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Résumé

Cette these de doctorat porte sur les applications du formalisme de I'intégrale du chemin
aux théories effectives des champs (TEC), qui constituent une méthode puissante pour
étudier la physique des particules au-dela du modele standard. Nous présentons d’abord
le Modele Standard (MS) en tant que Théorie Effective des Champs et nous présentons
brievement quelques déformations possibles du MS par la TEC, qui jouent un role cen-
tral dans la recherche d’une nouvelle physique. Nous présentons un paradigme dans
lequel les théories effectives des champs sont utilisées comme un pont (pouvant étre
traversé dans les deux sens) pour relier la nouvelle physique & échelle des hautes
énergies aux mesures expérimentales a basse énergie. Pour dériver le Lagrangien ef-
fectif & basse énergie d’une théorie ultraviolette (UV), il faut intégrer les modes lourds
et ne garder que les degrés de liberté 1égers qui sont pertinents pour les mesures a basse
énergie. Dans le corps de cette these, nous nous concentrons sur les méthodes fonction-
nelles pour intégrer les particules lourdes jusqu’a l'ordre d’une boucle. Contrairement
a ’approche traditionnelle du diagramme de Feynman, le formalisme de l'intégrale de
chemin fournit un cadre universel et efficace pour mener a bien les taches de correspon-
dance & une boucle, ce qui est un exercice difficile en pratique. Enfin, nous appliquons
nos techniques a ’étude des anomalies dans la théorie quantique des champs (TQC), et
nous dérivons le lagrangien TEC de ’axion a basse énergie a partir d’un modele complet
UV de 'axion. En outre, nous utilisons également notre technique TEC pour explorer

les récentes divergences de saveurs dans le MS.

Mots clés: Théories de champ effectives, intégrale de chemin, anomalies TQC, théories
de jauge, physique de 'axion, physique des saveurs, physique au-dela du modele stan-

dard.
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Abstract

This PhD thesis covers the applications of the path integral formalism to Effective Field
Theories (EFTs), which serve as a powerful method for studying particle physics beyond
the Standard Model. We first introduce the Standard Model (SM) as an Effective Field
Theory and briefly present some possible EFT deformations of the SM, which play a
central role in the search of new physics. We provide a paradigm in which Effective
Field Theories are used as a bridge (can be crossed both ways) to connect new physics
at the high-energy scale with the low-energy experimental measurements. To derive
the low-energy effective Lagrangian of an ultraviolet (UV) theory, one needs to inte-
grate out heavy modes and keep only the light degrees of freedom which are relevant
to the low-energy measurements. In the body of this thesis, we concentrate on the
functional methods for integrating out heavy particles up to one-loop order. In contrast
with the traditional Feynman diagram approach, the path integral formalism provides
a universal and efficient framework to carry out the one-loop matching tasks, which is a
challenging exercise in practice. Finally, we apply our techniques to study anomalies in
Quantum Field Theory (QFT), and derive the low-energy axion EFT Lagrangian from
a given axion UV complete model. Besides, we also use our EFT technique to explore
the recent flavour discrepancies in the SM.

Key words: Effective field theories, Path integral, QFT anomalies, Gauge theories,
Axion physics, Flavour physics, Physics beyond the Standard Model.
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Introduction

Our present knowledge of elementary particles and their interactions is described in the so-called
Standard Model (SM) of particle physics. The discovery of a scalar boson with a mass of 125 GeV,
corresponding to the Higgs boson in the SM, is the most remarkable confirmation of the predictions
of the SM. In recent years, the direct discovery of new physics states has become less frequent, and
there is no sign of new physics beyond the SM so far. Therefore, new physics states might be on a
very high energy scale that current experiments cannot achieve. However, it is possible that new
BSM states can manifest themselves via tree-level exchange or loop-level effects and then indirectly
affect SM precision measurements at the low-energy scale. Recently, many indirect searches for the
hints of new physics states have been performed and received much attention. Following this aspect,
Effective Field Theories (EFT) rise as a robust theoretical framework that allows for hunting for
new physics effects in a model-independent way (bottom-up approach) or connecting UV complete
models with theories at low energies and their precision measurements (top-down approach). In
this thesis, we have developed functional methods for EFT top-down approach and applied our
techniques to study axion physics, QFT anomalies and some recent flavour discrepancies in the
SM. The outline of this thesis is the following:

The first part of this thesis is devoted to presenting the basic knowledge when constructing
effective field theories.

In chapter 1, we briefly review the Standard Model of particle physics and the motivation to
consider EFT as a general framework for the extension of the SM. We present two ways to apply
the EFT idea, the top-down and the bottom-up EFT approach, to study physics beyond the SM.
We close this chapter by discussing two possible EFT deformations to extend the SM: the Standard
Model Effective Field Theory (SMEFT) and the Higgs Effective Field Theory (HEFT).

In chapter 2, we present how to integrate out a heavy particle using the Feynman diagram
approach and the functional approach. We focus on studying the path integral formulation of one-
loop matching calculations. Such matching computations are the most crucial point in the EFT top-
down paradigm. We provide the master formulas that allow us to match a UV model onto an EFT
directly and elegantly. We briefly present our ongoing project where we integrate out leptoquarks
and study flavour anomalies in the SM. Eventually, we show that the functional approach can
easily derive the renormalization group equations (RGEs), thus improving the technique to derive
the anomalous matrix dimension.

In chapter 3, which is based on [3], written in collaboration with S. A. Ellis, J. Quevillon, T.
You and Z. Zhang, we show that one-loop matching by the functional method will generate univer-
sal structures, which makes repeated evaluation of the loop integrals redundant. Ultimately, this
set of universal structures can be pre-computed once and for all, forming the so-called Universal
One-Loop Effective Action (UOLEA). Starting from the UOLEA, one-loop matching calculations
are reduced to an algebraic manipulation of matrix traces. In this part, we studied all universal
structures arising from integrating out heavy chiral fermions. The final results provides an analytic

17
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expression for all coefficients of the universal structures and serves as a reference to cross-check if
one would like to decouple heavy chiral fermions.

The second part of this thesis is devoted to studying effective field theories in the presence of
chiral anomalies.

In chapter 4, we briefly review the anomalies in quantum field theory which is the foundation
for many upcoming discussions.

In chapter 5, we briefly review the theoretical background of the axion physics. We focus on
how QCD instantons solve the U(1)4 problem of the low-energy QCD theory but simultaneously
induce the so-called strong CP problem. We concentrate on the Peccei-Quinn mechanism which
solves the strong CP problem elegantly. We end this chapter by presenting the axion UV complete
models.

In chapter 6, which is based on [2], written in collaboration with J. Quevillon and C. Smith, we
present the construction of EFTs in which a chiral fermion, charged under both gauge and global
symmetries, is integrated out. These symmetries can be spontaneously broken, and the global
ones might also be anomalous. This setting is typically used to study the structure of low-energy
axion EFTs, where the anomalous global symmetry can be the well-known U(1)pg and the local
symmetries can be the SM electroweak chiral gauge symmetries. Spontaneous symmetry breaking
will generate Goldstone bosons, and in the meantime, chiral fermions also become massive. In
this setup, we emphasize that the derivative couplings of the Goldstone bosons to fermion will
lead to severe divergences and ambiguities when evaluating one-loop computations. Within the
path integral formalism, we show how to solve the ambiguity problem by adapting the anomalous
Ward identities to the EFT context, and thus enforcing the gauge invariance of the result. Our
methodology provides a neat, generic and consistent, result when evaluating the Wilson coefficients
of EFT operators involving axion and gauge bosons.

In chapter 7, which is based on [1], written in collaboration with B. Filoche, R. Larue, and J.
Quevillon, we show that the technical developments of the functional one-loop matching can be
used to evaluate the path-integral measure. Such non-invariant fermionic measures will lead to
anomalous Ward-Takahashi identities. We present several ways to customize the crucial regular-
ization such that the anomaly is located in the desired current, which is unprecedented within the
path integral approach. With our techniques, we can derive the covariant, consistent, gravitational
and scale anomalies in a transparent and unified way.

Eventually, we summarize what we found and developed in the section conclusion and outlook.
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Chapter 1

The Standard Model as an Effective
Field Theory

In this chapter, we briefly review the making of the Standard Model of particle physics and present
the motivation to consider effective field theory as a general framework to extend the Standard
Model. This chapter is dedicated to the basic concept of effective field theories.

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is a renormalizable quantum field theory (QFT)
that describes the interactions of our current understanding of elementary particles (quarks and
leptons), which are the main building blocks of all the matter we know at present. The SM has
been extensively tested for many years and is still providing excellent agreement with nearly all
experimental results, Refs. [7-10].

According to the SM, the matter is described by the spin—% fermion fields. There are three
generations of fermion. Each generation contains two quark flavours (u and d like) and two leptons
(neutrino and electron like). Coexisting with all these particles is their corresponding antiparticle
with the same mass but opposite charges. The fermionic content of the SM is listed in Table 1.1.

‘ 1st generation 2nd generation 3rd generation Q

u c t 2/3
Quarks d < b ~1/3
Leptons ¢ we T -1

Ve vy Vr 0

Table 1.1: Fermion fields in the SM. Q is the electromagnetic charge. Each quark has three color
degrees of freedom, in this table, we omitted the color indices to simplify the notation. Notice that
neutrinos are massless and only left-handed polarized.

Quarks and leptons interact by exchanging the strong and electroweak (EW) forces. In QFT,
these features are formulated by applying the principles of gauge theory. The key points of gauge
theory are first choosing the gauge group. Corresponding to each generator of the gauge group is a
spin-1 gauge boson, which plays a role as the mediator carrying the interaction force. Second, by
defining the gauge transformations of the quantum fields in this theory, one can build the gauge
invariant Lagrangian density. When this work is achieved, we will be able to study all physical
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phenomena of this theory. A priori, the choice of the gauge groups and the properties of spinor
field representations in the SM are suggested by many observations in particle physics experiments.
Before delving into details, we briefly present the making of essential ingredients in the SM.

The theory of electromagnetic interactions. From the fact that fermions can have an electric
charge, by requiring the Lagrangian gauge invariance under the phase rotations of the fermion
fields with the electric charge @, the electromagnetic interaction is embedded in the SM. The
symmetry that describes this interaction is then U(1)g Abelian gauge symmetry. Since U(1)q has
one generator, there is only one corresponding gauge boson, the photon field. The quantum field
theory that describes the electromagnetic interactions is often called Quantum Electrodynamics

(QED).

The theory of strong interactions. Historically, quarks were introduced to explain the hadronic
spectrum. In the model of Gell-Mann [11], denoting the members of quarks as ¢ and the members
of antiquarks as g, in terms of quark bound states, meson are |¢q) states and baryon are |qqq)
states. In 1951, a new baryon A™*(.J = 3/2) was discovered and brought the first hint that quark
has color charges, Ref. [12]. Surprisingly, the new particle AT* is in the ground state L = 0 with
all the spins of up quarks aligned along the same direction, |u'uu"). Thus this state will lead to a
symmetric wavefunction. Since the quark is a spin—% particle, this would have forbidden the AT+
due to the Dirac statistics and Pauli exclusion principle. To solve this problem, color charges were

introduced as the new quantum numbers of quarks. Within this assumption, the wavefunction of
AT s,

ATT(J=3/2) = \}éeo‘ﬁwugugug), (1.1)

with « being a color index. Eq. (1.1) teaches us that each quark needs at least three colors in order
to make the wavefunction of AT antisymmetric. The value N, is also measured from the ratio
between the hadronic and leptonic decays, R;ﬁe, =T (1" = y7)/T(efe” = yy) ~ Ne g Q?I . The
result of these measurements indicate that N, = 3.

In 1954, Yang and Mills [13] enlarged the concept of Abelian gauge theory (QED) to a non-
Abelian gauge theory and thus opened the door to study the interactions between quarks. Consider-
ing quarks require color charges, one can require the Lagrangian invariance under the SU(3)¢ gauge
transformation. Since SU(3)¢ has eight generators, there are eight corresponding gauge bosons,
often called gluons. These gluons are responsible for the strong interactions between quarks. Notice
that SU(3)¢ is a non-Abelian gauge theory, hence gluons can have self-interactions. The theory
that describes the strong interactions of quarks and gluons is called Quantum Chromodynamics

(QCD).

The theory of weak interactions. Unlike QED, the theory of weak interactions contain more
subtle details, and it took a long time to formulate completely. In the 1930s, with the discovery
of the neutron, it was quickly realized that the 3-decay process of the neutron (n — pTe™ 7).
At the level of quarks, this decay process is d — u + e~ + .. Following the historical timeline,
1930s — 1970s, there were many developments in the theoretical backgrounds to precisely explain
the -decay of the neutron.

e Fermi’s theory. In the 1930s, Enrico Fermi introduced the four-fermions effective theory,
Ref. [14]. In his theory, the neutron -decay is governed by the non-renormalizable effective
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operator,
'CFermi = _&(ﬁ’}’“n) (é’YuVe) + h.c. ) (1'2)
V2
where Gp = 1.166 x 107° GeV 2 is the Fermi constant. The value of this constant is obtained
1 G%m?>
from the precision measurement of the muon lifetime, — = Fig“, Ref. [15].
Ty 1927

The V — A theory. In the middle of the 1950s, there was an experimental breakthrough
in understanding the weak interactions. Lee and Yang [16] first pointed out no experimental
evidence of parity conservation in weak interactions. Motivated by the work of Lee & Yang,
Wu and collaborators [17] led an experiment to test the parity properties of neutron and
nuclear decay directly. From the (-decay of cobalt-60, °Co —% Ni 4 e~ + 7, + 2v, they
observed an extremely shocking phenomenon: the neutrino is only left-handed polarized. This
is the first experimental hint suggesting that weak interactions violate parity maximally. To
explain the experimental result of Wu et al., Feynman and Gell-Mann [18] modified Fermi’s
theory by using the chiral projector operators,

Erms = = = (di7"00) (P (13)
where v, ;, = Prve and P, = (1 —+%)/2. Because the fermionic chiral currents in Eq. (1.3)
can be decomposed in terms of vector and axial currents, for instance,

_ 1, 1,
JéfL = Ve Yl er = 5(1/6’)/“6) — g(ye’y“fy‘r’e) = Jéfv - JéfA, (1.4)
the model of Feynman & Gell-mann in Eq. (1.3) is also called the V' — A theory. In the past,
this theory could successfully explain many charged processes including 5-decay, muon decay
and charged pion decay.

However, the V' — A theory should not be understood as a fundamental theory because
it is non-renormalizable and hence we only consider it as a low-energy effective field theory
(EFT). The problem of V' — A theory can be seen easily via unitarity bound. Considering
the scattering process, e~ + v, — e~ + 1, the conservation of probability gives the unitarity
bound on the differential cross-section of this scattering process,

do
" G2s® <1, (1.5)
with s being the energy of the neutrino in the center of mass frame, hence s < G}l ~ 300 GeV.
From this rough estimation, one knows that above the energy scale A > 300 GeV the V — A
theory becomes inconsistent with unitarity condition. Thus it must be replaced by a UV
completion.

The intermediate vector boson (IVB) theory. In the early 1960s, to overcome the
contradiction with unitarity in V' — A theory, Glashow [7] proposed a theory with new massive
vector bosons which mediates weak interactions in nuclear decay process. The new vector
bosons, W with electric charge +1, are supposed to be massive, my ~ 100 GeV, so that at
a low-energy scale the IVB theory will coincide with Fermi’s effective theory. Since W+ can
couple to the charged currents, the Lagrangian for weak interactions is then,

Liv D g(lﬁlLv“wJL) WM_ + h.c., (1.6)
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with i stands for the flavour indices, e.g. i = (u,d, ve,e,...), and g is the dimensionless cou-
pling constant. The Fermi constant can be expressed in terms of the weak coupling constant
g through G ~ g2/ m%/v . However, the IVB theory with W* bosons is still incomplete. The
scattering amplitude of the process, eTe™ — WTW ™ with the photon exchange, becomes
divergent. To cancel the divergences, the Z boson is then introduced. This boson has the
mass around my and can couple to the neutral currents. The full Lagrangian of IVB theory
now has a form,

Live = g(iy" WL W, + (97 i vL + gh kv k) Z, + hee. (1.7)

where gf , 91% are the coupling constants of the Z boson with the left-handed and right-handed
fermion, respectively. Although it has many phenomenological successes, the IVB theory
cannot explain the origin of massive vector bosons and hence demands a new sophisticated
theory. The IVB theory also requires an additional scalar field (the Higgs field) to cure further
divergences.

The unification of electromagnetic and weak interactions. In the original work of IVB
theory, Glashow [7] also raised an idea of unifying electromagnetic and weak interactions by using
the SU(2)p ® U(1)y gauge group. However, to successfully complete this idea, one needed two key
points: spontaneous symmetry breaking and Higgs mechanism.

e Spontaneous symmetry breaking. In the early 1960s, inspired by the superconductor so-
lution in condensed matter physics, Nambu and Goldstone [19, 20] developed the concept of
spontaneous symmetry breaking (SSB) and the Goldstone theorem. For a given theory, if its
ground state does not respect the internal symmetry of this theory, new massless scalar parti-
cles will emerge in the spectrum. Corresponding to each generator of the broken symmetry is
the so-called Nambu-Goldstone boson. This idea is then explicitly proved and systematically
generalized in the context of QFT by Goldstone, Salam, and Weinberg [21].

In 1967-1968, Weinberg and Salam [8, 9] synthesized Glashow’s unification framework [7]
with the symmetry breaking mechanism to build a gauge theory for electroweak interactions.
At the energy above the electroweak scale (unbroken phase), the theory is charged under
the SU(2) ® U(1)y gauge group, and the weak gauge bosons are all massless. Below the
electroweak scale (broken phase), the theory is spontaneously broken into the U(1)g gauge
group. Since SU(2);, has three generators, three corresponding Goldstone bosons appeared
in the symmetry breaking process, and all of them are absorbed to generate the mass of W=+
and Z bosons in the Higgs mechanism.

e The Higgs boson. Because the theory in the unbroken phase must be invariant under the
SU(2)®U(1)y gauge group, all fermions are also massless. To generate the gauge boson mass
and naturally break the SU(2), ®U(1)y gauge group, Higgs, Brout and Englert [22, 23] intro-
duced a new scalar field, the Brout-Englert-Higgs boson, commonly called the Higgs boson,
and its potential terms in the electroweak Lagrangian. In their mechanism, the electroweak
symmetry is broken when the Higgs field obtains its vacuum expectation value (VEV) via
minimizing the Higgs potential. In this way, the theory in both unbroken and broken phases
can be renormalizable and consistently explain the origin of massive gauge bosons. Weinberg
then coupled the Higgs to fermions to give them mass in his model of leptons [8].

Eventually, combining the Glashow-Weinberg-Salam model and the Higgs mechanism allows us
to construct the standard model of electroweak interactions comprehensively.
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1.1.1 Structure of the Standard Model

From the above discussions, we are now able to investigate in detail the formalism of Standard
Model. The gauge group of SM is,

Gsm=SUB)c®@SU(2)L@U(1)y . (1.8)

The particle content of SM includes the fermion fields as listed in Table 1.1, one scalar field (Higgs),
and the vector gauge bosons such as the photon, gluon, W*, and Z. The matter fields in the SM
are chiral, and their left-handed components are doublets of the SU(2)1, gauge symmetry while the
right-handed components are SU(2)y, singlets. Notice that the right-handed neutrinos do not exist
in the SM. All properties of the SM particles are summarized in Table 1.2, where we study their
quantum numbers.

Fields Representation Isospin  Electric charges
SUB)c@SUR2) L@ U(l)y I3 Q=Y +1I3
_ (ur 1/2 2/3
w(a) w2 (GR) ()
UR (3,1,2/3) 0 2/3
1 dg (3,1,-1/3) 0 ~1/3
Spin 3 12 .
_ (Ve,L .
s (i) e () ()
eRr (1,1,-1) 0 —1
. H* 1/2 1
Spin 0 H= (HO) (1,2, 1/2) <_1/2> (O)
G (8,1,0) 0 0
Spinl W/ (1,3,0) (1,-1,0) (1,-1,0)
B, (1,1,0) 0 0

Table 1.2: Fields and their quantum numbers under the SM gauge group. For simplicity, we
omitted the color and generation indices. The notations (8, 3,2, 1) denote the octet, triplet, doublet
and singlet representations of the SU(N) group. I3 stands for the third generator of SU(2)r. The
breaking of electroweak symmetry, SU(2), @ U(1l)y — U(1)g tmplies the relation @ = I3 +Y.

The SM Lagrangian. Before spontaneous symmetry breaking, the SM Lagrangian reads,

1 A ~A,uv 1 I I,y 1 v
ESM == _EGUVG e ZWP’VIiVV e Z?#VBM (19)
+ (q’LilﬁqL + apilpur + drilpdg + 11ilDl;, + éRiweR) (1.10)
A
+ (D, H)'(D"H) + p*HTH — §(HTH)2 (1.11)
— (l_LFe erH + qrTy, uRI:I—I— qrlqdrH + h.C.) (1.12)
+Lgr + Lrp, (1.13)
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where the complex conjugate of the Higgs fields is occurred as HI = ejn(H k)%, with the convention
€12 = +1. In what follows, we present the detail of this Lagrangian:

e Yang-Mill terms. The kinetic terms of gauge bosons are described by Eq. (1.9). Chrono-
logically, Gﬁ‘ and W/f with the gauge indices A = (1,...,8), I = (1,2,3), are the non-Abelian
gauge bosons of SU(3)¢c, SU(2)r, while B, is the Abelian gauge boson of U(1)y. The field
strength tensors are defined by,

G, = 0.Gf — 9,G} — g, fPCGRGY
Wi, =0,W,) — 9,W) — ge"EWIw
Buu = a/J,Bl/ - apr. 5 (114)

fABC 1JK
Y

where € are the structure constants of SU(3)c and SU(2)r, respectively. The

convention for dual tensors are X* = 56’“’”"){ po With the choice 2 = 41, and X u stands
for Gﬁ, W}{, B,.

e Gauge interactions. The gauge interactions between fermions and gauge bosons are de-
scribed by Eq (1.10). The covariant derivative D,, is defined such that its action to a field 1)¢
is also a gauge covariant object. Suppose ¢ is charged under the SM gauge group with the
field representation as (3,2,Y7), the covariant derivative then reads,

(Dptoy) = (0 + igs TAGS +igT' WL +ig'YyB,) vy, (1.15)

where g5, g, ¢ are dimensionless gauge coupling constants. T4, T! are SU(3)¢ and SU(2)L
generators, respectively. All of them satisfy the Lie algebra,

(74, 78] = ifABer4 | [T!,177] =i "ETE. (1.16)

In the fundamental representation, the SU(3)c generators are expressed as T4 = A\ /2 with
M are the Gell-Mann matrices. Analogously, the SU(2)r generators read, T = o! /2, with
ol are the Pauli matrices. For the SM fermion fields, where their field representations and
quantum numbers are explicitly listed in Table 1.2, the covariant derivative acting on these

fields will be represented similarly to Eq. (1.15).

e Higgs self interactions. The symmetry breaking part is stated in Eq. (1.11) which contains
the Higgs kinetic term (D, H)T(D*H), and the Higgs potential shaped like a Mexican hat,

~V(H) = p?H'H — %(HTH)Z. (1.17)

This potential is minimized when the Higgs field obtains the vacuum expectation value. For
p?, A > 0, the scalar potential does not occur at the minimum for (0|H|0) = 0, however, all
non-vanishing field configurations, with HTH = p?/\, will satisfy the minimum condition.
Selecting the configuration which is real and electrically neutral, the vacuum expectation value
(VEV) of the Higgs field reads,

0 2
OE|0) = [ 1), with v = /2, (1.18)
V2" A

and v ~ 246 GeV at tree-level. Notice that this ground state is only invariant under the
U(1)q gauge transformation; hence the symmetry of SM is spontaneously broken with the
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breaking pattern SU(2);, ® U(1)y — U(1)g. The Higgs and Goldstone bosons appear as

excitation states when expanding around the vacuum of Higgs field,
G+

- (v+h+iG%) |

V2

where h is the Higgs boson, and G*, G? stand for the Goldstone bosons. Plugging Eq. (1.19)
into the Higgs potential, one obtains the squared-mass of Higgs boson at tree-level,

H= (1.19)

M? = x? =242, (1.20)

The mass of gauge bosons. The origin of massive gauge bosons is then explained by
expanding the Higgs kinetic term with the field configuration in Eq. (1.19). We begin with,

2,2 2 2 / 3
g-v v 9= —gg’\ (W>H
(D, H)!(D*H) > < (W WhHt  W2WH) + T (W2 By) (_gg, e ) < B ) ;

(1.21)

where the gauge fields are still in the weak eigenstates basis. The physical basis of W+
bosons with the well defined electric charges is constructed from [Q, T F T?] = £(T* £ T?).
The physical combinations of Wj’ and B, are obtained by diagonalizing the mass matrix in
Eq. (1.21). Explicitly, the physical states of electroweak gauge fields are given by,

1 w3 cosf sin 0 Z
+_ - 1 172 p) — w w m
Wi \/§(W“ i ZW") ’ <Bu) (— sin@,, cos 6w> (A;) ’ (1.22)

where Z,,, A, are the Z boson and photon field, respectively. The parameter 0,, is a weak
mixing angle which is determined from,

/

cos b, = tanf,, = g (1.23)
g

Within the physical mass basis, from the Higgs kinetic terms we obtain,

(D H) (DFH) D MWW+ + (Z, A,) (M% 02> (ZZ> : (1.24)
0 M3)\A

whereas for the mass of gauge bosons read,

MW:%y MZ:\/mga MA:O (125)

Also from the Higgs kinetic term, one observes the mixing of gauge and Goldstone bosons,
(D, H)(D"H) > iMy (W,f "G~ — W, 0"GT) — Mz Z,0"G°.. (1.26)

From the above equation, we know that the three Goldstone bosons are “eaten” by W+ and
Z. They generate the longitudinal mode of the gauge field and hence making them become
massive. Last but not least, the above gauge-Goldstone mixing terms in Eq. (1.26) can be
discarded in practical computations thank to the gauge fixing procedure.
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e Yukawa interactions and flavour changing charged currents. The interactions be-
tween Higgs and fermion fields are expressed in Eq. (1.12) with T'.,T",, Ty are the general
Yukawa couplings matrices in the generation space. After SSB, with the vacuum config-
uration in Eq. (1.18) the Yukawa interactions give rise to a mass matrix for quarks and
electron-like leptons.However, these matrices are not diagonal in the generation space. The
physical states are obtained by performing the unitary transformations,

for= U£7Rf£,R, (1.27)
where f = u,d, e and f’ denotes the mass eigenstates fields. Hence, the mass matrices in the
Yukawa interactions are diagonolized,

v
\/7

My = UderdUR = diag(mg, ms, mp) ,

\/i

M, =U;'—=TI'.Ug = diag(me, m,, m;). (1.28)

\f

It is worth noting that the redefinition of the fermion fields will modify the flavour changing
charged currents,

= U“T I, Ug = diag(my, me, my) ,

qrilbqr O \%ﬂyy“W,jdL +h.c. = %Q’LWW; (UMUd) dy, + hec. (1.29)

Obviously, the physical states now interact effectively with the charged currents through a
non-trivial unitary matrix,

Vern = UTUE, (1.30)

where Vo is the well-known Cabibbo-Kowayashi-Maskawa (CKM) matrix, Refs. [24, 25].
The CKM matrix is parameterized in terms of four independent parameters, with three angles
0123 and one phase §. Explicitly, the CKM matrix reads,

c1 —S1€3 —S5153
Voxm = | sicac1 cacg — 82836%5 c1c983 + 82636%5 , (1.31)
$189C1  S2C3 + c253€™ 18983 — cocget®
where s; = sinf; and ¢; = cosf;. Since § is non-vanishing, the CKM matrix can provide a
natural explanation for the CP-violating interactions which have been observed a long time

ago in the neutral meson mixing (e.g. K° — K [26]) process.

e Gauge fixing and Faddeev-Popov ghost terms. In practice, to derive a propagator
function of a massless vector field one needs to add the gauge fixing term (see Ref. [27] for
a pedagogical example). Since the SM Lagrangian is defined in unbroken phase, the gauge
fixing procedure is mandatory. Precisely, the SM gauge fixing terms are,

1
L _——aGAM——aA# —— (02" + E7 Mz GP)?
— 251 (6HW+’M + ifwaG+)(aVW_’V —iéwMwyG™), (1.32)
w

where & are gauge parameters. Of course, all physical observations are independent with
& parameters, hence one can choose a gauge that allows us to simplify the computation
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of S-matrix elements. For instance, & = 1 corresponds to the Feynman - 't Hooft gauge
[28], where the gauge-Goldstone mixing terms in Eq. (1.26) is entirely cancelled out. The
caveat of this procedure is that the gauge fixing terms are not gauge invariant, and hence the
Faddeev-Popov ghost fields are introduced to systematically quantize the vector gauge fields.
In terms of the ghost fields, the SM Lagrangian is invariant under the Becchi, Rouet, Stora,
and Tyutin (BRST) transformations [28, 29] instead of gauge transformations. Explicitly,
by defining a BRST operator, called § operator, under the BRST transformations the gauge
fixing and Faddeev-Popov ghost terms behave as follows,

8(Lar) = —8(LFp), (1.33)

thus they ensure the SM Lagrangian is invariant under the BRST transformations.

From the above discussions, we have presented the formalism of the SM. To wrap up this section,
we highlight two main properties of the SM from a formal theory point of view: First, the SM is
a renormalizable theory. This key feature offers the power of predicting physical phenomena at
various energy scales. Second, the SM is a consistent theory in the sense that all gauge anomalies!
are cancelled. Such anomalous gauge current will lead to inconsistencies in the quantization of
gauge theory. We will see later that the gauge symmetries of the SM are potentially anomalous,
and the quantum numbers of SM fermions in Table (1.2) are carefully chosen such that all gauge
anomalies cancel [28, 30]. We leave some concrete discussions of QFT anomalies to Chapter 4 and
Chapter 7 of this PhD thesis.

1.2 Motivation for physics beyond the Standard Model

As we have seen, the SM was tremendously successful in describing the strong and electroweak
interactions of Nature. Here we list some of the remarkable achievements of SM:

e The prediction of SM for the anomalous magnetic moment of the electron was in excellent
agreement (at a precision level 10712) with experimental measurements, Ref. [31].

e At CERN in 1983, W and Z boson were directly discovered from the UA1 experiment led
by Carlo Rubbia and Simon van der Meer and confirmed from the UA2 experiment led by
Pierre Darriulat. These experiments were a significant breakthrough in experimental physics
and accelerator technology. Furthermore, as we know cos 6,, = My /M7, the observations of
W*, Z bosons also allow us to test the weak mixing angle 6,, at very high accuracy (including
radiative corrections).

e The discovery of a scalar boson with a mass of 125 GeV in 2012 at LHC [32] was a milestone
in the history of particle physics. This greatest achievement finally confirms the prediction
of the Higgs boson in the SM.

Why beyond the Standard Model? Despite many successes, the SM still contains several
unsolved puzzles. We state here a few of them:

e Hierarchy problem. In the SM, we did not include the effect of gravity. Thus the theory
should have an ultraviolet cut-off, Agar ~ My = 10" GeV, above this energy scale, we cannot

! A symmetry is anomalous when its associated Noether’s current is no longer conserved at the quantum level.
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neglect the contribution of gravity and the predictions of SM are longer valid. The radiative
corrections for the mass of Higgs boson [33] suggest,

3y? A 1
AM? ~ % —A%y +6m?n :;2” — 2m§] +0 <A2> : (1.34)
SM

where we only consider the dominant contribution from the top quark, and y; ~ 1 is the
top quark Yukawa coupling. The Eq. (1.34) tells us that the quadratic divergence term,
iyf A2
82 M
expect that M), is around the Plank scale, M, = 10" GeV. This result contrasts with the
experimental results, whereas we only observe the Higgs boson with the mass of 125 GeV
[32, 34] and the SM could not explain why the mass of the Higgs boson is so light. In the
past, this hierarchy problem was one of the best reasons to motivate us to look forward to a
new theory. Supersymmetry is a typical BSM extension that beautifully solves this problem.

will dominantly contribute to the mass of the Higgs boson. We then naively

e Neutrino mass. We recall that neutrinos in the SM are massless. However, the observations
of neutrino oscillation directly proved that the neutrinos are massive [35], and the origin of
the mass of neutrinos has been unsolved until now.

e Strong CP problem. The structure of the QCD vacuum brings a new term into the SM
Lagrangian, the 6-term,

Lsy D G, G (1.35)

3272

with 6 being a dimensionless parameter, and the operator Gﬁ,jC;‘A’W violates the CP transfor-
mation. We then naively expect some CP-violating phenomena in the QCD sector. However,
the measurements of neutron electric dipole moment (nEDM) [36-38] tell us: 6 < 10710,
This situation is analogous to the hierarchy problem, where again, the SM does not have any
mechanism to explain why the 6 parameter is so tiny. We will rigorously come back to the
strong CP problem and its solution in Chapter 5 and Chapter 6 of this thesis.

e Some discrepancies in flavour physics. In recent years, we have witnessed the rise of
several observations in the flavour physics that tension with the SM. For instance, we observed
the so-called (g — 2), anomaly, whereas the measurement of muon’s anomalous magnetic
moment had a 3.30 discrepancy compared to the SM prediction, Ref. [39]. From the so-called
B anomalies, we observed some hints of the breaking of lepton universality? in the b-quark
decays, with a significance of 3.10, Refs. [40, 41]. All these deviations have currently drawn
great attention to the particle physics community.

In the literature, we have seen that many solutions for the problems of SM are often leading to
new BSM states, at the energy scale Ayp > TeV. Unfortunately, except for several deviations like
(9 —2), or B anomalies, there is no new excitation states have been discovered so far. Besides, the
current experimental data have not suggested any clear orientations to extend the SM. However,
the optimistic point in this situation is that the precision of many ongoing experiments is promptly
increasing, and we might be able to observe the effect of new BSM states from the tiny error bar
of these experiments. To prepare for this near future situation, we can consider Effective Field

2In the SM, the charged leptons (e.g. e, i1, 7) couples identically with the electroweak gauge bosons. The violation
of lepton universality will then imply a new fundamental interaction between quarks and leptons.
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Theories (EFTs) as a robust paradigm that allows for hunting for new physics effects in a model-
independent way (bottom-up approach) or connecting the UV complete model with the theories at
low energies and their precision measurements (top-down approach). In the next section and the
following chapters, we will then present the concepts and core techniques of EFT.

1.3 The Standard Model from an EFT point of view

If the scale separation between the SM and new physics is sufficiently large, it is then possible to
consider the SM as a leading order approximation in the EFT expansion of a new fundamental
theory. Ultimately, in the EFT framework, it is legitimate to parametrize new physics effects in
terms of effective operators without referring to any BSM models. The effective Lagrangian can be
written as,

_ 1 (5)nG) , 1 (6) 1(6)
£EFT—£SM+A;CZ- O; +A2;C" 07+, (1.36)

with A being an energy scale until where the EFT is still valid. (’)E")

non-renormalizable operators that respect some postulated symmetries (e.g Lorentz and gauge
invariance), and cgn) are their corresponding Wilson coefficients that run as a function cgn) () of
the renormalization group equation (RGE) scale u. For a recent review of SM as an EFTs see
Ref. [42]. This EFT Lagrangian (1.36) is then making used as a bridge to connect BSM models
at the high-energy scale with experimental measurements at the low-energy scale. The UV-EFT
connection could be crossly constructed on both sides, commonly known as bottom-up and top-

down approaches.

is a set of dimension-n

e The bottom-up EFT approach. The main idea of the bottom-up approach is to parametrize
the EFT Lagrangian without any assumption of specific UV theories. All new physics effects
are encoded inside the Wilson coefficients of higher-dimensional operators. From the power
counting arguments, one can keep only relevant terms in Lgpr that are expected to give
significant deviations from the SM. By this construction, the truncated EFT will coincide
with the low-energy limit of several classes of BSM models. Experimental data are used to
put some constraints on the parameter space spanned the finite set of Wilson coefficients.
The knowledge we gain from the bottom-up approach can be used to interpret the low-energy
behaviour of some well-motivated BSM models when it is necessary.

e The top-down EFT approach. The spirit of the top-down approach is to study the impli-
cation at the low-energy scale of some specific UV theories. Due to a large scale separation,
new BSM states will indirectly affect our current experiments®. To connect the UV theories to
the low-energy observations, one needs the so-called three-step procedure, namely matching-
running-mapping. First, matching the UV theory onto an EFT Lagrangian by integrating
out the BSM states. Second, using the renormalization group equation to run the Wilson
coefficients from the UV scale down to lower energy scales where experimental measurements
are performed. Finally, using the EFT Lagrangian at these low-energy scales to compute
physical quantities of interest (mapping). For convenience, we leave the technical discussion
of the top-down approach to the next chapters.

3New physics can manifest itself via tree or loop effects. Since we have not observed any significant deviations
from the current experimental data, new physics are expected to hide inside the loop level.
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We would like to emphasize that both bottom-up and top-down approaches are complementary.
Hence, combining both approaches will provide a powerful tool to search for BSM physics in the era
of precision measurements. The main point of the bottom-up approach is to model-independently
constrain the value of cl(.n) from precision measurements. This approach will suggest what types
of BSM extensions are still valid with the experimental data. The central point of the top-down
approach is to compute the value of cgn) from a given UV theory. The top-down studies will help us
understand which EF'T operators have significant contributions and also guide us on which effective

field theories we should use in the bottom-up approach.

1.3.1 Building EFT from IR perspective
(n)

The Wilson coefficients ¢;” in the EFT Lagrangian are defined due to the choice of operator

basis (’)gn). There exist different operator bases motivated by the broad class of BSM models.
The operator basis must be declared for both bottom-up and top-down approaches. To construct
the EFT operators, one needs to identify the field content and the symmetries that the EFT must
respect. There are two well-known approaches to constructing the EFT, called SMEFT and HEFT,
which are now presented as follows:

1.3.1.1 The Standard Model Effective Field Theory (SMEFT)

Assuming that the UV theories at the high energy scale A involve new massive particles, the idea
of SMEFT is to construct the effective Lagrangian above the measured electroweak scale. This
effective Lagrangian is a consistent generalization of the SM Lagrangian. Explicitly, we still keep
both the SM field content as defined in Table 1.2 and the SM gauge symmetries. The crucial points
of SMEFT are presented as follows:

e The Higgs field is kept as a doublet like the one in SM. This important choice is what defines
the SMEFT.

e The SMEFT Lagrangian is defined above the electroweak scale (unbroken phase). We assumed
that the Higgs field is the unique source that spontaneously breaks electroweak symmetries.

e The higher-dimensional operators are constructed with the SM fields as listed in Table 1.2 and
invariant under the SU(3)c ® SU(2)r, ® U(1)y gauge transformations. Their corresponding
Wilson coefficients are dimensionless. The SMEFT Lagrangian is organized as an expansion
in powers of new physics scale (1/A), and thus the order of effective operators can be classified
via the canonical power counting rules.

Following these assumptions, the SMEFT Lagrangian is written analogously to the EFT La-
grangian in Eq. (1.36),

_ 1 6)nG) , 1 (6) 1 (6)
ﬁSMEFT—ESM“‘A;Ci Oz —|—A2;Ci Oz + - (1.37)

where (’)En) is now a set of non-redundant operators. It is worth noting that gauge invariance
criteria only allow us to build a complete but still redundant operator basis. The source of redun-
dancies comes in the equation of motions (EOMs)*, total derivatives, integration by parts, Bianchi

4Using EOMs, one can eliminate the linear combinations of several effective operators because those linear com-
binations give no contributions to the on-shell S-matrix elements at all orders in the perturbation theory, Ref. [43].
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Section 1.3: The Standard Model from an EFT point of view

identities, Fierz transformations and field redefinitions. Such redundant operators are physically
equivalent, hence, taking one of them is enough to build the EFT Lagrangian. Although the prin-
ciple to identify redundant operators looks pretty simple, the number of redundancies increases
rapidly with the dimensions, starting from dimension six. For instance, we state here the main
points of the operator bases at a certain dimensionality:

¢ Dimension-5 operator. There is only one operator that violates the lepton-number conser-
vation, called the Weinberg’s operator [44]. After the spontaneous symmetry breaking, this
operator will generate the Majorana mass for neutrinos.

e Dimension-6 operators. In 1986, Buchmuller and Wyler [45] firstly introduced a complete
set of dimension-6 operators, including 80 operators. After 24 years, a complete and non-
redundant basis was derived in Ref. [46], in the literature, it is often called the “Warsaw
basis”. In this minimal basis, assuming flavour-blind structure, together with lepton and
baryon-number conservation, there are in total 59 dimension-6 operators. If we consider a
fully generic flavour structure, for three generations, the dimension-six SMEFT Lagrangian
contains 2499 hermitian operators, Ref. [47].

¢ Beyond dimension-six. The complete and non-redundant bases are known for dimension-7
[48, 49], dimension-8 [49, 50], and dimension-9 [51, 52] operators®. Specifically, Refs. [49, 50,
53, 54] making use of the Hilbert series method as a universal algorithm to identify the non-
redundant operator bases at a certain dimensionality. This achievement makes the SMEFT
is now defined at all orders in the local operator expansion.

1.3.1.2 The Higgs Effective Field Theory (HEFT)

The HEFT, alternatively called the Electroweak Chiral Lagrangian (EWChL), is the most general
approach (i.e. using minimal assumptions) to build an EFT Lagrangian involving only the SM
fields. Without delving into technical details, the different main features of HEFT compare to
SMEFT are

e HEFT relaxes the assumption of writing the Higgs field as a doublet. The field content in
the bosonic sector of HEFT now includes a singlet Higgs-like scalar® h, and an independent
set of Nambu-Goldstone bosons 7!/ which play a role as the longitudinal modes of the EW
gauge bosons.

e The HEFT Lagrangian is defined below the electroweak scale (broken phase). The HEFT
Lagrangian only manifest SU(3)c ® U(1)qg gauge invariance. Conversely with the SMEFT,
the SU(2), ®U(1)y electroweak symmetry is non-linearly realized by making use of the EFT
formalism for Goldstone bosons. Since the electroweak symmetry has no longer existed, there
are no relations between the Higgs-like scalar boson and the NGBs”. The HEFT approach
also implies that the Higgs field is not compulsorily responsible for the SSB.

e The HEFT Lagrangian is organized as an expansion in powers of chiral derivatives (momenta
in Fourier space) over the electroweak (and/or new physics) scale [55, 57], and the power
counting rules are not the same as those applied in SMEFT. The power counting rules in

SWe note that all dimension-5, 7, 9 operators violate the lepton or baryon-number conservation.

5In the SM, h is a physical Higgs boson which is a scalar component of the Higgs doublet H.

"SMEFT now becomes a special case of HEFT because the Higgs and Goldstone fields are enforced to transform
linearly as a complex scalar doublet [55, 56].
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Chapter 1: The Standard Model as an Effective Field Theory

HEFT have been intensely debated a long ago in literature. Several general power counting
rules were only proposed recently, see Ref. [58] as an example.

Unlike SMEFT, building the HEFT Lagrangian is not trivial due to the lack of gauge symmetry
restrictions. The key point of constructing the HEFT Lagrangian is to identify the symmetry
breaking pattern, then construct an EFT of the NGBs by making use of the Callan-Coleman-Wess-
Zumino (CCWZ) formalism, Refs. [59, 60]. Since the Higgs sector in the SM Lagrangian has an
accidental SO(4) global symmetry [61], a natural choice for the symmetry breaking pattern in
HEFT is,

50(4) gSU(Q)L(X)SU(Q)R — SU(Q)V:L+R, (138)

where the global symmetry SU(2);, ® SU(2)g is spontaneously broken by the Higgs vev to its
vectorial subgroup SU(2)y. By this choice, the the candidate NGBs will have suitable properties to
become the longitudinal components of the EW gauge bosons. The HEFT Lagrangian is constructed
in following.

The HEFT Lagrangian. By working at a low energy scale and only assuming the symmetry
breaking pattern in Eq. (1.38), one can write down a generic EFT Lagrangian without referring to
the UV dynamics. Let us begin with the main building blocks of HEFT Lagrangian. Following the
conventions in Refs. [42, 62], we have

e The Goldstone bosons. The Goldstone bosons are encapsulated into a 2 x 2 unitary matrix
which is transformed under the SU(2); ® SU(2)g global transformations as follows,

Uz) = [ IWI("T)} U T —
z) = exp |i0" — , (x) = LU(z)R", v =246 GeV, (1.39)

where ¢! are the Pauli matrices and L, R are the group elements of SU(2), /R global trans-

formations. The covariant derivative acting on U(x) reads,
/
.9 g
[D,U(z)] = [0,U(x)] + ziwjan(x) + zEBMU(x)U?’ . (1.40)

SU(2)1, covariant objects. To keep the EFT Lagrangian still manifest the SU(2),®SU(2)r
global symmetries, it is necessary to introduce the scalar and vector objects made up of the
Goldstone unitary matrix,

T(z) = U(z)o3U(z)T, T(z) — LT(z)L",
V,(z) = [D,U(2)|U(z),  Vu(x) = LV,(z)L", (1.41)

where T,V , transform in the adjoint representation of the SU(2),, these notations will allow
us easily identify the operators that break the SU(2)y custodial symmetry.

e Higgs interaction terms. Since we relax the Higgs doublet assumption, the couplings of
Higgs-like scalar boson are arbitrarily parametrized. In the literature, the interactions of
Higgs boson are embedded in the generic polynomial functions [55, 56, 63],

h h? (n) h1™ m% 9 mi m2
“(h) =1+ 2a;,— + bj— = h) = =B 4 ds—Lh+dg—Lh*+ -,
Fi(h) =1+2a; + ”2+nz>:3al L}} V(h) = 0?4 ds 5 b+ dag sh' +
(1.42)
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Section 1.3: The Standard Model from an EFT point of view

where a;, b;, - - - are arbitrary coefficients, and V(h) stands for the Higgs-like scalar potential.
Essentially, the SM Higgs doublet can be reconstructed by composing h and U(x),

~ v h

H H)=—4—(1+-]U. 1.43

i m) = (1+2) (143

e Fermion fields. The SM fermion fields are conveniently grouped into the doublets of
SU(2)r/r global symmetries,

(i) onm () mem () e G) o

Since the Yukawa terms depend on the Higgs field, in HEFT we also parametrize these
interactions analogously to the Higgs interactions,

Ya(h) = diag (Z v, m " Sy m n) , Vi(h) = diag (o, Sy m n) . (1.45)

n=0 n=0 n=0

The HEFT Lagrangian consists of the Goldstone unitary matrix, Higgs-like scalar field, SM
fermion fields, and the field strength tensors of gauge bosons. The HEFT Lagrangian is then
defined as follows,

Lyugrr = Lo+ AL. (1.46)

The first term in Eq. (1.46), Lo, contains the leading order (LO) operators which reproduces
the SM Lagrangian if we properly fix the value of the arbitrary coefficients. Explicitly, the leading
order HEFT Lagrangian reads,

1 1 1 _
Lo = jG;‘yGAW - ZWiVWI W= BB + > fibf
f=QrL,Qr,LL,LR
2

+ 2 (9,h)(0"R) — V(h) — Uztr(VuV“)FC(h)

N

V2 V2

where the generic polynomial functions Fc(h), V(h), Vg1 (h) are defined in Egs. (1.42), (1.45).
By choosing ac = bg = d3 = d4 = 1 and neglecting the remaining terms in the Higgs interaction
functions, one obtains the SM Higgs sector. From the Yukawa terms, the n = 0 contributions will
give mass to the SM fermions. Eventually, the kinetic terms of Goldstone bosons and the mass
terms of gauge bosons are encapsulated inside the term tr(V,V*#). For further details about the
HEFT Lagrangian, see Refs. [42, 62].

The second term in Eq. (1.46), AL, contains both new operators beyond the SM Lagrangian and
the next-to-leading order (NLO) contributions from L£y. HEFT is a synthesis of linear description
(for gauge and fermion sectors) and non-linear description (for Higgs and Goldstone fields), and
each description has different power counting schemes. Therefore, we cannot straightforwardly
present AL in a generic form like the SMEFT Lagrangian. Explicitly, see Ref. [62] for a complete
NLO set of operator basis in HEFT. Besides, a complete chiral Lagrangian for axion-like-particles
(ALPs) has been constructed very recently by the authors in Ref. [64].

QLUyQ(h)QR + h.C.:| — [ELUyL(h>LR + h.C.] , (1.47)
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1.3.1.3 Which effective field theories?

In the previous subsection, we have presented the formalism of SMEFT and HEFT. These EFTs
now become prime frameworks for interpreting experimental data, especially if we observe new
significant deviations compared to SM. It is indeed an excellent moment to ask a deeper ques-
tion regarding these EFT deformations of the SM. From the symmetry point of view, clearly, the
parameter space of HEFT encompasses SMEFT. Therefore, an essential question is how do we dis-
tinguish HEFT and SMEFT? In order words, what are the concrete criteria to formalistic classify
these EFTs? The answer to these questions will teach us which EFT descriptions we should use
according to a given UV model, and guide us to interpret the data in terms of EFTs.

Classifying HEFT and SMEFT is not an easy task. It has been intensely studied for a long
time in the literature, but satisfactory answers were only obtained recently, Refs. [65-69]. There
are three different approaches and their combinations to tackle this problem, namely unitarity,
analyticity, geometry.

Unitarity. From the Naive Dimensional Analysis [70], since HEFT non-linearly realizes the
electroweak symmetry, this EFT will violate the unitarity at the energy scale £ ~ 47v. On the
other hand, SMEFT linearly realizes the electroweak symmetry, therefore, one can obtain a separate
scale of unitarity violation. Unfortunately, this approach alone did not bring many meaningful
distinctions between HEFT and SMEFT. The combination of unitarity and the remaining two
approaches will offer the key points to distinguish these EFTs [69].

Analyticity. Falkowski and Rattazzi first proposed this approach in Ref. [67]. This approach
uses the properties of the Lagrangian in a given parametrization to distinguish HEFT and SMEFT
via analyticity and non-analyticity. Starting from the most general scalar potential, it pointed out
that the HEFT-like Lagrangian arises if the scalar potential (written in terms of the Higgs doublet,
H) is non-analytic at |H| = 0, such non-analyticities cannot be removed by the field redefinition®.

Geometry. From the seminal work of Alonso, Jenkins, and Manohar [65], the Higgs and Gold-
stone fields are treated as the coordinates on a Riemannian manifold, then HEFT and SMEFT are
distinguished by the invariant properties of the EFT geometry. More importantly, by combining
analyticity criteria and geometric formalism of HEFT and SMEFT, the work of Cohen, Craig, Lu,
and Sutherland [68], derive concrete criteria that can be used to distinguish these EFTs. Their
approach also shows which UV models prefer HEFT rather than SMEFT in the low energy limit.

From the Ref. [68], the UV models must be matched onto HEFT are the following: First, the UV
models have additional sources that break electroweak symmetry. Second, the UV models with new
BSM states acquire their whole mass from electroweak symmetry breaking. For instance, matching
to HEFT is required when integrating out chiral fermions in SM, or “Loryons” BSM candidates’

[71]. Furthermore, when integrating out new BSM states lie near weak scale, one should match
onto HEFT.

In the following chapters, we will present the core techniques to integrate out heavy particles,
which is the heart of this PhD manuscript. Afterwards, we will revisit the above second scenario (in-
tegrating out chiral fermions), which violates the decoupling theorem and contains many subtleties
detail.

8Conversely, the SMEFT-like Lagrangian will arise if at least one field redefinition exists, making the scalar
potential analytic at |[H| = 0.

9Loryons candidates are characterised by non-decoupling effects after being integrated out of the UV action. The
physical mass of these new states is very heavy and dominated by the contribution of Higgs VEV.
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Chapter 2

Building Effective Field Theories from
UV perspective

In this chapter, we present in detail the top-down EFT approach as was mentioned in chapter 1.
A key object in this approach is the one-particle irreducible (1PI) effective action, which can be
generally evaluated via the path integral. This chapter is dedicated to the functional methods for
computing Wilson coeflicients of the effective operators and the renormalization group equations
(RGEs).

2.1 From UV to IR procedure: matching-running-mapping

Within the EFTs framework, we now present in details the three-step procedure used to connect
UV models with low-energy observables. This process is schematically described in Fig. 2.1.

H
1. Matching
uv
A model c,(|A)
2. Running
d 1
LW s 1,
dlogu S'167° """
l 0(0.1%) - O(1%)
Precision
my, —t— (——>
! &my) observables
3. Mapping

Figure 2.1: EFTs as a bridge to connect a UV model to low-energy scale precision observables.

e Matching. As a heart of this procedure, in the first step, the UV model is matched onto the
EFT Lagrangian at the new physics scale A. To construct a low-energy EFT from a given UV
model, one needs to identify the relevant degrees of freedom for the measurements of interest
and integrates out all new BSM states'. Formally, the massive BSM states are integrated out

!Suppose the UV model is matched onto SMEFT, then the relevant light fields are the SM particles while the
remaining massive BSM states are integrated out.
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Chapter 2: Building Effective Field Theories from UV perspective

of the action Syv|[¢r, Py| by evaluating the path integral over the heavy states only,
giSenloL)(n=0) _ / DDy Suv L. eulu=h) (2.1)

where ¢, @y are light and heavy fields, respectively. There are two ways to evaluate the
effective action in the matching process. First, a traditional approach is commonly known as
the Feynman diagram method. The key point of this approach is to compute the scattering
amplitudes of some relevant processes in both the UV and EFT theories and then use matching
conditions to extract the value of Wilson coefficients. Second, a more elegant method is based
on the direct evaluation of the functional path integral, which is the core technique of this
manuscript. The central point of the functional method is the so-called technique of Covariant
Derivative Expansion (CDE). The details and comparisons between these two methods will
be presented in the following section.

The matching coefficients cgn) (A) are determined such that the S-matrix elements of the

EFT and the UV model are equivalent at the RGE scale 4 = A. In practice, one can
choose A = My, the typical mass scale of the new heavy BSM states. The resulting effective
Lagrangian can be organized into a finite set of dimension-four or less operators (which will
be matched onto Lgy) and a tower of higher dimensional effective operators (which can be
matched onto LgverT Or LHEFT)-

The matching process is performed order-by-order in perturbation theory. As recent and near
future experimental measurements of Higgs boson and electroweak observables are typically
sensitive to quantum loop effects, the desire for one-loop order calculations in the match-
ing process is highly needed. In this case, the contribution of the new BSM states to the
low-energy effective Lagrangian consists of tree-level and one-loop level terms. Besides, we
highlight that sometimes new physics effects only appear at the one-loop level, and there are
no tree-level effects. Thus calculating at one-loop order and beyond is key to discovering BSM
physics.

e Running. In order to connect the EFT Lagrangian with experimental measurements, the
Wilson coefficients cl(.n) (1) determined at the matching scale A are run down to the experimen-
tal energy scale (e.g. weak scale ~ myy) according to the RGEs of the given EFT Lagrangian.
The essential point of the running step is: when does the RG running become important? In
practice, depending on the case understudying and the sensitivity of precision measurements,
one can estimate whether the effects of RG running are actually relevant or not. If the scale
separation of the UV model and experimental measurements is too large, the higher-order

corrections from RGEs improvement must be included.

e Mapping. The main idea of the mapping step is to use the EFT Lagrangian at the low-
energy scale to compute physical quantities of interests in terms of the Wilson coefficients (e.g.
cgn) (x = mw)). The central question in the mapping step is how effective operators impact
the low-energy physical observables (as a function of cgn)). For example, one can compute the

Higgs decay width for a given channel, then estimate its deviation from the SM result. Let us

consider the h — vy decay process, within the SMEFT Lagrangian, the deviation compare

to the prediction of SM is [72],

_DRST L TeowldV] 6 s ws). (29)
= ——1= T LT A5V A2 B ’ '
Ph—>w Thsqy [an) = 0] Re (Ahw) A
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Section 2.1: From UV to IR procedure: matching-running-mapping

where A,SL% is the decay amplitude of h — ~~v decay process in the SM. The coefficients

{cWW,cBB,cWB} are the Wilson coeflicients associated to the Higgs-gauge effective cou-
plings, chronologically, |H[*W., W |H|*B,, B, and (H'o! H)W/, B*.

Eventually, we emphasize that the running and mapping steps can be done once and for all since
they only require the knowledge of EFT operator bases, which has been built from the EFT bottom-
up approach. However, the matching step must be performed for any UV model one would like
to confront with experiments. In the following sections, we will present the recent development of
matching calculations up to one-loop order. We will see that the path integral approach, especially
the covariant derivative expansion (CDE) method, significantly simplifies the one-loop matching
computations.

2.1.1 Toy example: matching by Feynman diagram method

We present a toy example to illustrate the spirit of matching via the Feynman diagram approach.
Let us consider the simplest Yukawa theory consisting of a massless fermion v interacting with a
real heavy scalar field ®5. The UV Lagrangian reads [5],

Loy = ihdy + % (0,@n) (0"®p) — %M%%{ — My dy (2.3)

where M is a mass of heavy scalar field @z, and X is the Yukawa coupling between the light field
1 and heavy field ®g. Our main goal is to find an EFT that only consists of the light field ¢. In
the EFT framework, the interactions generated by the exchange heavy field ® will be replaced by
new contact interactions involving the light field . To construct this EFT, one needs to integrate
out the heavy field ®7. This task is performed by comparing the S-matrix elements of the UV and
EFT theories. In this toy example, we have to compute the scattering amplitude of ¥y — .

Tree-level matching. Since the matching process is performed order-by-order in perturbation
expansion, we begin with matching the UV theory onto EFT Lagrangian at leading order. The UV
scattering amplitude to order A? is given by the Feynman diagrams in Fig. 2.2.

1 >

> 3

2

Y

Y
B

(&

Figure 2.2: Tree-level diagrams proportional to A2 that contribute to 1 — ) scattering process,

Ref. [5].

The amplitude of these diagrams read,

Avy = (—iA)? (s — 1) = P2 u(ps3)u(p1)u(pa)u(p2) — {ps < pa} (2.4)

where {p3 <> p4} indicates the interchange of external momenta p4, p}. A relative sign of these
two diagrams is minus due to the requirement of Fermi statistics. Since the spinor structures are
identical in both UV and effective theory, we only need to concentrate on the coefficients that come
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from the massive propagator ®yy,

N2 i A2 1 A2 (ps —p1)? p?
_ AN VY SN § U R O PN e
(=i%) (p3 —p1)? — M? ZM21 (ps — p1)? T o M (25)

M2

In the limit p? < M?, one can consider the ratio p? /M? as an expansion parameter and construct
the effective theory at a certain order in this expansion. The EFT is designed such that the S-
matrix elements of the EFT and the full theory are equivalent at the matching scale. At zeroth
order in external momenta of Eq. (2.5), the amplitude of 1) — 1) process can be reproduced by
considering the EFT Lagrangian with the four-fermion operator,

Lepr = ibdp + 01%1/;1/1@%&7 (2.6)

where ¢ is the Wilson coefficient of the four-fermion operator. The amplitude of 1) — 1) process
given by this EFT Lagrangian reads,

Agrr = [ic1] u(p3)u(pr)u(pa)u(p2) — {ps <> pa}. (2.7)

Comparing Eq. (2.4) with Eq. (2.7) at zeroth order in (p?/M?) EFT expansion, we are able to
extract the value of Wilson coefficient ¢;. Eventually, the EFT Lagrangian reads,

X1

A 28)

Lgpr = iy +

As we have seen, the spirit of the Feynman diagram approach is to “match” the amplitudes of

a given physical process. From the full theory, one needs to determine the processes involving the

heavy fields that we want to integrate out, then evaluate the S-matrix elements and organize the

result order-by-order according to the expansion parameter. From the EFT theory, one needs to

choose a suitable power counting scheme to select relevant effective operators and also evaluate the

S-matrix elements. By solving the matching conditions (comparing the matrix elements of these
two theories) at the UV scale,

(pISIk)™T = (p|S|k) Y| (2.9)

p2 <<M2 Y

we are able to extract the value of Wilson coefficients. This comparison steps precisely why the
Feynman diagram approach is cumbersome. For instance, in practical calculations, one has to
evaluate many Feynman diagrams in both UV and EFT theories, fix the gauge parameters, and
recombine the results to obtain gauge invariant operators. We will see in the next section that the
spirit of the path integral approach is to “match” the generating functionals of these theories once
and for all. Hence one can directly evaluate the value of Wilson coefficients.

2.2  One-loop matching by functional method

In recent years, the path integral formalism for one-loop matching has been intensely studied in
the literature. Unlike the Feynman diagram approach, this formalism took a while to develop
comprehensively, Refs. [73-79]. In what follows, we present the state-of-the-art techniques in this
formalism, which will conveniently adapt for different cases in the one-loop matching process. For
instance, one might have only heavy fields [3, 75, 80], mixed heavy and light fields [81, 82], or mixed
boson-fermion fields [6], inside the loops. Each scenario was studied in the literature. We aim to
present a unified framework recently derived in Ref. [79].
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Section 2.2: One-loop matching using functional method

Set up the one-loop effective action. We consider a general UV theory Luv|p], whose the
mass scale of the field content are largely separated. Explicitly, the multiplet ¢ consists of heavy
and light fields?,

o= (if) , assuming Mg, > my, . (2.10)

Using the background field method, one can write ¢ in terms of its classical configuration ¢, which
satisfy the equation of motions (EOMs) and its quantum fluctuations ¢. From the path integral
formalism, the effective action of the theory reads,

eiTuvlpe] — /Dgo et [ d*z Luvipetyl] (2.11)

The effective action at the one-loop order can be computed via saddle point approximation. We then
expand the Lagrangian around the classical configurations and collect the contributions involving
heavy fields,

1 5L
Luv[ee+ @] D Luv|y] < Skl

v dpi0p;

)i+ 06

CDHZ@H’C q>H:(I>H,c

1
+ 58 Qe+ 0%, (2.12)

= Luv[y]
by=®y.

where the first order functional derivative is vanished due to EOMs. The matrix Q is obtained
by taking the second order functional derivative of the UV Lagrangian. From the kinetic and
interactions terms of the UV Lagrangian, the matrix Q can be decomposed generally in terms of
inverse propagator matrix K and an interaction matrix X,
2
g 2 Fuy —K-X=K(1-K'X), (2.13)
5906(‘0 Sy=Pp .

where we have used similar notations as Ref. [79]. The matrix K is block-diagonal and its matrix
elements are given by

P2 — M? (scalar)
P (i 210
_gyu(PQ _ MZQ) + (1 — E)PMPV (VeCtOI')

where we have used the Hermitian covariant derivative operator P, = i¢D, instead of D,. We
note that the propagators of vector gauge fields are gauge dependence and one need to choose a
convenient gauge by fixing the value of parameter ¢3. The interaction matrix X encodes the effects
of new BSM states. Generally, one can parameterize this matrix as the form, Ref. [79]:

X[¢r, Pu) = U\|éL, [Py, ¢L], [Py, [P, OLl, -+ | + (PuZ' (L] + ZH[pL]Py) + - - - . (2.15)

2The multiplet of scalar, fermion or gauge boson fields will be presented explicitly in section 2.2.2.
3For the UV models with new scalar or fermion states, a convenient choice is Feynman - 't Hooft gauge with & = 1.
For the case integrating out massive vector gauge fields, see Ref. [72] for elaboration examples.
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Technically, X is parametrized as a series expansion in terms of “open” covariant derivative P,,.
The matrices U, Z*, Z* are functions of lights fields ¢; and “closed” covariant derivatives*. In
practice, it is quite rare for a UV model to contain derivative interactions with the “open” covariant
derivatives. Most of the time, we only use the first term of Eq. (2.15). It is worth emphasising that
we only use the EOMs of heavy fields. Substituting the EOMs of the light fields can be done in
the final step when it is necessary.

Substituting Eq. (2.12) into Eq. (2.11), the effective action is obtained as follows,

Tovipr] _ i f dhtoy [@H,c[¢L]’¢L] /DC/J exp <z’/dda: %@ Q‘P>
— ¢ [ d%xLyv [‘I)H,cWL]’ ¢L] SDet [Q] o

< Tuvlor] = /dd%ﬁUv [@welor], or] + %STY IngQ, (2.16)

where in the last equation we have used the fact that In SDetQ = STrln Q. The notation “S” abbre-
viate by the word “Super” so that SDet and STr are the generalizations of the regular functional
determinant and functional trace. The main idea is that the supertrace acting on a functional
operator O yields a + sign,

STrO =£Tr O, (2.17)

depending on the bosonic or fermionic nature of the particle inside the propagator. We will come
back this point in the next section for further technical discussions. The notation “Tr” denotes
the regular functional trace, i.e. the trace over functional space (momentum or position space)
and the trace over internal space (i.e. trace over color indices, gauge indices, - - - ). Evaluating this
functional trace is the central point over the scope of this manuscript. The first term in Eq. (2.16),
only depending on the classical field configurations, hence it will yield the tree-level effective action
when integrate out heavy fields. The second term in Eq. (2.16) will contribute to the effective
action at the one-loop order. Using the explicit form of the matrix Q given by Eq. (2.13), the
one-loop effective action reads,

Py " és] = 5STrinQ = S STrInK + £ STrin (1 - K~'X), (2.18)

where we have used the identity, STrin(AB) = STrln A + STrln B, which holds for any non-
commuting operators. It is worth emphasizing that Eq. (2.16) and (2.18) only tell us the UV
theory’s effective action up to one-loop order. To determine the value of Wilson coefficients, one
needs to define matching conditions properly.

Method of regions. The one-loop effective action in Eq. (2.18) contains all possible quantum
fluctuations including heavy and light fields. More precisely, Eq. (2.18) includes the contributions
at one-loop order resulting from the tree-level EFT Lagrangian. Our aim is directly derive the
EFT Lagrangian from the action of the full theory at one-loop order and beyond. This goal can be
achieved by using the so-called method of “expansion by regions”, Refs. [76, 83, 84]. The key idea
of this method is before evaluating the loop integrals by using dimensional regularization, one can

perform Taylor expansion to split F%; 190P) i1to hard and soft region contributions,
1-1 1-1 1-1
LU o) = TP ler) | + 00" lo]] (2.19)

hard soft

4P, is a functional operator which act on everything to their right. Besides, the “closed” covariant derivative is
obtained by writing as a commutator, [Py, ¢r] = (P.¢L).
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Section 2.2: One-loop matching using functional method

where the hard and soft regions correspond to the momentum regimes g ~ Mg, > my, and g ~
mg, < Mg, , respectively. Afterwards, the contribution of each region is obtained by integrating
over all possible loop momenta. The method of regions states that the contributions from the hard
region involve heavy fields (or mixed heavy-light fields) in the loops while the soft region involves
light fields only.

Matching conditions and EFT Lagrangian. Ultimately, in the path integral formalism, one
can systematically derive the matching conditions once and for all. The key point is to match the
generating functions of the two theories,

I'err(ér] = Tuvier] - (2.20)

Solving Eq. (2.20) order-by-order, one can determine the value of Wilson coefficients and write
down the EFT Lagrangian. Using the first term in Eq. (2.16), we obtain the solution of Eq. (2.20)
at tree-level as follows,

ﬁg;eTe) [61] = Luv[®PrclPL], oL] - (2.21)

As we have seen, the matching at tree-level is simply achieved by plugging the classical con-
figuration of heavy fields (which satisfy the EOMs) into the UV Lagrangian. The matching at
one-loop order is obtained by taking the contribution from the hard region of the effective action,
the solution of Eq. (2.20) at one-loop order is,

/ ALy =T3P lor)| (2.22)
hard

where the short distance behaviour of the UV theory is encoded inside the Wilson coefficients of
the local EFT operators. The solution (2.22) directly yields the EFT Lagrangian resulting from
one-loop matching computations [79],

d (1—loop) _'i { > 1 —1 n
/ d's Ly ™ [¢1] = 5 STrIn K - ;HSTr[(K X) } . (2.23)

At this stage, we highlight that Eq. (2.21) and Eq. (2.23) make the matching tasks ultimately
transparent. The Wilson coefficients are now directly computed without any prior knowledge of
the EFT Lagrangian. Unlike the Feynman diagram approach, we do not have to compute the
amplitudes of the EFT theory, and thus the comparison steps are entirely ignored.

The EFT Lagrangian given by Eq. (2.23) is decomposed in terms of two types of contributions:
The first term in (2.23) is often called log-type contributions while the second term corresponds to
power-type contributions. The log-type contributions only depend on the heavy field propagators
which arise from the kinetic terms of the UV Lagrangian. The computations of log-type terms will
generate pure gauge interactions®. The power-type contributions depend on the interaction terms
of the UV Lagrangian. Importantly, all effects of the heavy field only, mixed heavy-light fields, and
mixed boson-fermion fields inside the loops, are encapsulated in the second terms of Eq (2.23).

For example: F,, F* FFFYFP, ...

p s
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Chapter 2: Building Effective Field Theories from UV perspective

2.2.1 Evaluating the functional trace: Covariant Derivative Expansion (CDE)

We now turn to evaluate those functional supertraces given by Eq. (2.23). Without loss of gener-
ality, in position space, the functional operators appearing in Eq. (2.23) can be written in a form,
@) [Pu, U ], where P, = iD,, is a hermitian covariant derivative® and U contains a set of momentum-
independent terms. As a first step, we act the supertrace on functional operator (9[]3“, Ul,

STrO[P,, U] =+TrO[B,,U]. (2.24)

The =+ sign is determined by the bosonic or fermionic nature of the first propagator appearing in
the functional trace”. We note that the Faddeev-Popov ghost propagator is an exceptional case.
Since it has the Grassmannian numbers in the path integral measure, one has to treat the sign of
ghost propagator similar to the fermion case.

2.2.1.1 The simplified CDE method.

We now evaluate the functional trace “Ir” over all d-dimensional momentum space, then the

unity identity [ d?z|z)(z| = 1 and project the functional operator (’)[15#, U] into position space®.

Eventually, we obtain,

d
ST O[B,, U] = iTrO[PM,Uk] - i/ﬁI(qytro[PM,Uk]yq)

=+ [ d 5L‘|t1“(9[ ,Ukllq)

=+ [ d%

deiw (tr O[P,,Uy] > e (2.25)

where we have used the plane wave basis, (g| ) = (#] ¢)7 = €, and the remaining trace “tr” will
act to the internal space of operator O[P,, U] . Under the sandwich e'¢-*tr O[P,, U]e~%® we have

eiq'zP,ueiiq'm =Pi+q.— Pi—qu, eiq.IU(x)eiiq.x =U(z), (2.26)

where we used the fact the momentum integral is invariant under the change of sign of integral
variables, g, — —¢q,. We choose this convention for the convenience of the following computations.
Substituting Eq. (2.26) into Eq. (2.25) and using the matching condition at one-loop order (2.22),
we obtain the master formula of the simplified CDE method,

STrO[P,, U]

hard B i/dd / trO[ — ¢, U] . (2.27)

hard

The crucial points of the simplified CDE method are presented as follows:

6P, is hermitian conjugate up to integration by part, i.e. (AP,B)" = Bf(— S At = BTZB At = Btp, A",

"This convenient trick helps us not to get confused in the case mlxed boson-fermlon ﬁelds The fact that,
tr(KbUbefob) = tr(KfobeUbf) and tr(Ubefb) = —tr(Ubebf), so that the -‘r(—) sign from the inverse propa-
gator function K;(Ky) that appears first in those traces will not change the final result.

8Generally, in functional space P, = iG,+A, (&), and its expression in position space is P, = (8, —iA,(x)) = iD,..
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Section 2.2: One-loop matching using functional method

e Evaluating loop integrals. From the master formula (2.27), the effective Lagrangian is
obtained by performing an inverse mass expansion. Explicitly, using the Taylor expansion,

= A+ AAA + AAAAA +--- =) (AA)"A, (2.28)

n=0

1
A-1(1 - AA)

where in practical calculations A play a role as propagator functions. and then integrating
over all possible loop momenta. The next step is to expand the propagator functions in the
hard momentum regimes. If the loop integrals contain only heavy propagators, one can skip
this step.

Dealing with light propagators. For the case of mixed heavy-light fields in the loops, one
needs to Taylor expand light propagators in the hard momentum regions, ¢ ~ m%l > m%,
before performing the loop integrals. Explicitly,

1 1 1 9
s (2.29)
q2 - m% hard 2 q4

where the truncation of this expansion is optional, usually, we only take the contribution from
the zeroth order of the mass of light fields (i.e. 1/¢?).

Loop integrals. After expanding light propagators in hard momentum regions, one can
factorize out loop integrals and evaluate them once and for all. The loop integrals that often
appear in the computations have the following generic form,

ddq qﬂ/l e q/j’an
/ (2m)? (2 — MP)"i(q? — M7)" -~ (¢*)me

(2.30)

We note that these tensorial integrals can be decomposed in terms of scalar integrals given
by Appendix A. If the loop integral is divergence, we use dimensional regularization and the
M S-scheme for calculation and renormalization.

¢ Forming gauge invariant operators. The most crucial point in the simplified CDE method
is that the inverse mass expansion (2.28) will generate a series in the power of the “open”
covariant derivative P,. To obtain the effective Lagrangian with local operators, one must
combine the output of simplified CDE to form commutator structures. Such operators with
the “closed” covariant derivative will manifest the gauge invariant results. More detail about
forming commutator structures will be presented in the next chapter.

In summary, the main advantage of the simplified CDE method is that the one-loop matching
calculations can be performed very straightforwardly and efficiently”. However, it still contains some
drawbacks where we have to close the “open” covariant derivative to obtain the gauge invariant
results'C.

2.2.1.2 The Gaillard-Cheyette CDE method.

As mentioned in the above discussion, in the simplified CDE method, one has to close the covariant
derivative to avoid the operators which are not manifest gauge invariant. To systematically avoid
those operators, one can use the technique developed by Gaillard and Cheyette [73, 74] in the 1980s.

9In the next chapter, we will use the so-called Covariant Diagram technique, which allows us to select the terms
that we are interested in directly. Hence drastically simplify the calculations.
1071y the next chapter, we will present an algorithm to form the commutator structures efficiently.
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Chapter 2: Building Effective Field Theories from UV perspective

The key idea is to sandwich the naive CDE expansion (2.27) by the pair of operator insertions e’ Oq
and e 7% we have
5 _ d d’q P-0 _p.o
STr(’)[PH, U] =+ [ d« Se tr(’)[PH — qu, U] e a , (2.31)
hard (271-) hard

0

where 9} = 0. is the partial derivative with respect to the loop momentum variables g,,. We note
4y

that the operator e s will act to the right and yields a trivial unity function 1''. The remaining

operator e "% also becomes a trivial unity function if we integrate by part and act it to the left.

Eventually, the sandwich of Gaillard and Cheyette will not change our final results. However, these

operator insertions will put all the “open” covariant derivatives into commutators. Hence, the CDE

expansion will yield the desired manifestly gauge covariant operators. Explicitly,

-Pd

0
P (P, — g )e PP = —q, + FMCVDEG . POy e P — yCDE (2.32)
Qv

where the quantities F MC;D E and UYPE are defined as follows,

[e¢) + 1 an
FCDE _ _ ”(P P, P P,P,,> :
w nz:;) (n + 2)! H1s p2 Hn [ H ] aqmaqm . 'aan
Uert = i l <PM1PM2 T PMnU> 7 ) (2.33)
0 n! aqM aqu e '8qlm

where the parenthesis denotes that the covariant derivative is closed, i.e. they only locally act on
U and [P,, P,)| = iF),, with F},, is the usual field strength tensor. Besides, the closed covariant
derivatives can always be written in terms of commutators,

(PX) = [BuX] « (PP P X) = B[P [ PX] | | 230

In summary, the master formula of the Gaillard-Cheyette CDE method is presented as follows,

. (2.35)
hard

STr O[P,, U]

—i/ddx/ g of _ + pepE 9 pope
hard B (27[-)d G i a(IV ’

where the explicit expression of F S/DE and UYPF are given by Egs. (2.33). Technically, the
different main features of Gaillard-Cheyette CDE compare to simplified CDE are

e With the Gaillard-Cheyette CDE method, one can skip the step of closing the “open” covari-
ant derivative. Since the covariant derivative now always appears in terms of commutators,
the one-loop matching procedure will manifest gauge invariant in any steps of the computa-
tions.

e To obtain the effective Lagrangian, we still need to follow the standard procedure discussed
in the above subsection. More precisely, the inverse mass expansion and the expansion in
hard regions are analogous to the simplified CDE. However, an expenditure of this method

"gince derivative of one is zero, we have e %1 = 1.
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Section 2.2: One-loop matching using functional method

is that one must compute many momentum derivatives which act on propagator functions
before evaluating the loop integrals. In practice, such computations are often lengthy and
tedious. Fortunately, last year, the Gaillard-Cheyette CDE method was fully automatized in
the Mathematical packages, which two different groups developed. See, Cohen et al. [79, 85],
and Fuentes-Martin et al. [86].

2.2.1.3 Toy example: integrating out heavy complex scalar field.

To illustrate several technical points that we previously discussed, we present here a mini example
where we integrate out a heavy complex scalar field ®. Consider an UV Lagrangian,

Lyy D (D,®)(D'd) — M*|®|* — U . (2.36)

In the first step, we treat the scalar field and its conjugate as independent variables and put them
in the scalar multiplet pp = (® ®*)T. The UV Lagrangian can be written as follows,

ﬁUv3%(ﬁ<p(P2—M2—U)(p<p, (2.37)
where @3 = gojl), and we have used integration by part and hermitian covariant derivative when
rewriting this UV Lagrangian. Taking the second-order functional derivative with respect to ¢g,
one can identify the matrix K = P? — M? and the matrix X = U. The effective Lagrangian
resulting from integrating out the heavy field is obtained using the Eq. (2.23). Suppose we are
interested in a term,

/ddxﬁeft ) —%STr[K_lX] = —;STr[ (2.38)

1
P2 M2 U} ’
in this case O[P,U] = [1/(P? — M?)]U. This functional supertrace can be directly evaluated by
the simplified CDE or Gaillard-Cheyette CDE techniques.

Evaluating with simplified CDE. Using the master formula (2.27), we have

i 1 . 1
_QSTr[P2 } = /d / T U

(2—M2>[1+q2_M2<P2—2q-P>

:_/d%/ i tr[Ab+Ab(P —2¢-P)Ay+---]U (2.39)

d
ddx tr | M? log%z I (P*P"P,P, + P*P"P,P,)U + - -
" 602 wev v
(2.40)

dotr (02 (1 - 105 2 o - L [P, P [P*, P"|U + - -
v & 120M2 ’ )
(2.41)

where Ay = stands for bosonic propagators. In the last line of Eq. (2.41), we rewrite

1

g2 — M2
1

P*P"P,P, = 5 [P, P [P",P"] — P*P"P,P, , (2.42)

to eliminate the operator contains open covariant derivative. Eventually, we get rid of the usual

(4m)*

loop factor
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Chapter 2: Building Effective Field Theories from UV perspective

Evaluating with Gaillard-Cheyette CDE. We will also obtain the same result by evaluating
Eq. (2.38) with the help of the master formula (2.35), see Ref [79] for further technical detail,

i 1 A diq
2

+ F,ff EF;,DE( N

0 0
Ab + 4Ab q'u@Ab quAb) + - :| UCDE

0¢,0¢s

7

M? 1 ”
= Q/ddxtr[M2<1—logM)U—W[PM,PV][P“,P]U-F-“ ,

(2.43)
where we performed the inverse mass expansion for the propagator function,
ACDE _ 1 5 ’ (2.44)
[ —qu+ F“C”DEa(ZZ,] — M?
to obtain a series expansion in power of FSJDE . Additionally, we have used U¢PF = U since U¢PF

stayed in the right most and thus, the momentum derivatives act on unity function 1 have trivially
vanished. To obtain the final results, one needs to act momentum derivatives to the right before
evaluating loop integrals.

2.2.1.4 Some universal results

As seen in the toy example, one can write down a generic UV Lagrangian and perform the one-loop
matching without reference to any BSM models. The result of this exercise contains universal oper-
ator structures where the loop integrals are evaluated once and for all (for instance, see Eq. (2.41)).
The one-loop matching calculations for a given UV model are reduced to the matrix algebra ma-
nipulations (e.g. trace over internal indices). This idea is a prototype of the Universal One-Loop
Effective Action (UOLEA), Refs. [3, 80-82]. We leave the detailed discussions about this idea in
the next chapter.

2.2.2 Summary: one-loop matching using functional method

We have discussed in detail the main points of the CDE technique. It is undoubtedly a good time
to summarise the main steps and derive the prescription for one-loop matching via the functional
approach. More precisely, a step-by-step procedure is presented as follows:

1. Solving EOMs and matching at tree-level. From the first order functional derivative of
the UV Lagrangian with respect to the heavy fields, one can derive the EOMs by requiring,

0Luv
0Py Sp=2H,.

=0. (2.45)

The solution of these EOMs yields the classical configuration of the heavy fields. Substituting

®p . into the UV Lagrangian, one obtains the tree-level effective Lagrangian involving only
light fields,

Lo [or) = Luv[@relor), o] - (2.46)

In practical calculations, one needs to perform the inverse mass expansion for Lyy [CID Heldr), ¢ L]
to obtain a tower of effective operators.
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Section 2.2: One-loop matching using functional method

2. Deriving the fluctuation matrices. First, identify all independent fields in the UV theory
(including the conjugation of the complex fields). Afterwards, arrange those fields into suitable
field multiplets. A convenient choice is that the multiplets are formed from the fields and their
conjugates. For instance, the field multiplets of real scalar; complex scalar; Dirac fermion;
real gauge boson, are respectively presented as follows:

i Y
o =0 Yo = (@*) D pu = <\Ij> ;A=A (2.47)

and the hermitian conjugate of these field multiplets are

Ps=0; o= (01 T); @Gue=(U ¥); @a=4,. (2.48)

We emphasize that the step of identifying field multiplets must be done for fields of the
UV theory. In case the fermion fields are chiral, one must write down the chiral projectors
(i.e. Pr/g) explicitly. Eventually, the UV Lagrangian can be written in terms of these field
multiplets (see the above toy example). The fluctuation matrices are obtained by taking
second order functional derivative of the UV Lagrangian with respect to the field multiplets

2

82 Luv
Qij = 550 = 5UKZ — Xij R (249)
Pi SOJ q)H:q)H,c QH:(I’H,C
hence we can derive the inverse propagator matrix K and the interaction matrix X. Notice
that if X involves the heavy fields, one must replace them with their classical configurations.

3. Deriving the effective Lagrangian at one-loop order. The EFT Lagrangian resulting
from integrating out heavy fields at one-loop order is obtained from Eq. (2.23). In practice,
a priori, one should know the mass dimension of the interaction matrices. Hence we can
truncate the expansion (2.23) and enumerate relevant terms that need to compute. Next
step, we evaluate the functional supertraces using the master formula of the simplified CDE
given by Eq. (2.27) or the Gaillard-Cheyette CDE given by Eq. (2.35). The effective La-
grangian, E,SP:TlOOp ) [¢1], is obtained after finishing the standard calculations, namely inverse
mass expansion, expansion in hard regions, evaluating loop integrals, trace over the internal
indices. We emphasize that the computations with CDE techniques has been implemented
in the Mathematica packages, Refs. [85, 86].

4. Simplifying the final results. It is worth noting that the effective operators obtained from
the functional matching approach only respect the Lorentz invariant and gauge invariant. To
match the final results onto a given EFT operator basis (e.g. SMEFT basis), one needs to
apply the EOMs of light fields, integration by part, and Fierz transformations'?. From the
pragmatic point of view, this task can be done delicately by first mapping the results of the
functional approach to Green’s operator basis'® and then converting from the Green’s basis
to the SMEFT basis. Such converting tasks have already been done in the literature, Ref [87].

12Since we used dimensional regularization to evaluate divergence integrals, evanescent operators might appear
when applying Fierz identities.

I3SMEFT off-shell operator basis, where the effective operators are independent up to integration by part, but still
contain redundancies from EOMs.
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Chapter 2: Building Effective Field Theories from UV perspective

2.2.2.1 Application: integrating out Leptoquarks (ongoing project)

In chapter 1 of this manuscript, we have introduced some discrepancies in the flavour sector of the
SM, namely (g — 2),, anomaly and B-anomalies. Tree-level explanations of B anomalies have been
extensively studied already. At the one-loop order, there are many possibilities. In our project,
we consider systematically one- or two-particle explanations of B-anomalies assuming a common
origin with (¢ — 2),, anomaly. More precisely, the new particles must all enter the mechanisms
that explain the (¢ — 2), and B-anomalies, not partially. This restriction is beneficial because
it maximises the overlap of flavour anomaly explanations while minimising the extensions for the
SM. We then apply the EFT top-down paradigm to study the implications of these UV models to
the low-energy experimental measurements. We aim to show that if the muon anomalies have a
common origin and do not arise at the tree level, they will be excluded or discovered soon. Since
this project is still going, we state here our main tasks in this project as follows:

e Systematically classifying UV models. We base our study of the muon anomalies on a
catalogue of simplified models, which we derive through a diagram-topology analysis. This
catalogue represents all possible models — subject to the minimality assumptions discussed
below — that explain (g — 2), or the b — s anomalies through heavy (A > v) new physics.
The models are derived by enumerating the exotic field content that furnishes topologies
generating the leading-order effective operators appropriate to each process such that:

i) The operators are generated through one-loop processes.
ii) The only Lorentz representations allowed are scalars and vector-like fermions.

iii) The allowed SM irreducible representations are restricted to be finite.

These assumptions serve to define our use of the term minimal when applied to the simplified
models we study. Scalars and vector-like fermions live at an energy scale A > v, and working
exclusively with vector-like fermions will avoid issues of gauge anomaly cancellation. The
allowed colour representations are 1, 3, 3, 6, 6 and 8. We accept isospin representations of
dimension-4 and lower, and only allow hypercharges in the range [—2,2]. This range is chosen
to coincide with the range of quantum numbers characterising exotic multiplets that generate
dimension-6 operators at tree level [88]. After enumerating possible Feynman diagrams that
contribute to the mechanisms to explain (g —2),, and B-anomalies, we write the implied UV
Lagrangians. Our approach reproduced many UV models that were proposed in the literature
before, Refs. [89-95]. Since we aim to find a common origin of the muon anomalies, there are
only three UV models that pass our criteria.

1. There are only two possibilities for single scalar particle extensions of the SM, they are
51(3,1,1/3) model and Ry (3,2,7/6) model.
2. The last scenario is a two-particle extension involving only scalar and fermion. We found

uniquely one UV model, a model with the Ry scalar leptoquark and a vector-like quark
¥(3,3,2/3).

e Applying EFT top-down approach. Our analysis’s main point is to integrate these new
heavy particles and match the UV models onto SMEFT Lagrangian. This task is carried by
the path integral formulation for one-loop matching. We also cross-check our results by the
calculations with the Feynman diagram approach, which has been fully automatized recently
by the so-called MatchMakerEFT program, Ref. [96]. We note that the one-loop matching
for the S7 model has been entirely done by the diagrammatic and functional approaches,
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Section 2.3: RGEs running by functional method

Refs. [87, 97]. However, the model with Ry or (Ry + W) particles has not been intensively
studied in the EFT context yet. Eventually, several effective operators interested in this
analysis are listed in Table 2.1.

SMEFT operators physical observables tree-level matching one-loop matching

Oy Semi-leptonic decays v v
(’)l(;), (’)l(j) Semi-leptonic decays v v
OcB, Ocw (9—2)pu v

o) 0¥ oy, Z-pole v
(9((1(11), (’),(13) Meson-mixing v

Table 2.1: Some relevant SMEFT operators imply the presence of new heavy particles, e.g.
51(3,1,1/3), R2(3,2,7/6), and ¥(3,3,2/3).

2.3 RGEs running by functional method

As mentioned in the EFT top-down paradigm, one needs to run the Wilson coefficients from the
matching scale, u = A, down to the experimental energy scale, e.g. © = v. In this section, we show
how to derive the RGEs by using functional method. For further examples of RG running by the
CDE method, see Ref. [75, 78]. The key idea is to extract the RGEs from the one-loop effective
action T'1719°P)[5]. Suppose we are interested in the RG evolution of the Wilson coefficient of
operator Oy given by the EFT Lagrangian,

Lerr = Ok lp] + ey Oy [yl , (2.50)

where Ok denotes kinetic operators, who have been canonically normalized. To extract the RGEs,
the first step is to compute at one-loop order the effective action resulting from the Lagrangian
given by Eq. (2.50),

Ffull[(p] _ F(tree) + F(l—loop) > /d4l‘ |:(1 + C%floop))oK[(p] + (CY + Cg/lfloop))oy[@} ’ (2‘51)
where cg_l(mp), cg/l ~1ooP) oncoded the one-loop corrections for the operator Og and Oy, respectively.

The crucial point is that cl(»l_lOOp) can be calculated very efficiently by the CDE method or directly

recycle some universal results already pre-computed from Refs. [3, 6, 80-82, 98]. Next step, we
rescale the field ¢ to normalize the kinetic terms canonically,

1 1 -
0 — S0_[1_20([; 100p)_|_...:|807 (2.52)
11 oo
where we performed Taylor expansion around the small coupling cg_loc’p). The effective action

after normalize the kinetic terms reads,

i) > /d4:1; |:OK[Q0] + (ev + fi(/llo‘)p))Oy[go]] , (2.53)
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where fx(}*lOOp) is obtained after rescaling the field ¢. Eventually, we extract the RG evolution of

the coupling cy by solving,

d —100
o {CY + i p>] =0. (2.54)
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Chapter 3

The Fermionic Universal One-Loop
Effective Action

Recent development of path integral matching techniques based on the covariant derivative expan-
sion has made manifest a universal structure of one-loop effective Lagrangians. The universal terms
can be computed once and for all to serve as a reference for one-loop matching calculations and to
ease their automation. Here we present the fermionic universal one-loop effective action (UOLEA),
resulting from integrating out heavy fermions (Dirac or Majorana) with scalar, pseudo-scalar, vec-
tor and axial-vector couplings. We also clarify the relation of the new terms computed here to
terms previously computed in the literature and those that remain to complete the UOLEA. Our
results can be readily used to efficiently obtain analytical expressions for effective operators arising
from heavy fermion loops. ©)

3.1 Introduction and summary of results

The methods of effective field theory (EFT) have seen a resurgence lately in particle physics, due
in part to the lack of new physics discovery at the weak scale. If new physics is indeed decoupled
to heavier scales, as observations seem to be indicating, then the Standard Model (SM) should be
properly considered as an EFT supplemented by higher-dimensional operators. The coefficients
of these higher-dimensional operators encapsulate the new physics integrated out at some higher
energy scale. Calculating these coefficients from ultraviolet (UV) theories has traditionally been
performed using Feynman diagrams, where amplitudes involving the heavy degrees of freedom are
explicitly “matched” to the EFT amplitudes. However, a more elegant approach is to “integrate
out” the heavy particles by evaluating the path integral directly [6, 72-78, 80-82, 99]. While the
adoption of this approach for practical phenomenological calculations has been limited in the past
by cumbersome expansion techniques and the misconception that it could not account for matching
with both heavy and light particles in the loop, these technical issues have been addressed in the last
few years [75—77, 81]. New methods were developed to evaluate the path integral at one loop more
efficiently using improved expansion techniques (as for example the covariant diagram method [77]),
that could also include mixed heavy-light matching.

Compared to the traditional approach of matching Feynman diagrams, these path integral
methods have several advantages: they can be calculated more generally, directly and systematically
when computing a set of operator coefficients. Ultimately, it was pointed out in Refs. [72, 80] that
the one-loop effective action has a universal structure which makes repeated evaluation of the path
integral redundant. It is this set of universal terms and coefficients, evaluated once and for all, that
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forms the so-called Universal One-Loop Effective Action (UOLEA). Starting from the UOLEA, a
one-loop matching calculation is reduced to an algebraic manipulation of matrix traces.

The piece of the UOLEA that was first worked out, for the simplified case of degenerate masses
in Ref. [72] and generalised to the non-degenerate case in Ref. [80], contains terms arising from
integrating out heavy bosonic fields ® which couple to light fields ¢ via a Lagrangian of the form

Luv[e, @] = Lol¢] + @ (P? — M? — U[g]) & + O(2%) (3.1)

where P, = 4D, is the Hermitian covariant derivative, M is a diagonal mass matrix for the heavy
fields ®, and the model-dependent couplings of ® to ¢ are encapsulated in the matrix U[¢]. By
virtue of keeping the covariant derivatives intact, the UOLEA can thus be written as an expansion
in covariant derivatives, i.e. a covariant derivative expansion (CDE) [73, 74, 99]. In the end, to
obtain the low-energy EFT Lagrangian up to dimension-six operators, one simply needs to insert
the matrix U[¢] into the UOLEA:

LU = —ieg tr { 3 Ui + [ G Gy + 7 Uy Uy

i
+ fEZ; [PH, G;w,i] [Pm G;py] + fé G/Nu,iG/VmiG,pﬂ,i

+ I[P, U1 [Pu, Usil + f2% Ui Ui Ui + £ UGl Gl
+ 118" UgUsnUiaUsi + f11° Usg[P*, Ui [Py, Uil

+ fib [PY, [P U] [P, [Py, U] + fi UiUsi G G

+ [P Ul [P Uil G

+ 1L (U5 [P*, Usi) — [P*,U3]U3:) [P, Gy ]

+ 16" UigUitUniUinUni

+ A UG Uk [P, Ul) [Py U] + 157 Uy [P*, Ui Usa [Py, U]

+ fﬁ)klmn UijUijklUlmUanni} (32)
=510 + 1{0N) + PN (3.3)
N

The prefactor ¢y = % for each real degree of freedom (e.g. real scalar, vector) and can be taken as
¢s = %1 in some other cases [72]. The universal coefficients fy}~ are functions of heavy particle

masses m;, mj, ..., and are expressed in terms of a set of master integrals. The field strength matrix
is defined as G:W = —[P,, P,] = —igG, and the subscripts 7,7,... on G and U instruct us to
take the corresponding block for particles 4, j,.... In Eq. (3.3), we have schematically summarised

the entire expression by three UOLEA operator classes: those involving only covariant derivatives
((O)g\];)), only interaction matrices (@S\lfj)), and both ((O)%DU) ). We refer the reader to Refs. [72, 77, 80]
for the derivation of this bosonic UOLEA, though we stress that it is no longer necessary to re-do
the path integral calculation for each specific model given the availability of these universal results.
The UOLEA operator structures, written in terms of the matrices P and U, become EFT operators
when substituting in the specific forms of these matrices, in terms of the light fields and for a given
UV model, which can then be rearranged into the desired non-redundant EFT basis.

There are, however, additional structures that arise in some UV Lagrangians which lead to
new terms in the UOLEA beyond those in Eq. (3.2). In particular, for UV Lagrangians containing

!Note that the UOLEA can be expanded indefinitely in the CDE; in Eq. (3.2) and, later, the fermionic UOLEA
we terminate the CDE to keep only all UOLEA operator structures necessary for obtaining EFT operators up to
dimension six.
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heavy fermion fields, further terms in the UOLEA arise from fermionic loops. While some of
them can be obtained from the bosonic UOLEA (3.2) by “squaring” the functional determinant
(see, e.g., Appendix Al of Ref. [72], Appendix E of Ref. [80] and Eq. (3.19) or Ref.[77]) to put the
UV Lagrangian into the form of Eq. (3.1), this only yields partial results when the interactions
involve v matrices?. It is therefore necessary to extend the UOLEA to properly include fermionic
loops.

In this work, we present this fermionic UOLEA. It can be applied straightforwardly to the case
of fermions in an analogous manner to the bosonic case described above. Specifically, we consider
a UV Lagrangian capable of parametrising all possible renormalisable UV theories for a heavy
multiplet of fermions W interacting with a light multiplet of bosons or fermions ¢ of the following
form?:

Luv[p,¥] = Lo[g] + ¥ (P - M —X[¢]) T, (3.4)

where we decompose the interaction matrix X [¢] into scalar, pseudo-scalar, vector and axial-vector
couplings matrices as?

X[¢] = Wolo] + Wi[¢]in® + VulsIr* + Aule]yy . (3.5)

The low-energy EFT at one loop is then obtained by substituting these matrices into our fermionic
UOLEA, which reads schematically

L%rorrﬁgrxc Jheavy Zf(P P) )@(WO Jrf(Wl)(D) (Wh) + f (WoWh) (O)E\I[/VoWl)

+f(PW0 PWO) +f (PWh) gwl) +f(PWOW1)@§\I;WoW1)

f(V)(O) f(A +f(VA VA)
+f(PV +fN (PA +f(PVA (PVA)
+ f(W()V ©(W()V + f(W1V @(le + f W()WlV)@(WoWlV)

Jrf(PWOV (PWOV e PW1V)©(PW1V PW0W1V)@(PWOW1V)

+ Iy
n f(WoA @(WOA n f (W1 A) @(WlA n f (WoW1 A) ©(W0W1A)

+f(PWoA PWOA) e PWlA)©(PW1A (PWoW1.4) (PWo Wi A)

+ fy N
f(WOVA)@ WOVA n f(W1VA)@ wiva) f (WoW1V A) @(WQW1VA)

" f(PWoVA)@(PWOVA n f (PW,V A) ©(PW1VA) " f(PWoW1VA)©(PWoW1VA)

(3.6)

There are a large combinatorial number of possibilities for the fermionic UOLEA operator structures
when including all coupling matrices in Eq. (3.5). We will see, however, that when calculating
specific cases one can employ power counting to pick out the UOLEA operator structures that are
relevant for matching to a set of desired EFT operators. Moreover, if the low-energy EFT does
not contain massive vector bosons (e.g. arising from a broken gauge symmetry), then only the first

29quaring the functional determinant with the coupling matrix in Eq. (3.5) would yield “open” derivative couplings.
Besides, an “open” covariant derivative will get shifted, P, — P, — qu, and lead to non-trivial structures that were
not encapsulated with the existing bosonic UOLEA.

3The parametrization in Eq. (3.4) works for the case with pure heavy Dirac (Majorana) fermions in the loop. See
Appendix B for more details about integrating out Majorana fermions.

4Some UV models might contain derivative couplings, for example, V,, = (Oud).
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Universal terms available in the UOLEA

Heavy-only Mixed heavy-light + derivative couplings
Bosonic v [80] v [82] -
Fermionic v [this work] © (V) —()
Mixed statistics (V') (V) —(

™) do not arise in renormalizable UV theories.

Table 3.1: Status of the UOLFEA. Entries marked by “v'7 are available in the form of operator
structures built from the various types of couplings that appear in the quadratic Lagrangian. Entries
marked by “(v')” are not available in the same form, but can be computed by plugging fermion
couplings into the results of Ref. [6] and evaluating Dirac matriz traces. Entries marked by “—7”
have not been computed in the literature, though the techniques for computing them are available.
See text for details.

two lines of Eq. (3.6) are needed, comprising a relatively compact set of UOLEA operators. These
UOLEA operator structures, along with their universal coefficients for the degenerate mass case,
are tabulated below in Tables 3.4, 3.5, 3.6 and 3.7. Explicit results for the non-degenerate case and
for the rest of Eq. (3.6) are available in a Mathematica notebook on GitHub ©, [100], as explained
in Sec. 3.2.4.

The bosonic UOLEA presented in Ref. [80] (summarised above in Eq. (3.3)) and fermionic
UOLEA presented in this chapter (summarised above in Eq. (3.6)) complete the one-loop matching
master formula that includes loops involving heavy bosonic fields and heavy fermionic fields, re-
spectively, for UV theories whose Lagrangians take the form of Eq. (3.1) or Eq. (3.4), and for up to
dimension-6 operators in the EFT. Other UV theories exhibit additional coupling structures which
are not captured by these UOLEAs, such as tensor current coupling (involving o,,), derivative
couplings (which give rise to “open covariant derivatives” in the quadratic Lagrangian) and mixed
bosonic-fermionic loops. If the UV Lagrangian includes terms coupling heavy fields linearly to the
light fields, Lyy D ®TF[¢] + h.c., then mixed heavy-light loops also contribute.® For the bosonic

bosonic,mixed

case, the mixed heavy-light terms, Lo pa , were computed in Ref. [82], where it was found
that the operator structures in E%‘)OSirEXmIXEd mirror those in E%‘g;‘gghea\’y with a much larger num-

ber of terms due to the heavy-light combinatorics. We expect the same for the fermionic UOLEA,
though given the proliferation of terms already in the heavy-only case we find it less compelling to
also tabulate the mixed heavy-light terms explicitly.

In Table 3.1 we summarise the progress of the UOLEA program. Fermionic results are also
available in Ref. [6], though not in the same form as our expressions since the various matrix
substructures are not expanded as in Eq. (3.5) — they can be computed, together with additional
structures such as mixed fermion-boson and heavy-light loops, after plugging in these substructures
and further evaluating the resulting Dirac matrix traces. Finally, UV theories involving derivative
couplings generate additional terms in the UOLEA which have not yet been computed, though

SLinear couplings also generate tree-level contributions, but loop-level mixed heavy-light contributions can in
certain cases be the leading terms for certain operators [101].
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Section 3.2: The Fermionic UOLEA

for the fermionic case they only arise when matching to non-renormalisable UV Lagrangians. The
UOLEA has, so far, also been limited to those terms necessary for obtaining EFT operators up to
dimension six only. Nevertheless, it is worth emphasising that, following the technical development
of evaluating one-loop functional determinants with general structures [75-78], one-loop functional
matching is a fully solved problem, independently of the availability of the UOLEA that captures
those additional structures. The usefulness of the UOLEA lies in its packaging of certain universal
steps of the calculation into the form of a master formula.

The chapter is organised as follows. In Sec. 3.2, we describe our calculation of the fermionic
UOLEA and present the final results for the universal coefficients of the UOLEA operators. We
then present examples illustrating the use of the fermionic UOLEA for efficient one-loop matching
calculations in Sec. 3.3, before concluding in Sec. 3.4.

3.2 The Fermionic UOLEA

Fermions, by virtue of their symmetry properties, necessitate additional care as compared with
spin-0 bosons, which have been the primary focus of CDE developments thus far. Some previous
work on using the CDE to integrate out heavy fermions had employed the approach of squaring
the argument of the functional trace in the effective action so as to bring it into the same form as
bosonic loops, for subsequent insertion into the bosonic UOLEA as written in Eq. (3.2) [72, 102].
However, this approach cannot be straightforwardly applied to the case where fermion coupling
structures contain gamma matrices beyond that accompanying the covariant derivative .

As was pointed out for example in Refs. [75, 77], the argument of the functional trace need
not be squared, in which case a CDE and universal one-loop action may be still be formulated,
with a somewhat different structure from the bosonic UOLEA of the previous section but one that
simplifies the UOLEA as applied to fermions. This procedure was employed in Ref. [6] to obtain
contributions to the UOLEA from integrating out heavy fermions, though they do not decompose
the general coupling matrix X into its Hermitian matrix substructure constituents so that their
final result still requires taking the trace over v matrices.

Here we provide a master formula in terms of these matrix substructures. In this case, as will be
expanded upon in detail in the rest of this section, it is straightforward to account for all possible
Lorentz structures of fermionic coupling matrices to light fields, thereby allowing for the completion
of a fermionic UOLEA.

3.2.1 One-loop matching from the path integral

Let us begin by reviewing the basic idea of one-loop functional matching, focusing on the case of
integrating out heavy fermions. Consider a UV Lagrangian containing a multiplet of heavy Dirac
fermion fields ¥ and light fields ¢. Assuming the heavy fermions ¥ couple to the light fields only
via bilinears, the UV Lagrangian can be written in the form

Louv[p,¥] = Lo[g] + ¥ (P - M —X[¢]) ¥, (3.7)

where P, = iD, and M is the diagonal mass matrix for the multiplet ¥. In order to maximise
the analytical and physical utility of the universal structures obtained by using the CDE method
to obtain the fermionic UOLEA, it is useful to decompose the interaction matrix X[¢] into scalar,
pseudoscalar, vector, axial-vector and tensor parts. As we restrict our scope to renormalizable UV
theories here, we exclude the tensor coupling, and write

X[¢] = Wolg] + iWA[g]y® + Valolv" + Aulolv"° (3.8)

59
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where the Wy, W1, V,,, A, coupling matrices are Hermitian. Obtaining the effective action for the
UV lagrangian above is performed in the standard way, by integrating out the heavy fermion W:

eiSet 0] — /D\I’D\If eiSuv(s,¥]
~ giSuvier] / Diy Dyt J 4w a(P=M=X[6) )

= ST et (P — M — X[g]) = ¢SVt HIn(PMXle]) (3.9)

In going from the first to the second line, we have expanded the heavy fields around their classical
background values, ¥ = W, + 7, so that the integration is performed over the quantum fluctuations
7, around the UV action evaluated at this classical solution. We therefore arrive at the one-loop
effective action arising from integrating out heavy fermions:

SIOP — i Trin (P — M — X[g¢]), (3.10)

[S)

where “Tr” denotes a trace over both internal indices and over the functional space of the operator
(P - M — X[¢] ) We then evaluate the functional trace by making use of the momentum eigenstate
basis, and employing the standard trick of inserting the identity,

d
Sloor = / gjd@trm (P M~ X[g]) o)

dd

Byt

where now “tr” denotes a trace over internal indices only. In the last line of (3.11), we have used
(x| ¢) = e7** and made a conventional change in the integration variable ¢ — —¢q. Further details
of these functional manipulations are reviewed in Refs.[72, 77].

The one-loop effective action of Eq. (3.11) must then be expanded in the hard region, where the
loop momenta ¢> ~ M?, to obtain the low-energy effective Lagrangian consisting of local operators,
as explained, for example, in Refs. [76, 77]. This method of regions ensures that both heavy-only
and mixed heavy-light loops are correctly accounted for in the matching calculation. In the present
case of heavy-only terms, the hard region contribution coincides with the full integral, so we obtain

$|trln(lz’ M — X[])|q>

Jtrin (P —¢— M — X[g]), (3.11)

d
Llloor — —i/(;l(idtrln (P—d¢—M—X[¢])

- ZtrZ / [g 7 P Woldl + WL [B1Y° + Vulol" + Auld]r*°) " (3.12)

The second equality makes explicit the universal operator structures that appear in the one-loop
effective action, and hints at the universality of the corresponding operator coefficients. After
expansion and computation of the integrals over the loop momenta, this expression is clearly the
fermionic analog of the familiar expression for the bosonic UOLEA of Eq. (3.2). We can also see
that by virtue of separating X into the sum over the Wy, Wy, V,, and A, components, we can
apply our physical intuition for what types of combinations of structures can appear both in the
UOLEA itself, and when considering specific models. This will become more clear in the rest of this
section, where we discuss the universal structures in more depth, and in Sec. 3.3 when we apply
the fermionic UOLEA to several examples.
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3.2.2 Universal operator structures in the fermionic UOLEA

In the previous subsection we have described how to obtain a general expression for the fermionic
UOLEA. However, as written in Eq. (3.12), the utility of the UOLEA is not yet apparent.

It is important to recall that an attractive feature of the bosonic UOLEA is that once the
analog of Eq. (3.12) is expanded out to obtain e.g. Eq. (3.2) (for heavy-only loop contributions
to EFT operators up to dimension 6), all necessary structures in the one-loop effective Lagrangian
are known and enumerated, and their universal coefficients are calculated once-and-for-all. Having
all the possible structures enumerated makes for intuitive application to integrating out particles
in specific UV models. Knowing the specific form of the interaction matrix U of Eq. (3.2) for the
UV model being studied allows for dramatic simplification of computation of the one-loop effective
action, since not all the bosonic UOLEA operators would contribute to the specific EFT operators
of interest. As a trivial example, let us consider a quartic |®|?|¢|? interaction in the UV, such that
U ~ |¢|%. If one is interested in the bosonic UOLEA at dimension 6, it is evident that the term
fio UY in Eq. 3.2 is of higher dimension so it will not contribute, and therefore US can be discarded
without being computed.

Turning to the Fermionic UOLEA, from the form of Eq. (3.12), we can see that ultimately there
will be a proliferation of universal structures in the final one-loop effective Lagrangian, which can
be written compactly as

clemonic — 37 fy Qi oWAVY (3.13)
N

Due to the variety of matrix coupling structures denoted in the superscript set, the fermionic
heavy-only UOLEA has a large number of operators in the sum arising from all the (non-vanishing)
combinatorial possibilities, in contrast to the bosonic heavy-only UOLEA’s 19 operator structures.
An expanded sum of the UOLEA operator classes is presented in Eq. (3.6) and Tables 3.2-3.3,
where we enumerated all the different classes of possible UOLEA operator structures.

The advantage of separating X into Wy, W1, V, A is now apparent: all possible universal fermionic
UOLEA operators are obtained and their coefficients computed and tabulated once and for all,
analogously to the bosonic UOLEA. When inserting a UV model into the fermionic UOLEA, com-
putation of the Wy, Wy, V, A structures then allows for transparent power counting, as well as
enabling simple symmetry cross-checks. We now describe this in more detail for each of these
(non-vanishing) structures and their combinations listed in Tables 3.2 and 3.3.

Scalar and pseudo-scalar structures (W, ;)

From the Lagrangian as written in Eq. (3.7) and the expansion of X in Eq. (3.8), it is clear that if
the heavy fermion that is integrated out has couplings to scalar operators, these will be captured by
the Wy matrix structure. Likewise, in the case of couplings to pseudoscalar operators, these will be
captured by the W matrix. The Wy (W1) matrix is therefore even (odd) under parity, which will
allow us to easily intuit what UOLEA operators might be formed and therefore contribute to the
final result of Eq. (3.6). All such structures are listed in Table 3.2. Indeed, the parity properties
of the matrices and their impact on the operator structures is clear. As a scalar structure, W
can appear in both even and odd powers. In contrast, Wi, as a pseudo-scalar structure, must
always appear in even powers, or accompanied by P*. That the latter is permitted follows from
tr(yHyYyPy°5) # 0, so that one can already see that the only EFT operators arising from such a
structure will involve pseudo-scalars coupling to FF.
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Operator class Non-vanishing structures
o) pt, pS
0(Wo) Wo, Wg, W, Wi, W, W§
o W2, Wi, Wi
QWoW) WoWZ, WeW2, WEWZE, WoWt, Wiw, Wewi
QFPWo) P2WZ, P?W§, P*Wy, P2W, PAWE
QPW1) P2W2, PAWy, PPW, PAW?
Qo) P2WoWi, PAWoWy, PPWEW?
@(V) V2, V4, i
o“ A?, A% AS
o4 VA3 V2AZ VA VA V2AL V3A3 VA2 VP A
oY) PV3,P2V2 P3V, PV P2V4 P3V3 PiVE POV
or4) PA3,P?A% P3A, PA®, P?A*, P3A3, PYA% PP A
PAV? PA%V,P2AV, PAV* PA%V3 PA3V? PA*YV,
QPAY)
P2AV3 P2A2V2 P2A3V, P3AV? P3 A%V, PAAV

Table 3.2: Non-vanishing operator structures in the fermionic UOLEA that involve covariant

derivatives (P) plus either scalar and pseudo-scalar structures (Wy, W1), or vector and azial-vector
structures (V, A).

Vector and axial-vector structures (V, A)

These structures will appear if the UV Lagrangian contains fermionic couplings to vector bosons
that do not appear in the covariant derivative operator P. This would occur, for example, if the
heavy fermion current is coupled to a light gauge boson such as the Z,, of the SM (in this case
the low-energy effective theory with Z,, not in a covariant derivative would not be the SMEFT),
or an AL associated with a broken U(1)" whose mass was sufficiently small compared with that
of the fermion being integrated out. These results are particularly useful if one is interested in
matching to low-energy EFTs containing massive vector bosons. In this case, it should be noted
that the covariant derivative operator P only contains the gauge fields associated with the remaining
unbroken symmetries.

Even if the gauge boson content of the low-energy theory is purely that of the SM, these
structures must be included in a complete fermionic UOLEA if one wishes to apply it to matching
with general EFTs. We will see examples in Sec. 3.3 where the V and A structures appear.

As in the case above of W, Wy operator structures, the power counting and enumeration of
non-vanishing V' and A combinations is straightforwardly obtained from symmetry arguments. All
structures that contribute to EFT operators up to dimension 6 are listed in Table 3.2. We can
see that by virtue of the symmetry properties of both V' and A, they must always appear in the
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Operator class Non-vanishing structures
QVWo) VEWE, VWS, VAW,, VEWE, VAW
o) VEWE, VAW, VW VAW
o(VWoW1) VEWoWE, VAW W, V2IWEWE
PVW,, PVWE, PVW3, PVWE, PV3Wy, P2V Wy, P2V2W,,
QPVW)
P3VWE, PV3Wg, P2V2W§
oFVW) PVWE PVW{, PV3Wy, PPVWy, PPV2Wy, PV3WE, PSVIWE, P2V2IWE
QPVWoW1) PVWoWZ, PVWEWE, PSVWoWy, P2V2WoWy, PV3W W)y
QAWo) A2WE, ATWS, AW, APW, AW
QA1) A2W2, AWy, AW, ACWE
QAWoW1) APWoW2, AYWy Wy, A2WEW?
Q(PAW) PA3W,, PP AWy, P2A?W,, PP AW, PASWE, P2A?W§
oFAW) PAWy, PAW}, PASWy, PPAW, P2A*Wy, PASWE, PP AWE, P2A?W?

QWPAWOWL) 1 pAWGW,, PAWZW,, PAW W, PAWSW,, P2 AW Wy, P2 A2Wo W1, PASW, W,

QAVWo) VAW, V3 AW, V2A2W,, VIAWE, V ASWE, V2 AW

AV VAW, VAWE VAW, VEAW,, VZA2W,, VASWE, VEAWE, VZA2W?

QUYWoW) 1V AW W1, V AWEW,, V AWWS, V AWSW, VAW, W1, V ASWo Wy, V2 A2Wo W

Q(PAVWo) PAV2W,, PAV2WE, PA’2V Wy, PA2VWE, P2AVW,, P2AVIVE
QPAVIY) PAV?W,, PAV2W}, PA2VW,, PA2VW3E, P2AVW,, P2AVIV?
QP AVWoW) PAV2WoW1, PA2VWWy, P2AVW W,

Table 3.3: Non-vanishing operator structures in the fermionic UOLEA that involve both (pseudo-
)scalar and (azial-)vector couplings.

combinations P*V!A™ with k + [ + m even.

General case (W, Wi, V, A all present)

The above discussion can be extended further to the situation when all possible structures in
Eq. (3.7) are present. In this most general case, one gets a proliferation of possible combinations
and operator classes, all of which are listed in Table 3.3.

Once again, the power counting is straightforward, and follows from trace identities of gamma
matrices. As before, scalar structures Wy can appear without restriction, while pseudo-scalar
structures W can only appear in combination with operators such that the overall number of +°
matrices is even, or in combination with four y* matrices.
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3.2.3 Computing UOLEA operators with covariant diagrams

To evaluate the expansion in (3.12), we use the covariant diagrams technique of Ref.[77] to keep
track of the expansion and directly compute the Wilson coefficient for each EFT operator. Each
term in the CDE expansion (3.12) can be represented by a covariant diagram, which can be written
down directly by a systematic set of rules. We then straightforwardly obtain the prefactor coefficient
and the one-loop master integral associated with the diagram we are considering. The details of the
covariant diagram technique are described in Ref.[77]. Here we summarise the essential ingredients
relevant for the present case of heavy fermion loops.

e Fermion propagator:
Each fermion propagator can be decomposed into two terms,
g+M_q2—M2 q2_M2’

(3.14)

where the first term is the heavy bosonic propagator multiplied by the mass. The second term
involves the loop momentum g, in the numerator, which will contribute to the loop integral.
The loop integrals have the general form

/ ddq qul . q,uan
(2m)? (g2 — MP)™i(g? — M) - - - (g?)me

= g Il (3.15)

where gHtH2ne ig the completely symmetric tensor, e.g. gHt"P? = gt gP? + gHPg"? + g g"P,
and Z are master integrals, a useful set of which can be found in Appendix A or Ref. [77].
The symmetric tensor in (3.15) will contract the Lorentz indices of Dirac matrices in the
fermionic propagator, then we must sum over all possibilities of the contractions. In the
covariant diagram, we shall use dotted lines to indicate the contractions among the fermionic
part of the propagator in Eq. (3.14), following the conventions of Ref. [77].

e Vertex insertions: From Eq. (3.12), all vertex insertions, y* P, Wy, iv>W1,v*V,, and v*v°A,,
are independent of the loop momentum ¢, and thus do not change the loop integrals. We
note that the vertex insertions will not be contracted with each other or with the propagators.

¢ Dirac trace evaluations: By construction, P, Wy, W1,V and A, do not involve additional
Dirac matrices. Therefore, after reading off the value of each covariant diagram, the trace over
Dirac matrices is factorized out and evaluated once-and-for-all. The trace in the final results,
still denoted by “tr” is over the remaining internal indices, e.g. SU(2) and color indices.

¢ Renormalisation and divergences: For the one-loop divergent integrals, we use dimen-
sional regularisation and the MS-scheme for renormalisation. The important point in the
case with divergent integrals is that the trace over all Dirac matrices have to be evaluated in
D = 4 — ¢ dimensions, and the e-term resulting from the contractions of the metric tensor,
9uwg"” = D, must be kept in the computations. This term can hit the 1/e pole resulting from
a divergent integral and yield a finite contribution to the Wilson coefficient. It is well-known
that in D = 4 — ¢ dimensions, the relations {y*,7°} = 0 and tr(y#+*+*7°°) # 0 cannot be
satisfied simultaneously [103, 104]. In our calculations, we use the Breitenlohner-Maison-'t
Hooft-Veltman (BMHV) scheme [105, 106].

e Covariant derivatives in commutators: By expanding the one-loop effective action in
Eq.(3.12), we will obtain operator structures that carry “open” covariant derivatives, P,.
We emphasise that the P, in the CDE expansion is a functional operator, i.e. P, will act
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on everything to the right. To construct an effective operator we need a “closed” covariant
derivative where P, will only act on its immediate nearest neighbour in the operator; we
thus need to organise the final results such that P,’s only appear in commutators (see e.g.
Refs. [72, 77, 78]). To be concrete, let us consider for example a functional operator P,Wj
acting on a generic functional ¢:

PuWo ¢ = (BuWo)pea1 @ + Wo (Pud) (3.16)
we then combine all operator structures with P, into commutators,
(PuW0)1oeal @ = (PuWo — WoP,) ¢ = [Py, Wo] ¢. (3.17)

In practice, we first write down a basis set of independent operators where P,’s only appear
in the commutators, and then expand the commutators and match the results from the
functional trace expansion to solve the system of equations and determine the coefficient of the
elements in the “commutator” basis that we chose. We note that the operator structures with
adjacent covariant derivatives, tr ( .p2... ), can be dropped to simplify this computation,
since the non-P? terms are sufficient for reconstructing the universal operators written in the
commutator basis when matching to the expanded form (see Ref. [77] for details).

e Hermiticity of the operator structures: Since covariant diagrams that are mirror images
of each other are related by hermitian conjugation, only one in each such pair needs to be
computed. We will also use the hermiticity of the Lagrangian to identify the number of
irreducible operator structures. In particular, when the vector and axial-vector structures
are included in the matrix X |[¢], the hermitian conjugate relations can drastically reduce the
number of operator structures we need to evaluate.

Let us consider a simple example to illustrate concretely some of these points, taking a coupling
matrix X[¢] that only contains pseudo-scalar structures. We would then compute the universal
coefficient of the operator structure P2W¢ as follows:

Wiy
O O O O O
7 Py + + + +
oP*wWi _ O O O O O (3.18)
+ +
O O O

Making use of the covariant diagram rules given by Ref. [77], we readout the value of each diagram
in Eq. (3.18),
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@P2W12 = %m‘llf tr (PiW1'y5PiW1’y5)
+ im2T[¢?)} [tr (V“PVMiWwE’PiWWS) + tr (PW”iWwE”yuPiWWE’)

1 . . 1, .
5t (PY Wy PryuiWiy®) + St (P ™y Piviyy,)
, 1 _ . 1 . .
+iZ[g"]} | tr (Y PUiW Y PiWin®) + Str (Py Wiy y Py iwin )

1 , .
+5tr (P Wiy PryiWin )

=i (2m*T} — 16m*Z[¢*]} + [48 — 4€| Z[¢")}) tr (P,WA P, 1), (3.19)

where the loop integral Z [(14]4

; 1s divergent and thus we evaluated the Dirac trace in D = 4 — €
dimensions and kept the O(¢) terms. Note that we have omitted diagrams where the two P
insertions are adjacent, because they lead to terms proportional to tr(...P?...), which provide
redundant information for constructing independent operators as discussed above. Finally, we
re-write the operator structures in Eq. (3.19) in terms of commutators, using

28 e (B P) 5 1D b (1B WA [P W) (3.20)

and therefore obtain the final result

LrppP16] 2 i (m'T} — 8m®T(¢]} + [24 — 2¢] Z{g"]}) tx ([P, Wi [Py, W)

i2 m? 2
> a2 (— logﬁ + 3> tr ([P, Wi [Py, Wh]) , (3.21)

making use of the master integrals listed in Ref. [77].

3.2.4 Results for the universal coefficients

We now present the results of the calculation outlined above, listing here only the UOLEA operators
with P, Wy and W; terms where all fermions in the loop are degenerate in mass. In this case,
there are 52 distinct operator structures in the UOLEA, and we tabulate their coefficients in
Tables 3.4, 3.5, 3.6 and 3.7. The coefficients and operators containing only P’s can be found in
Table 3.4. The operators contain the coupling with scalar structures 0Wo) @(FWo) are tabulated
in Table 3.5, while the coupling with pseudo-scalar structures oW1 0PW1) are in Table 3.6.
Finally, the coefficients of the operators containing a mixture of scalar and pseudo-scalar structures
OFPWoW1) are listed in Table 3.7. Note that each universal coefficient in the Tables 3.4, 3.5, 3.6
and 3.7 has to be multiplied by the factor ¢, and that repeated Lorentz indices are implied to be
contracted (though they are all written as subscripts for typographical convenience).

Results for the more general non-degenerate mass spectrum and including the vector (V) and
axial-vector (A) structures in the degenerate case are lengthy, so we include them in a Mathematica
notebook made available on GitHub © [100]. Some of the UOLEA operators involving V and A
that will be used in the examples in Sec. 3.3 are shown in Table 3.8.

For the user’s convenience, we organised the Mathematica notebook as follows:

e We remind the user that the effective Lagrangian will be a summation of all universal operators
we have tabulated in the Mathematica notebook. The coefficient of each operator has to be
multiplied by a factor of 7. Afterward, we have to read off the value of the master integrals,
as tabulated in Ref. [77]. We note that the coefficients include the O(e) terms that can cancel
the % pole from the loop integrals and yield finite contributions.
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0P terms

—3Timi + AmPIg?] + (5¢ — 8)I[q"]; [Pus BBy P

7

24miZ(q")} — 2miZ(q?)} — 64Z(¢°1} | [Pu, [P P[P, [Py, P

(3

—3IPm{ + amZ(®]} — PI[¢°} [Pus Po] [P, P[P, Byl

Table 3.4: Pure gauge operator structures in the fermionic UOLFEA.

OMo) terms
am;T; Wo
2I7m7 + (8 — 26)Z[¢°); i
%If’m? + (16m; — 4em; )I[qQ]? W(?
Trm} + 24m2T[¢?)} + (24 — 10e)Z[¢*)} W
sZPm? +96mZ(q"]? + 32miZ[¢’]} g
270m¢ + 240m?Z[q"]% + 40m?T[¢?]% + 128Z[¢%)¢ | W

OFWo) terms
Timi + (24 — 106)Z[q"]} [Byus Wol [Fyus Wo

ATym? +192mZ(q"]? + 16m?Z[¢*)} Wol Py, Wo] [P, Wo

—279m? — 16m;Z[¢*]3 + 16m3Z[¢%]? Wo[Py, P[Py, P,]
ATPmg + 432m7Z(g*)f + 36m{Z(q’]f + 192Z[¢°)7 Wo Py, Wo]Wo[Py, Wo
6Zm¢ + 576mIZ[g*]? + 60miZ[g?]? + 576Z[¢")? WG [Py, Wol [P, Wo)

2I9my — 16m7Z(q")} — 16m;Z[¢’]} [P, Wol [Py, Wl [Py, P
—5IPmf + 72mFZ[q")} + 36m{Z]g’]? — 64Z[¢°)7 WPy, P[Py, P
—2Z5m$ — 8mIZ[q"|¢ + 18mIZ[¢?)¢ + 96Z[¢%)% | (Wo[Pu, Wo| — [P, WolWo) [Py, [Py, P

8miIlq"]} + 2miZ{q?)¢ + 96Z(¢"); [Pyis [Py Woll [Py, [Py, Wo])

Table 3.5: Operator structures in the degenerate fermionic UOLFEA involving the scalar coupling
Wo.

e In the first section of the Mathematica notebook, we summarise all universal structures as
presented in the Tables 3.2 and 3.3 where each entry is hyperlinked such that a click takes
the user directly to the table of operator structures and their corresponding coefficients.
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0™ terms
2(e +4)I[¢°)F — 2I7m} wi
Trm} — 8m?Z[q*]} + 2(11e + 12)Z[¢*)} wi
—3TPmf — 48mPT(g"]} + SmiZ[g?]} + 128Z[¢°)} | WP
QM) terms
Timi — 8miZ(q?]} — 2(e — 12)Z[q"]} (P> WA[P, W]
24m;Z[q"]; — 8mT[q]} + IPm; €uvpo Wi [Py, P[Py, o)
—48m2Z[q")? + 4m}T[q*)¢ + 192Z[¢5)¢ Wi [Py, Wh]W1 [Py, W]
—2IPm{ — 192m7Z(q"]¢ + 28m{Z[¢’]} + 576Z(q°? WY [P, WAl[Pyu, W]
—2IPm{ — 48miZ(q"]} + 16miZ[q’]} [Py, WA] [Py, WA][Py, P
TPmy + 56m7T(g"]; — 12miT[q*]} — 64Z]¢°)} WPy, P) [P, o)
—24m3Tq"]} + 2miT[¢°]} + 96Z[¢°]; [P [P WAlI[Py, [P W]
—24m7I(q"]} + 2miZq’]} + 96Z(¢°)7 (WilBu, Wh] = [P, WA[Wh) [Py, [P, B ]]

Table 3.6: Operator structures in the degenerate fermionic UOLEA involving the pseudoscalar
coupling W1.

OWo™M) terms

QW) terms

4(3e + )mi (%)} — 4T3m3 WoWi
" = p— 48mZ(q*)? — 8mIZ(¢*)? W1 [Py, Wol[ Py, Wi] 4 hec.
8(e + 12)Z[gY)} — AT}m} WEW7
o ATPm? + 96miZ[g"]} — 32m3T[?]} WolP,., Wi][P., Wi
—2Z4md + 16m?Z[¢?]} + 4(5¢ — 12)T[¢")} WoW1 WoW; ‘ ‘
— - — — 24m?Z[q*)% — 8miZ[¢?|¢ + TPm§ €uvpe WoW1 [Py, P[P, P,] + h.c.
—ATPm? + 288m;Z(¢])? — 32mPZ(¢%)? WEWE o i P,
_ ) . 24mFZ]q")? — 8miZ[¢?]) + IPmy €uvpo Wo P, P)JW1[P,, Py)
—4T>m? — 96m;Z[q")? + 32mPT(q*)? WEW WoW;
- 275mb +192m?Z[q")¢ — 28miZ[¢*)¢ — 5T6Z[¢%)¢ |  WAWo [Py, WA)[Pu, W] + hec.
4T5m? + 96miZ(¢")? — 32miT(¢?)} WoWwi ‘ ‘ - )
48m?Z(q")¢ — 4mlZ[¢*)¢ — 1927[¢%)¢ Wi [Py, Wo Wi [Py, Wo)
—4Z5m8 + 96m2Z[¢"]% + 16m (¢} — 768Z[¢%)¢ | WEW AW, WA o )
o ] ' - - ) ) AT0m¢ + 144m?T (¢4 — 36m}Z[¢%)¢ — 1927(¢5]% Wo [Py, W1]Wo Py, Wi]
—2Z5m8 — 144m?T[¢*|¢ + 24mIT[¢*)¢ + 384Z[¢C)¢ | WEWAWEW, ) ) o i
96m?Z[q")¢ — 24m?T[¢%)¢ + 384T (%)% Wi [Py, Wi]Wo[P,, Wo] + hec.
—4Z5m8 + 480m2Z[q")¢ — 80m}Z[¢?)¢ + T68Z[¢C) Wiw2 - i B
— : : — ‘ 6Z8m¢ — 36m?Z(q?% + 576Z[¢%)¢ WE[P,, W1][Py, Wh]
4ZPmY + 288mIT(q*)¢ — 48mIZ[?]¢ — T68Z[¢%)¢ | WoW W W oo ot s oo v ,
—2Z5m% — 4mlT[¢?)% + 576Z(¢%)¢ WoWi [Py, W1][Py, Wo + h.c.
270m¢ — 48m?Z[g")% — 8m?T[q?)0 + 384Z[¢0)¢ | WoWEW, W} o i -
—2Zfmf — 4m!T[g?)} + 576Z[¢"} WRLB,, Wo[Py, Wl
4Z8mb — 96m2Z[q") — 16m}Z[¢*]) + 768Z[¢%)¢ Wewi

Table 3.7: Operator structures in the degenerate fermionic UOLEA involving both the scalar
coupling Wy and the pseudoscalar coupling W7 .

e In the following sections, we present the full results in both degenerate and non-degenerate
cases where the coupling matrix X |[¢] contains only scalar and pseudo-scalar structures.

e Finally, we present the full results in the degenerate case including the V' and A structures.
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OP*A*W1) terms OP*V3W1) terms
4m3T? — 16mPZ[¢*)? P’ P A, P,A, W + h.c. —4AmBIP + 32mPT(¢?)? — 96m;I[q*)? e"r? P,W1 P,V Vs
—Am3T? + 16m3T[¢)] P7 PP A, Ay Wi+ he. | | —AmDTP + 32m3T[q?)F — 96mZ[g'} | PP BV, WAV,
Am3T) — 96m,Z[q")? 107 P, W P, A, Ay Am3TD — 32m3T[)} + 96m I} | e PPV, V, Wy + hc.
4m?IZ.5 - 32771/?1[q2]15 + 96777,,;I[q4];5 e"P’ P, P, A, W1 A, 4m?I,f’ - 32m,§I[q2]? + 96m1;I[q4]? e’ PV, P,V W1 4 hee.
QP*VW1) terms

—4mPTD + 32m3T[¢%]} — 96m;Z[gY)? | e"*7 P, P, P,V,W; + h.c.

74m?If + 32m?I[qQL5 - 967rLiI[q4]? e"r’ P, P,V,P,W1 + h.c.

Table 3.8: Subset operator structures in the degenerate fermionic UOLEA involving the pseu-
doscalar, vector and axial-vector structures. This subset will be used in the various examples we
present in Sec. 3.3.

Due to a large number of combinations, we divide this section into subcategories: vector only,
axial-vector only, and mixed vector/axial-vector. We also note that the results for mixed
structures are written in functional space with open covariant derivatives. Depending on the
effective operators one needs to construct, a subset of operators in the UOLEA will need to
be selected and reorganized into the form of commutators. The non-degenerate results are
available upon request.

e We use the same notation in the Mathematica notebook as in the Eq. (3.12) where P,WO,
W1 stand for the covariant derivative, scalar, and pseudo-scalar structures, respectively. To
avoid conflict with other Mathematica packages, we denote ©°, a® for vector and axial-vector
structures. We follow the conventions of Ref. [28] for 7° and the total anti-symmetric tensor
etvro 0123 — 11, The trace of Dirac matrices is evaluated using the FeynCalc package [107—
109] and thus the output operator structures are also written in the language of this package.

e Regarding the hermiticity of the operator structures, the operators which are not self-hermitian
need to be accompanied with their hermitian conjugates. The non-self-hermitian operators
appear with “4+ h.c.” in the table of operators. We also checked that the operator and its
hermitian conjugate have the same coefficients that result from the process of functional
matching computations.

3.3 Examples

In this Section we present a few examples involving the top quark, as a cross-check of our results
and to illustrate concretely how to use the fermionic UOLEA for practical calculations.

3.3.1 Integrating out the top quark in the Standard Model

In the broken phase of the electroweak symmetry, the terms quadratic in the top quark field
interacting with the SM Higgs via a Yukawa interaction are

Lon DT (0, — g.GAT® — eQuF) v t — myfit — Lhit (3.22)

V2
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where G, is the gluon field, 7% is the SU(3). generator, and F), is the notation chosen for the
photon field so as to avoid confusion with the axial-vector matrix A,,.

The above Lagrangian can be written in the canonical form that provides the starting point for
a UOLEA analysis as

E(Sli\I/IOLEA form) t(y"P, —my — Wo)t (3.23)

where, for this example, the covariant derivative P, and the coupling matrix Wy are

P, =iD, = i0, — g,GoT" — eQ,F,, Wp= %h. (3.24)

We focus on the following operators in the EFT Lagrangian: h, h?, (9,h)?, h F,, F* and h G, G
This selects the following relevant terms in the UOLEA:
1 3 1 my 2 ] my 2
LErT D _W dmi (1 — ogﬁ trWo+2m; (1—3 ogF triVy

— (5 108 M0 ) wlr Wl Wil + (52 ) (B PP RAWG) | (329

where the coefficient of each operator in Eq. (3.25) can be found in Table 3.5, and note that we must
multiply those coefficients by i. To obtain the pre-computed coefficients in Eq. (3.25), we must
retain the 1/e poles in the master integrals. These poles can be multiplied by the € terms appearing
in the prefactor multiplying the master integral coming from the trace over gamma matrices in the
operator. For example,

m? m? 2
(8 —2)T[¢°)? = (8 — 26)71t (1 — log /7; + - —E+log 47r>

m2
= 4m? (1 — log 5) —2m? (3.26)
1

where in going from the first to the second line, we take the limit ¢ — 0 and drop the terms
2/e — g + log 4, since we use the MS-scheme for renormalisation.

Next, we evaluate the trace over all internal indices, which in this case corresponds to the colour
and SU(3). indices carried by the top quark and gluon fields respectively, obtaining

W = tr 2o day = NoYoh, teW2 = tr Uiy 8t Obe = Ncy—t?fﬁ ,
V2 V3 2 2

[Py, Wol [P, Wo] = tr [iaﬂ — g,GOT" — eQF,, %h 5ab] [i@u — g,GoT — eQ,F,, %h S

y2
= _Ncé(auh)Z . (3.27)
The field strength tensors can be obtained by using [PM, Py] =1 (—gSGZ,,T“) +i(—eQiFuw),

tr ([P, P,] [Py, P]Wy) = tr [((—igs)zGZVGZVT"Tb + (—ieQt)*F o Flu

- 2(98 th)GZVTaFw/> <\y/t§h 5Cd> :|

2 Yt a a 2 Yt
= - (Ncgs m) hG,uuG;w - (Nc (th) \/§> hF;WF;W ) (328)
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where tr (T“Tb) = 0%/2 for generators of the fundamental representation of an SU(N) gauge
group. Inserting Egs. (3.27), (3.28) into Eq. (3.25), we obtain

LgrT D (473) [yt N (; - log M2> (0,h)?

m2) m2
LN, m 1 —log h+y? N.m? (1—310gt)h2]
\/5 t( u e u?

< 2 hGe,Go, T SV
— N, ————N.hF,,F, 3.29

+<\@> [48w2mt 247r2mt N W] ’ (3.29)
where N, = 3, @Q; = 2/3. The kinetic term for the Higgs may then be canonically normalised by a
suitable field redefinition. The results of the first two lines of Eq. (3.29) agree with those of Ref. [6].
The third line agrees with the results of Ref. [110, 111].

3.3.2 Integrating out the top quark coupling to a light pseudo-scalar Higgs A°
3.3.2.1 The effective coupling A%y~

In this example, we consider the top quark with a coupling to a light pseudo-scalar, denoted A°. We
assume this field is lighter than the top quark, so that we may integrate the latter out in order to
obtain the Wilson coefficient for the dimension—>5 operator coupling between A and two photons.
We assume a coupling structure of the pseudo-scalar to the top quark taking the same form as
in the type II Two Higgs Doublet Model (2HDM) or the MSSM. Note, however, that our result
may be generalised to any model involving a pseudo-scalar coupling to the top quark, by a simple
rescaling.

The terms in the UV Lagrangian relevant for computing the effective A%y~ coupling can be
written in the form

Luv Dt |(i0, — eQrF,) " —my + z% cot BAYY®| ¢, (3.30)

where g/2Mypy = 1/v and we use the notation of the 2HDM of type II, tan § = v; /vy with v =

2 26
\ U1 + U5,

Upon integrating out the top-quark, we know that the effective interaction A%y~ should be of
the form

LErT D CAO,W AOFW,F’W , (3.31)

where our convention for the dual field strength tensor is F = S €upoFP?, with €923 — 11, The

aim of this example is therefore to compute C 4o, arising from the heavy top quark loop.

UV Lagrangian in the UOLEA form:

Before using the pre-computed coefficients from the tables above, we need to write the UV La-
grangian in Eq. (3.30) in the UOLEA form in terms of the relevant structures, which in this case
comprises of only W7 in addition to the covariant derivative,

LTOVBA ™) o § (P i my — inSW ] 8, (3.32)

SNote also the use of F, for the photon field, to avoid confusion with the axial-vector coupling matrix A,,.
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where the covariant derivative P, (omitting the gluon piece which does not contribute) and the
coupling Wy are

P, id, — eQF,, W= —% cot BA° . (3.33)

Clearly, the existence of only these two structures means we will only need operators and coeflicients
from Table 3.6 above in order to compute C40,,. Furthermore, we know that since both P, and
Wi are dimension 1, we will need only operators from the table of dimension 5 to form the EFT
Lagrangian operator. While in this example the power counting may seem superfluous since we are
only interested in one operator with a transparent structure, in more complicated examples this
counting can be extremely helpful.

Relevant structures in the UOLEA:

Now, referring to Table 3.6, we can immediately identify the necessary combinations of P, and W
that will form the effective operator AOFWF #” - along with their universal coefficients (recalling
that we must multiply the coefficients from the table by i). This therefore yields the effective
Lagrangian as obtained from the UOLEA

Lepr O i (m{I — 8miT[q*)? + 24myI[q")?) tre*" W1 [Py, P,][Pp, Ps]
1
-~ 32m2my

tr (e"P7 W1[P,, P,|[P,, Ps]) . (3.34)
The trace over the internal indices is then evaluated, to obtain

€ (MW P, P[Py, Py)) = tr (| =2t cot BA°| (—ieQ0)dus €7 oo Fpo )

=2 ot B(eQy)2N, A°F Fy, | (3.35)
v

where we have used that the commutator [P, P,|¢ = i(—eQ¢)F,¢. Putting the two pieces together,
we thus obtain the EFT operator corresponding to the effective interaction A%y,

2
e 2 0 >
LErT D IGWQUQtNC cot BA F#UF”U . (3.36)

Comparing Egs. (3.31) and (3.36), we conclude that

2
e
CAO'Y'Y = WQ?NC cot 6 . (337)

We have checked that this agrees with the result obtained by the usual Feynman diagram derivation.
Eq. (3.36) also matches the one in Refs. [112-114] once the different convention for the dual field
strength used in those references, F ww = €uvpoFpo, is taken into account. In contrast to the Feynman
diagram computation, here the effective operator and its Wilson coefficient were trivially obtained
using the pre-calculated universal results of the UOLEA and the simple evaluation of a trace over
internal indices.

3.3.2.2 The effective coupling A°Z~Z

We next consider a more complicated matching procedure than in the previous examples. Indeed,
since we wish to obtain the coefficient of the dimension-5 operator coupling the pseudo-scalar A°
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to Z bosons, it is immediately apparent that we will now need to make use of the vector and
axial-vector coupling matrices V,, and A,.
The relevant terms in the Lagrangian are

Luy Dt (’La‘u) A —my + (2% cot BAO) ’)/5

T: T
g <3 — Qysin® 0) Z" + ( 9 3) Zm/“75] t, (3.38)

" cos Ou \ 2 cos 0y, 2

where we used the same conventions as in Ref.[114, 115]. Meanwhile, the effective Lagrangian for
the A°ZZ effective coupling is

Lrrr D Cpoy,A°Z,, 21, (3.39)
~ 1
where ZW = 56’“"0‘78[,)20], with €912 = +1.

UV Lagrangian in the UOLEA form:

As in the previous examples, we first re-write the UV Lagrangian in terms of the UOLEA structures,
LER/OLEA form) & [P —my — Wy — Vit — Aw“75] £, (3.40)

where the P,, Wy, V,,, A, are defined as

(P, Did,,
Wy = —@cotﬁAO ,

v

: L , 3.41
VM = gVZ,ua gv = cos O, <2 — Q¢ sin? 9w> ) ( )
g T

A, =gaZy,; =— = .
(T gAfpus 94 <cos€w 2)

We have dropped the gluon and photon pieces in the covariant derivative, since they do not con-
tribute to the matching calculation here.

Relevant structures in the UOLEA:

Having identified the UOLEA structures that will appear in the construction of the EFT operator,
we must now decompose the latter to determine what UOLEA structures will contribute. The EFT
Lagrangian is

ﬁEFT D CAOZZAOZIWZ'[W = %CAzzAOG;WPU (6MZV — 8,/ZM) (8,)20 — &,Zp) (3.42)

Thus, to reconstruct the EFT operator in terms of UOLEA structures, we need
e One insertion of W; to account for the pseudo-scalar A°.
e Two P, insertions to account for the partial derivatives.

e To account for the two Z bosons, one might expect some combination of the structures AA,
VV or AV to be required. However, due to the structure of the effective operator, it is clear
that the product of the various UOLEA coupling matrices should have an odd number of v°
insertions. Since W carries a v°, AV, which also has one 4°, will not contribute.
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The EFT Lagrangian will therefore be given by the following classes of UOLEA operators,

P2V2W P2A%W
Lepr DY fN<o>§V Dy fN@)J(V 28 (3.43)
N

Note that since we are integrating out the top-quark coupling to a single type of vector boson, the
Wi, Vi, A, terms are proportional to the identity matrix and so commute with each other, which
will simplify the calculation. Owing to the commutativity of Wy with A, and V,,, the combination
of all the Q(P*A*W1) and QF*V*W1) UOLEA operators of Table 3.8 can be written as

LEFT D fltr (GMVPUPMPVVPVUV[/l) + thI‘ (G‘WPJPMVV]PVV;,VJ)
+ fatr (E’WpUPHPVApAUWﬁ + fatr (E“VpaPuwlpyApAg) , (3.44)

where the values of the universal coefficients are

fr =i (4miTY — 32mPZ[q*]} + 96miZ[¢"]7) = 87r21mt ’

fo =i (—4miT? + 32miT[¢*]5 — 96m,Z[q"]?) = 8772717% 7

o= i (~AmIT + 96m Tl ) = 5

fu =i (4miZ} — 96miZlq"]7) = 5 4;21% - (3.45)

These UOLEA operators and their coefficients can be read off from Table 3.8; a complete
tabulation of UOLEA results for the degenerate vector and axial-vector case can be found in
the accompanying Mathematica notebook, as described in Sec. 3.2.4. Due to the proliferation
of UOLEA operators involving V and A, these are not listed in a commutator basis. Instead,
it is preferable to perform the rearrangement into the commutator basis for the small subset of
operators contributing to a specific application. We will now demonstrate this for the effective
AZ Z coupling.

Constructing the EFT operators:

We begin with the vector structure case,
LS — 1 07 P, PV, V, Wy + fotr 77 P,W, PV, Vs, (3.46)
and rearrange it into the following commutator basis (note that e.g. [V, Wi] = 0),

L D erte dPTWY [Py, Vi [Py, V) + eate 0T Wy [Py, P [V, Vol
= —cytr e“”p”PuwleVpVU + (402 — cl)tr 6“VPUPMPVVpVUW1 . (3.47)
In the second line we have expanded the commutators, so that comparing with the non-commutator

basis of Eqgs.(3.46) then allows us to solve a system of linear equations that take us from the non-
commutator to the commutator basis of operators,

—ci = ca=—fo= oo
{ = = Bmimy (3.48)

deg —c1 = f1 =
4 1672my
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Using [Py, V)] = i(9,V,), we may rewrite the operator tr e*” W1 [P,, V,][P,, V;| as

c1 tr P W1 [Py, V,][P,, Vo] = (i) 1 tr P W1(9,V,) (9, Vy)
-2
= clzztr W [€°7(9,V,)(8,Vi) + €72 (3, V,) (9, V)

+ P70, V) (0,Vo) + €7H7P(0, V) (05, V)) ]

-2
- clzztr P[0,V — B, V][0,V — D V). (3.49)

Putting it all together, we obtain the contributions from the vector terms O 2V2W1),

-2

(vector) ¢ my 0 2
ﬁE"ScTor o Ztr cHvpo <_7 cot BA > dab 9V Ly L po
1 2 T ‘ 2 3
= mNc cot 50052 7 <23 — @y sin? 9w> A7, 7, (3.50)
w

The computation for the UOLEA operators involving the axial-vector coupling matrix A proceeds
similarly. We find

(axial-vector) 1 i my 0 2

24m2my; 4
1 g T3 2 0 5
= ———N,cot — | AZ,Z,. 3.51
4872y ¢ b <cos€w 2 ) poer (3:51)
Adding (3.50) and (3.51) gives the final result,
1 92 2 .92 .2 0 7
£EFT D) mNo cot Bm (T3 + 3Qt S1n 9w [Qt S1n Hw — T3]) A Z,ul/Zp,V- (352)

This result agrees with the one in Ref.[112]. However, the calculation here is carried out in a more
streamlined manner using the UOLEA.

3.3.2.3 The effective coupling A°Zy

To construct the effective coupling A°Z~ resulting from integrating out the top quark coupling to
a light pseudo-scalar A, we split the interaction with the Z boson into vector and axial-vector
currents. The relevant terms in the UV Lagrangian are then

Lyv Dt (i@u — thFu) Y —my + (z% cot BA()) 75

g T . g T
“cosde <23 — Qysin? ew) Z" + (COS i 23) Zwﬂf] ¢, (3.53)

where F), denotes the photon field. We now integrate out the top quark to obtain the following
CP-even effective operator,

LErT D CAOZ,YAOZ/“,FHV. (3.54)
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Chapter 3: The Fermionic Universal One-Loop Effective Action

UV Lagrangian in the UOLEA form:

We write the UV Lagrangian (3.53) in the canonical form,
Lyv(UOLEA form) = ¢ [P,y* — my — VW1 — Vyt — Aufy”'y“r’] t, (3.55)

where the structures P,, W1,V,,, A, correspond to

;

P, Did, — eQF,,
Wy = —% cot SAY |
T: .
Vi =ovZui av= o (;’ ~ Qusin? 9w> , (3.56)
g T
AM =9gaZu; ga=— <COS@w2> .

Note that after the broken phase, our theory still respects U(1)qgp, thus the photon field still lives
in the covariant derivative (together with the gluon field, which does not contribute in the present
case and has been omitted), while the Z boson should be put into the V' and A structures.

Relevant structures in the UOLEA:
To obtain the EFT operator (3.54), we need:

e One insertion of W to account for the appearance of A°.

e Three insertions of P,. Two of them form the photon field strength. The last one will act
on the Z,. Then combining with the anti-symmetric tensor e#*#? we can construct the dual
field-strength tensor of the Z boson.

e One insertion of V' to account for Z,,. As in the previous example, we can count ~+° insertions
to see that no operator involving A can contribute to the EFT operator (3.54).

Putting it all together, the relevant class of UOLEA operators which contribute to the EFT oper-
ator (3.54) is then

A P3VW
£ 5 3 peol M. (3.57)
N
Since in this case [W7,V,] = 0, we have only one UOLEA operator to consider,
L5 — i (—4mBTP + 32mP T[]} — 96miT[q"]?) [tr (e"P° P, P, V,P,W1) +hec.|,  (3.58)

we note that the operator structure [tr (e““pUP“Pprngl)—i—h.c.] vanishes due to the antisymmetry
of the e"?? tensor and [W1,V,] = 0. We then rearrange the operator structures in (3.58) into
the basis where P’s only appear in the commutators. The operator structures we expect in the
commutator basis are

£g§$or) D fi(tr 7 [Py, PJ [Py, Vo[ Wi + tr 7 W1 [P, Vo] [Py, Po] )
= 2f1(tr "’ P,P,V,P, W1 + tr e"*" P, P,W1 P,V ) (3.59)
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As in the previous examples, we expand the commutators and, using the fact that [IW;,V,] = 0,
match with the non-commutator basis of Eq. (3.58) and fix the value of the coefficient f:

1 -1
fi=iy (—4m?T + 32mPT[¢*)? — 96mZ[¢")}) = TonZm: (3.60)
Plugging P, V,, and W; from Eq. (3.56) into
L5 5 1 (4007 [Py, P,] [Py, Vo] Wi + tr P W, [P, V] [P, By ] ) (3.61)

and using [P, P, = i (—eQy) F,,, and [P,,V,] = igy (0,Z,), we obtain

'CEFT D) f1 (gv €Qt) tr [QEIWPU (8“21,) FpaWﬂ
= fl (gV th) tr [6ul/pU (8uZl/) FpO'WI + euupo' (81/Z;L) FpO'WI]

-1 m
= m (gV th) tr |:(7Tt cot BAO 5ab> EMVPUZMVFPO-} . (362)
T:
Taking the trace over colour degrees of freedom and using gy = cosg 7 (23 — @y sin? 9w> from
w

Eq. (3.56), we obtain the final result,

1
EEFT D) 7Nc cot 5(6@13)

.2 0y F
16m%v cos O, (T5 = 2Qusin” 0u) A°Zy Ey (3.63)

This result agrees with the ones in Refs.[110, 112]. Once again we note the relative ease and
efficiency with which the same result can be derived in the UOLEA.
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Chapter 3: The Fermionic Universal One-Loop Effective Action

3.4 Conclusion

The universality of the one-loop effective action obtained by integrating out heavy degrees of free-
dom has emerged as a byproduct of improved path integral methods for performing these calcula-
tions. This so-called UOLEA makes the repeated evaluation of functional determinants redundant
and provides a more efficient way of matching at one loop compared to Feynman diagrams, espe-
cially when systematically obtaining an ensemble of operator coefficients at once. It also has the
advantage of being easier to automate.

Previous work developed the bosonic UOLEA for integrating out heavy bosons, including mixed
heavy-light loops. While these results could be used for integrating out fermions as well in some
cases, they did not account for v matrices in the fermion couplings, and were also not as straight-
forward to use as in the bosonic case. It was therefore necessary to extend the UOLEA to the
fermionic case, and desirable to do so in a way that maintained the simplicity of the UOLEA
approach.

In this work we presented the fermionic UOLEA, which can be used for one-loop matching with
heavy fermions (Dirac or Majorana) in the loop, coupling with structures involving v matrices. The
starting point is the UV Lagrangian of Eq. (3.4), for which the UOLEA is given by Eq. (3.6). A
subset of our results for the new UOLEA operators and the corresponding universal coefficients are
tabulated in Tables 3.4, 3.5, 3.6, 3.7 and 3.8 for the degenerate mass case, while the full results, in
the non-degenerate case for P, Wy, W7 structures and in the degenerate case for V, A structures, are
available in the accompanying Mathematica notebook €, [100].” These expressions can be readily
incorporated into codes that automate the tracing over the internal indices and the rearranging of
the resulting EFT operators into a non-redundant basis.®

The status of the UOLEA terms available and those that remain to be computed is summarised
in Table 3.1. This is listed for completeness though we note that the majority of UV Lagrangian
structures of interest are now included in the UOLEA for obtaining EFT operators up to dimension
6. Nevertheless, further efforts to complete the UOLEA, including all possible structures and
extending to higher dimensional operators, would then enable and be a part of a fully general
automated one-loop matching tool. This ambitious goal is left for future work.

"The non-degenerate results for V, A structures can also be made available on request.
8See, for example, Ref. [116] for automated tree-level matching and Ref. [117] that implements the degenerate
bosonic UOLEA results.
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Chiral anomalies and Effective Field
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Chapter 4

Introduction to anomalies in QFT

This chapter is dedicated to introducing the anomalies in quantum field theory. For a complete
review of this topic; see, for instance, Refs. [118-120]. An extension of this chapter will be presented
in the forthcoming chapters, where we will discuss in-depth the regularization techniques to compute
anomalies and how anomalies affect the construction of effective field theories.

4.1 Anomalies in QFT

The foundation of modern quantum field theory is based on the principle of gauge symmetry.
There is an anomaly when the symmetry current is conserved at a classical level but no longer
conserved at the quantum level. This anomaly is a signature for the breakdown of the quantized
gauge symmetry, in other words, the ruin of the consistency of the gauge theory.

To understand how anomalies arise in the perturbative theory, let us present the simplest
example, the axial anomaly (the ABJ anomaly [121, 122]). We aim to show how the axial current
becomes anomalous at the one-loop level. We begin with the bilinear fermion terms in the massless
QED Lagrangian,

L"QED = 7["7“ (ia,u + Au)w . (4.1)

Symmetries and conservation laws. The massless QED Lagrangian given by Eq. (4.1) is
invariant under the local vector gauge transformation U(1)y,

Y — em(z)dJ . ) — z/;efm(m) . Ay — A+ Oua(x) . (4.2)
In addition, this Lagrangian also remains invariant under the global axial transformation U(1) 4,
Yo Y o G (13)

From Noether’s theorem, we know conservation laws are connected with symmetries. The symmetry
currents respectively associated with the U(1)y and U(1)4 transformations are

Jip =gy, JE =iyt (4.4)

With the help of Dirac equations, at the classical level (at the massless fermion limit), one can
derive the conservation laws for the vector and axial currents as follows,

9 Il =0, 9,08 =0. (4.5)
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Chapter 4: Introduction to anomalies in QFT

We will show that the axial current is no longer conserved at the quantum level. We then define
the axial anomaly as follows,

oJt = A . (4.6)
In our toy example, A is precisely the value ABJ anomaly. Explicitly, we will prove that
1
./4 = m?EMVpUFHVFpO- . (47)

Anomaly from the triangle Feynman diagrams. In the momentum space, the derivative of
the symmetry current is replaced by the Ward-Takahashi identity. At one-loop order, the derivative
of axial current received the contributions from the well-known AVV triangle diagrams given by
Fig. (4.1).

7y

Y
p-q A%
P
Tuva: W —<—2 Y, +
P*kl
k2 kl

Figure 4.1: Triangle diagrams for the ABJ anomaly.

Explicitly, the axial Ward identity is defined as follows,

1kix+1 —iqz 8 v
0T :/d4xd4y€kl Hikay=iaz (| wjé\(z)t]v(y)t]\l}(lf)’o) - (4.8)

Readout the amplitude of the two Feynman diagrams in Fig. (4.1), we have

d*p 1 1 1 1 v
A K
[ AN —/ tr{ V5 Vv Yo = =5V — } + < ) 4.9
m Cor gt P =g T T ke ke (4.9)
The key point is that this momentum integral is linearly divergent, and we are not allowed to
perform the shift of the internal momentum integration by

p* — p' + kb and by p* — pt + ki, (4.10)

which seems to make this integral vanish. Following Ref. [119], the correct way to evaluate this
integral is to shift the internal momentum integration by

pt = pt+a, a' =kl + (a— Bk, (4.11)

where «, 8 are free parameters that allow us to keep track of the behaviour of different momentum
routes. This leads to the anomalous axial Ward identity,

1-p
q)\Flﬂ,)\ = 7W€H’Vaﬂk?k2ﬁ (412)
Similarly, one can also evaluate the vector Ward identity,
14
kllil—‘ul/)\ = STfﬁukaﬁk?kg (413)
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Section: 4.3: Cancellation of gauge anomalies in the Standard Model

Anomalous axial Ward identity. In order to derive the physical result, one must fix the value
of the free parameter 8. Since the vector current is associated to the gauge symmetry, this current
should be conserved. Hence, the value of § is fixed by g = —1. This choice makes the axial current
becomes anomalous,

1
A
q Fuu)\ = Tﬁeuyaﬁk?kg . (414)
Back to the position space, we observe that the derivative of axial current is divergence

1
aﬂjg == @EMVPUF“VFPU (415)

Important remark. There is no way to fix the value of the 8 parameter such that both vector
and axial Ward identities are satisfied. Additionally, Adler and Bardeen [122] showed that higher
order loop corrections only renormalize the fields and charged. Hence anomaly is one-loop exact.

4.2 On the good use of anomalies.

The importance of anomalies for physics is twofold.

e Anomalies and experimental observations. If the current is associated with an external
symmetry (i.e. global symmetry), breaking the conservation law of this current due to an
anomaly will lead to interesting experimental observations. In fact, the decay amplitude of
70 — 77 is totally determined by the computation of anomaly. Additionally, we will see in

the chapter 5 how chiral anomaly solves the U(1) 4 problem of the low-energy QCD theory.

e Anomalies and the quantization of gauge theory. Conversely, anomalies are catas-
trophic in a quantized perturbative gauge theory. If the Ward-Takahashi identities become
anomalous, the gauge theory will lose the renormalisability and hence the consistency. If one
constructs a gauge theory, all gauge anomalies must be cancelled. The dark side of anomaly
implies non-trivial restrictions to the physical content of a gauge theory.

4.3 Cancellation of gauge anomalies in the Standard Model

When evaluating the anomalous triangle diagram, one must trace over the gauge group generators.
For each triangle diagram, it is convenient to define an anomaly coefficient as follows,

DABD = tryTATBTC | (4.16)

where R denotes the representation of the group generators. To guarantee that the gauge theory
is not anomalous, one must satisfy the condition,

> DR =0, (4.17)
v

where we have summed over all fermion fields in our theory. It is easy to see that only two options
satisfy the condition (4.17). First, the combinations of the gauge groups are safe, so the trace over
gauge group generators automatically vanish. The second option is to carefully choose the fermion
gauge charges so that the summation over fermionic content satisfies the condition (4.17).
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From the above discussion, a priori, the combination of the SM gauge group might be anomalous.
Hence, for each generation, the SM fermions must satisfy the following conditions,

0=">" (] —vh)

f=u,d
f=u,d f=ve
0= Y [0 - 0k + T |ode - k] (4.18)
f=ud f=v,e
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Chapter 5

Introduction to the strong CP
problem and Axions

This chapter is dedicated to presenting the theoretical background of the Strong CP problem in
the SM and its chiral solution, which leads to a new BSM state, called the axion. For a complete
review of this topic; see, for instance, Refs. [123-127]. We begin with the U(1)4 problem [128] of
the low-energy QCD theory (alternatively called the missing 7-meson problem), and the necessity
of the QCD vacuum structure to resolve this problem. The QCD instantons solution predicts the
existence of a new term — proportional to the vacuum angle § — in the SM Lagrangian, which
violates the charge conjugation (C) or time-reversal (T) symmetries but is still invariant under
the parity (P) transformation. Hence, this new term will induce the CP violation observables in
the strong sector of the SM. However, the experimental bound of the § parameter is § < 10710,
which is too small for what we expected. This contradiction and the fact that the SM cannot
provide any mechanism to explain the tiny value of # is the well-known strong CP problem. We
will concentrate on the Peccei-Quinn mechanism [129, 130] that solves the strong CP problem and
discuss the properties and dynamics of axions through well-known UV models [131-135].

5.1 Low-energy QCD and the U(1)4 problem

In the 1970s, the low-energy QCD theory had a puzzling problem which later motivated much
development in the theoretical background of this theory. To present this problem, let us recall the
classical QCD Lagrangian for Ny quark flavours as stated in chapter 1,
L 4 A4 e
Lqocp = *ZGW,G ’”VJquJf(ZlDfmf)Qf , (5.1)
f
where we summed over all quark flavour indices Ny = {u,d, ¢, s,b,t}. This Lagrangian is invariant

under the SU(N, = 3) gauge transformation. When all quarks are massless, this Lagrangian has
an additional global symmetry,

Gqep = U(Nyp)v @ U(Ny)a (5.2)

which is broken explicitly by the mass terms of the QCD Lagrangian. Before delving into technical
details, we emphasize that the limit m; — 0 is sensible since given the fact that m,,mg <
Agcp, with Agep being a typical energy scale of QCD where the non-perturbative effects must be
taken into account. Hence, at least for two quark flavours, u and d quarks, the low-energy QCD
Lagrangian is approximately invariant under the U(Nf)y ® U(N¢)4 global transformation.

87



Chapter 5: Introduction to the strong CP problem and Axions

The vector part of QCD global symmetry. The vector part of Gocp can be decomposed as
follows,

UNj)v = SUN); ® U(1)s (5.3)

the vector symmetries SU(N¢)r and U(1) g correspond to the Isospin and Baryon number symmetry,
respectively. These symmetries have been realized as a good approximation due to the occurrence
of nucleon and pion multiplets in the hadronic spectrum.

The axial part of QCD global symmetry. Analogously, the axial part of Gqcp is decomposed
as follows,

U(Nf)A:SU(Nf)A®U<1)A. (5.4)

Unlike the vector part, these axial symmetries will be spontaneously broken by the quark conden-
sates (wu) = (dd) # 0 [136]. Considering Ny = 2 for the case m, = my ~ 0, we expect to observe
four Nambu-Goldstone bosons. On the other hand, with the help of Goldstone bosons, it is possible
to write down a massive QCD Lagrangian, which is invariant under the axial transformation. This
goal is achieved by encapsulating the NGBs into a unitary matrix,

PO

U =exp <z'cr’> , (5.5)
fr

where i = {0,1,2,3}, 0° = 1 and ¢1?3 are Pauli matrices. The Goldstone boson X0 is associated

to the breaking of U(1)4 symmetry, namely 7 meson. The remaining Goldstone bosons Y123

associated to the three broken generators of the SU(2)4 symmetry, they are referred to the pions

3 = 70 and ¥12 = 712, The charged pions are obtained through a change of basis,

are

1
+ 14 ;2
T = —(7 *xm 5.6
! ) 5
At this stage, one can non-linearly realize the global axial symmetries and write down the effective
Lagrangian of NGBs. The spirit of this exercise is very similar to what was presented in chapter 1
of this manuscript. The leading order of the low-energy QCD Lagrangian reads,

£ = 2u(0,0) (0°0)! + 2 (MU + MO 6.1

where the mass matrix M has some typical properties under the global transformations. The
potential terms of the meson particles are obtained by Taylor expanding the Lagrangian given by
Eq. (5.7). For a detailed computation, see, for example, the TASI lecture notes [126]. We show
here the mass term of the QCD Lagrangian written in terms of pion fields,

0
low—energy + - & 0 My + Mg My, — Mg ™
Loco D afr (mu + md)w T+« 5 (7T 77) <mu Cmy m, + md) ( 0 ) , (5.8)

where « is an arbitrary constant determined from the experimental data. Theoretically, we observe
that the four NGBs will have a light mass which should obey the sum rule 2m + = m, o + m,,.
This result is a problem of the old QCD theory since it contradicts the experimental observations.
Explicitly, m o ~ m,+ ~ 140 MeV while m,, ~ 960 MeV > m_ o . In other words, we only observe
three light states instead of four as predicted by the QCD theory. In 1975, Weinberg [128] figured
out this problem and suggested that U(1)4 is not a good symmetry of strong interactions.
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Section 5.1: Low-energy QCD and the U(1)4 problem

5.1.1 QCD instanton resolve the U(1)4 problem

This section aims to show why U(1)4 is not a good symmetry for the QCD theory. We then
show how the QCD instantons resolve the U(1)4 problem and justify why we can add a new CP

EGG, to the QCD action. Eventually, we unravel the mystery of the

R 4
v1f)la.t10n term, [d $327r2g
missing n-meson.

The solution to this problem originated from an incredible remark in the seminal work of
Weinberg [128], where he doubted that U(1)4 is not a genuine symmetry of QCD theory even
though it seemed to be true in the quark massless limit. In 1976, 't Hooft explicitly proved
Weinberg’s idea by realizing that QCD vacuum had a sophisticated structure, making the U(1) 4,
despite being an apparent symmetry of the QCD in the limit of zero quark masses, not a true
symmetry of the strong interactions. This crucial point has solved the U(1)4 problem; hence, the
missing 1 Goldstone boson is no longer a mystery.

We now discuss more quantitatively the QCD instanton solution proposed by 't Hooft, see
Ref. [137-139]. The key points of this solution are presented as follows:

Chiral anomaly. A priori, from the previous chapter, we know that U(1)4 is an anomalous
symmetry. In the limit of vanishing fermion masses, the Noether current, which is associated to the
U(1) 4 symmetry J£ is no longer conserved due to the non-vanishing quantum corrections [121, 140].
Explicitly, under the U(1) 4 transformation,

xes
qf — exp <z275> qf » (5.9)

where a is a U(1)4 charge. The current J% is broken at the one-loop level,

giNy
3272

It = a (G, GHH) (5.10)

The chiral anomaly might contribute to the QCD action,

2N B 2\ .
5SQCD:ags f/d4mGﬁyGA,/Ll/:ags g/d4xaﬂ|:euypa<GfG?g_%fABCGfGEGg>:|

3272 327
2 2
gst 4 gst/
= 'z 9, K" = do - K 5.11
0‘327r2/ PO T Vg2 [ 0T (5:11)

where we have re-written the operator G;‘V@A’W as a total derivative d,K*", and hence 6Sqcp is
a pure surface integral. S3 is the three-dimensional sphere at infinity, and do, is an element of its
hypersurface. The crucial point is that if the surface integral does not vanish, [do - K # 0, the
chiral anomaly will contribute to the QCD action and hence explicitly prove that U(1)4 is not a
symmetry of the strong interactions.

Surface integral in the presence of instantons background. The surface integral given
by Eq. (5.14) is a special object in the sense that we cannot use the naive boundary condition
Gﬁ(m — 00) = 0, which makes the integral vanish. In the original work, 't Hooft [137, 138] showed

that the correct boundary condition at spatial infinity Gﬁ(:ﬁ — 00) should be a pure gauge field.
Explicitly, G;‘(x — 00) is either zero or a gauge transformation of zero. To understand this point
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properly, let us perform a gauge transformation for the gluon field G, = GﬁT A

_ 7
Gy — G;A =g! (Gu(m) + gau>9

T—00

i
= g—g 9,9 , (5.12)

where g is an element of the SU(N) group and we have used G, (c0) = 0. The field configuration
G; = (i/gs)g_laug is often called pure gauges. With these boundary conditions, the non-trivial
topological configurations exist such that the surface integral is non-vanishing. To clarify this
point, we need to know whether the pure gauge configurations of G, (x — c0) are equivalent. From
the mathematical point of view, this is a question of homotopy, where we look for all equivalent
mappings between the SU(3) gauge group and the sphere S3 at infinity. The answer to this question
is

Mg, [SUB3)] =Z, (5.13)

where Mg, indicates the mapping from SU(3) to S3. Therefore, we now understand that the
behaviour of the gauge fields at spatial infinity is characterized by an integer n € Z, typically
called the winding number. Importantly, we are now able to evaluate the surface integral (5.11)
correctly, see Refs. [141, 142] about the details of this calculation,

1 ~ v
/ e o5 GG =m—n=v, (5.14)

where m is the gluon field’s winding number at infinity (e.g. at = 400) while n is the winding
number at the origin point (e.g. at z = —00), and v is often called the Pontryagin index.

QCD 6-vacuum. First, we denote n states, |n), as the pure gauge configurations characterized
by a n winding number. Keep in mind that all n states have the same energy, so one can refer to
them as an n-vacuum. The result given by Eq. (5.14) implies the non-zero transition amplitude for
a tunneling from the vacuum state |n) to its gauge rotated state |m). Such tunneling events are
described by the so-called instanton solutions [137, 138]. Since the vacuum states are degenerate
and able to switch to each other by instantons, the physical vacuum state must be the superposition
of the n-vacua. Hence, the genuine vacuum is referred to as the so-called 6-vacuum and written as,

n=-+o0o

0)=">_ €"n), (5.15)

n=—oo

where 0 is an angular parameter which has the value 6 € [0,27). The crucial point is that 6 plays a
the role of a super-selection rule. More precisely, different QCD vacuums will have different values
of the theta parameter, and it is impossible to switch from one vacuum state to another. Therefore,
f is a fundamental parameter, each value of 8 labels a different theory.

QCD Lagrangian done correctly. We are now in the last step to solve the famous U(1)4
problem. All we need to do now is to show explicitly how the theta parameter appears in the action
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of QCD. Considering the vacuum to vacuum transition amplitude,

(0,16-) =m0y =3 e (n vy no) = 3 T PRz CRE (g ) )

m,n v,n v,n
B W0 [ de Ly GA GAR L [ dial 4 L4 A4,
_ZV:/DAe 3247 i 5[V—/dx327r2GuuG w
1 .
= /DA exp <i/d4a:£—|—0327r2 G;‘VGA’W> ) (5.16)

notice that in the last equation, we have used the path integral formalism to express the transition
amplitude ) ((n + v)4| n_) where the value of v is fixed. Eventually, by realizing the non-trivial
topologies of the QCD vacua, from Eq. (5.16), we conclude that the QCD Lagrangian must include
a new term,

2
9Is  ~A AA v
L 6 G, G 5.17
Qcp 2 050 5 G (5.17)
This new term will help us solve the U(1)4 problem. It is worth noting that the operator GG
violates P, T, and hence C'P symmetries.

Chiral anomaly in the presence of #-vacuum. After a lengthy discussion about the develop-
ment of the QCD, we now come back to the U(1)4 problem, precisely, equation (5.11). Since the
surface integral does not vanish in the presence of an instanton background, the U(1)4 anomalous
symmetry can affect the 6 parameter by shifting it to another value,

0—0+a, (5.18)

which explicitly shows that U(1)4 was never a true symmetry of QCD. In fact, the mass of the
n-meson is generated by the instanton effects dominantly, hence naturally explaining the signifi-
cant mass scale separation between the n-meson and the other pseudo-Goldstone bosons (70, 7 %),
Ref. [139]. The U(1)4 problem now has been solved.

5.1.2 QCD instanton induces the strong CP problem

The fact that quarks are massive and the SM includes both strong and weak interactions, without
loss of generality, the mass term in the QCD Lagrangian reads,

Locp D (jiMZ]qu% + h.c. (5.19)

where the quark mass matrix M is complex. The physical mass basis is obtained by diagonalizing
the mass matrix M. This step can be done by re-defining the fermion fields, in other words,
performing a chiral transformation. The vacuum angle is then shifted by argdet M. Therefore, in
the full theory, the physical vacuum angle reads’,

0 =0+ argdet M | (5.20)

where 0 receives the contributions both from the strong and electroweak sectors. For completeness,
we state here the CP violation term in the QCD Lagrangian,

— 2 ~
Laocp = 933;2 GA G (5.21)

'In terms of Yukawa matrices, the vacuum angle is written as § = 6 + arg det Y, Y.
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Chapter 5: Introduction to the strong CP problem and Axions

Since 0 is a physical parameter, it can be measured. The most sensitive CP-violating observable is
the neutron Electric Dipole Moment (nEDM) which is directly proportional to the 6 vacuum angle.
In the Hamiltonian formalism, we define the nEDM, denoted d,,, as follows,

H=—d,E-5. (5.22)

Translating this definition to the effective Lagrangian, we have
i _
Lot = _dniFNV (n O'lw')’sn) ) (5.23)

where d,, plays the role of a Wilson coefficient of the effective operator F, (ﬁ O'“V’)/Sn). This
coefficient is obtained by matching the low-energy QCD theory onto the effective Lagrangian given
by Eq. (5.23) at one-loop order. The result from the computation in the chiral perturbation theory
(xPT) reads [143, 144],

~ & Mgy —-16 g

Besides, the most recent upper limit of d,, is given by the nEDM measurement at PSI published in
2020, see Ref. [145]?,

n

dp| <1.8x 10720 ¢ cm . (5.25)
The upper bound of the § vacuum angle resulting from this measurement is,
6] < 10710, (5.26)

As we have seen, 6 is almost zero. The result of § surprises us, since the parameter receives con-
tributions from two disconnected sectors in the SM which, somehow, appear to cancel unnaturally.
Understanding why 6 is so tiny is the central question of the strong CP problem.

5.1.3 Possible solutions of the strong CP problem

As we showed in the previous section, the strong CP problem is definitely a major problem. There
are three possible solutions to this problem. We will go over these options briefly in this section.
In the following section, we will concentrate on the most viable solution, the axion, which was
proposed by Peccei and Quinn [129, 130].

e Massless quark solution. From Eq. (5.24), if we set up the quark fields (e.g. up-quark)
are massless, the value of |d,| will trivially vanish without any constrains. Nowadays, this
solution has been excluded by the simulations of lattice QCD, which show that the up-quark
has non-zero mass, m, = 2.32 MeV, Ref. [146]. Additionally, the experimentally observed
properties of mesons also suggest that quark fields require some sort of bare mass.

e Spontaneous CP (P) breaking solution. If CP is a true symmetry of nature which
has been spontaneously broken at a high-energy scale, one can set § = 0 in the tree-level
UV Lagrangian before the symmetry breaking. The problematic point is that at the low-
energy scale, when CP is spontaneously broken, one must account for the presence of CP
violation in the weak sector of SM while keeping # = 0 up to the one-loop level. There
exist some UV models that bypassed this difficulty [147, 148]. However, it costs some tuning,
e.g. complex Higgs VEVs, which leads to difficulties with flavour-changing neutral currents
(FCNC). Importantly, the current experimental data is still in good agreement with the

Cabibbo-Kobayashi-Maskawa model, where the CP symmetry is not spontaneously broken.

“The old upper bound of d,, is given by Ref. [37], explicitly |dn| < 2.9 x 10726 ¢ cm.
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e Additional chiral symmetry: axion solution. The key point of this idea is to add a new
chiral symmetry in the SM Lagrangian. Due to chiral anomaly, one can effectively rotate the
O-vacua away. This solution will provide a natural explanation for the tiny value of the @
parameter.

5.2 Introduction to axion models

5.2.1 The Peccei-Quinn mechanism

In 1977, R. Peccei and H. Quinn [129, 130] proposed a chiral solution which can deal with the
strong CP problem. The crucial point is to require the SM Lagrangian to have an additional U (1)
chiral symmetry, later called the Peccei-Quinn (PQ) symmetry, U(1)pg. At the typical energy
scale f,, the U(1)pg symmetry will be spontaneously broken and give rise to the so-called axion as
a Goldstone boson associated with its broken generator. In this section, we aim to show how the
axion field dynamically cleans up the f-dependent term out of the SM Lagrangian.

We begin by non-linearly realising the U(1)pg symmetry, this way, one can write down the
effective Lagrangian without referring to the axion UV complete models. The possible effective
Lagrangian reads,

Lo O L 519 % grgam L Lo ooma) 4 o, [28 5.27
eft D) SM+ +ﬁ 3277'2 v +§( },La)( a)+ int f)ﬁ‘p ’ ( . )

where the axion field a can be shifted under the U(1)pq transformation,
a(z) = a(x) + apgfa , (5.28)

where apg is a dimensionless parameter. To understand the dynamic behind the PQ solution, we
need to take a look at the axion potential when the low-energy QCD effects are taken into account,

V(a)eg = m2f? [1 — cos (0 + }1)] . (5.29)
The VEV of the axion field is obtained by minimizing this effective potential,
§+<Jf‘>_0<:><a>_—9‘fa. (5.30)

Expanding the axion field around its VEV, a = a + (a), and plugging it into Eq. (5.27), we can
easily see that 6 is cancelled by the VEV of axion field. In other words, the effective vacuum angle
ot = 0 + a/ f, is now dynamically relaxed to zero. The strong CP problem is solved. As a cost of
this solution, a new excitation state — the axion field — appears in the SM Lagrangian.

In the following sections, we will briefly present the UV complete models which can provide the
axion Lagrangian (5.27).

5.2.2 The Peccei-Quinn-Weinberg-Wilczek (PQWW) model

Weinberg and Wilczek [131, 132] proposed the original axion model based on the PQ mechanism.
Sometimes this model is called the visible axion model since the breaking scale of the PQ symmetry
is around the electroweak scale, so the axion couplings are not highly suppressed.

Since we need to embed the U(1)pg symmetry into the UV theory, it is clear that the SM
Lagrangian needs to be extended. In the next chapter, we will discuss this model in detail. To
avoid overlap of information, we state here the crucial points of the Weinberg-Wilczek model:
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Chapter 5: Introduction to the strong CP problem and Axions

e The axion will appear in the phase of the Higgs doublet. However, one Higgs field is insufficient
to produce the axion since the three NGBs generated by this doublet have been absorbed to
generate the longitudinal mode of the SM gauge bosons. The minimal extension still invariant
under the U(1)pg transformation is to add a new scalar doublet. In summary, the original
axion model is nothing but the two Higgs doublet model (2HDM) enlarged by the U(1)pg
symmetry. The 2HDM Lagrangian reads,

E%—%EM = — |:Yu’l]R D, qr, + YdCZR (I)g qL:| — YeéR CI)E l;, +h.c. , (531)

where both scalar and fermion fields charged under the PQ symmetry. After identifying the
would be Goldstone G° and the axion a, the Higgs fields can be written as follows,

_ng 0 _Li(,l)g 0
o) = \/56 <'Ul> , @ = \/ie <U2> , (5.32)

with & = vy /v; and vy, ve are the VEV of ®; and P9, respectively.

e Explicitly, the PQ charges of the scalar fields are

PQ(®1; ®y) = (x; —i> . (5.33)

Since the Yukawa term is invariant under the PQ transformation, one can identify the PQ
charge of the fermion fields, see Refs. [149, 150],

1 1
PQ(qr,ur,dr ; lp,er) = (OZ,OHL%OHLQC ; 5,ﬁ+m) ) (5.34)

with «, 8 are the free parameters, corresponding to the conservation of baryon and lepton
numbers. In the original axion model, the parameters «, 8 were set to zero.

e To obtain the axion Lagrangian, we perform the fermion field reparametrization,

v exp [iPQW)T| ¥, (¥ =arundn lu ). (5.35)

This chiral rotation brings three effects: First, it eliminates the dependence of the axion field
in the Yukawa terms. Second, it generates anomalous interactions, e.g. aGG, aWW, aBB.
The coupling of these interactions are read from the value of their anomalous coefficients.
Without loss of generality, the anomalous interactions can be written as

Lonomalous = ﬁ tr %: PQ()GW)G() [aaé +aWW + aBB (5.36)

where G(1)) are fermion gauge charges. Third, the axion-fermion derivative couplings will
appear,

o,a a,a —
Lint [gw] = =97 (gpq - 9" )Y (5.37)
with the vector and axial-vector charges are obtained from

Gholw) = 3 [PQUL) + PO . oholw) = 3 [PQWL) ~ PQR)] . (5.39)

Hence, we obtain the axion Lagrangian (5.27) with the couplings coming from PQWW model?.

3See next chapter for the full Lagrangian of the PQWW model.

94



Section 5.2: Introduction to axion models

It is worth noting that experiments have already ruled out the PQWW model since its PQ
breaking scale is too small ~ 246 GeV which means that the axion should have been observed.

This problem led to the invisible axion models where the U(1)pg symmetry breaking occurs
at an energy scale far higher than the electroweak scale, f, > vey,. The axion couplings in this
type of model are suppressed by the factor 1/f, < 1/v. Hence the axion will be very light, weakly
coupled and long-lived.

Depending on how U (1) pg is realized, there are two types of invisible axion models. The Dine-
Fischler-Srednicki-Zhitnitsky (DFSZ)-type [134, 135] and the Kim-Shifman-Vainshtein-Zkharov
(KSVZ)-type [133, 151] are the two axion models that are still viable under many experimental
constrains. In the following subsections, we will briefly present these models.

5.2.3 The DFSZ axion model

The DFSZ model is an extension of the Weinberg-Wilczek model. Analogously, the QCD anomaly
is driven by the SM chiral fermions. The crucial point is to decouple the PQ breaking scale f, far
from the electroweak scale by introducing a new singlet complex scalar field, acquiring its vacuum
expectation value at an energy scale f, > v. Explicitly, the scalar content in the DFSZ model is
P = (1,2, —1/2)7 Py = (1,2,—i—1/2)7 and ¢ = (1,1,0). Notice that these scalar fields are also
charged under the PQ global symmetry. The new scalar field ¢ will only directly couple with the
Higgs doublet ®; and ®», so it will indirectly modify the axion couplings. More precisely, the scalar
potential in the DFSZ model is
V(@1 8,0) = SH(1B1 — 02)? + (@ 8) 4 S0P — 27 + (el 4 50a]) 67
+e([@1 - Bo)g? + huc.) + d| @y - Bof? + €| DI Do[? (5.39)

where {a,b,c,d, e} are arbitrary coefficients. Because we will work with the DFSZ model in the
next chapter, we only state here the key points of this model:

e The Yukawa terms. In the 2HDM model, we have two ways to write the Yukawa La-
grangian. The DFSZ type-I is determined by the following Lagrangian,

Lprsz—1D — |:Yqu(I)1uR + quL(I)QdR] — Y l;Prer + h.c. . (5.40)
The DFSZ type-II is obtained if we couple ®; = ioo®] with the leptons,

LDFsz—11 D — [Yqu®1uR + quL(I)ng:| — YelL(i)leR + h.c. . (5.41)

e Axion couplings. Ignoring the radial degree of freedoms, the neutral components of scalar
fields in the DFSZ potential are,

1 PO 1 i02 0 1 z’ni’
P =—emn , $Po=—e , = —uvge ¢ | 5.42
-5 (6) (o) 2= 7" o8

where vg > v1,v2. The physical axion field is the linear combination of 71,72 and 7y,

a= Y alun) . f2=Ydet. (5.43)

i
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More precisely, the value of the coefficients ¢; are
cp, =2cos’ B, co, =2sin*B, cy=1, (5.44)

where the angle f3 is defined by cot 5 = vo/v; = x. The PQ charges of fermions are determined
by inverting Eq. (5.43) and expressing 7; in terms of the axion field a. From the Yukawa
Lagrangian, one can read out the PQ charges of fermion fields, then performing the chiral
rotations, the DFSZ axion Lagrangian will emerge. This procedure is exactly the same as
what we mentioned in the PQWW model. Comparing to the Weinberg-Wilcezk model, one
just needs to do some simple replacements,

222 1 2
— - ) I 5.45
v e T s <:1c> 22+1’ (5.4)

and the axion couplings will be obtained very easily.

5.2.4 The KSVZ axion model

The KSVZ model also has the complex scalar field ¢ = (1,1,0) where the axion can be embedded
in its phase, and the PQ breaking scale f, is also very far from the electroweak scale. The main
difference is how QCD anomalous interaction is realized. The KSVZ model introduced a new
vector-like fermion, @ = (3,1,0) that carries the PQ charge while the SM fermions are uncharged
under the PQ symmetry. The KSVZ Lagrangian reads,

N
Lxrsz O QiPQ — (y,QroQr +h.c.) + (0.8)* — Ay (|¢’2 - J;) : (5.46)

When the U(1)pq is spontaneously broken, the axion field appears as a NGB of the scalar field ¢,
6= focite (5.47)
J3la ) .

The PQ charges of the field content are the following,

(07 «

PQ($)=a, PQQLQR=(5.-3) « PQUsu)=0. (5.48)

Eventually, the axion Lagrangian is obtained via performing the chiral rotations. Since we choose

that @) only has colours and electromagnetic gauge charges, the model provides the anomalous
interactions with gluons and photons at tree-level.
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Chapter 6

Axion Effective Action

In this chapter, we discuss the construction of Effective Field Theories (EFTs) in which a chiral
fermion, charged under both gauge and global symmetries, is integrated out. Inspired by typical
axion models, these symmetries can be spontaneously broken, and the global ones might also be
anomalous. In this context, particular emphasis is laid on the derivative couplings of the Goldstone
bosons to the fermions, as these lead to severe divergences and ambiguities when building the EFT.
We show how to precisely solve these difficulties within the path integral formalism, by adapting
the anomalous Ward identities to the EFT context. Our results are very generic, and when applied
to axion models, they reproduce the non-intuitive couplings between the massive SM gauge fields
and the axion. Altogether, this provides an efficient formalism, paving the way for a systematic
and consistent methodology to build entire EFTs involving anomalous symmetries, as required for
axion or ALP searches.

6.1 Introduction

The Peccei-Quinn (PQ) mechanism [129, 130] is probably the best solution to the strong CP problem
of the Standard Model (SM) [145]. This solution predicts a new Goldstone boson, the so-called
axion [131, 132], which is hunted by many experiments. Recent constrains from astrophysics [152,
153] and particle physics [154, 155] imply that the breaking scale of PQ symmetry, f,, is much
larger than the electroweak scale. Due to this large-scale separation, Effective Field Theory (EFT)
is a well-suited framework to describe the interactions between the axion and other light particles
(usually from the SM).

In previous works, the authors of Refs. [149, 150, 156] have shown that axion models exhibit
intrinsic ambiguities in their formulation, and this has a dramatic impact on the coupling of axions
to massive gauge fields. One of the main conclusion of Ref. [149] states as follows: when axion
models are specified in a representation in which the axion has only derivative couplings to SM
chiral fermions, such as in DFSZ-like axion models [134, 135] !, some chiral reparametrisation of
the fermionic fields are implicit and lie at the root of the so-called anomalous axion couplings to
gauge field strengths. For vector gauge interactions, it is well known that derivative couplings to
fermions decouple faster than local anomalous operators, which thus capture the whole axion to
gauge boson couplings. By contrast, derivative interactions do not systematically decouple for chi-
ral gauge interactions, ultimately because the gauge symmetry is necessarily spontaneously broken
when the chiral fermions get their masses. Importantly, non-decoupling contributions from deriva-

'KSVZ-like models [133, 151] involve vector-like fermions, whose masses are decoupled from the spontaneous
electroweak symmetry breaking, and the discussion is much simpler.
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tive interactions can arise from the usual axial coupling to fermions, but also from the vector one.
Both can be anomalous in the presence of chiral gauge interactions. In practice, keeping track of
these non-decoupling effects is crucial to get consistent, parametrisation-independent couplings of
the axion to gauge bosons. Only with them, one can match the results obtained using a linear rep-
resentation of the complex Peccei-Quinn scalar field, in which the axion has pseudoscalar couplings
to chiral fermions, and no anomaly-related ambiguities ever arise.

On a more technical side, these results have been derived by appropriately computing anomalous
triangle diagrams regularised using Weinberg’s method [118, 157] which allow to parametrise the
initial ambiguity inherent to the momentum rooting in the amplitude integrals. This rigorous
treatment allows to obtain generalised Ward identities, in which one can tune which current is
anomalous, or not, which is physically mandatory and not guaranteed in a more naive computation.
The Ref. [158] reaches similar conclusions from a more anomaly matching EFT-oriented point of
view, which brings interesting insights to axion couplings to chiral gauge fields.

In this work, our goal is not only to add up on the understanding and construction of low
energy axion EFTs, but also more generally on the possible interplays or entanglements between
spontaneous and anomalous symmetry breaking that can arise when chiral fermions are integrated
out. Further, our goal is to perform this analysis exclusively in a functional context, by building the
low-energy EFT following a step-by-step integration of the chiral fermion fields, without recourse
to triangle Feynman diagrams or Ward identities, and take advantage of the elegant and convenient
techniques developed recently to integrate out heavy fermionic fields [3, 6, 72, 75-77, 79-82, 98].
The only ingredients will thus be dimensionally-regulated functional traces, and the order-by-order
invariance of the EFT operators under gauge transformations, when the appropriate would-be-
Goldstone bosons are accounted for. Ultimately, the same non-decoupling of derivative interactions
will be observed, in the sense that the EFT built from them will start with dimension-five operators.

The main novelties of our approach are the following: within the path integral formalism for
one-loop matching, we show how to consistently integrate out heavy chiral fermions, which are
charged under both the local and global symmetries. Focusing on the Goldstone-gauge bosons
couplings, we show how to deal with 7° within dimensional regularisation to properly keep track
of the ambiguities arising in the one-loop effective action. In the functional matching, we show
that the gauge invariant combinations of the EFT operators can be used to fix these ambiguities.
Hence, for the first time, with the functional method for one-loop matching, we can fully control
which symmetry currents are anomalous and which ones are anomaly free. Therefore, the Wilson
coefficients can be obtained correctly. We then derive the universal formula that captures all EFT
couplings of Goldstone bosons with gauge bosons (both massive and massless) consistently and
generically. Our results can be easily applied to various axion UV models.

The plan of the manuscript is the following: In section 6.2, we integrate out a chiral fermion
from a toy model to obtain a gauge and Goldstone boson EFT. This section will mainly concentrate
on the physical interpretations so the reader can understand the logic behind the construction
without entering into the details of the calculation. The crucial point of this section is to show
how ambiguous coeflicients can be fixed by enforcing the Ward identities, which are now written
in terms of gauge invariant combinations of the EFT operators. For the reader who is familiar to
this topic, one can skip this section and go directly to the following section.

In section 6.3, we will detail how to evaluate the one-loop effective action from the path integral
functional approach and how we deal with the ambiguities originating from the QFT anomalies.
The main outcome of this section is Eq. (6.53), a master formula which can be easily used to
obtain effective couplings between gauge fields and Goldstone bosons, and which encapsulates the
subtleties occurring when dealing with anomalous global symmetries in a chiral gauge theory.

In section 6.4, we apply this master formula to various models starting with a simple chiral

98



Section 6.2: EFTs with spontaneously and anomalously broken symmetries

toy model with an additional global U(1) symmetry. We then explicitly apply our results to axion
models and recover, for instance, the non-intuitive axion couplings involving massive gauge fields
in DFSZ-like models. We conclude in section 6.5 while additional computational details regarding
master integrals can be found in Appendix A.

6.2 EFTs with spontaneously and anomalously broken symme-
tries

Readers familiar to the topic of anomalous symmetries in the EFT may directly jump to the follow-
ing sections. Our goal here is to introduce the formalism using a simplified setting. More precisely,
our goal is to integrate out fermions that can be charged under both global and local symmetries.
Further, those fermions will not be assumed vector-like: their left- and right-handed components
need not have the same charges under these symmetries. This generates two complications. First,
obviously, such fermions can only acquire a mass, and thus be integrated out, when the chiral
components of the symmetries are spontaneously broken. Second, the classical symmetries can-
not all survive quantisation, and there must be some anomalies. These two effects are entangled,
and further, they induce some freedom in how the fermionic part of the UV Lagrangian is to be
parametrised. So, before any attempt at integrating out the fermions, it is necessary to fix this
freedom. As we will discuss in this section, from a functional point of view, one parametrisation
emerges as the most natural, but requires a specific treatment of anomalous effects and derivative
interactions.

6.2.1 EFTs and gauge invariance

We start from a generic UV Lagrangian exhibiting some set of local symmetries and involving
fermionic degrees of freedom. Typically, the fermionic part of the Lagrangian is of the form,
including for simplicity only one axial and one vector gauge field,

L = T (07" + 9, Vi — g, 40"7°) T (6.1)

Let us first consider abelian gauge symmetries for simplicity 2. At the classical level, this theory is
invariant under U(1)y and U(1)4 gauge transformations, which we define as:

Uy : V= Vo + glaﬂev LW exp(if, )T, (6.2)
\%
1

Ul)a: Ay — A, + ;%9,4 , U — exp(—if ,7°)T . (6.3)
A

Our goal is to integrate out the fermion to get the tower of effective interactions by performing
an inverse mass expansion >. This obviously means that the fermion to be integrated out should
be massive, which forces the axial gauge symmetry to be spontaneously broken. To be able to
consistently account for this, let us include the complex scalar field ¢4 which, by acquiring a
vacuum expectation value v, will spontaneously break the axial gauge symmetry,

LN = U (10,4 + g, V,y" — 9, 47" 7°) ¥ — yo (U, ¢, +hec), (6.4)

with yg the Yukawa coupling, and two Weyl components U, = Pg ¥ with Pr = (1 £+°)/2.

2We will discuss later the peculiarities arising in the non abelian case.
3More precisely we will use convenient Covariant Derivative Expansion (CDE) techniques.
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If one wants to focus on manifest gauge invariance, it is convenient to include the Goldstone
boson, 74, and adopt an exponential or polar representation for the complex scalar field,

1  ma(x)
= ) 6.5
oy \/§(U+O'A)6Xp [z . (6.5)
Indeed, thanks to the exponential parametrisation of the Goldstone boson, this theory is still
manifestly gauge invariant provided, together with the transformation of Eq. (6.3),

A — TA+ 200, , (6.6)

while o4 is gauge invariant and plays no role in that regard. Said differently, with this representa-
tion, it is sufficient to keep only the gauge bosons and the Goldstone fields explicitly to construct
the EFT, which will involve only these fields in a gauge invariant way.

By contrast, if one insists on manifest renormalisability, the Goldstone boson has to enter
linearly, that is, by writing the scalar field acquiring a vacuum expectation value v as linear in all
its components,

¢A:\}§(U+UA+Z'7TA). (6.7)

The 04 is no longer gauge invariant since a U(1)4 gauge transformation is nothing but a SO(2)

rotation for the (v + o4, 74) vector. If one insists on manifest gauge invariance, the difficulty then

is that o 4 should explicitly appear in /J%{,mion. Even if in the abelian case, this is quite simple, this
would introduce unnecessary model-dependence in the non-abelian case.

So, at the end of the day, it is legitimate in order to be able to consistently account for spon-

taneous breaking of the axial gauge symmetry, to consider the exponential representation of the

Goldstone boson,

[/%{/mion - (Z'au,yll + g, VM,},H _ gAA/L’Y'u’YES — M exp |:Z 71:(;4’}/5:| ) v, (68)

where M = ygv/v/2 stands for the mass of the fermion. Yet, at this stage, a Taylor expansion?

produces the pseudoscalar 74 ¥~°V¥ coupling, and is the same as it would be in the linear rep-
resentation of ¢4. So, the distinction between linear and polar representation may appear quite
academic. Yet, the exponential parametrisation offers an alternative route. Instead of a Taylor
expansion, there is a well-known exact procedure to recover a linearised Lagrangian that allows
to transfer the Goldstone dependence from the Yukawa sector to the gauge sector. Based on the
chiral rotation that is given by Eq. (6.3), it suffices to perform a field-dependent reparametrisation
of the fermion fields

U W = exp [— z‘”gff)fﬁ] v, (6.9)

and the Lagrangian in Eq. (6.8) becomes

o 9
Llepmion — § <iaﬂ“ — M + g, Vit — [QAAu - “7;‘)@)] 7“75> v (6.10)

4For the purpose of evaluating the one-loop effective action using the Covariant Derivative Expansion (CDE),
truncating this expansion is perfectly consistent since operators at most linear in a given Goldstone boson will be
considered. Issues related to the apparent non-renormalisability of the exponential parametrisation will not affect
our developments.
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Section 6.2: EFTs with spontaneously and anomalously broken symmetries

Under this form, ¥ is invariant under the axial gauge transformation U(1)4, so the mass term
does not cause any trouble even for a chiral gauge symmetry and could easily be factored out for
an EFT mass expansion. The quadratic operator defined in Eq. (6.10) has the virtue of being
manifestly gauge invariant. The Goldstone boson itself ensures the theory stays invariant when
A, — A+ i@,ﬂ/‘ thanks to m4 — m4 + 200 ,. Evidently, for that to work, one should not get rid
of them by moving to the unitary gauge.

However, as a side effect, the theory is still not manifestly renormalisable since the d,ma(x)
operator is of dimension five. Yet, this form looks particularly well suited for an inverse mass
expansion since M ~ v. Let us stress, though, that one should not be tempted to conclude that the
duma(x) operator is subleading and can be neglected. Such considerations can only be consistently
done after the fermion field has been integrated out, and as we will see in details in the following,
this operator does contribute in general to the leading terms in the EFT.

6.2.2 EFTs and anomalies

The Lagrangian in Eq. (6.10) looks promising, but to reach it, we had to reparametrise the fermion
field, Eq. (6.9), and there is one crucial caveat for that. The fermion being chiral, this reparametrisa-
tion does not leave the path integral fermionic measure invariant. In general, given that ¥ is coupled
to gauge fields, the Jacobian, obtained using the singlet anomaly result for chiral fermions [118, 119],
sums up to additional terms in the Lagrangian of the form

~ 1 ~
8?% 9y VWVF{/W + 793FA,;WF£V , (6.11)

Luy D EJUa\(} = 3

with F = 9#X” — 9V X* the usual field strength tensor applied to the generic gauge field X and
F W = (1/2)eupo FY its dual field strength tensor with the suffix indicating if this apply to the
vector gauge field (V) or the axial one (A). These terms explicitly break gauge invariance, since
they get shifted under mq — 74 + 200,.

There are two main ways to deal with the anomalous contributions shown in Eq. (6.11). If one
wants to hold the interactions to be gauged, a first possibility consists in tuning the chiral fermionic
content such that the total contribution to the anomaly vanishes (as it happens in the SM). The
second possibility is to give up gauge invariance and reconsider the local symmetry as a global
symmetry. We clarify in the following these two cases to consider:

e For gauge interactions that are meant to exist at the quantum level (then not being anoma-
lous), the fermionic content is supposed to be just right so that the sum of all Jacobian terms
sum up to zero. As is well known, this is the prototype of the gauge interactions in the SM,
where gauge anomalies cancel out only when all matter fields are summed over. The impor-
tant point is that the corresponding Goldstone fields are allowed to be moved to and from
the mass terms without generating a Jacobian contribution. Indeed, the reparametrisation
in Eq. (6.9) must not generate Jacobian terms since a gauge transformation acts like that on
fermions, see Eq. (6.3). In this context, the strict equivalence between the \I/(@“WA7“75)\II
and \I/(M Y57A/ v) W couplings can be viewed as the transcription of the non-anomalous Ward
identity 0,A* = 2iMP with A" = UyH~ySW and P = UASW. Indeed, to the divergence of
any correlation function of the axial gauge current, (0|A¥...|0), we can associate that with
Ouma from Eq. (6.10), which can then be equivalently calculated from Eq. (6.8) (after Taylor
expanding the exponential term). Regarding the vector gauge interactions, the situation is
simpler since the mass term is gauge invariant. Imposing V,, — V,+ é@,ﬂv requires the 0,0,
piece to cancel out, i.e. any correlation function of the vector gauge currents V* = U~ W
satisfies the non-anomalous Ward identity d,V* = 0.
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Chapter 6: Axion Effective Action

e Some of the gauge interactions may simply be absent if their symmetry is kept global. In
that case, one can simply remove the corresponding A, from the Lagrangian, but keep the
Goldstone bosons since they become independent physical degrees of freedom. These global
symmetries may or may not have anomalies, but whenever they do, one should keep track
of the Jacobian when passing from pseudoscalar to derivative Goldstone boson couplings to
fermions. As explained in Refs.[149, 150], one must obtain the same results using either
the Lagrangian with pseudoscalar couplings (after Taylor expanding the exponential term in
Eq. (6.8)), or that using derivative couplings, Eq. (6.10), provided the local anomalous terms,
Eq. (6.11), are then also included. Indeed, the point is that derivative couplings do induce
anomalous effects that precisely cancel those in the local terms of Eq. (6.11). In the inverse
mass expansion context, this shows that one must be careful not to perform the limit M — oo
too soon, that is, discard the derivative interaction in Eq. (6.10) on the basis of its relative
O(M?) suppression with respect to the fermion mass term, because it does provide terms of
the same order in M as those in Eq. (6.11).

6.2.3 EFTs with local and global symmetries

The goal of the present chapter is to consider scenarios combining both situations we have discussed
so far, that is, with spontaneously broken gauge symmetries and anomalous global symmetries.
Generically, our theory of interest corresponds to

Luv D LT + LT, (6.12)

with

. _ 9 9
E%}{/mlon S Z'a,f}’ﬂ —M+(V, - pTv - AM — JuTA ’YM’YE)
2uy 204

Oums " O N
—(o- (oY v, 1
<0 205 >7 <0 2oy )77 (6.13)

and for the Jacobian, using the singlet anomaly result for chiral fermions [118, 119], and noting
that Wy p couples to V# 4+ A* and 9, (75 & ),

1 U % a1 4 %
£ = Sgra s | (B 4 Fu) (B4 P2 + (B = Fp) (B~ 1)
1 =g - ~ - -
1672 % |:(FValW + FA:/W) (F\!/w + sz) - (FVv/“’ - FAle) (F\l/w N Fﬁy)]
]. 7TU ~ ~ 1 7TS ~
= Sty (P4 Fa P ) 4 g oY (614

where m4 and my have no contact interactions with field strength tensors since these gauge in-
teractions are assumed anomaly-free. To insist on the fact that mg and my are Goldstone bosons
associated to global symmetries, we explicitly assign their respective would-be-gauge fields to 0 in
Eq. (6.12). In this expression and throughout the rest of this section, we have set all the couplings
to one to unclutter the derivation, but they can be straightforwardly reintroduced, as we will do
in the following sections. This parametrisation of the fermion sector of the UV theory deserves
several important comments:

e The UV theory necessarily involves several complex scalar fields, several species of fermions
to cancel the gauge anomalies, along with some set of scalar and fermion couplings ensuring
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Section 6.2: EFTs with spontaneously and anomalously broken symmetries

the existence of the gauge and global symmetries at the Lagrangian level. Further, as will
be detailed in Sec. 4, the pseudoscalar components of these scalar fields in general mix, with
some combinations eaten by the gauge fields, and some left over as true physical degrees
of freedom. With the above parametrisation, we single out one of these fermions, and all
the other UV features are encoded into the parameters vg s, v4,y, which in general involves
vacuum expectation values and some mixing angles, and in the fermion mass term M, which
in general arises from several Yukawa couplings.

e Adopting a non-linear representation for the scalar fields, with its associated loss of renormal-
isability, is inevitable if one wishes to leave the details of the whole scalar sector unspecified
and start at the UV scale with an effective theory involving only the Goldstone bosons. In-
deed, those have to be constrained to live on the specific coset space corresponding to the
assumed symmetry breaking pattern. Note that for an abelian global symmetry, the dynam-
ics of the Goldstone bosons is particularly simple, as there are no contact interactions among
them, and all that remains is the shift symmetry.

e One of the main goal of this work is to build an EFT by integrating out chiral fermions. As we
have discussed, it is then convenient to reparametrise the fermion fields, so that the Goldstone
boson couplings to fermions involve local partial derivative. This first ensures the gauge and
shift symmetries are manifest, but it also makes the fermion mass term invariant under all
symmetries. Though not compulsory, it then allows to construct the EFT by factoring the
mass term out in a symmetry preserving way.

e For the abelian toy model described here, the Goldstone bosons involved in vector currents,
ms and 7y, actually play no role. Indeed, for the vector gauge interaction, the 8“7rv\T/'y“\I/ in-
teraction can always be eliminated by a non-anomalous reparametrisation ¥ — exp (127;)—“//)\1/,
which leaves the fermion mass term invariant. Whether it is spontaneously broken or not
is thus irrelevant. For the scalar mg Goldstone boson associated to a global symmetry, the
reparametrisation ¥ — exp (127;—55)\11 not only removes the Qms\iw“\lf interaction, but being
anomalous, it induces a Jacobian that precisely kills the mg terms in Eq. (6.14). The field 7g
thus disappears entirely from the theory. These two facts are truly peculiar to the abelian
gauge symmetry case, with the fermion in a one-dimensional representation. So, to set up
the formalism to deal with more general theories, like the SM, we keep these fields explicitly
in the UV parametrisation of the fermion couplings.®

So, let us proceed and integrate out the fermion field involving local partial derivatives in its
quadratic operator. Details of the calculation will be presented in the following section, but let
us already discuss some interesting generic features. If one decides to use Feynman diagrams to
integrate out fermions, one will have to deal with divergent triangle amplitudes that one will have
to carefully regularise. Even if this is a standard manipulation in QFT, the potential spread of the
anomaly has to be considered with great care as discussed in Refs. [149, 150]. In the functional
approach, that we will follow all along this work, the fact that the axial vector or vector couplings

are anomalous manifests itself by the presence of ambiguities in the functional trace 6.

"Further, integrating out the fermion starting from Eq. (6.13), to verify that the s derivative interaction indeed
induces EFT operators that precisely cancel the Jacobian term in Eq. (6.14) provides a non-trivial check for our
calculation, see Sec. 4.1.

5More precisely the ambiguity is localised in the Dirac matrices trace if one chooses to use dimensional regulari-
sation, as we will do.
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This means that starting from Eq. (6.13), the fermion-less EFT expansion will start with six
dimension-five operators involving the Goldstone bosons 7y and mg 7

oy 0 1o, -
‘Cfermlon - ﬁlEllg%p = Wayy ?V Fuy AAA;Tﬂ[-]U (AV - ;;:4> sz
0 0 0 -
Fa gy VL oy S (Ay - 2:;) B (6.15)

The evaluation of the w; coefficients & involves divergent integrals and after their regularisation,
those parameters end up fully ambiguous. We thus need to find a strategy to fix them.

Actually, these ambiguities are the exact analog of those arising for the triangle diagrams, whose
expressions are ambiguous since they depend on the routing of the momenta when working at the
Feynman diagram level. In that case, the ambiguities are removed by imposing the appropriate
Ward identities, that is, gauge invariance. So, we would like to do the same here, and impose
the vector and axial gauge invariance. However, all the operators in Eq. (6.15) are already gauge
invariant! Actually, the would-be-Goldstone bosons 74 are not even needed to ensure the gauge
invariance, and they never contribute to S-matrix elements. The reason is that their contributions,
or the 6, , terms arising when V,, — V,, + 9,0, or A, — A, + 9,0,, drop out by integration by

parts 9 thanks to the antisymmetry of F' “Z and the Bianchi identity.

In the initial Lagrangian of Eq. (6.12) we decided to treat both the would-be Goldstone bosons
(my and 74) and the Goldstone bosons (mg and 77) on equal footing by writing them with local
derivative acting on them. Since this increases the degree of divergence of integrals one would then
be tempted, in order to minimise the number of integrals to regularise, to preferentially consider
the situation where the would-be Goldstone bosons enter the mass term (let us remind that this
can be trivially done since the gauge symmetries are assumed not to be anomalous). Then, after

Taylor expanding the mass term one obtains,

Llermion — [z’a,ﬁ” - M<1 E

o, o,
” 175) + V't — Au'y“’y5 + £ S’y“ + £ Uv“’y5 v, (6.16)
A

2ug 2uy

Since by construction the U(1)y and U(1) 4 symmetries are gauged, the would-be-Goldstone bosons,
my and w4, are not involved in bosonic operators up to dimension five, starting from Eq. (6.16).
This means that the fermion-less EFT expansion will start again with four dimension-five operators
involving only the Goldstone bosons g and 7y

. o 0 -
E%{/mlon N »CEFT =W,y MTFUV szl +w Wi MTrU AVF‘LW
2 QUU A
o,Ts | =
+ Wy, 2 5V, Frv VAVQ“TSAVFgu : (6.17)

Since w4 drops out of Eq. (6.15) under integration by part, we recover exactly the same effective
interactions. Moving the would-be-Goldstone to the fermion mass term, that is, making it gauge-
dependent, does not help to fix the w; coefficients because gauge invariance is still automatic for
the leading dimension-five operators. The only way forward is to perturb the theory to break this
automatic gauge invariance, so that non-trivial constraints on the w; coefficients can emerge. One
possibility is to associate to the Goldstone bosons, mg and my, auxiliary gauge fields S, and U,
respectively, as we will now discuss.

"A priori the only non vanishing dimension five operators have to involve Dirac traces with only one ~° matrix or
with three % matrices.

8The w; coefficients carry the CP properties of their associated three Lorentz structures. As an example, 9,7y is
CP-odd, V,, and F"‘/“’ are CP-even so the associated coefficient reads wavv .

90ne should note that integration by parts can be performed without any hesitation since the fermion has been
formally integrated out.
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Section 6.2: EFTs with spontaneously and anomalously broken symmetries

6.2.4 Remove ambiguities with artificial gauging

One way to fix w, .\, W,y 45 Wy 4 and w, , , using the constraint of gauge invariance is to introduce
fictitious ' vector and axial vector gauge fields associated to the 7g and 7y Goldstone bosons.
These fictitious gauge fields then enter in the effective operators of Eq. (6.15), and prevent gauge
invariance from being automatic under partial integration. They also prevent the contributions
involving the would-be-Goldstone bosons of the true symmetries to vanish. This trick, introduced
in Ref. [158], is the key to derive non-trivial constraints and fix the ambiguous coefficients.

One may be a bit uneasy about this gauging of the global symmetries since these are precisely
the symmetries that are anomalous. Actually, in the following, we will never need to use the
fictitious gauge invariance in any form. All that matters is that these fictitious gauge fields act as
background fields for 9,ms and 0,7y, so as to upset the automatic (true) gauge invariances. This
is sufficient to derive non-trivial constraints from the true, non-anomalous gauge symmetries.

Yet, as advocated in Ref. [158], it can also be technically interesting to view these background
fields as fictitious gauge fields, because then all the symmetries are treated on the same footing.
As we will detail in section 6.3, the calculation of the EFT becomes fully generic. The nice feature
is that under this form, one can decide only at the very end which of the gauge symmetries is to
be anomalous, hence fictitious, by imposing the exact invariance of the EFT under the other gauge
symmetries, those that are kept active.

To illustrate all that, let us thus rewrite our initial Lagrangian as

- = 0 0
cipen = w000~ 21+ (v, — 2o (4, D)
2y 2v,p

o, o,
HCEE LRI CR 5 Ll LI

In this Lagrangian, the d,my piece is irrelevant, since it can be eliminated by an innocuous
reparametrisation, but let us keep it anyway for now. Integrating out the fermion leads to the
EFT :

a T 8 0 - 0 T a s ~
1loo S vtV v U vtV v
LEpT1 = Wyva (Su - > (Vz/ - > FR 4w,y <Uu — > <V,, - ) 2%

2’05 2’0\/ 21}[] 2’1)\/
OuTs OyTa\ = ouTU O\ =
+ Wy av (SM - ;US ) (AV - 2VUA ) F\éw + Waaa (Uu - QHUU AV - 2VUA szj

(6.19)

with again the ambiguous coefficients w ., Wy, 4, Wy 4 and w,,, (the details of the calculation
will be presented in the next section). All these interactions are still automatically gauge invariant
thanks to the presence of the would-be-Goldstone bosons. Now, the key is to remember that the
true gauge interactions are anomaly-free by assumption. This means the w4 can be freely moved to
the mass term by a reparametrisation of the fermion field, without Jacobian, and as said above, the
Oumy term can be discarded, again without Jacobian. Thus, the UV Lagrangian can equivalently
be written as

LV =T L‘aw“ -M (1 + A ’W5> + Vit — Aty
s VA

oum S o,m U
+ (S, — 2 ry U, - £ ryS 6.20
< b e )7 vl Rl (6.20)
10At the end of the day, we will still want the global symmetry to stay global and to set to zero these fictitious
vector fields.
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This time, there is no ambiguity in calculating the Wilson coefficients of the operators involving
the would-be-Goldstone bosons. The five-dimensional effective interactions become

11 Oums = 0,y ~
EEIC«:?I‘ITH D Wyya (SM - QMUS > VVF:;“/ + Wavv (UM — QMUU ) VVF"/“/
OuTs < A <
+ Wy ay <SH - QHUS ) AVF\lj T Nasy an,HVF\}/L
8 U ~ TA ~
tWaaa <Uu - ;UU > A F + UAUAEFU,;WFQW ) (6.21)

where w,,, Wyyas Wy and w,,, are ambiguous, but not 7, and n,,, since they arise from
convergent integrals. Importantly, under this form, the true U(1)y and U(1)4 gauge invariances
are no longer automatic.

Now, we end up with two equivalent ways to fix the ambiguities. Either we enforce the matching
of Eq. (6.21) with Eq. (6.19), or we impose gauge invariance on Eq. (6.21). In both cases, the
constraints take the same form, but the latter is obviously more economical from a calculation
point of view and will be adopted in the next sections.

For instance, for the vector gauge fields, since my is absent from Eq. (6.21), matching with
Eq. (6.19) requires wy,,, and w,,, to vanish. Equivalently, invariance of Eq. (6.21) under V,, —
V., + 0,0, immediately imposes w,,,, = w,,, = 0. This corresponds to the usual result that
for vector gauge interactions, the derivative interactions of a Goldstone boson with the fermions
contributes only at the subleading order in the mass expansion, otherwise known as the Sutherland-
Veltman theorem. The local Jacobian terms in Eq. (6.14) immediately catch the whole V'V
coupling.

For the axial gauge field, matching Eq. (6.21) with Eq. (6.19) obviously permits to fix the
ambiguous w,, ,,, and w,,, in terms of n,, ¢ and 7n,,,, which are fully calculable. Alternatively,
performing a U(1)4 gauge transformation A, — A, + 0,0, together with 74 — m4 + 2v40, in
Eq. (6.21) generates the gauge variation, after integrating by part and using the Bianchi identity,

1 1 ~ 1 .
oA ('CEI?‘%I?H) = <2wVAV + 277Asv> QAF:VFV,MV + <2wAAA + 277AUA> HAF(?VFAMM/ . (6.22)
Hence, the requirement of gauge invariance asks for

11
oA (‘CEE%I?H) =0 wy,y =, andw,,, = —4n,,, (6.23)

The effective axion-bosonic Lagrangian is obtained by adding E%a\ﬁ and Ellalg%pn and finally setting

the fictitious vector fields to zero, this gives the result,

1 ny ~ 1 U ~ 1 TS .
Lerr = 1672 EFVMVF\[/W + [167?2 - ”AUA] EFA,WFT + [87@ - ”Asv] EFAMVF\I/W’ (6.24)

Let us stress again that the n,,,, and 77, are fully calculable, unambiguous coefficients originating
from convergent integrals. The determination of w, ,,, and w,,, from the requirement of gauge
invariance is now transparent, and precisely matches that using Ward identities in a Feynman
diagram context [149]. This is the general procedure we will adopt in the following to derive our
bosonic EFTs. Of course, in the physical case, none of the interactions parametrised by 7,.,, and
N4 €Xist since they require the presence of the fictitious U, and S, gauge fields as background
values'!. Yet, this derivation sheds a new light on the violation of the Sutherland-Veltman theorem

1T 00king back, it is clear that gauge invariance under these fictitious symmetries is never imposed in any form.
All that matters is to prevent the would-be-Goldstone bosons from being automatically absent from both Eq. (6.19)
and Eq. (6.21), and true gauge invariance from being automatic in both EFT Lagrangians.

106



Section 6.3: Integrating out chiral fermions

in the presence of spontaneously broken axial gauge interactions. Ultimately, it is due to the
contribution of the associated would-be-Goldstone boson. The net effect is that the mgV A and
mAA couplings are not fully determined by the corresponding terms in the Jacobian, Eq. (6.14),
since derivative interactions do contribute at leading order in the inverse mass expansion.

6.3 Integrating out chiral fermions

In the previous section we discussed, qualitatively, peculiarities arising when building an EFT, while
integrating out fermionic fields, from a UV theory with exact or spontaneous gauge symmetries
and anomalous global symmetries. In this section we will, quantitatively, construct these EFTs
involving gauge fields and their associated would-be-Goldstone bosons and simple Goldstone bosons
associated to global symmetries. While the would-be Goldstone bosons can display derivative or
pseudo-scalar couplings to fermions, since ultimately this depends on the fermion parametrisation
(as we have discussed before), the Goldstone bosons will have to be taken firmly with local derivative
couplings to fermions. Strictly speaking, from a path integral point of view, those details of the
model are not mandatory to perform the main computation part, meaning forming the operator
basis, evaluating the loop integrals after regularizing them. The symmetry aspects of the model
will only matter at the very last stage when matching a UV theory onto its EFT.

In this section, we will briefly review the core techniques for calculating Wilson coefficients of
EFT higher dimensional operators at the one-loop level by utilizing the functional approach. Since
our interest is about the anomaly structure of specific QF T's, we will concentrate, in a general way,
on the task of integrating out chiral fermions or fields which chiraly interact with gauge fields. We
will also remind the reader how anomalies arise depending on how the one-loop effective action is
regularised.

6.3.1 Evaluation of the fermionic effective action

We consider a generic UV theory containing a heavy Dirac fermion ¥ of mass M interacting
bilinearly with a light field ¢, which is encapsulated inside the background function X[¢] '2. The
matter Lagrangian of this generic UV theory can be written as follows,

Lisrmion [y ¢] 5 W\ Py — M + X[6] | = ¥ Quy[4] ¥, (6.25)

where P, = i0,, and introducing Qv [¢] the fermionic quadratic operator. The background function
X[¢] that we will consider throughout this chapter is

X[p] = Vuloly* — Aulohy"y” = Wa[glin®, (6.26)

where we decompose X[¢] in terms of vector V,[¢], axial-vector A,[¢] and pseudo-scalar W1[¢]
structures'3, which are all the different types of interactions we will need to match our “axion
motivated” UV theory to an EFT. In order to obtain the fermionic one-loop effective action, the

12For simplicity, we will consider ¥ and ¢ as singlets but the following procedure is more general and it is still
possible to treat them as multiplets.

13We note that V,[¢], A,.[¢] and W1[¢] do not contain any Dirac matrices or momentum variables g,,. The structures
V.[¢] and A, [¢] can include gauge fields or local derivative of scalar fields.
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light field ¢ is treated classically, integrating out the fermion field ¥ yields'*

ISERT 9] — /D\IID\IJ eiSuv(¥, ¢]

~ eiSU\/[\Ilc,¢] /DU Dn eifd4xﬁQUV[¢]n = eiSUV[\I}C’(b] det Quy [d)]

— eiSUV[\I’Cv ¢] eTr In QUV[¢] , (627)

where in the second line of Eq. (6.27) we have expanded the fermion fields around their classical
background values, ¥ = W, + n and performed the integration over the quantum fluctuations 7.
Eventually, we have traded the functional determinant for the functional trace, “Ir”, running over
the functional space and internal indices of the quadratic operator, Quv[¢]. We therefore arrive at
the one-loop effective action arising from integrating out a fermion:

11 . .
Sppr = —iTrIn(P — M + V,[¢]y" — ALoly"° — Wilglin®) . (6.28)
Generally, in the functional space, one can write the quadratic operator as a function of position,
2, and momentum, p, operators. Projecting onto position space, these operators become z = =z
and p, = i0,. The standard initial step is to evaluate the trace over functional space by inserting

the momentum eigenstate basis together with employing the canonical quantum mechanical trick
of inserting the identity matrix, [ d'z|z)(z|=11°

lloop . d4q
Sgpp = —t (2 ) <q|tr1n Quv (Z,Pu)la)

x) (z|trIn Quv (2, D) |q)

— / /( e trin Qv (w,i0,)e 4"

q

d4

i) trln Quv (z,i0, — qu) , (6.29)

where “tr” now denotes the trace over spinor and internal symmetry indices only. Here the (x|
denotes the eigenstate of local operator in position space, e.g. (z|Quv(Z,p) = Quv(z,i0,) (x|,
and the convention for inner product is (x| ¢) = e~*. An “open” derivative from the kinematic
operator will get shifted due to €'7%id,e~"* = 9, + q,. We perform also a conventional change
of integration variable ¢ — —q. As we will study later, we emphasise that in the case where one
has to deal with a local derivative of a bosonic field, e.g. [alﬂr(a:)], this term will not be shifted
under the sandwich of %@ [(Zm(m)} e~% gince the partial derivative of this coupling is “closed”.
Therefore, on the computational side, depending on the vector or axial-vector nature of the local
derivative couplings, one can absorb these terms into the vector (V,[¢]) and axial-vector (A,[¢])
structures of the UV quadratic operator .

Ultimately, the expansion of the logarithm in terms of a series of local operators suppressed by

1 The quantity SEST corresponds to the fermion 1PI action and it is formally divergent. We will discuss its gauge
variation and its regularisation in the following.

5For the reader who would like to investigate in details the whole computation steps, we recommend Refs.[72, 75,
76, 78].

'8This underlines the practical usefulness of our initial choice of parametrisation made in Eq. (6.28)
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the fermion mass scale can be performed by a variety of techniques,

Lpp® = —iTrln(P — ¢ — M — X[¢))

1o ~1 A"

The remarkable point at this stage is that the g-momentum integration can be factorised out from
the generic operator structures. Indeed, regardless of the method used to evaluate the logarithm
expansion, it can be done once-and-for-all, and the result is the same and universal in the sense that
the final expression is independent of the details of the UV Lagrangian, which remain encapsulated
in the X matrix of light fields, covariant derivative P,, and mass matrix M. This leads to the
so-called concept of the Universal One-Loop Effective Action (UOLEA) (see Refs [3, 77, 80-82]).

Note that in our calculations we will deal with multiple vector, axial vector and pseudo-scalar
interactions so we will consider in all generalities

Vulgl = g, Vile'l, Aulo] = g} ALlo'], Wile] = g;, Wile'], (6.31)

with an implicit summation over the i index.

6.3.2 Ambiguities and regularisation of the functional trace

The evaluation of the one-loop effective Lagrangian Eq. (6.30) usually encounters divergent inte-
grals and we use dimensional regularisation [105] to evaluate them along with the MS scheme for
renormalisation. The traces over Dirac matrices have to be performed in d = 4 — € dimensions, and
the e-terms resulting from the contractions with the metric tensor (satisfying then g"”g,,, = d) must
be kept in the computations. These e-terms will then multiply with the (1/¢) pole of the divergent
integrals and yield finite contributions. We emphasise that depending on the regularisation scheme
for 4° in d-dimensions, different results for e-terms in Dirac traces will emerge (see for examples
Refs. [103, 159, 160]). We will come back shortly to describe in details the prescription we used to
evaluate ill-defined Dirac traces involving 7° matrices, in dimensional regularisation.

We now turn back on the ambiguities arising in some of our integrals in the 4-dimensional
space. Usually, when computing one-loop divergent triangle Feynman diagrams (corresponding to
the Adler—Bell-Jackiw anomaly [121, 140]), it is well-known that, in d = 4 dimensions, an ambiguity
of the loop integral arises. It corresponds to an arbitrariness in the chosen integration variables
(see Ref. [157]), and actually there can be surface terms that do depend on the chosen momentum
routing. Those surface terms then contribute to the divergence of vector-currents and axial-vector-
currents, and all the naive Ward identities cannot be satisfied simultaneously. At least some of
them will be anomalous. The important point is that the arbitrariness of integral variable can be
parametrised in terms of free parameters (see the standard Refs.[118, 157] and the more recent
Refs.[149, 158]). By tuning the value of those free parameters, one can decide which symmetry is
broken at the quantum level, and which are kept active. Evidently, to obtain the correct physical
results, all the gauge symmetries must be preserved.

When switching to the d-dimensional space, the ambiguity on the loop integrals does not arise
anymore from dependencies on the chosen momentum routing, but it is now inherent from the Dirac
algebra sector. Indeed, not all the usual properties of the Dirac matrices can be maintained once
in d > 4 dimensions, essentially because v° and the anti-symmetric tensor e#*? are intrinsically
four-dimensional objects. Whatever the chosen definition, there is no way to consistently preserve
both the anticommutativity properties of 4> matrices, i.e. {y*,7°} = 0, and the trace cyclicity
property in d > 4 dimensions. In the original work of 't Hooft and Veltman [105], they noted that
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the momentum routing ambiguity is replaced by an ambiguity in the location of 7° in the Dirac
traces. Using their prescriptions for the Dirac algebra in d > 4 dimensions (see Refs.[105, 106]),
it is then possible to introduce free parameters keeping track of all the possible v° locations in a
given Dirac matrices string [161]. As before, one can then tune these parameters to choose which
symmetry is broken anomalously, and which one have to be preserved. This is the strategy we will
employ to calculate the ambiguous Dirac traces in Eq. (6.30).

6.3.3 Evaluation of the anomaly related operators

We now concentrate on the derivation of the operators which ultimately involve a mixture of three
gauge fields and Goldstone bosons with a derivative acting on them. With our parametrisation,
they arise from combinations of the generic vector V,,[¢] and axial-vector A,[¢] fields. Due to the
presence of 5 Dirac matrices in their Wilson coefficients, they are truly ambiguous in dimensional
regularisation. Then we will proceed with the evaluation of operators involving one Goldstone boson
(without any derivative acting on it), namely the Wi[¢] field in our generic parametrisation. These
operators have been evaluated using the usual Feynman diagrams technique (see Refs.[149, 158,
162]). Since those computations are subtle and lead to confusions, this is legitimate to wonder how
one would perform them from a different point of view, such as within the path integral formalism.
Which is what we present now.

6.3.3.1 Evaluation of the ambiguous terms

We start with the exercise of computing the divergent terms that naturally arise when evaluating
Eq. (6.30). The generic form of these operators is
L /1
k k

G,GLF,, =G,G, (26“”p”0[pGU]> , (6.32)
where we use the notation GL to denote a generic gauge field and to avoid confusions with the
vector and axial-vector structures in Eq. (6.30). We also introduce the upper indices 4,7,k to keep
the computation as general as possible and offer us the possibility to apply this computations to
multiple gauge field configurations later on. Since starting with Eq. (6.30), we chose to deal with

vector and axial-vector structures, in order to reconstruct the ambiguous operators in the EFT, we
need

e One insertion of P, to account for the partial derivative and then allow to form a field strength
tensor.

e Several combinations of vector and axial-vector structures. It is clear that to generate the
anti-symmetric tensor e#*? the product of Dirac matrices must involve an odd number of
+° matrix. It exists only two possibilities, either an “AVV” contribution with one +° or an
“AAA” contribution with three v°.

While evaluating the one-loop effective Lagrangian of Eq. (6.30), several contributions to the am-
biguous effective interaction would arise from the n = 4 polynomial terms

LEFTP Datr 1 / W m — PM’Y'LL — VM[QZ)]’Y'LL + A,u[(lﬁ]'}/“’y + W]_ [qb]’y
5 Zf::vv@(pAvv) i fjjAA(O)(PAAA) 7 (633)
N

PAAA)

where OPAVV) denotes the class of operator containing one v° matrix and O the one con-

taining three 7 matrices.
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Evaluation of the O("4VV) structures. There are three different types of combination that
contribute to the QFAVY) structure, namely O(VV PA), O(VAPV), O(AVPV). Each type of
combination contains four universal structures, and it is related together via trace cyclicity. At
this stage, due to the ambiguity of y-positions, one should not use trace cyclicity to minimise
the number of universal structures that need to be evaluated. To present in detail the evaluation
procedure of the Dirac trace and its regularisation, let us focus on one explicit example out of 12
universal structures included in Eq. (6.33)

1 [ d% -1 -1 -1 —1

O(VVPA) D = t V" Vi, PP Aey°

( )34/(2w)d r[g+M S S T S Y, 77}
i

= [ — AMAT! + 16M21[q2];1] tr (e“”p"VuVprAa>

1
1 12
+ 1 Zle"; {ga”ng +g%g" + g“dgbc] tr ('m“m 'mpwv"vf’) (VuVVPpAg> , (6.34)
here the fermi ¢ d dinto —— M 7% o the tensorial
where e rermion propagators are decomposed 1mto = . ror e tensoria
propas P d+ M @M -

integrals, we use

= gl I[P (6.35)

/ ddq qu/l e quznc

) (¢ — 3y (q? — )"

where gH"#2ne is the completely symmetric tensor, e.g. gH'P? = g"gP% + gMPg"° + gM9¢¥P, and
we denote the master integrals as 7 [qQ”C]??fj "', The explicit expression and the value of some
useful master integrals are derived in the Appendix A. In the second line of Eq. (6.34), all the loop
integrals are finite, one can then evaluate the various Dirac traces in the usual naive scheme. The
last line of Eq. (6.34) contains divergent integrals, Z[¢*]}, which have to be regularised. Let us
show how to evaluate such an ambiguous quantity as tr(’ya7“7b7”70797d7”75) of Eq. (6.34). We
follow the procedure described earlier in the section 6.3.2. Before evaluating the Dirac trace in
d-dimension, we first write down all possible structures that are equivalent to the original Dirac
string by naively anti-commuting ~°,

tr (Ya YWy ¥ Y?1av° ") = Gt (v VP 1e v 1) + dztr (Ya v vy Y vy’ var”)
+ astr (Yo 7 1Y vy ”) + aatr (va ' wy ey’ va’y") - (6.36)

where we introduce the four free parameters, a;, to keep track of the position of the 5 matrix in
Eq. (6.36). Let us briefly comment on the fact that

e In d = 4 dimensions, all Dirac structures on the R.H.S of Eq. (6.36) are equivalent.

e In d = 4—e dimensions, by using the Breitenlohner-Maison-"t Hooft-Veltman (BMHV') scheme
(see Refs.[105, 106]), the 4° matrix does not anti-commute anymore with Dirac v# matrices.
Therefore, each Dirac trace will give a different result due to the different position of 4°
matrix. The free parameters @; is a device to keep track of the +°-positions.

e Enforcing a consistent result in d = 4 and d = 4 — € dimensions requires that Z?Zl a; = 1.

After plugging Eq. (6.36) into Eq. (6.34), one obtains
O(VVPA) > = |4MIT} — 16MT(q?)} — 24e (<1 + s — 0 + ) Zla'}! | tr( 7V, 1, P, A
4 () q; 1 2 3 4 q|; wVvipie

1

=53 [ —1—a,+ap —as+ a4]tr [V;VJF;‘V’“] , (6.37)
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where in the last line of Eq. (6.37), we replace the vector and axial-vector structures by V,, =
gf/ Ve Ay =9, AZ , we also omit the gauge couplings to simplify the expression of (6.37) and
highlight the ﬁnal value of loop integrals and Dirac traces. We remind the reader that g{, and g¢',
will only appear when it is necessary. Also, keep in mind that in Eq. (6.37) the e-terms will hit the
pole 2 of the divergence integral, Z[q ] and generate finite contributions. We then apply the same
method for the other contributions in (O)P AVV " One should note that since in Eq. (6.30), P, =10,
is the “open” derivative one can therefore omit the operator structures which start with a PM since
they lead to inert boundary terms. We underline one more time that at this stage, one cannot use
the cyclicity property of the trace to reduce the number of terms that need to compute. Adding
all the different contributions together gives

c};;%p D i(24€ayiysan L[g"]} )tr [Vjvg‘ Flj‘f]

vt uv

+i( — 4AM*T} + 16 M2Z[¢)} + 24e ay;s gry: Z[g*]; ) tr [VJA’“FV ]
+i(AM*T} — 16 M*T[¢?]} + i 24€ @ gnyiys (g} )tr {A’;Vjﬁlyj } . (6.38)

Since the a; coefficients are basically free, there are no reasons to give any physical meaning to the
different contributions. For each operator structure, we redefine the total values of a; by the new
free parameters, e.g. @yiyjak, Qyjakyi, Garyiyi- Readout the value of loop integrals, the above
equation reduces to

1 1 i 1 j
Lot D 3,2 Oviviaktr [V VJFA;} + 5 20viarytr [V]AEF;K/] g2 daryivits [A VZF‘f] :
(6.39)

The three operators of Eq. (6.39) are not independent and by using integration by parts one should
always end up with two independent operators and then two free parameters. As we will see later,
in practice one decides to remove such or such operator by use of integration by parts based on the
symmetries that are preserved or not since all operators are not invariant under the same vector or
axial symmetries. As an example, if one supposes that, within our notation, the V* current might
be anomalous, one may integrate by parts the first operator of Eq. (6.38), tr(V;V,]F/ﬁ,k), and after
discarding the total derivative operator, and redefining the free parameters, one obtains

1 i 1 L
EEISOTP D) W&vjAkvitI’ |:V‘%4:fFL:| 87‘(’2 (_lAkvivth' |:AZVVZF/X,]:| . (640)

At this point, one should comment on the fact that if one would have used the BMHV scheme
without performing the decomposition of Eq. (6.36), one would have found each Wilson coefficients
of the operators in Eq. (6.38) to vanish. This is ultimately due to the fact that, by default, vector
currents cannot be anomalous while only following the BMHV procedure. Even if one would have
expected to be able to write effective operators as displayed in Eq. (6.39) from the first principle,
we have rigorously shown how to obtain it in dimensional regularisation, i.e the “AVV” interaction
can be described by two independent operators for which it exists two Wilson coefficients which
are ambiguous i.e free.

Evaluation of the QP444) structures. We now turn to the second class of operator, Q(F444)

that contains three 7° matrices. Similarly to the previous case with QFAYY) we start here by
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giving an explicit example for an operator that belongs to this class,

4 @mf g M g MU g MO g MY
1
=i [4M4I;1 +16M2Z [qz]ﬂ tr (6“”””Auf1up pA(,>

1
+ 5 Il [g“bg“l +g°g" + g“dgbc] tr (%’WVS%'YWS%’V” ”yd’y"75> <AHAVPPA0> , (6.41)
we then parameterise the ambiguous Dirac trace, tr (%ﬁ“v‘r’ywy 75%7’)7(17”75), by using

(Y"1 * 17 Y 1 1a177”) = bite (7w e 1ar”) + bt (v Y ey var”)
+ batr (a7 w7 ey a77) + batr (var wy ey ra ) -
(6.42)

Afterwards, evaluating in d = 4 — € dimensions with BMHV’s scheme, we obtain
QAAPA 5 % [41\4415l + 16 M2Z[¢?)} + 24 € ( — by + by — by + ba) Z[q*]} } tr <e“”P”AuAl,PpA(,>

1 1 - - - - ; i Ak
where in the last step of the computation we evaluate the value of loop integrals, express A, = AZ.
We also note that gi will appear when it is necessary. The computation for the other operators

Q(PAAA)

belonging to are similar and the full result reads

| 2% v opy

LpP 5 (i 24€b pi pi ax Tl )t [A;AJ‘ FA’“} + (i 24€b g5 4x 4i Z[q"]} ) tr [AﬂAkFAi]

ptvt py

+ (i 24€bgr i 45 Z[g"]} ) tr [AkAi FA"] . (6.44)
which basically resumes to

1 [ 1 AP [ Pk AT [ k qi AT
£E§‘0Tp D) @bAiAjAktr |:ALAI]/F;UJ :| + WbAjAkAitr |:AiJ,AVF;U/:| + QbAkAiAjtr AMA;L/FMV .
(6.45)
These three operators in Eq. (6.45) are not independent and one is free to remove one by the
use of integration by parts. Consequently, in dimensional regularisation, the “AAA” interaction
can be described by two independent operators attached to two free Wilson coefficients reflecting
ambiguities in the evaluations of such interactions.

6.3.3.2 Evaluation of the pseudo-scalar unambiguous terms

We are now looking for to evaluate operators involving a pseudo-scalar ¢ (without local partial
derivative acting on it) and two field strength tensors. The generic operator form is given by

- 1 oo .
¢ FIFh, =0 3¢ (0,67)(0,G%) . (6.46)

To reconstruct the pseudo-scalar terms from the expansion of Eq. (6.30), we need
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e Two insertions of P, to account for the two partial derivatives, then forming field strength
tensors.

e One insertion of W1[¢] to account for the pseudo-scalar field ¢.

e To account for the two gauge fields, we need V'V and AA structures. Since Wj[¢] contains a
+?, the combination with AV structure will not contribute to the final result.

We collect the relevant classes of operators that contribute to the Wilson coefficients of these
pseudo-scalar terms,

1loop 1 ddq —1 5 . 5 °
cir > v [ it | g~ B = Vide + Autds” + waleliy )|

5 Z f;vv@(P2V2W1 f‘”AA@ (P2A2W7) , (647)

The evaluation of the class of operator OF*YV*W1 and OF*4*W1 can be done very efficiently by using
the One-Loop Universal Effective Action (UOLEA) 7. One obtains

00 vVpo 1
£ > — ot (WP VB, Vel + JWAP AP Ar))

1
= o Mtr(WlFV]FVk + WlFA]FAk>, (6.48)
T

where we form the field strength tensors by using

'2

vpo j vpo k
P (P, VI[P, VI = Z(—:“ 7 (V) (O, V) = §F$FL : (6.49)

and similarly for the axial currents. We note that if j # &, one needs to sum over the exchange of
7,k indices to avoid the factor 2 problem.

6.3.4 Summary and master formula

We summarise the computations and the main outcome of section 6.3. Starting with a massive
fermion which bilinearly involves some, yet undetermined, vector V,[¢], axial vector A,[¢] and
pseudo scalar Wi [¢] interactions,

Llomion [y ] 5 @ [wﬂ@u = M + V¢! — Aulglyy” — Wh [¢]i’y"’} v, (6.50)

one obtains after integrating out the fermion field i.e evaluate the one-loop effective action by
expanding the functional trace with CDE techniques,

n
11 . .
Lypy =itr Z / [ e < — 0" — Vi + Ayt + Wu%ﬂ : (6.51)
where in practice, the vector, axial-vector and pseudo-scalar structures are expressed as

Vulgl = g, Vile'], Auld] = g ALle], Wile] = g}, Wilg'], (6.52)

'"These operators have been explicitly evaluated and are then available in the fermionic UOLEA in Ref. [3].
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with an implicit summation over the ¢ index. One can proceed and form the low energy effective
operators and evaluate their associated Wilson coefficients which are regularised in dimensional
regularisation. After regularisation, it is important to identify ambiguities of some Wilson coef-
ficients resulting from the fact that the gauge or anomalous aspects of the symmetries have not
been addressed yet. The generic one-loop effective Lagrangian, still involving redundant operators
as well as the ambiguous a’s and b’s coefficients, reads

s D

1 b 1 . S 1 .

1 - S 1 - , ~ A 1 - S~ ad
+ 7bAiAjAktI' |:A1 Al FAk:| + QbAjAkAitr |:ALAI;F£/:| + WbAkAiAjtr |:AZA:’,F£,J:|

871'2 R 11
1 iV EVE LAl mak
+ mtr WIF;LV FNV + gWIF.U'V FNV . (653)

. J

This master formula is generic and encapsulates all the needed computations. Indeed, at this
stage, imposing the EFT to respect specific gauge invariance relations will link several of these
operators together and allow to fix the ambiguities of any free Wilson coefficients in a very simple
and elegant way. Since doing so, presuppose having a concrete model in mind or set of symmetries,
we now turn back to more phenomenological investigations where this master formula is applied to
various models.

6.4 Application to axions

In this section, we use the results obtained in section 6.3 to build EFT involving would-be-Goldstone
bosons of spontaneously broken symmetries and Goldstone bosons of global symmetries. As a
first application, we apply the master formula of Eq. (6.53) to concretely build the intuited EFT
of Eq. (6.15) from the toy model presented in section 6.2. We will then concentrate on more
realistic constructions, e.g. building EFT involving the SM gauge fields and an axion or ALP.
This task might precisely imply to integrate out chiral fermions which obtain their mass while the
electroweak gauge symmetry is spontaneously broken, the global PQ symmetry being spontaneously
and anomalously broken. We provide a simple expression adapted to SM gauge groups, and provide
explicit use of it to derive axion couplings to massive gauge fields in the original 2HDM setup as
proposed by Peccei and Quinn and in a more phenomenologically relevant version of it, the invisible
axion DFSZ model [134, 135].

6.4.1 A chiral toy model

So far, we have evaluated the operators involving three vector structures (which can also incorporate
derivative couplings) and the operators involving a pseudo-scalar field which couples with two field
strength tensors. We now give an example how to use the results of the previous section to derive
the EFT resulting from integrating out the chiral fermion of the toy model of section 6.2. We
remind the fermionic quadratic operator of this toy model,

ﬁilg?iz/-model - |:Z'8M’)’u - M+ V#’}/M _ A;L'Y“’YB _ W1i75:| L\ (6.54)
where the vector, axial-vector, and pseudo-scalar structures decompose as
oums o, TA
V.=V, |8, — £ A, =3A, (U, - £ Wy =M— 6.55
A R s
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and the gauge couplings are omitted for simplicity. Making use of our master formula given in
Eq. (6.53), one can straightforwardly obtain

11 Ous =~ 0,y ~
£Elggfp = Wyay [SM - QMUS ] AVF(/W T Waan [U/L - ;UU] AVF/’:V
TA [V TA Ny
+ Nasv [MFS,;WF5 } + Nava [MFU,;WFIQL } . (6.56)
At this stage, wy, 4, Wy, a0d 1,41, N4y 4 TeA,
1 = 1 _ 1 1
Wyay = 8?(1 - b) » Waaa = _S?G; Nasv = 20 Nava = BYPOR (6.57)

with @ and b the two free parameters. As presented in section 2, we now implement the consistency
between the UV model of Eq. (6.54) and the associated EFT of Eq. (6.56) by fixing the nature of
each symmetries i.e gauge or anomalous. We identify the precise value of the parameters a and
b by requiring axial gauge invariance (leaving then the possibility that the other transformations,
only, could be anomalous)

Oums = 1 ma ~
(v S S| A B+ G TAR B ) =0, and

8M7TU ~ 1 TA ~
ba (o [0 = o A1 4 TR ) <0 (6:53)
where we perform the gauge variation of the axial current, 44, = 0,04, the would-be-Goldstone,

dama = 20404, integrate by parts and combine the various contributions proportional to (9,04)U, F g

and (0,0 A)S,,F"j”. This straightforwardly leads to,

1 _ 1 _ 4
(AJVAV:*% <:>b:5, wAAAziﬁ <:)>CL:§ (659)
Finally, one can set to zero the artificial vector fields S, and U, and write the non-ambiguous
dimension-five bosonic operators, simply as
£1100p _ 1 Olmg v + 1 d'my v _ 1 g s . 1 7y s
BET ™ 9n2 209 & TVM T 62 20y T MM ATV A2 gy A A

(6.60)

This is the one-loop contributions to the EFT Lagrangian obtained by integrating out a chiral
massive fermion in our toy model. To obtain the full EFT Lagrangian, one must add the Jacobian
terms given by Eq. (6.14) with the one-loop terms of Eq. (6.60),

- 1 -
(F%WF“/“’ + 3FAWF§”> : (6.61)

We note that integrating out the fermion in a one-dimensional representation starting from Eq. (6.54),
we obtain that the mg derivative interaction induces EFT operators that precisely cancel the Ja-
cobian term in Eq. (6.14) as expected starting from an abelian gauge theory, as discussed earlier,
and this provides a non-trivial check for our calculation. We should also remark that the 7 V'V
coupling entirely arises from the Jacobian term, as predicted by the Sutherland-Veltman theorem.
However, the my AA coupling does not and displays an additional factor of 1/3 due to the one-loop
contribution.

We now move on to more concrete axion models for which we will compute one-loop induced
effective couplings between axions and gauge bosons, with a particular interest for those involving
massive gauge fields 8.

812 vg

1 ny

Lrpr = v
EFT ™ 6702 oy

18These results should and will reproduce those derived, using different techniques, in Refs. [149, 158].
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6.4.2 Axion couplings to gauge fields

The axion field is a relic of the spontaneous symmetry breaking of a global U(1)pg symmetry.
A realistic model involving the QCD axion or an ALP, being a pseudo-scalar field a(x), basically
couples to fermions (of the SM or not) which have to be charged under the Global U(1)pg group
but also other abelian or non-abelian groups such as the one of the SM. For a massive chiral fermion,
its bilinear form, after gauge symmetry breaking, generically reads

Loy = LIS + U |id, 4" — M + Vot — Aty — Whin® | (6.62)
where vector, axial-vector and pseudo-scalar structures include!

V=19, Vi, 9% 0ua=V,[)}, Au={g\ A}, g% (0ua — A9}, W1 = M%, (6.63)

with Vﬁ AZ stand for vector and axial-vector components of a generic chiral gauge field GZ the term

7 () stands for the would-be-Goldstone boson in the case where GZ obtains its mass from gauge

A
spontaneous symmetry breaking. VNPQ and Aij are the fictitious auxiliary gauge fields associated
to the global PQ symmetry. Writing Eq. (6.62) presupposes a chiral fermion reparametrisation
which induces a Jacobian term, E‘]ac This contribution, before gauge spontaneous symmetry
breaking, reads

1

Jac _
LoV = 1527,

———Npqa(z)F, F"" (6.64)

where the i-index only runs for the gauge field strength tensors. The anomaly coefficient can be
generally expressed as,

Npg= > tr [p@(xp) ®G(T)® G(\I/)] , (6.65)

U=Vp vl

with PQ(V) and G(¥) the PQ and gauge charge of the chiral fermion W. Integrating out the chiral
fermion and making use of the master formula Eq. (6.53), one obtains

11 P P i VI, P P i AT,
‘CEI[;OTP = Wy vy ngngV (8 - V,u Q)Afo wj:| T Wyaa [QAQQZQA (aua - A,LLQ)A?/F H

_ 1 PQ i ) F/jSFVj,uV -

T 42 (gv gAgV ngglg%) aF:‘VZFA]’MV . (6.66)

1272 (
In order to get the last line of the above equation, we imposed the crucial axial gauge invariance,

used integration by parts and Bianchi identity, neglected the surface terms, and at the end of the

computation, we removed the fictitious fields VuP Q and AEQ. Adding all together, we are now

able to build the axion-bosonic effective Lagrangian described by Lypr = L35 + LlElgi’rp where the

generic formula of £{A and .L'Ilalg%p are given by Eqgs. (6.64),(6.66).

19Note that for convenience, we have used a different normalisation convention for the PQ charges than the one
used for gauge charges.
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6.4.2.1 SM gauge and PQ symmetries

We now present two examples where the axion field couples with the SM gauge fields. Our first
example will be the original Peccei and Quinn scenario in which the axion is the pseudo-scalar
component of a Two Higgs Doublet Model (2HDM). Our second application will be to consider
the so-called DFSZ axion model [134, 135]. To illustrate the results and properties discussed in
the previous sections, we will integrate out only one generation of quarks, let us say (u d). This
computation was performed in Ref.[149] by Feynman diagram technique, accompanied by Pauli-
Villars regularisation. We will recover some of its results by using the functional method for
one-loop matching.

We begin with the Jacobian terms which induce tree-level axion couplings to the SM gauge
fields,

1

E{Ja\? — W (ggNC aGuyéHV + gQNL aW/iVWi’MV + g/2NY G/BH,VBMV) ) (667)
a

with the anomaly coefficients N; computable as follows,

NC = Z CSU(g)C (‘ll) dSU(z)L (\I}) PQ(\I’) )

\P:qz,UR,dR
NL - Z dSU(S)c (\I/) CSU(Z)L (\I/) PQ(\II) )
W=q}; 1}
Ny = Z dSU(za)C (V) dSU(2)L (\II)CUQ)Y (V) PQ(Y), (6.68)

‘1’:(12 UR,AR; lTL €R

where we closely followed the conventions and notations of Ref.[149] with d, ., (V), dg, . (¥) and
Covis. (9), Csvia,, () are respectively the SU(3). and SU(2)r, dimensions and quadratic Casimir
invariant of the representation carried by the chiral fermion field ¥. Besides, PQ(V) is the PQ
charge of the fermion ¥ which is model-dependent. We will come back to these PQ charges when
discussing a peculiar axion model.

The one-loop effective Lagrangian resulting from integrating out the SM chiral fermion is
11 -1 PQ Z Z\f AZ 7V Z, L/ po 7z z\f AZ AZ
ﬁEgoTpDZW[(nggAgv) (G’FMV F ;W) +§(9AQ9A9A) <aF,u1/ F lW)
f
f AW =W 1 f AW =AW
+(9:%Y 9. <a Fy FY ’*‘”) + 5 (9790 g (a FA"F w)
Z ~
+(95%%g7)! (a Fy) FV”””)] : (6.69)

where g5Q, gf @ are axion-fermion-fermion couplings written in terms of Dirac bilinear form. A
summary of the gauge charges of SM fermions can be found in Table6.1.

The only thing that remains to be determined in Egs. (6.67), (6.68), (6.69) are the fermions PQ
charge, that we discuss now for several axion models.

6.4.2.2 PQ axion model

We first consider the original PQ scenario where the QCD axion is identified as the orthogonal state
of the would-be-Goldstone of the Z boson in a 2HDM model (see Refs. [129, 130]). The starting
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i g W v Z

‘ 9 g )
(g‘l/)f gsTJ ETJ le 9 00 (T3f — 2sin? Hwa)
(gj) 0 ﬁTg 0 2 cos 8y, T3

Table 6.1: SM fermion couplings to the SM gauge fields, where ch, Tgf, Q7. 0., are respectively
the SU(3)c generators, the eigenvalue of the isospin operator, the electromagnetic charge and the
weak mixing angle.

point is a fermion-Higgs Yukawa interaction, that we assume of type II, which can be written as

Yukawa

c3M [YuaR @y qr, + Yadg B} qL] ~Y.ep @iy +hec.. (6.70)

The two complex scalar fields can be written as

1 ;m /0 1 ;m /0
P =—em , P9 = —e v2 , 6.71
T2 <v1> VG <v2> (6.7

where 11, 12 are Goldstone bosons of the scalar fields ®; and ®5. The vacuum expectation value of
the scalar fields, v1 and vy are related by v} +v3 = v? ~ (246 GeV)Q, and one usually introduces the
B angle such that v; = vsin 3, va = vcos 5 and ve/v; = (1/ tan 6) = . The next step is to identify
the would-be-Goldstone boson (that generates the mass of the Z-boson) from its orthogonal state,
defining then the axion. One has the following relations

GY [ cosB sinf o
<a> o <— sin 3 cosﬁ) <771> : (6.72)

The Higgs doublets can be re-written as

1 lcio s Q 1 Zcio c(_1)a
P = —e 1e'%v (O> , o= —e 2 el( :16)1) <0> , (673)
V2 V1 V2 V2

where G° is PQ neutral and the Higgs doublets carry the following PQ charge, PQ(®1) = x and
PQ(®2) = —1/z. In order to identify the PQ axion model with Eq. (6.62), we first make the
Yukawa Lagrangian becomes PQ-invariant by performing the chiral rotation,

U — PeWT g (6.74)

The PQ charges for one generation of quarks (u d) are assigned, such as

1
PQ(qr;ur, dr) = (a;a+x,a+ $> . (6.75)
a is a free parameter that corresponds to the conservation of the baryon number?’. The chiral
rotation leads to the derivative coupling of axion with SM fermions as defined in Eq. (6.62) and
the axion couplings to fermions read

1 1 d 1 1 d 1/1
(09" = —goa o), (129" = oo () =g (204 1) @1 =5 (3)-

(6.76)

2OFor a general setup including also the lepton sector see Refs.[149, 150].
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Plugging Eq. (6.75) into Eq. (6.67) and rotating the electroweak gauge fields from their interaction
basis to their physical mass basis using W;’ = cwsy + swAu, By = —swZ, + cyA, along with
e = gsy = g'cy, one obtains the following Lagrangian for the Jacobian contribution

2
{ 7d} _ g ]- = s 2 4 ]_ ~
EJZC - 167_(_2/1) <2S |:x+x:|aGZyGa“y+e NC|:9:E+9:L‘ FMVFHV
- 262 1 4 1 .

— [gQNC a]anj—VW MY CoSe NC |:2Oé + S%U <9.’E + gx>:| CLZ/_“/FM
e? g 4 (4 1 =

+ 702 82 Nc - (1 — 28w)§ + Sw §.T + 971; QZMVZ , (677)
w=w

where N, = 3. Plugging Eq. (6.76) into Eq. (6.69) and performing the same electroweak rotation
lead to the following one-loop effective Lagrangian,

B 1 1 1 . e? 1 1 ;
Egg%p fudh _ & <g2Nc [a + = <:U + x)} a W,I,W_’W + N, [Oé + (33 + )] a Zyu F*

16720 6 CuwSw 3 6z
e? o a1 1 ! 1 .
taah [“ R RET ( ! ) - (3 + 6>}ZZ> |

(6.78)

The effective axion-bosonic Lagrangian is obtained by adding Lg:&d} and ClElg%pf{u’d} and gives the
compact result,

ﬁa—bosonic _ 1 973 x + l a G4 éa,/u/ + 2N, éx + i aF F“V
EFT 1672v \ 2 x p ‘l9 Oz pv
1 1 . e’ 1 1 4 1 -
2 + 17— 2
+g Nc6|:x+x:|aW#VW “V+CwaNC|:(3:L‘+6:L‘> —2Sw<9l’+9$>:|CLZMVF'uy
e? 1 1 5 (1 1 4[4 1 )
e o1 (R R ) B i | ) B

6.4.2.3 DFSZ axion model

Concerning the case of the more realistic axion DFSZ model [134, 135], the Yukawa couplings are
the same as in the 2HDM model, but now the scalar potential is modified. Typically, the 2HDM
model is extended by a gauge-singlet complex scalar field ¢, with the scalar potential

Vprsz = Veuom + Verpm + Vepg + Vs, (6.80)
where we have

Veorrpm = a1(¢7¢) (‘I)J{‘I’l) +a(¢'9) (‘I’E%) ,
Vorg = M2 (¢T¢) @] @, + hc. (6.81)
Vo =i (610) + A(¢10)".

Similarly to ®; of Eq. (6.73), one can also write the new complex scalar field ¢ as

_ L (0
¢=75°" (fa)' (6.82)
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Conclusion

In summary, for the DFSZ axion model, one obtains the PQ-charges and the breaking-scale of the
PQ-symmetry by rescaling their values in the axion PQ model, simply as follows,

222 1

T— —— == -
224+1" 2z  x2+41

V= fa. (6.83)

The effective DFSZ axion-bosonic Lagrangian, obtained by adding L’}Zéd} and Egg%p_{u’d}, is given
by

Eafbosonic — 92 a G GN"I:F“’ + €2N 85627_‘_2@.}7 F‘m/
EFT 1672 f, \Js @ 7m ‘92 +1) M

9 2 2 2 (g2

N, o e 3+ 622 —4s2 (42% + 1) =
W Wk N, L B

2 1 222 + 1 822 +2 -
N2 - o T 2 g2, M) 6.84
232 “[6 w32 1) +5’”9<ac2+1>]“ w > (054

These results do agree with those derived in Refs. [149], using the more traditional approach of
Feynman diagram computations.

It is certainly a good moment to pause and appreciate the difference in strategy with this last
reference. The main and obvious distinction is that in this work, we favored the path integral
method to evaluate one-loop processes. However, we believe that another elegant and insightful
feature of this axionic EFT derivation is due to the direct and consistent way of dealing with
gauge and anomalous symmetries. Indeed, one needs not to use the anomalous Ward-identities
to alleviate ambiguities inherent to anomalies in QFTs. Equivalently, one can use the interplay
between higher-dimensional operators involving the axion and the would-be-Goldstone bosons in
order to consistently and easily derive axion EFTs. This offers a neat method to also explore other
sectors of axion EFTs.

6.5 Conclusion

In this work, we have considered the task of building EFTs by integrating out fermions charged
under both local and global symmetries. These symmetries can be spontaneously broken, and the
global ones might also be anomalously broken. This setting is typically that encountered in axion
models, where a new global but anomalous symmetry, U(1)pg, is spontaneously broken, so as to
generate a Goldstone boson, the axion, coupled to gluons.

The main novelties of our approach are twofold. First, the heavy fermion to be integrated out
is allowed to have chiral charges for both the local and global symmetries. The analysis is then
much more intricate because of the presence of anomalies in various currents, and because the
fermion can only have a mass when all the chiral symmetries are spontaneously broken. Second,
we perform our analysis in a functional approach, by systematically building EFTs using an inverse
mass expansion, that is, identifying leading operators and calculating their Wilson coefficients with
the help of Covariant Derivative Expansion. Our calculations are adaptable to various UV models
and allow us to correctly treat QFT anomalies.

In more details, our main results are the following:

e [t exists many motivations for introducing Goldstone bosons of global symmetries using a
polar representation. Once this choice has been made, we have identified an appropriate
parametrisation of the fermionic part of the UV Lagrangian. Essentially, with the purpose of
an inverse mass expansion, if one wants to perform an exact computation without truncating
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the initial UV theory, it is desirable to write the fermion mass term as an invariant quantity
under the various symmetries, even for a chiral fermion. This requires some fermion field
redefinitions. Only then one can clearly identify the fermion bilinear operator to be inverted.

e Usually, Ward identities are used to enforce the desired gauge symmetries. When dealing
with anomalous quantities, these constraints are crucial to remove the ambiguities that creep
in through the regularisation process. But in our functional approach, this cannot be imme-
diately implemented because the leading operators in the EFT end up being automatically
gauge invariant. The only way forward is to perturb the theory to upset this automatic
gauge invariance. This is done with the help of background fields, in a way very similar as
in Ref. [158]. Then, the necessary Ward identity constraints can be recovered thanks to EFT
operators involving the would-be-Goldstone bosons of the exact gauge symmetries.

e The parametrisation of the fermion bilinear operator involves derivative interactions with
scalar and pseudoscalar fields. To our knowledge, a precise description of how to perform
the calculation of the determinant of such operators has never been presented. It should be
noted that in that calculation, regularisation is necessary. For that, we adopt dimensional
regularisation and follow the 't Hooft-Veltman prescription. We show that the two-parameter
ambiguities, well known in the context of triangle Feynman diagrams, can be recovered. Those
are crucial to allow one to enforce all the gauge constraints in a consistent way.

e We recover in the functional context the results of Refs. [149, 150, 158], that is, that the
derivative coupling of the Goldstone boson 7 to the fermions, (9,7 v*v°)¥ and ¥ (9,7 v*)¥,
do not necessarily vanish in the infinite mass limit. They do contribute to the leading EFT
operator 1V A, mAA, but not 7VV. In other words, this last coupling satisfies the Sutherland-
Veltman theorem, and is fully driven by the anomaly, but not the other two.

In this chapter we have presented how to deal with scenarios combining both spontaneous
and anomalous symmetry breaking. When building an EFT by integrating out chiral fermions
charged under those various symmetries it is legitimate to keep local partial derivative interactions
instead of traditional pseudo-scalar ones, but this has a cost. Now the anomaly is spread into
several contributions which have to be recombined with high care when evaluating the S-matrix
(see also Refs. [149, 150, 158]). We have integrated these peculiar fermions in the elegant and
minimal functional approach and showed how to remove the ambiguities one has to face to evaluate
the functional trace in dimensional regularisation. Inevitably, this corresponds to implement the
anomalous Ward identities in a consistent way within the path integral formalism. We did so by
introducing fictitious vector fields associated to the global symmetries so one can cure potential
ambiguities undermining the theory while enforcing gauge invariance. More generally, this work
shows a possible, neat and systematic path to follow to consistently build an entire EFT involving
anomalous symmetries. It should also be very useful to derive other EFT higher dimensional
operators. All in all, this procedure allowed us to compute in a transparent and in a very generic
way the Wilson coefficients of higher dimensional operators involving Goldstone bosons, this is
encapsulated in the master formula Eq. (6.53). Furthermore, we showed how to apply this master
formula to the case of SM gauge interactions. Ultimately, we applied these results to the axion
Goldstone boson (in the general sense i.e being the QCD axion or simply an ALP). We obtained in a
closed form the higher dimensional operators involving the axion and SM gauge fields and collected
them so that one can recover the non-intuitive physical coupling between axions and massive SM
gauge fields which have been recently derived by some of us in Ref. [149]. The phenomenological
relevance of these couplings are of particular interest for collider ALPs searches but also their
imprints in the early universe.
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Chapter 7

Anomalies from an effective field
theory perspective

The path-integral measure of a gauge-invariant fermion theory is transformed under the chiral
transformation and leads to an elegant derivation of the anomalous chiral Ward-Takahashi iden-
tities, as we know from the seminal work of Fujikawa. We present in this work an alternative
and illuminating way to calculate the Jacobian in the path-integral measure from the Covariant
Derivative Expansion technique used in Effective Field Theory. We present several ways to cus-
tomise the crucial regularisation such that the anomaly is located in the desired current, which is
unprecedented within the path integral approach. We are then able to derive, in a transparent and
unified way the covariant, consistent, gravitational and scale anomalies.

7.1 Introduction

Symmetries play an important role in explaining the fundamental forces of nature. A symmetry
valid in the classical theory might be violated in its quantised version. This defines what an
anomaly is in Quantum Field Theory (QFT). The axial or chiral anomaly which has a long history
is certainly the most well-known and had a huge impact in the building and understanding of QFT.

In 1967, Sutherland and Veltman [163, 164] proved that the neutral pion, 7y, cannot decay into
two photons in obvious disagreement with the experimental results. The mg — v puzzle has been
solved in 1969 by Bell and Jackiw [140] who showed that the, unexpected, axial symmetry breaking
perfectly explains this decay, later confirmed by Alder [121]. This is the so called ABJ anomaly
now commonly computed through triangle Feynman diagrams involving one axial and two vector
currents and involving a UV divergence which leads to 0* jz = 1/(87%)FF, meaning that while the
vector conservation law can be maintained, the axial current has to be broken.

As stated by the Adler-Bardeen theorem [165], this is actually quite astonishing that the
anomaly does not receive radiative corrections and is totally given at the one-loop level. It has
been realised later [166] that the anomaly was not just a perturbation effect arising from divergent
diagrams requiring to be regularised. Indeed, anomalies, as opposed to divergences, essentially do
not diverge even if they both emerge from the presence of an infinite number of degrees of freedom
in the theory . It seems more accurate to appreciate anomalies as a side effect of the quantisation
which might break some symmetries.

This is really in the seventies [167-170] that the anomaly was interpreted in term of a topological
invariant. Anomaly has been indeed determined by an index theorem by counting the zero-modes

'In that regard, the scale anomaly is singular.
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of a chiral Dirac operator. This counting was made transparent by Fujikawa [120] as the anomaly
arises in the path integral as the functional trace of s.

In QFT the fundamental quantity is the generating functional which is a path integral for the
classical action. How can an anomaly emerge when the classical action is invariant under a symme-
try? This questions has been solved by Fujikawa in Ref. [171-173] by realising that the only quantity
which contains the quantum aspects, the path integral measure, does not remain invariant under
chiral transformations. The anomaly is precisely arising from the associated non-trivial Jacobian,
which is ill-defined. To regularise it in a gauge-invariant manner, one can use, as Fujikawa did, an
eigenbasis expansion associated to a Gaussian cutoff or alternatively a heat-kernel regularisation
or a (—function regularisation®. In any case, the anomaly technically arises as a finite term from
the regularisation. Within this formalism the anomaly is truly independent of perturbation theory
and indeed provides a conceptually and satisfactory derivation of the anomaly terms present from
the beginning instead of discovering it after the evaluation of the divergence of a current.

In particle physics, the methods of Effective Field Theory (EFT) have recently seen a resurgence,
mostly due to the lack of new physics discovery at the weak scale. Observations seem to indicate
that new physics should indeed be decoupled to heavier scales, urging us to reconsider the Standard
Model (SM) as a more humble EFT supplemented by higher-dimensional operators.

The new physics integrated out at some higher energy scale is technically encapsulated in the
coefficients of these higher-dimensional operators. The task to evaluate these Wilson coefficients
from ultraviolet (UV) theories has traditionally been done using Feynman diagrams, where am-
plitudes involving the heavy degrees of freedom are explicitly “matched” to the EFT amplitudes.
However, a more elegant approach is to “integrate out” the heavy particles by evaluating the path
integral directly [72-74, 80] even if in the past, this approach has been limited because, in practice,
the expansion techniques could be cumbersome. However, recently a significant effort has been
done for developing new methods to evaluate the path integral at one loop more efficiently using
improved expansion techniques [3, 76, 77, 79, 82].

In this work, we propose to compute anomalies in QFT, identified as a Jacobian in the path
integral formalism as Fujikawa did, but in view of recent developments made in EFTs and more
especially the usefulness of a mass expansion technique such as the Covariant Derivative Expansion
(CDE) [72-74, 80]. This offers a novel technical approach to evaluate anomalies in QFT within the
path integral formalism. The novelty of our formalism is the following. First, it does not truly rely
on the computation of the transformation of the measure through the existence and definition of
the Dirac operator spectrum and more especially trying to properly deal with the zero modes of the
chiral Dirac operators as Fujikawa did. Second, the anomalies emerge from a ratio of two ill-defined
determinants which can be evaluated systematically and efficiently by the CDE technique.

In practice, in Fujikawa’s method, the various symmetries have been in-forced to the model
beforehand in order to define the eigenbasis of the Dirac operator and cure the illness of the
Jacobian of the considered transformation. The choice of regulator (to count the zero modes) to
evaluate the anomaly is crucial and depends on the active symmetries. It will lead to several type of
anomalies (consistent, covariant, etc.). We will see that in many situations, it is possible to end-up
to this situation when “bosonising” the fermionic functional determinants, then straightforwardly
extracting the anomalous interactions with the CDE. Within our proposed alternative method,
the regularisation procedure is fixed and always carried with the usual dimensional-regularisation
scheme [105]. The illness of the Jacobian is then embodied in the ambiguity of Dirac traces involving
v5 (see Ref. [2, 161]). These ambiguities are cured by imposing manually the invariance of the EFT
under specific symmetries. Thus, our method is available to evaluate in a general way the covariant

2See Ref. [119, 120] and the references therein.
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and consistent anomaly from the path integral having then the possibility to tune which current
bears the anomaly.

These two approaches allow to treat gauge and mixed global-gauge anomalies i.e consistent and
covariant anomalies, gravitational anomaly, as well as the scale anomaly, in a transparent, simple
and unified way which certainly deserves to be presented due to the importance and phenomeno-
logical implications of anomalies in physics.

The plan of the paper is the following, in the next section we detail the outline of the proposed
new method to compute QFT anomalies within the path integral formalism and use the example
of the axial anomaly to concretely show how to connect the Jacobian of the transformation, to
the functional determinants and how to conveniently expand them. In a third section, we apply
our formalism to other anomalous transformations in chiral gauge field theory, namely fermionic
vector and axial transformations, leading to so-called covariant and consistent anomalies. In the
fourth section, we evaluate the axial-gravitational anomaly and technically show how to deal with
this approach in curved space-time. In the fifth section, we evaluate the so-called scale anomaly,
without having to introduce the curvature of space-time [174-178]. In a subsequent section, we
discuss the approach of the new method presented in this work compared to the original approach
of Fujikawa, before bringing our conclusion in the last section.

7.2 Outline of the new method

In this section we will introduce and present a method to compute QFT anomalies within the path
integral formalism while dealing with EFTs. In order to make our points as clear as possible we will
deal with the concrete case of the axial anomaly in a vector gauge theory. More general situations
will be discussed in the following section.

7.2.1 Functional determinant and Jacobian

Let us start with a Dirac fermion field involved in a vector gauge theory with the following path
integral,

Z= / DYDY exp < i / d*zep (i — vm)zp) = / DyYDpe’ (7.1)

with V' a gauge field, element of SU(N) = G and “slashed” quantities are Lorentz-contracted
with 7 matrices. Performing the integration on Grassmann variables Z can be written as (in the
eigenbasis with eigenvalues A, of the Dirac operator),

Z =[]\ —m) =det (id =V —m), (7.2)

where det is a functional determinant. Let us consider an infinitesimal chiral reparametrisation of
the fermionic field, of parameter 0(x) = 0°T* € SU(N),
P — @By ) P @ (7.3)
Under such a transformation, the path integral measure transforms with a Jacobian J[6],
DYDYy — J[0)| DYDY, (7.4)

on the other hand the action transforms like,
55— [aig [mme% (D0 |, (75)
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with (ID0) = (#9) + i[V, 0] and the parenthesis indicates the local derivative. The path integral
after the chiral reparametrisation reads,

7' = / J[0]DY D exp <iSz’ / d4:c¢_)[2im6’75 + (mm] ¢) . (7.6)

Since the anomaly is fully determined by the structure of the gauge groups of the theory, the
Jacobian J[#] does not depend on the fermionic field, then one can perform the integration on the
Grassmann variables and write,

7' = J[0)det(id — V — m — 2imbys — (ID)~s). (7.7)

As a result of the invariance under the labeling of the path integral variables (Z = Z'), the Jacobian
reads,
Ji6] = det(ilp — m) _ det(il) — m)

det(il) —m — 2imbOvys — (IDO)vys)  det(il) — m + i{0vs,i) —m})
The Jacobian can therefore be expressed as the exponential of the difference of two functional
determinants,

(7.8)

J[0] = exp (log det(il) — m) — log det(ip — m + i{0vs,ilp — m})) = exp [/d‘lm A(x)] . (79
In the peculiar case of the chiral reparametrisation of Eq. (7.3) being disjoint from gauge transfor-
mations, injecting this solution for J[f] in Eq. (7.6) leads to the relation,

0A(z)
86(z) ’

Dy (35| = ) 2im (s +) (7.10)
which is the anomalous Ward identity of the axial current reflecting the anomalous behaviour of
that chiral reparametrisation.

The main goal of this paper is to compute the anomaly operator of a theory, A, directly from
its path integral formulation. Yet, we will not revert to the procedure of Fujikawa to compute the
determinants, which corresponds to a precise procedure to regularise the computation (the core of
the problem). Instead we will call in the mass expansion method known as Covariant Derivative
Expansion (CDE) [73, 74] that we will combine with different regularisation procedures. All in all,
being very efficient to obtain anomalies in QFT.

One should also note that the CDE method has recently proved its usefulness while dealing with
precisely this kind of EFTs and more especially the matching step which consists in expressing the
Wilson coefficient of the low energy EFT as a function of the parameters of the high energy theory
(see for example Refs. [3, 72, 75, 79-82]).

7.2.2 The ABJ anomaly from the Covariant Derivative Expansion
The principle of the CDE approach will be detailed below. Let A be,

/d4a: A(z) = =Trlog (i) — m — 2imbvys — (#0)75) + Trlog (ilp —m) . (7.11)
In this section, we restrain ourselves to a vector gauge theory, D,, = 9, +iV,,, with V € G = SU(N),
and the chiral reparametrisation of the fermionic field is a simple axial U(1) transformation. Thus

we expect to obtain the so-called chiral or Adler-Bell-Jackiw (ABJ) anomaly [140, 165].
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For clarity, we will first present the evaluation of the first functional trace in Eq. (7.11) that we
label Ay, before combining both needed to compute the axial current anomaly A. We evaluate the
trace over space-time using a plane wave basis, leaving the trace ¢r over the internal space,

ddq iq-x ; ; —igw
Ao = —/ mac " trlog (i — m — 2imé; — (#)1s) 77 (7.12)

use the Baker-Campbell-Hausdorff formula to perform the spatial translation,

d
Apg = — / (iﬁdtr log (i) + ¢ — m — 2imbfys — (#0)7s) (7.13)

and perform the change of variable ¢ — —q to factorise an inverse propagator-like term,

Ay = — / (gj;dtr log [—(g +m) (1 + ¢+1m (i) — 2imbys — (@9)75))} ) (7.14)

The factorised term exhibits UV divergences, and involve the usual scale of renormalisation, which
would be introduced through dimensional regularisation. It can be absorbed in redefinitions of the
parameters of the model 2. One could also notice that it would be anyway canceled by the other
trace to evaluate in Eq. (7.11). Using Taylor expansion on the remaining logarithm,

ddg 1 -1 ) ‘ "
Ay = /(27:)2 nz:l —tr [M (—MD + 2imbys + (‘39)75)] : (7.15)

If we now apply the very same treatment to the other contribution, Trlog(il) — m) of Eq. (7.11),
in order to evaluate the anomaly, we find that the terms which do not involve the # parameter do
cancel with each other,

n

dlg 1 -1 . .
A= | o [M (=il + 2imbrs + <aem)] (7.16)

carrying 6 dependence

As shown in appendix C, it can alternatively be written as,

d i _ no_
A= / (;W(idtr (2imbys + (#0)75) > [1 (—up)} E— (7.17)

=g t+m g—l—m'

So the reader should not be surprised if we switch between the two expressions. This expression
might still look quite cumbersome to deal with, however, as we will see in the following section, it
only calls for a basic power counting and use of master integrals .

7.2.3 Complete evaluation of the ABJ anomaly from the CDE

Since we are only interested in the terms linear ° in 6 in Eq. (7.16), the anomaly can be expressed
as A= A™5 4 AP 6 with,

31t corresponds to a renormalisation of the vacuum energy and it can be absorbed as a constant term in the
Standard Model Higgs potential.

“Notice that our formalism does not support the m = 0 case. We suggest the Heat-kernel method if the reader
would like to recover the ABJ anomaly in this case.

5This is the only possibility to obtain a §-dependent term times a gauge boundary term which is mass independent.

5This is nothing but the transcription of the Ward identity Eq. (7.10) in the present CDE context.
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A™5 — d’q ! D + 2imb '
= dzln =) + 21m 75)

d, — "
= éffd >t [gfm 2+ 6o

0(9)

(7.18)

0(9)

The terms which contribute to A involve, here, exactly one 5 matrix and there can be no
contribution from orders greater than n = 5, within the CDE approach, since they would carry a
mass dependence.

Some of the integrals in Eq. (7.18) are divergent and we use dimensional regularisation [105]
to evaluate them along with the M S scheme for renormalisation. The traces over Dirac matrices
have to be performed in d = 4 — € dimensions, and the e-terms resulting from the contractions with
the metric tensor (satisfying then g"”g,, = d) must be kept in the calculations. These e-terms will
then multiply with the (1/€) pole of the divergent integrals and yield finite contributions. We also
emphasise that depending on the regularisation scheme for ~5 in d-dimensions, different results for
e-terms in Dirac traces will emerge (see for examples Refs. [103, 159]). In the following sections,
we will discuss in details several prescriptions that one can use to evaluate ill-defined Dirac traces
involving <5 matrices, in dimensional regularisation. However, in this section, since we discuss the
case of a vector gauge theory related to Eq. (7.1), the divergent contribution are regularised using
Breitenlohner-Maison-’t Hooft-Veltman (BMHV) scheme of dimensional regularisation [105, 106]
which is compatible with the conservation of the gauge vector current at the quantum level, as it
is well-known, placing then the anomaly entirely in the classically conserved (only) axial current
associated to Eq. (7.3). In the evaluation of Eq. (7.18), we will then maintain the trace cyclicity
property which might not hold for another ~y5 regularisation scheme.

We are here by-passing, on purpose, an important difficulty regarding the crucial regularising
step in order to focus on the standard but important CDE algebra. The reader willing to concentrate
on a careful regularisation procedure should directly reach the next section.

Regarding the actual task of collecting operators from Eq. (7.18), we do not especially rely on
it but the different contributions produced by these expansions could also be enumerated using the
convenient formalism of covariant diagrams (see Ref. [77] for example).

To perform the computations straightforwardly from Eq. (7.18), we decompose the propagator
—1/(¢ +m) as follows,

-1 m —q

= i 1
d+m q2_m2+q2_m2 (7.19)

Let us consider first the expansion of AP The first non zero contribution is to be found at
n = 4, where there are finite and divergent contributions. The finite one leads to the following
term,

APE (T — A T e (PP B(P6)) (7.20)

using standard and convenient master integrals Z, written explicitly in Appendix A. This contri-
bution can be written as 7,

AP = tr(DDD(P0)y5) =

32 — L mer1(D, D, D, (0,0)). (7.21)

872

"The trace over Dirac matrices is performed but the trace tr over the gauge group structure is left.
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The divergent contribution is regularised using BMHV scheme of dimensional regularisation [105,
106]. With this choice, the divergent contribution is,

1: 2 1% 7/ v
AP, 4 = 62 <s +0(e )> P7tr(DuDy Dy (05)) — =g 5" tr(DuDyDy(059)). (7.22)
The full n = 4 contribution therefore cancels as the divergent and finite contributions compensate
exactly,

@ i/ 7/
ALy = AN g AR =0 (7.23)

Note that we talk about divergent contributions because the integrals are divergent, but in the
end, the result is finite as the pole 2/€ is compensated by an € from the trace.

Turning now to the expansion of A™7 its first contribution arises at n = 5, and is fully finite.
In this case there is no requirement to switch to d dimensions ®. This contribution reads,

ATTE = z(2mGIZ~5 — 16m*Z[¢?)? + 48m>Z[¢"); )tr(ﬂ)ll)lﬁlﬁ 0s) . (7.24)

Performing the Dirac matrix algebra and using the expression of the master integrals given in
appendix A, the n = 5 contributions reads,

1
Anls =1 T3 0t (FuFpg) (7.25)
where the convention for the field strength is F},, = [D,, D,].

Within the CDE approach, this is the only surviving contribution, and it matches the well-
known result for the axial current anomaly in a vector gauge field theory [120, 122, 171],

A= A" 4 AP = A5 —#9 1 (F F1Y (7.26)

where the convention for the dual tensor is F* = 1/2 e F, Lo, With the choice €123 = +1.

One may be a bit surprised by the fact that the anomaly ends up extracted from a non-divergent
integral, for which no regularisation is needed. Let us stress though that the crucial step was to
show that the A% term gives no contribution in that particular case at order m°.

Following a similar strategy, we will now discuss more generalities and details of the evaluation

of the covariant and consistent anomalies in QFT based on a careful regularisation.

7.2.4 ABJ anomaly in a given 2n dimensions from the CDE

In this section, we provide a general approach to extend the computation of the ABJ anomaly in a
given 2n dimensions. There is no obstruction to computing the anomaly for a given even dimension,
but for arbitrary 2n dimensions it becomes more complicated to simplify Dirac traces.

Starting from Eq. (7.17) in the manuscript, we have in d = 2n dimensions,

4= [

where we have generalised the definition of 5 in 2n dimensions as,

Yont1 = (i) 1yt (7.28)

8for convenience with the notations, we are still using the master integrals which are technically defined in d-
dimension.

1 M|
Str (2im0y2n11 + (90)yon tr | —— (—iD)| ——, (7.27)
Yon+1 72+1k20 {%-I—m( )} g+m
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Chapter 7: Anomalies from an effective field theory perspective

and we have,

tr I}mn_’_l,},mfym .. .7M2n:| = (—i)2n eMLH2H2n (7.29)
By power counting, we can isolate the terms of order m?,
d2nq 2n 2n—1
4 - / et [(zmemﬂ) [A( _ uz))] A+ [(#6)y201] [A( - m)} A] (730)
d=2n

where A = —1/(¢ +m).

We rewrite the propagators A in terms of bosonic and fermionic propagators A = A, + Ay with
Ay =m/(¢> —m?) and Ay = —¢/(¢> — m?). The integration over momentum is non-vanishing for
even powers in ¢, which means that we have to account for all the terms that have an even number
of fermionic propagators. Therefore, the number of terms to compute increases significantly with
the dimension.

For 2k fermionic propagators among the 2n 4 1 propagators, we have to compute traces of the
form,

Gor an, T Y21 (YA YT ) (7.31)

where the dots encompass the remaining (275;1) — 1 possible combinations of 2k fermionic propa-

gators among 2n + 1 propagators, and ga, ..., i the fully symmetrised metric?. Then such traces
have to computed for all £ < n.

Such a trace is not trivial to compute for arbitrary k and n, which is why the general formula
for the anomaly in 2n dimensions is not straightforward to obtain, and is out of the scope of this
paper. For the computation in an arbitrary 2n dimensions, we refer the reader to Refs. [179, 180].

Within our framework, we can compute the ABJ anomaly (and other anomalies) in 4, 6, 8, - -
dimensions, then extrapolate the result to 2n dimensions. This strategy is analogous to the com-
putations of [—agon Feynman diagrams (with [ = n + 1) which have been performed by Frampton
et al [181, 182].

One must also generalise the definition of the master integrals in 2n dimensions, but this presents
no difficulty.

7.3 Anomalies in vector-axial gauge field theory

In the previous section, we have discussed the methodology to compute the Jacobian of a path
integral measure by using EFT techniques, namely the CDE, and gave a concrete example by
computing the well-known axial current anomaly in a vector gauge field theory. In this section, we
apply this new formalism to recover the various and well-known anomalies in vector-axial gauge
field theory. If 6 is charged under the SU(N) gauge group of the theory, then the anomaly can
either be covariant (covariant anomaly), or respect the Wess-Zumino consistency conditions [183]
(consistent anomaly). Our computations in the following sections are performed in Minkowski
space-time 0, and our results agree with the traditional ones (see for example Refs. [118-120]).

In our computation, it is necessary to consider 6 local. In practice, if § € SU(N) (and V, A €
SU(N) as well) is associated to a global symmetry, we conduct the computation with 6 local, but
we should regularise in order to get the covariant anomaly. If § € SU(N) is associated to a local
symmetry, i.e a gauge transformation, we should regularise in order to get the consistent anomaly
(gauge anomaly).

9FOI‘ example, Guvpe = Guv9po + Gup9ve + GuoGuvp-
0The standard computations of Refs. [119, 120] are performed in Euclidian space.
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Section 7.3: Anomalies in vector-axial gauge theory

7.3.1 Definiteness and regularisation

Consider the following Lagrangian,
L= -V — Ays —m), (7.32)

with V,, and A,, a vector and axial gauge field, elements of SU(N) . It is anomalous under the
fermion reparametrisation,

W — 0@V ) = he?@) (7.33)

with @ infinitesimal, and can be charged under the SU(N) gauge group. The Jacobian of this
reparametrisation can be expressed as follows,

_ det(iIp — m)
det(il) —m — (D)5 — 2imbys)

However, we know that the anomaly associated to the axial reparametrisation may as well appear in
the vector current or the axial current (see for example Refs. [119, 157]). The Jacobian in Eq. (7.34)
standing as it is can lead to any distribution of the anomaly in both currents.

Moreover, since the theory has an axial gauge field A, the reparametrisation in Eq. (7.33) can
be interpreted as a gauge transformation (i.e local transformation) if € is charged under the gauge
group. For these reasons, the Jacobian in Eq. (7.34) is ill-defined.

To make sense of this ratio of formal determinants, we need to regularise it. In CDE, the
most convenient regularisation scheme is dimensional regularisation. However, it is well-known
that the definition of 5 in dimensional regularisation is ambiguous due to its intrinsic 4 dimen-
sional nature [105]. We will propose two methods of regularising the Jacobian of Eq. (7.34). The
first method consists in working with the formal determinant in dimensional regularisation and,
throughout the computation, deal with the ambiguity related to v using free parameters [2, 161].
The second method consists in bosonising the determinant, making it finite, hence fixing the am-
biguity before the calculation. The first method can be seen as more general (or maybe naive
and brutal) as one first regularises an ill-defined quantity inserting as much freedom as needed
and secondly call for coherence (covariance, integrability/consistence) of the obtained theory to fix
those ambiguities. We believe that a remarkable advantage of this approach is that its derivation
is smooth and self-consistent within the path integral formalism. The second method works the
opposite way, as one firstly calls for a well defined theory (free of any ambiguity) and secondly
perform the regularisation. As we will see both have their own advantages and disadvantages and
we find it illuminating to present them both. We should also notice that while we believe the first
method is novel in its approach, the bosonisation method is well-known [72, 119, 180], however its
combined used with the CDE to evaluate anomalies, is new and since this offers a powerful tool
and interesting implications for EFTs related topics, it deserves to be duly studied here.

J[0]

(7.34)

7.3.1.1 Ambiguities and free parameters

In d dimensions, 75 is ill-defined. One cannot maintain both the cyclicity of the trace and Clifford
algebra. There exist many ways of defining 75 in d dimensions consistently [103, 105, 106, 159, 161],
although they may yield different results. The ambiguity in the Jacobian of Eq. (7.34) lies in the
dependence on the choice of the 5 regularisation scheme.

111 order to clarify our manuscript, we postpone the important discussion about manifest gauge or global symmetry
invariance, the mass term as an hard breaking source in the unitary basis and the introduction of Goldstone bosons
to implement spontaneous symmetry breaking to section 7.3.3.1.
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Chapter 7: Anomalies from an effective field theory perspective

In a diagrammatic approach, the amplitude of a diagram is dictated by the Feynman rules.
However, it does not specify by which vertex we should start writing the amplitude of the diagram,
which results in different possible position for 5. Since in d dimensions, the different positions of
~5 are not equivalent, we have an ambiguity in the position of 7s.

Nonetheless, it is possible to compute traces of 75 in d dimensions while keeping track of the
ambiguity by introducing free parameters [161]. We outline the method in the following.

Consider the trace,

tr (15777 7"77) - (7.35)

In 4 dimensions, one can use Clifford algebra to move the =5 at different positions,
tr (579" 77) = tr (V" 57777) = tr (Y s) - (7.36)

However, this may not be true anymore in d dimensions. Therefore, if there is an ambiguity in the
position of 5

For example if we use BMHV scheme [106], we maintain the cyclicity of the trace but we have
to abandon Clifford algebra. We then have an ambiguity on the position of 5 in the trace. The
trick presented in Ref. [161] consists in implementing all the positions for 5 that are equivalent in
4 dimensions, with a free parameter for each,

tr (Vs Y Y Y 7)) = actr (v APYT) + Bt (YA ysyPT) + S tr (VY P s) (7.37)

with the condition o + 5 + & = 1, so that we recover tr (y57*7”v*y7) in 4 dimensions.

The introduction of those free parameters with all the equivalent positions (in 4 dimensions) of
~5 makes the trace regularisation scheme independent. Therefore, we can choose a specific scheme
to compute each separate trace. If the result depends on the free parameters in the end, it means
that the initial trace itself is ambiguous.

For the example above, we compute each separate trace using BMHV scheme to get,

tr (157977°77) = atr (174977777) + Btr (797159°77) + 0 tr (#9777 5)
=(a+ [+ 9)(—4ie"P7) = —4ietP7 | (7.38)
where we have used the condition a4+ S+ § = 1 to match with the result in 4 dimensions. It turns

out that this trace is non-ambiguous.
However, consider the following trace with one contraction among the Dirac matrices,

tr (57 Y Y Y Va)
— atr (VY Y Y Y va) + B (VY Y Y Y V) A vt (VY Y Y 57 Ya) A Ot (YEY Y Py Yas)
=(—1+ 2v) 4i(d — 4)e"*7 . (7.39)

It is ambiguous because even after enforcing the condition a4+ 3 +~v+9 = 1, the result still depends
on a free parameter. Actually, insofar as there is more than one contraction among the Dirac
matrices, the trace will be ambiguous'?. As a consequence, when computing the anomaly, the final
result depends on free parameters. Those free parameters are then fixed under physical constraints,
for example by enforcing gauge invariance and vector current conservation.

Although the positions of 75 in the computation of the path integral Jacobian are not arbitrary,
as opposed to the diagrammatic approach, it may still bear traces that depends on the choice of
~5 scheme. Despite the absence of arbitrariness in the position of 75 we will still rely on the free
parameters trick to compute the ambiguous Jacobian, since it allows us to compute the traces in a
~5 scheme independent way.

12866 appendix D for the case with two contractions among the sequence of Dirac matrices.
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Section 7.3: Anomalies in vector-axial gauge theory

7.3.1.2 A well-known treatment : the bosonisation

Before delving into the expansion of the determinant, it is possible to regularise it. One way of
achieving a regularised Jacobian is to bosonise it.

Vector gauge theory: Consider first a vector gauge theory, the Jacobian can be squared to
bosonise it,

L=4pid -V -m). (7.40)
We will show in section 7.3.4.2 that the Jacobian in Eq. (7.34) can be written as,

det(lD2 +m?)

JI0]? = 5 , , :
det(D” +m?2 + {ilp, (IP0)7s} + 4im?6s)

(7.41)

This Jacobian yields the same result as the fermionic Jacobian Eq. (7.8) insofar as the theory is
not chiral.

Vector-axial theory: Now, consider a vector-axial gauge theory,
i) =i —V — Avs . (7.42)

Now the operator i) —m does not have a well-defined eigenvalue problem, the presence of the
axial field spoils the hermitianity. It is however crucial to have a well-defined eigenvalue problem
to make sense of the determinant, which is the product of the eigenvalues of the operator.

We will now present a solution for bosonising the Jacobian of Eq. (7.34) that let us deal with
hermitian and gauge covariant operators.

One way to obtain a hermitian operator is to use the following Laplace operators,

P'p and PP (7.43)

These operators are hermitian, hence have a well-defined eigenvalue problem. They preserve the
spectrum of the theory (see for example Ref. [119]), hence do not change the value of the determi-
nants (aside squaring them). Besides, they lead to a gauge covariant regularisation of the bosonised
form of the Jacobian.

We will show in section 7.3.3, that the Jacobian of Eq. (7.34) can be written as,

det (—(iD)Ti ) + m?)

T = det (—(iD)til) +m? + £(0))

(7.44)

where,
1 1
ﬂm:um%%—ﬂa—pwm—ihphm%—ipfﬂmﬂ%. (7.45)
FV and F4 are the Bardeen curvatures defined a bit later in Egs. (7.50) and (7.51).

This bosonised determinant is finite hence unambiguous. Besides, since the regularisation it
provides is gauge covariant [119], the final result can only be gauge covariant, hence the so-called
covariant anomaly.

On the other hand, if we want to compute the consistent anomaly, we can try to use the
bosonisation as in the vector gauge theory. However, the operator EQ + m? is still not hermitian.
We palliate this problem using the analytic continuation A, — 74, that restores the hermitianity

of iIp, hence of lDz +m?2.
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Chapter 7: Anomalies from an effective field theory perspective

The Jacobian will then be written as,

2 det(lﬁ2 +m?)

" det(D® + m? + {il), (D05} + 4im2075) (7.46)

Unfortunately, as we will see, this does not suffice to fix the ambiguity. It does not necessarily yield
the consistent anomaly.

7.3.2 A generic Lagrangian

To pave the way for our computations of covariant and consistent anomalies, we present briefly
the generic Lagrangian we will consider and our notations. One can consider a gauge theory in
which left and right-handed fermion components are charged under a non-Abelian gauge group,
then described by the following Lagrangian,

L =y (i0y — Lu)r + Yy (10, — Ry )R — mapih, (7.47)

where L, = LiT® and R, = R{T* are gauge fields belonging to SU(N). In term of the projector
algebra, this Lagrangian can be written in terms of vector-axial gauge fields as follows,

L=P(id — LPrL — RPr —m)Y = (i =V — Ays —m)yp = (i) — m)ip, (7.48)
where we defined the fields V),, A, and the covariant derivative as follows,

L,+ R,
2 )

R, — L,

Vi 5 ;

Ay

iDy = i(0y + iV +iAus) . (7.49)
The computation of the commutator [D,,D,]| permits to define two Bardeen’s curvatures (see
Ref. [122]) by identifying the axial and vector part such that [D,, D,] = F;X/ + Flﬁj’)/g,, which leads
to the following expressions,

Fy,=i((0,V0) = (0,V,) + iV, Vi) +i[Au, A)) (7.50)
Fi, =i ((0uAy) — (0 Au) +i[Au, Vi)l + Vi, Ay)) . (7.51)

In the L/R basis the field strengths are,
iy = i ((OuLy) = OuLy) + ilLy, L)) (7.52)
FiL=i((0uRy) = (0uRy) + i[Ry, R]) (7.53)

and the Bardeen curvatures are related to the L/R curvatures by,

1
Fy, = g(Fﬁ +FL) (7.54)
1
A R L
Fa, = §(FW ~FL). (7.55)
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Section 7.3: Anomalies in vector-axial gauge theory

7.3.3 Covariant anomaly
7.3.3.1 Mass term, manifest symmetry invariance and Goldstone bosons

All along our work, we constantly integrate out a massive chiral fermion. The mass term is a hard
breaking source of axial symmetries (local or global). In order to make manifest those symmetries at
tree-level one can evidently implement their spontaneous breaking introducing then their associated
Goldstone bosons. We chose to work within the unitary basis and loose manifest tree-level axial
invariance (when relevant) in order to deal with simpler functional determinants. The Goldstone
bosons will be explicitly re-introduced only when it is necessary, see section 7.3.3.3. Consequently,
one should not be surprised if we discuss an anomalous global symmetry which looks naively already
broken at tree-level. '3

7.3.3.2 Case of an anomalous axial symmetry

We state here again, for convenience, the Lagrangian and the Jacobian associated to the axial
transformation.

Starting from the vector-axial Lagrangian of Eq. (7.48), let us perform an axial fermion reparametri-
sation,

W — @ g ) @5 (7.56)

Under this fermion reparametrisation, the Lagrangian given by Eq. (7.48) becomes,
L= P[ilp —m = 2im0(x)ys — (P6ys)]0 (7.57)

where the quantity inside the parenthesis, (I6vs) = ((#6) + i[V, 0] + i[4, 0]y5) 75, indicates that
the covariant derivative locally acts on 6(z) (i.e not on everything on its right). The Jacobian
produced by this transformation is therefore given by the following expression,

B det (le — m) B det (le — m)
~ det ()5 (zlﬁ — m) ef(@)vs  det (zlﬁ —m — 2imbvys — ($9fy5)) ’

J[0] (7.58)

As emphasised in the previous sections, this Jacobian is ill-defined. The next step is to explicitly
compute it, according to the methods proposed in section 7.3.1.

Fermionic expansion with free parameters We are now in the situation where we are looking
to evaluate an equivalent of Eq. (7.16) for a vector and axial gauge field theory,

d B no
A= / 4 ((129)75—1—22'1719%)2[1(—2']?)} =t (7.59)

(2m) >0 ¢—m g—m’

where 6 belongs to SU(N) and the covariant derivative is D, = 0, +iV, + i 4,7s.

Let’s start by computing the mass term. The integrals are finite hence no ambiguity arises from
this term.

The propagators that appear in the expansion need to be expanded as —1/(¢ +m) = Ay + Ay
where the bosonic propagator is Ay = m/(¢?> —m?) and the fermionic propagator is A F=—q/ (¢ —
m?). The integrals over momentum are non-vanishing only if the integrand has an even power in
¢ in the numerator (the denominator always has an even power in ¢). Therefore, the number of

13 A detailed discussion on the parametrisation of local and global anomalous symmetries can be find in Ref. [2].
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fermionic propagators must be even. This leaves us with three contributions. Note that each of
those contributions is finite, thus the computation is performed in 4 dimensions.
e The contribution to the anomalous interaction involving only bosonic propagators is,

m°Z[q°)2imtr (975194) : (7.60)
e The contribution to the anomalous interaction involving two fermionic propagators is,
: . 3 2 2
m*T[q*)°2imtr (975 VDY) + A D DD + ]) , (7.61)

where the dots bear all the remaining insertions of the two fermionic propagators ((g) = 10 com-
binations).
e The contribution to the anomalous interaction involving four fermionic propagators is,

mZ[g">2imtr (09abcd75 (Y DA Dy YD + A DA DY DDA + ]) , (7.62)

where again the dots bear all the remaining insertions of the four fermionic propagators ((i) =5
combinations) and gaped = gab9ed + GacGbd + Gadbe-

Then one needs to expand the covariant derivatives in order to extract the -5 from the axial
fields and compute the Dirac traces. It is then simple algebra to form the field strengths as defined
in Egs. (7.50) and (7.51).

The mass term then yields a contribution that corresponds to the so-called Bardeen anomaly
(with conserved vector current), that is to say the consistent anomaly,

i o vy LA pna
Am'Y5 — m?elujp tr 84T (F;LVFpO' + gFNVFPU

2
_ ; (A A FY, +iA, B iA, + FViAyiAy) + ?;,iAuiAyiApiAU)

— ABardeen )
(7.63)
Now let’s focus on the derivative term,
Ao = [ i wone S [ -im)| = (7.6
= [ —tr 5 —(—1 —_— .
s (2m)d S ld—m qg—m
We proceed similarly for the derivative term to obtain the following contributions:
e The contribution to the anomalous interaction involving only bosonic propagators is,

im*Z[¢") tr ((IP0)s(1D)?) . (7.65)

e The contribution to the anomalous interaction involving two fermionic propagators is,

im? (@) tr (DO)Vs[v* PrvaDD + " DDV + ... ]) (7.66)

where the dots denote the other (;1) = 6 combinations for the insertions of the two fermionic
propagators.
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Section 7.3: Anomalies in vector-axial gauge theory

e The contribution to the anomalous interaction involving four fermionic propagators is,
iZ[q"] tr ((1?9)75[valﬁvblﬁfyc%dgabcdD . (7.67)

Now this last integral is divergent, thus the trace that appear in the term with four fermionic
propagators is ambiguous. We use the trick described in section 7.3.1.1 to keep track of the
ambiguity. Therefore, the three contributions above may be written, after integrating by parts, as
a sum of operators with a free parameter for each. The result can thus be written fully in terms
of free parameters associated to each possible operator (the finite contributions will just combine
with a free parameter to give a different free parameter). We thus have,

—1 vpo ara
Aoy = 2"t 0°T (Z aiXi,W,,,,> : (7.68)

)

where X; are all the possible operators of the form O;02030, with O1<j<4 € {V, A, 0} that can be
formed, provided it has an even number of A fields (the number of 75 must be odd). Note that the
operators with a partial derivative to the right vanish, and those with consecutive partial deriva-
tives vanish due to the contraction with the € tensor. This leaves us with 22 possible operators,
with 22 free parameters a;.

We then want to enforce the covariance of A5 + Aég% under the gauge transformation,

{vu > Vit (Dfev) + il A4l (769)

A, — Ay +i[Ayev] + (DX&A)

We can focus only on the gauge transformation associated to €4, it will be sufficient to fix the free
parameters.
A covariant operator O must transform as,

50 = [e4, 0], (7.70)

under the €4 gauge transformation. Therefore, we enforce that the terms with derivatives of €4
vanish, and also that €4 must appear either at the beginning or at the end of each operator.
For example, after performing the gauge variation we have, among others, the following operator,

f(al, ey CLQQ)E/W’OU(au AV)GAVpVg s (7.71)

where f is some linear function of the free parameters. This term must vanish for the result to be
gauge covariant because €4 is sandwished between operators, hence it cannot occur from a term of
the form Eq. (7.70). We hence obtain a constraint on the free parameters.

It turns out that enforcing these conditions fixes 21 free parameters out of 22. We rely on the
result from the ABJ anomaly to fix the last free parameter that we call 5. Setting A = 0 we are
left with, _

—1i
1672
where F,, = (0,1V,) — (0, iV,) + [iV,,iV,]. Eq. (7.72) is covariant regardless of the normalisation,
this is why it needs to be compared with the anomaly in a vector-like theory to fix 8 (i.e the ABJ
anomaly). This amounts to enforcing the conservation of the vector current. We thus deduce that
B8 = 0. Now that all the free parameters are fixed, we obtain,

(L+ B)e"? Flu Fpo (7.72)

—1

T (FY,Fy + FiFi) (7.73)

pv+ po pv+ po

‘Am% + A@% =
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with FV and F4 the Bardeen curvatures as defined in Egs. (7.50),(7.51). This is the covariant
non-Abelian anomaly in the axial current in a vector-axial theory. Note that the relative coefficient
between FV FY and FAF4 is fixed by requiring the covariance of the result, since FV FY +bFAFA
is not covariant unless b = 1.
It can also be written in the L-R basis as,
—1i

v, L L R R
Amm+A%%:§Z§w0%NWT%EWﬂw+F@Fﬁ). (7.74)

Finally, we can mention the Bardeen-Zumino polynomial (BZ polynomial) [184] that naturally
appears in our computation. The BZ polynomial is the unique local function P* such that the
gauge variation of D, P* cancels exactly the gauge variation of the consistent anomaly.

The ambiguity in the derivative term A@'ys was fixed by requiring that the mass term and
derivative term together are gauge covariant, that is to say, that the gauge variation of the derivative
term cancels exactly the gauge variation of the unambiguous mass term. Since the mass term
coincides with the consistent anomaly, then the derivative term cancelling its gauge variation is by
definition the divergence of the BZ polynomial.

The derivative term thus reads,

Ay, = 0°(D,P")"*
8 3

—1 vpo 2 A A \% \% \% 2
= T6n2 e'Potr 0 <3FWFPU + 3 (AMAVFPJ + AuFy, Ay + FWAPAU) 3 A AVALAS ) .
(7.75)

Note that the divergence of the BZ polynomial was not obtained by substracting the covariant
anomaly to the consistent anomaly, but truly by requiring the cancelation of the gauge variation
of the consistent anomaly.

Eventually, we emphasise that the BZ polynomial itself can be obtained by summing Egs. (7.65),
(7.66) and (7.67), performing the Dirac trace using the values of the free parameters that cancel
the gauge variation of the anomaly, as we did. We thus obtain a term of the form (D,0)P* where
PH is the BZ polynomial.

Bosonisation method. The previous method proceeds by carrying dimensional regularisation
on the ill-defined functional determinants of the Jacobian of Eq. (7.58). A main difference with
Fujikawa’s approach is that one does not need to directly worry about whether the Dirac operator
has a well defined eigenvalue problem, and then compute its spectrum. However, it exists a known
trick which consists in transforming that Jacobian into a another well suited quantity, a Jacobian
“squared”.

As suggested in Refs. [179, 180, 185, 186], the operator lDTlﬁ and ]DlDT define a good eigenvalue
problem in order to compute the spectrum of iJ). In particular, since those two operators are
Hermitian and covariant, they admit two orthogonal eigenbasis with real eigenvalues. For simplicity,
we introduce P, = iD,,, we then have,

P Pon=X2¢n, PPon=Xg, neN, M\eR (7.76)

where
Pbn = Mon, Plon = Andn with A, € R . (7.77)
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In order to form such operators from the orginal Jacobian Eq. (7.34), one can build the following
quantity,

det( —m)

J20) = eievg,) det (€5 (P — m)eifs)

—m)

_ m)

P m) det(—P — m)

b o Py WPy ) 07
det (—PTP + m2>

et (PP m2+m(P— P+ 1(0))

where in the second line we have used the invariance of the determinant under the change v* —
—~# 14 and we have defined,

. . 1 1
f(0) =4im>20~y5 — i[0, P2]75 — i[a.FV, 0)ys — i[U.FA"}/E,, 0]7s

(7.79)

+ 2im (035 P — POs) +im ((PO) — (P10)) ) 55 -
FVY and F4 are the Bardeen curvatures as defined in Eq. (7.50), (7.51), and o#” = [y*,7"]. Details
of the bosonisation are provided in appendix E.

6 is charged under the gauge group so (P0) = (i@0) — [V,0] — [A~s,0]. Therefore, we can a
priori obtain the consistent or the covariant anomaly, but we will see that the bosonisation we have
chosen selects the covariant result.

We shamelessly used the multiplicativity property, det(A) det(B) = det(AB), on non-regularised
determinants. Indeed, this has to be admitted since CDE assumes that for a non-regularised de-
terminant one can write log det = Trlog.

The computation of this Jacobian can be performed following the same principle given in sec-
tion 7.2,

—igz (7.80)

2A = —/ d'y ety <f(0) +m(P - PT)> ;e
(2m)d _PTP + m2
At this point, one can recall that the terms that have an odd number of Dirac matrices van-
ish under the trace. Therefore, in the above we can drop the term m(P — PT), and the terms
2im (0vsP — POvs) and im ((PG) — (PT0)> v5 from f(6), since 1/(—PTP +m?) has en even num-
ber of Dirac matrices. We are then left with,

ddg . 1 1 1 .
24 = — —iqx —il0. P21 — Z[g.FV _ Zlg.FA 4im? [N 1/
A / (277)d€ tr ( il0, P*]ys 2[0 0]y 5 [0.F %5, 0]vs + 4im=0-ys —PTP N er
(7.81)
This produces in the end,
2A—/ddqth(9)§ AP iorV 4 oA 420 P)] A (7.82)
= | @ny r 50" 50-F s + 24 ) .

n>0

14 1t uses the fact that det = Trexp, and that the trace of an odd number of Dirac matrices always vanishes. Since
they have to come in by pairs, the sign flip does not affect the result. Under this sign flip, 75 is unchanged since it
has an even number of Dirac matrices.
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where ) )
WO) = —il0, Pls — 5[0 FY, 075 — 5o F s, 05 + 4im?0s (7.83)

and A = 1/(¢> — m?).
After scrutinizing the various terms, they appear to be all finite (hence non-ambiguous), and in
the end only one term contributes,

2A:/.

- 2%#%%9(1%&‘{, +FAFL), (7.84)

d’q 3 .9 i v 1 A N\2
(27r)dA trdim 075(§J.F + §U.F V5)

where we have discarded terms with even number of 75 matrices (they cannot yield a boundary
term so cannot contribute to the final result). We thus obtain the so-called covariant anomaly,

—1
3272

A= —rotr g(FY,FY, + FAFA) =

1672 Lpo T FuFpe P O(FL FE + FRRR) (7.85)

pv+ po pv+ po

Additional details on the calculation are provided in the appendix E.

As an important remark, in the bosonised form of the Jacobian, it turns out that the derivative
coupling contribution vanishes at order m°, only the mass term 4im2@~s (which stems from the
term 2im@~; before bosonising) contributes. As a result, the computation is finite (in the sense
that no divergent integral appears), therefore no ambiguity arises due to the definition of 75 since
we can perform the calculation in 4 dimensions. Although the operators stemming from the deriva-
tive coupling ((IP6)~s before bosonising) do not contribute to the anomaly, they are required to
compensate the finite higher order (of order 1/m* with k£ > 0) terms in the mass expansion, since
the final result has to be exact at order m®. Note also that we bosonised using ETlD, but we could
have equivalently used Elﬂ to get the same result.

7.3.3.3 Case of an anomalous vector symmetry

Starting from the vector-axial Lagrangian of Eq. (7.48), let us perform now an SU(N) vector
fermion reparametrisation,
Y — 9@y ) e @) (7.86)

Under this fermion reparametrisation, the Lagrangian given by Eq. (7.48) becomes,
L= i) —m— (D)), (7.87)

with D, = (8u + iV, + iAMVg,), and again the quantity inside the parenthesis, (lﬁ&) = Y (0.0 +
i[Vy,, 0] + i[A,, 0]7s), indicates that the covariant derivative locally acts on 6(z), with 6 charged
under the gauge group. The Jacobian produced by this transformation is therefore given by the

following expression,
det (ZID — m)

~ det (i) —m — (196))

As in the axial rotation, the functional determinants of Eq. (7.88) are ill-defined and need to be
regularised. In dimensional regularisation, this is the ~5 located in the covariant derivative which
entirely carries the ambiguity now.

J10]

(7.88)
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Before presenting the computation of the Jacobian of Eq. (7.88) and its bosonised form, one
should notice that starting from Eq. (7.85), no additional computation is needed, if one is only
interested in the result. Indeed, from

Bt = 0, Tt — 9, T8 = 73;2 et g(FLFL 4 FRERY (7.89)
one can identify,
—1 - 7 "
8MJ1’:‘5 = 73271'26“14) tr Q(FL%VFPLU), 8/%]1/5 = 32?Euuﬁ trQ(FﬁF[ﬁ) : (7.90)

with # € SU(N). Hence,

—7 y
8HJ"L/L- = 8;“]}% + 8;,,;]5 == @GM patr Q(Fﬁle]g. — F}fyFﬁ{(})
_ i V A A 7V
= 162 e*Potr G(FWFPU + FM,FPU) . (7.91)

We are however more interested in presenting an explicit and transparent evaluation of this version
of the covariant anomaly.

Fermionic expansion with free parameters We proceed in a similar fashion as for the covari-
ant anomaly in the axial current, except there is no mass term to compute according to Eq.(7.88).

The derivative term is ambiguous because of the presence of v in the covariant derivative, and
of the divergent integrals. As explained in section 7.3.3.2, it can thus be written as,

—t vpo ara
A= Aa = 1(3?6}/’ Potr 0T (Z aiXZ‘?l_,‘Vpa—> s (792)

7

where X; are all the possible operators of the form 0102030, with O1<;<4 € {V, A, J} that can be
formed. Contrary to the case of the anomaly in the axial current, the operators X; that appear now
have an odd number of A (because there must be an odd number of v5). Note that the operators
with a partial derivative to the right vanish, and those with consecutive partial derivatives vanish
due to the contraction with the e tensor. This leaves us with again 22 possible operators, with 22
free parameters a;.

The result should be covariant under the gauge transformation Eq. (7.69). Once again, we only
need to enforce the gauge covariance with respect to €4 to fix the free parameters. The covariance
of the result requires that its gauge variation has the form Eq. (7.70), we therefore enforce on the
free parameters that the derivatives of €4 and the operators that have €4 neither at the beginning
nor at the end of the operator vanish. This fixes again 21 free parameters out of 22, and leaves us
with a result of the form,

Ay = e trf (FY,Fib + FAF)) (7.93)

where « is the remaining free parameter.

For the anomaly in the axial current, we compared our result to the ABJ anomaly by setting
the gauge field A = 0 to fix the normalisation. Unfortunately, this is not possible here because
setting A = 0 makes the whole term vanish.

In the case of the Abelian anomaly, we happen to have the same issue, where the result is gauge
covariant but there is a normalisation freedom that remains. In Ref. [2], they deal with the free
parameters for the Abelian anomaly to fix the normalisation factor by enforcing the conservation of
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Chapter 7: Anomalies from an effective field theory perspective

the axial current (up to the mass term)!®. In Eq. (7.93), we set the gauge fields and 6 as Abelian'®
and apply the technique from Ref. [2].

We consider Eq. (7.93) with Abelian gauge fields and Abelian 6, which is gauge covariant
independently of the remaining free parameter. To break down this gap, we re-organise Eq. (7.93)
in terms of Generalised Chern-Simons (GCS) forms using integration by parts, then we introduce
an auxiliary background field ¢, associated to the deformation of (9,0) ! as follows,

Ay = B[, — (0u0)] (i4,)F),

poy (7.94)

where § = 4a. At this stage, Eq. (7.94) is no longer gauge invariant under the axial gauge
transformation. The conservation of the axial current (up to the mass term) can be enforced
non-trivially if the axial gauge field obtains its mass after spontaneous symmetry breaking. By
introducing the Goldstone boson 74 associated to the longitudinal component of the axial gauge
field A, we obtain,

1 vpo . i vpo TA
Ay = Be"Ptr[€, — (0,0)] (1AL Fy, — 53 e tr[v(augy)FX,] : (7.95)
Requiring the quantity .,Zla to be gauge invariant, implies that 8 = —i/(472), or equivalently

a = —i/(167?). Additional details about the GCS terms and the Goldstone terms are provided
in the appendix D. Eventually, going back to non-Abelian gauge fields and 6, we obtain the non-
Abelian covariant anomaly in the vector current,

— ' o g(FV A 4 ARV

) 167T2 ( pnv= po nv po)' (796)

Bosonisation method. We bosonise the Jacobian from Eq. (7.88). Following the method de-
tailed in Eq. (7.78)

det(— (i)l + m?)

2 _
O = St + m? + m(iB — (D) + @) (790
and we have defined,
£(0) = [0, DY) — %[U.FV, o — %[U.FA%,e} . (7.98)

However, this regularisation yields the covariant anomaly in the axial current as seens in the above,
it thus comes with no surprise that the vector current is conserved. That is to say, if we supplement
the theory with a global axial and a global vector symmetries, then this regularisation puts all the
anomaly in the global axial symmetry and conserves the global vector symmetry. Therefore, as
expected, the Jacobian in Eq. (7.97) is equal to one and then is unable, from the start, to deal with
an anomalous vector transformation.

5For the reader interested in anomaly from the global axial(vector) transformation, see Ref. [2] for the detail of
computations and also the applications in axion phenomenology.

%Eq. (7.93) can be separated in an Abelian part, and a non-Abelian part (formed uniquely of commutators of 6,
V and A). Since the free parameter is common to both these parts, we can set the non-Abelian part to zero to fix
the free parameter as in the Abelian case.

'"The auxiliary vector field &, will be set to zero at the end of the computation.
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Section 7.3: Anomalies in vector-axial gauge theory

7.3.4 Consistent anomaly

For the covariant anomaly, we have showed that we can bosonise the Jacobian in a gauge covariant
way. However, the anomalous operator .4 may not be gauge invariant and in that case, one should
rather make sure that the determinants in Eq. (7.34) are regularised in a non-gauge invariant
way. Now, what we may ask is that the anomaly satisfies the algebra of the gauge group i.e the
anomaly can be required to satisfy a consistency relation (also called an integrability condition or
Wess-Zumino condition [183]). In that case, the anomaly is more accurately called the consistent
anomaly.

As a remark, it has been shown that the Wess-Zumino condition corresponds to the Bose
symmetry with respect to the vertices of the one-loop Feynman diagrams. If the covariant anomaly
collects the effects of the anomaly to only one of the vertices, this does not satisfy the Bose symmetry
and thus the so-called integrability condition. Notice that the leading terms of consistent anomaly
and covariant anomaly (e.g the anomaly corresponding to the AAA triangle diagrams) are related
by the Bose symmetry factor. In 4 dimensions, the symmetry factor is 1/3. For arbitrary 2n
dimensions, the symmetry factor is 1/(n + 1). The reason for these symmetry factors lies in the
distribution of anomaly in all vertices when evaluating the consistent anomaly'®.

7.3.4.1 Fermionic expansion with free parameters

As it is done in the previous sections, it is possible to compute the anomaly without bosonising
the Jacobian, although it is ambiguous. This ambiguity transpires in certain traces that bear a s
in d dimensions. Keeping track of the ambiguity requires the introduction of free parameters that
need to be fixed under physical constraints. For the covariant anomaly, those physical constraints
arise from the expected gauge covariance of the result. However, for the consistent anomaly, it is
not gauge covariance or invariance that needs to be enforced, but rather Wess-Zumino consistency
conditions. We will outline the method in the following.

The covariant derivative is i) = i(‘?—V"—A%. Under an axial reparametrisation of the fermions,
the path integral yields the following Jacobian,

_ det(iIp — m) _ det(iIp — m)
det [¢s (i) — m)e?rs|  det (i) —m — (P0)ys — 2imbys)

J[0] (7.99)

where 6 = 0°T* is charged under the gauge group SU(N).
The anomalous operator can be expressed as the following expansion,

A= —/éié{itr(—mme% — (B0 Y [(gjm> (—ilD)r <qjm> . (7.100)

n>0

As we will see, the mass term 2imé~s gives rise to the anomaly, while the divergent term (1P0)~s
does not contribute to the result at order m®. However the derivative term will contribute at higher
order to cancel the contributions from the mass term, so that the whole result is proportional to m?.

The computation is the same as the one of the consistent anomaly in section 7.3.3.2. We thus

18We remind the reader that the Bose symmetry will play an essential role in the functional bosonisation formalism;
for further discussions, see Ref. [187].
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have,

—1 1
AT = e 00T (FLFP‘; + 5 Fin o
8 ... v V. V.. 32 ..
—3 (zAHzAl,FpU + ZAMFVPZAU + FWZApzAg) + ng#szzApon

— AB ardeen

)

(7.101)

and,

1 Vpo a a
A(?’YE) = ].6772 €'u' P tr 0°T <Z aiXi;u/po'> ) (7102)

i

where X; are all the possible operators of the form 002030, with O1<j<4 € {V, A, 0} that can be
formed, provided it has an even number of A fields (the number of 75 must be odd). Note that the
operators with a partial derivative to the right vanish, and those with consecutive partial derivatives
vanish due to the contraction with the € tensor. This leaves us with 22 possible operators, with 22
free parameters a;.

Let’s take all the operators from the derivative term when the axial field A goes to zero. There
remains only the operators that do not depend on A (they only bear V' and 9) and each have a
free parameter. Setting A to zero amounts to considering an axial reparametrisation of the fermion
in a vector gauge theory, and if we want for example to conserve the vector current we know the
result should then be vector gauge invariant. Therefore, the free parameters are fixed under this
requirement, and the terms that do not depend on A combine together to form,

el Ell o Fol (7.103)
with FL e = 1((0u Vo) = (0y V) + iV, Vo)), and o is a remaining free parameter that cannot
be fixed by the sole requirement of gauge invariance (while A = 0).

We rewrite this term as,

—1
pvpo \%
g2 tro F,,

167 |A:O FF";'"A:O

—1

= oqgae" 0| FuFy (7.104)

— Fo | a0 ©1Ap, Ag] = P[A, A)) Fo| o — 1A AJJiP[Ap, Al
where we have made the Bardeen curvature of Eq. (7.50) appear.

Now consider the remaining terms with free parameters, that is to say, the terms that vanished
when we set A to zero. Among those operators, we can identify the same operators as those in the
last line of equation Eq. (7.104), with different free parameters §;. Therefore, they will combine
together, and only change the free parameters f3; to new free parameters /3.

We will now enforce the Wess-Zumino consistency conditions. No calculation is needed, we will
only use the well known fact that the Wess-Zumino consistency conditions fix the coefficients of
all the operators with respect to the coefficient of the term F LF gg_ (as explained in Ref. [183]).
Therefore, among all the remaining operators, all the free parameters will be fixed with respect
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Section 7.3: Anomalies in vector-axial gauge theory

to one, o in Eq. (7.104), such that the whole operator respects the integrability conditions. This
unequivocally leaves us with,

byl A VN ey Sy
A 75 e awE'uupatr eaTa <FNVFPO' + gF)u‘VFpU

2
_ g (A A FY, +iA, B iA, + EYiAyiAy) + ZiA“iAyiApiAg)

= ABardeen

)

(7.105)

where we still have one free parameter left, c.

Final result. Now let’s put together the contributions from the mass term and the derivative
term, i.e Egs. (7.101) and (7.105) , we obtain,

A= (14 a)APdeen, (7.106)

Basically, the Wess-Zumino consistency conditions allow us to fix the coefficients of all the operators
with respect to the coefficient of the term F IKJF X,, this is why we still have a remaining freedom
at the end. The coefficient of F ;/VF Xf can be fixed by comparing the result with the anomaly in
a vector gauge theory as suggested in [183]. That is to say, in our result, we set again A to zero,
therefore we can identify our result with the ABJ anomaly (with § € SU(N)) of Eq. (7.26), which
immediately sets a to zero, leaving the expected result.

Note that there is no need to introduce counter terms in our computation to obtain the min-
imal Bardeen anomaly, because the vector current conservation has been enforced to fix the free
parameters.

As a remark, notice that by comparing our result with the ABJ anomaly to fix the last free
parameter, we restrain ourselves to the consistent anomaly with the vector current being conserved.
If we want for example to conserve the axial current, we need to compare with the anomaly in
a vector gauge theory where the anomaly is in the vector current. Besides, the Wess-Zumino
consistency conditions have to be adapted. Indeed, they correspond to enforcing the Lie algebra
of the gauge group and the Ward identities as well. Changing the current that remains conserved
at the quantum level amounts to changing the Ward identities, hence changing the Wess-Zumino
consistency conditions.

The procedure presented in this section can thus also be applied while enforcing the conservation
of the axial current. It can even be used to obtain a generic expression where the consistent anomaly
is distributed between the vector and the axial currents.

As far as we know, this is the only method that allows to tune which current bears the anomaly
from a path integral approach.

Calculation in BMHV’s scheme. Alternatively, it is possible to obtain the Bardeen anomaly
without relying on free parameters. It is known that Pauli-Villars regularisation satisfies the Wess-
Zumino consistency conditions, as well as enforcing conservation of the vector current [120]. Besides,
as showed in Refs. [119, 159, 188], BMVH scheme in dimensional regularisation is equivalent to
a ”continuous superposition” of Pauli-Villars regularisations, and thus respects the Wess-Zumino
consistency conditions, and vector current conservation as well. We can therefore avoid the intro-
duction of free parameters and significantly simplify the calculation by making use of BMHV scheme
to obtain Bardeen’s consistent anomaly in the axial current. Although it strips us of the freedom to
chose which current should bear the anomaly, as opposed to the free parameters approach discussed
above.
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7.3.4.2 Bosonisation method

The bosonisation presented in section 7.3.3.2 defines a finite and non-ambiguous Jacobian. But it
only allows us to get a gauge covariant result. The same procedure thus cannot be used to compute
the consistent anomaly.

Nonetheless, we can try to bosonise with the operator JDZ. It has the same spectrum as i) (aside
squaring it). We circumvent the problem of the non-hermitianity using the analytic continuation
A, — 1A, [119, 120].

We showed that bosonising using (iI9)7iIp as a regulator enforces the gauge covariance of the re-
sult, leaving us with only the possiblity to get the covariant anomaly. However, there is no reason to
think that bosonising with the analytic continuation A, — iA, and lD2 would enforce all the condi-
tions to get the consistent anomaly, namely the Wess-Zumino (integrability) consistency conditions.

Let’s now see in the computation why the ],32 bosonisation along with the analytic continuation
is still ambiguous.

After the analytic continuation, we have iI) = i@ — V — iA~s. The Jacobian of the axial field
reparametrisation is the following,

det(iIp — m) B det(iIp — m)

J[6] = ; I , 7.107
g det (e (i) — m)e?s)  det(il) — m — 2imbys — (1P0)7s) ( )
where 6 = 0°T* is charged under the SU(N) gauge group.
Now we perform the bosonisation,
7200 = det (i) —m) det (i) —m)
det (€5 (i) — m)ei®s) det (e (i) — m)eirs)
B det (i) —m) det(—il) —m)
 det (€995 (1D — m)ei0r) det (€% (—ild — m)eif ) (7.108)

_ det(ID2 +m?)
det(ID* + m2 + [2imbs, i) + {ilp, (IDO)s} + 4im20~s)

where we have use the fact that the determinant is invariant under the change v* — —~v* (see
footnote 14). We expand it following the prescription described in section 7.2,

d
log J[A]? = /d4x 4% e~y ([2imbys, i) — )+ {iD — ¢, (DO)vs} + 4im>0ys) Leiq’” .
(2m)d »? +m?
(7.109)
We can straightforwardly see that the term [2im@ys, i]) — 4]/ (]ﬁ2 +m?) has an odd number of Dirac
matrices, therefore it vanishes under the trace. For simplicity we extract the 5 in D, using the
notations,

iD, =iD) —iAuys where iD) =i0,—V), . (7.110)
We have,
TP = (I + ig) (1) + i)
= I’ — ¢* + 2iq - DY — [y, 4 IsigquA,

Finally, we can expand the Jacobian as usual,

(7.111)

4 n
2A = _/ (d r ({il) — ¢, (DPO)vs} + 4im 20s) Z [A(lf +2ig- DV — [v*, " siquAL) | A

2m)4
n>0
(7.112)
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where A = 1/(¢? —m?).
The key point is that because of the term —[v*,~"]v5iq,A,, there are terms with several momenta
q contracted with a Dirac matrix as y*¢,. Combined with divergent integrals, they lead to traces
traces such as,

tr (YY" 5 %a) (7.113)
which are ambiguous in d dimensions. When bosonising using (iI9)7iIp, the term —[y*, 4" 15iq. A,
does not appear (see Egs. (E.17) and (E.18) in the appendix E).

Therefore, the bosonisation method does not offer any appealing simplification regarding the
calculation of the consistent anomaly. One could of course, proceed with the computation with free
parameters or get rid of those ambiguities using the BMHV scheme which satisfies the Wess-Zumino
conditions but also enforces vector current conservation. We refrain from doing so as ultimately,
this does not offer any insights compared to the fermionic expansion already discussed.

7.4 Axial-gravitational anomaly

In this section we aim at deriving the axial-gravitational anomaly, which stems from the grav-
itational contribution to the Jacobian associated with the axial reparametrisation as defined in
Eq. (7.3).

In curved space-time, the covariant derivative does not only bear the gauge fields. Diffeo-
morphism invariance requires the presence of the Christoffel connection, and Lorentz invariance
requires the presence of the spin-connection for fermions. For simplicity, we consider a theory
without gauge sector (in any case we know that we do not expect cross terms between the gravity
sector and the gauge sector). We denote by D,, the general covariant derivative, it includes both
the spin-connection when applied to non-trivial element of the Dirac space, and the Christoffel
symbols when applied to a Lorentz tensor. We follow [189] for conventions for the spin-connection.
We have,

D,V = (0 +wu)V¥, (7.114)

with the the spin-connection defined as w,, = §[v*, ek (Dyel), with e}, the tangent frame vielbein
such that g, = eZel;gab (latin indices referring to the tangent frame).
Considering a spinless Lorentz vector v we have,

Dy = gpv” + T, 0 (7.115)
Dyvy = 0yvy —T,0,. (7.116)
The following expressions will be useful later,
1
F,¥ =[D,,D,¥ = ZVPVURWM‘I’ (7.117)
p’=D*— %U’“’FW where o/ = %[7",7”] : (7.118)
with . 1
%O’.F U= R1pic¥, (7.119)

where 1piac is the identity in Dirac space.
Finally, the covariant derivative commutes with the Dirac matrices,

(D) = (0u") + T’ + (w71 =0 (7.120)
(D) = [wp, 5] = 0. (7.121)
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7.4.1 Covariant Derivative Expansion in curved space-time

The CDE in curved space-time requires extra care that significantly complexifies the expansion. The
main point is that the commutativity between the covariant derivatives D and the propagators A =
1/(q? —m?) that appear in our expansion is lost. Indeed, ¢* = g"”(x)q,q, is space-time dependent.
Therefore (D, A] = —(9,¢?)A%. The CDE can still be performed in an extended framework that
includes the curvature of space-time, as it has been done for example in Refs.[190, 191]. However
we propose here a different way of conducting the expansion, that we believe to be simpler in the
formalism. Defining the expansion in curved space-time is not trivial, and this is out of the scope
of this paper (see Ref. [192]), so we just give the outline of the method without delving too much
into the details.

First of all, there is no trivial definition of the Fourier transform in curved space-time. However,
following Refs. [191, 193] we can define the Fourier transform using Riemann Normal Coordinates
(RNC). We take the momentum g, to be the covariant variable conjugate to the contravariant
variable z#, so that d”qdPx is diffeomorphism-invariant. We then have,

(Ouqy) = % =0, (7.122)
but,
(0u4") = (u9"a) = (09"}, # 0. (7.123)

We thus have the standard Fourier transform of the covariant derivative,

e D" = D,y + (Oyiqua”) = Dy, +iq,(9,2") = Dy + iqy - (7.124)

7.4.2 Computation of the gravitational anomaly

According to the previous results, we know that at order m° the derivative coupling does not
contribute in the bosonised form (and we can show it ), for simplicity we drop it. The anomaly is
thus fully encompassed (at order m") by the following Jacobian 19,

det (\/?92@2)2 + m2))

JO)? = s : (7.125)
det («/—g (D" +m? + 4im29'y5))
Since we discarded the derivative term, this Jacobian is trivially finite, thus well-defined.
Using Eq. (7.124), we have,
TP T = (D, +ig,) (D, +ig,) — 0TS0 el
= D%~ +2ig- D+ ig" (Dyq,) — %U.F (7.126)
2 2 : : i
=D*—¢q +22q-D—zFfu,qp—§a.F.
Hence we can expand the Jacobian as,
2 4 ddq ) 9 1 . T "
log J[A]* = [ d x(27r)dtr 4im=0s Z A(D* — §U'F +2ig- D —il',q,)| A .  (7.127)

n>0

19We have decided to work within the bosonised form of the Jacobian, but one could have equivalently chosen to
carry the computation with the original Jacobian.
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Since all the Lorentz indices are contracted, the field strength that appears in Eq. (7.127) is in the
fermion representation®’, hence we can use Eq. (7.119) to simplify,

d? "
log J[0)? = /d4a: (z;)ldtr 4im>0ys Z [ — — —|— 2iq- D —il',q,)| A . (7.128)
n>0

We remark that the space-time measure \/—g does not come into play in the expansion. This is
because it appears both in the numerator and the denominator.

Now, we are interested in the terms that are proportional to m°. In each of these terms, the
propagators A = 1/(¢?> — m?) have to be commuted to the left in order to perform the integration
over momentum. Therefore, each of these terms will yield several terms where the open covariant
derivatives will be localised or not on a propagator.

For example, consider the following term of order mP,

d
/ (;W()Idtr [4im29fy5A (—f) AD2A]

d
- / (;77? A2 [4im20’y5 <—f> (AD? + (D*A) +2(D*A)D,,)| . (7.129)
The only terms that can contribute in the end are gauge and diffeomorphism invariant. That is to
say the remaining open covariant derivatives that are not localised on a propagator have to combine
together to form field strengths. For example in Eq. (7.129), the term involving (D,A)D, has a
single open derivative, it is impossible to form an invariant term with it, thus it cannot contribute
to the final result (besides it vanishes in Riemann Normal Coordinates).

Secondly, notice that whenever a covariant derivative is localised on a propagator, it bears no
spin-connection since A is a scalar in Dirac space: (D,A) = (04 A)Lpirac-

Keeping those last two points in mind, one can easily isolate the few terms that will contribute
to the gravitational anomaly, making use of,

trys = trysyy =0, trysy Py # 0. (7.130)

In Eq. (7.128), the only terms that bear Dirac matrices are the covariant derivatives via the spin-

connection. The remaining open covariant derivatives will combine in the end to form field strengths

that have two Dirac matrices (see Eq. (7.117)), therefore the only way to have enough Dirac matrices

so that the trace does not vanish is by having 4 open covariant derivatives, thus two field strengths.
In the end, the only terms that can contribute are the following,

e Atn=2: [ %A?’tr [4im?6~y5D?D?]

e At n=3: f o )d & A [4im?0v5 (D?(2iq - D)? + 2iq - DD*2iq - D + (2iq - D)?D?)]

o At n=4: f 4 APtr [4im?05(2iq - D)*].

2)d

2Indeed, recall that the trace in internal space (ie Dirac space and gauge space) is defined as trA =3 U AT,
where {¥,,} is a basis of internal space (constant vectors: (D, ¥,) = w, V¥, + V,¥,). Therefore, for any operator O
that is a matrix in internal space without free Lorentz indices (and it can bear open covariant derivatives) we have:
trD,O =Y WiD,0V,. Since O is a matrix in internal space, then OV, is a vector in internal space, and all the
derivatives in O are localised because they act on ¥,,. Therefore, in >°, ¥f,D,OW,, D, acts on a vector in internal
space, hence can be written in the fermion representation.
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In each of these terms, the momenta can be freely commuted to the left for the integration for the
same reasons as before. Indeed, if one of the covariant derivatives were localised on a momentum
q, it would bear no Dirac matrix since ¢ is a Dirac scalar, hence the term would vanish under the
trace. The sum of the different contributions yields,

248 i it (TP DPDP 4 TGP (0 (D2D,D, + D,DPD, + D,D,0F)
+ I (9" 977 + g"0g" + g"7g"" )(2i)4DuDquDa>
=163 6tr i0vs <0D2D2 +2D"D"D,D, — 2D*D?D )

2
= Tom 26‘51"2075}7“ F. (7.131)

In the last line we have not used any integration by parts nor trace cyclicity, it is only algebra. Note
that when computing a gauge anomaly, the contributing term is of the form tr~so.Fo.F, which
vanishes in gravity thanks to the use of Eq. (7.119) earlier (and because we discarded the gauge
sector).

Now one must pay some attention to the last line of Eq. (7.131). The field strength on the right
is in the fermion representation, we can thus write,

2
16?6” iOFMEY, . (7.132)

However, the field strength on the left will contract the indices of F;fL because of the Christoffel
connection,

FWES = FU"™FY +4°v°[RR], (7.133)

where the last term is a sum of Riemann tensors contracted together and with the two Dirac
matrices. It vanishes using the symmetries of the tensors (and also vanishes under the Dirac trace).
Using Eq. (7.117), we obtain,

v -1 1 o1 1 -
AS = 167 26“ <19’754'7a'YBRMVa,3’7u'YV4RPUuV> 3847T2 ey Raﬁ Raﬁpa7 (7.134)
which is the so-called axial-gravitational anomaly. We have et*r? = etr? [, /—q.

We can notice that in our computation, the only contribution to the gravitational anomaly
is in the end the spin-connection via the field strengths, although there are many terms with
covariant derivatives that are localised on propagators that can yield Riemann squared terms via
the Christoffel connection. This translates the fact that a fermion in curved space-time is not
subject to diffeomorphism invariance, but only to Lorentz invariance. The spin-connection only
ensures that Lorentz invariance is preserved in curved space-time. Therefore, it is expected that
one can get the gravitational anomaly only considering the spin-connection, and not minding the
Christoffel connection.

In the end, we could have had the correct result in a very simple framework where space-time
is considered flat, but the covariant derivatives acting on a spinor bears the spin-connection (the
covariant derivative acting on a Dirac matrix would be zero since we would consider it ”uncharged”
under the spin-connection).
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7.5 Scale anomaly

It is well-known that there are two main categories of symmetries which are broken by the quanti-
sation of a theory. The first is the axial symmetry associated with Dirac’s 75, the chiral anomaly,
that we have just treated in details. The other is the Weyl transformation, which changes the
length scale of space-time, keeping the local angle invariant, this is called the Weyl anomaly or
conformal or trace or scale anomaly [174-178]. We then propose to evaluate the Weyl anomaly
always following the prescription described in section 7.2 and for pedagogical reasons we stick to
the case of QED,
L=1(id—V —m) 412F2. (7.135)
Scale invariance is classically broken by the fermion mass term. The divergence of the Noether
current J# associated to the scale transformation, i.e the trace of the symmetric energy-momentum
tensor T}, reads,
OpJ" =Tl = mipy) . (7.136)

This relation is also broken at the quantum level by the renormalisation of the coupling e.
The scale transformation z,, — :I:L = €%z, induces,

) o .0

— =
dzt  dar  C zt (7.137)
d%z — d%2’ = ¥ d%x

and the fields transform with their canonical mass dimension,

U(z) = ¢ (2') = e (),
b(z) = (2') = e (a), (7.138)
Aulz) = A 96’)— u(@') = e 7 Au(x),
where d is the dimension of space-time. Notice that the gauge field does not transform by itself, it
only transforms due to its dependence on z [120].

Using the invariance of the path integral under the relabelling of the path integral variables, and
the invariance of the space-time integral under relabelling the space-time variable, we can write,

/(Dw)’(sz)’ exp (z / dda’ Lz’ 4 («)), A,Aa:’)]) = /Dz/;Dw exp <z / ALz, (), Au(x)]> .
(7.139)
On the other hand we know how the action transforms, and we can assume that the transformation

of the measure produces a Jacobian,

@iy e (i [ atee @), a0)

(7.140)
= [ steipupiey (i [ atotle. v, Al + [ ate (35 B) - moyw) )
One can take advantage of equating the two path integrals to express the Jacobian as,
Jlo] = det(i) - m) (7.141)

det(il) —m — om — %2 (aa))

The term proportional to (Jo) requires to be regularised, we use the BMHV scheme of dimensional
regularisation [105, 106] since the calculation does not involve any s matrices. At order m®, the
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Chapter 7: Anomalies from an effective field theory perspective

divergent contribution from —i%(@a) vanishes, only the finite contribution from om remains and
yields the scale anomaly,

Ascale = (F;w)2 . (7.142)

o
mtr
More details of the calculation are provided in appendix F. However, higher order terms (terms of
order 1/m*, with k > 0) involve contributions from both om and %7 (@o) which cancel one another.

We can now relate the anomaly to the § function. At tree level the coupling e does not transform.
It however transforms at one loop level, and by definition of the 8 function we have,

e—~e+ofe). (7.143)

The following action is invariant under the scale transformation up to the mass term,

S— / ALl (), Au(x)] = / Az (w(up ) — 422FQ> . (7.144)

By definition of the 8 function, the gauge sector transforms at one loop like,

1 1
= gz Fw)” = =5 (Fu) + 052(:3) (Fu)?. (7.145)

By identification with the term produced at one loop by the Jacobian, we deduce following expres-

sion for the one loop f function,
3

LORST=2

which corresponds to the well-known QED [ function.

(7.146)

A derivation of the scale anomaly has been proposed by Fujikawa in Ref. [176]. This is interesting
to point out an important difference between our procedure and Fujikawa’s procedure for computing
the scale anomaly. In Fujikawa’s method, we temper directly with the path integral measure,
therefore is it necessary to isolate the field transformation from the space-time transformation.
This is achieved by introducing the curvature of space-time and defining a diffeomorphism invariant
path integral measure. Because of this redefinition of the fields, they do not transform with their
canonical mass dimension anymore. It is even emphasised in [120] that doing the transformation
with their canonical mass does not yield the correct result.

However, in our procedure we can use the invariance of the space-time integral under relabeling
the space-time variable, along with transforming the fields with their canonical mass dimension. As
we showed it provides the correct result, without having to introduce the curvature of space-time,
nor redefining the fields in a diffeomorphism invariant way.

7.6 Comparison with Fujikawa’s method

Let us consider the simple case of a vector gauge theory and an axial fermion reparametrisation.
The covariant derivative is,
D,=9,+iV,. (7.147)

Under the infinitesimal Abelian field reparametrisation,

W — ei9($)vs¢’ b — szew(ﬂf)vs 7 (7.148)
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the path integral,
/ DyDipel Ta(ih-—myé (7.149)
produces the following Jacobian,
det(ilp — m)
det(il) — m — (P0)y5 — 2imbys)

As emphasised before, the initial theory is ill-defined, leading to an ambiguous Jacobian. A well-
known way of dealing with the ambiguity is to bosonise it [119] (it enforces the conservation of the
vector current as explained in section 7.3.1.2),

J[0] = (7.150)

det(lD2 +m?) .
det(ID” +m?2 + {ilD, (P0)ys} + 4im?0rs)

Note also that since the theory is non-chiral we have (i]p)! = iI), hence there is no difference
between the bosonisation with IDTIZ or lD2.

As detailed in Eq. (C.2) of appendix C, the log of this ratio of determinant can be written as
follows,

J[6)? =

(7.151)

(i, (#9)ys} 1 — Tr | 2i6s

1
log J[0] = —Tr 5 " 1+lﬁ D

: (7.152)

where Tr is the trace over both space-time and internal spaces.

Now let’s recall Fujikawa’s procedure to compute the anomaly. The Dirac operator i) is
hermitian thus provides a complete and orthonormal set of eigenfunctions {¢,, } with real eigenvalues
An, such that ilD¢,, = A\,p,. We use this basis to decompose the fermion field, this will enable us
to define the path integral measure,

=3 anpa(@), U(x)=>_ ol (x)bn. (7.153)

The measure is then defined as,
DYDY = [ [ dandby, . (7.154)

Now the fermion undergoes an axial reparametrisation as in Eq. (7.148), the reparametrised field
can be decomposed in the eigenbasis as well, with coefficients al, and b),. They are related to a,
and b, by the transformation matrix C,,

=Y Comtm, U= Cumbn, (7.155)

where,
Crm :5nm+i/d4x9( Yol () ys0m(z) . (7.156)

Now we know that the Grassmann measure transforms with the inverse determinant of the trans-
formation operators,

Hda (det ©) IHdan
Hdb’ (det ©) 1Hdbm,

(7.157)
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whence,
DYDY = (det C)2DyYDi) . (7.158)

Finally, using det = exp Trlog and expanding the log in first order in # infinitesimal, the Jacobian
reads,

log J[0] = —2i / d*z0(z) Y ol (2)v50n(2) (7.159)
Since {py} defines a complete set of operators, it is in fact,
log J[0] = —Tr2i0~s , (7.160)

where the trace Tr is over both internal indices and space-time.

This quantity needs to be regularised, hence Fujikawa introduces a regulator that will work as a
cut-off. This regulator needs to preserve the spectrum of the theory. In the simple case of a vector
gauge theory, a good choice is,

2
log J[0] = —Algrolo Tr2i0vs f (i@) : (7.161)

The function f that was introduced, has to be a smooth function such that f and all its derivatives
vanish at infinity, and respect the requirement f(0) = 1. It can for example be,

1
= . 7.162
flo) = (7.162)
This leaves us with,
1
log J[] = — lim Tr | 2i67s 5 | - (7.163)
A—o0

1+ 42

Now let’s compare Eq. (7.152) and Eq. (7.163). If one takes the infinite mass limit in Eq. (7.152),
it is clear that one recovers Eq. (7.163) with A identified as the physical fermion mass. It thus
appears that the procedure presented in this paper (the bosonic CDE) not only amounts to Fu-
jikawa’s procedure in the infinite mass limit, but moreover generalises it to a finite and physical
mass.

In Fujikawa’s procedure, the infinite mass limit ensures that the Jacobian is of order m°, while
in the bosonic CDE, it is the derivative coupling that plays this role?’. Besides, in the bosonic
CDE, there is no need to add the regulator by hand. Although, in more complicated cases (when
the theory is vector-axial for example), there is still a choice on how to define non-ambiguously the
Jacobian, which is in the end making a choice of regulator.

As pointed out in the above, in the bosonic CDE the regulator that naturally appears corre-
sponds to, .

fla) = =
as in the treatment of Fujikawa. It is known that this specific regulator amounts to doing a
P