | Combined topology and fiber path design of composite layers using cellular automata[END_REF] optimized both the topology and the fiber angle distribution, as well as [START_REF] Schmidt | Structural topology optimization with smoothly varying fiber orientations[END_REF] which smoothed the variations of the fiber angles. [START_REF] Ranaivomiarana | Simultaneous optimization of topology and material anisotropy for aeronautic structures[END_REF] proposed to work in the more general framework of topology concurrently optimized with the properties of orthotropic materials (a wider group than composite laminates), using the polar parameters, and showed that simultaneous optimization leads to better results than a sequential approach. [START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF] and [START_REF] Bohrer | Concurrent topology and stacking sequence optimization of composite laminate plates using lamination parameters[END_REF] combined the topology optimization to the first level of the bi-level framework for the optimization of composite materials parametrized in lamination parameters, and were able to retrieve the stacking sequences with subsequent optimization steps. A few other methods have been review by [START_REF] Xu | A review on the design of laminated composite structures: Constant and variable stiffness design and topology optimization[END_REF].

Beyond the state of the art

The separate optimizations of the composite laminates and of the stiffening structure have been the subject of many research works. The methods in both fields are well advanced, and are now able cover a large area of their respective design domains.

From the composite laminate point of view, the designs maximizing the performance of a structure for the lowest mass are achieved by considering variable stiffness laminates (both by thickness and ply orientation), optimized via the bi-level framework. As far as the stiffening structure is concerned, the optimal designs are based on the results of preliminary topology optimizations, thus not constrained to predefined layout patterns, and stiffeners are subsequently explicitly modeled. The works aiming to concurrently optimize the stiffening structure and the composite laminates tend to confirm the interest of combining these two methods, even though the state-of-the-art methods from both domains have not yet been used together.

The scientific objective of the present work is to provide a new strategy capable of handling the topology optimization of the stiffening structure concurrently with the optimization of variable stiffness composite laminates within the bi-level framework.

This can be done by combining topology optimization with the optimization of the composite stiffness properties in the first-level optimization, while the second-level remains unchanged. The aim is to keep using a gradient-based method to solve the first-level problem, in order to limit the number of computationally costly structural analyses conducted by the finite element method. Indeed, the finite element method is adopted in this work for its ability to model structures with free stiffener layouts, to evaluate different types of structural responses (compliance, buckling, force fluxes, etc.), as well as to handle the specific load cases and boundary conditions applied onto the structure. A further measure to restrain the computational costs of the finite element analysis is to model the stiffened structure using beam and shell elements, which also allows to consider thin-walled cross-sections. As far as the topology optimization method is concerned, component-based frameworks provide a significantly easier interpretation of the results in terms of location, paths and number of stiffeners, without being restricted to pre-defined layouts. In addition, these methods are capable of explicitly modeling the stiffeners cross-sections which therefore enables the simultaneous sizing of the stiffeners' profile.

Hence, the main idea of this work is to develop a component-based topology optimization method, adapted to finite element models made of structural elements, which can be seamlessly combined with the first level of the bi-level composite optimization framework. As starting point, the following chapter provides the foundations of the novel component-based method.
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Introduction

Designing the layout of a stiffening structure consists in defining the number of stiffeners it contains, their path and their location on the panel to be stiffened. The literature review given in Chapter 1 shows that component-based topology optimization methods are able to provide innovative stiffening layouts, that do not constrain stiffeners to pre-defined locations. Their main advantage is to ease the interpretation of the optimization results, since the location of the stiffening material over the structure is described by explicitly defined components. In addition, these methods are computationally efficient even though they rely on finite element analyses for the computation of the structural responses: it is not necessary to re-mesh the structure for each new position of the components and the optimization is conducted via gradient-based algorithms. Nevertheless, existing methods of component-based topology optimization of the stiffener layout make use of finite element models based on two-dimensional planar elements or three-dimensional solid elements, which are not the most suitable to model stiffened structures, as opposed to structural elements, i.e. beam and shell elements.

Therefore, the objective of this chapter is to develop a method capable of optimizing the layout of a stiffening structure, that relies on a finite element model meshed with structural elements. The main idea consists in applying the logic of the componentbased methods using explicitly defined components, and to project the latter onto a ground mesh of structural elements. In this sense, the novelty is to geometrically represent the stiffeners using components which correspond to controlled sets of beam elements within the ground structure, in order to build the finite element model of the stiffened structure, over which the optimization objective and constraint functions are evaluated.

This method hence benefits from the ease of interpretation of the component-based methods in terms of stiffening patterns, associated with the cost efficiency of using structural elements for both the skin and stiffeners. By updating the set of beam elements for each new stiffener location, the stiffener is allowed to move freely over the entire surface without having to re-mesh. Furthermore, semi-analytic sensitivities can be derived which enables gradient-based optimization.

In Section 2.2, the method developed to project the stiffener component into a set of beam elements is explained. The optimization process and the derivation of the sensitivities are presented in Section 2.3. Section 2.4 details the calibration of the projection functions to ensure the accuracy of the projected model. The final section verifies the capability of the method in optimizing the locations of a couple of stiffeners considering simple test cases, and in handling a greater number of stiffeners in order to reproduce results commonly obtained in the literature.

The main developments of this chapter have been published in [START_REF] Savine | A component-based method for the optimization of stiffener layout on large cylindrical rib-stiffened shell structures[END_REF]. The applications are adapted to be consistent with the rest of the work presented in this manuscript.

Chapter 2 | A component-based method for the optimization of stiffener layout

Component-based representation and projection onto the FE model

The developed method is inspired by feature-mapping methods: a geometrical representation of the stiffeners (position, layout, size) is projected onto a ground structure FE mesh to build a structural representation of the stiffeners for analysis. This section describes in detail both the geometrical and the structural representations, as well as the projection method used to build the FE model of the stiffener from the geometrical description of the components. In the following, for the sake of simplicity, the method is illustrated considering the case of a single stiffener on a flat panel.

Geometrical representation of the stiffener as a component

The geometrical representation of the stiffener can be viewed as a simplified CAD representation, where a stiffener is represented by a component. The component is visualized as a straight line segment and has associated material and cross-sectional properties. The location of the component is parametrized by the coordinates of the two extremities P 1 and P 2 of the line segment: x 1 , y 1 , x 2 and y 2 , measured with respect to the global reference frame of the structure. Specified cross-sectional properties are associated to each component: the area A c , the second-moment inertias I y c and I z c , the torsional constant J c and the section offset h c (see Figure 2.1). These properties can advantageously be derived from any stiffener cross-section geometry (blade, hat, Z, etc.). The stiffener is considered to be made of a homogeneous isotropic linear elastic material, thus the material properties associated to a component are the Young's modulus E, the Poisson ratio ν and the material density ρ.

FE model of the ground structure

The structural representation of the stiffener is obtained by a projection of the component onto the FE mesh of the ground structure, which is composed of shell and beam elements. In order to build the FE mesh of the ground structure, one has to start from the support panel: its reference surface (mid-surface) is meshed using quadrangular shell elements. Then, beam elements are placed in between every adjacent shell nodes, diagonals included (see Figure 2.1), and have inertia properties aligned with their respective axis. However, this grid of beam elements must not affect the effective response of the panel: their cross-sectional properties are initially set to very low values, so that their contribution to the overall stiffness of the structure is negligible. Ideally, the shell elements are squares, leading to only four possible beam orientations : 0°, 90°, 45°and =45°. The FE mesh of the ground structure is built once and for all, based on the geometrical domain occupied by the panel to be stiffened: thus, when the layout of the stiffeners evolves, the method needs no re-meshing step and only the cross-sectional properties of the beam elements are updated. 

Projection method: structural representation of a stiffener

The major idea of this method is to approximate the stiffener, geometrically described at the component level by its length and cross-sectional properties, using a set of beam elements from the ground structure. Figure 2.2 shows a component and the corresponding set of representative beam elements. Whenever the position of the component changes, the set is updated accordingly by modifying the cross-sectional properties of the beam elements. The principle is that beam elements which are close and well aligned with the component have higher values of cross-sectional properties, whilst the crosssectional properties decrease for beams located further from the component. Hence, the mesh remains fixed while the component may move and rotate freely on the surface.

In order to select the set of beam elements from the ground structure for the structural representation of the stiffener, projection functions are used, which establish the updated values of the cross-sectional properties of the beam elements as a fraction of the cross-sectional properties of the component presented in Figure 2.1. The result of the projection is an updated structural model, ready for finite element analysis (see Figure 2.2). The projection functions ϕ (P ) establish the cross-sectional properties P ∈ {A, I y , I z , J, h} (area, inertia, etc. ) of the beam elements with respect to the corresponding cross-sectional properties P c of the component as follows:

P = ϕ (P ) • P c (2.1)
Each projection function ϕ (P ) is tailored for each property P, but they all share the same general form. Their values, ranging between 0 and 1, are determined by the product of three filters:

ϕ (P ) = f a • f (P ) d • f l (2.2)
where f a is an angle filter, f

(P ) d
is a distance filter and f l a location filter, written in the form of Gaussian functions and detailed here below. Whilst the angle filter f a and the location filter f l apply to any cross-sectional property, the distance filter f (P ) d is adapted specifically for each property P , as we will explain in the following. In order to build the FE structural model illustrated in Figure 2.2, the filter functions as well as the resulting projection function of (2.2) are evaluated for each beam element from the ground structure model, so that the cross-sectional properties of every beam element are set according to expression (2.1). 

Angle filter f a

The angle filter f a cancels out the elements that are not closely aligned with the component. It is defined as :

f a (γ i ) = exp -γ 2 i K a with K a = ln(2) (π/8) 2 (2.3)
where γ i is the angle between the i-th beam element and the component (see Figure 2.3).

As such, the function f a is maximum and equal to one when γ i = 0 • , and decreases when the beam element orientation deviates from the component one. The constant term K a of the function is chosen in order to filter out beam elements with a deviation |γ i | > 45 • with respect to the component. The value of K a is conveniently determined thanks to its physical interpretation: when the component is the bisector of elements at 0°and 45°, i.e γ i = 22.5 • , the angle filter will have a value f a = 0.5. When angle γ i reaches 45°, the filter has a value f a < 0.06, which is considered to be negligible and thus filters out non-aligned beam elements.
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Distance filter f (P ) d

The distance filter f (P ) d cancels out the elements that are distant from the stiffener, where the distance is measured orthogonally to the component from the end-nodes of each beam element. For the generic i-th beam element of the ground structure, if we call Chapter 2 | A component-based method for the optimization of stiffener layout Q i and R i its end-nodes, the distance filter f (P ) d applied to any cross-sectional property P is defined in terms of nodal distance functions, called nodal distance filters f d node , as:

f (P ) d = f (P ) d node (d ⊥ (Q i ), θ) • f (P ) d node (d ⊥ (R i ), θ) (2.4)
where the function d ⊥ is the orthogonal distance between the considered end-node and the component, and θ is the angle between the component and a global reference axis commonly chosen as the x-axis, as illustrated in Figure 2.4.a. The nodal distance filters f (P )

d node are defined as:

f (P ) d node (d ⊥ , θ) = ϕ (P ) max • exp -d 2 ⊥ • ln(2) (a δ (P ) (θ)) 2 (2.5)
where a is the side length of the square shell element, the parameter ϕ

(P )
max controls the amplitude of the filter and the function δ (P ) controls its bandwidth. The terms ϕ (P ) max and functions δ (P ) are specific to each cross-sectional property P . They result from a calibration of the filters, which is itself based on the resolution of an optimization problem, detailed in Section 2.4.

The nodal distance filter of (2.5) is constructed following the same reasoning as for the angle filter. The parameter ϕ (P ) max determines the maximum value of the nodal distance filter f (P ) d node , which occurs when a node falls exactly over the component line, i.e. d ⊥ = 0, as shown in Figure 2.4.b (in (2.3), no amplitude coefficient ϕ max is explicitly expressed, and the maximum amplitude is implicitly assumed equal to 1). It is then chosen to define the bandwidth of the nodal distance filter as 4a δ (P ) , so that f (P ) d node < 0.06ϕ (P ) max when d ⊥ > 2a δ (P ) , as illustrated in Figure 2.4.b. Indeed,consequently to (2.4), beam elements that have at least one of their nodes at a distance d ⊥ > 2a δ (P ) will have a filter distance value f (P ) d < 0.16ϕ (P ) max , and will thus be considered filtered out. Hence, the only non-negligible beam elements selected by the application of the distance filter f (P ) d are those within the bandwidth 4a δ (P ) , i.e. the ones closest to the component.

The dependency of the function δ (P ) to the angle θ was chosen to account for the fact that beam elements at ±45°are closer to one another than elements at 0°or 90°. This implies that for θ = ±45 • , the bandwidth of the filter must be reduced compared to θ = 0 • , otherwise their influence would be too important and the resulting structural model would be too stiff. 

Location filter f l

The location filter f l cancels out elements that are not located within the two extremities of the component. Similarly to the distance filter, it results from the product of nodal distance functions, called nodal location filters, which are evaluated at the endnodes of each beam element. Thus, the expression of the location filter f l is as follows:

f l = f l node (d ∥ (Q i )) • f l node (d ∥ (R i )) (2.6)
where d ∥ is the distance between each end-node of the i-th beam element and the perpendicular bisector B of the component, as illustrated in Figure 2.5.a. The nodal location filter is defined as:

f l node (d ∥ ) = exp -d p L ∥ • ln(2) ka + 1 2 L c p L (2.7)
where L c is the length of the component, a the side of the square shell element, while p and k are numerical parameters (respectively, an exponent and a coefficient defining an offset distance ka from the extremities of the components, which is proportional to the element size a) that are specifically tuned for the filter to be effective. Exponent p L should be chosen in the interval 20 < p L < 100. This ensures that f l node ≈ 1 for any end-node that falls in-between the extremities of the component and f l node = 0 outside. Consequently, the location filter does not interfere with the other filters. The transition from f l node = 1 to f l node = 0 is centered at a distance ka from the extremities of the component, as shown in Figure 2.5.b, recommending 0 < k < 2.5. Note that for all the applications of this manuscript p L = 80 and k = 0.3.
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Handling multiple components

The definition of the projection function ϕ (P ) was described so far in the case of the presence of a single component in the geometrical representation (i.e. one single straight stiffener). In order to accommodate more than one component on the surface, intersections and overlaps must be handled: for each component c (c ∈ {1, ..., N c }, where N c is the overall number of components in the geometrical representation), one can evaluate the resulting projection functions ϕ (P ) c for all beam elements in the ground FE mesh, according to the procedure described in the previous section. Then, one has to Chapter 2 | A component-based method for the optimization of stiffener layout fix a rule for the definition of the final value of the projection function ϕ (P ) for each beam element in order to build the structural representation of the stiffeners. To determine the of ϕ (P ) of each beam element, two alternatives can be considered, analogously to the formulations used in the existing component-based method: either by summing the N c components' contributions ϕ (P ) c , analogously to [START_REF] Norato | A geometry projection method for continuum-based topology optimization with discrete elements[END_REF], which is interpreted a superimposition of components to form one single stiffer member, or by conserving the maximum components' contributions, such as in [START_REF] Zhang | A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model[END_REF] and Zhang et al. (2016a), which is equivalent to merging overlapping components. In this work, the latter formulation is used as it seems to be more representative of stiffener intersections, represented by line components in the present method:

ϕ (P ) = max c∈{1,...,Nc} ϕ (P ) c (2.8)
In the case of gradient-based optimization, the max function cannot be used directly as it is not differentiable. Consequently, the latter is approximated by a continuous maximum function, from now on marked as max, which is here chosen as the p-norm:

ϕ (P ) = max c∈[1,Nc] ϕ (P ) c = ϕ p min + (1 -ϕ p min ) Nc c = 1 ϕ (P ) c p 1 p (2.9)
where ϕ min is introduced as a small positive lower bound as done in Zhang et al. (2016a). This prevents the beam elements from having null cross-sectional properties which cannot be handled by the FEA.

Optimization Process

In the framework of the proposed component-based method, the optimization of a stiffened structure can be stated as: 2.10) where F is the objective function, X the vector of variables, which takes values in the domain D comp , and g i are constraint functions.

min {X} F (X) subject to: X ∈ D comp g i (X) ≤ 0, i = {1, . . . , n} ( 
The objective F and the constraints g i can be chosen among the relevant structural responses, either calculated analytically (e.g. mass) or output by a linear FE analysis (e.g. compliance, maximum displacements, critical buckling load, etc.). The natural optimization variables X are the coordinates (x

1 1 , y 1 1 , x 1 2 , y 1 2 , . . . , x Nc 1 , y Nc 1 , x Nc 2 , y Nc 2 )
of the two extremities of the N c components in the model. Their domain of variation D comp is bounded by the sides of the panel surface. The material and cross-sectional properties are identical for all components, and remain constant during the optimization, thus the object of the optimization is specifically the stiffener locations and lengths.

The optimization process is illustrated in Figure 2.6. The design variables define the geometry of the component model. At each iteration j, the components are projected onto the ground structure via the projection functions detailed in Section 2.2. A structural analysis is performed on the resulting structural model that represents the stiffened panel and it outputs the values of the objective and constraint functions. The Method of Moving Asymptotes (MMA) [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF]) is used as optimization algorithm in order to calculate the values of the design variables for the iteration j + 1. The optimization process stops when either a maximum number of iterations n It is attained, or a stagnation criterion on the maximum change of the design variables values from iterations j -1 to j is fulfilled :

max X k ∈X |X k,j -X k,j-1 | X + k -X - k ≤ ε j ≤ n It (2.11)
where ε is a small positive real value expressed in percent, and {X + k , X - k } are respectively the upper and lower bounds of the k-th variable. In order to use a gradient-based algorithm like MMA, the sensitivities of the responses (both objective and constraints) with respect to the variables must be derived. This operation is usually expensive when it is done by finite differences. The advantage of the proposed method is that sensitivities are derived semi-analytically, thus yielding lower computation costs. The process is similar to the one described in [START_REF] Deklerck | Optimization of stiffened panels using a combination of FEM and a predictor-corrector interior point method[END_REF]. The analytical part of the sensitivities is obtained by deriving the projection function (Equations (2.1) to (2.7)), as well as the stiffener assembly function (2.9), with respect to the optimization variables. The output is the sensitivity of the cross-sectional properties P ∈ {A, I y , I z , J, h} of the beam elements with respect to the variables, i.e. ∂P/∂X. In the present work, the sensitivity of the structural response R (for instance, compliance) with respect to the cross-sectional properties of the beam elements is obtained using Altair OptiStruct. Details on the computation of the sensitivities in the software can be found in Altair Engineering (2019). Finally, by composition of functions, the full sensitivity can be obtained by:

∂R ∂X = ∂R ∂A • ∂A ∂X + ∂R ∂I y • ∂I y ∂X + ∂R ∂I z • ∂I z ∂X + ∂R ∂J • ∂J ∂X + ∂R ∂h • ∂h ∂X
(2.12)

where P ∈ {A, I y , I z , J, h} are the properties of the beam elements belonging to the ground structure, as defined in (2.1).

Numerical Calibration

The objective of the calibration procedure is to tune the parameters ϕ (P ) max and functions δ (P ) of the distance filter defined in (2.5). The aim is to obtain a good agreement between the structural FE model, which constitutes the structural representation of the stiffener used within the optimization process, and a reference FE model. The reference FE model is based on a fine conformal mesh of the skin and the stiffeners. The optimization model on the other hand corresponds to an equivalent lattice structure based on the ground FE mesh, that is built as explained in Section 2.2 and for which a thickness-rendered view is shown in Figure 2.7.b. The agreement between these two models is judged acceptable when all the following requirements are satisfied: R1. the relative errors on the structural response values are minimal: this is particularly important when the responses are used as constraints of the optimization;

R2. the variations of the responses have the same monotonicity: this ensures that the search is driven towards areas of interest of the design space that are relevant in order to find the "true" optimum;

R3. the local nature of the component is preserved in the structural model. The calibration is based on the comparison of global compliance between the optimization and reference FE models, as this allows to have a global measure of the effect of the stiffeners on the structure while being less sensitive to how they are actually modeled (conformal or lattice). The parameter ϕ (P ) max controls the maximum amplitude of the distributed cross-sectional property P , while the function δ (P ) controls the number of beam elements over which the cross-sectional property P is distributed. Note that ϕ (P ) max and δ (P ) are not independent from one another. For a given value of compliance, at a fixed angle θ, if ϕ (P ) max is increased, the bandwidth of the filter must be reduced in order to maintain the same overall compliance value (i.e. δ (P ) must be reduced), and vice-versa. The values of the parameters ϕ (P ) max and functions δ (P ) of (2.5) are specific to each cross-sectional property P ∈ {A, I y , I z , J, h}. To simplify the calibration procedure, it is here chosen to use the same projection functions for all the inertias I y , I z and J, i.e. ϕ Iy = ϕ Iz = ϕ J = ϕ I . Moreover, the eccentricity is not considered here (h = 0), but will be dealt with in Chapter 7. As a result, only the two functions ϕ A , ϕ I are calibrated, using the following procedure.

The reference cases are built using a square plate with a single stiffener. The plate is clamped along one edge and a uniaxial loading is applied to the opposite edge: two load cases are considered, a membrane (in-plane uniform tension) and a bending (transversal uniform force) load, repectivly illustrated in Figures 2.8.c and 2.8.d, so that ϕ A and ϕ I can be calibrated separately. Two parametric studies are conducted by sweeping a stiffener over the plate: a parallel sweeping of a longitudinal stiffener (θ = 0 • ) in the vertical direction (see Figure 2.8.a) and an angular sweeping of a single stiffener, passing through the center of the plate, from θ = 0 • to θ = 45 • (see Figure 2.8.b). The vertical sweeping aims at verifying the agreement on the monotonicity (requirement R2.) by evaluating the compliance at 5 parallel positions of the stiffeners over the width of an element: in the two extreme positions, the component is totally superimposed with beam elements of the ground structure, the others are intermediary positions. The angular sweeping aims at verifying the agreement on the structural response values for different stiffener angles (requirement R1.) and is made by steps of 5°, which assures a sufficiently smooth representation of the angular position on the structural response. In order to ensure smooth variations of the reference structural responses (obtained with the reference FE models of the stiffened plate), in each parametric studies all the stiffener positions are conformly meshed at once. The calibration procedure of the area and inertia projection functions ϕ A and ϕ I can thus be stated as an optimization problem:

min ϕ (P ) max ,{δ (P ) } K k=1 (C k -C ref k ) 2 K subject to: ∂{C} ∂Z ⊙ ∂{C ref } ∂Z ⩾ 0 (2.13)
where {C} and {C ref } are vectors respectively containing the compliance values of the structural and reference FE models, for all the K sweeping positions. Vector {δ (P ) } represents the discrete values of the function δ (P ) at each calibration angle θ, ⊙ is the element-wise product, Z is the position of the stiffener in the parallel sweeping case. The d . This satisfies the requirements (R1-R3) introduced at the beginning of the present section.

The effects of the discrete nature of the ground structure on the monotonicity of the response is best observed by doing the parallel sweeping. If the bandwidth δ (P ) is too narrow, the value of the compliance shows significant rises whenever the stiffener overlaps a beam element, followed by a drop-off at the next step, when the stiffener sits in-between two beam elements. This leads to oscillations in the value of the compliance, creating spurious local optima. On the other hand, if the bandwidth is too wide, the localized nature of the stiffener is compromised.

The optimization problem expressed by (2.13) is solved using a hierarchical approach: the first step of the calibration consists in finding the highest ϕ (P ) max , associated with the smallest bandwidth, that prevents oscillations from occurring in the parallel sweeping case. This is an iterative process, starting with ϕ (P ) max = 1. The value δ (P ) (0°) that minimizes the RMSE in the θ = 0°configuration of the angular sweeping is found using a Newton-Raphson method. The constraint of the optimization problem (2.13) is then evaluated using the parallel sweeping. This process is repeated by gradually decreasing ϕ (P ) max until the constraint is satisfied. Once ϕ (P ) max is set, the Newton-Raphson method is applied to find the best value of δ (P ) for each θ value of the angular sweep.

Finally, the discrete set {δ (P ) } is interpolated to define the continuous and derivable function δ 2.9 based on the numerical values later used in Section 2.5. By construction of the distance filter f (P ) d , the function δ (P ) is even and π-periodic. In the following, a polynomial interpolation is used to define δ (P ) . Results of the calibration will be shown in the following section, which describes the considered cases of application for the optimization method. Briefly analyzing the evolution of the functions δ A and δ I in Figure 2.9, the latter are consistent with the fact that the beam elements of the ground structure are only oriented at 0°, ±45°and 90°. The value δ (P ) (45°) is smaller than δ (P ) (0°): the thinner bandwidth at 45°is consistent with the beam elements oriented at 45°being closer to one another than the elements oriented at 0°. For the intermediary values, a maximum is reached for an orientation of 22.5°, i.e. the angle where the component is the most misaligned with the beam elements of the ground structure. In this case, more beam elements are needed in order to provide stiffness which is consistent with obtaining the largest bandwidth at this point.

(P ) (θ) for θ ∈ [0 • , 45 • ], illustrated in Figure
It is important to note that the obtained set of parameters {ϕ (P ) , δ (P ) } is specific to the cross-section property calibrated, and remains constant during the optimization. The cross-section of the stiffener used for the calibration must therefore be the same as the one used for the optimization: changing the cross-sections will require a new calibration, which will be further discussed in Section 7.4.2 on an industrial application. Also note that a mesh-size dependent parameter a is introduced in the distance filter f

(P ) d (Section 2.
2) This allows some flexibility if the mesh size of the optimized panel is not the same as the mesh size of the calibration model which reduces the problem dependency.

Contrary to what is usually done in feature mapping methods which typically realize the projection of the entire stiffness matrix, the parameters of the beam section (area, inertia) are here projected independently. This allows to differentiate longitudinal tension-compression behavior from bending behavior. Indeed, the corresponding terms in the stiffness matrix of the element do not present the same regularity with respect the cross-sectional properties. Tests were performed by projecting the stiffness matrix with either the projection function ϕ A or ϕ I and in this case, either the tension compression behavior or the bending behavior is accurate but not both at the same time. On the contrary, in the proposed method both behaviors are simultaneously accurately estimated.

Applications

The proposed optimization method is first tested on academic cases of stiffened square plates with a clamped edge. It is then applied to two standard topology optimization problems of the literature, the cantilever (CANT) and the Messerschmitt-Bolkow-Blohm (MBB) beam, to verify the capability of the developed method to produce results that are consistent with those found in the literature.

The following test cases share identical material properties, stiffener cross-sections, projection function calibration and mesh size. The skin panels and the stiffeners are made of steel (E = 210 GPa, ν = 0.3, ρ = 7845 kg m -3 ) and are meshed using square elements with a size a = 20 mm. The cross-sectional properties of the stiffeners are derived from a 6 mm × 40 mm rectangular section with no section offset (h = 0 mm). The assembly of multiple stiffeners is realized by the p-norm as in (2.9), with p = 8 (as issued from [START_REF] Norato | A geometry projection method for continuum-based topology optimization with discrete elements[END_REF]) and its lower bound parameter set to ϕ min = 1 × 10 -8 (determined empirically). Finally, the optimizations are carried out using Svanberg's 2007 implementation of the MMA algorithm with the settings detailed in Appendix A.

Calibration of the projection functions

The first step to solving applications with the proposed method consists in calibrating the projection functions with respect to the component's cross-sectional properties, following the method described in Section 2.4. For the calibration and the applications of this manuscript, the compliance is generally defined as:

C = 1 2 ε T σ (2.14)
where in linear elasticity, ε and σ are respectively the strains and stresses in the elements, which can be generalized in terms of membrane, bending and shear contributions in the case of structural elements such as shells.

For the chosen 6 mm × 40 mm rectangular stiffener's section, Table 2.1 presents the values of ϕ A max and ϕ I max determined by the first step of the calibration process described in Section 2.4, and Figure 2.9 illustrates the evolution of the parameters δ A and δ I determined in the second step of the calibration. The latter are respectively interpolated by δ A (θ) and δ I (θ), defined as 12-th order sparse polynomials of the form δ (P ) (θ) = 6 k=0 c 2k θ 2k , where P = A or P = I and θ in radians. The non-zero coefficients and monomials are given in Table 2 max and coefficients of the polynomial functions δ (P ) (θ).

Verification of the method on basic test cases

The first application aims at verifying that the method is capable of minimizing the global compliance of a stiffened plate by optimizing the locations of a couple of stiffeners without any other constraint.

The test case considered is a 1 m × 1 m × 1 mm square plate (see Figure 2.10). The ground structure is made up of 50 × 50 shell elements and 10100 beam elements connecting all adjacent nodes, corresponding to an overall number of 15300 degrees of freedom. The plate is clamped at one edge (x = 0) and submitted to either an in-plane punctual load of F y = 20 kN or an out-of-plane punctual load of F z = 200 N on the middle of its opposite side (x = 1 m and y = 0.5 m). The load is linearly distributed over five nodes, on the right side of the plate, in the vicinity of its middle, to smooth out the load introduction. The initialization of the stiffeners' distribution corresponds to two straight stiffeners forming a cross, centered on the plate (see Figure 2.10). The maximum number of iterations is set to n It = 50 and the parameter of the stagnation criterion is set to ε = 0.6 %. Since MMA can only handle constrained problems, this unconstrained problem is solved using a dummy constraint, i.e. a condition which is always satisfied. The results of the optimizations are shown in Figure 2.10. The compliance is successfully minimized for both the in-plane and out-of-plane load cases, with compliance values decreasing respectively to 66 % and 1.1 % of their initial values. The average iteration time is 30 s with 75 % of the time occupied by the FE analysis1 . Most of this time is spent on the sensitivity analyses performed by the FEA solver OptiStruct, which explains the high computational cost relatively to the complexity of the model. The resulting optimal positions of the stiffeners are consistent with the geometry and loading of the cases at study. The convergence towards the stiffest design is fast, as the positions and lengths of the stiffeners do not evolve much over the last iterations.

Comparison with results from the literature

In this second application, the aim is to solve the common cantilever (CANT) and Messerschmitt-Bolkow-Blohm (MBB) beam topology optimization problems and compare the results obtained with those of the literature. This allows verifying the capability of the method in handling a large number of components, while constraining the maximum available quantity of material used to form components.

Formulation of the mass constraint

The constraint on the available quantity of material used to form components is formulated as a maximum total allowable mass of components M C0 . This choice is made to have a relatable physical interpretation of the quantity of material, that can be easily compared to the mass of other structural elements such as the skin for instance. This differs from most topology optimization methods which rather constrain a total volume or a volume fraction of material. These formulations seem to make less sense with stiffened structures due to the significant size difference between the structure and the stiffeners, implying that a very small volume fraction of the design domain is actually not void. The constraint is formulated as:

g(X) = M C -M C0 < 0 (2.15)
where M C is the total mass of the components expressed as:

M C = ρ Nc c = 1 A c * L c (2.16)
In (2.16), A c and L c are respectively the cross-sectional area and the length of the c th component, and ρ the density of the considered material. The advantage of this formulation is that the mass of the stiffeners corresponds exactly to the mass of a conformly meshed model. It also ensures a smoother variation of the mass with respect to changes in the stiffener's length or position, compared to the mass calculated from the structural model. Finally, note that the combination of (2.16) and (2.9) implies that two superimposed stiffeners will act as if there was a single one, but twice as heavy. This formulation of the mass constraint hence naturally drives the optimizer to avoid overlapping stiffeners, without introducing more complex geometrical conditions on component distances or relative positions.

Definition of the test cases

The models of the CANT and MBB test cases are presented in Figure 2.11. These problems have truss-structured solutions. Hence to simulate such a design with the proposed method, the thickness of the plates is set to t = 0.01 mm so that the plate stiffness is negligible with respect to the component stiffness. 
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The optimization problem is formulated as:

min C(X) w.r.t. X ∈ D plate M C < M C0 (2.17)
where the mass constraint is set to M C0 = 12 kg for the CANT case and M C0 = 15 kg for the MBB case. These values have been determined empirically in order to obtain optimized designs that have approximately the same quantity of material as the cases from the literature taken as reference in the following. The normalized stagnation criterion is set to ε = 1 % and the maximum number of iterations is set to n It = 100.

Results of the CANT case

The results for the CANT test case are presented in Figure 2.12, considering either 8 or 16 components in the initialization of the optimizations.

For the case with 8 components in the initial design (Figure 2.12.a), the optimization converges to a feasible minimum compliance design. The locations of the components are consistent with results from the literature, illustrated in Figure 2.12.c, noting that the thinner lines in the latter do not have a structural contribution. The designs are however not identical to the case from the literature, where variations of the crosssectional properties are possible and thus allow a better distribution of material among the components (this can explain the differences between the optimized configurations in Figures 2.12.a and 2.12.c).

It can finally be noted that the component junctions are not as precise as one would expect. For example, the two components to the far right are slightly longer than expected as they extend beyond the intersections with adjacent components. A closer observation of the structural model at the intersections of components shows that beam elements from the ground structure actually participate in a mechanical connection between the respective components. This contributes to lowering the compliance of the structural model, however, these links would not exist in a conformly meshed model. One can imagine that the parts of the components extending beyond the intersections could thus be removed in the interpretation.

For the CANT case with 16 components, Figure 2.12.b shows that the optimization converges to a design that does not satisfy the mass constraint, noting that the evolution of the latter is much more oscillating. Nevertheless, the final iteration only exceeds the mass constraint by 0.6 %, which is considered acceptable, and has a compliance comparable to the case with 8 components, as synthesized in Table 2 The component locations are similar to those of the 8 component case, with only 6 components in the final design. Indeed, a remarkable aspect is that 10 components have been shrunk to negligible lengths (circled in blue in the component view of Figure 2.12.b) and thus do not appear in the structural model. This highlights the fact that the method suppresses components by reducing their length, rather than by overlapping them. This was anticipated based on the formulation of the component mass calculation of (2.16). However, the presence of these small components is most likely the source of the aforementioned convergence difficulties and inspire the need of a strategy to remove useless stiffeners. This problem will be further addressed in Chapter 3.

Results of the MBB case

The results for the MBB test case are presented in Figure 2.13, considering either 8 or 32 components in the initialization of the optimizations. In both cases, the observations on the results are very similar to those of the CANT test case with either 8 or 16 stiffeners respectively.

The particularity of the MMB case is that the final component locations observed in Figure 2.13 are significantly different depending on the initialization. While both are consistent with results found in the literature (Figure 2.13.c), the number of stiffeners initially present in the optimization has a significant impact on the final designs. With 32 components, the internal structure of the MBB is more refined and thus the compliance obtained is lower than with only 8 stiffeners (Table 2.2).

Conclusion

In this chapter, a method to optimize the layout of a stiffening structure is developed. The proposed method can be seen as an extension of component-based methods that are usually limited to two-dimensional planar or three-dimensional solid models: here, stiffeners, assimilated to components, are projected as sets of beam elements on a ground structure meshed with structural elements, i.e. shells and beams. By doing so, the stiffener, which is intrinsically a beam, is represented as an equivalent lattice in the optimization process. The projection method allows the components to move freely over the surface, without any re-meshing operation. Furthermore, semi-analytic sensitivities can be derived in order to use a gradient-based optimizer. A calibration procedure is proposed for the projection functions, which enables to minimize the discrepancy between the structural responses of the optimization model and a reference FE model. Finally, three examples of compliance minimization problems are proposed to test the method and verify its ability to optimize the layout of components.

A simple test case, minimizing the compliance of a plate stiffened by a couple of stiffeners, demonstrates the capability of the method in optimizing the component locations and converging to a design consistent with expected results. By adding a mass constraint to the optimization and reducing the thickness of the skin to simulate trusslike structures, the common compliance minimization problems of the cantilever beam and the Messerschmitt-Bolkow-Blohm beam are solved. These applications show that the method is capable of successfully converging to feasible minimum compliance designs when initially considering a small number of components, which are furthermore consistent with results from the literature.

When the problems are solved with a greater number of components, the optimizations converge to equivalent or lower compliance values as with the smaller number of components, but have difficulties in satisfying the mass constraint. This does not prevent the optimizer from finding optimized results as whenever this occurs, the violation of the mass constraint is usually small enough that the designs can be considered acceptable, especially as the final designs are very similar to optimal solutions found in the literature. Nevertheless, it takes more iterations for the optimizer to reach the convergence indicator for little variations of the layout, thereby prolonging unnecessarily the optimization. These convergence difficulties are most likely caused by the degeneration of some components: this corresponds to the natural mechanism actuated by the proposed optimization approach to remove unnecessary components. Methods to handle these supernumerary components in a more appropriate fashion will be set forth in the following chapter.

Chapter 3

Advanced features for component-based optimization of the stiffener layout 

Introduction

The objective of this short chapter is to develop more advanced features within the method proposed in Chapter 2, in order to improve both the convergence of the optimization when dealing with a greater number of components, as well as the performance of the optimized structure (i.e. obtain stiffer optimized designs). The developments are organized around three main strategies: removing components, sizing component crosssectional properties and including curvilinear components in the stiffening layout.

Section 3.2 details the implementation of the aforementioned features, which are then applied in Section 3.3 to optimize the MBB test case already introduced in Chapter 2. The objective is to benchmark the new features in order to highlight their effect on the solutions of the optimization problems and identify the most appropriate ones in the context of this study.

Development of more advanced features

The component-based method introduced in Chapter 2 shows interesting qualities with respect to existing methods in the literature reviewed in Chapter 1, most notably the adaptation of the method to a ground mesh of structural elements and a beam-like representation of the components. Nevertheless, in its basic formulation as described in Chapter 2,it is not yet able to take into account more advanced features that are present in some existing methods in the literature, namely handling stiffener overlapping, optimizing the stiffener transversal size (height and width in three-dimensional models), varying material density and considering curvilinear stiffening paths. Component overlapping allows to vary the number of components during the optimization process by merging the contribution of components that overlay each other: for instance, two components that exactly overlap have the same contribution to the global compliance and mass of the structure as a single one. Modifying the dimensions of the components enables a better distribution of material among the components. These two features are naturally present in most component-based methods (Moving Morphable Components -MMC, Geometry Projection -GP, etc.) even though the implementations slightly differ. An additional feature, first introduced in the GP framework, is the variation of the material density of components [START_REF] Norato | A geometry projection method for continuum-based topology optimization with discrete elements[END_REF]. Similarly to density-based topology optimization, a density variable is associated to each component and is driven to converge to 0/1 values by a penalization scheme: 1 indicates that the component is present in the final design while 0 indicates it is removed. This feature hence also provides an alternative strategy which allows the number of components to vary during the optimization process. Finally, since [START_REF] Kapania | Optimal Design of Unitized Panels with Curvilinear Stiffeners[END_REF] demonstrated the benefits of using curvilinear stiffeners rather than straight ones, [START_REF] Guo | Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons[END_REF] have developed curvilinear components in the MMC framework.

These aforementioned features are not straightforwardly applicable to the beam-like representation of the components that is used in the method developed in this work. Therefore, the following developments aim at adapting these features in order to enable varying the number of components by component removal, optimizing the crosssectional properties of the components, and handling curvilinear component paths.

Component removal from a dense initialization

The calculation of the mass of the stiffening structure based on the geometrical model of the components in (2.16), combined to the component assembly method in (2.9), tends to prevent components from overlapping, therefore driving the optimizer to naturally remove unnecessary components by shortening their lengths to small values, as it was shown in the results of test-cases in Section 2.5. In order to help the optimizer to find feasible solutions, the most natural strategy that can be applied, coherently with the present formulation of the mass constraint, is to permanently delete components that become too short over the course of the optimization. An alternative solution is to merge the mass contributions of superimposed components: in this way, overlapping components act as if they correspond to a single one, thereby simulating component removal.

Deleting short components

Over the course of the optimization, the lengths of the components can significantly evolve: Figure 3.1 shows the length evolution profiles of three components which are selected among the 32 of the MBB test-case presented in Section 2.5, Figure 2.13.b. Profile 1 corresponds to a component that conserves a mechanical contribution throughout the optimization and is thus preserved by the optimizer. In contrast, profile 3 corresponds to a component that does not have an efficient mechanical contribution, and is thus rapidly shortened to a negligible length. However, the component still contributes to the total component mass, and even though its mass remains very small compared to longer components, it can still be penalizing with respect to the mass constraint. To overcome this problem, the objective is to remove from the model all components that have been reduced to small lengths, which is here done by deleting their variables from the optimization. To do so, one must define a threshold ε L below which a component is considered too short and should subsequently be removed. When selecting the threshold length for component removal, the minimum reference length is the finite-element size a of the ground-structure mesh. Nevertheless, if one fixes the threshold to such a minimal length, the risk would be not to remove any component at all and the removal strategy would not be effective. On the other hand, setting higher threshold values may lead to abruptly remove a component too early, which would in turn drive the optimization to converge towards less interesting local optima (e.g. higher compliance, poorer component locations, etc.). Indeed, as one can see from profile 2 in Figure 3.1, the component length can be shortened to few units of the finite element size a (between iterations 10 and 20, the component length L c < ε L = 3a), but then it can grow back again, up to a non-negligible length. Such a component can thus play an important role in the optimized design and should not be removed. This highlights that the choice of the threshold ε L is quite empiric, while having a non-negligible impact on the optimized designs.

To mitigate the influence of selecting a too high threshold and avoid abrupt component removals, it is proposed to only delete components that verify the following condition:

L (k-N it +1) c , . . . , L (k-1) c , L (k) c < ε L (3.1)
If at iteration (k) the length of a component L c has been smaller than the threshold ε L for N it consecutive iterations, the component is deleted. Advantageously, this condition can be verified for each component at the end of each iteration, thus it does not interfere with the optimization algorithm nor requires supplementary sensitivity calculations.

Considering the specificity of the MMA algorithm, this implies deleting the variables related to the removed components, their stored values from the two previous iterations and their bounds, updating the total number of variables, and finally deleting the corresponding lower and upper asymptotes values. Verifying the condition for N it consecutive iterations allows to account for the oscillatory behavior of the MMA algorithm and avoids premature component removals that could prevent the optimization from attaining a feasible solution.

Based on the results obtained for the MBB test case of Figure 2.13.b, it is proposed to set the parameters to ε L = 3a and N it = 3 as a starting parameter set. The influence the parameters ε L and N it on the outcome of the optimization will be further addressed in Section 3.3.2.

Alternative mass formulation for component overlapping

The formulation of the mass constraint introduced in Section 2. 5.3 (2.16) is based on the geometrical representation of the components. Consequently, two strictly overlapping components are mechanically equivalent to a single one, but are twice as heavy: this is not advantageous performance-wise (equivalent compliance for a higher mass), and therefore components tend to repel each other.

To avoid this repelling effect, the mass can be calculated on the structural model of the projected components rather than on their geometrical representation. Recalling the assembly of components explained in Section 2.2.4, when two components are superimposed or intersect each other, their projection onto the ground structure is assembled by application of a maximum, approximated by a p-norm (symbol max). The mass of the resulting structural model of stiffening beams can thus be written as:

M C = Ne e=1 max c∈[1,Nc] (A c ϕ A c (e))l e ρ mat (3.2)
where l e and max(A c ϕ A c (e)) are respectively the length and the projected area of the e-th beam element (after assembling the components), ρ mat is the density of the considered material and N c the total number of components c. The mass is thus calculated on a model where overlapping components are assembled, therefore two overlapping components now weigh as a single one.

However, there are two main drawbacks to formulation (3.2): the mass evaluation is less precise than with the geometrical formulation (2.16) due to the projection, and Chapter 3 | Advanced features for component-based optimization of the stiffener layout the evolution of the mass of a component when sweeping a stiffener is less regular. Therefore, it is here proposed to correct the mass of the projected component so that it is equal to the mass of the geometrical component before assembling the components. This is done by introducing a correction factor k c in (3.2):

M C = Ne e=1 max c∈[1,Nc] k c A c ϕ A c (e) l e ρ mat with k c = L c Ne e=1 ϕ A c (e)l e (3.3)
where L c is the length of the c-th component. The coefficient k c is thus specific to each component of the model and updated at every iteration. In this way, the mass variations have the same regularity and accuracy as with the geometrical formulation: if two components are strictly apart, their total mass is equal to the sum of their geometrical mass. Moreover, if two components exactly overlap, their total mass will be equal to the geometrical mass of only one component. Note that there is actually a small overestimate error of the mass due to its approximation by a continuous maximum function ( max).

Considering the p-norm of (2.9) that was set with p = 8, the mass of two components is overestimated by 9 % in the case of a complete overlap.

Sizing component cross-sections

Introducing a size variable

In the aim of further improving the performance of the structure, a strategy consists in tailoring the dimensions of the component cross-sections by introducing size variables. Indeed, this allows to better distribute the material among the components.

In the proposed method, the cross-sectional properties of a component are derived from the profile and dimensions of a cross-section. These dimensions could be directly chosen as size variables. However, in order to generalize the method to any crosssectional profile, the size variables are preferably applied to the area and inertia properties of the cross-section. Since for a given cross-sectional profile there exists implicit relations among the area and inertia properties, the implementation of the size variable is simplified by considering a homothetical transformation of a reference cross-section. The cross-sectional properties are furthermore considered constant along the axis of the beam elements. Therefore, if all dimensions of the cross-section (lengths, heights, thickness) are multiplied by the same factor (mu c ), then:

A c = µ c A 0 I c = µ 2 c I 0 (3.4)
where A c , I c are respectively the area and inertia (I 1 , I 2 , J ) of the cross-section of the c-th component and A 0 , I 0 subscripts are the corresponding properties of the reference cross-section. In this way, one single parameter is sufficient to control the cross-sectional properties.

Penalizing the size variable for component removal

The introduction of a size variable enables the size of the component cross-sections to vary continuously. Furthermore, if µ c is allowed to take null values, components can become so small that their contribution to the structure is negligible. This is hence another possibility for the optimizer to remove unnecessary components.

This feature can be extended to components with cross-sections that remain constant throughout the optimization: if µ c takes only discrete 0/1 values, the corresponding component is either present (µ c = 1) without modifying its cross-section or removed (µ c = 0). This problem is solved in a similar manner as topology optimization problems: the size variable is relaxed to vary continuously in µ c ∈ [0; 1] and a penalization strategy is added in order to drive the size variable to converge to either 0 or 1. For more information on topology optimization, the reader may refer to [START_REF] Bendsøe | Topology Optimization: Theory, Methods, and Applications[END_REF].

In the present work, a SIMP penalization scheme is implemented. (3.4) becomes:

   A c = µ p A c A 0 I c = µ p I c I 0 m c = µ c m 0 (3.5)
where p A and p I are penalty factors related to the area and inertia properties respectively, and the 0 subscripts indicate the cross-sectional properties and mass of the component with the reference cross-section (µ c = 1). The variable µ c is not penalized when multiplying the mass, similarly to the material density in SIMP optimizations.

Differentiating p A and p I allows to provide two interpretations of the variables µ c :

• if p I = 2p A , the relations established in (3.4) between the area and inertia properties hold for any values of penalization. Therefore, if p A > 1, µ c can be interpreted as a penalized size variable on the geometrical parameters of the cross-section.

• if p A = p I = p, the stiffness matrix K c = K(µ p c A 0 , µ p c I 0 ) of a component (considered as beam element) can be simplified to K c = µ p c K(A 0 , I 0 ) = µ p c K 0 . In this case, µ p c can be interpreted as a penalized density variable similarly to the so called size variable introduced in the Geometry Projection method [START_REF] Norato | A geometry projection method for continuum-based topology optimization with discrete elements[END_REF][START_REF] Smith | A MATLAB code for topology optimization using the geometry projection method[END_REF] and to the density variable in topology optimization methods.

Finally, a component removal condition on the size variable µ c is formulated to remove components that become too small, following the same reasoning as for (3.1):

µ (k-N it +1) c , . . . , µ (k-1) c , µ (k) c < ε µ (3.6)

Curvilinear components

The aim is to describe complex component paths in the objective of reducing the total number of components and thus the number of variables of the optimization.

Geometric model

The first step to parametrize a curvilinear component, is to define the support of its curve path in the Cartesian geometrical model. To do so, the most general way is to use parametric curves which have a support defined by a fixed number of control points. Depending on the number of parameters per control points and the degree of the polynomial functions used, various types of curve formulations are available, such Chapter 3 | Advanced features for component-based optimization of the stiffener layout as spline curves, Bezier curves, B-splines, NURBS, etc. (citing from the most particular to the most generalized form).

In the present work, Bezier curves with three control points are used, defined as:

X(t) = (1 -t) 2 P 0 + t(1 -t)P 1 + t 2 P 2 (3.7)
where X are the coordinates of a point on the curve at the curvilinear abscissa t ∈ [0, 1] and P i is the coordinates of the i-th control point. These curves have the advantage of always lying within the polygon formed by their control points: hence, they will necessarily be restricted to the design domain, as long as their control points belong to the same domain (unlike splines). Furthermore, each control point has only two variables in a two-dimensional frame (the (x, y) coordinates of the point), which limits the complexity of the parametrization. Nonetheless, the method can straightforwardly be enhanced to consider more control points or more complex curve supports.

Modified projection function

The following step is to project the curvilinear component onto the structural ground mesh using the same filter functions as described in Section 2.2. This requires to calculate the distance between each node of the ground mesh and the curve representing the component by means of implicit relations as well as estimating the angle between the curve and the beam elements.

To simplify this process, a curvilinear component is discretized into a finite number of straight components which can then be projected following the method developed in Section 2.2: the curvilinear component c is projected as a chain of straight subcomponents sc. This corresponds to a piece-wise linear approximation of the curve, with nodes regularly spaced along the curvilinear abscissa. The advantage is that sensitivities are simply obtained by a chain rule and thus their derivation remains analytic. Nonetheless, this generates a challenge in chaining the sub-components and more specifically ensuring that there is no added or subtracted stiffness at the sub-component junctions. In this respect, two modifications are made to the projection functions established in Section 2.2.

The first modification consists in adding sub-component projection and assembly steps in the projection process, as illustrated in Figure 3.2 by the steps 1, 2 and 3. Step 1 discretizes the components into sub-components. In step 2, all the sub-components sc of a given curvilinear component c are projected, and the corresponding fields of nodal projection function values are obtained by:

ϕ (P ) node,sc = f a • f (P ) d node • f l node (3.8)
Note that the angle filter f a is now associated to a nodal value rather than to a beam element itself. Therefore, a regular node of the mesh has a total of eight nodal projection function values ϕ

(P )
node,sc , as revealed by the close observation of the result of step 2, one for each of its surrounding beam elements. The field of nodal projection function values for the curvilinear components are obtained by the assembly of the sub-components in step 3:

ϕ (P ) node,c = max sc ⊂ c ϕ (P ) node,sc (3.9)
This maximum function is approximated by the p-norms defined in (2.9), where the lower bound ϕ min can be null. In step 4, the cross-sectional properties of the beam elements are calculated from the nodal projection function values, and step 5 is the general assembly of all the components which have been individually projected by following steps 1 to 4. The second modification is the redefinition of the nodal location filter f l node that contributes to the evaluation of the location filter f l (see Section 2.2). As it is defined in (2.7), the length interval over which the nodal location filter varies from 1 to 0 as well as its rate of variation actually depend on the length of the component. Consequently, the resulting projected model of a curvilinear component (and thus the structural responses) highly depends on the number of sub-components discretizing the curve (finer discretizations corresponding to shorter sub-components and inversely). Hence the nodal location filter (2.7) is here replaced by a regularized Heaviside function:

f l node (d ∥ ) =      1 d ∥ < L + c -ε t 3(1-α) 4 (d ∥ -L + c ) 3 3ε 3 t - d ∥ -L + c εt + 1+α 2 d ∥ ∈ [L + c -ε t , L + c + ε t ] α d ∥ > L + c + ε t with L + c = 1 2 L c + ka (3.10)
where ka is a small length added to the component length L c , proportional to the ground structure element size a, that has the same definition and purpose as in (2.7), i.e. controlling the location of the transition of function f l node from one to zero; α a small lower bound, set to 0 here so the lower bound of the cross-sectional properties is globally defined by the component assembly of step 5 in Figure 3.2; and 2ε t is the length over which the function varies from 1 to 0. Hence, in the formulation of (3.10), neither the length of the transition of the function from 0 to 1 nor its rate of variation depend on the length of the component L c , as illustrated in Figure 3. 

Applications

The objective of the present section is to illustrate applications to test-cases that allow to evaluate the performance of the developed features in order to establish the criteria on which each feature should be selected. First, the component removal features of Section 3.2.1 and the component sizing features of Section 3.2.2 are compared. Considering the component deletion feature of Section 3.2.1.1, it is then evaluated how three strategies influence the outcome of the optimization: (i) tuning the component deletion parameters, (ii) starting a new optimization from an already optimized solution, and (iii) initializing with different numbers of components. Finally, benefits and drawbacks of using curvilinear components are evaluated.

Test case

In the following, all applications are based on the MBB test-case described in Section 2.5.3 and briefly recalled in Figure 3.4. The initialization includes N c0 = 32 components. The optimization problem is formulated as compliance minimization under a constraint on the overall stiffener mass. The mass constraint function is by default based on the geometrical representation of the components, introduced in Section 2.5.3, unless the use of the alternative formulation of (3.3) is explicitly specified, to be tested as part of the component removal strategies. • the optimization converges to a solution with comparable compliance values in fewer iterations.

• the components are better joined by their extremities, even though a component at the far right seems out of place from a mechanical point of view. The layouts of the components are slightly different but remain comparable.

The component deletion strategy thus seems to improve the convergence to feasible solutions compared to the test cases solved in Section 2.5.3 (optimized result recalled in Figure 3.6.a), without degrading the ability of the method to find coherent component layouts.

Component overlapping

Considering the new formulation of the mass constraint (3.3) introduced in Section 3.2.1.2, which is based on the component representation within the structural model, the feasible minimum compliance design is presented in Figures 3.6.c and 3.7.c. It can be observed that the components tend to aggregate close to one another in certain zones of the structure but the geometrical components do not seem to strictly overlap. In addition, all the components are of a significant length. This highlights that the new mass formulation no longer prevents components from getting close to one another compared to the formulation based on the geometrical model (as shown in Chapter 2, as well as in the previous case of component deletion strategy of Figure 3.7.b), and therefore the mass is adjusted by partial overlapping of the structural models of the components rather than by shortening them. However, interpretation is not straightforward: components are neither strictly overlapped to be considered equivalent to only one component nor are sufficiently apart to be considered as two separate components. This is emphasized by the structural model of Figure 3.7.c, which suggests that aggregated components could rather be interpreted as a single component with increased cross-sectional properties. This can advantageously help find the critical zones of the model and better distribute the material over the structure. In fact, the compliance of the optimized model with overlapping components is significantly lower than the models with the geometrical mass formulation (Figure 3.6.a,b). Nevertheless, since the width of the components in the structural model is not related to the crosssectional properties of a single geometric component, the cross-sectional properties of the resulting actual components cannot be directly deduced.

In short, even though the new mass formulation allows for components to get close to one another, a strict overlap of the component is rarely observed. Therefore, this strategy does not allow to actually simulate the removal of components by means of overlapping as initially imagined. Alternatively, it provides a means to identify critical zones where bigger components should be placed, even though how much bigger the components should be cannot be straightforwardly deduced from the size of the components in the geometrical description.

Sizing of component cross-sectional properties

The test case of Figure 3.4 is here solved considering the addition of of component cross-sectional size variables, as described in Section 3. 
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The advantage of this strategy is that the component cross-sectional properties are more straightforwardly interpreted than with the component overlap strategy. Furthermore, it benefits from the advantage of the geometrical mass formulation, where components stay sufficiently apart to be considered as separate, thereby simplifying the interpretation. Nevertheless, the structures obtained comprise a greater number of components with different cross-sections, which can be viewed as a disadvantage in an industrial context: the manufacturing costs would be drastically increased, compared to handling a smaller number of components that share the same cross-sections.

Penalized component cross-sectional sizing optimization

The strategy of penalized optimization of component cross-sectional properties, as introduced by (3.5) in Section 3.2.2.2, is tested here. One can recall that penalization of the cross-sectional size can lead to component removal by deletion of thinner ones. The objective of the penalization is to obtain designs where the variables µ c have all converged to either 0 or 1 values. This way, all the components left in the design (µ c = 1) share the same cross-sectional properties. Two penalization settings are tested: The cross-sectional size variables are set to vary in µ c ∈ [0, 1] and are uniformly initialized at µ c = 0.5. In both cases, the component removal strategy is applied to components that are either too short (3.1) or too small (3.6), for N it consecutive iterations. The length and size threshold are respectively set to ε L = 3a and ε µ = 0.05 and the number of consecutive iterations before removal is set to N it = 3 for both conditions. The results of these benchmark cases show that the density-like penalization (Figure 3.6.f) converges to a much better solution than the size-like penalization (Figure 3.6.e): the former design is easier to interpret, most components are well joined by their extremities, all the size variables are converged to 0 or 1 values and the compliance is lower than the other strategies with constant cross-sectional sizes (compared with Figures 3.6.a,b,e). Finally, it is interesting to note that components are deleted by the component deletion strategies based on both length and size conditions, reasserting the efficiency of introducing this feature. The feasible designs of the size-like (e) and density-like (f) penalized cross-sectional optimizations contain respectively 18 and 14 components.

Discussion

Overall, the strategies of component removal and cross-sectional sizing significantly help the convergence of the algorithm towards feasible solutions (the mass constraint M C0 = 15 kg is naturally satisfied and active in all cases). Four methods have been implemented, tested and compared: component deletion based on their length, component overlap, sizing of component cross-sections, and penalized sizing of the cross-sections. These strategies are recalled in Table 3.1 with their component types (constant or variable cross-sections) and the types of interpretation of results obtained (stiffeners with identical or variable cross-sections).
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Method

Case in Figure 3 The best results in terms of compliance values are obtained for the optimized layouts interpreted with variable cross-section components (cases (c), and (d) in Table 3.1 and Figure 3.6). The method relying on component cross-sectional sizing, case (d), gives the lowest compliance result, since it provides an additional degree of freedom related to the size of the stiffener cross-section. This enables to conduct concept studies in order to identify critical zones of the model, while allowing thinner internal structures. Component overlap also reaches interesting local optima, with the advantage of being simpler to implement than variable cross-sectional sizes. However, the final result of component overlap loses the direct interpretation of the results, since the section of a single stiffener, equivalent to a cluster of quasi-parallel beams, cannot be directly deduced in the proposed framework. The identification of optimal stiffener sizes could be solved in a second optimization step, but would complexify the proposed component-based approach.

Optimized results made of components with identical cross-sections are more straightforward to interpret, and seem more suited to the application of manufacturing constraints. In this case, the method based on a density-like penalization of the crosssectional size variables, case (f), seems to be the most efficient strategy as the component layout is well converged. In comparison, the component deletion strategy of case (b), which is based on constant cross-section components, provides optimized results that are slightly less well converged. Nonetheless, it is efficient, simpler to implement, and does not introduce supplementary design variables. For these reasons, the component deletion strategy is preferred for the rest of this work. This will allow to constitute a basic method that can then be combined and complexified with the other developed features, most likely the non-penalized and density-like-penalized cross-sectional sizing strategies.

Improving component deletion

The focus of this section is to provide strategies that can be implemented in order to improve the results obtained with the component deletion method of Section 3.2.1.1. Three main strategies are considered: tuning the parameters in the component deletion condition (3.1), launching a new optimization initialized from an optimized design and increasing the number of components in the initial design.
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Tuning component deletion parameters ε L and N it

Here, the MBB test-case of Figure 3.4 is solved considering different values of ε L and N it in (3.1) and the results are synthesized in Figure 3.8. These results show the following tendency: the higher is ε L and the lower is N it , the faster components are deleted from the optimization. The best design is obtained for {ε L , N it } = {1a, 3}. It is also interesting to note that the designs obtained with {ε L , N it } = {1a, 1} and {ε L , N it } = {3a, 3} are very similar and coherent with the expect structures. On the other hand, the optimizations where the components are removed too quickly ({ε L , N it } = {3a/5a, 1}) tend to converge to solutions that are less interesting (one can notice poor component junctions and higher compliance values).

It is therefore important to make sure that components are not deleted too rapidly from the optimization in order to avoid poor designs. In this respect, the greater number of consecutive iterations before removal of N it = 3 seems to be a good compromise in order to delay the removal of components, and make the choice of ε L less critical as long as the value is not too high. Indeed, the latter parameters would seem to be more problem-dependent: it is not obvious if the value ε L should be chosen as a proportion of the mesh size, or should, for example, be chosen as a proportion of a characteristic length of the structure. In any case, tuning the parameters of the deletion condition can slightly improve the designs, bearing in mind that repeated finite element analyses may become expensive for models with a greater number of elements. The rest of the applications in this manuscript, which are characterized by different mesh sizes a, have shown to work well with a threshold ε L of 3a to 4a and N it = 3. 

Restarting from an optimized design

Another way of improving the design obtained with the deletion strategy is to start a new optimization, taking an optimized design as initial point, hence defining an initialization with fewer components. This process is illustrated in Figure 3.9, where the optimized design of the second optimization (Figure 3.9.c) has a lower compliance and better component junctions than the first optimized design (Figure 3.9.b). This provides a simple means of fine-tuning the design, and is faster to converge than an optimization from a random initial point, which makes the process computationally affordable. As a perspective, the second optimization could also be conducted with gradient-based algorithms that are quicker to converge, provided they are initialized close to a local optimum, for example the globally convergent variant of the MMA (GCMMA) or the Sequential Quadratic Programming (SQP) algorithm. 

Initializing with a greater number of components

The MBB case is here initialized with either 8, 16, 32 or 64 components. The corresponding feasible minimum compliance designs are illustrated in Figure 3.10. The optimized results of the designs initialized with N c = 16, N c = 32 and N c = 64 components are very similar in their global layout and structural performance. The main difference is that many shorter components are found in the optimized designs with 32 and 64 initial components, while long components correctly joined together form the optimized results with 16 initial components. It is interesting to note that the optimized result obtained in Figure 3.9.c has 10 components, which can explain why the design initialized with N c = 8 components in Figure 2.13 of Section 2.5 is significantly less performant than in the other cases.

Initial designs

Feasible minium compliance designs 
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These observations allow to formulate conditions to verify if the number of components initially present in the design is adequate:

• Unless structural simplicity is sought for, one should observe that at least a few components are deleted over the course of the optimization.

• If the final solution is made of many small components, it is most likely because too many components are present in the initial design. In this case, a restart from the optimized design should allow to refine the structure and reduce the number of short components.

Application to curvilinear components

The MBB case of Figure 3.4 is now solved considering the strategy of representation of curvilinear components developed in Section 3.2.3.

The parameters introduced in (3.10) are set to ε t = 1.5a (the zero-to-one variation of the nodal distance filter is set over three elements) and ka = 0.65ε t (limits the overestimation of the maximum in (3.9), approximated by the p-norm, to less than 1 % with p = 8, at the component junctions). The curved components are discretized by N sc = 9 sub-components with extremities at regular intervals of the curvilinear abscissa (the subcomponents discretizing a given component are not of equal length). The values of these parameters (ε t , k and N sc ) have been determined by conducting a parametric study on a simple model with 2 curvilinear stiffeners, and adjusted so that the compliance of the projected model best matched the compliance of its equivalent conformly meshed model. The component deletion strategy is applied with ε L = 3a and N it = 3.

The results presented in Figure 3.11 show that the method is capable of converging to feasible solutions using curvilinear components. The design with 32 components is coherent with the results obtained for straight components (e.g. Figure 3.6.b), both in terms of component layout and compliance value. However, the designs with fewer components have significantly higher compliance values and are therefore not as good as with straight components. Based on these results, the current state of development of curvilinear components does not seem to represent an improvement of the method. Indeed, many components are required to achieve interesting designs, which is contrary to what was expected.
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Nevertheless, these observations should be mitigated by the fact that the results tend to structures where components are straight, which is harder to obtain in the curvilinear component framework. This highlights that the test-case is perhaps not the most suited to evaluate the performance of the approach. Furthermore, it was chosen to let the three control points of the curve move freely over the entire panel, which is an additional difficulty. This is a major difference with other methods of the literature that make use of curvilinear stiffeners, for example Mulani et al. (2010a), where the parametrization constrains the extremities of the curve to sit on the edges of the panel.

To further improve curvilinear component optimization, the following ideas would be investigated. First, the problem could be simplified by constraining the extremities of the components to the sides of the domain. Second, the test cases should be focused on applications where curvilinear components would seem better suited than straight ones, such as a plate with a hole, and perhaps by initializing the optimization with curved components. Finally, the assembly of straight sub-components also represents a difficulty and thus, an alternative would be to derive an implicit relation of the distance between the ground mesh nodes and the curvilinear components, as presented by [START_REF] Shannon | Implementing Bezier Curves and Commercial Solvers in the Moving Morphable Components Framework[END_REF]. These points were not further developed as they were ruled to be out of the main focus of this thesis.

Conclusion

In this chapter multiple features were developed in order to improve the convergence of the method developed in Chapter 2 towards feasible solutions and stiffer optimized designs. These features are grouped into three strategies, based on either the removal of supernumerary components, their sizing or the handling of curvilinear components. Many numerical tests have been performed to evaluate and discuss the developed features and their benefits to the overall method. The conclusions of these tests allow to devise the strategy that will be used in the next chapters.

The component deletion strategy is retained for the following applications. Deleting components, that become too short to have a contribution to the mechanical responses of the structure, allows to efficiently find feasible solutions for any number of components. In addition, the designs can be further improved by tuning the deletion criteria and by leading a restart strategy, which consists in using a previously optimized design as the starting point for a new optimization in order to have fewer components (i.e. variables) to handle. Guidelines to estimate if the initial number of components is adequate are also proposed. The other strategies developed in this chapter allow to find stiffer designs, possibly better converged stiffener layouts, but at the expense of optimizations with a greater number of variables which results are more difficult to interpret. Therefore, these strategies constitute interesting perspectives to improve, at a later time, the method proposed in this thesis. The following developments will now focus on extending the method so that it can be employed to design space launcher structures.

Introduction

The objective of this chapter is to apply the component-based method for the optimization of stiffener layout to cylindrical shells withstanding locally introduced compression loads, corresponding to a simplified representation of the launcher structures that are the main focus of this work. Due to the local character of the external compression loads, the drivers of the design of such structures are buckling as well as load concentrations that can arise at the interfaces with adjacent parts. Therefore, the stiffener layout must be designed with the objective of stabilizing the structure with respect to buckling, and of distributing the axial load on the circumference of the cylinder in order to avoid excessive shearing forces at the bonded interfaces. For this purpose, constraints on the critical buckling load factor and on the maximum level of the force flux, at the boundary of the shell structure, should be added to the optimization.

In Section 4.2, a constraint is formulated on the force fluxes in the structure, inspired by the formulations of stress constraints found in topology optimization methods. Section 4.3 focuses on the implementation of a constraint on the critical buckling load factor, issued from a linear analysis. The method to optimize the component layout on a cylindrical shell is detailed in Section 4.4. Section 4.5 assesses the capability of the method in handling the newly introduced constraints, and their respective impact on the optimized designs obtained. The trustworthiness of these optimized designs is also evaluated, both in terms of accuracy of the structural responses calculated with the optimization model compared to the results of a more detailed model, as well as in terms of pertinence of the stiffener layout.

Handling constraints on force fluxes

In the case of a shell structure, the force flux is defined as the normal component of the distributed force at the boundary of a structural part. In the framework of the finite element method, force fluxes can be expressed in terms of membrane efforts N x , N y , N xy . More generally, in the following of this manuscript and according to the practice of the mechanical analysis of launcher structures, membrane efforts throughout the structure will be named as force fluxes: their distribution, signs and principal directions describe how the locally-introduced efforts are diffused throughout the structure.

The inclusion of constraints on the force fluxes in a structural optimization is scarcely addressed in the literature. Indeed, this type of constraints is specific to the design of launcher structures (Rittweger 2017a,b), where loads transiting through interfaces between adjacent parts are sought to be controlled. Nevertheless, the principle of constraining the force fluxes is somewhat similar to the inclusion of stress constraints in the domain of topology optimization: force fluxes are quantities measured locally, that should not exceed given minimum and maximum values, with distributions that potentially vary significantly over the structure, depending on the complexity of the geometry and loading.

About constraining stress in topology optimization

The inclusion of stress constraints has been widely addressed in the framework of topology optimization as reviewed by [START_REF] Verbart | Topology Optimization with Stress Constraints[END_REF]. In this process, two main chal-Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes lenges are encountered: (i) the existence of "singular optima" induced by the fact that in low-density regions, i.e. zones which are interpreted as void, the stress level becomes artificially high, and (ii) the very large number of optimization constraints, one per finite element in the optimization model, that significantly increases the computational cost. In the context of the present study, the problem (i) of singular optimal points seems less relevant, as the material densities are not optimized: only the optimization of skin thickness in considered in the following chapters. However, the generation of a great number of constraints (ii) should be addressed, since, akin to constraints on stresses, constraints on force fluxes can be numerous as they are also measured element-wise.

Aggregating constraints

The most common strategy to reduce the total number of constraints consists in forming a single global constraint by aggregating together the local constraints. The aggregation is realized by taking the maximum value among the constraints. Because the latter function is neither smooth nor differentiable and thus, not suitable for gradientbased algorithms, it is generally approximated by continuous functions: [START_REF] Duysinx | New developments in handling stress constraints in optimal material distribution[END_REF] employ the p-mean and p-norm while [START_REF] Yang | Stress-based topology optimization[END_REF] use the [START_REF] Kreisselmeier | Systematic Control Design by Optimizing a Vector Performance Index[END_REF] (KS) function.

The main disadvantages of this method are the over-or under-estimation of the maximum value as well as the losses of regularity and locality of the measure. The errors on the estimation of the actual maximum can be reduced by tuning the internal parameters of the aforementioned aggregation functions, by formulating more advanced functions such as the induced aggregation by [START_REF] Kennedy | Improved constraint-aggregation methods[END_REF] or by introducing normalization schemes to correct the aggregated maximum value [START_REF] Le | Stress-based topology optimization for continua[END_REF][START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF]. The losses of regularity and locality of the measure have been tackled by aggregating the constraints into a few number of clusters rather than in a single one. The concept was proposed by [START_REF] París | Block aggregation of stress constraints in topology optimization of structures[END_REF], while [START_REF] Holmberg | Stress constrained topology optimization[END_REF] compared different ways to sort the constraints into the clusters.

Formulation of a constraint on the maximum force flux

The constraint on the force flux is formulated as an aggregation of the force fluxes N i in the i-th element of the mesh, where the maximum is approximated by the continuous and differentiable KS function:

KS(N , p) = K + 1 p ln N N i=1 e p(N i -K) with K = max i N i (4.1)
where p is a positive integer parameter, N is the vector of the elemental force fluxes of size N N and K is a constant introduced to prevent numerical issues (K is updated at every iteration). The KS function has the advantage of handling both positive and negative flux values (which is not the case of the p-norm previously used), and only slightly overestimates the extrema, provided that its parameter p is set high enough and that the extremal values of the fluxes are shared by only few elements in the model [START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF].
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The constraint on the force flux can finally be expressed as:

g = KS(N , p) < N 0 KS(-N , p) < N 0 (4.2)
where N 0 is the maximum admissible value of the force flux, and p = 50 in the following.

Handling constraints on critical buckling loads

In this work, the critical buckling load of the structure is calculated based on a linear buckling analysis which consists in solving the following eigenvalue problem:

(K + λ i K σ )v i = 0 (4.3)
where K and K σ are respectively the structural stiffness and geometric stiffness matrix, and v i is the eigenvector associated to the i-th eigenvalue λ i . Even though taking into account non-linear effects tends to provide more realistic estimations of the critical buckling load factor [START_REF] Pedersen | Buckling load optimization for 2D continuum models, with alternative formulation for buckling load estimation[END_REF], linear analyses are computationally cheaper and provide sufficient accuracy in a conceptual study phase. In most engineering problems where compression loads are at hand, one must verify that the structure will not buckle under such loads, i.e. that the first critical buckling load factor λ 1 > 1.

Common design practices in the aerospace industry consists in applying a safety margin on the critical buckling load factor λ 1 > λ min > 1 and to impose that the critical buckling mode must be global, i.e. it involves a significant part of the structure.

Verifying the accuracy of the buckling response

In order to include a buckling constraint, it is first verified that the optimization model, which is based on the component projection over the ground-structure mesh, is capable of accurately predicting the critical buckling load of the structure. To do so, a parametric study is conducted by means of sweeping a component over a simple stiffened structure, as it was already done in the calibration study of Section 2.4: one single stiffener, modeled either by a conformal mesh of beam elements (reference model) or by its projection on the ground-structure mesh (optimization model) is swept on a square plate, and the buckling eigenvalues of both models are compared. The parametric study with the angular sweep is schematically recalled in Figure 4.1.a and the test case corresponds to a simply supported plate submitted to a uniform compression load illustrated in Figure 4.1.b.

The study is realized on a 1 m×1 m×1 mm square plate, meshed with square elements of side length a = 20 mm, considering the same model properties as in Section 2.5 and the projection functions of Section 2.5.1. The results of the parametric study and comparison of models are presented in Figure 4.1.c. They show that the optimization model is capable of accurately reproducing the same trends of the critical buckling load factor across the sweep as the conformal reference model, and that the maximum point would be found in the same region for both models. Furthermore, overestimates the first eigenvalue by 15 % to 20 %. The source of this error is mainly due to the fact that in the optimization model, the stiffener is spatially spread over a wide area while in the reference conformal model, the stiffener is represented by a single line of beam elements aligned with the component, as it is shown in the rendered view of Figure 4.2 (the beam cross-sectional properties in the conformal model exactly coincide with the ones of the geometrical component).

The effect of spreading the stiffener can be qualitatively assessed. The sweeping procedure is repeated on an optimization model with a finer mesh size of a = 5 mm, and the results correspond to the third curve in Figure 4.1.c. It can be observed that the overestimation of the eigenvalue is significantly reduced. However, the computation time of the linear analysis drastically increases and would consequently increase the sensitivity computation time to unacceptable levels for the rapid sizing design phase that is the purpose of this work.

Another evidence of this effect is observed by extracting the out-of-plane displacements of the first buckling mode, along a line crossing the regions of maximum displacements identified in Figure 4.2, for the reference conformal model, as well as for the coarsely meshed and finely meshed optimization models. The displacement evolution in Figure 4.2 shows that the reference model of the component can be assimilated to a simply supported boundary condition, as it produces an almost negligible inflection of the displacement curve at the stiffener location, while the coarsely and finely meshed optimization models show an important inflection of the displacement curve, thus acting as a local clamping condition. However, the discrepancy is less important between the reference model and finely meshed optimization model than with the coarser mesh, reaffirming the dependency of the buckling response to the width of the component's projection.

Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes Inversely, one can notice that, in real-world stiffened structures, some stiffeners have a non-negligible cross-sectional width. In this sense, the spread representation via an assembly of beam elements from the ground-structure, as it is provided by the optimization model, can be more realistic than the one of the reference conformal model. An example is proposed, based on stiffeners with box-shaped cross-section, in order to find a correlation between the width of a stiffener cross-section and the width of the projected component. Considering stiffeners with a box cross-section of a width varying from b = 20 mm to b = 100 mm (as illustrated in Figure 4.3), the height and thickness are calculated such that the area A and out-of-plane inertia I 1 correspond to those of the reference rectangular section of Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes width of the cross-section corresponds to:

5aδ (I) (0 • ) ≈ b (4.4)
where δ (I) (0 • ) = 0.8 from Figure 2.9. The formulation is preferably written according to δ (I) as the critical buckling load is mainly influenced by the out-of-plane inertia.

To conclude this verification, for the optimization model to accurately predict the buckling response of its equivalent conformal model, the size of the shell elements and of the cross-section should be chosen according to (4.4). However, note that this is not reasonable for very thin stiffener cross-sections (such as the rectangular section) which would require a very fine mesh, thus leading to costly linear buckling analyses and sensitivity derivation. On the contrary, aiming to reduce the computation cost by working with coarser mesh sizes may require to choose sections with unrealistic widths. Therefore, a compromise should be made between the width of the cross-section, the desired accuracy for the buckling response and the computational costs.

Model

Characteristic 

About the challenges of constraining critical buckling loads

Formulating an optimization problem considering a constraint on the first buckling eigenvalue would seam straightforward to implement as g = λ 1 > λ min . However, in the framework of topology optimization solved by gradient-based algorithms, to which the method developed in this work is greatly related, various factors hamper the optimization process as reviewed by [START_REF] Townsend | A level set topology optimization method for the buckling of shell structures[END_REF] and require the implementation of specific strategies.

A first problem that can be identified is the presence of mode switching, where a buckling mode can easily switch from being a higher rank mode to being the critical mode. This can lead to convergence difficulties and the main strategy to solve this problem consists in constraining multiple modes rather than only the first one [START_REF] Bruyneel | Discussion on some convergence problems in buckling optimisation[END_REF][START_REF] Dunning | Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver[END_REF]. By this process, the sensitivities of the higher rank modes that are closely related to the critical mode are also taken into account to compute the next design step. Because this process can generate a significant number of Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes constraints, which is an additional reason for slow convergence, some authors propose to aggregate the modes together to form a single constraint [START_REF] Ferrari | Revisiting topology optimization with buckling constraints[END_REF], following similar methods as described in Section 4.2.1.

Another difficulty is the existence of eigenvalue multiplicity where closely related modes can coalesce into a single mode, i.e. λ i = λ i+1 . This case leads to an erroneous computation of the sensitivities therefore hampering the optimization. This motivated the development of specific techniques to correctly derive the sensitivities of such modes [START_REF] Seyranian | Multiple eigenvalues in structural optimization problems[END_REF] or more simply to enforce the separation of the modes [START_REF] Stanford | Aeroelastic Topology Optimization of Blade-Stiffened Panels[END_REF][START_REF] Ferrari | Revisiting topology optimization with buckling constraints[END_REF]. In practice, the modes are most of the time separated by a small value (usually related to numerical precision) that is sufficient to avoid this problem [START_REF] Townsend | A level set topology optimization method for the buckling of shell structures[END_REF].

More specific to topology optimization, a third issue observed is the apparition of spurious modes, characterized by low values of the eigenvalues and which affect zones of low material density. These spurious modes complicate the identification of the true buckling modes of the structure. Similarly to the optimization with stress constraints, specific penalization of the lower material density corresponding to weaker zones are adopted to circumvent these localized modes [START_REF] Pedersen | Maximization of eigenvalues using topology optimization[END_REF].

A last point, more specific to stiffened structures, is the classification of the modes as either local or global. When explicit models of the structure are used, it can become difficult to classify a mode as local or global, furthermore noting that some local modes can be simply eliminated by small local design adjustments. On the contrary, smeared models are only able to identify the global modes of the structure. Therefore, in order to consider this distinction in the optimization, [START_REF] Wang | Buckling optimization design of curved stiffeners for grid-stiffened composite structures[END_REF] used global/local strategies making use of both types of models.

Finally, to the knowledge of the author, the only work considering buckling constraints formulated in the framework of component-based topology optimization is [START_REF] Zhang | A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints[END_REF]. In this work, the compliance of simple stiffened structures are minimized, with respect to constraints on the first critical buckling load and on the maximum volume of material. The challenge of spurious buckling modes is addressed by implementing a degree of freedom removal strategy where the void elements are temporarily deleted at each iteration for the finite element analysis.

Retained formulation

Following the recommendations of [START_REF] Bruyneel | Discussion on some convergence problems in buckling optimisation[END_REF] and [START_REF] Dunning | Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver[END_REF] multiple buckling modes are calculated and individually constrained. The number of modes considered is however dependent on the problem that is handled: while the former recommends using 100 modes, the latter showed that with only 10 modes the convergence to feasible design is ensured and significantly improved with 25 modes. The inconvenient of considering a great number of modes is the increased computation times of the buckling analysis, sensitivity calculation and MMA resolution. Based on these observations, it is chosen to extract the first 20 buckling modes: this shows to be sufficient to obtain good convergence profiles in most of the following applications, with the higher rank modes sufficiently separated from the critical mode.

The difficulties related to eigenvalue multiplicity were not observed as the eigenvalues provided by the solver are always separated by a small value, therefore this aspect is not addressed. It can also be noted that the ground structure of beam elements is not subject to spurious modes as long as the thickness of the plate is not negligible: the lat-Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes ter prevents the smallest beam elements from buckling. Finally, the classification of the modes into local or global is also not addressed directly. Plausibly, only buckling modes implying wide areas of the skin and possibly some stiffeners can be observed due to the span of the projection of the components. The very local modes involving only small areas of the skin or the stiffeners are naturally filtered out which is an advantage: these modes are usually considered parasitic and can be easily circumvented by local design modifications.

Finally, the buckling constraints are formulated as:

g i = λ i > λ 0 , for i ∈ {1, . . . , 20} (4.5) 
where λ 0 is the minimum critical load factor. The buckling modes and their sensitivities will be calculated by the FE software OptiStruct. In complement, the reader can refer to [START_REF] Bruyneel | Optimisation Des Structures Mécaniques -Méthodes Numériques et Éléments Finis[END_REF] or [START_REF] Ferrari | Revisiting topology optimization with buckling constraints[END_REF] for the detailed method on how to derive semi-analytic sensitivities of the buckling modes.

Laying out stiffeners a cylindrical surface

Review of the methods

In order to optimize the layout of the stiffeners on a cylinder, the components have to be defined on a curved surface immersed into a three-dimensional (3D) space. In this respect, [START_REF] Iuspa | Inverse anamorphosis and multi-map techniques for free topology generation of curved self-stiffened panels using skeleton-based integral soft objects[END_REF] proposes a CAD inspired method consisting in defining stiffener locations on a plane and then projecting their geometries on the 3D surface without distortion. An alternative takes advantage of the particularity of cylindrical surfaces: by an isoparametric transformation, a cylinder can be represented as a flat rectangular panel. Therefore, stiffeners can be simply defined on a flat panel which is then transformed into a stiffened cylinder. This latter strategy is preferred by both [START_REF] Hirschler | The embedded isogeometric Kirchhoff-Love shell: From design to shape optimization of non-conforming stiffened multipatch structures[END_REF] and [START_REF] Alhajahmad | Design tailoring of curvilinearly grid-stiffened variable-stiffness composite cylindrically curved panels for maximum buckling capacity[END_REF] with slightly differing implementations: the former operates the transformation from plate to cylinder on the geometric model which is then meshed to establish the structural model, while the latter transforms the structural model previously established from the geometries on the planar surface.

Cylinder-plate isoparametric transformations

The method proposed in this work is based on this latter principle where the isoparametric transformation between the flat panel and the cylinder is operated on the structural model. Starting from the geometry of the cylindrical part, the ground structure is generated and the full finite element problem can be defined. The ground structure is then transformed into a flat structure, as illustrated by the Surface development phase of straints on buckling and force fluxes projection as described in Chapter 2. Furthermore, since this isoparametric transformation is isometric, the distances between the nodes are conserved. Therefore, the ground structure on the cylinder should be meshed regularly with shell elements as square as possible, in order to maintain the accuracy of the structural responses ensured by the calibration procedure.

Handling components crossing the seam line

Following the isoparametric transformation of (4.6), component locations are bounded by the developed flat surface of the cylinder: the top and bottom sides of the panel correspond to the top and bottom perimeters of the cylinder, and the left and right sides correspond to the virtual seam line from which the cylinder is "opened" (which parametrically corresponds to ψ = 0, marked by the dot-dash line in Figure 4.4, top left side). However, this fictitiously reduces the design domain as it prevents components from crossing the seam line on the flat replica, while such an evolution of the stiffener length and location should be kept possible on the cylindrical surface during the optimization process. Therefore, complementary steps illustrated in Figure 4. The cylindrical ground structure is developed according to the isoparametric transformation described in Section 4.4.2 to form a flat ground structure, referred to as "Replica 0" (step 1 in Figure 4.4). In step 2, this developed ground structure is then replicated to its left and right sides along the x-direction in the plane, forming the consolidated ground mesh over which the components will be projected in step 3 following the method described in Section 2.2. In this way, components are free to be placed over or beyond the seam lines, while still being projected thanks to the presence of the replicas (illustrated by the geometrical and projected models of a stiffener to the right side of Figure 4.4). Thereby, the initial virtual limits on the design domain are removed. Also note that the number of replicas determines the maximum number of turns a component can make on the cylinder: the construction of replicas on each side of the seam line can be generalized up to -r and +r, r ∈ {1, . . . , R}, in order to produce longer stiffeners on the cylinder. In step 4, the replicas are recombined into a single one (the Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes initial "Replica 0") by taking the maximal value of ϕ (P ) for each beam element over all the replicas according to:

ϕ (P ) = max r∈R ϕ (P ) r (4.7)
where ϕ

(P ) r

is the projection function of the cross-sectional property P in the r-th replica of the element, and R is the set of replicas. The continuous maximum function max is here also approximated by a p-norm as in (2.9), with p = 8 and ϕ min = 01 . Finally, step 5 realizes the inverse isoparametric transformation of step 1, turning the flat optimization model into its 3D cylindrical equivalent.

Application

Constrained compliance minimization of a cylindrical structure

Test case description

An optimization test case is built, which is representative of the types of loads and geometries of a space launcher structure while being sufficiently simple in order to run the optimization process within a reasonably short time and at limited computational cost. This will allow to test and validate the proposed component-based method and formulations described in Chapters 2 to 4. The particularity of such a structure is the very localized introduction of significant vertical forces F x , which produce compression on the structure: results of simulation of a non-stiffened IS structure are given in Figure 4.13.a and show that the propulsion forces F x generate significant compression on the whole span of the cylindrical surface to the vertical of the LZ. Concurrently, the radial loads F y tend to ovalize the structure, which generates large areas highly loaded in tension, on either sides of the compressed region. Consequently the force fluxes vary significantly over the top perimeter of the structure, locally exceeding the bounding capability of the glued junction. In addition, the zones loaded in compression make the structure prone to buckle.

The objective is to design a stiffening structure as stiff as possible for a given mass, stable with respect to buckling and capable of distributing the tension and compression loads so that the force flux along the top perimeter of the JS does not exceed the debonding limit of the glue. For this test case, the optimization problem is formulated according to (4.8) as a compliance minimization optimization, constrained by the critical load factor λ 0 , the absolute maximum force flux N 0 in the x-direction along the top perimeter of the JS, and the maximum component mass M C0 :

min C(X) w.r.t. X ∈ D comp = D IS ∪ D LZ M C < M C0 λ i > λ 0 , i ∈ {1, . . . , 20} KS(N x ) < N 0 KS(-N x ) < N 0 (4.8)
The values of the constraints and the settings of the optimization are summarized in Table 4.4. Components are bounded to remain on the IS and LZ skins, respectively D IS and D LZ .

The stiffeners are made of aluminum with the same 6 mm × 40 mm rectangular cross-section as in the previous chapters. This is consistent with the size of the structure that is very similar to the MMB case used in Section 2.5.3. Note however that a finer mesh size a = 10 mm is used in this application based on a reevaluation of the compromise between accuracy and computation time for the buckling analysis, following the conclusions of Section 4.3.1. The initialization comprises 128 components representing the stiffeners. Since the model presents a four-quadrant symmetry, the designs are forced to remain symmetrical throughout the optimization process, thereby reducing the total number of variables of the optimization and avoiding non-symmetrical optimized designs. Implementation wise, this is done by linking the variables that are symmetrical Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes with one-another, but the entire structure is modeled for the FE analysis. Note that this implementation will be used in all of the following applications of the manuscript. In the end, the global stiffening layout depends on only 32 independent components, which correspond to an overall number of 128 optimization variables (four variables per components: height and azimuth coordinates of their extremities on the cylinder). 

Optimization with separate application of constraints

The optimization problem of (4.8) is first solved considering only a subset of the constraints: mass only (M ), mass and buckling (M λ), mass and flux (M N ). The responses of the feasible minimum compliance designs obtained are summarized in Table 4.5. It is first observed that the M and M λ cases converge towards similar optimized points, confirmed by the similarities between their optimized stiffening layouts in Figure 4.7. This suggests that the minimum compliance designs are also those that naturally have the highest buckling loads, therefore indicating that the buckling constraints in the M λ case only slightly drive the optimization.

Case

Constraints In contrast, the flux constraints are in competition with both the buckling constraints and stiffness objective, as shown by the higher compliance and lower critical buckling load of the M N case compared to the M and M λ cases in Table 4.5. It is interesting to remark how the more limiting negative flux constraint influences the optimized stiffener layout obtained to the vertical of the LZ for the M N case compared to the two other cases in Figure 4.7: the V-shaped pattern of the stiffeners distributes the compression loads, thereby reducing the negative flux at the interface. In addition, it Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes seems that the higher critical buckling loads of the M and M λ cases result from stiffeners being placed higher on the cylinder (along the x direction), rather than only stiffening the very bottom part of the cylinder.

Best/Total It C/C 0 M/M C0 λ 1 /λ 0 N x /N 0 M

Optimization with all the constraints

The structural responses of the feasible minimum compliance M λN design in Table 4.5 are consistent with the observations on the cases with fewer constraints: the design has globally lower performances with respect to compliance due to the competition between the constraints and the design objective. In contrast with the M and M λ cases, even though the buckling constraints are not active, they do here contribute to drive the optimization towards a design satisfying all constraints. This contribution is confirmed by the fact that the buckling constraints are not naturally satisfied in the M N case, unlike in the M case.

The optimized stiffener layouts obtained in the M λN case in Figure 4.8 are also consistent with those of the previous cases. One can recognize the V-shaped stiffening pattern, that helps the distribution of the compression loads, and the almost circumferential stiffening pattern of the bottom part, which prevents from ovalization. It is interesting to remark that the latter is modified in order to provide stability to buckling, in a somewhat similarly manner to the M and M λ cases (comparison with the stiffening layouts of Figure 4.7). For completeness, Figure 4.8 also presents the evolution histories of the structural responses, which confirm the good convergence of the algorithm to a feasible minimum compliance design at the last iteration. Overall, these observations validate that the developed method is capable of both optimizing the stiffener layout on cylindrical structures, and simultaneously handling constraints on the critical buckling load and force fluxes.

Numerical validations

Generating conformal models of the stiffening structure

The accuracy of the structural responses calculated using the optimization models, is evaluated by comparison with a more detailed model, which consists of explicitly meshed stiffeners in correspondence to the optimal layout of the geometrical components issued from the optimization process. The conformal mesh of the stiffeners is created by using either beam or shell elements.

The process of re-meshing the entire structure to obtain a mesh where the stiffeners and the panels share the same nodes becomes rapidly complex and is difficult to automate. This work of numerical validation hence resorts to mesh-tie techniques which facilitate the establishment of the conformal model: the nodes of of beam elements forming the stiffeners in the conformal model are tied to the underlying panel by a Multi-Point Constraint (MPC) 2 . In this way, the conformal structural representation of the stiffening layout is quickly established, while the skin of the stiffened panel does not have to be re-meshed. Furthermore, this approach is compatible with both beam and shell elements to model the stiffeners. Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes This strategy is straightforward to implement when stiffeners are meshed with beam elements. However, an additional technical detail must be addressed when using shell elements in order to build conformal models of the stiffeners: stiffener intersections. In the following, the mesh of the stiffeners will not conform at their intersections as illustrated in Figure 4.9, and are hence not soldered to one another. This seems consistent with the behavior of the optimization model that cannot explicitly take into account the added stiffness provided by stiffeners rigidly attached together. Another consequence is that the skins of stiffeners with identical cross-sections, that are parallel to the plate, interpenetrate at the junctions (see Figure 4.9). These areas therefore contribute more than they should to the stiffness of the structure. These two points highlight that the models hence built remain an approximation of a truly detailed design model, but they are considered sufficiently accurate to provide meaningful comparison.

MPC tie constraints

Non-conforming meshes

Interpenetrating skins 

Comparision between optimization model and conformal model

The accuracy of structural responses that are evaluated by using the optimization model is verified on the optimized design of Figure 4.8. The latter is conformly meshed with both beam and shell elements in order to provide a comparison similar to that of Section 4.3.1. The model with beam elements is straightforwardly established using the same cross-sections as the components. The shell model of the stiffeners is constructed based on the BOX cross-section described in Figure 4.3, choosing a width b = 40 mm based on the recommendation of (4.4) (with a = 10 mm here).

The conformal models are presented in Figure 4.10 together with their compliance values. There is a good agreement between the optimization model and the conformal one obtained by use of shell elements for the stiffeners while the beam model is significantly stiffer. For the response in buckling, the critical load factor and the first mode are presented in Figure 4.11. The critical mode seems to be identical for the three models, noting that the error on the critical load factor is smaller for the conformal shell model: this confirms the observations made in Section 4.3.1 where it is shown that the width of the projection of the stiffener cross-section in the optimization model has a significant impact on the buckling eigenvalues.

The evolution of the force flux in the x-direction along the top perimeter of the JS in Figure 4.12 shows a good agreement between the optimization and the conformal shell models. The beam model has slightly different variations in the zone with the highest compression loads. This particular evolution could be explained by the fact that in the beam model, the efforts at the stiffener tips are very locally transmitted to the underlying Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes skin, while for the other models, they are spread over a few elements. The error on the extreme values remain under 10 % between the optimization and conformal beam model. Finally, the absolute maximum principal force flux are plotted in Figure 4.13 for the conformal beam and shell models. This shows that the distribution of the force flux over the entire structure is quite similar in terms of distribution and orientation of the principal load paths, even though the local values vary slightly because of difference in the modelization of the stiffeners. The effectiveness of the stiffening structure is pointed out in all cases by the significantly lower force flux values across the structure, compared to the unstiffened cylinder.

Overall, the comparison is considered satisfactory between the optimization model and the reference models, for the considered design. This validates the extension of the method proposed in this chapter to include load and buckling constraints in the optimization. Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxes

Comparison with free-size optimization in OptiStruct

In order to evaluate the pertinence of the optimized stiffening layout obtained in Figure 4.8, a comparison is conducted with the results of a free-size thickness optimization on the unstiffened IS skin, without adding any stiffener. The idea is to obtain thicker zones corresponding to stiffened regions, which are expected to follow the same paths as the optimized stiffening layout. The free-size thickness optimization is performed within the commercial software OptiStruct.

The free-size thickness optimization problem has the same objective and constraint functions as in (4.8), but the design variables are defined as the thickness of the shell elements of the IS instead of the coordinates of the stiffener extremities X. The thickness is set to vary in t ∈ [0.5 mm, 10 mm], where the upper bound is selected as a high value in order to make the optimization naturally converge to designs with either very thick zones, that can be interpreted as stiffeners, or very thin zones that should remain unstiffened. The constraint values are set according to Table 4.4, noting that, for the sake of simplicity, the flux constraint is defined for each elements of the top perimeter of the JS rather than by an aggregation strategy. The optimization is set up with the default parameters proposed by the software, and the four-quadrant symmetry of the design is imposed.

The optimized thickness distribution obtained is presented in Figure 4.14. It can be observed that the thickest elements are located in the same areas as the stiffened zones in Figure 4.8 which shows a very good agreement between the two methods. This complementary free-size optimization thus allows to reinforce the confidence in the stiffener locations found by using the component-based method proposed in this work. It furthermore highlights the advantages of the latter where the stiffeners are defined explicitly, which is more straightforward to interpret in terms of building the corresponding stiffened structure. Finally, the results of Table 4.6 show that all constraints are active for the optimal design obtained by free-size optimization: this is most likely achieved by allowing thickness variations in the unstiffened parts of the skin, putting forward a perspective of improvement for the proposed method (namely conducting a simultaneous optimization of the stiffener layout and of the underlying skin thickness distribution). Note that the compliance values are difficult to compare as the models are significantly different. 

Conclusion

This chapter addresses some technical aspects in order in order to realize optimizations of stiffened cylindrical structures with constraints on the buckling critical load and on the force flux at the boundaries. The force-flux constraint is formulated in a similar manner as stress constraints in topology optimization: single global constraint is expressed by aggregating together the local constraints of each element. In order to constrain the critical buckling load factor, an individual constraint on each of the first twenty eigenvalues is formulated: this mitigates the effects of mode switching, thereby improving the convergence of the optimization. In order to optimize the layout of the components on a cylindrical structure, an isoparametric transformation is established between the cylindrical surface and its representation as a developed flat panel.

These developments are applied on a test case representing a simplified space launcher structure. The results confirm the capability of the enriched method to minimize the compliance of the structure with constraints on the mass, the critical buckling load factor and the force flux at the part interface, by optimizing the component layout on the cylindrical structure. The numerical validation indicates that the structural responses of the optimization model have a satisfactory level of accuracy, for a conceptual design level, compared to an equivalent conformal model. This is particularly verified when the stiffeners, modeled by shell elements, have approximately the same width as their projection in the optimization model. In addition, the optimized stiffener layouts obtained are pertinent, as confirmed by comparison with the results of a free-size thickness optimization. The latter comparison also highlights the benefits of working with explicitly defined components that are straightforward to interpret in terms of stiffeners in order to build the resulting optimized stiffened structure.

Introduction

The component-based method developed in Chapters 2 to 4 has proven to be successful in optimizing the layout of the stiffening structure without formulating an a priori on the stiffener locations. In order to improve the performance of the structure, the latter is now considered made of laminated composite materials. Besides their high specific modulus compared to metallic materials, their anisotropic material properties and thickness can be tailored by designing their stacking sequence. Since the stiffeners also introduce a form of global anisotropy in the structural response, designing simultaneously the composite stacking sequences and the stiffener locations should achieve better designs.

The aim is thus to develop a method capable of simultaneously optimizing the stacking sequences of the laminates forming the skin as well as the layout of the stiffeners. However, the optimization of the composite stacking sequences is a very complex and challenging problem to solve. In the present work, the widespread bi-level framework is adopted as it has proved to be one of the most efficient methods for optimizing laminated composite structures.

In Section 5.2, the principle of the bi-level framework is recalled, and the parametrization of the first level by the polar parameters is presented and specified for variable stiffness design. In Section 5.3, the optimization of the stiffener layout is combined with the first-level optimization of the homogenized stiffness properties of the underlying composite skin, and a simultaneous optimization test case is carried out. Since the design of variable-stiffness composite skins generates a great number of feasibility constraints which potentially lead to difficulties for the optimizer to converge, in Section 5.4 strategies are explored to reduce the total number of these constraints.

In Section 5.5, the proposed method is further investigated and benchmarked in order to assess its benefits as well as perspectives of improvement. Firstly, a comparison is conducted between the two cases of a metallic stiffened structure and of a composite one, in terms of performance and variable distribution. Then, a study of the influence of the initial material properties is realized to assess the sensitivity of the final design to the starting point. Finally, optimization problems with stringent constraints are solved to test the robustness of the method and ensure feasible designs.

Formulation of the optimization of the homogenized composite laminate properties

The bi-level framework for the optimization of laminated composite structures

The general problem of optimizing a staking sequence with respect to an objective F and N g constraints g i can be formulated as follows:

min {δ, n} F w.r.t. δ = [δ 1 , . . . , δ n ] ∈ [-90 • , 90 • ] n g i ≤ 0, i ∈ {1, . . . , N g } (5.1)
where δ = [δ 1 , . . . , δ n ] is the sequence of orientations of the n plies of the laminate. In order to vary the thickness of the stack, the number of plies is a variable of the optimization. Therefore, a singular characteristic of the problem is that the total number of variables defining the orientations of the plies may vary over the course of the optimization. Furthermore, the problem is highly non-linear and non-convex. The bi-level framework constitutes an efficient way of solving this problem, as reviewed in Section 1.2. It is based on the dual representations of a laminate, either by its stacking sequence or by its homogeneous material properties in membrane, bending and membrane-bending coupling, respectively characterized by the tensors A, D and B issued from the Classical Laminate Plate Theory (CLPT). The principle consists in dividing the optimization of the stacking sequence into two distinct problems, chained one after the other.

The first-level problem aims at optimizing the homogeneous material properties and the thickness t of a laminate, with respect to the objective and constraints of the global optimization problem expressed in (5.1):

min {A, B, D, t} F w.r.t. {A, B, D} ∈ D lam t ∈ D thick g i ≤ 0, i ∈ {1, . . . , N g } (5.2)
where D lam and D thick respectively designate the design domains of the laminate and of its thickness. The stiffness terms representing tensors A, B and D can either be parametrized by lamination parameters or polar parameters which both are convenient to characterize the anisotropic properties of laminates, but polar parameters are privileged in this work for the advantages depicted in Section 1.2.3. These variables are either uniformly or locally defined over the skin of the structure in the respective frameworks of constant-and variable-stiffness design (reviewed in Section 1.2). The solution of the optimization problem of (5.2) constitutes target material properties A T , B T and D T and thickness t T for the second-level problem.

The second-level problem aims at identifying a staking sequence that has the target material properties and thickness obtained from the first-level problem of (5.2):

find δ = [δ 1 , . . . , δ n ] s.t. A(δ) = A T B(δ) = B T D(δ) = D T n = [[t T /t ply ]] (5.3)
where [[•]] denotes a rounding operation to an integer number of plies.

The advantage of the first-level formulation is that the domain of homogenized material properties, expressed by either the polar or lamination parameters, is convex and the structural responses have a more regular variation than in the space of the stacking sequences, in which the direct dependence on orientation angles is highly non-linear and Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness non-convex. Hence gradient-based algorithms can be used as solvers, which allows to limit the number of calls to finite elements analyses and thus the computational costs. Furthermore, the number of optimization variables is independent of the number of plies therefore simplifying the optimization process when dealing with thickness variations.

The second-level identification problem is generally reformulated as a cost-function minimization which expresses the distance between the homogeneous properties of a staking sequence and the targets. The evaluation of such cost-functions consists in solving the CLPT, a very computationally cheap calculation, and thus meta-heuristic algorithms, such as genetic algorithms, are privileged. The latter are capable of efficiently handling the highly combinatorial and non-convex nature of the problem.

Representation of anisotropic material properties by the polar parameters

In the framework of the bi-level approach, the formulation of the first-level problem relies on the representation of the homogenized elastic properties of a composite laminate, i.e. its stiffness tensors as issued from the CLPT. Classically, elastic properties are represented in a Cartesian base via the technical elasticity constants such as Young's moduli, shear moduli, Poisson's ratios, Chentsov's ratios and mutual influence ratios. However, in the Cartesian representation the tensorial components are dependent of the reference frame they are calculated in, and the relations that express the change of reference frame are quite cumbersome as they depend on fourth-power circular functions. The Cartesian representation thus does not seem to be well adapted to the formulation of optimization problems involving composite laminates, which are highly anisotropic and depend on orientation angles, i.e. requiring systematic changes of reference frame.

To facilitate the representation of anisotropic material properties, the polar formalism introduced by [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF] is used here. This formalism allows to express the 6 components Q ijkl (i, j, k, l ∈ {1, 2}) of any fourth-order plane elasticity tensor expressed in a Cartesian base (x 1 , x 2 ) by 6 polar parameters T 0 , T 1 , R 0 , R 1 , ϕ 0 , ϕ 1 according the following relations:

Q 1111 = T 0 + 2T 1 + R 0 cos 4ϕ 0 + 4R 1 cos 2ϕ 1 Q 1122 = -T 0 + 2T 1 -R 0 cos 4ϕ 0 Q 1112 = R 0 sin 4ϕ 0 + 2R 1 sin 2ϕ 1 Q 2222 = T 0 + 2T 1 + R 0 cos 4ϕ 0 -4R 1 cos 2ϕ 1 Q 2212 = -R 0 sin 4ϕ 0 + 2R 1 sin 2ϕ 1 Q 1212 = T 0 -R 0 cos 4ϕ 0 (5.4)
The advantage of this formulation is that T 0 , T 1 , R 0 , R 1 and ϕ 0 -ϕ 1 are invariant quantities by a rotation of the reference frame, and furthermore they have a physical interpretation: positive scalars T 0 , T 1 characterize the isotropic behavior of the material while the two moduli R 0 and R 1 as well as the two polar angles ϕ 0 and ϕ 1 characterize the anisotropic behavior. The inverse relations of (5.4) are expressed as:

8T 0 = Q 1111 -2Q 1122 + 4Q 1212 + Q 2222 8T 1 = Q 1111 + 2Q 1122 + Q 2222 8R 0 e 4iϕ 0 = Q 1111 + 4iQ 1112 -2Q 1122 -4Q 1212 -4iQ 2212 + Q 2222 8R 1 e 2iϕ 1 = Q 1111 + 2iQ 1112 + 2iQ 2212 -Q 2222 (5.5)
and the relations for a change of reference frame from the (x 1 , x 2 ) base to a general (x, y) base by a rotation δ in the plane are obtained by replacing ϕ 0 and ϕ 1 respectively by ϕ 0 -δ and ϕ 1 -δ in (5.4). Finally, the polar parameters are bounded to ensure the positiveness of the elastic strain energy V = 1 2 σϵ resulting in the formulation of the following thermodynamic constraints:

         T 0 > 0, T 1 > 0 R 0 ≥ 0, R 1 ≥ 0 T 0 -R 0 > 0 T 1 (T 2 0 -R 2 0 ) -2R 2 1 (T 0 -R 0 cos 4(ϕ 0 -ϕ 1 )) > 0 (5.6)
This section only gives an excerpt of the polar method that is developed in many works and the complete explanations can be found in Vannucci (2018).

Parametrization of the first-level structural optimization

The polar formalism presented in the previous section allows to represent each of the three stiffness tensors A, B and D characterizing the plane anisotropic behavior of an anisotropic material by the use of 6 polar parameters, of which four are invariants, and thus frame-independent, and the two polar angles have a very simple dependence on the rotation angle δ. When satisfying conditions (5.6), the polar parameters can represent the plane elastic properties of any anisotropic material.

The aim is now to restrict the parametrization so that the material properties are realizable by composite laminates. However, in this case, the terms of the stiffness tensors A, B and D, as well as the tensors themselves, become intrinsically related by compatibility conditions that are complex to derive in a general case. Therefore, assumptions on the properties of the laminate are made to simplify these compatibility conditions: in this work, laminates are assumed to be made of identical plies, uncoupled and homogeneous (quasi-homogeneous), and orthotropic. A beneficial consequence is the reduction of the total number of variables necessary to parametrize the stiffness tensors, thus easing the resolution of the first-level problem. These assumptions are briefly described below in order to rewrite the first-level problem of (5.2) in terms of polar parameters. The complete derivations of the following expressions can be found in [START_REF] Vannucci | Anisotropic Elasticity[END_REF].

The material is a laminate made of identical plies. Denoting the polar parameters of the base ply T 0 , T 1 , R 0 , R 1 , ϕ 0 and ϕ 1 of which the laminate is made, the isotropic polar parameters of the laminate's stiffness tensors are defined by:

T A * 0 = T D * 0 = T 0 T A * 1 = T D * 1 = T 1 T B * 0 = 0 T B * 1 = 0 (5.7)
where A * = 1 h A, B * = 2 h 2 B and D * = 12 h 3 D are the stiffness tensors normalized by the total thickness h of the laminate. The isotropic polar parameters are independent of the stacking sequence therefore the total number of polar parameters required to describe each laminate's stiffness tensor is reduced to 4, i.e. the anisotropic moduli R 0 and R 1 and the polar angles ϕ 0 and ϕ 1 .

The anisotropic polar parameters depend on the stacking sequence, and the membrane and bending parameters are bounded by so called geometric bounds that are stricter Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness then the thermodynamic bounds introduced in (5.6). Rewriting the geometric bounds from [START_REF] Vannucci | Anisotropic Elasticity[END_REF]:

         0 < R (T ) 0 < R 0 0 < R (T ) 1 < R 1 2 R (T ) 1 R 1 2 1 - R (T ) 0 R 0 cos 4(ϕ 0 -ϕ 1 ) cos 4 ϕ (T ) 0 -ϕ (T ) 1 ≤ 1 - R (T ) 0 R 0 2 (5.8) where T = {A * , D * }.
The laminate is uncoupled. The uncoupling property is usual sought for in industrial applications in order to avoid warping during the manufacturing process. The search is thus bounded to laminates that are uncoupled, i.e. that verify:

B = 0 (5.9)
Subsequently, the polar moduli of the coupling tensor are all set to zero, and the parametrization will contain only terms related to the tensors A and D.

The laminate is homogeneous. When considering different in-plane and bending laminate behaviors, tensors A and D cannot be considered as independent and their compatibility must be enforced by a set of numerous constraints (such as in [START_REF] Diaconu | Layup Optimization for Buckling of Laminated Composite Shells with Restricted Layer Angles[END_REF] or [START_REF] Herencia | Optimization of Long Anisotropic Laminated Fiber Composite Panels with T-Shaped Stiffeners[END_REF]). In addition, since the complete set of compatibility constraints is still unknown up to date, to the best of the author's knowledge, the laminates are usually restricted to particular families of stacking sequences (mainly restricting the search to a small set of ply orientations). This approach has been mainly adopted in works where the stiffness tensors of the laminates are parametrized in terms of lamination parameters. An alternative to the use of these constraints, that is adopted in most of the works using the polar representation, and in this work, is to assume that the laminates have homogeneous extension and bending behaviors, i.e. that they verify:

A * = D *
(5.10)

where A * = 1 h A and D * = 12 h 3 D are the stiffness tensors normalized by the total thickness h of the laminate. This assumption has the advantage of further reducing the total number of variables to parametrize the laminate's stiffness properties to only four, indifferently taken as those representing either the membrane or the bending tensors: R 0 , R 1 , ϕ 0 and ϕ 1 . Note that a laminate that is both uncoupled and homogeneous is denominated as quasi-homogeneous.

The laminate is orthotropic. This final condition is imposed to avoid unwanted tension-shear and bending-twist couplings in the aimed industrial applications. Advantageously, the polar formalism allows to simply express general orthotropy (valid for both the membrane and the bending stiffness tensors) by the condition:

ϕ 0 -ϕ 1 = K π 4 , K ∈ {0, 1} (5.11) 
The parameter ϕ 0 is now a function of ϕ 1 hence simplifying the relations of (5.4):

R 0 cos 4ϕ 0 = (-1) K R 0 cos 4ϕ 1 R 0 sin 4ϕ 0 = (-1) K R 0 sin 4ϕ 1 (5.12)

In order to eliminate the discrete variable K from (5.11) in (5.12), the quantity R 0k = (-1) K R 0 is introduced, where the sign of the real R 0k determines the value of K (K = 0 or K = 1). This reduces the total number of design variables required to entirely parametrize the properties of the laminate to only three: R 0k , R 1 and ϕ 1 , where ϕ 1 is interpreted as the principal axis of orthotropy. In order to lighten the notations in the following, we pose:

ρ 0k = R 0k R 0 , ρ 1 = R 1 R 1 (5.13)
Note that three particular cases also give rise to symmetry properties, and are naturally included in the parametrization:

• R 0 = 0, R 1 ̸ = 0: orthotropic symmetry of main direction ϕ 1 .

• R 0 ̸ = 0, R 1 = 0: square-orthotropic symmetry of main directions ϕ 0 .

• R 0 = 0, R 1 = 0: isotropic symmetry

The first-level problem of (5.2) is hence rewritten considering the previous assumptions:

min {ρ 0k , ρ 1 , ϕ 1 , t} F w.r.t. [ρ 0k , ρ 1 , ϕ 1 ] ∈ D lam =          ρ 0k ∈ [-1, 1] ρ 1 ∈ [0, 1] ϕ 1 ∈ ]-π/2, π/2] Γ = 2ρ 2 1 -1 -ρ 0k ≤ 0 t ∈ D thick g i ≤ 0, i ∈ {1, . . . , N g } (5.14)
In the formulation of (5.14), the D lam domain is defined by the same geometric bounds as in (5.8), rewritten with the assumption of orthotropic laminates and the simplifications of (5.13). Figure 5.1 illustrates the domain, indicating the locations of families of remarkable laminates (angle-ply, cross-ply, uni-directional -UD).

Variable-stiffness design

The problem of optimizing the properties of a homogenized laminate is now extended to consider the design in variable stiffness. The principle consists in dividing the surface into smaller zones in which the stiffness and thickness properties can be best tailored according to the local loading paths, resulting in designs with better performances. The formulation of the first-level problem in (5.14) is straightforwardly extended to the variable-stiffness design framework. Considering the skin divided into N z zones, the scalars ρ 0k , ρ 1 , ϕ 1 and t become vectors with N z components. The material variables in each zones must verify D lam , therefore N z geometrical constraints must also be considered.

In addition, continuity of the laminated structure should be ensured between adjacent zones by blending of the respective laminated stacking sequences, meaning that laminates in each zone cannot be designed independently as they are not decorrelated from their neighbors. For this purpose, blending constraints have been derived in the literature to be added to the first-level problem (see Section 1.2.4). However, these constraints tend to greatly increase the complexity of the first-level optimization and have been ruled out of the scope of this work. Therefore, this works resorts to a filtering strategy, that does not ensure the blending of laminates but limits the variations of material and thickness properties between adjacent zones. The strategy relies on a linear filter determining the properties (material and thickness) of a given zone as a weighted average over the properties of its surrounding zones. The weights are calculated according to the relative positions of the zones and to the number of shell elements each of them contains. The implementation of this filter is tailored to cylindrical surfaces meshed regularly with shell elements, that can be zoned according to a structured grid of rectangular cells as illustrated in Figure 5.2.a. A zone is identified by its k-th and l-th positions respectively in the height and perimeter of the cylinder. Λ k,l designate the optimization variables in the (k, l)-th zone and Λ k,l are the corresponding filtered properties in each zone. The relations between the optimization variables and the filtered properties are:

K Λ k,l =c 1 Λ k,l s k,l + c 2 Λ k-1,l s k-1,l + Λ k+1,l s k+1,l + Λ k,l-1 s k,l-1 + Λ k,l+1 s k,l+1 + c 3 Λ k-1,l-1 s k-1,l-1 + Λ k+1,l-1 s k+1,l-1 + Λ k+1,l+1 s k+1,l+1 + Λ k-1,l+1 s k-1,l+1 with K = c 1 1 s k,l + c 2 1 s k±1,l + 1 s k,l±1
+ c 3 1 s k±1,l±1 (5.15) where c 1 , c 2 and c 3 are three user-defined weighting coefficients and their zones of applications are illustrated in Figure 5.2.b, s kl is a correction factor defined as the number of shell elements populating the (k, l)-th zone over the number of elements populating the biggest zone. This filtering strategy is applied in the same manner to both the material and thickness variables, therefore noting that the geometrical constraints Γ are calculated based on the filtered values of the material variables. 

Combining the stiffener layout optimization with the first-level composite structural optimization problem

Formulation of the simultaneous optimization of stiffening layout and composite properties

The method developed to solve the stiffener layout optimization problem of (2.10) is now combined with the first-level problem of the laminate optimization of (5.14):

min {X, Ξ, T } F w.r.t. X ∈ D comp Ξ ∈ D lam T ∈ D thick g i ≤ 0
( 5.16) where F and g i are the objective and constraint functions, the vector of coordinates

X = [x (1) 1 , y (1) 1 , x (1) 2 , y 
(1) 2 , . . . , x

(Nc) 1 , y (Nc) 1 , x (Nc) 2 
, y

(Nc) 2
] defines the extremities of the

N c components, Ξ = [ρ (1) 0k , ρ (1) 1 , ϕ (1) 1 , . . . , ρ (Nz) 0k , ρ (Nz) 1 , ϕ (Nz) 1
] and T = [t (1) , . . . , t (Nz) ] are the vectors of the polar parameters and of the thickness in the N z zones of the skin, varying respectively in the domains D comp , D lam and D thick .

In order to solve this optimization problem, the Method of Moving Assymptotes (MMA) is used (see settings in Appendix A). Indeed, since the optimizations of the stiffener layout and of the composite laminate properties can both be solved by gradientbased algorithms, the combination of the two problems can also be solved by such algorithms. The optimization process is then very similar to the one introduced in Section 2.3 for the optimization of the stiffener layout. The material and thickness variables are now included in the design process, and are used to update the properties of the shell elements of the ground FE model, in parallel of the update of the properties of the beam elements via the projection method. The full process is synthesized in 

Application to a reference test case

The developed method is applied to the test case of Section 4.5 in which laminated skins are introduced. The objective is to evaluate the capability of the method and to define a reference test case for the remainder of the chapter.

Model description

The model and its boundary conditions are the same as described in Figure 4.5 as well as the values reported in Table 4.3. The junction skirt ( JS) and the load introduction zone (LZ) remain in aluminum (properties described in Table 4.2) and are out of the scope of the optimization. The major difference is that the skin of the interstage skirt (IS) and the stiffeners are now made of composite material.

Engineering constants

Polar The IS skin is divided into 12 × 40 zones (height ×circumference) in the variablestiffness design framework (each zones contains 5 × 5 shell elements). The characteristics of the base ply material used and the corresponding polar moduli and phases are synthesized in Table 5.1. The 0°-direction for the ϕ 1 angle is set along the x-axis of the cylinder. The surface normals are oriented towards the inside of the cylinder and thus the angles ϕ 1 are positive for clockwise rotations when looking from outside of the cylinder.

The components representing stiffeners have cross-sectional properties identical to the previous applications : 6 mm × 40 mm rectangular sections. They are defined to Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness be made out of an isotropic composite laminate in order to comply with the fact that most finite element solvers are limited to defining isotropic materials for beam elements, and because the effects of using anisotropic materials in the projection process are not straightforwardly predictable. Regarding the choice of the material properties of the stiffeners, these should not be limited to those of realistic isotropic materials, since the stiffness provided by stiffeners mainly depends on the latters' longitudinal modulus. Indeed, one could choose to define a fictitious isotropic material that has the same Young's modulus E as the longitudinal Young's modulus E 1 of an orthotropic laminate, and the same Poisson ratio. However, in this work it is chosen to use the material properties of a composite laminate made of the same base ply as for the IS skin (material properties given in Table 5.2), with an isotropic stacking sequence, so that the material remains realistic. The material and cross-sectional properties of the stiffeners are not considered as design variables in the following. 

Problem formulation

The proposed method is applied to solve the optimization problem formalized in (4.8) which is extended as follows to take into account the variables related to the skin material properties and thicknesses:

min C(X, Ξ, T ) w.r.t. X ∈ D IS Ξ ∈ D lam T ∈ D thick M T = M c + M IS < M T 0 KS(N x ) < N 0 KS(-N x ) < N 0 λ i > λ 0 , i ∈ {1, . . . , 20} (5.17) 
where M T is the total mass of the components M c and of the IS skin M IS , N x are the force fluxes measured at the top perimeter of the JS skin and λ i (i ∈ {1, . . . , 20}) are the buckling coefficients of the first 20 modes. The 0 subscripts indicate the corresponding constraint values, and are defined in Table 5.3. The constraints on the forces fluxes and buckling coefficients are the same as for the applications of Section 4.5. A stricter mass constraint is adopted, thereby better suiting composite applications since these materials are lighter than aluminum, which was considered in the isotropic test case of Section 4.5.

The constraint values, initial variable values and filter settings for the test case are presented in Table 5.3, and the component locations are initialized as in Figure 4.6. In the following applications of this chapter, only the parameters that differ from these default settings will be specified. 5.3: Default settings for the reference test case corresponding to the optimization problem of (5.17). In the following applications, only differing values will be specified.

The material and thickness domains of variation are defined as:

D lam =          ρ 0k ∈ [-1, 0.8] ρ 1 ∈ [0, 1] ϕ 1 ∈ ]-π, π] Γ = 2ρ 1 2 -1 -ρ 0k ≤ 0 D comp = D IS ∪ D LZ D thick = t ∈ [1 mm, 10 mm] (5.18)
The D lam domain is limited to ρ 0k < 0.8 in order to avoid UD and cross-ply solutions corresponding to ρ 0k = 1 (see Figure 5.1) as well as to exclude an area where solutions to the second-level problem are scarcer. Indeed, Picchi Scardaoni and Montemurro (2021) showed that the actual domain achievable by laminates made of identical plies is actually smaller than the theoretical D lam domain achievable by composite laminates in general. Also note that the domain of the polar angle ϕ 1 is extended to ] -π, π], in order to prevent variables from potentially converging to artificial local minima at the bounds π /2 and π /2, because of the periodicity of trigonometric functions.

The total number of optimization variables can be calculated as follows. The test case is initialized with a total of 128 components and the skin is divided into 480 zones. By exploiting the four quadrant symmetry of the structure, (implemented by linking variables that are symmetrical to one another, see Section 4.5.1) the total number of independent components and zones are respectively reduced to 32 and 120. This accounts for 512 variables in total, including 128 variables for the components (four end-point coordinates for each component), as well as 360 and 120 variables respectively for the mechanical properties and thickness of the zones (three polar parameters ρ 0k , ρ 1 and ϕ 1 , as well as one thickness value for each zone). The total number of optimization constraints amounts to 143, including 23 constraints on the responses of the structure (one condition on the overall mass, two conditions on the maximum and minimum value of the force flux, and conditions on the first 20 buckling factors), as well as 120 geometrical constraints, one for each zone of the structure (considering the symmetry).
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Results

The results presented in Figure 5.4 confirm that the method is capable of finding a feasible minimum compliance design by optimizing simultaneously the component locations together with the thickness and material properties of the skin.

Compared to the results in Figure 4.8, the same critical zones have been identified but the stiffening concept is quite different due to the introduction of the thickness and material variables. In the present solution, a great part of the reinforcement is generated by the presence of thicker zones forming a V-shape above the LZ, that can be seen in the thickness distribution of Figure 5.4. In these zones, the material properties ρ 0k and ρ 1 tend towards almost uni-directional laminates, with main orthotropic directions ϕ 1 slightly tilted to follow the V-shape of the thickness. In contrast very few components remain in the final solution.

The smooth convergence profiles of the structural responses in Figure 5.4 indicate that a local minimum has been found. Yet, the algorithm seems to have difficulties in reaching the convergence criteria as the feasible minimum compliance design is attained much earlier than the final iteration. Indeed, the optimization does not stop on the maximum variable change criteria but on the maximum number of iterations. This could be explained by the geometric constraints Γ being slightly violated in most of the iterations by a small number of zones. While it does not seem to impact the algorithm's capability of finding a minimum compliance design, the optimization process is long and thus costly.

Handling numerous geometrical constraints

The optimization of the material properties in the framework of variable stiffness design presented in the previous section requires to define one geometrical constraint per zone. Consequently, refining the zoning in order to find better performing designs results in the generation of a significant number of optimization constraints, which has two main drawbacks. Firstly, this can hinder convergence, as the optimizer has difficulties in satisfying the constraints simultaneously, as observed in the the application of Section 5.3.2. Secondly, the computation time can significantly increase when considering other gradient-based algorithms (e.g. SQP) hence limiting the maximum number of zones that can be defined.

To mitigate these issues, two strategies are benchmarked in order to reduce the total number of geometrical constraints on polar parameters:

• Constraint aggregation: the constraint is applied on the maximum value of the geometrical conditions within a group of zones in the structure, rather than on each single zone. The aggregation can either be global (the maximum is evaluated on a single group of geometrical constraints containing all the zones within the optimized structure) or clustered (the zones are clustered into small groups and the maximum is evaluated within each group).

• Variable substitution: an adapted parametrization allows the material variables to strictly belong to the domain that is achievable by orthotropic laminates, hence totally eliminating the need for geometrical constraints. 

Constraint aggregation

Constraint aggregation was initially introduced to reduce the number of stress constraints in topology optimization as reviewed in Section 4.2.1. The aim is to apply this method to geometrical constraints Γ that appear in the optimization problem of (5.17), bearing in mind a major difference with stress constraints: if the geometrical constraint is greatly violated, the risk is that even the thermodynamic limit (Figure 5.1) can also be violated resulting in degenerated stiffness properties, and hence failing of FE analysis.

First considering the global aggregation of the geometrical constraints Γ over the overall number N z of zones of the structure to optimize, the aggregated constraint Γ is formulated as follows:

Γ = max k∈Nz Γ k ≤ 0 (5.19)
The max is a smooth approximation of the maximum function, in order to maintain the derivability of the constraint function. Since the geometrical constraint can take both positive and negative values, the KS function formulated in (4.1) is an appropriate approximation.

The two major drawbacks of global aggregation methods (Section 4.2.1) can have a significant impact on the outcome of the optimization:

• the overestimation of the true maximum can become significant as multiple zones may have Γ values close to the true maximum. Consequently, the optimizer may have difficulties in attaining material properties close to the Γ boundary.

• the aggregated function is much less regular than the individual functions. Apart from the convergence difficulties it generates, this also increases the chances of the optimizer of placing a point outside of the geometrical domain and, possibly, outside of the thermodynamic domain.

A way to mitigate these issues, is to resort to clustered aggregation. The geometrical constraints are first arranged into a small number N cl of clusters. Then, within each cluster, the constraints are aggregated together as per (5.19). The method is beneficial if the total number of groups N cl is much smaller than the number of zones N z . The two clustering criteria proposed by [START_REF] Holmberg | Stress constrained topology optimization[END_REF] are formulated as follows:

• aggregation by constraint level: the constraints are sorted by decreasing values, and then grouped in N cl clusters of identical sizes, for example:

Γ 1 > • • • > Γ 9 ⇒      Γ 1 = max(Γ 1 , Γ 2 , Γ 3 ) < 0 Γ 2 = max(Γ 4 , Γ 5 , Γ 6 ) < 0 Γ 3 = max(Γ 7 , Γ 8 , Γ 9 ) < 0 (5.20)
The main advantage of this formulation is the lower overestimation of the maximum values thanks to the smaller number of zones aggregated together compared to global aggregation.

• aggregation by constraint distribution: the constraints are sorted by decreasing values and are then distributed to each cluster one after another:

Γ 1 > • • • > Γ 9 ⇒      Γ 1 = max(Γ 1 , Γ 4 , Γ 7 ) < 0 Γ 2 = max(Γ 2 , Γ 5 , Γ 8 ) < 0 Γ 3 = max(Γ 3 , Γ 6 , Γ 9 ) < 0 (5.21)
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The overestimation of the max is here decreased because less constraints will have values close to the true maximum in each cluster. An added advantage is that in each cluster, the sensitivities of the variables in the zones with the highest constraint values will prime over those of the zones with lower constraint values, hence better driving the optimization.

The domain D lam of (5.18) considering these formulations, is rewritten as:

D lam =            ρ 0k ∈ [-1, 0.8] ρ 1 ∈ [0, 1] ϕ 1 ∈ ]-π, π] Γ C C∈N cl = max z⊂C Γ z (5.22)
where Γ z is the geometrical constraint of the z-th zone in the C-th cluster. The global aggregation formulation can be considered as a particular case of these formulation, corresponding to N cl = 1. Nonetheless, note that neither of these aggregation methods totally alleviate the possibility for the optimizer to place a point outside of the thermodynamic domain, since the MMA algorithm is not an interior-point method. Hence, if the previous aggregation methods fail, a last strategy consists in applying more conservative approximations in the MMA (see Appendix A): the displacements of the lower and upper asymptotes are bounded as done by [START_REF] Verbart | A unified aggregation and relaxation approach for stress-constrained topology optimization[END_REF] and [START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF]. The global as well as the two clustered aggregation methods are included in the benchmark in Section 5.4.3, combined when necessary with conservative MMA settings to avoid the risk of large violations of the geometrical constraints.

Variable substitution

The second strategy consists in defining a variable substitution, eliminating the need for the geometrical constraints Γ as proposed by [START_REF] Macquart | Optimisation of composite structures -Enforcing the feasibility of lamination parameter constraints with computationally-efficient maps[END_REF]: the new variables strictly map the geometric domain. [START_REF] Izzi | Strength and mass optimisation of variable-stiffness composites in the polar parameters space[END_REF] derived a similar variable substitution in the polar formalism describing the entire domain of orthotropic laminates (Figure 5.1).

In this work, an alternative variable substitution is proposed in order to describe a smaller domain, as introduced in (5.18):

ρ 0k = β(2α 2 -1 -ρ 0k max ) + ρ 0k max ρ 1 = αβ (5.23)
The parameter ρ 0k max is introduced to implement the ρ 0k < 0.8 lower bound of D lam in (5.18). Furthermore, the combined choice of ρ 0k max and of the maximum value of α determines the location of the right border of the optimization domain, and can be set to avoid either UD, cross-plies or both laminates at the same time.

The mapping between the old and the new variables is illustrated in Figure 5.5. The vector of material variables and their domain of (5.18) becomes:

Ξ = [α, β, ϕ 1 ] and D lam =            α ∈ 0, ρ 0k max + 1 2 β ∈ [0, 1] ϕ 1 ∈ [-π, π]
(5.24)
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By this new definition, the couple of values (α, β) necessarily maps towards a point which belongs to the geometric domain, hence eliminating the need for the application of geometric constraints in the optimization problem. For completeness, the following points are highlighted:

• The filter introduced in Section 5.2.4 is applied after the calculation of the values of ρ 0k and ρ 1 :

{α, β} Substitution ------→ (5.23) {ρ 0k , ρ 1 } Filter ---→ (5.15) { ρ 0k , ρ 1 }
• The inverse relations of (5.23) are:

α = ρ 0k -ρ 0k max + (ρ 0k -ρ 0k max ) 2 + 8ρ 2 1 (ρ 0k max + 1) 4ρ 1 , α| ρ 1 =0 = 0 β = ρ 0k max -ρ 0k + (ρ 0k -ρ 0k max ) 2 + 8ρ 2 1 (ρ 0k max + 1) 2(ρ 0k max + 1) (5.25)
• The sensitivities of the objective and constraint functions, generically noted R, with respect to the new variables are obtained by chain rule (explicitly written for parameter α, as an example):

∂R ∂α = ∂R ∂ρ 0k ∂ρ 0k ∂α + ∂R ∂ρ 1 ∂ρ 1 ∂α (5.26)

Numerical comparison of the strategies

The proposed strategies -global aggregation of the geometrical constraints, clustered aggregation both by constraint levels and by constraint distribution, and variable substitution -are compared to a reference case where the geometric constraints are plainly applied on each single zone of the optimized structure. In order to focus on the influence of the proposed strategies for variable-stiffness composite optimization, the case of constrained compliance minimization of an unstiffened composite shell is solved, considering only material anisotropic elastic properties as optimization variables. The selected test case is the reference cylindrical launcher structure introduced in Section 4.5 and already solved in Section 5.3.2 considering a stiffened, variable-thickness skin thickness and variable-stiffness composite shell. The same case is treated here considering that no stiffening component is introduced, that the composite shell thickness is uniform and set at a fixed value t = 4.25 mm (i.e. the stacking sequence is composed of N p = 38 plies), and only elastic material variables Ξ are taken into account within the problem formulation of 5.17. Following the test case description of Section 5.3.2, the model contains a total of N z = 480 zones, reduced to N z = 120 by the symmetry properties of the problem. For the clustered aggregation strategy, the corresponding 120 geometrical constraints are grouped into N cl = 10 clusters.

Problem 5.17 is hence reduced to: 5.27) where D lam is either defined as in (5.18) for the reference case of per-zone application of geometrical constraints, (5.22) for the three aggregation methods or (5.24) for the variable substitution strategy. The default settings of These results show that the variable substitution strategy significantly reduces the number of iterations needed for the algorithm to reach convergence while achieving the lowest compliance value. The average time t MMA , spent to solve the MMA problem at each iteration, is also significantly decreased compared to the reference case, because of the absence of geometrical constraints. The aggregation methods result in slightly higher compliance designs than the reference, nonetheless they also significantly reduce the MMA iteration time.

min C(Ξ) w.r.t. Ξ ∈ D lam KS(N x ) < N 0 KS(-N x ) < N 0 λ i > λ 0 , i ∈ {1, . . . , 20} ( 
For completeness, the fields of optimized material variables and history of the maximum values of the geometrical constraints are shown in Figure 5.6. The aggregation by constraint distribution results in a distribution of the material properties almost identical to the reference case. The difference is greater for the variable substitution even though it can be remarked that in the most critical zones, the distributions of skin thickness the material properties are very similar to the reference case. Both the distributions obtained with the global aggregation and the aggregation by constraint levels are identical, and significantly differ from the other cases. This is mainly due to the fact these two optimization cases must be solved using conservative MMA settings, described in Appendix A, otherwise the optimizer systematically places a point outside of the thermodynamic domain which makes the FE analysis fail, and thus stops the optimization process before reaching convergence.

The histories of the geometrical constraints for the clustered aggregation strategies show that the number of clusters violating the geometrical constraints is rarely null. This highlights the difficulty for the optimizer in finding feasible designs, similarly to the reference case, thereby corroborating the greater number of iterations for the optimizations to converge observed in Table 5.4. In contrast, the number of zones violating the geometrical constraint rapidly decreases to zero as a consequence of the overestimation of the maximum geometric constraint value within the clusters.

Discussion

From the results presented above, the most efficient strategy to reduce the total number of geometrical constraints, for the proposed application, is the variable substitution approach. Its main benefits are the convergence in a smaller number of iterations compared to other strategies, its ability to explore the entire domain, including the geometrical boundary, as well as the significantly reduced MMA computation times. In the present case, this latter point is not vital as the FEM computation time is over the minute, but it demonstrates that the method can be extremely beneficial when using other gradient-based algorithms such as SQP. For these reasons, the following applications in which the material properties are optimized will make use of the variable substitution method.

When considering the more general case of non-homogeneous laminates, variable substitution remains applicable to eliminate the geometrical constraints, formulated for both the membrane and bending properties which are separate in this case. However, it cannot be systematically applied to reduce the number of compatibility constraints, that one should take into account to ensure the compatibility of the membrane and bending stiffness tensors (in the case of uncoupled laminates). Indeed, while [START_REF] Macquart | Optimisation of composite structures -Enforcing the feasibility of lamination parameter constraints with computationally-efficient maps[END_REF] showed it was possible to conduct such variable substitutions on the compatibility constraints when considering only four lamination parameters, it seemed to remain difficult to take into account all eight parameters (twelve if coupling is not imposed). In this case, the aggregation of the compatibility constraints by distribution into clusters would seem to be an interesting alternative to explore in order to reduce their total number. Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness

Numerical application and validation of the method

Metallic versus composite stiffened designs

This first application aims at assessing the benefits of using composite rather than metallic materials and how the simultaneous optimization of the material properties and component layout influences the optimal solution.

To do so, the optimization described in Section 5.17 is performed on a structure with a skin made of either one of the three following materials: a. aluminum (uniform and fixed material properties in Table 4.2): optimization variables are stiffener locations X and shell thickness T defined per zone;

b. isotropic composite material (uniform and fixed material properties in Table 5.2): optimization variables are stiffener locations X and shell thickness T defined per zone;

c. variable-stiffness (VS) anisotropic composite material (laminates with the base-ply properties given in Table 5.1): optimization variables are stiffener locations X, shell thickness T and anisotropic polar parameters Ξ, restricted to the domain of orthotropic quasi-homogeneous laminates. Vectors T and Ξ are defined per zone.

The components are either made of aluminum in the first case (a) or of "black aluminum" (properties given in Table 5.2) for both the isotropic and anistropic skins (b and c). The settings of the optimization are identical to those the reference test case solved in Section 5.3.2 (given in Table 5.3), except for the mass constraint that is set to M T 0 = 12.55 kg for all three cases. The response values of the feasible minimum-compliance design for each case are presented in Table 5.5 (the mass constraint is active and satisfied in all cases). The results show a significant reduction of compliance when using an isotropic composite material compared to aluminum. Furthermore the margin to the buckling constraint is also significantly increased. Concurrently, Figure 5.7 shows that the number of components and the overall thickness of the skin is greater in the isotropic composite case, while the components and the thickest zones in each figure are located in the same regions of the structure. Therefore, the difference of performance observed can be explained by the higher specific modulus of composites, which allows to use a greater volume of material for the same mass compared to a metallic structure. The optimization of the anisotropy of the skin further reduces the compliance of the model while increasing the margin to buckling. In Figure 5.7 the distribution of the components in the anisotropic case significantly differs from the other two cases:

Material C/C 0 λ 1 /λ 0 N x /N 0 Best/Total It. Aluminum C 0 1.02 [-
Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness they are concentrated in the bottom region of the structure. Therefore, the extra reinforcement is here ensured by the distribution of the anisotropic material properties: Figure 5.8 reveals materials showing the highest admissible values of ρ 0k and ρ 1 on a large part of the skin, corresponding to high-stiffness composite materials represented by points in the upper right region of the orthotropic domain in Figure 5.1 (as close as possible to UD material). This is particularly true in the region above the loading zone (LZ), where the orthotropy principal direction is slightly oriented forming a V-shape (as the stiffeners do in the case of the aluminum and isotropic composite solution). These results highlight the complementary role of the stiffener locations and the material properties, thus supporting the benefit of optimizing them both simultaneously. 

Influence of the initialization of material properties

Considering the non-convex nature of the optimization with anisotropic materials, the influence of the initialization of anisotropic material properties has to be evaluated on the final performances of the optimized stiffened and variable-thickness structures. Indeed, this effect has been largely investigated in the case of composite skin optimization, whilst the aim is here to determine the influence of the multi-modal nature of the problem when considering simultaneous optimization of the composite skin anisotropic parameters, thickness distribution and stiffener location.
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The reference test case of Section 5.3.2 is solved for the different initial values of the material properties presented in Table 5.6: case 1 starts from a central point in the material domain whilst cases 2 and 3 correspond respectively to points on the left and right side of the domain; case 4 starts from the central point but with a different angle initialization. The variable substitution of Section 5.4.2 is used.

Case ρ 0k ρ 1 ϕ 1 1 0 0.2 0 2 -0.5 0.3 0 3 0.5 0.5 0 4 0 0.2 45

0 -1 1 1 = 0°1 3 2 4
Table 5.6: Initial values of the material properties for each initialization case and illustration of their locations in the domain of orthotropic laminates.

The results in Figure 5.9 show that the initialization highly influences the distribution of the material properties in the minimum compliance design. In contrast, the thickness and component distributions are very similar for all considered cases, eventhough it is clear that all these designs are local minima and are thus not identical. This disparity of the effect of different distributions of material properties, thickness and components is also observed on the structural responses of the models in Table 5.7: while the compliance and flux values are similar for all the cases, cases 2 to 4 have significant margins to the buckling constraint compared to case 1.

Focusing on the distributions of material properties (Figure 5.9, rows 1 and 2), two main aspects can be remarked. First, it can be observed that the thicker zones have a distributions of material properties that are very similar from one case to the other. This highlights critical zones of the model and could indicate areas where the identification of the laminates in the second-level problem should be the most precise. Second, the distribution of ϕ 1 in case 4 is much more continuous between contiguous zones than the other cases which present abrupt changes of the angle ϕ 1 between adjacent zones in some areas of the model. These abrupt changes are caused by the filter function making an average on periodic angles, but case 4 shows that these seem well mitigated by initializing the optimization on non null ϕ 1 angles. In this respect, case 4 seems to produce the best solution overall with a significant margin to buckling and the most continuous distribution of material orientations. 

Case C/C 0 λ/λ 0 N x /N 0 M T /M T 0 Best/Total It

Solving stringent problems applying a "Split MMA" method

The objective of this final application is to verify that the proposed method is capable of finding feasible solutions to design problems with stringent constraint values. For this purpose, the reference test case of Section 5.3.2 defined with the variable substitution, is solved considering stricter flux and buckling constraints:

• for N 0 = 450 kN, Table 5.8 shows that a feasible solution is found but with a higher compliance than the reference solution, which is coherent.

• for λ 0 = 5 and λ 0 = 7, no feasible solutions are found. Figure 5.10 shows that the evolution of the buckling constraint is very erratic in both cases and does not converge. However, over the course of the optimization with the constraint λ 0 = 7, some designs would be feasible with respect to a requirement λ 1 > 5 (including the constraints on the mass and force flux). This indicates that feasible solutions do exist in the case of λ 0 = 5 but are not found by the optimizer. Empirically, it seems that the optimizer privileges stabilizing the structure with respect to buckling by thickening the skins rather than by placing components, as illustrated by the low M comp /M skin ratio in Table 5.8. A possible explanation is that for a given area to stiffen, the sensitivities of the buckling response is generally much higher to the thickness variables located in the area than to the location of a component that is spatially further away. In this case, components are rarely used to stabilize the structure with respect to buckling, which does not seem optimal. A similar reasoning can be applied with the material variables. Therefore, to restore some balance between the sensitivities of the different types of variables, it is here proposed to modify the way of resorting to the MMA algorithm.

Case
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"Split MMA" algorithm

The idea consists in splitting the call to the MMA algorithm into three independent evaluations which update separately each variable type (material Ξ, thickness T and component locations X ) based on the same objective and constraint values and the updated variable values are then concatenated into a single vector. The vectors of lower and upper bounds, lower and upper asymptotes are also split accordingly. The schematic overview of this process is synthetized in Figure 5.11. The proposed split MMA algorithm is now employed to solve the test cases of Table 5.8 that were previously optimized with the standard MMA algorithm. The results in Table 5.9 show that feasible solutions are found for all the test cases, backed up by the converging curves of the objective and all of the constraint functions in Figure 5.12, drawn for the case with the reference constraint values. It can also be noted that the M comp /M skin ratio is much higher with the split MMA than with the standard MMA, highlighting that more components are present in the solutions. This is furthermore illustrated by Figure 5.13 which compares the feasible minimum compliance solutions obtained with both the standard and split MMA algorithms for the test case with N 0 = 450 kN. These observations are consistent with the fact that the approximations built in each split MMA algorithm depend only on one type of variables at a time, and thus higher sensitivities for a given variable type do not overwhelm lower sensitivities for other variables, such as component locations.

Case

Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness However, in the cases where feasible solutions are found by the standard MMA, the solutions obtained with the split MMA have significantly higher objective values. The split MMA is hence a good alternative to find feasible solutions only when the standard MMA fails to do so. In addition, these comparisons allow to gain confidence on the optimality of the results obtained with the standard MMA algorithm: one would expect that solutions made of a greater proportion of components are systematically more performant, while the present application demonstrates the opposite. 5.9 solved using the "split MMA" algorithm. Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness

Conclusion

In this chapter, the method for optimizing the stiffener layout was successfully integrated to the first-level problem of the bi-level framework for the optimization of composite laminates. This allows to simultaneously optimize the position of the components, together with the skin material anistropy represented via the polar formalism and the skin thickness. An application demonstrates the feasibility of the method considering variable-stiffness composites.

In order to improve the convergence of the optimization and the performance of the resulting design, strategies to reduce the total number of geometrical constraints, normally equal to the number of zones in the variable-stiffness formulation, are compared. Considering quasi-homogeneous laminates, a variable substitution can be operated which allows to vanish the geometrical constraints, resulting in optimization converging in a much smaller number of iterations. When dealing with other types laminates, the method relying on aggregation by constraint distribution into clusters would seem to be a promising alternative to reduce the total number of compatibility constraints, needed to ensure the compatibility of the laminates' stiffness tensors, complementing the variable substitution of the geometrical constraints that remains applicable.

The method was finally validated on various test cases to asses its benefits and its robustness. A comparison between designs in metallic and isotropic composite structures showed that there is a significant interdependence between the distribution of the anistoropic properties and the location of the components. Consequently, the optimized designs obtained by simultaneously optimizing the stiffener locations, thickness distribution and anisotropic elastic fields achieve significantly greater performance. It was also shown that even though the initialization of material properties has a significant influence on their final optimized distributions, the compliance of the structure is only slightly affected. The critical zones of the model indeed had very similar reinforcements either by thicker skins or by the presence of stiffeners. Finally, it was observed that optimizations with stringent constraints could prevent the optimizer from obtaining feasible solutions. The proposed split MMA alternative allows to find feasible solutions when the standard MMA fails to do so.

Introduction

The aim of this chapter is to identify laminate stacking sequences that match the optimized material and thickness properties resulting from the first-level optimizations of Chapter 5. The optimized anisotropic material properties issued from the first step of the optimization corresponds to a quasi-homogeneous, fully-orthotropic composite laminate made of identical plies, according to the hypotheses that were made via the choice of the polar parameters and via the application of the geometric bounds of (5.14). However, the optimized elastic parameters represent the homogenized properties of the laminate and the exact description of the related stacking sequence is not known at this stage.

At the second step of the bi-level framework, stacking sequences are retrieved by solving the identification problem presented in (5.3). A stacking sequence, which is solution of problem (5.3) (i.e. a second-level solution), minimizes the error between its own elastic properties and the target material properties issued from the first step of the optimization, the goal being to ensure that the final response of the structure made of the manufacturable second-level solution is as close as possible to the one of the optimized first-level solution. However, a major difficulty arises when considering manufacturability of stacking sequences: when designing composite materials of variable (non-uniform) stiffness and thickness, the continuity of the plies (blending) must be ensured between adjacent zones characterized by different values of elastic properties and thickness . Since this problem remains highly complex, a compromise must be found between the performance of the structure (optimized first-level solution) and the quality of the stacking retrieval.

To find the best compromise, three strategies to identify stacking sequences are compared in this chapter. Section 6.2 focuses on retrieving stacking sequences by posing the second-level identification problem as an optimization problem. In this way, it is not necessary to formulate a priori assumptions on the stacking sequences. Three formulations of the identification problem are benchmarked on constant-stiffness design problems in order to select the most efficient one. The latter is then applied for the retrieval of laminates in the variable-stiffness and variable-thickness framework. Section 6.3 proposes a second strategy based on the assumption of Quasi-Trivial laminates, thereafter QT, as base stacking sequences in order to find solutions with the exact material properties identified in the first-level optimization. Explicit relations are established between the homogenized material properties and the stacking parameters of QT laminates. This both enables to reparametrize the first-level optimization, so that the material variables only describe the feasible domain by a given QT laminate, and allows to solve the identification problem analytically. The first-level must however be simplified to consider skins of uniform thickness in order to avoid the complexity of blending QT sequences.

Finally, Section 6.4 considers a third approach based on Double-Double laminates, thereafter DD, as base stacking sequences. These laminates formed by repetitions of a base sub-laminate facilitate thickness variations at the expense of not exactly satisfying the matching of elastic properties. Particularly, for the uncoupling condition, which is crucial to avoid warping during manufacturing, the minimal number of repetitions recommended by [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF] to obtain a DD laminate with a coupling level below an acceptable threshold value is verified. Then by using the reparametrization strategy introduced for QT stacking sequences, the use of DD laminates is straightfor-wardly adapted to the bi-level framework. Finally, the three strategies are discussed to conclude on the best compromise for a rapid integration into an industrial process.

Optimization-based layup retrieval

Formulation of the identification problem

To retrieve stacking sequences without making any a priori assumptions on the laminate sequence, the second-level identification problem of ( 5.3) is reformulated as an unconstrained minimization problem. The objective is to minimize a cost function F measuring the difference between the anisotropic properties of the target (index T) and those of a given stacking sequence δ:

min {δ} F (A(δ), B(δ), D(δ), A T , B T , D T ) (6.1) being δ = [δ 1 , . . . , δ n ],
where δ k is the orientation of the k-th layer (k = 1, . . . , n). The total number of plies n is obtained by rounding the target thickness to the closest integer number of plies.

The cost functions F can be formulated using different formalisms to characterize the laminate stiffness properties. The most common formulation is based on the lamination parameters formalism, introduced by [START_REF] Tsai | Invariant properties of composite materials[END_REF], and is found in many stacking retrieval algorithms [START_REF] Herencia | Optimization of Long Anisotropic Laminated Fiber Composite Panels with T-Shaped Stiffeners[END_REF][START_REF] Macquart | OPTIBLESS: An Open-source Toolbox for the Optimisation of Blended Stacking Sequence[END_REF][START_REF] Lasseigne | Optimization of Variable-Thickness Composite Structures[END_REF][START_REF] Fedon | A method using beam search to design the lay-ups of composite laminates with many plies[END_REF]. A second group of formulations is based on the polar formalism and written in terms of polar parameters [START_REF] Vincenti | BIANCA: A genetic algorithm to solve hard combinatorial optimisation problems in engineering[END_REF][START_REF] Ahmadian | A general strategy for the optimal design of composite laminates by the polar-genetic method[END_REF][START_REF] Picchi Scardaoni | New blending constraints and a stack-recovery strategy for the multi-scale design of composite laminates[END_REF]. A final formulation based on the stiffness tensors A, B and D has been proposed by [START_REF] Irisarri | Computational strategy for multiobjective optimization of composite stiffened panels[END_REF]. In the following, the aim is to benchmark different formulations of the cost-function, that can be used as objective in the second-level problem in order to find laminates with elastic properties as close as possible to a given target.

Lamination Parameters (LP)

The cost functions expressed in terms of LP are formulated in their most general form as the least-squares distance between the LP ξ

[A,B,D] i of a given laminate δ and target LP ξ T = ξ [A,B,D],T i : F LP (δ, ξ T ) = 4 i=1 (ξ A i (δ) -ξ A,T i ) 2 + 4 i=1 (ξ B i (δ) -ξ B,T i ) 2 + 4 i=1 (ξ D i (δ) -ξ D,T i ) 2 (6.2)
In (6.2), the LP are normalized through-the-thickness and are written using the same formalism as in [START_REF] Grenestedt | Layup Optimization of Composite Material Structures[END_REF], to which the reader is referred to for their detailed expressions.

In order to force the resulting laminates to be orthotropic and quasi-homogeneous without restricting the search to symmetrical and balanced stacking sequences, the target LP are as follows:

• uncoupling is obtained by canceling the corresponding LP, i.e. ξ B,T 1,...,4 = 0.

• homogeneity is sought by setting ξ D,T 1,...,4 = ξ A,T 1,...,4 (normalized through the thickness).

• orthotropy of the laminate is indirectly included in the values of the target LP ξ A,T 1,...,4 . It cannot be directly assessed in the general case unless the orthotropy direction is aligned with the reference frame: in this case ξ A 3 = ξ A 4 = 0 (terms depending on the sinus of orientation angles).

Polar Parameters (PP)

The cost functions in PP are formulated as a sum of partial objectives characterizing each target properties (elastic properties, homogeneity, uncoupling, etc.). The definitions of the partial objectives have slightly evolved over time and their most recent formulations are here adopted [START_REF] Picchi Scardaoni | New blending constraints and a stack-recovery strategy for the multi-scale design of composite laminates[END_REF]:

f A 1 = R A 0 -R T 0 R 0 2 f A 2 = R A 1 -R T 1 R 1 2 f A 3 = ϕ A 1 -ϕ T 1 π/4 2 f A 4 = |ϕ A 0 -ϕ A 1 | π/4 -(-1) K A 2 f D 1 = R D 0 -R T 0 R 0 2 f D 2 = R D 1 -R T 1 R 1 2 f D 3 = ϕ D 1 -ϕ T 1 π/4 2 f D 4 = |ϕ D 0 -ϕ D 1 | π/4 -(-1) K D 2 f B = ||B|| ||Q|| 2 f C = ||C|| ||Q|| 2 (6.
3) where ||_|| is the norm proposed by [START_REF] Kandil | New methods of design for stacking sequences of laminates[END_REF] and defined by:

||Q|| = T 2 0 + 2T 2 1 + R 2 0 + 4R 2 1 (6.4)
An interesting aspect of the PP formulation is that each partial objective has a physical interpretation:

• f

[A,D] 1 and f [A,D] 2
measure the difference with respect to the target elastic properties R T 0 and R T 1 ;

• f

[A,D] 3
measures the difference with respect to the target global material orientation expressed in terms of principal orthotropy direction ϕ1 T ;

• f

[A,D] 4
characterizes the orthotropy symmetry;

• f B and f C respectively quantify the uncoupling and the homogeneity.

The particularity of this formulation is that the arrangement of the partial objectives to obtain the homogeneity of the laminate is not unique. The first proposition consists in using the targets on both the membrane and the bending polar parameters, similarly to the LP formulation:

F PP1 (δ, Π T ) = f A 1 + f A 2 + f A 3 + f A 4 + f D 1 + f D 2 + f D 3 + f D 4 + f B (6.5)
where Π T is the vector of the target PP.

However, linearly scalerized multi-objective optimizations converge better when the number of partial objectives is limited. In this respect, most of the works making use of PP prefer an arrangement where the partial objectives on the membrane elastic properties are combined to those for homogeneity and uncoupling, which gives: 6.6) In this case, the membrane properties are individually measured while the bending properties are globally evaluated through the homogeneity measure. Consequently, the membrane properties are matched with greater precision. Nevertheless, for some applications it is more important to ensure the precise matching of bending properties. The third formulation thus evaluates directly the partial objectives on the bending properties and globally the membrane properties through the homogeneity measure:

F PP2 (δ, Π T ) = f A 1 + f A 2 + f A 3 + f A 4 + f C + f B ( 
F PP3 (δ, Π T ) = f D 1 + f D 2 + f D 3 + f D 4 + f C + f B (6.7)

Laminate homogenized stiffness tensors A, B and D

The third formulation proposed by [START_REF] Irisarri | Computational strategy for multiobjective optimization of composite stiffened panels[END_REF] uses the symmetrized Kullback-Liebler divergence to measure the distance between two semi-definite positive matrices as described by [START_REF] Moakher | On the Averaging of Symmetric Positive-Definite Tensors[END_REF]:

F ABD (δ, L T ) = tr(L(δ)L T -1 ) + tr(L(δ) -1 L T ) -12, where L = A * B * B * D * (6.8)
where L T is the global stiffness matrix of the laminate. To force the quasi-homogeneity of the laminate, the target tensors A * and D * are identical and the tensor B * is null.

Similarly to the LP formulation, the targets on orthotropy properties are implicitly defined in the terms of the Cartesian components of the membrane and bending stiffness tensors.

Solving the identification problem

The identification problem of (6.1) is non-convex, non-linear and is most of the time parametrized considering discrete ply angle values. In addition, the computation of the cost functions are relatively cheap as they correspond to analytic evaluations of the CLPT. Therefore, this problem is generally solved by meta-heuristic algorithms which are able to globally explore the vast design domain and can handle the complexity of the non-convex and highly combinatorial problem. Many different meta-heuristic methods have been used to solve the problem as reviewed by [START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part I: Constant stiffness design[END_REF][START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part II: Variable stiffness design[END_REF] and [START_REF] Vannucci | Anisotropic Elasticity[END_REF], noting that a majority of the works resort to genetic algorithms [START_REF] Wang | A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation[END_REF]. In this latter category, the most efficient algorithms found have usually been specifically designed in the objective of optimizing stacking sequences (even though they remain applicable to more general problems), for example the multiobjective algorithm of [START_REF] Irisarri | Multiobjective stacking sequence optimization for laminated composite structures[END_REF] or the BIANCA algorithm by [START_REF] Vincenti | BIANCA: A genetic algorithm to solve hard combinatorial optimisation problems in engineering[END_REF]. This type of algorithms is thus privileged in the present work to solve the identification problem.

Selection of a cost function

Benchmark method

The aim is now to determine which cost function should be used in the identification problem to obtain the laminates closest to given target properties.

In order to benchmark the formulations, the resulting cost function values for the optimized laminates are compared. The lowest cost function value identifies the laminate with material properties closest to the target. However, these values cannot be directly compared because the cost functions do not have the same scale. Hence, the following method is proposed to establish a relative comparison of the values :

1. Execute five runs of the identification problem for each cost function F K , where K ∈ {ABD, LP, PP1, PP2, PP3} is a subscript representing the cost function used.

A group of five optimized laminates δ K is obtained for each cost function.

2. For every optimized laminate δ K in the group K, obtained applying the cost function F K , evaluate all the remaining cost functions (for instance, if K = ABD, the stacking sequences δ ABD are then evaluated with respect to the remaining cost functions F LP (δ ABD ), . . . , F PP3 (δ ABD ), and so forth,

F ABD (δ LP ), . . . , F PP2 (δ PP3 ), F PP3 (δ PP3 )).
3. Within each group K of laminates, calculate the mean and standard deviation for each cost function values.

By comparison, the group K of laminates that obtains the lowest mean cost function value across all the tested formulations, is considered to best identify the optimized laminates, i.e. those which attain the closest properties to the target. By deduction, the cost function formulation F K will be considered as the most suitable to use in the identification problem.

Target material properties

The benchmark is conducted on three different targets to ensure that the results are valid for different material properties across the domain. These targets correspond to existing quasi-trivial stacking sequences that are intrinsically quasi-homogeneous (though not symmetrical) and orthotropic (they have the same number of plies of opposite fiber directions).

The selected target Quasi-Trivial laminate is made of 28 plies, to allow a satisfactory exploration of the material domain during the laminate search, distributed into three ply orientations and their opposite {±α, ±β, ±γ} :

[α/β/γ/ -β/ -α/ -γ/α/ -α/ -γ/ -α/ -β/γ/β/ -α/ • • • α/ -γ/ -β/γ/α/β/α/ -α/β/α/γ/ -β/ -γ/ -α] (6.9)
The different ply orientations chosen as targets and the corresponding target values in terms of adimensional PP ρ 0k and ρ 1 are summarized in Table 6.1, considering the base ply material properties of Table 5.1. Target 2 has the same elastic moduli as Target 1 but is rotated by an angle of 20°to evaluate the influence of reconstructing a laminate that is not aligned with the frame of reference (as this can occur according to the parametrization of the direction of orthotropy in the first-level). Target 3 is chosen with an orthotropy ϕ 0 -ϕ 1 = π/4 indicated by a negative ρ 0k . 

Orientations (°) ρ T 0k ρ T 1 ϕ T 1 (°) Target 1 α = 0, β =

Numerical comparison

To retrieve the laminates with the same elastic properties as the targets given in Table 6.1, the genetic algorithm developed by [START_REF] Irisarri | Multiobjective stacking sequence optimization for laminated composite structures[END_REF] is employed to solve the identification problem (6.1). The ply orientations are chosen in the set of 36 orientations ranging from =85°to 90°, with a step of 5°, so that the same Quasi-Trivial stacking sequences chosen to define the target material properties are included in the search space. No manufacturing constraints are considered on the relative values of orientation angles between adjacent plies. Applying the benchmark method described above, the results for each of the three targets are presented respectively in Table 6.2, Table 6.3, Table 6.4. The values are normalized column-wise for clarity and the minimal value in each column is written in bold to highlight which group of laminates performs the best with respect to each cost function. The color code green, orange, red respectively indicates if, compared to the reference in each column, a group of laminates is better, slightly worse numerically but remains comparable to the reference, or significantly worse. For Targets 1 and 2 the group of laminates δ ABD has the lowest mean cost function values across the different formulations. However, for Target 3 this group performs well when evaluated with both F ABD and F LP but is much further off with the F PPx formulations.

To get a better insight on these contradicting observations, the average errors on the material properties and their standard deviations are compared for Target 1 and Target 3 in Figure 6.1. For Target 1, δ ABD has the lowest mean error values across most of the metrics, closely followed by the δ LP , which is coherent with the results of Table 6.2. Focusing on Target 3, the errors on the orthotropy properties of δ ABD are significantly higher than those of the δ PPx , while all the other metrics seem more in favor of the δ ABD group. This suggests that the F PPx formulations are more sensitive to errors on orthotropy, hence justifying the lower values of the related parameters for the δ PPx laminates (in Figure 6.1), as well as the poorer performances of the δ ABD with respect to the F PPx formulations (in Tables 6.2 to 6.4). Reciprocally, F ABD seems less sensitive to such errors, as the normalization values F 0 = F ABD (δ ABD ) are lower for Target 3 then for Target 1, while one would expect the opposite. Indeed, in Figure 6.1, the errors on the orthotropy properties are much higher for Target 3 then for Target 1, while the other material properties have comparable levels of error. Figure 6.1 also sheds light on the poorer results obtained for the δ PPx groups for the three targets. Among the cost functions F PPx the reason would be that there is always a metric that produces significantly less errors either on the membrane or bending properties. With respect to the F ABD and F LP formulations, the poorer results seem to come from a higher coupling of the δ PPx laminates as all the other metrics are comparable to those of the δ ABD and δ LP groups.

Finally, the formulations F ABD and F LP seem less efficient to reconstruct laminates towards a target with an orthotropy direction that is not aligned with the frame of reference, as illustrated by the lower F 0 in Target 2 compared to Target 1. This is however a common case to handle when reconstructing stacking sequences after the first-level optimization results.

Target 1 2.37 × 10 -3 1.28 × 10 -3 6.70 × 10 -4 5.95 × 10 -4 3.32 × 10 -4 Table 6.3: Mean and standard deviation of the cost functions of each group of 5 laminates reconstructed towards Target 2 (results are normalized column-wise with respect to the corresponding objective-function value

F ABD (δ) F LP (δ) F PP1 (δ) F PP2 (δ) F PP3 (δ) δ ABD 1.00 ± 0.
F 0 = F K (δ K )). Target 2 F ABD (δ) F LP (δ) F PP1 (δ) F PP2 (δ) F PP3 (δ) δ ABD 1.00 ± 0.
F 0 = F K (δ K )).
Target 3 1.63 × 10 -3 1.42 × 10 -3 5.54 × 10 -3 1.61 × 10 -3 1.51 × 10 -3 Table 6.4: Mean and standard deviation of the cost functions of each group of 5 laminates reconstructed towards Target 3 (results are normalized column-wise with respect to the corresponding objective-function value 

F ABD (δ) F LP (δ) F PP1 (δ) F PP2 (δ) F PP3 (δ) δ ABD 1.
F 0 = F K (δ K )).

Selecting a cost function

Even if the results presented above are issued from a limited study (three targets, five runs of the optimization algorithms), they suggest that the cost function F ABD can be privileged in this work for retrieving laminates owning macroscopic elastic properties closest to the targets. Results of Tables 6.2 to 6.4 and Figure 6.1 show that, despite F ABD not always attaining the best scores (see for instance the case of Target 3), it seems to be more precise in matching the required elastic properties with respect to alternative formulations. In particular, the laminates retrieved by means of the F ABD formulation are the closest to being uncoupled, which is usually a critical design requirement: in this regard, the better performance in terms of uncoupling compensates the lower sensitivity of the formulation to errors on orthotropy. Furthermore, the layup retrieval seems to provide better results when solving the identification problem at ϕ 1 = 0. Therefore, in the case of a target ϕ 1 ̸ = 0, the optimized laminates is simply rotated by the target ϕ 1 after solving the identification at ϕ 1 = 0.

The F ABD formulation is closely followed by F LP , which would be the second best alternative. On the other hand, the formulations F PPx seem to be less efficient, because of some of the partial objectives being better minimized than others.An explanation could be that, whilst in the F ABD and F LP formulations the objective functions are built in order to identify an homogeneous set of components of the stiffness tensors (respectively, Cartesian components or lamination parameters), the F PPx formulations are written as sums of partial objectives for each elastic property (uncoupling, homogeneity, orthotropy, etc): partial objectives may not be homogeneous, since they are related to either elastic modules, tensorial norms or angles, thus requiring normalization in order to make them comparable and equally scaled. However, it seems as the chosen scaling is not optimal, compared to the implicit scaling of formulations F ABD and F LP , which appear to be more effective in the present case. The polar approach can be advantageous when specific combinations of elastic properties are sought, which cannot be directly expressed by means of the F ABD or F LP formulations, as for instance in [START_REF] Vannucci | The design of laminates with given thermal/hygral expansion coefficients: A general approach based upon the polar-genetic method[END_REF].

It is important to note that the present study has been carried out on a very limited set of target points. To gain generality on these conclusions, the study should be expanded to more points on the orthotropic domain of Figure 5.1, also considering areas to the right of the domain where solutions are scarcer.

Application to the variable-stiffness design problem

Recalling that in the variable-stiffness case the structure is divided into N z zones, the objective of the identification is thus to retrieve a feasible stacking sequence δ (z) , z ∈ [1, N z ] in each zone, such that fiber continuity between adjacent zones is satisfied in order to ensure the integrity of the structure.

Problem formulation

The cost function of the identification problem is defined as a weighted average of the partial cost function values F ABD in each zone:

F = 1 w z Nz z=1 w z F ABD (δ (z) , L (z) 
T ) (6.10)

where w z , δ (z) and L (z)

T are respectively the weight, the current laminate and the target material tensors of the z-th zone.

Resolution method

In the framework of the variable-stiffness design, the second-level identification problem formulated as in (6.10) is solved here by means of the algorithm developed by [START_REF] Irisarri | Optimal design of laminated composite structures with ply drops using stacking sequence tables[END_REF]. Within this method, the blending of contiguous laminates is ensured by use of stacking-sequence tables.

One of the main limitations of this blending strategy is that it forces zones of same thickness to have the same stacking sequence, even if they are not contiguous. This can therefore result, in each zone, in significant discrepancies between the target stiffness properties and those of the retrieved laminate, which ultimately have a non-negligible impact on the structural responses. Nevertheless, the method of [START_REF] Irisarri | Optimal design of laminated composite structures with ply drops using stacking sequence tables[END_REF] allows for numerous ways to parametrize the search for stacking sequences, for instance by adjusting the definition of the objective function or imposing constraints on the stacking sequences. In order to mitigate the discrepancies on the stiffness matching and, by extension, on the structural responses, the following options are studied: O1. Weighting the partial cost function values (w z ̸ = 1): weights in (6.10) are not equal for the N z zones and are proportional to the maximum sensitivity of the structural responses with respect to material properties of the zones. The objective is to ensure that the error on the material properties will be minimal in the critical areas of the model.

O2. Setting the orthotropy angle ϕ 1 = 0 for the retrieval (ϕ 1 = 0): identification is carried out considering that ϕ 1 = 0 for all the zones and the identified laminates are then rotated by an angle ϕ 1 rounded at a 1°precision. This implies the use of variable-angle tow plies (plies with varying fiber orientations) and should improve the reconstruction as observed in Section 6.2.2. Furthermore, this condition is necessary to impose balanced laminates in the selected algorithm (see O.4).

O3. Forcing symmetrical stacking sequences (sym): the algorithm maximizes the symmetry of the stacking sequences to obtained uncoupled laminates. For odd number of plies, the additional ply is not on the symmetry line and thus the laminate is not strictly uncoupled.

O4. Forcing balanced stacking sequences (bal): the algorithm maximizes the number of pairs of plies with opposite orientations to obtain membrane orthotropy. This is not verified for odd numbers of plies, similarly to the sym option, unless the plies added or removed are oriented at 0°or 90°.

Results

The laminate retrieval is carried out on the feasible minimum compliance design obtained in case 4 of Section 5.5.2. The objective is to determine which combination of the aforementioned options allows to retrieve laminates with material properties closest to the target. Since the target material properties are rarely matched exactly, it is also sought to assess the level of discrepancy on the structural responses between the optimized design of Section 5.5.2 and the model made of retrieved layups.

The identification problem is first solved 5 times consecutively for each combination of options (named "Config." in Table 6.5) and the average and standard deviations of the minimal cost functions values are reported. These results show that Config. 3, 4 and 6 produce laminates that have the lowest cost function values, which are furthermore very close to one another. Note that only a restricted set of combinations of options were tested, as it was observed that applying weights to the cost functions of different zones, based on the zone's sensitivities significantly improved the designs (Config. 1 vs 2), and even more so when considering variable-angle-tow plies (Config. 2 vs 3).

Config. O1. w z ̸ = 1 O2. ϕ 1 = 0 O3. sym O4. bal F 1 4.024 ± 0.032 2 ✓ 2.423 ± 0.030 3 ✓ ✓ 1.029 ± 0.050 4 ✓ ✓ ✓ 1.035 ± 0.028 5 ✓ ✓ ✓ 2.132 ± 0.290 6 ✓ ✓ ✓ ✓ 1.059 ± 0.103
Table 6.5: Average and standard deviations of the minimal values of the cost functions for the variable-stiffness identification of case 4, Section 5.5.2, obtained using different combinations of options (O.1 to O.4) in the proposed method.

For the Config. 3, 4 and 6 which present similar low cost function values, Figure 6.2 describes the errors on the material properties with respect to the target. The three combinations of options present relatively high errors, which highlights a poor efficiency of the method in satisfying the target material properties in most of the zones. Note that the errors on the membrane orthotropy and uncoupling is not null for the cases where balanced or symmetrical stacking sequences are forced because of the zones with odd numbers of plies. These overall low performances are mainly attributed to the choice of a retrieval strategy based on stacking sequence tables, due to the "same thickness-same layup" restriction. Moreover, they question the accuracy of the structural responses when considering the material properties of retrieved laminates compared to those of the target.

Therefore, the structural responses of the models with the retrieved layups for all three combination of options are verified by FEA and compared to the responses of the optimized first-level model. First, it was verified that the rounding of the thickness in each zones to the closest integer number of plies had a negligible influence on the response values, as reported in Table 6.6. The structural responses considering each of the five laminates from each Config. are then compared to the target responses calculated on the first-level solution. For Configs. 3 and 4, most of the designs are unfeasible with respect to the design criteria in buckling λ 0 . For Config. 6 none of the designs are feasible with respect to the criteria on the force flux N 0 , but the designs can be considered acceptable as the errors remain below 3 %. The discrepancies on the first critical buckling mode are much lower than for Configs. 3 and 4, but in both cases, the compliance is higher than the optimized model of the first-level problem. These results highlight that even though the errors on the material properties for all three combinations of options are comparable, only the laminates of Config. 6 would be acceptable designs. 6.5. 

C/C 0 λ/λ 0 N x /N 0 -N x /N 0 a.

Discussion

Retrieving stacking sequences by solving an identification problem has shown to introduce significant errors on the matching of material properties, mainly because of the limits of the retrieval strategy based on stacking sequence tables. In turn this produces unpredictable discrepancies on the structural responses between the first-and secondlevel designs, the latter possibly not satisfying the design constraints. It thus seems difficult to robustly ensure that the optimized results of the first-level optimization will satisfy the design constraints on the structural responses after retrieving the layups by an identification strategy.

Ways to improve on this aspect are multiple: a first idea would be to release the "same thickness-same layup" rule for non-adjacent zones in the method based on stacking sequence tables. This could be further enriched by introducing blending constraints at the first-level optimization, that would be consistent with the method based on stacking sequence tables and thus help the stacking sequence retrieval during the second-step identification (reviewed in Section 1.2.4). Another idea would be to add a verification of the design criteria in the second-level problem by considering, for instance, the improved Shepard's method of Irisarri et al. (2011a). Alternatively, to avoid the increased complexity of the aforementioned methods, it is proposed in this work to improve the consistency between the search spaces of the first and second-level optimizations by assuming particular stacking sequences, such as Quasi-Trivial and Double-Double laminates.

Analytic layup retrieval by balanced Quasi-Trivial laminates

Assuming particular stacking sequences that are intrinsically quasi-homogeneous and own an orthotropic behavior can greatly simplify the identification problem: only the elastic moduli are left to be matched. Balanced Quasi-Trivial stacking sequences (Vannucci and Verchery 2001a) precisely verify these design objectives. [START_REF] Montemurro | On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates[END_REF] and [START_REF] Montemurro | Least-weight composite plates with unconventional stacking sequences: Design, analysis and experiments[END_REF] have integrated these laminates to the search algorithm solving the second-level identification problem. In this section, the aim is to assume the use of balanced quasi-trivial laminates right from the first-level optimization. In this way, an analytic identification of the laminates in the second-level is derived.

Description of balanced Quasi-Trivial laminates

Quasi-trivial laminates are exact solutions to either uncoupling, homogeneity or both, namely quasi-homogeneity (Vannucci and Verchery 2001a). These properties are obtained by a particular arrangements of the plies within the stacking sequences: plies that share the same orientation are clustered into saturated groups, and the positions of layers belonging to different saturated groups are defined within the stack in order to satisfy either uncoupling or homogeneity, or both (namely quasi-homogeneity), while the value of the orientation angle can be set freely within each saturated group without affecting the aforementioned elastic symmetries. These properties are thus obtained regardless of the orientations defined for each saturated group. By choosing opposite orientations for saturated groups that have the same number of plies and 0°or 90°for the other groups, a balanced quasi-trivial laminate is obtained: its membrane behavior is orthotropic, and so is the bending behavior by homogeneity. The following presents how quasi-homogeneous quasi-trivial stacking sequences are obtained.

Uncoupling and homogeneity properties are obtained by imposing:

B = 0, C = 1 h A - 12 h 3 D = 0 (6.11)
In terms of polar parameters this is equivalent to:

R B 0 = R B 1 = R C 0 = R C 1 = 0 (6.12)
As in Vannucci and Verchery (2001a), the application of the polar parameters in the CLPT gives:

R B 0 e 4iϕ B 0 = R 0 N 2 e 4iϕ 0 N k=1 b k e 4iδ k = 0, R B 1 e 2iϕ B 0 = R 1 N 2 e 2iϕ 0 N k=1 b k e 2iδ k = 0 (6.13) R C 0 e 4iϕ C 0 = R 0 N 3 N k=1 c k e 4iδ k = 0, R C 1 e 2iϕ C 0 = R 1 N 3 N k=1 c k e 2iδ k = 0 (6.14)
where

R [B,C] 0 and R [B,C] 1
are the coupling and homogeneity polar moduli of the laminate normalized with respect to the overall laminate's thickness, R 0 and R 1 are the polar moduli of the base ply, ϕ the coupling and homogeneity polar phases of the laminate, N the total number of plies and δ k the orientation of the k-th ply. Coefficients b k and c k are relative integers that represent the influence of the position of the k-th ply on the uncoupling and homogeneity respectively, independently of its orientation. Equations (6.13) and (6.14) simplify to:

N k=1 b k e 4iδ k = 0, N k=1 b k e 2iδ k = 0 (6.15) N k=1 c k e 4iδ k = 0, N k=1
c k e 2iδ k = 0 (6.16) which means that uncoupling and quasi-homogeneity of the laminates do not depend on the base-layer properties but only on the geometry of the stack (values of orientation angles δ k and their position in the stack). A saturated group G is a subset of plies that verify:

k∈G b k = 0, k∈G c k = 0 (6.17)
Since coefficients b k and c k satisfy the conditions:

N k=1 b k = 0, N k=1 c k = 0 (6.18)
the complementary subset of plies for a given saturated group G, is also a saturated group. Depending on the overall number N of constitutive plies, one can identify several combinations of saturated groups and a Quasi-Trivial Quasi-Homogeneous laminate corresponds to a given combination of n sg saturated groups, such that:

nsg g=1   k∈Gg b k   = 0, nsg g=1   k∈Gg c k   = 0 (6.19)
A Quasi-Trivial laminate is thus characterized by the number of saturated groups it contains, the number of plies in each saturated group, and the sequence of the plies. For example:

[α/β/γ/β/β/γ/γ/α/α/β/β/α/β/γ], {α 4 , β 6 , γ 4 } (6.20)
is a Quasi-Trivial Quasi-Homogeneous 14-ply stacking sequence. Its corresponding condensed notation designates the three saturated groups respectively containing 4, 6 and 4 plies oriented at α, β and γ.

Finally, to obtain orthotropic homogeneous laminates, it is sufficient to consider plies oriented at 0°and 90°as well as pairs of plies with opposite orientations1 . By extension, orthotropic Quasi-Trivial laminates can be obtained by choosing opposite orientations for pairs of saturated groups that have the same number of plies, and 0°a nd 90°ply orientations for the others. Pursuing the example of (6.20), if γ = -α and β = {0 • |90 • }, the laminate is orthotropic. Such a laminate is referred to as a balanced Quasi-Trivial laminate in the following, and balanced saturated groups have the same number of plies and opposite orientations.

Identification of exact balanced QT solutions

Considering a Quasi-Trivial Quasi-Homogeneous (QT-QH) laminate, solving the identification problem consists in finding the orientations of the saturated groups so that the material properties of the homogenized laminate are equal to ρ T 0k and ρ T 1 solution of the first-level problem. The advantage is that the relations between ρ 0k , ρ 1 and the orientations of the saturated groups are explicit and derived as follows. From the application of the polar representation in the CLPT to laminates made of the same base ply, the following relations have been established [START_REF] Julien | Conception Optimale de l'Anisotropie Dans Les Structures Stratifiées à Rigidité Variable Par La Méthode Polaire-Génétique[END_REF]: 6.22) following the same notation as in (6.13) for the membrane behavior. Now introducing the specificities of balanced QT laminates: let N 0 and N 90 be the number of plies oriented at δ = 0 • and δ = 90 • respectively. Let S be the total number of pairs of balanced saturated groups in the QT sequence. Each pair contains one group of N s plies oriented at +δ s and another group of N s plies oriented at -δ s , so that:

R A 0 e 4iϕ A 0 = R 0 1 N N k=1 e 4iδ k (6.21) R A 1 e 2iϕ A 1 = R 1 1 N N k=1 e 2iδ k (
N k=1 e 4iδ k = N 0 + N 90 + S s=1
N s e 4i(+δs) + e 4i(-δs) (6.23)

= N 0 + N 90 + S s=1
N s (cos(4δ s ) + i sin(4δ s ) + cos(4δ s ) -i sin(4δ s )) (6.24)

= N 0 + N 90 + S s=1
2N s cos(4δ s ) (6.25) and similarly,

N k=1 e 2iδ k = N 0 -N 90 + S s=1
2N s cos(2δ s ) (6.26) Since (6.25) and ( 6.26) are real: 6.27) and thus from (6.21) and (6.22):

ϕ 0 = K π 4 , K = {0; 1} and ϕ 1 = L π 2 , L = {0; 1} ( 
R 0 R 0 e 4iϕ 0 = ρ 0 cos(4ϕ 0 ) = (-1) K ρ 0 = ρ 0k (6.28) R 1 R 1 e 2iϕ 1 = ρ 1 cos(2ϕ 1 ) = (-1) L ρ 1 (6.29)
The condition L = 0 corresponds to ϕ 1 = 0, and values of ρ 0k and ρ 1 belong then to the orthotropic domain of Figure 5.1. Condition L = 1 corresponds to setting the orthotropy direction at ϕ 1 = π/2, thus covering values of ρ 0k and ρ 1 belonging to the symmetric image of the orthotropic domain with respect to the ρ 0k axis. Finally injecting the previous relations in (6.21) and ( 6.22):

             ρ 0k = 1 N N 0 + N 90 + S s=1
2N s cos(4δ s )

ρ 1 = 1 N N 0 -N 90 + S s=1
2N s cos(2δ s ) (6.30)

From these final relations, any point in the domain {ρ 0k , ρ 1 } can be achieved considering real δ s angle values. However for a given set of saturated group sizes and regardless of the orientation assigned to each group, the resulting set of laminates can only partially cover the domain achievable by laminates, as illustrated in Figure 6.3. When there is only one pair of balanced group in the QT, only one variable describes the elastic properties of the laminate and thus the feasible domain reduces to a line (as in Figure 6.3.a). With two pairs, the feasible domain covers a significant area of the total domain. Increasing the number of pairs increases the feasible area, but the domain cannot be entirely covered by a single laminate at its right side, unless the number of plies is infinite: this is coherent with the assumption of limiting the domain to ρ 0k < 0.8 in Section 5.3.2. 

(3) (4) (2) (1) (5) (6) 
n , -δ n }, (2){0 8 , α 6 , -α 6 }, (3) {0 11 , 90 4 , α 5 , -α 5 }, (4){α 6 , -α 6 , β 6 , -β 6 }, (5){α 4 , -α 4 , β 6 , -β 6 }, (6){α 6 , -α 6 , β 4 , -β 4 , γ 4 , -γ 4 }, where [α, β, γ] ∈ [-90 • , 90 • ] 3
The relations of (6.30) must now be inversed in order to identify the angles δ s verifying ρ 0k = ρ T 0k and ρ 1 = ρ T 1 . In a first attempt, the relations (6.30) are simplified by considering a QT laminate containing 4 balanced saturated groups: only two angles {δ 1 , δ 2 } must be identified, but a great part of the domain is covered (Figure 6.3 )(4-5)). By posing cos(2δ s ) = ∆ s then (6.30) becomes:

     ρ T 0k = 1 N 2N 1 2∆ 2 1 -1 + 2N 2 2∆ 2 2 -1 ρ T 1 = 1 N (2N 1 ∆ 1 + 2N 2 ∆ 2 ) (6.31)
Inversing the latter equation gives two solutions:

       ∆ 1 = ρ T 1 -1 N 1 N 1 N 2 1+ρ T 0k -2ρ T 1 2 2 , ∆ 2 = ρ T 1 + 1 N 2 N 1 N 2 1+ρ T 0k -2ρ T 1 2 2 ∆ 1 = ρ T 1 + 1 N 1 N 1 N 2 1+ρ T 0k -2ρ T 1 2 2 , ∆ 2 = ρ T 1 -1 N 2 N 1 N 2 1+ρ T 0k -2ρ T 1 2 2 (6.32) If ρ T 0k and ρ T 1 belong to the domain corresponding to the selected QT sequence, [∆ 1 , ∆ 2 ] ∈ [-1, 1] 2 and: δ 1 = arccos(∆ 1 ) 2 + ϕ T 1 , δ 2 = arccos(∆ 2 ) 2 + ϕ T 1 (6.33)
Hence the solution {δ 1 , δ 2 } allows to match exactly {ρ T 0k , ρ T 1 }. Finally, it is worth noticing that the solution {δ 1 , δ 2 } is not necessarily unique, as (6.31) shows:

• if N 1 = N 2 ,
then the solution is unique as both (6.31) are identical by permutation of ∆ 1 and ∆ 2 .

• if N 1 ̸ = N 2 , there is a region where 2 equivalent solutions exist as illustrated in Figure 6.4. It is important to remind that all the expressions given here for the elastic properties are based on the membrane behavior, but they automatically apply to the bending behavior too, since quasi-trivial quasi-homogeneous (QT-QH) stacks are considered. Hence, uncoupling and homogeneity (i.e. identical membrane and bending elastic properties) are ensured by the quasi-trivial arrangement of the stacks.

solutions 1 solution

Optimization process considering balanced QT-QH laminates

An optimization process is now developed in the aim of finding exact balanced QT-QH laminates solutions to the second-level problem. The methods consists in adding preliminary steps to the resolution of the optimization problems in the bi-level framework in order to determine the admissible domain of the material properties, and is described as follows:

Step 1. Solve the first-level problem of (5.16) considering thickness as a unique scalar optimization variable, i.e. uniform thickness over the structure. Other optimization variables are the stiffening path (number, location and geometry of stiffeners) as well as material properties, defined per zone via the polar parameters ρ 0k , ρ 1 and ϕ 1 , in the framework of the variable-stiffness optimization. The resulting optimized thickness is rounded to the closest integer number of plies N T and kept constant in the following.

Step 2. Choose a balanced QT-QH laminate sequence of N T plies with 4 balanced saturated groups and identify its feasible domain D QT .

Step 3. Solve the first-level problem of (5.16) a second time keeping the thickness fixed to the optimal value identified at step 1. The only variables considered are the component locations and the material properties in each zone of the structure, which are now constrained to the domain D QT . For both types of variables, the initial variable values are identical to the initialization of step 1.

Step 4. Identify the ply orientations in each zones by solving (6.32) and (6.33).

The assumptions inherent to the process are briefly highlighted:

• The thickness of the skin is not a variable of the optimization of Step 3 in order to fix the domain D QT in which the material properties can vary. This ensures that feasible solutions will be found in Step 4. However, the skin thickness has a significant impact on the performance of the design thus justifying the introduction of a preliminary thickness sizing step (Step 1).

• The thickness of the skin is uniform across the structure. This eliminates the need to blend QT-QH sequences containing different numbers of plies which is not an easy task, and has not been carried out to the best of the author's knowledge2 .

• Fiber orientations vary from one zone to the next (variable-angle-tow plies). This allows to stay in the variable-stiffness design framework for better structural performance. Consequently, the filtering strategy introduced in Section 5.2.4 is applied in steps 1 and 3 but to the material variables.

Application

The developed method is applied to the reference test case of Section 5.3.2, step by step. The results are discussed afterwards.

Step 1. The first-level problem is solved considering the variable substitution of Section 5.4.2 and the corresponding D lam . The material variables are initialized as per case 4 of Table 5.6 and the thickness variable is defined as:

t initial = 4 mm, D thick = t ∈ [2.5 mm, 10 mm] (6.34) 
The lower bound corresponds to a laminate with 20 plies, the minimum number of plies required to find a QT-QH laminate with 4 balanced saturated groups. The optimized skin thickness corresponding to solving the minimum compliance optimization is t opt = 3.113 mm.

Step 2. The closest QT-QH sequence with 4 balanced saturated groups matching the thickness t opt contains 24 plies:

QT-QH sol = Sequence: [0 1 2 3 2 3 1 3 0 2 0 1 0 1 3 1 2 0 2 3 2 3 0 1] Saturated group size: {6/6/6/6}

The four balanced saturated groups allow the definition of two possible orientation angles within the QT laminate, ±δ 1 and ±δ 2 : the variables of the second-step identification problem are angles δ 1 and δ 2 . According to the procedure described in Section 6.3.2, intermediate variables ∆ 1 and ∆ 2 are introduced and N 1 = N 2 = 6 in this case. In order to implement Step 3, the material variables must be constrained to belong to the feasible domain of this QT-QH sequence, i.e. domain ( 6) in Figure 6.3. The same domain is represented in Figure 6.5 where a new variable substitution is illustrated. A variable substitution is carried out in a similar way as in Section 5.4.2 in order to map the feasible domain of QT-QH laminates that were selected as optimized solutions in Step 2 and make the domain of variables convex. First, the boundary Γ QT of the domain D QT sol is obtained by substituting ∆ 2 = 0 and N 1 = N 2 = 6 in (6.31) and vanishing ∆ 1 :

Γ QT : (2ρ 1 -1) 2 -ρ 0k = 0 (6.35)
The variables {ρ 0k , ρ 1 } are then substituted by {α, β} such as:

ρ 0k = β(Γ -Γ QT ) + Γ QT = -2β(α -1) 2 + 4α 2 -4α + 1 ρ 1 = α (6.36)
and Figure 6.5 illustrates the new parametrization. The filtering of the variables introduced in Section 5.2.4 is maintained and directly applied to {α, β}. Finally, the domain D lam is expressed as:

D lam = D QT sol = α ∈ [0, 0.95] β ∈ [0, 1] (6.37) 
where the convexity of the domain is verified, and α is bounded to avoid UD solutions (α = 1). However, avoiding the balanced [0°/90°] cross-plie (α = β = 0) by increasing the lower bound on α would significantly reduce the domain and is thus not considered here.

Step 3. The first-level problem of Step 1 is solved again, this time considering a skin of constant thickness t = 3 mm. The material variables and their domain are those introduced in Step 2. The optimization results in a feasible minimum compliance design with a material distribution Ξ opt presented in Figure 6.6.

Step 4. Using (6.32) and ( 6.33) with Ξ T = Ξ opt the orientations of each saturated group in each zone of the structure is derived and presented in Figure 6.7. 

Results and discussion

The responses of the optimized structure at each step of the optimization process are synthesized in Table 6.7. In particular, Step 4 is solved according to two possible definition of orientation angles, either variable in an interval of real values (Step 4 -R) or discretized to multiples of 5°(Step 4 -5°). These results highlight a successful implementation of the method: the second-level solutions satisfy all the design constraints defined in the first-level. Furthermore, the discrepancy between the structural responses of the first-level solution (Step 3) and the second-level solutions is negligible. These results are achieved thanks to the exact matching of the target material properties, made possible by the use of QT-QH laminates, and highlights an increased robustness compared to the layup retrieval method based stacking sequence tables and solved by an evolutionary algorithm.

However, the compliance in the first-level optimizations is significantly higher compared to the reference case of Section 5.3.2 (+21 %, see compliance value for Case 1 of Table 5.7). This can be explained by the restriction to a uniform thickness of the skin in the present case. Furthermore, there is also a small increase in compliance between steps 1 and 3, mainly due to the restriction of the material properties to the feasible domain of the QT-QH laminate: many zones of the Step 1 optimal design have material properties that are outside of this domain, as illustrated in Figure 6.6. The impact on the component locations can also be noticed compared to the reference case: the V-shape reinforcement over the loading zone is realized by components combined to highly oriented material properties, since thickness variations are not possible.

Response

Step 1 Step 3 Step 4 -R Step 4 -5°C /C 0 1.00 1.06 1.06 1.06 λ/λ 0 1.04 1.05 1.05 1.06 max(N x)/N 0 0.68 0.66 0.66 0.67 max(-N x)/N 0 -1.00 -1.00 -1.00 -1.00 M T /M T 0 1.00 1.00 1.00 1.00 Restricting the identification problem to QT-QH laminates thus greatly simplifies the laminate retrieval, but is currently limited to uniform thickness distributions in order to avoid the problem of blending QT-QH stacks. This results in first-level solutions of higher compliance, and the process requires two runs of the first-level optimizations, which is the most computationally expensive part of the overall method. Enabling thickness variations with QT-QH stacks by further developing their blending is out of the scope of the present study. Alternatively, thickness variations can be more easily realized by considering another family of pre-defined stacking sequences: Double-Doubles.

Analytic layup retrieval by Double-Double laminates

In order to mitigate the drawbacks of optimizing the composite structure with constant thickness, as in the proposed strategy of QT-QH stacking sequence retrieval, while preserving the benefits of analytic laminate retrieval, an alternative approach to the design of variable-stiffness laminates consists in using the Double-Double laminate concept (DD), introduced by Tsai and Rainsberger (2018) (see Section 1.2.3). In constructing DD laminates, it is simple to add or drop plies, thus allowing the design of variable thickness structures. On the other hand, while DD laminates can be designed in order to exactly match membrane elastic properties, neither bending, nor homogeneity, nor uncoupling can be exactly satisfied, which can modify the structural responses and arise manufacturing issues. The objective of this section is hence to evaluate the benefits of using DD laminates in the identification problem of the bi-level framework.

Double-Double laminates

Double-Double laminates (abbreviated as DD) are obtained by repeating n rep times a basic sub-laminate of four plies oriented with respect to two angles α, β and their opposites -α, -β, usually noted as:

[±α; ±β] nrep
As for the QT-QH laminates with four saturated groups of the same size, the membrane properties of DD laminates are also parametrized by two angles, α and β, and thus belong to the same feasible domain, i.e. domain (4) in Figure 6.3. Therefore, expressions (6.32) and (6.33), given for QT-QH laminates also apply to DD laminates in terms of angles δ 1 = α and δ 2 = β. One can notice that DD laminates only correspond to one unique feasible region (domain (4), Figure 6.3), independently of the number of plies they contain, whereas QT-QH laminates can give access to larger feasible domains, when they own saturated groups with different numbers of plies (domain ( 5), Figure 6.3) or a higher number of saturated groups (domain ( 6), Figure 6.3).

By this construction, DD laminates have orthotropic membrane properties, but are neither exactly uncoupled nor homogeneous. More specifically, when designing DD laminates, bending properties cannot be matched at all, but it is empirically shown that the bending behavior "converges" to the membrane behavior for a high number n rep of repetitions of the base sub-laminate. In other words, DD laminates with a high number of plies are assumed to be homogeneous, as well as uncoupled.

Uncoupling the laminate is crucial to avoid manufacturing issues and ensure the predicted structural responses. The aim of this section is to assess the complete domain in which DD laminates can be considered uncoupled. For this purpose, a coupling threshold below which the laminate can be considered sufficiently uncoupled is first derived. The objective is then to find the lowest number of repetitions necessary to ensure that the DD is uncoupled for any couple of angles {α, β}, and compare it to the value n rep ≥ 5 recommended by [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF]. The objective of the last section is to solve the bi-level framework by assuming DD sequences, similarly to the design procedure proposed with QT laminates.

Determining an uncoupling threshold

A threshold on the uncoupling measure f B ((6.3)) is first established to decide whether a laminate is sufficiently uncoupled or not with respect to manufacturing constraints.

By measuring the post-manufacturing maximum curvature κ of a laminated plate, made up of n repetitions of a [0/90] base sequence, [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF] have established the empirical formula: κ = 0.7133n -2 . These data are here combined to establish the radius of curvature κ as a function of f B , plotted in Figure 6.8. Since the biggest dimensions of the structures dealt with in this work typically vary between 1 m to 10 m, a curvature defect κ < 1 × 10 -2 m -1 is empirically deemed acceptable: this allows to fix the uncoupling threshold at f B < f B = 1.54 × 10 -3 . This value is taken as reference for the rest of this work, but complementary tests should also be carried out considering more general stacking sequences and more general structural responses, in order to validate this threshold.

Selection of a DD base sequence

DD laminates are constructed by repeating n rep times a base sub-laminate of four plies with balanced orientations +α, -α, +β, -β that can be organized in various permutations. Only the [+α/ -α/ + β/ -β] and [+α/ + β/ -α/ -β] permutations are found in the literature: (respectivly found in [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF] and [START_REF] Shrivastava | D and DD-drop layup optimization of aircraft wing panels under multi-load case design environment[END_REF]). The aim is to determine which permutations of the base sub-laminate are uncoupled in the least number of repetitions.

The 6 possible permutations of the base sub-laminate are evaluated, in order to identify the sequence that requires the least number of repetitions to be considered uncoupled. For each permutation, the laminate producing the highest value of f B (defined in (6.3)) is identified. The base sub-laminate is then repeated until this maximum value does not exceed the threshold value f B = 1.54 × 10 -3 as derived from Section 6.4.2. Results are presented in Table 6.8, were α and β are two positive angles in [0 • , 90 • ].

From this table, cases 1 and 3 are the base sub-laminates that are the most favorable with respect to uncoupling. For Case 3, the lowest values for uncoupling are achieved when α < β. The minimum number of repetitions to obtain the uncoupling of the laminate is 6, i.e. giving a 24-ply laminate, which is slightly more than than the five repetitions recommended by [START_REF] Vermes | Design of laminates by a novel "double-double" layup[END_REF]. Furthermore, one may wish to have access to thinner laminates with a smaller number of plies. Therefore, considering only four and five repetitions of the cases 1 and 3 sub-laminates, Figure 6.9 illustrates the areas of the material domain where the DD laminates are uncoupled with respect to is first rounded to the closest integer number of plies that are multiples of four. The identification of the orientation angles α and β corresponding to the optimized material properties ρ T 0k , ρ T 1 and ϕ T 1 of the first level is then conducted by solving (6.32) and (6.33).

Application

The method is applied to the reference test case of Section 5.3.2, but using the same thickness domain and initial value as in (6.34). The feasible minimum compliance design obtained in the first-level optimization is presented in Figure 6.10. The distributions of the material properties are similar to those of the optimized design of the third step of the QT-QH optimization in Figure 6.6. The quantity of components in the design is however much lower in the DD case, replaced by thicker areas as seen in Figure 6.11. The latter figure corresponds to the post processing of the first-level in order to obtain integer numbers multiples of four plies, along with the solution to the second-level identification of the orientations. Variations of thickness and ply orientation do not show abrupt changes throughout the structure, which is consistent with the smooth material distributions obtained in Figure 6.10. The structural responses of the models with DD laminates is compared to the firstlevel responses in Table 6.9. It can first be remarked that small discrepancies exist between the first and second-level responses. These are mainly caused by the rounding of the optimized thickness obtained in the first level to the closest integer multiples of four plies. This step is indeed not trivial and more advanced methods can help further reduce these errors [START_REF] Carpentier | Optimisation Multi-Niveaux de Panneaux Composites[END_REF].

Similarly to the QT-QH laminates, the ply orientations are discretized to every 5°t o simplify the definition of the laminates. This introduces further discrepancies on the structural responses compared to the solution with real orientations, highlighting a greater sensitivity of the DD laminates to errors on the ply orientations, unlike with QT-QH laminates. Discretizing the orientations to every 1°allows to limit these errors, and will thus be privileged in the following applications.

Comparison between DD and QT-QH laminates

The assumption of DD laminates is an alternative to QT-QH laminates in order to reduce the discrepancies on the structural responses between the first-level and secondlevel designs to negligible values. Performance-wise, the design with DD laminates achieves lower compliance values than the design with QT-QH laminates. This is mainly due to the possibility of varying the thickness with DD laminates, while the QT-QH laminates have been restricted to constant-thickness designs as their blending is not trivial. It is also interesting to remark the significantly different ways of stiffening the structure in both methods: the optimized structure in the DD case is comparable to the structures obtained in the general approach (Chapter 5), made of a low stiffener count and very thick areas, while in contrast, the QT-QH case results in an optimized design with a rather thin skin and more stiffeners.

These differences can have repercussions on the manufacturing of the structure and in this respect, the QT-QH would seem simpler to manufacture than the DD case. Indeed, while both strategies make use of variable-angle-tow plies, DD must handle in addition the significant thickness variations which generate more complex surfaces on which to position the stiffeners. This latter point also mitigates the relative lower compliance of DD laminates compared to QT-QH, as the thickness variations would have to be smoothened to prevent crack initiation, thereby probably leading to an increase of the compliance. Based on these observations, more detailed designs would be necessary in order to establish a better trade-off on the preferred use of DD or QT-QH.

Conclusion

This chapter compares three strategies to retrieve laminates layups realizing target stiffness properties, which correspond to optimized results of the first-level optimization. In the context of variable-stiffness design, the most general strategy consisting in an optimization-based identification of the layups has shown to introduce significant discrepancies on the structural responses between the results of the first and second-level problems. These discrepancies originate from a poor matching of the target material properties, mainly due to the limitations of using a genetic algorithm for the search combined to a stacking sequence table approach to ensure blending between adjacent zones. Some improvements were obtained by restricting the search to symmetrical, balanced variable-angle-tow laminates, but robustly finding solutions so that the design criteria are met is not ensured. While complicated methods can be implemented to improve on this aspect, this work rather focuses on a simpler alternative consisting in formulating an assumption on the layup a priori of the first-level optimization: either considering Double-Double or Quasi-Trivial Quasi-Homogeneous layups. The latter readily meet the targeted behaviors (uncoupling, homogeneity, orthotropy) and the target stiffness can be analytically matched. In this way, the discrepancies between the first and second-level problems are significantly reduced.

Both the assumptions of either Quasi-Trivial Quasi-Homogeneous or Double-Double laminates thus allow to robustly retrieve laminate layups, which are solution of the bilevel optimization, and satisfy the design constraints. Double-Double laminates currently have the advantage of producing designs with better performances than Quasi-Trivial Quasi-Homogeneous laminates, since they allow thickness variations. Therefore Double-Double laminates will be privileged in the following and final chapter. Nevertheless, the method remains general enough so it can be applied to the use of Quasi-Trivial Quasi-Homogeneous laminates.

Introduction

The objective of this final chapter is to assess the capability of the method that has been developed in this work to pre-size a stiffened composite space launcher structure. For this purpose, the method is applied to an industrial test case provided by CNES, which corresponds to the design of the 0/1 interstage skirt of the Ariane 6 launcher, in its early stages of development (circa 2014). In order to assess the efficiency of the solutions obtained, CNES has also provided a reference solution for comparison. The latter consists of a stringer-frame stiffened metallic structure, which was designed and optimized with the in-house methods and tools available at CNES. This chapter is to be regarded as a guideline in order to apply the method developed throughout this work. In Section 7.2 the global design process of the method is first recalled. The industrial test case provided by CNES and its reference solution are described in Section 7.3. Because the size of the structure is significantly greater than the simplified cylindrical used through Chapters 4 to 6, details of the numerical implementation are described in Section 7.4. The results of the optimization are presented in Section 7.5, opening to a broader discussion on the capabilities of the method in Section 7.6.

Summary of the design process

A synthetic view of the proposed global design process for stiffened composite structures is presented in Figure 7.1. The process is divided into three main parts which aim to prepare the models for the bi-level optimization, then conduct the two optimizations (first and second level) and finally interpret the results. The details of each steps are described here-after.

Step 5

Second-level optimization: laminate retrieval

Interpretation step

Establish a conformal model of the stiffeners

Step 4

First-level optimization -, , variables

Step 2

Calibrate the projection functions

Step 1

Define the constants of the optimization Step 1 -Defining fixed parameters of the optimization

In the first step of the process, one must define the properties of the stiffened composite structure that remain constant during the whole optimization process. Regarding the composite skin, the properties that must be defined are:

• the material and thickness properties of the base ply,

• the sought properties of the homogenized laminate (orthotropic quasi-homogeneous laminates made of identical plies, Section 5.2.3),

• the family of stacking sequences that will be used for the laminate retrieval phase: none, symmetric, balanced, quasi-trivial or double-double laminates as developed in Chapter 6. If quasi-trivial or double-double laminates are retained, the first-level optimization should be adapted following the methods described in Section 6.3.3 and Section 6.4.4 respectively,

• the discretization of the surface into zones that can have different material and thickness properties in the framework of variable-stiffness design, and the settings of the filter that smooths the variation of properties between adjacent zones, introduced in Section 5.2.4. The zoning may also be defined after the mesh-size has been chosen in Step 2.

Regarding the stiffening structure, one must define the following properties which remain constant during the optimization and that are identical for all the stiffeners:

• the isotropic material properties of the stiffeners • the profile of the stiffener cross-sections and its dimensions from which the crosssectional properties are derived.

Step

-Structural model preparation

In this second preparatory step, the ground structure on which the stiffeners will be projected is generated. This step requires to define the mesh size that will be used for the model consistently with the cross-section profile dimensions chosen in Step 1. The choice of a mesh size remains a prerogative of the user, but it can be guided by following the recommendations formulated in Section 4.3.1. In particular, (4.4) recommends the ratio between the width of a stiffener's cross-section and the bandwidth of the associated inertia projection function, with respect to the mesh size. Note that this requires to approximate the value of the parameter δ I , which sets the bandwidth of the nodal distance filter of (2.5) for the inertia projection function, since the latter is only obtained after the calibration (Step 3). Therefore, (4.4) can be evaluated assuming δ I (0 • ) ∈ [0.8, 1] which represents suitable values of the parameter δ I that should obtained in the following calibration step. The ground structure can then be built according to this mesh size, following the process described in Section 2.2.2. The cylindrical skin on which the stiffening structure is sought is meshed using 4-node shell elements, which should be as square as possible. 2-node beam elements are then meshed in between every adjacent nodes of each shell elements, including diagonals.

Step 3 -Calibration of the projection functions Following the method described in Section 2.4, the projection functions have to be calibrated according to the stiffener cross-section profile selected in Step 1. For better consistency with the structural model, the ground structure used for the calibration should have the same mesh size as the one defined in Step 2. Nevertheless, since the projection functions are defined with parameters taking into account the size of the elements, one can employ the same calibration on structural models which have a different mesh-size, as far as the elements are kept as square as possible.

Step 4 -First-level optimization

In this first-level problem, the positions of the components representing stiffeners are optimized simultaneously with the local thickness and homogenized material properties of the composite skin. The optimization problem is formulated as in (5.16) and solved following the process presented in Section 5.3.1. The parametrization of the material properties is adapted according to the assumption on the stacking sequence family that is considered for the retrieval of the stacking sequences, previously defined in Step 1.

Step 5 -Second-level optimization

The second-level optimization consists in retrieving laminates that match the target thickness and material properties in each zone resulting from the first-level optimization. The thickness are rounded to the closest integer number of plies (or by steps of four plies if the double-double laminate family is considered). The general identification problem is formulated according to (5.3) and is solved either analytically if Double-Double or Quasi-Trivial laminates have been chosen in Step 1, or by an optimization method, such as the one used in Section 6.2, when considering more general stacking sequences families. Finally, note that this step does not affect the layout of the stiffening structure.

Step 6 -Interpretation of the results

This final step synthesizes the results obtained from the two optimization levels. The composite laminates forming the skin of the structure and their thickness are directly obtained from the results of Step 5. The complete geometry of the stiffening structure is obtained by combining the optimal locations of the stiffeners obtained in Step 4 and the stiffener cross-section (profile and dimensions) chosen in Step 2. At this stage, a conformal FE model of the optimized solution can be established, in order to provide a critical analysis and a more detailed interpretation of the design, before moving to a more advanced step of the complete sizing of the structure. Based on these observation, three criteria are formulated for the design of the IS skirt.

1. Maximum admissible force flux at the JS top perimeter: the IS must be designed in order to distribute the force fluxes and maintain them below the de-bonding limit of the joint at the top of the JS. This criteria is defined by CNES as the absolute maximum membrane load flux in the x-direction going through the top perimeter of the JS (see Section 4.5), and is set at N 0 = max |N x | = 2000 kN m -1 . This corresponds to the bounding limit of the junction, raised by a safety factor.

2. Minimum buckling load factor: the IS must not buckle under the service loads.

According to the design rules of CNES, the first buckling mode should be a global mode and the buckling load factor of the critical mode should be over λ 0 = 2.4. This safety factor is set at a quite large value in order to account for the errors in the estimation of the critical buckling load, due to the simplifications of the structural model and to the sensitivity of the eigenvalues to the imperfections of the model, as well as to ensure that stable designs will be obtained after the detailed design phase.

3. Structural stiffness: the IS should be stiff enough to limit the ovalization of the structure which could impact the capability of correctly steering the launcher. For simplicity, the ovalization is monitored by conducting a static linear analysis under the given loads F x and F y , and then measuring the norm of the displacement of a node below the LZ, represented by the symbol ∆ in Figure 7.2. At this stage of the design, it is preferred to express a condition on the global stiffness of the structure and no design criterion is explicitly formulated in terms of displacements. Nonetheless, the displacement of node ∆ is monitored a posteriori during the design process.

The objective of the present application is to find the lightest design of the IS that satisfies the criteria here above. The method developed in this work is applied in order to explore concepts of stiffened IS made of composite material (laminates made of Uni-Directional T300/5208, see Table 7.2).

CNES reference solution

Along with the reference model for application presented above, CNES also provided a reference optimized design of the IS (see Figure 7.4), with a grid-layout of stiffeners and entirely made of aluminum (material properties given in Table 7.2) together with its structural responses, resumed in Table 7.3. The stiffening structure in Figure 7.4 is characterized by stiffeners organized in a stringer-frame pattern, owning rectangular cross-sections that share the same height within each type (the height of stringers is different from the height of frames), but different widths. The bottom part of the structure is stiffened by two stiffening boxes, attached to the main skin and stabilized with respect to buckling by stiffening veils. This optimized design was obtained by CNES based on their in-house engineering methods, which mainly consist in successive parametric sizing optimizations of the skin thickness (including the skins and veils of the stiffening boxes) and of the stiffener cross-sectional widths. The optimization process was conducted imposing an objective of minimal weight with respect to the criteria cited above (force fluxes, buckling, ovalization). In the following, the structural responses of this reference optimized metallic design will be compared with those of optimized stiffened composite IS structures, obtained by optimizing the stiffening layout and the composite material properties according to the method proposed in the present work.

In order to better understand the role of the stringer-frame stiffening grid, a linear analysis is ran on a simplified model of the reference design represented in Figure 7.4, considering that all the skins (IS and stiffeners) are made of 10 mm thick aluminum (the aforementioned optimized thickness distribution was not available). The results in Figure 7.3.c for the load fluxes shows that the extremal values of the flux are significantly reduced compared to the bare IS (monolithic skin without stiffeners, Figure 7.3.b). Most notably, the traction force flux are significantly reduced by the stiffening boxes, that greatly limit the ovalization of the structure. The compression loads are also mush lower thanks to the stiffening structure, which efficiently distributes the force flux over the structure.
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Numerical implementation

This section describes the numerical implementation of the optimization process summarized in Section 7.2 when considering a free stiffener layout as well as composite material properties as optimization variables. This section also details the strategies set forth in order to successfully obtain a preliminary optimized design of the IS structure, corresponding to the industrial test case introduced in Section 7.3, by simultaneously optimizing its stiffening layout as well as its skin thickness and composite material properties.

Preparation of the model and optimization settings

In order to prepare the structural model which will be used for the optimization of the stiffened structure made of composite laminates, all the properties that are kept constant during the optimization, detailed in Step 1 of Section 7.2, are defined:

• concerning the optimization model: number and size of zones, possible symmetry properties;

• concerning the composite skin: constitutive material of the composite base ply and family of laminate solutions to search, which defines the admissible domain of laminate properties at the first level of the optimization;

• concerning the stiffeners: choice of the constitutive material of stiffeners and choice of the cross-sectional shape and size;

• concerning the structural model: definition of the mesh element size.

Here below, parameters and properties selected for the industrial application are presented. In the framework of variable-thickness and variable-stiffness optimization, the optimization model of the IS skin is divided into 14 × 44 zones (height × circumference) for the design in variable stiffness and thickness, as shown in Figure 7.5. The filtering strategy of Section 5.2.4 is set with the filter values of Table 5.3. Symmetry properties will be exploited in order to reduce the number of variables.

LZ

Concerning the material properties of the composite skin, it is considered as made of composite laminates with a carbon-epoxy uni-directional T300/5208 base ply, whose elastic parameters are presented in Table 7.2. Constitutive laminates are imposed to be orthotropic and quasi-homogeneous (see Section 5.2.3). In order to set the definition domain of the polar parameters for the first-level problem as explained in Chapter 6, the choice is made to assume Double-Double laminates for the second-level identification: based on the results of Chapter 6, Double-Double laminates allow to simply gain an insight on optimal stacking sequence starting from optimized material properties issued from the first-level optimization and seem to be adapted and sufficient for the preliminary design phase. Note however that the method is not limited to this family of stacking sequences and one may choose other families to work with.

The stiffeners are constituted of the same composite material as the IS, but the constitutive laminates are supposed to be isotropic (related properties are recalled in Table 7.2). In order to optimize the stiffening layout according to the method presented in Chapters 2 to 4, one has to set the stiffener cross-sectional properties, profile and size. In the present application, thin-walled square cross-sections (box) are adopted (see Figure 7.6). Their dimensions are set to 150 mm × 150 mm × 10 mm. Considering the large cross-sectional size, the eccentricity of the section towards the interior has to be taken into account in the model. Details on this latter aspect will be discussed in Section 7.4.2. The choice of a large thin-walled cross-section contrasts with the simple rectangular cross-section which was considered in all the previous applications presented in this work, and is motivated by the need of stiffening a real-life industrial-scale structure. In particular, thin-walled cross-sections allow a more effective exploitation of the stiffener mass, because the cross-sectional material distribution increases second-moment inertia. The shape and size of the box section is motivated by the fact that stiffeners with similar cross-sections are present in the reference solution provided by CNES (Figure 7.4), in which they play an important role against the ovalization of the structure. Additionally, wide stiffening sections are consistent with the method proposed in this work, that projects stiffeners represented by line components to form a lattice of beam elements, thus spreading their stiffening effect over a non-negligible area, as already discussed in Section 4.3.1.

Following the selection of the stiffener cross-section, the structural model is established by selecting an adequate mesh size for the ground structure can be selected. This choice is a compromise between the regularity of the mesh over the structure, the accuracy of the critical buckling load estimation and the computational costs. According to the guidelines of Chapter 2, the mesh size should be chosen so that the elements are as square as possible, which is highly dependent on the geometry of the part, for example the location and size of the LZ in the present application. Secondly, in order to ensure an accurate prediction of the critical buckling load, Section 4.3.1 recommended a size ratio between the width of the stiffener cross-section and the mesh-size. Based on this recommendation, the resulting mesh size for the industrial case of Figure 7.2 should be here a ∈ [30 mm, 37 mm]. However, to obtain elements closest to a square shape with respect to the geometry of the model (the LZ in particular), the mesh size should either be of a = 25 mm or a = 50 mm. Elements of size a = 25 mm would seem to be better suited but the computation cost associated (8 to 12 minutes per iteration) were considered too high for the present application1 . Therefore, elements of size a = 50 mm are preferred: the mesh can be observed on the model in Figure 7.2, and is organized in 43 × 220 elements on the IS (height × circumference).

Calibration of the projection functions

Once the ground structure mesh is defined and the cross-sectional properties of the stiffeners are set, the following step in the preparation of the optimization process is the calibration of the projection functions. This is done by applying the method developed in Section 2.4. Briefly recalling the method, the objective is to determine the coefficients ϕ (P ) max and functions δ (P ) in the nodal distance filter of (2.5), where P = {A, I}, so that the difference of global compliance between a reference model (where a stiffener is conformally meshed) and its corresponding optimization model (where the stiffener is projected onto the ground structure) is minimized. The parameters relative to the area and inertia projection functions ϕ A and ϕ I are determined by solving the optimization problem of (2.13) In order to calibrate the 150 mm × 150 mm × 10 mm box cross-section (BOX) defined in Figure 7.6, which is significantly larger than the 40 mm × 6 mm rectangular cross-section (REC) used that has been used so far in all the applications shown in this manuscript" the tension and bending calibration load cases are redefined according to Figure 7.7. In these new calibration models, the nodes to the free side of the plate are all rigidly connected together forming a rigid edge (connection of their six degrees of freedom). The load is applied to a central master node, with locked rotational degrees of freedom around the z-axis for the traction load case, and around the x-axis for the bending load case. This allows for a better distribution of the loads introduced on the stiffened calibration plate compared to the load cases initially defined in Figure 2.8.c,d, and significantly improves the consistency of the calibration results. Based on the new calibration models of Figure 7.7, the calibration process is led as described in Section 2.4. The resulting parameters ϕ (P ) max , and values of δ P interpolated by 12-th order sparse polynomials of the form δ (P ) (θ) = 6 k=0 c 2k θ 2k are presented in Figure 7.8. In order to better understand how the new calibration load cases improve the consistency of the calibration results when considering the box cross-section, the values of ϕ P max and of δ (P ) (0 • ) determined in the first step of the calibration process (parallel sweeping), either using the initial load cases (Figure 2.8) or the new ones (Figure 7.7), are compared in Table 7.4. It can be observed that for the initial load cases, the value ϕ I max ensuring a consistent value of δ (I) (0 • ) is abnormally low for the BOX section. Indeed, its ϕ I max is much smaller than for the REC section, and indicates that the maximum inertia of a beam element in the projection represents only 0.5 % of the inertia of the cross-section. This very low value results from the fact that the initial bending calibration load case (Figure 2.8.d) is not sensitive enough to the size of the cross-section: the compliance values of the reference conformal models, defined with either the REC or BOX sections turned out to be very similar, which was not consistent. The new load cases greatly improve on this aspect, rendering ϕ I max and δ (I) (0 • ) values that are more consistent with respect to the area projection function.

Another beneficial aspect of using projection functions that are calibrated based on the new load cases is that the optimization model is capable of accurately taking into account the eccentricity of the stiffener cross-sections (introduced in Figure 7.6). This can be illustrated by comparing the structural responses of the optimization and reference models, obtained by performing an angular sweep (Figure 2.8.b) for three load cases: the traction and bending load cases defined in Figure 7.7 and the compression load case of Figure 4.1.b. The evolutions of the compliance and of the critical buckling load factor are drawn in Figure 7.9 for a stiffener defined either with or without eccentricity. To take into account the eccentricity h e of the stiffener in the optimization model, the beam elements of the ground mesh are simply offset from the plate by a length h e .

The results in Figure 7.9 show that there is a good agreement between the evolutions of the structural responses between the reference and optimization models when considering eccentricity. For the bending load case (Figure 7.9.b), the discrepancies on the compliance values between the two models, both with and without eccentricity, are negligible. However, the errors between the structural responses of the optimization and conformal reference models appears to be greater for both the traction (Figure 7.9.a) and compression (Figure 7.9.c) load cases. These errors appear to be independent of whether stiffener eccentricity is considered or not, therefore confirming that the optimization model is capable of accurately taking into account the eccentricity of the stiffeners. The aforementioned discrepancies observed between the optimization and conformal reference model are rather due to the limitations of the projection process, amplified by the fact that the BOX cross-section calibrated here is much wider than the REC section. Most remarkably, since the sweeps realized to establish Figure 7.9.a,b are identical to those realized to calibrate the projection function parameters, the compliance curves for the reference and optimization model (without eccentricity) should be superimposed. This is actually not the case for the traction load case (Figure 7.9.a), where the optimization model appears to be stiffer than its reference. To explain this phenomenon, it is important to first recall that the projection functions of area are calibrated first, considering that the inertia properties of the cross-section are negligible in the pure traction load case, followed by the calibration of the inertia function. Therefore, the added stiffness observed in the traction load case (Figure 7.9.a) is linked to inertia properties affecting the pure traction load case, and more precisely the inplane intertia property I 2 . Indeed, since the projected stiffeners form lattices of beam elements, the non-negligible in-plane inertia properties I 2 of the beam elements (significant with the BOX section) tend to stiffen the joints at the intersection of beam elements, and thus provide the undesired stiffening effect observed when in-plane loads are considered. Consequently, this also participates in raising the critical buckling load factor, observed in Figure 7.9.c, in addition to the effect of the spread of the projected stiffener, previously discussed in Section 4.3.1. Nevertheless, the global evolutions of these structural responses for the optimization model remain very similar to those of the reference model, and the discrepancies are considered to be of an acceptable level in the context of a conceptual design study. A perspective to reduce these discrepancies within an optimization process would be to periodically establish a conformal model of the current design and evaluate its structural responses in order to provide correction factors for the latter.
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Optimization Strategy

The objective of the industrial case is to find the lightest structure that verifies the design criteria on the critical buckling load and the force flux. This problem can be formulated as a constrained weight minimization, but a few attempts with the developed method showed that it was difficult to find feasible solutions. Therefore the strategy adopted to solve the first-level optimization of Step 4 consists in minimizing the compliance of the structure for a given mass constraint, corresponding to the problem defined in (5.17). This is consistent with the aim of limiting the ovalization of the cylinder even though it is only a secondary objective of the design. In order to find lighter structures, the process is repeated by gradually decreasing the value of the mass constraint, as long as feasible designs are obtained.

An additional difficulty that can be encountered is that the structural responses of the interpreted conformal model of the optimized design does not satisfy industrial design criteria presented in Section 7.3. Indeed, the applications of Section 4.5 on the simplified test case highlighted that there could be discrepancies between the structural responses of the optimization model and its equivalent interpreted conformal models, especially characterized by a drop in the critical load factor. Therefore, in order to anticipate this effect on the industrial test case and ensure that the final interpreted design will satisfy the industrial design criteria, an adaptation of the optimization process described in Figure 7.1 is proposed in Figure 7.10. The main idea of the adapted process presented in Figure 7.10 is to verify early in the design process whether the interpreted optimized design will satisfy the design criteria and, if it does not, perform an additional optimization step in order to attempt to restore the feasibility, before retrieving stacking sequences. In this adapted process, Steps 1 to 4 remain identical to the initial optimization process. The main difference is that, directly after the first-level optimization (Step 4), a conformal model of the resulting optimized stiffening layout is established2 (interpretation step), and a FE analysis is performed in order to verify whether its structural responses satisfy the design criteria. If at this stage the design criteria are met, the laminates are retrieved (Step 5), and since the strategy based on the use Double-Double laminate is applied here (which has shown to introduce negligible discrepancies on the structural responses in Section 6.4), the final interpreted optimized design will most likely be feasible.

If, on the contrary, the design criteria are not met, it is proposed in Figure 7.10 to perform an additional sizing optimization, based on the model with conformally meshed stiffeners, hence fixing their layout, and considering as variables only the material Ξ and thickness T properties of the IS skin. If this new optimization succeeds in restoring the feasibility of the design, the laminate retrieval phase can be carried out. If it does not, this indicates that the stiffener layout is not adequate and should be modified, most likely by increasing the available design space, i.e. by raising the mass constraint and restarting the optimization loop back from Step 4.

Application

In the following, the IS skirt of Section 7.3 is optimized. The method is applied to search for a solution with a mass equivalent to the metallic reference solution. Lighter solutions are then sought by reducing the mass constraint and the results are finally discussed.

The initialization and domains of variation of the variables for the following optimizations (both the first-level and sizing optimizations) are presented in Figure 7.11. Since Double-Double laminates are considered, based on the developments of Section 6.4 the variable substitution of (6.36) is employed to parametrize the material properties and the thickness domain is adjusted to consider a minimum of 20 plies. The ply orientations are discretized to every 1°for practicality, as this has shown to have little impact on the structural responses. Finally, the four-quadrant symmetry of the model is enforced to reduce the total number of variables from 2752 to 688 (154 × 3 material properties Ξ + 154 × 1 thickness properties T + 18 × 4 component coordinates X ).

The first-level optimization is solved with the "split MMA" algorithm introduced in Section 5.5.3, since feasible solutions were not found when directly applying the standard version of MMA. The optimizations do not necessarily end at the best point encountered, therefore the feasible minimum compliance designs (BEST) are identified within the optimization history. 

Iso-mass composite design

The aim of the first test case is to apply the optimization strategy that is proposed and monitor the evolution of the structural responses at each step of the process. As a starting point, the objective is to find a stiffened composite design of the IS, that satisfies the design criteria, and that has approximately the same mass as the reference metallic design of CNES. The optimization is thus constrained by a total mass M T = 1200 kg.

The optimization is solved following the process described in Figure 7.10. The stiffening structure of the BEST result obtained in the first-level optimization (Step 4) is conformly meshed with both beam and shell elements, and the structural responses are presented in Table 7.5. Since the conformal shell model does not satisfy the design criteria, the proposed additional sizing optimization step is performed on this model (the conformal beam model is only used for comparison purposes). Its BEST design is feasible as shown in Table 7.5, and the Double-Double laminates realizing its optimized thickness and stiffness material properties are retrieved. The final interpreted design, with the optimized stiffening structure conformally meshed with shell elements, and the retrieved Double-Double laminates is also feasible as confirmed by its structural responses in Table 7.5, and is presented in Figure 7.15. The following provides a more in depth analysis of the optimized designs obtained in the first-level and sizing optimization steps of the process, and finally compares the results obtained with the reference metallic solution of CNES. First comparing the structural responses of the optimized first-level designs, Table 7.5 confirms that the optimization model predicts with an acceptable accuracy the compliance, buckling and displacements values of the conformal beam model. As expected, the buckling measure does not satisfy the design criterion, which is consistent with the observations made in Section 4.5.2. It is interesting to remark in Figure 7.12.a,b that the first buckling mode of the optimization model actually corresponds to the twelfth mode of the conformal beam model, which has an eigenvalue λ 12 satisfying the design criteria λ 0 = 2.4. In contrast, the critical buckling mode λ 1 of the conformal beam model seems to be a local mode, and thus does not appear in the optimization model because it is filtered out by the spread of the stiffener. Focusing on the responses of the conformal shell model, it appears to be significantly more flexible than the optimization model, and also presents a lower critical buckling eigenvalue. Nevertheless, Figure 7.12.a,c confirms that the first critical buckling mode of the optimization and conformal shell models are similar. Both these observations are consistent with the results of Section 4.5.2, and corroborate the fact that the significant difference between the critical buckling eigenvalues λ 1 is most likely due the greater flexibility of the conformal shell model. Remarkably, the skin of the conformal shell model seems to buckle under a complex stress state, with a high shearing component (according to the shape of the mode in Figure 7.12.c), and, because of its greater flexibility, its critical buckling factor turns out to actually be lower than for the conformal beam model, contrary to what was found in Section 4.5.2. The comparison between the optimization and its conformal models highlights that it is particularly difficult to correctly estimate the buckling response of the structure, and that it is highly dependent of the chosen modelization. This therefore reaffirms the usefulness of performing an additional sizing optimization, which allows to fine-tune the model in order to restore its feasibility.

Model
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The sizing optimization is here conducted on the conformal shell model, interpreted from the optimized first-level solution. Since its structural responses are further off from satisfying the design criteria than those of the conformal beam model (see Table 7.5), it provides a harder case to restore the feasibility and will thus be more meaningful to illustrate the possibility of generalizing the proposed approach. At this step, the stiffener variables are no longer part of the optimization, and the standard MMA successfully converges towards feasible solutions. The initial values of the material and thickness properties are identical to those of the first-level problem (see Figure 7.11). The results in Table 7.5 show that the sizing optimization restores a feasible design by tailoring only the skin material and thickness properties, noting a small reduction of the compliance. This is achieved by a slight change of the distribution of the material and thickness properties as illustrated in Figure 7.13. A beneficial aspect is that the distribution of the main directions of orthotropy also seem smoother after the sizing optimization which helps to obtain smoother fiber paths after retrieving the Double-Double laminates, as shown in Figure 7.15.

Overall, the proposed method allows to provide a feasible optimized stiffened composite design of the IS, with a mass equivalent to the reference metallic design of CNES. The design achieved appears to be slightly more flexible than the reference, in particular with respect to the ovalization deformation of the cylinder, noting that this observation is to be taken cautiously as the conformal shell model of the stiffener remains greatly simplified, compared to a more accurate detailed model.

Reducing the mass of the structure

The aim in now to lighten the structure as much as possible, while satisfying all the design constraints. From the starting point of M T = 1200 kg the mass constraint for the first-level optimization is first reduced to M T = 1000 kg and then to M T = 800 kg. In both cases, feasible solutions are achieved and the values of the structural responses are presented in Table 7.6. An attempt to reduce the mass constraint to M T = 700 kg did not converge to a feasible solution, hence the solution of M T = 800 kg was retained to pursue the design process. The conformal shell model is here also retained, and since its structural responses do not satisfy the design criteria, the proposed additional sizing optimization step is performed and restores the feasibility of the design. This allows to retrieve the Double-Double laminates to form a final interpreted optimized design that is feasible, presented in Figure 7.16, along with its structural responses summarized in Table 7.6.

Briefly analyzing the BEST result of the first-level optimization with M T = 800 kg in Table 7.6, the corresponding conformal beam and shell models have buckling, flux and displacement values similar to those of the optimization model, while their compliance values are significantly higher. The higher compliance values for the conformal models is consistent with that fact that the magnitude of the norm of the displacements are larger over most of the structure, as shown in Figure 7.14. In particular, while there is a good agreement of the shape of the displacement fields between the three models, the conformal beam and shell models present a very local peak in the displacement magnitudes at ninety degrees from the LZ (bottom right of Figure 7.14.b,c). This ovalization defect is not fully captured by the optimization model due to the added stiffness provided by the spread of the stiffener projections at their intersections. While it seems difficult to mitigate this effect directly in the first-level optimization, even if a constraint on the maximum displacements is considered, this aspect could also be improved in the proposed additional sizing optimization. 

Discussion

The method proposed in this work allows to simultaneously find a stiffening concept and the composite laminates forming the skin of a 0/1 Interstage Skirt of a space launcher. A feasible design that is 33 % lighter than the metallic solution is obtained in a time frame that is acceptable for a design office: 8 hours for the first-level optimization, 13 hours for the sizing optimization3 . However, it was observed that the designs obtained are generally more flexible than the reference solution of CNES. Indeed, the major difficulty of the optimization was to first find concepts that satisfied the design criteria, hence the focus was set on this aspect. The solutions can now serve as basis to further stiffen the structure. In future works, the displacements of the structure could be taken into account in the optimization problem: for example, a maximum displacement constraint among the nodes at the bottom perimeter of the cylinder could be formulated via an aggregation strategy.

The optimization process and the verification of the structural responses shed light on the difficulty of accurately predicting the structural responses of the conformally meshed model, especially for the response in buckling. This aspect is efficiently counterbalanced by the sizing optimization, which allows to adjust the material and thickness properties to find feasible designs, without increasing the mass of the structure. While the conformal model used as reference this work is criticizable as it is greatly simplified (stiffener crossing not explicitly modeled, no mesh convergence study, etc.), the process developed is straightforwardly applicable considering more detailed models. In addition, the designs could probably be further improved (lower mass or greater stiffness) by also sizing the stiffener cross-sections and material properties during the sizing optimization.

Overall, the objective of finding unconventional innovative stiffening layouts where the stiffeners are positioned freely on the surface has definitively been reached. However, these designs raise a certain number of questions on how to establish a detailed design of the structure that can be manufactured. First of all, the solutions presented above show stiffeners that tend to aggregate resulting in a great number of stiffener intersecting and partly overlapping. These phenomena should be limited as they are difficult and cumbersome to model correctly, as shown by the conformal models where stiffeners interpenetrate, and contribute to the increase of the manufacturing cost. Hence to improve on this aspect the following strategies could be considered:

• Impose non-intersection or non-overlapping constraints in the first-level optimization. While the formulation of the mass calculation already limits these phenomena as studied in Chapter 2, it does not aim to prevent them. Therefore more specific constraints could be formulated.

• Consider variable dimensions of the stiffener cross-sections: stiffeners with small cross-sections intersecting stiffeners with bigger cross-sections is commonly dealt with in grid layouts. The outlines of such a strategy were drawn in Chapter 2, and could be implemented to the optimization by considering cross-sections with a parametrization of the height and thickness only. Width variations seem more difficult to consider as this would imply to also vary the width of the projection of the stiffener.

• Interpret the designs as sandwich structures with a core made of stiffening ribs, similar to corrugated (also designated as fluted) sandwich concepts, such as the ones reviewed in [START_REF] Feng | Creative design for sandwich structures: A review[END_REF], but considering a free layout of the internal stiffeners. The cylinder as a whole would constitute the bottom face sheet, and the upper one would be delimited by the outer contours of the aggregated stiffeners in order to limit the quantity of material used. In between these face sheets, ribs follow the orientation of the stiffeners determined by the first-level optimization and are thus place according to an unconventional layout.

These strategies hence invite to either improve on the definition of the optimization (variables, constraints) or the interpretation of the solutions.

A second area of interrogation is how to CAD and manufacture the stiffening structure that lies on a skin with important thickness variations. A typical example where such a problem is encountered is a stiffener laid over an intersection of four zones which each have a different thickness. Some answers could be drawn from the aeronautic field where such problems have already been encountered, typically for front fuselage parts which in addition have double curvature surfaces.

The last question concerns the definition of the fiber paths in the plies of the Double-Double laminates. As discussed in Chapter 6, thickness variations are simply achieved with Double-Double laminates, by dropping or adding groups of four plies. However, the variations of the tow angles within a ply is less straightforward as the results show that it is not an easy task to establish continuous paths. Some improvement could be brought by integrating manufacturing constraints in the first-level optimization, in order to allow for a better control of the angle variations from one zone to the next than the filtering strategy employed in this work. Nevertheless, the method has the benefit of offering a rapid and unambiguous retrieval of fiber angles which can be simpler to interpret than the distribution of material properties.

Conclusion

In this chapter, the developed optimization method is applied to pre-size an industrial test case. The objective to find a feasible solution lighter than a reference metallic grid-stiffened space launcher skirt has been achieved by simultaneously optimizing the layout of the stiffening structure and the layup of the composite skin. The optimized design obtained is 33 % lighter than the reference solution, with a totally innovative stiffening structures raising many interesting questions for future designs.

A key step to succeed in solving this complex test case is the introduction of a sizing optimization based on a conformal model of the stiffening structure obtained in the firstlevel optimization. This allows to restore the feasibility of the design after interpreting the stiffening structure, by tailoring only the skin material and thickness properties. Double-Double laminates are then retrieved to obtain a final concept of the solution, that satisfies all the design criteria.

Overall, the results obtained in this chapter tend to suggest that there is a high potential of reducing the mass of launcher primary structures by adopting composite stiffened design concepts. However, this calls for original design concepts, both regarding the stiffening layout and the definition of the laminate layups that are not yet mature from engineering and manufacturing points of view.

Conclusions and perspectives

In the context of the preliminary design of space-launcher primary structures, the ambition of CNES and of its industrial partners is to reduce the cost of the launch into orbit of a kilogram of payload. This can be achieved by designing lighter structures. For this purpose, this study aimed at proposing innovative designs combining stiffened structures and composite materials. The objective was first to develop an optimization method capable of finding unconventional stiffener layouts on large cylindrical shell structures, taking into account the main structural requirements of launcher structures. The developed method was then combined with the simultaneous optimization of the composite layups of the skin of the structure. These objectives have definitely been reached, as shown by the successful application of the proposed method to the preliminary design of a stiffened composite space-launcher structure.

A thorough review of the literature highlighted the existence of methods for either the optimal design of stiffened structures or the optimization of composite layups, and allowed to select the most promising approaches in these two fields: on one hand, topology optimization of the stiffener layout via component-based methods, and, on the other hand, the bi-level optimization framework for variable-stiffness and variablethickness composite laminated structures. The chosen strategy consists in combining these two methods to enable simultaneous optimization, which represents one of the main novelties brought by this work: in the framework of the bi-level strategy for the optimal design of composite structures, the optimizations of unconventional stiffener layouts and of the homogenized material properties of the constitutive composite laminates are carried out simultaneously during the first step of structural optimization, considering the case of variable-stiffness and variable-thickness stacking sequences. The composite layups corresponding to the optimized thickness and material properties are retrieved in the second level of the bi-level approach, either based on unconventional layups such as Double-Double and Quasi-Trivial Quasi-Homogeneous sequences, or via an identification procedure, formulated as a minimization problem, which can be restrained to symmetric and balanced sequences with a fine discretization of ply angles. This work also makes contributions that are more specific to each field, namely the design of stiffener layouts and the optimization of composite layups: the aim is to be able to deal with the complexity of these problems, considering the specificities and requirements related to the design of launcher structures, as well as to address the challenge of interpreting the results of the preliminary optimization process, i.e. deducing detailed designs, which are close to being realizable, from conceptual optimized models.

A component-based topology optimization method is developed in this work with the aim of finding optimal layouts of stiffeners on a structure, without determining a set of possible positions a priori. This class of methods has the advantage of providing an explicit geometrical representation of the stiffening structure in the form of components, which are projected as a field of density values onto a finite element mesh in order to establish the structural model. Components are re-located on the structure by a simple update of the densities of the mesh elements, thus avoiding re-meshing processes that are usually costly and highly subject to errors. Furthermore, since the structural model is piloted by the geometrical model, this later greatly eases the interpretation of the optimization results. However, these methods, which have mainly been developed on academic test cases of small dimensions, are generally based on the use of solid structural representations (i.e. either two-dimensional plane-stress or plane-strain, or threedimensional modeling) and are thus not well suited to address the significant difference of order of magnitude between the sizes of stiffeners and of the structure. In addition, component-based methods existing in the literature mostly deal with optimization objectives and constraints restrained to the overall structural compliance or mass, which are insufficient to tackle the complexity of load cases in industrial applications.

In order to mitigate these limitations and to provide a method applicable to the design of large stiffened cylindrical structures, the main novelty of this work is to construct an optimization model based on a ground structure made of structural elements (beams, representing the potential stiffeners, and shells, representing the skin of the stiffened structure), rather than standard solid elements. Furthermore, the geometrical representation of stiffeners, often based on geometrical components of rectangular or ellipsoidal shape covering a non-zero area of the structure, is here reduced to a line component with associated cross-sectional properties, in analogy with a beam model. The structural model is then established by projecting the line components onto the ground structure, in such a way that each component is represented by a controlled set of beam elements belonging to the ground structure and is thus attached to the shell elements representing the skin of the stiffened structure. Projection functions determine the cross-sectional properties of beam elements belonging to the controlled sets as functions of the locations, orientation and cross-sectional properties of the line components. The proposed method allows the resolution of constrained compliance minimization problems via the Method of Moving Asymptotes (a gradient-based algorithm), similarly to existing component-based methods.

The basic implementation of the method was validated by reproducing results from academic test cases in the literature. The development of advanced features allowed to improve the convergence of the method when dealing with a great number of components which is of main concern for this study: most notably, a strategy of component deletion is introduced in order to eliminate components over the course of the optimization when their lengths become so short that their contributions to the structural response can be considered negligible. Other developed strategies enable to reproduce intrinsic features of existing component-based methods, such as overlapping components, sizing component cross-sections or handling curvilinear component paths, and form interesting perspectives to further improve the structural performance of the structure. The method was also upscaled to handle the main requisites of the design of a launcher structure: the formulation of constraints on the force flux distribution and on the critical buckling load factor as well as the parametrization of the component layout on cylindrical structures. These combined developments represent novel features for component-based methods, and allowed to optimize the stiffening layout on a test case representing a simplified launcher structure. As further validation of the method, the discrepancies on the structural responses between the structural model used for the op-timization and its equivalent interpreted conformal model were found to be sufficiently low to be acceptable for a preliminary design stage. The optimized stiffening structure was also pertinent compared to a result obtained from a commercially available free-size optimization tool.

The method developed in this work is capable of taking into account any crosssectional profile, including thin-walled sections such as box, hat, I-shape, T-shaped, etc. which present advantageous bending-inertia-to-mass ratios compared to plain rectangular sections, as well as to model their eccentricity. This is a significant advantage compared to topology optimization methods in general, as the latter would require very refined meshes and thus high computation cost in order to model such thin-walled cross-sections. Nonetheless, the modelization of the stiffeners as lattices of beam elements, as they result from the projection process, can raise questions concerning the accuracy of their estimation of the structural responses, compared to those calculated with conformally meshed stiffeners. This was a major concern of this work, therefore, a process to calibrate the projection functions was proposed in an attempt to minimize the aforementioned discrepancies, and was further corrected to be applicable to any type of sections. This highlights that the calibration step still represents a limitation of the method because it is influenced by many factors: by the definition of the load cases employed for the calibration; by the ability of a test case to isolate the influence of a given cross-sectional inertia or area property on the structural responses (e.g. the response to a pure bending load case should depend solely on the out-off-plane inertia of the cross-section), so that each term can be calibrated individually; and by the intrinsic relations that exist between some of these terms within the lattice ground structure. A perspective to further improve the accuracy of the structural responses of the optimization model would be to periodically evaluate a conformal model of the structure throughout the optimization process in order to calculate an error coefficient that can be used corrects the values of the structural responses. For this purpose, the method proposed in this work to quickly establish conformal models could most likely be automated, and the associated computational costs could be restricted both by conducting the structural analysis in parallel with the optimization model, and by updating the error coefficients only every few iterations.

Another aspect that can be limiting, more specifically related to the evaluation of the critical buckling loads, is the fact that the cross-sectional properties of the components are distributed over a few rows of beam elements within the ground structure. This is necessary in order to ensure the continuity and regularity of the variations of the structural responses with respect to the variations of components' locations, but tends to increase the stability to buckling of the optimization model compared to its equivalent conformally meshed model. The other structural responses (compliance, force flux) did not seem to be significantly impacted. This observation suggests that the method is better suited to model wider cross-section profiles (e.g. hat, box), since, in this case, the widths of the stiffeners' sections and of their projections can be tuned by adequately choosing the mesh size. For thinner profiles (e.g. I-shape, T-shaped), this would imply very fine meshes which ultimately result in too high computational costs, therefore the accuracy has to be compromised upon. On this aspect, one can argue that this method is somewhat similar to locally smeared stiffener approaches, such as the stiffness spreading method, which are also confronted to difficulties in defining the number of elements that take part in modeling the stiffeners. The comparative advantage of the proposed method is that the stiffeners remain modeled explicitly, thus allowing to distinguish the contributions of the shell and stiffeners to the structural responses. This facilitates the consideration of skins made of composite materials and the optimization of their thickness and material properties in the following. A further perspective of improvement of the proposed method could be to consider projection functions with constant bandwidth and variable amplitudes, such that it is the amplitudes of the projected crosssectional properties of a component, rather than their bandwidths in the current approach, that vary according to its orientation with respect to the ground mesh. This would allow to ensure that the width of the cross-section always corresponds to the width of its projection, thereby improving the evaluation of the critical buckling load.

The optimization of the composite layups, in which the stiffener layout is integrated, is carried out in this work within the bi-level framework, considering a design both in variable thickness and variable stiffness by use of variable-angle-tow plies. Only the laminates forming the skin of the structure are optimized, while the material properties of the stiffeners are isotropic and remain constant. The main points to highlight in the implementation of the method are first the parametrization of the first-level optimization by the polar invariants, which are well suited to describe the anisotropic properties of composite layers as well as composite laminates. Secondly, at the macroscopic scale, the composite laminates are imposed to be orthotropic, both uncoupled and homogeneous, and made of identical layers: this allows to satisfy industrial requirements, mainly related to manufacturing constraints. This also simplifies the parametrization of the optimization problems as it reduces the total number of variables and cancels the need for compatibility relations between the matrices characterizing the behaviors in membrane, bending and coupling (which are not entirely known at this time). Finally, in the framework of variable-stiffness design, a filtering strategy is implemented to ensure some continuity and avoid abrupt changes of thickness and material properties between adjacent zones of the structure. Thereby, the variations of fiber angles from one zone to the next are limited when retrieving the laminate layups in the second-level optimization, even though manufacturing constraints such as the maximum angle variation or maximum number of ply drops are not explicitly considered. This strategy was preferred over the implementation of more complex blending constraints that aim to ensure the retrieval of blended laminates in the second-level optimization.

The bi-level framework is well established for the optimization of composite laminates, but many challenges remain up to date. In this study, two were of main concern: the scaling of the variable stiffness method to handle a great number of zones (large structures), and the rapid and robust retrieval of the composite layups. The main contribution towards facilitating the scaling of the method to large structures is the implementations and benchmark of strategies aiming at reducing of the number of geometrical constraints (feasible constraints) formulated in the optimization problems. These constraints are necessary to ensure that, for each zone in which the material properties are optimized, the material properties stay within those achievable by laminates made of identical plies: therefore, increasing the number of zones corresponds to a proportional increase of the number of constraints, thus burdening the computational costs of most gradient-based methods and hampering convergence. Two categories of strategies to reduce the number of constraints were benchmarked: aggregation strategies (either global, clustered by level or by distribution) and variable substitution. The latter strategy turns out to be the most effective in improving the convergence of the structural performances, as they cancel the need for geometrical constraints. In the more general case where non-quasi-homogeneous laminates are considered, the variable substitution cannot be systematically transposed to reduce the total number of compatibility constraints that are formulated to ensure the compatibility of the stiffness tensors. In this particular case, the results of the benchmark tend to suggest that the aggregation of constraints distributed into clusters would be a promising alternative to reduce the total number of compatibility constraints, in complement of the variable strategy that remains applicable to the geometrical constraints. Future works could aim to implement and verify if this would be a viable and efficient strategy when considering laminates that are not quasi-homogeneous.

A second contribution concerns the rapid and robust retrieval of the laminate stacking sequences. The study first focuses on a general strategy, consisting in a optimizationbased retrieval of the layups, solved by a genetic algorithm and relying on stacking sequence tables to ensure the blending of laminates in the variable stiffness design framework. In order to ensure the best possible matching of target stiffness properties for the retrieved laminates, the set-up of the optimization was tuned. Firstly, by a benchmark on constant-stiffness design applications, different formulations of the retrieval cost-function were evaluated and the symmetrized Kullback-Liebler (KL) distance measure on the stiffness matrices was found to be the most efficient in comparison to the formulations in lamination and polar parameters. Secondly, for variable-stiffness design applications, the cost function of the minimization problem is formulated as a weighted sum of partial objectives, associated to each zone of the structure, and based on the KL cost function. The best matching was then obtained by applying the following strategies: for each partial objective, defining its weight according to the sensitivities of the structural responses with respect to the material properties of the associated zone; restricting the search to symmetrical and balanced layups; and retrieving the laminates considering variable-angle-tow plies, i.e. setting the same orthotropy direction for all the zones to solve the identification problem and then rotating the optimized layups by their target orthotropy angle. Despite these optimized settings, the errors between the material properties of the targets and of the retrieved layups remain significant in the variable-stiffness design case, leading to unpredictable levels of discrepancies on the structural responses which might no longer satisfy the initial design constraints. Perspectives of improvements issued from the literature are here numerous (see Chapter 5), as this field of research is very active, and could be implemented to enrich the developed method.

To improve on this aspect without resorting to strategies that increase the complexity of the two optimization levels, a novelty brought by this work is the development of analytic layup retrieval strategies based on the assumptions of particular laminate families: Quasi-Trivial Quasi-Homogeneous and Double-Double laminates. These sequences allow for an instantaneous retrieval of the layups, as well as a nearly exact matching of the target properties, thereby reducing to negligible values the discrepancies on the structural responses between the optimized homogenized structures issued from the first level of the optimization process and models defined with actual layups. The fact that Double-Double laminates do not exactly match the target raises an interesting question for optimization-based approaches: how high can the errors on the targeted stiffness properties be, before altering too much the responses of the structure. Subsequently, in the variable-stiffness design approach, the acceptable level of errors in each zone of the structure will most likely depend on the sensitivities of the structural responses with respect to the material properties in said zones. Therefore, a perspective would be to formulate a second-level optimization objective of retrieving laminates that are within determined tolerances of target stiffness properties rather than strictly matching them.

Current limitations related to the use of of Double-Double and Quasi-Trivial layups is that they do not follow most of the design guidelines for damage tolerance such as the maximum disorientation between two consecutive plies or the ten-percent rule 4 , hindering their use in industrial applications. Double-Double laminates are however gaining popularity as they greatly simplify the design of variable-thickness composites, and they are starting to be studied under the specter of material resistance, damage, fatigue, etc. potentially lifting some of the most restricting design guide-lines. Advantageously, the results will also be applicable to Quasi-Trivial laminates. Even though the latter are not straightforward to blend compared to Double-Doubles, and therefore have been limited to constant thickness designs, they have the potential of describing a greater part of the domain of material properties, because this family contains laminates with greater numbers of orientations, and various proportions of each orientation. Quasi-Trivial laminates thus represent an interesting perspective of facilitating the design of composite laminates and could present opportunities in simplifying the consideration of blending constraints and of fiber path continuity in the first-level optimization. Future studies could aim to establish whether these laminates can be blended together and eventually, provide the rules and methods adapted to integrate their application right from the first-level optimization.

The modeling of stiffener layouts and composite layups are seamlessly combined into the first level of the bi-level framework, enabling their simultaneous optimization. This is mainly possible because the same gradient-based algorithm can be used for both the separate optimization problems on the stiffener layouts and on the composite material properties, as well as for the combined and simultaneous optimization problem. The Method of Moving Asymptotes (MMA) algorithm is used in this work, for it has shown to be efficient within the existing component-based optimization methods. Its standard implementation was found to efficiently solve all three aforementioned optimization problems (separate, and combined) in the general case, noting that it is important to normalize the optimization variables (stiffener locations, skin thickness and material properties) to the same scale of variation. However, when attempting to solve the combined optimization problem dealing with stringent constraints, the MMA failed to converge towards feasible solutions. In this case, an alternative strategy was proposed to enable finding feasible solutions, namely the "split MMA", which consists in splitting the call to the MMA algorithm into three independent evaluations that separately update each of the three variable types (material, thickness, location). This mitigates the mutual influence of each type of variables on one another, allowing to provide feasible solutions in more cases. Further improvements in solving the optimization problem, both regarding the performance of the optimized solution and the speed of convergence, could be achieved by combining different algorithms in series. For instance, one could conduct a first optimization in order to find a feasible solution, either with the MMA or the split MMA algorithm, and then improve the optimized solution obtained by a restarting the optimization using the globally convergent version of MMA (GCMMA) or the Sequential Quadratic Programming (SQP) methods, which are known to efficiently converge to a local optimum if started close to it.

The developed method was successfully applied to the industrial-scale test case provided by CNES, resulting in the proposal of innovative stiffened composite structures that verify both requirements on buckling and force flux in the optimization model, for a significantly reduced mass, when compared to a reference stringer-frame aluminum structure. Nevertheless, the direct interpretation of the solution in the form of a conformal model, where components are directly represented by stiffening beams over the cylindrical shell, introduced non-negligible discrepancies on the structural responses, which ultimately did not satisfy the design constraints any more. The feasibility of the design was efficiently restored by introducing a complementary sizing optimization of the stiffness properties of the skin. Even though the proposed interpreted confromal models are criticizable, because they are coarsely meshed and are highly approximated to facilitate their construction, they allow to provide a proof of concept highlighting the efficiency of the sizing process, which could thus be applied more elaborate and accurate interpreted models. The latter would be closer to designs that can be manufactured, in order to establish a fairer comparison with the metallic stiffened structure of reference, and eventually consider the final and actual gains in terms of manufacturing costs.

The method developed in this work is capable of finding innovative designs of stiffened composite structures and offers interesting perspectives to reduce their mass. It forms a solid basis for conceptual studies with little discrepancies between the optimization model and its interpretation. Future work would consist in implementing the aforementioned perspectives formulated regarding the composite laminate optimization strategies, concerning both of the stacking sequence retreival methods (optimizationbased and by pre-determined stacks), and in extending the stiffening structure optimization method. Perspectives to the latter can be drawn around two main axes: further increasing the performances of the structure (stiffer or lighter designs) and improving its manufacturability.

In the objective of improving the performances, the constitutive geometrical (crosssection profiles and dimensions) and material properties of the stiffeners, which are fixed user-defined properties in the current work, could be included in the optimization process. A first step towards this objective has already been carried in Chapter 2, in which the homothetical sizing of variable stiffener cross-sections was concurrently performed with the optimization of the stiffener layout. A further extension could aim to consider a geometrical sizing of the cross-sections (independent width, heights and, thickness for a given profile), or even variable cross-sectional profiles, by directly sizing the cross-sectional properties (area, inertia) and retrieving the corresponding profiles and associated dimensions in a second time (analogously to the composite laminate optimization method). Since the results of such optimizations would most likely be made of stiffeners that all have different cross-sections, which is generally impractical to interpret and costly in regard of manufacturing, the aforementioned approaches could be complemented by a Discrete Material Optimization strategy in order to drive the optimization to converge to a finite set of possible cross-sectional profiles and dimensions. Alternatively to the simultaneous cross-sectional sizing and stiffener layout optimizations, an advanced sizing of the stiffeners could also be carried out within the additional step introduced to restore the feasibility of conformal designs of optimized solutions.

Since, in this case, stiffeners are modeled explicitly, their locations would remain fixed, but great freedom of design would be available: the dimensions of the cross-sections could be optimized, varying along the length of the stiffeners, but also their constitutive composite material properties, their local thickness, and possibly their topology.

Regarding the manufacturability of the resulting optimized designs, only few manufacturing and design rules, concerning both the stiffening structure and the composite laminates, have been taken into account in this work. While this allows to explore and achieve innovative designs concepts, it also results in solutions that can not necessarily be manufactured as they are. Subsequently, it is difficult to compare these designs to more conventional ones from a cost perspective in the aim of establishing a clear tradeoff. Future works should therefore aim to improve the manufacturability of the designs, particularly focusing on the stiffening structure, and for this purpose two approaches could be considered. The first one would consist in extending the formulation of the optimization problem, for instance by considering constraints to prevent stiffeners from overlapping or even crossing, which would lead to optimized stiffener layouts that are easier to interpret, model and manufacture, but could have a significant impact on the solutions obtained. In this respect, further improvement could be achieved by considering stiffeners with variable cross-sectional dimensions. The second approach would be to change the interpretation paradigm of the optimized design and propose interpretations in the form of sandwich structures, with a core made of blade stiffeners, which are possibly equipped with flanges to be bounded with the bottom and upper skins. This process would seem best suited for the use of composite materials, which are preferably assembled by bonding rather than by soldering or riveting. In both cases, efforts will be required to either make the optimized designs manufacturable using available techniques, or develop the methods suited to manufacture parts as close to the optimized designs as possible. The first conservativeness parameter ρ, is a constant parameter, identical for all the functions approximated (both objective and constraint functions), which influences the conservativeness of the approximation. Increasing the value of ρ renders more conservative approximations, which is more likely to produce feasible designs, but usually slows the convergence down and becomes sensitive to local optima. This is illustrated in Figure A.1 where f c is more conservative than f . The asymptotes allow to adjust the conservativeness of the approximations throughout the optimization process: the main idea is to have a first few iterations converging rapidly towards an optimum value, and then progressively make the approximations more conservative to help achieve a feasible design. For this purpose, the asymptotic values l j and u j , defined with respect to the variable value x j are updated at every iterations, according to the following scheme proposed by Svanberg: their initial values relative to the variables is determined by a fraction a 0 of the variables' bounds x min j and x max j . Then, if the value of a given variable has been varying monotonically over the three previous iterations, the distance between the variable and its corresponding asymptotes is increased by a factor a incr : the variable is moving towards an optimal value but has not reached it yet. Extending the range between the two asymptotes allows the variables to vary significantly in order to quickly converge towards an optimum. On the contrary, if the value of a variable has been oscillating over the three previous iterations, the distance of the asymptote is decreased by a factor a decr : this indicates that the variable is close to an optimum position. Bringing the asymptotes closer to the variables helps the optimization to converge.

However, if the range between the two asymptotes is allowed to become very large, it can prove detrimental to finding feasible solutions. To control this behavior, move limits are imposed on the asymptotic values, such that they always verify: Résumé de synthèse (in French)

Contexte et objectif scientifique

Cette étude fait partie d'un projet en collaboration entre le CNES, Centre National d'Etudes Spatiales, l'ONERA, Office National d'Etudes et de Recherches Aérospatiales, et l'institut Jean Le Rond d'Alembert à Sorbonne Université. Le sujet porte sur la conception de structures raidies en matériaux composites pour des applications de lanceurs spatiaux. Pour rester compétitif dans un secteur devenu très concurrentiel durant cette dernière décennie, l'enjeu pour le CNES et ses partenaires industriels est de réduire au maximum le coût d'un kilo de charge utile placée en orbite par les futures générations de lanceur. Dans cette optique, l'axe d'étude privilégié dans cette thèse est l'allégement des structures primaires de lanceurs.

Les structures de lanceurs sont aujourd'hui principalement des structures raidies métalliques. En effet, ces structures présentent de très bons rapports entre masse et charge critique de flambement global, raideur ou résistance. De fait, elles sont indiquées pour des pièces fortement chargées en compression et en flexion. Pour alléger davantage ces structures qui sont déjà grandement optimisées, l'idée est de recourir à l'utilisation de matériaux composites stratifiés qui, en plus de posséder des propriétés spécifiques avantageuses, permettent de modifier localement les propriétés matériaux anisotrope de la structure. Les structures raidies composites ont déjà montrées leur intérêt dans le domaine aéronautique. Cependant, elles restent pour l'heure moins avantageuses économiquement dans les applications lanceurs. En effet, ces structures sont le plus souvent restreintes à des schémas de raidissement traditionnels fait de cadre et de lisse, et des empilements composites conventionnels, avec des propriétés quasi-isotrope. L'allègement réalisé, principalement grâce aux bonne propriétés spécifique des composites, ne suffit pas à contre-balancer les surcoûts engendrés par l'ulilisation de matériaux composites (matière première plus chère, fabrication plus complexe et onéreuse, etc.). L'enjeu est donc d'explorer des concepts de raidissement plus libre et l'utilisation d'empilements composites moins conventionels, afin de pouvoir optimiser localement l'anisotropie de la structure, et ainsi l'alléger davantage. De plus, dans une démarche de conception industrielle, le but est de déterminer dès la phase de prédimensionnement si de telles structures seront viables et économiquement plus intéressantes que leurs équivalentes métalliques.

Dans ce contexte, l'objectif de la thèse est de développer un outil de prédimensionnement, capable d'optimiser simultanément la structure de raidissement et les stratifications composites, afin de proposer des structures de lanceurs plus légères satisfaisant un cahier des charges donné.

Revue de litérature

Le problème de conception associé au dimensionnnement de structures raidies composites consiste à minimiser la masse des structures de lanceurs (par exemple : jupes inter-étages et inter-réservoirs, adaptateur de satellite, etc.), tout en s'assurant que ces dernières vérifient les contraintes structurelles imposées par le cahier des charges (raideur, flambement, efforts de membrane, etc.). Néanmoins, ce problème est très complexe au vu du grand nombre de paramètres mis en jeu : les trajectoires et les sections de raidisseurs (paramètres géométriques) ainsi que les empilements composites et les épaisseurs locales (paramètres matériaux). C'est pourquoi, les méthodes de la littérature ne traitent, en général, que partiellement de la complexité de ce problème. Dans ce sens, il convient d'abord de remarquer qu'il existe un grand nombre methodes, capables d'optimiser soit les empilements composites, soit la structure de raidissement. La revue de ces méthodes fait l'objet du Chapitre 1 de la thèse.

D'un côté, de nombreux articles partent d'une géométrie de raidissement fixée, ou partiellement prédéterminés (schémas de raidissement linéaire, grille, cadres-lisses) et se concentrent sur l'optimisation des stratifiés composites optimaux. Dans ce domaine, les méthodes visant à concevoir la structure composite en rigidités et épaisseurs variables (les stratifications sont définies localement par zone), via une méthode d'optimisation bi-niveaux, semblent être les plus à même de trouver les solutions les plus performantes. À l'opposé, d'autres articles traitent de la détermination des trajectoires de raidissage optimales, sans schéma prédéterminé, mais restent limitées aux matériaux isotropes. Dans ce cas, les méthodes d'optimisation topologique à base de composants (ou explicites) semblent les plus prometeuses, bien que celles-ci ne soient le plus souvent appliquée qu'à des cas de test académiques, éloignés des géometries et des chargements de pièces industrielles réelles. Finalement, l'idée central de la thèse consiste à développer une méthode d'optimisation topologique à composants, adapté au dimensionnement de structures de lanceurs, puis de la combiner avec la méthode bi-niveaux pour l'optimisation des stratifications composites, afin de réaliser l'optimisation simultanée des trajectoires de raidissement et des empilements composites.

Démarche

La démarche de développement se divise alors en deux temps. Le premier axe de la thèse vise à développer une nouvelle méthode capable d'optimiser les trajectoires de raidissement. A travers les Chapitres 2, 3 et 4, l'enjeu est d'obtenir une méthode qui permette de positionner les raidisseurs de manière libre sur la structure, qui soit compatible avec l'optimisation des sections des raidisseurs ainsi que des stratifications composites, et qui soit utilisable sur des structures cylindriques de grandes dimensions. Afin de simplifier le problème, les sections des raidisseurs sont préalablement figées et le matériau de la structure (peau et raidisseurs) est considéré comme isotrope et d'épaisseur constante. Le deuxième axe de la thèse consiste à combiner cette nouvelle méthode d'optimisation des trajectoires avec une méthode d'optimisation des stratifiés composites issue de la littérature. À terme, l'objectif est de pouvoir optimiser simultanément les trajectoires de raidissement et les stratifiés composites de la peau, définis par zone sur la structure. Ceci correspond aux chapitres 5 et 6. Le dernier chapitre fait un rappel de l'ensemble des développements réalisés, afin d'appliquer la méthode à un cas test industriel fourni par le CNES.

Axe 1 -Optimisation des trajectoires de raidissement

Le premier axe d'étude consiste à développer une méthode pour optimiser les trajectoires de raidissement. L'objectif est de déterminer le positionnement des raidisseurs afin de minimiser la compliance (i.e. maximiser la raideur) de la structure. Pour ce faire, une analyse éléments finis est réalisée pour chaque nouvelle position des raidisseurs, jusqu'à ce que la compliance n'évolue plus. L'enjeu de cette optimisation est donc de pouvoir générer et calculer un grand nombre de modèles éléments finis pour un coût de calcul limité.

Dans ce sens, deux groupes de méthodes se distinguent dans la littérature. Le premier groupe est constitué des méthodes d'optimisation topologique à base de composants. Ces derniers sont une représentation géométrique de la répartition de la matière dans un volume de conception donnée, à l'image d'un modèle de CAO. L'optimisation consiste ainsi à déterminer la distribution optimale de matière dans ce volume de conception, par déplacement et déformation des composants. L'intérêt de ces méthodes a déjà été établi dans le cadre de l'optimisation de trajectoires de raidissement. Néanmoins, leurs stratégies de modélisation ne sont pas adaptées à traiter la différence d'échelle entre raidisseurs et structure de support dans le cas de structures raidies de grandes dimensions, telles qu'on les rencontre dans les applications aérospatiales. Le deuxième type de méthodes propose d'imiter le processus de croissance du raidissement d'une feuille de plante. Ces méthodes consistent à faire croître un chemin de raidissement, dans un maillage de base (ground structure) d'éléments structuraux (coques pour la peau, poutres pour les raidisseurs potentiels). Cette stratégie de modélisation est beaucoup moins coûteuse en temps de calcul, puisqu'elle utilise un maillage de base fixe et suivant un schéma géométrique simple et répétitif. Toutefois les trajectoires de raidissement sont fortement contraintes par le maillage de base et les résultats produits ne sont pas réalisables techniquement sans un processus important d'interprétation.

Afin de tirer parti des avantages de ces deux groupes de méthodes, la méthode que nous proposons et développons dans le Chapitre 2 consiste à appliquer le principe de l'optimisation topologique à composants à un maillage de base formé d'éléments coques et poutres. Pour générer le modèle éléments finis de la structure raidie, l'idée est de projeter les composants (raidisseurs), géométriquement matérialisés par des segments, sur les poutres du maillage de base. Pour ce faire, les propriétés de section (aire, inerties, excentricité) de ces dernières sont mises à jour par des fonctions de projection, selon les distances et les orientations des éléments poutres par rapport aux composants. Les composants sont ainsi matérialisés par des treillis d'éléments poutres dans le modèle éléments finis, utilisé pour l'optimisation.

Le modèle ainsi généré permet de calculer la compliance de la structure raidie, et ses sensibilités par rapport à la position des raidisseurs. De cette façon, il est possible de recourir à un algorithme d'optimisation à gradients (MMA) afin de déterminer une nouvelle position des composants et, par itérations, de minimiser la compliance de la structure. Afin d'assurer la précision du calcul éléments finis utilisant le modèle avec les raidisseurs projetés, comparé à celui sur un modèle où les raidisseurs sont conformément maillés, un processus de calibration des fonctions de projection est également établi. La méthode est ensuite validée, d'abord en optimisant une plaque structure raidie simple munie de deux raidisseurs, puis sur deux cas académiques issus de la littérature, initilaisés avec diffénrents nombres de composants. Dans ces dernières optimisations, une contrainte sur la masse totale de la structure est formulée. Les structures optimisées obtenues sont proches des structures de références prisent dans la littérature. De plus, les optimisations initialisées avec un faible nombre de composants convergent bien et rapidement. Cependant, lorsque le nombre de composants initialement présents est augmenté, certain d'entre eux sont raccourcis à des longueurs négligeables, mais non nulles, au cours de l'optimisation. Bien que cela simule le retrait de composants qui ne sont manifestement pas utiles au raidissement de la structure, leurs résidus rendent la satisfaction stricte de la contrainte de masse difficile pour l'optimiseur, posant ainsi des problèmes de convergence qui rendent l'optimisation inutilement longue.

Afin de pallier à ces difficultés de convergence, mais aussi améliorer davantage les performances de la structure optimisée (accroître la raideur ici), des fonctionnalités avancées sont développées puis évaluées dans le Chapitre 3. La majorité de ses fonctionnalités sont inspirées de celles naturellement présentent dans les méthodes d'optimisation des trajectoires de raidissements extraites de la littérature. Ces fonctionalité visent soit à supprimer les composants intuile au fil de l'optimisation, soit à mieux distribuer la matière disponible entre les composants. La première fonctionnalité développée consiste à supprimer au fil de l'optimisation les composants qui deviennent trop courts (supresssion de leurs varaibles), selon qu'ils vérifient avoir une longueur inférieure à une valeur seuil sur plusieurs itérations. Alternativement, la contrainte de masse est reformulée de sorte que la contribution de deux composants superposés soit équivalente à celle d'un seul composant, simulant ainsi la supression d'un des composants. Dans le but d'amélioré les performances de la structure, des raidisseurs à sections variables sont implémentés, via l'ajout d'une unique variable de dimensionnement : la section d'un raidisseurs peut alors être agrandie ou rétrécie par homothétie. Ceci donne avantageusement accès à une autre méthode de supression de composants, lorsque le but est d'obtenir une solution où toutes les sections de raidisseur soient identiques. En effet, en pénalisant la variable de dimensionnement introduite, cette dernière converge soit vers 0 ou vers 1, correspondant respectivement à un rédisseur absent ou présent. Enfin, des raidisseurs à trajectoires curvilignes sont implémentés dans le but de décrire des trajectoires plus complexes, sans pour autant augmenter le nombre de composants. L'ensemble de ces fonctionnalités développées sont ensuite comparées pour la résolution d'un cas test. Au vu des résultats, la stratégie de suppression des raidisseurs améliore significativement la convergence de l'optimisation tout en restant très simple à implémentée, et est donc retenue pour la suite du manuscrit. Les autres fonctionnalités constituent des perspectives d'améliorations intéressantes qui pourront être intégrées une fois que la méthode d'optimisation simultanée (raidisseur et composites) sera totalement en place.

Le Chapitre 4 vise ensuite à adapter la méthode d'optimisation des trajectoires de raidissement afin de pouvoir traiter le dimensionnement de structures industrielles. La méthode est étendue à des applications sur des structures cylindriques, dimensionnées selon des contraintes sur la charge critique de flambement et sur le flux d'effort maximum admissible à l'interface entre deux pièces sur le lanceur. La gestion des trajectoires de raidissement sur une surface cylindrique se fait en exploitant le fait qu'un cylindre est développable en une surface plane. Ceci permet alors d'appliquer directement la méthode de projection des raidisseurs développée dans les chapitres précédents. De plus, la méthode proposée permet de disposer des raidisseurs intersectant la génératrice par laquelle le cylindre est développé (ce cas équivaux à des raidisseurs dont une partie émerge du bord droit de la surface développée et l'autre du bord gauche). La contrainte sur les flux d'effort, qui correspondent aux efforts membranaires formalisés dans la théorie des plaques, est formulé de manière similaire aux contraintes de résistance des matériaux, et exploite une méthode d'agrégation des contraintes. La contrainte sur la charge critique de flambement est quant à elle formulée en tenant compte des vingt premiers modes, afin de limiter les effets des changements de mode, stabilisant ainsi la convergence. Les applications permettent ensuite de valider la méthode et confirmer sa bonne convergence. Elles sont également l'occasion de vérifier avec quelle précision le modèle d'optimisation (modèle éléments finis où le radisseur est projeté) permet de calculer les réponses de la structures, comparer à un modèle où les raidisseurs sont conformément maillés. D'autre part, la petinence des chemins de raidissement obtenues est confirmée, en comparaison de ceux interprétés d'un résultat d'une optimisation topométrique réalisée avec un outil disponible dans le commerce.

Axe 2 -Optimisation simultanée des trajectoires de raidissement et des stratifiés composites

Le deuxième axe d'étude vise à étendre la méthode pour optimiser simultanément les stratifiés composites de la peau de la structure. La conception de la stratification composite consiste à déterminer le nombre de plis composites et les directions de leurs fibres, grâce à la résolution d'un problème d'optimisation. Ce problème de conception est largement traité dans la littérature. Parmi ces méthodes, les stratégies bi-niveaux sont les plus à même d'être combinées avec l'optimisation des trajectoires de raidissement.

Pour faire une analyse éléments finis avec un matériau composite, la stratification composite est d'abord traduite en un matériau homogène équivalent. Ce matériau est alors caractérisé par ses tenseurs de rigidités en membrane, flexion et couplage membraneflexion (resp. A, D et B), établis selon la Classical Laminated Plate Theory (CLPT). La première étape de l'optimisation bi-niveaux consiste à optimiser la structure par rapport aux composantes des tenseurs A, B et D et à l'épaisseur du matériau. Cette optimisation est réalisée par un algorithme à gradients et se combine donc directement avec l'optimisation des trajectoires de raidissement. Ceci fait l'objet du Chapitre 5. Le deuxième niveau de l'optimisation, traitée dans le Chapitre 6, vise à reconstituer l'empilement composite qui réalise l'épaisseur et les tenseurs A, B et D optimaux trouvés au premier niveau. La résolution se fait le plus souvent via un algorithme génétique qui évalue la CLPT plusieurs milliers de fois, mais si on fait l'hypothèse de séquences d'empilements nonconventionnelle, telles que les séquences Quasi-Trivialles ou Double-Doubles, cette reconstitution peut se faire analytiquement.

Le Chapitre 5 se concentre sur le probleme d'optimisation structural de la méthode bi-niveaux (premier niveau), et détail l'introduction de l'optimisation des trajectoires de raidissement dans un processus simultanée. D'abord, l'enjeu du premier niveau est d'optimiser les propriétés macroscopiques d'un matériaux composite, tout en s'assurant d'obtenir des tenseurs A, B et D réalisables par un empilement composite. Pour ce faire, le formalisme polaire est utilisé. Il permet de représenter un tenseur de rigidité réduits dans le plan grâce à six paramètres polaires (dont cinq sont invariant par une rotation du repère matériau). Pour un stratifié, le nombre total de paramètres est donc de dix-huit, mais les hypothèses de conception formulées permet de réduire ce nombre à seulement trois. En effet le stratifié est considéré comme fait de plis identique, découplé et homogène, ce qui permet d'écrire que B = 0 et D = At 2 /12 et orthotrope. Il suffit donc d'optimiser trois invariants polaires pour caractériser le tenseur A : deux modules ρ 0 et ρ 1 ainsi que la direction principale d'orthotropie ϕ 1 . Afin d'explorer un domaine d'optimisation plus vaste, ces invariants polaires et les épaisseurs sont optimisés par zones sur la structure, c'est-à-dire en rigidités et épaisseurs variables. Une stratégie de filtrage est implémentée pour lisser les variations entre les zones.

L'optimisation en rigidité variable génère un grand nombre de contraintes géométriques : celles-ci sont nécessaires pour assurer que les tenseurs de rigidité de chaque zone soit réalisable par un stratifié, mais elles dégradent la convergence de l'algorithme. Une courte étude est donc menée dans le but de réduire le nombre total de contraintes à formuler, et quatre strategies sont comparée : trois d'entre elles consiste à agréger les contraintes (agrégation globale ou par petits groupes), et la dernière repose sur un changement de variable qui permet de naturellement satisfaire ces contraintes. Cette dernière stratégie présente les meilleurs résultats, notamment car elle empêche l'algorithme de placer des points en dehors du domaine faisable et réduit ainsi significativement le nombre d'itération nécessaires pour atteindre la convergence.

Les applications d'optimisation simultanée qui sont ensuite traitées, permettent de mettre en avant le gain potentiel de performance des structures raidies composites avec une peau conçue en rigidités et épaisseurs variables, comparer à des structures raidies métalliques. Une seconde application vise à estimer l'influence de l'initialisation des propriétés matériaux sur les solutions optimales obtenues, permetant de selectionner une configuration de départ qui soit la plus favorable. Enfin, des applications définies avec des contraintes d'optimisation plus sévères ne parvienent pas à converger vers des solutions faisables. Il est alors proposé de modifier l'appel à l'algorithme MMA, consistant à rélaiser une évaluation dissociée de la MMA pour chaque type de variable, permettant ainsi à l'optimisation de converger vers des solutions faisables dans tous les cas testés.

Une fois qu'une distribution optimale des propriétés matériaux à travers la structure a été trouvée, il est alors nécessaire de reconstituer les empilements composites qui permettent de réaliser ces dernières. Dans le chapitre 6, trois stratégies de reconstitution d'empilement sont comparées. La première consiste à résoudre un problème d'identification visant à minimiser une fonction coût mesurant la distance entre les propriétés matériaux d'un stratifié et les propriétés cibles (propriétés optimisées issues du premier niveau). Comme le problème est fortement non-convexe et combinatoire, un algorithme génétique est employé. Plusieurs formulations de la fonction coût sont comparées pour réaliser la reconstitution d'un seul et unique empilement. La formulation retenue, basé la norme Kullback-Liebler, est ensuite appliqué dans le cadre de la reconstitution d'empilement en rigidités et épaisseurs variables. Une stratégie basée sur des tables de drappage est utilisée afin d'assurer la continuité des plis entre les zones adjacentes, et donc l'intégrité de la structure. Cependant, après reconstitution, les erreurs entre les propriétés cibles et réelles des stratifiés restent très importantes, et conduisent à des structures dont les réponses ne satisfont plus le cahier des charges imposé.

Bien que plusieurs stratégies soient disponible dans la litérature pour améliorer ce dernier aspect, elles sont en général complexes à implémenter. Ce travail propose donc de recourir à l'utilisation d'empilement non-conventionnel, les séquences Quasi-Triviales et Double-Doubles, dont l'arrangement des plis partageant une même orientation est pré-déterminée. Pour les séquences Quasi-Trivales, l'arrangement intrinsèque des plis, permet d'obtenir le découplage et l'homogénéité du stratifié, avec un nombre d'orientations possibles qui dépend du nombre total de pli ; seulement des stratifiés contenant quatre orrientations sont considérés dans cette étude. Pour les Double-Doubles, le stratifié est établi par répétition d'un sous stratifié à quatre plis (quatre orientations quelquesoit le nombre de plis) : les propriétés matériaux tendent ainsi à être découplé et homogène, modulo un nombre suffisant (au moins 5) de répétitions. Dans les deux cas, les orientations sont choisie de sorte que les stratifiés soient équilibrés (même nombre de plis orientés selon un angle et sont opposé) afin d'obtenir des propriétés de membrane orthotrope (et donc de flexion orthotrope par homogénéité). Deux orrientations suffisent donc à décrire totalement la séquence, ce qui permet d'établir les formules analytiques qui lient ces deux orientations aux propriétés matériaux. Dans ce cas, l'optimisation de premier niveau peut être restreinte à décrire uniquement le domaine réalisable par ces stratifiés en utilisant un changement de variable. Ainsi, la reconstitution des empilements se fait analytiquement et, par conséquence, l'erreur entre les propriétés matériaux cible (résultat du premier niveau) et réelle deviennent négligeable, se traduisant également sur les réponses de la structures.

Prédimensionnement d'une jupe de lanceur

Le chapitre 7 a pour but d'appliquer la méthode développée tout au long de cette thèse au pré-dimensionnement d'une jupe Arianne 6. Cette dernière doit reprendre et répatir les efforts de propulsion produits par deux boosters, et correspond à un cas test fourni par le CNES. La démarche globale pour le prédimensionnement est synthétisée puis appliquée pas à pas. Deux aspects sont développé en sus, pour pouvoir gérer les difficultés apportées par le cas industriel. D'une part, les raidisseurs sont définis avec des sections de grandes dimensions, en cohérence avec la taille de la jupe, ce qui nécessite de prendre en compte leur excentricités. Pour y parvenir, les modèles utilisés pour la calibration des fonctions de projection sont légèrement modifiés afin d'améliorer l'estimation des réponses mécaniques de la structure lorsque de tels sections sont considérées. D'autre part, pour s'assurer que les modèles interprétés des solutions optimales obtenues (maillés conformément) vérifient le cahier des charges de conception, une étape suplémentaire d'optimisation est introduite entre le premier et le deuxième niveau de la méthode bi-niveaux. A l'issue de l'optimisation de premier niveau, les chemins de raidissement sont interprétés et maillés conformément. Une fois la structure de raidissement figée, l'étape suplémentaire ajoutée consiste à optimiser à nouveau les propriétés matériaux de la peau de la structure, avant de reconstituer les stratfiés dans la dernière étape, réalisé ici avec des empilements Double-Doubles. Appliquée au cas industrielle, le but est de minimiser la compliance de la structure sous des contraintes de masse, charge critique de flambement et de flux d'efforts. Dans le but de réduire la masse de la structure, l'optimisation est répétée pour des contraintes de masse de plus en plus strictes, jusqu'à ce qu'il ne soit plus possible de trouver des solutions faisables.

Conclusions et perspectives

L'outil développé dans cette thèse, permet de proposer une solution de structure raidie composite innovante, dont le modèle interprété (dans les limites de la modélisation employée) vérifie les contraintes sur la charge critique de flambement ainsi que sur les flux d'efforts. Elle est de plus significativement plus légère que la solution raidie métallique de référence optimisée par le CNES. Néanmoins, cette solution optimisée demeure difficilement interprétable de sorte à être fabricable, notamment car les raidisseurs ont tendance à s'interpénétrer et se croiser. Afin d'interpréter le résultat, il serait possible de concidérer la solution obtenue comme une structure sandwiche possédant un noyau constitué de raidisseurs. Dans ce cas, la peau extérieure correspondrait à la peau de la jupe, la peau intérieure serait conservée uniquement dans les zones où des raidisseurs sont présents, et le noyaux serait donc constituée de raidisseurs, positionnés selon les directions identifiées. Les perspectives principales à ce travail constitueraient à accroître davantage les performances des solutions en considérant des raidisseurs à sections variables, tel qu'esquisser dans le Chapitre 2. De plus, il conviendrait d'améliorer la fabricabilité des solutions optimisées, par exemple en contraignant davantage les positions des raidisseurs durant l'optimisation ou en concevant des procédés de fabrication adaptés à ces structures innovantes.
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 1 Figure 1: Example of a stiffened space launcher structure: Intertank Structure (ITS) of the Lower Liquid Propulsion Module (LLPM) (Merino et al. 2017) on the Ariane 6 launcher (photo: ESA).
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  Figure 1.1: Characteristics of a stiffened structure: examples of stiffener cross-section profiles and layout variations
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 21 Figure 2.1: Superposition of the component model and of the ground structure mesh with {A c , I y c , I z c , J c , h c } and {A, I y , I z , J, h} the cross-sectional properties of a component and of a beam element respectively.
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 222 Figure 2.2: Structural model obtained by projecting the component geometrical model onto the ground structure mesh of Figure 2.1. The beam elements are colored according to the color map of their projected cross-sectional area ϕ A .
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 23 Figure 2.3: Definition of the angle γ i in the angle filter f a .
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 24 Figure 2.4: (a) Variables of the nodal distance filter f (P ) d node . (b) Shape and contour lines of the nodal distance filter f (P ) d node over the panel surface.
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 25 Figure 2.5: (a) Variables of the nodal location filter f l node . (b) Shape and contour lines of the nodal distance filter f l node over the panel surface.
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 2 7.a shows a thickness-rendered view of the representation of a stiffener in the reference FE model. In the reference FE model, a stiffener is represented as a single line of beam elements along the path defined by each component in the geometrical representation.
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 27 Figure 2.7: Thickness-rendered view of the reference FE model of a stiffener (a) and its associated structural model based on the ground FE mesh (b).
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 28 Figure 2.8: Parallel sweep (a) and angular sweep (b) reference cases submitted either to a pure uniform tension (c) or a pure uniform bending (d) load case.
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 2 A component-based method for the optimization of stiffener layout objective function in(2.13) corresponds to the minimization of the Root Mean Square Error (RMSE) between the reference response and the response of the optimization model, while the constraint imposes that both responses share the same monotonicity. The local nature of the stiffener is enforced by choosing the highest feasible value of ϕ (P ) max , which corresponds to minimizing the bandwidth of the distance filter f (P )
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 29 Figure 2.9: Construction of the functions δ A (θ) and δ I (θ) by a polynomial interpolation of the optimal values {δ A } and {δ I } deduced from the angular sweeping.
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 2 Figure 2.10: Clamped plate unconstrained optimization with in-plane loading (top) and outof-plane loading (bottom). From left to right: initial designs, stiffest designs (iteration 23 and 14 respectively), detailed views of the equivalent structural models, history of the compliance (stiffest design marked by yellow dot) and stagnation criteria.
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 2 Figure 2.11: Geometries and loads of the CANT and MBB test cases.
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 2 Figure 2.12: Results of the CANT test case. Feasible minimum compliance designs of optimizations with initially 8 components (a) or 16 components (b) where components shrunk to negligible length are circled in blue, and an optimized result from the litterature (c).
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 2 Figure 2.13: Results of the MBB test case. Feasible minimum compliance designs of optimizations with initially 8 components (a) or 32 components (b) where components shrunk to negligible length are circled in blue, and optimized results from the litterature (c).
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Figure 3

 3 Figure 3.1: Typical evolution of component length L c for three out of the 32 components of the MBB test-case of Figure 2.13.b.

Figure 3 . 2 :

 32 Figure 3.2: Projection and assembly process of curvilinear components modeled by a chain of straight sub-components.

1

  Figure 3.3: Comparison of the formulations of the nodal location filter f lnode for two component lengths (p = 80, k = 0, ε t = 0.02): on the left, diagrams of functions f lnode over two different component lengths L c and, on the right, a zoom on the variation of functions f lnode at one extremity of the component.

  Figure 3.4: Brief recall of the MBB test case of Section 2.5.3

Figure 3 . 5 :

 35 Figure 3.5: History of the evolution of the compliance, mass and component count considering the component deletion strategy of Section 3.2.1.1 (in the compliance history diagram, red points correspond to feasible configurations, which satisfy the mass constraint).

  2.2.1. The size variables are set to vary in µ c ∈ [0.2, 2] and are uniformly initialized at µ c = 0.5. Only the component deletion strategy based on the component length of (3.1) is used and set with ε L = 3a and N it = 3. The feasible minimum compliance design obtained is presented in Figure 3.6.d and displays a significantly lower compliance than all the other cases, mainly explained by the improved distribution of the available mass among the components, since they are now allowed to vary their cross-sectional properties. It is interesting to compare this design to the one obtained by applying the component overlapping strategy, in Figure 3.7. Indeed, it can be observed that the same areas of the model where components gather in Figure 3.7.c, producing larger assemblies of beam elements, correspond to the ones with thicker components in Figure 3.7.d (particularly the upper and lower horizontal beams). Furthermore, the model with the sizing strategy presents a more refined internal structure, since the size of the components can be reduced (one can see thinner components linking the upper and lower larger ones).

Figure 3 . 6 :

 36 Figure 3.6: Geometrical models of the feasible minimum compliance designs benchmarking the proposed strategies of component removal and sizing of component cross-sectional properties, introduced in Sections 3.2.1 and 3.2.2.

Figure 3 . 7 :

 37 Figure 3.7: Geometrical models (top) and structural models (bottom) of the feasible minimum compliance designs obtained by means of two different strategies: (c) component overlap and (d) sizing the component cross-sectional properties (geometrical or component models are the same as in Figures 3.6.c and 3.6.d).

  • a size-like penalization, where p A = 2 and p I = 4 in (3.5), resulting in the feasible minimum compliance design of Figure 3.6.e; • a density-like penalization, where p A = 2 and p I = 2 in (3.5), resulting in the feasible minimum compliance design of Figure 3.6.f.

  Figure 3.8: Influence of the parameters ε L and N it of the component deletion criteria on the evolution of the number of components during the optimizations (curves on the left-side diagram) and the feasible minimum compliance designs (on the right).

Figure 3

 3 Figure 3.9: Effect of starting a new optimization from a previous optimized design, here on the example of Figure 3.6.b.

Figure 3

 3 Figure 3.10: Influence of the number of components present in the initial design on the optimized component layout.

  Figure 3.11: Initial and feasible minimum compliance designs (component and structural models), in columns, obtained using initializations with 6, 16, and 32 curvilinear components.

Figure 4

 4 Figure 4.1: Stiffener positions during the angular sweeping (a), operated on a simply supported plate submitted to a uniform compression load test case (b); evolution of the buckling eigenvalues across the sweep (c) and eigenvectors for two extremal positions (θ = 0 • and θ = 45 • ) of the stiffeners (d).

Figure 4 . 2 .

 42 The stiffeners are meshed with shell elements in the 0°position of Figure4.1.a and are bounded to the plate by node sharing (the stiffeners and the plate share the same nodes at the joint).

Figure 4 .Figure 4 . 2 :

 442 Figure 4.2: Out-off plane displacements of the first buckling mode at x = 0.8 coordinate for the reference model and the projected models with a = 20 mm and a = 5 mm mesh sizes.

Figure 4 .

 4 Figure 4.3: Out-off plane displacements, at x = 0.8 coordinate, of the first buckling eigenvectors for conformal models of box cross-section stiffeners of different widths (in blue) and of the optimization model with a = 20 mm (in orange).

Figure 4 . 4 ,

 44 by the following transformation:x = ψr c y = z (4.6)where (r c , ψ, z) are the cylindrical coordinates of a node on the cylinder and (x, y) are its Cartesian coordinates on the flat panel, r c being the constant radius of the cylinder. It is then straightforward to place components on the flat panel and realize the component Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con-

  4 are developed in order to enable components crossing the seam line.

Figure 4 . 4 :

 44 Figure 4.4: Projecting a stiffener onto a three-dimensional cylindrical surface.

Figure 4 . 5 :

 45 Figure 4.5: Simplified model of a launcher skirt with two lateral loads introduced by the attached propulsion boosters.

Chapter 4 |Figure 4 . 7 :Figure 4 . 8 :

 44748 Figure 4.7: Feasible minimum compliance designs for different sets of optimization constraints.

Figure 4 . 9 :

 49 Figure 4.9: Detail of the mesh of the conformal reference model of intersecting stiffeners meshed using shell elements.

Figure 4 .Figure 4 .Figure 4 .Figure 4 .

 4444 Figure 4.10: Comparison of the optimization model (on the left) and its equivalent conformal models, with stiffeners meshed with either beam (3D rendered view in the middle) or shell elements (box cross-section, on the right).

Figure 4 .

 4 Figure 4.14: Result of a free-size thickness optimization of the unstiffened IS skin realized in the software OptiStruct.

Figure 5 . 1 :

 51 Figure 5.1: Illustration of the feasible domain of orthotropic laminates (in blue) included in the thermodynamically admissible domain (in red) and locations of remarkable stacking sequences.

Chapter 5 |Figure 5 . 2 :

 552 Figure 5.2: (a) Structured grid on a cylindrical surface. (b) Zones surrounding the (k, l)-th zone of interest where the coefficients c 1 , c 2 and c 3 of the filter defined in (5.15) apply.

Figure 5

 5 

Figure 5 . 3 :

 53 Figure 5.3: Schematic overview of the simultaneous optimization of the stiffener layout and of the material and thickness properties of the skin

Figure 5 . 4 :

 54 Figure 5.4: Results of the simultaneous optimization of component layout, composite material properties and thickness of the skin. Top: optimized distributions of material properties, skin thickness and structural model of the stiffeners. Bottom: optimization histories of the compliance, force flux, buckling factors, percentage of zones violating the geometric constraint and its maximum value, mass and component count and maximum variable change between consecutive iterations.

Figure 5 . 5 :

 55 Figure 5.5: Geometric domain of ρ 0k and ρ 1 reparametrized in terms of substitution variables α and β.

Figure 5 . 6 :

 56 Figure 5.6: For each formulation of the geometrical constraints: fields of ρ 0k , ρ 1 , ϕ for the feasible minimum compliance designs; history of the percentage of zones and clusters violating the geometrical constraint and the latter's maximum value.

Figure 5 . 7 :Figure 5 . 8 :

 5758 Figure 5.7: Thickness distribution and component placement of the feasible minimum compliance solutions considering different materials for the skin of the model. The fields of the material variables for the anisotropic case are described in Figure 5.8.

Figure 5 . 9 :

 59 Figure 5.9: Minimal compliance designs and values for each initialization case of Table 5.6. Top row: fields of ρ 0k and ϕ 1 . Middle row: field of ρ 1 and component locations. Bottom row: thickness distribution and component locations.

Figure 5 .

 5 Figure 5.10: Buckling constraint history of the optimization problems solved with λ 0 = 5 (left) or λ 0 = 7 (right).

Figure 5 .

 5 Figure 5.11: Schematic overview of the implementation of the "split" MMA in the optimization process presented in Figure 5.3.

Figure 5 .

 5 Figure 5.12: Optimization history of the reference test case of Table5.9 solved using the "split MMA" algorithm.

Figure 5 .

 5 Figure 5.13: Feasible minimum compliance solutions obtained with the standard and split MMA algorithms for N 0 = 450 kN case.

  15, γ = 65 0.52 0.49 0 Target 2 α = 20, β = 35, γ = 85 0.52 0.49 20 Target 3 α = 40, β = 20, γ = 65 -0.40 0.11 0

Figure 6 . 1 :

 61 Figure 6.1: For targets 1 and 3, mean and standard deviations of the relative error with respect to the target values of R 0 and R 1 moduli, orthotropy value ϕ 0 -ϕ 1 and orthotrpy direction ϕ 1 , and the homogeneity and uncoupling measures.

Figure 6 . 2 :

 62 Figure 6.2: Absolute relative error on the material properties between the retrieved laminates and the target. Wide line: mean error values, box and whiskers: 10 th , 25 th , 50 th (median), 75 th and 90 th percentiles of error values considering all the laminates retrieved within the five runs for each Config. 3, 4 and 6 of Table6.5.

Figure 6 .

 6 Figure 6.3: {ρ 0k , |ρ 1 |} domain covered by different QT laminates depending on the number of saturated groups and the number of plies in each of the latter. (1){δ n , -δ n }, (2){0 8 , α 6 , -α 6 }, (3) {0 11 , 90 4 , α 5 , -α 5 }, (4){α 6 , -α 6 , β 6 , -β 6 }, (5){α 4 , -α 4 , β 6 , -β 6 }, (6){α 6 , -α 6 , β 4 , -β 4 , γ 4 , -γ 4 }, where [α, β, γ] ∈ [-90 • , 90 • ] 3

Figure 6 . 4 :

 64 Figure 6.4: Number of couples {δ 1 , δ 2 } solution for a given couple {ρ T 0k , ρ T 1 } considering a QT with the saturated groups : {α 4 , -α 4 , β 6 , -β 6 }

Figure 6 . 5 :

 65 Figure 6.5: Domain D QT sol parametrized by {α, β}

Chapter 6 |Figure 6 . 6 :

 666 Figure 6.6: Component location and distributions of material variables ρ 0k , ρ 1 and ϕ 1 over the structure and in the domain of orthotropic laminates for the feasible minimum compliance designs obtained in steps 1 and 3.

Figure 6 . 7 :

 67 Figure 6.7: Optimized ply orientations for the QT-QH laminate in each zone of the structure (red: ±δ 1 , blue: ±δ 2 )

Figure 6 . 8 :

 68 Figure 6.8: Curvature κ function of the measure of uncoupling f B obtained for n repetitions of the [0/90] base sequence (normalized by thickness).

Figure 6 .

 6 Figure 6.10: Component location and distributions of material variables over the structure and in the domain of orthotropic laminates for the feasible minimum compliance design of the fistlevel optimization.

Figure 6 .

 6 Figure 6.11: Result of DD laminates retrieval: representation of ply orientations (red: ±α, blue: ±β) and distribution of number of plies (on the right) for each zone of the structure.

Figure 7 . 1 :

 71 Figure 7.1: Synthetic overview of the global design process.

Figure 7 .

 7 Figure 7.3: (a) Displacements (d 0 = 540 mm, non-scaled deformed shape) and (b) absolute maximum principal force flux for a bare IS (monolithic skin without stiffeners) in aluminum of t IS = 10 mm. (c) Absolute maximum principal force flux for the IS with the stringer-frame stiffening structure of Figure 7.4, all skins (stiffener and cylinder) in aluminum of t IS = 10 mm.

Figure 7 . 4 :

 74 Figure 7.4: Stiffening layout of the CNES reference metallic solution.

Figure 7 . 5 :

 75 Figure 7.5: Zoning of the IS for variable stiffeness design.

Figure 7 . 6 :

 76 Figure 7.6: Stiffener box cross-section.

  in two steps: first, a parallel sweep of a stiffener oriented at 0°(Figure 2.8.a) allows to determine the highest values ϕ (P ) max and the corresponding δ (P ) (0 • ) for which the evolution of compliance does not oscillate. Secondly, the values δ (P ) (θ) for θ ∈ [0 • , 45 • ] are determined by an angular sweep of the stiffener (Figure 2.8.b).

Figure 7 . 7 :

 77 Figure 7.7: New calibration load cases, pure traction load (left) and pure bending load (right).
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Figure 7 . 8 :

 78 Figure 7.8: Results of the calibration of the projection functions for the cross-sectional area (P = A) and the inertia (P = I ) for the BOX cross-section of Figure 7.6. Values of ϕ (P ) max and non-zero coefficients of the polynomial functions δ (P ) (θ) interpolating the coefficents δ P .

Figure 2 4 :

 24 Parameters of the projection functions determined by the parallel sweep of Figure 2.8.a on either the initial or the new calibration load cases: recall of the numerical parameters obtained for the projection function ϕ REC of the 40 mm × 6 mm rectangular cross-section (REC) introduced in Section 2.5 and numerical parameters of the projection function ϕ BOX for the newly defined 150 mm × 150 mm × 10 mm BOX cross-section.

Figure 7 . 9 :

 79 Figure 7.9: Evolution of the compliance and critical buckling load factor for an angular sweep of a stiffener with and without eccentricity.

  Figure 6.5 α ∈ [0, 0.95] β ∈ [0, 1] D thick = t ∈ [2.5 mm, 10 mm] Optimizer settings ε L = 150 mm ε s = 0.61 % n It = 200 Figure 7.11: Initialization of the components on the IS (location and number), material and thickness properties uniformly distributed, and their respective domains of variation; settings of the optimizer: minimum component length ε L , convergence criteria on varaible change ε s and maximum number of iterations n It .

5 :

 5 Structural responses of (a) the feasible minimum compliance design of the IS (BEST) of the first-level optimization -for optimization model and corresponding interpreted conformal models), of (b) the BEST of the sizing optimization step -performed on the conformal shell model of a., and of (c) the sized conformal shell model of b. with retrieved DD laminates. (Compliance normalized by C 0 = 20 330 J).

Figure 7 .

 7 Figure 7.12: Buckling modes and eigenvalues of interest of the (a) optimization, (b) conformal beam and (c) conformal shell models of the BEST first-level solution.

Figure 7 .

 7 Figure 7.13: Material ad thickness distribution of the minimum compliance designs of the firstlevel optimization (left) and sizing optimization (right).

Figure 7 .Figure 7 .Figure 7 .

 777 Figure 7.14: Fields of the magnitude of the displacements for the optimization, conformal shell and conformal beam models.

Figure A. 1 :

 1 Figure A.1: MMA-based local approximation f of the function f at the point x j at the kth iteration. Example of a more conservative approximation f c .

Figure A. 2 :

 2 Figure A.2: Illustration of the move limit strategies on the variables' values (in blue) and on the assymptotes (in red).

  x

  asymptote move limits a l and a l are illustrated in Figure A.2. While Svanberg did not consider them as explicit parameters, setting their values by default to {a ℓ , a ℓ } = {0.01, 10},[START_REF] Verbart | A unified aggregation and relaxation approach for stress-constrained topology optimization[END_REF] and[START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF] have shown that setting smaller bounds on the move limits was beneficial to optimizations involving stress constraints.

  

Table 2 .

 2 

	(P ) max	0.4	0.16
	c 12	-146.43	258.32
	c 10	314.15	-461.54
	c 8	-259.38	295.52
	c 6	108.12	-67.497
	c 4	-27.502	-7.1133
	c 2	3.5499	4.1854
	c 0	1.1016	0.79449

.1. Section property Area (P = A) Inertia (P = I ) ϕ 1: Results of the calibration of the projection functions for the cross sectional area (P = A) and the inertia (P = I ). Values of ϕ (P )

Table 2 .

 2 .2.

	Case	N c C (J) M (kg) Feasible
	CANT 8	4.97 11.98	Yes
	CANT 16 5.01 12.08	No
	MBB	8	34.99 14.99	Yes
	MBB	32 32.53 15.09	No

2: Characteristics of the CANT and MBB case final designs.

Table 4 .

 4 

		parameters λ 1
	Optimization	a = 20 mm	2.71
		a = 5 mm	2.44
	Conformal Beam Rectangular	2.28
		Box b = 80 mm	2.33
	Conformal Shell Rectangular	2.28
		Box b = 20 mm	2.44
		Box b = 40 mm	2.53
		Box b = 60 mm	2.61
		Box b = 80 mm	2.70
		Box b = 100 mm	2.79

1: Comparison of the first buckling mode eigenvalue for different models and stiffener cross-section sizes (the rectangular cross-section is identical to the theoretical stiffening component; the box cross-section has identical area and inertia with the theoretical stiffening component).

Table 4 .

 4 

	2: Aluminum material properties
	Young Modulus	E 70.81 GPa
	Poison ratio Density	ν 0.33 ρ 2800 kg m =3

Table 4 .

 4 3: Model data and parameters All the parts are made of aluminum (material properties in Table4.2). The load and geometric data of the model, as well as the mesh size are found in Table4.3.

	Mesh size	a	10 mm
	Loads	F x 120 kN
		F y 20 kN
	Skin thickness t IS 1.7 mm
		t JS 23 mm
		t LZ 12 mm

Table 4 . 4

 44 

	: Optimization problem formulation
	and parameter settings	
	Constraint values	M C0 7 kg
		λ 0 N 0	2.4 550 kN m =1
	Component deletion ε L	40 mm
		N it	3
	Convergence criteria ε	0.61 %
		n It	200

LZ

Figure 4.6: Initial positions of the components on the IS and LZ.

Table 4 .

 4 5: Structural responses of the feasible minimum compliance designs for different sets of optimization constraints (C 0 = 215.9 J).

  Chapter 4 | Optimization of the stiffener layout on cylindrical structures considering con- straints on buckling and force fluxesTool Best/Total It C/C 0 M C /M C0 λ 1 /λ 0 N x /N 0

	Proposed method	59/59	1.00	1.00	1.15	[-1.00, 0.62]
	OptiStruct free-size 22/22	1.18	1.00	1.00	[-1.00, 0.63]

Table 4 .

 4 6: Structural responses of the feasible minimum compliance designs obtained with the developed component-based method and the free-size optimization in OptiStruct. C 0 = 215.9 J.

Table 5 .

 5 1: Material properties of the T300/5208 Carbon/Epoxy uni-directional composite ply.

	parameters

Table 5 .

 5 2: Material properties of a "black aluminum" laminate, i.e. an isotropic laminate made of the T300/5208 Carbon/Epoxy base ply material.

Table

  

	Chapter 5 | Simultaneous optimization of the stiffener layout, skin material properties and skin thickness
	Parameter	Symbol Value
	Constraint values	M T 0	7.93 kg
		N 0	550 kN
		λ 0	2.4
	Initial variable values ρ 0k	0
		ρ 1	0.2
		ϕ 1	0
		t	3 mm
	Filter settings	c 1	4
		c 2	2
		c 3	1

Table 5

 5 .3 are used. The response values of the feasible minimum compliance designs 1 obtained by each proposed strategy are presented inTable 5.4. 

	Strategy	Best/Total It C/C 0 t MMA /t 0
	Reference case	198/200	1.00	1.00
	Global aggregation	196/197	1.04	0.034
	Aggregation by levels	196/200	1.04	0.045
	Aggregation by distribution	182/185	1.03	0.048
	Variable substitution	75/77	0.98	0.036

Table 5 .

 5 4: For each strategy, iteration at which the feasible minimum compliance design is found over the total number of iterations, compliance C and average run time t MMA of the MMA algorithm over the first 20 iterations. Reference values: C 0 = 427.1 J and t 0 = 0.774 s.

Table 5 .

 5 5: Feasible minimum compliance solutions considering different materials for the skin of the model. The components are either in aluminum (for the aluminum skin) or in isotropic composite (for both the isotropic and anisotropic skins). C 0 = 204 J.

Table 5 .

 5 

	.

7: Structural responses of the feasible minimum compliance designs for each initialization case of Table

5

.6. C 0 = 118 J.

Table 5 .

 5 

8: Solving the reference test case of Section 5.3.2 considering stricter buckling and flux constraints. In the reference case: λ 0 = 2.4 and N 0 = 550 kN.

Table 5 .

 5 9: Solving the reference test case of Section 5.3.2 with the "Split MMA" optimization process considering stricter buckling and flux constraints. Reference: λ 0 = 2.4 and N 0 = 550 kN.

Table 6

 6 

	.1: Orientation of each saturated groups of the quasi-trivial laminate (6.9) and corre-
	sponding values of adimensional polar parameters.

Table 6 .

 6 2: Mean and standard deviation of the cost functions of each group of 5 laminates reconstructed towards Target 1 (results are normalized column-wise with respect to the corresponding objective-function value

  65 0.98 ± 0.74 0.64 ± 0.29 0.41 ± 0.22 1.24 ± 0.68 δ LP 1.83 ± 0.66 1.00 ± 0.35 2.41 ± 1.05 1.55 ± 0.61 3.21 ± 1.56

	δ PP1	6.75 ± 2.88 9.88 ± 4.31 1.00 ± 0.24 1.12 ± 0.31 1.84 ± 0.52
	δ PP2	5.47 ± 1.93 5.63 ± 1.86 2.13 ± 1.27 1.00 ± 0.23 4.53 ± 2.70
	δ PP3	3.98 ± 2.09 4.66 ± 2.80 1.81 ± 0.97 2.10 ± 1.12 1.00 ± 0.35
	F 0	

Table 6 . 6

 66 

	1st lvl		1.00	1.15	0.66	-1.00
	b. 1st lvl, rounded-thickness 1.00	1.15	0.66	-1.00
		Id. 1	1.08	1.04	0.62	-1.02
		Id. 2	1.06	0.93	0.62	-1.03
	c. Config. 3	Id. 3	1.07	0.92	0.63	-1.02
		Id. 4	1.07	0.96	0.63	-1.02
		Id. 5	1.08	0.72	0.65	-1.01
		Id. 1	1.06	0.94	0.62	-1.03
		Id. 2	1.07	0.91	0.65	-1.00
	d. Config. 4	Id. 3	1.07	1.01	0.65	-1.01
		Id. 4	1.07	0.78	0.64	-1.01
		Id. 5	1.08	0.85	0.64	-1.01
		Id. 1	1.06	1.13	0.62	-1.03
		Id. 2	1.07	1.15	0.62	-1.03
	e. Config. 6	Id. 3	1.06	1.10	0.62	-1.03
		Id. 4	1.06	1.17	0.63	-1.02
		Id. 5	1.07	1.01	0.64	-1.01

: Structural responses of the optimized structures (constrained minimum compliance, case 4, Section 5.5.2: C 0 = 117.2 J) obtained at different steps : a. optimized solution of the first-level problem; b. rounded-thickness of the first-level solution; c., d. and e. optimal variablestiffness laminates obtained by the retrieval method with Config. 3, 4 and 6 respectively.

Table 6 .

 6 7: Structural responses of the feasible minimum compliance design models obtained at Steps 1 (C 0 = 142.3 J) and 3, and of the models made of the QT-QH optimized laminates, either by a continuous real-valued definition of orientation angles (Step 4 -R) or a discretization by steps of 5°(Step 4 -5°).

Table 7 .

 7 1: Characteristics of the 0/1 Interstage Skirt (IS), of its adjacent parts ( Junction Skirt -JS, and Brace -B) and of the Load introduction Zone (LZ).

	Material	E 1 (GPa) E 2	G 12 ν 12	ρ (kg m =3 )
	Aluminum	70.81	-	-	0.33 2800
	CFRP	35	100 14.5 0.30 1600
	T300/5208 UD ply (t = 0.125 mm) 181	10.3 7.17 0.28 1600
	T300/5208 isotropic layup	69.68	-	-	0.30 1600

Table 7 . 2 :

 72 Summary of the material properties of the industrial case (all moduli in GPa).

Table 7 .

 7 3: Structural responses of the metallic solution provided by CNES, where M T is the total mass of the IS, λ 1 is the first critical buckling load, N x are the extremal values of the force flux and ∆ ref is the norm of the displacement measured at point ∆ in Figure 7.2.

		Stringer-frame
		stiffening layout
		2 stiffening boxes
		Interior stiffening veils
	x	
	y	z

Table 7 .

 7 

	first-level optimization		
	Optimization model	1.00	1.00 [-1.00, 0.52] 0.76
	Conformal beam model 1.11	0.89 [-0.85, 0.40] 0.77
	Conformal shell model	1.39	0.57 [-1.08, 0.61] 1.08
	BEST sizing optimization		
	Conformal shell model	1.37	1.00 [-1.00, 0.68] 1.07
	Retrieved DD laminates (1°)		
	Conformal shell model	1.37	1.00 [-1.00, 0.68] 1.07

Table 7 .

 7 6: Structural responses of (a, b, c) the feasible minimum compliance design of the IS (BEST) of the first-level optimization -for optimization model and corresponding interpreted conformal models), of (d) the BEST of the sizing optimization step -performed on the conformal shell model of c., and of (e) the sized conformal shell model of d. with retrieved DD laminates. (Compliance normalized by C 0 = 20 330 J).

	Chapter 7 | Design of a stiffened composite space-launcher structure
	Model	C/C 0 λ/λ 0 N x /N 0	∆/∆ Ref
	BEST first-level optimization (1200 kg) 1.00	1.00 [-1.00, 0.52] 0.76
	BEST first-level optimization (1000 kg) 1.14	1.01 [-1.00, 0.47] 0.86
	BEST first-level optimization (800 kg)		
	Optimization model	1.30	1.02 [-1.00, 0.61] 1.00
	Conformal beam model	1.75	0.30 [-1.01, 0.70] 1.38
	Conformal shell model	1.89	0.41 [-1.04, 0.70] 1.39
	BEST sizing optimization		
	Conformal shell model	1.99	1.00 [-1.00, 0.77] 1.41
	Retrieved DD laminates (1°)		
	Conformal shell model	1.99	1.00 [-1.00, 0.77] 1.41

SYLDA: in French, SYstème de Lancement Double Ariane

Computation time on a standard laptop, 4 CPU, 800 MB RAM

The assembly of the replicas is realized before the global assembly of the components described in Section

2.2.4, therefore the small lower bound ϕ min introduced in (2.9) is optional.

The implementation is realized in OptiStruct 2019 where a TIE contact is created between the nodes of the stiffeners and the CQUAD4 elements of the skin. The use of MPC based on Lagrange multipliers is forced by the CONTPRM, MPC parameter card.

Since for most optimizations both the flux and the geometric constraints are rarely strictly satisfied, even if their structural responses present smooth convergence profiles, points that do not overshoot the constraint by more then 1% are accepted as feasible solutions (similar to the criteria used in the commercial software OptiStruct).

This condition is sufficient to obtain an orthotropic membrane behavior. The bending behavior is also orthotropic, by homogeneity of the laminate

It is worth mentioning the works of[START_REF] Montemurro | On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates[END_REF] and[START_REF] Montemurro | Least-weight composite plates with unconventional stacking sequences: Design, analysis and experiments[END_REF] that have included QT laminate as possible solutions of the second-level identification problem, representing a first lead towards blending QT laminates

The computation cost is mainly driven by the high number of intermediary sensitivities in the chain rule of (2.12) that have to be derived by the optimization software. The total number of derivative to compute, can be approximated by the following: considering the periodicity of the ground-structure mesh illustrated in Figure

2.1, each skin element owns 4 beam elements and each beam element owns 4 variables, giving a total of 16 variables per skin element)

To establish the conformal model of the optimized stiffener layout obtained in the first-level optimization, the components are interpreted as stiffeners with the cross-section defined in Section 7.4.1, and the conformal mesh is constructed by following the method described in Section 4.5.2.

4 CPU (2.10 GHz) -2 GB RAM for first-level optimization, 16 CPU -4 GB RAM for sizing optimization

Minimum proportion of plies that the laminate should have in each of the 0°/±45°/90°directions
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[+α/ -α/ -β/ + β] α = 0, β = 90 9 Table 6.8: Number of repetitions n rep required to consider the most coupled DD sequence for each base sub-laminate as uncoupled, i.e. so that its coupling partial objective is inferior to the reference value f B = 1.54 × 10 -3 .

the threshold f B . It can be observed that a vast majority of the domain is covered for n rep = 5 which is in agreement with the recommendation. For only 4 repetitions of the sub-laminates, a significant part of the domain remains covered but this would require additional constraints on the variables. Consequently, in the following, applications of DD laminates will be considered with at least 5 repetitions of the base sub-laminate [+α/ -β/ + β/ -α] (case 3, Table 6.8), with α < β.

Case 1 : Case 3 : 

Optimization considering DD laminates Optimization process

When designing variable-stiffness and non-uniform-thickness composite laminated structures using the DD concept, one can follow the same optimization procedure as for the bi-level framework, which was detailed in Section 5.2.1. The first-level optimization is constrained to describe only the material domain achievable by DD sequences. To do so the variable substitution introduced in Section 6.3. 4 Step 2 is used, as it conveniently describes the domain of material properties achievable by DD laminates. To ensure a sufficient uncoupling and homogeneity of the DD, the minimum thickness value corresponds to a 20-ply laminate (n rep = 5). For the second-level, the thickness of the skin

Chapter 7

Design of a stiffened composite space-launcher structure

Industrial test case 7.3.1 Presentation of the CNES application case

The application proposed by CNES is to re-design the 0/1 Interstage Skirt (IS) of an early version of the Ariane 6 launcher using composite materials. The IS and its surrounding structural parts considered in the design case are presented in Figure 7.2. The Load introduction Zones (LZ) represent the attachments of two auxiliary solid propulsion boosters to the IS, through which the majority of the propulsion forces are transferred to the main structure of the launcher. The IS is also connected to a Junction Skirt ( JS), made of Carbon Fiber Reinforced Polymer (CFRP), via an aluminum Brace (B). The JS is then in turn attached to the upper part of the launcher by a bonded joint, which is represented by a clamped condition in the present model. The properties of the JS, LZ and B are provided by CNES and are not to be designed: Table 7.1 indicates the thickness and constitutive material of each part and the corresponding material properties are summarized in Table 7.2.

From a mechanical point of view, the bare IS is very similar to the simplified test case dealt with in Section 4.5. The propulsion forces generated by the booster and the steering of the launcher produce axial and radial loads (F x and F y in Figure 7.2) applied to the IS via the LZ (values of forces are given in Table 7.1). These loads have the particularity of being introduced on a very small area compared to the size of the launcher. This generates a highly non-uniform load distribution in the skin of the IS as illustrated by the mechanical response of a monolithic aluminum IS skirt, of thickness t IS = 10 mm, presented in Appendix A

Implementation of the Method of Moving Asymptotes

This section presents the implementation of the Method of Moving Asymptotes (MMA), developed and implemented by [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF][START_REF] Svanberg | MMA and GCMMA -two methods for nonlinear optimization[END_REF]. The objective of this appendix is to give an overview of the parameters available in MMA and to highlight their effects on the optimization process, as well as to provide the settings that are used to solve the optimization problems of this work.

MMA is a gradient-based algorithm that solves an "internal" optimization problem in which the objective and constraint functions are local convex approximations of those of the initial optimization problem, built from the values and the first-order derivatives of the objective and constraint functions of the initial problem. The internal optimization problem is then solved by a gradient-based primal-dual method.

A.1 Description of MMA parameters

The particularity of MMA resides in the way the local convex approximations of the problem are constructed; they are based on the reciprocal values y j of the variables x j , and piloted by lower and upper asymptotic values, respectively l j or u j :

The formulation with the lower asymptotic value l j is retained when the derivative of the function with respect to the variable x j , is negative. Conversely, the upper asymptotic value u j is retained when the derivative is positive. In this work, the more recent version of MMA provided by [START_REF] Svanberg | MMA and GCMMA -two methods for nonlinear optimization[END_REF] is used, to which the reader can refer for a detailed description of the approximation functions. Note that in this formulation, the complementary asymptotic value (e.g. the upper asymptotic value if it is the lower one that has been retained) is used so the approximation has a minimum that lies within the two asymptotic values. Figure A.1 illustrates the principle of this more recent MMA approximation f of the function f . In order to improve the performance of the algorithm, three types of parameters are present in MMA:

• a constant conservativeness parameter ρ,

• the aforementioned asymptotic values l j and u j ,

• move limits on both the asymptotic values and the variable values.

The last set of parameters present in the MMA algorithm are move limits on the variables. Svanberg provides three move limit strategies, and retains the most restrictive value of the three. The first set of move limits is naturally determined by the bounds x min j and x max j of the variables. The second set fixes the maximum distance at which the updated variables lie from the current variable values, such that |x

A final set of move limits is given as the fraction m a of the distance between the asymptotes of the variable. As a result, contrary to the previous two strategies, these limits evolve at each iteration. In this manner, the closer a variable is to its optimal value, the closer the asymptotes are to one another, which in turn improves convergence. [START_REF] Svanberg | MMA and GCMMA -two methods for nonlinear optimization[END_REF] provides default settings of the aforementioned parameters along with some recommendations for users to slightly tune the values. While most optimization problems that use MMA with these default values seem to be efficiently solved, the component-based topology optimization methods are usually solved with a different set of parameters. Indeed, the parameters given by [START_REF] Zhang | A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model[END_REF] in the framework of Moving Morphable Components (MMC) significantly differ from the default values. Moreover, the work of [START_REF] Jiang | Machine Learning based parameter tuning strategy for MMC based topology optimization[END_REF], which attempts to tune the MMA parameters by a machine-learning process, shows that the settings of MMA have a significant influence on the component layouts obtained. An alternative strategy used in the Geometry Projection framework [START_REF] Smith | A MATLAB code for topology optimization using the geometry projection method[END_REF], makes use of the standard values provided by Svanberg, but implements an additional move limit on the variable values that is external to the MMA algorithm. This strategy consists in calling the MMA algorithm with smaller bounds x min j and x max j on the variables than their actual bounds, which is equivalent to setting more conservative parameters (higher ρ as well as lower a 0 and asymptote move limits a ℓ and a ℓ ). It is also highlighted that it is important to normalize the variable values so that they all vary in the same range, and to normalize the objective and constraint function values so that they have magnitudes of the order of 1 to 100. Similar recommendations are given in [START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF].

A.2 MMA settings

Standard Settings

Based on these findings, the parameters that have been tuned to efficiently solve the the applications of the optimization method developed in this work are as follows:

• The variable values are normalized to vary in the range [0, 1];

• The constraint functions are normalized by the value of the upper or lower bound;

• The objective function is normalized by a percentage of the objective value of the initial design design, here 10 %.

• The values of the MMA parameters (and the corresponding names found in the script provided by Svanberg) are:

ρ = 1 × 10 -4 (raa0)

a 0 = 0.7 (asyinit)

a incr = 1.20 (asyincr)

a decr = 0.8 (asydecr)

m ℓ = 0.7 (move)

m a = 0.9 (albefa)

-{a ℓ , a ℓ } = {0.01, 10}

ε min = 1 × 10 -10 (epsimin)

Note that the parameter ε min is the convergence criterion of the internal MMA optimization problem.

Conservative Settings

For the applications solved using "conservative" MMA settings (Section 5.4.3), the strategy of reducing the move limits on the asymptotes, proposed by [START_REF] Verbart | A unified aggregation and relaxation approach for stress-constrained topology optimization[END_REF] and [START_REF] Coniglio | Optimisation Topologique à Formalisme Eulérien et Lagrangien Appliquée à La Conception d'un Ensemble Propulsif[END_REF] is used. The following parameters are thus modified:

• a 0 = 0.2

• {a ℓ , a ℓ } = {0.002, 0.2}