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Résumé: Le climat est un système complexe qui
est le résultat de multiples interactions entre ses
différentes composantes et ses multiples variables.
Cette thèse a pour but d’évaluer si et comment
l’utilisation d’approches statistiques multivariées
pour l’étude des simulations climatiques peut con-
tribuer à une compréhension plus approfondie du
changement climatique et des événements clima-
tiques à forts impacts sur la société. Pour répondre
à ces questions, je propose et applique de nou-
veaux outils statistiques multivariés pour, d’une
part, la correction de biais des simulations clima-
tiques, et d’autre part, l’étude des changements
de probabilités d’événements conjoints à forts im-
pacts. Le travail s’articule autour de trois objectifs
: (i) comparer des méthodes de correction de biais
multivariés (MBC) déjà existantes, (ii) développer
une nouvelle méthode MBC pour l’ajustement des
dépendances spatiales des simulations climatiques,
(iii) évaluer la période d’émergence des probabil-
ités d’événements conjoints et quantifier la contri-
bution des propriétés univariées et multivariées aux
changements de ces probabilités.

La comparaison de méthodes de correction de
biais a permis d’une part d’informer les utilisa-
teurs de leurs avantages et leurs inconvénients

mais aussi d’identifier des pistes de développe-
ments pour de nouvelles méthodes. Une nou-
velle méthode, basée sur une technique de Ma-
chine Learning appelée réseaux adverses génératifs
(CycleGAN), a été développée. Elle donne des ré-
sultats satisfaisants, montrant ainsi le potentiel des
techniques de Machine Learning pour la correction
de biais multivariés. L’évaluation de la période
d’émergence des probabilités d’événements con-
joints, ainsi que la quantification de la contribu-
tion des propriétés univariées et multivariées aux
changements de ces probabilités se révèlent être
une procédure pertinente pour améliorer la com-
préhension de tels phénomènes climatiques. Il
est trouvé que la non-stationnarité de la struc-
ture de dépendance inter-variable dans un contexte
de changement climatique peut jouer un rôle im-
portant dans les probabilités futures d’événements
conjoints.

Les travaux réalisés dans cette thèse ou-
vrent des perspectives pertinentes en termes
méthodologiques mais participent aussi à une
amélioration de la compréhension du climat et de
ses évolutions en fournissant des outils statistiques
adaptés à la nature intrinsèquement multivariée du
système climatique.
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Abstract: Climate is a complex system result-
ing from various interactions between its differ-
ent components and its multiple variables. This
thesis aims to assess whether and how the use
of multivariate statistical approaches for the study
of climate simulations can contribute to a deeper
understanding of climate change and high-impact
climate events. To answer these questions, I pro-
pose and apply new multivariate statistical tools
for, on the one hand, bias correction of climate
simulations, and on the other hand, the investiga-
tion of changes in the probabilities of compound
climate events. The work conducted pursues three
main objectives: (i) to intercompare existing mul-
tivariate bias correction (MBC) methods, (ii) to
develop a new MBC method for adjusting spatial
dependencies of climate simulations, (iii) to assess
the time of emergence of compound events prob-
abilities, as well as to quantify the contribution
of marginal and dependence properties to these
changes of probabilities.

The intercomparison of multivariate bias cor-
rection methods allowed, first, to better inform

end-users of their advantages and disadvantages
and, also, to identify avenues for the development
of new methods. A new method, based on a Ma-
chine Learning technique named cycle-consistent
generative adversarial networks (CycleGAN), has
been developed. It gives satisfactory results, thus
showing the potential of Machine Learning tech-
niques for multivariate bias correction. Assessing
the time of emergence of compound events proba-
bilities and quantifying the contribution of univari-
ate and multivariate properties to these changes
has proved to be relevant to better investigate
compound events. It is found that non-stationarity
in inter-variable dependence structures under cli-
mate change can play a significant role in future
probabilities of compound events.

The work carried out in this thesis opens up
relevant perspectives in terms of methodology but
also contributes to an improved understanding of
the climate and its evolution. It provides new sta-
tistical tools that are adapted to the intrinsically
multivariate nature of the climate system.
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Summary

Climate is a complex system resulting from various interactions between its different components
and its multiple variables. This thesis aims to assess whether and how the use of multivariate sta-
tistical approaches for the study of climate simulations can contribute to a deeper understanding
of climate change and high-impact climate events. To answer these questions, I propose and ap-
ply new multivariate statistical tools for, on the one hand, bias correction of climate simulations,
and on the other hand, the investigation of changes in the probabilities of compound climate
events. The work conducted pursues three main objectives: (i) to intercompare existing multi-
variate bias correction (MBC) methods, (ii) to develop a new MBC method for adjusting spatial
dependencies of climate simulations, (iii) to assess the time of emergence of compound events
probabilities, as well as to quantify the contribution of marginal and dependence properties to
these changes of probabilities.

The intercomparison of multivariate bias correction methods allowed, first, to better in-
form end-users of their advantages and disadvantages and, also, to identify avenues for the
development of new methods. A new method, based on a Machine Learning technique named
cycle-consistent generative adversarial networks (CycleGAN), has been developed. It gives satis-
factory results, thus showing the potential of Machine Learning techniques for multivariate bias
correction. Assessing the time of emergence of compound events probabilities and quantifying
the contribution of univariate and multivariate properties to these changes has proved to be rel-
evant to better investigate compound events. It is found that non-stationarity in inter-variable
dependence structures under climate change can play a significant role in future probabilities of
compound events.

The work carried out in this thesis opens up relevant perspectives in terms of methodology
but also contributes to an improved understanding of the climate and its evolution. It provides
new statistical tools that are adapted to the intrinsically multivariate nature of the climate
system.
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Résumé

De nombreuses catastrophes liées au climat, tels que les feux de forêts ou les pertes de récoltes,
résultent souvent de la combinaison de plusieurs phénomènes climatiques, également appelés
“événements conjoints”. En interagissant les uns avec les autres, ces évènements climatiques
peuvent avoir des impacts environnementaux et sociétaux considérables, à une échelle poten-
tiellement bien supérieure que ce qu’auraient pu causer séparement ces événements climatiques.
Une compréhension approfondie de ces événements conjoints nécessite donc l’étude de leurs
interactions ou dépendances. Pour étudier les caractéristiques futures de ces événements, les sci-
entifiques utilisent des projections climatiques. Ces projections sont obtenues à partir de modèles
climatiques qui simulent les différents processus du climat de la Terre à l’aide d’équations math-
ématiques basées sur la physique. Les modèles climatiques ont prouvé leur capacité à simuler des
aspects importants du climat actuel et à fournir des informations fiables sur les climats passés et
les changements climatiques futurs. Cependant, les simulations issues des modèles climatiques
peuvent tout de même présenter des erreurs - ou biais statistiques -, c’est-à-dire qu’elles ne
fournissent souvent pas une représentation appropriée du système climatique, que ce soit dans
les valeurs simulées ou les dépendances entre les variables climatiques. Ceci est particulièrement
problématique car des simulations avec des propriétés statistiques réalistes sont nécessaires pour
étudier de manière robuste non seulement les événements conjoints à forts impacts, mais aussi
les événements climatiques plus habituels et ayant des impacts moins importants.

Cette thèse a pour but d’évaluer si et comment l’utilisation d’approches statistiques multi-
variées pour l’étude des simulations climatiques peut contribuer à une compréhension plus ap-
profondie du changement climatique et des événements climatiques à forts impacts sur la société.
Pour répondre à ces questions, je propose et applique de nouveaux outils statistiques multivariés
pour, d’une part, la correction de biais des simulations climatiques, et d’autre part, l’étude des
changements de probabilités d’événements conjoints à forts impacts. Le travail s’articule autour
de trois objectifs : (i) comparer des méthodes de correction de biais multivariés (MBC) déjà exis-
tantes, (ii) développer une nouvelle méthode MBC pour l’ajustement des dépendances spatiales
des simulations climatiques, (iii) évaluer la période d’émergence des probabilités d’événements
conjoints et quantifier la contribution des propriétés univariées et multivariées aux changements
de ces probabilités.

La comparaison de méthodes de correction de biais a permis d’une part d’informer les util-
isateurs de leurs avantages et leurs inconvénients mais aussi d’identifier des pistes de développe-
ments pour de nouvelles méthodes. Une nouvelle méthode, basée sur une technique de Machine
Learning appelée réseaux adverses génératifs (CycleGAN), a été développée. Elle donne des
résultats satisfaisants pour l’ajustement des propriétés spatiales, montrant ainsi le potentiel
des techniques de Machine Learning pour la correction de biais multivariés. L’évaluation de
la période d’émergence des probabilités d’événements conjoints, ainsi que la quantification de

v



la contribution des propriétés univariées et multivariées aux changements de ces probabilités
se révèlent être une procédure pertinente pour améliorer la compréhension de tels phénomènes
climatiques. Il est trouvé notamment que la non-stationnarité de la structure de dépendance
inter-variable dans un contexte de changement climatique peut jouer un rôle important dans les
probabilités futures d’événements conjoints.

Les travaux réalisés dans cette thèse ouvrent des perspectives pertinentes en termes méthodologiques
mais participent aussi à une amélioration de la compréhension du climat et de ses évolutions en
fournissant des outils statistiques adaptés à la nature intrinsèquement multivariée du système
climatique.
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Chapter 1

Introduction, context and objectives

1.1 General context
In 2019, Australia has experienced high temperatures and prolonged dry conditions, which

resulted in one of the worst bush fire seasons in its recorded history. It caused massive dam-
ages throughout the country, affecting both people and ecosystems1. In October 2020, Central
Vietnam was struck by heavy rain induced by a sequence of typhoons, leading to extensive flood-
ings and landslides. During summer 2021, a persistent high-pressure system (or “heat dome”)
occurred over Western North America, and particularly Western Canada, producing an unprece-
dented heat wave which caused important economic losses and human casualties2. In August
2021, 50.3◦C were recorded in Kairouan (Tunisia)3, the highest temperature ever observed for
this country since the start of reliable measures. In April 20214 and 20225, consecutive days of
severe frost occurred after bud burst over Central Europe. It caused severe damages to crops,
including grapevine and fruit trees. These climate events, which occurred during my thesis all
over the world, are some examples of events with dramatic consequences on both human societies
and ecosystems. This is however not new: high-impact climate events have always occurred as
they are an expression of climate variability, and improving the understanding of these phenom-
ena has always been crucial. When these specific climate phenomena are studied in more detail,
they often turn out to be the result of multiple climate hazards occurring simultaneously or
successively. By interacting with each other, these hazards can lead to exacerbate impacts, at a
scale potentially far greater than any of these climate events could have caused individually. A
thorough understanding of these climate phenomena, also known as “compound events”, there-
fore requires the study of these interactions or dependencies. Moreover, it is now unequivocal
that greenhouse gases emitted by human activities have warmed the atmosphere, ocean and
land inducing many changes across the climate system (IPCC, 2021). Assessing whether these
dependencies change, how and with which consequences is a major challenge for mitigation and
adaptation issues.

1https://reliefweb.int/sites/reliefweb.int/files/resources/IBAUbf050220.pdf
2https://www.bbc.com/news/world-us-canada-57678054
3https://watchers.news/2021/08/11/tunis-kairouan-record-temperature-tunisia-august-

2021/
4https://www.worldweatherattribution.org/human-caused-climate-change-increased-the-

likelihood-of-early-growing-period-frost-in-france/
5https://www.washingtonpost.com/weather/2022/04/04/europe-record-cold-france-

agriculture/

1
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Chapter 1. Introduction, context and objectives

To investigate the future characteristics of compounding events such as their frequencies
or intensities, scientists use climate projections. These projections are obtained from climate
models that simulate the various processes of the Earth’s climate using mathematical equations
based on physical, biological and chemical knowledge. Climate models have proven their ability
not only to simulate important aspects of the current climate but also to provide reliable and
useful information on past climates and future climate changes. Our understanding of com-
pound events, and more generally the climate system, comes in part through the examination
of the huge amount of simulated data produced by climate models. The study of climate using
statistics, also called statistical climatology, is particularly relevant as it provides quantitative
tools to summarise and model the climate system to investigate its properties. In particular, the
use of multivariate statistics, for which the relationships - or dependence - between the different
variables is an essential aspect, allows to further improve our understanding of the complex
interactions involved in the Earth’s climate. These multivariate tools can be applied to inves-
tigate evolution of dependencies in simulations from climate models. However, as the British
statistician George E.P. Box puts it “Essentially, all models are wrong, but some are useful”6.
While it originally referred to statistical models, it can be applied to scientific models in general,
including climate models. Consequently, simulated outputs from climate models can present
errors — or statistical biases —, i.e., they often fail to provide an appropriate representation of
the climate system, either in the simulated values or dependencies between climate variables.
This is particularly problematic as simulations with realistic statistical properties are required
to robustly investigate not only compounding hazards leading to high impacts but also more
usual and less impacting climate events.

The goal of this thesis is to (partly) assess whether and how the use of multivariate statistical
approaches for the study of climate simulations can contribute to a deeper understanding of
climate change and high-impact climate events. The work presented in this thesis was carried
out in this context, by evaluating and designing new multivariate statistical tools that take into
account the dependence between different climate variables. First, I was interested in applying
and designing multivariate statistical methods able to increase the realism of simulations by
adjusting their statistical biases on dependence properties. Then, a new methodology based on
multivariate statistical tools has been developed to evaluate significant changes (and emergence,
see later) of compound events probabilities and investigate the contribution of dependence to
the changes of compound events probability. The rest of this chapter will introduce the main
concepts of statistical climatology used in this thesis. It will also provide a context for the work
done in this manuscript. The goal of this chapter is not to be exhaustive, as several books that
give a broader overview of statistical climatology already exist (e.g., Storch and Zwiers, 1999;
Wilks, 2006). It simply gives a few reasons why the use of multivariate statistical tools to adjust
statistical biases of climate models and investigate compound events properties is of interest for
the scientific community.

6This quote comes from Box’s book Empirical Model-Building and Response Surfaces, which was
co-authored with Norman Draper.
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1.2 Multivariate statistics: a view to investigate cli-
mate

Climate as a physical object

Earth’s climate is complex and constantly evolving. It results from various interactions be-
tween its different components, which include the atmosphere, oceans, cryosphere, lithosphere
and land surface. Since Antiquity, human societies have tried to develop theories to explain the
observed climatic phenomena such as rain or thunders (e.g., in Meteorologica, Aristotle). How-
ever, it was the development of physical theories in the 18th and 19th centuries that contributed
greatly to an improved understanding of the structure and dynamics of the Earth’s climate. For
example, in 1735, George Hadley proposed a physical mechanism to explain the motion of air
masses in the atmosphere with Earth’s rotation (Hadley, 1735). Nowadays, this mechanism,
known as the Hadley cell, remains a relevant explanation of the Earth’s atmospheric circulation
that occurs in both hemispheres near the equator. In 1824, Joseph Fourier was the first to pro-
pose that the Earth’s atmosphere acts to increase the planet’s temperature, a phenomenon now
known as the greenhouse effect (Fourier, 1824). In 1856, Eunice Newton Foote experimented
on the warming effect of sunlight on different gases (Foote, 1856). Her work led to improve the
understanding of how chemical composition of the atmosphere could affect climate. In 1837,
after observing erratic blocks of Alpine rocks, the geologist Louis Agassiz was the first to scien-
tifically propose that the Earth had been subject to a past ice age, and thus a different climate
(Agassiz, 1837). These past climate changes would then be explained by Arrhenius (1896) and
Chamberlin (1899) as resulting from past changes in the concentration of carbon dioxide in the
atmosphere. It was only later that past climate changes were also explained by the slow varia-
tions of the Earth’s orbit (Milankovitch, 1930). This list of groundbreaking findings during the
19th century in climate physics is of course not exhaustive, and a more complete overview of
climate science history can be found in Le Treut et al. (2007) or in the thesis of Jézéquel (2018).

Based on experiments and careful examination of facts, the development of physical theories
continued during the 20th century. It attempted to better understanding the complex internal
processes of the climate and the influence of external forcings (such as solar, volcanic and anthro-
pogenic greenhouse gases emissions) on its variations. Bjerknes (1904) – and later Richardson
(1922) – proposed to use equations derived from physical principles to describe interactions be-
tween atmospheric processes and to perform predictions. However, these differential equations
were not solvable in their time due to limited computing power. It was not until the 1950s that
these computational limits were overcome thanks to major advances in computer technology.
Using a programmable computer, John von Neumann and his assistant Jule Gregory Charney
performed the first numerical short-term weather forecasts for the United States based on sim-
plified equations of the atmosphere (Charney et al., 1950). Following this success, scientists
continued to develop more and more sophisticated models to reproduce the climate system at
longer time scales. These dynamical models, also known as general circulation models (GCMs)
aim at simulating the main features of the Earth’s climate on time scales ranging from decades
to centuries. For this purpose, scientists combined atmospheric processes with other components
that play an important role on climate variations at longer time scales such as ocean, sea-ice or
vegetation. In 1969, Manabe and Bryan (1969) published the first simulations of the climate by
a coupled ocean-atmosphere model7. In the 1970s, the development of satellites and climate sta-

7During my thesis, Syukuro Manabe was named among the winners of the 2021 Nobel Prize in
physics “for the physical modeling of Earth’s climate, quantifying variability and reliably predicting
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tions networks allowed to routinely collect observations. Collecting high-precision observations
participated in the improvement of physical knowledge by providing a better representation of
the state of the atmosphere. By producing simulations of current and past climates in agreement
with observations, GCMs became an important tool to simulate and improve our understanding
of the different physical processes involved in the Earth’s climate. By solving numerically the
equations that describe the dynamics of the climate system, these models provide simulations
over a discretized three-dimensional space formed by grid cells. Based on well-founded physical
principles, GCMs are used nowadays to explore future climate changes and their potential im-
pacts by considering several scenarios of plausible futures for greenhouse gas emissions (IPCC,
2021).

As climate results from very complex interactions between processes governed by physical
laws, it is thus only natural that scientists studied through the years its functioning using
physical sciences. However, our understanding of the climate system comes in part through the
manipulation and examination of the huge mass of data, such as those observed or generated
by GCMs. It thus has led to the development of statistical tools to extract relevant information
about natural phenomena and complement the physical sciences to better understand the climate
system.

Climate as a statistical object

Statistics is the discipline that concerns the collection, analysis and interpretation of data.
It is thus not surprising that statistics have many roles to play in climate science to analyse not
only observational datasets, but also outputs from climate models. Although all statistical tools
aim at improving the understanding of phenomenon under study, they can be divided into two
categories depending on their approaches: tools for the extraction of useful information from
dataset, and tools for the generation of new data. Both approaches are relevant and widely used
in climate science.

When confronted with large batches of data, descriptive statistics are quite useful as they
provide simple summaries about the characteristics of datasets, for example with measures of
central tendency (means, medians, . . . ) or measures of variability (standard deviation, variance,
. . . ). The use of descriptive statistics in climate science takes its roots from the first attempts
by geographers and climatologists to classify the different Earth’s climates over the globe (such
as dry or tropical climates) by computing averages of meteorological variables (e.g., Köppen,
1931). Quoting from the glossary of the IPCC report (IPCC, 2014), “Climate in a narrow
sense is usually defined as the average weather, or more rigorously, as the statistical description
in terms of the mean and variability of relevant quantities over a period of time ranging from
months to thousands or millions of years.” This emphasises that, when dealing with climate,
it is not only the values of the various atmospheric variables that are important in themselves,
but rather their statistics, and the evolution of these statistics (e.g., trends, changes over time).
In addition to providing simple summaries of data, statistics have proven their usefulness to
describe the whole distribution of climate variables using probability density functions (PDFs).
PDFs define the relationship between the possible values for the variables and their probability
of occurrences. From my point of view, this is one of the places where statistics are particularly
relevant to investigate climate: it allows to characterise the set of possible climate events and
their associated probabilities. When used to describe distributions of climate variables, PDFs

global warming” https://www.nobelprize.org/prizes/physics/2021/manabe/facts/
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can permit to investigate individual climate extremes (e.g. extreme surface temperature or
precipitation), including their occurrences and intensities in both observations and climate model
outputs (e.g., Kharin and Zwiers, 2000; Coles, 2001). In a climate change context, PDFs can be
used to perform extreme event attribution (EEA) studies. EEA studies aim at quantifying to
what extent an individual weather event is attributable to anthropogenic climate change (Stott
et al., 2016). To address this question, a methodology based on probability distribution fitting
have been developed (called the “risk-based” approach, Stott et al., 2004; Shepherd, 2016). This
methodology consists in estimating the parameters of the PDFs for climate variables in a factual
world (i.e., in a world with anthropogenic climate change) and a counterfactual world (i.e. in a
world in which anthropogenic emissions had never occurred) to then evaluate probabilities of a
particular event in these two worlds, respectively. Comparing the probabilities between the two
worlds permits to evaluate the effects of climate change on the occurrence of climate events.

Not only do statistics can be used for descriptive purposes, they can also be part of proce-
dures that permit to generate — i.e., simulate — new synthetic sets of data. Generations of new
data using statistical modelling are performed for various applications in climate science. For
example, weather variables (e.g., precipitation) can be parameterised using probability distribu-
tions to produce realistic simulations with statistical properties similar to those of observations
(Stochastic Weather Generators, Wilks and Wilby, 1999; Allard et al., 2015; Vaittinada Ayar
et al., 2016). These simulations are of particular interest to explore the different possibilities
of weather conditions: for instance, simulated rainfall events can serve as inputs to rainfall-
runoff models in order to investigate hydrological responses and their associated uncertainties
(e.g., Russo et al., 2006; Jonsdottir et al., 2006; Gabellani et al., 2007). Statistical modelling
has also been employed to generate predictions of atmospheric variables (statistical forecasting,
e.g., Vislocky and Fritsch, 1997; Wilks, 2006) or to predict spatial distributions of endangered
species in ecological studies (e.g., Phillips et al., 2006; Elith et al., 2006). In addition, a relevant
application area using statistical approaches to produce new climate data is stochastic param-
eterization. This research field consists in investigating how processes that are too small-scale
to be physically represented in climate models (e.g., convection) can be replaced by stochas-
tic processes. Including stochastic parameterization schemes in climate modelling showed to
be effective to reduce climate model biases and to improve weather forecasts (e.g., Teixeira
and Reynolds, 2008; Batté and Doblas-Reyes, 2015; Berner et al., 2017), although this is not
necessarily systematic (e.g., Maher et al., 2018).

An important hypothesis in statistical modelling is that of stationarity, i.e. the assumption
that the statistics to be reproduced are constant over the space–time modelling domain. In their
most basic unconditional form when calibrated only based on a reference dataset, statistical
models are able to infer the statistics from this reference dataset and to reproduce them in
simulations. Such statistical approaches are thus stationary. However, statistics of climate
variables can be nonstationary, e.g., due to interannual climate variations or in a context of global
climate change. It implies for statistical modelling that parameters of probability functions
to estimate can change over time. One common way to deal with nonstationarity is to use
covariates that permit to model statistics conditionally on some relevant information. Such
covariates can include information from large-scale climate indices, local climate or seasonal
information. For example, many versions of stochastic weather generators have been developed
to simulate weather sequences conditioned on some aspect of large-scale atmospheric circulation
(e.g., Bardossy and Plate, 1992; Wallis and Griffiths, 1997; Wilks and Wilby, 1999). In this
manuscript, nonstationarity of climate variables will be investigated. It will be achieved by
studying the change of their statistical properties between different time periods.
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From univariate to multivariate statistics in climate science

Statistical treatment can be applied to one-dimensional variable: its univariate character-
istics can be summarised using descriptive statistics, and its probability density function can
be investigated to generate individual random realisations. Univariate statistical methods are
quite popular as they are often simple to implement and results are easy to interpret. However,
climate datasets are often composed of several variables, and are therefore multivariate. For ex-
ample, multivariate climate data could include observations of several variables at one location,
observations for one variable at different grid points (spatial fields), or several variables at sev-
eral grid points. In addition, all these variables can be selected at different altitudes or pressure
levels. When multiple variables are studied, univariate methods can be applied to individual
variables. However, a fundamental aspect when analysing multiple variables is the statistical
relationship — or dependence structure — between the different variables, i.e, analysing their
joint variability (Anderson, 1958). Methods that consider individual variables separately are
not designed to describe such relationships between variables, and using them to investigate
dependent climate variables is therefore limited.

To study the climate system where the relations among variables are important, climate
scientists have long adapted and applied multivariate statistical tools from statistical theory.
For example, analysis of correlations (Galton, 1889; Pearson and Henrici, 1896) that describe
the strength of associations between atmospheric variables allowed the discovering of telecon-
nections, i.e., that climate variables are related to each other at large distances throughout the
troposphere (Walker, 1925). Studying multivariate statistical distributions (e.g., Laplace, 1811;
Gauss, 1823; Johnson and Kotz, 1972; Johnson, 1987) allowed to investigate multivariate density
functions of climate variables. In particular, the use of the multivariate cumulative distribution
functions named copulas (Sklar, 1959) has shown to be useful to gain a better understanding of
the dependence between various climate variables. Copulas have been widely applied in various
climate applications, e.g., to cluster atmospheric variables (Vrac et al., 2005), to assess return
periods of multivariate hydroclimatic extremes (Salvadori and De Michele, 2004; Favre et al.,
2004), to examine river and coastal flooding (Brunner et al., 2017; Serinaldi and Kilsby, 2017; Di-
dier et al., 2019), study crop yields (Alidoost et al., 2019) and sediment transport (Shojaeezadeh
et al., 2020). Given the complexity of highly dimensional datasets, researchers have also applied
approaches to summarise multiple dependencies through data reduction (e.g., Principal Com-
ponent Analysis, Pearson, 1901; Wilks, 2006) which allows, for instance, to generate synthetic
multivariate rainfall and streamflow time series (Westra et al., 2007) or to better investigate
atmospheric circulation patterns (Corti et al., 1999; Scherrer et al., 2006) and large-scale modes
of variability (Dai and Wigley, 2000; Kessler, 2001). Another important research field that make
uses of multivariate statistics is data assimilation (e.g., Kalnay et al., 1996), for which one of
the main objectives is to provide a multivariate, spatially complete, and coherent record of the
global atmospheric circulation. Such datasets are called reanalysis datasets (e.g., ERA5, Hers-
bach et al., 2020), and are largely used in climate science to understand climate change and
current weather extremes.

Machine Learning: a promising multivariate tool?

Recent advances in computing power and data storage capacity have revolutionised multi-
variate statistics with the emergence of machine learning (ML) techniques. ML tools gather
specific algorithms that are able to learn complex relationships between statistical variables.
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A profusion of ML algorithms has been developed to solve a wide variety of problems (e.g.,
classification, regression or clustering) for different applications, such as in medicine, security,
social media or finance. Among the most employed ML methods are random forest (Breiman,
2001), artificial neural networks (McCulloch and Pitts, 1943; Rosenblatt, 1958; Rumelhart et al.,
1986; Lecun and Bengio, 1995), support-vector machines (Cortes and Vapnik, 1995), k-nearest
neighbors (Fix and Hodges, 1989) and k-means algorithms (Steinhaus, 1956; MacQueen, 1967).
One particularity of ML tools compared to classical statistics is that they learn statistical rela-
tionships in an automated way directly from sample data (also called “training data”) and by
making minimal assumptions about these relationships. Although their modelling procedures
differ, classical statistics and ML are in fact closely related: classical statistics can be used
within ML tools to learn statistical relationships. One basic example of this is linear regression.
Developed in the field of statistics to model linear relationship between an output and one or
more explanatory variables, linear regression can be used within ML algorithms such as neural
networks to compute gradient descent which drives the learning procedure. ML tools demon-
strated to be particularly effective to deal with large datasets where there is a large volume of
information available, and in cases where it is difficult to use classical statistics, e.g., when the
number of statistical variables exceeds the number of observations, in the presence of compli-
cated nonlinear interactions or when it is difficult to make any assumptions about the learning
to perform. ML techniques thus offer exciting new opportunities for expanding the knowledge
about the Earth climate from the huge amount of data that has become available. By offering
the possibility to circumvent some of the difficulties encountered using classical statistical ap-
proaches, ML tools have proven to be successful for various climate science applications such
as:

• clouds classification using artificial neural networks (Lee et al., 1990; Tian et al., 1999)
and convolutional neural networks (Zhang et al., 2018),

• spatial estimation of soil composition using random forest (Grimm et al., 2008) and
gradient boosting (Hengl et al., 2017),

• detection of extreme weather using convolutional neural networks (Liu et al., 2016;
Racah et al., 2017),

• short and near term weather forecasting using recurrent neural networks (Salman
et al., 2015) and long short-term memory networks (Shi et al., 2015; Zaytar and Amrani,
2016),

• seasonal forecasts using hierarchical clustering (Cohen et al., 2019) and gradient boost-
ing (Qian et al., 2021),

• modelling of vegetation-climate relationships using artificial neural networks (Hilbert
and Ostendorf, 2001; Jahan and Gan, 2011),

• land-use and change detection using convolutional neural networks (Zhao and Du,
2016; Carranza-García et al., 2019),

• transport modelling using convolutional neural networks (Tompson et al., 2016; de Bezenac
et al., 2017) and artificial neural networks (Vlasenko et al., 2021),

• modelling of rainfall-runoff processes using artificial neural networks (Smith and Eli,
1995) and long short-term memory networks (Mao et al., 2021),
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• statistical downscaling using multitask learning (Vandal et al., 2017), generative ad-
versarial networks (Leinonen et al., 2020), convolutional neural networks (Baño-Medina
et al., 2020) and random forest (Legasa et al., 2022).

Other examples of applications of ML tools in climate science can be found in Reichstein
et al. (2019).

New tools to consider dependence are needed

All these multivariate tools applied in climate science, either based on Machine Learning or
more classical statistical techniques, have proven their value by being able to take into account
the relationships between variables. However, the use of multivariate tools and the analysis
of their results is not always straightforward. Indeed, multivariate methods can sometimes
be more complicated to understand and implement than univariate methods, as they require
more data, computing capacity and statistical knowledge. This is particularly true when using
Machine Learning tools: despite showing successful results, the lack of an explicit model can
make solutions from ML tools difficult to directly link with physical knowledge. Moreover, in
a context of climate change, another difficulty can be added when investigating multivariate
data, as assessing dependence changes between multiple atmospheric variables can present a key
challenge for climate scientists.

Research is therefore needed to improve the understanding of dependence between climate
variables and their potential changes. In addition to improving physical knowledge, statistical
tools are needed to complement physical science research and contribute to a better consideration
of dependencies, which can be done through the development of multivariate statistical tools.
In this thesis, I focused on how to exploit multivariate statistical tools to investigate the depen-
dencies of climate variables leading to extreme impact events (compound events). Improving
the overall understanding of these climate events and how dependencies evolve and contribute
to change the characteristics of compound events is of obvious relevance to society because of
their extreme impacts. Then, since our understanding of future climate change depends in part
on the realism of dependencies of simulated climate variables obtained from climate models, I
have also been interested in applying and designing multivariate bias correction methods able to
adjust multivariate properties of climate simulations. These adjustments are potentially crucial
to robustly investigate not only compound events but also less impacting climate events. In the
rest of this chapter, I will introduce the topics of compound events and bias correction.

1.3 Compound events
What are compound events?

Climate-related disasters can result from an individual extreme weather event. For example,
a sudden and localised temperature extreme can affect agricultural yields by damaging crops.
However, the most damaging disasters often arise when several climate variables interact be-
tween each other, also referred to as “compound events” (CEs). The individual climate variables
forming the CEs may not be extreme themselves, but their simultaneous or successive occur-
rences across multiple spatial and temporal scales can cause extreme impacts (Leonard et al.,
2014; Zscheischler et al., 2014, 2018). For example, consecutive dry days with high temperatures
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(i.e., not necessarily extremes) can exacerbate the risk of low crop yields (e.g., Ciais et al., 2005).

Firstly introduced by Seneviratne et al. (2012), compound-event research has developed
very rapidly in an interdisciplinary framework involving climate science, impact research and
statistics. By taking advantage of this interdisciplinarity, research on compound events aims
to enhance the understanding of physical processes leading to compound events, to better as-
sess their statistical characteristics and predictability, as well as their impacts on society and
ecosystems. To frame compound event research, Zscheischler et al. (2020) proposes a general
definition for the different characteristics that form a compound event: modulators, drivers,
hazards and impacts. Fig. 1.1 illustrates how these different elements can interact to produce
an impact. Hazards are climate phenomena, such as heatwaves, droughts, frosts or wildfires,
that cause an impact by interacting between each other. These hazards themselves result from
climate drivers such as atmospheric blockings, tropical cyclones or storms. Finally, drivers are
affected by modulators such as sea-surface temperature patterns or variability of large-scale cli-
mate modes (e.g., El Nino- southern Oscillation). It is through the interactions of these different
elements (modulators, drivers and hazards) that extreme impacts are obtained. In a climate
change context, all physical elements can be potentially affected: for example, heatwaves can be
simply hotter, location of atmospheric blockings causing heatwaves and droughts can be mod-
ified; and a change of sea-surface temperature patterns due to climate change can affect the
occurrence of atmospheric blocking events.

Different types of interactions

Hazards and drivers constituting compound events can interact in different ways. Although
subjective, Zscheischler et al. (2020) proposes a typology of compound events to categorise in
four classes the different types of events depending on the underlying interactions:

• “Preconditioned” events for which a weather- or climate-driven background can exacerbate
the impact;

• “Multivariate” events for which the simultaneous co-occurrences of individual drivers
and/or hazards at the same location result in impacts,

• “Temporally compounding” events for which impacts are due to the successive occurrences
of hazards, and

• “Spatially compounding” events for which individual hazards in several locations lead to
an impact.

This categorisation of CEs is an illustration that the climate processes causing extreme im-
pacts can be diverse and complex to understand. Of course, compound events do not always fit
perfectly the presented typology by being assigned to a unique class. For example, distinguish-
ing preconditioning CEs from temporally CEs is not always straightforward. As illustration,
consecutive days of severe frost occurring after a warm winter and bud burst can be interpreted
as either preconditioning or temporally compounding events. In addition, compound events can
be the results of climate events from two or more categories. For example, impact from wind
and precipitation extremes (multivariate event) can be exacerbated if it is preconditioned by
saturated soils (preconditioned event) (e.g., van den Hurk et al., 2015). Still, the topology
provides great guidance to analyse the causal mechanisms underlying compound events, as it
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Figure 1.1: Physical elements of a compound climate event. Inspired and modified from
Zscheischler et al. (2020).

helps to identify and separate the different elements of compound events. It also shows that
dependence between drivers and hazards is key and can be involved in several ways to produce
high-impact events.

From univariate to multivariate approaches to better investigate CEs

Before compound-event research was developed, much of the analysis of high-impact events
was focused on univariate climate extreme events, even when multiple climate variables were
involved (Seneviratne et al., 2012; Collins et al., 2013). Univariate statistical tools were then used
to analyse the characteristics and the projections of such climate extreme events (e.g., extreme
rainfall, extreme temperatures, Kharin et al., 2013; Lenderink et al., 2007). As by definition,
CEs are the results of multiple meteorological processes at play, they require different analysis
methods than those used for univariate events. Indeed, considering univariate tools implies that
climate drivers and hazards of compound events are considered independent of each other and
that their dependence is neglected. It can result in an underestimation of their probability of
occurrence and consequently their risks which limits the ability to develop effective adaptation
strategies (Kew et al., 2013; van den Hurk et al., 2015; Zscheischler and Seneviratne, 2017;
Hillier et al., 2020). For example, considering only high-temperature for heat-stress-adaptation
strategies is limited as human health impacts depend on both temperature and humidity (e.g.,
Coffel et al., 2017; Raymond et al., 2020). Similarly, the design of flood protection measures
must take into account together the multiple hazards that cause flooding (e.g., sea-level and
river discharge, Wahl et al., 2015; Moftakhari et al., 2017; Ward et al., 2018).

Thus, multivariate statistical tools naturally emerge as a promising tool to study not only
univariate properties but also dependence relationships between the multiple variables forming
the CEs. By providing quantitative tools such as correlation analysis, multivariate regression or
multivariate modelling, multivariate statistics permit to describe and investigate the statistical
relationships between the different elements leading to extreme impacts. Recently, research has
focused on studying a wide variety of compound events in observations or climate models outputs
using various multivariate techniques:

• Compound dry and hot events using count-based approaches (Wu et al., 2021a; Man-
ning et al., 2022), copula modelling (Zscheischler and Seneviratne, 2017; Sarhadi et al.,
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2018; Zhou and Liu, 2018; Manning et al., 2019; Ribeiro et al., 2020) and logistic regression
model (Hao et al., 2019; Wu et al., 2021b),

• Concurrent wind and precipitation extremes using conditional exceedance model
(Zheng et al., 2014), count-based approaches (Ridder et al., 2018; Owen et al., 2021), logis-
tic regression (Martius et al., 2016), copula modelling (Bevacqua et al., 2019), dynamical
systems metrics (De Luca et al., 2020a), extremal dependence metrics (Zscheischler et al.,
2021) and Bayesian models (Couasnon et al., 2018),

• Spatially co-occurring climate extremes using extremal dependence metrics (Brun-
ner et al., 2020), max-stable processes (Blanchet and Davison, 2011; Nicolet et al., 2016;
Wang et al., 2014; Oesting and Stein, 2018), multivariate skew-t distribution (Ghizzoni
et al., 2010, 2012), multiple linear regression (Singh et al., 2021) and generative adversarial
networks (Boulaguiem et al., 2022),

• Temporal sequences of heavy-precipitation events using clustering algorithms (Bar-
ton et al., 2016), Poisson regression (Villarini et al., 2011), Cox regression (Mallakpour
et al., 2017; Yang and Villarini, 2019, 2021) and count-based approach (Kopp et al., 2021),

• Concurrent heat and air pollution using clustering algorithm (Schnell and Prather,
2017), Poisson regression (Breitner et al., 2014) and generalized additive model (Cheng
and Kan, 2012; Wang et al., 2020),

• Frost events in spring following a warm winter using conditional modelling (Sgubin
et al., 2018; Vautard et al., 2021) and count-based approaches (Pfleiderer et al., 2019).

By taking dependence into account, all these studies are able to provide valuable information
on statistical properties of compound events. Moreover, changes of dependence under climate
change have been found to significantly affecting the occurrence of CEs in reanalyses data for
the recent decades (e.g., Abatzoglou et al., 2020) or in climate models in future periods (e.g.,
temperature-precipitation correlations, Vrac et al., 2021). In particular, the latter study shows
that the different climate models do not agree on the simulation of future dependencies. This
inter-model variability can be partly explained by the different capacities of the climate models
to represent dependencies appropriately. This further motivates a better understanding of de-
pendence changes, their influences on CEs properties and how they are represented by climate
models.

The importance of an appropriate dependence in simulations

As climate models are one of the main tools for understanding CEs, it is crucial that their
representations in climate simulations are correct not only for historical periods but also for
future conditions. Appropriate simulations of CEs can then permit to get robust estimates of
their occurrence probabilities and their evolutions in a changing climate. In particular, detecting
when the probabilities of CEs are significantly different from those associated with natural
variability is quite relevant for society and policy-makers, not only to better anticipate their
emerging risks but also to raise awareness among the general public about climate change.
Such change detection corresponds in the climate science literature to the notion of “Time of
Emergence” (ToE), which consists in determining the time period at which a climate signal
emerges from (i.e., goes out of) the natural variability (e.g., Christensen et al., 2007). For this
purpose, climate simulations with appropriate representations of CEs are needed to investigate
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robustly their emergence and thus to provide relevant information for adaptation planning.
Appropriate simulations of CEs would also be particularly crucial for impact studies, in which
simulated data are given as inputs to impact models to explore how climate hazards would
impact society and ecosystems in current and future periods.

Hence, simulations with not only appropriate univariate properties but also appropriate de-
pendence structures between climate hazards leading to extreme events are required to derive
meaningful results. However, it is now known that simulations from climate models can have
various biases in their univariate and dependence properties: statistical properties of simulated
outputs are not always in line with those obtained for observations or reanalyses. These statis-
tical biases necessarily affect the robustness of the simulated CEs and their associated analyses.
Many univariate bias correction methods have been developed: they are able to adjust uni-
variate properties of the simulations but disregard multivariate aspects (see subsection 1.4). In
fact, climate simulations with appropriate multivariate distributions is not only needed to study
high-impact climate events, but is required more generally for any climate or impact studies
using simulated data and for which dependence properties are important. Statistical methods
to adjust the simulated relationships between climate variables, also called multivariate bias
correction (MBC) methods, have been recently developed in the literature. Multivariate bias
correction will be one of the major topics of this manuscript, namely how to adjust not only
univariate properties but also dependence structure between simulated variables. The topic of
bias correction of climate simulations is introduced in the following subsection.

1.4 Adjusting climate simulations using statistical tools
Univariate and multivariate biases

Climate models such as GCMs are the main tools to study the climate system and its evolu-
tions at different time scales. However, despite considerable progress in recent years, simulations
obtained from climate models can present different statistical properties than those observed,
which are called statistical biases (e.g., Christensen et al., 2008). For example, a simulated
temperature time series at one grid cell can present univariate properties, such as mean, vari-
ance or extremes, different from those obtained based on reanalyses over a historical period.
Multivariate properties of simulated climate variables can also differ from those observed, such
as the dependence structures between several physical variables and/or sites. For example, the
correlation between simulated temperature and precipitation at a specific grid cell can be under-
or overestimated compared to reanalyses or observations.

The reasons for these statistical biases are multiple. I provide here some of the most obvious
reasons for biased model simulations but this list is not exhaustive. One main reason is that,
for computational purposes, GCMs discretize the Earth system in a three-dimensional space
formed by grid cells. As a result, although reproducing adequately key large-scale physical pro-
cesses, they often misrepresent important processes that occur at spatial scales smaller than the
model resolution (e.g. convective processes). For instance, the Coupled Model Intercomparison
Project Phase 5 (CMIP5, Taylor et al., 2011) gathers GCMs with spatial resolutions between 1
and 3◦, which is often considered too coarse for a realistic representation of precipitation (e.g.,
Kundzewicz et al., 2007). A second reason is that, despite continued scientific progress, some
biases can arise from incomplete physical knowledge of climate system processes. For example,
the complexity of cloud processes is still identified as a major source of biases for climate models
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despite recent improvements in its understanding (IPCC, 2021). Another main reason refers to
errors in the parameterization chain: when physical processes are too complex to be physically
represented, they can be replaced by a simplified process with parameters estimated using obser-
vations. The observed data used for parameterization are time series of finite length which may
not cover the full range of climate dynamics. Therefore, parameterization is necessarily subject
to sampling errors that can then alter the ability of climate models to represent the physical
processes (e.g., Ehret et al., 2012).

Therefore, for these reasons, climate models can present statistical biases. This is particularly
problematic when climate model simulations are used as inputs for impact models, for instance
in hydrological (e.g., Bates et al., 2008; Chen et al., 2013), agronomical (e.g., Wheeler and
von Braun, 2013) or epidemiological (Caminade et al., 2014; Chemison et al., 2021) studies.
These impact models are calibrated to appropriately represent the statistics of some desired
observed variables (such as runoff for hydrology or crop yields for agronomy), given observed
climate input. Replacing observed input by simulations can be desirable, for example by selecting
simulated projections data for future periods to investigate impacts of climate change. However,
biases in climate simulations can significantly affect the realism of the impact model simulation
and some bias corrections of climate simulations might be required to obtain more meaningful
results from impact studies (e.g., Wilby et al., 2000). To increase the realism of simulations from
climate models, two post-processing statistical approaches have been developed in the literature:
statistical downscaling and bias correction. Statistical downscaling and bias correction post-
processing methods in climate modelling are often treated as identical, but are not. Although
the thesis is mainly about bias correction, some clarifications on their differences are here needed
to better understand the rest of the manuscript.

Statistical downscaling and bias correction methods

To perform downscaling, two different approaches have been developed in the literature:
dynamical and statistical downscaling. On the one hand, dynamical downscaling consists in
using Regional Climate Models (RCMs) that numerically solve physical equations describing
the dynamics of the climate system to produce local-scale climate information over a limited
area. To simulate regional features of the climate at a higher resolution, RCMs use GCMs
outputs as inputs, on the boundary of the domain (Rummukainen, 2010). On the other hand,
statistical downscaling (SD) methods are conditional statistical models that establish empirical
relationships between large-scale information (predictors, i.e., input data) and local-scale obser-
vations (predictands, i.e., output data) over the region of interest (Maraun and Widmann, 2018).
Fig. 1.2a presents a simple illustration of the process of statistical downscaling methods applied
to coarse model outputs. In contrast with dynamical models such as RCMs that resolve physical
equations, SD methods have the advantage to generate very quickly random realisations with
desired distributional properties. It has several implications such as facilitating the exploration
of the uncertainty inherent in the climate system. However, the price to pay for this advantage
is that, contrary to dynamical models, statistical models are not derived from physical theory,
and thus potentially result in generating outputs with inappropriate physical laws. As this the-
sis focuses on statistical tools, we provide more detail below on the particularity of statistical
downscaling methods.

The statistical relationships determined by SD methods could be based on either perfect
prognosis (PP) or model output statistics (MOS) approaches (Maraun et al., 2010). The PP
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approach consists in learning the synchronous relationships between a variable of interest from
references (predictand) and one or several observed variables (predictors). The consequence
is that PP approaches must be calibrated on synchronised predictors and predictands (e.g.,
reanalyses and observations). Once learned, these relationships can be applied to predictors
from climate simulations (Fig. 1.2a). Thus, PP makes the assumption that these simulated
predictors are realistically simulated (i.e., are unbiased with respect to the predictors over the
calibration). One particularity of PP approaches is that, by being calibrated on large-scale and
local-scale observations, they can then be applied to any climate models to derive local-scale
data. For instance to downscale two (or more) different climate models, the PP approaches
only need to be calibrated once and thus are not “model-dependent”. Several PP methods have
been developed in the literature, including regression methods (e.g., Huth, 2004; Vrac et al.,
2007; Quesada-Chacón et al., 2021), analogs (e.g., Zorita and von Storch; Walton et al., 2020)
or more recently machine learning (e.g., Leinonen et al., 2020; Baño-Medina et al., 2020). For
the PP approaches to yield reasonable results, the predictors have to be perfectly simulated by
the climate model, which justifies the term “perfect prognosis” (PP). However, in practice, this
assumption is often not met (Maraun, 2016).

Model outputs
(b)  Bias correction

Corrected model outputs

Downscaled model outputs

Model outputs
(a)  Statistical downscaling 

Figure 1.2: Illustrations for (a) statistical downscaling and (b) bias correction of climate
model outputs.

Therefore, the MOS approach has been developed. MOS-based techniques aim to find a
statistical transformation that directly links simulated variables from climate models (predic-
tor) and the corresponding variables in the reference dataset (predictand). Contrary to the PP
approach, predictors (i.e., simulated variables) and predictands (i.e., observations) are not con-
sidered to be synchronised in time, and biases relate to differences in statistical distributions or
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Statistical Downscaling Bias Correction
Data Predictors ̸= Predictands Predictors = Predictands
Outputs Local scale Not necessarily local scale
Approach “Perfect prognosis” “Model Output Statistics”
Model-dependent No Yes

Table 1.1: Summary of statistical downscaling and bias correction features.

properties. MOS-based approaches consist in directly adjusting the simulated variables so that
they have similar statistical properties as the corresponding variables in the reference datasets.
Thus, MOS approaches in climate studies are often referred to as statistical bias correction meth-
ods. Contrary to PP approach, the statistical transformation designed using the MOS approach
maps identical physical variables onto each other. For example, bias-corrected temperature is
obtained from simulated temperature only without other predictors (such as precipitation) being
used. Once calibrated over a reference period, the statistical transformation can be applied to
adjust the modelled outputs for other periods (e.g. future) by assuming that the correction is
still valid under climate change. However, as the MOS techniques are calibrated directly to link
climate models outputs and observations, the derived statistical transformations are “model-
dependent”: they basically learn to bias-correct a single model, and this transformation is not
necessarily valid to be applied to other climate models. In practice, MOS techniques are de-
signed to adjust the statistical properties of climate models with respect to a reference dataset
having similar spatial resolution (Fig. 1.2b).

Table 1.1 provides a concise summary of the main different attributes that make the statis-
tical downscaling and bias correction methods distinct and that are discussed in the previous
paragraphs. As this thesis mainly focuses on bias correction, the rest of the chapter is devoted
to a deeper explanation of this particular topic.

Assumptions and limits of bias correction

Before going into the details of the different bias correction (BC) methods based on the
MOS approach, here I provide some of the different assumptions that have to be fulfilled to
successfully apply bias correction in a climate modelling context.

• First, a key assumption of bias correction is that the relevant processes of the climate
system and their changes are reasonably well simulated by the climate model to be adjusted
(Maraun et al., 2017). Indeed, this assumption is fundamental as BC methods cannot
overcome major model errors, and basic implementation of BC methods tend to preserve
some of the biases from the climate models to be adjusted, such as those in the atmospheric
fields (Christensen et al., 2008). Before applying any BC methods, end users have to make
sure that climate simulations provide reasonable representation of climate.

• Second, another common assumption of BC is that biases are assumed to be time-
independent (i.e., do not vary in time). Indeed, bias correction methods often learn
to adjust biases over a reference period (e.g. the recent past) and assume this correction
to remain valid for other time periods (e.g. projections for the end of the century). This
assumption is however questionable given that characteristics of climate can differ between
the reference and projection periods, resulting in time-dependent biases. This may call
into question the application of BC methods in such contexts.
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• Basic implementation of BC methods often rely on pure statistical techniques and are
not physically constrained. The underlying assumption of such BC methods is that they
are skilled enough to produce realistic corrected outputs. This assumption is again ques-
tionable as the lack of physical constraints can result in obtaining corrected outputs with
inappropriate physical laws, and, thereby, might be inappropriate.

When these hypotheses are not valid, the bias-corrected output should be handled with great
care by end users. The reader is referred to Maraun (2016) for more details.

Bias correction: from univariate to multivariate

Several bias correction methods based on the MOS approach have been developed in order
to adjust the statistical discrepancies of the simulations. Most of these BC methods are de-
signed to adjust univariate properties of climate variables, such as the mean (e.g., Xu, 1999),
the variance (e.g., Berg et al., 2012) and also all moments of higher order and quantiles (e.g.,
“quantile-mapping”, Haddad and Rosenfeld, 1997). The last technique is certainly the most
employed one, since it has been used to adjust many univariate aspects of simulated variables
(mean, variance and any quantiles). Its flexible theoretical framework has also allowed the devel-
opment of multiple versions of quantile-based methods (Panofsky and Brier, 1968; Déqué, 2007;
Michelangeli et al., 2009; Gudmundsson et al., 2012; Kallache et al., 2011; Vrac et al., 2012;
Tramblay et al., 2013; Cannon et al., 2015), contributing to its large success in various climate
applications (e.g., Vigaud et al., 2013; Defrance et al., 2017; Famien et al., 2018; Bartok et al.,
2019). However, one major issue of such quantile-mapping methods is that they are univariate:
in practice, they are applied to correct separately one physical variable at a time at one grid
cell at a time. Although univariate properties are adjusted according to references dataset, the
potential biases in simulated multivariate dependence structures are not particularly adjusted
(e.g., Maraun, 2013a; Wilcke et al., 2013; Vrac, 2018). By disregarding these potential multi-
variate biases, univariate BC methods can generate corrections where the dependence structure
between variables and sites is misrepresented. These inappropriate multivariate situations can
then affect subsequent analyses that depend on multivariate characteristics of climate variables
such as in hydrology (e.g., Van de Velde et al., 2022) or, as explained previously for compound
events analyses (e.g., Zscheischler et al., 2019). It is therefore of paramount importance to
consider multivariate statistical methods that are able to generate corrections with not only
appropriate univariate properties but also appropriate dependence structures between climate
variables.

Recently, a few multivariate bias correction (MBC) methods have been developed in the
literature. Not only do these methods adjust univariate properties, they are also able to correct
the multivariate properties of climate simulations (e.g., Bárdossy and Pegram, 2012; Dekens
et al., 2017; Nahar et al., 2018; Vrac, 2018; Cannon, 2018; Robin et al., 2019; Nguyen et al., 2019,
among few others). As these methods are multivariate by definition, they can be implemented
in different dimensional configurations depending on the need of corrections. For example, MBC
methods can be applied to adjust several physical variables jointly, but at each individual grid
cell. This would result in adjusting inter-variable properties of climate simulations. Another
example of applications for MBC could be to adjust for a specific physical variable all grid cells
jointly to adjust spatial properties. However, in most studies applying MBC methods, they are
applied at each grid cell individually to only adjust inter-variable properties (Cannon, 2018;
Meyer et al., 2019; Guo et al., 2019), disregarding spatial adjustments.
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These MBC methods are often based on more sophisticated statistical techniques than their
univariate counterparts, including rank resampling (e.g., Vrac, 2018; Mehrotra and Sharma,
2019), matrix recorrelation (e.g., Bárdossy and Pegram, 2012; Cannon, 2018) or optimal trans-
port (e.g., Robin et al., 2019). They can also make different assumptions to produce corrected
outputs. For example, methods can differ depending on how they consider the simulated non-
stationary properties between calibration and projection periods in the correction procedure.
All these differences between methods are sometimes not yet fully understood by end users,
although being crucial for a thorough understanding of the quality of adjustments provided by
MBC methods.

1.5 Objectives of the thesis
The first objective of the thesis is to better clarify the performances of existing multivariate

statistical methods for the adjustment of multivariate properties of climate simulations. This
will be done through an intercomparison study that will aim to:

• Compare and evaluate existing multivariate BC methods to adjust multivariate properties
of climate simulations.

• Evaluate the sensitivity of multivariate BC methods in a highly dimensional context.

• Assess the performance of multivariate BC methods in a non-stationary context.

• Provide a guide for end users to help them choose methods depending on their needs.

The second objective of the thesis is to explore the capabilities of Machine Learning tools to
adjust multivariate properties of climate simulations. The development of a new multivariate
BC method based on Machine Learning will be carried out for the adjustment of simulated
spatial properties only. The questions underlying this objective that will be addressed are:

• Can Machine Learning be exploited for multivariate BC?

• Can Machine Learning do better than existing multivariate methods?

• How this new developed method performs in a non-stationary context?

The third objective is to study how to determine the time period at which the probabilities of
compound events emerge from natural variability. This will be done by investigating the changes
in CEs probability in simulations, evaluating the significance of their changes and quantifying the
importance of univariate and dependence properties in these changes. The questions underlying
this objective that will be addressed are:

• How can we determine the time of emergence of compound events probabilities?

• How univariate and dependence properties of climate variables leading to compound events
contribute to the change of their occurrences?

• Are there differences in time of emergence between climate models?
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1.6 Outline of the manuscript
The rest of the thesis is organised as follows: Chapters 2 and 3 cover the subject of bias

correction of climate simulations. Chapter 2 examines the benefits and losses of multivariate
bias correction methods through an intercomparison study of four existing methods. Chapter 3
explores the potential of Machine Learning techniques for multivariate bias correction and pro-
vides a new method for the adjustments of spatial properties based on these innovative tools.
Chapters 2 to 3 both contain a published article and additional perspectives.

Then, Chapter 4 focuses on investigating compound events probabilities and their evolutions.
It presents a new statistical tool to assess the time of emergence of simulated compound events
probability and to quantify the importance of univariate and dependence properties in these
changes.

Finally, Chapter 5 will summarise the work carried out and the results obtained. It will also
specify some perspectives for future research.
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Résumé
Contexte

Ce chapitre introductif a pour but de poser le contexte et la problématique de cette
thèse. Le but de cette thèse est de développer de nouveaux outils statistiques multivariés
afin de permettre une compréhension plus approfondie du système climatique. L’aspect
multivarié de ces outils qui seront appliqués dans cette thèse à des simulations issues de
modèles climatiques permettra de prendre en compte de manière appropriée la dépendance
entre les variables climatiques, et donc de potentiellement améliorer la compréhension
de leurs interactions et leurs évolutions potentielles dans un contexte de changement
climatique.

Objectifs : corrections de biais et études des événements composés.

J’applique et développe de nouveaux outils statistiques multivariés pour, d’une part, la
correction de biais des simulations climatiques, et d’autre part, l’étude des changements
de probabilités d’événements conjoints à forts impacts.
Cette thèse s’organise en 4 chapitres et a principalement pour but de répondre aux ques-
tions:

• Comment fonctionne la correction de biais multivariés de simulations climatiques et
quels sont les avantages et les inconvénients de l’utilisation des méthodes existantes?
(Chapitre 2)

• Les récents outils de Machine Learning peuvent-ils être exploités pour la correction
des biais multivariés? (Chapitre 3)

• Comment évaluer la période d’émergence des probabilités des événements com-
posés? Et comment les propriétés univariées et multivariées contribuent-elles aux
changements de ces probabilités? (Chapitre 4)
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Chapter 2

Intercomparison of MBC methods for
climate simulations: which benefits for
which losses?

The core of this chapter is an article published in the scientific journal Earth System Dynamics.
The article is preceded by a preamble giving some methodological information on the work car-
ried out. It will then be completed by a discussion recalling the main conclusions and highlighting
some perspectives.

2.1 Preamble and methodological summary
Recently, some multivariate bias correction (MBC) methods have been developed in the

literature. However, these methods present differences in their applicability and assumptions
that are not yet fully understood by end users. For instance, these methods are based on different
statistical techniques to adjust simulated multivariate properties, or make different assumptions
about how simulated non-stationary properties are considered. Consequently, the quality of the
corrections can vary from one method to another, and it is hence crucial for end users to clarify
the advantages and inconveniences associated with using these different multivariate statistical
tools.

This chapter aims at comparing the performances of different multivariate bias correction
approaches to adjust multivariate properties of climate simulations. In this comparison, a repre-
sentative sample of MBC methods will be carefully selected based on their differences in terms
of statistical techniques used, assumptions and methodologies in order to provide as much infor-
mation as possible on these different features. In particular, MBC methods can be categorised
in three different families depending on how they adjust multivariate properties of climate sim-
ulations. The first category is named “marginal/dependence”, and gathers MBC methods that
adjust separately univariate distributions and dependence structures. The second category of
approaches, named “all-in-one” is made up of MBC methods that adjust both univariate and
dependence properties altogether at the same time. In the last category called “successive con-
ditional”, MBC methods adjust the variables successively and conditionally on the previous
adjusted ones. Fig. 2.1 summarises the three different methodologies employed by MBC meth-
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Univariate
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Multivariate BC
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(a) Marginal/dependence (b) All-in-one (c) Successive conditional

Multivariate BC
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...
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knowing Dim. 1

Dim. 3
knowing Dim. 1, 2

Figure 2.1: The three different families of multivariate bias correction methods.

ods to adjust multivariate properties of climate simulations. More details on these categories
will be provided later in Section 1 of the article.

In the following study, four MBC methods — R2D2 (Vrac, 2018), dOTC (Robin et al., 2019),
MBC-n (Cannon, 2018) and MRec (Bárdossy and Pegram, 2012) — will be applied to adjust
simulated temperature and precipitation time series over France and three subregions for the
1979-2016 period. In addition, the univariate BC method named CDF-t (Vrac et al., 2012) will
be implemented and used as a benchmark to measure the benefits of considering multivariate
aspects in the correction process. For each MBC method, three dimensional configurations
— with different objectives of corrections for multivariate properties — will be implemented
(Fig. 2.2):

• a 2-dimensional (“2d-”) version, which consists in applying the MBC method independently
at each grid cell but to jointly adjust both temperature and precipitation time series. Thus,
the 2d-version aims to adjust inter-variable properties at each grid cell (Fig. 2.2a).

• a spatial-dimensional (“Spatial-”) version, for which the MBC method is applied to jointly
adjust all time series for a specific physical variable but independently from the other
physical variable. By doing so, Spatial-versions aim to adjust simulated spatial properties
for each physical variable separately (Fig. 2.2b).

• a full-dimensional (“Full-”) version, where all temperature and precipitation times series
are adjusted jointly over the entire domain. The Full-version hence aims to adjust together
inter-variable and spatial properties of climate simulations (Fig. 2.2c).

While most of the studies apply MBC methods grid cell by grid cell to adjust inter-variable
properties of climate simulations (e.g., Meyer et al., 2019; Guo et al., 2019; Van de Velde et al.,
2022), including the Spatial- and Full-versions in the study will permit to assess the potential
sensitivity of multivariate BC methods to produce realistic corrections in a high-dimensional
context.

As a reminder, BC methods will be applied to adjust time series over the 1979-2016 period.
This period will be divided into two intervals of 19 years: 1979-1997 and 1998-2016, and two
protocols will be defined to assess the performances of MBC methods. The first protocol will
consist in using the 1979-1997 portion as the calibration period for MBC methods to derive
corrections for the 1998-2016 projection period. Then, swapping of the two periods will be
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performed so that each period is used once for calibration and projection. Using this protocol
will permit to evaluate the global performances of MBC methods in adjusting multivariate
properties (e.g., Cannon, 2018). The second protocol will consist in applying MBC methods
without cross-validation: both the 1979-1997 and 1998-2016 periods will be corrected by using
the 1979-1997 portion as calibration period. By doing so, the potential simulated climate change
signal will not be distorted, which will allow to evaluate how simulated non-stationary properties
are considered by BC methods.

(a)  2d-version
Jointly corrects all physical variables 
but separately at each grid cell.

(b) Spatial-version
Jointly corrects all grid 
cells for a physical variable, 
but separately from the other
variables.

(c) Full-version
Jointly corrects all grid 
cells and all physical 
variables.

+

MBC(TAS, PR)

MBC(all TAS)

MBC(all TAS, all PR)

MBC(all PR)

Figure 2.2: The three different dimensional configurations implemented in the article to
perform multivariate bias correction: (a) 2d-, (b) Spatial-, and (c) Full-versions.

The choice to include precipitation in this study was motivated by the fact that precipitation
shows strong spatial and temporal variability and is often poorly represented by climate models
while being the main driver of hydrological processes (e.g., Ehret et al., 2012). Evaluating the
performances of multivariate BC in providing realistic precipitation time series is therefore a
crucial issue for scientists working on impacts, e.g., in hydrology. Adjusting precipitation from
climate simulations in this intercomparison study would permit to evaluate multivariate BC
methods in a challenging context, as important corrections are likely to be required.

I emphasise that through this study, I am not trying to find the “best” MBC method. Indeed,
this effort would be in vain as there is probably no single method that can “perfectly” correct
all statistical properties of climate simulations at the same time (Ehret et al., 2012). The study
rather aims at drawing general recommendations to help end users in the choice of bias correction
methods that best meet their needs for their applications. The evaluation of the methods will
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be conducted from a climatological point of view using relevant statistical metrics to analyse
the adjustments of univariate, inter-variable, spatial, temporal and non-stationary properties.
It will provide an intercomparison framework to which other MBC methods, e.g. relying on
different assumptions, could be easily added. This evaluation work will also permit to identify
potential avenues for the development of new MBC methods.

2.2 Article published in Earth System Dynamics: Mul-
tivariate bias corrections of climate simulations:
which benefits for which losses?
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Abstract. Climate models are the major tools to study the climate system and its evolutions in the future. How-
ever, climate simulations often present statistical biases and have to be corrected against observations before
being used in impact assessments. Several bias correction (BC) methods have therefore been developed in the
literature over the last 2 decades, in order to adjust simulations according to historical records and obtain climate
projections with appropriate statistical attributes. Most of the existing and popular BC methods are univariate,
i.e., correcting one physical variable and one location at a time and, thus, can fail to reconstruct inter-variable,
spatial or temporal dependencies of the observations. These remaining biases in the correction can then affect
the subsequent analyses. This has led to further research on multivariate aspects for statistical postprocessing
BC methods. Recently, some multivariate bias correction (MBC) methods have been proposed, with different
approaches to restore multidimensional dependencies. However, these methods are not yet fully apprehended by
researchers and practitioners due to differences in their applicability and assumptions, therefore leading poten-
tially to different results. This study is intended to intercompare four existing MBCs to provide end users with
aid in choosing such methods for their applications. For evaluation and illustration purposes, these methods are
applied to correct simulation outputs from one climate model through a cross-validation method, which allows
for the assessment of inter-variable, spatial and temporal criteria. Then, a second cross-validation method is
performed for assessing the ability of the MBC methods to account for the multidimensional evolutions of the
climate model. Additionally, two reference datasets are used to assess the influence of their spatial resolution on
(M)BC results. Most of the methods reasonably correct inter-variable and intersite correlations. However, none
of them adjust correctly the temporal structure as they generate bias-corrected data with usually weak temporal
dependencies compared to observations. Major differences are found concerning the applicability and stability
of the methods in high-dimensional contexts and in their capability to reproduce the multidimensional changes
in the model. Based on these conclusions, perspectives for MBC developments are suggested, such as methods to
adjust not only multivariate correlations but also temporal structures and allowing multidimensional evolutions
of the model to be accounted for in the correction.

Published by Copernicus Publications on behalf of the European Geosciences Union.

2.2. Article published in Earth System Dynamics: Multivariate bias
corrections of climate simulations: which benefits for which losses?
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1 Introduction

Representing precisely the climate system and the interac-
tions between its components is a major challenge not only
for climate modellers but also for scientists working on im-
pact, mitigation and adaptation issues relating to climate
change. Indeed, it is now common that climate change im-
pact studies, e.g., in hydrology, environmental science or
economics, use global and regional climate model (GCM
and RCM) simulations as inputs into impact models. How-
ever, in spite of continued scientific progress in climate mod-
eling, climate simulations often remain biased compared to
observations (Christensen et al., 2008). This means that their
statistical attributes such as mean, variance, extreme or even
dependence structures between several variables and/or sites
can differ from those calculated based on historical records.
Therefore, using plain simulations can significantly affect the
results of impact studies.

To solve this issue, many statistical bias correction (BC)
methods have been developed, in order to correct the statis-
tical discrepancies of the simulations before climate change
assessment studies. Most of the BC methods in use are de-
signed to adjust univariate distribution features of climate
variables, such as the mean (e.g., Delta method, Xu, 1999),
the variance (e.g., simple scaling adjustment, Berg et al.,
2012) or quantiles (e.g., “quantile-mapping”, Haddad and
Rosenfeld, 1997). The last technique received notable suc-
cess, since it permits the adjustment of the mean, the vari-
ance and any quantile of the climate variables. Its theoret-
ical framework has been conducive to the development of
multiple versions of quantile-based methods (e.g., Panofsky
and Brier, 1958; Déqué, 2007; Gudmundsson et al., 2012;
Vrac et al., 2012). However, all these univariate BC meth-
ods are designed to correct variables independently, i.e., are
applied separately for each physical variable at each specific
location (e.g., grid cell). Although univariate distribution fea-
tures are adjusted according to references, it can generate
inappropriate multivariate situations where the dependence
structure between variables and sites is not corrected from the
model and misrepresented (Maraun, 2013) or even modified.
Ignoring the observed inter-variable and intersite dependen-
cies in the correction procedure can result in obtaining cor-
rected outputs with inappropriate physical laws and, thereby,
distorting the results of impact studies (Zscheischler et al.,
2019). It is therefore of paramount importance to adjust the
dependence structures of climate simulations, in addition to
1-dimensional characteristics, before using it in subsequent
studies.

These methodological issues have led up to the recent
development of a few multivariate bias correction (MBC)
methods. Not only do these methods adjust univariate dis-
tribution features, they also are aimed at correcting the de-
pendence structure of climate simulations. Recent studies
have shown that univariate BC methods can already pro-
vide adequate results for certain specific regional impact

studies (Yang et al., 2015; Casanueva et al., 2018) and that
using MBC methods does not necessarily present substan-
tial benefits (Räty et al., 2018). However, this does not call
into question the interest of MBC methods as these spe-
cific results cannot be generalized to each method and ap-
plication. In particular, MBC methods could be valuable in
larger-scale impact modeling frameworks such as compound
events, where the combination of physical processes across
multiple spatial and temporal scales leads to significant im-
pacts (Zscheischler et al., 2018). As mentioned by Vrac
(2018) and completed by Robin et al. (2019), MBC methods
may be grouped into three main categories of approaches:
the “marginal/dependence” correction approach, the “succes-
sive conditional” correction approach and the “all-in-one”
correction approach. The marginal/dependence category is
made up of multivariate bias adjustment methods correct-
ing separately the marginal distributions and the dependence
relationships of climate simulations (e.g., Bárdossy and Pe-
gram, 2012; Mehrotra and Sharma, 2016; Vrac, 2018; Na-
har et al., 2018; Cannon, 2018a). In the all-in-one category,
multivariate BC methods correct the 1-dimensional marginal
properties and dependence structures altogether at the same
time (e.g., Robin et al., 2019). At last, successive conditional
MBC methods perform successive corrections, conditionally
on the variables already corrected (e.g., Bárdossy and Pe-
gram, 2012; Dekens et al., 2017). In particular, this last cate-
gory has two major limitations. First, the quality of the cor-
rection can change depending on the ordering of the vari-
ables to correct (see, e.g., Piani and Haerter, 2012). Second,
the number of variables already corrected increases at each
iteration step, which progressively reduces the number of
data available for the correction, making it less and less ro-
bust. Accordingly, these methodological limits call into ques-
tion the applicability of successive conditional BC methods
for multivariate bias adjustment of high-dimensional climate
simulations.

Additionally to the methodological distinction described
above, the few existing multivariate BC methods are based
on the use of different statistical techniques. They may also
present differences in terms of assumptions and philosoph-
ical features, e.g., deterministic versus stochastic. Conse-
quently, the quality of the correction outputs can vary largely
from one method to another, depending on their characteris-
tics. It is hence crucial, in particular for end users, to carefully
evaluate the suitability of these multivariate BC methods and
identify their advantages and limits, not only between the dif-
ferent categories of methodological approaches but also be-
tween the different statistical techniques and assumptions. In
this study, we present an analysis of four multivariate BC
methods and assess their performances in terms of adjust-
ment of dependence structures for temperature and precipita-
tion time series. We focus in particular our intercomparison
on methods belonging to the marginal/dependence and the
all-in-one categories. Due to the previously mentioned lim-
itations of the successive conditional approach, no methods
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belonging to this category are investigated. The selected four
MBC methods present differences in terms of conceptual fea-
tures, statistical techniques used and assumptions. In partic-
ular, MBCs with different assumptions about nonstationar-
ity are selected, i.e., differing in how they consider the sim-
ulated multidimensional changes between present (i.e cali-
bration) and future (i.e., projection) periods in the correction
procedure. Moreover, in order to assess the potential bene-
fits of using multivariate BC methods relative to univariate
ones, one univariate quantile-mapping-based BC method is
included in the study as a benchmark. It provides a more ex-
tensive intercomparison framework in which quality of BC
outputs can be assessed and compared by evaluating univari-
ate, inter-variable, spatial and temporal properties, as well as
multidimensional changes.

In addition, each BC method is applied to correct climate
model outputs over France and three subregions according
to two distinct reference datasets with different spatial res-
olutions. This permits one to assess the potential influence
of the reference spatial resolution on bias correction results
and to delineate guidance on relevant good practices for end
users concerning this aspect.

This paper is organized as follows: Sect. 2 describes the
model and reference data used, and Sect. 3 presents the BC
methods intercompared. Then, Sect. 4 presents the experi-
mental setup used in this study, while Sect. 5 displays the
results of the intercomparison. Finally, our findings are sum-
marized, discussions are given and perspectives for future re-
search are proposed in Sect. 6.

2 Model and reference data

Institut Pierre-Simon Laplace (IPSL) coupled model (Marti
et al., 2010; Dufresne et al., 2013) daily data with a 1.25◦ by
2.5◦ spatial resolution are used in this study as model data to
be corrected. Simulations of the scenario of atmospheric CO2
concentration pathway associated with a radiative forcing of
+8.5 W m−2 (RCP 8.5 scenario, i.e., the scenario with high-
est CO2 concentration) are selected. Daily temperature (T2)
and precipitation (PR) time series from 1 January 1979 to
31 December 2016 are extracted over the geographical area
of France ([42, 51◦ N]× [−5, 10◦ E]), which corresponds to
321 continental grid cells.

As BC methods require a reference dataset to adjust the
simulations, daily temperature and precipitation time series
with a 0.5◦ by 0.5◦ spatial resolution are first used from
the “WATCH Forcing Data methodology applied to ERA-In-
terim data” (WFDEI) from the EU WATCH project (Weedon
et al., 2014) over the same geographical area of France. Note
that, as spatial resolution between WFDEI and IPSL-CM5
are different, IPSL model data are regridded by a nearest-
neighbor technique to associate each IPSL grid cell with its
nearest WFDEI grid cell center. Hence, in the following, the

IPSL data will be used at the 0.5◦ spatial resolution corre-
sponding to that of the WFDEI reference dataset.

To assess the influence of the reference spatial resolution
on BC results, we use another reference gridded dataset for
France with finer resolution: the “Systeme d’Analyze Four-
nissant des Renseignements Atmosphériques à la Neige”
(SAFRAN) reanalysis dataset (Vidal et al., 2010). Daily T2
and PR time series from SAFRAN have a 8 km× 8 km spa-
tial resolution and divide France into 8981 continental grid
cells. IPSL data are regridded to the 8 km× 8 km SAFRAN
resolution using the nearest-neighbor technique. Once re-
gridded IPSL simulations are obtained, each MBC method
can be applied. However, as some MBC algorithms have dif-
ficulties in practice in very high-dimensional contexts (here
for 8981 grid cells), we restrict the application of MBCs with
SAFRAN reference dataset over the Brittany region, located
in the northwest part of France ([47, 49◦ N]× [−5, 2◦ E]),
which corresponds to 345 continental grid cells. Note that
we selected this subregion of Brittany for SAFRAN, i.e., at
fine resolution, in order to have a similar number of grid cells
as for France selected with the WFDEI reference dataset, i.e.,
at coarser resolution. MBC methods have also been applied
and evaluated over two others subregions of 345 grid cells
located, respectively, around the Paris area and in southeast
France. For the sake of clarity, as same results were obtained
for each of the subregions, we will only present the results
for Brittany in the rest of this study.

3 Multivariate bias correction methods

This section presents a brief description of the univariate BC
method and the four multivariate BC methods implemented
in this study. As a reminder, results from the univariate CDF-t
method serve as a benchmark to measure the benefits of con-
sidering multivariate aspects in the correction procedure in-
stead of using univariate BC methods. For the sake of clarity,
Table 1 provides a concise summary of the different attributes
that make the BC methods distinct.

3.1 Cumulative Distribution Function – Transform
(CDF-t)

The “Cumulative Distribution Function – Transform”
(CDF-t) method is a univariate BC method initially proposed
by Michelangeli et al. (2009) to correct the univariate distri-
bution of a modeled climate variable. Since then, CDF-t has
been applied for various studies (e.g., Tramblay et al., 2013;
Tobin et al., 2015; Defrance et al., 2017; Famien et al., 2018;
Guo et al., 2018) and specific variants have been developed
(e.g., Kallache et al., 2011; Vrac et al., 2016). The CDF-t ap-
proach applies, independently to each variable, a univariate
transfer function T , which permits one to link the cumula-
tive distribution function (CDF) of a variable of interest in
the model simulations to that of the reference dataset. By as-
suming that T is valid in a climate different from that of the
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Table 1. Summary of attributes of the different bias correction methods. Not-applicable (n/a) is indicated when the statement in rows does
not apply.

Characteristics CDF-t R2D2 dOTC MBCn MRec

Type of BC 1d-BC MBC MBC MBC MBC

Category of n/a Marginal/ All-in-one Marginal/ All-in-one
MBC dependence dependence

Statistical Nonstationary Conditional
Optimal transport

Iterative partial
Matrix recorrelation

technique quantile mapping resampling matrix recorrelation

Dependence ∼ same as ∼ same as Allows changes in Allows changes in Allows changes in the
structure the model the reference the dep. struct. the dep. struct. Gaussian dep. struct.

Conceptual
Deterministic

Deterministic
Stochastic

Deterministic
Deterministic

feature and stochastic and stochastic

calibration period, a new CDF for the bias-corrected variable
over the projection period is generated. Then, a quantile–
quantile approach is performed between the new (reference)
CDF and the CDF from the model simulations during the
projection period to derive bias-corrected data. This two-step
procedure permits one to take into account potential changes
(between calibration and projection periods) of the univariate
distribution in the correction procedure. For the special case
of precipitation, the “Singularity Stochastic Removal” ver-
sion of CDF-t (Vrac et al., 2016) is applied to correct both
precipitation occurrences and intensities. More details about
CDF-t can be found in Appendix A. In the following subsec-
tions, the four MBC methods are presented.

3.2 Rank Resampling For Distributions and
Dependences (R2D2)

The “Rank Resampling For Distributions And Dependences”
(R2D2) method, developed by Vrac (2018) in the context
of marginal/dependence category, is an extension of the
“Empirical Copula – Bias Correction” (EC-BC; Vrac and
Friederichs, 2015) method. R2D2 is based on a reordering
technique named the Schaake Shuffle. Originally described
by John C. Schaake in 2002, it was introduced in the sci-
entific literature by Clark et al. (2004) to postprocess tem-
perature and precipitation forecasts from numerical weather
prediction models. This shuffling technique consists of re-
ordering a sample such that its rank structure corresponds
to the rank structure of a reference sample and, thus, allows
the reconstruction of multivariate dependence structures. The
Schaake Shuffle has already been applied for various appli-
cations in climate science, such as ensemble postprocessing
(e.g., Möller et al., 2013; Schefzik et al., 2013), and in numer-
ous studies (e.g., Voisin et al., 2010; Verkade et al., 2013).
According to the marginal/dependence category to which it
belongs, the R2D2 method performs first a univariate correc-
tion to adjust the marginal distribution of each climate vari-
able. In this study, CDF-t is used for this first step, but it has

to be noted that other univariate methods can be employed.
Instead of directly applying the Schaake Shuffle and repro-
ducing the temporal structure of the reference (as in Vrac and
Friederichs, 2015), the method introduces some variability to
the timing of the events, by allowing for the possibility to se-
lect a “reference dimension” for the Schaake Shuffle, i.e., one
physical variable at one given site, for which rank chronol-
ogy remains unchanged. Reconstruction of inter-variable and
spatial correlations of the reference is then performed using
the Schaake Shuffle with the constraint of preserving the rank
structure for the reference dimension. Note that the R2D2

method can generate as many corrections as the number of
variables to be corrected and all with identical inter-variable
and spatial dependencies but with different temporal struc-
tures, depending on the selected reference dimension. Hence,
R2D2 introduces some stochasticity in the bias correction.
For practical reasons, in the following, we will reduce the
number of corrected outputs: only R2D2 corrections with ref-
erence dimensions located either in Paris or in the center of
Brittany (respectively, for France and Brittany regions) will
be analyzed in Sect. 5. It must also be noted that by using
the Schaake Shuffle technique, R2D2 assumes by construc-
tion the inter-variable and spatial dependence structures (i.e.,
the rank correlations, or copulas) to be stable in time. Some
more mathematical details about R2D2 are expressed in Ap-
pendix B.

3.3 Dynamical Optimal Transport Correction (dOTC)

The “Dynamical Optimal Transport Correction” (dOTC)
method was developed by Robin et al. (2019), in the all-in-
one category, i.e., correcting the marginal distributions and
dependence structures altogether at the same time. Based on
optimal transport theory, it is a generalization of the uni-
variate quantile mapping techniques to the multivariate case.
dOTC is aimed at constructing a multivariate transfer func-
tion, called a transport plan, to perform bias correction by
minimizing a cost function associated with the transforma-
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tion of a multivariate distribution to another. Multivariate
distribution of a biased random variable and its correction
are linked together through this particular transfer function,
where for any value of the variable to correct is associated
a conditional law linking the biased value and its correction.
Corrections are then picked (partially) randomly from these
conditional laws, introducing some stochasticity into the bias
correction procedure.

As for univariate quantile mapping, the way the transfer
function is constructed for dOTC plays a decisive role in the
obtained bias correction outputs. As explained before, the
univariate method CDF-t is able to learn the change in uni-
variate distributions between the calibration and the projec-
tion periods for the climate model and transfers this change
to the observational world. Following this philosophy in a
multivariate context, dOTC is designed to learn not only the
change in univariate distributions but also the change in mul-
tidimensional properties of the model and allows them to
be transferred the corrections. Contrary to R2D2, it assumes
nonstationarity of the dependence (copula) structure between
the calibration and the projection periods and permits the
evolution of the model (e.g., induced by climate change) to
be taken into account in the bias correction procedure. More
explanations about dOTC are given in Appendix C.

3.4 Multivariate Bias Correction with N-dimensional
probability density function transform (MBCn)

The “Multivariate Bias Correction with N -dimensional
probability density function transform” (MBCn) was de-
veloped by Cannon (2018a) in the context of the
marginal/dependence category. Based on an adaptation of
an image processing algorithm used to transfer color infor-
mation, MBCn permits one to transfer statistical character-
istics of a reference multivariate distribution to the multi-
variate distribution of climate model variables. Being part
of the marginal/dependence category, univariate distributions
of climate variables are first adjusted using a 1-dimensional
BC (1d-BC) method. For this step, MBCn uses the quantile-
delta mapping method (QDM; Cannon et al., 2015) that pre-
serves absolute or relative changes in quantiles, e.g., for, re-
spectively, variables like temperature or ratio variables like
precipitation. Once univariate distributions are corrected, the
dependence structure is adjusted by using an iterative pro-
cess. At each step, data are multiplied by random orthogo-
nal rotation matrices to partially decorrelate the climate vari-
ables to correct. QDM corrections are then applied on (par-
tially) decorrelated data before the recorrelation step with the
inverse random matrices. This step (i.e., including rotation,
QDM corrections and back rotation) is repeated iteratively
until convergence is reached between the multivariate distri-
butions of reference and climate simulations during the cali-
bration period. Indeed, those iterations permit correcting the
dependence structure of the model. Moreover, by doing so –
and similarly to dOTC – MBCn allows changes in the depen-

dence structure to be in accordance with the model changes.
More details about MBCn can be found in Appendix D.

3.5 Matrix recorrelation (MRec)

Bárdossy and Pegram (2012) presented an MBC, hereafter
referred to as “matrix recorrelation” (MRec). The latter lies
in the all-in-one category and relies on a matrix recorrela-
tion technique. The MRec method consists of first transform-
ing separately each variable of both model and references
to the univariate normal distribution with Gaussian quantile–
quantile method. This transformation step is particularly ap-
propriate for variables with mixed distributions (e.g., pre-
cipitation composed of wet and dry days), for which com-
puting a Pearson correlation matrix on Gaussianized data
instead of raw data permits their dependence structure to
be better described. Then, a combination of “decorrelation”
and “recorrelation” steps using decompositions of correla-
tion matrices through singular value decomposition (SVD,
Beltrami, 1873; Jordan, 1874a, b; Stewart, 1993) is applied
on the Gaussianized model data, forcing its Pearson correla-
tion matrix to match that of the Gaussianized observed data
during the calibration period. For the projection period, the
same “decorrelation–recorrelation” matrix is directly applied
on Gaussianized model data, which permits the preservation
of, for the projection period, the potential changes in corre-
lations as simulated by the model. Finally, for both periods,
a quantile–quantile back transformation is applied separately
for each variable between recorrelated variables and refer-
ences to correct marginal distributions. See Appendix E for
more details.

Contrary to the R2D2, dOTC and MBCn methods pre-
sented previously, MRec differs in being designed to cor-
rect only a particular feature of the multivariate dependence
structure, here Pearson correlations. Implicitly, it makes the
assumption that Pearson correlation values are sufficient to
determine the full multivariate dependence structure, which
can be called into question for variables with skewed and
heavy tailed distributions (like precipitation) and with poten-
tially complex interactions that Pearson correlation cannot
capture as a whole. For this reason, implementing the MRec
algorithm in the present intercomparison study permits the
comparison of the performances of an MBC method based
on such an assumption relative to methods intended to cor-
rect the non-Gaussian dependence structure of climate simu-
lations.

4 Design of Experiments

4.1 Settings of MBCs

Multivariate BC methods can be implemented in different di-
mensional configurations, depending on the need of the users
to correct inter-variable and/or spatial correlations. However,
in most cases, multivariate BC methods are applied grid cell
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by grid cell by practitioners to correct inter-variable prop-
erties of climate simulations, disregarding spatial structures
(e.g., in Meyer et al., 2019; Guo et al., 2019). We not only
tested and assessed this approach for each method but also
expanded the study to include high-dimensional configura-
tions of MBC to adjust spatial and full (i.e., spatial and inter-
variable jointly) dependence structures of climate simula-
tions. Depending on the dimensional configurations, the ob-
jectives of corrections for multivariate properties differ. In-
cluding different dimensional versions in the study will per-
mit one to better highlight the potential losses and benefits
associated with them. Therefore, in the following each of the
four MBC methods is applied according to the three follow-
ing configurations:

– a 2-dimensional (hereinafter referred to as “2d-”) ver-
sion, for which the MBC method is applied indepen-
dently at each grid cell but jointly corrects both temper-
ature and precipitation time series. For example, to cor-
rect a climate dataset of 321 grid cells, the MBC method
is performed 321 times, i.e., for each grid cell across the
whole grid. By doing so, 2d- versions are aiming to cor-
rect inter-variable correlations within each grid cell.

– a spatial-dimensional (hereinafter referred to as
“Spatial-”) version, where all time series for a partic-
ular physical variable are corrected jointly but indepen-
dently from the other physical variable. Hence, for this
version, the MBC method is performed twice, adjusting,
on the one hand, all time series for temperature and, on
the other hand, all time series for precipitation. Thus,
Spatial- versions are designed to adjust spatial correla-
tions of climate models for each physical variable sepa-
rately.

– a full-dimensional (hereinafter referred to as “Full-”)
version, where all time series are corrected jointly over
the entire grid for both temperature and precipitation.
The MBC method is hence applied only once and is in-
tended to correct together the inter-variable and spatial
correlations of the simulations.

Regarding the initial settings for MBCn, preliminary tests
have been conducted with different dimensional settings to
find the number of iterations ensuring the convergence of the
algorithm depending on the dimensional configuration. With
respect to the results of these tests (not shown), the number
of iterations has been chosen to be equal to 50 for 2d- con-
figurations and 200 for both Spatial- and Full- versions.

4.2 Protocols of bias correction

In this study, the BC methods presented above are applied
to correct IPSL GCM simulations with either the WFDEI
(0.5◦× 0.5◦) or the SAFRAN (8 km× 8 km) data as ref-
erences. Data are available for the period 1979–2016, i.e.,

38 years, and are divided into two intervals of 19 years:
1979–1997 and 1998–2016. As a reminder, daily tempera-
ture and precipitation times are corrected on 321 and 345
grid cells for France and Brittany regions, respectively. For
each method, bias correction is performed separately for the
12 months in order to preserve seasonal properties.

The first protocol in this study takes advantage of the
cross-validation technique to generate bias-corrected outputs
for the period 1979–2016. Dividing the time period into two
parts permits one to perform a 2-fold cross-validation proce-
dure: the 1979–1997 period is first defined as the calibration
period, and the 1998–2016 portion, called the projection pe-
riod, is used for out-of-sample validation. Swapping of the
two periods is then done, so that each period has been used
once for calibration and once for validation. Bias correction
for the period 1979–2016 is then achieved by assembling the
adjusted outputs for the projection periods obtained at each
step. This 2-fold protocol, largely used in the climate sci-
ence literature (e.g., in Cannon, 2018a), allows one to reduce
overfitting by using two distinct subperiods and is hence well
suited to evaluate our results. However, by adjusting the pe-
riod 1979–1997 according to the 1998–2016 period, this pro-
tocol presents the drawback of potentially hiding the climate
change signal present in the model. Thus, proper assessment
of the multidimensional properties evolutions cannot be con-
ducted via this procedure.

Hence, to evaluate the nonstationary behavior of BC meth-
ods, a second protocol is defined. Similarly to the first proto-
col, the 1998–2016 period is corrected by using the 1979–
1997 portion as calibration period. However, here, 1979–
1997 simulations are corrected directly with respect to the
1979–1997 references, i.e., without cross-validation. Hence,
the potential climate change signal is not distorted by unde-
sirable effects resulting from the protocol procedure, allow-
ing for the appropriate assessment of change aspects of the
BC methods between the two periods.

In accordance with common practice, thresholding of
1 mm for precipitation time series is applied before evalua-
tion to replace values lower than 1 mm by 0 after correction.

5 Results

The correction outputs are evaluated according to different
characteristics designed to focus on (i) marginal, (ii) inter-
variable, (iii) spatial, (iv) temporal and (v) nonstationary
properties. Characteristics (i)–(iv) are evaluated on the 1979–
2016 period for the adjusted outputs obtained according to
the 2-fold protocol and are compared to those from the ref-
erence dataset. However, regarding nonstationary properties,
corrected outputs from the second protocol are used, and re-
sults are compared to the simulations to highlight the perfor-
mances of the MBC methods regarding their capability to re-
produce (or not) the multidimensional changes in the model
between the 1979–1997 and 1998–2016 periods.
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In the following, evaluation is presented for the winter sea-
son (December–January–February) only, as conclusions re-
main generally the same for the other seasons. However, in
order to provide nuances, additional results for the summer
season (June–July–August) are displayed in the Supplement
when needed.

5.1 Univariate distributions properties

First, bias-corrected data are evaluated relative to univariate
statistics. To do so, for temperature and precipitation, the dif-
ference of mean values between the bias correction and the
reference at each grid cell is computed. The same computa-
tion is also made for standard deviation. Absolute difference
is calculated for temperature mean, while relative difference
is more appropriate for precipitation mean as well as for stan-
dard deviation of both physical variables. Results are shown
with boxplots for the plain IPSL simulations and for a se-
lection of BC outputs in Fig. 1 for France during the winter
season. The results for Brittany during winter are presented
in Fig. S1 of the Supplement. As marginal/dependence MBC
methods correct univariate properties independently from the
dependence structure, results for their 1-dimensional char-
acteristics are equivalent between the three different dimen-
sional configurations (2d-, Spatial- and Full-). Therefore, to
avoid redundancy, results for R2D2 and MBCn are presented
for only one arbitrary dimensional configuration, the other
configurations giving the exact same mean and standard devi-
ation results. Clearly, Fig. 1 shows large differences between
the IPSL simulations and the references for both tempera-
ture and precipitation and illustrates the necessity to adjust
1-dimensional distributions of the model before using it in
subsequent analyses. Multivariate BC methods implemented
in this study display different performances in adjusting the
univariate properties. In agreement with the properties of
the marginal/dependence MBC methods, R2D2 and MBCn
present exactly the same results as the 1d-BC methods they
use, i.e., respectively, CDF-t (shown) and QDM (not shown).
With regard to the performances of dOTC and MRec, some
instabilities are found relative to the dimensional configu-
ration. For dOTC, increasing the number of dimensions to
correct from 2d- to Full- seems to have a slight but non-
negligible cost on the correction of mean and standard devia-
tion (Fig. 1b and c). However, depending on both the climate
variable and the statistical feature, the increasing deteriora-
tion with respect to the dimensional setting is not systemati-
cally observed, as it can be seen in Fig. 1a and d. Concerning
MRec, a slight deterioration of correction is often observed
from 2d- to Spatial- versions (Fig. 1b, c and d). Regarding
the Full- version, the MRec algorithm produces results that
are clearly unsatisfactory. Instead of improving the simula-
tions, Full-MRec corrections strongly degrade the univariate
statistics. This underperformance of the MRec method over
France appears in a context of high-dimensional correction
when the number of available data is not large enough com-

pared to the number of dimensions. In this case, the inverses
of high-dimensional sample covariance matrices are a highly
biased estimator of the inverse of covariance matrices, which
consequently largely affects the quality of the Full-MRec
corrections. Anyhow, the increasing degradation, whether it
is slight or not, of univariate distribution corrections in high-
dimensional contexts is one (undesirable) feature of all-in-
one methods, here observed for dOTC and MRec. Indeed,
all-in-one methods are designed to adjust both univariate dis-
tributions and dependence structure of climate simulations at
the same time, which involves a possible deterioration of 1-
dimensional marginal distributions during the combined cor-
rection process.

For Brittany, the same conclusions hold for R2D2, dOTC
and MBCn, indicating no particular influence of spatial reso-
lution on the results of the marginal statistics adjustment for
these methods. Nevertheless, quite interestingly, for the Full-
MRec outputs, the underperformance observed for France is
not obtained for Brittany (Fig. S1). A possible reason ex-
plaining why Full-MRec version is presenting adequate re-
sults on this particular region (and the two other subregions,
not shown) concerns the size of its geographical area and will
be discussed in more detail in Sect. 6.2.

5.2 Inter-variable correlations

To evaluate inter-variable dependence structure, Spearman
correlations between temperature and precipitation are com-
puted at each grid cell to measure the monotonic relationship
between the two physical variables. Using rank correlation
presents the particularity of not being value dependent; i.e.,
it measures the dependence between two variables rid of their
univariate distributions. As the goal when applying MBC is
to adjust not only the univariate distributions but also the de-
pendence structure between the variables of interest, Spear-
man’s correlation is appropriate for this latter aspect. More-
over, this measure does not require any assumption about the
distribution of the variables or their statistical relationships. It
is hence appropriate for temperature and precipitation stud-
ies presenting extreme values and/or a lower bound (Vrac
and Friederichs, 2015). The maps of the Spearman correla-
tion differences with respect to the reference – for the IPSL
model and the bias-corrected data – are displayed in Fig. 2 for
both France and Brittany. Initial maps of Spearman correla-
tions, i.e., without differences with respect to the reference,
are also provided in Fig. S2.

For France, the map for the IPSL simulations (Fig. 2b1)
indicates strong differences with respect to the WFDEI map
(Fig. 2a1). As the univariate CDF-t method does not mod-
ify rank sequence of temperature and precipitation time se-
ries, it globally conserves both the rank correlation intensi-
ties and structures of the IPSL model for each region and
does not provide any correction of this aspect (Fig. 2c1). By
construction, clear improvements of the inter-variable corre-
lation structure are provided by 2d- versions (Fig. 2d1, g1, j1
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Figure 1. Boxplots of (a, b) mean and (c, d) standard deviation differences for (a, c) temperature (T2) and (b, d) precipitation (PR) during
winter over the 1979–2016 period for France (WFDEI reference). Results are shown for plain IPSL, CDF-t, R2D2, dOTC (2d-, Spatial- and
Full- versions), MBC-n and MRec (2d-, Spatial- and Full- versions) outputs. Red asterisks indicate values lying outside the plotted range.

and m1). This is also the case for most of the Full- configura-
tions of MBCs (respectively, Fig. 2f1, i1, l1) despite possible
differences in intensities. Note that maps of correlation dif-
ferences for 2d-R2D2 (Fig. 2d1) and Full-R2D2 (Fig. 2f1)
are identical. Indeed, for the inter-variable aspect, the 2d-
version is nested within the Full- configuration (see Vrac,
2018), due to the use of the reordering technique in R2D2.
Also, for R2D2, the choice of the reference dimension does
not have any impact on results in the inter-variable context,
as it only modifies the rank chronology of time series. As
expected from previous explanations, the map for the Full-
version of MRec (Fig. 2o1) indicates a strong deterioration
of the inter-variable correlation structure. It highlights again
the inability of the method to work properly for France in this
dimensional setting. Concerning Spatial- versions of MBCs
(Fig. 2e1, h1, k1 and n1), as they adjust the whole simulated
field of temperature and precipitation separately, they disre-
gard inter-variable relationships. It results in BC outputs with
strongly weakened inter-variable correlations structures.

Regarding Brittany, the same conclusions can be drawn for
R2D2 and dOTC, for which spatial resolution does not affect
the results of inter-variable properties adjustment. As noted
previously, Full-MRec over Brittany provides more satisfac-
tory results than those obtained over France, which are in
line with those obtained for R2D2 and dOTC. However, for
MBCn outputs, a degrading effect from 2d- (Fig. 2j2) to
Full- (Fig. 2l2) is observed, in providing a corrected corre-

lations’ structure but with underestimated intensities in the
high-dimensional context.

5.3 Spatial correlations

To assess the quality of the corrections in terms of spatial
correlations, mean correlograms, i.e., mean Spearman corre-
lation in function of distance, are computed for temperature
and precipitation separately after removing daily areal mean.
Indeed, climate variables can present a high day-to-day vari-
ability that can affect the evaluation of spatial criteria if not
removed (e.g., Vrac, 2018).

Figure 3 and S3 show the results obtained for, respec-
tively, precipitation and temperature for the different climate
datasets. Note that the choice of the reference dimension for
R2D2- versions modifies results for temporal criteria and,
consequently, for some of the spatial criteria. Hence, in the
rest of this work, results from R2D2- versions are presented
with the reference dimension corresponding to the variable
under interest. For the sake of brevity, results for precipita-
tion are mainly discussed in this subsection, and nuances are
made when different results are obtained for temperature.

For France, the IPSL precipitation correlogram is fairly
distinct from the WFDEI one. The univariate method CDF-t,
by simply adjusting univariate distributions, gets closer to the
reference dataset (Fig. 3a1), which may be here confusing.
Indeed, although CDF-t adjusts the univariate distributions, it
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Figure 2. Differences of temperature vs. precipitation Spearman correlation computed at each grid cell for BC methods using (a1–
o1) WFDEI reference and (a2–o2) SAFRAN reference during winter over the 1979–2016 period. Results are shown for reference, plain
IPSL, CDF-t, R2D2, dOTC, MBC-n and MRec outputs for 2d-, Spatial- and Full- versions. Note that the color scales between panels (a1)–
(o1) and (a2)–(o2) are not the same to better emphasize intensities of values in the two regions.

is supposed to preserve the rank sequence of the simulations,
and therefore spatial correlations are disregarded during the
BC procedure. But, as the Singularity Stochastic Removal
version of CDF-t (Vrac et al., 2016) is explicitly designed to
improve dry days frequency, the method consequently mod-
ifies rank correlations, which results here in an improvement
of spatial statistics for precipitation. Also, an additional rea-
son is that the correction of the univariate distributions pro-
vided by CDF-t associated with the removing of daily areal
means modifies ranks of the data, resulting in getting a cor-
relogram closer to that from the reference dataset, and so im-
proves intersite variability.

Correlograms of 2d- versions (dotted) for the four MBC
methods (Fig. 3b1, c1, d1 and e1) show results equivalent
to CDF-t. Indeed, 2d-configuration MBCs adjust univariate
distributions and inter-variable correlations without modify-
ing spatial correlations. The improvements of correlograms
for 2d- versions thereby illustrate again that the correction of
univariate distributions improves spatial statistics for France.
Particularly, 2d-R2D2 results (Fig. 3b1) are, by construction,
exactly the same as those from CDF-t (Vrac, 2018). Indeed,
by construction, 2d-R2D2 driven by precipitation preserves

Spearman spatial correlations from CDF-t for the precipi-
tation variable. Note that, however, it is definitely not the
case for temperature spatial structure (not shown) when 2d-
R2D2 is driven by precipitation. Indeed, for 2d-R2D2 outputs
driven by a specific physical variable, spatial structures of the
“other” variable are strongly degraded by the reordering step.

Correlograms associated with outputs of Spatial- and Full-
versions for R2D2 (Fig. 3b1) nicely fit the one from the ref-
erence dataset – even at long distances – and provide major
improvements in adjusting the spatial properties of the sim-
ulations. However, for similar reasons as those explained for
2d-R2D2, undesirable degradation effects on spatial cross-
correlation between temperature and precipitation are ob-
tained for Spatial-R2D2 outputs (not shown). Therefore, it
indicates that practitioners must favor the use of Full-R2D2

for their applications. With regard to Spatial- and Full-dOTC
(Fig. 3c1) and Spatial-MRec (Fig. 3e1), although correlo-
grams are very close to those from the reference dataset,
they provide slightly less pronounced improvements com-
pared to the 2d- versions, suggesting a slight degrading effect
on results for these methods by considering more variables in
the correction. As expected, the correlogram associated with
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Figure 3. Correlograms for precipitation using (a1–e1) WFDEI reference for France and (a2–e2) SAFRAN reference for Brittany during
winter over the 1979–2016 period. Results are shown for reference (circles) and plain IPSL (black line). Results are displayed for CDF-t,
R2D2, dOTC, MBC-n and MRec outputs for 2d- (dotted), Spatial- (dashed) and Full- versions (solid lines).

Full-MRec outputs is away from reference data, indicating
once again the dysfunction of the MRec method for France.
For Spatial- and Full-MBCn (Fig. 3d1), at long distances,
similar improvement of spatial correlations are provided as
those from dOTC. However, large deviations between cor-
relograms are found for short distances, suggesting a failure
for the MBCn method to adjust local spatial properties in a
high-dimensional context.

For Brittany, same conclusions hold for R2D2 (Fig. 3b2),
presenting again a stability of results regardless of both the
spatial resolution and the geographical area considered. For
dOTC (Fig. 3c2), Spatial- and Full- versions now provide
major improvements of spatial correlations compared to their
2d- versions and present results similar to Spatial- and Full-
R2D2. With regard to MRec (Fig. 3e2), the dysfunction of the
Full- version is no longer observed. It now provides results
similar to Spatial-MRec and better than 2d-MRec. However,
it is worth mentioning that, for Brittany, different results are

obtained with MRec between precipitation and temperature
spatial corrections. While, for temperature, Spatial-MRec
outputs (Fig. S3e2) provide reasonable results with a correlo-
gram relatively close to the one of the reference data, a more
moderate improvement of intersite variability is obtained for
precipitation (Fig. 3e2). Explanations for these results will be
provided in Sect. 6.2. Regarding MBCn (Fig. 3d2), large de-
viations between correlograms are found for both short and
large distances, underlining some instability of the algorithm
to adjust for spatial correlations.

5.4 Temporal structure

The different MBC methods implemented here are not in-
tended to adjust temporal structures. Indeed, these multivari-
ate procedures adjust multivariate distributions without ac-
counting for any temporal information. However, although
the temporal structures are not adjusted according to the ref-
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erence, MBCs necessarily modify the rank sequences of the
simulations (Vrac, 2018). This modification is not performed
in the same way depending on the MBC or the dimensional
configuration used and remains therefore to evaluate. To do
so, 1 d lag Pearson autocorrelations are computed at each grid
cell for temperature and precipitation. The resulting maps of
differences with respect to the reference for the different cli-
mate datasets are displayed in Fig. 4 (resp. Fig. S4) for tem-
perature (resp. precipitation).

For France, IPSL temperature autocorrelations differences
(Fig. 4b1) are small, indicating a relative agreement of IPSL
with the WFDEI reference dataset (Fig. 4a1), showing equiv-
alent high values. A similar differences map is provided by
CDF-t outputs (Fig. 4c1). It is however not the case for pre-
cipitation (Fig. S4c1), for which a decrease of autocorrela-
tion values is observed over France with respect to the ref-
erence and to the model. Although not observed for temper-
ature, it highlights that the univariate correction could have
a non-negligible effect on Pearson autocorrelation. Interest-
ingly, 2d- versions (Fig. 4d1, g1, j1 and m1) do not lead
to a strong modification of temporal properties with respect
to CDF-t. However, from one method to another, temporal
structure modifications are not equivalent for Spatial- and
Full- versions. For dOTC and MBCn (Fig. 4h1, i1, k1 and
l1), as the number of dimensions increases, the temperature
autocorrelations seem to be more and more modified, with
intensities of values decreasing slightly from Spatial- to Full-
versions. This result can also be seen for precipitation in
Fig. S4. With regard to MRec, its Spatial- version (Fig. 4n1)
presents similar results as those obtained from Spatial-dOTC
and Spatial-MBCn. Also, as expected, Full-MRec outputs
(Fig. 4o1) do not provide sensible results due to the inability
of the method to work properly over the whole of France.
Concerning R2D2, as the reference dimension driving the
rank sequence is the same between Spatial- and Full- con-
figurations, same differences of autocorrelation maps are ob-
tained for these two versions (Fig. 4e1 and f1). Moreover, the
autocorrelation value in the grid cell of the reference dimen-
sion, i.e., located over Paris for France, is exactly equal to
the corresponding one in the CDF-t outputs, by construction.
Remarkably, as mentioned by Vrac (2018), autocorrelations
of the CDF-t outputs are partially reproduced around the spe-
cific locations of the reference dimensions for Spatial-R2D2

and Full-R2D2 versions, as evidenced by the lightly shaded
area around Paris. This reflects the existing spatial correla-
tions between the reference dimension and its local neigh-
borhood, which results in partially reproducing the temporal
properties of the model over this area. However, for precipi-
tation (Fig. S4e1 and f1), this result is not as clear-cut as it is
for temperature, probably due to weaker spatial correlations
around Paris for this physical variable.

In a general way, the same conclusions can be drawn for
Brittany, sometimes even better illustrated due to a narrower
color scale. The results for Full-MRec are easier to interpret.
They present results similar to those from 2d- and Spatial-

MRec (Fig. 4o2). In particular, this indicates that, contrary
to dOTC and MBCn, MRec does not present an increas-
ing modification of temperature autocorrelations from 2d- to
Full- versions.

To better understand the results obtained from Fig. 4, fur-
ther explanations are required. The relative agreement of
Pearson autocorrelation values between the reference and
IPSL dataset shown in Fig. 4 might lead one to believe that
temporal properties of the model are quite correct for tem-
perature, which is in reality misleading for two main rea-
sons. First, 1 d lag Pearson autocorrelation permits one to
assess only a particular feature of the temporal properties,
which is obviously insufficient to draw any general conclu-
sions about the quality of simulations concerning these as-
pects. For example, by simply computing Pearson temper-
ature autocorrelations for higher lag values, a discrepancy
of results is obtained between the reference and the simula-
tions (not shown). Second, Pearson autocorrelations depend
on two statistical characteristics of time series: their variabil-
ity and their temporal rank structures. As implemented in
Fig. 4, the Pearson autocorrelation metric is hence not able to
dissociate them. The similarity between reference and model
autocorrelations can then potentially be the combined result
of errors stemming from both biased univariate distributions
and wrong rank structures of the model.

To better assess temporal structure changes brought by
MBCs, the calculation of rank correlations between the bias-
corrected time series and the raw climate model simulations
is performed for each physical variable and at each grid cell.
Results for temperature and precipitation are displayed with
boxplots, respectively, in Figs. 5 and S5. The closer the val-
ues of the boxplots are to 1, the closer the rank chronolo-
gies of the MBC outputs are to the rank chronologies of
the model. For France, as expected, similar temperature rank
structures are observed between the model and CDF-t/2d-
R2D2 outputs (Fig. 5a). For the other 2d- versions, rank cor-
relation values are quite close to 1 as well, suggesting that
dOTC, MBCn and MRec methods in their 2d- configuration
modify only slightly the rank structure of the initial sim-
ulations. For Spatial- and Full- configurations, dOTC and
MBCn change moderately the rank structures even though
they consider more dimensions in the correction. Concern-
ing MRec, without analyzing the Full- outputs, the increasing
modification with dimensionality is also observed between
2d- and Spatial-MRec outputs, although less pronounced. In
contrast, for Spatial- and Full-R2D2 outputs, the changes in
the rank structures for France are substantially larger than
those discussed until now. This result is also obtained for pre-
cipitation in Fig. S5a with an even larger range. The princi-
pal reason lies in the fact that, as already explained, R2D2

partially preserves rank sequences of the CDF-t outputs –
and therefore of the IPSL model – in the direct neighbor-
hood of the reference dimensions but strongly modifies the
rank structures outside this neighborhood, which results in
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Figure 4. Differences of order 1 Pearson autocorrelation for temperature using (a1–o1) WFDEI reference and (a2–o2) SAFRAN reference
during winter over the 1979–2016 period. Results are shown for reference, plain IPSL, CDF-t, R2D2, dOTC, MBC-n and MRec outputs
for 2d-, Spatial- and Full- versions. Note that the color scales between panels (a1)–(o1) and (a2)–(o2) are not the same to better emphasize
intensities of values of the two regions.

Figure 5. Boxplots of rank correlations computed at each grid cell between the bias-corrected and the raw climate model time series, for
temperature, using (a) WFDEI for France and (b) SAFRAN for Brittany region during winter over the 1979–2016 period. Results are shown
for CDF-t, R2D2, dOTC, MBC-n and MRec outputs for 2d-, Spatial- and Full- versions.
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obtaining some low Spearman correlation values in Figs. 5a
and S5a.

For Brittany, results show a less pronounced modification
of rank structure for both temperature (Fig. 5b) and precipi-
tation (Fig. S5b) than those observed for France. In particu-
lar for temperature, similar rank correlations are obtained for
all versions of the methods, even for Spatial- and Full-R2D2

outputs, indicating that the number of dimensions has poten-
tially a nonsignificant effect on this criterion over a smaller
area. The differences of results between France and Brittany
highlight that the size of the region of interest seems to have
a non-negligible influence on the temporal properties of BC
outputs.

5.5 Multidimensional changes analysis

When correcting climate simulations, in practice, while cli-
mate simulations for the present period are adjusted with
respect to observations, no reference data are available for
the correction of future periods. Assumptions of either sta-
tionarity or nonstationarity of copula are then made within
the MBCs concerning the change in the multidimensional
features between present and future periods. This has then
consequences on how MBCs can account for the changes in
the multidimensional properties of the climate simulations.
Therefore, using the second protocol defined in Sect. 4.2, we
now focus on how the different MBC methods reproduce the
change in inter-variable and intersite structures, as given by
the model to be corrected between two different periods.

5.5.1 Analysis of change in inter-variable correlations

Figure 6 shows, for the bias-corrected outputs, the maps of
the difference between the Spearman correlation between
temperature and precipitation, computed for the calibration
(1979–1997) and the projection (1998-2016) period, respec-
tively. It permits one to visually assess part of the change in
the inter-variable dependence structure. Over France, inter-
variable change in the IPSL simulations (Fig. 6b1) seems to
be distinct from those of WFDEI (Fig. 6a1). CDF-t outputs
(Fig. 6c1) reproduce globally the change in the simulations,
as they present similar maps. Concerning results for the 2d-
(Fig. 6d1) and Full- versions (Fig. 6f1) of R2D2, they present
inter-variable rank correlation values close to 0. This illus-
trates the stationarity assumption in R2D2: the copula func-
tion (i.e., dependence structure) of the observations during
the calibration period is reproduced for both calibration and
projection, resulting in having no change in inter-variable
rank correlations. For their part, 2d-dOTC, 2d-MBCn and 2d-
MRec maps (resp. Fig. 6g1, j1 and m1) present roughly the
same spatial structures for the differences of Spearman cor-
relations, which indicates that the evolution of the simula-
tions is somehow taken into account in the correction proce-
dures. It must be remarked that, contrary to dOTC and MRec,
the stochastic generation of random rotation matrices within

the MBCn algorithm leads to get a non-negligible variability
in the estimation of the evolution (not shown). This high-
lights a particular aspect of MBCn: contrary to other meth-
ods, MBCn is based on a stochastic procedure, which has a
significant impact on its adjustments. Consequently, the qual-
ity of MBC data obtained from MBCn can differ from a cor-
rection to another for the same climate simulation, depending
on the random rotation matrices generated in the algorithm
and on the stopping rule (i.e., number of iterations). Interest-
ingly, concerning the method’s Spatial- versions (Fig. 6e1,
h1, k1 and n1), outputs show changes in inter-variable rank
structure similar to those from the model. Indeed, as for
CDF-t, rank inter-variable correlations are not adjusted with
Spatial- versions. Consequently, the change in inter-variable
rank structure of the model is somehow preserved in outputs
of Spatial- versions.

For the Full-configuration maps of dOTC and MBCn
(Fig. 6i1 and l1), changes simulated by the model are not
reproduced at all, which might be due to the failure of these
methods to handle the change in time of this statistical fea-
ture in high dimensions. As expected, the Full-MRec map
(Fig. 6o1) does not provide adequate results due to its inabil-
ity to adjust the simulated data for France in this dimensional
setting.

Concerning the results for Brittany, conclusions similar
to those obtained for France can be drawn for R2D2 out-
puts. However, conclusions are quite different for CDF-
t, 2d-dOTC, 2d-MBCn and 2d-MRec. Indeed, the changes
in rank correlations obtained for these outputs (Fig. 6c2,
g2, j2 and m2) are not in agreement at all with the simu-
lated ones (Fig. 6b2). In fact, changes from 2d- outputs are
in line with those from CDF-t, illustrating the importance
of the correction of 1-dimensional characteristics for inter-
variable changes. It is also the case for the Full-MRec map
(Fig. 6o2), providing more sensible results than those ob-
tained for France.

Generally speaking, for 2d- and Spatial- versions of MBCs
making the assumptions of copula nonstationarity, similar re-
sults as those brought by their univariate BC outputs are ob-
tained, suggesting the importance of the correction of uni-
variate distributions for changes in inter-variable rank corre-
lations. Additional results in agreement with these conclu-
sions are obtained for summer and are displayed in Fig. S6.

5.5.2 Analysis of change in spatial correlations

In order to assess changes in spatial structures in bias-
corrected outputs, p-Wasserstein distance (see, e.g., Villani,
2008, chap. 6) is computed. This metric measures the dis-
tance between two multivariate probability distributions µ
and υ and is defined as follows:

Wp(µ,υ) :=

 inf
γ∈τ (µ,υ)

∫
Rd×Rd

||x− y||pdγ (x,y)


1
p

, (1)
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Figure 6. Differences of temperature vs. precipitation Spearman correlations computed at each grid cell between the 1979–1997 and 1998–
2016 periods during winter. (a1–o1) WFDEI and (a2–o2) SAFRAN data are used as references for the bias correction. Note that the color
scales between panels (a1)–(o1) and (a2)–(o2) are not the same to better emphasize intensities of values of the two regions.

with τ (µ,υ) denoting the set of probability measures on
Rd ×Rd with, respectively, µ and υ as first and second mar-
gins and ||.|| the Euclidean distance. In the present study, p
is taken equal to 2, as it ensures the uniqueness of the min-
imization problem (Santambrogio, 2015). The Wasserstein
distance can be seen as the minimum “cost” for transform-
ing a multivariate probability distribution µ into another,
here υ. In particular, computing Eq. (1) between a distri-
bution characterizing a sample during the calibration period
and another distribution characterizing a sample during the
projection period, permits one to provide information on its
change across time, whether it represents a univariate, multi-
variable or multi-site (or both) distribution. More details on
how to compute in practice this distance are provided in Ap-
pendix C. The resulting metric, denoted Wd, is calculated
using the R package “transport” (Schuhmacher et al., 2019)
over the region of interest according to three different multi-
variate distributions:

– on ranks of temperature only over the whole region
to assess change in the spatial dependence structure of
temperature;

– on ranks for precipitation only over the whole region
to assess change in the spatial dependence structure of
precipitation;

– on ranks for both temperature and precipitation over the
whole region to assess change in the inter-variable and
spatial dependence structures of the two variables.

In particular, computing Wd using ranks instead of raw
values allows the removal of the change in the univariate
distributions from that in spatial and inter-variable relation-
ships. However, comparing Wd values of climate datasets
must be made with caution. Indeed, similar values of Wd
for different climate datasets do not necessarily imply that
their changes in spatial structure are similar. Results for the
three Wasserstein distances on ranks are displayed in Fig. 7
for both France and Brittany. Additional results for Wd on
raw values are displayed in Fig. S7 for information purposes
only.

For France (Fig. 7a), the three Wd are slightly higher for
the reference than for the model data (represented by straight
lines). Although the differences are quite small, it cannot be
concluded directly that changes in spatial structure are iden-
tical, as there is no particular reason for this. For CDF-t out-
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Figure 7. Values of the three Wasserstein distances on ranks between 1979–1997 and 1998–2016 periods during winter for temperature
(square), precipitation (circle) and both temperature and precipitation (triangle) for the region of (a) France and (b) Brittany. Results are
presented for the reference, plain IPSL (lines), CDF-t and the different MBCs. 2d-R2D2-T2 (resp. 2d-R2D2-PR) indicates results for 2d-
R2D2 with temperature (resp. precipitation) used as reference dimension. Black asterisks indicate values lying outside the plotted range.

puts, similar Wd are obtained as those from the model. How-
ever, as the 1d-BC method does not modify (too much) rank
sequence of temperature and precipitation time series, it can
be deduced that CDF-t outputs globally reproduce/preserve
the spatial structure change in the model.

For 2d-R2D2 outputs, two results are presented, corre-
sponding to those obtained with either temperature or pre-
cipitation used as reference dimension. For the reasons al-
ready given (see, e.g., Sect. 5.3), results for 2d-R2D2 driven
by temperature (resp. precipitation) for the change in spa-
tial structure of temperature (resp. precipitation) are by con-
struction identical to those from CDF-t. Nevertheless, for the
spatial structure of temperature and precipitation jointly (tri-
angle), Wd for 2d-R2D2 outputs are quite high. Indeed, when
the 2d-R2D2 version uses either temperature or precipitation
rank sequence to drive the other physical variable at each
grid cell, the method is likely to degrade the spatial struc-
tures of the other variable in a different way for calibration
and projection periods. Consequently, the Wasserstein dis-
tance captures a “change” in the spatial structure of the two
variables between these two periods, but it is in fact due to
its deterioration. Concerning Spatial-R2D2, low Wd are ob-
served for the change in the spatial structures for temperature

and precipitation separately, illustrating the stationarity cop-
ula assumption used. However, for the Wd computed for the
whole multivariate distribution (triangle in Fig. 7a), Spatial-
R2D2 presents a higher value, close to that of the IPSL sim-
ulations. Indeed, as already explained in Sect. 5.5.1, within
Spatial-R2D2, copula functions of temperature and precipita-
tion are adjusted separately without correcting inter-variable
rank correlations, which results in partially preserving the
changes in inter-variable rank structure of the model between
calibration and projection period. With regard to Full-R2D2,
the three Wd are all quite low, in agreement with the sta-
tionarity copula assumption it uses. However, it should be
noted that the Wd are not equal to 0, whereas, theoretically,
no change in spatial structure is performed by Full-R2D2.
In addition to the reason already cited concerning dry days
frequency correction, this is also due to the fact that, in the
present study, bias corrections have been performed on a
monthly basis, while the evaluation is done at a seasonal
scale.

For both dOTC and MBCn outputs, Wd are higher than
those from the model. Although the changes in spatial corre-
lations derived by these two methods are too strong, it nev-
ertheless highlights their ability to capture such a change
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from the model and to use it in their bias correction proce-
dure. Moreover, as explained in Sect. 5.4, dOTC and MBCn
methods modify only slightly the rank structure of the ini-
tial simulations. It can then be deduced that the changes in
spatial correlations measured for the two methods are (par-
tially) in agreement with those from the model. However, for
MBCn, the three Wasserstein distances increase according to
the number of dimensions considered in the bias correction,
from 2d- to Full- versions. It can be linked with the deteriora-
tion of the quality of results already observed for spatial fea-
tures for very high-dimensional bias correction. Regarding
MRec, without speaking about its Full- version, similar ob-
servations can be made for 2d- and Spatial- outputs as well.
In a general way, the Wd associated with the different con-
figurations for dOTC, MBCn and MRec are always above
the Wasserstein distances for R2D2, illustrating somehow the
assumptions made by these methods about the stationary or
nonstationary copula functions.

For Brittany (Fig. 7b), the Wd values computed for the
model are quite low, indicating little simulated change in spa-
tial structures for this region. Consequently, the differences
of Wd between methods assuming stationarity and nonsta-
tionarity of copula functions are less pronounced, but the
same conclusions as those drawn for France hold. However,
for Full-MRec outputs, Wd values are in relative agreement
with those from the model, highlighting the ability of the
method to preserve (partially) the simulated changes in spa-
tial structure between the calibration and the projection peri-
ods, for a smaller region.

6 Conclusion, discussion and future work

6.1 Conclusion

In this study, we have presented a global picture of the per-
formances of four multivariate bias correction (MBC) meth-
ods designed to adjust various multivariate properties of cli-
mate simulations. These MBC methods were carefully se-
lected for their differences in terms of methodologies, sta-
tistical techniques used, assumptions and philosophical fea-
tures. For each method, three different dimensional configu-
rations have been tested to correct climate simulations from
the IPSL model: a 2d- version to adjust temperature and pre-
cipitation time series together but separately for each grid
cell, a Spatial- version aiming to correct the simulated fields
of temperature and precipitation separately, and a Full- ver-
sion designed to adjust the two physical variables jointly
over the entire domain. Depending on the versions, the ob-
jectives of adjustments for multivariate properties are not
the same: whereas 2d- and Spatial- versions are designed
to correct, respectively, inter-variable and intersite depen-
dence structures, it is expected that the Full- versions adjust
both the inter-variable and intersite relationships together. In
addition, the univariate CDF-t bias correction method has
been implemented and used as a benchmark to assess the

benefits of considering multivariate aspects in the correc-
tion procedure. A wide range of metrics has been developed
to compare bias correction outputs with observations and
model data and analyze the adjustments of univariate distri-
butions, inter-variable correlations, intersite correlations and
temporal structure. Multidimensional change, i.e., nonsta-
tionary, properties have been assessed, providing a compre-
hensive framework to compare the performance of the meth-
ods. The IPSL simulations have been corrected with respect
to two distinct reference datasets, i.e., WFDEI and SAFRAN,
for, respectively, France and Brittany to attempt to measure
the potential influence of the reference spatial resolution on
MBC results.

6.2 Discussion and recommendations

General recommendations can be drawn to help practition-
ers in the choice of BC methods for their applications. For
the sake of clarity, Table 2 provides a concise summary of
the different recommendations made below. If the univariate
CDF-t method corrects the univariate distributions well, it
replicates the dependence properties of the model, i.e., inter-
variable, intersite or temporal structures, and preserves its
multidimensional change across time. Hence, if the multi-
variate properties of raw climate simulations are not rele-
vant, using 1d-BC methods is not appropriate to get ade-
quate dependence properties. Concerning MBC methods, in
general, R2D2, dOTC, MBCn and MRec algorithms showed
a great ability to adjust the statistical properties associated
with the corresponding objectives of the dimensional config-
urations. Indeed, in addition to correcting univariate distribu-
tions, the 2d-, Spatial- and Full- versions of each multivariate
method adjust, respectively, inter-variable, spatial and inter-
variable/spatial correlations of climate simulations reason-
ably well. However, caution has to be taken before applying
multivariate methods and conducting analysis studies. It has
been noted that, depending on the dimensional configuration,
instability of some methods can possibly affect corrected out-
puts, and practitioners have to make sure that no degradation
of the desired statistical features is made by the multivariate
BC method. In particular, for MBCn and MRec, increasing
the number of variables to be corrected jointly in the dimen-
sional configuration is often accompanied by a potentially
strong deterioration of spatial properties (see orange tildes
in the row “Capacity to correct spatial prop.” in Table 2).
However, for MBCn, it must be recalled that the number of
iterations for the algorithm was fixed to 200 for Full- ver-
sions. Although this choice is a good compromise between
computation time and fitting the multivariate distribution in
the calibration period, this might be suboptimal for some re-
gions. Indeed, early stopping of the procedure could be nec-
essary to avoid overfitting in high dimension, as discussed
in Cannon (2018a). Therefore, more research is needed to
improve the global performances of MBCn, such as early
stopping, optimizing the sequence of random rotation ma-
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trices to speed up convergence or, for spatial downscaling
problems, adding a conservation step to provide more phys-
ical constraints to the bias correction (as proposed in Lange,
2019). Moreover, it has been shown that the characteristics
of the climate data to correct can influence the results of the
MBCs. In particular, as noted in Sect. 5.3, a distinction of
results between temperature and precipitation has been iden-
tified for the MRec method (e.g., in Figs. 1, S1, 3 and S3).
This might be caused by the way the MRec method performs
the correction: only the Pearson correlation structure is ad-
justed, since it is assumed to be sufficient to correct the full
multivariate dependence structure. Although correcting only
Pearson spatial correlations for temperature seems reason-
able as temperature has traditionally a multivariate Gaussian
dependence structure, it appears to be not enough for pre-
cipitation, presenting more complex spatial interactions. In
that sense, to adjust non-Gaussian climate variables as pre-
cipitation, MBCs correcting the full multivariate dependence
structure (e.g., R2D2, dOTC or MBCn) must be preferred by
practitioners.

Also, the ability of the MRec method to adjust Brittany in
a very high-dimensional context strongly suggests that the
size of the geographical area under study is an important
feature for multivariate bias correction. Indeed, a small re-
gion like Brittany is likely to present a homogeneous climate
or at least to be spatially second-order stationary and, con-
sequently, strong statistical dependencies between locations.
Dimensions are then somehow redundant, and spatial cor-
relations for each physical variable are strong, which poten-
tially reduces the number of effective dimensions, also called
“spatial degrees of freedom” (e.g., in der Megreditchian,
1990; Bretherton et al., 1999). For MRec, it results in conse-
quently reducing the errors in the computation of the inverse
covariance matrices and providing more adequate results. For
larger regions presenting a high number of effective dimen-
sions such as France, MRec is however able to provide ap-
propriate results if enough data are provided. For illustration
purposes, the MRec method has been additionally applied
on a seasonal basis instead of on a monthly one, i.e., cor-
recting 642 dimensions with at least 90d× 19 years= 1710
time steps. By increasing the number of time steps used in
the procedure, high-dimensional sample covariance matrices
within MRec are estimated in a more “robust” way, permit-
ting a more suitable correction of the simulations using Full-
MRec. Results for some criteria are presented in the Sup-
plement (Figs. S8, S9, S10, S11 and S12) but are not com-
mented on in the present study. Also, within MRec, more ro-
bust estimators of inverse covariance matrices could be used
to obtain more appropriate corrections in a high-dimensional
context (e.g., as presented in Levina et al., 2008). More gen-
erally, for most MBCs, for a given number of statistical di-
mensions (e.g., number of grid cells), as going from a large
(e.g., France) to a smaller (e.g., Brittany) area reduces the
effective dimension, it facilitates the multivariate corrections
and therefore improves the results (e.g., compare Figs. 1, S1,

4, S4, 5 and S5). This raises the question of whether applying
MBC to climate simulations over large geographical areas is
justified, i.e., if it is worth striving for the correction of corre-
lation structures between distant sites presenting weak statis-
tical relationships, and, by doing so, taking the risk of losing
global effectiveness of the BC methods. It also highlights the
importance of choosing parsimoniously the variables to cor-
rect, in order to adjust dependence structures that are relevant
without potential quality loss induced by additional (and un-
needed) variables.

Regarding the temporal structure, none of the presented
multivariate BC methods are designed to adjust this specific
statistical aspect (red crosses in Table 2). Moreover, as high-
lighted by Vrac (2018), any multivariate BC method will nec-
essarily modify the rank sequence of the simulated variables.
Results from the present study allow adding nuances to this
statement: modification of rank chronologies of the simula-
tions depends on both the multivariate BC methods and the
dimensional configurations. In particular, for dOTC, MBCn
and MRec methods, a similar behavior was observed: the
higher the number of dimensions to correct, the stronger the
deterioration of rank chronology of the simulations. How-
ever, concerning R2D2, depending on the dimensional ver-
sion, the rank chronology of the model can be reproduced
for the specific area around the location of the reference di-
mension, which could (or not) be desired by practitioners de-
pending on the performance of the simulations.

Finally, we shed light on the nonstationary properties
of the multivariate BC methods. While dOTC, MBCn and
MRec are designed to transfer some of the multidimensional
properties evolution (i.e., change in time) from the model
to the bias-corrected data, R2D2 assumes the inter-variable
and intersite rank correlations – or copula functions – to
be stable in time. In a general way, copula nonstationarity
for future periods can be reasonably expected, e.g., as docu-
mented for rainfall spatial distributions (Wasko et al., 2016),
for the dependence between storm surge and rainfall (Wahl
et al., 2015), and the dependence between seasonal summer
temperature and precipitation (Zscheischler and Seneviratne,
2017). However, on the contrary, it can be argued that inter-
variable and spatial dependence structures can be assumed to
be stable over time for specific regions, because, to some ex-
tent, they can be considered as imposed by physical regional
constraints (Vrac, 2018). The differences of Wasserstein dis-
tances between the France and the Brittany region for the
reference in Fig. 7a and b illustrate well that copula station-
arity (or nonstationarity) is not straightforward depending on
the geographical domain. The question of the evolution of
the copula (i.e., the rank dependence structure) is, therefore,
still an open question and needs to be answered on a case-by-
case basis. In practice, performances of the methods concern-
ing the multidimensional changes in the different BC outputs
are hard to assess precisely, as the potential instability (as
in MBCn and MRec) or the stochasticity (as in MBCn) of
the methods could affect the quality of the results, making
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Table 2. Summary of recommendations for the multivariate BC methods to use with respect to the different assumptions made by practition-
ers or end users. Green checks and red crosses indicate whether BC methods are recommended for use or not, depending on the statement in
rows. Orange tildes indicate when particular caution has to be taken. Not-applicable (n/a) is indicated when the statement in rows does not
apply.

Characteristics CDF-t R2D2 dOTC MBCn MRec

Correction of univariate distrib. prop.

Modification of the correlations of the model

Capacity to correct inter-var. prop.

Capacity to correct spatial prop.

Capacity to correct temporal prop.

Preserve the rank structure of the model

Capacity to correct small geographical area n/a

Capacity to correct large geographical area n/a

Allow for evolution of the rank dependence

difficult the identification of changes. Moreover, the adjust-
ment of univariate distributions has a non-negligible effect
on changes in inter-variable and spatial rank dependences
for MBCs assuming non-copula stationarity; in fact, rather
than reproducing simulated changes in the correction proce-
dure, these methods are more likely to provide changes in
agreement with the ones provided by 1d-BC (e.g., as seen
for Brittany in Fig. 6b). Then, in the case where the adjust-
ment of univariate distributions does not modify (too much)
the simulated changes in inter-variable and spatial rank de-
pendences, MBCs assuming nonstationary copula would be
more likely to present changes in line with those from the
model. This result is further confirmed by the results obtained
for summer and displayed in Fig. S6 for inter-variable rank
dependence changes. The nonstationary property also partly
explains the possible differences of results obtained during
evaluation (i.e., protocol 1; see Sect. 5) for each criterion.
Indeed, as noted in Robin et al. (2019), if the multivariate
properties changes provided by the model simulations are
incorrect, those of the corrections from methods assuming
nonstationarity can be, retrospectively, in disagreement with
the changes in the observations.

Therefore, before choosing any multivariate BC method,
practitioners have to ask themselves some questions: what
are the important statistical properties I want my corrections
to provide? Can the evolution of the copula (i.e., rank de-
pendence) in the simulations between calibration and pro-
jection be considered as relevant? And should it be repro-
duced in the correction? If so, according to the results ob-
tained in the present study, dOTC and MRec are good candi-
dates among the presented MBCs. Using these methods, the
corrections will be likely to present change in rank depen-
dence similar to the simulations or at least of same sign. It
could also be recommended to use these methods if practi-
tioners do not have any idea if the rank dependence changes
in the simulations could be considered relevant or not, advo-

cating to let the model express its own dynamic in the ab-
sence of relevant judgements. However, if it is assumed that
the change in the simulations, in spite of all efforts exerted
by climate modellers, is not considered as relevant, R2D2 is
a good candidate, as it is better to have stationarity of mul-
tidimensional rank properties in the correction rather than a
non-relevant or wrong one. Moreover, R2D2 is also a good
candidate for practitioners who do not expect any rank de-
pendence change. The obtained BC outputs from R2D2 will
not have any change in inter-variable or intersite rank de-
pendence structures, because they are assumed to be im-
posed by physical constraints and hence stable in time. Con-
cerning MBCn, the global instability of the method in high-
dimensional settings, added to the inherent variability due to
its stochastic nature, affects significantly the quality of the
correction. In practice, therefore, it makes difficult the ap-
propriate preservation of the simulated changes, although the
method is specifically designed for that.

6.3 Future work

This intercomparison has been designed such that new BC
methods can be easily added. As a result, adding new meth-
ods relying on different assumptions, correcting different sta-
tistical aspects or using other statistical techniques, is rea-
sonably feasible. Moreover, as mentioned in the Introduc-
tion section, bias-adjusted simulations are particularly valu-
able for impact studies. Despite the challenge of missing im-
pact data, evaluating how the quality of multivariate bias-
corrected data influences the results of complex impact mod-
els is an important perspective. Providing such an analysis
will be useful for the scientific community working on cli-
mate change impacts, e.g., in hydrology, agronomy or ecol-
ogy. In an attempt to answer this question, an appropriate
future step could be to apply the presented multivariate BC
methods in different dimensional configurations to various
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GCM simulations – and not only one as in this study – in or-
der to provide an ensemble of multivariate BC simulations.
The obtained datasets would also be useful to carry out sci-
entific studies on other aspects of climate change, such as
climate change attribution studies aimed to identify which
mechanisms are responsible for changes in the Earth’s cli-
mate (e.g., Stott et al., 2016; Yiou et al., 2017; Ribes et al.,
2020). Indeed, most of these studies use plain simulations,
and consequently do not take into account their statistical
biases. Conducting attribution studies using plain and bias-
corrected simulations will permit one to increase the under-
standing of the influence of these biases on results, which is
essential to provide valuable information to the society con-
cerning the ongoing climate change.

In the present study, it has been highlighted that none of
the presented multivariate BC methods were designed to cor-
rect or preserve the temporal properties of the simulations.
Nevertheless, a few studies have attempted to develop BC
methods providing adjustments of some temporal properties
of climate variables in addition to the correction of inter-
site or inter-variable properties (Mehrotra and Sharma, 2015,
2016, 2019). However, considering adjustments for tempo-
ral properties will necessarily modify, even slightly, univari-
ate distributions and intersite and/or inter-variable properties.
From a more philosophical perspective, striving for the de-
velopment of MBCs correcting a wide range of statistical
features raises also the question of what has been preserved
from the simulations in the final BC outputs. By improv-
ing the agreement of simulations with observations, this may
have the effect of lowering (misleadingly) the uncertainty of
the simulated statistical attributes, often without sound phys-
ical justifications (Ehret et al., 2012), which puts into ques-
tion the validity of such methods. Multivariate BC methods
developed in the future should, therefore, take into account
these issues, in attempting to find a reasonable balance be-
tween, on the one hand, the correction of intersite and inter-
variable dependences and, on the other hand, the correction
or modification of temporal properties, while being able to
preserve meaningful simulated characteristics for future peri-
ods. To do so, developing new MBC methods including some
physical processes to drive the correction procedure is a con-
sistent perspective of development to obtain more realistic
bias-corrected simulations. The new developed MBCs could
be then included in this intercomparison study, to evaluate
and compare their performances with the existing multivari-
ate BC methods.
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Appendix A: Details on the CDF-t method

BC methods are applied to correct a simulated fields of S
grid cells, each of them described by V physical variables.
The total number of statistical dimensions to correct is hence
equal to D = V × S, with each of the dimensions composed
of N time steps. Let XA being a matrix of dimension N ×D
and XdA(t) the value of the physical variable corresponding
to the dth dimension at time t from the matrix XA. Datasets,
i.e., matrices, to correct with BC methods are model outputs
during the calibration (denoted XMC ) and the projection pe-
riod (denoted XMP ), according to the data from the reference
observed during calibration (denoted XRC ). Corrected out-
puts for the calibration and the projection period are denoted
X̂MC and X̂MP , respectively.

CDF-t is a version of quantile–quantile method that takes
into account, by defining a transfer function T , the poten-
tial evolution of univariate CDFs from the calibration to the
projection period. For this subsection, let’s assume that F dMC

and F dRC
are respectively the univariate CDFs of the dth di-

mension Xd
MC

and Xd
RC

located at the same grid cell for the
model and the reference in the calibration period. To sim-
plify the notation, we will denote these CDFs FMC and FRC ,
respectively. The transfer function T is defined such that it
links the two CDFs FMC and FRC as follows:

T
(
FMC (x)

)
= FRC (x). (A1)

A more simple formulation of T is then obtained by replacing
x by F−1

MC
(u), with u probabilities in [0,1].

T (u)= FRC

(
F−1

MC
(u)
)
. (A2)

By assuming time-stationarity of the transformation T , it can
be applied similarly in the projection period to link CDFs
between the model and the reference:

T
(
FMP (x)

)
= FRP (x). (A3)

By combining Eqs. (A2) and (A3), we then can generate FRP ,
the estimated CDF of the climate variable in the reference
during the projection period:

FRP (x)= FRC

(
F−1

MC

(
FMP (x)

))
. (A4)

Once FRP has been estimated, a simple quantile–quantile
method is performed between FRP and FMP to derive the
bias-corrected time series X̂dMP

for the projection period as
follows:

X̂dMp
(t)= F−1

RP

(
FMP

(
XdMP

(t)
))
. (A5)

While a traditional quantile-mapping approach performed
to correct a dataset XMP of simulations over the
projection period will use the formulation X̂dMp

(t)=

F−1
RC

(
FMC

(
XdMP

(t)
))

(i.e., based on two distributions char-
acterizing the calibration period), the CDF-t method relies on
Eq. (A5) where the two involved distributions characterize
projected distributions. By proceeding this way, CDF-t takes
into account the potential evolution of CDFs of the model
between the calibration and projection periods to adjust the
projection period. CDF-t is applied independently for each of
theD statistical dimensions and for both calibration and pro-
jection period to derive the final bias-corrected outputs X̂MC

and X̂MP .

Appendix B: Details on the R2D2 method

The R2D2 method, belonging to the marginal/dependence
category, consists of several successive steps that are similar
to adjust climate simulations for calibration and projection
periods. Hence, to avoid redundancy, the correction proce-
dure for the projection period will only be explained in this
subsection. In this appendix, temporary corrected outputs for
the projection period are denoted X̃MP .

– First, an univariate BC method is performed for the pro-
jection period to obtain the N ×D matrix output X̃MP .

As a reminder, X̃MP =

[(
X̃1

MP
(1), . . ., X̃1

MP
(N )

)′
, . . .,(

X̃DMP
(1), . . ., X̃DMP

(N )
)′]

.

– For each dimension d, R2D2 computes the ranks
of the time series within the univariate BC outputs
X̃MP . For example, for the dimension d, the N × 1

vector
(

rank
(
X̃dMP

(1)
)
, . . ., rank

(
X̃dMP

(N )
))′

, denoted(̃
rdMP

(1), . . ., r̃dMP
(N )

)′
, is computed. It results in get-

ting, for each time step t , a D-dimensional vector
R̃MP (t)=

(̃
r1

MP
(t), . . ., r̃DMP

(t)
)

, which provides the mul-

tivariate rank structure of X̃MP at t .

– For each dimension d, R2D2 computes the ranks of the
time series within the reference dataset during calibra-
tion XRC . For example, for the dimension d , the N × 1

vector
(

rank
(
XdRC

(1)
)
, . . ., rank

(
XdRC

(N )
))′

, denoted(
rdRC

(1), . . ., rdRC
(N )

)′
, is computed. It results in get-

ting, for each time step t , a D-dimensional vector
RRC (t)=

(
r1

RC
(t), . . ., rDRC

(t)
)

, which provides the mul-
tivariate rank structure of XRC at t .

– A reference dimension d needs to be selected by the
users in X̃MP . The corresponding univariate time series
will be kept untouched in the final R2D2 outputs as the
correction of the multivariate dependence structure is
articulated on this dimension “pivot”. For each time step
t :
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– the algorithm R2D2 finds t∗ such that r̃dMP
(t)=

rdRC
(t∗). From t∗, R2D2 deduces the multivariate

rank structure of the reference during the calibra-
tion period at this specific time step: RRC (t∗)=(
r1

RC
(t∗), . . ., rDRC

(t∗)
)

;

– R2D2 forces the D-dimensional vector of ranks
of its final outputs X̂MP to be equal to R̂MP (t)=(
r1

RC
(t∗), . . ., r̃dMP

(t), . . ., rDRC
(t∗)

)
.

To do so, the algorithm looks to shuffle the val-
ues in each of the dimensions k 6= d of X̃MP , such
that its rank structure at time t matches R̂MP (t). In
a more explicit way, for all k 6= d, R2D2 finds the
time steps tk such that rkRC

(t∗)= r̃kMP
(tk). The value

in X̃
k

MP
to shuffle associated with the rank r̃kMP

(tk) is
then derived and copied in the final outputs X̂kMP

(t).

– By repeating the step 4 until each dimension has been
used one time as a reference for the shuffling, R2D2

is able to derive a collection of D MBC outputs, with
exactly the same multivariate dependence structure but
differing in temporal properties, describing the possible
variability in the different rank structures.

Appendix C: Details on the dOTC method

The dOTC method, belonging to the all-in-one category, re-
lies on optimal transport theory to adjust climate simulations.
A slightly different mathematical notation needs to be used
here to explain dOTC. Let define XRC (t) the realizations of
XRC at each time step t across each of the D dimensions.
The collection of the variables

(
XRC (1), . . .,XRC (N )

)
forms

a D×N matrix and describes XRC in a different way. Simi-
larly,

(
XMC (1), . . .,XMC (N )

)
and

(
XMP (1), . . .,XMP (N )

)
are

considered for, respectively, XMC and XMP . In the follow-
ing, ci denotes a collection of multivariate cells that parti-
tion regularly RD and fully cover

(
XMC (1), . . .,XMC (N )

)
and(

XMP (1), . . .,XMP (N )
)
. To simplify notations, the center of a

grid cell ci is also denoted ci . Hereinafter is presented first
how dOTC adjusts the calibration period of climate simula-
tions to derive X̂MC . Then, the algorithm procedure will be
detailed for the adjustment of the projection period X̂MP .

The “OTC” procedure for the calibration period:

– First, the algorithm estimates P̃XRC
and P̃XMC

the em-
pirical multivariate distributions of XRC and XMC . To
do so, dOTC computes a sum of Dirac masses. For ex-
ample, for XMC , we have

P̃XMC
(A)=

I∑
i=1

pXMC,i
δci (A),

where pXMC,i
=

1
N

N∑
t=1

1(XMC (t) ∈ ci), and A⊂ RD .

– Then, the coefficients γij defining the estimator γ̃ of the
optimal plan that moves the bin ci of P̃XMC

to the bin cj
of P̃XRC

are computed. For A,B ⊂ RD , γ̃ is defined as
follows:

γ̃ (A×B)=
I,J∑
i,j=1

γij δ(ci ,cj )(A×B).

The coefficient γij corresponds to the joint probability
of XMC being in ci and XRC being in cj , which is part
of the MBC process. They have to respect the following
constraints:

J∑
j=1

γij = pXMC,i
,

I∑
i=1

γij = pXRC,j
,

and they have to minimize the following cost function
C̃:

C̃(γ̃ )=
I,J∑
i,j=1
‖ ci − cj‖2γij .

To find these coefficients that form the so-called opti-
mal transport plan, the algorithm resolves the linear pro-
gramming problem by using the procedure developed
by Flamary and Courty (2017).

– Then, for each time step t are the following steps:

– The algorithm finds the cell ci containing XMC (t).

– Using the plan γij , it constructs the
conditional probability vector γ̃XMC (t) =(
γi,1, . . .,γi,J

)
/pXMC ,i

.

– According to the probability vector γ̃ , the algo-
rithm draws a j∗ ∈ 1, . . .,J .

– The correction X̂MC (t) is then derived with an uni-
form draw in cj∗ .

– After iterating for each t , the final outputs for the cali-
bration period X̂MC is obtained.

The “dOTC” procedure for the projection period:

– As explained before, dOTC estimates P̃XRC
, P̃XMC

and
P̃XMP

the empirical multivariate distributions of XRC ,
XMC and XMP .

– Then, the coefficients γij defining the estimator γ̃ of the
optimal plan that moves the bin ci of P̃XMC

to the bin cj
of P̃XRC

are computed.

– Similarly, the coefficients ϕik defining the estimator ϕ̃
of the optimal plan that moves the bin ci of P̃XMC

to the
bin ck of P̃XMP

are computed.
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– By default, the diagonal matrix of the standard devia-
tions D is computed: D= diag

(
σXMC

σ−1
XRC

)
. Others al-

ternatives for the computation of D are possible and de-
tailed in Robin et al. (2019).

– Then, for each time step t are the following steps:

– The algorithm finds the cell cj containing XRC (t).

– Using the plan γij , it finds the cell ci of P̃XMC
asso-

ciated with cj .

– Using the plan ϕik , it finds the cell ck of P̃XMP
as-

sociated with ci .
– Using D, it computes the vector vik := ck − ci for

scaling adjustment of the correction.

– A preliminary (and temporary) correction of the
model during the projection X̌MP (t) is then ob-
tained, X̌MP (t)= XMC (t)+D.vik .

– Then, it estimates P̌X̌MP
the empirical multivariate dis-

tribution of X̌MP .

– Finally, the OTC procedure (see above for calibra-
tion period) is applied between

(
XMP (1), . . .,XMP (N )

)
and

(
X̌MP (1), . . ., X̌MP (N )

)
to produce the final outputs(

X̂MP (1), . . ., X̂MP (N )
)
.

Appendix D: Details on the MBCn method

The MBCn method can be summarized in three steps in the
way it corrects climate simulations. As a reminder, MBCn
belongs to the marginal/dependence category, i.e., correcting
separately marginal distributions and full dependence struc-
ture of climate simulations. In this appendix, temporary cor-
rected outputs of a matrix XA are denoted with tilde accents
(X̃A) or inverted hats (X̌A).

– Step 1: first, marginal distributions are corrected with an
univariate BC method. To do so, MBCn uses the Quan-
tile Delta Mapping (QDM from Cannon et al., 2015)
algorithm defined as follows:
X̃dMC

(t) = F−1
RC

(
FMC

(
XdMC

(t)
))

1t =XdMP
(t)−F−1

MC

(
FMP

(
XdMP

(t)
))

X̃dMP
(t) = F−1

RC

(
FMP

(
XdMP

(t)
))
+1t .

(D1)

This transfer function preserves absolute changes in
quantiles and has to be applied for interval variables
such as temperature. For ratio variables like precipita-
tion, the addition/substraction operators in the transfer
function have to be replaced by multiplication/division
operators to define a function that preserves relative
changes in quantiles. For both calibration and projec-
tion period, the D physical variables are independently

adjusted by applying the corresponding transfer func-
tion. The resulting matrices X̃MC and X̃MP with adjusted
marginal distributions are stored by the algorithm in, re-
spectively, X̃init

MC
and X̃init

MP
before the second step, as it

reuses them in the third one.

– Step 2: within the MBCn algorithm, the multivari-
ate dependence structure of the simulations is adjusted
through an iterative procedure. At each iteration j , an
application of a D×D random orthogonal rotation ma-
trix R[j ] (Mezzadri, 2007) is performed on the datasets
XRC , X̃MC and X̃MP obtained from Step 1:

X̌[j ]RC
= X[j ]RC

R[j ]

X̌[j ]MC
= X̃[j ]MC

R[j ]

X̌[j ]MP
= X̃[j ]MP

R[j ].

(D2)

It permits one to provide linear combinations of the
original variables. The QDM transfer function defined
in Eq. (D1) for interval variables, i.e., with addi-
tion/substraction operators, is then applied on each of
the rotated marginal distributions of X̌[j ]MC

and X̌[j ]MP
, con-

sidering the corresponding rotated marginal distribu-
tions in X̌[j ]RC

as the reference. Once marginal distribu-

tions have been adjusted in X̌[j ]MC
and X̌[j ]MP

, matrices are
rotated back to the physical variables ranges:

X[j+1]
RC

= X[j ]RC

X̃[j+1]
MC

= X̌[j ]MC
R[j ]−1

X̃[j+1]
MP

= X̌[j ]MP
R[j ]−1

.

(D3)

These successive steps are applied iteratively until the
multivariate distribution of the corrected simulations
X̃[j+1]

MC
matches the one of the reference XRC .

– Step 3: once the full dependence structure of simulated
variables converged to the one of the reference after, let
say, the j∗th iteration, MBCn replaces quantiles of each
of the variables in X̃[j

∗
+1]

MC
and X̃[j

∗
+1]

MP
obtained at the

end of Step 2 with those from X̃init
MC

and X̃init
MP

obtained
during Step 1. This additional step prevents the possible
deterioration of the model trend during the correction
of the multivariate dependence structure in Step 2. Sim-
ulations with corrected marginal distributions features
and full dependence structure X̂MC and X̂MP are then
obtained.

Appendix E: Details on the MRec method

The MRec method, belonging to the all-in-one category, con-
sists of the following steps.

– First, each of the D dimensions in XRC is transformed
independently in the Gauss domain. However, the trans-
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formation differs between interval variables, i.e., tem-
perature, and ratio variables, i.e., precipitation, and is
performed as follows:

– For a dimension d being an interval variable, a dis-
tribution F dRC

is fitted:

F dRC
(x)= P

(
XdRC

(t)< x
)
.

Then, the corresponding vector W d is computed as
follows:

W d (t)=8−1
(
F dRC

(
XdRC

(t)
))
,

with8 the distribution function of the standard nor-
mal distribution N (0,1).

– For a dimension k being a ratio variable, a distribu-
tion F kRC

is fitted:

F kRC
(x)= P

(
XkRC

(t)< x|XkRC
(t)> 0

)
.

Additionally, the frequency Pk0 of null events in
XkRC

is computed:

Pk0 = P
(
XkRC

(t)= 0
)
.

Then, the corresponding vector W k is computed as
follows:

W k(t)=

 8−1
(
F kRC

(
XkRC

(t)
)

(1−Pk0)+Pk0

)
8−1

(
Pk0
2

)
.

Doing this step for each dimension permits one to de-
rive the matrix W of dimensionN×D, composed of the
Gaussian transformed vectors W 1, . . . , WD .Following
the notation in Bárdossy and Pegram (2012), the same
procedure is repeated for XMC and XMP to derive, re-
spectively, the Gaussian transformed data Y and Y′.

– For both Gaussian transformed data W and Y, the N ×
N Pearson cross-correlation matrices CW and CY are
computed.

– A singular value decomposition (SVD) is applied on
CW such that

CW = AWDWBTW ,

with AW and BW having same dimensions as CW , and
DW a diagonal matrix of singular values. From this de-
composition, the square root matrix of CW , denoted SW ,
can be obtained as follows:

SW = AWD1/2
W ATW .

– Similarly, a singular value decomposition (SVD) is ap-
plied on CY such that

CY = AYDYBTY .

From this decomposition, its inverse square root matrix
TY can be obtained as follows:

TY = AYD−1/2
Y ATY .

– Y is decorrelated to Q: Q= YTY .

– Q is then recorrelated to V: V=QSW . V is hence the
recorrelated transformed model data for the calibration
period presenting the same correlation structure as W.

– For the projection period, V′ is computed directly with-
out decorrelation step: V′ = Y′TYSW .

– V and V′ are then transformed back to physical vari-
ables using a univariate quantile–quantile method for
each dimension d, with XdRC

being the target for the cor-
rection. The desired adjusted matrices X̂MC and X̂MP are
then finally obtained.
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2.3 Summary and reminder of the conclusions
In this chapter, an intercomparison study of four MBC methods (R2D2, dOTC, MBC-n and

MRec) designed to adjust multivariate properties of climate simulations has been carried out.
I selected these MBC methods for their differences in terms of methodologies, statistical tech-
niques and assumptions to present a representative and comprehensive picture of their different
characteristics. A univariate bias correction method (CDF-t) has also been implemented to
assess the benefits of considering multivariate bias correction methods.

I applied each multivariate method in three dimensional configurations to adjust simulated
temperature and precipitation time series from the IPSL model: a 2d-version to adjust tem-
perature and precipitation inter-variable dependencies, a Spatial-version to adjust the spatial
temperature and precipitation dependence separately and a Full-version to adjust both inter-
variable and spatial relationships together. A wide range of metrics has been used to evaluate
bias adjustment outputs with respect to references and initial climate model data and analyse
the corrections of univariate distributions, inter-variable correlations, spatial correlations and
temporal properties by using a first protocol of bias correction. In general, R2D2, dOTC, MBCn
and MRec algorithms showed a great ability to adjust the statistical properties associated with
the corresponding objectives of the dimensional configurations. Indeed, in addition to adjusting
univariate distributions, applying each MBC method using the 2d-, Spatial- and Full- versions
permitted to adjust, respectively, inter-variable, spatial and inter-variable/spatial dependence of
climate simulations reasonably well. However, caution has to taken when applying these meth-
ods in high-dimensional contexts. Indeed, for MBC-n and MRec, some instabilities have been
found when adjusting a very high number of variables at the same time (i.e., when applying these
methods using the Spatial- and Full-versions). These instabilities involved strong deterioration
of inter-variable and spatial properties, thus affecting the quality of corrected outputs.

Concerning temporal properties, none of the MBC methods used in this study were designed
to adjust this statistical aspect. By not taking into account this aspect in their bias correction
procedure, it resulted in generating corrected outputs with unexpected temporal behaviors or
weak temporal dependencies compared to observations. Thus, for applications where temporal
properties are crucial, the use of the presented MBC methods is not recommended and the
adding of some additional constraints on temporality is probably necessary (see section 2.4).

The ability of BC methods to reproduce simulated multidimensional change, i.e., nonsta-
tionary, properties has also been assessed by using a second protocol. While dOTC, MBCn
and MRec are designed by construction to take some of the multidimensional properties changes
into account in their bias correction procedure, R2D2 assumes multivariate properties (i.e., inter-
variable and spatial dependence) to be stable in time. Hence, if simulated dependence changes
are considered as relevant to be reproduced in the corrections, dOTC, MBCn and MRec must
be preferred by practitioners. However, if no dependence changes are expected, or if changes
in the simulations are not considered as relevant, R2D2 would have to be preferred to produce
corrected outputs with stationarity of multivariate properties.

The study permits to draw general recommendations for end users in order to provide them
with help in the choice of BC methods depending on their needs. This work not only provides an
intercomparison framework to which other MBC methods can be easily added but also permits
to identify future avenues for the development of new multivariate BC methods.
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2.4 Perspectives
The work developed in this chapter leads to several perspectives. I will provide more details

to some of the perspectives mentioned in the conclusion of the article (subsection 6.3). Other
perspectives that are not mentioned in the article will be also discussed and some will be partly
addressed in the rest of the manuscript.

2.4.1 A look back at some of the perspectives of the article

Influences of MBC on impact studies

Having assessed the performance of multivariate BC methods for adjusting the statistical
properties of climate models, an important perspective of this study is to evaluate the potential
influence of these adjustments on the results of impact studies. However, quantifying the effect
of bias adjustment on impact modelling can be difficult (Papadimitriou et al., 2017). While the
quality of bias correction of climate variables can be assessed against observations before being
used in impact models, a lack of observed climate impacts data makes it hard to assess the
modelled impacts (Cramer et al., 2014). In addition, many impact models rely on non-linear
interactions between multiple climate variables at various spatial and temporal scales, where
small variations in inputs can lead to large differences in results. Thus, in addition to initial
uncertainties in the choice of GCMs, forcing scenario and impact models, bias correction intro-
duces a level of uncertainty in the modelling chain that needs to be explored (e.g., Tao et al.,
2018). The appropriateness of bias adjustment for impact modelling requires to be answered
on a case-by-case basis. Laux et al. (2021) found that univariate BC approaches can improve
the performance of climate projections in agricultural impact studies, despite large BC-inherent
uncertainties. Concerning multivariate bias correction, some studies have shown that multivari-
ate BC methods do not necessarily lead to improve results for specific regional impact studies
(Yang et al., 2015; Räty et al., 2018). However, other studies demonstrated the effectiveness of
the adjustment of inter-variable relationships on multivariate hazard indicators (e.g., Cannon,
2018; Zscheischler et al., 2019) or hydrological impact projections (e.g., Meyer et al., 2019; Guo
et al., 2020; Van de Velde et al., 2022), although less pronounced in a non-stationary context
(Guo et al., 2020; Van de Velde et al., 2022). Conducting additional impact studies with cor-
rected inputs provided by different MBCs in several dimensional configurations (i.e., not only
adjusting inter-variable relationships but also spatial or inter-variable/spatial relationships) is
an important perspective that would permit to further cover uncertainties in the choice and the
application of BC methods.

Are simulated dependence changes reliable?

Although results concerning multidimensional changes properties from MBC methods are
sometimes difficult to evaluate, the intercomparison study concludes that, as expected, MBC
methods assuming nonstationarity are more likely to present changes in agreement with the
climate models (see subsection 5.5 of the article). The development and the use of these methods
assuming nonstationarity such as MBCn (Cannon, 2018) or dOTC (Robin et al., 2019) is justified
by the fact that, despite climate simulations have biases in multivariate properties, simulated
changes of statistical properties for future periods are supposed to be driven by relevant physical
processes providing key information concerning climate changes. However, the relevance of
such simulated multidimensional changes can still be discussed, which consequently calls into
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question the use of these MBC methods. Of course, determining whether future simulated
changes are relevant is difficult in practice. However, work can be carried out to evaluate at
least if climate models show appropriate evolution of multivariate properties with respect to
reanalyses or observations over historical periods. For example, by investigating temperature
vs. precipitation correlation changes over Europe, Vrac et al. (2021) showed the inability of a
climate multi-model ensemble (a subset of CMIP6 ensemble comprising 11 models) to reproduce
the ERA5 historical changes in correlations. Thus, for future periods, there is little confidence
that the simulated changes of temperature-precipitation dependence are realistically simulated
by models from CMIP6. In this context, MBC methods assuming stationarity of inter-variable
structure such as R2D2 (Vrac, 2018; Vrac and Thao, 2020) might be preferred. An interesting
perspective could be to further investigate the relevance of simulated changes of other inter-
variable relationships (e.g. wind and precipitation) over historical periods, but also to extend
this assessment framework to spatial and temporal changes provided by ensembles of climate
simulations.

Considering temporal adjustments

An other important perspective from the intercomparison study presented in this chapter
is the development of new multivariate BC methods providing adjustments of temporal prop-
erties of simulated climate variables in addition to the correction of inter-variable and spatial
properties. Based on the results of the study, several multivariate BC methods able to adjust
some of the temporal properties have been developed (e.g., Vrac and Thao, 2020; Robin and
Vrac, 2021), complementing the few existing methods already available (Nguyen et al., 2019;
Mehrotra and Sharma, 2019). These new methods show an ability to largely reduce biases in
temporal properties, while still correctly adjusting inter-variable and spatial dependence struc-
tures. However, developing MBCs methods that are able to adjust a wide range of statistical
properties (such as inter-variable, spatial and temporal properties) raises the question of what
has been preserved from the simulations in the final corrections. At the end, what is left of
climate models if so many properties are corrected? This point will be further discussed later in
Chapter 5.

2.4.2 Additional perspectives

Additional perspectives that are not mentioned in the article can be envisaged.

Influence of atmospheric circulation on local-scale dependencies

It is well known that statistical properties of climate variables are largely influenced by large-
scale atmospheric circulations (e.g., Yiou et al., 2018; Jézéquel et al., 2020; Faranda et al., 2020;
Rust et al., 2013). For example, atmospheric blocking events are linked to the occurrence of
extreme temperature events such as heat waves (e.g., Lenggenhager and Martius, 2020). Hence,
if circulation dynamics, as well as their physical relationships with local-scale phenomena, is
misrepresented within climate models, it can lead to major biases in marginal and dependence
properties of climate variables. For instance, Maraun et al. (2021) showed that biases in the
occurrence of synoptic-scale weather types can propagate to univariate properties of temperature
and precipitation. In addition, Vrac et al. (2022) found that the dependence of temperature and
precipitation conditionally on atmospheric regimes is misrepresented within climate models.
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Developing new MBC methods that are able to take into account large-scale information into
their correction procedure is an important perspective to explore. By driving the correction
using some physical processes, the bias-corrected outputs obtained from these MBC methods
would be more realistic. However, before designing these new MBC methods, it will be necessary
to carefully define the statistical features of atmospheric circulations that need to be adjusted.

Machine Learning: promising for multivariable?

Other bias correction and downscaling techniques, based on less statistical but more empir-
ical tools, have also emerged in recent years (e.g., Moghim and Bras, 2017; Sachindra et al.,
2018; Vandal et al., 2019; Baño-Medina et al., 2020). Machine Learning tools have become an
important part of climate modelling and simulation processing as they proved to be very effective
in modelling complex relationships between statistical variables for a wide variety of scientific
problems. In particular, an interesting application of Machine Learning tools made newspapers
headlines in 2018: the first auction of a painting produced by neural networks1. It demonstrated
that these statistical tools are able to generate images such as master paintings quite realistically.
As explained by Cannon (2018), multivariate bias correction can be seen as an image problem
that aims to transform inappropriate images from model simulations to more realistic images
similar to a reference. Consequently, one can wonder if these Machine Learning tools able to
produce realistic paintings are relevant in a context of bias correction of climate simulations. In
particular, are they able to reproduce spatial properties of climate variables as they reproduce
colour information and structures from painting masters? Favouring the development of new
multivariate BC methods based on Machine Learning seems to be a relevant research direction
to explore. During my thesis, I have chosen to explore this direction. The work carried out is
presented in the following chapter.

1https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
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Résumé
Contexte et objectifs

Les méthodes de correction de biais multivariés (MBC) sont des méthodes statistiques
permettant d’ajuster les propriétés statistiques multivariés des modèles climatiques par
rapport à des observations ou des réanalyses. Ces méthodes n’ont cependant été dévelop-
pées que récemment, et sont parfois encore mal appréhendées par les utilisateurs. Dans
ce chapitre, une étude d’intercomparaison de quatre méthodes MBC a été réalisée pour
évaluer leurs avantages et inconvénients et ainsi aider les utilisateurs à choisir quelles
méthodes utiliser selon leurs besoins.

Méthodes

Quatre méthodes multivariées (R2D2, dOTC, MBC-n et MBC-n) ayant des différences
en termes de méthodologies, de techniques statistiques et d’hypothèses sont comparées.
Nous avons appliqué chaque méthode dans différentes configurations dimensionnelles pour
ajuster les données de température et de précipitation simulées par le modèle climatique
IPSL. Un large panel de métriques statistiques a été utilisé pour évaluer les performances
de corrections des méthodes par rapport à des données de références. Ainsi, les perfor-
mances d’ajustements en terme de distributions univariées, de corrélations inter-variables,
de corrélations spatiales et de propriétés temporelles ont pu être évaluées. De surcroît, une
méthode de correction de biais univariée (CDF-t) a aussi été implémentée pour évaluer
les avantages de la prise en compte de l’aspect multivarié dans la correction de biais.

Résultats

De manière général, les algorithmes R2D2, dOTC, MBCn et MRec ont montré une grande
capacité à ajuster les propriétés univariées, inter-variables et spatiales des simulations
selon les différentes configurations dimensionnelles. Cependant, l’application de ces méth-
odes dans des contextes hautement dimensionnels doit se faire avec prudence. En effet,
pour MBC-n et MRec, certaines instabilités ont été constatées lors de l’ajustement si-
multané d’un très grand nombre de variables, impliquant une forte détérioration de la
qualité des sorties corrigées. Aussi, en ce qui concerne les propriétés temporelles, aucune
des méthodes utilisées dans cette étude n’a été conçue pour ajuster cet aspect. Cela ré-
sulte à obtenir des données corrigées avec de faibles dépendances temporelles par rapport
aux observations. Ainsi, utiliser ces méthodes MBCs n’est pas recommandé pour des
applications où les propriétés temporelles sont essentielles.

L’étude ne cherchait pas à établir la “meilleure” méthode MBC, mais a plutôt permis de
formuler des recommandations générales pour les utilisateurs afin de les aider à choisir
quelles méthodes de corrections utiliser en fonction de leurs besoins. Ce travail fournit
non seulement un cadre d’intercomparaison auquel d’autres méthodes MBC peuvent être
facilement ajoutées, mais permet également d’identifier des pistes de développements
futures pour de nouvelles méthodes multivariées.
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Chapter 3

Development of a new multivariate bias
correction method using Machine
Learning

Developing MBC methods able to adjust temporal properties of climate simulations is an in-
teresting perspective from the previous chapter. However, when the intercomparison study of
MBC methods was completed, new methods for the adjustments of temporal properties were
being developed by colleagues, which have since been published (Vrac and Thao, 2020; Robin
and Vrac, 2021). Thus, I rather decided to explore the applicability of Machine Learning tools
for multivariate bias correction in high-dimensional context, i.e., not necessarily for temporal
properties adjustments. This resulted in developing a new multivariate bias correction method
based on a particular neural network-based algorithm named CycleGAN (Zhu et al., 2017).
This new MBC method, named MBC-CycleGAN, is designed to adjust the spatial properties
of climate simulations. The core of this chapter is an article published in the scientific journal
Climate Dynamics presenting the new method MBC-CycleGAN. The article is preceded by a
brief introduction on neural networks. It is then completed by a section presenting some details
on the different failures encountered when developing the new method. Finally, a section will
recall the main conclusions of this work and will discuss some perspectives.

3.1 A brief overview of neural networks
Inspired by how information flows through the brain, McCulloch and Pitts (1943) designed

the first artificial neural network to perform logic computations. The evolution of this first — and
naive — neural network has then progressed through several stages, e.g., by improving training
effectiveness (Rosenblatt, 1958; Werbos, 1974; Rumelhart et al., 1986). Neural networks have
become today a powerful statistical tool able to reproduce complex and non-linear relationships
between variables.

A neural network is a computational learning system that uses a network of neurons, or
nodes. The nodes are organised in layers and connections between nodes are modelled as weights.
Through these connections, the nodes perform successive operations that result in a non-linear
mapping between a set of explanatory variables (input layer) and response variables (output
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layer). During training, the goal of the neural network is to find the optimal set of weights
needed to explain the response variables from the explanatory variables. Neural networks have
been used for a variety of applications, including regression analysis (e.g., Specht, 1991), pattern
and sequence recognition (e.g., Lawrence et al., 1997) and data processing such as filtering (e.g.,
Xue et al., 1992).

To illustrate the different elements involved in neural networks architecture, I propose to
repeat the explanation for a simple application: animal recognition in pictures. Fig. 3.1 shows
a possible neural network architecture for such an application. First, pixels information from
an image of an animal (here, chameleon) is given to the input layer and is allocated among
the nodes (green dots). Then, input data get multiplied by weight values (black lines) and the
results is passed to the next layer (hidden layer, orange dots). This process is repeated within
the successive hidden layers until the output layer (purple dots). The output layer is responsible
for producing the final result. For a classification problem like the one presented, each node of
the output layer can correspond for example to the probability of having a specific category of
animal (such as dog, cat or chameleon) on the picture. When the neural network is trained,
probability that a chameleon is present within the image is derived. This probability output is
then compared with the “truth” (i.e., the value 1 as this is a picture of a chameleon). Depending
on whether the predicted probability the value was close to the “true value”, weight values are
adjusted so that the neural network will better predict when encountering another chameleon
picture.

Image fed as input

Dog

Chameleon

Cat

Hidden layers

Output layerInput layer

Figure 3.1: Illustration of a simple neural network topology for an animal recognition
application. Illustration inspired by the website https://www.analyticsvidhya.com/.
Use and modification of the photography "Chameleon Chamäleon" taken by Matthias,
CC BY 3.0.

Due to computational limitations, the use of neural networks was limited for many years to
simple architectures with no more than two hidden layers, and were thus not able to model very
complex data relationships. A major breakthrough that has allowed neural networks achiev-
ing better performances is linked to the development of backward propagation algorithms (e.g.,
Rumelhart et al., 1986). These algorithms permit the information for updating weights dur-
ing training to flow effectively through the network. Also, the major advances in computing
technology in the 2000s allowed to define more complex neural network architectures with more
layers. These complex neural networks also named deep neural networks were then successfully
trained (e.g., Hinton et al., 2006; Ranzato et al., 2006; Bengio et al., 2007), showing their
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ability to extract highly complex features from datasets. The promise of deep learning has
been definitively demonstrated to the world when the deep neural network AlexNet (Krizhevsky
et al., 2017) composed of eight layers won in 2012 the most challenging competition in visual
recognition by surpassing a wide variety of other machine learning methods. In 2016, the deep
learning AlphaGo has attracted worldwide attention when it beat the legendary Go master Lee
Sedol1. The board game of Go is one of the most complex games ever designed, with an as-
tronomical amount of possible game configurations. By playing against himself during training
(“self-taught”), AlphaGo showed the exceptional ability of neural networks to solve very complex
problems. An overview of major improvements obtained with Deep Learning models is available
in Schmidhuber (2015).

3.2 CNNs in climate science
Among the different types of neural networks, convolutional neural networks (CNNs, see e.g.,

Lecun and Bengio, 1995) showed that they can learn with great performances complex spatial
structures. CNNs are a specific type of neural networks in which convolutional operations
through the application of filters are performed to extract features from images. Fig. 3.2 shows
a possible CNN architecture for the same animal recognition problem. Filters are matrices of
weights (red squares in Fig. 3.2) that scan the input image by performing matrix multiplications.
The results from these operations are then passed to the next convolutional layer. By updating
matrices of weights during training, CNNs are able to extract local spatial features from an
image and to combine them to learn higher-level image features. The extracted feature signals
can then be utilised, e.g., for classification using a fully connected neural network (orange and
purple nodes in Fig. 3.2). The ability of CNNs to learn spatial structures comes from the matrix
operations they perform over the dimensions of the input (e.g., over the 2 dimensions of an
image).

Dog

Chameleon

Cat

Input

Feature Extraction Classification

Output

Convolutions Convolutions
Convolutions

Filter

Figure 3.2: Illustration of a simple CNN topology for an animal recognition application.
Use and modification of the photography "Chameleon Chamäleon" taken by Matthias,
CC BY 3.0.

Initially developed for computer vision applications to consider spatial dependencies (e.g.,
Lecun and Bengio, 1995; Szegedy et al., 2015; He et al., 2016), CNNs have been applied with suc-

1https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/
475611/
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cess in various fields of climate science to complement physical knowledge or post-process climate
datasets. For instance, CNNs have already shown promising results in replacing computationally-
demanding physical parameterizations for climate models (Han et al., 2020). They also permitted
to provide accurate weather forecasts (Scher and Messori, 2018, 2019; Weyn et al., 2020; Hewage
et al., 2021; Li et al., 2022) or to emulate atmospheric dynamics (Shi et al., 2015; Chapman et al.,
2019; Babaousmail et al., 2021; Doury et al., 2022) through the modelling of climate variables
relationships. CNNs have also been applied to downscale climate data (Vandal et al., 2017;
Baño-Medina et al., 2020), providing climate information at higher spatial resolution. A recent
overview of Deep Learning applications including CNNs for Earth system science can be found
in Reichstein et al. (2019).

3.3 CNNs and GANs for MBC: how did I get there?
Although the problem of bias correction can be seen as an image problem (Cannon, 2018),

CNNs were not used to adjust multivariate properties of climate simulations despite showing
great performances for the modelling of spatial relationships in other applications. Indeed, one
can think about applying CNNs to learn the transfer of simulated daily maps (seen as images)
with inappropriate spatial features to more realistic images with spatial properties resembling
those observed. As explained in Chapter 1, this transformation using CNNs models could be
determined based on either perfect prognosis (PP) or model output statistics (MOS) approaches
(Maraun et al., 2010). The PP approach consists in learning the synchronous relationships
between a variable of interest from references (predictand) and one or several observed vari-
ables (predictors) before applying these relationships to predictors from climate simulations.
Translated into the language of machine learning, the PP approach determines the statistical
transformation in a supervised context. As PP approach assumes that predictors are perfectly
simulated by the climate model, which, in practice, is often not met (Maraun, 2016), the MOS
approach has been developed. For MOS approach, observed and simulated variables are not
required to be in synchrony to learn to adjust statistical biases. Translated into the language of
machine learning, the MOS approach determines the statistical transformation in a unsupervised
context. Our objective being to develop a MBC approach (i.e. linking simulations and observa-
tions in a statistical way and without synchronicity in time), I was interested in unsupervised
CNNs algorithms.

Designing a new MBC method using CNNs in an unsupervised context adds an additional
complexity. Such MBC methods would consist in linking daily maps (or images) from a source
dataset (climate simulations) to a target dataset (references) without one-to-one correspondence.
Algorithms able to perform image-to-image translations in unsupervised context are not many
and the most famous one is the Generative Adversarial Networks-based algorithm. In their most
basic formulation, Generative Adversarial Networks (GANs, Goodfellow et al., 2014) based on
CNNs are made up of two neural networks set-up in competition and trained together, hence
the name “adversarial”. The first neural network is named the “generator”, and aims at learning
to produce new samples that resemble those in the target dataset. In the original formulation
of GANs, the generator takes Gaussian random vectors as inputs to generate new images. The
second neural network, named the “discriminator” is a classifier that returns the probability that
a given image comes from the target dataset. By putting them in competition during training,
the generator will try to improve itself to “fool” the discriminator with its generated images,
while the discriminator will try not to be fooled by the generator and to better discriminate
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images from the target dataset. CNN-based GANs demonstrated impressive results in computer
vision problems, e.g., to produce realistic paintings as discussed briefly in Chapter 2, and more
generally to learn representations from various image dataset (Radford et al., 2016).

The formulation of GANs explained above is unconditional: by taking Gaussian random
vectors as inputs, the generator is not particularly constrained to produce a certain type of
images. Conditional formulations of GANs have then been developed, which offer the possibility
to condition the generation of new images with additional information such as class labels (e.g.,
Mirza and Osindero, 2014; Gauthier, 2014; Denton et al., 2015) or images (e.g., Yoo et al., 2016;
Isola et al., 2017; Kim et al., 2017; Zhu et al., 2017). In particular, Zhu et al. (2017) designed
a specific formulation of image-conditional GANs for unsupervised image-to-image translation
problems named CycleGAN. By defining a specific optimisation problem for the training of
the generator and the discriminator that will be explained in the following article, generators
from CycleGAN architectures are able to transform images from the source dataset so that they
resemble to images from the target dataset, even when no one-to-one correspondence between
source and target images exist. Thus, CycleGAN meets all the requirements of bias correction
using the MOS approach. For these reasons, it was natural that I looked at adapting CycleGAN
for the development of a new multivariate BC using neural networks.

In the following article, I explore the potential of Generative Adversarial Networks combined
with CNNs to adjust climate simulations. Based on these innovative tools, I provide a new
method named MBC-CycleGAN for the adjustments of spatial properties of climate simulations.
I test my new method for the adjustment of temperature and precipitation time series from IPSL
simulations over the region of Paris in both the PP and MOS approaches and compare the results
obtained with other state-of-the-art MBC methods.

3.4 Article published in Climate Dynamics: Adjust-
ing spatial dependence of climate model outputs
with cycle-consistent adversarial networks
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Abstract
Climate model outputs are commonly corrected using statistical univariate bias correction methods. Most of the time, 
those 1d-corrections do not modify the ranks of the time series to be corrected. This implies that biases in the spatial or 
inter-variable dependences of the simulated variables are not adjusted. Hence, over the last few years, some multivariate 
bias correction (MBC) methods have been developed to account for inter-variable structures, inter-site ones, or both. As 
proof-of-concept, we propose to adapt a computer vision technique used for Image-to-Image translation tasks (CycleGAN) 
for the adjustment of spatial dependence structures of climate model projections. The proposed algorithm, named MBC-
CycleGAN, aims to transfer simulated maps (seen as images) with inappropriate spatial dependence structure from climate 
model outputs to more realistic images with spatial properties similar to the observed ones. For evaluation purposes, the 
method is applied to adjust maps of temperature and precipitation from climate simulations through two cross-validation 
approaches. The first one is designed to assess two different post-processing schemes (Perfect Prognosis and Model Output 
Statistics). The second one assesses the influence of nonstationary properties of climate simulations on the performance of 
MBC-CycleGAN to adjust spatial dependences. Results are compared against a popular univariate bias correction method, 
a “quantile-mapping” method, which ignores inter-site dependencies in the correction procedure, and two state-of-the-art 
multivariate bias correction algorithms aiming to adjust spatial correlation structure. In comparison with these alternatives, 
the MBC-CycleGAN algorithm reasonably corrects spatial correlations of climate simulations for both temperature and 
precipitation, encouraging further research on the improvement of this approach for multivariate bias correction of climate 
model projections.

Keywords Bias correction · Spatial dependence · Post-processing · Climate simulations · Generative adversarial networks · 
Model output statistics

1 Introduction

With ongoing climate change, mitigation and adaptation 
strategies have to be anticipated by decision makers in order 
to reduce potential future consequences of climate change 
on human societies and activities (IPCC 2014). Such con-
sequences are commonly assessed through climate change 
impact studies, for instance in hydrology (e.g., Bates et al. 
2008), agronomy (e.g., Wheeler and von Braun 2013) or epi-
demiology (e.g., Caminade et al. 2014). They rely on impact 

model simulations, the quality of which highly depends on 
the reliability of the climate information used as inputs (e.g., 
Muerth et al. 2013; Ramirez-Villegas et al. 2013). Besides 
observations, global and regional climate models (GCM 
and RCM) are the major tools to understand the climate 
system and its evolutions in the future (Randall et al. 2007; 
Reichler and Kim 2008). However, despite considerable 
improvements in climate modelling, climate simulations 
often remain biased compared to observations: even for the 
current climate, key statistical features such as mean, vari-
ance or the dependence structures between physical vari-
ables or between sites can differ from those calculated for 
observational references (e.g., Eden et al. 2012; Cattiaux 
et al. 2013; Mueller and Seneviratne 2014). Consequently, 
biases are expected to be present in climate projections for 
future periods, making bias correction an often unavoidable 

 * Bastien François 
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data pre-processing step for impact studies (e.g., Christensen 
et al. 2008; Maraun et al. 2010; Teutschbein and Seibert 
2012).

In the recent years, many statistical bias correction (BC) 
methods have been developed that aim to correct (selected 
features of) the distribution of climate variables. The idea 
of statistical bias correction is to find a mathematical trans-
formation that makes climate simulations have similar sta-
tistical properties as a reference dataset over the historical 
period, and then apply this transformation for the modeled 
projection. Such transformations may be determined with 
statistical models based on either perfect prognosis (PP) or 
model output statistics (MOS) approaches (Maraun et al. 
2010). The PP approach consists in determining the sta-
tistical link between a variable of interest from references 
(predictand) and one or several observed variables (predic-
tors) occurring at the same time. Simultaneous values of 
predictand and predictors are indeed required to implement 
the PP approach and learn the (synchronous) relationships 
between them. By applying these relationships to predictors 
from climate simulations, this approach implicitly makes the 
assumption that these predictors are realistically simulated 
(Wilks 2006). In the MOS approach, observed and simu-
lated variables are not considered to be synchronized in time, 
and biases relate to differences in some statistics (such as 
means or variances) or in distributions between references 
and modeled climate variables. Adjustments can be made to 
the simulated mean (e.g., Delta method, Xu 1999), variance 
(e.g., simple scaling adjustment, Berg et al. 2012) and also 
all moments of higher order and percentiles (e.g.,“quantile-
mapping”, Haddad and Rosenfeld 1997; Déqué 2007; Gud-
mundsson et  al. 2012). In particular, quantile-mapping 
technique has received a keen interest since it permits for 
adjusting not only the mean and variance but also the whole 
distribution of climate variables. It has been conducive to 
the development of many variants (e.g., Vrac et al. 2012, 
2016; Tramblay et al. 2013; Cannon et al. 2015), and applied 
for various studies (e.g., Vigaud et al. 2013; Defrance et al. 
2017; Bartok et al. 2019; Tong et al. 2020). However, such 
BC methods are designed to only correct statistical aspects 
of univariate distributions. Simulated variables are indeed 
adjusted separately for each physical variable at each specific 
location. Thus, potential biases in the spatial dependence 
structure of modeled variables are not corrected (e.g., Wil-
cke et al. 2013), which can generate corrections with inap-
propriate multivariate situations and can affect subsequent 
analyses that depend on spatial characteristics of climate 
variables (e.g., Zscheischler et al. 2019). For instance, this 
can occur with flood risk assessment, that depends on spatial 
(and temporal) properties of precipitation, soil moisture and 
river flow (Vorogushyn et al. 2018) or with drought-related 
impacts, that depend on complex interaction of natural and 
anthropogenic processes (Van Loon et al. 2016). It is hence 

crucial to provide end users with bias corrections of climate 
simulations that present not only relevant 1-dimensional 
information at each individual site but also appropriate spa-
tial representation.

Over the last years, a few multivariate bias correction 
(MBC) methods have been developed to address the issues 
of biases in multivariate dependencies. Not only do these 
methods correct marginal properties of simulated variables, 
they are also designed to adjust statistical dependencies 
between variables. Although it has been found for specific 
cases that MBC methods do not particularly outperform 
univariate ones for the adjustment of dependencies between 
multiple variables (Räty et al. 2018), this finding cannot be 
generalized to all applications and methods. For instance, 
François et al. (2020) showed the added value of MBC to 
improve inter-variable dependence and spatial structures 
for temperature and precipitation over Europe. More gener-
ally, MBCs could be of great interest for compound events 
studies, where dependencies between drivers of extreme 
events with large impacts are crucial to evaluate their risks 
(Zscheischler et al. 2018).

A categorization of MBC methods in three main families 
of approaches has been proposed in the literature (e.g., Vrac 
2018; François et al. 2020):

• the “marginal/dependence” correction approach, that 
consists of MBC methods adjusting in two distinct steps, 
i.e. separately, marginal distributions and multivariate 
dependencies of climate simulations (e.g., Bárdossy and 
Pegram 2012; Mehrotra and Sharma 2016; Hnilica et al. 
2017; Nahar et al. 2018; Cannon 2018; Nguyen et al. 
2019; Guo et al. 2019; Vrac and Thao 2020).

• the “successive conditional” category, made up of MBC 
methods performing successive univariate corrections of 
climate variables conditionally on the previously adjusted 
ones (e.g., Piani and Haerter 2012; Dekens et al. 2017).

• the “all-in-one” correction approach, that adjusts directly 
the whole statistical distribution (i.e. both univariate and 
multivariate properties) of climate simulations at the 
same time (e.g., Robin et al. 2019).

Based on this categorization, François et al. (2020) per-
formed an intercomparison and critical review of MBC 
methods. It presents a global picture of the performances 
of MBCs in terms of multivariate adjustments of climate 
simulations, as well as the different assumptions and statisti-
cal techniques used.

In parallel, i.e., in contexts other than bias correction, 
over the last decades, machine learning techniques have 
emerged as a promising approach to model highly non-
linear and complex relationships between statistical vari-
ables. Major improvements have been obtained with Deep 
Learning models (see the overview of Schmidhuber 2015), 
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which have proved to be efficient to extract high-level feature 
information from various datasets. In particular, convolu-
tional neural networks (CNNs, see e.g., Lecun and Bengio 
1995) showed that they can capture with great performances 
complex spatial structures. Initially developed for computer 
vision problems (e.g., Szegedy et al. 2015; He et al. 2016), 
they found numerous applications in climate sciences: for 
instance for weather forecast prediction uncertainty (Scher 
and Messori 2018), emulations of atmospheric dynamics 
(Shi et al. 2015; Scher and Messori 2019; Chapman et al. 
2019), detection of extreme weather events (Liu et al. 2016; 
Racah et al. 2017) and statistical downscaling (Vandal et al. 
2017; Rodrigues et al. 2018; Baño-Medina et al. 2020). A 
recent overview of Deep Learning applications for Earth 
system science is offered by Reichstein et al. (2019).

Recently, a new class of artificial neural networks, named 
Generative Adversarial Networks (GANs; Goodfellow et al. 
2014), has led to tremendous interests due to their ability 
to infer high dimensional probability distributions. Initially, 
this machine-learning method has been developed for esti-
mating the distribution of images from a target dataset, with 
the aim of sampling new (and unseen) images from this dis-
tribution. GANs, implemented with deep convolutional neu-
ral networks, have achieved impressive results in computer 
vision problems (e.g., Radford et al. 2016) and are a subject 
of active research to improve computing architectures (e.g., 
Salimans et al. 2016; Karras et al. 2018; Menick and Kalch-
brenner 2018) and optimization techniques (e.g., Mao et al. 
2017; Arjovsky et al. 2017; Roth et al. 2017). Conditional 
formulations of GANs have also been developed, for which 
additional information, such as class labels or images, can 
serve as inputs to condition the generation of the new images 
(e.g., Mirza and Osindero 2014; Gauthier 2014; Denton 
et al. 2015; Kim et al. 2017; Isola et al. 2017). In particular, 
image-conditional GANs permit to perform image-to-image 
translation tasks by learning how to map the statistical distri-
bution of one set of images (source dataset) to the statistical 
distribution of another set (target dataset). Depending on 
the correspondence between images of the source and target 
datasets, different versions of image-conditional GANs have 
been developed. When all the images are paired (i.e., there is 
a known one-to-one correspondence between every images 
of the source and target datasets), conditional GANs are 
trained by supervised learning (Yoo et al. 2016; Isola et al. 
2017). When only a few images are paired, semi-supervised 
is used (Gan et al. 2017) and when all points are unpaired, 
only unsupervised learning can be applied (Kim et al. 2017; 
Yi et al. 2017; Zhu et al. 2017). Due to the stochastic and 
high-dimensionality nature of many physical processes of 
the Earth system, GANs and conditional GANs are particu-
larly appealing for atmospheric science problems. Recently, 
they have been used for various Earth-science related appli-
cations: for instance for statistical downscaling (Leinonen 

et al. 2020; Wang et al. 2021), temporal disaggregation of 
spatial rainfall fields (Scher and Peßenteiner 2020), sam-
pling of extreme values (Bhatia et al. 2020), modelling of 
chaotic dynamical systems (e.g., Xie et al. 2018; Wu et al. 
2020), classification of snowflake images (Leinonen and 
Berne 2020), weather forecasting (Bihlo 2020) and stochas-
tic parameterization in geophysical models (Gagne II et al. 
2020).

In climate modelling context, no one-to-one correspond-
ence exists between observations and model simulations 
as they have different internal variabilities and thus are not 
synchronized in time. Biases refer to differences in distribu-
tional properties between references and simulated climate 
variables. Hence, in this context, bias correction can be seen 
as an unsupervised image-to-image problem that aims to 
map daily images from model simulations to daily images 
from historical observational references in order to adjust the 
distributional properties of the climate model.

In this study, we adapt a specific formulation of condi-
tional GANs, initially used for unsupervised image-to-image 
translation problems (CycleGAN, Zhu et  al. 2017), for 
multi-site corrections of climate simulations. The new MBC 
method, referred to as MBC-CycleGAN in the following, is 
introduced and applied in a proof-of-concept context for the 
correction of daily temperature and precipitation fields with 
a simple neural network architecture. In order to investigate 
and evaluate the proposed methodology, applications and 
comparisons of MBC-CycleGAN based on PP (correspond-
ing to a supervised context) and MOS (unsupervised con-
text) approaches are performed through a cross-validation 
method. In addition, a second cross-validation method is 
used in this study to assess the performances of MBC-Cycle-
GAN in a context of different degrees of nonstationarity 
of the climate model between present (i.e., calibration) and 
future (i.e., projection) periods. One univariate quantile-
mapping-based BC method and two MBC algorithms are 
included in the study in order to gain a better understanding 
of the performances of MBC-CycleGAN concerning uni-
variate, spatial and temporal properties.

The paper is organized as follows: Section 2 presents 
the model and reference data used, and Sect. 3 describes 
the MBC-CycleGAN algorithm. Then, Sect. 4 displays the 
experimental setup used in this study, and results are pro-
vided in Sect. 5. Conclusions, discussions and perspectives 
for future research are finally proposed in Sect. 6.

2  Reference and model data

In this study, the dataset employed as reference for the bias 
correction is the “Système d’Analyse Fournissant des Ren-
seignements Atmosphèriques á la Neige” (SAFRAN) rea-
nalysis (Vidal et al. 2010) with an approximate 8 km × 8 
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km spatial resolution. Daily temperature and precipitation 
time series from 1 January 1979 to 31 December 2016 are 
extracted over the region of Paris, France ([47.878, 49.830◦ 
N] × [0.949,3.947◦ E]), which corresponds to a domain with 
28 × 28 = 784 continental grid cells.

For the climate simulations data to be corrected, daily 
temperature and precipitation time series are taken from 
runs of the IPSL-CM5A-MR Earth system model (Marti 
et al. 2010; Dufresne et al. 2013) with a 1.25◦ × 2.5◦ spatial 
resolution over the same region of Paris. For the 1979–2005 
period, a historical run is extracted and concatenated with a 
run under RCP 8.5 scenario (i.e., the scenario with highest 
CO2 concentration) for the 2006–2016 period, to obtain the 
desired 1979–2016 period. To perform a bias correction, 
a one-to-one correspondence between model and reference 
grid cells is needed, i.e., spatial resolutions between ref-
erence and model data have to be the same. Hence, IPSL 
data are regridded to the SAFRAN spatial resolution with a 
bilinear interpolation for both temperature and precipitation.

More data are required for this study, in particular for the 
implementation of the PP approach and to assess the influ-
ence of nonstationary properties of climate simulations on 
the performance of the proposed MBC method. For sake 
of clarity and make reading easier, these data will be intro-
duced thereafter in the appropriate sections.

For illustration purpose, Fig. 1a displays the topographic 
map of France with the region of Paris in a box, as well as 
the mean daily temperature (Fig. 1b, c) and precipitation 
(Fig. 1d, e) maps for SAFRAN and IPSL datasets during 
winter over the 1979–2016 period for Paris.

3  Methodology

3.1  GAN

In its most basic formulation, a generative adversarial net-
work consists of two neural networks that are trained con-
jointly: a generator and a discriminator. We first consider 
one random variable � living in ℝd , with a probability dis-
tribution denoted ℙ� . This random variable characterizes 
the available data, such as images of the target dataset (i.e., 
references), and hence takes its values in a high-dimensional 
space. We assume to have at hand samples �1,… , �n drawn 
according to the density ℙ� on ℝd . The generator, denoted 
G, is a function from ℝd′ to ℝd and is intended to be applied 
to a d′-dimensional random variable � , usually multivariate 
Gaussian random noise (with d′

<< d ), such that the ran-
dom variable G(�) follows the law of � , i.e. ℙ� = ℙ�(�) . 
Let �1,… ,�n be a sample drawn from the distribution of 
� . To train the generator G, the discriminator D� , that is a 
function from ℝd to [0, 1],  is used as complex loss function 
(Goodfellow et al. 2014). This neural network is a binary 

classifier that returns the probability that a given observa-
tion, or image, comes from ℙ� . The discriminator is trained 
in a supervised way to return maximal probability values on 
the reference images �i and minimal values on the artificially 
generated images G(�i) . Conversely, the goal of the genera-
tor is to “fool” the discriminator by making the distribution 
of G(�i) as indistinguishable as possible from that of �i , i.e., 
making difficult for the discriminator to determine that a 
sample G(�i) comes from a distribution different from ℙ� . 
Generator and discriminator are trained in turns and are in 
competition (i.e. “adversarial training”) to improve them-
selves until it reaches an optimal equilibrium state.

The original formulation of GANs explained above is 
unconditional: the generator G only takes as input noise 
vectors �i to produce new samples that are drawn from the 
target distribution ℙ� . The idea of conditional GANs (e.g., 
Goodfellow et al. 2014; Mirza and Osindero 2014) is to add 
some information as inputs to direct the generation. By con-
ditioning the generation on an input image, the generator is 
able to generate a corresponding output image, rendering the 

Fig. 1  a Topographic map of France with the selected region over 
Paris in a box, b, c temperature and d–e precipitation daily mean 
computed at each grid cell during winter over the 1979–2016 period 
for Paris. Results are shown for SAFRAN reference and plain IPSL 
outputs
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conditional GANs appropriate for image-to-image transla-
tion tasks (e.g., Isola et al. 2017).

3.2  CycleGAN for unsupervised image‑to‑image 
translation

CycleGAN (Zhu et al. 2017) is a particular image-con-
ditional GANs that is commonly used for unsupervised 
image-to-image translation. In the original application, 
CycleGAN has been applied with great success to transform 
photographs into the styles of master paintings by modify-
ing colour information (i.e., RGB colour channels and/or 
spatial features of colours) of the photographs. Instead of 
the random noise � , we introduce another random vari-
able � , with probability distribution ℙ� , living in the same 
dimensional space as � (i.e., ℝd ). This random variable � 
characterizes the images of the source dataset (i.e., biased 
simulations to correct). The CycleGAN approach consists 
in learning a mapping (i.e., a generator) G�→� ∶ ℝ

d
→ ℝ

d 
such that the random variable G�→�(�) follows the law of 
� (i.e., ℙ� = ℙG�→�(�)

 ). In addition to samples �1,… , �n , 
we assume to have at hand image samples �1,… , �n drawn 
according to density ℙ� on ℝd . Similarly as unconditional 
GANs, the mapping G�→� is learned using an adversarial 
loss, i.e. with a discriminator D� which forces the generator 
G�→� to generate images from a distribution close to the 
target distribution ℙ� . The adversarial loss is defined as:

G�→� aims to minimize this adversarial objective against D� , 
that means, tries to fool the discriminator with its generated 
images (i.e., maximizing the probability D�(G�→�(�i)) ). 
On the contrary, the discriminator D� aims to maximize 
the adversarial loss by distinguishing between transferred 
samples G�→�(�i) and samples �i from the distribution ℙ� . 
A perfect discriminator D� would return probability values 
equal to 1 for samples drawn from ℙ� and equal to 0 for 
samples generated by G�→� . Hence, G�→� is designed to 
solve the optimization problem against D�:

As highlighted by Zhu et al. (2017), this adversarial objec-
tive for unsupervised problems is under-constrained: there 
is no guarantee that “an individual input �i and output �i are 
paired up in a meaningful way” with such a mapping G�→� . 
In fact, without further constraints, several different map-
pings can optimize similarly the adversarial loss by transfer-
ring the same set of images from ℙ� to any random permuta-
tion of a same set of images from the distribution ℙ� . 
Moreover, optimizing in practice this under-constrained 

(1)

LGAN(G�→�,D�) =
1

n

n∑

i=1

lnD�(�i) +
1

n

n∑

i=1

ln
(
1 − D�◦G�→�(�i)

)
.

(2)G�→� = argmin
G�→�

max
D�

LGAN
(
G�→�,D�

)
.

adversarial objective alone has been found to be difficult for 
unsupervised problems, often leading to a well-known prob-
lem called “mode collapse”. Mode collapse appears when a 
generator fails to model the complete range of input images. 
This results in a lack of diversity in the generated outputs. 
To address these issues, Zhu et al. (2017) propose to reduce 
the number of possible mapping functions by adding more 
constraints to the optimization problem. To do so, they intro-
duce the inverse mapping G�→� ∶ ℝ

d
→ ℝ

d , as well as a 
second discriminator D� aimed to recognize images from 
the distribution ℙ� . Similarly to the mapping G�→� , an 
equivalent adversarial loss can be used to learn the mapping 
G�→� by solving argmin

G�→�

max
D�

LGAN(G�→�,D�) . Zhu et al. 

(2017) proposed to use G�→� to enforce the learned map-
pings to be cycle-consistent. That means that, for each input 
image �i , the mappings G�→� and G�→� can be constrained 
such that it learns to translate �i back to the initial image, i.e. 
G�→�◦G�→�(�i) ≈ �i (and similarly for image �i , such that 
G�→�◦G�→�(�i) ≈ �i ). This property can be enforced by 
using a “cycle-consistency” loss which is defined as:

Finally, to ensure that images in �1,… , �n that already seem 
to be draw from the distribution ℙ� (and vice-versa) are not 
mapped to another images, an identity mapping loss can 
also be defined as:

which further reduces the solution space of mapping func-
tions and prevents even more the optimization problem from 
being under-constrained. The full objective function of the 
CycleGAN architecture can be expressed as follows:

where �cyc and �id control the relative importance of both 
cycle-consistency and identity losses. Finally, the Cycle-
GAN aims to solve:

(3)

Lcyc
(
G�→�,G�→�

)
=
1

n

n∑

i=1

|||G�→�(G�→�(�i)) − �i
|||1

+
1

n

n∑

i=1

|||G�→�(G�→�(�i)) − �i
|||1.

(4)

Lid
(
G�→�,G�→�

)
=
1

n

n∑

i=1

|||G�→�(�i) − �i
|||1

+
1

n

n∑

i=1

|||G�→�(�i) − �i
|||1,

(5)

L
(
G�→�,G�→�,D�,D�

)
=LGAN

(
G�→�,D�

)
+ LGAN

(
G�→�,D�

)

+ �cycLcyc(G�→�,G�→�)

+ �idLid
(
G�→�,G�→�

)
,

(6)

(
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)
= arg min

G�→�,G�→�
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D�,D�

L
(
G�→�,G�→�,D�,D�

)
.
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Although estimating the inverse mapping G�→� is not nec-
essarily the initial goal of many image-to-image translation 
problems, its use to constrain the optimization problem 
has been found to be crucial in an unsupervised context 
for the convergence of the algorithm and the estimation of 
the desired mapping G�→� . Illustrations of the adversarial, 
cycle-consistent and identity losses within the CycleGAN 
architecture are given in Fig. 2.

3.3  The MBC‑CycleGAN approach

3.3.1  Adaptation of CycleGAN for MBC

The main idea of the proposed methodology, named MBC-
CycleGAN, is to adapt the CycleGAN approach so that it 
turns daily maps of a simulated variable with spatial fea-
tures inappropriate compared to a reference dataset, to more 
realistic maps. Here, MBC-CycleGAN is developed in the 
context of the “marginal/dependence” MBC category, i.e., 
correcting separately marginal distributions and dependence 

relationships. In addition to marginal distributions, we con-
sider the adjustment of spatial dependence structures. The 
algorithm is trained on a historical period (i.e., calibration) 
for which both climate simulations and reference datasets 
are available. Once the adversarial neural network has con-
verged, adjustment of climate simulations over a projection 
period (e.g., a future time period) is performed using the 
pretrained algorithm. The MBC-CycleGAN proceeds as 
follows: 

1. As MBC-CycleGAN belongs to the marginal/depend-
ence category, univariate distributions of modeled cli-
mate variables are first corrected independently using a 
univariate BC method for both calibration and projection 
periods. In this study, the quantile-quantile (QQ) map-
ping method is used (Déqué 2007).

2. Then, quantile-quantile and reference data over the cali-
bration time period are transformed to belong to [0, 1] 
using a pointwise min-max normalization. For each grid 
cell, the minimum and maximum values from the refer-

Fig. 2  a Illustration of the 
adversarial training for the map-
ping function G�→� , associated 
with the adversarial discrimina-
tor D� . D� encourages G�→� to 
generate outputs that are indis-
tinguishable from the probabil-
ity distribution of � . A similar 
adversarial training is used for 
G�→� using D� (not presented 
in this figure). In CycleGAN 
architectures, the mappings 
G�→� and G�→� are enforced 
to be cycle-consistent, i.e., b 
if an initial image from � is 
translated using G�→� and back 
again using G�→� , the initial 
image should be obtained. c In 
addition, to ensure that images 
from � that already seem to be 
drawn from the distribution of 
� are not modified too much, 
the identity property is used 
by enforcing G�→� applied to 
images from � to resemble to 
initial inputs from � (and vice 
versa for G�→� ). In our study, 
samples from � and � are 
replaced by QQ outputs and 
references, respectively
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ence during the calibration are taken to compute the nor-
malization. The resulting daily maps are then given to a 
CycleGAN model to learn the transfer between the two 
distributions of images. Generators and discriminators 
are trained until the spatial distribution of the corrected 
maps stops improving. More details about the criteria 
used to evaluate spatial distributions are presented there-
after.

3. Once the CycleGAN model has been trained for the 
calibration period, the same pointwise normalization 
is performed for quantile-quantile data over the projec-
tion period, i.e., using the same minimum and maximum 
values from the reference during the calibration period. 
Normalized daily maps from quantile-quantile data in 
the projection period are translated in the normalized 
reference domain using the pretrained adversarial neu-
ral network. Then, the corrected outputs obtained are 
rescaled to physical values by applying the inverse of 
the pointwise min-max normalization used.

4. Finally, by taking advantage of the Schaake Shuffle tech-
nique (Clark et al. 2004), quantile-quantile data for the 
projection period obtained from Step 1 are reordered 
such that the rank structure of the data obtained from 
Step 3 is reproduced. This shuffling technique, already 
employed in a few multivariate bias correction methods 
(e.g., Vrac 2018; Cannon 2018; Mehrotra and Sharma 
2019), permits here to obtain bias-corrected data with 
marginal properties from quantile-quantile outputs and 
rank dependence structure from CycleGAN outputs.

A summary of the successive steps in the form of a flowchart 
is provided in Fig. 3. More details about the different algo-
rithmic steps are presented in Appendix 1.

3.3.2  Network architecture

To infer the weights for the cycle-consistency mapping loss 
�cyc and the identity mapping loss �id , preliminary tests 
have been conducted by checking a couple of combina-
tions of weights and verifying that our optimization process 
improved the spatial structure of the climate simulations. 
With respect to these results (not shown), the weights have 
been chosen equal to �cyc = 10 and �id = 1.

Additionally, in this paper, we only present results 
obtained with a simple architecture for the CycleGAN neu-
ral networks. Our work being a proof of concept, we did 
not tune any further the architecture or the hyperparame-
ters of the neural networks. However, the results presented 
later in Sect. 5 appear sufficient to illustrate the potential 
of CycleGANs for MBC. Schemes for the convolutional 
neural networks for both generators and discriminators are 
presented in Fig. 4. Architecture of generators for the map-
ping and inverse mapping are identical and are based on 

deep convolutional layers (DCGAN, Radford et al. 2016). 
First, the daily maps, i.e. images of size 28 × 28 are given as 
inputs to the generators. Then, images flow through three 2D 
convolution layers with an increasing number of 3 × 3 filters 
(64–128–256). Two of them are performing convolutions 
that downsample input images to capture complex patterns 
at different scales. Then, two 2D transpose convolutional 
layers with a decreasing number of 4 × 4 filters (128–64) are 
used to perform inverse convolution operations and upsam-
pling input data. Finally, one 2D convolution layer with one 
1 × 1 filter is used to generate an output image of the same 
size as the initial one. Skip connections between convolu-
tion and transpose convolutional layers are used to ease the 
training of the CycleGAN network (He et al. 2016). All the 
other hyperparameters for the neural network architecture of 
the generators are detailed in Appendix 2.

Concerning the discriminators, they take as well as inputs 
images of size 28 × 28 . Then, two 2D convolution layers 
with an increasing number of 3 × 3 filters (64–128) are 
used. Finally, outputs are flattened, i.e., are converted into a 
1-dimensional array before being given to a fully connected 
layer (dense layer) that computes the sigmoïd values (i.e., 
probabilities) for the classification of images.

The number of parameters is equal to 1,025,281 for 
each generator and 80,769 for each discriminator, bringing 
the total number of parameters to 2,212,100 for the whole 
CycleGAN architecture. Please note that each convolution 
and transpose convolutional layer used within the neural 
network architectures of both generators and discriminators 
includes a bias vector to fit. The number of parameters added 
by individual convolutional layers depends on its number 
of filters f2 , the filter size (here 3 × 3 ) and also the number 
of filters f1 from the previous convolutional layer. Adding 
an additional convolutional layer in a generator architec-
ture with f2 filters will add (3 × 3 × f1 + 1) × f2 parameters. 
Hence, constructing a (deeper) neural network with more 
and more layers increases drastically the number of parame-
ters to train. In order to keep an algorithm which is relatively 
fast to train while being stable, we decided not to add further 
layers to generators and discriminators architectures. For a 
concise summary of network architectures used, we refer to 
the Tables 3 and 4 in Appendix 2.

3.3.3  Training details

In this study, CycleGAN networks are trained using the 
Adam optimizer (Kingma and Ba 2017) with learning 
rates of 1e−4 and 5e−5 for the generators and discrimina-
tors, respectively. Please note that no grid search has been 
performed to determine optimal values of learning rates, 
and hence there is room for improvement. For the perfor-
mance assessment of the CycleGAN model during training, 
the energy distance (Székely and Rizzo 2004; Székely and 
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Rizzo 2013) is used. This metric, already used in the bias 
correction literature (e.g., Cannon 2018), permits to measure 
the statistical discrepancy between two multivariate distri-
butions that are potentially in high dimension. Given two 
k-multivariate independent random vectors � and � with 
multivariate probability distributions � and � respectively, 
the energy distance E between the two distributions is:

E(�, �) =
√
2E‖� −�‖ − E‖� − ��‖ − E‖� −��‖,

with E denoting the expected value, �′ (resp. �′ ) independ-
ent and identically distributed copy of � (resp. � ) and ‖.‖ 
the Euclidean distance. The corresponding energy statistic 
of E between two k- dimensional statistical samples � and � 
can be computed as follows:

Fig. 3  Flowchart for the MBC-
CycleGAN method to adjust 
climate simulations for the 
projection period

References and model simulations
datasets for calibration (0) period.

References and model simulations
datasets for projection (1) period.

• Adjust each variable using the univariate
QQ method for period 0.

• Adjust each variable using the univariate
QQ method for period 1.

Step 1: Correction of univariate properties

• Apply a pointwise min-max normalization
of QQ and references data for period 0.

• Train the CycleGAN model to adjust for
spatial biases.

Step 2: Training of the CycleGAN

• Apply a pointwise min-max normalization
of QQ data for period 1.

• Adjust for spatial biases using the
CycleGAN model from Step 2.

• Rescale data by applying the inverse of the
pointwise min-max normalization.

Step 3: Application of CycleGAN
to correct spatial dependence

• Reorder QQ data with the Schaake Shuffle
technique for period 1 such that the rank
structure of the data obtained at the end of
Step 3 is reproduced.

Step 4: Reordering of the QQ data
Raw-CycleGAN outputs for period 1.

MBC-CycleGAN outputs for period 1.
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where �i denotes the realizations of � at the time step i 
across the k dimensions (and similarly for �m with � ). The 
energy statistic goes to zero when the two multivariate sam-
ples � and � are drawn from the same distribution.

During training, computations of energy distances are 
performed every 10 epochs, i.e. each time that the Cycle-
GAN has worked 10 times through the entire training 
dataset. Estimated energy distances Ê are calculated on 
multivariate distributions of ranks between references and 
bias-corrected data. It permits to assess along the training 
the performance of the method to correct the whole spatial 
dependence structure of climate simulations. Computing 
energy distance using ranks instead of raw values allows 
the removal of the influence of univariate properties on the 
spatial relationships. The CycleGAN model that minimizes 
the energy distance on ranks during training is chosen for 
the correction of the projection period. Training 1000 epochs 
takes ∼ 4 h on a single NVIDIA Tesla V100 GPU.

Ê(�, �) =

�
2

n1n2

n1�

i=1

n2�

m=1

‖�i − �m‖ −
1

n2
1
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‖�i − �j‖

−
1

n2
2

n2�
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2
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4  Design of experiments

For evaluation purposes, the proposed MBC-CycleGAN 
method is applied to adjust climate simulations outputs with 
SAFRAN data as references. Bias correction is performed 
on separate seasons in order to preserve seasonal proper-
ties. In the following, for sake of clarity, only the winter 
results are presented. Data are available for the 1979–2016 
period (i.e, 3420 winter days), and need to be divided into a 
calibration period and a projection period to train and evalu-
ate our algorithm. In accordance with common practices 
in machine learning, the 1979–2016 period is split as fol-
lows: 70% (2394 days) as training dataset and 30% (1026 
days) as evaluation dataset. In this study, two different cross-
validation methods—that differ in how calibration and pro-
jection periods are constructed—are used to evaluate our 
methodology.

4.1  Model output statistics (MOS) vs. Perfect prog 
(PP)

The first cross-validation method consists in drawing 
randomly the days that define the calibration and projec-
tion periods. As these periods are drawn randomly, the 

Fig. 4  Scheme of the convolu-
tional neural networks for the a 
generators and b discriminators 
used in this study within the 
MBC-CycleGAN procedure. 
For each convolutional and 
transpose convolutional layers, 
the number of filters used is 
indicated by the third coordinate 
of their output size
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potential climate change signal present in the data during the 
1979–2016 period vanishes. Hence, for this cross-validation 
method, no changes in marginal and dependence properties 
are expected between the calibration and projection periods, 
allowing for the assessment of the method in a stationary 
context. We take advantage of this first stationary cross-
validation technique to apply our method in both PP and 
MOS post-processing schemes for the adjustment of IPSL 
climate simulations. Implementing and evaluating both the 
PP and MOS approaches in such a validation context permits 
to determine which approach is better suited in our con-
text of bias correction of climate simulations. For the MOS 
approach, MBC-CycleGAN is applied directly to IPSL data 
according to the 4 steps already described in Sect. 3.3. Con-
cerning the implementation of the PP approach, the same 
procedure is applied but the CycleGAN model is trained 
in a slightly different way. Indeed, as already explained in 
Sect. 1, a PP approach consists in establishing the statisti-
cal relationships between large–cale predictors and local-
scale predictands from observational or reanalysis data 
(including for the predictors) before applying them to cli-
mate model data. Hence, large-scale predictors temporally 
matching the SAFRAN dataset are needed to a PP approach. 
For this purpose, a new climate dataset is constructed for 
both temperature and precipitation as follows: initial local-
scale SAFRAN data with 8 km × 8 km spatial resolution are 
upscaled using conservative interpolation on a large-scale 
grid of 32 km × 32 km spatial resolution. Then, the obtained 
large-scale data are regridded using bilinear interpolation to 
the initial grid of SAFRAN, allowing to train CycleGAN. It 
results in “biased” daily maps of temperature and precipi-
tation (large-scale predictors) of the initial SAFRAN data 
(local-scale predictands), temporally matching the chronol-
ogy of the SAFRAN time series. Using these new data—
hereafter referred to as “low-resolution (LR) SAFRAN”—a 
CycleGAN model is trained for the implementation of the 
PP approach by learning the transfer of maps from 1d-BC 
large-scale predictors (QQ(LR SAFRAN)) to maps from 
local-scale predictands (SAFRAN). This trained model is 
then used to bias correct IPSL simulations over the projec-
tion period and, hence, evaluate the CycleGAN results in a 
PP context.

4.2  Nonstationarity investigation

To evaluate the nonstationary behavior of the proposed 
method, a second cross-validation method is defined, 
which consists in dividing the 1979–2016 period chrono-
logically. By still defining the calibration and the projection 
periods based on the 70–30% split, it results in obtaining 
approximately the 1979–2005 and 2006–2016 portions as 
calibration and projection periods, respectively. Hence, the 
potential climate change signal between the calibration and 

projection periods is not removed by the cross-validation 
technique. Within this second cross-validation method, IPSL 
simulations and SAFRAN references can potentially have 
different marginal and spatial dependence changes between 
calibration and projection periods. In this respect, depending 
on the level of agreement in changes between simulations 
and references, and how MBC methods account for these 
changes in their correction procedure, the quality of the 
correction for projection periods can possibly be different. 
Hence, to provide a global picture of the performances of 
the MBC-CycleGAN method in the nonstationary context, 
three bias correction exercises of climate data with different 
statistical changes are performed with respect to SAFRAN 
references:

• the correction of IPSL simulations that present different 
marginal and spatial properties from SAFRAN, and with 
potentially different changes than those from SAFRAN.

• the correction of LR SAFRAN dataset (presented above), 
whose marginal and spatial properties as well as their 
changes are in line with those from SAFRAN.

• the correction of a third dataset called IPSLbis (presented 
below) that presents different marginal and spatial prop-
erties from SAFRAN, but for which their changes are in 
line with those from SAFRAN.

For the sake of clarity, a summary of the different attributes 
of the three datasets to correct is presented in Table 1.

LR SAFRAN dataset already presented above has, by 
construction, little bias with SAFRAN references: its biases 
are only due to the interpolation technique used to obtain 
data with a lower resolution. Hence, statistical changes 
between the calibration and projection periods for LR 
SAFRAN are in line with those from the SAFRAN data-
set. Adjusting LR SAFRAN data for the projection period 
permits to assess if the MBC-CycleGAN method is able 
to reproduce the changes from the reference in the correc-
tion. Also, the LR SAFRAN dataset presents the particular-
ity of being synchronous in time with references. Hence, in 
addition to evaluate the proposed method in terms of dis-
tributional properties, which is not considered as sufficient 
to identify successful bias correction techniques (Maraun 
2016), this pairwise correspondence between predictors 
and predictands offers the possibility to directly compare 
corrected daily maps with those from the references using 
classic forecast verification statistics.

As IPSL simulations compute a different combination 
of variability and warming than those from the SAFRAN 
reanalysis, IPSL model and SAFRAN references are likely 
to present disagreeing changes in their statistical (marginal 
and dependence) properties between calibration and projec-
tion periods. To evaluate the influence of these potential 
disagreeing changes on the performance of correction of the 
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proposed method, we constructed the third dataset, referred 
to as “IPSLbis”, for the projection period only. IPSLbis is 
specifically constructed so that its marginal and dependence 
changes between calibration and projection periods are in 
line with those from the reference. In order to ease the com-
parison of results with the first bias correction exercise, we 
forced IPSLbis to have the same changes as LR SAFRAN. 
This is reached by using a two-step procedure that takes 
advantage of a nonstationary quantile mapping technique 
for marginal changes (CDF-t, Vrac et al. 2012) and a matrix-
recorrelation technique for dependence changes (Bárdossy 
and Pegram 2012). More details about the generation of the 
IPSLbis data can be found in Appendix 3 and a detailed 
evaluation of the evolution of statistical properties of the dif-
ferent dataset between the calibration and projection period 
is provided in Appendix 4. In particular, results presented 
in Appendix 4 indicate that, as expected, changes in spatial 
structures from SAFRAN references are (globally) in agree-
ment with those from LR SAFRAN for both temperature and 
precipitation. However, concerning changes in spatial struc-
tures for IPSL simulations, conclusions are not the same 
depending on the physical variable. While, for temperature, 
simulated changes of spatial correlations are partially in line 
with those from LR SAFRAN, IPSL model presents discrep-
ancy of changes for precipitation. Globally, the construc-
tion of IPSLbis with the two-step procedure described in 
Appendix 3 permits to impose to IPSL data spatial changes 
for both temperature and precipitation that are in line with 
those from LR SAFRAN.

4.3  Comparisons to existing MBCs: R 2D2 and dOTC

Although evaluating the performance of correction for IPSL 
simulations is of primary interest, applying our method on 
these three datasets (IPSL, IPSLbis, LR SAFRAN) permits 
to assess gradually how well our method is performing 
depending on the biases present in the dataset to correct. 
Note that, as IPSL and IPSLbis data during calibration are 
identical, there is no need to train for a second time the 
CycleGAN model for IPSLbis data: the CycleGAN model 
trained with IPSL data can be used directly to adjust IPSLbis 
simulations for the projection period. In addition, two MBCs 
with different assumptions about nonstationarity are applied 
for comparison using the second cross-validation method: 
the “Rank Resampling For Distributions And Dependences” 
(R2D2 , Vrac and Thao 2020) and the “Dynamical Optimal 
Transport Correction” (dOTC, Robin et al. 2019) methods.

R2D2 , developed in the context of marginal/dependence 
category, relies on an analogue-based method that allows to 
resample ranks from a reference dataset according to some 
conditioning information and reconstructs dependence struc-
ture of the simulated time series. The information to condi-
tion the analogues can be multivariate by considering, for 

example, a set of variables to be corrected at a given time t. 
Conditioning for the ranks resampling can also be extended 
to ranks sequences, i.e. conditioning by not only one but 
several lagged time steps. Please note that, for the different 
implementations of R2D2 in this study, the multivariate con-
ditioning used includes 4 grid points that cover uniformly 
the region of interest. In addition, 5 lagged time steps are 
used for the conditioning, as it has been found to stabilize 
the R2D2 method (not shown). Also, the QQ method is used 
to correct the marginal properties for R2D2 outputs.

Concerning the dOTC method, it was developed in the 
all-in-one category, i.e., adjusting the univariate distribu-
tions and dependence structures at the same time. The dOTC 
method takes advantage of the optimal transport theory to 
construct a multivariate transfer function, named a trans-
port plan, for the adjustment of climate simulations with 
respect to references while minimizing an associated cost 
function. This particular transfer function permits to link, 
through conditional laws, all the multivariate elements from 
the biased multivariate distribution to their corrections. Cor-
rections are then derived by drawing directly from these con-
ditional laws to obtain the bias corrected data.

Both R 2D2 and dOTC methods are applied according to 
the spatial-dimensional configuration (hereinafter referred to 
as “Spatial-”), where all the 784 time series for a particular 
physical variable are corrected jointly. While R 2D2 assumes 
spatial dependence structures (i.e., the rank correlations, or 
copulas) to be stable in time, the dOTC method makes the 
hypothesis of nonstationarity of the dependence structure 
between the calibration and the projection periods, which 
allows for taking into account the changes of the model 
(e.g., due to climate change) in the bias correction proce-
dure. Intercomparing the results from both Spatial-R2D2 and 
Spatial-dOTC for adjusting spatial dependence structure 
of climate simulations with those from MBC-CycleGAN 
allows to better assess how the proposed method performs 
in a nonstationary context.

5  Results

In this section, analyses are presented for the winter season 
(December, January and February) only. CycleGAN mod-
els are trained during the calibration period and selected 
such that energy distances on ranks are minimized. All 
evaluations are performed on the projection period for the 
corrected outputs obtained from the two cross-validation 
methods and results are compared to those from the refer-
ence dataset. For bias-corrected precipitation time series, 
thresholding of 1 mm is applied before evaluation to replace 
values lower than 1 mm by 0. Bias correction outputs from 
the first and second cross-validation methods are evaluated 
in terms of both marginal and spatial properties. Analyses of 
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temporal properties are only provided for outputs from the 
second cross-validation method, in which calibration and 
projection periods are divided chronologically and hence do 
not distort temporal properties, contrary to the first cross-
validation method that randomly defines these periods. To 
assess the potential benefits of considering spatial aspects in 
the correction procedure, the univariate QQ method (Déqué 
2007) is also included in the study as a benchmark.

5.1  MOS vs. PP

5.1.1  Training of MBC‑CycleGANs

Figure 5 shows energy distances with respect to SAFRAN 
references for temperature computed on physical values 
(Fig. 5a, b) and ranks (Fig. 5c, d) for LR SAFRAN, plain 
IPSL simulations, 1d-QQ, and MBC-CycleGAN (MBC-CG) 
outputs during the training on the calibration period. In addi-
tion, results for Raw-CycleGAN (Raw-CG) are presented. 
Differences between Raw-CG and MBC-CG only lie in their 
marginal properties: while Raw-CG corresponds to the out-
puts obtained from the CycleGAN after denormalization at 

the end of Step 3, MBC-CG is the combination of the spatial 
structure from Raw-CG and univariate properties from QQ 
outputs (see the flowchart provided in Fig. 3). The results 
for precipitation are presented in Fig. S1 of the Supplement.

Clearly, Fig. 5a, b show large energy distances computed 
on physical values of temperature for LR SAFRAN and IPSL 
datasets, indicating some biases on spatial structures for 
those dataset with respect to SAFRAN references. Adjusting 
marginal properties with the univariate QQ method reduces 
values of energy distance computed on physical values, 
highlighting the influence of marginal properties on spa-
tial features. Correction of the spatial dependence structure 
provided by MBC-CG occurs relatively quickly, with energy 
distances on physical variables reduced by 2 compared to 
QQ after approximately 1000 epochs for both PP and MOS 
approaches. However, for Raw-CG, marginal properties 
generated by the inverse pointwise min-max normalization 
do not seem to improve values of energy distances, which 
justifies the post-processing of univariate properties adopted 
in the MBC-CycleGAN method with the Schaake Shuffle.

Figure 5c, d show that computing energy distances on 
ranks for temperature removes the influence of univariate 

Fig. 5  Values of the energy dis-
tances with respect to SAFRAN 
reference for temperature 
computed on a, b physical 
values and c, d ranks during the 
training of MBC-CycleGAN. 
Results are shown for the differ-
ent datasets involved in a, c the 
Perfect Prognosis approach and 
b, d the MOS approach. Please 
note that results of QQ and 
low-resolution SAFRAN (resp. 
IPSL) for ranks are the same. 
Red and orange lines are there-
fore superimposed in c (resp. 
d). This remark also applies for 
Raw-CycleGAN (blue line) and 
MBC-CycleGAN (green line)

(a) (b)

(c) (d)
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properties on spatial features. Energy distances for both LR 
SAFRAN and IPSL with their respective QQ corrections 
are indeed the same (Fig. 5c). The same remark holds for 
MBC-CG and Raw-CG energy distances on ranks that have, 
by construction, similar spatial dependence structures. As 
explained in Sect. 3.3.3, the CycleGAN model that mini-
mizes the energy distance on ranks of MBC-CycleGAN 
outputs is selected.

For precipitation (Fig. S1), the same conclusions hold, 
indicating a relative ability of the CycleGAN to adjust spa-
tial dependence structure of precipitation fields. Neverthe-
less, contrary to temperature, one should remark that energy 
distances on ranks are different for LR SAFRAN, IPSL and 
their respective QQ corrections (Figs. S1c, d), which is spe-
cific to precipitation variables that can contain several null 
values for dry events. Indeed, ranks are computed here such 
that, when tied values are encountered, the minimum value 
of rank is attributed to each tied value. The combination of 
the correction with the QQ method and the thresholding for 
precipitation below 1 mm could modify the frequency of 
dry events, which could result in obtaining different rank 
structures, and hence, mechanically, different energy dis-
tances with respect to SAFRAN references. This mechanism 
is also obtained between MBC-CG and Raw-CG (Figs. S1c, 
d), that present different energy distances due to the differ-
ence of dry events.

5.1.2  Univariate distribution properties

Once the CycleGAN models have been selected for both the 
PP and MOS approaches, the corrections of IPSL simula-
tions can be performed for the projection period. First, bias-
corrected data are evaluated in terms of univariate statistics. 
For temperature and precipitation, differences of mean val-
ues between the bias corrected data and the SAFRAN refer-
ences are computed at each grid cell. For temperature mean, 
absolute differences are computed, while for precipitation 
variables having absolute zeros, relative mean differences 
are more appropriate. Maps of differences with respect to 
the reference—for IPSL simulations and the bias-corrected 
data—are displayed in Fig. 6 for both temperature and pre-
cipitation. The mean absolute error (MAE) with respect to 
the reference dataset is also reported on each map. For more 
results on marginal properties, maps of standard deviation 
relative differences for both physical variables are also pro-
vided in Fig. S2 of the Supplement.

For both temperature and precipitation, the maps for the 
IPSL model (Fig. 6c, d) present large values of mean dif-
ferences with respect to the SAFRAN map (Fig. 6a, b) and 
highlight the need to adjust univariate properties of simula-
tions. Maps provided by 1d-QQ outputs (Fig. 6e, f) indicate 
that, as expected, the univariate method globally improves 
marginal properties at each individual site. In agreement 

(f)(e)

(h)(g)

(j)(i)

(d)(c)

(b)(a)

Fig. 6  Mean differences for c, e, g, i temperature and relative mean 
differences for d, f, h, j precipitation computed at each grid cell 
between SAFRAN reference and the different datasets (plain IPSL, 
QQ, MBC-CycleGAN-PP and MBC-CycleGAN-MOS outputs) 
during winter over the projection period. Note that the color scales 
between panels c, e, g, i and d, f, h, j are not the same to better 
emphasize intensities of values for the two physical variables. Maps 
of daily mean for SAFRAN references are also shown for a tempera-
ture and b precipitation
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with the properties of the marginal/dependence MBC meth-
ods, maps for MBC-CG for PP (MBC-CG-PP, Fig. 6g, h) 
and MOS (MBC-CG-MOS, Fig. 6i, j) are exactly the same 
as those from the 1d-QQ method. Indeed, by construction, 
the univariate distribution properties are identical between 
QQ and MBC-CycleGAN outputs, regardless of the spatial 
correlation adjustments. Although MBC-CG-PP and MBC-
CG-MOS do not use the same data for the training of the 
CycleGAN to adjust spatial features, same marginals are 
taken from the QQ outputs of IPSL data, which results in 
obtaining the same univariate properties between the three 
corrections.

5.1.3  Spatial correlations

Quality of the corrections in terms of spatial correlations is 
now assessed. For each grid cell, spatial dependencies are 
evaluated for temperature and precipitation by computing 
Pearson pairwise correlations between the cell of interest 
and each of the remaining 783 grid cells over the region of 
Paris for the different climate datasets. The biases of these 
783 spatial Pearson correlations are then summarized by 
computing the Mean Squared Error (MSE) with the cor-
responding 783 correlations computed for the references. 
By computing the MSE values for each grid cell, 784 MSE 
values are obtained for each climate dataset and can be 
intercompared from one dataset to another. Figure 7 shows 
the boxplots of the MSE values obtained for both tempera-
ture and precipitation for the plain IPSL simulations and 
BC outputs. For both variables, the boxplots for the IPSL 
simulations indicate strong values of MSE with respect to 
SAFRAN references. For QQ outputs, only slight reductions 
of MSE of spatial correlations are observed compared to 
those from IPSL, indicating that QQ globally conserves the 
spatial structure of the IPSL model. This result could have 
been expected, as, for each site, the univariate QQ method 

does not modify (too much) rank sequences of the simulated 
time series. The slight improvement of spatial statistics, 
which is greater for precipitation (Fig. 7b) than temperature 
(Fig. 7a), is in fact mainly attributable to the correction of 
univariate properties provided by the QQ method. Concern-
ing MBC-CycleGAN, the PP and MOS approaches display 
different performances in adjusting the spatial properties of 
simulations. Boxplots of MSE for MBC-CG-MOS indicate 
clear improvements of spatial correlations with respect to 
QQ outputs for both temperature and, to a lesser extent, pre-
cipitation. However, results for MBC-CG-PP show less pro-
nounced improvements, suggesting a failure for the MBC-
CG-PP approach to adjust spatial properties. This difference 
of performance for the PP approach indicates that, although 
CycleGAN models are able to learn the spatial relation-
ships between large-scale predictors (LR SAFRAN) and 
local-scale predictands (SAFRAN) during the training of 
the algorithm, as previously shown in Figs. 5 and S1, these 
relationships do not prove to be suited for adjusting IPSL 
simulations. Indeed, simulated large-scale predictors seem 
here to present too large biases with respect to LR SAFRAN 
to make the CycleGAN fitted in a PP context applicable to 
the IPSL simulations. Hence, the perfect-prognosis approach 
should be discarded in our context of bias correction of cli-
mate simulations. Therefore, in the following, only the MOS 
approach of MBC-CG is further investigated.

5.2  MBC‑CycleGAN in the nonstationary context

In the following, analyses are presented for the application 
of the MBC-CycleGAN method with the MOS approach in 
a nonstationary context using the second cross-validation 
method. Results for the correction of the three datasets - 
IPSL, IPSLbis and LR SAFRAN - with different changes in 
marginal and dependence properties between the calibration 
and projection periods are provided.

Fig. 7  Boxplots of mean 
squared errors of Pearson 
spatial correlations computed 
at each grid cell for a tempera-
ture and b precipitation over 
the projection period. Results 
are shown for plain IPSL, QQ, 
MBC-CycleGAN-PP and MBC-
CycleGAN-MOS outputs

(a) (b)
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5.2.1  Univariate distribution properties

Similarly to the first cross-validation method, univariate 
properties are evaluated using mean differences computed 
at each grid cell. Figure 8 shows, for the bias-corrected out-
puts from the three bias correction exercises, the maps of 
temperature mean differences with respect to SAFRAN ref-
erences. Maps for precipitation relative mean differences are 
presented in Fig. S6 of the Supplement. For information pur-
poses only, standard deviation relative mean differences for 
temperature and precipitation are also displayed in Figs. S7 
and S8, respectively.

For temperature, values of IPSL and IPSLbis mean dif-
ferences (Fig. 8b, c) are high, indicating strong biases of 
temperature mean with respect to the SAFRAN reference 
dataset (Fig. 8a), although less pronounced for IPSLbis. 
This was somehow expected since IPSLbis data are specifi-
cally constructed to mimic the SAFRAN changes in terms 
of marginal (and dependence) properties. It results here in 
having IPSLbis temperature means closer to those from 
SAFRAN reference for the projection period. Map for LR 
SAFRAN (Fig. 8d) shows small differences with the ref-
erence. Clear improvements of the temperature mean are 
provided by the QQ method for each of the bias correction 
exercises (Fig. 8e–g). Nevertheless, quite interestingly, QQ 
method provides less pronounced improvements for IPSL 
data (Fig. 8e), suggesting a degrading effect on results of 
correction when changes of marginal properties between 
calibration and projection periods for the climate data to be 
corrected are not in agreement with those from the refer-
ences. With regard to the performances of the MBC meth-
ods, MBC-CycleGAN presents exactly the same results as 
the QQ method (Fig. 8h–j), in agreement with the marginal/
dependence MBC properties. For Spatial-R2D2 (S-R2D2 ), 
very slight modifications of the marginal mean values pro-
vided by QQ are observed (Fig. 8k–m), due to the use of 
the multivariate conditioning to adjust spatial dependence 
structure (Vrac and Thao 2020). Concerning Spatial-dOTC 
(S-dOTC), the corrected outputs for IPSLbis (Fig. 8o) and 
LR SAFRAN (Fig.  8p) present results similar to those 
obtained for QQ and MBC-CycleGAN. However, it is 
worth mentioning that, for the correction of IPSL, S-dOTC 
(Fig. 8n) slightly improves marginal properties (MAE=0.37) 
compared to those obtained from QQ outputs (MAE=0.42).

For precipitation relative mean differences (Fig. S6), the 
same conclusions hold for each (M)BC method, indicat-
ing no particular influence of the variable to correct on the 
results of the marginal statistics adjustment.

5.2.2  Spatial correlations

We now evaluate the ability of MBC-CycleGAN to adjust 
spatial dependence. First, as for the Sect. 5.1, we compute 

MSE of spatial Pearson correlations for both temperature 
and precipitation. Figure 9 displays the results with box-
plots for the different datasets to correct and their adjusted 
outputs. Scatterplots of MSE values with respect to QQ out-
puts are presented in Fig. S9 to better assess the potential 
benefits of using MBC methods relative to univariate ones. 
For temperature (Fig. 9a), the positive values of MSE for 
IPSL suggest biases with respect to the SAFRAN references, 
illustrating the necessity to correct spatial properties of the 
model before using it in subsequent analyses. For IPSLbis, 
MSE values are slightly smaller, but still indicates strong 
differences of spatial correlations with respect to the refer-
ences. The difference of results between IPSL and IPSLbis 
highlights that discrepancies of changes with the references 
can potentially have a non-negligible effect on spatial prop-
erties; in fact, reducing those discrepancies as it is done with 
the generation of IPSLbis leads here to reduce biases in spa-
tial correlations. Concerning LR SAFRAN, MSE values are 
small, suggesting that upscaling the reference dataset deteri-
orates only slightly its spatial structure. By simply correcting 
univariate distributions, the three QQ outputs do not present 
a particular improvement of temperature MSE values. Clear 
improvements of the spatial correlation structures are pro-
vided by the MBC-CycleGAN method for the adjustment of 
IPSL, IPSLbis and LR SAFRAN, although some differences 
of performances are observed between the three corrected 
outputs. Temperature MSE values are indeed closer to 0 for 
the correction of LR SAFRAN than for the correction of 
IPSLbis and IPSL, for which similar results are obtained.

Concerning Spatial-R2D2 , the corrections of IPSL and 
IPSLbis provide major improvements in adjusting the spa-
tial correlations. In particular, better results are obtained for 
the correction of IPSLbis. However, with regard to the Spa-
tial-R2D2 outputs with LR SAFRAN, the benefits provided 
by R2D2 are smaller, as not all of the spatial correlations are 
improved. This result can better be seen in Fig. S9e. This 
contrasted performance for the R2D2 method appears in the 
context of the correction of LR SAFRAN that already pre-
sents small spatial biases with respect to SAFRAN refer-
ences. The correction obtained for LR SAFRAN suggests 
that the R2D2 method is too constrained by the selected con-
ditioning to find an appropriate collection of analogues for 
the projection period of this specific dataset.

For Spatial-dOTC outputs, results present low MSEs val-
ues for each bias correction exercise, indicating that spatial 
correlations are satisfyingly corrected by this method. Nev-
ertheless, the adjustments are slightly better for the corrected 
output of IPSL than for those for IPSLbis, which may be 
confusing here. Indeed, as dOTC is specifically designed 
to take into account the changes of the data to adjust in the 
correction procedure, better results for IPSLbis, for which 
changes of spatial correlations are in line with those from 
SAFRAN references, would have been expected. The great 
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Fig. 8  Mean differences for 
temperature with SAFRAN 
reference for BC methods using 
as inputs b, e, h, k, n IPSL, c, 
f, i, l, o IPSLbis and d, g, j, m, 
p LR SAFRAN data. Results 
are shown during winter over 
the projection period for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC datasets. The 
map of daily mean for SAFRAN 
references is also shown for 
temperature (a)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)
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performance of dOTC to correct spatial correlations for 
IPSL could be due to the fact that, as explained in Appen-
dix 4, IPSL simulated changes for temperature are not in 
total disagreement with those from SAFRAN, and hence 
there is no strong discrepancy of changes affecting the 
corrections.

For precipitation (Fig. 9b), the same conclusions as those 
drawn for temperature hold. Nevertheless, quite interest-
ingly, IPSL and IPSLbis data present even larger differences 
of MSE values. This shows the effects on spatial correla-
tions of the strong discrepancies of precipitation changes 
between the IPSL model and the references observed in 
Appendix 4: reducing this discrepancy of marginal and spa-
tial changes with IPSLbis decreases significantly the biases 
on spatial correlations. In contrast with temperature, these 
differences of spatial correlations for precipitation between 
IPSL and IPSLbis are significant enough to spread itself in 

the bias-corrected outputs: for each of the BC methods, the 
corrected outputs for IPSLbis present systematically lower 
MSE values compared to the corrections of IPSL.

To better assess spatial structure adjustments brought by 
MBCs, the calculation of energy distances between the bias-
corrected time series and the references are performed for 
each physical variable according to two different multivari-
ate distributions:

• on values of the physical variable directly over the whole 
region of Paris to assess differences of spatial properties 
(i.e., including both the marginals and their dependence);

• on ranks of the physical variable over the whole region 
of Paris to assess differences of spatial dependence struc-
tures (i.e., without the influence of marginal properties).

Fig. 9  Boxplots of mean 
squared errors of Pearson 
spatial correlations computed 
at each grid cell for a tempera-
ture and b precipitation over 
the projection period. Results 
are shown for IPSL, IPSLbis, 
LR SAFRAN, QQ, MBC-
CycleGAN, Spatial-R2

D
2 and 

Spatial-dOTC datasets

(a)

(b)
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Values of energy distances are estimated using a bootstrap 
method. It consists for each dataset in (i) sampling (with 
replacement) daily fields, (ii) computing the energy distance 
on the bootstrapped dataset, and (iii) repeating the previous 
two steps 1000 times to construct the bootstrap sampling 
distribution. From this bootstrap sampling, distribution is 
deduced by the bootstrap estimator (mean of the 1000 energy 
distances obtained) and a 90% bootstrap sampling interval to 
provide uncertainty bands of the estimated distance. Results 
for temperature and precipitation are displayed in Fig. 10. 
The closer the values of the energy distances are to 0, the 
closer the spatial properties of the outputs are to the one of 
the reference data.

For temperature, the two estimators of energy distances 
on physical values (Fig. 10a) and ranks (Fig. 10b) for IPSL 
and IPSLbis data are quite high compared to those for LR 
SAFRAN, which is in agreement with the differences of 
spatial properties already observed between these datasets 
and the references in Fig. 9. For the three QQ outputs, while 

energy distances on physical values are lower (Fig. 10a), 
similar energy distances on ranks as those from the dataset 
to correct are obtained (Fig. 10b). It highlights again that, 
although the QQ method adjusts the univariate distributions, 
it is not supposed to modify rank sequence of time series, 
and therefore spatial dependence structures, during the cor-
rection procedure. With regard to the three MBC methods 
for the correction of IPSL, dOTC performs slightly better on 
raw values (Fig. 10a) than MBC-CycleGAN and R2D2 , for 
which comparable results are obtained. For energy distances 
computed on ranks (Fig. 10b), dOTC and R2D2 produce sim-
ilar results. Slightly poorer performances of MBC-Cycle-
GAN are obtained compared to the two other MBC methods, 
although strongly improving the spatial dependence struc-
tures of IPSL simulations. Note that, while bootstrap sam-
pling intervals of energy distances on temperature values are 
overlapping for the three MBC methods, it is less the case 
for energy distances on temperature ranks, thereby permit-
ting to determine with more confidence the best method for 

Fig. 10  Values of the estimated 
energy distances with respect 
to the reference SAFRAN for 
temperature (a, b) and precipita-
tion c, d computed on physical 
values (a, c) and ranks (b, d) 
during the projection period. 
Results are presented for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC outputs. 
Estimates are evaluated using 
a bootstrap method (1000 
replicates) that independently 
samples with replacement the 
daily fields from datasets. Note 
that same sequences of random 
days (i.e., same sampled days) 
are used to estimate values of 
energy distance for the different 
datasets. Error bars shows 90% 
bootstrap sampling intervals

(a) (b)

(c) (d)
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the adjustment of spatial dependence properties. However, it 
must be mentioned that results of energy distances between 
the three MBCs are very close. Consequently, differences 
in performances between MBCs might not be significant. 
Concerning the correction of IPSLbis, best performances are 
provided by dOTC for both multivariate distributions. For 
multivariate distributions with raw values, MBC-CycleGAN 
is second best, while being third for rank dependence struc-
ture. This swap of performances between raw values and 
ranks for MBC-CycleGAN and R2D2 must be analyzed with 
caution as differences of estimated energy distances between 
the two MBC methods are again very small and thus might 
not be significant. This swap can however be explained by 
both the strong influence of marginal properties on energy 
distances and the slight deterioration of marginal properties 
provided by R2D2 compared to the QQ outputs, already men-
tioned in Sect. 5.2.1. For the corrections of LR SAFRAN, 
MBC-CycleGAN performs best and dOTC second best, with 
a more significant difference of performance for estimated 
energy distances evaluated on rank values (Fig. 10b).

For precipitation (Fig. 10c, d), conclusions similar to 
those obtained for temperature can be drawn for IPSL, 
IPSLbis and LR SAFRAN outputs. However, conclusions 
are slightly different for QQ and the MBCs. As already 
explained in Sect. 5.1, QQ modifies the frequency of dry 
events and consequently changes the rank dependence struc-
ture of precipitation, which results here in an improvement 
of spatial energy distances on ranks for the 1d-QQ correc-
tions of IPSL, IPSLbis and LR SAFRAN. Concerning the 
performances of the three MBCs for IPSL, R2D2 performs 
best on energy distances for both raw values and ranks, while 
MBC-CycleGAN produces reasonable results, in particu-
lar for the adjustment of the rank dependence structure of 
precipitation. The dOTC method produces results that are 
clearly unsatisfactory concerning the rank dependence struc-
ture of precipitation. Instead of improving the rank depend-
ence structure, dOTC correction strongly degrades it. This 
underperformance is in fact due to the presence of too many 
wet events in the corrections provided by dOTC (not shown) 
compared to the references, which mechanically largely 
affects the quality of its rank dependence structure for pre-
cipitation. For the same reason, this underperformance on 
precipitation rank dependence structure is also observed for 
the adjustments of IPSLbis and LR SAFRAN with dOTC. 
For IPSLbis, estimated energy distances on ranks are similar 
between MBC-CycleGAN and R2D2 . Note here that similar 
values of energy distances do not necessarily imply that their 
spatial dependence structures are similar. Concerning LR 
SAFRAN corrections, MBC-CycleGAN again outperforms 
both dOTC and R2D2 algorithms according to estimated 
energy distances on raw values and ranks.

5.2.3  Temporal structure

In this section, bias-corrected data are evaluated relative to 
temporal properties. As a reminder, MBC-CycleGAN and 
dOTC methods have been specifically implemented to only 
adjust marginal and spatial properties of climate simulations. 
Similarly, the R2D2 algorithm is applied to adjust marginal 
and spatial features but, contrary to the two other methods, 
it also takes into account (part of) the temporal dependence 
properties through the multivariate conditioning chosen for 
its implementation, as previously explained in Sect. 4. In 
theory, this choice of conditioning dimensions allows R2D2 
to partially recover temporal properties of the reference 
dataset (Vrac and Thao 2020). Adjusting spatial coherence 
necessarily modifies the rank sequences of the initial time 
series during the correction procedure (e.g., Vrac 2018). It 
is hence interesting to quantify how strong those modifica-
tions are depending on the MBC method, whether temporal 
properties are taken into account in the correction procedure 
or not. Evaluation of temporal properties is performed by 
computing 1-d lag Pearson autocorrelations (AR1) at each 
grid cell for both temperature and precipitation. The result-
ing maps of differences with respect to SAFRAN references 
for the different BC outputs are presented in Fig. 11 (resp. 
Fig. S10) for temperature (resp. precipitation).

For temperature, IPSL shows relatively low values of 
AR1 differences (Fig. 11b), indicating that temporal proper-
ties for temperature are relatively in line with those from the 
SAFRAN references (Fig. 11a). A similar differences map 
is provided by IPSLbis outputs (Fig. 11c). In fact, IPSLbis 
temporal properties are inherited from IPSL outputs: even 
in a high-dimensional context, the two-step procedure—
and in particular, the matrix-recorrelation technique—used 
to construct IPSLbis from IPSL does not lead to a strong 
modification of temporal properties. This result on temporal 
properties of data preprocessed with this matrix-recorrela-
tion technique is consistent with the conclusions obtained 
in François et al. (2020) for a MBC method (MRec) using 
the same matrix-recorrelation. For LR SAFRAN outputs 
(Fig. 11d), values of AR1 differences are very close to 0, 
highlighting that the upscaling step used to construct LR 
SAFRAN data does not strongly modify the temporal prop-
erties of the initial SAFRAN reference dataset, which was 
expected by construction. Difference maps for temperature 
from QQ outputs (Fig. 11e–g) are relatively similar to those 
from the three datasets to adjust, respectively. However, for 
the three MBC methods used to adjust spatial dependence 
structure, modifications of temporal properties for tempera-
ture are not equivalent. With regard to MBC-CycleGAN and 
dOTC outputs (Fig. 11h, i, j, n, o and p), temporal statistics 
are close to that from the QQ outputs. It hence suggests 
that both MBC-CycleGAN and dOTC algorithms, although 
correcting the spatial features, perform little changes of the 
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Fig. 11  Differences of order 
1 Pearson autocorrelation for 
temperature with SAFRAN 
reference for BC methods using 
as inputs (b, e, h, k, n) IPSL, c, 
f, i, l, o IPSLbis and d, g, j, m, 
p LR SAFRAN data. Results 
are shown during winter over 
the projection period for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC datasets. The 
map of order 1 Pearson autocor-
relation for SAFRAN references 
is also shown for temperature 
(a)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)
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temporal sequencing of the time series to correct. For MBC-
CycleGAN, this is partly explained by the fact that, within 
the CycleGAN procedure, input maps from QQ outputs are 
transformed to outputs with improved spatial features, whilst 
not modifying too much the initial input image. It hence 
results in partially preserving the temporal properties of the 
QQ outputs used as inputs of the CycleGAN while providing 
improvements of the spatial representation. This particular 
point is thereafter discussed in greater details. Concerning 
R2D2 outputs, different results are obtained depending on 
the dataset to correct. For the correction of both IPSL and 
IPSLbis (Fig. 11k, l), R2D2 provides small improvements of 
temporal properties of temperature, which illustrates that, by 
including lags in the conditional dimensions, R2D2 is able to 
improve—in addition to spatial properties—temporal struc-
ture of climate datasets. However, for the correction of LR 
SAFRAN (Fig. 11m), a deterioration of AR1 temperature 
differences is obtained with respect to initial LR SAFRAN 
data (Fig. 11d). This result can be linked with the previously 
mentioned contrasted performances of the R2D2 method to 
adjust LR SAFRAN dataset in Subsect. 5.2.2.

For precipitation (Fig. S10), same conclusions hold for 
IPSL, IPSLbis and LR SAFRAN outputs. However, contrary 
to temperature, 1d-QQ corrections of IPSL and IPSLbis 
(Figs. S10e, f) show a pronounced improvement of temporal 
properties for precipitation, highlighting the potential influ-
ence of marginal properties of precipitation time series on 
its autocorrelation values. Moreover, the improvements of 
temporal properties of temperature provided by R2D2 for the 
corrections of IPSL and IPSLbis are no longer observed for 
precipitation (Fig. S10k, l). Instead, temporal properties with 
unexpected behaviors are obtained, potentially due to the 
difficulty of R2D2 to correct physical variables with events 
occuring at local scale, such as precipitation (Vrac and Thao 
2020). It can also be due to the choice of the conditioning 
information made in R2D2 . As a reminder, it is indeed the 
rank structure of simulated precipitation (resp. tempera-
ture) that serves as a conditioning to generate Spatial-R2D2 
outputs for precipitation (resp. temperature). As temporal 
properties (including rank sequences) of precipitation time 
series are not well simulated by IPSL model (Fig. S10b) 
compared to temperature (Fig. 11b), it potentially affects the 
quality of the corrections—and its temporal properties—pro-
vided by Spatial-R2D2 for precipitation. This highlights the 

importance of choosing a relevant conditioning dimension 
for the implementation of R2D2 (Vrac and Thao 2020).

To illustrate the fact that MBC-CycleGAN performs little 
changes of the temporal sequencing of the inputs to adjust, 
we compare corrected daily maps from LR SAFRAN with 
those from the references. As the LR SAFRAN dataset is 
temporally matching the SAFRAN dataset by construc-
tion, classic forecast statistics such as Root Mean Square 
Error (RMSE) can indeed be interesting to assess the per-
formances of MBC methods. Table 2 shows, for tempera-
ture and precipitation, the RMSE values with respect to 
SAFRAN references for the different BC outputs of LR 
SAFRAN. For temperature, the RMSE value between daily 
maps of the reference and the LR SAFRAN dataset is around 
0.36. Slight improvement in terms of RMSE is provided by 
the QQ method (RMSE = 0.31). As the QQ method pre-
serves the temporal sequencing of the times series to correct, 
this improvement is only due to the correction of marginal 
properties. The MBC-CycleGAN method presents better 
results (RMSE = 0.23), permitting to state with more con-
fidence that, while adjustment of spatial dependence struc-
ture are performed, it modifies only slightly the temporal 
sequencing of the times series to correct. For R 2D2 outputs, 
the RMSE value is quite large (RMSE=1.51), suggesting a 
strong modification of temporal properties. It can be linked 
with the underperformance of R 2D2 already observed in 
Fig. 11m for the correction of LR SAFRAN. Concerning 
dOTC outputs, the RMSE value (= 0.42) is slightly higher 
than those observed for LR SAFRAN and QQ outputs. It 
suggests that the influence of the correction of univariate 
distributions and spatial dependence on temporal properties 

Table 1  Summary of attributes of the different climate data to correct

Climate data Marginal prop. Spatial prop. Changes of marginal prop. Changes of spatial prop.

IPSL model From raw IPSL From raw IPSL Potentially not in line with SAFRAN Potentially not in line 
with SAFRAN

LR SAFRAN ∼ Same as SAFRAN ∼ Same as SAFRAN ∼ In line with SAFRAN ∼ In line with SAFRAN
IPSLbis ∼ Same as IPSL model ∼ Same as IPSL model ∼ In line with SAFRAN ∼ In line with SAFRAN

Table 2  RMSE values between the reference SAFRAN and the dif-
ferent climate datasets in rows for temperature and precipitation dur-
ing winter over the projection period

As LR SAFRAN dataset is temporally matching the SAFRAN refer-
ences, results are presented for LR SAFRAN and its MBC correc-
tions only. For each physical variable, the best performing method is 
underlined

Physical 
variable

LR SAFRAN QQ MBC-CG S-R2D2 S-dOTC

TAS 0.36 0.31 0.23 1.51 0.42
PR 0.75 0.73 0.51 3.41 1.03
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provided by dOTC is strong enough to affect its ability to 
provide appropriate forecasts at a daily scale. For precipita-
tion, the same conclusions hold for the different BC outputs. 
To better illustrate the results from Table 2, two animations 
presenting the successive daily temperature and precipitation 
maps generated by MBC-CycleGAN for the correction of 
LR SAFRAN, as well as the corresponding daily maps from 
the references and the different BC methods, are provided as 
supplementary materials.

6  Conclusion, discussion and future work

6.1  Conclusions

Climate simulations biases are typically corrected with uni-
variate BC methods, adjusting one physical variable and 
one location at a time, and thus spatial dependencies remain 
uncorrected. In this study, MBC-CycleGAN, an adaptation 
of the CycleGAN approach (Zhu et al. 2017) used to train 
image-to-image translation models, was presented, allow-
ing for the adjustment of not only univariate distributions 
but also spatial dependence structures of climate simula-
tions. The new suggested MBC method takes advantage 
of convolutional neural networks with simple architecture 
that are trained in competition to adjust spatial properties 
of simulated variables. The MBC-CycleGAN method was 
tested by adjusting temperature and precipitation time series 
from IPSL simulations with respect to the SAFRAN dataset 
over the region of Paris using two different cross-validation 
methods. The first cross-validation, that defines randomly 
calibration and projection periods, allows to test the new 
methodology in a stationary context. We took advantage 
of this first cross-validation method to compare two post-
processing schemes (PP and MOS) approaches that differ 
in the statistical relationships the MBC-CycleGAN model 
learns to adjust spatial dependences. The MOS approach 
that considers biases to refer to systematic distributional 
differences between references and simulated climate vari-
ables was found to be more appropriate for the implementa-
tion of the MBC-CycleGAN method and was chosen to be 
applied for the rest of the study. The second cross-validation 
method, that defines chronologically calibration and projec-
tion periods, was then used to evaluate the ability of the 
MBC-CycleGAN method to adjust climate datasets in a non-
stationary context. As IPSL simulations and SAFRAN refer-
ences present different marginal and spatial changes between 
calibration and projection periods, two additional climate 
datasets (LR SAFRAN and IPSLbis) with changes that are 
in line with the references were specifically constructed and 
adjusted, allowing to better assess the quality of the cor-
rections provided by the new method depending on the sta-
tistical biases of the data to be corrected. A wide range of 

metrics has been used to evaluate bias adjustment outputs 
with references and initial climate data and assess the cor-
rections of univariate distributions, spatial correlations and 
temporal properties. In addition to the 1d-QQ method, two 
state-of-the-art MBC ( R2D2 and dOTC) methods have been 
implemented and used as benchmarks to better evaluate the 
influence of nonstationary properties on the results of the 
MBC-CycleGAN method. The results indicate that all the 
(M)BC methods implemented in this study generally pre-
sent similar corrections of univariate distributions. Regard-
ing spatial properties, the benefits of using MBC methods 
are clear compared to the 1d-QQ method. The MBC-Cycle-
GAN method produced reasonable adjustments of spatial 
correlations with respect to R2D2 and dOTC methods for 
both temperature and precipitation and the three different 
climate datasets to adjust. Concerning the temporal aspect, 
the MBC-CycleGAN method is not designed to correct this 
specific statistical property and tends to conserve the tempo-
ral sequencing of the time series to correct. Combined with 
the corrections of spatial features, this property has proved 
to be particularly interesting for the applications of MBC-
CycleGAN when the data to correct temporally match the 
references (e.g., as for LR SAFRAN and SAFRAN dataset, 
see Sect. 5.2.2). The proposed method indeed outperformed 
all the others (M)BC alternatives for the correction of LR 
SAFRAN by generally presenting both spatial and temporal 
statistics closer to those from the references. Concerning 
nonstationary properties, it has been found that changes of 
both marginal and spatial properties between the calibra-
tion and projection periods of the climate data to adjust can 
have a non-negligible effect on the quality of corrections 
from the MBC-CycleGAN algorithm, and more generally 
from all (M)BC outputs. In a general way, better results are 
obtained for the corrections of simulations with changes that 
are in agreement with those from the references, whether the 
MBCs make the assumption of nonstationarity of marginal 
properties and dependence structures or not.

6.2  Discussion and perspectives

In this study, the development of the MBC-CycleGAN 
method was mainly intended as a proof of concept, in order 
to test if GANs can be used for multivariate bias correc-
tion of climate simulations. Although bringing results with 
comparable performances of correction to that of well-estab-
lished MBC methods, several avenues can be considered for 
the improvement of the proposed algorithm.

First, in order to remain in a context of proof of con-
cept, a simple architecture of neural networks with a small 
number of convolutional layers has been considered for the 
discriminators and generators constituting the MBC-Cycle-
GAN method. In the same idea, a classic formulation of 
the CycleGAN procedure—-as initially described in Zhu 
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et al. (2017)—has been used with a binary-cross entropy 
loss function for the adversarial training (Eq. 1). Improving 
the training performances of GANs through more advanced 
architectures and optimization techniques is an active area 
of research (e.g., Salimans et al. 2016; Arjovsky et al. 2017; 
Karras et al. 2018, among others). A first natural step to 
potentially improve results would be to opt for a more 
sophisticated CycleGAN model. For example, it can be done 
by adding more layers in the neural network architectures 
of both generators and discriminators to potentially capture 
more complex spatial relationships for the correction of cli-
mate simulations. Also, modifying the initial adversarial loss 
functions ( LGAN in Eq. 1), as proposed in Arjovsky et al. 
(2017), would be interesting as it could permit to improve 
the stability of the learning and can prevent from mode 
collapse issues. However, although progress is constantly 
increasing concerning GANs, it is well-known that this par-
ticular class of neural networks can be more difficult to train 
than classical neural networks (e.g., Wu et al. 2020). The 
possibilities of modifications of the parameters defining a 
CycleGAN model are numerous, and a priori do not guaran-
tee to improve the overall performance of the CycleGAN for 
the specific application of bias correction. Testing the differ-
ent possibilities goes way beyond the scope of the present 
study and is left for future work.

Second, it has to be noted that our method, by combining 
the 1d-QQ method and the CycleGAN approach to adjust 
both marginal and spatial properties, is not designed to spe-
cifically account for any simulated changes for future peri-
ods. For marginal properties, other 1d-BC methods that are 
able to account for potential changes of univariate CDFs 
from the calibration to the projection period (e.g., CDF-t or 
QDM, Vrac et al. 2012; Cannon et al. 2015) can of course 
be employed instead of QQ, as long as they do not modify 
(too much) rank sequence of temperature and precipita-
tion time series and thus do not distort the convergence of 
the CycleGAN procedure. Concerning changes of spatial 
properties, the CycleGAN approach as implemented in this 
study is based on the key assumption that the conditional 
distributions �|� and �|� are the same in the training (i.e., 
calibration) and test (i.e., projection) datasets. It results in 
our context in making a strong assumption on copula sta-
tionarity between present and future periods. Although spa-
tial dependence structures can be considered to be stable in 
time as imposed by physical laws over a specific region of 
interest (e.g., Vrac 2018), it can not be generalized to each 
of the physical variables and regions. For example, more 
concentrated spatial rainfall events are expected with higher 
temperatures in the future (Guinard et al. 2015; Wasko et al. 
2016). Therefore, should the changes in spatial properties in 
the simulations between calibration and projection periods 
be reproduced in the correction? By comparing our results 
obtained with different levels of nonstationarity in the model 

evolution and with two well-established MBCs based on 
copula stationarity ( R2D2 ) and nonstationarity (dOTC) 
for future periods, we shed light on how the nonstationary 
properties of the simulations are taken into account by the 
different multivariate BC methods. The benefits of consider-
ing MBC methods assuming copula nonstationarity for the 
correction of such climate dataset are not always as clear-cut 
as expected compared to MBC methods assuming copula 
stationarity. This raises the question of whether developing 
MBC methods assuming copula nonstationarity is justified, 
i.e., whether it is worth striving for developing complicated 
statistical methods that consider the simulated evolution of 
copula in the correction procedure, and, in the end, do not 
produce drastically better results than MBCs assuming cop-
ula stationarity. In practice, accounting for nonstationarity 
of simulations in bias correction procedures still remains an 
open question which needs to be answered on a case-by-case 
basis. Developing new MBC methods that are specifically 
able to reproduce these simulated changes in the correction 
is of course an important perspective but the application of 
such methods would be inappropriate as long as the changes 
from climate simulations for future periods have not been 
first identified as relevant.

Third, the MBC-CycleGAN method has been developed 
to correct spatial correlations of climate simulations for each 
physical variable separately, and thus does neither consider 
the adjustment of inter-variable correlations nor temporal 
structure. A possible extension of the initial method can be 
the consideration of inter-variable and/or temporal corre-
lations by providing to the CycleGAN model images with 
not only one but several channels of the different physical 
variables to correct. For example, for the adjustment of inter-
variable correlations between temperature and precipitation, 
concatenated images of daily temperature and precipitation 
maps in an array of dimension 2 × 28 × 28 can be provided 
as inputs to the adversarial neural network. Similarly, 
adjusting temporal correlations could be considered by 
adding channels with lagged versions of the physical vari-
able. Using images with additional channels would imply to 
change, at least, the neural network architecture by replacing 
2d-convolutional neural networks with 3d-ones to allow the 
CycleGAN model to consider inter-channels correlations. 
However, as adding additional channels can potentially make 
the training of the CycleGAN more complicated, it is likely 
that others changes relative to the architecture of neural net-
works and optimization techniques would be required, as 
those mentioned previously.

Fourth, according to the results for the correction of the 
references at large-scale (LR SAFRAN), MBC-CycleGAN 
showed greater improvements of both spatial and tempo-
ral statistics compared to the other MBC methods. These 
promising results suggest that MBC-CycleGAN can be used 
directly in downscaling applications, a practice that is not 
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initially recommended with univariate quantile mapping 
techniques (Maraun 2013; Gutmann et al. 2014). Although 
producing reasonable results of adjustments for temperature 
and precipitation spatial distributions of IPSL and IPSLbis 
datasets, the outperformance of MBC-CycleGAN observed 
for the correction of LR SAFRAN is not obtained for these 
climate outputs. A possible reason explaining why the per-
formances of MBC-CycleGAN differ between these three 
exercises of correction concerns the importance of the dis-
tributional differences between the inputs and target dataset 
considered. Indeed, unsupervised image-to-image transla-
tion algorithms such as CycleGAN can present difficulties to 
map two random variables � and � with probability distri-
butions that exhibit strong differences (Gokaslan et al. 2019; 
Royer et al. 2020). As LR SAFRAN presents smaller bias 
with the references than IPSL and IPSLbis data, outstanding 
results are obtained for the correction of LR SAFRAN with 
MBC-CycleGAN, while more moderate quality results are 
produced for IPSL and IPSLbis. Improving the MBC-Cycle-
GAN algorithm such that it is able to produce satisfactory 
results even when distributions with very strong (marginal 
and spatial) differences are considered is of great interest to 
allow its use for operational purposes.

Fifth, in this study, particular precautions have been 
taken to prevent overfitting during training of CycleGAN 
networks, such as including a regularization technique called 
“dropout” in both generators and discriminators architec-
tures (see Appendix B for further details), or verifying that 
the performances of MBC-CycleGAN on projection periods 
are not deteriorated along training (not shown). These pre-
cautions permit to apply with confidence MBC-CycleGAN 
algorithms on projection periods. The issue of overfitting 
raises the question of the generalization capability of sta-
tistical models, and how they cope with new (and unseen) 
data. In most of the study, calibration and projection periods 
have been defined chronologically for the 1979–2016 period, 
and one can argue that small differences in terms of spatial 
properties are obtained between the two periods. Assessing 
the performances of the MBC-CycleGAN algorithm for the 
adjustment of climate projections with very different spatial 
structures remains an interesting perspective. For example, 
this could be done by adapting the methodology used for the 
generation of IPSLbis to generate alternative climate simula-
tions for the projection period with strong spatial changes, 
and apply the pretrained CycleGAN neural network used for 
the correction of IPSL in this study.

Finally, as implemented in this study, the proposed MBC-
CycleGAN algorithm produces a single correction (output) 
for a given input. Although essential in climate applications, 
uncertainty quantification of MBC-CycleGAN outputs is not 
estimated here. An interesting possibility of extension to 
model uncertainty of corrected outputs would be to intro-
duce some stochasticity into the correction procedure by 

giving to the generators not only daily maps to adjust but 
also vectors of random noises. Then, for a given daily map, 
it would produce an ensemble of plausible corrections. The 
spread between the ensemble members would represent the 
uncertainty associated with the multivariate bias correction.

We hope that this study serves as a starting point for the 
use of GANs for multivariate bias correction of climate sim-
ulations. One of the main advantages of using MBC-Cycle-
GAN is that adjustment is performed images by images, 
i.e. maps by maps. If well trained, discriminators somehow 
guarantee that individual generated maps produced by gen-
erators are realistic with respect to references, while daily 
maps with strong statistical artefacts are rejected. This is not 
the case for the other MBC methods such as R2D2 or dOTC, 
that provide corrected simulations with appropriate distri-
butional statistics without being particularly constrained to 
generate realistic daily maps. Providing corrections with 
realistic maps at a daily scale can be useful for the scien-
tific community working on climate change impacts, e.g., 
in hydrology, for which daily spatial features are of major 
concern.

Appendix A: Details on the MBC‑CycleGAN 
method

Let consider the correction of a random variable, denoted � 
(e.g., biased climate simulations outputs) with respect to a 
reference random variable, denoted � . In our study, � and 
� live in dimension 28 × 28 = 784 dimensions. We denote 
�0 and �1 the random variables to correct from climate 
simulations during the calibration and projection period, 
respectively. Similarly, �0 is considered as the random vari-
able of references for the calibration period. The goal of any 
BC methods is to infer future unobserved data �1 from the 
reference variable �0 during calibration, and the variables 
from model simulations for calibration ( �0 ) and projection 
( �1 ) periods.

In practice, BC methods are applied to correct samples 
(�0

1
,… , �0

n
) and (�1

1
,… , �1

n
) from the random variables 

�0 and �1 , with respect to a sample (�0
1
,… , �0

n
) from the 

random variable �0 . For example, 1d-bias corrections of 
(�0

1
,… , �0

n
) and (�1

1
,… , �1

n
) with the QQ method can be 

denoted (��0
1
,… , ��0

n
) and (��1

1
,… , ��1

n
) . As explained in 

Sect. 3, the CycleGAN approach within the MBC-Cycle-
GAN methodology is applied between 1d-QQ outputs and 
references. Hence, two generators G��→� and G�→�� are 
considered, as well as two discriminators D�� and D� . The 
different steps constituting the MBC-CycleGAN method are 
described in an algorithmic way as follows: 
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Algorithm 1 MBC-CycleGAN training algorithm. In all experiments pre-
sented in the paper, a batch size m = 32 is used.
Require: αdisc - the learning rate for the discriminators, αgen - the learning rate for the

generators, m - the batch size.
Require: δQQ, δY - the initial discriminators’ parameters. θGQQ→Y , θGY→QQ - the initial

generators’ parameters.
(x0

1, . . . ,x
0
n) a sample of the random variable X0.

(x1
1, . . . ,x

1
p) a sample of the random variable X1.

(y0
1, . . . ,y

0
n) a sample of the random variable Y0.

Ensure: (z01, . . . , z
0
n) and (z11, . . . , z

1
p) the corrections of (x0

1, . . . ,x
0
n) and (x1

1, . . . ,x
1
p).

1: Compute (qq0
1, . . . ,qq

0
n) and (qq1

1, . . . ,qq
1
p) the 1d-bias corrections of (x0

1, . . . ,x
0
n) and

(x1
1, . . . ,x

1
p) using the quantile-mapping method (Déqué 2007).

2: Compute (˜qq0
1, . . . , q̃q

0
n) and (˜qq1

1, . . . , q̃q
1
p), the point-wise min-max normalizations of

(qq0
1, . . . ,qq

0
n) and (qq1

1, . . . ,qq
1
p) with the range of (y0

1, . . . ,y
0
n).

3: Compute (˜y0
1, . . . , ỹ

0
n), the point-wise min-max normalization of (y0

1, . . . ,y
0
n).

4: while Ê, the estimated energy distance on ranks between (y0
1, . . . ,y

0
n) and (z01, . . . , z

0
n),

has not converged do
5: Sample {˜qq0

i }
m/2
i=1 a batch from the dataset (˜qq0

1, . . . , q̃q
0
n).

6: Sample {ỹ0
i}

m/2
i=1 a batch from the dataset (˜y0

1, . . . , ỹ
0
n).

7: Generate “fake” samples {ỹ0,fake
i }m/2

i=1 :

∀i ∈ �1, . . . ,m/2�, ỹ0,fake
i = GQQ→Y(˜qq0

i ).

8: Generate “fake” samples {q̃q0,fake
i }m/2

i=1 :

∀i ∈ �1, . . . ,m/2�, q̃q0,fake
i = GY→QQ(˜y0

i ).
9: Update δQQ, using Adam optimizer and the learning rate αdisc, by computing the

adversarial loss function (Eq. 1) and its gradients with the samples {˜qq0
i }

m/2
i=1 and

{q̃q0,fake
i }m/2

i=1 . The adversarial loss function must be maximized.
10: Update δY, using Adam optimizer and the learning rate αdisc, by computing the

adversarial loss function (Eq. 1) and its gradients with the samples {˜y0
i }

m/2
i=1 and

{ỹ0,fake
i }m/2

i=1 . The adversarial loss function must be maximized.
11: Compute the full loss function (Eq. 6) and its gradients with respect to the parameters

θGQQ→Y and θGY→QQ of the generators GQQ→Y and GY→QQ.
12: Update the parameters θGQQ→Y and θGY→QQ by minimizing the full loss function,

using Adam optimizer, according to its gradients and the learning rate αgen.
13: Compute ( ˜s01, . . . , s̃0n) the normalized data with a corrected spatial dependence struc-

ture for the calibration period:
∀i ∈ �1, . . . , n�, ˜s0i = GQQ→Y(˜qq0

i ).
14: Reorder each 1d-bias corrected dimension from the dataset (qq0

1, . . . ,qq
0
n) according

to its rank structure in the dataset ( ˜s01, . . . , s̃0n) with the Schaake Shuffle method
(Clark et al 2004) to obtain (z01, . . . , z

0
n), the bias correction of (x0

1, . . . ,x
0
n).

15: Compute the estimated energy distance on ranks Ê evaluated between (y0
1, . . . ,y

0
n)

and (z01, . . . , z
0
n).

16: end while
17: Compute ( ˜s11, . . . , s̃1p) the normalized data with a corrected spatial dependence structure

for the projection period:
∀i ∈ �1, . . . , p�, ˜s1i = GQQ→Y(˜qq1

i ).
18: Reorder each 1d-bias corrected dimension from the dataset (qq1

1, . . . ,qq
1
p) according to

its rank structure in the dataset ( ˜s11, . . . , s̃1p) with the Schaake Shuffle method to obtain
(z11, . . . , z

1
p), the bias correction of (x1

1, . . . ,x
1
p).
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Appendix B: Details on the simple 
architecture of neural networks used 
in MBC‑CycleGAN

The simple neural network architectures used for the dis-
criminators and generators constituting the MBC-CycleGAN 
method in this study are described with more details in this 
appendix.

Appendix B.1: Architecture of the generators

As explained in Sect. 3.3.2, skip connections are used in the 
architecture of the generators to ease the training process. 
Skip connections permit to provide information to a given 
layer that comes not only from the direct previous layer, but 
also from other upstream convolution layers in the architec-
ture. Skipping over layers permits to avoid vanishing gradi-
ents issues, which is a problem that can make the network 
hard to train. All layers except the first one have leaky recti-
fied linear unit (leaky-ReLu) activation functions defined as: 

y =

{
x if x ≥ 0,

�x otherwise,
 with � = 0.2 . Dropout regularization, 

that refers to ignoring neurons chosen at random during 
training, is used after the second and third 2D convolutional 
layers to prevent from overfitting (e.g., Srivastava et al. 
2014). The probability used for dropout is 0.4. A summary 
of the simple neural network architecture used for the gen-
erators in described below in Table 3.

Appendix B.2: Architecture of the discriminators

A summary of the simple neural network architecture used 
for the discriminators is described below in Table 4.

Appendix C: Methodology 
for the generation of IPSLbis

For the generation of IPSLbis data, a two-step procedure is 
developed to construct, from IPSL data, climate data that 
present marginal and spatial changes that are in line with 
those from references between the calibration and projection 
periods. In order to stay with comparable changes as those 
from LR SAFRAN, LR SAFRAN changes are reproduced. 
We recall that, for the calibration period, IPSL and IPSLbis 
data are strictly identical. The two-step procedure is only 
used to produce alternative climate data for the projection 
period.

Appendix C.1: Marginal changes with CDF‑t

The first step of the procedure consists in producing time 
series for the projection period of IPSLbis by taking into 

account marginal changes of LR SAFRAN with the 1d-BC 
named CDFt (Vrac et al. 2012). Initially, CDF-t is a ver-
sion of univariate quantile mapping method designed to 
correct at each individual grid cell marginal properties of 
climate simulations outputs during the calibration and the 
projection period according to the data from the reference 
observed during calibration. CDF-t, by defining a specific 
transfer function, has been conceived to take into account 
the potential simulated changes of univariate distributions 
from the calibration to the projection period in order to pro-
duce the adjusted data such that the marginal changes are in 
line with those from the simulations. While, traditionally, 
this quantile-mapping approach is used to find, in a bias 
correction context, a mathematical transformation allow-
ing to go from simulations to references, we here applied 
CDF-t to go from “large scale” references (LR SAFRAN) 
to simulations for future periods. By proceeding this way, 
the produced time series are projected distributions in the 
domain of IPSL simulations that have been obtained while 
taking into account the potential evolution of CDFs of the 
LR SAFRAN dataset between the calibration and projec-
tion periods. By concatenating times series from IPSL for 
the calibration period and those obtained from the CDF-t 
method for the projection period, new climate times series 
are obtained, presenting marginal distributions changes in 
line with those from references.

Appendix C.2: Spatial changes 
with a matrix‑recorrelation technique

The second step consists in deriving a spatial dependence 
structure for the projection period such that spatial changes 
of LR SAFRAN are reproduced. To do so, we take advan-
tage of a matrix-recorrelation technique used for the MBC 
method presented in Bárdossy and Pegram (2012) to impose 
to climate data a specific spatial dependence structure for 
the projection period. Our methodology is summarized 
in Table 5. It consists in first projecting individually each 
variable of both IPSL simulations and LR SAFRAN during 
calibration and projection periods to the univariate normal 
distribution with a Gaussian quantile mapping method. This 
“Gaussianization” step is particularly suited for variables 
with mixed distributions such as precipitation (composed of 
wet and dry events). Computing Pearson correlation matri-
ces on such Gaussianized data instead of raw data permits 
to better describe its dependence structure. Thus, Pearson 
correlation matrices of the different Gaussianized data are 
computed. They are respectively denoted as CI,C , CI,P , C(bis)

I,C
 , 

C
(bis)

I,P
 , CS,C , CS,P for IPSL during calibration, IPSL during 

projection, IPSLbis during calibration, IPSLbis during pro-
jection, LR SAFRAN during calibration and LR SAFRAN 
during projection. Additionally, let rI,C , rI,P , r(bis)

I,C
 , r(bis)

I,P
 , rS,C , 

rS,P denote one of their entry. Note that by construction, CI,C 
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is the same as C(bis)

I,C
 and that C(bis)

I,P
 is unknown. Assessing 

the changes of LR SAFRAN spatial correlations between 
calibration and projection periods is now required to derive 
the spatial dependence structure of IPSLbis for the pro-
jection period. A simple approach to determine r(bis)

I,P
 , the 

correlation of the Gaussianized data of IPSLbis for pro-
jection, would be to compute it based on the difference of 
correlations from Gaussianized LR SAFRAN data such as 
r
(bis)

I,P
= rI,C + rS,P − rS,C . However, computing r(bis)

I,P
 this way 

can lead to obtain correlation values that are out of range, i.e. 
being greater than 1 or less than -1, which is not appropriate.

From Bárdossy and Pegram (2012), given rI,C , rS,C , rS,P , 
one can derive rIbP using Fisher-Z transformation (Fisher 
1915) as following:

Fisher-Z transformation permits to transform a bounded 
random variable to another random variable that can be 
assumed to be Normal, and for which additive correction 
can be performed (see Mehrotra and Sharma (2019) for the 
derivation of Eq. 7). By deriving this way all the new cor-
relation coefficients, the potential changes in correlations in 
the Gaussianized LR SAFRAN data are preserved and the 
Pearson correlation matrix for Gaussianized IPSLbis during 
the projection period is obtained.

(7)r
(bis)

I,P
=

(1+rS,P)

(1+rS,C)
(1 + rI,C) −

(1−rS,P)

(1−rS,C)
(1 − rI,C)

(1+rS,P)

(1+rS,C)
(1 + rI,C) +

(1−rS,P)

(1−rS,C)
(1 − rI,C)

.

Now that the Pearson correlation matrix, C(bis)

I,P
 , is com-

puted, a combination of “decorrelation” and “recorrelation” 
steps using decompositions of correlation matrices through 
singular value decomposition (SVD, Beltrami 1873; Jordan 
1874a, b; Stewart 1993) is applied on the Gaussianized data 
of IPSL during projection period, forcing its Pearson cor-
relation matrix to be exactly the same as the Pearson correla-
tion matrix, C(bis)

I,P
 . The new dependence structure for IPSLbis 

is obtained. Finally, a reordering of time series from CDF-t 
outputs according to this new dependence structure is per-
formed using the Schaake Shuffle method to obtain IPSLbis 
data for the projection period.

Appendix D: Spatial correlation changes 
analysis

We present a spatial changes analysis to provide a better 
picture of the properties of the climate data in terms of 
changes between the calibration and projection periods. 
As a reminder, IPSLbis data are generated using the two-
step procedure described in Appendix 3 such that its mar-
ginal and dependence changes are in line with those from 
LR SAFRAN (and therefore SAFRAN) for the projection 
period. Fig. S3 displays scatterplots of differences between 
Spearman spatial correlations of temperature and precipita-
tion evaluated for all pairwise combinations of sites, com-
puted for the calibration (1979–2005) and the projection 
(2006–2016) period, respectively. Scatterplots compares dif-
ferences of Spearman correlation with respect to those from 
LR SAFRAN. It permits one to visually verify if changes 
in the spatial dependence structure are in line to those from 
references at large-scale. Using rank correlation here per-
mits to measure in isolation the spatial dependence between 
two sites rid of their marginal properties. Figures for the 
analysis of marginal changes– -in particular, mean and 
standard deviation changes—are also displayed in Figs. S4 
and S5 for information purposes only. Results on univariate 

Table 3  The architecture of the generators used in the MBC-Cycle-
GAN network

Layer Layer name Filter Stride size Output size

1 Input layer n.a. n.a. 28 × 28 × 1

2 Conv2D 3 × 3 × 64 (1, 1) 28 × 28 × 64

3 Conv2D 3 × 3 × 128 (2, 2) 14 × 14 × 128

Leaky ReLU + 
Dropout

n.a. n.a. 14 × 14 × 128

4 Conv2D 3 × 3 × 256 (2, 2) 7 × 7 × 256

Leaky ReLU + 
Dropout

n.a. n.a. 7 × 7 × 256

5 Conv2DTranspose 4 × 4 × 128 (2, 2) 14 × 14 × 128

Skip connection 
(Layer 3)

n.a. n.a. 14 × 14 × 128

+ Leaky ReLU
6 Conv2DTranspose 4 × 4 × 64 (2, 2) 28 × 28 × 64

Skip connection 
(Layer 2)

n.a. n.a. 28 × 28 × 64

+ Leaky ReLU
7 Conv2D 1 × 1 × 1 (1, 1) 28 × 28 × 1

Skip connection 
(Layer 1)

n.a. n.a. 28 × 28 × 1

+ Leaky ReLU

Table 4  The architecture of the discriminators used in the MBC-
CycleGAN network.

Layer Layer name Filter Stride size Output size

1 Input layer n.a. n.a. 28 × 28 × 1

2 Conv2D 3 × 3 × 64 (2, 2) 14 × 14 × 64

Leaky ReLU + 
Dropout

n.a. n.a. 14 × 14 × 64

3 Conv2D 3 × 3 × 128 (2, 2) 7 × 7 × 128

Leaky ReLU + 
Dropout

n.a. n.a. 7 × 7 × 128

4 Flatten n.a. n.a. 6272
5 Dense + sigmoïd 1 n.a. 1
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properties can be briefly summarized as such: changes in 
marginal properties from SAFRAN references (resp. IPSL 
model) are in agreement (resp. disagreement) with those 
from LR SAFRAN for both temperature and precipitation. 
For IPSLbis, the application of the CDF-t method permits to 
obtain marginal changes for both temperature and precipita-
tion similar to those from LR SAFRAN. Concerning spa-
tial properties, as expected, changes in spatial correlations 
from SAFRAN references are (partially) in agreement with 
those from LR SAFRAN for both temperature (Fig. S3a) 
and precipitation (Fig. S3d). Concerning changes in the 
IPSL simulations, simulated changes of spatial correlations 
for temperature (Fig. S3b) are globally in line with those 
from LR SAFRAN, highlighting the ability of the climate 
model to provide appropriate temperature changes in spatial 
structure between the calibration and the projection peri-
ods. However, conclusions are quite different for precipita-
tion, for which simulated changes are not in agreement at 
all with those from the reference at large scale (Fig. S3e). 
Hence, IPSL model presents discrepancy of changes for pre-
cipitation with respect to LR SAFRAN (and thus, SAFRAN 
references), that could potentially affect the quality of the 
correction depending on how MBC-CycleGAN accounts for 
these changes in its correction procedure. Concerning the 
results for IPSLbis, changes for both temperature (Fig. S3c) 
and precipitation (Fig. S3f) are similar to those from LR 
SAFRAN, confirming that the two-step methodology used 
to impose to IPSL specific changes of spatial correlations is 
appropriate here.
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3.5 Summary and conclusions
In this chapter, a new multivariate BC method based on a Machine Learning technique

has been developed in a proof-of-concept context. The new method, named MBC-CycleGAN,
takes advantage of convolutional neural networks to adjust spatial properties of climate simula-
tions. The method was tested by adjusting temperature and precipitation time series from IPSL
simulations with respect to the SAFRAN dataset over the region of Paris using two different
cross-validation methods.

The first cross-validation method permitted to test MBC-CycleGAN in a stationary context.
I took advantage of this cross-validation method to assess to different post-processing schemes
(Perfect-Prog and Model Output Statistics). These two post-processing schemes differ in the way
the MBC-CycleGAN model learns to adjust spatial dependencies. Applying MBC-CycleGAN
with the Model Output Statistics approach was found to be more appropriate to adjust IPSL
simulations.

The second cross-validation method was then used to test the MBC-CycleGAN method in
a non-stationary context. In order to better assess the performances of the method to adjust
IPSL simulations in a non-stationary context, two additional climate datasets (LR SAFRAN
and IPSLbis) with multivariate changes in line with SAFRAN references were constructed and
corrected. Statistical metrics have been applied to multivariate bias corrected outputs to evaluate
the adjustment of univariate distributions, spatial correlations and temporal properties. One
univariate (1d-QQ) and two multivariate BC methods (R2D2 and dOTC) have been implemented
in order to assess the performances of the new method. The MBC-CycleGAN method produced
similar adjustments of univariate distributions and reasonable adjustments of spatial correlations
with respect to the others multivariate BC alternatives for both temperature and precipitation.
Concerning the temporal properties, the MBC-CycleGAN method is not designed to adjust nor
constrain this statistical property, but rather tends to preserve the temporal properties of the
simulated time series.

Despite developed in a proof-of-concept context and with a quite simple architecture, MBC-
CycleGAN presents promising performances of corrections compared to others state-of-the-art
MBC methods. Several perspectives can be envisaged for the improvement of the proposed
algorithm and obtain even better results. The work carried out in this chapter can serve as a
starting point for the use of Machine Learning tools for multivariate bias correction.

3.6 A few comments on what did not work
Many unsuccessful attempts were made before finding the final MBC-CycleGAN algorithm

described in the article. I propose here to give some details on these failures encountered during
the work carried out in this chapter.

Keeping it simple in the face of the myriad of possibilities

A key challenge in the design of a neural network resides in the choice of a suitable archi-
tecture which allows to learn complex data patterns while avoiding overfitting issues. Hyper-
parameters which define the model architecture are numerous, and the process of searching for
the optimal model architecture by exploring all the different possibilities can be quite tedious.
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This is particularly true for GAN-based algorithms that use several neural networks (generators
and discriminators) interacting with each other. My work being a proof of concept, I quickly
opted for a simple CycleGAN neural network architecture by fixing most of the hyperparameters
following best practices in the machine learning community (He et al., 2016; Srivastava et al.,
2014; Zhu et al., 2017). Only the parameters controlling the “speed of learning” of generators
and discriminators along training (called learning rates) were not fixed and were needed to be
refined.

“Marginal/dependence” vs. “All-in-one”

As explained in the study, MBC-CycleGAN is developed in the context of the marginal/de-
pendence category: marginal properties are adjusted separately from the spatial properties
(Fig. 2.1a). However, the initial idea was not to use CycleGAN for multivariate bias correction
in a marginal/dependence context but rather in a all-in-one context, i.e., adjusting univariate
and spatial properties from climate simulations at the same time (Fig. 2.1b). If we refer to the
algorithmic steps of MBC-CycleGAN described in Fig. 3 of the article, initial attempts therefore
consisted to skip Step 1 by providing directly climate simulations data to CycleGAN without
first adjusting univariate properties of climate models with the quantile-quantile method. By
applying CycleGAN in the all-in-one context, I quickly obtained appropriate corrections for the
adjustment of LR SAFRAN, but not for IPSL simulations. As IPSL simulations presents differ-
ent marginal and spatial properties than those from SAFRAN contrary to LR SAFRAN dataset,
it seemed that correcting both IPSL marginal and spatial properties at the same time was too
much to ask for CycleGAN, at least with the architecture considered. It was only when adjusting
univariate properties with QQ before applying CycleGAN that reasonable results were obtained,
i.e., developing MBC-CycleGAN in the marginal/dependence category. By first reducing uni-
variate properties biases, QQ permits to provide to CycleGAN source and target datasets with
similar univariate distributions. The image-to-image translation problem is then simplified for
CycleGAN, which can focus on adjusting spatial distributions using CNNs, what is not adjusted
by the QQ method. The first results obtained using MBC-CycleGAN in the marginal/depen-
dence context then encouraged me to pursue tries and tests in this direction, which led to the
work presented in this chapter.

Machine Learning is not magical

This experience of research demonstrates the importance of domain knowledge to develop
Machine Learning techniques for specific applications. Machine Learning tools, although pow-
erful, are not “magic” and potentially need to be adapted depending on the scientific problem
considered. If Machine Learning applications are not accompanied by a thorough understanding
of the problem by scientists, they can be expected to fail or produce spurious results. Further
research on the neural network architecture such as implementing additional layers could have
produced reasonable results in the all-in-one context, but such architecture modifications would
go beyond the scope of this proof-of-concept study.

3.7 Perspectives
The work developed in this chapter leads to several perspectives for the improvement of

the proposed algorithm, but also to more general perspectives for bias correction using Machine
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Learning tools. I will first return to some of the perspectives mentioned in the article (subsection
6.2). Then, additional perspectives will be discussed.

3.7.1 A look back at some of the perspectives of the article

From proof of concept to operational uses?

Although presenting similar performances of correction compared to state-of-the-art meth-
ods, the MBC-CycleGAN algorithm can be improved by several means. For example, a more
sophisticated CycleGAN model can be adopted by increasing the number of layers in the gener-
ators and discriminators’ architectures to potentially capture more complex spatial relationships
that would permit to achieve better results of corrections. Also, opting for a more sophisticated
adversarial loss, such as the Wasserstein loss (Arjovsky et al., 2017) to train generators and
discriminators would be an interesting perspective as its effectiveness has been demonstrated to
stabilise the training of GANs algorithms in several studies (e.g., Gulrajani et al., 2017; Petzka
et al., 2017). However, although all these modifications of architectures may seem promising,
they do not guarantee better results of corrections. Opting for these changes may even make
the training of the methodology more difficult to achieve. As explained previously in subsection
3.6, MBC-CycleGAN has been developed in a proof of concept context and this work was in-
tended to investigate if GANs can be used for multivariate bias correction of climate simulations.
There is still some research to do to improve the MBC-CycleGAN method and make it highly
generalisable to allow its use to adjust other climate models and larger regions.

Adjusting inter-variable and temporal properties using CycleGAN

The MBC-CycleGAN method has been designed to adjust univariate properties and spa-
tial dependencies of climate simulations only. An interesting perspective could be to modify
MBC-CycleGAN so that the CNNs within generators architecture considers inter-variable and
temporal correlations. This could be done for example by considering 3-d filters (i.e., arrays
of weights) instead of 2-d filters (i.e., matrices of weights) as presented in Fig. 3.2. By per-
forming convolutional operations over more than 2 dimensions of simulated daily maps, the 3-d
filters would permit to potentially capture inter-variable and/or temporal correlations and thus
to allow MBC-CycleGAN to adjust these multivariate properties. However, considering these
additional adjustments will necessarily modify, even slightly, performances of the method to
adjust univariate and spatial properties, which should be carefully considered when evaluating
the method.

Investigating uncertainty with stochasticity

As designed in this study, a single correction is provided by MBC-CycleGAN for each sim-
ulated daily maps to be adjusted. Another interesting perspective would be to introduce some
stochastic components in the correction procedure in order to obtain from MBC-CycleGAN en-
semble of corrections for a given simulated daily maps. This would then permit to (partially)
investigate the inherent uncertainty associated with the MBC-CycleGAN method to adjust cli-
mate simulations. For example, providing vectors of random noises to the generators in addition
to daily maps to adjust would be a first possibility for such investigations.
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3.7.2 Additional perspectives

Towards an interpretable bias correction

Despite the relative success of my new method to produce appropriate bias corrected outputs,
one of its main issue is that the transformation function approximated with neural networks is
not easily interpretable. The lack of interpretability is not specific to CycleGAN but rather to
complex neural networks architectures that often render difficult the analysis of the approximated
function. Increasing interpretability of neural networks, often called “black-box” models, is a key
challenge in Machine Learning research (Daniely et al., 2016; Zintgraf et al., 2017; Rudin, 2018;
Baño Medina, 2020), as the lack of interpretability has often prevented the use of these models
in scientific disciplines including climate science. For our application, although the mapping
learned by CycleGAN is constrained by the cycle-consistency and identity losses, this does not
tell us anything about how a specific simulated map with inappropriate spatial properties is
adjusted. In our application, it resulted in obtaining mappings that somehow conserve some
of the characteristics of the initial simulated maps in the corrections. This result is consistent
with other successful CycleGAN applications (e.g., Zhu et al., 2017), despite no theoretical
guarantees. Further constraining the solution space of mapping functions of CycleGAN is thus
an important perspective that would potentially lead to a more interpretable bias correction
method. An interesting idea proposed by de Bézenac et al. (2021) would be to reformulate the
optimization problem solved by CycleGAN with Optimal Transport theory. It would permit
to make CycleGAN converging to the mapping minimising the “transformation cost” needed to
transform an image to another, and thus would increase interpretability of the algorithm.

Adjusting biases of warmer climates

As mentionned in the perspectives of the paper, it can be argued that calibration and pro-
jection periods in the non-stationary context are close in time and that the ability of MBC-
CycleGAN to generalise to datasets far outside of the calibration period is not investigated.
Actually, although it would be interesting to test it, there are no particular reasons why MBC-
CycleGAN would generalise well far outside of the calibration set, e.g., in periods with simulated
climates that are ≥ 4 ◦C warmer. This problem is common in many Machine Learning appli-
cations where algorithms are neither specifically designed to address this problem nor tested in
this context. However, one recent study from Beucler et al. (2021) proposed a promising strat-
egy to design “climate-invariant” neural networks aimed to present better ability to generalise to
unseen climate data. By incorporating physical knowledge of climate change into neural network
frameworks, they demonstrated that generalization can be achieved by modifying — or rescal-
ing — inputs in a meaningful way so that invariant relationships can be learned. Implementing
such “climate-invariant” strategy within a neural network-based algorithm for multivariate bias
correction is of course an interesting perspective to explore in future research.

Machine Learning as a promising tool for MBC

Developing new MBC methods based on other Machine Learning tools is an interesting
perspective. For example, implementing unsupervised variational autoencoder architectures
(Kingma and Welling, 2013; Liu et al., 2017) or energy-based generative models (Zhao and
Chen, 2020) to adjust statistical properties of climate simulations can be envisaged. Also, one
can think about implementing other algorithms to correct not only spatial properties but also
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inter-variable or temporal properties (e.g., by constraining motions between generated images,
Bashkirova et al., 2018; Chen et al., 2019). In this context of developing new Machine Learning-
based methods for multivariate bias correction, a benchmark dataset consisting of preprocessed
climate simulations and predefined evaluation metrics would be needed. Such efforts in designing
benchmark datasets have been recently carried out for weather forecasting (WeatherBench, Rasp
et al., 2020; Garg et al., 2022) and climate emulation (ClimateBench, Watson-Parris et al., 2021).
By defining training and validation datasets, this benchmark dataset would permit to provide a
framework to researchers in which to evaluate progress in multivariate bias correction methods.
This benchmark dataset would participate to boost research in Machine Learning-based MBC
methods and improve their understanding and their applicability for multivariate bias correction.
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Résumé
Contexte et objectifs

Les simulations climatiques présentent des biais spatiaux, c’est-à-dire que les propriétés
spatiales (par exemple, la corrélation des précipitations entre différents lieux) peuvent dif-
férer des observations. Par conséquent, corriger les propriétés spatiales est nécessaire, par
exemple pour les études d’impact. Dans ce chapitre, je propose d’adapter une technique de
vision par ordinateur, utilisée initialement pour des problèmes de transformation d’image
à image (appelée CycleGAN), pour l’ajustement des propriétés spatiales des simulations
climatiques.

Méthodes

L’algorithme proposé, nommé MBC-CycleGAN, consiste à apprendre à transférer des
cartes simulées (vues comme des images) issues de simulations climatiques ayant des pro-
priétés spatiales inappropriées vers des images plus réalistes ayant des propriétés spatiales
similaires à celles observées. J’ai testé MBC-CycleGAN en effectuant différents exercices
de correction de biais, tous par rapport aux références SAFRAN pour les données de
température et de précipitation sur la région parisienne.

Résultats

J’ai comparé les résultats de la correction des propriétés spatiales avec d’autres méth-
odes de correction de biais de l’état-de-l’art. Notre méthode MBC-CycleGAN produit
des ajustements raisonnables des corrélations spatiales pour la température et les précip-
itations par rapport aux autres méthodes.

Ces résultats suggèrent que l’utilisation d’algorithmes tel que CycleGAN est très promet-
teuse pour la correction de biais multivariés. Bien sûr, des recherches supplémentaires
sont nécessaires, comme l’extension de notre méthode pour corriger non seulement les
propriétés spatiales mais aussi les propriétés inter-variables et/ou temporelles. Le travail
réalisé dans ce chapitre peut servir de point de départ à l’utilisation d’outils de Machine
Learning pour la correction de biais multivariés.
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Chapter 4

Time of Emergence of compound
events: contribution of univariate and
dependence properties

The core of this chapter is an article submitted to the scientific journal Natural Hazards and
Earth System Sciences. The article is preceded by an introduction giving some information
on the work carried out. It is then completed by a section recalling the main conclusions and
presenting some additional perspectives.

4.1 Introduction
In the previous two chapters, we were interested in multivariate statistical methods designed

to improve the realism of the complete distributions of simulated variables, including univariate,
inter-variable and/or spatial properties. However, in some applications, it is not the complete
distribution that is of interest, but rather a subset of the multivariate distribution. This is the
case when analysing multivariate hazards leading to compound events, which involves the anal-
ysis of the multivariate distribution of climatic variables simultaneously or successively reaching
critical values. For example, for a study aimed at designing an effective coastal flood protection
infrastructure, statistical properties of wind and precipitation extremes (including marginal and
dependence properties) are of crucial importance, whereas the statistical characteristics of low
wind and precipitation values would be of little interest.

Having an appropriate multivariate distribution between climate hazards is all the more
important as marginal and dependence properties characterise probability of compound events.
Evaluating the probability of multivariate hazards forming CEs, as well as having a sound
knowledge of their changes are crucial for adaptation and mitigation strategies. An important
concept for adaptation and mitigation is the Time of Emergence (ToE) of climate signals. It
consists in determining the time at which a climate signal emerges from (i.e., goes out of) the
natural variability (e.g., Christensen et al., 2007; Giorgi and Bi, 2009; Hawkins and Sutton,
2012; Maraun, 2013a). ToE has obvious relevance to adaptation and mitigation policy as huge
impacts arise most likely when changes emerge from natural variability (e.g., Lobell and Burke,
2008). This concept has been used extensively to evaluate the emergence of different climate
metrics such as mean temperatures (e.g., Hawkins and Sutton, 2012; Mahlstein et al., 2011),
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precipitation (Fischer et al., 2014; Giorgi and Bi, 2009; Gaetani et al., 2020), but also extremes
(e.g., Diffenbaugh and Scherer, 2011; King et al., 2015).

Several methods have been developed to evaluate ToE of climate signals. For instance, for
a metric of interest, the ToE can be evaluated by computing the ratio between the estimated
climate change signal (S) and the variability or noise (N) associated to natural variability (e.g.,
Giorgi and Bi, 2009; Hawkins and Sutton, 2012; Maraun, 2013b; Ossó et al., 2022). Fig. 4.1a
illustrates schematically this method to determine the ToE for annual global mean surface tem-
perature change anomalies (Hawkins et al., 2020). The “signal” (black line) of global temperature
change is defined as the values of the smoothed time series. Standard deviation of residuals from
the smooth fit defines the noise (light red). The first date for which the signal-to-noise ratio (S/N)
permanently crosses a certain threshold is the ToE. Frame et al. (2017) proposes to describe the
emergence of climate with respect to natural variability using the terms “unusual” (S/N > 1),
“unfamiliar” (S/N > 2) and “unknown” (S/N > 3). In Fig. 4.1a, a ToE for an unusual climate
is detected around 1935 as the signal is greater than the noise (S/N > 1) thereafter. Another
method to evaluate ToE consists in using statistical tests to evaluate differences in distribution
of the metric across sliding windows (e.g. using Kolmogorov-Smirnov tests, Mahlstein et al.,
2012; Gaetani et al., 2020; Pohl et al., 2020). Fig. 4.1b illustrates this second method. A baseline
period from which the natural variability is estimated is first defined. Here, the 30-year period
1871-1900 is chosen (blue area in Fig. 4.1b). The distribution of the values of global temperature
within this baseline period (blue density on the right) is then compared to the distribution of the
values for the different 30-year windows sliding over the period 1872-2021. Using this method,
the ToE can be defined as the central year of the first period for which the distribution of the
metric is significantly and permanently different from the baseline period distribution (Gaetani
et al., 2020). For instance in Fig. 4.1b, the ToE is defined around 1946 if 1) the orange density
on the right is significantly different from the blue one, 2) the distribution of the metric within
the previous sliding window is not significantly different from the blue distribution and 3) if
the distributions of the metric across the following sliding windows are all significantly different
from the baseline period distribution.

The methodologies described above have been applied in the literature to define ToE of uni-
variate climate metrics, such as mean temperature or precipitation changes. Thus, the various
ToE studies cited above implicitly investigate the emergence of univariate properties only. How-
ever, for CEs, and as already explained, it is not only the univariate properties that define their
probabilities, but also the dependence properties between climate hazards. Then, in addition
to investigate if compound events probability changes significantly and from when it emerges,
it is crucial to determine how much of this change is due to 1) changing univariate properties,
and 2) changing dependence structure of multivariate hazards forming CEs. Quantifying the
contribution of these statistical features to these probabilities changes would permit to better
understand the potential future evolutions and emergences of compound events. In this chapter,
I will propose a new multivariate statistical tool to evaluate the Time of Emergence of multi-
variate hazards probabilities. To define the ToE, I will estimate confidence intervals of baseline
period’s probabilities. It will permit to characterise the natural variability of our probabilities
of interest. The ToE of hazard probabilities will be then the time period when the signal of
CEs probability permanently goes out from the confidence interval. Based on copula, this new
tool would also permit to disentangle and quantify the contribution of marginal and dependence
properties in the probability changes of multivariate hazards leading to compound events. The
new methodology will be applied to a 13-member multi-model ensemble (CMIP6) to analyse two
different multivariate hazards with potential high-impacts: i) compound wind and precipitation
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(a)  Signal-to-noise ratio

ToE
Noise

Signal

(b) Testing for differences in distribution

ToE?

Figure 4.1: Illustration of two methodologies used in the literature to define ToE. Data
are observed global temperature change from 1871 to 2021 from the Berkeley Earth
temperature data set (Rohde et al., 2013). ToE can be determined using (a) Signal-to-
noise ratio (graphic inspired and modified from Hawkins et al. (2020)) or by (b) testing
for differences in distribution between a baseline period (blue area) and sliding windows
(orange area). The reader is referred to the text for more explanations.

extremes over the region of Brittany (France), and ii) frost events occurring during the growing
season preconditioned by warm temperatures over Central France. Considering 13 CMIP6 mod-
els will permit to assess inter-model variability of results for the analysis of probability changes,
as well as for the contributions of the marginal and dependence properties.

Even if multivariate bias correction is not at the heart of this chapter, the new methodol-
ogy will provide valuable information about simulated compound events probabilities, and how
dependence contribute to these changes. This information would then be interesting to use in
a context of multivariate bias correction. Indeed, as we have seen in Chapters 2 and 3, some
multivariate bias correction methods permit the evolution of the simulated dependence to be
taken into account in the bias correction procedure. Evaluating the simulated evolution of de-
pendence and its contribution for changes of compound events probabilities will thus provide
important information about the necessity of taking into account multi-dimensional changes in
the bias correction procedure for compound events analyses.

Note that in this chapter, the analysis of CEs focuses on the multivariate statistical dis-
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tribution of climate hazards. Whether or not the climate hazards lead to an impact is not
investigated. The results can instead be interpreted as the climatology of potential high-impact
events.
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Abstract.

Many climate-related disasters often result from a combination of several climate phenomena, also referred to as “compound

events” (CEs). By interacting with each other, these phenomena can lead to huge environmental and societal impacts, at a scale

potentially far greater than any of these climate events could have caused separately. Marginal and dependence properties of

the climate phenomena forming the CEs are key statistical properties characterising their probabilities of occurrence. In this5

study, we propose a new methodology to assess the time of emergence of compound events probabilities, which is critical for

mitigation strategies and adaptation planning. Using copula theory, we separate and quantify the contribution of marginal and

dependence properties to the overall probability changes of multivariate hazards leading to compound events. It provides a

better understanding of how the statistical properties of variables leading to CEs evolve and contribute to the change of their

occurrences. For illustration purposes, the methodology is applied over a 13-member multi-model ensemble (CMIP6) to two10

case studies: compound wind and precipitation extremes over the region of Brittany (France), and frost events occurring during

the growing season preconditioned by warm temperatures (growing-period frost) over Central France. For compound wind and

precipitation extremes, results show that probabilities emerge before the end of the 21st century for 6 models of the considered

CMIP6 ensemble. For growing-period frosts, significant changes of probability are detected for 11 models. Yet, the contribution

of marginal and dependence properties to these changes of probabilities can be very different from a climate hazard to another,15

and from one model to another. Depending on the CE, some models give a strong importance to both marginal properties

and dependence properties for probability changes. These results highlight the importance of considering both marginal and

dependence properties changes, as well as their inter-model variability, for future risk assessments due to compound events.
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1 Introduction20

In September 2017, heavy rainfall and storm surge associated with Hurricane Irma resulted in record-breaking floods in Jack-

sonville, Florida. In 2019, Australia had experienced high temperatures and prolonged dry conditions, which resulted in one

of the worst bush fire seasons in its recorded history. In April 2021 and 2022, Central Europe experienced consecutive days of

frost events following a warm early spring, which caused severe damages to agricultural yields. These recent climate events are

some examples of so-called “compound events” (CEs), i.e., high-impact climate events that result from interactions of several25

climate hazards. These climate hazards are not necessarily extremes themselves, but their simultaneous or successive occur-

rences can generate strong impacts (Leonard et al., 2014; Zscheischler et al., 2014, 2018, 2020). Though still in its infancy, the

understanding of the complex nature of compound events and the assessment of their associated risks have been the subject

of numerous research studies in climate sciences (e.g., Bevacqua et al., 2017, 2021; Manning et al., 2018; Zscheischler and

Seneviratne, 2017; Ridder et al., 2021, 2022; Singh et al., 2021a; Nasr et al., 2021; Raymond et al., 2022, among many others).30

Recently, a typology of compound events has been proposed in order to categorise them into four classes depending on how

individual hazards interact to form the CEs (“preconditioned”, “multivariate”, “temporally compounding” and “spatially com-

pounding” events, see Zscheischler et al., 2020). Concerning projected changes, frequency and intensity of some compound

events such as co-occurring heatwaves and droughts are expected to increase for many regions of the world, even when consid-

ering climate change scenarios with limited global warming to 1.5◦C above pre-industrial levels (IPCC, 2021). Determining35

whether probabilities of compounding climate events present significant changes between past and future periods, and to detect

when these significant changes occur are of paramount importance, not only for mitigation and adaptation issues but also to

inform the general public and to raise awareness of climate change. Only when the changes of probability are of sufficient

magnitude relative to a baseline period can we be confident that significant changes have been detected. Detecting from which

period the changes are statistically significant corresponds to the concept of “Time of Emergence” (ToE). It consists in deter-40

mining the time or period in which a climate signal emerges from (i.e., goes out of) the natural variability (e.g., Christensen

et al., 2007; Maraun, 2013; Hawkins et al., 2020; Ossó et al., 2022). Time of Emergence has been discussed extensively to

analyse the emergence of mean temperatures (e.g., Hawkins and Sutton, 2012; Mahlstein et al., 2011), precipitation (Fischer

et al., 2014; Giorgi and Bi, 2009; Gaetani et al., 2020), but also emergence of extremes (e.g. Diffenbaugh and Scherer, 2011;

Fischer et al., 2014; King et al., 2015). Evaluating the ToE of compound hazards probabilities with respect to a baseline period45

— from which the natural variability is estimated — is valuable to analyse evolutions of compound events and attribute those to

a specific cause, such as anthropogenic greenhouse gas emissions. Attribution is an important research field in climate science

that aims at determining the mechanisms responsible for recent global warming and related climate changes. For example, it

can be done by comparing probabilities of an event between two worlds with different forcings (the “risk-based” approach,

Stott et al., 2004; Shepherd, 2016). Generally, a factual world with anthropogenic climate change and a counterfactual world50

in which anthropogenic emissions had never occurred are considered. Although we do not aim at performing attribution per se

in the present study, the underlying philosophy is relatively similar for ToE: by considering a pre-industrial period as baseline,
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compound hazards probabilities associated with natural forcings — or natural variability — could be estimated, and so the

influence of future climate change on probabilities.

From a statistical point-of-view, compound events are characterised by the statistical features of the variables forming the55

CEs, i.e., their marginal properties (e.g., mean and variance) and dependence structures. These key statistical properties can be

affected by future climate change (e.g., Wahl et al., 2015; Schär, 2015; Russo et al., 2017; Raymond et al., 2020; Jézéquel et al.,

2020). In addition to potentially exacerbate impacts, these evolutions of marginal and dependence properties could also com-

bine to change the probabilities of the CEs’ hazards (e.g., Rana et al., 2017; Zscheischler and Seneviratne, 2017; Zscheischler

and Lehner, 2021; Manning et al., 2019; Singh et al., 2021a). For example, rising temperatures can naturally lead to more co-60

occurrences of hot temperatures and droughts, despite no significant trends in droughts are detected (Diffenbaugh et al., 2015;

Mazdiyasni and AghaKouchak, 2015). However, in addition to warmer temperatures, the strengthening of the dependence

between hot temperatures and droughts for future periods can also contribute to an increase in their co-occurrences (as high-

lighted in Zscheischler and Seneviratne, 2017). Several studies concluded about the importance of considering dependencies to

assess CE properties and frequencies in a robust way (e.g., Hillier et al., 2020; Singh et al., 2021a; Vrac et al., 2021). Recently,65

Abatzoglou et al. (2020) even showed, using reanalysis data, that changes in dependence properties have been more important

than changes in univariate properties in the recent decades. Hence, to determine the ToE of hazards probabilities, quantifying

the influence (or contribution) of the statistical features of the variables forming the CEs to these changes of probabilities is

thus crucial to further understand the potential future evolutions of compound events (Vrac et al., 2021).

In this paper, we propose a new methodology to assess the time of emergence of compound events probabilities. We also70

develop a copula-based multivariate framework, which allows for an adequate description of the contribution of the marginal

and dependence properties changes to the evolutions of multivariate hazard probabilities. This compound event analysis is

applied to two case studies. We first analyse compound wind and precipitation extremes over the coastal region of Brittany

(France). This bivariate compound event, i.e., composed of co-occurring climate hazards over the same region and time,

has been analysed in several studies (e.g., Martius et al., 2016; Bevacqua et al., 2019; De Luca et al., 2020a; Reinert et al.,75

2021; Messmer and Simmonds, 2021) as it can have severe impacts such as important economic losses, massive damages to

infrastructure and loss of human life (e.g., Fink et al., 2009; Liberato, 2014; Wahl et al., 2015; Raveh-Rubin and Wernli, 2015).

We then apply our methodology to a second climate hazard: frost events occurring during the growing season preconditioned

by warm temperatures (growing-period frost) over Central France. When occurring after bud burst, i.e., when the sensitive

emerging leaves and flowers have started to develop, frost temperatures potentially affect growth and distribution limits of80

plants. It can consequently cause important economic losses to agriculture (Lamichhane, 2021). These growing-period frost

events and their associated risks in past and future periods have been studied in the literature (e.g., Unterberger et al., 2018; Liu

et al., 2018a; Sgubin et al., 2018; Pfleiderer et al., 2019), as well as the role of human-caused climate change on growing-period

frosts probability (Vautard et al., 2021).

The rest of this paper is organised as follows: Sect. 2 describes the climate simulations used in this study, and Sect. 385

details the statistical method and experimental setup used to analyse time of emergence of compound events probabilities and

contributions of the statistical features. Then, results for the analysis of the two climate compound hazards are provided in
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Sect. 4 for extremes of wind and precipitation and in Sect. 5 for growing-period frost events. Conclusions, discussions and

perspectives for future research are finally proposed in Sect. 6.

2 Model data90

One ensemble of 13 Global Climate Models (GCMs) following the CMIP6 protocol (Eyring et al., 2016) is considered. This

selection of models is listed in Table 1. To define compound wind and precipitation extremes, we use daily precipitation

and wind speed maxima variables. For growing-period frosts, mean and minimum temperature variables are used. For each

variable, the historical period simulations (1871-2014) have been extracted and extended until 2100 using the shared socioeco-

nomic pathways 585 (SSP-585) scenario (Riahi et al., 2017). As the 13 selected simulations present different spatial resolutions,95

each climate simulation dataset has been regridded to a common spatial resolution of 0.5◦ × 0.5◦ using bilinear interpolation.

Considering the climate models separately will allow us to assess inter-model variability in terms of time of emergence of com-

pound events probabilities, as well as the potentially different contributions of marginal and dependence properties to changes

in probability of multivariate climate hazards. Also, by considering all climate models together using a pooling procedure, a

multi-model ensemble estimate for ToE and contributions could be derived. Pooling the models together will allow us to better100

take into account the global uncertainty inherent in climate modelling and to reduce the influence of natural variability amongst

individual ensemble members.

For compounding wind and precipitation extremes, we use spatial mean of daily wind speed maxima and spatial sum of daily

precipitation time series during winter (December, January and February) over the region of Brittany, France ([-5, -2◦E]×[46.5,

49◦N], see Fig. 1a), which corresponds to a domain with 21 continental grid cells in our regridded climate simulations. This105

coastal region is regularly impacted by mid-latitude extra-tropical storms causing large damages to infrastructures (e.g., the

storm Xynthia in 2010). Analysing the evolution of probability of compound wind and precipitations extremes is therefore

relevant for this region. To allow for a robust statistical modelling of compounding wind and precipitation extremes, we applied

our methodology to bivariate points of high values by selecting wind and precipitation data concurrently exceeding selected

high thresholds. Indeed, our methodology detailed later in Sect. 3 is based on the use of parametric models and considering110

the complete bivariate distribution to fit marginals and copulas could be not appropriate as the representation of the extremes

would be biased by the bulk of the bivariate distributions where most of the data is located (e.g., Bevacqua et al., 2019). More

details on selection thresholds will be provided later in Sect. 4.

For growing-period frost events, data are extracted over Central France ([-1, 5◦E]× [46, 49◦N], see Fig. 1a), which corre-

sponds to 78 continental grid cells. The region covers an important agriculture area of France, including grapevine and fruit115

crops with high production (Vautard et al., 2021). We focus on spatial mean of daily minimum temperature (T ) in April to de-

fine frost events occurring in early spring. To account for phenology and characterise bud burst conditions by the end of March,

the Growing Degree Day (GDD) model (Bonhomme, 2000) is used. The GDD model consists in computing cumulative daily

mean temperatures minus a “base temperature” from a starting date. For our study, a base temperature of 5◦C is used and the

starting date for computing GDD values for each year is chosen to be 1 January. In this study, our aim is not to focus on the120
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phenology of specific plants but rather to provide a general overview of growing-period frost events. 5◦C as base temperature

is generally accepted for crops and grapevine (e.g., Skaugen and Tveito, 2004; Jiang et al., 2011; Ruosteenoja et al., 2016;

Vautard et al., 2021). Bud burst occurs when the cumulative sum of degree-days up to 31 March is larger than some thresholds

(Garcia de Cortazar-Atauri et al., 2009), which depend on species. For each year y, GDD values by the end of March are

obtained via the formula:125

GDD(y) :=

i=y/03/31∑

i=y/01/01

max(MT (i)− 5,0),

with MT the daily mean temperature. GDD values are computed for each grid cell and averaged spatially over the area of

Central France. We consider the threshold of 200◦C.day to characterise bud burst conditions and illustrate our method. The

choice of this threshold is consistent with existing studies analysing bud burst values of grapevine species (e.g., Garcia de

Cortazar-Atauri et al., 2009; Vautard et al., 2021), and is useful to characterise early bud burst plants that could be impacted by

frost events.130

For illustration purpose, Fig. 1a displays the topographic map of France with the region of Brittany and Central France in

boxes. The bivariate wind and precipitation data (Fig. 1b) and miniminal temperature and GDD data (Fig. 1c) for the CNRM-

CM6 model are also displayed.

3 Statistical method

Our aim is to design a statistical method to assess the time of emergence of compound events probabilities, that is, to detect from135

which period changes of probability are statistically significant relative to a baseline period. Probabilities of compound events

can be computed with copulas. Copulas are functions that allow to describe the dependence structure between random variables

separately from their marginal distributions and greatly simplifies calculations involving multivariate distributions (Nelsen,

2006). Copulas have been widely applied in climate and geophysical science (e.g., Vrac et al., 2005; Salvadori et al., 2007;

Schölzel and Friederichs, 2008; Serinaldi, 2014). In addition to allowing computations of multivariate hazards probabilities,140

the use of copulas in our study permits to isolate and quantify the marginal and dependence contributions of the variables

forming the CEs to the overall probability changes. In the following, we first remind the concept of ToE, and then present

our methodology to assess the time of emergence of compound events probabilities. Then, after some reminders about the

copula theory, the methodology to assess the contribution of marginal and dependence properties to changes of probabilities is

presented. For ease of presentation, the methodology is explained for compounding wind and precipitation extremes but will145

be applied similarly for growing-period frosts.

3.1 Time of emergence of climate hazards

The concept of Time of Emergence (ToE) has been developed to assess the significance of climate changes relative to back-

ground variability. Comparing changes of climate signal relative to the natural variability is particularly relevant as human

5
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societies and ecosystems are inherently adapted to the local background level of variability, and major impacts arise most150

likely when changes emerge from it (e.g., Lobell and Burke, 2008). Different methodologies to assess ToE of climate signals

have been used in the literature. For example, ToE can be assessed by estimating the climate change signal (S) and the variabil-

ity (or noise, N) of the climate metric of interest (e.g., Hawkins and Sutton, 2012; Maraun, 2013; Hawkins et al., 2020; Ossó

et al., 2022). The ToE is then estimated by determining the first period for which the S/N ratio permanently crosses a certain

threshold (e.g., emergence of “unusual” (S/N > 1), “unfamiliar” (S/N > 2), or “unknown” (S/N > 3) climates, Frame et al.,155

2017). Methodologies for ToE based on statistical tests have also been developed, which estimate the first period for which

the distribution of the climate metric is significantly and permanently different from a baseline period distribution (e.g. using

Kolmogorov-Smirnov tests, Mahlstein et al., 2012; Gaetani et al., 2020; Pohl et al., 2020). To define emergence of compound

events probabilities, we propose to assess probabilities in a 30-year window sliding over the period 1871-2100 and compare

their values with respect to a baseline period’s probability. In this study, we consider the reference period (1871-1900) as160

baseline to assess the emergence of hazard probabilities. However, there is no agreement on the choice of the baseline period

for ToE studies. While most of the studies choose a pre-industrial period as baseline to attribute emergence to anthropogenic

greenhouse gas forcing (e.g., 1850-1900, Hawkins et al., 2020), other studies choose a more recent baseline period (e.g., 1951-

1983, Ossó et al., 2022), which can provide relevant information for adaptation planning. We further discuss the choice of the

reference period for emergence in Sect. 6. The ToE of hazard probabilities is then the time period when a significant change165

of probability occurs relatively to the probability associated with the estimated natural variability, and persists until the end of

the century. To assess if probabilities are significantly different from that of the background variability, we propose to compute

the 68% and 95% confidence intervals of the baseline period’s probability. It permits to characterise the natural variability of

our probability of interest. An emergence is detected if probability for the 30-year sliding windows permanently go out of the

baseline confidence intervals (i.e., out of the estimated natural variability). The ToE is then defined as the central year of the170

sliding window over which the probability starts to emerge. As probabilities are estimated using copula modelling (see later in

subsection 3.2), 68% and 95% confidence intervals of baseline period’s probabilities are computed by coupling the parameters

uncertainties of both the fitted marginal distributions and the fitted copula. Considering both 68% and 95% confidence intervals

allows to evaluate, with different degrees of confidence, the changes of probability of compounding events from the estimated

natural variability. Details on the procedure to compute confidence intervals are given in Appendix A.175

3.2 A reminder on copula functions and exceedance probability

In this study, we use copula modelling to compute compound events probabilities. We first consider two random variables

X (e.g., maximum wind speed) and Y (e.g., precipitation) for an arbitrary period. We denote their marginal (i.e., univariate)

probability density functions (pdfs) fX(x) and fY (y) and cumulative marginal distribution functions (CDFs) FX(x) = P(X ≤
x) and FY (y) = P(Y ≤ y). Sklar’s theorem (Sklar, 1959) states that, H , the joint (i.e., bivariate) CDF can be written as:180

HX,Y (x,y) = P(X ≤ x∩Y ≤ y) = C(FX(x),FY (y)), (1)
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where C is a function called “copula”, corresponding to the joint distribution function of the uniformly distributed variables

FX(X) and FY (Y ). Under the assumption that the marginal distributions FX and FY are continuous, Sklar’s theorem states

that the copula C is unique. This decomposition of the multivariate distribution into marginals distributions and copula function

allows us to model the dependence among contributing variables independently of their marginals. Therefore, using copulas185

makes it easy to isolate the effects of marginal and dependence properties on probability of multivariate hazards.

Bivariate exceedance probability refers to the probability that both random variables exceed a certain value (“AND ap-

proach”, Salvadori et al., 2016) and can be calculated relatively easily using copulas. For example, for wind and precipitation

compound events, it corresponds to probabilities of wind speed and precipitation jointly exceeding established thresholds . We

denote pm,d the bivariate exceedance probability computed with marginal (subscript m) and dependence (subscript d) proper-190

ties of (X,Y ). The probability pm,d(tX , tY ) that both X and Y jointly exceed some predefined thresholds tX and tY is given

by (Yue and Rasmussen, 2002; Shiau, 2003):

pm,d(tX , tY ) = P(X ≥ tX ∩Y ≥ tY )

= 1−FX(tX)−FY (tY )+C(FX(tX),FY (tY )). (2)

Marginal and copula distributions in Eq. (2) are estimated using parametric fitting procedures. More details on the fitting

procedures for compound wind and precipitation extreme and growing-period frost events are given in Appendix B.195

3.3 Change of probabilities: contribution of the marginal and dependence properties

Let us now consider the realizations (Xref,Yref) and (Xfut,Yfut) of the two random variables X and Y over the reference period

(i.e., 1871-1900 in the following), and over another 30-year period (e.g. a future period such as 2071-2100). Using Eq. (2), the

reference and future bivariate exceedance probability pmref,dref(tX , tY ) and pmfut,dfut(tX , tY ) for some predefined thresholds tX

and tY are given by:200

pmref,dref(tX , tY ) = 1−FXref(tX)−FYref(tY )+Cref(FXref(tX),FYref(tY )), (3)

pmfut,dfut(tX , tY ) = 1−FXfut(tX)−FYfut(tY )+Cfut(FXfut(tX),FYfut(tY )). (4)

As modeled here with Eqs. (3) and (4), pmfut,dfut and pmref,dref can differ due to:

– changes in the marginal properties of X and Y , i.e., changes between FXref and FXfut , as well as between FYref and FYfut ,205

– and changes in the dependence structure (i.e., in the copulas) between X and Y , i.e., changes between Cref and Cfut.

Then, do exceedance probability values change significantly between reference and future periods? And if so, how much

of this change is due to changing marginal properties? To changing dependence structure? In order to isolate the effects of
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these potentially changing statistical properties, we propose to calculate two additional exceedance probability values. The

first one is the probability pmfut,dref , which assesses what the future probability would be if only the marginal properties change210

between the reference and future period (and thus keeping the dependence properties from the reference period). pmfut,dref is

hence computed as:

pmfut,dref(tX , tY ) = 1−FXfut(tX)−FYfut(tY )+Cref(FXfut(tX),FYfut(tY )). (5)

Inversely, the second additional probability pmref,dfut is aimed to assess what the future probability would be if only the

dependence properties change between the reference and future period (keeping the marginal properties from the reference215

period), and is computed as:

pmref,dfut(tX , tY ) = 1−FXref(tX)−FYref(tY )+Cfut(FXref(tX),FYref(tY )). (6)

Illustrations of these four probabilities for artificial bivariate distributions and changes between a reference and a future period

are given in Fig. 2.

To assess how much marginal and dependence contribute to exceedance probabilities change between reference and future220

period, we use the four probabilities derived above to decompose the overall probability change. We first define ∆P, the change

of probability between the reference and future periods, as the difference between the two probabilities: ∆P= pmfut,dfut −
pmref,dref . By computing pmfut,dref and pmref,dfut , one can decompose the change of probability ∆P into a sum of three terms that

can yield statistical interpretations:

∆P=∆M+∆D+∆I. (7)225

The first term ∆M accounts for the difference of probability between the reference and future periods due to a change of

marginal properties only and is hence called the “marginal” term:

∆M= pmfut,dref − pmref,dref

Similarly, the second term ∆D assesses the difference of probability between the reference and future periods due to a change

of dependence properties only and is hence called the “dependence” term:230

∆D= pmref,dfut − pmref,dref

As simultaneous changes of marginal and dependence properties between the reference and future period can affect the

exceedance probability in a highly non-linear fashion (as it can be observed visually in Fig. 2), ∆P cannot be simply expressed

as the sum of the differences ∆M and ∆D. Thus, a residual term ∆I, called the “interaction” term, is introduced to assess the

part of the probability change that is due to the simultaneous change of marginal and dependence properties and that cannot be235

explained by the changes of these statistical properties separately:

∆I = pmfut,dfut − pmfut,dref − pmref,dfut + pmref,dref .
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The decomposition of ∆P into these three terms allows to isolate the effects of the changes of marginal, the effects of the

changes of dependence properties and the effects of the changes of interaction on the overall change of probability value ∆P.

By taking advantage of this decomposition, we propose to quantify the contribution (in %) of the different terms ∆M, ∆D and240

∆I to the change of probability ∆P. For example, the contribution of the changes of the marginal properties can be quantified

as:

Contrib∆M =
∆M

∆P
× 100,=

pmfut,dref − pmref,dref

pmfut,dfut − pmref,dref

× 100. (8)

A value of 50 % for Contrib∆M would indicate that the change of marginal properties is responsible for 50 % of the global

change of probability ∆P between the reference and future periods. The contributions of ∆D (resp. ∆I) can be calculated the245

same way by simply replacing ∆M in Eq. (8) by ∆D (resp. ∆I). The sum of the three contributions adds up to 100 %, by

construction. Please note that, for illustration, changes of probability ∆P, ∆M and ∆D are here considered as differences of

probabilities. One could also consider analysing other metrics such as relative differences (“r. diff”) by dividing each of the

terms in Eq. (7) by pmref,dref :

∆Pr. diff =
pmfut,dfut − pmref,dref

pmref,dref

,250

∆Mr. diff =
pmfut,dref − pmref,dref

pmref,dref

,

∆Dr. diff =
pmref,dfut − pmref,dref

pmref,dref

,

∆Ir. diff =
pmfut,dfut − pmfut,dref − pmref,dfut + pmref,dref

pmref,dref

.

In addition, bivariate fraction of attributable risk (“FAR”, e.g., Stott et al., 2016; Chiang et al., 2021; Zscheischler and255

Lehner, 2021) can also be computed by dividing each of the term by pmfut,dfut :

∆PFAR =
pmfut,dfut − pmref,dref

pmfut,dfut

,

∆MFAR =
pmfut,dref − pmref,dref

pmfut,dfut

,

∆DFAR =
pmref,dfut − pmref,dref

pmfut,dfut

,

∆IFAR =
pmfut,dfut − pmfut,dref − pmref,dfut + pmref,dref

pmfut,dfut

.260

However, by construction, results for contributions, either for relative differences or bivariate FAR, would be identical to

those obtained for differences.
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3.4 Application to the multi-model ensemble

The methodology described above to assess time of emergence of compound events probabilities and marginal and dependence265

contributions to these changes is applied to the 13 CMIP6 models by considering successively all 30-year sliding windows

spanning the period 1871-2100. Moreover, the methodology is applied to the ensemble in two different versions:

– the “Indiv-Ensemble” version, for which the methodology is applied to each climate model individually. In particular for

contributions and ToE, multi-model median estimates are derived to summarise the information given by all the models.

– the “Full-Ensemble” version, which consists of pooling the contributing variables of the 13 climate models together and270

applying the methodology to these pooled data to derive a pooled estimate of time of emergence, as well as marginal and

dependence contributions.

Depending on the versions, the objectives are not the same: whereas the Indiv-Ensemble version permits to analyse the

modelling of hazards separately and assess the uncertainty in ToE arising from the inter-model differences, the Full-Ensemble

version permits to derive unique ToE estimates and contribution values accounting for the global uncertainty in climate mod-275

elling. This Full-Ensemble version assumes that the variables of interest are drawn from the same distribution.

Concerning the Full-Ensemble version, a post-processing step of the different models is required for the analysis of com-

pound wind and precipitation extremes only. Indeed, as already explained in Section 2, wind and precipitation data concurrently

exceeding high selection thresholds are selected for each climate model in order to focus on compounding extremes. However,

climate models can present very different values of wind and precipitation data: for example, a model may not be capable280

of simulating wind and precipitation events as intense as other models. Hence, each model potentially has different selection

thresholds over which values of wind and precipitation are selected. Because of this, selected compound wind and precipitation

data from the different climate models cannot be directly pooled, and data need first to be transformed to apply our methodol-

ogy and analyse pooled extreme events. The transformation step is reached by using a univariate quantile mapping technique

(CDF-t, Vrac et al., 2012) that makes the univariate distributions of the wind and precipitation extremes similar to those from285

a model of reference without modifying their dependence structure. In the following, we choose the CNRM-CM6 model as

reference. As values of wind and precipitation extremes of the different models will be modified on purpose by the CDF-t

method, note that exceedance thresholds in terms of probabilities (instead of physical values) will be considered. This way, it

will enable an interpretation of the results from the Full-Ensemble version. More details about the application of the CDF-t

method to transform compound wind and precipitation data for the Full-Ensemble version can be found in Appendix C.290

To analyse growing-period frost events with the Full-Ensemble version, no transformation step is needed before pooling.

Indeed, contrary to wind and precipitation extreme, the definition of growing-period frost events does not depend on climate

models and can be based on well-established thresholds. A summary of the successive steps of our methodology for the Indiv-

and Full-Ensemble versions is provided in the form of a flowchart in Fig. 3.

10

Chapter 4. Time of Emergence of compound events: contribution of
univariate and dependence properties

114



4 Results for compounding wind and precipitation extremes295

In this section, results are presented for compound wind and precipitation extremes during winter in Brittany. Please note

that, for this section as well as for the rest of the study, the period 1871-1900 is considered as the baseline period for natural

variability to evaluate time of emergence and contributions. To focus on wind and precipitation extremes, we applied our

methodology to points of high values. For each model, we selected points where, concurrently, wind and precipitation values

exceed the individual 90th percentiles (denoted xsel and ysel, respectively) of the 1871-1900 reference period. In the following,300

we denote Si
90,90 the ensemble of the selected points of high values for a model i. For illustration purpose, the ensemble

SCNRM-CM6
90,90 for the CNRM-CM6 model is shown in orange in Fig 1b. We first illustrate our method with a single climate model

(CNRM-CM6). Then, results obtained for the Indiv- and Full-Ensemble versions are presented.

4.1 Results for an individual model and a single exceeding threshold: CNRM-CM6

To illustrate our methodology, we first explain the results obtained for compound wind and precipitation extremes and a single305

bivariate exceeding threshold before extending the results to several bivariate thresholds. We evaluate the probabilities of

exceeding the 80th percentiles of the bivariate points belonging to SCNRM-CM6
90,90 . The 80th percentiles for wind and precipitation

correspond to x80|sel ≈ 17.8 m/s and y80|sel ≈ 338 mm/d, respectively.

Before computing any probability, Fig. 4 gives a first overview of the fitted bivariate distributions of compound wind and

precipitation extremes in our study. It displays the evolutions of the bivariate distributions over a selection of sliding windows310

due to changing marginal and dependence properties (“Marg.-dep.”, Fig. 4a), changing marginal properties only (“Marg.”,

Fig. 4b) and changing dependence only (“Dep.”, Fig. 4c). Plotting these bivariate distributions already indicates the changes

in probability of wind and precipitation extremes, and the potential influences of marginal and dependence properties on these

changes. Indeed, at first sight in Fig. 4a, the area of bivariate distributions where wind speed and precipitation jointly exceed

x80|sel and y80|sel appears to increase for future periods, suggesting that such bivariate events are more likely to occur accord-315

ing to CNRM-CM6 projections. But is this change of probability significant? And is this change due to marginal properties

changes? Dependence properties changes? Or both? By keeping the dependence properties of the reference period and con-

sidering changing marginal properties only (Fig. 4b), an increase of exceedance probability seems to be observed, although

less pronounced. Similar observations can be made by keeping the marginal properties of the reference period and consid-

ering changing dependence properties only (Fig. 4c). If both marginal and dependence changes seem to have an importance320

in the increase of probability, it is important to quantify how much these statistical properties contribute to the change of the

overall probability, as well as their respective influence on the time of emergence of probabilities of compounding wind and

precipitation extremes.

Time series of exceedance probabilities over all sliding windows for the bivariate threshold (x80|sel,y80|sel) are presented in

Fig. 5 by considering changes of marginal and dependence properties together (Fig. 5a) and separately (Figs. 5b and c). 68%325

and 95% confidence intervals resulting from marginal and copula uncertainties are also displayed for each probability. All three

time series present an increase with time, which is consistent with the visual analysis made in Fig. 4. Probability increase is less
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pronounced when future marginal (Fig. 5b) and future dependence properties (Fig. 5c) are considered separately. It illustrates

that the effects of these changing statistical properties combine on exceedance probabilities. Yet, all three probability signals

permanently go out of the reference natural variability confidence intervals, suggesting that an emergence of probability occurs:330

for probabilities computed with future marginal and dependence properties (Fig. 5a), the time of emergence is detected in 2009

(1994-2023) and 2072 (2057-2086) for 68 % and 95% confidence levels, respectively. Concerning probabilities influenced by

future marginal changes and future dependence changes separately (Figs. 5b and c), probability signals emerge later at the 68 %

confidence level, in 2073 (2058-2087) and 2063 (2048-2077), respectively. If contributions of the statistical properties to time

of emergence in itself are not computed here, one can get an idea of the importance of the statistical properties on ToE: at the335

68% confidence level, ignoring the dependence change would induce a ToE 2073− 2009 = 64 years later. Similarly, ignoring

marginal changes would induce a ToE 2063− 2009 = 54 years later. It thus indicates that both marginal and dependence

properties have a non-negligible effect on time of emergence.

Evolution of the bivariate FAR ∆PFAR with respect to the reference period over sliding windows, as well as its decompo-

sition in terms of “marginal” (∆MFAR), “dependence” (∆DFAR) and “interaction” (∆IFAR) terms are displayed in Fig. 5d. As340

explained in Sect. 3, for each sliding window, the sum of ∆MFAR, ∆DFAR and ∆IFAR is by construction equal to ∆PFAR. The

decomposition highlights that the influences of the marginal and of the dependence properties on bivariate FAR can vary with

time. Also, the combination of individual effects of marginal and dependence changes on the overall probability changes is

again illustrated: for example, by 2100, considering both future marginal and dependence changes leads to a value of FAR

∆PFAR twice as high as those of ∆MFAR and ∆DFAR, respectively. Concerning the interaction term, its associated bivariate345

FAR is negligible, highlighting that most of the changes can be explained by the changing marginal and dependence properties

separately. Results for relative differences are displayed in Fig. 5e, and same conclusions can be drawn. Fig. 5f shows the

evolution of the contributions from the marginal, dependence and interaction terms to probability values over sliding windows.

By computing the median of contributions over all sliding windows, we can see that both changes in the marginal and in the

dependence properties contribute greatly to probability changes (≈ 50%) in the CNRM-CM6 simulations, with a slightly more350

important contribution from dependence properties (dashed lines in figure 5f). One could remark a symmetry between the con-

tribution values of the marginal and the dependence terms over sliding windows. This can be explained by the way contribution

values are computed. Indeed, as the sum of the three contributions adds up to 100 %, by construction, and that the contribution

from the interaction term is close to 0, contribution values of the marginal and the dependence terms covary symmetrically

around 50%.355

4.2 Results for CNRM-CM6 and several exceeding thresholds

Until now, results for ToE and contributions have been presented for the probability of events exceeding the 80th percentiles of

selected points belonging to SCNRM-CM6
90,90 . In order to have a broader analysis of exceedance probabilities of compound wind and

precipitation extremes, we repeat the methodology for all pairs of exceedance thresholds between the 5th and 95th percentiles

(with steps of 5 percentiles) of selected points belonging to SCNRM-CM6
90,90 . Fig. 6 displays the results obtained for the CNRM-CM6360

time of emergence at the 68% confidence level, by considering marginal and dependence changes (Fig. 6a), marginal changes
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only (Fig. 6b) and dependence changes only (Fig. 6c). Moreover, for each bivariate exceedance threshold, median contributions

(over all sliding windows) of marginal (Fig. 6d), dependence (Fig. 6e) and interaction terms (Fig. 6f) are displayed. Results

for ToE obtained at 95 % confidence level are displayed in Fig. S1 and differences of ToE are displayed in Fig. S2 of the

Supplement. When varying exceedance thresholds, different ToE results are obtained, depending on whether marginal and365

dependence changes are considered (Figs. 6a, b and c). ToE are found for most of the exceedance thresholds when considering

both marginal and dependence changes (Fig. 6a) or marginal changes only (Fig. 6b). It is however not the case for dependence

changes only (Fig. 6c), for which only specific pairs of exceedance thresholds can find times of emergence. Interestingly,

these pairs correspond to very high compound wind and precipitation extremes. It indicates that dependence change plays an

important role for the probability of such high extreme events. The importance of dependence properties can also be assessed370

visually by comparing Figs. 6a and b. Indeed, for approximately the same pairs of exceedance thresholds as those already

identified in Fig. 6c, earlier times of emergence are obtained when considering both marginal and dependence changes (Fig. 6a),

than when considering only marginal changes (Fig. 6b). Concerning the median contributions over all sliding windows of the

marginal (Fig. 6d), dependence (Fig. 6e) and interactions terms (Fig. 6f), results vary according to the exceedance thresholds

considered. While, for a large proportion of the exceedance thresholds, marginal properties changes contribute strongly to375

probability changes (Fig. 6d), dependence properties changes contribute dominantly to probability changes of very high wind

and precipitation extremes (Fig. 6e). Regarding the “interaction” term, its contributions are close to 0, indicating little influence

on the probability changes.

4.3 Results for Indiv- and Full-Ensemble version and a single exceeding threshold

We now present the results obtained for time of emergence and contributions for the Indiv- and Full-Ensemble versions for a380

single exceeding threshold. The methodology, previously illustrated on the CNRM-CM6 simulations, is now applied to each

of the 13 models. Concerning the Indiv-Ensemble version, only one model (INMCM-5.0) had more than 5% of goodness-of-fit

tests over all sliding windows rejecting the hypothesis that the copula is a good fit, and hence was excluded from the analysis

(see Appendix B for further details).

We first present the results obtained for probabilities of exceeding the 80th percentiles of selected points of high values of385

wind and precipitation for the 1871-1900 reference period. Fig. 7 presents time series of exceedance probabilities obtained

for the Indiv- and Full-Ensemble versions. Probability time series obtained for the 12 models when considering changes of

marginal and dependence (Fig. 7a), marginal (Fig. 7b) and dependence properties (Fig. 7c) are displayed, as well as ToE at

the 68 % confidence level for the individual models and their multi-model median estimate. Similarly, probability time series

are shown for the Full-Ensemble version in Figs. 7d, e and f. Results for time of emergence at the 95 % confidence level are390

presented in Fig. S3 of the Supplement. When considering future changes of both marginal and dependence properties (Fig. 7a),

half of the models (6/12) detects a time of emergence at the 68% confidence level. When found, a relatively important variability

of ToE across climate models is obtained (varying between 2009 (1994-2023) and 2083 (2068-2097), Fig. 7a). These different

results — i.e. either a ToE is detected or not, and the important variability of the year of emergence when found — indicate

discrepancies of statistical properties of compound wind and precipitation extremes between climate models. For marginal395
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changes (Fig. 7b), 7 models out of 12 detect a time of emergence, within a smaller range of values. It suggests a slightly better

agreement of marginal changes for future periods between models when time of emergence is defined. Moreover, models that

show emergence when considering marginal changes only are not necessary those that show emergence when considering both

future marginal and dependence changes. Indeed, 2 out of the 7 models emerging with marginal changes are not those from

the 6 emerging when marginal and dependence changes are taken into account (not shown). Hence, marginal changes alone400

are not always sufficient to make the probability signal emerge. Concerning dependence changes (Fig. 7c), 2 models out of 12

detect a time of emergence, indicating that dependence property changes for these two models influence greatly exceedance

probabilities by 2100. However, it also suggests that, for most of the models, the influence of the dependence properties changes

on exceedance probabilities are too small to make the probability signals go out from the reference confidence interval by 2100.

These results on the stationarity of dependence structures complement those of Vrac et al. (2022), where the ability of CMIP6405

models to capture and represent significant changes in inter-variable dependencies is questioned.

Concerning the results for the Full-Ensemble version, emergence at the 68% confidence level is detected when considering

marginal and dependence changes (Fig. 7d), marginal changes only (Fig. 7e) and dependence changes only (Fig. 7f) of pooled

data. Emergence for the Full-Ensemble version can be partly explained by the pooling step which mechanically reduces un-

certainties in marginal and copula fitting. Then, confidence intervals, including that of the reference period, are smaller than410

those obtained for individual models, which leads to emergence of probability signals with small probability changes (as for

probability changes induced by dependence changes only in Fig. 7f). Thus, ToE are here detected for the Full-Ensemble version

despite the pooling procedure that could reduce the signal by combining models simulating different evolutions of probabili-

ties. Results for time of emergence presented in Fig. 7 for both Indiv- and Full-Ensemble versions are summarised in Fig. S4

of the Supplement.415

Now, contributions of marginal, dependence and interaction terms in probability changes are quantified for the Indiv- and

Full-Ensemble versions. For the Indiv-Ensemble versions, contributions are computed for each model separately and sum-

marised by computing the median contribution of the models. Fig. 8 displays the median contributions over all sliding win-

dows for the 12 climate models separately, as well as for the Indiv- and Full-Ensemble versions. Time series of bivariate FAR,

relative differences and contributions along sliding windows for the Indiv- and Full-Ensemble versions are also displayed in420

Fig. S5 of the Supplement. Fig. 8 shows that, depending on the model, different results are obtained for the contributions to

probability changes. Indeed, while some models present balanced contributions, i.e. marginal and dependence terms contribut-

ing to ≈ 50% each to probability changes (e.g., CMCC-ESM2, CNRM-CM6-1 and CNRM-CM6-1-HR), other models show

very unbalanced contributions, with one statistical property mainly driving the probability changes. For example, the depen-

dence term contributes dominantly (≥ 65%) to probability changes for the models CanESM5, FGOALS-g3 and INM-CM-4-8,425

while the marginal term contributes the most for EC-Earth3, GFDL-CM4, IPSL-CM61-LR, MIROC6, MPI-ESM1-2-LR and

MRI-ESM2-0. Results for Indiv- and Full-Ensemble versions are also reported, both indicating a contribution to probability

changes of ≈ 60 % from changes in marginal properties and ≈ 40 % from changes in dependence properties. Concerning the

interaction term, as obtained previously in Sect. 4.1, its contribution is close to zero for each model individually, and for Indiv-

and Full-Ensemble versions.430
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4.4 Results for Indiv- and Full-Ensemble versions and several exceeding thresholds

As previously done in Sect. 4.2, we now compute times of emergence for all combinations of exceedance thresholds between

the 5th and 95th percentiles, for both Indiv- and Full-Ensemble versions, in Fig. 9. Note that, here, exceedance thresholds are

now expressed in terms of percentiles to enable a comparison of results. Fig. 9a shows multi-model medians of ToE values

induced by both marginal and dependence changes, i.e., results obtained for the Indiv-Ensemble version. A median value of435

time of emergence is obtained for any considered bivariate threshold, indicating that, for each exceedance threshold, at least

one model presents an emergence. However, median ToE values show a variability depending on the bivariate exceedance

thresholds. Note that, for the Indiv-Ensemble version, the number of models presenting a time of emergence can also vary

from one bivariate threshold to another. For each exceedance threshold, the number of models emerging at the 68 % confidence

level, as well as interquartile values, are shown in Fig. S6 of the Supplement. In particular, Fig. S6a indicates that all of the440

12 models present a time of emergence for the probability of events exceeding very high precipitation and relatively low wind

speed values (upper-left corner of the subplot). It suggests that all models agree on a change of the probability of occurrence

of such events. This large consensus between models is not reached for events exceeding relatively low precipitation and very

high wind speed values. Therefore, while all models simulate a significant increase of extreme precipitation events, it is not

necessarily the case for extreme wind speed events. Results obtained for time of emergence induced by marginal properties445

only (Figs. 9b and S6b) are quite similar, although still indicating small differences with those obtained by considering marginal

and dependence changes. Indeed, small differences of time of emergence can be observed, in particular for the upper-right area

corresponding to very high wind speed and precipitation extremes. As observed in Sect. 4.1, this area corresponds to the area

where dependence properties changes make emerging exceedance probability from the reference period (Fig. 9c), suggesting

their importance for the probability changes of such events. This result however should not be overstated, as only ≈ 2 models450

show dependence changes large enough to lead to the emergence of probability (Fig. S6c).

The results of the Full-Ensemble approach are quite different from those of the Indiv-Ensemble one. For example, Fig. 9d

indicates that the time of emergence for exceedance probabilities of low wind speed and high precipitation values is ≈ 2000

(while later for Indiv-Ensemble version, i.e. ≈ 2040). The results when considering marginal and dependence changes (Fig. 9d)

and marginal changes only (Fig. 9e) are quite similar, indicating that changes in marginal properties mainly drive emergence455

of probabilities for each of the exceedance thresholds. A clear gradient of ToE values across exceedance thresholds is present:

the more extreme the precipitation and the less extreme the wind speed, the sooner the time of emergence of exceedance

probability. Conversely, the less extreme the precipitation and the more extreme the wind speed, the later the ToE. In fact,

pooling data somehow strengthens the results for time of emergence when models agree on probability changes. Indeed, as

seen previously, individual models agree in simulating a significant increase in probability of events exceeding low wind460

speed and high precipitation values. For ToE induced by dependence properties changes only (Fig. 9f), quite interestingly,

probabilities emerge for exceedance thresholds more or less corresponding to the ones identified for Indiv-Ensemble in Fig. 9c.

Although dependence properties seem to be stable over time for the majority of the models as observed in Fig. 7c, the resulting

dependence structure of pooled data and its changes over sliding windows lead to obtain ToE values of exceeding probabilities.
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One should also keep in mind that the reduced uncertainty for probability estimations resulting from the pooling process465

plays an important role in ToE detection for the Full-Ensemble version. For illustration purposes, evolutions of the bivariate

distributions for the Full-Ensemble version are shown in Fig. S7 of the Supplement. Also, results for time of emergence at 95%

and the number of models emerging for each exceedance threshold are displayed in Fig. S8 and Fig. S9 of the Supplement.

Median contribution of marginal, dependence and interactions terms are displayed in Fig. 10 for both Indiv- and Full-

Ensemble versions. The results obtained previously concerning the importance of the marginal properties on probability470

changes are here confirmed: for all exceedance thresholds, marginal properties changes contribute to more than 50 % of

probability changes for both Indiv- and Full-Ensemble versions (Figs. 10a and d). Concerning dependence changes’ contri-

bution (Figs. 10b and e), the median values obtained are less than 50%, but specific pairs of exceedance thresholds highlight

again the varying importance of dependence properties on exceedance probability changes: for both Indiv- and Full-versions,

median contribution of dependence properties are high for the probability changes of events exceeding high wind speed and475

high precipitation values. The area of exceedance thresholds for which dependence properties contribute greatly to probability

changes is however greater for the Full-version (Fig. 10e) than for the Indiv-Ensemble version (Fig. 10b). Again, these results

have to be directly linked with those obtained for the emergence of probabilities of such events due to dependence changes

in Figs. 9c and f. Concerning the interaction term (Figs. 10c and e), contribution values are equal to 0 for both Indiv- and

Full-Ensemble versions, highlighting again the negligible role of this term in probability changes.480

5 Results for growing-period frosts

We now apply our methodology to analyse a second type of compound events: growing-period frosts. Contrary to compound

wind and precipitation extremes, for which we were interested in exceedance probabilities (i.e. both contributing variables

exceeding thresholds), we are interested here in probability of growing-period frosts, i.e. the probability of having a GDD

value exceeding a threshold of 200 (GDD ≥ 200) by the end of March — and hence characterising bud burst conditions —485

and having a frost in April, i.e. having T ≤ 0. Hence, we applied our methodology described in Sect. 3 on bivariate points of

GDD and minimal temperature data (one pair by year) by adapting Eq. (2) to compute the probabilities of interest. For example,

for the probability of growing-period frosts in the reference period, it is computed as follows (Yue and Rasmussen, 2002):

pm,d(0,150) = P(T ≤ 0∩GDD ≥ 200)

= FT (0)−C(FT (0),FGDD(200)). (9)

Although the main results are presented for a threshold of 200 ◦C.day, additional results for thresholds of 150 ◦C.day and490

250 ◦C.day are displayed in the Supplement to assess risks of growing-period frosts for earlier and later bud burst plants.
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5.1 Indiv- and Full-Ensemble results

We now present the results for the growing-period frosts. For the Indiv-Ensemble version, as previously, only one model

(CMCC-ESM2) is excluded from the ensemble as it presents more than 5% of goodness-of-fit tests rejecting the hypothesis

that fitted copulas are a good fit (see Appendix B for further details). Before computing any probability, Fig 11 displays the495

changes along sliding windows of the fitted bivariate distributions for the Full-Ensemble version, i.e., after pooling GDD

and minimal temperature data of the different models. Clearly, a change of bivariate distributions for future periods can be

visually assessed when marginal properties changes are considered (Figs. 11a and b). In particular, it presents an increase of

both minimal temperature and GDD values, which could be expected in a context of global warming. The upper-left areas

corresponding to probabilities of growing-period frost events ({G≥ 200∩T ≤ 0}) are approximately similar for the first500

sliding windows, but their sizes increase for future periods, suggesting a greater probability of growing-period frosts induced

by marginal properties changes. However, when dependence properties changes are only considered without marginal changes

(Fig. 11c), bivariate distributions are quite similar and the upper-left area is almost identical in size, suggesting that the effect

of dependence properties changes on growing-period frost probability is small.

Fig. 12 presents the time series of probabilities obtained for the Indiv-and Full-Ensemble versions for growing-period frost505

events. Results for 150◦C.d and 250◦C.d GDD thresholds are presented in the Supplement in Figs. S10 and S11, respectively.

By considering climate models separately, a time of emergence at 68 % confidence level is detected for 11 out of 12 models

when marginal properties changes are taken into account (Figs. 12a and b). Although a large majority of models agrees by

simulating a significant change of growing-period frost probability with respect to the reference period, times of emergence

are quite scattered, indicating differences in simulations of growing-period frosts. By considering dependence changes only510

(Fig. 12c), none of the 12 models within the Indiv-Ensemble presents a time of emergence, indicating that the influence of

dependence changes alone is not strong enough to modify growing-period frost probabilities. For the Full-Ensemble version,

changes of marginal and dependence properties (Fig. 12d) and changes of marginal properties only (Fig. 12e) lead to increase

growing-period frosts probability such that time of emergence is detected at 1905 and 1906, respectively. Probability time series

are quite similar, suggesting again that changes of dependence properties do not influence strongly probability of growing-515

period frosts. It is confirmed in Fig. 12f, for which no significant change of probability induced by dependence changes only

are observed between the reference and future periods. Times of emergence obtained for growing-period frosts are summarised

in Fig. S12 of the Supplement.

Fig. 13 displays the median contribution of the marginal, dependence and interaction terms to probability changes for each

climate model individually and for the Indiv- and Full-Ensemble versions. For the climate models individually, as well as for520

the Indiv- and Full-Ensemble versions, the results are quite clear: marginal properties are the statistical properties contributing

the most to probability changes of growing-period frosts. Fig. S13 shows contribution across sliding windows and hereby

confirms that contributions of the dependence and interaction to change of probability are rather limited along the whole time

period.
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6 Conclusion, discussion and future work525

6.1 Conclusions

In this study, we have presented a new methodology to assess time of emergence of compound hazards probabilities. Using

a copula-based multivariate framework, we also propose to quantify the contributions of marginal and dependence properties

to probability changes of hazards leading to compound events. The methodology has been applied to analyse two different

climate hazards with potentially high-impacts, using a 13-member multi-model ensemble (CMIP6): compounding wind and530

precipitation extremes in Brittany and growing-period frosts over Central France. For each hazard, the methodology has been

applied in two different versions: the Indiv-Ensemble version, for which the methodology is applied to individual climate mod-

els to derive time of emergence of probabilities and contributions of statistical properties of each model separately, and the

Full-Ensemble version, for which the methodology is applied to bias-corrected and pooled data from the different models. De-

pending on the version, the objectives are not exactly the same: whereas the Indiv-Ensemble version enables us to estimate the535

uncertainty in ToE values and contributions to multivariate hazards probability changes arising from inter-model differences,

the Full-version allows us to get unique ToE and contribution values accounting for the whole ensemble, that is, by taking into

account the global uncertainty inherent in climate modelling.

Results for compounding wind and precipitation extremes over Brittany show that occurrence probabilities of such events are

likely to increase and potentially emerge before the end of the 21st century. However, the reason of these increased probabilities540

can be different depending on climate models: while, for some models, probability changes are mainly driven by marginal

changes only, other models give a strong importance to both marginal properties and dependence properties. It results in having

a mixed importance (∼ 65% and 35%) of both marginal and dependence properties that contribute to probability changes

within the Full-Ensemble version. These results highlight the importance of carefully taking into consideration the dependence

structure when studying the evolution of probabilities of compound wind and precipitation extremes.545

Concerning growing-period frosts over Central France, a large majority of models agrees on the emergence of probabilities of

such events. They also agree on the dominant contribution of marginal properties changes, while the contribution of dependence

properties are mostly negligible.

By analysing two different case studies, our results highlight that the importance of marginal and dependence properties to

probability changes can differ from a compound hazard to another, and from one climate model to another. It thus stresses550

the importance of considering both marginal and dependence properties carefully, as well as their inter-model variability, to

analyse the future evolution of multivariate hazards leading to compound events.

6.2 Discussion and perspectives

In this study, emergence of probabilities of multivariate hazards has been investigated with respect to the baseline period 1871-

1900. This period can be considered as representative of the beginning of the industrial era (e.g., Hawkins et al., 2020) and can555

hence be of interest to assess if anthropogenic climate change has contributed to an emergence of probability of multivariate

hazards. However, other baseline periods could have been chosen, such as more recent ones which would provide useful
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results for adaptation planning (e.g., Ossó et al., 2022). Of course, depending on the chosen baseline period, the estimated

natural variability that serves as reference for assessing changes would be different, and thus would affect the ToE results.

As an illustration, Fig. S14 shows results from a quick sensitivity experiment for the time of emergence of probabilities of560

compounding wind and precipitation depending on the choice of the baseline period for the CNRM-CM6 model. It illustrates

that results of emergence can vary strongly depending on the chosen baseline period. In addition to modifying the potential

time of emergence, the choice of the baseline period can also influence the results of contributions from the statistical properties

changes (not shown), as these statistical changes are also assessed with respect to the baseline period.

Moreover, in this study, time of emergence of probability signals is defined as the year or time period for which the proba-565

bility signal permanently excesses a certain threshold (e.g., Hawkins and Sutton, 2012; Maraun, 2013; Hawkins et al., 2020).

As the Earth’s climate system is highly nonlinear and non-monotonic, detecting the emergence of a signal in this way can be

limited depending on the climate signal under study. Analysing “periods of emergence” (PoE) instead of time of emergence

may be more relevant to rather describe specific periods where probability signals emerge significantly — but temporarily —

from reference natural variability. This notion of PoE would better highlight not only the non-linearities of the CE changes570

but also the differences of evolution of probability between climate models, as it was observed for growing-period frosts in

Sec. 5. Indeed, in Fig. 12, while some climate models reach their highest growing-period frosts probability for the late 21st

century, other climate models present a decrease of probability to 0 for the end of the century after having reached maxi-

mum growing-period frosts probability earlier. In other words, probabilities for future periods may differ, not permanently,

but only temporarily from the estimated probability associated with natural variability. This could justify the development, the575

investigation and the use of the notion of temporary periods of emergence.

In addition, changes in marginal properties of the different variables and their contributions to probability changes have

been assessed together, i.e., without separating the changes and contributions from wind and precipitation, nor those from

GDD and minimum temperature. Thus, it does not allow us quantifying by how much individual variables’ changes drive

probability changes. Some studies already concluded about the importance of individual variables in the change of occurrence580

of multivariate hazards (e.g., Manning et al., 2018; Brunner et al., 2021; Calafat et al., 2022). Our methodology can however

be easily adapted to quantify such information by keeping fixed marginal properties of only one contributing variable and

assess probability changes. By doing this for the different variables in turn, the contribution of marginal changes to probability

changes would be decomposed according to individual variables changes.

This study shows that both univariate and multivariate properties can be essential in determining CE properties. However,585

despite substantial improvements in climate modelling, climate simulations often remain biased compared to observations or

reanalyses in terms of both univariate and multivariate properties (e.g., Cannon, 2018; Vrac, 2018; François et al., 2020). This

could have major consequences on the ability of climate models to simulate compound events accurately (Zscheischler et al.,

2019; Villalobos-Herrera et al., 2021; Vrac et al., 2021; Ridder et al., 2021), and then on the resulting analyses involved in

decision-making processes. A few multivariate bias correction methods, i.e. statistical methods that are able to adjust both590

univariate and multivariate properties of simulations with respect to reference dataset, have been recently developed (e.g.,

Cannon, 2018; Guo et al., 2019; Mehrotra and Sharma, 2019; Robin et al., 2019; Vrac and Thao, 2020; François et al., 2021).
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However, such MBC methods are designed to adjust the whole statistical distribution of climate simulations, and their abilities

to increase the realism of specific parts of the statistical distribution (such as multivariate extremes) have never been tested,

while it can be crucial for specific CEs. This is therefore an important perspective and the methodology developed in the present595

study could be a way to evaluate the consequences of MBC methods, e.g., in terms of ToE and contributions of marginal and

dependence properties.

It has to be noted that uncertainty in probabilities of multivariate hazards has been assessed by considering uncertainty in both

statistical fitting procedures and model-to-model differences. However, uncertainty arisen from internal climate variability, i.e.,

from the inherent chaotic nature of the climate system, has not been investigated. Assessing and analysing these uncertainties600

is however key to better characterise them and thus provide useful information for policy-makers (Raymond et al., 2022;

Bevacqua et al., 2022). Future extensions of the framework presented herein could thus focus on using multimodel large-

ensemble simulations to assess more robustly probabilities of hazards, contributions of statistical properties changes to their

emergence, and their associated uncertainties resulting from both internal variability and structural model differences.

It is also important noting that the role of physical drivers of multivariate hazards has not been investigated in this study.605

Indeed, recent studies highlight the importance of large-scale climate modes (e.g., De Luca et al., 2020b; Singh et al., 2021b)

and atmospheric circulation regimes (e.g., Faranda et al., 2020; Jézéquel et al., 2020; Vrac et al., 2021) on compound and

extreme events. Understanding the influences of physical drivers and their changes on the statistical features and probabilities

of multivariate hazards is a key research which has important implications for predicting their occurrence and characterising

their impacts.610

As mentioned in Sect. 1, the present methodology has been developed and applied in a ToE framework that is different

from attribution. We have not considered factual and counterfactual worlds with different forcings to assess the effects of

climate change on multivariate hazards probabilities. Adapting and applying our methodology in an attribution setting is thus

an interesting perspective that would complement the existing multivariate event attribution framework recently developed

(e.g., Kiriliouk and Naveau, 2020; Zscheischler and Lehner, 2021). In addition to attributing changes of compound events, our615

methodology would permit to quantify the underlying contributions of the changes in marginal and dependence properties,

hence better characterising the statistical features of climate change.

Code availability. Custom codes developed for the analyses are publicly available at https://github.com/bastien-francois/ToE_CE.

Data availability. CMIP6 climate model data can be downloaded through the Earth System Grid Federation portals. Instructions to access

the data are available here: https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html, last access: 23 January 2022.620

Sample availability. TEXT

20

Chapter 4. Time of Emergence of compound events: contribution of
univariate and dependence properties

124



Video supplement. TEXT

Appendix A: Procedure for confidence intervals estimation

Confidence intervals of bivariate exceedance probabilities are estimated by combining the confidence intervals from the fitted

parameters for both marginal distributions and copulas. For both marginal distributions and copula, the fitted parameters and625

their 68 % (resp. 95 %) confidence intervals are estimated using MLE (as described in Appendix B) and profile likelihood

(e.g., Venzon and Moolgavkar, 1988; Hofert et al., 2012). Estimating the 68 % (resp. 95 %) confidence intervals for bivariate

exceedance probabilities consists in: (i) resampling uniformly and independently the fitted parameters of the two marginal

distributions within their 68 % (resp. 95 %) profile likelihood confidence intervals, (ii) computing the bivariate exceedance

probability using the resampled parameters for marginal distributions and the copula parameter estimated using MLE, (iii)630

repeating the two previous step 100 times to construct a sampling distribution for the bivariate exceedance probability, (iv)

searching which combinations of the resampled parameters lead to the 16 % and 84 % (resp. 2.5 % and 97.5 %) percentiles of

the re-estimated bivariate exceedance probabilities, (v) using the copula parameter uncertainty, estimating the 68 % (resp. 95

%) confidence intervals of the 16 % and 84 % (resp. 2.5 % and 97.5 %) percentiles of the bivariate exceedance probabilities.

The lower and upper bounds of these two confidence intervals define the final confidence interval combining both marginal635

and copula parameters uncertainty.

Appendix B: Marginal and copula fitting

For the fitting of the marginal distributions, we considered the Akaike information criterion (AIC) to select the best families

among Gaussian, generalized extreme value and generalized Pareto distributions. The marginal distributions of wind speed

and precipitation beyond the selection thresholds were modeled by generalized Pareto distributions. For growing-period frost640

events, the marginal distributions of the GDD indices were modeled using Gaussian distributions. We modeled the negative of

the minimal temperatures using GEV distributions and transformed back.

For fitting of the copulas, marginal distributions are transformed into uniform distribution using normalized ranks (e.g.,

Salvadori et al., 2011; Serinaldi, 2015; Bevacqua et al., 2019). This procedure is common for copula analysis as it allows

to perform appropriate goodness of fit tests (Genest et al., 2009). In this study, four Archimedean copulas (Clayton, Frank,645

Gumbel and Joe) are considered. These copulas have been widely used in hydrology and climate studies (e.g., Zscheischler

and Seneviratne, 2017; Liu et al., 2018b; Tavakol et al., 2020) and allow the dependence structure to be modelled with a single

parameter that determines the strength of the dependence. Moreover, the four Archimedean copulas differ in how they model

dependence structures. For instance, the Gumbel and Joe copulas have upper tail dependence, which means that they are able

to model correlated extremes. The Clayton copula has lower tail dependence and the Frank copula has no tail dependence.650

A complete overview of copula families, their related functions and the range of their parameters is offered by Sadegh et al.

(2017). For each climate model and each sliding window, the best copula family is determined using the Akaike Information
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Criterion. Copulas were fitted through maximum likelihood estimators (MLE) using the copula (Hofert et al., 2020) and

VineCopula: (Schepsmeier et al., 2016) R-packages. Goodness of fit are tested based on the White’s information matrix equality

(White, 1982; Huang and Prokhorov, 2014) implemented in the R package VineCopula (Schepsmeier et al., 2016). To evaluate655

exceedance probabilities, we select the copula family that has been the most selected along all the sliding windows and for

which less than 5% of the goodness of fit tests conclude to the rejection that data fits well the considered copula distribution.

For the Indiv-Ensemble version, climate models for which more than 5% of the goodness of fit tests conclude to a rejection are

excluded.

Appendix C: Transformation of wind and precipitation data using CDF-t660

As selection thresholds for wind and precipitation extremes are not the same for all the climate models, we need to transform

selected wind and precipitation data. For each model, bivariate points of high values are selected using the individual 90th

percentiles of wind and precipitation variables. Then, the selected bivariate data from the different models are adjusted with

respect to a model taken as reference, using a univariate bias correction technique called the “Cumulative Distribution Function

– transform” method (CDF-t, Michelangeli et al., 2009; Vrac et al., 2012). The CDF-t method allows to correct the univariate665

distribution of a modeled climate variable via a quantile-quantile method that takes into account potential changes of the

univariate distribution in the correction procedure. By choosing a model as reference (CNRM-CM6), we use here the CDF-

t method to transform marginal properties of selected wind and precipitation values of each climate dataset with respect to

CNRM-CM6. This way, marginal distributions of wind and precipitation extremes are similar between the different climate

models and are thus more consistent with each other. We consider the 1871-1900 sliding window as reference period for the670

calibration of the bias correction. Once data have been transformed for each climate model, bivariate wind and precipitation

extreme values from the different models can be pooled and the Full-Ensemble methodology can be applied.
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Figure 1. (a) Map of France with the regions of interest in boxes. Scatterplots of CNRM-CM6 (b) DJF compounding wind and precipitation

in Brittany and (c) miniminal temperature in April and GDD values by the end of March over Central France for the 1871-2100 period.

Parametric fitting for marginal and dependence over the 30-years sliding windows spanning the 1871-2100 period are performed to bivariate

points in orange. For compounding wind and precipitation, these points correspond to high values of wind and precipitation data belonging

to SCNRM-CM6
90,90 , i.e. simultaneously exceeding the individual 90th percentiles of the 1871-1900 reference period. Bivariate exceedance prob-

abilities are then computed for varying exceedance thresholds between the 5th and 95th percentile of wind speed and precipitation already

belonging to SCNRM-CM6
90,90 (for more details, see Sect. 4). The red area contains bivariate points exceeding the 80th percentiles of points already

belonging to SCNRM-CM6
90,90 . For growing-period frosts, exceedance thresholds of interest for minimal temperature and GDD index are fixed to

values of 0◦C and 200◦C.day, respectively.
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Figure 2. Illustration of the influence of marginal and dependence properties on bivariate exceedance probabilities for an artifical distribution

of two contributing variables X and Y during (a) the reference period and (d) a future period with a shift in means and an increase in

dependence between the variables. The distribution of the two contributing variables (b) with marginal properties from the reference period

and dependence structure from the future period, and (c) with marginal properties from the future period and dependence structure from the

reference period. Orange areas show bivariate exceedance probabilities for the thresholds (tX , tY ) of the two contributing variables.
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Step 1: Data extraction and
computations of the variables
forming the CE.
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abilities.

Proba.
Model 1

Proba.
Model 2

... Proba.
Model N

Step 3: Compute ToE and
contribution.

ToE and
Contrib.
Model 1

ToE and
Contrib.
Model 2

...
ToE and
Contrib.
Model N

ToE and Contrib.
Indiv-Ensemble outputs

Multi-model median

Do variables need to be
adjusted before pooling?

No

Yes

Adjust each variable using the
CDF-t method before pooling

CE Pooling

Proba.
Pooling

ToE and Contrib.
Full-Ensemble outputs

Figure 3. Flowchart for the computations of time of emergence and contributions for Indiv- and Full-Ensemble versions.
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Figure 4. Change of winter (December-to-February) bivariate wind and precipitation extremes distributions in Brittany based on CNRM-

CM6 simulations due to (a) future marginal and dependence changes (“Marg.-dep.”), (b) future marginal changes while keeping dependence

of the reference period (“Marg.”) and (c) dependence changes while keeping marginal of the reference period (“Dep.”). For the bivariate

distributions, contour lines encompassing 90 % of all data points are shown. A selection of six 30-years sliding windows is presented using

a color gradient from light (1871-1900) to dark (2071-2100). The red dashed lines characterises the bivariate exceeding thresholds defined

here as the 80th quantile of each variable.
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Figure 5. (a-c) Probability changes and time of emergence of compound wind and precipitation extremes (P(X > x80|sel ∩Y > y80|sel |
(X,Y ) ∈ SCNRM-CM6

90,90 ) based on CNRM-CM6 simulations due to changes of (a) both marginal and dependence properties, (b) marginal

properties only, and (c) dependence properties only. The shaded bands indicate 68% and 95% confidence intervals of the probabilities.

Evolutions of (d) the bivariate fraction of attributable risk (FAR), (e) relative difference of probabilities with respect to the reference period

(1871-1900) and (f) contribution of the marginal, dependence and interaction terms to probability values. Median contributions computed

over all sliding windows are displayed with dashed lines. Asterisks indicate values lying outside the plotted range. Not-applicable (n/a) is

indicated when no time of emergence is detected.
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Figure 6. CNRM-CM6 (a-c) time of emergence (at 68% confidence level) for compound wind and precipitation extremes due to changes of

(a) both marginal and dependence properties, (b) marginal properties only, and (c) dependence properties only. White cells indicate that no

time of emergence is detected, while white cells with red points indicate ToE values before 2020. (d-f) Matrices of median contributions of

the (d) marginal, (e) dependence and (f) interaction terms. Results are presented for varying exceedance thresholds between the 5th and 95th

percentile of compound wind and precipitation extremes data. Upper triangles show where contribution ≥ 50 %.
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Figure 7. Probability changes and time of emergence (at 68%) of compound wind and precipitation extremes (exceeding the individual

80th percentiles of selected points of high values) for (a-c) Indiv- and (d-f) Full-Ensemble versions due to changes of (a,d) both marginal

and dependence properties, (b,e) marginal properties only, and (c,f) dependence properties only. The shaded bands indicate 68% confidence

intervals of the probabilities. For (a-c), individual time of emergence for the different models within the ensemble are displayed when defined

(vertical light red lines), as well as the corresponding median time of emergence (vertical red line). For information purpose, multi-model

mean exceedance probability time series are also plotted (black dotted lines).
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Figure 8. Median contribution, over all sliding windows, of the marginal, dependence and interaction terms to overall probability changes

for the 12 individual CMIP6 models, and for Indiv- and Full-Ensemble versions.

39

4.2. Article submitted to Natural Hazards and Earth System Sciences

143



Marg.−dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(a)

Marg.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(b)

Dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(c)

Marg.−dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(d)

Marg.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(e)

Dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(f)

Figure 9. Time of Emergence (at 68% confidence level) matrices of compound wind and precipitation extremes due to changes of (a, d) both

marginal and dependence properties, (b, e) marginal properties only, and (c, f) dependence properties only. Results are displayed for (a-c)

the Indiv- and (d-f) Full-Ensemble versions for varying exceedance thresholds between the 5th and 95th percentile of compound wind and

precipitation extremes data. For each subplot, white indicates that no time of emergence is detected.
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Figure 10. Median contributions of (a, d) marginal, (b, e) dependence and (c, f) interaction terms for (a-c) Indiv- and (d-f) Full-Ensemble

versions. Results are presented for compound wind and precipitation extremes with varying exceedance thresholds between the 5th and 95th

percentile. Upper triangles show where contribution ≥ 50 %.
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Figure 11. Changes of minimal temperature vs. GDD distributions in Central France for the Full-Ensemble version due to (a) marginal and

dependence changes (“Marg.-dep.”), (b) marginal changes while keeping dependence of the reference period (“Marg.”) and (c) dependence

changes while keeping marginal of the reference period (“Dep.”). For the bivariate distributions, contour lines encompassing 90 % of all data

points are shown. A selection of six 30-years sliding windows is presented using a color gradient from light (1871-1900) to dark (2071-2100).
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Figure 12. Probability changes and times of emergence (at 68%) of growing-period frosts (GDD ≥ 200 ◦C.d and minimal temperatures ≤
0 ◦C) for (a-c) Indiv- and (d-f) Full-Ensemble versions due to changes of (a, d) both marginal and dependence properties, (b, e) marginal

properties only, and (c, f) dependence properties only. The shaded envelops indicate 68% confidence intervals of the probabilities. For (a-c),

individual time of emergence for the different models within the ensemble are displayed when defined (vertical light red lines), as well as the

corresponding median time of emergence (vertical red line). For information purpose, multi-model mean exceedance probability time series

are also plotted (black dashed lines). Not-applicable (n/a) is indicated when no time of emergence is detected.
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Figure 13. Median contribution, over all sliding windows, of the marginal, dependence and interaction terms to overall probability changes

for the 12 individual CMIP6 models, and for Indiv- and Full-Ensemble versions.
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Table 1. List of CMIP6 simulations used in this study, their run, approximate horizontal resolution and references.

Model Institution Spatial res. (lon. × lat.) Data reference

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.81◦ × 2.81◦ Swart et al. (2019)

FGOALS-g3 Chinese Academy of Sciences, China 2.00◦ × 2.25◦ Li (2019)

CNRM-CM6-1 Centre National de Recherches Meteorologiques, Meteo-France, France 1.41◦ × 1.41◦ Voldoire (2019)

CNRM-CM6-1-HR Centre National de Recherches Meteorologiques, Meteo-France, France 0.50◦ × 0.50◦ Voldoire (2018)

GFDL-CM4 Geophysical Fluid Dynamics Laboratory, USA 1.25◦ × 1◦ Guo et al. (2018)

INM-CM4-8 Institute for Numerical Mathematics, Russia 2◦ × 1.5◦ Volodin et al. (2019a)

INM-CM5-0 Institute for Numerical Mathematics, Russia 2◦ × 1.5◦ Volodin et al. (2019b)

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 2.50◦ × 1.26◦ Boucher et al. (2018)

MIROC6 JAMSTEC, AORI, NIES, R-CCS, Japan 1.41◦ × 1.41◦ Shiogama et al. (2019)

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 1.88◦ × 1.88◦ Wieners et al. (2019)

MRI-ESM2-0 Meteorological Research Institute, Japan 1.13◦ × 1.13◦ Yukimoto et al. (2019)

CMCC-ESM2 Centro Euro-Mediterraneo per i Cambiamenti, Italy 1.25◦ × 0.94◦ Cherchi et al. (2019)

EC-Earth3 EC-Earth-Consortium 0.70◦ × 0.70◦ EC-Earth (2019)
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4.3 Summary and conclusions
In this chapter, I propose a new methodology to detect when the changes in CE probabilities

are significantly different from the probabilities associated with natural variability (Time of
Emergence). Based on copula theory, the proposed methodology allows to separate and quantify
the contribution of univariate and dependence properties to the changes of CEs probability. The
methodology is applied on a 13-member multi-model ensemble (CMIP6) to two case studies:

• wind and precipitation extremes in Brittany (France).

• growing-period frost events over Central France.

For wind and precipitation extremes, the main results show that the probabilities emerge
before the end of the 21st century (median of ToE: 2074) for 6 models in the ensemble. How-
ever, the importance of univariate and dependence changes to these increased probabilities can
vary depending on climate models. While, for some models, the changes of univariate proper-
ties mainly drive probability changes of wind and precipitation extremes, other models present
a balanced importance of both univariate and dependence properties to probability changes.
It highlights here that, when analysing compound wind and precipitation extremes probabil-
ity, the dependence structure is potentially important and thus has to be carefully taken into
consideration.

For frost events occurring during the growing season, significant changes in probability and
emergences are detected for 11 models. Also, a large majority of models agree on the contri-
bution of univariate and dependence properties: univariate properties contribute dominantly to
probability changes of growing-period frost events, while contribution of dependence properties
is mostly negligible.

Our methodology provides a better understanding of how the statistical properties of the
variables leading to CEs evolve and contribute to changes in their occurrence. By applying the
methodology to analyse two different compound events, the results permitted to highlight that
the importance of univariate and dependence properties to probability of compound events can
differ from a compound hazard to another, and from a climate model to another. It thus em-
phasises the importance of taking into account changes in univariate and dependence properties,
as well as their inter-model variability, for future risk assessments of compound events.

Although not mentioned in the study, quantifying the importance of univariate and depen-
dence properties changes has also obvious relevance in a context of bias correction. Indeed, as
we have seen in Chapter 2, before applying any bias correction method, end users have to iden-
tify the important statistical properties to be reproduced in the correction, such as changes of
univariate and/or dependence properties. In this chapter has been highlighted that some mod-
els presented a strong importance of both univariate and dependence properties to probability
changes of compound wind and precipitation extremes. This non-stationary property can (or
not) be desired by practitioners to be kept in the corrections, which therefore eventually direct
them towards the use of MBC methods assuming nonstationarity of univariate properties and
dependence structures. The perspective of compound events adjustment using MBC methods
will be further discussed in Chapter 5.
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4.4 Perspectives
The work carried out in this chapter leads to several perspectives in addition to those men-

tioned in the study. I first recall some of the perspectives already discussed in the submitted
article (subsection 6.2) before providing additional perspectives.

4.4.1 A look back at some of the perspectives of the article

A subjective definition of Time of Emergence

In this study, I defined the time of emergence of compound events probability as the first
period for which the probability signal permanently goes out from the baseline natural variability
(1871-1900 period). This definition of Time of Emergence is subjective and can be modified or
improved as needed. For example, choosing 1871-1900 as baseline has been made as this period
belongs to the pre-industrial era and thus can be considered relevant for characterising natural
climate variability (e.g., Hawkins et al., 2020). One could consider other baseline periods
depending on their applications: choosing a more recent baseline period can provide useful
information for adaptation planning as it would relate with recent societal experience (Ossó
et al., 2022). However, modifying the baseline period would of course change the estimated
natural variability, which would affect the results for both ToE of compound events probabilities
and contributions from univariate and dependence changes. Also, defining the time of emergence
of a signal when it permanently excesses a specific threshold can be quite limited. Indeed, the
climate system is highly complex and non-monotonic, and relaxing this constraint of “persistent”
changes in the definition of ToE to instead prefer detecting “periods of emergence” (PoE) can
be interesting to rather describe periods where signals of probability emerge significantly — but
temporarily — from the estimated natural variability.

Considering large-ensembles for more robust results

As mentioned in the perspectives of the study, natural climate variability for compound
events probabilities has been characterised by using uncertainty from statistical fitting pro-
cedures (see subsection 3.1 of the article). However, uncertainty arisen from natural climate
variability, i.e., from the inherent chaotic behaviour of the Earth’s climate, could have been de-
fined in a more robust way. The accurate characterisation of these uncertainties is all the more
important in decision-making processes (e.g., Raymond et al., 2022; Bevacqua et al., 2022). A
more robust way to assess these uncertainties would be to consider large-ensemble simulations,
i.e., multiple runs from different climate models, in future works. Applying the methodology to
large-ensembles would permit to assess probabilities of hazards, time of emergence, contributions
of marginal and dependence properties and their associated uncertainties due to internal climate
variability and model-to-model differences.

Attributing univariate and dependence changes to climate change

In this study, ToE of compound events probabilities has been evaluated with respect to a
baseline period (1871-1900) used to characterise the natural variability. The probabilities for
future periods have then been estimated and compared with respect to the baseline period,
allowing to assess the influence of future climate change on probabilities. The underlying philos-
ophy of ToE is relatively similar to attribution, which is a research field in climate science that
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seeks to determine the mechanisms responsible for recent global warming, such as anthropogenic
greenhouse gas emissions. The attribution framework is however different from that of ToE, as
it generally considers two worlds with different forcings: a “factual” world with anthropogenic
climate change and a “counterfactual” world in which anthropogenic emissions had never oc-
curred. Adapting and applying our methodology in an attribution framework is an interesting
perspective as it would permit to not only attribute changes of compound events to a specific
cause, but also to quantify the underlying contributions of the changes in univariate and depen-
dence properties. This will provide an interesting tool that would allow to better characterise
the statistical features of climate change, thus complementing the already existing multivariate
event attribution framework (e.g., Kiriliouk and Naveau, 2020; Zscheischler and Lehner, 2021).

4.4.2 Additional perspectives

Do climate models realistically simulate compound events?

A natural follow-up of this work is the application of the methodology to reanalyses over
the historical period. By comparing the results obtained with those from climate models for
the same time period, it would permit to evaluate the capability of climate models to reproduce
compound events probability, time of emergence and contributions of marginal and dependence
properties. This work on climate simulations and reanalyses could then be extended to analyse
other compound events at a larger geographical scale. Considering the global scale would permit
to derive a more complete picture of the climatology of compound events and their future
evolutions. This would complement the works from Ridder et al. (2020, 2021, 2022) by providing
valuable information for policy-makers such as the identification of geographical regions prone to
emergence of compound events. Also, for projections, considering alternative climate scenarios
to that of the SSP-585 one (Riahi et al., 2017) would permit to assess the sensitivity of ToE
results to anthropogenic emissions, which has obvious interest to mitigation policy. In a previous
perspective has been mentioned the use of large-ensembles to derive more robust ToE and
contributions results. In a context of climate model evaluation, using large-ensembles would also
permit to enrich the analysis by attributing discrepancy of compound events probability to biases
in internal variability and forced response (Suarez-Gutierrez et al., 2021). This work of model
evaluation will permit to further investigate if climate models are able to realistically simulate
compound events probabilities and their evolutions. This would provide help for the selection of
appropriate models to carry different compound events analyses in different geographical regions
for past, current and future climate periods (Krinner and Flanner, 2018).

Towards analysing compound events with high dimensionality

Using copulas, the methodology has been applied to study bivariate climate hazards proba-
bility. Extending the methodology to study climate hazards composed of more than two variables
is of course an interesting perspective. Although multivariate parametric copulas have already
been applied to analyse trivariate climate hazards (e.g., Tavakol et al., 2020), copulas present a
lack of flexibility when modelling dependence between more than two variables, as dependencies
can be different between the different pairs of variables (Aas et al., 2009). To address this prob-
lem, pair-copula constructions (PCCs) have been developed (Aas et al., 2009; Acar et al., 2012;
Hobæk Haff, 2012). PCCs decompose the dependence structure into several bivariate copulas
and give greater flexibility in modelling complex dependence structures. PCCs have already
shown useful in several compound event studies (e.g., Bevacqua et al., 2017; Aghatise et al.,
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2021; Li et al., 2021; Lan et al., 2022). Adapting our methodology to study ToE of climate haz-
ards in high dimensionality using PCCs is thus an interesting perspective that would strengthen
its use.
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Résumé
Contexte et objectifs

Les catastrophes climatiques résultent souvent de la combinaison de plusieurs phénomènes
climatiques, également appelés "événements composés" (CEs). Les propriétés univariées
et multivariées des phénomènes climatiques formant les CEs sont des propriétés statis-
tiques cruciales caractérisant leurs probabilités d’occurrence. Dans ce chapitre, nous
proposons une nouvelle méthodologie pour détecter à partir de quand (quelle période)
les changements de probabilités des CEs sont significativement différents par rapport aux
probabilités associées à la variabilité naturelle.

Méthodes

La méthodologie proposée, basée sur la théorie des copules, permet de séparer et de
quantifier la contribution des propriétés univariées et de dépendance aux changements de
probabilité des CEs. La méthodologie est appliquée sur un ensemble multi-modèle de 13
membres (CMIP6) à deux études de cas :

• les extrêmes de vent et de précipitations en Bretagne (France).

• les épisodes de gel survenant pendant la saison de croissance sur le centre de la
France, préconditionnés par des températures chaudes.

Résultats

Pour les extrêmes de vent et de précipitations, les résultats montrent que les probabilités
émergent avant la fin du 21ème siècle pour 6 modèles de l’ensemble. Pour les épisodes
de gel survenant en période de croissance, des changements significatifs de probabilité
sont détectés pour 11 modèles. Cependant, la contribution des propriétés univariées et de
dépendance à ces changements de probabilités peut être très différente d’un CE à l’autre,
et d’un modèle à l’autre. Selon le CE, certains modèles donnent une forte importance à
la fois aux propriétés marginales et aux propriétés de dépendance pour les changements
de probabilité.

Notre méthodologie permet de mieux comprendre comment les propriétés statistiques des
variables conduisant aux CEs évoluent et contribuent au changement de leurs occurrences.
Les résultats soulignent l’importance de prendre en compte les changements des propriétés
univariées et de dépendance, ainsi que leur variabilité inter-modèles, pour les évaluations
futures des risques dus aux événements composés.
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In this chapter, the main results of this thesis will be recalled in the following subsection. I will
then explore the possible research directions resulting from the body of work presented in this
manuscript.

5.1 Conclusion
Climate being the result of various interactions between physical processes, it is crucial to

improve the understanding of the dependence between climate variables. It is all the more cru-
cial as dependence can be a key feature of rare compounding events having the most extreme
socio-economic and environmental impacts, but also of more usual and less impacting climate
events. The objective of this thesis was to assess whether and how the use of mul-
tivariate statistical approaches can contribute to provide a better understanding
and use of climate simulations through the consideration of dependencies between
climate variables. This thesis focused on designing and applying new multivariate statistical
tools for, on the one hand, bias correction of climate simulations, and on the other hand, the
investigation of compounding climate events with high impacts. These two specific topics were
briefly introduced in Chapter 1.

My work has first focused on the intercomparison of existing multivariate bias correction
methods to adjust dependence properties of climate simulations (Chapter 2). Four multivari-
ate statistical methods with differences in terms of methodologies, statistical techniques and
assumptions, have been applied to adjust simulated temperature and precipitation times se-
ries from a climate model with respect to reanalyses. A univariate BC method has also been
applied to assess the benefits of considering multivariate bias correction. Implemented in differ-
ent dimensional configurations, the MBC methods showed great ability to adjust the complete
inter-variable, spatial, and inter-variable/spatial dependencies of simulated temperature and
precipitation. However, none of the evaluated MBC methods were designed to adjust temporal
properties, resulting in generating corrected outputs with weak temporal dependencies com-
pared to reanalyses. In addition, instabilities affecting the quality of corrections were detected
for some methods when applied in high-dimensional contexts. Also, evaluating the multivari-
ate BC methods in a non-stationary context has shown that, when designed for this purpose,
the methods are able to take simulated changes in univariate and multivariate properties into
account reasonably well in the correction procedure. In general, this chapter concludes that it
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is crucial for end users to carefully evaluate the suitability of the multivariate BC
methods for their application purposes, before applying them and conducting analysis
studies. The work carried out has allowed to draw general recommendations to help end users
to choose which multivariate bias correction method depending on their needs.

Among the perspectives arising from Chapter 2 is the need for new MBC methods able to
adjust multivariate dependence in high-dimensional contexts. This can be particularly valuable
to provide adjustments of spatial dependencies between a high number of locations (e.g., grid
cells or stations). In Chapter 3, I then proposed a new multivariate bias correction method based
on Machine Learning techniques that are promising approaches to model complex dependence
between a large number of statistical variables. More specifically, this new method based on a
neural network algorithm named CycleGAN has been designed to adjust spatial dependencies of
climate simulations. The new method was tested to adjust simulated temperature and precipi-
tation time series with respect to reanalyses dataset. Developed in a proof-of-concept context,
the aim of this work was more to explore the potential of machine learning techniques for multi-
variate bias correction than to provide a method outperforming others MBC alternatives. Still,
the new method produced promising performances of adjustments of spatial dependencies for
temperature and precipitation with respect to other MBC state-of-the-art techniques. The re-
sults obtained in this chapter suggest that the use and adaptation of Machine Learning
techniques is very promising for multivariate bias correction. The work carried out in
this chapter can serve as a starting point for the use of such statistical tools for this purpose.

Finally, Chapter 4 focused on investigating the multivariate distributions of compounding
events potentially leading to high impacts, as well as their probability changes. I specifically
focused on studying such changes in climate simulations, although assessing these changes for
historical periods in reanalyses is also an interesting perspective. As the most significant im-
pacts are likely to occur when changes emerge from natural climate variability, I proposed a
new methodology to assess the time at which simulated compound events probabilities go out
from the background variability (also named “Time of Emergence”). The multivariate mod-
elling technique, based on copula functions, is used to estimate compound events probabilities.
The occurrence probability of compound events being defined by both univariate properties and
dependence structure of hazards forming the CEs, it is crucial to determine how much of prob-
ability changes are due to changing univariate properties, and how much are due to changing
dependence structures. Hence, within this framework, I also proposed to quantify the contribu-
tion of univariate and dependence properties in the probability changes of multivariate climate
events leading to compound events. Using this methodology, I analysed two different compound-
ing climate events using simulations from 13 climate models (CMIP6): wind and precipitation
extremes in Brittany and growing-period frosts over Central France. The results suggest that
probabilities of these two different compounding climate events are likely to increase and poten-
tially emerge before the end of the 21st century depending on the climate model considered. The
results also highlight that not only univariate properties but also dependence structures can
have a strong importance on probability changes of compound events and Time of
Emergence. This importance can however differ from a compound hazard to another and from
a climate model to another: while, for wind and precipitation extremes, a balanced importance
of both univariate and dependence properties to probability changes is obtained, the contribu-
tion of dependence properties for growing-period frosts events is mostly negligible. Results from
Chapter 4 illustrated once again, after Chapters 2 and 3, the added value of taking dependence
properties into account to analyse climate events.
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5.2 Perspectives
Throughout the manuscript, specific perspectives for each of the presented studies have been

discussed in Chapters 2, 3 and 4. In this section, I will not repeat the same perspectives that
have already been mentioned, but I will rather discuss new perspectives emerging from all the
work carried out on bias correction of climate simulations (Chapters 2 and 3) and compound
events (Chapter 4).

Assessing the ability of existing MBC methods to adjust simulated multivari-
ate hazards

Although not evaluated in Chapter 4, biases in simulated multivariate hazards forming CEs
are necessarily present, whether on univariate properties, on dependence structure, or both,
which thus potentially affects the robustness of the results obtained in associated CE analyses.
Adjusting correctly the univariate properties and dependence of climate hazards is therefore
crucial to conduct appropriate investigations on present and future compound events. As the
ability of MBC methods to improve univariate properties and various dependence structures of
simulated climate variables has been shown in Chapter 2, their use is promising to increase the
realism of specific compound events. In such a perspective, different methodological approaches
can be considered to apply MBC methods. For example, existing MBCs can be applied to adjust
the complete multivariate distributions of hazards (i.e., not only the extreme part) leading to
CEs. This however explicitly assumes that the univariate and dependence properties of the
subset of the multivariate distribution leading to CEs require the same correction as the rest of
the distributions, which can be questionable. If this assumption is not considered valid, another
possibility would be to apply MBC methods not to adjust the complete distribution, but rather
the subset of the multivariate distribution leading to impacts. This possibility however assumes
that multivariate subsets leading to CEs can be well identified, which is in practice difficult due
to missing impact data.

Independently from the chosen methodological approach (i.e., MBC method and/or correct-
ing whole the distribution or a part of it), the ability of the different existing MBC methods
to increase the realism of specific compound events would need to be evaluated. In particular,
this is questionable for compound events involving a high number of climate variables (e.g.,
spatially compounding events over a large domain), as instabilities for some MBC methods in
high-dimensional context have been detected in Chapter 2. The ability of MBC methods to ad-
just compound events can also be questioned by the fact that the methods are not often able to
account for temporal dependencies (with the exception of recent methods; Mehrotra and Sharma,
2019; Robin and Vrac, 2021; Vrac and Thao, 2020), while it can be key properties for several
CEs. Also, some CEs can be composed of interacting extreme climate events, thus located in the
tails of multivariate distributions (e.g., wind and precipitation extremes). Without even consid-
ering multivariate aspects, adjusting univariate extremes is already a challenging task, mainly
due to the limited length of the time series (e.g., Kallache et al., 2011; Schmith et al., 2021).
Correcting robustly multivariate extreme distributions is even more difficult as it would require
larger amounts of climate data to fill the high-dimensional data space. More generally, assessing
the ability of existing MBC methods to improve the realism of different simulated
multivariate hazards forming CEs is thus an important perspective towards robust
analyses of simulated past, present and future compound events.
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Designing new MBCs for CEs

Depending on the capabilities of the existing MBC methods to increase the realism of CEs,
investigating the design of new MBC methods based on sophisticated statistical
and machine learning tools can be envisaged. In a second step, as practitioners can be
interested not only in an appropriate representation of multivariate hazards but also in the rest
of the multivariate distributions, research could then be envisaged to design new two-fold MBCs
methods that consider separately the adjustments of the bulk of the multivariate distribution
and the subset leading to CEs. Such new MBC methods would follow the philosophy of two-fold
univariate bias correction methods (e.g., Vrac et al., 2007; Carreau and Bengio, 2009; Laflamme
et al., 2016; Tani and Gobiet, 2019; Holthuijzen et al., 2022) for multivariate aspects. However,
as mentioned above, this work would assume that multivariate subsets leading to CEs can be well
identified, which is in practice difficult due to the lack of impact data. Still, developing two-fold
MBCs represents an interesting perspective to improve the representation of many multivariate
distributions for which compounding extremes are likely to generate huge impacts (e.g., due to
simultaneous wind and precipitation extremes).

Influence of MBCs on compound events studies

To assess the potential benefits of using multivariate BC methods for CEs, a first natu-
ral step could be to derive corrections using the different BC methods used in Chapter 2 to
adjust, over historical periods, simulated wind and precipitation extremes and growing-period
frost events (GDD and minimal temperature data) from the CMIP6 models used in Chapter 4.
To this end, the reference datasets (reanalyses or observations) used for bias correction will have
to be carefully selected according to their ability to represent the targeted dependencies (e.g.,
Cortés-Hernández et al., 2016). By then computing multivariate hazards probabilities from ad-
justed outputs and reanalyses over historical periods, this would permit to give a first idea of the
potential improvements provided by BC on the realism of multivariate hazards leading to CEs
in a low-dimensional context. In particular, is there any added value in considering multivariate
aspects in bias correction compared to only adjusting univariate properties? I expect it would
depend on how much dependencies are important for the considered multivariate hazards, and
how well raw climate models are already simulating the dependence, which would have to be
investigated. The results of adjustments of CEs using BC methods would also permit to identify
potential avenues for the development of new methods. Then, corrections of multivariate haz-
ards leading to CEs could be performed for future periods, where no reanalyses are available but
the evolutions of probability could be investigated. An interesting perspective would be
to assess the influence of adjustments on the time of emergence of these compound
hazards probabilities, e.g., by applying the methodology developed in Chapter 4 to bias-
corrected outputs. In particular, do the different MBC methods modify ToE values similarly?
And how contributions from univariate and dependence to probability changes are modified by
MBC methods? This would potentially lead to provide more robust information for adaptation
planning. These questions could then be generalised to other types of compounding hazards.
Also, as already mentioned in the perspectives of Chapter 4, adapting the methodology devel-
oped for ToE to an attribution framework would be interesting in order to attribute changes
of compound events probabilities to specific causes such as anthropogenic emissions. However,
despite univariate extreme event attribution is now a mature field of research (e.g., Stott et al.,
2016; Vautard et al., 2016; van der Wiel et al., 2017; Ribes et al., 2017; Otto et al., 2018; Philip
et al., 2018; Yiou et al., 2020; van Oldenborgh et al., 2021, among many others), only a few
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studies have focused on multivariate compound event attribution (e.g., Mazdiyasni et al., 2019;
Kiriliouk and Naveau, 2020; Chiang et al., 2021; Verschuur et al., 2021; Zscheischler and Lehner,
2021). Conducting various compound events attribution studies in the context of future changes
using ’raw’ model simulations with and without anthropogenic forcings is of course an important
perspective. Then, understanding the impact of statistical biases of the models on the attribu-
tion results would be essential to generate information adapted to the real world and not only
to the simulated world. This could be partly investigated by first examining the influence of the
different MBC methods on the results of compound events attribution studies.

Are existing MBCs able to take nonstationarity of CEs into account?

From the above perspective, we can easily understand that the notion of nonstationarity
assumed (or not) in MBC methods would be crucial in ToE or compound events attribution
results obtained from adjusted outputs, and more generally for the realism of simulated mul-
tivariate hazards forming CEs for future periods. In Chapter 2, we have seen that 3 out of
the 4 tested MBC methods (MBC-n, dOTC and MRec) are designed to take simulated changes
in multivariate properties into account in the correction procedure. Investigating whether
MBC methods assuming nonstationarity are able to capture simulated changes of
CEs and to translate it into the multivariate corrections would permit to draw
general recommendations for users to help them in the choice of BC methods for
CEs. This work would allow to get more understanding on the reliability of MBC methods
and on the credibility of their corrections in a non-stationary context. Before applying MBC
methods for CEs studies, the relevance of the simulated nonstationarity would however need to
be investigated, raising key questions similar to those already formulated in Chapter 2, but this
time specifically for multivariate hazards: Can we trust climate models in multivariate hazards
evolutions (Vrac et al., 2021)? And should these changes be reproduced in the corrections (Vrac
et al., 2022)? These are still open questions that would need to be answered on a case-by-case
basis depending on the multivariate hazards before applying such corrections. The methodology
developed in Chapter 4 could be helpful in such a perspective, as it would permit to produce
a first analysis of univariate and dependence properties changes and their importance on prob-
abilities of multivariate hazards. It then would permit to deduce the necessity of taking into
account multi-dimensional changes in the bias correction procedure.

Studying the influence of large-scale circulations biases on the realism of CEs

Recent studies highlighted the importance of atmospheric circulation (e.g., Bevacqua et al.,
2017; Faranda et al., 2020; Jézéquel et al., 2020; Blanchet et al., 2021) and large-scale climate
modes (De Luca et al., 2020b; Singh et al., 2021) on compound and extreme events occurrences.
When analysing simulated multivariate hazards in Chapter 4, these roles have not been investi-
gated but it represents an interesting perspective. However, concerning atmospheric circulation,
many climate models are not able to correctly represent the large-scale circulation patterns
and their associated frequencies (Dawson et al., 2012; Dunn-Sigouin and Son, 2013), despite
some progress between CMIP5 and CMIP6 models (e.g., Cannon, 2020). This is also true for
simulated large-scale climate modes like El Niño-Southern Oscillation (e.g., Bellenger et al.,
2014). To increase the understanding of simulated CEs, a first step would be to investigate
the contribution of biases in simulated large-scale circulation to biases in univari-
ate and dependence properties of simulated multivariate hazards. This work would
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also participate to increase the knowledge of the influence of large-scale circulation patterns on
statistical properties of multivariate hazards in climate models and reanalyses. In addition, not
only the simulated circulation (e.g., occurrence probability and persistence of weather types)
can be biased, but also the links between circulation patterns and meteorological variables (such
as precipitation of wind), i.e, the univariate and multivariate properties of the meteorological
variables conditional on the circulation pattern. The decomposition of these different sources of
biases for multivariate hazards would provide a more complete picture of the performances of
climate models in realistically simulating the climate system. A similar work has already been
performed to investigate biases of temperature-precipitation relationships (Vrac et al., 2021) con-
ditional on weather regimes, but was not particularly focused on high-impact events. Extending
such investigations to high-impact or specific compound event would then allow to identify what
contributes to the biases in multivariate hazard estimates, which could then be exploited to
better adjust them using MBCs.

Towards adjustments of large-scale circulations

From all of the above-mentioned potential biases in large-scale circulation patterns, one ques-
tion arises: can existing MBC methods be applied to adjust large-scale circulation structures?
and to correct links between large-scale circulation structures and meteorological variables?
And are these corrections able to improve the realism of circulation-driven CEs? Adjusting
large-scale circulation structures over large domain would potentially be a problem for existing
MBC methods presenting limited capability in high-dimensional contexts. Developing new
MBC methods to adjust large-scale circulation patterns based on Machine Learning
techniques is a promising perspective to explore, as Machine Learning tools like CNNs
(Chapter 3) proved to be very efficient to model spatial fields in high-dimensional context. Also,
a recent study led by Keisler (2022) reached impressive results to model spatio-temporal climate
data using Graph Neural Networks, a generalised version of CNNs. As the circulation patterns
and properties might also be modified by climate change, the question of nonstationarity would
have to be explicitly taken into account when designing such new MBC tools.

Better accounting for uncertainties in compound events studies and bias cor-
rection

Uncertainties in climate studies are a crucial issue that needs to be well communicated to
draw appropriate conclusions for compound event studies, and more generally when studying
any impacts. Although sometimes partially taken into account in the manuscript, uncertainties
inherent to bias correction and compound events studies deserve to be further investigated. In
Chapter 4, by considering several climate models in the compound events study, I have partially
taken into account the source of uncertainty associated to the different physical representations
within climate models (inter-model differences). However, by only considering simulated pro-
jections from a single shared socioeconomic pathways (SSP-585) scenario, uncertainty due to
the different scenarios has not been investigated. Using the SSP-585 scenario, we have seen
that inter-model variability of simulated statistical properties of multivariate hazards can be
important. It should be noted that in addition to this inter-model uncertainty, intra-model
uncertainty can be added, which results from internal climate variability of the climate models.
As already discussed in Chapter 4, this uncertainty can however be estimated by using large-
ensemble simulations, i.e., multiple runs per climate model. Concerning the studies carried out
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on bias correction (Chapters 2 and 3), none of the uncertainties mentioned above (emission sce-
nario, model uncertainty and climate internal variability uncertainty) have been differentiated:
in each study, a single climate model simulation to correct has been considered, thus implying
that statistical biases of the model are potentially mixed up with its internal variability. The
question is: should these different uncertainties be treated separately in bias correction pro-
cedure? Recently, Vaittinada Ayar et al. (2021) proposed a new univariate BC approach to
take advantage of multiple runs of one model so that internal variability of simulated univariate
properties is preserved in corrected outputs. Such an approach can be very insightful to better
examine the different sources of uncertainties and their influences on subsequent analyses. Ex-
tending such approaches into the multivariate context to adjust dependence model biases while
preserving internal variability of dependence structures is an interesting avenue to be explored.
However, from a practical point of view, adjusting multiple runs can be potentially very costly
in terms of resources and computing time, especially if various scenarios and different climate
models are also considered. Despite being difficult in practice, better accounting and
communicating for all the different sources of uncertainties in climate studies is
key to enable more insightful and informed decision-making. At least, being the most
transparent by providing information on the different sources of uncertainties when possible is
recommended in future works, as it will greatly benefit the scientific community.

Towards more informed use of bias correction

Since the beginning of my thesis, it has been shown that MBC methods are able to adjust
a broad range of statistical aspects including univariate, inter-variable, spatial and temporal
properties. Thus, although still in its infancy, MBC methods offer many opportunities to end
users for their applications. However, the MBC method adjusting perfectly univariate, inter-
variable, spatial and temporal properties does not exist as adjustments of one statistical aspect
necessarily modify, even slightly, the other statistical properties. Also, when many statistical
properties are adjusted, this raises the question: what is finally kept from the climate model?
This point is critically important as, by being based on statistical techniques, MBC methods
lack the physical justification of climate models, which can sometimes limit the confidence in
climate change projections involving BC. Regarding this issue, developing new physics-guided
MBC methods that are able to use some physical processes to drive the correction procedure
would be an interesting avenue to explore in order to provide physically consistent bias-corrected
simulations (Pan et al., 2021). In any case, before applying any correction, end users have
to ask themselves: Is the climate model good enough for my application? Is bias correction
really needed? If so, what are the important statistical properties I want to adjust? Can
a bias correction method provide relevant adjustments without deteriorating other important
statistical and physical aspects? I really would like to stress that these questions should be
answered by end-users before any use of BCs in order to avoid indiscriminate applications. It
would then permit to move towards more informed use of bias correction, which
would contribute to an improved understanding of the climate and its evolution.

All these perspectives represent a much larger amount of work than all of the work presented
in this manuscript. This gives an insight into the fertility of the work carried out in this thesis,
which sets up avenues for future research.
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Figure S1. Boxplots of mean (a and b) and standard deviation (c and d) differences for Temperature (T2, a and c) and Precipitation (PR,

b and d) during winter over the 1979-2016 period for the Brittany region (SAFRAN reference). Results are shown for: plain IPSL; CDF-t;

R2D2; dOTC (2d-, Spatial- and Full-versions); MBC-n and MRec (2d-, Spatial- and Full-versions) outputs. Red asterisks indicate values

lying outside the plotted range.
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Figure S2. Maps of temperature vs. precipitation Spearman correlation maps computed at each grid cell using WFDEI reference (a1-o1) and

SAFRAN reference (a2-o2) during winter over the 1979-2016 period. Results are shown for: Reference; plain IPSL; CDF-t; R2D2; dOTC;

MBC-n and MRec outputs for respectively 2d-, Spatial- and Full- versions. Note that the color scales between (a1-o1) and (a2-o2) are not

the same to better emphasize intensities of values of the two regions.
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Figure S3. Correlograms for temperature using WFDEI reference (a1-e1) and SAFRAN reference (a2-e2) during winter over the 1979-2016

period. Results are shown for Reference (circles) and plain IPSL (black line). Results are displayed for: CDF-t; R2D2; dOTC; MBC-n and

MRec outputs for respectively 2d- (dotted), Spatial- (dashed) and Full-versions (solid lines).
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Figure S4. Differences of order 1 autocorrelation for precipitation using WFDEI reference (a1-o1) and SAFRAN reference (a2-o2) during

winter over the 1979-2016 period. Results are shown for: Reference; plain IPSL; CDF-t; R2D2; dOTC; MBC-n and MRec outputs for

respectively 2d-, Spatial- and Full- versions. Note that the color scales between (a1-o1) and (a2-o2) are not the same to better emphasize

intensities of values of the two regions.
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Figure S5. Boxplots of rank correlation computed at each grid cell between the bias corrected and the raw climate model time series for

precipitation using WFDEI for France (a) and SAFRAN for Brittany (b) region during winter over the 1979-2016 period. For both boxplots,

results are shown for: CDF-t; R2D2; dOTC; MBC-n and MRec outputs for 2d-, Spatial- and Full-versions.
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Figure S6. Differences of temperature vs. precipitation Spearman correlation computed at each grid cell between the 1979-1997 and 1998-

2016 periods during summer. WFDEI (a1-o1) and SAFRAN (a2-o2) data are used for the bias correction. Note that the color scales between

(a1-o1) and (a2-o2) are not the same to better emphasize intensities of values of the two regions.
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Figure S7. Values of the three Wasserstein distances between 1979-1997 and 1998-2016 periods during winter for temperature (square),

precipitation (circle) and both temperature and precipitation (triangle) for the region of France (a) and Brittany (b). Results are presented

for: Reference; plain IPSL (lines); CDF-t and the different multivariate BC outputs. 2d-R2D2-T2 (resp. 2d-R2D2-PR) indicates results for

2d-R2D2 with temperature (resp. precipitation) used as reference dimension. Black asterisks indicate values lying outside the plotted range.
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Figure S8. Boxplots of mean (a and b) and standard deviation (c and d) differences for Temperature (T2, a and c) and Precipitation (PR,

b and d) during winter over the 1979-2016 period for the France region (WFDEI reference) with seasonal BC. Results are shown for: plain

IPSL and MRec (2d-, Spatial- and Full-versions) outputs. Red asterisks indicate values lying outside the plotted range.

9

Appendix A. Supplement of the article “Multivariate bias corrections of
climate simulations: which benefits for which losses?”

200



−5 0 5 10

4
2

4
4

4
6

4
8

5
0

5
2

−0.25
−0.05
 0.15
 0.35
 0.55

L
a

ti
tu

d
e

Longitude

(a1) 2d−MRec

−5 0 5 10

(b1) Spatial−MRec

Longitude
−5 0 5 10

(c1) Full−MRec

Longitude
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versions.
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Figure S10. Correlograms for temperature (a) and precipitation (b) using WFDEI reference for France during winter over the 1979-2016

period with seasonal BC. Results are shown for: Reference (circles), plain IPSL (black line) and MRec outputs for respectively 2d- (dotted),

Spatial- (dashed) and Full-versions (solid lines).
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Figure S11. Order 1 Pearson autocorrelation for temperature using WFDEI reference during winter over the 1979-2016 period for the

seasonal BC. Results are shown for MRec outputs for 2d-, Spatial- and Full-versions.
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Figure S12. Order 1 Pearson autocorrelation for precipitation using WFDEI reference during winter over the 1979-2016 period for the

seasonal BC. Results are shown for MRec outputs for 2d-, Spatial- and Full-versions.
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Fig. S1: Values of the energy distances with respect to SAFRAN reference
for precipitation computed on (a-b) physical values and (c-d) ranks during
the training of MBC-CycleGAN. Results are shown for the different datasets
involved in (a, c) the Perfect Prognosis approach and (b, d) the MOS ap-
proach.
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Fig. S2: Standard deviation relative differences for (c, e, g, i) temperature
and (d, f, h, j) precipitation computed at each grid cell between SAFRAN
reference and the different datasets (plain IPSL, QQ, MBC-CycleGAN-PP
and MBC-CycleGAN-MOS outputs) during winter over the projection period.
Note that the color scales between panels (c, e, g, i) and (d, f, h, j) are
not the same to better emphasize intensities of values for the two physical
variables. Maps of daily standard deviation for SAFRAN references are also
shown for (a) temperature and (b) precipitation.
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Fig. S3: Scatterplot showing winter differences of Spearman spatial correla-
tions for (a-c) temperature and (d-f) precipitation between the calibration
and the projection period. Results are shown for SAFRAN, IPSL and IPSLbis
outputs that are compared with LR SAFRAN differences.
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Fig. S4: Scatterplot showing winter mean differences for (a-c) temperature
and (d-f) precipitation between the calibration and the projection period.
Results are shown for SAFRAN, IPSL and IPSLbis outputs that are compared
with LR SAFRAN differences.
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Fig. S5: Scatterplot showing winter relative differences of standard deviations
for (a-c) temperature and (d-f) precipitation between the calibration and the
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for SAFRAN references is also shown for precipitation (a).
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SAFRAN reference for BC methods using as inputs (b, e, h, k, n) IPSL, (c,
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Fig. S9: Scatterplots of mean squared errors of Pearson spatial correlations
computed at each grid cell for (a, c, e) temperature and (b, d, f) precip-
itation over the projection period. Results are shown for IPSL, IPSLbis, LR
SAFRAN, MBC-CycleGAN, Spatial-R2D2 and Spatial-dOTC datasets and
compared with QQ outputs.
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Fig. S10: Differences of order 1 Pearson autocorrelation for precipitation with
SAFRAN reference for BC methods using as inputs (b, e, h, k, n) IPSL, (c,
f, i, l, o) IPSLbis and (d, g, j, m, p) LR SAFRAN data. Results are shown
during winter over the projection period for reference, IPSL, IPSLbis, LR
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The map of order 1 Pearson autocorrelation for SAFRAN references is also
shown for precipitation (a).
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(f)Figure S1. Same as Fig. 6 but for 95% confidence level: CNRM-CM6 (a-c) time of emergence at 95% confidence level for compound

wind and precipitation extremes due to changes of (a) both marginal and dependence properties, (b) marginal properties only, and (c)

dependence properties only. Results are presented for varying exceedance thresholds between the 5th and 95th percentile of compound wind

and precipitation extremes data. White indicates that no time of emergence is detected.
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Figure S2. CNRM-CM6 differences of time of emergence at 68 % confidence level between time of emergence obtained by considering both

marginal and dependence properties changes and (b) dependence properties changes only, and (c) marginal properties only. CNRM-CM6 (a)

time of emergence at 68 % confidence level obtained by considering both marginal and dependence properties changes are also displayed.

Color points indicate values lying outside the plotted ranges. White indicates that no time of emergence is detected.
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Figure S3. Same as Fig. 7 but for 95% confidence level: Probability changes and time of emergence (at 95%) of compound wind and

precipitation extremes (exceeding the individual 80th percentiles of selected points of high values) for (a-c) Indiv- and (d-f) Full-Ensemble

versions due to changes of (a,d) both marginal and dependence properties, (b,e) marginal properties only, and (c,f) dependence properties

only. The shaded bands indicate 95% confidence intervals of the probabilities. For (a-c), individual time of emergence for the different models

within the ensemble are displayed when defined (vertical light red lines), as well as the corresponding median time of emergence (vertical red

lines). For information purpose, multi-model mean exceedance probability time series are also plotted (black dotted lines). Not-applicable

(n/a) is indicated when no time of emergence is detected.
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Figure S5. Evolutions of (a, d) the bivariate fraction of attributable risk (FAR), (b, e) relative difference of probabilities with respect to

the reference period (1871-1900) and (c, f) contribution of the marginal, dependence and interaction terms to probability values for (a-c)

Indiv- and (d-f) the Full-version. For the Indiv-Ensemble version (a-c), bivariate FAR, relative differences and contributions time series

are computed by considering for each sliding window the median of the models’ FAR, relative differences and contributions, respectively.

Median contributions computed over all sliding windows are displayed with dotted lines. Asterisks indicate values lying outside the plotted

range.
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Figure S6. (a-c) Number of models within the Indiv-Ensemble framework presenting a time of emergence at 68% confidence level for

compound wind and precipitation extremes. (d-f) Inter-quartile differences (Q3-Q1) of time of emergence.
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Figure S7. Same as Fig. 4 but for Full-Ensemble data: Change of compound wind and precipitation extremes distributions based on pooled

data due to (a) marginal and dependence changes, (b) marginal changes while keeping dependence fixed and (c) dependence changes while

keeping marginal fixed. For the bivariate distributions, contour lines encompassing 90 % of all data points are shown. A selection of six

30-years sliding windows is presented using a color gradient from light (1871-1900) to dark (2071-2100).

8

225



Marg.−dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(a)

Marg.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(b)

Dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(c)

Marg.−dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(d)

Marg.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(e)

Dep.

Conditional proba. (Wind speed)

C
on

di
tio

na
l p

ro
ba

. (
P

re
ci

pi
ta

tio
n)

1980

2000

2020

2040

2060

2080

0.1 0.3 0.5 0.7 0.9

0.
1

0.
3

0.
5

0.
7

0.
9

(f)

Figure S8. Same as Fig. 9 but for 95% confidence level: Time of Emergence (at 95% confidence level) matrices of compound wind and

precipitation extremes due to changes of (a, d) both marginal and dependence properties, (b, e) marginal properties only, and (c, f) dependence

properties only. Results are displayed for (a-c) the Indiv- and (d-f) Full-Ensemble versions for varying exceedance thresholds between the

5th and 95th percentile of compound wind and precipitation extremes data. For each subplot, white indicates that no time of emergence is

detected.
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Figure S9. Same as Fig. S6 but for 95% confidence level: (a-c) Number of models within the Indiv-Ensemble framework presenting a time

of emergence at 95% confidence level for compound wind and precipitation extremes. (d-f) Inter-quartile differences (Q3-Q1) of time of

emergence.
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Figure S10. Same as Fig. 12 but for GDD ≥ 150 ◦C.d and minimal temperatures ≤ 0 ◦C: Probability changes and time of emergence (at

68%) of growing-period frosts (GDD ≥ 150 ◦C.d and minimal temperatures ≤ 0 ◦C) for (a-c) Indiv- and (d-f) Full-Ensemble versions due

to changes of (a, d) both marginal and dependence properties, (b, e) marginal properties only, and (c, f) dependence properties only. The

shaded bands indicate 68% confidence intervals of the probabilities. For (a-c), individual time of emergence for the different models within

the ensemble are displayed when defined (vertical light red lines), as well as the corresponding median time of emergence (vertical red line).

For information purpose, multi-model mean exceedance probability time series are also plotted (black dotted lines). Not-applicable (n/a) is

indicated when no time of emergence is detected.
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Figure S11. Same as Fig. 12 but for GDD ≥ 250 ◦C.d and minimal temperatures ≤ 0 ◦C: Probability changes and time of emergence (at

68%) of growing-period frosts (GDD ≥ 250 ◦C.d and minimal temperatures ≤ 0 ◦C) for (a-c) Indiv- and (d-f) Full-Ensemble versions due

to changes of (a, d) both marginal and dependence properties, (b, e) marginal properties only, and (c, f) dependence properties only. The

shaded bands indicate 68% confidence intervals of the probabilities. For (a-c), individual time of emergence for the different models within

the ensemble are displayed when defined (vertical light red lines), as well as the corresponding median time of emergence (vertical red line).

For information purpose, multi-model mean exceedance probability time series are also plotted (black dotted lines). Not-applicable (n/a) is

indicated when no time of emergence is detected.
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Figure S12. (a) Boxplots of time of emergence at 68% confidence level of growing-period frosts (GDD ≥ 200 ◦C.d and minimal temperatures

≤ 0 ◦C) for the Indiv-Ensemble version. Size of boxplots is proportional to the number of models presenting an emergence. For the Full-

Ensemble version, values of ToE are indicated using lines.
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Figure S13. Same as Fig. S5 but for growing-period frost events (GDD ≥ 200∩T ≤ 0). Evolutions of (a, d) the bivariate fraction of

attributable risk (FAR), (b, e) relative difference of probabilities with respect to the reference period (1871-1900) and (c, f) contribution

of the marginal, dependence and interaction terms to probability values for (a-c) Indiv- and (d-f) the Full-version. For the Indiv-Ensemble

version (a-c), bivariate FAR, relative differences and contributions time series are computed by considering for each sliding window the

median of the models’ FAR, relative differences and contributions, respectively. Median contributions computed over all sliding windows

are displayed with dotted lines. Asterisks indicate values lying outside the plotted range.
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Figure S14. CNRM-CM6 time of emergence (at 68% confidence level) of compound wind and precipitation extremes probabilities

(P(X > x80|sel ∩Y > y80|sel | (X,Y ) ∈ SCNRM-CM6
90,90 )) for different baseline periods. Time of emergence are computed for probability time

series when considering changes of both marginal and dependence properties (“Marg.-Dep.”), marginal properties only (“Marg.”), and de-

pendence properties only (“Dep.”). A blank space is left when no time of emergence is detected.
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