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ABSTRACT 

Although soil organisms represent one-quarter of the whole biodiversity on earth, our current understanding 

of the main drivers of soil biodiversity along environmental gradients is mostly restricted to a limited set of 

aboveground macro-organisms. In light of increasing global threats to ecosystems, the inclusion of soil 

organisms into macroecological studies is crucial to improve predictions of ecological responses of terrestrial 

ecosystems to global changes and support their conservation. Moreover, multitrophic approaches that 

account for multiple groups of interacting organisms in the ecosystem allow a more holistic understanding 

of soil biodiversity and its drivers.  

In my PhD, I aimed at getting a better understanding of the response of soil multitrophic diversity to rapid 

environmental changes at regional and local scales, by combining soil environmental DNA (eDNA) 

metabarcoding data, and mathematical and statistical tools derived from network theory, and food web 

ecology.  

The thesis is developed in five chapters. First, since most of soil data rely on eDNA metabarcoding 

approaches, I needed to clarify the uncertainties underlying the use of eDNA in empirical analyses. In my 

first chapter, I thus benchmarked the different curation steps commonly used when using eDNA and tested 

their influence on specific ecological analyses. In particular, I showed that the use of Shannon diversity led 

to more reliable results from different ecological analyses. I also proposed a roadmap and decision tree to 

optimise the curation steps in function of the ecological question. Second, to simplify the complexity of the 

soil diversity, I developed a workflow to categorize taxonomically annotated sequences into trophic groups 

and to further build soil food webs (chapter 2). Next, I studied how soil multitrophic diversity vary along 

environmental gradients using a large-scale biodiversity observatory in the French Alps (chapters 3 and 4). 

In the third chapter, I conducted a comparative analysis across major soil trophic groups to assess the drivers 

of soil diversity in the light of well-known macro-ecological hypotheses applied specifically here to the soil 

context. I found that the energy and physiological tolerance hypotheses were particularly relevant in 

explaining the spatial variation in soil biodiversity. In the fourth chapter, I described how soil food web 

structure and composition varied along environmental gradients and assessed the main drivers of this 

variation. Finally, using eDNA soil data from subarctic birch forests of Northern Norway, I showed that the 

effect of severe moth outbreaks has cascaded locally from plant communities to the entire soil food web, 

creating a shift in the ecosystem state (chapter 5). 

I believe my PhD has opened new research avenues in the understanding of multi-trophic soil biodiversity. 

Zooming out from the species level to a meaningful definition of trophic and functional groups allows a 

larger inclusion of multiple groups and to reach the ultimate goal of understanding all-in-end soil biodiversity 

distribution and composition. 
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RÉSUMÉ 

Bien que les organismes du sol représentent un quart de l'ensemble de la biodiversité sur terre, notre 

compréhension actuelle des principaux moteurs de la biodiversité du sol le long des gradients 

environnementaux est principalement limitée à un ensemble restreint de macro-organismes de surface. À la 

lumière des menaces mondiales croissantes qui pèsent sur les écosystèmes, l'inclusion des organismes du sol 

dans les études macroécologiques est cruciale pour améliorer les prévisions des réponses écologiques des 

écosystèmes terrestres aux changements globaux et pour soutenir leur conservation. De plus, les approches 

multi-trophiques qui tiennent compte de plusieurs groupes d'organismes en interaction dans l'écosystème 

permettent une compréhension plus holistique de la biodiversité du sol et de ses moteurs.  

Dans ma thèse, j'ai cherché à mieux comprendre la réponse de la diversité multi-trophique du sol aux 

changements environnementaux rapides à l'échelle régionale et locale, en combinant les données de 

métabarcodage de l'ADN environnemental du sol (ADNe) et les outils mathématiques et statistiques dérivés 

de la théorie des réseaux et de l'écologie des réseaux trophiques.  

La thèse est développée en quatre cinq. Tout d'abord, puisque la plupart des données sur les sols reposent sur 

des approches de métabarcodage de l'ADNe, j'ai dû clarifier les incertitudes qui sous-tendent l'utilisation de 

l'ADNe dans les analyses empiriques. Dans mon premier chapitre, j'ai donc évalué les différentes étapes de 

curation couramment utilisées lors de l'utilisation d'ADNe et testé leur influence sur des analyses écologiques 

spécifiques. En particulier, j'ai montré que l'utilisation de la diversité de Shannon conduisait à des résultats 

plus fiables pour différentes analyses écologiques. J'ai également proposé une feuille de route et un arbre de 

décision pour optimiser les étapes de nettoyage des données en fonction de la question écologique. Ensuite, 

pour simplifier la complexité de la diversité du sol, j'ai développé un workflow pour catégoriser les séquences 

annotées taxonomiquement en groupes trophiques et pour construire les réseaux trophiques du sol (chapitre 

2). Ensuite, j'ai étudié comment la diversité multi-trophique du sol varie le long de gradients 

environnementaux en utilisant un observatoire de la biodiversité à grande échelle dans les Alpes françaises 

(chapitres 3 et 4). Dans le troisième chapitre, j'ai mené une analyse comparative entre les principaux groupes 

trophiques du sol afin d'évaluer les moteurs de la diversité du sol à la lumière d'hypothèses macro-écologiques 

bien connues, appliquées ici spécifiquement au contexte du sol. J'ai constaté que les hypothèses de énergie 

et de tolérance physiologique étaient particulièrement pertinentes pour expliquer la variation spatiale de la 

biodiversité des sols. Dans le quatrième chapitre, j'ai décrit comment la structure et la composition du réseau 

trophique du sol varient le long des gradients environnementaux et j'ai évalué les principaux facteurs de cette 

variation. Enfin, à l'aide de données pédologiques d'ADNe provenant de forêts de bouleaux subarctiques du 

nord de la Norvège, j'ai montré que l'effet de graves épidémies de chenilles s'est propagé localement des 

communautés végétales à l'ensemble du réseau trophique du sol, créant un changement dans l'état de 

l'écosystème (chapitre 5). 

Je pense que mon doctorat a ouvert de nouvelles voies de recherche dans la compréhension de la biodiversité 

multi-trophique des sols. Passer du niveau de l'espèce à une définition significative des groupes trophiques 

et fonctionnels permet d'inclure davantage de groupes multiples et d'atteindre l'objectif ultime de comprendre 

la distribution et la composition de la biodiversité du sol dans son ensemble.  
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GENERAL INTRODUCTION 

Biodiversity encompasses the variety of life in all its forms, but the concept of biodiversity often evokes 

the macro-organisms that are most visible to the human eye and the most charismatic, such as mammals, 

birds, plants or butterflies. However, these macro-organisms constitute only a small fraction of the 

biodiversity that can be found on Earth. A large part of the organisms that make up the Earth's 

biodiversity escape our eyes either because they are microscopic in size or because they live hidden in 

elusive environments (e.g., the depths of the ocean, the forest canopy, the soil). Soils contain much of 

this hidden biodiversity, harbouring as much as a quarter of the species described on Earth. Although 

once considered a black box, general awareness of the importance of soil biodiversity has increased in 

recent decades, especially because of its fundamental role in the functioning of terrestrial ecosystems 

and nature's contribution to people.  

The increased awareness of soil biodiversity has also highlighted gaps in scientific knowledge. One 

important gap concerns our understanding of how soil biodiversity, including its richness, composition 

and functional linkages, is structured across large spatial scales and what are its main drivers. Indeed, 

ecological disciplines that seek to understand the main drivers of biodiversity (i.e., macroecology, 

biogeography, community ecology) have mostly focused on aboveground macro-organisms, but it 

remains unclear whether the hypotheses tested on aboveground organisms are valid for belowground 

soil diversity. This fundamental knowledge is an essential building block in the process of preventing 

or redressing the biodiversity crisis and the threats to ecosystem integrity and functioning caused by 

global changes. Yet, for a number of soil organisms, this fundamental knowledge remains unresolved. 

Describing and understanding how the whole soil communities respond to environmental stress is 

necessary to predict future changes and identify critical transitions and effects on ecosystem 

functioning.  

In response to this gap, research on soil biodiversity has increased in recent years (including the time 

when I undertook this PhD), and so has our understanding of the processes that shape soil biodiversity 

across spatial scales. This PhD is part of this common effort to improve our understanding of soil 

biodiversity patterns. We build on DNA metabarcoding analysis of environmental samples, a method 

that has recently emerged unravelling novel cross-taxon macroecological patterns for soil, to answer the 

following questions (1) How can we make better use of environmental DNA metabarcoding data to 

study soil biodiversity in its totality and integrity? (2) How do soil multi-trophic assemblages vary in 

space and are structured in response to the environment? We build on the existing theoretical framework, 

primarily designed for aboveground organisms, and apply it to soil biodiversity. 
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1. Integration of soil biodiversity into macroecological studies 

1.1. Learning from diversity patterns 

Biodiversity has many dimensions, including the diversity ‘within species, between species, 

and of ecosystems’ (UN of Convention on Biological Diversity). Biodiversity comprises thus 

not only species richness, but multiple dimensions describing different ways of relating living 

organisms, such as the genetic, phylogenetic, functional, interaction and trophic diversity of 

ecological communities (Naeem et al. 2012). Understanding what controls the structure of 

biodiversity, in all its dimensions, across spatial and temporal scales is of central interest for 

ecologists. At the end of the 18th century, Alexander von Humboldt introduced the first scoops 

that would give rise to disciplines such as biogeography, macroecology and community 

ecology, through his expeditions in the quest to understand what determines the distribution of 

life on Earth. Since then, and as a result of decades of research, the study of the spatial variation 

of biodiversity at different scales gave rise to a large number of observable macroecological 

patterns such as latitudinal patterns (Hillebrand 2004), altitudinal patterns (McCain & Grytnes 

2010), the species-area relationship (Drakare et al. 2006), and the distance decay of similarity 

(Nekola & White 1999). Diversity patterns are at the origin of the main rules in ecology that 

determine the structure of biodiversity and its formation (Gaston 2000; Pontarp et al. 2019; 

Rahbek et al. 2019). 

Identifying patterns of diversity and the mechanisms responsible for those patterns remains 

topical and challenging in ecology. Contemporary researchers interested in this question are 

driven not only by curiosity and intrigue to understand the spatial organization of nature but 

recognise also its essential importance in the quest to predict the consequences of global 

changes (Thuiller et al. 2013). Predicting how current global changes such as climate warming 

and changes in disturbance regimes affect the biodiversity of our planet, needs to first 

understand what are the environmental drivers of biodiversity. In addition, understanding the 

spatial structure of biodiversity is necessary to build conservation and mitigation strategies that 

are more than urgent in the face of the biodiversity crisis (IPBES 2019; Pollock et al. 2020).  

However, the ecological theories aiming to explain biodiversity patterns have mostly been 

tested on aboveground macro-organisms, and rarely on soil organisms, with the exception of 

the strong developments in microbial macroecology in the last decades (O’Malley 2007; 

Soininen 2012), and the special attention given to some macroinvertebrate groups like 

earthworms (Decaëns 2010; Rutgers et al. 2016; Phillips et al. 2019). Soil biodiversity becomes 

thus a missing piece in our understanding of how biodiversity is structured on Earth. In light of 

increasing global threats to ecosystems, several studies and papers advocate the inclusion of 
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soil organisms into macroecological studies to improve predictions of ecological responses of 

the whole ecosystems to global changes and support their conservation (Cameron et al. 2018; 

Shade et al. 2018; Guerra et al. 2020, 2021). 

 

1.2. The “missing” patterns of soil biodiversity 

Soils harbour a large complexity of living organisms belonging to all kingdoms of life, ranging 

in size from micro-organisms such as bacteria and fungi to macro-organisms such as 

earthworms and insects, and with diverse life strategies (Orgiazzi et al. 2016)(Fig. 1). Soil 

biodiversity encompasses a significant proportion of the described species on terrestrial 

ecosystems. Moreover, soil biodiversity not only comprises the number of species inhabiting 

soils and their abundances but also their genetic, functional and trophic diversity. Within this 

functional and trophic diversity, there are a number of groups with major implications for 

society, such as decomposers, essential for nutrient recycling in terrestrial ecosystems 

(Crowther et al. 2019), or pathogens, of general interest to agriculture and public health (Wall 

et al. 2015). 

 

Figure 1. Soil biodiversity pictures illustrating the diversity of organisms living in soils. The pictures 

correspond to soil biota of different sizes including microorganisms represented by virus (A), bacteria 

(B), fungal hyphae (C), protist amoeba (D), fruiting bodies of fungi (E), protists slime mould (F), 

microfauna represented by nematodes (G), mesofauna represented by enchytraeids (H), springtails (J) 

and mites (K), and macrofauna represented by earthworms (I) and pseudoscorpions (L). Figure from 

Geisen et al. (2019b). 
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If soil biodiversity has traditionally been less studied in ecological disciplines such as 

macroecology, this is partly due to its cryptic nature, which makes it difficult to study (Geisen 

et al. 2019b; White et al. 2020). The study of soil-dwelling organisms mostly relies on 

specialized techniques of extraction that vary for organisms in different size categories (i.e., 

microbes, microfauna, mesofauna and macrofauna, Geisen et al. 2019a), and thus was 

historically limited by technological development for some groups, e.g. the microscope and 

molecular analyses for the study of micro-organisms diversity (Ferris et al. 2012). Additionally, 

morphological assessments are time-consuming and require a high level of taxonomic 

expertise, but the number of taxonomists dedicated to soil biota is limited, adding that normally 

one taxonomist is specialized in a single taxon and that taxonomists are unequally distributed 

across countries (~ 80% of taxonomists are based in northern countries, Gaston & May 1992). 

This limits the availability of community datasets at the species level and can create knowledge 

gaps in some geographic regions (Cameron et al. 2018; Guerra et al. 2020). In reality, the 

taxonomic diversity of soils is largely undescribed (Decaëns 2010). To this, can be added the 

difficulty of identifying organisms at immature states, as is the case for Acari and Diptera. 

Moreover, the scale of approach in soils can be different than the one used for aboveground 

macro-organisms, due to the high degree of heterogeneity at incredibly small grains that exist 

in soils (Ettema & Wardle 2002; Young & Crawford 2004). For these and other reasons, most 

soil biodiversity studies have been conducted at local scales and have focused on individual 

taxa, making difficult the generalization of spatial patterns for soil biodiversity (Decaëns 2010; 

White et al. 2020). While cryptic and elusive organisms are not exclusive to soil (e.g., 

aboveground leaf microbes), most soil organisms fall in this category, reducing the number of 

studies addressing soil biodiversity.  

 

In order to gain a better understanding of how large-scale climatic variation or regional-scale 

environmental change affect soil biodiversity, we need to describe both the diversity of local 

communities (α-diversity) and the composition turnover between communities (β-diversity). 

Standard diversity indices allow to take into account quantitative data based on organism’s 

abundance, and their phylogenetic or functional relationship (Chao et al. 2014). For soil 

organisms, the traditional measures of abundance can vary across taxonomic subfields and can 

represent a real challenge for some organisms, e.g., delimiting fungal individuals. Biomass or 

relative abundances retrieved form DNA sequencing methods could be more adequate measures 

of abundance to be compare across soil organisms from different kingdoms (Fierer et al. 2009; 

Shade et al. 2018).  
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Our ability to study soil biodiversity at large spatial scales has largely improved in the last 

decades with joint taxonomic efforts, the development of new sampling technologies (e.g., 

eDNA metabarcoding) and the increase of collaborative databases and initiatives focusing on 

soil taxa (e.g., Drilobase, Earth microbiome project, Global Soil Biodiversity Initiative) or 

functions (e.g., The Biological and Ecological Traits of Soil Invertebrates database, 

BactoTraits, FungalTraits). Large scale diversity patterns have thus recently been revealed for 

some soil organism groups (e.g., Tedersoo et al. 2014; Delgado-Baquerizo et al. 2018; Phillips 

et al. 2020), starting to unveil their environmental drivers. But, in order to have an integral 

vision of soil biodiversity, we need to understand not only the spatial distribution of certain 

representatives of soil biodiversity but to integrate the whole prism of soil organisms, and 

include not only their richness but also their taxonomic and functional structure. However, as 

important as it is to consider all possible taxa, it is also important to see these taxa not 

independently of each other but in interaction with each other (Albert et al. 2021). 

 

2. A multitrophic approach to unifying biodiversity 

2.1. The importance of multitrophic approaches 

Given the complexity of the living world, most attempts to explore the causes of ecological 

diversity focus on single trophic levels and/or taxonomic groups, ignoring the added complexity 

of biotic interactions across different trophic levels (Seibold et al. 2018). Yet, the biodiversity 

of an ecosystem is structured across trophic levels that constantly interact through the flow of 

matter and energy, and thus a complete understanding of the general patterns and mechanisms 

that structure biodiversity needs to take these interactions into account (Seibold et al. 2018; 

Münkemüller et al. 2020; Thakur 2020). Hence, much seminal ecological work aiming at 

understanding the drivers of biodiversity is based on the development of the trophic structure 

of ecosystems (Lindeman 1942; Hutchinson 1959), and the same is true for the predictions of 

known hypotheses explaining the diversity of organisms. For example, the ‘Energy-diversity 

hypotheses’ predict that an increase in the amount of energy or resources available in the system 

promotes diversity across trophic levels (Wright 1983; Evans et al. 2005), and implies that the 

diversity of a trophic level is determined by the energy available at the lower trophic level. It is 

now recognized that trophic interactions play a major role in shaping the diversity of ecological 

communities over large spatial scales and that should be accounted for in macroecological 

studies (Guisan & Thuiller 2005; Gravel et al. 2011). It may even sound urgent given that 



 
 

 12 

cascading effects of one trophic level to another could occur through trophic interactions, and 

this could result in rapid and irreversible state shifts of ecosystems (Estes et al. 2011; Scheffer 

et al. 2012). 

In a multi-trophic approach, diversity can be addressed from two dimensions. A first dimension 

constitutes the diversity within trophic groups (e.g., species diversity). A second dimension 

constitutes the diversity across trophic groups (e.g., the number of trophic groups, the diversity 

of trophic interactions). This two-dimensional view of trophic networks resembles the concept 

of horizontal and vertical diversity (Duffy et al. 2007). Horizontal and vertical diversity can 

affect the functioning and stability of multi-trophic communities through different mechanisms 

and can respond differently to environmental changes or disturbances (Duffy et al. 2007; 

Kardol et al. 2016; Martinez‐Almoyna et al. 2019; Zhao et al. 2019). In this thesis, we will be 

interested in studying soil multi-trophic communities through these two dimensions. The 

second dimension is also referred to as food web diversity or food web structure throughout 

this manuscript. 

The multi-trophic complexity of ecological communities can be approached by the study of 

food webs. Food webs are complex networks of trophic interactions among species, 

‘trophospecies’, guilds, functional or trophic groups, distributed across different trophic levels 

(Dunne 2006). The first representation of a food web dates back to Elton (1927, as cited in 

Tylianakis & Morris 2017), who classified the species into trophic groups having both similar 

functional roles within the food web and similar impacts on the environment (The Eltonian 

niche concept). Following an increase in the available documentation on the feeding behaviour 

of species, the representation of food webs has been largely developed in terms of diversity and 

resolution (Kéfi et al. 2012; O’Connor et al. 2020). In parallel, the incorporation of methods 

developed in network theory into the study of ecological networks has improved our ability to 

compare networks along environmental gradients (Pellissier et al. 2017; Tylianakis & Morris 

2017; Botella et al. 2022). These advances are also valid for soil biodiversity and constitute a 

great opportunity to provide an integrative perspective in the study of soil biodiversity patterns. 

 

2.2. The soil food web 

The soil food web allows the unification of the very different taxa, functions and trophic levels 

that make up soil biodiversity, while accounting for the complex interactions between these 

groups. In the soil food web, organisms are categorized across trophic levels based on the 

resources they consume. Functional and/or phylogenetic information is often used to group soil 
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organisms into the trophic groups that will represent the nodes of the food web (Moore & de 

Ruiter 1991; Scheu 2002; Berg & Bengtsson 2007). The main basal resources of soil food webs 

can be classified into plants, soil organic matter and direct sources of energy for autotrophs 

such as solar and chemical energy. Energy is transferred from these basal resources through 

primary producers and consumers and to high trophic levels represented by predators and/or 

animal parasites (Fig 2). Different representations of the soil food web exist, from the highly 

influential version proposed by Hunt and colleagues (1987), to more recent and more resolutive 

elaborations that have emerged as a consequence of the increased empirical knowledge on the 

trophic relationships of soil organisms (e.g., Potapov 2022). Traditionally, energy flowing 

through the soil food web has been categorized into energy ‘channels’ based on the basal 

resource at the origin of the channel, e.g., green channel (from plants) vs brown channel (from 

organic matter), or fast channel (bacteria-based) vs low channel (fungi-based) (Moore & de 

Ruiter 1991; de Vries et al. 2013). Despite the fact that the terminology of ‘channel’ is widely 

used in the literature to relate food webs to functions or processes, recent evidence points out 

the existence of reticulate channels because groups in low trophic levels can feed on multiple 

energy channels (e.g. omnivore protists that feed on both bacteria and fungi), complexifying 

the separation of the food web into the traditional binary categories (Geisen et al. 2016; Potapov 

et al. 2021). For this thesis, I only referred to the concept of channels for discussion purposes, 

as the quantification of energy fluxes is out of the scope of this PhD.  

 

The representation of the soil food web that I used for this thesis (Fig. 2) includes organisms 

ranging from microorganisms to macrofauna (thus excluding vertebrates and viruses) and 

includes various types of interactions, e.g., mutualisms, parasitism, predation, which all 

constitute trophic interactions as they represent a carbon transfer that is needed for the growth 

and development of the groups in the subsequent trophic levels. For example, plant symbionts 

such as mycorrhizal fungi are a major component of the soil food web and have a trophic 

interaction with plants as most of the carbon they obtained comes from this mutualistic 

association (Antunes & Koyama 2017). 
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Figure 2. Representation of a soil food web showing the position of major soil trophic groups across 

trophic levels and the different types of trophic interactions. Basal resources of the soil food web are 

plants, organic matter and solar/chemical energy (for autotrophs). 

 

3. Disentangling the drivers of diversity 

3.1. Community assembling rules and ecological filters 

Biodiversity patterns are driven by multiple ecological and evolutionary processes acting across 

spatial and temporal scales. The concept of ecological filters provides a conceptual framework 

to understand how different eco-evolutionary processes lead to the realization of local 

community assemblages (Keddy 1992; Cornwell et al. 2006)(Fig. 3A). From the global or 

regional pool of species, the local composition of a realized community is the consequence of 

both the dispersal ability of species and their biogeographic history, i.e., ‘dispersal filter’ 

(Sexton et al. 2009), and, the capacity of the species to establish and reproduce under the local 

environmental conditions, i.e., ‘niche filter’ (Cornwell et al. 2006). The local environment 

includes both the abiotic and the biotic environments. Both filters operate at different 

dimensions, i.e., geographic and ecological space respectively, are not necessarily hierarchical 

and are influenced by multiple interacting eco-evolutionary processes such as species 

physiology and biotic interactions (Thuiller et al. 2013). The main ecological processes 
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determining the diversity and composition of the different organisms that locally coexist are 

expected to differ between trophic and functional groups or taxa because of differences related 

to evolutionary history, dispersal traits, and habitat requirements (Hillebrand et al. 2001; De 

Bie et al. 2012). 

 

 

 

Figure 3. Ecological filters of community assembling processes from global or regional pool to local 

realized communities, at two levels of organisation, species within trophic groups (right) and food webs 

(left). The figure was adapted from Thuiller et al. (2013). 

 

The concept of ecological filters can also be applied at the food web structure level (Pellissier 

et al. 2017; Tylianakis & Morris 2017)(Fig. 3B). In this sense, the composition of the realized 

local food web would be, in part, the result of the ecological filters acting on the taxa composing 

each of the trophic groups in the food web, thus the sum of the eco-evolutionary process shaping 

species diversity across the trophic groups locally coexisting. In addition, selection not only 

occurs on taxa but also on the realized interactions. In theory, this could be even partly 

independent of taxa, e.g. some interaction between partners occur just under certain abiotic 

conditions. Moreover, from a food web perspective, primary filtering out of species could lead 

to secondary "extinctions" or filtering out of other species dependent of the interaction (Gravel 

et al. 2011). In practice, the trophic interactions of a realized community also indicate the co-

occurrence of two interacting groups, bringing thus information on how groups of species are 

co-selected by the environment or how they co-influence each other distributions. At this level 

of organization, the global pool of species is replaced by the metaweb, which represents the 

global or regional pool of trophic groups and their potential interactions (Dunne 2006; 
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Tylianakis & Morris 2017). The relative influence of the ecological filters on the structure of 

local food webs could allow evaluating to which extent the ecological processes acting on 

species and interactions translate into changes at a macroscopic scale of organization. 

 

In this thesis, I did not evaluate directly the effect of dispersal limitations on the different soil 

trophic groups. The geographic space and its influence on soil biodiversity were indirectly 

accounted for in some chapters to control for spatial autocorrelation (chapters 3 and 5), and 

directly tested in chapter 4. Instead, I was principally interested in studying the effect of the 

abiotic and biotic environmental filters on soil trophic group diversity and food web structure. 

Testing the effect of ecological filters on natural communities can be complex. Ideally, it would 

be necessary to observe how community composition assembles under changing conditions. 

However, this could take an incredibly long time and effort to obtain unbiased results. An 

alternative is to use existing environmental gradients providing natural space-for-time settings 

to assess in situ responses to environmental change. 

 

3.2. Analysing ecological filters along gradients 

Ecologists conducting empirical research aim at describing the co-variation between diversity 

and environment to further link it with ecological theory explaining the mechanisms behind the 

resulting patterns of diversity (Münkemüller et al. 2020; Grainger et al. 2021). For this, 

empirical research builds on existing environmental gradients at different spatial scales that act 

as natural observatories to study the spatial distribution of biodiversity (see Box 1. Importance 

of spatial scale). Two of the commonly used environmental gradients, which are those used in 

this thesis, are the elevational and the disturbance gradients (Fig. 4). Elevational gradients are 

well suited to test empirically large-scale drivers of biodiversity as they encompass wide ranges 

of environmental gradients in abiotic and biotic conditions over a reduced spatial scale (Fig. 

4A) (McCain & Grytnes 2010). Instead, disturbance gradients are widely used to understand 

the role of natural disturbances in maintaining biodiversity at local scales, because disturbances 

promote local heterogeneity, control spatio-temporal dynamics and drive successional 

trajectories  (Fig.4B) (Thom & Seidl 2016). 
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Figure 4. The two types of gradient that were used in this thesis: the elevational gradient (A) and the 

disturbance gradient (B). From ecological gradients, we can estimate the regional diversity (γ-diversity) 

representing the total diversity across the studied gradient(s), the local diversity (α-diversity) 

characterizing the diversity at a given location, and the compositional turnover of the community from 

one site to another (β-diversity). Mountain drawing in (A) was made by Camille Martinez-Almoyna. 

 

Elevational patterns in diversity are commonly used to differentiate between competing 

hypotheses of diversity (e.g., Peters et al. 2016; Nottinghan et al. 2018), or to gain a better 

understanding of the potential effects of global changes on diversity (Sundqvist et al. 2013), 

among other multiple applications. Indeed, mountains have inspired ecologists through 

different generations and are at the origin of several biogeographical theories of biodiversity 

(Lomolino 2001). Examples of hypotheses that are commonly tested through elevational 

gradients are the energy-diversity hypothesis (Wright 1983) and the stress-diversity hypothesis 

(Grime 1973; Louthan et al. 2015). These hypotheses predict how diversity, but also biotic 

interactions, change in relation to available resources or abiotic conditions. The relative strength 

of biotic and abiotic filters can be also tested in the lenses of ecological theory across 

environmental gradients. For example, along stress gradients, competition filters are expected 

to be especially strong in benign conditions, while environmental filters are expected to be 

dominant under stressful conditions (Louthan et al. 2015). In stressful conditions, biotic 

interactions can play an important role trough facilitation, making the conditions more easy for 

the establishment of other species, e.g., plants can create microclimate favourable to microbes 

(Roy et al. 2013). 
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Box 1. Importance of spatial scale  
 

It is widely recognized that the drivers of diversity and their relative importance vary with the spatial scale of the 

study. A spatial pattern of diversity depends on the characteristics of the study area, the size and spacing of the 

samples, and the organism under study. Two particular attributes of spatial scale in ecological studies are the 

spatial grain and the spatial extent (Guisan et al. 2017). The spatial grain corresponds to the unit of sampling or 

the area/volume covered by each data point. The spatial extent corresponds to the geographical space covered by 

the study, and is thus related to the range of the environmental gradients considered. 

Soil are highly complex habitats with nested levels of heterogeneity. Spatial distribution of soil organisms can 

occur both vertically across soil layers, and horizontally, the latter being more documented. Thakur et al. (2020) 

proposed a framework describing spatial 

grain at which ecological theories can be 

studied representing different soil 

compartments: a coarse grain (S) where all 

organisms can be sampled, an intermediate 

grain (S’) that can be represented by a 

hotspot such as the rhizosphere or the litter 

layer, where intermediate sized soil 

organisms can be sampled, and a fine grain 

or microsite (S’’) ranging from the tip of a 

plant to a single aggregate where 

microorganisms are the main focus.  

Soil biota are spatially structured over 

distances of tens to hundred meters and can 

present patchy distributions at the scale of 

centimeters to meters, depending on the organism. Using a nested spatial sampling design is thus recommended 

to explore the spatial aggregation of soil biota among a range of scales representing the heterogeneity of the 

landscape studied (Ettema & Wardle 2002).  

In this thesis, where the aim was to sample the whole soil multi-trophic communities, a coarse spatial grain was 

preferred to detect spatial patterns over geographic areas ranging from 12 to 10,000 km2.   

 

 
 

Disturbance gradients had guided the understanding of the diversity-disturbance relationship, 

which also exerts a major influence on ecological theory. For example, the Intermediate 

Disturbance Hypothesis postulates that biodiversity peaks at intermediate levels of disturbance, 

where both colonist and climax species are able to coexist and decline at low and high levels of 

disturbance where they are mutually excluded by exploitative competition (Grime 1973; Horn 

1974; Connell 1978). Also, for more than a century forest ecologists have investigated post-

disturbance successional dynamics across disturbance gradients (Clements 1916). The 

importance of biotic interactions can also change along the succession process following a 

disturbance. For example, symbiotic associations with nitrogen-fixing bacteria and mycorrhiza 

can be crucial for plant establishment during early succession (Nara 2006). The diversity-

disturbance relationship is also of interest in sustainable management (e.g., in practices that 

mimic natural disturbances, Harvey et al. 2002)) and in the prediction of the future scenarios 

for biodiversity and ecosystems under global change when accounting for the increase in the 

frequency and intensity of disturbances (Seidl et al. 2011). 
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As the construction and analyses of food webs become more accessible, its inclusion in 

macroecological studies increases in the search for understanding of what drives multitrophic 

community structure. There has been an increasing interest in evaluating empirically how the 

structure of food webs varies along environmental gradients (Pellissier et al. 2017). For this, 

one approach consists of summarising the structure of the food web through network metrics 

(e.g. connectance, modularity, vulnerability, etc) and related them to ecological processes 

(Braga et al. 2019), but the real meaning of these metrics or the ecological information they 

provide still in debate (Thompson et al. 2012). Other approaches consist at comparing the 

composition of local food webs across environmental gradients and assessing how much of the 

variance is explained by environmental or geographic predictors (Poisot et al. 2012; Pellissier 

et al. 2017). Changes in the structure of food webs along environmental gradients is of great 

interest as they are key to assess the functioning of the ecosystems and the stability of 

communities (Thompson et al. 2012; Eisenhauer et al. 2019). 

 

4. Soil diversity patterns: state of knowledge 

The concept of the ‘black box’ designating the soil compartment has begun to be left behind 

thanks to the increasing research illuminating our knowledge on soil biodiversity patterns and 

its drivers (Orgiazzi et al. 2016; FAO et al. 2020). It is now known that soil biota is spatially 

and temporally structured at different scales and respond to rules of community assemblage, 

such as niche-based process, although the relative contribution of different ecological processes 

is unclear and variable across soil organisms. The span of body sizes, phylogenetic history, life-

history traits strategies and mobility capacities characterising soil organisms is reflected in a 

wide range of dispersal abilities and physiological adaptations to different environments. Yet, 

most studies looking at diversity patterns of soil biota focus on certain representatives of soil 

such as bacteria, fungi, earthworms and ants, while the knowledge we have for other organisms 

such as mites, enchytraeids, and rotifers remains scarce, making it difficult to draw general 

conclusions (Orgiazzi et al. 2016). In the following section, I aimed at providing a short but 

broad picture of the current knowledge on the drivers of soil diversity patterns at large scales.  

The dispersal of soil organisms is particularly poorly understood, as measuring the dispersal of 

soil organisms might be very challenging (Ettema & Wardle 2002). Historically, microbes were 

thought to occur “everywhere” due to their high dispersibility and large population size, 

minimizing the importance given to geographic dispersal barriers in microbial macroecology 
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(O’Malley 2007). This view has been repeatedly challenged by the observations of a strong 

spatial structure of microbial communities across scales, raising questions about the importance 

of the dispersal constraints in shaping microorganisms diversity patterns (Zhou et al. 2013; 

Evans et al. 2017). Contrary, the dispersion of larger organisms such as soil meso- and macro-

fauna is thought to be more limited due to the complexity of the soil environment limiting their 

movement, and their longer reproduction times (Ettema & Wardle 2002). In line with this, 

previous studies have shown that larger body sized organisms have more stochastic distribution 

patterns compared to smaller organisms that are less limited by dispersal or drift and are more 

strongly structured by the environment (De Bie et al. 2012; Zinger et al. 2018). 

Several studies report the predominant importance of niche-based processes on the community 

assembly of soil biota (Decaëns 2010; Wu et al. 2011; Aslani et al. 2022). Multiple abiotic and 

biotic factors jointly determine the structure of soil communities. In the one hand, climatic 

factors such as temperature and precipitation combined with soil properties such as pH, organic 

matter content, C/N ratio and soil texture have been shown to co-vary with the diversity of soil 

taxa such as fungi (Tedersoo et al. 2014; Glassman et al. 2017), earthworms (Rutgers et al. 

2016; Phillips et al. 2019), bacteria (Ramirez et al. 2014; Delgado-Baquerizo et al. 2018; 

Karimi et al. 2018), and protists (Bates et al. 2013; Fiore-Donno et al. 2020) at different spatial 

scales. On the other hand, the main biotic factors structuring soil communities are related to 

plant communities. The diversity, composition and biomass of plant communities have a major 

influence in shaping the soil environment. Plants provide direct resources to the soil through 

the roots, but also indirectly through the litter, and can shape soil biota habitats at different 

scales, from microhabitats to landscapes (Scherber et al. 2010; Eisenhauer et al. 2013; Roy et 

al. 2013; Prober et al. 2015; Leff et al. 2018). At larger spatial scales, the vegetation type 

characterizing an habitat, e.g., grassland vs forest, can be a determinant of the soil community 

structure (Ramirez et al. 2014; Fiore-Donno et al. 2020).  

While macroecological studies mostly focus on soil taxonomic groups, the effect of abiotic and 

biotic factors on soil diversity can vary for different soil functional groups. For example, plant 

symbionts such as mycorrhizal fungi or parasitic nematodes are mainly structured by plant 

communities, following a co-distribution with their plant hosts and peak on diversity or 

abundance where their hosts are more diverse or abundant (Tedersoo et al. 2012; van den 

Hoogen et al. 2019; Wang et al. 2019). Other biotic factors that can influence soil diversity 

patterns are the biotic interactions occurring within the soil food web. Trophic interactions can 

affect soil communities and their multitrophic interactions through top-down or bottom-up 

controls (Scherber et al. 2010; Schuldt et al. 2017). Moreover, antagonistic interactions 
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between trophic groups within a same trophic level can limit their distribution, for example, 

between bacteria and fungi (Bahram et al. 2018) or between different fungal guilds (e.g., the 

‘Gadgil effect’ between ectomycorrhizal fungi and saprotrophs, Bending 2003). Otherwise, 

past studies suggest that the community structure of soil fauna is not driven by competitive 

exclusion, although competition can take place for larger organisms such as earthworms in 

highly productive systems (reviewed in Decaëns 2010). The physical constraints and 

heterogeneity of the soil environment might also limit the direct interactions between soil 

organisms, including trophic interactions (Erktan et al. 2020). Indeed, the highly heterogeneous 

nature of the soil matrix provides a great diversity of niches that may allow high levels of local 

diversity (Nielsen et al. 2010). 

 

At the global scale, diversity patterns have been recently described for a number of soil taxa, 

e.g., Fierer et al. 2009 for microbes, Phillips et al. 2019 for earthworms, van den Hoogen et al. 

2019 nematodes, Oliverio et al. 2020 for protists, revealing that soil biodiversity might have 

different distribution patterns than aboveground macro-organisms biodiversity at this scale. 

However, few studies have analysed how different guilds or trophic groups within a taxa change 

across the latitudinal gradients (Bahram et al. 2018; Wang et al. 2019; van den Hoogen et al. 

2020). At regional and local scales, divergent responses have been found across and within soil 

groups or taxa (Hendershot et al. 2017; George et al. 2019; Looby & Martin 2020). Overall, 

the existing studies suggest that local species diversity of soil organisms is highly limited by 

stress (e.g., resource availability, pH) and disturbance (e.g., fire, wind) (Decaëns 2010; Orgiazzi 

et al. 2016; Coyle et al. 2017; Glassman et al. 2017), similarly than for aboveground macro-

organisms. Yet, it is still difficult to conclude at which extent the macroecological patterns of 

soil biota mirror those of above ground macro-organisms, because the existing publications are 

too scarce and biased to some representatives in both the aboveground and belowground 

compartments. Moreover, few studies have looked at soil biodiversity patterns in the light of 

ecological theory. Thakur and (2020) investigated how some main ecological theories could 

explain soil biodiversity patterns and found that less than 6% of studies addressing the reviewed 

theories included soil organisms. While some support was found for the tested ecological 

hypotheses, the studies diverged in the focal soil group and in the spatial scale considered, 

making it difficult to make comparisons and to draw robust conclusions.  

The effect of environmental conditions and land use change on the soil food web structure has 

received a lot of attention with the goal of understanding how changes in soil food web structure 

affect ecosystem functions such as nutrient cycling and plant productivity (Hunt et al. 1987; 
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Berg & Bengtsson 2007; de Vries et al. 2013). Most of these studies have been conducted in 

arable systems (Berg & Bengtsson 2007; Morriën 2016), while less studies have investigated 

what are the community assemblage processes that drive soil food web structure and diversity 

in natural systems. The same abiotic and biotic factors driving soil biodiversity patterns may 

influence the structure of soil food webs across spatial and temporal scales, and thereby 

influence ecosystem functions. While the reconstruction of more resolutive food webs becomes 

more accessible, studying their spatial patterns across large spatial scales can bring new insights 

into the community assembling processes acting on the structure of soil multitrophic 

communities. For example, Morriën and colleagues (2017) studied the change in soil food webs 

structure during the restoration of an abandoned arable land, and found that the structure of the 

soil food web changed through time, becoming more connected, and that those changes were 

related to an enhanced efficiency of carbon uptake by the soil food web. Studying 

macroecological patterns with a food web approach gives the promise of getting a better 

understanding of soil biodiversity complexity and its multidimensionality (Eisenhauer et al. 

2019). For example, the vulnerability of soil trophic interactions face to environmental changes 

could be identified allowing to better predict the cascading effects of global changes (Hedlund 

et al. 2004; Eisenhauer et al. 2013).  

 

Despite the increasing body of literature dedicated to exploring soil diversity patterns, it is still 

difficult to draw general conclusions because most studies focused on single taxa or considered 

different spatial scales. Global diversity maps to assess latitudinal patterns are at the cutting-

edge of the macroecological patterns of soil biodiversity that have emerged in recent years, but 

sampling gaps across the world, for example across tropical regions and northern latitudes, and 

also across taxa still constitute a challenge for these studies and their generalization at the global 

scale (Cameron et al. 2018; Guerra et al. 2020). Otherwise, regional studies with an intensive 

soil sampling and covering a wide range of environmental conditions can provide the resolution 

required to disentangle confounding effects of different predictors, leading to robust 

conclusions on the drivers of soil biodiversity (e.g., Rutgers et al. 2016; Karimi et al. 2018). In 

order to enlarge the sampling to several taxa at the same time and across large-spatial scales, 

the use of environmental DNA metabarcoding seems a promising opportunity, e.g., Wu et al. 

2011; Bastida et al. 2020. Furthermore, we could go beyond describing the patterns of multiple 

taxa with eDNA data and bridge this data with other ecological meaningful frameworks, to 

include other dimensions of soil biodiversity such as the ones accounted for with a food web 

approach.  
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5. General methodology - Studying the complexity of soil biodiversity by combining soil 

eDNA metabarcoding and trophic or functional information. 

5.1. Environmental DNA metabarcoding: a monitoring tool for soil biodiversity 

Environmental DNA (eDNA) metabarcoding consists in amplifying and sequencing a genomic 

marker – or DNA barcode – of the DNA contained in environmental samples such as soil, water 

or faeces (Taberlet et al. 2018). In this thesis, we will focus on the eDNA coming from soil 

samples. The detection of DNA in a soil sample may occur because the living organism is 

present in the sample in an active or dormant stage (e.g. bacteria), or because traces remain to 

attest to the presence of the organism in the sample or in its vicinity revealing its presence in 

the community (e.g. carcasses, skin, faeces, body fluid, etc) (Barnes & Turner 2016). Thus, 

from an eDNA sample and combined with high-throughput sequencing, the diversity of the 

whole multitrophic community can be assessed. The rapid advancements of eDNA 

metabarcoding make it now possible to tackle unresolved questions that could not be addressed 

with traditional biodiversity surveys so far and to study far elusive taxa diversity, like soil 

microbial organisms, thereby improving our understanding of their community assembly 

processes and their main drivers at large scales (Wu et al. 2011; Drummond et al. 2015; Deiner 

et al. 2017). While eDNA metabarcoding was initially developed for micro-organisms (Tiedje 

et al. 1999), the ability of this method to efficiently monitor larger organisms is now recognized 

(Deiner et al. 2017). The use of eDNA metabarcoding alone or in complement with 

conventional methods has revealed that soil diversity is greater than previously thought, e.g. for 

protists (Geisen et al. 2016), fungi (Buée et al. 2009), earthworms (Bienert et al. 2012) and 

rotifers (Robeson et al. 2011). 

 

5.2. Bias and pitfalls in eDNA metabarcoding data 

In eDNA metabarcoding surveys, the obtained data consist of hundreds to millions of DNA 

sequencing reads from the multiple species co-occurring within soil samples. The process to 

obtain this list of sequences includes several methodological steps of fieldwork, laboratory 

treatment and bioinformatics processing, which can be subject to potential biases (Zinger et al. 

2019). The basic steps are: 1) soil sampling in the field, 2) DNA extraction from soil 3) 

amplification of a specific DNA region with the use of a DNA marker 4) sequencing the DNA 

amplicons 5) processing the retrieved sequences through a bioinformatic pipeline. These 

different steps and the potential biases introduced at each step are described in Box 2. DNA 

metabarcoding processing and sources of errors. The bioinformatics pipeline intends to detect 

and correct these potential ‘errors’ that accumulate along with the eDNA processing and that 
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correspond to artefactual DNA that may lead to inflated diversity estimates (Bálint et al. 2016; 

Zinger et al. 2019). However, decisions regarding the bioinformatics process can be subjective, 

e.g., subject to laboratory or author personal preferences, and therefore there is much interest 

in understanding how variations in the bioinformatic pipeline can influence the ecological 

results across studies. This problem was studied in Chapter 1 of this thesis. 

At the end of the bioinformatics process, a list of sequences and their abundances, i.e., the 

identity and number of sequencing read counts is obtained. The sequences are then usually 

grouped by DNA sequence similarity into Molecular Operational Taxonomic Units (MOTUs), 

which are next assigned to known taxa after comparison to reference databases when such 

databases are available. Curated data has thus the form of a community matrix that lists the 

taxonomically annotated MOTUs found in each environmental sample, and their sequencing 

read counts. Compared to conventional methods species are replaced by MOTUs, and species 

abundances are replaced by the number of sequencing reads. MOTUs are not necessarily 

transposable to the classic taxonomy due to the different evolutionary rates of DNA barcodes 

amongst clades (e.g., Schoch et al. 2012). Still, they are often considered pragmatic proxies of 

species in biodiversity assessments. In the same way, the number of sequencing reads can’t be 

interpreted as a measure of species abundance. Some studies have found a positive correlation 

between the relative abundance of sequencing reads and the biomass across samples in 

experimental studies or through simulations (Deiner et al. 2017; Kelly et al. 2019). However, 

several factors related to the ‘nature’ of the eDNA (e.g., origin, stability) can affect this 

relationship (Barnes & Turner 2016).  
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Box 2. DNA metabarcoding processing and sources of errors 
1. Soil sampling is carried out in a delimited sampling area of 

interest. The sampling strategy is designed to obtain diversity 

estimates that are representative of the sampling area, and may vary 

depending on the research question (e.g., diversity estimation per 

se vs. studying patterns of diversity). Within this sampling area, a 

number of biological replicates are collected. In terrestrial 

ecosystems, each replicate usually corresponds to a soil core.  
2. DNA extraction is conducted on each biological replicate, 

preferably right after sampling to avoid DNA degradation or 

changes on microbial communities. Alternatively, they should be 

frozen, dried, or conserved in particular buffers when possible to 

inhibit any biological activity prior DNA extraction.  
3. A particular barcoding region D is then amplified from the DNA 

extracted by using primers targeting priming sites common to the 

clade of interest (e.g., universal primers for bacteria, primers 

specific to plants) yet flanking regions 

variable enough to discriminate taxa. In our 

study, these primer pairs are equipped with 

a short sequence label in the 5’ end of each 

primer (tag), of which combination is 

unique to each sample. This enables 

retrieving the sample of origin of each 

sequencing reads in downstream analyses. 

As most DNA is highly fragmented in the 

soil (degraded DNA), the DNA barcode 

must be short enough to be successfully 

amplified by PCR (Polymerase Chain 

Reaction). Working with relatively short 

barcodes is furthermore necessary due to 

the sequencing length limits of most HTS 

sequencers (e.g., ca. 150 bp for a HiSeq 

Illumina platform and 500 bp for a MiSeq 

Illumina platform). These constraints 

inherently come with a loss of the 

phylogenetic/taxonomic resolution in 

downstream analyses. 
During PCR amplification, common PCR 

errors are produced by the DNA 

polymerase, which can substitute a 

nucleotide by another during DNA 

replication. Such variants from the genuine 

DNA fragments can also be amplified 

during subsequent PCR cycles, and 

subjected to new PCR errors. During PCR 

amplification, the formation of chimeric 

DNA fragments can also occur through 

recombination of two or more parent DNA 

fragments that are aborted extension 

products from an earlier cycle of PCR. 

Chimeras can represent a significant proportion of all produced 

amplicons. These two types of errors inherently inflate biodiversity 

estimates.  
Because DNA extracts can contain PCR inhibitors (e.g., humic 

acids), some PCR can fail (dysfunctional PCRs) and produce a 

majority of artefactual amplicons (e.g. primer dimers, partial DNA 

fragments, etc.). This may inflate diversity estimates too and further 

lead to spurious ecological conclusions. To control for such 

artefacts, it is often recommended to conduct several technical PCR 

replicates for each biological sample.  
At both 2. and 3. steps, reagent contaminants coming from 

consumable/equipment (e.g., DNA extraction or PCR commercial 

kits) or any external source can be introduced. Even if these 

contaminants come in low proportions and lab protocols are well 

respected, the use of universal primers and the high sensitivity of 

HTS may lead to a non-negligible amount of such contaminants in 

DNA metabarcoding data, and hence, to diversity inflation. The 

systematic sequencing of negative controls (i.e., blanks of DNA 

extraction and PCR amplification) enable identifying such 

contaminants. They are indeed better amplified and more 

detectable in negative controls, as they are not in competition with 

the DNA templates of interest. 
Internal contaminants can also occur when DNA from one sample 

accidentally passed from one sample to another (e.g., through 

aerosol produced when pipetting). This phenomenon can be 

referred to as cross-sample contamination and may lead to false 

positives. Given the biases mentioned above, technical replicates 

and positive/negative controls are often conducted to evaluate them 

and improve the accuracy of downstream analysis.  
4. After PCR amplifications, a sequencing library is prepared: all 

amplicons from the different samples are pooled together and 

ligated to sequencing primers. This library is then subjected to HTS 

sequencing (on Illumina sequencers in most cases). Either at the 

library preparation step, or during the sequencing, the formation of 

chimeras can occur across sequences belonging to different 

samples. This can lead to what is now 

often referred as “tag-jumps”, “tag-

switch”, or “cross-talks”, i.e., a 

chimera containing a genuine 

sequence, but for which the tag 

combination is artificial. In certain 

cases, these artificial tag combinations 

correspond to the tag combinations 

already associated to different samples 

in the experimental design, hence 

leading to a spurious assignment of 

this sequence to these samples. In 

downstream analyses, this bias looks 

like a cross-sample contamination. 
Also, during sequencing process, the 

identification of some nucleotide can 

be ambiguous. These nucleotides will 

appear as Ns in the sequencing output 

and be interpreted as sequencing 

errors.  
5. Once the sequencing data obtained, 

bioinformatics analyses are conducted 

to transform sequences data into a 

MOTU community matrix ready for 

ecological analyses. During the 

bioinformatics processing, the 

sequencing reads are, amongst other, 

reassign to their samples and assigned 

to a taxa by comparison with reference 

databases. It is also during this 

process, that the different errors 

accumulated during the previous steps 

can be removed using algorithms 

available in many different software. 

At present, it is often let to the discretion of the user to choose what 

are the appropriate data curation steps to include in the 

bioinformatic analysis. 

 

 

 

 

 
Reference: Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). 

Environmental DNA: for biodiversity research and monitoring. New 

York: Oxford University Press 

Note: This box was modified from the Appendix 1 provided in the 

original publication corresponding to Chapter 1:  
Calderón-Sanou I, et al. (2020) From environmental DNA sequences 

to ecological conclusions: How strong is the influence of 

methodological choices? J Biogeogr 47:193–20
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5.3. Making ecological sense from a bunch of sequences 

So far, most studies using eDNA metabarcoding to monitor cross-kingdom biodiversity have 

focused on describing the diversity patterns of broad taxonomic groups, such as bacteria, 

eukaryotes, and fungi (e.g., Wu et al. 2011; Drummond et al. 2015; George et al. 2019). 

However, if we aim at obtaining an integrated knowledge of the functions of soil biodiversity, 

i.e., the ecological roles of soil organisms, we need to move away from pure taxon-based 

biodiversity assessments. There is a growing interest in applying trait-based approaches to the 

study of biodiversity with eDNA data, in which taxonomic annotations of sequences are 

complemented with information on traits (Crowther et al. 2014). Body size is a commonly used 

trait in soil ecology when dealing with the whole multitrophic community that can be used to 

disentangle ecological processes acting on soil communities such as dispersal limitations 

(Zinger et al. 2018). Functional or trophic information might also be needed if the aim is to 

build ecological networks such as food webs from eDNA metabarcoding data (Roslin & 

Majaneva 2016). The construction of heuristic food webs from eDNA data combined with the 

ecological knowledge of soil organisms seems a promising avenue. The application of this 

method from eDNA data has been limited (Compson et al. 2018), and to my knowledge not 

yet applied to soil organisms. Different databases with functional or trophic information on soil 

organisms exist, e.g. FUNGuild database for fungi (Nguyen et al. 2016), and might be useful 

for building heuristic soil food webs from eDNA data. The methodology used in the 

construction of soil food webs from eDNA data and its related challenges are addressed in 

Chapter 2. 
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OBJECTIVES 

The aim of this PhD was to improve our understanding of how soil biodiversity responds to 

environmental changes through the use of eDNA metabarcoding. 

 

This general objective is reached through two specific objectives, one addressing the 

methodological constraints and one addressing ecological questions: 

1. To improve the use of environmental DNA metabarcoding data to get robust ecological 

conclusions and an integrative representation of soil biodiversity. 

2. To test ecological hypotheses to understand how different dimensions of soil 

biodiversity (from MOTUs diversity to the soil food web structure) respond to the 

environment by using empirical data at different spatial extents and in different 

contexts. 

 

 

STRUCTURE OF THE MANUSCRIPT 

The methodological objectives were addressed in Chapters 1 and 2. First, because the diversity 

analyses in my PhD were based on eDNA metabarcoding data, we needed to gain a better 

understanding of the uncertainties associated with the use of eDNA metabarcoding in empirical 

analyses. Can we obtain reliable biodiversity patterns when using eDNA data? How sensitive 

are different ecological analyses (i.e., spatial diversity partitioning, distance-decay) to the 

methodological choices in the eDNA data curation process? Which are the curation steps that 

introduce more variability in the results? These questions were addressed in Chapter 1. After 

confirming that we could obtain reliable results using a stringent pipeline and adequate 

measures of diversity, we developed a workflow to categorize taxonomically annotated 

sequences into trophic groups and to further build a metaweb. This methodology is described 

in Chapter 2 and was used in the further chapters. 

The ecological questions were addressed in Chapters 3, 4 and 5. First, in Chapter 3, at the 

scale of the French Alps, we studied how the diversity within the different soil trophic groups 

responded to environmental changes based on the predictions of existing ecological 

hypotheses. Second, in Chapter 4, we quantified how the structure of soil food webs varied 

across several elevational transects in the French Alps and deciphered the importance of 
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geographic distance and environmental factors to explain spatial soil food web turnover. Third, 

at a smaller scale, we study the cascading effects of moth outbreaks on soil food webs along a 

disturbance gradient comprising undisturbed and defoliated forests in the Varanger region at 

Northeastern Norway (Chapter 5). Figure 5 describes the positioning of these different 

chapters according to the spatial scale studied and the biodiversity dimension considered.  

 

 

 

Figure 5. Summary of the research chapters developed in this PhD thesis positioned according to the 

spatial extent and the biodiversity dimension considered used in the study. The type of gradient 

(elevational or disturbance gradient) used in the chapter is indicated with a pictogram. Colors indicate 

if the chapter was related to the methodological (blue) or the ecological (green) objective. 
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SCIENTIFIC PUBLICATIONS 

This thesis led to the production of four scientific papers, from which three are already 

published, and one is in preparation and should be submitted during the summer: 

 

• Calderón-Sanou I, et al. From environmental DNA sequences to ecological 

conclusions: How strong is the influence of methodological choices? J Biogeogr 

47:193–206 (2020). https://doi.org/10.1111/jbi.13681 

• Calderón-Sanou, I., et al. Cascading effects of moth outbreaks on subarctic soil food 

webs. Sci Rep 11, 15054 (2021). https://doi.org/10.1038/s41598-021-94227-z 

• Calderón-Sanou, I., et al. Energy and physiological tolerance explain multi-trophic soil 

diversity in temperate mountains. Divers Distrib. https://doi.org/10.1111/ddi.13529 

• Calderón-Sanou, I., et al. Spatial turnover of soil food webs along environmental 

gradients. In preparation. 

 

During my PhD, I also collaborated with colleagues on other research projects, leading to the 

production of two scientific papers. For the first paper, my contribution was mostly related to 

my consistent participation in the botanical surveys conducted: 

 

• Bektaş, B., Thuiller, W., Renaud, J., Gueguen, M., Calderón-Sanou, I., Valay, J-

G.  Colace, M-P, Münkemüller, T. A spatially explicit trait-based approach uncovers 

changes in assembly processes under warming.  In revision with Eco Lett. 

 

For the second paper, I contributed conceptually by providing ideas and suggestions based on 

my own reflections on the definition of soil trophic groups: 

 

• Hedde, M., Blight, O., Briones, M.J.I., Bonfanti, J.,  Brauman, A., Brondani, M., 

Calderón Sanou, I., Clause, J., et al. Avoiding cacophony in soil fauna classifications. 

Under review in Geoderma. 

 

Other academic productions in which I was involved during my thesis were the internship 

reports of four master students that I co-supervised. None of them has led to a scientific 

publication yet. 

  

https://doi.org/10.1111/jbi.13681
https://doi.org/10.1038/s41598-021-94227-z
https://doi.org/10.1111/ddi.13529
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Abstract
Aim: Environmental DNA (eDNA) is increasingly used for analysing and modelling 
all‐inclusive biodiversity patterns. However, the reliability of eDNA‐based diversity 
estimates is commonly compromised by arbitrary decisions for curating the data 
from molecular artefacts. Here, we test the sensitivity of common ecological analy-
ses to these curation steps, and identify the crucial ones to draw sound ecological 
conclusions.
Location: Valloire, French Alps.
Taxon: Vascular plants and fungi.
Methods: Using soil eDNA metabarcoding data for plants and fungi from 20 plots 
sampled along a 1000‐m elevational gradient, we tested how the conclusions from 
three types of ecological analyses: (a) the spatial partitioning of diversity, (b) the di-
versity–environment relationship, and (c) the distance–decay relationship, are robust 
to data curation steps. Since eDNA metabarcoding data also comprise erroneous 
sequences with low frequencies, diversity estimates were further calculated using 
abundance‐based Hill numbers, which penalize rare sequences through a scaling pa-
rameter, namely the order of diversity q (Richness with q = 0, Shannon diversity with 
q ~ 1, Simpson diversity with q = 2).
Results: We showed that results from different ecological analyses had varying 
degrees of sensitivity to data curation strategies and that the use of Shannon and 
Simpson diversities led to more reliable results. We demonstrated that molecular op-
erational taxonomic unit clustering, removal of polymerase chain reaction errors and 
of cross‐sample contaminations had major impacts on ecological analyses.
Main conclusions: In the Era of Big Data, eDNA metabarcoding is going to be one 
of the major tools to describe, model and predict biodiversity in space and time. 
However, ignoring crucial data curation steps will impede the robustness of several 
ecological conclusions. Here, we propose a roadmap of crucial curation steps for dif-
ferent types of ecological analyses.
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1  | INTRODUC TION

Understanding the structure and distribution of biodiversity 
across space and time is a critical goal in ecology. The develop-
ment of environmental DNA (eDNA) metabarcoding approaches 
now facilitate the monitoring of species at biogeographical scales 
and across the whole tree of life (Drummond et al., 2015; Taberlet, 
Coissac, Pompanon, Brochmann, & Willerslev, 2012). It is now pos-
sible to tackle unresolved questions that could not be addressed 
with traditional biodiversity surveys so far. For example, eDNA‐
based biodiversity studies have enabled the spatial partitioning of 
diversity (i.e. gamma, alpha and beta diversity) of so far elusive 
taxa in both terrestrial and marine environments (e.g. marine vi-
ruses and protists, soil fungi and bacteria), thereby improving our 
understanding of their community assembly processes and of 
their role in structuring communities and networks at global scales 
(e.g. Lima‐Mendez et al., 2015; Tedersoo et al., 2014). However, 
while the eDNA metabarcoding approach promises substantial 
advances in macroecology and multi‐taxa studies, it requires an 
appropriate and careful processing of the tremendous amount of 
sequences generated to draw robust and ecologically meaningful 
conclusions.

Indeed, the analyses of diversity patterns (e.g. alpha‐ and beta‐
diversity; Whittaker, 1960) across space and of the processes gener-
ating these patterns are traditionally based on community matrices 
representing the presence/abundance of species across samples. In 
eDNA metabarcoding surveys, the data consist of hundreds to mil-
lions of DNA sequencing reads from the hundreds to thousands of 
species co‐occurring within samples. Using bioinformatics, these 
data are then transformed in community matrices, but with species 
replaced by DNA sequences, and species abundance replaced by a 
number of sequencing reads. While, in an ideal world, one sequence 
should correspond to a single species, in practice, it can correspond 
to several species if the DNA region has a low taxonomic resolu-
tion, and more critically, one species can be represented by tens to 
thousands of variant sequences. Amongst those variants, a few are 
biologically meaningful (e.g. intraspecific variability), but the large 
majority of them are technical errors produced at the different stages 
of the laboratory treatments, from DNA extraction to sequencing 
(see Table 1 and Appendix S1; Bálint et al., 2016; Taberlet, Bonin, 
Zinger, & Coissac, 2018). These errors can represent more than 70% 
of the sequences in raw metabarcoding datasets, and have usually 
low frequencies (e.g. singletons; Brown, Veach, et al., 2015). If inter-
preted as genuine, these sequences can, therefore, inflate diversity 
by several orders of magnitude and lead to flawed ecological inter-
pretations (Kunin, Engelbrektson, Ochman, & Hugenholtz, 2010). 
Molecular protocols are thus applied to reduce and/or control spe-
cific technical errors accumulated during the data production. For 
example, replicated polymerase chain reaction (PCR) amplification 
and use of negative controls allow identifying artefactual sequences 
resulting from random errors introduced by DNA polymerases or 
sequencers, as well as reagent contaminants (de Barba et al., 2014). 
However, error rates remain high even with the most stringent 

molecular protocols (Bálint et al., 2016; Taberlet et al., 2018), which 
has led to the development of bioinformatics algorithms aiming at 
detecting errors known to occur during data generation (e.g. PCR er-
rors or chimeric sequences). Also, most of these tools require spec-
ifying thresholds and parameter values, which are usually based on 
arbitrary decisions and visual assessments. An example is the clas-
sification of sequence variants into MOTUs (Molecular Operational 
Taxonomic Units) based on the similarity of sequences. While this 
step is critical because MOTUs are used as a proxy for species in 
the majority of DNA metabarcoding studies (Appendix S1), MOTUs 
are commonly defined using a 97% sequence similarity threshold, 
a value historically defined as the similarity level of full‐length 16S 
rRNA barcodes below which bacterial strains necessarily belong to 
different species (Stackebrandt & Goebel, 1994). However, the opti-
mal threshold value to define MOTUs depends on the focal taxa and 
polymorphism/length of the DNA marker used (e.g. Brown, Chain, 
Crease, MacIsaac, & Cristescu, 2015; Kunin et al., 2010). It also de-
pends on the PCR/sequencing error rate, which varies across molec-
ular protocols, and depends on the amount of target DNA: when it 
is low, each genuine DNA fragment has a higher probability of being 
amplified at each PCR cycle (Taberlet et al., 2018).

Hence, using DNA metabarcoding requires making several 
methodological choices. Beyond those related to molecular proto-
cols and bioinformatics software, one of the most critical choice is 
to decide which data curation steps to include in the curation pro-
cedure. Indeed, each step directly affects the community matrix 
obtained, by influencing the final list of MOTUs and/or their fre-
quencies within samples. Previous methodological studies have thus 
underlined the importance of data curation steps on the reliability 
of ecological analyses and provided guidelines for bioinformatics 
decision‐making (e.g. Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; 
Schloss, 2010). However, most of these studies tested the influence 
of data curation procedures on a single metric or ecological ques-
tion. However, questions related to local community richness can be 
very sensitive to errors (Flynn, Brown, Chain, MacIsaac, & Cristescu, 
2015), while comparisons of communities’ composition might be less 
affected (Leray & Knowlton, 2015; Taberlet et al., 2018). In addition, 
most studies have focused on microbial communities (bacteria or 
fungi), and few have addressed such questions to macro‐organisms. 
Finally, most published tests have so far relied on mock communities 
(i.e. positive controls) usually made of DNA extracts for few known 
species. While mock communities are useful to identify errors and 
estimate error rates, the conclusions cannot easily be translated to 
realistic environments with rich and complex communities (Alberdi 
et al., 2018).

Here, we address how methodological choices related to the 
DNA metabarcoding data curation strategy influence the results 
for different types of ecological analyses and their related diversity 
metrics. We used soil eDNA data from an elevational gradient in the 
French Alps, and focused on plants and soil fungi to represent both 
macro‐ and microorganisms, as well as DNA markers with different 
length (Table 2). Patterns of plant diversity have been extensively 
studied in this area (e.g. Chalmandrier, Münkemüller, Lavergne, & 



     |  195CALDERÓN‐SANOU et al.

Thuiller, 2015) and serve as a good reference to evaluate the results 
estimated from eDNA metabarcoding data. We subjected these data 
to 256 different data curation strategies, which correspond to all 
possible combinations of seven critical data curation steps. We then 
tested how the curation strategies influence the inferences drawn 
from three different ecological analyses: (a) a spatial partitioning 
of diversity (i.e. gamma, alpha and beta diversities) to estimate the 
regional and local diversity of the gradient, (b) a diversity–environ-
ment relationship, to analyse the influence of environment on the 
local community diversity (alpha), and (c) a distance–decay analysis, 
to evaluate if similarities between communities (beta) decrease with 
increasing geographic distances. To this end, we first checked the ac-
curacy of eDNA metabarcoding data in detecting ecological patterns 

by comparing the eDNA‐based diversity patterns with the expected 
values based on mock communities and traditional botanical surveys 
(only available for plants). Second, we did an overall sensitivity anal-
ysis to test the sensitivity of ecological results to the data curation 
strategy. Finally, with a variance partitioning analysis we identified 
the crucial curation steps (i.e. those that introduced more variance to 
the results) to include or consider in the curation procedure.

To achieve these objectives, we built on Hill numbers (Hill, 1973) 
to estimate diversity, which unifies mathematically the best known 
diversity measures in ecology through a unique parameter q (i.e. 
Richness at q = 0, the exponential of Shannon entropy at q ~ 1 and 
the inverse of Simpson at q = 2). In this framework, the weight of the 
rare species decreases when increasing the value of the parameter 

TA B L E  1  Brief description of classical technical errors occurring in DNA metabarcoding data, the associated data curation steps tested in 
the present study and the curation methodology

Target error Definition Curation step (abbreviation) and methodology

Mixed Common obvious molecular/sequencing 
errors such as mispaired reads, sequences 
with ambiguous bases, that are too short or 
singletons.

Common basic filtering:
Removal of sequences meeting these criteria. This step is not tested 
here and has been applied systematically.

PCR error Base misincorporation by the DNA polymerase 
during the PCR amplification.

PCR errors removal (PCR error):
Identification of PCR errors using a model‐based classification of 
sequences based on their similarities and abundances. The model 
reflects the accumulation of base misincorporation across PCR 
cycles, where genuine sequences remain more abundant than their 
respective errors.

Highly spurious 
sequences

Chimeras from multiple parents, primers di-
mers, etc. or sequences from highly degraded 
DNA fragments that largely differ from any 
known sequence.

Highly spurious sequences removal (spurious):
Removal of sequences of whose similarity with their closest match 
in public reference databases is below 70% (plants) or 50% (fungi).

Chimeras Sequences obtained from the recombination 
of two or more parent sequences

Chimera detection and removal (chimeras):
Removal of sequences that have a high probability to be a subse-
quence from other, more abundant sequences in the dataset.

Remaining PCR errors/
Biological variation

Sequences from the same species either 
resulting from a PCR error that could not be 
filtered above, or from intraspecific variability

MOTU clustering (clustering):
Clustering of sequences into MOTUs on the basis of their pairwise 
similarity. Here done at different sequence similarity thresholds.

External contaminants DNA coming from an external source other 
than the biological sample

Reagent contaminants cleaning (reagent):
Removal of sequences that are more abundant in negative controls 
relative to biological samples because of the absence of other com-
peting DNA fragments during the amplification process.

Cross‐contaminations 
or tag‐jumps

Genuine sequences present in a sample where 
actually absent, either due to cross‐contami-
nations at the bench, or due to tag‐jumps oc-
curring during the library preparation or the 
sequencing, that is, switches of nucleotidic 
labels used to assign the sequencing reads 
to their samples. These contaminants are 
usually of much lower abundance than their 
sample of origin.

Cross‐sample contamination curation (cross):
If the abundance of a given MOTU in a given sample is below 0.03% 
of the total MOTU abundance in the entire dataset, it is considered 
as absent in this sample.

Dysfunctional PCRs PCRs that are too different in comparison with 
their technical replicates.

Dysfunctional PCR removal (DysPCR):
Removal of PCR replicates from a single biological sample that are 
more dissimilar to each other in MOTUs composition and structure 
than are the PCR obtained from other biological sample.

Abbreviations: MOTU, molecular operational taxonomic unit; PCR, polymerase chain reaction. 
Note: Target errors make reference to the errors described further in Appendix S1. See also Table S2.4 for more details on the curation steps used in 
this study.
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q. This feature is particularly relevant for DNA metabarcoding data, 
since artefactual sequences are usually rare compared to the genu-
ine ones (Bálint et al., 2016; Taberlet et al., 2018). Hill numbers can 
thus penalize these rare sequences at different degrees: q = 1 is the 
order of diversity that levels the MOTUs exactly according to their 
relative abundances, while q < 1 overweigh rare MOTUs and q > 1 
overweight abundant MOTUs. As a result, we could expect that di-
versity measures that give less importance to rare sequences (i.e. 
q > 0) are less sensitive to the data curation strategy, because they 
penalize the artefactual sequences targeted by the curation steps.

2  | MATERIAL S AND METHODS

2.1 | Sample data

Soil cores were sampled at 10 different elevations equally distrib-
uted across an elevational gradient in the northern French Alps 
(from 1,748  m to 2,725  m a.s.l.) in 2012. At each elevation, two 
10 m × 10 m plots were selected (20 plots in total). In each plot, 
21 soil cores distributed along the two diagonals were sampled. Soil 
corers were cleaned and sterilized between each sample collection. 
Extracellular DNA was then extracted twice, from 15 g as described 
in Taberlet, Prud’homme, et al. (2012). Aboveground plant commu-
nity information (hereafter observed plant diversity) was obtained in 
each plot with a botanical survey conducted during the annual pro-
ductivity peak (mid‐July) using the Braun‐Blanquet cover‐abundance 
scale (Braun‐Blanquet, 1946).

2.2 | Molecular analyses

eDNA‐based plant diversity was estimated by targeting a vascu-
lar plant‐specific marker (P6 loop of chloroplast trnL, Table 2). It 
targets highly conserved priming sites across vascular plants and 
amplifies a short region, which is desired when working with de-
graded DNA. eDNA‐based fungal diversity was assessed using the 
nuclear ribosomal Internal Transcribed Spacer 1 (ITS1; Table 2). 
For each DNA extract, PCRs were run in duplicate leading to four 
technical replicates per core sample and DNA marker. PCR ther-
mocycling conditions and mixture composition and purification 
can be found in Table S2.1 in Appendix S2. To control for poten-
tial contaminants, extraction and PCR blank controls were in-
cluded in the experiment. To control for false positives caused by 

tag‐switching events, we also defined “sequencing blank controls”, 
that is, tag combinations not used in our experimental design, but 
that could be formed at the library preparation or sequencing 
stage (See Appendix S1). We also included positive controls in this 
experiment, which consisted of a mix of DNA extracted from 16 
plant species. For this, genomic DNA was extracted from leaf tis-
sue using the DNeasy Plant Kit (Qiagen GmbH), quantified, diluted 
at different concentrations for each species and mixed to form 
a mock community (species composition provided in Table S2.2, 
Appendix S2). Positive controls allow for quantification of techni-
cal biases introduced by PCR and sequencing. Illumina sequencing 
was performed on a HiSeq platform (2 × 100 bp paired‐end reads) 
for plant amplicons and on a MiSeq (2 × 250 bp paired‐end reads) 
for fungi amplicons, both using the paired‐end technology.

2.3 | Bioinformatics analyses

The Illumina sequencing paired‐end reads (Table S2.3) were pre-
processed for each marker with three procedures: (a) assembling 
forward and reverse paired‐end reads based on their overlapping 
3’‐end sequences, (b) assigning each read to its respective sample 
(demultiplexing) and (c) combining strictly identical sequences into 
unique DNA sequences while keeping information on their abun-
dance (number of sequencing reads) in each sample (dereplication). 
Then we systematically processed the dereplicated sequences fol-
lowing common data curation procedures that included removal 
of sequences with low paired‐end alignment scores, removal of 
singletons, removal of short sequences and removal of sequences 
containing ambiguous bases (not to be confounded with a phred‐
quality filtering; Figure 1a; Table 1; Table S2.4). Singletons are 
sequences that occur only once in the whole dataset and many 
studies agree that their removal is necessary to reduce data com-
plexity/computational time and because they mostly correspond 
to molecular artefacts that may inflate disproportionately diversity 
indices (Brown, Veach, et al., 2015; Kunin et al., 2010). In our data, 
they represented 70%–80% of the total number of sequences but 
only 1%–15% of the total number of sequencing reads for plants 
and fungi respectively (Table S2.3 in Appendix S2). We finally as-
signed each remaining sequence to a taxonomic clade with the 
ecotag command from the OBITools software package (Boyer  
et al., 2016) that uses a lowest common ancestor algorithm for the 
assignment, and the EMBL database version 133 as a reference.

TA B L E  2  Characteristics of the DNA markers used to estimate eDNA‐based diversity in this study

DNA Marker
Target 
taxa Forward primer (5ʹ−3ʹ) Reverse primer (5ʹ−3ʹ)

Length [range] 
(bp) References

P6 loop of the chloroplast 
trnL intron

Vascular 
plants

g:GGGCAATCCTGAGCCAA h: CCATTGAGTCTCTG 
CACCTATC

48 [10–220] Taberlet et al., 2007

Nuclear ribosomal DNA 
Internal Transcribed 
Spacer 1 (ITS1)

Fungi ITS5: GGAAGTAAAAGTCG 
TAACAAGG

Fung02:CCAAGAGATC 
CGTTGYTGAAAGTK

226 [68–919] White, Bruns, Lee, 
& Taylor, 1990; 
Taberlet et al., 
2018
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Next, data from each marker were processed following a range 
of different data curation strategies to test the sensitivity of eco-
logical analyses to different methodological choices (Figure 1b). 
To do so, we selected seven important steps: (a) removal of PCR 
errors, (b) filtering of highly spurious sequences, (c) removal of 

chimeras, (d) sequence classification into MOTUs (MOTU cluster-
ing), (e) removal of reagent contaminants, (f) cross‐sample contam-
ination cleaning and (g) dysfunctional PCRs filtering (see Table 1; 
Appendix S1; Table S2.4 in Appendix S2 for target errors and step 
descriptions). Curation steps were either kept or excluded, and 

F I G U R E  1  Workflow of the sensitivity analysis. (a) Raw data are curated with basic filtering steps for each DNA marker (plants: trnL‐P6 
loop, fungi: internal transcribed spacer 1). (b) Filtered data are processed using seven curation steps that were varied or removed in each 
data curation strategy making a total of 256 possible combinations. As a result, 256 community matrices are obtained per DNA marker 
and used to (c) conduct three types of ecological analyses. The range of values obtained for each ecological analysis and diversity metric 
represents the variance due to the data curation strategy [Colour figure can be viewed at wileyonlinelibrary.com]
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were always performed in the same order in each data curation 
strategy. For the MOTU clustering step, when kept, three cluster-
ing thresholds were tested (1, 2 or 3 mismatches allowed between 
pairwise aligned sequences). We used here raw mismatches rather 
than percentages of dissimilarities because the DNA markers used 
are short (< 100 bp) and/or highly polymorphic in length. Using the 
percentages of dissimilarity in this case would penalize more little 
differences when alignments are short than when they are long.

All different possible combinations of these curation strategies 
were implemented (Figure 1b). Most of the curation steps were 
done using the software OBITools (Boyer et al., 2016). Chimera 
detection was performed with UCHIME (Edgar, Haas, Clemente, 
Quince, & Knight, 2011) and we used Sumaclust (Mercier, Boyer, 
Bonin, & Coissac, 2013) for MOTU clustering due to its ability in 
handling large datasets and its flexibility for defining the clustering 
threshold (see Table S2.4 for more details on the algorithm). After 
data curation, PCR replicates were summed and standardized by 
the total number of reads in each core sample. We then pooled 
the samples for each of the 20 plots to obtain a single community 
per plot. For this, MOTUs abundance (already standardized by the 
number of reads) were summed and standardized by the number 
of samples in each plot. For each of the data curation strategies, 
we obtained a community matrix with rows representing plots and 
columns representing all the MOTUs obtained after curation, which 
we used here as a proxy for species. Therefore, our sensitivity anal-
ysis was conducted on a total of 256 matrices for each DNA marker 
(Figure 1c).

2.4 | Ecological questions

We tested the sensitivity of the results for three common ecologi-
cal analyses to the above‐mentioned data curation strategies using 
MOTUs as equivalent of species:

2.4.1 | Spatial partitioning of diversity

We used the multiplicative diversity partitioning approach 
(Whittaker, 1960) to analyse gamma (here the diversity across 
the entire gradient), alpha (diversity of local communities) and 
beta diversity (diversity between communities). In the Hill num-
bers framework, gamma diversity is the effective number of spe-
cies in the pooled meta‐community (i.e. across all plots), alpha 
diversity is the effective number of species per community (i.e. 
plot) and beta diversity is the effective number of communities, 
calculated as the ratio of gamma diversity to alpha diversity. We 
followed Chao, Chiu, and Jost, (2014)’s definition where beta di-
versity is independent of alpha and ranges from 1 (all communi-
ties are identical) to the total number of communities N (when 
N  =  20 all communities are different). We limited our study to 
taxonomic diversity, because the DNA markers we used here 
are rather short (Table 2) and are highly variable in length, which 
make them not suitable for inferring accurate phylogenetic rela-
tionships at the scale of the community.

2.4.2 | Diversity–environment relationship 
(alpha ~ soil organic matter content)

Diversity is often linked to abiotic drivers, and a common ecological 
research question is how alpha diversity changes along an environ-
mental gradient. Here, we fitted a linear model to determine changes 
in alpha diversity along a gradient of soil organic matter content 
(SOM content), known to be a strong predictor of diversity changes 
in the study site (Ohlmann et al., 2018).

2.4.3 | Distance–decay relationship 
(similarity ~ geographic distance)

Species’ distributions and resulting diversity patterns are controlled 
by both species dispersal abilities and spatial turnover of environ-
mental conditions (Tuomisto, 2003). One hypothesis is thus that spa-
tially distant communities are more different than close communities 
(“distance‐decay”, Green et al., 2004; Tuomisto, 2003). We used the 
Jaccard‐type overlap (UqN) as a measure of similarity (Chao et al., 
2014) and we fitted a linear model using the log transformation of 
similarity against the geographic distance to evaluate the distance–
decay. The geographic distance between plots was calculated with 
Euclidean distances using the elevation values of the plots.

For each DNA marker (plant and fungi), we calculated the 
gamma, alpha and beta diversities (spatial partitioning of diversity) 
for each of the 256 community matrices obtained from the differ-
ent metabarcoding data curation strategies using Hill numbers with 
values of q = {0,0.5,1,2}. For the diversity–environment and the dis-
tance–decay relationships, we fitted our models to each community 
matrix and extracted the slopes and the R‐squares of the models. 
Alpha diversity and community similarity were calculated using Hill 
numbers with values of q = {0,1,2}.

2.5 | Sensitivity analyses

2.5.1 | Detectability of ecological patterns

To test the ability of eDNA metabarcoding data and of the different 
data curation strategies to detect ecological patterns we (a) evaluated 
the completeness of the sampling unit (plot), and (b) used the observed 
plant diversity and positive controls as references to evaluate the ac-
curacy of the ecological results. We acknowledge that eDNA‐based 
diversity is expected to slightly diverge from observed diversity (see 
discussion) but they should follow similar trends (Hiiesalu et al., 2012; 
Träger, Öpik, Vasar, & Wilson, 2019; Yoccoz et al., 2012). The sampling 
completeness of each plot was evaluated with rarefaction curves for 
the different orders of diversity q = {0,1,2} and for three data curation 
strategies with varying filtering stringency: a “no data curation” strat-
egy with no curation step at all; a “basic curation” strategy including 
only the chimera removal and a traditional clustering threshold allow-
ing three mismatches between clustered sequences and, a “rigorous 
curation” strategy, including all the curation steps considered here 
and a clustering threshold allowing two mismatches.
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2.5.2 | Overall sensitivity analyses

To test the sensitivity of the results for the different ecological anal-
yses and their related diversity metrics to the data curation strategy, 
we used the variance of each diversity estimate, obtained across the 
256 community matrices and for each marker (Figure 1c). For the 
diversity–environment and the distance–decay relationships, we 
looked at the variance in the slope and the R‐square of the linear re-
gression across the 256 models for each marker. In addition, we used 
“the rigorous” and “the basic” curation strategies explained above, 

that correspond to commonly used pipelines, to exemplify how re-
sults can differ between studies.

2.5.3 | Identifying the crucial steps of the 
curation procedure

To identify the crucial steps we did a variance partitioning anal-
ysis for each diversity metric. For the spatial partitioning of di-
versity, the diversity metrics (gamma, alpha and beta diversities) 
were used as the response variable in function of the curation 

F I G U R E  2  Estimated values of the spatial partitioning of diversity components (a‐f), of the regression parameters from the diversity–
environment (g‐j), and of distance–decay (k‐n) relationships across the 256 curation strategies for different diversity metrics (Hill numbers, 
q = {0,0.5,1,2}). The top row (a‐c, g, h, k, and l) corresponds to the plant DNA marker (trnL‐P6 loop) and bottom row (d‐f, i, j, m, and n) to the 
fungi DNA marker (internal transcribed spacer 1). Size of each box (including whiskers) represents the sensitivity of the diversity metrics or the 
model parameters to the data curation strategy. The circle and the triangle symbols indicate the values obtained from a rigorous and a basic 
curation strategy respectively. The star symbol indicates the values calculated from botanical survey (only represented for plants, top row) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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steps. For the diversity–environment and the distance–decay re-
lationships we used the slope and the R‐square of the models as 
the response variable in function of the curation steps. Variance 
partitioning analyses were done with the R package relaimpo 
(Grömping, 2006).

3  | RESULTS

3.1 | Detectability of ecological patterns with eDNA 
metabarcoding data

3.1.1 | Sampling completeness of the plots

For both markers/taxa, the total diversity was well represented by 
the number of reads sequenced, when considering the diversity at 
q = {1,2} (Figure S2.1 and S2.2 in Appendix S2). At q = {0}, the rarefac-
tion curve rarely saturated, but we obtained more asymptotic curves 
when increasing the stringency of the data curation strategy.

3.1.2 | Spatial partitioning of diversity

Overall, we found that alpha diversity estimates at q =  {1,2} were 
closer to the observed plant diversity (Figure 2b) and to the positive 
controls composition (Figure 3) than at q = {0,0.5}. However, diver-
sity at q =  {1} slightly underestimated gamma (Figure 2a) and beta 
(Figure 2c) while all diversity components were underestimated for 
most curation strategies at q = {2} (Figure 2a‐c). Richness (q = 0) was 
always overestimated. While we obtained very accurate results for 
diversity at q = {0.5} when using a rigorous pipeline, a basic pipeline 
led to a substantial overestimation.

3.1.3 | Diversity–environment relationship

While the expected positive slope was in most cases detected 
(Figure 2g) and its value was on average very similar to the one ob-
tained for observed plant diversity, especially when using a rigorous 
pipeline, it was highly overestimated for some data curation strate-
gies at q = {0,1}.

3.1.4 | Distance–decay relationship

The expected negative slope of the distance–decay curve was al-
ways detected (Figure 2k). However, independently of the data cura-
tion strategy, the slope was always underestimated compared to the 
curve calculated with observed plant diversity. Also, the R‐square of 
the distance–decay relationship was reduced at q = {2} (Figure 2l).

3.2 | Overall sensitivity of ecological questions and 
diversity metrics

The results of different ecological questions had varying degrees 
of sensitivity to the data curation strategies. While the estimates in 
all ecological questions were highly sensitive (width of the boxplots 

in Figure 2), the main signal of the diversity–environment and the 
distance–decay relationships was consistent across most curation 
strategies.

3.2.1 | Spatial partitioning of diversity

Sensitivity of gamma, alpha and beta diversity decreased for higher 
values of q, that is, weighing down rare MOTUs (Figure 2a‐f). Diversity 
estimates at q = {0} were the most sensitive, with more than two or-
ders of magnitude for both gamma and alpha (Figure 2a,b) diversities 
of plants. Likewise, the rigorous and basic curation strategies (circles 
and triangles in Figure 2) exhibited a steep difference at q = {0}, which 
decreased when using higher values of q in the majority of cases.

3.2.2 | Diversity–environment relationship

The interpretation of the alpha‐SOM content relationship could 
change depending on the data curation strategy used. However, 

F I G U R E  3  Mean diversity estimated in positive controls across 
the 256 data curation strategies for different diversity metrics 
(Hill numbers, q = {0,0.5,1,2}). Size of each box (including whiskers) 
represents the sensitivity of the diversity metrics to the data 
curation strategy. The star symbol indicates the values calculated 
from the known species composition in positive controls, the 
other symbols are as in Figure 2 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the alpha‐SOM content relationship was more robust when using 
q = {1,2}, that is, a positive relation between alpha diversity and SOM 
content was detected independently of the data curation strategy 
used (Figure 2g,h). Patterns in fungi diversity were more robust, 
that is, no relation between fungi diversity and SOM content was 
detected across the different pipelines. A very weak positive rela-
tion between fungi diversity and SOM content was observed for 
q =  {1,2}. The rigorous and the basic strategies led to very similar 
results for both DNA markers/taxa.

3.2.3 | Distance–decay relationship

In contrast, a significant distance–decay relationship was always de-
tected from eDNA metabarcoding data independently of the data 
curation strategy, but the rate at which similarity decays with in-
creasing distance between plots (i.e. slope) slightly changed across 
strategies. While very similar results were found between the 

rigorous and the basic strategies for the distance–decay curve of 
plants, the slope of the distance–decay curve for fungi was very low 
when using a basic instead of a rigorous strategy.

3.3 | Crucial steps of the curation procedure

Overall, we found that two curation steps, the removal of PCR 
error and the clustering to define MOTUs, explained most of 
the variation in diversity estimates across data curation strate-
gies (more than 15% each and usually more than 40% in total) for 
most of the diversity metrics in the ecological analyses and for 
both markers/taxa (Figure 4 and Figure S2.3 in Appendix S2). Also, 
cross‐sample contamination removal explained large parts of the 
variance of beta diversity in the spatial partitioning of diversity 
analyses (Figure 4a,b) and of R‐squares and slopes in the diver-
sity–environment (Figure 4c,d) and distance–decay (Figure 4e,f) 
relationships analyses.

F I G U R E  4  Relative importance (% of variance explained) of the data curation steps on the variability of estimated values of the 
spatial partitioning of diversity components (a, b) and of the parameters from the diversity–environment (c, d) and distance–decay (e, f) 
relationships, using Hill numbers at q = {1} (see Figure S2.3 for the other q values). The top row (a, c, and e) corresponds to the plant DNA 
marker (trnL‐P6 loop) and bottom row (b, d, and f) to the fungi DNA marker (internal transcribed spacer 1). A model was fitted independently 
for each diversity component (a, b) or model parameter (c‐f) as response variable, with curation steps as main effects
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4  | DISCUSSION

Ecologists do now increasingly rely on DNA metabarcoding to 
measure biodiversity as this approach holds the promise of al-
lowing testing long‐standing hypotheses at spatial, temporal 
and taxonomic scales that were hitherto inaccessible with tradi-
tional approaches. However, the technique is still hampered by 
a substantial amount of technical errors (Table 1; Appendix S1;  
Bálint et al., 2016; Taberlet et al., 2018). Here, we sought at 
testing the sensitivity of the conclusions drawn from different 
ecological analyses and diversity metrics to the steps commonly 
used to curate DNA metabarcoding data from such errors. We 
show that ecological conclusions had varying degrees of sensi-
tivity to the data curation strategies and that the use of metrics 
that are less sensitive to rare species/MOTUs (i.e. Shannon and 
Simpson diversity) leads to more robust diversity estimates. Also, 
we demonstrated that MOTU clustering, removal of PCR errors 

and removal of cross‐sample contaminations have a major influ-
ence on ecological results, and must always be carefully included 
when curating DNA metabarcoding data.

The breadth of our study makes our findings generalizable to 
other systems. Indeed, we found similar trends in the sensitivity 
of gamma and alpha diversity estimates for both our observed 
plant diversity and the mock community (Figure 2 vs Figure 3). 
Second, our study focuses on both plants and fungi, that widely 
differ in their ecological properties and the length of their mark-
ers (on average 50 bp for plants vs 225 bp for fungi). Still, while 
they do not share the same diversity patterns, their sensitivity 
to data curation strategies were comparable. Furthermore, we 
expect that our study and the experimental testing design we 
developed will stimulate further methodological studies (e.g. for 
tropical or aquatic systems and other markers/taxa) and that they 
will serve as a guide to prioritize some curation steps when de-
ciding for a curation strategy.

F I G U R E  5  Guidelines to improve the reliability of ecological results when analysing environmental DNA metabarcoding data [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4.1 | Linking methodological choices with 
ecological questions

The ecological question(s) underlying a study should lead the pri-
oritization of the curation steps to be included in the data curation 
procedure, as well as the selection of appropriate diversity metrics 
(Figure 5). If the aim of the study is to estimate the spatial parti-
tioning of diversity (Figure 5a), it is important to keep in mind that 
all diversity components are biased by the data curation steps. 
Richness is highly sensitive to error accumulation, and was hence 
the metric responding the strongest to the data curation strategy. 
Consequently, if measuring richness is crucial for the study, and, 
thus, rare species are important, the reliability of the results must 
be confirmed with additional analyses. For example, a more con-
servative strategy (i.e. keeping only MOTUs present in more than 
a certain number of PCR replicates) can improve the reliability of 
final results, but with the risk of missing species represented by 
few sequences in only a few samples due to the sampling process 
occurring when preparing aliquots of one DNA extract (Alberdi et 
al., 2018). Verifying the pertinence of species detected by looking 
in detail into the taxonomic assignments can also improve the reli-
ability of results, even though this could be problematic for poorly 
known taxa with incomplete reference databases (Cristescu, 
2014). Also, positive controls (with mock communities) and numer-
ous negative controls (extraction, PCR) must be included in all the 
phases of sequence generations to ensure the accuracy of rich-
ness estimates (Bálint et al., 2016). In any cases, a certain degree 
of uncertainty will always remain because of the complexity of 
deciding objectively which sequences are genuine and which are 
artefactual.

We corroborated that richness is a very sensitive metric and 
is always overestimated (Figure 2a‐c). The intrinsic properties of 
eDNA can inflate the diversity compared to traditional surveys 
because eDNA can persist in the environment or be transported 
through space depending on the abiotic conditions (e.g. water 
transport, temperature, UV, or microbial activity; Barnes & Turner, 
2016). This means that the diversity eDNA estimates not only en-
compass local and current species, but also species that are dor-
mant (Hiiesalu et al., 2012), that were present in the recent past 
(Yoccoz et al., 2012) or that are present in the vicinity of the studied 
area (Taberlet et al., 2018). In other words, the spatio‐temporal win-
dow captured by local eDNA diversity estimates may be larger than 
that captured by traditional approaches, a property that can be de-
sirable or not depending on the question addressed. Distinguishing 
this feature from methodological bias remains at this stage difficult, 
as it may look like cross‐contamination, and also because the cycle 
of eDNA in the environment remains poorly understood (Barnes & 
Turner, 2016). However, it is crucial to account for eDNA proper-
ties when interpreting richness‐based studies to avoid meaningless 
conclusions.

When the detection of rare species is not of importance, Hill 
numbers are a promising solution to increase the robustness of 
results and to avoid the inflation of diversity estimates. The Hill 

numbers approach has been already proposed to better estimate 
microbial diversity (e.g. Bálint et al., 2016; Chiu & Chao, 2016), 
and we corroborate its efficiency for estimating plant diversity 
and potentially other macro‐organisms from metabarcoding 
data. Both, Shannon and Simpson diversity measures led to a 
satisfying representativeness of the sampling unit diversity and 
were robust to the different data curation strategies tested here, 
but Shannon diversity was less biased. In the same way that rich-
ness overestimated diversity, Simpson diversity tended to un-
derestimate diversity. Diversity measures, other than richness 
(i.e. q  >  0), account for species/MOTUs abundance structure. 
The factors determining species’ abundances in a community 
are not the only factors determining the MOTUs’ abundances. 
These correspond to a pool of DNA fragments from current, 
dormant, or past populations (e.g. microbes) down to one (or 
part of one) single multicellular individual that are besides am-
plified by PCR. Consequently, a highly abundant MOTU does 
not necessarily imply that more individuals of the corresponding 
taxon were present, it could also be due to for example, higher 
body mass, larger root systems, or slower DNA decomposition. 
Besides, given the exponential nature of the PCR amplification, 
abundant taxa become even more abundant in this step and this 
could lead to an underestimation of Simpson diversity. Hence, 
interpreting MOTUs frequency directly as species abundance 
can be highly misleading, and estimating species abundance in 
terms of number of individuals or biomass from eDNA is still 
a major challenge in the field (Deiner et al., 2017). However, 
MOTUs frequency correlates to a certain extent to species rel-
ative abundance, and more importantly, errors are usually rarer 
than genuine sequences (reviewed in Taberlet et al., 2018). 
Accordingly, Shannon diversity from eDNA samples appears 
here as a balanced diversity measure, robust to the data curation 
strategy, and hence, to rare errors. This can be generalized to all 
ecological analyses tested in this study. Given these results, we 
argue that using a complete diversity profile (for example, with 
q values between 0 and 2) may allow improving confidence in 
diversity estimates from eDNA data while getting information 
about MOTUs structure of abundances.

Another important outcome of our assessment is that despite 
the above‐mentioned limits, robust conclusions can be obtained 
from eDNA metabarcoding data if the aim is to link local diversity 
(alpha) or community similarity (beta) to environmental or geo-
graphic gradients (Figure 5b). Changes in local diversity across 
an environmental gradient were more sensitive to the data cura-
tion strategies than the distance–decay relationship. Our results 
thus corroborate other studies that demonstrated the robust-
ness of beta diversity to bioinformatics analyses (Botnen, Davey, 
Halvorsen, & Kauserud, 2018; Deiner et al., 2017). However, 
the slope of the distance–decay was always underestimated 
compared to that obtained from observed plant diversity. On 
one hand, this could result from a lack of phylogenetic resolu-
tion of the genetic marker used here, which is relatively short. 
In alpine ecosystems, it is common to see abundant species 
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replaced by closely related species across an elevational gra-
dient (Chalmandrier et al., 2015). A genetic marker with a low 
phylogenetic resolution would not detect these changes and as 
a consequence, gamma and beta diversities would be underesti-
mated. However, the underestimation of gamma diversity rela-
tive to alpha diversity is not strong enough, suggesting that other 
reasons may also explain the lower slope of the distance–decay 
curve for eDNA‐based plant diversity. Botanical surveys used 
in this study represent just a local snapshot of the visible plant 
diversity at the sampling time, and, unlike the eDNA approach, 
may miss species with an offset phenology or present only in 
the vicinity of the sampling area (Hiiesalu et al., 2012). We can 
expect that the larger spatio‐temporal window captured by the 
eDNA metabarcoding approach would thus result in higher sim-
ilarity among the sites, which could be tested by increasing the 
botanical sampling effort across seasons and years to reduce bo-
tanical surveys biases related to the differentiated phenology of 
the species.

4.2 | Crucial steps for designing a careful 
curation protocol

While we included here curation steps that are common to most 
bioinformatic tools (e.g. Qiime, USEARCH), we acknowledge that 
algorithms within OBITools have their own particularities, as each 
of the other packages, and that the results obtained here may not 
be directly transferable. However, we expect that the differences 
from a specific software are minor compared to the differences 
caused by the choice of specific curation steps (Bonder, Abeln, 
Zaura, & Brandt, 2012). In general, we corroborate past studies 
concluding that the clustering threshold used for defining MOTUs 
leads to significant changes in diversity estimates and that this 
is especially important for alpha and gamma diversities, but less 
so for beta diversity (Botnen et al., 2018; Brown, Veach, et al., 
2015; Kunin et al., 2010). Additionally, we found that PCR errors 
and cross‐sample contaminations are critical steps and that in-
cluding them leads to more realistic spatial diversity patterns and 
estimates of diversity components. These two steps correct the 
diversity at local levels (i.e. sample level) and are especially impor-
tant when comparing communities. To our knowledge, this is the 
first study testing in a systematic way the effect of these curation 
steps on results across different types of ecological analyses. We 
recommend carefully choosing the MOTU clustering threshold, 
for example, empirical means can be estimated for each marker 
or targeted taxa using in silico methods with reference databases 
(Taberlet et al., 2018) or experimentally, using mock communities 
(Brown, Veach, et al., 2015), and considering removing PCR errors 
and cross‐sample contaminations when designing a curation pro-
tocol to study biodiversity patterns. Furthermore, a rigorous data 
curation strategy including all the curation steps of the present 
study allowed obtaining accurate diversity estimates and diver-
sity–environment and distance–decay relationships. This demon-
strates that the other curation steps should not be neglected.
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Introduction 

 

Studying the enormous span of soil organisms living in the soil and their interactions is 

challenging (Geisen et al. 2019b). Soil taxa are highly diverse ranging from microorganisms 

such as bacteria to animals including different phyla as nematodes and arthropods. Moreover, 

soil organisms interact in a number of ways including mutualistic, predatory and parasitic 

interactions across different trophic levels (Orgiazzi et al. 2016). Monitoring the span of soil 

organisms present in soil multi-trophic communities through conventional monitoring methods 

is a hard task that needs specialized extraction techniques for each organism’s category size, 

and the identification of numerous taxa by soil specialists (Geisen et al. 2019a). Moreover, the 

role of most soil biota in the ecosystems remain undescribed (Geisen et al. 2016; Gongalsky 

2021). Therefore, the complexity of soil biodiversity can be best approached by focusing on 

groups of soil organisms that have similar ecological roles in the ecosystem using the fact that 

related organisms often share functions (Bardgett & van der Putten 2014; Eisenhauer et al. 

2019; Potapov et al. 2019a). Food webs propose an integrative vision of soil biodiversity as 

they consider simultaneously several functionally important groups and their functional or 

trophic linkages (Dunne 2006; Barnes et al. 2018). Studying the diversity of food webs through 

different dimensions i.e. horizontal (within trophic groups) and vertical (across trophic groups) 

diversity, can bring complementary insights into the understanding of how soil biodiversity 

responds to environmental changes (Duffy et al. 2007; Martinez‐Almoyna et al. 2019). 

The challenges to the study of soil foodwebs are especially limiting at large spatial scales, but 

the rapid development of high throughput sequencing and the gain on trophic and functional 

knowledge for soil organisms may allow overcoming these challenges (Roslin & Majaneva 

2016; Bohan et al. 2017). Nowadays, the development of environmental DNA (eDNA) 

metabarcoding facilitates the complete monitoring of soil biodiversity at biogeographical 

scales and across the whole tree of life (Taberlet et al. 2012; Deiner et al. 2017). Moreover, 

knowledge about the trophic preferences of soil organisms has been growing in recent years as 

a consequence of decades of research and the development of new methods allowing to assess 

the feeding preferences of soil organisms (e.g., stable isotopes, diet-based eDNA 

metabarcoding,  Roslin & Majaneva 2016; Potapov et al. 2019). There has also been 

considerable development in the creation of databases assembling the functional and/or trophic 

information of some soil organisms and making it easily available to the scientific community 

(e.g., Wardeh et al. 2015; Põlme et al. 2020). Combining the eDNA metabarcoding monitoring 

method with the existing knowledge on trophic and functional relationships of soil organisms, 
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enables the use of a food web approach to get a better representation of the whole soil multi-

trophic community. While some attention has been given to the construction of heuristic food 

webs from the data generated by eDNA metabarcoding (e.g., for macroinvertebrates in 

freshwater ecosystems, Compson et al. 2018), this has seldom been applied to soil organisms. 

Assigning a large number of taxa to trophic guilds and identifying all the possible trophic 

interactions is challenging, and needs 1) the development of a common trophic framework for 

the whole soil biota, 2) the availability of information on how soil organisms use available 

resources, and 3) the definition of the resolution to be used to define these guilds, from a few 

broad ‘trophic classes’ (e.g. decomposers, predators) to several refined ‘trophic groups’ (e.g. 

bacterivorous nematodes, arbuscular mycorrhizal or saprotrophic fungi), depending on the 

research question. 

 

Here, I tackle this challenge by providing a systematic framework combining soil eDNA 

metabarcoding data with databases and information on soil organisms resource acquisition 

strategies to build heuristic soil food webs (Fig. 1). The aim of this chapter was to provide the 

procedure used 1) to classify the taxonomically annotated Molecular Operational Taxonomic 

Units (MOTUs) into different trophic groups (or classes), and, 2) to build the metaweb (i.e., 

regional food web) by providing the trophic links between these groups. Finally, I present the 

two versions of the soil metaweb that were obtained and used in this thesis, at two levels of 

resolution. I decided to use two levels of resolution to be able to study soil biodiversity across 

hierarchical levels of biodiversity organization, which reveal different aspects of the multi-

trophic community and are related to different ecosystem processes. 

 

 



 

 61 

 

 

Figure 1. Workflow used to classify MOTUs retrieved from eDNA metabarcoding data into 

trophic groups and build soil food webs. In a first step, soil samples are collected and processed 

to obtain a clean list of taxonomically annotated MOTUs (left panel). In a second step, the 

functional or feeding information of the main sampled taxa is assembled from expert 

knowledge, existing databases and literature. An ontology to build the soil food webs is 

defined. This ontology describes the distribution of trophic groups across trophic levels and 

includes the definition of some rules for interactions (right panel). Finally, the trophic 

information is matched to the eDNA data, which allows to categorize the MOTUs into trophic 

groups (or classes) and to build a metaweb containing all the trophic groups and their potential 

interactions (central panel). The metaweb can be conceived at different levels of resolution 

(e.g. trophic groups and trophic classes). Figure provided by Nicolas Leguillarme. 

 

 

 

Material and Methods 

 

eDNA metabarcoding data description – The data used here comes from the GlobNets project 

(2016-2022). Multi-trophic assemblage datasets of soil biodiversity were sampled across 

multiple forest and grassland plots along environmental or disturbances gradients in different 

biomes using eDNA metabarcoding. My PhD focuses on two specific datasets: the TROMSO 

dataset from soils sampled along a disturbance gradient in the subarctic birch forests of the 

Varanger region, in Northeastern Norway (Chapter 5), and, 2) the ORCHAMP dataset from 
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the Orchamp observatory consisting of soil samples collected along elevational transects in the 

French Alps (Chapters 1, 3 and 4). The general bioinformatic pipeline used to clean these 

datasets is detailed in Chapter 1, and the differences in the cleaning processes associated with 

each dataset are described in the corresponding chapters. Overall, a complete OBITools 

pipeline was performed (Boyer et al. 2016), followed by a pre-processing using the pipeline 

described in the ‘metabaR’ R package (Zinger et al. 2020). For each of these datasets, 

sequences were clustered into MOTUs using ‘sumaclust’ (Mercier et al. 2013), which were  

taxonomically assigned using the ecotag command from the OBITools, and marker-specific 

databases built from the EMBL database version for clade specific markers (fung02, inse01, 

olig01, coll02, Taberlet et al. 2018), and with the SILVAngs pipeline (Quast et al. 2013), using 

the SILVA version 132 for ribosomal universal markers (euka02, bact01). The taxonomic 

annotation of the MOTUs was used to classify the MOTUs into trophic groups and trophic 

classes and to build the metaweb. 

 

Classification of MOTUs into trophic groups and trophic classes – In the first instance, I 

identified the major trophic classes commonly associated with soil groups from the literature 

(e.g., Moore & de Ruiter 1991; Orgiazzi et al. 2016; Barnes et al. 2018). The trophic classes 

included autotrophs, decomposers, detritivores, phytophagous or phytoparasites, plant 

mutualists, bacterivores, fungivores, omnivores, predators and zooparasites. Next, I defined 

finer trophic groups by separating phylogenetic distant groups that could have a different set 

of prey/predators (e.g., bacterivore mites vs. bacterivore nematodes) or groups differing in their 

resources acquisition strategy (e.g. different types of mycorrhiza and saprotrophs). In this 

thesis, the taxonomic rank that I used to delimitate phylogenetic distant groups was at different 

levels and comprised Bacteria, Fungi, Protista, the different phyla within Metazoa, and the 

different classes or orders within Arthropoda and Annelida (Fig. 2). For each of these high-

rank taxa, the taxonomically annotated MOTUs were assigned to the different trophic classes 

using specific assigning tools (e.g., Faprotax, NINJA, Funguild) or sources from the literature 

and different criteria, which are detailed in Table 1. The fine trophic groups thus consisted of 

a mixture between trophic classes and taxonomic high-rank taxa (Fig. 2). Trophic groups were 

defined mainly on the basis of the taxonomic resolution of the marker and trophic or functional 

information available in the literature (see discussion).
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Table 1. Methods and criteria used to assign and define the trophic groups. Assigning tools or databases, a detailed description on the assigned 

criteria and references used to assign the taxa to trophic groups is provided for each database and for each high rank taxa.  

 

 
Kingdom 

(eDNA 

marker) 

Assigning 

tools 

Description of the methods and assigning criteria 

References 
TROMSO dataset ORCHAMP dataset 

Fungi 

(Fung02) 

FUNGuild1 

(FG) 

Fungal Traits2 

(FT) 

 

Trophic annotations were done using FG. Guilds were kept based 

on the following criteria: (1) reflecting the diversity of broad 

trophic groups found in fungi (saprotrophs, symbionts and plant 

pathogens), (2) that could respond differently to disturbances for 

the fine groups definition, e.g. we distinguish between the different 

types of resources used by the saprotroph (wood, soil, undefined) 

and the different types of mycorrhiza because these could change 

differently following the moth outbreaks, and (3), that together 

they represent more than 70% of the reads in the dataset. 

Trophic annotations were made using FT and FG. All 

MOTUs annotated at the genus level were assigned using the 

primary lifestyle from FT. MOTUs annotated at higher 

taxonomic levels were assigned using FG and classified to 

correspond to the categories obtained from FT. Only groups 

having more than 0.1 % of the total reads from the marker 

were kept as trophic groups. 

(1) Nguyen et al. 2016 

(2) Põlme et al. 2020 

 

Bacteria 

(Bact02/ 

Bact01) 

Faprotax4,  

Wardeh 

database5 

(WDB), 

Literature 

Bacteria were divided in Heterotrophic and Photosynthetic.  

- Photosynthetic included Cyanobacteria, Chloroflexi and taxa 

identified as phototrophs from Faprotax. 

- Heterotrophic bacteria identified in Faprotax as part of the N-

cycle (i.e. nitrifying, N-fixing), pathogens (absent in our dataset) 

or predatory bacteria (i.e. Myxobacteria) were considered as 

different groups. The rest of the taxa were classified as copiotrophs 

and oligotrophs using the classification in 6. 

Bacteria were annotated using Faprotax. Autotrophic 

bacteria were separated into chemolitoautotroph and 

photolitoautotroph based on Faprotax annotations. 

Cyanobacteria and Chloroflexi  were also included in the 

photolitoautotroph group. Pathogens (zoo- and 

plantparasites) were identified using both WDB and 

Faprotax. The rest of bacteria was classified as heterotrophic 

bacteria and considered decomposers. The pipeline for 

Bacteria assignment was developed and automatized by 

Lucie Zinger. 

(4) Louca et al. 2016 

(5) Wardeh et al. 2015 

(6) Ho et al. 2017 

Protist 

(Euka01/ 

Euka02) 

Literature MOTUs of protists were classified in all the broad trophic classes definitions. Protists were considered Eukarvore or Protistivore 

(i.e. Predator) when feeding mainly on protists but not bacteria, Bacterivores when feeding mainly on bacteria, and Omnivores 

when feeding on both bacteria and eukaryotes like in 7. Only completely phototroph protists were classified as Photosynthetic. 

We based mainly on 8 for trophic groups assignments and we complemented with compiled databases (7 for Cercozoa, and a 

general database compiled by colleages in the GlobNets project). For groups presenting very variable feeding modes (e.g. 

Dinoflagellata, Cilliophora) we avoided doing generalizations at higher taxonomic levels. We remove protists that were 

exclusively parasites on vertebrates, because vertebrates were not included in our soil network. 

(7) Fiore-Dono et al. 2019 

(8) Adl et al. 2019 
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Metazoa 

(Euka01/ 

Euka02) 

NEMAGuild9, 

NEMAPLEX10, 

Literature 

We kept the following phyla: Annelida (O. Haplotaxida), 

Arthropoda, Mollusca (C. Gastropoda), Nematoda, Rotifera and 

Tardigrada. The phylum Arthropoda was divided in the classes: 

Arachnida (mites and spiders), Collembola, Chilopoda and Insecta. 

Insects were very poorly represented in the dataset (1 MOTU, few 

reads) or non resolutive for the marker, thus we excluded them 

from the analyses. For taxa with conserved trophic behavior and/or 

with no enough taxonomic resolution (due to the DNA marker), we 

did generalizations concerning their trophic group. For example, 

although Collembola have varying trophic behaviors (e.g. 

fungivores, predators, detritivores) we generalized them all as 

Fungivores as they have been historically classified in soil food 

webs because no enough resolution of the marker. Nematodes and 

mites were classified into the different trophic classes using 

NEMAGuild, NEMAPLEX, and more literature for specific taxa 

not represented in the databases. For Nematoda, no generalizations 

were made at higher taxonomic levels than family because of the 

variability of feeding habits within an order. For mites, 

generalizations were made depending on the group.  

 

We kept the following phyla: Arthropoda, Mollusca (C. 

Gastropoda), Nematoda, Rotifera and Tardigrada. The 

phylum Arthropoda was divided in the classes: Arachnida 

(separated into mites, spiders and pseudoscorpions), 

Diplopoda, Chilopoda and Protura. Insects, springtails and 

oligochaetes were removed and classified based on the data 

from the specific marker for insects. Nematodes and mites 

were classified into the different trophic classes using 

NEMAGuild, NEMAPLEX, and more literature for specific 

taxa not represented in the databases. For Nematoda, no 

generalizations were made at higher taxonomic levels than 

family because of the variability of feeding habits within an 

order. For mites, generalizations were made depending on 

the group.  

 

(9) Nguyen et al. 2016 

(10) 

http://nemaplex.ucdavis.edu/ 

  ORCHAMP dataset  

Collembola 

(Coll01) 

Literature Collembola were classified based on the trophic groups described in 11. Only MOTUs annotated at least to the family level were 

assigned. Data from 12 was used to determine the habitat layer of the genus in families present in different trophic groups, to 

assess their trophic group based on 11. 

(11) Potapov et al. 2016 

(12) Saifutdinov et al. 2020 

Oligochaeta 

(Olig01) 

Literature Oligochaetes were divided into Enchytraeids and Earthworms. Earthworms were classified into the ecological categories 

described in 13, and further verified by an expert (Mickael Hedde). 

(13) Bottinelli et al. 2020 

Insecta 

(Inse01) 

Literature Insects were classified into trophic groups based on 14  and a general local database compiled by collaborators of the GlobNets 

project, and the local database was prioritized. Orders of insects having an aquatic larvae and flying adult (e.g. Odonata, 

Ephemeroptera) were removed from the dataset. Also insects spending most time of their cycle aboveground, such as 

Hemiptera, Lepidoptera, Orthoptera and some families of Hymenoptera were removed. Trophic assignment of larvae was used 

to assign insect taxa with flying adults (e.g. Diptera). For some few families with different trophic behavior between the larvae 

and the adult, larvae trophic group was preferred.  

(14) Rainford & Mayhew 

2015 
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Figure 2. Schematic representation of the classification of MOTUs into trophic groups from 

different high-rank taxa. Colours show to the taxa sampled with universal markers (in green: 

euka02/euka01 for eukaryote, bact02/bact01 for bacteria) and with clade specific markers (in 

yellow: fung02 for fungi, inse01 for insect, olig01 for oligochaete, and coll02 for collembola). 

Note: not all clade specific markers were available for the TROMSO datasets, thus information 

from universal markers were used instead. Open boxes contain the defined trophic groups from 

the last high rank taxa in filled boxes.  

 

 

From trophic groups and trophic classes to metaweb – A metaweb is a theoretical network 

containing all trophic groups (or classes) and their potential interactions of the large scale 

ecosystem under study (for example in this thesis, subarctic and alpine systems, respectively 

represented by TROMSO and ORCHAMP datasets). Observable local food webs are then 

subsets of this theoretical metaweb. In this thesis, I first built a fine resolution metaweb at the 

level of trophic groups, and then deduced the metaweb at the trophic class level from the first 

one. This was possible given the hierarchical nature of the groups, i.e., each trophic group was 

assigned to a unique trophic class. To do this, I used the R packages metanetwork 
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(https://gitlab.com/marcohlmann/metanetwork) and econetwork (Miele et al. 2021), which 

allow to aggregate networks at different resolutions.  

Three main basal resources were established for the construction of the metaweb at the trophic 

group level: energy (solar or chemical), plants, and organic matter. In the metaweb at the trophic 

class level, these resources were grouped into an unique node accounting for the three basal 

resources. Resource nodes were added to the metaweb with a structural purpose.  

I added trophic links between trophic groups based on the main feeding preferences of the 

group. Therefore, plant symbiont groups (i.e., plant mutualists and phytoparasites) were 

associated with the plant resource, detritivores and decomposers were associated with the 

organic matter resource and autotrophs were associated with the energy resource. Next, 

bacterivores were associated with all trophic groups containing bacteria, and fungivores with 

all trophic groups containing fungi (but see additional constraints below). Omnivore protists, 

by definition (Table 1), were associated with all trophic groups containing bacteria or fungi. 

Finally, I added the trophic interactions of the remaining trophic groups of omnivores, predators 

and zooparasites within the metaweb thanks to a literature review based on the dietary 

preferences of the majority of taxa within each of these groups. That is, I chose the taxa that 

constituted more than 90% of the group's abundance (i.e., read counts) and did a literature 

review for each of these taxa. All the possible interactions between these taxa and the other 

trophic groups were attributed to the whole group. 

Some additional constraints were added when assigning the trophic interactions between 

trophic groups based on (1) the organism's size, i.e. predators fed only on smaller prey, with 

some exceptions like animal parasites and omnivore nematodes that can eat larger prey, and 

macro-organisms did not feed on microorganisms (except for bacterivores and fungivores), (2) 

habitat differentiation, i.e. strict plant endoparasites (i.e. protists) were not considered as prey 

of other free-living predators, and (3) feeding preferences, e.g. fungivores fed only on 

saprotrophic fungi and Ectomycorrhizal, which are preferred to arbuscular mycorrhizal fungi.  

 

From metaweb to local food webs – From the metaweb, I deduced the composition and structure 

of the local soil food webs, based on the trophic classes or groups detected locally, and assuming 

that co-occurring classes or groups interact as in the metaweb (i.e. that the local web is a strict 

subset of the metaweb). For the soil food webs at the trophic group resolution, trophic groups 

were weighted by their relative abundance and trophic interactions were binary (i.e., present or 

absent). For the soil food webs at the trophic class resolution, trophic class weight was estimated 

as the sum of the relative abundances of the trophic groups inside the trophic class, and the 
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interactions were weighted by the probability of interaction between two classes given the 

interactions between their respective trophic groups and the relative abundances of these groups 

(estimated as in Ohlmann et al. 2019).  

 

 

Results 

 

TROMSO metaweb - The metaweb was composed of 10 trophic classes and 32 interactions at 

the coarser resolution (Fig. 3a), corresponding to 40 trophic groups (of which 3 are resources) 

and 194 potential interactions (Fig. 3b) at the finer resolution. 

 

 

 

 

 

Figure 3. Metaweb or regional soil food web of subarctic birch forests (TROMSO dataset) at 

two levels of resolution: trophic class resolution (a) and trophic group resolution (b). Colour of 

the trophic groups in (b) correspond to the trophic classes in (a). The nodes are distributed 

horizontally based on their trophic level from the left (basal levels) to the right (higher levels). 

The figure and the trophic level calculations were done using the R package ‘metanetwork’. 
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ORCHAMP metaweb - The metaweb was composed of 11 trophic classes and 45 interactions 

at the coarser resolution (Fig. 2a), corresponding to 55 trophic groups (of which 3 are resources) 

and 383 potential interactions (Fig.2a) at the finer resolution.  

 

 

 

 

 

Figure 4. Metaweb or regional soil food web of the French Alps (ORCHAMP dataset) at two 

levels of resolution: trophic class resolution (a) and trophic group resolution (b). Colour of the 

trophic groups in (b) correspond to the trophic classes in (a). The nodes are distributed 

horizontally based on their trophic level from the left (basal levels) to the right (higher levels). 

The figure and the trophic level calculations were done using the R package ‘metanetwork’. 
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Discussion 

 

In this chapter I detailed the procedure used to analyse eDNA data by grouping all soil taxa 

through their ecological similarity and by structuring these groups based on their feeding 

relations in food webs. The construction of heuristic food webs allows for an integrative and 

ecological representation of soil multi-trophic assemblages in terrestrial ecosystems. Several 

challenges related to the construction of heuristic food webs from eDNA data were identified 

and addressed in the methodology presented here. In this discussion I justify some of the 

choices made and present their potential biases or limitations.   

The construction of food webs from eDNA data is limited both by the taxonomic resolution of 

the marker and by the trophic or functional information available in the literature. Both of these 

factors can influence the procedure and decisions made throughout the process of constructing 

trophic networks. For example, for the TROMSO dataset, I kept all springtails within a single 

trophic group because the Euka02 marker used to sample this taxon was not sufficiently resolute 

to make finer trophic groups. In contrast, for the ORCHAMP dataset (Chapters 3 and 4), the 

use of a specific marker for springtails (Coll02) provided higher taxonomic resolution (i.e. 

down to the family or genus level), which allowed the use of a finer trophic classification (e.g., 

epigeic animal and microorganisms consumer). For other taxa, such as rotifers and tardigrades, 

specific trophic groups are poorly defined, so each of these phyla was kept as a trophic group 

(Potapov et al. 2022) .Furthermore, in the process of assigning MOTUs to trophic groups, some 

data may be lost, for example, corresponding to MOTUs without sufficient taxonomic 

resolution or taxa that could not be assigned to a trophic group. Therefore, a balance has to be 

found between the use of ecologically significant groups while losing some information, and 

the use of broad taxa as groups that include most of the sequences but are ecologically less 

informative. Checking the amount of information to be lost, for example, the percentage of 

unassigned MOTUs reads, is an important step during the process and can be decisive in the 

definition or resolution to be used to construct the groups. For further analyses, I re-defined the 

trophic groups to fit the requirements of the statistical analyses to be performed. For example, 

in Chapters 3 and 5, an individual model was fitted for each trophic group to estimate how 

group diversity varied as a function of environmental predictors. In this case, some fine trophic 

groups were merged to create a group with sufficient variation in diversity or with sufficient 

occurrences (e.g. all earthworms were merged into a single group). 
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Another challenge when building heuristic soil food webs is to find  the desired resolution to 

define the trophic groups, from a few broad ‘trophic classes’ (e.g. decomposers, predators) to 

several refined ‘trophic groups’ (e.g. bacterivorous nematodes, saprotrophic fungi). The 

definition of trophic groups and their resolution is linked to the ecological questions being 

addressed. When the ecological hypotheses being tested are explicitly related to bottom-up 

processes (e.g. the effect of basal resources on diversity across trophic levels), a high resolution 

of basal groups may be preferred (e.g. different types of mycorrhizal or saprotrophic fungi, or 

separating bacterial phyla like in Morriën et al. 2017), however, some studies specifically 

interested in assessing top-down effects or relating trophic structure to ecosystem functions 

often choose to keep groups at a higher resolution (e.g., Schuldt et al. 2017). In this thesis, I 

have chosen to consider different resolutions to construct the trophic groups. The integration of 

different resolutions in ecological network analyses allows the study of changes in the structure 

of food webs by taking into account trophic redundancy and/or trophic complementarity. Here, 

I rely on the conceptual framework found in the literature to define groups at different 

resolutions. However, other models or algorithms that detect structural equivalence in 

networks, such as stochastic block models, could be considered in future studies to identify 

‘modules’ of taxa or fine trophic groups and aggregate them into larger groups (Gauzens et al. 

2015; O’Connor et al. 2020; Bloor et al. 2021). 

 

Finally, soil food web construction needs the collaboration of multiple soil specialists working 

with different subgroups of taxa that need to agree on different concepts, and this represented 

a major challenge in this thesis. Existing classifications and concepts to describe feeding 

behaviours can be very different across soil taxonomic subgroups (Hedde et al. unpublished), 

complexifying the task of having a common trophic framework for the whole soil biota. During 

my thesis I participated in a collaborative work within a soil ecologists’ community with the 

aim to define an ontology with an homogenized vocabulary to build soil food webs 

(https://github.com/nleguillarme/soil_food_web_ontology). The process to review 

inconsistencies in trophic and functional vocabulary and to find a common agreement between 

the different parts can take time and need of common effort to surpass conceptual limitations. 

Moreover, databases and literature are constantly actualizing. Developing tools for the 

integration of functional and trophic information of the soil biota can be very useful and may 

save time to ecological research (e.g., GRATIN gratin.nova.u-ga.fr:7200). Providing an 

standardized or automatized method to build heuristic soil food webs from eDNA data would 

thus need the stabilisation of the vocabulary and concepts of trophic ecology across soil 
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organisms, the common effort to integrate and homogenize this information and the 

development of ‘friendly-user’ bioinformatic tools to make it accessible and exploitable to the 

scientific community. But in principle, the improvement of the method would depend on the 

continued and joint effort of soil ecologists (including taxonomists and naturalists) that sample, 

identify and describe species, but also that contribute to assign traits, functional and trophic 

information to species or broader taxa. 
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CHAPTER 3: Energy and physiological tolerance explain multi-trophic soil diversity in 

temperate mountains 

 

Energy and physiological tolerance explain  

multi-trophic soil diversity in temperate mountains 
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Abstract
Aim: Although soil biodiversity is extremely rich and spatially variable, both in terms 
of species and trophic groups, we still know little about its main drivers. Here, we 
contrast four long-standing hypotheses to explain the spatial variation of soil multi-
trophic diversity: energy, physiological tolerance, habitat heterogeneity and resource 
heterogeneity.
Location: French Alps.
Methods: We built on a large-scale observatory across the French Alps (Orchamp) 
made of seventeen elevational gradients (~90 plots) ranging from low to very high 
altitude (280–3,160 m), and encompassing large variations in climate, vegetation and 
pedological conditions. Biodiversity measurements of 36  soil trophic groups were 
obtained through environmental DNA metabarcoding. Using a machine learning 
approach, we assessed (1) the relative importance of predictors linked to different 
ecological hypotheses in explaining overall multi-trophic soil biodiversity and (2) the 
consistency of the response curves across trophic groups.
Results: We showed that predictors associated with the four hypotheses had a sta-
tistically significant influence on soil multi-trophic diversity, with the strongest sup-
port for the energy and physiological tolerance hypotheses. Physiological tolerance 
explained spatial variation in soil diversity consistently across trophic groups, and was 
an especially strong predictor for bacteria, protists and microfauna. The effect of en-
ergy was more group-specific, with energy input through soil organic matter strongly 
affecting groups related to the detritus channel. Habitat and resource heterogeneity 
had overall weaker and more specific impacts on biodiversity with habitat heteroge-
neity affecting mostly autotrophs, and resource heterogeneity affecting bacterivores, 
phytophagous insects, enchytraeids and saprotrophic fungi.
Main Conclusions: Despite the variability of responses to the environmental drivers 
found across soil trophic groups, major commonalities on the ecological processes 
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1  |  INTRODUC TION

With the ever-increasing availability of biodiversity information, 
a global synthesis on the major ecological determinants of broad-
scale biodiversity patterns is starting to emerge (Belmaker & Jetz, 
2015; Braga et al., 2019; Pontarp et al., 2019; Thuiller et al., 2020). 
This general understanding is pivotal to forecast how biodiversity 
responds to natural and anthropogenic changes (McGill et al., 2015; 
Urban et al., 2016). Yet, most of the empirical support is grounded on 
specific aboveground macroorganisms, in particular vertebrates and 
plants. Comparatively, soil biodiversity has been largely less studied 
(Guerra et al., 2020), although it represents one quarter of global di-
versity and is essential for decomposition, nutrient cycling or carbon 
sequestrations (Delgado-Baquerizo et al., 2020; Wagg et al., 2014). 
Therefore, it remains unclear whether the ecological hypotheses 
that hold true for aboveground systems, such as the energy or the 
habitat heterogeneity hypotheses, also apply to the massive bulk of 
belowground biodiversity (Bardgett et al., 2005; Decaëns, 2010).

Historically, the complexity of studying the soil compartment, 
for example, complex physical structure (Young & Crawford, 2004), 
taxonomic impediment (Decaëns, 2010), scale of approach (Bardgett 
et al., 2005; Ettema & Wardle, 2002; Thakur et al., 2020), has hin-
dered the integration of soil biodiversity into a broader ecological 
hypothesis testing framework. Yet, our ability to study soil biodiver-
sity at large spatial scales is constantly improving with joint taxo-
nomic efforts, the development of new sampling technologies (e.g. 
eDNA metabarcoding) and the increase of collaborative databases 
and initiatives (e.g. Drilobase, Earth microbiome project, Global Soil 
Biodiversity Initiative). Global-scale analyses have thus recently 
emerged for several soil organism groups (e.g. Tedersoo et al., 2014 
for fungi; Delgado-Baquerizo et al., 2018 for bacteria; Phillips et al., 
2019 for earthworms; van den Hoogen et al., 2019 for nematodes; 
Oliverio et al., 2020 for protists), unveiling their environmental driv-
ers. Yet, whether soil biodiversity at all its taxonomic and trophic 
levels responds to the same ecological drivers as aboveground diver-
sity and follows similar trends remains to be tested. For such tests, 
the integration of spatial scales and the scale at which organisms are 
analysed together is pivotal (Thakur et al., 2020; White et al., 2020). 
Indeed, the way environmental parameters drive local diversity can 
depend on the spatial extent (e.g. Steiner & Leibold, 2004), or the 
taxonomic or trophic groups being studied (e.g. Boyero et al., 2011; 
Peters et al., 2016; Tedersoo et al., 2014).

Among the hypotheses formulated to explain the spatial varia-
tion of biodiversity, theory and support from empirical studies on 
plants and other aboveground organisms have led to four major eco-
logical hypotheses: the “energy hypothesis”, the “physiological tol-
erance hypothesis”, the “habitat heterogeneity hypothesis” and the 
“resource heterogeneity hypothesis” (Figure 1). Yet, these hypothe-
ses have been seldom tested in a single framework for soil organisms 
(Decaëns, 2010; Thakur et al., 2020), and even less at the scale of 
the whole soil biota. Observing diversity patterns of soil organisms 
in nature, that is, the relationship between various relevant predic-
tors and soil diversity, is a first step to test whether these ecological 
hypotheses apply to the wide range of soil organisms (Shade et al., 
2018).

The “energy hypothesis” predicts a positive relationship between 
diversity and energy. An increasing amount of energy (i.e. thermic, 
solar or chemical) promotes diversity across trophic levels by increas-
ing speciation rates and/or the number of species populations, and 
thereby reducing local extinction (Evans et al., 2005; Wright, 1983). 
An extension of the hypothesis predicts a hump-shaped relationship 
with a decrease in diversity at high energy levels due to exclusive 
competition (Mittelbach et al., 2001). Plant productivity is tradition-
ally used as a primary energy measure, because it accounts for water 
limitations in the transformation of solar energy into available re-
sources, and because plants are the main basal resource (primary 
producers) for aboveground organisms (Currie et al., 2004; Evans 
et al., 2005). Yet, in the soil compartment, soil organic matter (SOM) 
is also a major source of energy fuelling the soil food web (Moore 
et al., 2004). The local amount and content of SOM is driven by mul-
tiple drivers such as plant community composition, climate or parent 
material (Wiesmeier et al., 2019), and not only by plant productivity. 
Considering both solar energy and SOM, hereafter referred as pri-
mary and secondary energy, respectively, is thus essential to test 
the energy-diversity relationship for the soil biota. Therefore, since 
most soil organisms are thought to be weakly limited by competition 
due to their limited mobility and the complexity of the soil matrix 
(Ettema & Wardle, 2002; Wardle, 2006), it could be expected that 
soil diversity increase monotonously with available energy.

The “physiological tolerance hypothesis” states that favourable en-
vironmental conditions support higher biodiversity because a wider 
range of strategies can persist under such conditions (i.e. tighter 
niche packing), while only a few well-adapted species can tolerate 
stressful conditions (Currie et al., 2004; Spasojevic & Suding, 2012). 

structuring soil biodiversity emerged. We conclude that among the major ecological 
hypotheses traditionally applied to aboveground organisms, some are particularly rel-
evant to predict the spatial variation in soil biodiversity across the major soil trophic 
groups.

K E Y W O R D S
environmental DNA metabarcoding, French Alps, macroecology, random forest, soil 
biodiversity, trophic groups



    |  3CALDERÓN-SANOU et al.

Temperature is one of the most acknowledged factors constraining 
the “thermal niche” of organisms. Yet, compared to aboveground 
temperature, soil temperatures are buffered making it more diffi-
cult to isolate its effect on soil biodiversity. For example, in moun-
tain environments, soil temperature is strongly regulated by snow 
cover and duration (Carlson et al., 2015). In the absence of snow, 
soil frost might impact the structure and activity of soil commu-
nities (Schostag et al., 2019; Sulkava & Huhta, 2003). In addition, 
soil organisms often rely on other abiotic conditions such as water 
availability, heavy metal content and pH that can generate stressful 
conditions at extreme values, for example, drought, toxicity, acidity 
(Gans, 2005; Xu et al., 2012). Indeed, soil pH is recognized as a major 
driver of soil microorganisms diversity (Fierer & Jackson, 2006). 
While the stressful environmental factors may differ, the general 
response form to stress should be the same for above and below-
ground diversity.

The “habitat heterogeneity hypothesis” postulates that increasing 
habitat heterogeneity provides larger niche space or dimensionality 
that can be finely partitioned and sustain more coexisting species 
(Stein et al., 2014; Tews et al., 2004). Traditionally, the “habitat het-
erogeneity hypothesis” is tested at the landscape scale where biodi-
versity increases with habitat or vegetation diversity (Stein et al., 

2014). However, soils can harbour a high degree of heterogeneity 
at much smaller grains than those considered aboveground (Young 
& Crawford, 2004), and this partly explains their remarkably high 
biodiversity (Ettema & Wardle, 2002; Nielsen et al., 2010). On a mi-
croscale, habitat heterogeneity can be structural, that is, associated 
with the size distribution of the pores, which is controlled by soil tex-
ture and compaction (i.e. bulk density). Pore size distribution varies 
within and between soil types, and can influence habitat conditions 
by modulating nutrient availability, gas diffusion and soil water hold-
ing capacity (Ranjard & Richaume, 2001; Six et al., 2004), parame-
ters that may affect the diversity of soil organisms (Nielsen et al., 
2010; Xia et al., 2020) and their interactions (Erktan et al., 2020). The 
effects of soil texture and compaction on the diversity might vary 
between soil organisms with different sizes or life-history strategies 
(Seaton et al., 2020) or whether there are ecosystem engineers able 
to modify the soil structural properties (Decaëns, 2010; Six et al., 
2004).

The “resource heterogeneity hypothesis” follows the same ra-
tionale as the habitat hypothesis. An increase in resource het-
erogeneity can lead to an increase in diversity (Steiner, 2001; 
Heidrich et al., 2020; Dal Bello et al., 2021). We acknowledge that 
resource heterogeneity can be intrinsically linked to the habitat 

F I G U R E  1  Overview of the four big ecological hypotheses and theoretical predictions tested in this study within the soil biodiversity 
context. Each hypothesis is introduced in a coloured box, the predictors used to represent each hypothesis are given at the end of the boxes 
in a frame
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heterogeneity, which makes it difficult to separate them. As for 
aboveground, soil basal resources can take different forms, but 
their heterogeneity can be well approximated by plant functional 
diversity since it explains variation in SOM composition, type of 
potential mycorrhiza, root exudates and direct resources for phy-
tophages (Anderson, 1978; Eviner & Chapin, 2003; Hooper et al., 
2000). For higher trophic level groups (secondary and tertiary 
consumers), the diversity in potential prey might be taken as a 
proxy for resource heterogeneity.

Here, we tested the above outlined macroecological biodi-
versity hypotheses and estimated their relative importance in ex-
plaining soil biodiversity patterns across most soil trophic groups. 
We built on a large-scale observatory network across the French 
Alps (Orchamp) that provides soil biodiversity measurements from 
environmental DNA metabarcoding across seventeen elevational 
gradients ranging from low to very high altitude (280–3160 m), and 
harbouring very contrasting climatic, vegetation and pedological 
conditions (Figure S1). Mountainous systems are well suited to test 
empirically large-scale drivers of biodiversity as they include wide 
ranges of environmental conditions and high biotic turnover over a 
reduced spatial scale (McCain & Grytnes, 2010). Instead of focusing 
on specific taxonomic orders, we followed a multi-trophic approach 
to test the above hypotheses on most trophic groups representa-
tive of soil ecosystems. After selecting the predictors related to 
the ecological hypotheses, we used a machine learning approach 
to account for complex interactions between predictors and soil 
biodiversity and corrected for remaining spatial dependencies that 
may originate from processes that have not been considered, such 
as missing abiotic factors or dispersal limitations. More specifically, 
we used biodiversity patterns to assess (1) the relative importance 
of predictors linked to different ecological hypotheses in explaining 
overall multi-trophic soil biodiversity and (2) the consistency of the 
response curves across trophic groups.

2  |  MATERIAL AND METHODS

2.1  |  Study site and sampling design

The data come from the French Alps long-term observatory, 
Orchamp (www.orcha​mp.osug.fr, Appendix S1), made of multiple 
elevational gradients distributed across the whole French Alps (ca. 
40,500 km2) and representative of the environmental conditions of 
the region. Each elevational gradient has a homogenous exposure 
and slope, and consists of four to nine 30 × 30 m plots separated by 
200 m of altitude, on average. In this study, we used data gathered 
from 2016 to 2018, corresponding to 17 gradients (Figure S1), 90 
plots and 540 soil samples. Plant species abundances were quanti-
fied at the vegetation peak (mostly in July or August) along a linear 
transect crossing each plot using the pin-point method (Jonasson, 
1988). A second 4-m-wide transect was dedicated to soil sampling 
at the end of the summer season. Soil was sampled from 3 subplots 
(2 × 2 m) selected across the transect where we collected around ten 

soil cores of 5 cm in diameter that were separated into two soil lay-
ers, that is, surface (ca. 1–8 cm depth) and subsurface (ca. 8–16 cm 
depth), which could be differentiated in most cases by a change in 
the colour. The ten soil cores were pooled together and homoge-
nized by separating the two layers to make a biological sample per 
soil layer per subplot, to obtain a total of six samples per plot.

2.2  |  Soil sample processing

Each soil sample was separated into two components. The main part 
was sieved at 2mm and used to measure soil physicochemical prop-
erties (soil pH, SOM content and soil C/N) as described in (Martinez-
Almoyna et al., 2020). The other part was used for environmental 
DNA, where DNA was extracted from a 15 g aliquot and processed 
in the field using the procedure described in Taberlet et al. (2012), 
Taberlet et al. (2018). We used six DNA markers to have a complete 
overview of the soil biota, including two universal markers (euka02 
for eukaryote, bact01 for bacteria) and fourth clade-specific mark-
ers (fung02 for fungi, inse01 for insect, olig01 for oligochaete and 
coll02 for collembola). Information on the markers and molecular 
analyses including PCR, library preparation and sequencing steps 
are detailed in Appendix S2. A standardized bioinformatic pipeline 
was then applied (Calderón-Sanou et al., 2020), using the OBITools 
software (Boyer et al., 2016) and the R package “metabaR” (Zinger 
et al., 2021), to remove contaminants and errors and to get the taxo-
nomic composition in terms of Molecular Operational Taxonomic 
Unit (MOTU) of each sample (Appendix S2).

2.3  |  Diversity of trophic groups

The obtained MOTUs were classified into 36 trophic groups. We 
chose to distinguish not only trophic levels but also phylogenetic 
distant groups of the same trophic level, as they may have different 
preys/predators or exhibit different resource acquisition strategies 
(e.g. bacterivorous nematodes vs. protists, or predatory mites versus 
insects, Potapov et al., 2019), following Calderón-Sanou et al. (2021). 
The databases used for the trophic and functional assignments were 
FungalTraits (Põlme et al., 2020), for fungal MOTUs assigned at the 
genus level and FUNGuild (Nguyen et al., 2016) for the rest of fungi, 
FAPROTAX (Louca et al., 2016) and Wardeh et al. (2015) database of 
host–pathogen interactions for bacteria, NEMAguild and Nemaplex 
(http://nemap​lex.ucdav​is.edu/) for nematodes. The main references 
used included Adl et al. (2019) for protists, Rainford and Mayhew 
(2015) for insects and Potapov et al. (2016) for Collembola. The 
most abundant taxonomic clades composing each trophic group are 
shown in Table S1. The MOTU diversity of each trophic group was 
estimated per sample using the exponential of the Shannon entropy 
(i.e. Shannon diversity), which represents “the effective number 
of MOTUs” as it penalizes rare sequences that could be artefacts 
in eDNA data. Shannon diversity leads to more robust ecological 
results and to diversity estimates that are more similar to those 

http://www.orchamp.osug.fr
http://nemaplex.ucdavis.edu/
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assessed from conventional sampling approaches (Calderón-Sanou 
et al., 2020).

2.4  |  Environmental predictors

We used two environmental predictors to represent each ecologi-
cal hypothesis (Figure 1), with the condition of having a final set of 
weakly correlated predictors (see Figure S2 for a visualization of the 
correlation between all initially considered parameters).

2.4.1  |  Energy hypothesis

It was separated into primary (solar energy) and secondary energy 
(SOM), and two predictors were selected for each category. Solar 
radiation and the Normalized Difference Vegetation Index (NDVI) 
were used to represent the primary energy predictors. Solar radia-
tion directly measures the amount of solar energy arriving into the 
Earth's surface, while NDVI estimates the amount of solar energy 
that is transformed by photoautotrophic organisms into available re-
sources accounting for water limitations (Evans et al., 2005). We did 
not add mean annual temperature as sometimes done to represent 
energy (Clarke & Gaston, 2006) since it was strongly correlated to 
NDVI (Figure S2). Solar radiation was calculated per plot as the sum 
of the daily surface incident direct and diffuse shortwave radiation 
accumulated over 10 years, from 2008 to 2018. NDVI was estimated 
from the surface spectral reflectance at a resolution of 250 m from 
MODIS (Moderate Resolution Imaging Spectroradiometer), avail-
able online: https://lpdaac.usgs.gov/produ​cts/mod09​q1v00​6/. Raw 
NDVI times series were pre-processed following Choler (2015), and 
we kept the mean yearly sum of NDVI greater than 0.2 over 2009–
2019, as the final predictor for the analyses measured at the plot 
level. To represent secondary energy, we used the SOM content and 
the C/N ratio, measured from the soil samples. The former indicates 
the total amount of organic matter available in the soil, while the 
latter is a proxy for nutrient availability or SOM decomposability 
(Cleveland & Liptzin, 2007), meaning that soils with low C/N rates 
have potentially more readily available energy than soils with high 
C/N ratio, if we account for nutrient stoichiometric constraints.

2.4.2  |  Physiological tolerance hypothesis

We used soil pH and the freezing degree days (FDD) to represent po-
tential sources of abiotic physiological stress for soil organisms. The 
pH has been described as an important limiting physiological factor 
of soil communities (Fierer & Jackson, 2006; Räty & Huhta, 2003). 
The FDD summarizes the duration and intensity of ground freezing 
events and it has been addressed as a good candidate to model the 
thermal niches (Choler, 2018). FDD was calculated per plot as the 
annual sum of average daily degrees below zero, modelled within the 
first soil horizon (1 cm depth) and averaged over 2008–2018.

2.4.3  |  Habitat heterogeneity hypothesis

Clay percentage in soil and bulk density were selected to represent 
the microscale habitat heterogeneity. Clay percentage characterizes 
the soil texture and thus reflects the granulometry distribution, the 
aeration, ability of soil to retain water and more globally the physi-
cal properties of the soil (Hao et al., 2007; Seaton et al., 2020). Soil 
texture might affect diversity differently across trophic groups with 
different sizes or life-history strategies (Seaton et al., 2020; Vreeken-
Buijs et al., 1998). For example, the diversity of mesofauna could 
be expected to increase in coarse-textured soils (i.e. with low clay 
percentage), where the higher availability of larger pores provides 
more different habitats to be potentially colonized by these organ-
isms (Vreeken-Buijs et al., 1998). Bulk density reflects soil compac-
tion and porosity as it accounts for the amount of soil per volume 
unit when removing water and air spaces (Hao et al., 2007). Compact 
soils, with higher values of bulk density, have relatively lower total 
pore space and organic matter content, thus providing a lower het-
erogeneity of habitats. Both variables were measured from a soil 
pit carried out next to the plot). Three soil replicates were collected 
with a volumetric cylinder (100 cm3) from the superficial horizon. 
They were dried at 105°C for 24 h and sieved to 2 mm. The mass of 
dry soil (mS) contained in the cylinder as well as the mass of coarse 
elements greater than 2 mm (mEG) were measured. The formula ap-
plied for the calculation of bulk density is as follows (Equation 1), 
with Vcyl for the volume of the cylinder. The bulk density of the three 
replicates were averaged.

2.4.4  |  Resource heterogeneity hypothesis

For decomposers, detritivores and plant symbionts, we used two 
metrics of plant functional diversity as predictors, that is, the func-
tional richness and the functional divergence (Villéger et al., 2008), 
calculated for each plot using the R package “FD” (Laliberté & 
Legendre, 2010). Functional richness represents the total trait space 
filled by all the plant species present in the community (here the 
plot). Functional divergence describes how specie's abundances are 
distributed within the functional trait volume. To estimate these 
two metrics, we used our own trait measurement values for species 
(median values across individuals) present in our botanical surveys. 
We included the following traits: specific leaf area (SLA), leaf carbon 
and nitrogen ratio, root depth (extracted from Landolt et al., 2010), 
vegetative plant height and woodyness index. For the rest of the 
soil groups (except autotrophs), we selected two predictors measur-
ing prey diversity (exponential of the Shannon entropy) of the focal 
trophic group. For omnivores (i.e. tardigrades, rotifers and protists), 
we used the MOTU's diversity of bacteria and the MOTU's diversity 
of fungi. For bacterivores, we used the MOTU's diversity and phy-
lum's diversity of bacteria. For fungivores and zooparasites, we used 
the MOTU's diversity and class diversity of fungi and metazoans, 

(1)Da=
mS-mEG

Vcyl

https://lpdaac.usgs.gov/products/mod09q1v006/


6  |    CALDERÓN-SANOU et al.

respectively. We used the diversity at these two taxonomic levels, 
because MOTUs diversity might be redundant depending on the 
level of generalism of the focal trophic group, that is, a predator 
might be indifferent to two closely related species. For predators, 
we used the MOTU's diversity and class diversity of a subgroup of 
metazoans (or protists for protistivores), in which we excluded the 
focal group and we only considered the category of size that could 
potentially be a prey for the focal group (e.g. only micro-metazoans 
for predatory nematodes).

Solar radiation and FDD were calculated from the SAFRAN- 
SURFEX/ISBA-Crocus-MEPRA reanalysis (Durand et al., 2009; 
Vannier & Braud, 2012), a model which addresses meteorological 
and snow conditions in mountainous regions based on large-scale 
topographical features.

2.5  |  Spatial structure

Given the hierarchical sampling design of the data (two soil layers 
within plots within gradients), we accounted for the overall spatial 
structure of the samples to avoid having spatial autocorrelation 
issues (Dray et al., 2012). We defined a set of spatial predictors 
representing the residual spatial structure (i.e. the left-out spatial 
structure not explained by the environmental predictors) to include 
in the models. This approach aims to reduce the spatial autocorrela-
tion that could remain in the residuals and to identify potential spatial 
structures with a strong influence on soil diversity. We did so using 
Moran's eigenvector maps (MEM), a method based on computing 
the principal coordinates of a matrix of geographic neighbours (Dray 
et al., 2006). The obtained eigenvectors are orthogonal and have a 
straightforward interpretation as each of them represents a spatial 
pattern at a given scale that can be ranked from broad spatial struc-
tures to fine spatial structures. We identified 18 MEM-variables de-
scribing significant spatial autocorrelation (only positive eigenvalues, 
Dray et al., 2006) based on the Euclidean geographic distances be-
tween each subplot using the function dbmem from the R package 
“adespatial” (Dray et al., 2021). MEM 1 to 8 described broad scale 
spatial structures, while MEM 9 to 18 represented intermediate to 
fine spatial structures (Figure S3). To remove the imprint of the en-
vironment on these MEMs, we modelled with a random forest each 
of the 18 MEMs as a function of our environmental predictors and 
extracted the residuals of these relationships. These residuals thus 
represented the spatial structure not explained by our environmen-
tal predictors (e.g. missing predictors, dispersal limitations). This 
approach differs from partialling out the spatial component of diver-
sity and compare the pure effect of environment, the pure effect of 
space and the shared explained variance (Borcard et al., 1992). Here, 
we argue that space is likely affecting environment and that environ-
ment is then affecting biodiversity. The shared explained variance 
of space and environment is thus relevant for our hypotheses. We 
treat the pure effect of space as a statistical nuisance as we cannot 
link it to ecological processes, given that we jointly analyse taxa with 
very different dispersal abilities. We made sure that it was properly 

accounted for to avoid residual spatial autocorrelation (Dray et al., 
2012).

2.6  |  Random forest

To model the diversity of each trophic group as a function of the 
predictors representing our four hypotheses and the residual spa-
tial structure, we used random forest models (Breiman, 2001), which 
are particularly suited when nonlinear relationships and complex in-
teractions among predictors are expected. Random forest analyses 
were run with the R package “party” (Hothorn et al., 2006) with the 
cforest_unbiased function, which avoids bias introduced by hetero-
geneity in scale and number of categories among predictors (Strobl 
et al., 2007). The number of trees was set to 1,000 and the number 
of variables randomly sampled as candidates at each split (mtry) was 
tuned using the function train of the R package “caret” (Kuhn, 2020; 
Table S2). Variable importance was estimated as the mean decrease 
in accuracy using the function varimp. The method allows assess-
ing relative variable importance, by identifying the covariates which, 
when removed, ensure a significant drop of prediction power (Strobl 
et al., 2007). It thus avoids any over-fitting and allows sound infer-
ence. Overall explained variance (r-square) was calculated by ex-
tracting the coefficient of determination between predictions and 
observations. The shape of the relationship between the diversity 
and the predictors was assessed with partial dependent plots ob-
tained from the R package “iml” (Molnar et al., 2018), which estimate 
the marginal effect of a given predictor while accounting for the av-
erage effect of the other predictors in the model. We considered 
that a relationship was relevant, when the predictor had a predic-
tive importance higher than 25%. The predictive importance was as-
sessed by permuting each predictor one by one and then evaluating 
how the prediction was affected.

A single random forest model was run for each trophic group 
with the same set of predictors, that is, solar radiation, NDVI, SOM, 
C/N ratio, percentage of clay, bulk density, two variables corre-
sponding to resource heterogeneity (variable across trophic groups, 
and excluded for autotrophs) and the 18 residual spatial structure 
predictors. All analyses were run in the R statistical environment (R 
Core Team, 2020).

3  |  RESULTS

We identified 222,739 bacterial and 50,241 eukaryotic (including 
5,467 metazoans and 11,115 protists, Figure A2-1 in Appendix S2) 
MOTUs from the universal markers, corresponding to 13,173,466 
and 28,645,720 reads respectively. From the clade-specific markers, 
we recovered 48,127, 2,799, 3,113, 5,128 MOTUs and 29,022,014, 
1,507,963, 5,558,110, 16,738,061 reads of fungi, insects, collembola 
and oligochaetes respectively (see Table A2-3 in Appendix S2 for the 
statistics per year). From the identified sequences 1,333,857 MOTUs 
corresponding to 50,770,784 reads were assigned to the trophic 



    |  7CALDERÓN-SANOU et al.

groups. Table 1 presents the number of reads, families and MOTUs 
retrieved for each trophic group and the estimated Shannon 
diversity.

The predictors underlying the tested ecological hypotheses ex-
plained a significant part of the spatial variation of diversity of most 
trophic groups. The overall explained variance varied from 29% 
for detritivorous insects to 79% for arbuscular mycorrhizal fungi 
(Figure 2a, Table S2). The residual spatial structure explained much 
less variance than the environmental predictors, confirming the rel-
evance of the latter to predict soil biodiversity. Only the diversity of 
predatory and phytophagous insects, and photoautotrophic protists 
was better explained by pure broad residual spatial structures than 
by the environment (MEM7, Figure S3).

We found that predictors associated with the energy and the 
physiological tolerance hypotheses were generally the most im-
portant, even so the relative importance of the predictors did vary 
between soil trophic groups in different trophic positions or from 
different body size categories (Figure 2b, Figure 3). The energy hy-
pothesis was particularly important for consumers, that is, tertiary 
and secondary consumers and plant symbionts, and less import-
ant for autotrophs (Figure 3a). In particular, the secondary energy 
predictors related to SOM explained a large part of the diversity of 
most fungivores and detritivorous insects well-linked to the detri-
tus channel. When looking at the tendencies per category of body 
size, the energy hypothesis was more important for metazoans of all 
sizes and fungi diversity, while the physiological tolerance hypoth-
esis explained most variation for bacteria, protists and microfauna 
(Figure 3b). The habitat heterogeneity hypothesis had a higher im-
portance for autotrophs compared to the other groups. The resource 
heterogeneity hypothesis was especially important for bacterivores 
(both protists and nematodes), phytophagous insects, enchytraeids 
and soil saprotrophic fungi.

In general, we found that the partial response curves of diver-
sity to predictors were consistent across most soil trophic groups 
(Figure 4) and in agreement with predictions (Figure 1), with some 
few exceptions. The diversity of most trophic groups including 
zooparasites protists and fungi, metazoans consumers and ecto-
mycorrhizal fungi, strongly increased with NDVI, but decreased for 
photolithoautotroph bacteria, phytophagous protists and earth-
worms (Figure 4a). The steepest changes in soil diversity across the 
NDVI gradient occurred in the transition from forest (high NDVI) to 
alpine grasslands (low NDVI). Groups for which diversity strongly in-
creased with solar radiation included zooparasite bacteria, phytoph-
agous protists and earthworms. All trophic groups primarily feeding 
on detritus positively increased in diversity with SOM (Figure 4b). 
The diversity of several groups was also influenced by the C/N 
ratio: diversity decreased for herbivorous and bacterivorous nem-
atodes, and root endophyte and arbuscular mycorrhizal fungi, but 
increased for ectomycorrhizal fungi and fungivorous nematodes 
(Table S3). With the exception of rotifers and tardigrades, all tro-
phic groups responding to pH increased in diversity in more alkaline 
soils (Figure 4c). This positive relationship had a sigmoid form for all 
groups, but both the inflection points and associated slopes strongly 

varied across trophic groups. Saprotrophic, root endophytes and 
phytoparasitic fungi, and also photolithoautotrophic bacteria were 
positively affected by the soil clay content, and chemolithoauto-
trophic bacteria were positively affected by soil bulk density (Table 
S3). All phytophagous insects, saprotrophic fungi and bacterivore 
groups responded positively to resource heterogeneity, that is, plant 
functional richness and bacteria diversity respectively (Figure 4d). 
Enchytraeids responded positively to plant functional divergence 
(aka. resource heterogeneity).

4  |  DISCUSSION

Testing ecological hypotheses has largely contributed to our un-
derstanding on how biodiversity is structured on Earth. However, 
generality can only be claimed if a significant part of biodiversity 
is covered. Here, we add an important missing piece to the general 
picture by testing several major ecological hypotheses simultane-
ously on the majority of trophic groups inhabiting the soil and along 
sharp environmental gradients which allow some generalization to 
be made. Our results confirm that the main environmental drivers 
of soil biodiversity are variable across soil trophic groups and de-
pend on their resource or physiological requirements. Yet, we also 
find major commonalities in the ecological processes structuring soil 
biodiversity. Overall, the energy and physiological tolerance hypoth-
eses had the strongest support from soil multi-trophic biodiversity.

Our results are in agreement with previous studies finding that 
an increase in primary energy increases the diversity of soil organ-
isms such as protists (Oliverio et al., 2020), metazoans (Peters et al., 
2016), soil predators (Binkenstein et al., 2018) and fungi (Tedersoo 
et al., 2014, Figure 2b). Our results also reveal that secondary en-
ergy, related to soil organic matter, has a positive effect on soil 
biodiversity, especially for fungivorous and detritivorous animals, 
in agreement with earlier work (Binkenstein et al., 2018; Canedoli 
et al., 2020; Caruso et al., 2019). We found that the relative impor-
tance between primary and secondary energy varies across trophic 
groups, with no clear trends across trophic levels, suggesting that 
both energy channels are at play across the soil food web. However, 
some groups responded to specific energy predictors in a way that 
differs from the predictions of the “energy hypothesis” (Figure 1). 
For example, the diversity of earthworms, phytophagous fungi and 
photolithoautotroph bacteria decreased with increasing NDVI. 
Part of these divergent trends between diversity and NDVI might 
be explained by the transition from forest to grassland in the NDVI 
gradient in our study system, for example, alpine grassland soils are 
more suitable for autotrophic bacteria adapted to high elevation 
stressful conditions (Guo et al., 2015). Otherwise, a negative interac-
tion between ectomycorrhizal fungi and phytophagous fungi could 
explain the decrease in diversity of the latter (Figure 4a). Indeed, 
ectomycorrhizal fungi can provide protection against pathogens to 
their plant hosts, thus reducing the incidence of phytophagous fungi 
and their diversity (Antunes & Koyama, 2017; Wang et al., 2019). 
Other divergent, but not unexpected, trends were found along the 
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C/N ratio gradient, that is, ectomycorrhizal fungi and fungivorous 
nematodes were more diverse in soils with more recalcitrant organic 
matter (i.e. higher C/N ratio). This result reflects the differences 
in the energetic requirements or life-history traits of the different 
groups that may complexify generalizations of energy-related mech-
anisms. Contrary to other decomposers, ectomycorrhizal fungi can 
degrade recalcitrant organic complexes by using energy from their 
hosts (Lindahl & Tunlid, 2015). An increase in ectomycorrhizal fungi 
diversity could presumably cascade on fungivore nematodes diver-
sity. Furthermore, while we show that energy has mainly a positive 
influence on soil biodiversity, the underlying mechanisms remain to 
be tested. For example, the more individual hypothesis states that 
greater energy availability allows a community to contain a larger 
number of individuals, and hence of a larger number of species with 
viable population size (Wright, 1983). Quantifying species abun-
dance or biomass would be needed to test this hypothesis, but this 
information is unfortunately not yet available with eDNA metabar-
coding data (Taberlet et al., 2018), and would be extremely challeng-
ing to obtain for the wide range of organisms studied here.

Physiological tolerances, mainly to soil pH, were also a strong 
predictor of the diversity of soil organisms, especially for organ-
isms living in the aqueous phase of the soils. Indeed, in the study 
system, the diversity of groups of bacteria, protists and microfauna 
was more constrained by pH-induced stress rather than limited by 
energy or habitat and resource heterogeneity (Figure 3b), in accor-
dance with previous studies highlighting the importance of pH for 
soil microbes (Fierer & Jackson, 2006; Karimi et al., 2018) and in-
vertebrates (Bastida et al., 2020; Räty & Huhta, 2003). The sigmoid 
trend observed between diversity and pH might correspond to the 
first half of the humpback curve expected from the theory (Figure 1). 
Indeed, our sampling had relatively few sites with alkaline soils, and 
did not include soils with pH >8, levels from which other studies 
have observed a decrease of diversity (e.g. Fierer & Jackson, 2006). 
Our results revealed consistent decreases of diversity in more acidic 
soils, but also different tolerance thresholds across soil trophic 
groups. The strong effect of soil pH might also be the sum of mul-
tiple linked factors not considered in this study including bedrock 
type and plant communities (Roy et al., 2013). Contrarily, FDD had 
a minor effect on soil biodiversity. Limited effect of freezing events 
on soil biodiversity has previously been reported, and may result 
from the frost resistance (Männistö et al., 2018; Stres et al., 2010) 
or the rapid recovery of soil communities (Sulkava & Huhta, 2003). 
Theoretically, this low importance could be due to a scale mismatch 
between the measured soil communities (subplots are 4m2  large) 
and the climatic data resolution (~300m). However, between the 
available in situ temperature HOBOs and the climatic data used here 
showed very consistent patterns, rendering the scale mismatch hy-
pothesis unprobeable. Otherwise, a change in composition or activ-
ity, without changes in local diversity, might also have occurred and 
remains to be tested (Schostag et al., 2019; Stres et al., 2010).

The “habitat heterogeneity” and the “resource heterogeneity” hy-
potheses weakly explained the spatial variation in diversity of soil 
trophic groups compared to “energy” and “physiological tolerance”, Tr
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with notable exceptions. Saprotrophic, root endophytes and phyto-
parasitic fungi, as well as autotrophic bacteria were highly affected 
by habitat heterogeneity. We found that these groups tended to 
be more diverse in fine-textured soils (higher clay percentage), 
which usually exhibit greater water retention capacity but also 
more recalcitrant and stable organic matter (Ranjard & Richaume, 
2001; Six et al., 2004). Previous studies have shown that soil tex-
ture can influence bacterial and fungal diversity, with subgroups of 
taxa responding differently to the proportion of soil particles (i.e. 
clay, sand, silt) (Karimi et al., 2018; Seaton et al., 2020; Xia et al., 

2020). Our results showed that such differences are also visible 
when considering different trophic groups of fungi and bacteria. 
The importance of “habitat heterogeneity” could be expected to 
vary across soil trophic groups, as the spatial scale at which het-
erogeneity is perceived by organisms of different sizes or different 
lifestyles can be highly variable (Heidrich et al., 2020). Here again, 
perhaps the scale at which we measured heterogeneity was not 
relevant for some specific groups. When looking at the effect of 
resource heterogeneity, prey's diversity was remarkably important 
for bacterivores. Strong associations between bacterivore protists 

F I G U R E  2  Relative importance of competing hypotheses in explaining the alpha diversity of soil trophic groups. (a) Total r-squared 
of the random forest model for each trophic group. Colours represent the relative importance of the environmental versus the spatial 
predictors. Environmental predictors correspond to all the biotic and abiotic variables used to test the ecological hypotheses, and spatial 
predictors correspond to the residuals of the spatial structure when removing the effect of the environment. (b) Relative importance of 
the environmental predictors used to test the ecological hypotheses (colour key). The relative variable importance is the mean decrease in 
squared error, rescaled to sum the total r2 (a) or 1 (b). Letters correspond to broad taxonomic groups: Bacteria (B.), Protozoa (P.), Metazoa (C.: 
Collembola, I.: Insects, M.: Mites, N: Nematodes) and Fungi (F.). Symbols indicate the size category for fauna groups
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and bacteria diversity have been recently reported (Oliverio et al., 
2020; Xiong et al., 2021), and could indicate a degree of trophic 
specialization in bacterivorous protists. Co-variation in diversity 
might also indicate shared habitat preferences between protists 
(or nematodes) and bacteria, but our results and previous studies 
point to noticeable differences in the factors shaping the diversity 
of these groups (Oliverio et al., 2020; Xiong et al., 2021). Moreover, 
the strong response of saprotrophic fungi to plant functional diver-
sity could be explained by a trophic specialization, in accordance 
with a recent study showing a high degree of specialization to spe-
cific soil and litter compounds for some saprotrophic fungi (Algora 
Gallardo et al., 2021). The significant association does not neces-
sarily imply the realization of a trophic interaction, but it is a first 
step in assessing whether such interactions exist, leave signals in 
diversity distribution and can give us insights into the degree of 
food speciation in the focus trophic group.

To conclude, our near-complete coverage of soil biodiversity 
across trophic groups and across large and steep environmental 

gradients provides consistent and novel insights on the macro-
ecological rules shaping the distribution of belowground biodiver-
sity. Building on the efficiency of environmental DNA analyses 
combined with the wealth of existing knowledge on soil organ-
isms, we showed that energy and physiological tolerance are the 
most plausible hypotheses to explain the spatial distribution of 
soil diversity at a regional scale. Interestingly, we found strong 
commonalities between trophic groups in their response to envi-
ronmental drivers that should be later compared to aboveground 
organisms living in the same locations (e.g. ground-dwelling ar-
thropods, pollinators or herbivores). Should belowground and 
aboveground compartments respond differently to environmen-
tal drivers, it will complexify their management under human-
induced pressures. Finally, identifying how these patterns in local 
diversity translate into compositional changes and interaction 
network structuration in space will be of crucial importance to un-
derstand soil biodiversity assembly and how it might be affected 
by ongoing environmental changes.

F I G U R E  3  Boxplots of the relative importance of ecological hypotheses by trophic position and body size category. Relative importance 
of the four ecological hypotheses tested in this study across groups categorized by trophic position (a) or body size category (b). The values 
of relative importance correspond to the mean decrease in squared error from the random forest per trophic group, rescaled to sum the 
total r-square
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CHAPTER 4: Spatial turnover of soil food webs along environmental gradients 
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Abstract: While soil food webs are key drivers of ecosystem functioning and associated 

services, we largely ignore how they change along large environmental gradients. Given their 

inherent complexity, responses of organisms may occur at different resolutions: broad trophic 

classes would respond if they were selected by different environments, and refined trophic 

groups would respond in addition if they were functionally complementary (and not redundant) 

within classes. Thus, looking at different resolutions when studying soil food webs may reveal 

different patterns of assembly. Here, we aimed at quantifying and investigating the spatial 

variation of soil food webs along the sharp environmental gradients of the whole French Alps. 

Using network dissimilarity metrics applied over 451 local soil food webs along 24 elevational 

transects, we (1) quantified soil food web turnover at two resolutions, and (2) deciphered the 

importance of geographic distance and environmental factors to explain spatial soil food web 

turnover. We found spatial variability of trophic groups and trophic interactions at both 

resolutions, but turnover between trophic classes was much weaker than between refined 

trophic groups. This confirmed the existence of a backbone of soil food webs (i.e. trophic 

classes that are always present). Environment variation explained much more of the soil food 

web turnover between sites than spatial distance. Soil C/N ratio and NDVI were the most 

important variables at both resolutions, while plant taxonomic turnover only influenced food 

web structure at the finer trophic group resolution. Our results illuminate the spatial structure 

of soil food webs at a large spatial scale, and their nested structure with a strong turnover of 

trophic groups determined by environmental filtering (i.e. trophic group sorting) ultimately 

constrained by a universal backbone of soil trophic interactions. 

 

Keywords: food web structure, network turnover, trophic group resolution, trophic 

interactions, environmental DNA, mountain systems. 
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Introduction 

Soils harbour an enormous diversity of functionally distinct organisms that coexist and interact 

at all trophic levels providing crucial ecosystem services such as carbon storage, organic matter 

decomposition, mineralization, nitrogen fixation, plant performance and resistance to pests and 

stress (Bardgett & van der Putten 2014; Delgado-Baquerizo et al. 2020). Understanding the 

ecological processes that shape soil biodiversity and its spatial turnover is thus fundamental to 

predicting the consequences of global changes on terrestrial ecosystems and guiding more 

integrative conservation strategies (Soliveres et al. 2016; Guerra et al. 2021). Although our 

knowledge of the spatial distribution of soil biodiversity, especially for specific groups like 

earthworms, has improved in the last decades (Decaëns 2010; Orgiazzi et al. 2016; Rutgers et 

al. 2016), a complete picture of how the whole soil biodiversity responds to environmental 

drivers is still missing. Yet quantifying changes in the spatial structure of soil biodiversity and 

quantifying the drivers of those changes, like space or environmental variation, should bring 

crucial knowledge on the ecological processes structuring soil communities, and will reveal 

spatial changes in the functioning of terrestrial ecosystems (Eisenhauer et al. 2021).  

 

Ecological networks, such as food webs, provide a suited representation of multitrophic 

communities as it considers simultaneously several functionally important groups and their 

linkages across trophic levels (Thompson et al. 2012). In soil food webs, nodes are groups of 

organisms sharing the same set of prey and predators or with similar functions in the ecosystem 

(Eltonian niche, Elton 1927), and edges represent their trophic interactions. However, due to 

the inherent complexity of soil biodiversity, the definition of these groups can vary from refined 

trophic groups (e.g. nematode bacterivore and predatory coleopteres, Potapov 2022) to broad 

trophic classes (e.g. herbivores and decomposers, Buzhdygan et al. 2020), changing the lens at 

which we express and quantify soil food web structure. Detecting changes in the structure of 

soil food webs along environmental gradients can critically depend on the resolution at which 

groups are built (conceptual figure to be done) broad trophic classes would respond if they were 

selected by different environments, and refined trophic groups would respond in addition if 

they were functionally complementary (and not redundant) within classes. While this context-

specific definition might be seen as a weakness, we rather see it as a strength. First, it allows 

the grouping of organisms that could be resolved at different taxonomic precisions. Last but not 

least, grouping organisms at increasing resolutions allows the analysis of soil food web 

structures while zooming in and zooming out on the web. As such, detecting strong soil food 

web turnover at a very fine trophic group resolution that vanishes at coarser resolution (i.e. 
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trophic class) implies the identification of a common backbone of interactions underlying soil 

food web, with a turnover only within its low-level classes (Bramon Mora et al. 2018).  Another 

interesting feature of analysing soil food webs is that while trophic groups (or classes) and 

interaction diversity are inherently correlated, they might vary differently along with the 

environment (Poisot et al. 2012; Thompson et al. 2012), and their joint analysis should 

illuminate the processes structuring food webs. Indeed, differences in food web structures in 

terms of trophic interactions depend on the degree of interactions of the trophic groups, e.g., 

the removal of a trophic group interacting with many other groups will lead to higher structural 

turnover than a trophic group poorly connected (conceptual figure to be done). 

 

ß-diversity metrics that quantify the compositional dissimilarity between pairs of communities 

are known to give considerable insights into the ecological processes controlling the spatial 

variation in community structure along ecological gradients (Baselga 2010; Chase & Myers 

2011; Ohlmann et al. 2018; Martinez‐Almoyna et al. 2019). For example, a decay in 

community similarity with spatial or environmental distance (distance decay of similarity, 

Nekola & White 1999) can reveal community assembling processes such as dispersal limitation 

and/or environmental filtering (i.e. species or group sorting), respectively. While this pattern 

has been widely documented across organisms in different ecosystems (Astorga et al. 2012; 

Graco-Roza et al. 2021), it has mostly been investigated within a single trophic level or multiple 

ones but taken independently of each other. In other words, how food web similarity changes 

with both spatial and environmental similarity has been poorly addressed so far. Even more 

interesting, we might expect different distance decays when focusing on either trophic or 

interaction diversity, and when varying the trophic resolution at which soil food webs are 

expressed.  

 

Here, we aimed at quantifying the spatial variation of soil food web structure (i.e. soil food web 

turnover) along the sharp environmental gradients of the French Alps. We compared the 

structure of 451 soil food webs located at nested spatial distances (from 8m to 250km), disposed 

along 24 elevational gradients and along with various environmental conditions across the 

French alps (Fig. 1A). Food web turnover was measured using network dissimilarity metrics 

(Ohlmann et al. 2019), which consider the dissimilarity of groups and interactions separately, 

at two levels of resolution: trophic groups (fine resolution) and trophic classes (coarse 

resolution). First, we assessed whether the structure of soil food webs varied across the French 

Alps and how it depended on the resolution at which the food web was considered. We expected 
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less variation at the trophic class level, which we hypothesised to be a backbone soil food web 

that should be almost invariant in space. Second, we compared the strength of the geographic 

vs. the environmental distances in shaping soil food web structure at both levels of resolution. 

We then identified the main environmental variables explaining this variation, among climatic, 

soil and plant-related variables. We expected soil food webs to be strongly structured by the 

environment as a consequence of environmental filtering acting on trophic groups. Functional 

approaches, such as the one used to create the trophic groups, assume that environmental 

filtering selects species with suites of traits that allow them to coexist under similar 

environmental conditions (Ackerly & Cornwell 2007). At short spatial distances, we could 

expect two contrasting results. On one hand, soil organisms might be seen as highly dispersive 

and thus neighbour soil food webs should have a similar structure. On the other hand, the soil 

itself is highly heterogeneous and might drastically change over small spatial distances 

implying strong environmental filtering on organisms.  

 

 

Figure 1. Map of the study site showing the distribution of the 24 elevational transects sampled 

in the French Alps (A). UMAP 2-D plane representing the similarity between soil food webs 

(each dot is a food web) from the point of view of trophic group composition (B) and trophic 

group interactions (C), with a colour scale representing the altitude. Dots that are close to each 

other in the 2D plane have similar structures in trophic group composition or interactions.  
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Material and Methods 

Study site 

The data was obtained from the long-term observatory, Orchamp (www.orchamp.osug.fr, 

Fig.1A), made of multiple elevational transects distributed across the whole French Alps, with 

contrasting climatic, vegetation and pedological conditions. Each elevational transect consisted 

of four to nine 30 x 30 m permanent plots separated by 200 m of altitude, on average. In this 

study, we used data gathered from 2016 to 2020, corresponding to 24 elevational transects and 

113 plots. Plant species abundances were quantified at the vegetation peak (mostly in July or 

August) along a linear transect crossing each plot using the pin-point method (Jonasson 1988). 

A second 4 m wide transect was dedicated to soil sampling at the end of the summer season. 

The soil was sampled from 3 subplots (2 x 2 m) selected across the transect. Around ten soil 

cores of 5 cm in diameter were collected per subplot and pooled together to make a biological 

sample. Some elevational transects were sampled two times (i.e., resurveyed), in two different 

years. Soil samples from the same subplot but sampled in different years were considered as 

separate samples in the analyses, and their spatial dependency was considered indirectly 

through the spatial coordinates of the plot. A total of 451 soil samples were thus treated in this 

study, equivalent to 415 soil food webs.   

 

Metabarcoding 

The retrieved 451 samples were processed following the same procedure described in Chapter 

3, but different clustering thresholds were applied to obtain the Molecular Operational 

Taxonomic Unit (MOTU) of the specific markers (i.e., 85% for Coll01, 88% for Olig01 and 

95% for Inse01), while the clustering threshold of 97% was conserved for the universal markers 

(i.e., Euka02, Fung01, Bacte01), following the recommendations in Bonin et al. (2021). 

Metazoan taxa not registered in the European region were removed using the GBIFfilter tool 

(https://github.com/nleguillarme/gbif-filter-python).  

 

Food web construction 

The retrieved taxonomically annotated sequences were assigned to trophic groups and trophic 

classes, to further build the soil metaweb at two levels of resolution as described in Chapter 2.  

 

Environmental variables selection 

We selected a set of weakly correlated variables representing the climatic, soil and vegetation 

environmental categories. For climate, we retained growing degree days at 0°C (GDD), total 

http://www.orchamp.osug.fr/
https://github.com/nleguillarme/gbif-filter-python
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annual precipitation and frost degree days (FDD). For soil, we used the soil pH, the amount of 

organic matter and the C/N ratio in the organic matter. For vegetation we used plant taxonomic 

dissimilarity, plant functional dissimilarity and NDVI. The environmental variables were 

calculated as in chapter 3. Plant taxonomic dissimilarity was estimated with the Jaccard pair-

wise dissimilarity index and calculated using the beta.pair command from the R package 

‘betapart’ (R Core Team 2020; Baselga et al. 2022), and plant functional dissimilarity with the 

Jaccard-like functional index from the beta.fd.multidim command from the R package ‘mFD’ 

(Magneville et al. 2021). 

 

Statistical analyses 

We quantified the dissimilarity in soil food webs using a set of network diversity metrics that 

generalise the Hill numbers to networks (Ohlmann et al. 2019). These network metrics allow 

calculating both the diversity of trophic groups or classes and the diversity of interactions. 

Additionally, relying on Hill numbers, these network metrics allow to weight the diversity 

measures by the relative abundance of organisms, a highly desirable property, especially when 

focusing on trophic classes that can have large differences in the relative abundance of trophic 

groups within them. In traditional community diversity analyses, this weighting parameter, 

called q, distinguishes species richness (q=0), Shannon entropy (q=1) and Simpson diversity 

(q=2). Here, we used both q=0 and q=1 to account for the relative abundances of sequences in 

trophic groups and the relative frequencies of trophic groups within the trophic classes.  The 

relative abundance of sequences were estimated using a double-transformation, where first, 

total read counts were transformed into proportions within the sample, and second, the resulting 

proportions were standardized by the largest observed proportion observed across samples for 

each trophic group. Relative abundances of trophic groups varied thus between 0 (absent) to 1 

(largest observed proportion), allowing to have a comparable measure across trophic groups. 

Relative frequencies of trophic classes were the sum of the relatives abundances of the trophic 

groups within the class, standardized across the whole food web to sum 1. Network dissimilarity 

was thus calculated for all pairs of samples, using q=0 and q=1, and at the two resolutions 

(trophic group and trophic class), using the R package ‘econetwork’ (Miele et al. 2021). 

 

To quantify the relative importance of environmental and spatial distances to explain food web 

turnover, we used Generalized Dissimilarity Models (GDM, Ferrier et al. 2007). We built a 

single GDM for each of the dissimilarity metrics (i.e. trophic group diversity, trophic group 

interaction, trophic class and trophic class interaction for both q=0 and q= 1, so 8 GDMs) using 
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the spatial coordinates of the samples and all selected environmental variables as predictors. 

The models were run using the R package “gdm”  (Fitzpatrick et al. 2022). Variance 

partitioning between environment and space was assessed using the function 

gdm.partition.deviance. A variance partitioning analysis was also applied to assess the relative 

importance of the three environmental categories, i.e., climate, soil, plant. 

 

Results 

Variability of soil food webs across the French alps 

The entire soil metaweb across the 451 soil samples was composed of 58 trophic groups and 

383 potential interactions, which were aggregated into 11 trophic classes with 45 interactions. 

Local food webs were made of 41 ± 4 SD trophic groups, totalling around 204 ± 37 SD 

interactions, which corresponded to 11 trophic classes with 41 ± 2 SD interactions.  The absence 

of variability in the number of trophic classes composing the local food webs supports our 

hypothesis on the existence of a backbone in soil food web structure at the trophic class level. 

The only exception was a single local food web where the class fungivore was absent. However, 

differences in the food web structure at the trophic class level were detected when accounting 

for relative abundances, although the mean dissimilarity at this level was rather low (trophic 

class dissimilarity: 0.09 ± 0.05 SD , interactions dissimilarity: 0.28 ± 0.12 SD).  

 

Overall, we found that soil food web turnover was particularly well structured and varied along 

the elevational range covered in this study. This was the case for both trophic groups and their 

interactions (Fig.1. B,C). In general, mean dissimilarity per pair of samples was higher for 

interactions than for groups and classes but relationships varied at the two resolutions (Fig. 2). 

Interestingly, for a given dissimilarity in trophic groups or classes of soil food webs, the 

dissimilarity of interactions was highly variable, and this variability was higher at the trophic 

class level and when accounting for trophic group relative abundances (i.e., with q=1; Fig. 2). 
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Figure 2. Relationship between trophic interaction dissimilarity and trophic group/class 

dissimilarity for all pairwise comparisons among the 451 soil food webs sampled across the 

French Alps. The relationship is showed for the dissimilarity metrics calculated using q=0 (left 

panels) and q=1 (right panels). The solid line represents the 1:1: relationship. Dashed lines 

correspond to the mean dissimilarity of groups/classes (vertical) and interactions (horizontal) 

and the histograms represent the variation in dissimilarity across pairwise comparisons between 

soil food webs.  

 

 

Spatial vs environment drivers of soil food web turnover  

The GDM explained 10.5 to 20.5% of the variance in soil food web dissimilarity across samples 

(Fig.3A). The GDMs for the trophic class resolution at q=0 could not be run due to the low 

variability. The total variance explained was higher for food web structure at the finer 

resolution, which is to be expected due to the greater variation at this resolution. The variance 

explained when using presence/absence data (i.e., q=0) was less than 10% for all metrics), so 

further we considered only the results for the abundance data. The environment alone explained 

most part of the variance for all dissimilarity metrics (Fig.3.A), and this was mostly due to 

variables associated with soil and plant communities (Fig. 3B). Climatic variables explained 

less than 3% of the variance in soil food web structure dissimilarity, including combined effects 

with plant and soil variables. The C/N ratio in soil organic matter and the NDVI were the most 

important factors explaining soil food web turnover across the French Alps for all the metrics 
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and at both resolutions (Fig. 3B). The rate of turnover of groups and classes was higher along 

the lower part of the C/N ratio gradient (~0-10), but the interaction’s turnover was constant 

along the gradient. The rate of food web turnover was constant along the NDVI gradient. The 

dissimilarity of trophic groups and their interactions increased constantly with the plant 

taxonomic dissimilarity, but not the dissimilarity of trophic classes and their interaction. The 

geographic distance had an effect on food web dissimilarity only at large spatial scales. 

 

 

 

 

Figure 3. Summary of GDM results. (A) Variance partitioning of the deviance is explained 

by environmental vs spatial distances for the different dissimilarity metrics of food web 

structure at the level of groups and classes. (B) Variance partitioning between the 

environmental variables categorized into climate, soil and plant for the dissimilarity of 

interactions at the trophic group level for q=1. (C) The selected most important predictors of 

the food web structure dissimilarity based on the GDM for q=1. Each panel shows the partial 

ecological distance, or food web turnover, as a function of an environmental predictor when 

holding all other variables constant. The slope at any point on the curve indicates the rate of 

food web turnover at that position along the environmental gradient (x-axis), while the total 

height reached by the function indicates the total amount of food web turnover due to that 

environmental predictor. 
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Discussion 

 

Studying how different metrics of food web structure co-vary with the environment is needed 

to gain a better understanding of the processes structuring soil multitrophic communities. In 

this study, we showed that the local structure of soil food webs varies along environmental 

gradients in the French Alps, especially when using a fine resolution food web. Instead, the 

variability was low when using a coarser resolution food web, showing a conserved trophic 

structure at this level of resolution. We found that the local food web dissimilarity across 

samples was better explained by the environment than by the geographic space. Interestingly 

we found that similar environmental variables explained most part of the variation in the food 

web structure at both levels of resolution  (i.e., groups, classes, interactions between groups, 

the interaction between classes), except for plant taxonomic dissimilarity, which only 

influenced the food web structure at the finer resolution. 

 

Aspects to discuss: 

- The idea of a backbone at the trophic class level. 

- The effect of C/N and NDVI on food web structure based on other studies. Changes in 

C/N ratio are also related to the type of habitat (forests vs grassland). We need to explore 

more the effect of habitat on soil food web in the analyses. Include also discussion about 

the most important turnover at the low range of the C/N ratio gradient and the 

differences in the curves of groups and interactions.  

- Relate the results with the results from Chapter 3 → the drivers of trophic group’s 

diversity. Energy, mostly NDVI, was also a main determinant of group’s diversity.  

- Mentioned that when analysing the alpha diversity of food webs, pH was the most 

important factor → pH limits the alpha diversity of the food webs, while energetic 

constrains defines the composition of food webs. 

- Discuss the influence of plant composition on food web structure only at the fine 

resolution level → the broad trophic structure is conserved but the identity of the groups 

within class depends on plant identity (?). 

- Discuss the low importance found for geographic distances. Maybe coordinates used 

are not very representative. Also, the large differences in the distances across samples 

(within plot vs across gradients)--> the effect of large distances may obscure the effect 

of small distances. Rescaling the distances could be a potential solution to be tested. 

Spatial distances might be less important at larger scales when accounting for trophic 
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groups because species dispersal limitations are obscured by grouping the species into 

trophic groups. But, at smaller distance we could expect that food webs more close are 

more similar. Dispersal limitation can be very important for larger organisms such as 

oribatids for which few centimetres of unsuitable habitat can limit the dispersion of most 

species.  
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CHAPTER 5: Cascading effects of moth outbreaks on subarctic soil food webs 
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The increasing severity and frequency of natural disturbances requires a better understanding of 
their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth 
outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf 
shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment 
remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses 
to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this 
disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal 
fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more 
diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks 
increased belowground diversity at different trophic levels. Our results highlight that a holistic view of 
ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.

Natural disturbances, such as fires, droughts, or insect outbreaks, are key drivers of ecosystem dynamics and 
community structure1. Global change could exacerbate their severity and frequency worldwide with potential 
extensive impacts on biodiversity, ecosystems and human societies2,3. Understanding the effect of disturbances 
on the dynamics and structure of biodiversity is therefore more than ever a crucial issue in ecology. Yet, the high 
variability of local biodiversity trends in response to global changes asks for more integrative analyses, going 
beyond mere measures of species richness and accounting for the multiple components of the ecosystems4,5. 
Particularly, soil organisms are rarely included when synthesizing biodiversity trends in the face of disturbances, 
despite their recognized and well documented influence on multiple ecosystem functions (e.g. nutrient cycling) 
and nature contributions to people (e.g. carbon storage or depollution)6–9.

Most studies quantifying the effect of disturbances on biodiversity have focused on a single trophic or taxo-
nomic group, often directly affected by the disturbance, like plants9. However, much less is known on how the 
effects propagate across trophic levels ultimately affecting the entire ecosystem. Plants and soil organisms are 
tightly linked through direct and indirect interactions, including mutualism, parasitism or predation, which 
promote the exchange and supply of nutrients and ensure multiple ecosystem processes6,7. Ignoring these trophic 
interactions and how resource deprivation in one trophic level can cascade to other levels may obscure the true 
consequences of disturbances for ecosystems10. Furthermore, misleading conclusions could be drawn if result-
ing disturbance effects differ between trophic levels11. Most natural disturbances cause immediate fluctuations 
in the quantity and quality of available soil resources1. Extreme winds can remove or deposit organic matter on 
the forest floor, while insect outbreaks increase soil nutrient inputs through defoliation and insect faeces and 
corpses. These local changes in basal resource availability can have important consequences on the abundance 
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and diversity of primary producers (e.g. plants or nitrifying bacteria) and primary consumers (e.g. decompos-
ers or herbivores), but also subsequently on the whole soil food web through bottom-up cascading effects12–14. 
Predicting whether the effects would vanish or amplify remains challenging due to the complexity of soil food 
webs in real ecosystems. Stoichiometry-based studies have provided numerous evidences that such indirect 
effects propagate across soil food webs from the microfauna to the macrofauna in terms of composition and 
biomass15–17. However, these approaches don’t include the microbial part of the soil food web, and often lack 
resolution or breadth for the micro and macro fauna when describing the diversity and composition of these 
complex communities. In addition, changes in the abundance and diversity of organisms across the food web 
are likely to induce structural changes in the entire interaction network, potentially leading to alternative eco-
system states8,18,19. Thus, quantifying cascading effects of disturbances on ecosystems requires a holistic view of 
biodiversity with not only exhaustive sampling methods to capture all-in-end biodiversity, but also a suitable 
analytic approach to analyze changes in trophic levels and interactions.

To meet this challenge, we combined the power of environmental DNA metabarcoding (eDNA)20 to obtain 
a nearly complete view of the belowground biodiversity, with a food web approach and network theory. Group-
ing species with the same trophic position (i.e. shared predators and preys/resources) in ecological networks 
facilitates the study of complex multitrophic communities21–23. In such an approach, the focus is not on species, 
but rather on trophic groups and trophic interactions. The definition of the trophic groups depends both on the 
resolution of the observation units (e.g. the taxonomic resolution) and the information available on their diet or 
trophic position24–26, and is also related to the ecological question. When studying the large-scale consequences 
of disturbances on biodiversity, there is a trade-off between sufficiently fine resolution to reliably and meaning-
fully measure cascading effects22,27, and sufficiently broad resolution to avoid knowledge gaps and cope with 
heterogeneity of taxonomic resolution in the data25,28. Once a food web is built, diversity can be measured within 
trophic groups (e.g. species diversity) and between trophic groups (e.g. trophic diversity or diversity of interac-
tions), allowing the integration of ecological processes occurring at different dimensions of the food web (e.g. 
competition and predation)29,30. For this, network theory provides appropriate metrics to describe and compare 
the diversity and structure of ecological networks, accounting for both group abundances and interactions31,32.

Here, we study the effect of moth outbreaks on soil food webs of subarctic birch forests in Northern Fennos-
candia. These forests have experienced moth outbreaks of unprecedented scale and severity in recent decades, 
which have led to a sudden and persistent vegetation change -from birch forests with understory dominated by 
dwarf shrubs to grass-dominated systems associated with high tree mortality- that was still visible 8 years after 
the disturbance33–36 (Fig. 1). Moth outbreaks is a good model for assessing the cascading effects of disturbance 
on soil food webs, as the larvae only attack the foliage of the dominant primary producers, i.e. the birch tree 
(Betula pubescens), and some abundant species of erect and dwarf shrubs in the understory layer (e.g. Betula 
nana, Empetrum nigrum, Vaccinium spp.). In parallel, soil organic matter is enriched through dead plants and N 
addition from larval faeces and corpses37,38. We can therefore expect that impacts on the whole soil food web arise 
from bottom-up effects from changes in the vegetation and basal resources to the other trophic compartments12. 
Drastic shifts in the composition of biological communities following defoliation have been already reported 
in these nutrient-limited soils where the dominance of the allelopathic dwarf shrub Empetrum nigrum in the 
understory leads to regressive succession that may inhibit soil microbial activity, organic matter decomposi-
tion, and thus nutrient availability39–41. These shifts correspond to a replacement of Empetrum nigrum by the 
grass Avenella flexuosa34 with subsequent effects on the diversity and abundance of organisms directly relying 
on plants, including vertebrate herbivores33, birds42, saproxylic beetles38, and fungal communities43,44. However, 
we still ignore whether moth outbreaks induced indirect effects across the soil food web, whether these effects 
are of comparable magnitude to those observed for vegetation, and finally, whether these effects have significant 
consequences on trophic interactions and ultimately on the whole soil food web structure.

We used eDNA data obtained from 86 soil samples from two well-studied areas in northeastern Norway (i.e., 
Tana and Kirkenes). This study design allowed for appropriate pairwise comparisons between coupled undam-
aged and defoliated forest based on well-documented defoliation patterns from both remote sensing and field 
methods (Fig. 1). The sampling design aimed at capturing the environmental heterogeneity at different spatial 
scales of the landscape within these areas. We then classified both microorganisms and macroinvertebrates 
into 9 broad trophic classes and 37 finer trophic groups to build metawebs45 at two levels of resolution for the 
study area (Fig. 2). The metawebs were then used to infer local soil food webs based on taxa detected locally in 
each soil sample. The trophic class resolution corresponds to what is commonly used in soil food web ecology 
(e.g.22,27), but we additionally included the trophic group resolution because a finer resolution is needed to capture 
specific effects of disturbance on groups that are hidden at a coarser resolution. For instance, different types of 
mycorrhizal fungi like arbuscular mycorrhizal fungi and ectomycorrhizal fungi may have opposite responses 
to tree defoliation, the former increasing and the later decreasing in their proportion following disturbances46.

Using this approach, we tested three hypotheses about the cascading effects of moth defoliation on the local 
soil food webs at different levels of organization. First, (H1) moth defoliation changes the diversity in MOTUs 
(Molecular Operational Taxonomic Unit) and the relative abundances of most trophic groups. We expected posi-
tive effects on most decomposers and their consumers through the impulse in soil resources availability47,48 from 
both moth outbreaks and the decreased abundance of the allelopathic species Empetrum nigrum. In parallel, we 
expected negative effects on e.g., ectomycorrhizal and ericoid mycorrhizal fungi, as the result of the decline of 
birch and ericaceous shrub roots. Second, (H2) the magnitude of the effect differs among trophic groups across 
the soil food web. We expected the effect of defoliation to be stronger for primary consumers and decomposers 
that are directly affected by changes in basal resources availability and plant composition, and then to decrease 
toward higher trophic levels (attenuation of the effects). Third, (H3), moth defoliation changes the overall struc-
ture of the local soil food webs10,49. We expected to observe differences in the trophic groups and links diversity 
and composition of the local food webs between defoliated and undamaged forests.
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Results and discussion
Fitting a multilevel linear model for each trophic group, we found that moth defoliation increased MOTU 
diversity and the relative abundances of most trophic groups (Fig. 3). This is consistent with H1 and food web 
theory predictions, i.e. the effect of disturbances should propagate up the food web levels when resources are 
enriched through bottom-up processes14,50. Overall, diversity and relative abundance followed similar trends 
within trophic groups (Fig. 3a,b).

The basal groups directly linked to plants or basal resources (e.g., soil organic matter and light), i.e., mycor-
rhizal fungi, phytophagous or plant parasites, decomposers and primary producers, were expected to respond 
to changes in the composition of plant communities and nutrient enrichment following the outbreak. Here, 
comparing undamaged and defoliated forests, we observed a radical shift from ectomycorrhizal to arbuscular 
mycorrhizal fungal communities. This is consistent with the reduction of birch fine woody roots in defoliated 
forests, which are obligate hosts for most ectomycorrhizal fungi, and with the increases of herb and grass roots 
that are mostly associated with arbuscular mycorrhizal fungi43,44,51 (Supplementary Fig. 2). The increased diversity 
and relative abundance of slugs, snails and plant pathogen protists could be in part explained by the increased 
palatability of the plant assemblages. Indeed, grasses like Avenella flexuosa, which is dominant in the defoliated 
forests, are more palatable as compared to allelopathic species like Empetrum nigrum33,52. Photosynthetic protists 
diversity and relative abundance also increased in defoliated sites which are more open, hence allowing more 
light to reach the soil (Fig. 1).

Among the decomposers, defoliation led to an increase in the diversity of heterotrophic bacteria, protists, 
saprotroph-plant pathogen fungi and wood saprotroph fungi. Similarly, the relative abundance of protists, sapro-
troph-plant pathogen fungi and enchytraeids increased. Differences in plant litter chemistry between undamaged 
and defoliated forests (Supplementary Fig. 2) might drive the communities of decomposers53 and could explain 
these changes. For instance, the litter produced by Empetrum nigrum, which dominates undamaged forests, 
releases of phenolic compounds52 that can strongly reduce plant species diversity40,41. Such detrimental effects 
might also hold true for the diversity and abundance of most decomposers. Soils from defoliated forests had 
lower C/N ratios, suggesting that defoliation promote more labile, easily decomposable organic matter inputs 
(Supplementary Fig. 3) but more precise soil nutrient measurements would be needed to confirm this.

Figure 1.   Sampling design in undamaged and defoliated forests. Map of the study location in the Northeastern 
Norway (a), in the Varanger region (b). Red areas (b) represent birch forest that experienced severe defoliation 
during the most recent moth outbreak. Yellow stars indicate the stations that were sampled in this study, at each 
extreme of two pre-established transects (black dots) going from highly defoliated forests stands to undamaged 
stands. Soil sampling was conducted in each station along an L-shaped transect (c). Photos illustrate the stations 
from undamaged (d) and defoliated (e) forests. Red flags in the photos indicate the sampling points represented 
in (c). Undamaged forests were characterized by living birch trees (Betula pubescens) and a shaded understory 
dominated by ericaceous shrubs (e.g. Empetrum nigrum). Defoliated forests were characterized by dead birch 
trees, patches of remaining ericaceous shrubs and a soil covered by light-tolerant grass and herbs including the 
dominant Avenella flexuosa. Photo credits: Heidy Schimann. Map (a) was created using ArcGIS® software 10.4.1 
by Esri (www.​esri.​com). Map (b) was modified from38 (https://​doi.​org/​10.​1371/​journ​al.​pone.​00996​24.​g001).

http://www.esri.com
https://doi.org/10.1371/journal.pone.0099624.g001
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Contrary to our expectation, the magnitude of the effect of defoliation did not decrease further up the food 
web (Fig. 3a,b), but was instead equally important at all trophic levels. This result did not depend on the number 
of sequences obtained for each group (Fig. 3c). This rejects the hypothesis of a mitigation of the effects of the 
disturbance when moving up to higher trophic levels in the soil food web (H2). For example, the indirect effect 
of defoliation on the diversity of copiotrophic bacteria was as strong as the effect on their protist predators, and 
as strong as the effect on nematodes feeding on protists. In addition, the effect of defoliation on animal para-
sites, which are at the top of the soil food web, was similar to the effect on mycorrhizal fungi. Our findings are 
consistent with other studies pointing out that species-poor ecosystems, like subarctic birch forests, could be 
more prone to the propagation of bottom-up disturbances along food webs54. Furthermore, while some groups 
were affected by defoliation, other groups within the same trophic class were not (e.g. herbivore mite vs. plant 
pathogens protists, or ectomycorrhizal vs. ericoid mycorrhizal fungi). Other studies have highlighted the chal-
lenge of predicting the effect of an environmental stressor on overall biodiversity due to the variety of responses 
that organisms can have, associated with attributes such as dispersal abilities or resistance structures (e.g. cysts 
in protists)55,56. This is particularly important in soil food webs consisting of organisms with large differences in 
body size, life-span and life history strategies, and therefore in their response time to disturbance, which can vary 
from seconds to decades7,48,56. This complexity hampers our ability to detect consistent patterns when studying 
soil food webs at fixed sampling times.

We then examined how changes in trophic groups relative abundances influenced the network structure of 
local soil food webs, using network diversity indices31. Following H3, moth defoliation significantly altered the 
whole soil food web structure in terms of node and link abundances, both for the trophic class and group resolu-
tions (Supplementary Fig. 4). An increase in local diversity (α-diversity) of trophic groups and links in defoliated 
forests partially explained the changes in food web structure (Fig. 4). When zooming out to trophic classes, 
differences in the α-diversity of soil food webs were less obvious but food webs were nevertheless slightly more 
diverse for defoliated forests (Supplementary Fig. 5). This reflects that within a trophic class, trophic groups can 

Figure 2.   Methodology used to build the metaweb from soil eDNA. First, eDNA was extracted and processed 
from the 86 soil samples to obtain a list of taxa for the study area. Second, using an extensive collection of 
trophic knowledge from databases, literature and experts, taxa were assigned to broad trophic classes and then 
to finer trophic groups, which separate distant phylogenetic groups or groups that differ in their resources 
acquisition strategy. Main trophic links were collected from literature and current knowledge to build the 
metaweb at two levels of resolution (a,b). The colours correspond to the trophic classes (a) that are refined and 
split in the highly resolved metaweb (b).
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have opposite responses (Fig. 3) that are averaged out when only considering trophic class, and highlights the 
importance of using a finer trophic resolution than what is often used in the literature to understand the vari-
ability of cascading effects in the different components of the soil food web. On average, we observed a decrease 
in the proportion of most classes of primary consumers (i.e. plant mycorrhiza, herbivores/plant pathogens, 
decomposers) within the soil food webs in defoliated forests, and an increase in the proportion of higher trophic 
level classes (i.e. bacterivores, omnivores, predators), which were rare in the undamaged forests (Fig. 5). These 
changes in relative abundance proportions within the soil food web are not to be confounded with the individual 
changes in the relative abundances of the trophic groups (Fig. 3b). For instance, a decrease in the proportion 
of some classes might be related to weaker increase in average of the relative abundance of the groups within 
the class from undamaged to defoliated forests, compared to a stronger average increase for classes in higher 
trophic levels.

The observed shifts in the structure of soil food webs could translate into impacts on multiple ecosystem 
functions, including carbon and nutrient fluxes, and plant productivity21,22. Recent studies have observed a 
slowdown in soil C and N cycles following severe outbreaks in these forests and have related this result to the 
decrease in the below-ground C-allocation to the rhizosphere and the decrease of ectomycorrhizal fungi37,51. 
An interesting avenue would be to relate how other components of the food web diversity (e.g. decomposer 
channel) contribute to the C:N stoichiometry to derive predictions on the long-term effects of these important 
disturbances on biogeochemical cycles.

The spatial extent of the study was limited to two landscape areas of ca 20 km extent, and we acknowledge 
that further monitoring would be required to assess the full extent of soil food webs responses to moth outbreaks 
in subarctic birch forests. Previous studies have found that the effect of moth outbreaks on biological commu-
nities can vary depending on local productivity and climatic conditions (as represented by the two areas Tana 
and Kirkenes)33,34,42. We found, however, a consistent response for most soil organisms across the two areas that 
translated into significant local changes in the whole soil food web diversity and composition. The consistency 
and strength of the effects of defoliation on the different facets of local soil food webs point to general conclu-
sions on the bottom-up cascading effects of moth outbreaks on soil communities in these subarctic birch forests, 
despite the heterogeneity in environmental condition of the studied system.

Figure 3.   Effect of defoliation on diversity and relative abundance of trophic groups. Effect size of defoliation 
on MOTU diversity (a) and relative abundance of reads (b) for each trophic group with 90% credible intervals. 
The barplot (c) shows the total number of reads (logarithmic scale) of each trophic group in the overall dataset. 
A multilevel linear model was fitted individually for each trophic group with a dummy variable for defoliation as 
predictor and a random factor accounting for the nested sampling design. MOTU diversity was standardized by 
the maximum value observed within each trophic group to obtain comparable effect sizes between groups. The 
colours correspond to the trophic class definitions (see Fig. 2).
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Conclusion
The multitrophic approach used in this study, which combines an exhaustive diversity sampling (here eDNA 
data) with current trophic knowledge, an extended soil food web approach and ecological network theory, 
allows understanding the cascading effects of disturbances on soil biodiversity. We demonstrated that recent 
moth outbreaks in birch forests of Northern Fennoscandia caused major local shifts in the diversity and rela-
tive abundance of most trophic groups, ultimately changing the structure of the soil food web. We found more 
diverse soil food webs in defoliated forests compared to undamaged forests, accompanied by an increase in the 
proportion of groups in higher trophic levels.

We emphasize the need to consider different levels of resolution to ensure the robustness of conclusions and 
improve our understanding of how soil diversity responds to disturbances. Highly resolved food webs allow to 
map the cascading effects by revealing the variability of organisms’ responses. In contrast, low resolution food 
webs provide a general picture on how these changes affect the food web structure. Our study opens new pros-
pects in understanding the response of complex and diverse food webs to disturbance.

Material and methods
Sampling.  The study took place in the Varanger region at approximately 70° N, 29° E, Northeastern Nor-
way. This region is located in the transition between subarctic deciduous forests and the arctic tundra. Periodic 
outbreaks of the autumn moth (Epirrita autumnata) and more recently the winter moth (Operophtera brumata) 
have occurred in the region with a 9–10-years frequency approximately. Recently, the consecutive episodes by 
the two species caused a severe mortality of birch trees35. Sampling was replicated in two areas located approxi-
mately 70 km apart, both at the border of the outbreak range, but with slight differences in the defoliation year: 
Tana (70°03′ N, 27°45′ E.), defoliated during 2006–2007, and Kirkenes (69°46′ N, 29°20′ E) defoliated during 
2007–2009. Differences in the forest characteristics between these two areas allow to control for the influence 
of the initial forest characteristic on the effect of defoliation, that has been proved to be non-negligible in past 
studies34,38,42. In each area, stations along a linear transect were previously established from highly impacted 
forest stands to undamaged stands38,42. In order to maximise the differences between defoliated and undamaged 
forests we selected the two stations at one extreme of the transect corresponding to defoliated forest, i.e. almost 
all tree stems dead or heavily damaged, and the two stations at the other extreme of the transect corresponding 
to undamaged forest, i.e. all trees alive, based on the damage-scores measured in38,42 (Fig. 1). The two adjacent 

Figure 4.   Topology and α-diversity of local food webs in undamaged vs. defoliated forests. The values represent 
the α-diversity of the soil food webs for each area and category of defoliation at the trophic group resolution: 
A1(p) is the diversity in trophic group abundances (nodes) and A1(L) the diversity in trophic links abundances 
(edges) using Shannon diversity. Nodes of the local food webs corresponded to the local relative abundances 
of the groups varying from 0 (when the group was absent) to 1 (when the group was at its maximum observed 
abundance). Links were binary links (i.e. present or absent) assuming an interaction when the two groups 
concerned were present. For the visualization, four local soil food webs (with an average value of A1(p)) were 
selected to highlight the differences in diversity between undamaged and defoliated forests of each area. The 
colours correspond to the trophic classes and the nodes are distributed vertically based on their trophic level 
from the bottom (basal levels) to the top (higher levels).
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stations, separated from at least 2 km within defoliated or undamaged forests, were considered as local replicates 
and were surrounded by a large area of forest in their same condition, i.e. defoliated or undamaged. Defoliated 
and undamaged stations within an area were ca. 20 km apart. In July 2017, we sampled in each station 15 soil 
cores along an L-shaped transect with 10 m distances between neighbouring cores, corresponding to the bio-
logical replicates at the plot scale and aiming to account for microhabitat heterogeneity. This sampling design 
allowed to account for the local heterogeneity at different spatial scales (from meters to kilometres) and it was a 
good compromise for covering sufficiently local diversity across groups of varying spatial distributions57, while 
already minimizing spatial autocorrelation as it has been shown for earthworms and bacteria (> 5 m between soil 
samples58,59). Soil corers were cleaned and flame sterilized between each sample collection. Extracellular DNA 
was then extracted from 15 g as described in60,61. Botanical surveys were conducted and consisted of annotating 
the species present in the vicinity (1 m2) of each soil core.

Laboratory analyses.  DNA extractions were conducted at the field on a mobile field unit. PCR, sequenc-
ing and soil physico-chemical analyses were performed at the Laboratoire d’Écologie Alpine (LECA) in Gre-
noble, France. Physicochemical soil properties were quantified from soil cores, including soil organic matter 
content (%), pH, soil moisture and C (%), N (%) and P content.

DNA extraction, PCR and sequencing negative controls were included in the experiment and used to iden-
tify potential contaminants and to control for false positives caused by tag‐switching events. In order to set 
extracellular DNA (eDNA) free from clay and silica particles, each sample was rotatively shaken for 15 min in 
a 15 ml saturated phosphate buffer solution (Na2HPO4; 0.12 M; pH ≈ 8). Two ml of sediment/buffer mixture 
were then sampled and centrifuged for 10 min at 10,000 g. A 400 µl aliquot of supernatant was recovered and 
used as starting material for eDNA extraction using NucleoSpin® Soil extraction kit (Macherey–Nagel GmbH, 
Düren, Germany), following manufacturer’s instructions except skipping the lysis cell step60. After elution, DNA 
extracts were diluted 10 times before being used as template for amplification. Eight negative extraction controls 
were also performed.

DNA amplification and sequencing.  To assign the sequence reads to their relevant samples after high-
throughput sequencing, we added unique eight base-long tags (with at least five differences between each other) 
to the 5’ end of each primer (modified from62,63). DNA amplifications were carried out in a final volume of 20 μl 
containing 2 μl of DNA sample, 10 μl of AmpliTaq Gold 360 Master Mix 2X (Applied Biosystems™, Foster City, 
CA, USA), 2 μl of primers mix at initial concentration of 5 μM of each primer and 0.16 μl of Bovine Serum 
Albumin. A total of 10 PCR negative and six positive PCR controls were included. Each sample (including all 
controls) was amplified in quadruplicate. Eukaryotes, Fungi and Protists were targeted using the respective DNA 
markers: Euka02 (18S rRNA gene), Fung02 (ITS1) and Bact01 (16S rRNA gene) described in20. PCR thermo-

Figure 5.   Structural differences among the local soil food webs from undamaged to defoliated forests at the 
trophic class resolution. Orange colour represents an increase, and purple colour a decrease in the relative 
abundance proportion within the local food webs of trophic classes (nodes) and link probability between classes 
(edges) from undamaged to defoliated forest. Relative abundance proportion corresponds to the sum of the 
relative abundances of the trophic groups inside the trophic class normalized within the local food web to sum 
one. Link probability corresponds to the probability of interaction between two classes given the links between 
their respective trophic groups and the relative abundances of these groups. The widths of the edges are scaled 
by the square root of the changes in link probability. Size of the nodes are proportional to the value of change 
in relative abundances proportion within the soil food web, indicated with numbers. Nodes are distributed 
vertically based on their trophic level from the bottom (basal levels) to the top (higher levels).
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cycling conditions were as follow: after an initial step of 10 min at 95 °C, the mixtures underwent 45 cycles of 
30 s at 95 °C, 30 s at 57–55–45 °C (Bact01, Fung02, Euka02, respectively) and 60 s at 72 °C, followed by a final 
elongation at 72 °C for 7 min. The amplification success was checked using capillary electrophoresis (QIAxcel 
System; Qiagen). PCR products were mixed in an equi-volume way (15 µl each) and 8 aliquots of 100 µl of the 
resulting mix were then purified using MinElute Purification kit (Qiagen GmbH, Hilden, Germany). Purified 
products were then pooled together before sequencing. This later was performed by pair-end sequencing on 
Illumina HiSeq 2000 platform (2*125 for Euka02, and 2*250 for both Bact01 and Fung02) at Fasteris, Geneva, 
Switzerland.

Bioinformatics.  Sequences from the three libraries were pre-processed using the OBITools software64. 
Forward and reverse paired-end reads were assembled based on their overlapping 3’-end sequences, demul-
tiplexed and dereplicated. We then removed sequences with low paired‐end alignment scores, singletons, 
short sequences and sequences containing ambiguous bases, as well as PCR errors using the obiclean com-
mand. Molecular Operational Taxonomic Units were built by clustering sequences at 97% of similarity using 
SUMACLUST65. Taxonomic annotations were performed with the SILVAngs pipeline (Quast et al. 2013), using 
the SILVA version 132 for Bact02 and Euka01. For Fung02 and Euka01 (only metazoa), we used the ecotag com-
mand from the OBITools, and the EMBL database version 136. Taxonomic annotations with > 75% identities 
were retained. Cross-sample contaminations and reagent contaminants were removed on the basis of negative 
and empty controls, and dysfunctional PCRs were detected and removed following the procedures described 
in66 with the metabaR R package67,68. For each marker, non-targeted taxa were eliminated. For Euka01 marker, 
we also excluded MOTUs identified as fungi, plants, and non-soil animals. After curation, PCR replicates were 
pooled together into samples. Only remaining common samples between the three MOTU tables were retained 
(n = 86). Number of reads, MOTUs, PCR replicates and samples before and after the curation process are avail-
able in Supplementary Table 2.

Soil food webs.  Using current knowledge on soil organisms, we classified the MOTUs, based on their taxo-
nomic annotations, into 9 broad trophic classes, using a classic soil food web backbone (e.g.22,27). These trophic 
classes included primary consumers, decomposers, phytophagous or plant parasites, mycorrhizal fungi, bac-
terivores, fungivores, omnivores, predators and animal parasites (Fig.  2a). Next, we defined 37 finer trophic 
groups by separating phylogenetic distant groups that could have a different set of prey/predators (e.g., bacteri-
vore mites and bacterivore nematodes) or groups differing in their resources acquisition strategy (e.g. different 
types of mycorrhiza and saprotrophs). The definition on the trophic groups was made in accordance with the 
information available and the taxonomic resolution of the marker (Fig. 2b, Supplementary Fig. 1, Supplemen-
tary Table 1). For example, we kept collembola as a unique trophic group because the marker Euka02 was not 
resolutive enough to assign the MOTUs of this group to the family level, which was needed to a finer trophic 
classification. We kept both levels of resolution for the analyses, i.e., trophic class and trophic group. The data-
bases used for the taxonomic assignment were FUNGuild69 for fungi, FAPROTAX70 for bacteria, NEMAguild69 
and Nemaplex (http://​nemap​lex.​ucdav​is.​edu/) for nematodes, and the main references used included71 for pro-
tists (and72 for cercozoa), and73 for heterotrophic bacteria (i.e. copiotrophic and oligotrophic classification). The 
main taxonomic clades composing the trophic classes and groups are in Supplementary Table 3. Specific criteria 
used to define the trophic classes and groups for each kingdom are in Supplementary Table 4. A table for each 
kingdom including the list of taxa, the trophic groups assignment, the taxonomic level of assignment and the 
references or databases used is available on Supplementary files.

The MOTU diversity of each trophic group was estimated per sample using the Shannon diversity (i.e. the 
exponential of the Shannon entropy) since this is a relevant measure for eDNA data74. In eDNA metabarcod-
ing studies, changes in the abundance/biomass of an individual taxon may be inferred, in some extents, from 
changes in their relative abundances across samples, although this correspondence can be noised by different 
biological or technical factors (reviewed in20). However, some taxon can exhibit higher gene copies than others, 
making these changes in relative abundance more difficult to compare across groups contrary to other abundance 
standardized measures such as biomass. Relative abundances were thus estimated using a double-transformation. 
First, the total read counts of each trophic group were converted to proportions within a sample, and second, the 
resulting proportions were standardized by the largest observed proportion across all samples for each trophic 
group. Relative abundance of each group varied from 0 (absent) to 1 (largest observed diversity/proportion), 
allowing to obtain comparable measures across groups. Relative abundances of trophic classes were calculated 
by summing the relative abundances of the trophic group included in the trophic class31.

The metaweb, which contains the potential trophic interactions of the soil food webs of the system under 
study, was built for trophic classes and trophic groups45. Trophic links between trophic groups and trophic classes 
were added based on the main feeding preferences. Some constraints were added when assigning the trophic 
links between trophic groups based on (1) the organisms size, i.e. predators fed only on smaller preys, with some 
exceptions like animal parasites and omnivore nematodes that can eat larger preys, and macroorganisms did 
not interact with microorganisms, (2) habitat differentiation, i.e. strict plant endoparasites (i.e. protists) were 
not considered as prey of other free living predators, and (3) feeding preferences, e.g. fungivores fed only on 
saprotrophic fungi and Ectomycorrhizal, which are preferred to arbuscular mycorrhizal fungi75. The complete 
metaweb of trophic groups can be found in Supplementary Fig. 1 and the adjacency matrix is available in Sup-
plementary files. Resource nodes were added to the food web representations with a structural purpose and cor-
responded to the main resources of the soil food web, i.e., sunlight, organic matter and plants, but were excluded 
from the diversity analyses, because the aim was to quantify the diversity of organisms within the soil food 
web. Differences in resources and plant composition between undamaged and defoliated forests were evaluated 
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aside with multivariate analyses (see below). The metaweb was then used to characterize the composition and 
structure of the local soil food webs based on the trophic classes or groups detected locally in each soil sample 
(n = 86), assuming that classes or groups present locally interact as in the metaweb. For the local soil food webs 
at the trophic group resolution, nodes corresponded to the local relative abundance of the groups and links 
were binary (i.e., present or absent) assuming an interaction when the two groups concerned were present. For 
the trophic class resolution, nodes corresponded to the sum of the relative abundances of the trophic groups 
inside the trophic class and the links were weighted by the probability of interaction between two classes given 
the links between their respective trophic groups and the relative abundances of these groups as a proxy for the 
probability of an encounter31.

Statistical analyses.  Differences in resources and plant composition between undamaged and defoliated 
forests were evaluated with multivariate analyses. A correspondence analysis was run to evaluate the differ-
ences in plant community composition. Plant communities from undamaged forests were mostly associated 
with ericaceous dwarf shrubs such as Empetrum nigrum and Vaccinium spp., but also of other shrubs and herbs 
in Kirkenes, e.g., Salix sp., Betula nana, Equisetum sp. (Supplementary Fig. 2). In defoliated forests plant com-
position was more variable among samples, including several species of grass and herbs, such as the dominant 
Avenella flexuosa. For the soil physico-chemical characteristics that we measured, the first two axes of a Principal 
Component Analysis explained 74.7% of the variance. The first axis was related to soil organic matter (SOM) 
and the second axis was related to the litter quality (measured with the C/N ratio) and inversely to soil acidity 
(i.e. pH) (Supplementary Fig. 3). Samples from defoliated forests were related to higher values of SOM, C, N, P 
and pH and lower C/N values.

To assess the effect of moth defoliation on MOTU diversity and the relative abundance of the trophic groups, 
a multilevel linear model was applied separately to each trophic group using the function ‘stan_lmer’ from the R 
package Rstanarm76 with the default priors. In each model, a fixed effect for defoliation was included as a dummy 
variable (0 corresponding to the undamaged forest and 1 to the defoliated forests). To account for the structure of 
the sampling design, i.e. soil cores clustered within stations and stations clustered within areas, we added a nested 
random term for stations within area to the intercept, where station was a factor with 8 levels and area a factor 
with 2 levels. Note that random factors allowed for borrowing information from each station and area, and that 
using a Bayesian approach led to non-zero estimates of area and station random effects, contrary to approaches 
using REML. Even if we suspected that the effect of defoliation could vary between the areas due to the contrast-
ing habitat characteristics of Kirkenes and Tana, preliminary analyses showed that the effect was similar for both 
areas (i.e. the coefficient of the interaction between area and defoliation was small and 95% CI widely overlapped 
with 0 for most groups). MOTU diversity was standardized by the largest diversity observed across samples for 
each trophic group, to obtain comparable effect sizes across groups. A Yeo-Johnson transformation was applied to 
the relative abundances to improve the distribution of the residuals. Each model was run with 4 parallel MCMC 
chains with 15,000 iterations each. Model convergence was assessed visually and by checking Rhat < 1.10 for all 
the parameters. The normality of residuals was evaluated visually by using quantile–quantile (Q–Q) plots, and 
residuals were plotted against fitted values to assess outliers or influential values.

To study changes in the structure of local food webs, we estimated network diversity indices using the R 
package econetwork31. It allows computing several diversity indices on groups and link abundances using a 
viewpoint parameter that control the importance given to low vs. high relative abundances. We used a measure 
of dissimilarity of node and link compositions at different resolutions (trophic group and trophic class) to ana-
lyse whether there was a change in the structure of local soil food webs due to defoliation. A mixed multivariate 
distance matrix regression was then run using the dissimilarity matrix as the response, including a dummy vari-
able for defoliation as a predictor and accounting for the nested sampling design as a random effect using the R 
package MDMR77. Local diversity (α-diversity) was estimated as the generalised mean of local diversity within 
each category of defoliation (i.e. defoliated forest and undamaged forest) within each area (Tana and Kirkenes). 
Both network local diversity and dissimilarity were computed using 1 as viewpoint parameter (eta in the pack-
age). Using this value of parameter, local diversity is the exponential of Shannon entropy. Figures 2, 3, 4, 5 were 
made using the R software (R 3.6.3)68.

Received: 10 February 2021; Accepted: 6 July 2021

References
	 1.	 Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985).
	 2.	 IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodi-

versity and Ecosystem Services (IPBES Secretariat, 2019).
	 3.	 Brun, P. et al. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob. Change Biol. 00, 

1–15 (2020).
	 4.	 Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate 

over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
	 5.	 Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U.S.A. 

110, 19456–19459 (2013).
	 6.	 Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change 

(Oxford University Press, 2010).
	 7.	 Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
	 8.	 Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to 

alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15054  | https://doi.org/10.1038/s41598-021-94227-z

www.nature.com/scientificreports/

	 9.	 Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests: Distur-
bance impacts on biodiversity and services. Biol. Rev. 91, 760–781 (2016).

	10.	 van der Putten, W. H. et al. Trophic interactions in a changing world. Basic Appl. Ecol. 5, 487–494 (2004).
	11.	 Lafferty, K. D. & Suchanek, T. H. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the 

American Naturalist. Am. Nat. 188, 365–378 (2016).
	12.	 Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 

553–556 (2010).
	13.	 Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 

1511–1519 (2017).
	14.	 Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).
	15.	 Mancinelli, G. & Mulder, C. Chapter three—detrital dynamics and cascading effects on supporting ecosystem services. In Advances 

in ecological research Vol. 53 (eds Woodward, G. & Bohan, D. A.) 97–160 (Academic Press, 2015).
	16.	 Mulder, C., Vonk, J. A., Hollander, H. A. D., Hendriks, A. J. & Breure, A. M. How allometric scaling relates to soil abiotics. Oikos 

120, 529–536 (2011).
	17.	 Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better 

understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009).
	18.	 de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 

269, 1257–1260 (1995).
	19.	 Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).
	20.	 Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University 

Press, 2018).
	21.	 Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. 

Trans. R. Soc. Lond. B Biol. Sci. 371, 20150268 (2016).
	22.	 Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 

186–197 (2018).
	23.	 Elton, C. S. Animal Ecology 1–256 (Macmillan Co., 1927). https://​doi.​org/​10.​5962/​bhl.​title.​7435.
	24.	 Bohan, D. A. et al. Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks. Trends 

Ecol. Evol. 32, 477–487 (2017).
	25.	 Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!. Genome 

59, 603–628 (2016).
	26.	 Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).
	27.	 Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 4, 

393–405 (2020).
	28.	 Martinez, N. D. Effects of resolution on food web structure. Oikos 66, 403 (1993).
	29.	 Thompson, R. M. et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).
	30.	 Kardol, P., Throop, H. L., Adkins, J. & de Graaff, M.-A. A hierarchical framework for studying the role of biodiversity in soil food 

web processes and ecosystem services. Soil Biol. Biochem. 102, 33–36 (2016).
	31.	 Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 

(2019).
	32.	 Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).
	33.	 Jepsen, J. U. et al. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16, 561–575 

(2013).
	34.	 Karlsen, S. R., Jepsen, J. U., Odland, A., Ims, R. A. & Elvebakk, A. Outbreaks by canopy-feeding geometrid moth cause state-

dependent shifts in understorey plant communities. Oecologia 173, 859–870 (2013).
	35.	 Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and 

Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).
	36.	 Vindstad, O. P. L., Jepsen, J. U., Ek, M., Pepi, A. & Ims, R. A. Can novel pest outbreaks drive ecosystem transitions in northern-

boreal birch forest?. J. Ecol. 107, 1141–1153 (2019).
	37.	 Sandén, H. et al. Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems 23, 151–163 (2019).
	38.	 Vindstad, O. P. L. et al. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid 

moth outbreaks in sub-arctic mountain birch forest. PLoS ONE 9, e99624 (2014).
	39.	 Nilsson, M.-C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal 

forest. Front. Ecol. Environ. 3, 421–428 (2005).
	40.	 Bråthen, K. A. & Ravolainen, V. T. Niche construction by growth forms is as strong a predictor of species diversity as environmental 

gradients. J. Ecol. 103, 701–713 (2015).
	41.	 Bråthen, K. A., Gonzalez, V. T. & Yoccoz, N. G. Gatekeepers to the effects of climate warming? Niche construction restricts plant 

community changes along a temperature gradient. Perspect. Plant Ecol. Evol. Syst. 30, 71–81 (2018).
	42.	 Vindstad, O. P. L., Jepsen, J. U. & Ims, R. A. Resistance of a sub-arctic bird community to severe forest damage caused by geometrid 

moth outbreaks. Eur. J. For. Res. 134, 725–736 (2015).
	43.	 Parker, T. C. et al. Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community 

change after a defoliation event. Ecosystems 20, 316–330 (2017).
	44.	 Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol. 69, 

788–797 (2015).
	45.	 Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, 

M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).
	46.	 Rodriguez-Ramos, J. C. et al. Changes in soil fungal community composition depend on functional group and forest disturbance 

type. New Phytol. 00, 1–13 (2020).
	47.	 Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).
	48.	 Bardgett, R. D., Yeates, G. W. & Anderson, J. M. Patterns and determinants of soil biological diversity. In Biological Diversity and 

Function in Soils (eds Hopkins, D. et al.) 100–118 (Cambridge University Press, 2005).
	49.	 Worm, B. & Duffy, J. E. Biodiversity, productivity and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).
	50.	 Ponsard, S., Arditi, R. & Jost, C. Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. 

Oikos 89, 524–540 (2000).
	51.	 Kristensen, J. Å., Rousk, J. & Metcalfe, D. B. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: 

A meta-analysis. J. Ecol. 108, 917–930 (2020).
	52.	 González, V. T. et al. Batatasin-III and the allelopathic capacity of Empetrum nigrum. Nord. J. Bot. 33, 225–231 (2015).
	53.	 Veen, G. F. et al. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 7, 168 (2019).
	54.	 Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propaga-

tion in real food webs. Sci. Rep. 9, 19331 (2019).
	55.	 Antiqueira, P. A. P., Petchey, O. L., dos Santos, V. P., de Oliveira, V. M. & Romero, G. Q. Environmental change and predator diversity 

drive alpha and beta diversity in freshwater macro and microorganisms. Glob. Change Biol. 24, 3715–3728 (2018).

https://doi.org/10.5962/bhl.title.7435


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15054  | https://doi.org/10.1038/s41598-021-94227-z

www.nature.com/scientificreports/

	56.	 Hedlund, K. et al. Trophic interactions in changing landscapes: Responses of soil food webs. Basic Appl. Ecol. 5, 495–503 (2004).
	57.	 Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183 (2002).
	58.	 O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).
	59.	 Jiménez, J. J., Decaëns, T., Lavelle, P. & Rossi, J.-P. Dissecting the multi-scale spatial relationship of earthworm assemblages with 

soil environmental variability. BMC Ecol. 14, 26 (2014).
	60.	 Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcod-

ing studies. Mol. Ecol. 21, 1816–1820 (2012).
	61.	 Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. 

Soil Biol. Biochem. 96, 16–19 (2016).
	62.	 Binladen, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products 

by 454 parallel sequencing. PLoS ONE 2, e197 (2007).
	63.	 Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. 

Mol. Ecol. Resour. 9, 51–60 (2009).
	64.	 Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
	65.	 Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. 

in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).
	66.	 Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 

1857–1862 (2019).
	67.	 Zinger, L. et al. metabaR : an R package for the evaluation and improvement of DNA metabarcoding data quality. https://​doi.​org/​

10.​1101/​2020.​08.​28.​271817 (2020).
	68.	 R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
	69.	 Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 

20, 241–248 (2016).
	70.	 Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 

(2016).
	71.	 Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).
	72.	 Fiore-Donno, A. M. et al. Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in 

a temperate grassland. Front. Microbiol. 10, 1332 (2019).
	73.	 Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. 

Ecol. 93, 6 (2017).
	74.	 Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclu-

sions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).
	75.	 Antunes, P. M. & Koyama, A. Chapter 9 - Mycorrhizas as Nutrient and Energy Pumps of Soil Food Webs: Multitrophic Interactions 

and Feedbacks. in Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage (eds. Johnson, N. C., Gehring, C. & Jansa, 
J.) 149–173 (Elsevier, 2017).

	76.	 Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (R package version 2.21.1, 
2020).

	77.	 McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and 
the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077 (2017).

Acknowledgements
This research was funded by the French Agence Nationale de la Recherche (ANR) through the GlobNet (ANR-
16-CE02-0009) and EcoNet (ANR-18-CE02-0010) projects. We thank Clement Lionnet and Nicolas Leguillarme 
for support with the development of bioinformatic pipelines, Cindy Arnoldi for the soil physicochemical analyses 
and Julien Renaud for providing the map in Fig.1b. Jane Jepsen et Ole Petter Vindstad contributed to the study 
design and information about the defoliation and ecosystem changes.

Author contributions
W.T. and N.G.Y. conceptualize the overall idea, and together with I.C.S. and T.M. conceived the research aims 
and analyses. L.Z., H.S., L.G. and N.G.Y. conducted the field sampling and L.G. ran the laboratory procedures. 
I.C.S., L.Z., H.S., M.H. and S.S.M. conducted the trophic data collection. I.C.S. conducted the bioinformatics 
and statistical analyses and led the writing with significant contributions from all co‐authors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​94227-z.

Correspondence and requests for materials should be addressed to I.C.-S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1101/2020.08.28.271817
https://doi.org/10.1101/2020.08.28.271817
https://doi.org/10.1038/s41598-021-94227-z
https://doi.org/10.1038/s41598-021-94227-z
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15054  | https://doi.org/10.1038/s41598-021-94227-z

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/


 

 121 

GENERAL DISCUSSION 

One of the greatest challenges in ecology is to integrate the enormous diversity of living 

organisms that inhabit the planet into the existing ecological theories. Only with this integration 

we can gain a more general understanding of the factors that shape and structure ecological 

communities. This is necessary if we are to make accurate predictions about the effects of global 

changes and adapt our conservation strategies to address the current biodiversity crisis. 

However, due to its inherent complexity, a large part of the biodiversity that is contained in 

soils has been overlooked in macroecological studies. Nowadays, with the development of new 

technologies such as eDNA metabarcoding and the accumulation of knowledge on the functions 

and interactions of soil organisms from decades of research, it is possible to study diversity 

patterns of soil organisms across large scales and/or across a variety of taxa distributed across 

the multiple trophic levels characterizing terrestrial ecosystems. 

This PhD thesis aimed at improving our understanding of how soil biodiversity responds to 

environmental changes through the use of eDNA metabarcoding. The objective was carried out 

(1) by critically assessing the methodology necessary to obtain reliable results knowing the 

biases of the eDNA metabarcoding approach, and by developing an integrative approach to 

simplify the complexity of all soil organisms and include their trophic or functional linkages; 

(2) by carrying out ecological research to answer topical questions and test ecological 

hypotheses originally developed on aboveground taxa. In the following discussion, I summarize 

the contributions of this PhD to our state of knowledge on soil biodiversity in two sections: a 

first one discussing the methodological contributions for the study of soil biodiversity, and a 

second one suggesting how these results can be incorporated into the current knowledge on soil 

ecology.  

 

1. Methodological contributions of my thesis. 

When I started this PhD, I realized how much confusion there could be on the conception of 

the bioinformatic pipeline to deal with the biases associated with the eDNA metabarcoding, 

especially for ecologists like me to whom this method was primarily a tool and not a research 

field in itself. Despite the enormous amount of literature available on the subject, there was still 

no clear guideline on which curation steps should be included in the pipeline and how these 

choices could influence the results of common ecological analyses used in macroecology or 

community ecology. In response to this issue, I conducted the research developed in Chapter 1 

in collaboration with colleagues with specific expertise on laboratory and/or bioinformatic work 
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to treat eDNA data (Calderón‐Sanou et al. 2020). The idea was to provide a concise roadmap 

for ecologists interested in studying biodiversity patterns using eDNA metabarcoding. At the 

end of my PhD, I believe that this research was a substantial contribution to the target audience, 

based on the high citing rate the paper received (51 citations in April 2022 in Google Scholar). 

The main conclusion of this study was that reliable and robust ecological results can be obtained 

when using both a stringent bioinformatic pipeline (described in Chapter 1) and the use of 

diversity measures that allow to weight the importance given to rare sequences (Fig. 5 in chapter 

1) (Hill numbers, Hill 1973). Specifically, we found that Shannon diversity gave robust results 

to the bioinformatic pipeline and led to similar results than conventional sampling methods (but 

we only tested this for plants). Recent studies also advocate the use of Hill numbers in eDNA 

metabarcoding studies. For example, Mächler and colleagues (2021) conducted a similar study 

on freshwater ecosystems and also concluded that the combined use of a stringent treatment 

and Hill numbers with q=1 or q=2, i.e., Shannon and Simpson diversity, lead to more robust 

results and recommended its use to increase comparability across studies using eDNA data. 

Alberdi and Gilbert (2019) also proposed a detailed guideline for the use of Hill numbers in 

different types of studies using DNA sequencing-based techniques to estimate diversity. The 

methods to account for eDNA metabarcoding biases are constantly being improved, and the 

efficiency and utility of eDNA metabarcoding to monitor biodiversity are increasingly 

recognized (Coissac et al. 2012; Deiner et al. 2017; Ruppert et al. 2019). While MOTUs 

diversity estimated from eDNA cannot be expected to give exactly the same results as species 

diversity estimated from morphological assessments, our results suggest that similar trends can 

be found if data are cleaned with care and adequate diversity metrics are used. Yet, richness 

estimates can be very sensitive to the curation strategy and give high estimates relative to 

conventional methods, thus we recommended the use of additional controls and analysis to 

ensure the reliability of this metric. The effort from both conventional soil diversity monitoring 

and eDNA metabarcoding should be unified to improve our knowledge of soil biodiversity 

patterns and their drivers (Orgiazzi et al. 2015; Bastida et al. 2020; Phillips et al. 2020).  

 

Another methodological contribution of this thesis was the framework used for the construction 

of soil food webs from eDNA data. Most studies analyzing large-scale biodiversity patterns 

with eDNA focus on overall biodiversity of taxa including broad taxonomic groups (e.g., Wu 

et al. 2011; Drummond et al. 2015; George et al. 2019) or on functional groups within a single 

taxon (e.g., Tedersoo et al. 2014; van den Hoogen et al. 2019). Here, we proposed to analyze 

eDNA data by grouping all soil taxa through their ecological similarity and by structuring these 
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groups based on their feeding relations in food webs. Heuristic food webs allow for an 

integrative and ecological representation of soil multi-trophic assemblages in terrestrial 

ecosystems (Thompson et al. 2012), but their use has been limited by the difficult task of 

sampling entire multi-trophic communities and collecting trophic and/or functional information 

on their components. This is true for aboveground organisms (but see Maiorano et al. 2020) as 

well but even more for belowground organisms, of which most are cryptic and difficult to 

observe. Heuristic food web construction from DNA-based data has already been implemented 

by Compson and colleagues (2018), who combined DNA metabarcoding data with a text 

mining routine to extract trait information from the literature to construct food webs of 

freshwater benthic macroinvertebrates in conjunction with a river system. To my knowledge, 

this DNA-based approach has not yet been applied to soil communities, with the exception of 

the papers from this thesis and Bloor and colleagues. (2021), who used a similar approach that 

the one I used, but classified the MOTUs into a large number of trophic groups with links and 

then used a stochastic block model to simplify the food web. In the heuristic food webs of 

Compson and colleagues (2018), nodes were represented by genera and only included 

macroinvertebrates. In the case of soil food webs, if we want to integrate very distant 

phylogenetic groups (e.g. bacteria and eukaryotes, unicellular and multicellular organisms), 

trophic groups might be a better option to avoid extremely complex food webs and redundancy 

in interactions (Scheu 2002; Potapov 2022). Furthermore, since the trophic information 

available for some groups is at a lower taxonomic resolution (e.g., bacterivores), the use of fine 

taxa as nodes would lead to repeated information (or trophic redundancy) that could bias the 

results. Recently, Blackman and colleagues (2022) also implemented heuristic food web 

construction from eDNA data by assigning MOTUs to trophic groups based on the literature, 

and applied it to study changes in the food web structure of freshwater communities across 

temporal and spatial gradients. 

The methodology used in this thesis allowed the construction of a metaweb for the different 

study systems and at different resolutions. The use of different resolutions allowed us to assess 

the compositional and structural spatial variation of soil food webs while accounting for 

potential trophic redundancy. In Chapter 4, an interesting finding was that the coarser resolution 

of the metaweb constituted a common skeleton for soil trophic networks, although there were 

small variations in group abundance and interactions between different local communities. In 

contrast, trophic networks at the finest resolution showed strong variability across different 

local communities. This variability reflects that from one locality to another entire fine groups 

can be reduced drastically or ‘go extinct’, which means that there is no replacement of taxa. 
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However, at the coarser resolution, we observe that trophic redundancy across groups makes 

that at least one group per trophic class is present, buffering the variability and potentially the 

effects of this variability on the functioning of the soil food web.  

 

 

2. Discussion on the contribution of this thesis to the general knowledge of soil 

biodiversity patterns 

In addition to providing a conceptual and comprehensive framework for studying soil multi-

trophic communities, this thesis applied this framework to answer specific ecological questions: 

1) do the ecological hypotheses on drivers of biodiversity gradients largely tested on 

aboveground macro-organisms hold for soil organisms? (Chapter 3) 2) at which extent the 

structure of soil food webs varies along environmental gradients? (Chapter 4) 3) Do the effects 

of moth outbreaks cascade into the soil food web? (Chapter 5). In this section I discuss how the 

results addressing these questions can be integrated to our general knowledge on soil 

biodiversity patterns, while highlighting specific limitations and future perspectives. 

 

The results of this thesis support the general knowledge stating that local diversity is driven by 

energy input (Evans et al. 2005) and stress, i.e., resource availability and environmental 

harshness (Grime 1973; Huston 1979; Decaëns 2010). I found that energy, in particular the 

organic matter content of soils and plant biomass, and environmental harshness explained to a 

large extent the spatial structuring of the diversity of soil trophic groups, at both local and 

regional scales. The effect of energy and environmental harshness was explicitly tested in 

chapter 3, where we found a strong effect of NDVI, soil organic matter and pH on most soil 

trophic groups diversity. Moreover, in Chapter 5, we showed that an increase in the productivity 

of the system through plant composition turnover and nutrient enrichment following moth 

outbreaks lead to an increase in the diversity of soil organisms across the whole food web. 

Ongoing global changes can be responsible for changes in soil resources availability and the 

abiotic soil environment, and the fundamental question how these changes would cascade 

across trophic levels in both the belowground and aboveground compartments remains 

(Bardgett & van der Putten 2014; Thakur 2020). The results of this thesis suggest that changes 

in basal resources might influence the diversity not only of basal groups, but also of higher 

trophic levels, with similar strength (Fig. 3 in chapter 3, Fig. 3 in chapter 5), although a more 

mechanistic understanding is needed to provide precise predictions (Barbier & Loreau 2019). 

Moreover, we found that not only taxon diversity but the whole structure of the food web was 
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influenced by environmental change (Fig. 1 in chapter 4, Fig. 5 in chapter 5). This could 

translate into changes in the ecosystem functions and/or the stability of the soil communities 

that are needed to be further explored (Thompson et al. 2012; Eisenhauer et al. 2019; Zhao et 

al. 2019).  

 

While our results suggest that soil biodiversity follows general ecological rules, the specific 

environmental drivers of soil biodiversity were not necessarily the same as those of 

aboveground macro-organisms, and were variable among soil trophic groups. In general, 

climatic variables, which are the main drivers used to explain spatial variation in aboveground 

diversity (Currie et al. 2004; Clarke & Gaston 2006; Braga et al. 2019), were less important in 

soil, at least their direct effect, which supports previous studies on soil diversity (Ramirez et al. 

2014; Karimi et al. 2018; Caruso et al. 2019). Instead, plant community characteristics such as 

biomass, composition, diversity and soil properties such as pH, organic matter and C/N ratio 

were better predictors of soil diversity change. As expected, responses to environmental factors 

varied between soil trophic groups (Fig. 2,3 in chapter 3, Fig. 3 in chapter 5), and this was 

mainly related to differences in resource requirements of soil biota, e.g., plant-based versus 

detritus-based resources, or to different sensitivity to the abiotic environment, e.g., pH had a 

strong influence on organisms inhabiting water films. Changes in plant communities and soil 

properties not only led to changes in the diversity of soil organisms within trophic levels, but 

also in the structure of the soil food web. The relative importance of environmental factors 

influencing the local diversity of the soil food web (alpha diversity) was different from that 

influencing soil food web turnover (beta diversity). Interestingly, pH was an important factor 

limiting food web diversity, in terms of trophic groups and trophic interactions (side analysis 

in chapter 4), which is expected to be more limited by energy constraints or resource availability 

(Baiser et al. 2019). In contrast, plant communities and soil C/N ratio explained soil food webs 

turnover (Fig. 3 in chapter 4). Further analyses are needed to better understand these variations 

in structure and composition in terms of the group and interaction identity responsible for food 

web turnover across these environmental gradients. It is also important to recognize that all the 

biotic and abiotic factors considered interact and influence each other in complex ways. For 

example, the spatial variability of NDVI, one of the main predictors of soil biodiversity 

according to the results of this thesis, is influenced by climatic variables related to water 

availability and temperature (Choler 2015), so the indirect role of climate on soil biodiversity 

cannot be neglected (Bardgett & van der Putten 2014; Martinez‐Almoyna et al. 2019). 

Similarly, pH is a complex variable that depends on several factors, such as the type of soil 
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bedrock and the composition of the plant community (Roy et al. 2013). In this thesis, I was 

particularly interested in understanding the relative influence of these different variables on the 

diversity of soil food webs. Indeed, identifying the main environmental predictors of soil 

biodiversity is a key step in predicting the consequences of global changes in biodiversity (see 

‘General perspectives’ section).  

Another important contribution of this thesis was the study of the variability of soil food webs 

along broad environmental gradients (chapter 4) or in response to disturbances (chapter 5). The 

variation of soil food webs along large spatial scales and in natural systems is scarce in the 

literature, and our results bring new insights in unraveling the influence of the environment on 

soil food web structure. An interesting avenue would be the study of how trophic interactions 

drive the spatial structure of the trophic groups. This could be done by analyzing how the 

diversity of a given trophic group or class depends on the diversity of the other groups or classes 

(both alpha diversity and beta diversity). This was partially done in chapter 3, when I tested 

how the diversity of a trophic group responded to the diversity of its resource (‘Resource 

Heterogeneity Hypothesis’, Fig. 1 in chapter 3). Yet, we could also look at how the turnover or 

local diversity of one group is related to the turnover or local diversity of the other trophic 

groups, to reveal spatial co-dependencies between the different components of the soil food 

web. Ohlmann and colleagues (2018) approached this question using a probabilistic graphical 

model (graphical lasso), which allows identifying partial correlations between soil trophic 

groups across samples while accounting simultaneously for the effect of the abiotic 

environment. Their method could be extended to the trophic groups built from eDNA data to 

infer a network of partial correlations. Further, the inferred network could be compared to the 

heuristic food web (the metaweb) to assess which trophic interactions have an impact in driving 

the spatial structure of soil food webs. 

 

Finally, I found necessary to mention that a major limitation of the eDNA metabarcoding 

method to study the drivers of soil biodiversity is its limited ability to estimate abundances. 

Yet, many ecological theories state that the effect of the environment on diversity is driven by 

changes in abundances (e.g. the more individual hypothesis, Wright 1983). Thus, eDNA 

metabarcoding opens the door to test the predictions of ecological theories at large scales and 

for a broad range of organisms, but testing some mechanisms of these hypotheses needs 

complementary sampling methods or experimental setups. Abundance information would be 

crucial not only for testing ecological hypotheses but also to make a direct link between food 

web structure and ecosystem functioning. For example, the energy flux framework proposed 
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by Barnes and colleagues (2018) allows to do this by combining metabolic scaling theory and 

food-web energy dynamics, but needs a measure of abundance across the trophic groups. The 

principle is to calculate metabolic rates that are dependent on body mass, environmental 

temperature and phylogenetic grouping, combined with resource-specific assimilation 

efficiencies and energy loss to predation, to obtain energy flux across the trophic levels of a 

food web, and use it as a unified measure of multitrophic ecosystem functioning (Barnes et al. 

2014, 2018). However, is it realistic to obtain the abundance of all the soil trophic groups, from 

microorganisms to macrofauna, at large spatial scales? For now, it is not, or at least it depends 

on abundance data gathered from multiple sources, which could present biases from 

heterogeneous sampling methods or not be resolutive enough at the taxonomic level to couple 

with our eDNA data. Otherwise, an approach used to quantify the abundance of species through 

DNA detection is the quantitative PCR, in which the number of copies of a target DNA marker 

are directly quantified. However, this method relies on species-specific DNA markers, and thus 

is limited to one or a small set of species. We are thus far for being able to estimate cross-

kingdom organism abundances with DNA-based methods, but smaller scale studies in 

complement with large-scale assessments could allow to link soil food webs retrieved from 

eDNA metabarcoding with abundances of some key soil biota to related to ecosystem functions 

(this is further discussed in the ‘General perspectives’ section). Future methodological advances 

may improve the way we interpret abundances from eDNA (Shelton et al. 2022), although it 

would take time until we can relate the abundance of DNA found in the environment with the 

real abundance of organisms, especially for multicellular organisms. 

 

3. General perspectives 

Some perspectives were already discussed in the previous sections of the discussion, but here I 

would like to expand first, on what I considered the next logical step of the analyses to be done 

following this thesis, and second on a potential avenue to improve our mechanistic 

understanding on how global changes will affect terrestrial ecosystems. 

 

From patterns to predictions and conservation strategies 

The study of diversity patterns has essential applications today, such as the implementation of 

predictive models in the face of ongoing global changes, and the improvement of conservation 

strategies. These applications were beyond the scope of this thesis, but my results may provide 
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some clues for future studies. Interestingly, we were able to explain a large part of the variation 

in diversity of most trophic groups across the French Alps with only a few factors that are easy 

to measure and extrapolate at large scales, such as pH and NDIV (Fig. 2a in chapter 3). This 

gives good prospects for modeling major groups of soil biota from eDNA data, which is 

necessary if one wants to extrapolate to create maps or predict the consequences of 

environmental changes. Yet, the occurrences of some organisms, such as insects, were very low 

in the samples, signaling the need to improve the sampling for these organisms by expanding 

the sampling area or sampling effort, or complementing the sampling with other methods such 

as pitfalls. I acknowledge that making spatial or temporal predictions would require testing 

different existing predictive models and better assessing their predictive capacities (e.g., cross 

validation), and although it is out of my personal expertise it should be easily done from the 

data produced in this thesis (on-going work in the team). Contrary, the variance on the food 

web structure explained by the environment was low (less than 20% in chapter 4), questioning 

the ability to predict soil biodiversity at this level of organization. However, joint models could 

be used to jointly predict the local diversity or abundance of trophic groups (Pollock et al. 2014; 

but see Poggiato et al. 2021), and local food webs could be deduced next. Also, joint modelling 

of groups could be useful to increase the ability to predict the diversity or abundance or groups 

with low occurrences such as insects. If we were able to predict the spatial distribution of the 

trophic groups we could predict biodiversity change face to potential scenarios, but we could 

also use the predicted maps to assess the conservation status of soil organisms and their 

coverage within the existing protected areas (Thuiller et al. 2014; O’Connor et al. 2021). 

Indeed, most protected areas are based on aboveground habitat types, and little knowledge exist 

on how these areas are effective in protecting soil biodiversity (Cameron et al. 2019; Ciobanu 

et al. 2019). It is thus crucial to map soil food webs on specific regions, e.g., the French Alps, 

to assess the protected status of soil biodiversity and inform stakeholders. Food web are being 

more and more considered in conservation strategies with the goal of not only conserving 

species but also their interactions and ecosystem functions (Harvey et al. 2017). 

 

Towards a more mechanistic understanding on the effect of global change on soil food webs 

In this thesis, I studied the drivers of soil biodiversity using a space-for-time substitution 

approach. However, a more mechanistic understanding is needed in order to improve our 

predictions on the consequences of global change on soil biodiversity and ecosystem functions. 

As a consequence of ongoing climate change but also annual variability and extreme events, 
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assemblages and resulting food webs are expected to experience temporal dynamics that could 

be transient or not (Ryo et al. 2019). A conceptual framework on the many direct effects of 

warming on specific soil trophic or functional groups and specific ecosystem processes have 

emerged in the last decades (e.g., Bardgett & Caruso 2020; Zhou et al. 2020). However, we still 

know little about the cascading effects across the soil food webs and ecosystem functions, and 

how these will develop over time when an entire ecosystem is warmed in the field (Schwarz et 

al. 2017). Understanding these transient dynamics is of major importance for predicting net 

effects of warming on the different ecosystem compartments, but also on their recovery and 

resistance to land use changes happening in parallel in a world where a continuously changing 

climate prevents ecosystems from settling in stable states (Bardgett & Caruso 2020). Applying 

the methods developed in this thesis to experimental setups simulating warming in the field, 

such as transplant experiments where both the below and aboveground compartments are 

transplanted (Bektaş et al. 2021). In addition, at this scale it would be feasible to obtain 

abundance data for soil organisms, which would allow us to go further into the dynamics of soil 

communities in the face of warming and to link networks to functions. This is something I am 

going to work on during a 2-y postdoc starting in September, where I aim to contrast my 

previous results to results obtained from a transplant experiments carried out along an Orchamp 

gradients.  

CONCLUSION 

This thesis provides a new key to deepen our understanding on soil biodiversity and its drivers. 

Through methodological development with the aim of improving the use of eDNA 

metabarcoding data to have a more comprehensive view of soil multi-trophic communities, I 

believe it provides an important piece of knowledge in our understanding on soil ecology. To 

move forward, we would need to advance in parallel in technical upgrades of eDNA 

metabarcoding data processing and interpretation, the conceptual integration of soil 

biodiversity into ecological networks, and the theoretical development of ecological models 

allowing us to integrate this information to get a more mechanistic understanding of soil 

biodiversity. 
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