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Abstract

Establishing the odds for a set of sports bets requires, amongst other things, establishing
the probabilities for a set of characteristic events. If we take the example of a soccer game,
the score at half time is an event. The final score is also an event (dependent on the score
at half time). We can also bet on who scores the goal, on which team scores first. . . As
the preliminary studies on the subject of sports predictions and analyses have shown ever
since the mid-20th century, the more accurate, important and relevant the data fed into
the model are, the more reliable the estimate of the probability for the occurrence of an
event will be. With the recent development in the volume of data used, their accessibility
as well as the technical means that allow for the processing of the data, previous sports
event data that were up to now seldom used, have been gathered and collected from 6
different websites that specialize in the publication of data and information of sports results
and statistics. Thus, a structured database concerning sporting events between the years
1991 and 2018 was built. Once the data are gathered, they are then cleaned, verified and
formated in order to be turned into a usable set of reliable data. Since the overall data
come from different sources, it was necessary to join all the pieces of data together by using
common indexes that were built on the syntactic proximity of the observations. Therefore
the expected goals, the box-scores or the Elo points, which are all specialized metrics in the
field of study, allow for a considerable improvement in the performance of the model. Faced
with the problem of modeling the probability of a sporting event, supervised classification
algorithms capable of predicting a probability distribution over a set of classes have been
used, rather than displaying only the most probable class, for a given observation. Thus,
one can have a certain level of confidence in the occurrence of all sporting events, and not
be interested only in the most probable event:

ŷ = arg maxy Pr(Y = y|X) ∀ y ∈ Y

Furthermore, it is always this probability distribution that will be used to compare the
models with each other with the help of appropriate evaluation metrics : where pij is the
probability produced for the observation i of being in the class j, and yij is the variable
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indicating whether or not the event has occured:

Loss =
I−1∑
i=0

J−1∑
j=0

f(yij ,pij)

where pij is the probability for observation i to be in class j and yij is the variable indicating
the realization or not of the event. In order to minimize this loss function, representing the
performance of the model, the features were selected and the hyper-parameters of the model
were adjusted, following a division of the data into several samples, in order to simulate
a use of the model in which the probabilities could be proposed before the beginning of
each encounter. Following a comparison with other bookmakers, the proven quality of the
results makes it possible for Betclic to suggest relevant odds pertaining to the outcome of
sports encounters in tennis, basketball and soccer. The declination on finer events, such as
the exact score, is also possible.

Keywords: Statistic – Probability – Data Science – Machine Learning – Sports betting –
Soccer – Tennis - Basketball
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1

1. Introduction

Now an inevitable and ever present aspect of the worlds of sports and games, betting

is a practice that dates back to Ancient Greece. For a time, this practice took place

in the form of Parimutuel betting, whereby all the stakes bet by the bettors were

pooled into a common pool before being redistributed to the winners in proportion

to their stake. This “mutual betting” system invented by Joseph Oller first appeared

in France in 1867. That said, the most widespread form of betting is the fixed odds

betting system.

In this context, betting on odds takes the form of a contract in which the bookmaker

sets the odds, which can vary as much as the bookmaker wants them to in accordance

with variations in the elements taken into account for their establishment. When the

bettor confirms his bet, the odds are then definitely fixed. If the event that was bet

on occurs, these fixed odds will determine the multiplier of the sum that was bet.

Thus, the main task of the bookmaker is to calculate the odds of the bets he proposes.

Based on statistical data, the history of encounters and all the relevant information

available, these odds are mostly a transcription of the probability for the event to
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occur. However, the odds also consider the bookmaker’s margin and in a more subtle

way, in order to control the financial risk, considering as well the spread of the bets.

To what extent can the use of data science help a bookmaker like Betclic, partner of

this CIFRE thesis, in the elaboration of its sports betting odds ?

With the soaring in the volume of data, mainly due to a growing interest in this “new

black gold”, the ever expanding digital accessibility produced by a generalization of

the use of sensors (such as the use of cameras or connected devices) and the ongoing

improvement of our computational capacities, all the ingredients are gathered to offer

ever more.

Furthermore, a better utilization of the large volume of data available is made possible

by the development of the field of sports analysis. This has been made known to

the public in large part thanks to the movie “Moneyball” that relates how Paul

DePodesta used sabermetrics to build a more competitive team for the Oakland

Athletics. Thus, when used with a predictive classification model, whose role it is to

classify observations into previously identified groups, a probability of occurrence for

each event can be associated to the observations characterizing it, making it possible

to obtain odds that are more precise than ever.

In France, as in many other countries around the world, the “king” of sports is soccer.

Alongside tennis and basketball, these sports are very popular with bookmakers,

whose users like to make predictions on who will win the upcoming championship

or tournament. With hundreds of possible bets per match (such as the number of

goals, sets or points scored during the match, or by team, or event at half-time)



3

punters can now bet on almost anything that could happen during a match. However,

determining the outcome of the match is still the most important bet for bettors.

Thus, the study of classifiers, binary for tennis and basketball and multi-class for

soccer (where the match might end in a tie, with no winner or loser), is the main

tool used to construct probabilities for the establishment of odds.

This section presents the outline of the rest of the report.

• Chapter 2 presents the different data sources used. They are all accessible

on sport websites and provide access to data of huge diversity and sufficient

volume. Following the data extraction from these websites using web scraping,

a relational database was created.

• Chapter 3 presents some models for predicting the outcome of a match using

soccer, basketball and tennis data. The outcome prediction of a sport match has

interested sportsmen, bettors, but also statisticians for a long time. Since the

middle of the 20th century, some have tried to find a solution to this problem.

Whether the approach is direct, by determining who can be the winner of the

match, or indirect, by predicting the match score, the approaches have been

varied, and influenced by the trends and scientific and/or technical advances

that we have known until today.

• Chapter 4 presents the theoretical foundations of learning strategies used in

this work. Inspired by previous works on the subject, the different classification

algorithms and the methods used to optimize and evaluate the models are

described.
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• Chapter 5 provides details on how that data was prepared and selected prior

to the classification task. Fueled by the growing interest in “Sports Analytics”,

the transformation of raw data into informative features greatly facilitates the

task of the predictive model.

• Chapter 6 presents the application of the selected tools, with the aim of

creating sport odds. According to an experiment very similar to real conditions

of use of a bookmaker, a model is then selected, its results analyzed, before

being compared to certainly one of the best current benchmark: the sport odds

of a bookmaker.
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2. Data Collection

As with any statistical modeling project, the key to success lies in the gathering

and measuring of the data. The better this task is completed, the better and more

accurate the solution to the problem will be.

At a time when the development of Big Data is exponentially rising, this is an obvious

fact. Now that the Internet is an almost infinite source of data, a smart collection of

these data could enrich analysis and modeling projects that could provide answers to

all kinds of questions. Some key players in the sector have come to this realization

and have decided to facilitate the access to this information. Google, for instance,

launched “Google Dataset Search” in 2018. Its aim is to carry out structured “open

data” searches. Kaggle and OpenML also provide free access to open datasets. Twitter

even allows access to some of the data in its application via its APIs. More than 500

million tweets were sent every day in 2019, these could be used to reflect what is

happening in the world and what people are talking about in real time.

The world of sports has also changed. Since the 1960’s, as the means and methods

for collecting data have modernized, the answers that statisticians have been able to
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contribute to the field of sports have evolved. Using mathematics and statistics to

improve the objective knowledge of certain sports is increasingly widespread, making

the quality and quantity of data required for this pursuit also increase.

While Moroney (1956) simply used the scores of 240 games that took place in England,

Reep, Pollard, and Benjamin (1971) took into account the passes made between

players during games, which were all recorded by hand over more than 2200 matches.

Across the Atlantic, the sabermetrics1 development in the 1960’s followed by the

APBRmetrics2 development during the 1990’s have also initiated the evolution and

professionalization of practices in the field.

Today, companies have developed a whole economic activity around the topic. The

display of real-time statistics during broadcasted sports events is now common in all

forms of media, and right after a game, sport experts are supplied with information

and statistics that enable them to discuss in depth the sporting performances of teams

and players. At Opta, a British sports analytics company that provides data for 30

different sports, several professionals follow soccer matches and manually record every

single event (around 2,000 per match). But some pieces of data, such as the distance

traveled by a player, or the speed of the ball can only be calculated with the help

of technology. In Germany, for example, the company ChyronHego has equipped

a stadium with an electronic performance and optical tracking system. Thus, the

quality of the data as well as their volume have greatly improved over the past 60

years, this in turn opens the door to new possibilities in the field of sports analysis

1search for objective knowledge of baseball
2sabermetrics cousin concerning basketball
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and outcome prediction.

Concerning the data used for this thesis project, this chapter focuses on presenting

the sources, describing the database architecture and explaining how the data were

retrieved.

2.1 Data sources

Some of the data needed to carry out this project were at first determined following

a review of the state of the art for the subject at hand. In the end, some of the data

also come from personal thoughts on the sports concerned, driven by the expertise

of Betclic. To obtain as much information as possible about the soccer, tennis and

basketball matches concerned by this study, various websites were used to build up

the database.

For soccer, 3 websites are chosen:

• Whoscored is a website that provides statistics on more than 500 international

soccer leagues and competitions for free. Its database contains matches played

ever since 1999 for some competitions making WhoScored able to offer detailed

statistics on matches. For most of them, it is possible to know the teams

playing, the time elapsed and the full-time score. Additional data have been

available for the main championships since 2002, such as the line-up for each

team, the substitutions that occurred and the main events of the game like

goals, penalties, and cards. Finally, from the 2009/2010 season onwards, all

the details of every match that took place in the main championships and

competitions have been available. The stadium, the weather, the referee, or
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the stadium attendance: all the events that took place during the match are

observed. Thus, the geo-position, the minute of the match, the players involved

and all the details characterizing passes, free kicks, tackles, shots or any other

event of a match are known. All the information concerning the line-up of

each team is available, such as its evolution during the match, the position

of the players or who the captain is. Thus, many statistics about each player

are calculable, such as his success percentages in one aspect of the game for

instance.

• Transfermarkt is a website that provides the monetary value of soccer players.

Founded by Matthias Seidel in 2000, this website has come to influence the

transfer market in Europe. Often used as a benchmark by the media, clubs have

even gone so far as to contact the teams behind this website to find out how

the price of players was calculated. With major updates twice a year, during

each transfer window, the value of the players is mainly determined manually

by users, experts and administrators assisted by a calculation assistance system.

For the 5 major European soccer leagues, the player value is collected for each

player once per season. In addition, the ranking of each European league,

based on the comparison of the performance of each club during European

competitions, is available for the 2006/2007 season. This statistic makes it

possible to compare the different European championships.

• SoFIFA is a website containing all the information available in the EA Sports

FIFA video game franchise. With more than 20 years of expertise in the

field, and thousands of scouts watching matches all over the world, EA Sports
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determines scores in all aspects of a football player’s skill set. Thus, beyond an

overall rating and a potential rating, representing a player’s overall level, the

website provides ratings by position and for each aspect of the game (finishing

skills, volleys etc... on the offensive side, or even marking, tackling, and sliding

tackles on the defensive side). Globally, more than 30 aspects of a player’s game,

categorized into 7 areas, have been evaluated since the 2007/2008 season. The

same is true for each team, which is given an overall score, as well as offensive,

midfield, and defensive scores. Additionally, the line-up and tactics for a game

are determined based on 20 aspects categorized into 5 areas.

For basketball, 2 websites were selected:

• Basketball-Reference is a website that belongs to the Sports Reference group,

it offers statistics for sports such as baseball, basketball, American football,

hockey and even soccer. Updated daily, this website is a reference in the field

of sports statistics. It has been giving access to detailed data on all the NBA3

games, the evolution of the score and details of all the shots taken during the

game (player, minute, score, geo-position), as well as most of the statistics

generated in APBRmetry for each player since the 2000 season.

• 2KMTCentral is a website that provides all the information available in the EA

Sports video game franchise NBA2K. Like its soccer equivalent, this game has

become a benchmark in the field, and the quality of the information it provides

is difficult to dispute. Thus, a lot of information about NBA players has been

specified as an overall rating, their size, their position, technical attributes
3National Basketball Association
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as well as around forty ratings categorized into six game areas since the 2015

season.

Finally, all the information concerning tennis was collected on the same website.

• ATP Tour is the official website of the Association of Tennis Professionals. On

this website, information on all the matches of more than 60 ATP tournaments

around the world is accessible. All the scores, tournament details, week by week

ATP rankings, player information such as backhand or backhand type and all

the classical tennis statistics relating to the service or the return of players

during a match ever since 1991 have been available. In addition, some statistics

defining the previous performances of a player on a specific surface, or statistics

about previous matches between two players are available.

2.2 Database overview

Accordingly, an architecture compatible with data analysis and modelling needed to

be thought of. The choice was made to use a local database, this way each application

necessary for the realization of this exercise could access the data as a user.

At the sight of the data described above, a relational database was initially used to

store the data using tables, composed of rows and columns. Relationships between

these tables are made by linking IDs. This database, presented using Figure 2.1,

Figure 2.2 and Figure 2.3, is set up using SQL Server 2016 version 13.0, and a copy

of the data is made on Amazon Simple Storage Service (Amazon S3 ), the object

storage service of Amazon Web Service (AWS) to have easy access to data.
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Figure 2.1: Tennis database diagram

Another database, presented using Figure 2.4, is used to transfer data, metadata

and objects between the applications. To achieve this, a non-relational database

(NoSQL 4) was favored. Instead of the data being stored in tables, they are stored

in a key-value format. A document-oriented database was chosen, within which the

documents are stored in a JSON format5 and organized within groups of documents

called collections. This database is set up using MongoDB 4.2.1.

4Not Only SQL
5JavaScript Object Notation
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Figure 2.2: Soccer database diagram
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Figure 2.3: Basketball database diagram

Figure 2.4: Inter-Process Communication database diagram
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2.3 Web scraping

In order to complete the relational database described above, it was necessary to

extract the content from the aforementioned websites. To achieve this, it was necessary

to use different Python libraries like Requests, to send HTTP requests easily, Selenium,

to automate tasks in a web browser, and Beautiful Soup to parse and extract the

content from the explored web pages.

Since each website presents a different tree structure, the access strategies to the

content were also different.

• SoFIFA: Whether it is the pages of players, clubs, or national teams, the process

was the same. The URLs6 of the content of interest were accessible at the

following addresses, including a list of players, as shown in Figure 2.5, or teams:

https://sofifa.com/CONTENT?type=TYPE&r=VERSION&set=true

&offset=PLAYERS_COUNT

where CONTENT can be players or teams, TYPE can be club or national

for the teams and all for the players, VERSION is a 6-digit code, in which

the two first digits are the major version indicating the soccer season concerned

(from 07 to 19), and the four last one are the minor version, indicating the update

concerned (0001 has always been chosen in order to take the first version of each

game that corresponds to the start of the season, which doesn’t depend on the

form of the players). Finally PLAYERS_COUNT is a number indicating

the order of the last player / team accessible on the explored page.

6a Uniform Resource Locator or web address is a reference to a web resource
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By iterating over all of the web pages, whose URLs are composed as described

above, around forty URLs of national teams, more than six hundred URLs of

clubs and more than sixteen thousand URLs of players are recovered for each

version of the game.

Figure 2.5: SoFIFA player list web page

• Whoscored: The URLs of the content of interest are accessible at the following

addresses, including a list of matches, as shown in Figure 2.6:

https://whoscored.com/Regions/REGION/Tournaments/

TOURNAMENT/Seasons/SEASON/Stages/STAGE/Fixtures

where REGION is a 2 or 3-digit code corresponding to the country (or geo-

graphical limitation concerning international tournaments), TOURNAMENT

is a 1 or 2-digit code corresponding to the league/league, SEASON is a 4-digit
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code corresponding to the season and STAGE is a 4 or 5-digit code for each

league/tournament and season (with differentiate for group and final stages for

European tournaments).

By iterating over all of the web pages, whose URLs are composed as described

above, 21,556 matches for the English, Spanish, Italian, German, and French

top leagues, the Champion’s League and the Europa League from 2009/2010

season to 2018/2019 season are recovered.

Figure 2.6: Whoscored match list web page

• Transfermarkt: The URLs of the content of interest are accessible at the

following addresses, including a list of clubs, as shown in Figure 2.7:

https://transfermarkt.com/LEAGUE/startseite/wettbewerb/

LEAGUE_ID/plus/?season_=SEASON

where LEAGUE and LEAGUE_ID are a 2-tuple for each league in the

following list: (premier-league, GB1), (ligue-1, FR1), (serie-a, IT1), (laliga,
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ES1), (bundesliga, L1). SEASON is the corresponding season in the following

format 20xx.

By iterating over all of the web pages, whose URLs are composed as described

above, 49,865 monetary values for the English, Spanish, Italian, German, and

French top leagues from 2005/2006 season to 2018/2019 season are recovered.

Figure 2.7: Transfermarkt club list web page

• 2KMTCentral: The URLs of the content of interest are accessible at the following

addresses, including a list of players, as shown in Figure 2.8:

https://2kmtcentral.com/VERSION/players/theme/current/

page/PAGE_COUNT

where VERSION is a 2-digit code corresponding to the season and

PAGE_COUNT is the web page index.

By iterating over all of the web pages, whose URLs are composed as described

above, around 400 players by season from 2014/2015 season to 2018/2019 season

are recovered.
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Figure 2.8: 2KMTC player list web page

• Basketball-Reference: The URLs of the content of interest are accessible at the

following addresses, including a list of matches, as shown in Figure 2.9:

https://basketball-reference.com/leagues/NBA_SEASON_games-

MONTH.html

where SEASON is the corresponding season in the following format 20xx and

MONTH is the corresponding month of the game.

By iterating over all of the web pages, whose URLs are composed as described

above, 24,531 matches of the NBA from 2000/2001 season to 2018/2019 season

are recovered.
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Figure 2.9: Basketball-Reference match list web page

• ATP Tour: First, web pages including a list of tournaments are explored to

obtain tournaments and their IDs:

https://atptour.com/en/scores/results-archive?year=YEAR

where YEAR is the corresponding season in the following format 20xx.

Then, URLs tournament web pages, shown in Figure 2.10, are built with the

following addresses:

https://atptour.com/en/scores/archive/TOURNAMENT/

TOURNAMENT_ID/YEAR/results

where TOURNAMENT and TOURNAMENT_ID are a 2-tuple for each

tournament. Then, personal information on players is obtained with the follow-

ing addresses:

https://atptour.com/en/players/PLAYER/PLAYER_ID/overview

where PLAYER and PLAYER_ID are a 2-tuple for each player. Finally,

rankings are obtained for each week with the following addresses:

https://atptour.com/en/rankings/singles?rankDate=DATE

&rankRange=RANGE
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where DATE is the date, for each week, with the following format YYYY-MM-

DD and RANGE is a range of 100 players with the following format X-X+100.

By iterating over all of the web pages, whose URLs are composed as described

above, 102,302 matches and 12,023 players of the ATP from 1991 season to

2018 season are recovered.

Figure 2.10: ATP match list web page

Once the URLs are retrieved, the HTML7 content of web pages are parsed to keep

only the interesting and relevant content. After a preprocessing step (cleaning, editing,

reducting and wrangling), data are stored in their corresponding tables within the

relational database.

7HyperText Markup Language is the language used to define the meaning and the structure of
web content
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2.4 Schema integration

Because basketball and soccer data are derived from different data sources, the

columns used to join the tables do not always perfectly match. For example, the

soccer club of the city of Manchester, may be recorded as Man. United in one

source and Manchester United in another. Then, a string similarity metric has

been computed between text describing teams and players of each data sources, to

approximate string matching.

Defined in 1965 by the Soviet mathematician Vladimir Levenshtein, the Levenshtein

distance is the minimum number of single-character edits (insertions, deletions or

substitutions) required to change one word into another:

lev(a,b) =



max(|a|, |b|) if min(|a|, |b|) = 0,

lev(a−1, b−1) if a[0] = b[0],

1+min



lev(a−1, b)

lev(a,b−1) otherwise

lev(a−1, b−1)

where a and b are two strings, |a| is the cardinal of a (number of letters) and a−1

the string truncated by its first letter a[0].

Using the Python library TheFuzz , a unique ID was created between each team of
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each national league. Once the teams are associated, the players could be in each

team. Then, the data scraped from SoFIFA, Transfermarkt and Whoscored could be

joined, and so could those from Basketball-Reference and 2KMTCentral.

2.5 Conclusion

Then, with a volume of more than 7 GiBs in parquet8 files and nearly 100 columns

concerning tennis, more than 150 for basketball and over 300 columns for soccer, with

data gathered between 1991 for the oldest entries and 2018, the built database seems

to be able to offer an interesting quantity and quality of data for the realization of an

efficient model. In addition, the simplicity of its structure allows easy access to the

data, limiting the complexity of data query scripts and ensuring their efficiency.

8a columnar storage format, taking less size and faster than Comma-Separated Values for big
volumes
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3. Some models on sport data

Probabilistic forecast models of sports events have been developed through the

application of different kinds of methodologies, some have spawned simply out of

interest for the sport while some, like Borøy-Johnsen (2017), aim at beating the

bookmakers.

Before the appearance of several methods related to machine learning, the initial

method used econometric approaches. This chapter focuses on previous research

related to quantitative models or analysis on the prediction of sports events. It

presents the main studies on predicting the outcome or the final score of a match, as

well as the studies that led to the building of relevant features for sport event models.
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3.1 Match scores

The first models concerned with soccer were interested in determining the number

of goals (scored and conceded) that would occur during a match using the Poisson

distribution, or extensions thereof.

The Poisson distribution, to model football goals

Developed by the French mathematician Poisson (1837), the Poisson distribution

models the number of successes occuring in a given time interval or a specified

region of space. Moreover, this distribution supposes that the time intervals between

successive events are independent of each other.

Then, a discrete random variable X is said to have a Poisson distribution, with

parameter λ > 0, if it has a probability mass function given by:

P (X = k) = e−λλk

k!
where k is the number of successes (k = 0,1,2...)

e is the Euler’s number (e = 2.71828)

λ is the mean number of successes in the given time interval

or region of space

Using this distribution and its extensions, it can be possible to predict the probabilities

associated with the outcomes of a football match using the number of goals scored

and conceded in a match.
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Moroney (1956) was the first to present a study on predicting the outcome of football

matches. He considered the number of goals scored during a football match as a case

of isolated events in a continuum of time. Then, he rejected the use of a Binomial

Distribution, because the number of trials n in the binomial experiment is unknown:

we can only count the number of times a goal occurs but it’s impossible to count the

number of times it did not. He therefore preferred using a Poisson Distribution, using

the average of goals per team per match recorded on the 240 matches of the study as

mean (λ = 1.7). According to the author, since this mean varies from trial to trial,

due to weather factors or the team-matching, the initial formula was modified by

incorporating the variance of goals per team per match, σ2, in the equation. The

probability mass function of this modified Poisson distribution is given by:

P (X = k) =
(

c

c+1

)p

 (p+k−1)!
(p−1)!

k!(c+1)k


where k is the number of successes (k = 0,1,2...)

c = x

σ2 −x

p = x · c

where X is the random variable counting the number of goals of a team during a

match, x = 1.7 and σ2 = 1.9.

Using this modified Poisson distribution, he then obtained a predicted frequency of

goals very close to the actual frequency for the 240 matches considered, using the

following.
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Afterwards, Reep, Pollard, and Benjamin (1971) preferred to call the modification of

the Poisson used by Moroney (1956) a "compound Poisson". They also used a Negative

Binomial distribution with English Football League First Division data from 1965 to

1969 for a study on 42 matches per season. But these approaches do not consider the

quality of the team nor the quality of the opposition, in accordance with the remark

of Reep and Benjamin (1968) that "chance does dominate the game", made after a

study on passing and shooting areas of English Football League First Division from

1953 to 1967. Following this, by showing a significant positive correlation between

forecasts made by experts at the beginning of the season, and the final league tables

of the 1971-1972 English football season, Hill (1974) indicates that football results

are not pure chance.

The Double Poisson distribution, to model team goals in a specific match

For Maher (1982), "over a whole season, skill rather than chance dominates the game".

He considered the importance of possession in a football match, by considering that

each possession has a probability p to be concluded by a goal. And even if p is small,

the number of possession n in a match can be enormous. Considering p is constant

and attacks are independent, he also used a Poisson distribution. Therefore, if team i

is playing at home against team j, and the observed score is (xij ,yij), the final score
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can be modeled with the two following independent Poisson:

Xij ∼ Poisson(αiβj)

Yij ∼ Poisson(γiδj)

where αi is the strength of team i’s attack when playing at home

βj is the weakness of team j’s defence when playing away

γi is the weakness of team i’s defence when playing at home

δj is the strength of team j’s attack when playing away

Since Xij and Yij are assumed to be independent ("representing separate "games" at

the two ends of the pitch"), αT = (α0, . . . ,αn) and βT = (β0, . . . ,βn) can be estimated

only for x, and δT = (δ0, . . . , δn) and γT = (γ0, . . . ,γn) only for y. Then, for the home

teams’ scores, the log likelihood function is:

logL(α,β) =
∑

i

∑
j ̸=i

−
(

αiβj +xij log(αiβj)− log(xij !)
)

and so, because no analytical solution is possible, the maximum likelihood estimates

α and β satisfy:

α̂i =
∑

j ̸=i xij∑
j ̸=i β̂j

β̂j =
∑

i ̸=j xij∑
i ̸=j α̂i
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Using the Newton-Raphson method, Maher (1982) determined the maximum likeli-

hood estimates, and applied a similar method for δ̂ and γ̂ using yij for each team,

using their previous performances. It was the first paper that had modeled football

scores between specific teams, accounting for the differences in quality of the teams

involved.

Using English Football League division data from 1973 to 1975, he showed that

separate parameters for the quality of a team at home and away was not necessary,

and preferred to keep only α and β, to describe the quality of the team’s offense

and the weakness of the team’s defence, whether the team is playing at home or

away. Moreover, he identified a home ground advantage, equal for all teams. By

analyzing the frequencies of goal scores, he detected an underestimation to forecast

one or two goals, an overestimation in predicting more than four goals, and, unlike to

applications requiring Zero-Inflated Poisson because random event contains excess

zero-count data in unit time, an overestimation in predicting 0 goals.

Later, with a particular interest in sports betting Dixon and Coles (1997) reused the

independent Poisson model presented by Maher (1982) and added a home advantage:

Xij ∼ Poisson(αiβjH)

Yij ∼ Poisson(αjβi)

where αk and βk are the offensive and defensive strengths of team k, and H the home

ground advantage parameter.

Because this independent model is bad at predicting low-scoring matches (equal to 1
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goal or less for each team), they added a dependence parameter ρ:

Pr(Xij = x,Yij = y) = τλ,µ(x,y)λx exp(−λ)
x!

µy exp(−µ)
y!

where λ = αiβjH µ = αjβi

τλ,µ(x,y) =



1−λµρ if x = y = 0

1+λρ if x = 0, y = 1

1+µρ if x = 1, y = 0

1−ρ if x = y = 1

1 otherwise

and max(−1/λ,−1/µ) ≤ ρ ≤ min(1/λµ,1)

with the dependence parameter ρ, equals to 0 for independence.

Dixon and Coles (1997), suggesting that a team’s performance was dynamic and

varied between periods, reduced the contribution of older data, to obtain offensive

and defensive team strengths more up to date with recent match performances. Then,

they used a ’pseudolikelihood’ for each time point:

Lt(αi,βi,σ,H; i = 1, ...,n) =
∏

k∈At

{τλk,µk
(xk,yk)exp(−λk)λxk

k exp(−µk)µyk
k }ϕ(t−tk)

with ϕ(t) = exp(−ξt)

where tk is the time when the match k was played, At = {k : tk < t}, and ϕ is a

non-increasing function of time.
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For this study, Dixon and Coles (1997) used scores from 6629 full-time league and

cup matches from the season that took place between 1992 and 1995.

Rue and Salvesen (2000) used a modified independent Poisson model, as proposed

by Dixon and Coles (1997), and included a psychological effect of underestimation

of the weaker team by the stronger team. A measure of the difference in strength

between the two teams is then proposed using the following expression:

∆ij = (αi +βi −αj −βj)
2

This last one is weighted by a small constant γ giving the magnitude of the pyscho-

logical effect. The difference in strength should not be too important, because the

teams opposed during a match are in the same league, it is reasonable to expect

γ > 0 (the opposite effect, γ < 0, which suppose that a team is so superior compared

to the other one, that the latter develops an inferiority complex, is not expected

when teams are in the same league). Rue and Salvesen (2000) did not use a home

ground advantage, but also corrected low-scoring matches like Dixon and Coles (1997)

with a dependence parameter σ = −0.1, and truncated the Poisson law after five

goals, arguing that the number of goals beyond this threshold provided no further

information about the offensive and defense strengths of a team. In addition, they

suggested that not all information was included in the final score, and added an ϵ

parameter, defining how much the league average should contribute to the prediction.
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This is expressed as follows:

Pr(Xij = x,Yij = y) =(1− ϵ)Pr ′(Xij = x,Yij = y | λ,µ)

+ ϵPr ′(Xij = x,Yij = y | exp(cx),exp(cy))

where exp(cx) and exp(cy) in the non-informative part, are the average goal intensities.

In addition Rue and Salvesen (2000) allowed for the offensive and defensive variables

to vary with time, by overweighting the most recent results, using Brownian motion:

αt′
k = αt

k +
{

Bα,k

(
t′

τ

)
−Bα,k

(
t

τ

)}
σα,k√

1−γ(1−γ/2)

where t′ ≥ t are two following time points, σ2
α,k is the prior variance for αk for team

k. {B(t), t ≥ 0} is standard Brownian motion starting at level 0 and τ is a loss of

memory rate parameter, common to all teams.

Finally Rue and Salvesen (2000) used a Bayesian network, using Bayesian methods

to update the estimates after each match and Markov Chain Monte Carlo techniques

to draw inferences from the network, with Premier League and Division 1 data from

1997 to 1998. Later on, Crowder et al. (2002) still with a model based on Dixon and

Coles (1997), replaced the Markov Chain Monte Carlo procedure usage, considered

as too slow, with an approximation, considering the model as a non-Gaussian state

space model with time-varying offensive and defensive strengths.

To conclude, Angelini and Angelis (2017) used a Poisson AutoRegression with eX-

ogenous covariates (PARX) to take into account the results of the previous games
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and improve the estimation of Dixon and Coles (1997), applying this technique to

English football Premier League data from 2013 to 2016.

The Bivariate Poisson distribution and the stacked Bayesian regression

model, to model score difference in a specific match

The Poisson distribution has also been extended to the bivariate case. Then, two

discrete random variables X and Y following a Bivariate Poisson distribution, with

parameters λ0,λ1,λ2, have a joint probability mass function given by:

P (X = x,Y = y) = e−(λ1+λ2+λ0) λx
1

x!
λy

2
y!

min(x,y)∑
i=0

(
x

i

)(
y

i

)
i! ( λ0

λ1λ2
)i

where X ∼ Poisson(λ1 +λ0)

Y ∼ Poisson(λ2 +λ0)

By relaxing the independence assumption between scores, Maher (1982) considered

the difference in the number of goals as two dependent parts:

Zij = Xij −Yij

with Xij = Uij +Wij and Yij = Vij +Wij

where Uij , Vij , and Wij are independent Poisson with means of (µij −ηij), (λij −ηij),

and ηij respectively, with ηij being the co-variance between Xij and Yij . After testing

a range of values, Maher (1982) used ηij = 0.2, and got considerably better results.

Despite this improvement, the understimation of draw matches is persistent.



3.1. MATCH SCORES 33

Later on, Lee (1997), using complete scores of all the 380 games played in the

1995-1996 season in English Premier League, and Karlis and Ntzoufras (1997), using

data from the 24 championships of different European countries, demonstrated the

(relatively low) correlation between the number of goals scored by the two opponents.

Based on the model of Maher (1982), Karlis and Ntzoufras (2003) preferred to add

the correlation factor directly in the distribution:

(Xij ,Yij) ∼ BivariatePoisson(λi,λj ,σ)

with log(λi) = µ+H +αi +βj and log(λj) = µ+αj +βi

where λi and λj represent respectively the expected number of goals scored for the

home and away teams, and σ is the correlation factor. µ is a constant parameter

representing the average number of goals scored per team when two teams have similar

strengths, H is the home team effect parameter, and αk and βk are the offensive and

defensive abilities of team k. The difference of goals scored during a match can then

be expressed using the variable Xij −Yij , which implies the match result.

To fix the issue of underestimating draw games, Karlis and Ntzoufras (2003) purposed

a diagonal inflated model, generalizing the multivariate zero-inflated model of Li

et al. (1999) on all draw results. Then, they included additional parameters to inflate

low-scoring draws and deflate the other probabilities. For that paper, Karlis and

Ntzoufras (2003) used Serie A data from 1991 to 1992.

Koopman and Lit (2012) used a similar model, and defined the offensive and defensive
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performances of a team as a stochastic function of time:

(Xij ,Yij) ∼ BivariatePoisson(λi,λj ,σ)

with λi,ijt = exp(H +αit +βjt) and λj,ijt = exp(αjt +βit)

αkt = µα,k +ϕα,kαk,t−1 +ηα,kt and βkt = µβ,k +ϕβ,kβk,t−1 +ηβ,kt

where, for a team k, µα,k and µβ,k are unknown constants, ϕα,k and ϕβ,k are auto-

regressive coefficients, which control the intensity to change over time since the

composition and the performance of the teams will change, and ηα,kt and ηβ,kt are

normally distributed independent error terms. αkt and βkt are determined using the

maximum likelihood estimator.

Also using score differences to deduce match results, Lam (2018) proposed a pioneering

model, based on stacked Bayesian regressions, by training it with match data in the

NBA 2013/2014 regular season and predicting the points scored by each team over

1,230 matches in the following 2014/2015 season of NBA. First, he inferred player’s

ability from player’s previous performance using exponential smoothing, arguing that

a player’s performance and his true ability are different because sometimes, players

make good use of their talents but sometimes, they do not. After, because the simple

fact of concatenating the ability vectors of all the players of a team will produce a

vector dimension that is too high, and using a dimensionality reduction methods

will not encode the domain knowledge from the sport itself, he preferred training a

Bayesian regression to estimate, for each player position, an estimator that represents

the player’s contribution to his team. Then, the team strength was expressed as
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the concatenation of those estimations rather than that of all the abilities of every

player. Now, that a quantitative comparison of two opposing teams is made, a second

regression task is used, to determine the differential points of the next game.

The use of copulas as a solution to the goal dependency of each team

Mchale and Scarf (2011) used also a discrete bivariate distribution in their discussion

over the impact of competitiveness on the dependence between the number of goals

scored by the 2 opposing teams. Since most of the work used data from national

championships, the level of the teams was balanced and, by definition, the matches

more competitive. The dependence between the goals scored by the teams was

therefore less important. Mchale and Scarf (2011) preferred to use data from 6101

international soccer matches between 1993 and 2004, in order to obtain a larger

panel of matches, including less competitive ones. But faced with the impossibility of

using a negative correlation in the studies cited above (such as Karlis and Ntzoufras

(2003)) and the obligation to use marginal Poisson distributions, they proposed to

use copulas, in order to generate different bivariate dependent discrete distributions

and to predict the scores of each team.

According to the Sklar’s theorem, the joint distribution function F of any pair of

random variables (Y1,Y2) can be expressed as follows:

F (x,y) = C (F1(x),F2(y)) , (x,y) ∈ R2

where the copula C is a multivariate cumulative distribution function, defined on
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[0,1]2, and F1 and F2 are uniform marginal probability distribution, defined on [0,1]

Mchale and Scarf (2011) used a Frank copula, which has the particularity of being

symmetrical on its lower and upper tails, and 2 Negative Binomial distributions or 2

Poisson distributions to model the bivariate random variable of the number of goals

during a soccer match. Thus, the probabilities of the results of a soccer match can

be obtained using the following relation:

P (Xij = x,Yij = y) = Cθ (F1(x),F2(y))−Cθ (F1(x−1),F2(y))

−Cθ (F1(x),F2(y −1))+Cθ (F1(x−1),F2(y −1))

with Cθ(u,v) = −κ−1 × log
(

1− (1− e−κu)(1− e−κv)
(1− e−κ)

)

where κ is a real number, used as a dependency parameter in the Frank copula.

Subsequently, Wurp et al. (2019) used a set of 5 copulas (Frank, Gumbel, Joe,

Gaussian, Clayton and its 90-rotated version), and marginal Poisson distributions,

which he proposed to penalize. With the help of 320 matches taking place during

the soccer World Cups between 2002 and 2018, he showed the interest of considering

the dependence of the goals scored by the teams with the help of copulas, in the

prediction of the score of a soccer match.

A point-based approach, to model tennis scores

Specifically designed around the rules of tennis, this type of model assumes that the

probability of winning a point is fixed throughout the match for each server. Then,
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it is possible to calculate the winning probabilities for a game, a set, a match, or

a tournament by summing up all the ways of winning. Then, Newton and Keller

(2005) defined the following probabilities, using data from the 2002 U.S. Open and

Wimbledon tournaments:

Probability

of winning

a game

pG
A = (pR

A)4
[
1+4qR

A +10(qR
A)2

]
+20(pR

AqR
A)3(pR

A)2
[
1−2pR

AqR
A

]−1

Probability

of winning

a tie-break

pT
A =

5∑
j=0

pT
A(7, j)+pT

A(6,6)pR
AqR

B

[
1−pR

ApR
B − qR

AqR
B

]−1

Probability

of winning

a set

pS
A =

4∑
j=0

pS
A(6, j)+pS

A(7,5)+pS
A(6,6)pT

A

Probability

of winning

a match pM
A =


(pS

A)2 +2(pS
A)2pS

B if it is a two out of three set format

(pS
A)3 +3(pS

A)3pS
B +6(pS

A)3(pS
B)2 if it is a three out of five set format

where pR
A, the probability that player A wins a rally when he serves against player

B is obtained using empirical data. q∗
A = 1 − p∗

A, p∗
A(i, j) are then calculated using
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recursion formulas and similarly for player B. As Newton and Keller (2005) did,

because the probability pR
A that A wins a rally on serve depends upon the opponent

B as well as upon A, if data are not available for A serving to B, data for A playing

against players similar to B can be used.

For example, Champagne and Gerville-Réache (2015) used these formulas to simulate

the season of a tennis player, in order to observe if the French tennis ranking method

is sensitive to the number of matches a player plays.

But this hypothesis does not take into account the "first game effect", i.e. that

the first game of a match is the hardest one to break, highlighted by Magnus and

Klaassen (1999) and the "hot-hand" phenomenon i.e. that the chances of winning

a point or a game increase when the player wins the previous one, or the opposite

"back-to-the-wall" effect. Then, the point independence hypothesis can be relaxed,

and it can be more realistic to use the following probability that player A wins a

point on serve as:

p̂R
A = pR

A + δpR
AB(i, j)

where pR
A is constant through the match, pR

AB(i, j) is player A’s probability of winning

a point on serve against player B, when the score is i points for player A and j points

for player B, and δ is a small weight.

Later, Barnett and Clarke (2005) proposed to use an opponent-adjustment, and

estimated an advantage or disadvantage for each player, comparing him to the
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average tour player:

fA = aAbA +(1−aA)cA

and gA = aavdA +(1−aav)eA

where fA is the percentage of points won on serve for player A, gA is the percentage

of points won on return for player A, aA is the percentage of first serves in play for

player A, bA is the percentage of points won on first serves given that the first serve

is in for player A, cA is the percentage of points won on second serves for player A,

dA is the percentage of points won on returns of first serves for player A, eA is the

percentage of points won on returns of second serves for player A and aav is the first

serve percentage for ATP tour averages. Then, by combining player statistics, they

proposed the two following formulas:

fAB = ft +(fA −fav)− (gB −gav)

and gBA = gt +(gB −gav)− (fA −fav)

where fAB is the combined percentage of points won on serves for player A against

player B, gBA is the combined percentage of points won on returns for player B

against player A, t denotes the specific tournament averages and fAB +gBA = 1.
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3.2 Match outcomes

In parallel to the development of the previously exposed models, estimating the

number of goals per team per match for soccer or the number of points per player for

tennis, an approach that directly estimates the result of a match has been developed,

using discrete choice models.

The Ordered Probit model

Initially used in bio-statistics (see Aitchison and Silvey (1957)), before finding ap-

plications in social sciences (see McKelvey and Zavoina (1975)), the ordered probit

model generalizes the probit model (see Bliss (1934)) to the case of more than two

outcomes of an ordinal dependent variable.

Then, defining Y as the dependent ordinal variable with m categories, X as the vector

of independent variables and Y ∗ as the latent dependent variable, the ordered probit

model is characterized by the following equations:

Pr(Y = j | X) =



Φ(µ0 −XT β) if j = 0,

Φ(µj −XT β)−Φ(µj−1 −XT β) if 0 < j < m,

1−Φ(µm−1 −XT β) if j = m

where β is the vector of regression coefficients, typically estimated by maximum

likelihood, and ∀ k ∈ [0, m], µk are the unknown threshold parameters to be estimated

with β. Φ is the cumulative distribution function of the standard normal distribution.
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Then, Koning (2000) used an ordered probit model with three categories (a first one

for the win, a second one for the draw and a last one for a the loss), on match results

from Dutch professional soccer league data from 1955 to 1999:

Y ∗
ij = αi −αj +hij +ηij

Y =



−1 if Y ∗
ij ≤ µ′

0,

0 if µ′
0 < Y ∗

ij ≤ µ′
1,

1 if Y ∗
ij > µ′

1

where the latent variable Y ∗
ij is a random walk determining the outcome of the game,

αi measures the strength of team i, and is independent of both the opponent and

the venue of the game, and is assumed to be constant throughout the season. hij is

the home ground advantage of team i over team j which is assumed to be normally

distributed with mean h and ηij is a mean 0 random variable that captures other

determinants of the results. The observed outcome Yij is equal to 1 if the home team

wins, 0 if the outcome is a draw and to -1 if the away team wins the game.

Capable of achieving a forecasting performance, this model has proved to be convincing

by its simplicity compared to scores forecasting models and was used by Kuypers

(2000), Forrest and Simmons (2000), Goddard and Asimakopoulos (2004) and Graham

and Stott (2008) among others, with some minor changes on the construction of the

latent variable or on the values that Yij can take.
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The Logistic model

Klaassen and Magnus (2003) predicted the outcomes of Wimbledon matches from

1992 to 1995, using a simple logit model, as follows:

Pr(A > B) = exp(λ(RA −RB))
1+exp(λ(RA −RB))

with Rk = 8− log2(RANKk) for k ∈ {A,B}

where RANKk is the ATP ranking of player k and player A is the highest ranking

player. The comparison A > B can be read as "player A beats player B" and RA

is the "expected round" of player A. The log-transformation of the ATP ranking is

preferred to its raw value because quality in tennis is considered to be like a pyramid

(the difference between the two top players is larger than that between two players

ranked 101st and 102nd). Finally, λ is estimated by a maximum of likelihood.

The Bradley-Terry model

Already studied by Zermelo (1929), the model as presented by Bradley and Terry

(1952) has found its first applications in ranking documents by relevance, reflecting

that if a document is more relevant than another for a specific user’s query, it should

be displayed earlier in the result list. The initial Bradley-Terry model is used to

model paired comparisons for a binary outcome:

Pr(i > j) = αi

αi +αj
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where αi and αj represent respectively the skill of team to i and j and the comparison

i > j can be read as "i beats j".

Having no specification in its most natural version, this paired comparison model

can be applied to any sport. For example, Mchale and Morton (2011) used it to

estimate the abilities of tennis players from a likelihood of games won and lost, using

an exponential decay function to weight more heavily more recent matches. This

likelihood was also stratified by surface to obtain surface-specific abilities.

Then, several extensions on this model have been proposed to be more accurate for

soccer cases for example, such as Rao and Kupper (1967) or Davidson (1970) to

handle ties, Agresti and Kateri (2002) to include home advantage, Huang, Weng,

and Lin (2006) to use player rankings or Critchlow and Fligner (1991) to introduce

covariates. But Cattelan, Varin, and Firth (2013) used this model on football and

basketball data for the first time, using Italian Serie A football league data from

2008 to 2009 and NBA regular season data from 2009 to 2010. They used a dynamic

Bradley-Terry model, in which they defined αi(t) as the ability of the home team i

at time t, which evolves in time following the exponentially moving average process

using only previous matches played at home:

αi(t) = λ1µi(t)+(1−λ1)αi(t−1)

with µi(t) = β1ri(t−1)

where µi(t) denotes the mean home ability of team i based only on the result of the

nearest previous match played at home by i, λ1 ∈ [0,1] is the home-specific smoothing
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parameter, β1 is a home-specific parameter and ri(t−1) is a variable measuring the

result of team i in the previous match played at home at time t−1. As the home

team i has played K matches at home before the match played at time t, it can be

possible to reformulate previous equations by back-substitution and obtain:

αi(t) = β1

λ1
K−1∑
k=0

(1−λ1)kri(t(−k−1))+(1−λ1)Kri


Then, each team’s home ability is defined with the entire previous history of home

matches, and the ability to play away is similarly modeled. Finally, Cattelan, Varin,

and Firth (2013) estimated the outcome of each match as follows:

Pr(Yk ≤ yk|Yk−1 = yk−1, . . . ,Y1 = y1) = exp(δyk
+αi(t)−αj(t))

1+exp(δyk
+αi(t)−αj(t))

where yk ∈ {0,1,2} denotes the outcome of the match (2 for home team victory,

1 for draw and 0 for away team victory) and δyk
are cut point parameters, where

δ0 < δ1 < δ2. Despite good results, Cattelan, Varin, and Firth (2013) stated that

their model only used information about the final result of previous matches, and

that using more detailed information about previous matches may result in a more

accurate fitting and better forecasts.

The rise of Machine Learning

Beckler, Wang, and Papamichael (2008) applied methods like linear regression or

logistic regression, but also ones more related to Machine Learning like Support

Vector Machines or Artificial Neural Networks on NBA data from 1991 to 1997, using
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team-centric and player-centric features. Later, Torres (2013), also used NBA data

focused on team-centric features from 2006 to 2012 with the same classifiers, and

obtained better results with linear classifiers.

For soccer, Constantinou, Fenton, and Neil (2012) used their pi-football (probabilistic

intelligence football) model on English Premier league data from 1993 to 2010. This

model is a Bayesian network model, in which they updated an objective forecast based

on teams’ strengths (determined by the team’s points) with a "subjective proximity",

based on form, psychology and fatigue of the two teams, by means of experts’ advice.

3.3 Conclusion

As previously shown with Moroney (1956), scientific expertise has been used in sports

for many years. However, before the term “sports analytics” was used, the practice

of applying mathematical and statistical principles to sports was mainly found in

statistics papers or in applied sciences like econometrics. This may explain why,

in view of the works described above, there are few specific academic journals or

conferences on the field.

But whether it is with the help of the score, or by wishing to directly predict the result

of an encounter, a common feature emerges from the works previously presented:

over time, with an increasing volume and accessibility of data and the evolution of

technical means to use this data, the quantity of data used in sports event probability

forecast models increased hand in hand with the performances of these models.
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4. Background on some learning strate-

gies

By proposing a probability distribution over a set of classes, rather than only out-

putting the most likely class that the observation should belong to, the probabilistic

classifiers have been identified as the best way to address our problem. But the simple

use of these algorithms is not sufficient to obtain high quality results. This chapter

will then present and explain algorithms and methods used to prepare and classify

data.

4.1 Probabilistic classification algorithms

“Supervised learning” as defined by DeepAI, a company that gathers all the news

and research related to Artificial Intelligence, is “a class of systems and algorithms

that determines a predictive model using data points with known outcomes, in

which the model is learned by training through an appropriate learning algorithm . . .

that typically works through some optimization routine to minimize a loss or error
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function." In contrast, “unsupervised learning” does not require known outcomes.

Classification is a supervised learning task in which the observations are classified in

a set of finite labels. This set can comprise two groups (binary classification) or more

(multiclass classification).

4.1.1 Logistic regression

Logistic regression is a Generalized Linear Model model used for classification in which

the possible outcomes of an observation are modeled using a logistic function. Initially

defined for binary classification by Berkson (1944), this model is the equivalent of

linear regression for the classification case, in which we transform the linear relation

by a sigmoid function (Figure 4.1):

ŷ(w, X) = f(w0 +w1X1 + . . .+wpXp)

with f(x) = 1
1+ e−x

∀ x ∈ R

where ŷ is the predicted output, the sigmoid function f is the cumulative distribution

function of the logistic distribution of location 0 and scale 1, p is the number of

features, w0 is the intercept, X = (X1, ...,Xp) are the features and w = (w1, ...,wp)

the weights.
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Figure 4.1: Sigmoid function

Contrary to a linear regression where the residual sum of squares is used, in logistic

regression, assuming that target yi ∈ {−1,1}, the weights w are fit using Maximum

Likelihood Estimation. Then, the following optimization problem is solved:

min
w

n∑
i=1

log
(

1+ e−yif(w0+
∑p

j=1 wjxij)
)

by means of an algorithm such as coordinate descent, which successively minimizes

along coordinate directions, updating one parameter at a time, or gradient descent

for example, updating all parameters at once, to find the minimum of the function.

In order to be able to respond to a larger number of cases, logistic regression, as

defined above for binary classification, has been extended to multiclass problems by

using a One-vs-Rest (OvR) extension or a multinomial extension. While the first

one transforms the classification problem into multiple binary problems by training
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a separate model for each class and assuming that each classification problem is

independent, the second one changes the loss function used by the algorithm into a

cross-entropy loss which sums up the losses in each class and thus supports natively

multi-class. To discourage learning a more complex or flexible model and prevents

overfitting (the fact that the model is capturing the noise), the regularization process

is also used. Then, it is possible to impose a ℓ2-penalty on the size of the coefficients

in the optimization problem using the Ridge method. By preventing the weights

from getting too large, the model is made less complex and has a lesser chance of

overfitting. Then, the optimization problem becomes:

min
w

n∑
i=1

log
(

1+ e−yif(w0+
∑p

j=1 wjxij)
)

+ λ

2

p∑
j=1

w2
j

where the complexity parameter λ ≥ 0 controls the amount of shrinkage: the larger

this parameter is, the greater the amount of shrinkage. An alternative is to impose

a ℓ1-penalty using the Lasso method, which tends to prefer solutions with fewer

non-zero efficients by reducing the number of features:

min
w

n∑
i=1

log
(

1+ e−yif(w0+
∑p

j=1 wjxij)
)

+λ
p∑

j=1
|wj |

Finally, the Elastic-Net is a linear regression model trained with both ℓ1 and ℓ2

regularizations, whose weights depend on the ρ ∈ [0,1] coefficient:

min
w

n∑
i=1

log
(

1+ e−yif(w0+
∑p

j=1 wjxij)
)

+ρ
p∑

j=1
|wj |+

1−ρ

2

p∑
j=1

w2
j
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4.1.2 Naive Bayesian

Based on the work of Bayes (1763), this algorithm assumes that all the features are

completely independent of one another, given the target y. It is the reason why this

algorithm is called "naive". For a classification case, the equation used is the Bayes’

formula:

P (y|X) = P (y)P (X|y)
P (X)

where P (A|B) is the conditional probability that event A occurs given that event

B is true, with P (B) ̸= 0. P (y) and P (X) are respectively the prior probability

of the target and the prior probability of the predictors. P (y|X) is the "posterior

probability" of y and P (Xk|y) for k = 1, . . . ,p is the "likelihood" of Xk.

Using the naive conditional independence assumption that P (Xj |y,X−j) = P (Xj |y),

the relation can be simplified to:

P (y|X) =
P (y)∏p

j=0 P (Xj |y)
P (X)

Since P (X) is constant given the input, the following classification rule can be used:

ŷ = arg max
y

P (y)
p∏

j=0
P (Xj |y)

Then, P (y) and P (Xi|y) can be estimated using the Maximum A Posterior method,

which consists in maximising the likelihood, weighted by the prior, that the model

produced the data that were actually observed.
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4.1.3 K-Nearest Neighbors (KNN)

First, developed by Fix and Hodges (1989), before being expanded by Altman (1992),

this non-parametric model simply predicts the label of an observation using a vote

between the k closest observed neighborhoods, with uniform weights or inversely

proportional to the distance. It is then necessary to find an optimal k, as shown

in Figure 4.2, usually using cross-validation, and a good distance metric, like the

Euclidean distance, the cosine similarity or the Minkowski distance, for example.

Figure 4.2: Impact of the number of neighbors in a binary classification example using a
K-Nearest Neighbors with two features

4.1.4 Support Vector Machines (SVM)

Developed at Bell labs by Cortes and Vapnik (1995), SVM are a family of machine

learning algorithms used to solve classification, regression or anomaly detection

problems. Their goal is to separate the data into classes using an optimal hyperplane,

so that the distance between the different groups of data and the boundaries that
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separate them is maximal. The closest data to the border are the "support vectors"

and the distance between the "support vectors" of different labels is known as "margin"

(see Figure 4.3 for a visual interpretation).

Then, the maximization of the margin is an optimization problem that can be solved

as follows:

min
w,ζ

1
2wT w +C

n∑
i=1

ζi

subject to


yi(wT ϕ(xi)) ≥ 1− ζi,

ζi ≥ 0

where xi ∈ Rp are the training vectors, y ∈ {1,−1}n are the correct labels, ϕ is

the identity function and the predictions are given by sign(wT ϕ(X)). Since the

hyperplane cannot separate perfectly within the correct classes, some samples are

allowed to be at a distance ζi from the correct margin boundary and the penalty

term C controls the strength of this penalty. This is then called a "soft margin".

Just like the Logistic Regression, the SVM is natively used for binary classification.

But some extensions make it possible to use this algorithm for a multi-class problem,

like the One-vs-Rest strategy presented previously or the One-vs-One approach, which

fit nclasses ∗ (nclasses −1)/2 classifiers.
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Figure 4.3: Binary classification example using Support Vector Machines with soft margin
and two features

Finally, the SVM can be extended to non linear problems, using the kernel trick,

which preprocesses the training data X by a map K : X 7→ F into a higher dimensional

space F. Then, several functions allow for the application of this technique, such as

the following ones:

Polynomial kernel: K(x,x′) = (αxT x′ +λ)d

Gaussian kernel: K(x,x′) = exp(−||x−x′||2

2σ2 )

Laplacian kernel: K(x,x′) = exp(−||x−x′||
σ

)

Radial Basis Function (RBF) kernel: K(x,x′) = (α||x−x′||2 +λ)
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4.1.5 Decision Tree

Even if it does not perform well in general, this non-parametric model can be very

performant when used with stacking methods. Despite the numerous implementations

it has undergone since its first use during the 1960’s, it is relatively simple and

easy to understand. Its functioning is relatively similar to that of the human mind:

it attempts to split data into different parts, depending on the answers given to

questions that are based on the available features.

Decision trees are built with two kinds of elements: nodes and branches. At each

node, depending on the values taken by the feature, one of the features of our data is

evaluated to either split the observations in the training process or to follow a certain

path when making a prediction. Following this node, branches represent the possible

outcomes or actions. We can then differentiate three kinds of nodes:

• the root node, which is the first node, which evaluates the variable that best

splits the data.

• the intermediate nodes, which are the nodes where variables are evaluated but

which are not the final nodes where predictions are made.

• the leaf nodes, which are the final nodes where the predictions are made.

First, the decision tree calculates the impurity of the dataset using a metric like the
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Gini index or the Entropy, expressed below:

Gini = 1−
n∑

i=1
p2(ci)

Entropy =
n∑

i=1
−p(ci)× log2(p(ci))

where p(ci) is the probability of class ci in a node.

Then, the dataset is split, and the impurity metric is calculated for each branch.

This metric is added proportionally, to get a total impurity measure for the split.

The algorithm keeps the best variable/threshold combination to build a child node

and repeats the same process on every branch. If the impurity measure of a branch

is greater than 0, then it needs further splitting, or else the branch is a leaf node.

During its training process, a decision tree tries out different splits for each variable.

For a discrete feature, all its possible values are evaluated, and for continuous features,

the mean of each two consecutive values, ordered from lowest to highest, are used as

possible thresholds (see Figure 4.4 for a visual interpretation).

To compare different splits, a decision tree uses the information gain, evaluated as

follows:

IG(Dp,f) = I(Dp)−
nleft

n
I(Dleft)−

nright

n
I(Dright)

where f is the feature concerned by the split, Dp is the parent node dataset and

Dleft and Dright are the child nodes dataset. I is the impurity criterion (Gini index

or Entropy). n is the total number of samples, and nleft and nright are the number

of samples at child nodes.
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Figure 4.4: Multinomial classification example using a Decision Tree

4.1.6 Ensemble methods

The idea behind ensemble methods is to train a combination of k > 1 weak learners,

using the same learning method (contrary to stacking, which trains learners with

different learning techniques), to create a strong learner and obtain a better perfor-

mance. Indeed, this combination of learners helps decrease variance, which indicates

how much the model can adjust to the change in data, then control for over-fitting.

It may also produce more reliable forecasts.

Bootstrap aggregating

In Bootstrap aggregating (or bagging) algorithms, the k learners are trained in parallel

and each model is built independently using k training datasets, produced by random
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sampling with replacement from the original observations. The prediction is obtained

by averaging the responses of the k learners (or majority vote for classification). This

procedure, visually detailed in Figure 4.5, reduces the variance of the prediction and

may solve the over-fitting problem.

Figure 4.5: Bagging process details

Random Forest Inspired by the work of Ho (1995), the Random Forest algorithm

has undergone many improvements before becoming the well-known version proposed

by Breiman (2001). It differs from the classical bagging procedure by also selecting a

random subset of the original set of features at each node of the decision trees used

as weak learner. This "feature sampling" makes learning quicker and if one of the

features is too strong a predictor for the target output, it avoids a strong correlation

between trees.

Extremely Randomized Trees Extremely Randomized Trees or Extra Trees were

invented by Geurts, Ernst, and Wehenkel (2006). It is simply a Random Forest in
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which each tree is trained with all the samples (and not with a bootstrap sample)

and the top-down splitting in the tree learner is randomized (and not based on an

information gain).

Boosting

According to Hastie, Tibshirani, and Friedman (2009), Boosting is one of the most

powerful learning ideas introduced in the last twenty years. In boosting algorithms,

the k learners are trained sequentially, using the k training datasets, produced by

random sampling with replacement in which some observations are overweighted.

Indeed, each learner is trained on data that consider the previous learners’ success.

Then, after each training step, the weights are redistributed to increase the weights

of mispredicted data and emphasize the most difficult cases. This way, subsequent

learners will focus on them. Finally, the prediction is obtained by using a weighted

average (or weighted vote for classification) based on the performance of each learner

on the training data. Moreover, some of the boosting techniques include an extra-

condition to keep or discard a learner depending on his performance. This procedure,

visually detailed in Figure 4.6, can reduce the bias but increase the over-fit.
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Figure 4.6: Boosting process details

Gradient Boosting Machines (GBM) Developed by Friedman (2001), GBM prefer

using the gradients in the loss function, which can be specified, rather than using

high weight data points, based on misprediction. By this specification of the cost

function, this algorithm is very generic and can be adapted to various applications.
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Moreover, contrary to other boosting algorithms, the prediction of gradient boosting

is unweighted. Highly popular in Machine Learning competitions, numerous libraries

provide efficient implementations of this algorithm, such as XGBoost, LightGBM or

CatBoost.

4.1.7 Artificial Neural Networks (ANN)

ANN is the component of artificial intelligence that aims to simulate how a human

brain functions: it uses interconnected neuron nodes like a web. Nodes, also called

"processing units", are the location where computations happen. It combines input

from the data with weights, that amplify or dampen this input, depending on the

significance of inputs with regards to the learning task. These input-weight products

are summed up, this sum is then passed through an activation function, to determine

whether the signal should progress further through the network to affect the ultimate

outcome and to what extent. Then, if the signal passes, the neuron has been

"activated". The simplest kind of ANN is the single-layer perceptron. Inspired by

earlier work by Warren McCulloch and Walter Pitts and developed in the 1950’s and

1960’s by the scientist Rosenblatt (1958), this algorithm has somewhat evolved since

its first uses for binary classification, using only the step function as an activation

function. Indeed, it is possible to build a more complex model, by connecting several

layers, composed of several neurons. The equation for a neuron can be written as

follows:

al
j = σ(

∑
k

wl
jkal−1

k + bl
j)
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where al
j is the neuron output of the jth neuron in the lth layer, σ is the activation

function (usually step, sigmoid, hyperbolic tangent or Rectified Linear Unit function),

wl
jk is the weight of the jth neuron in the lth layer over all neurons k in the (l −1)th

layer, and bl
j is the bias of the jth neuron in the lth layer.

There are several layer structures, depending on the learning task. According to

Goodfellow, Bengio, and Courville (2016), the modern feedforward network is the

culmination of centuries of progress on the general function approximation task. For

our classification problem, this kind of structure is an appropriate layer organization.

In this structure, the information moves forward from the input nodes through the

hidden nodes and toward the output nodes. As shown in Figure 4.7, each neuron is

fully connected to all neurons in the subsequent layer. When training this type of

algorithm, the goal is to find weights and biases that minimize a loss function and

compare forecasts of the model with observed targets. This can be done using two

phases: forward-propagation and backward-propagation. As previously described,

during the forward-propagation phase an output is produced after passing information

through the entire network.
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Figure 4.7: Feedforward Neural Networks structure details

During the backward-propagation, the loss associated with this backward-propagation

step is propagated backward through the network, calculating an error gradient for

each neuron in the hidden layer. These gradients are used to adjust neurons’ weights

to minimize the loss function, using methods like gradient descent. Then, each weight

is updated as follows:

wl
jk := wl

jk −α
∂C

∂wl
jk

where wl
jk is the weight of the jth neuron in the lth layer, α is the learning rate,

which controls the speed at which the model updates parameters, and C(X,w) is the

loss function. Some additional extensions, like the use of regularization or dropout
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(deleting some hidden neurons) to avoid overfitting, can also be used to improve the

way neural networks learn.

4.2 Evaluation metrics

According to Brownlee (2020), "a classifier is only as good as the metric used to

evaluate it". Evaluating the predictive performance of models is certainly the most

important thing in learning tasks. It makes a comparison of the models with all other

possible and can be an indicator of the future performance of a model. Choosing a

wrong metric can lead to a poor choice of model and mislead the expectations of the

performance of the model. To best adapt the metric to its use cases, it is common to

use sample weights to highlight the most interesting cases. Because the goal of this

thesis is to produce a probabilistic forecast, only metrics using probabilities of labels

rather than direct labels will be used. Except for the classification accuracy, which is

easily interpretable and gives an idea of the efficiency of the model to non-experts.

4.2.1 Accuracy

It is simply the ratio of the number of correct predictions to the total number of

samples:

Accuracy = Number of correct predictions
Total number of predictions made

Useful when there are equal numbers of samples belonging to each class, this metric

can become misleading when the cost of misclassification of the minor class samples

is very high. This metric lies between 0 and 1, with higher scores being better.
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4.2.2 Brier score

This loss function - for which a lower score indicates a more accurate model - is a

Mean Squared Error (MSE) between the predicted probabilities and the expected

values. Then, it summarizes the magnitude of the error in the probability forecasts,

and the predictions, that are further away from the expected probability, are more

penalized:

Brier Score = 1
N

N∑
i=1

(yij −pij)2

where pij is the predicted probability for the observation i to be in class j and yij

is the true outcome, which is equal to 1 if it is the true class and 0 otherwise. In

case of imbalanced classes, it can be more convenient to prefer the Brier Skill Score,

because it compares the Brier score with the "reference forecast", which refers to a

naive prediction, like always predicting that home teams will win in soccer games:

Brier Skill Score = 1− Brier Score
Brier Scoreref

4.2.3 Rank Probability Score (RPS)

Introduced by Epstein (1969), the RPS is identified by Murphy (1970) as "a particu-

larly appropriate scoring rule to evaluate probability forecasts of ordered variables".

Used by Constantinou and Fenton (2012) to evaluate their model to forecast soccer

game outcomes, this metric is the multiclass version of the Brier score.

RPS = 1
K −1

K∑
j=1

(
j∑

i=1
(pi −yi))2



4.2. EVALUATION METRICS 65

where pij is the predicted probability for the observation i to be in class j and yij is

the true outcome, which is equal to 1 if it is the true class and 0 otherwise.

This metric is then appropriate for soccer game outcomes for example.

4.2.4 Area Under Curve (AUC) of Receiver Operating Charac-

teristic (ROC) curve

ROC is a graph showing the performance of the classification model at all the

classification thresholds (the probability threshold, generally defined at 0.5, above

which the classification model predicts the occurrence of the concerned class). This

curve operates as a trade-off between the True Positive Rate (or Sensitivity), which

is the ratio between the samples that are correctly identified as this label and the

total number of samples that match this label, for each label and regardless of the

classification, and the False Positive Rate (or 1 - Specificity), which is, for each label,

the ratio between the samples that are not correctly identified as this label and the

total number of samples that do not match this label, regardless of the classification.

As shown in Figure 4.8, classifiers with curves closer to the top-left corner indicate a

better performance (a maximal TPR for a minimal FPR) and random classifiers are

expected to give a diagonal linear curve, indicating a TPR equals to the FPR). AUC

summarizes the performance of the classifier associated to a ROC. It is a measure of a

classifier’s ability to distinguish classes, which can sometimes better score a classifier

that underperforms in a specific region, but in practice, is a good measure of the

predictive quality of a model.
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Figure 4.8: Receiver Operating Characteristic curve

4.2.5 Logarithmic loss (Cross Entropy)

This measure takes into account the uncertainty of a prediction penalizing, for each

prediction, the farthest probabilities from the expected values:

Log Loss = − 1
N

K∑
j=1

N∑
i=1

yij log(pij)
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where pij is the predicted probability for the observation i to be in class j and yij is the

true outcome, which is equal to 1 if it is the true class and 0 otherwise. By penalizing

more severely predictions that are further away from the expected probability, the

Logarithmic loss is generally preferred to the Brier Score and is the most common

classification metric.

4.3 Hyperparameter tuning methods

While the models’ parameters are learned during the training phase, the hyperparam-

eters, which control the learning process, are simply set when the model is initialized.

Because these hyperparameters have a direct impact on how the model will perform,

getting the best possible model means finding the most optimal set of hyperparam-

eters. A Random Forest for instance, which is an ensemble model comprised of a

collection of decision trees, will present severely different performances depending on

how many decision trees will be used, or on what the maximum allowable depth for

each decision tree will be. The learning rate, the number of layers and the neurons

per layer, the activation functions or the number of epochs of neural networks are also

hyperparameters. An hyperparameter space, that is explored by the most efficient

way, has to be defined using an appropriate method. Then, models are evaluated on

validation data, and the method selects the best one, which can be represented by

the following equation:

x∗ = arg min
x∈X

f(x)
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where f(x) is an objective score and x∗ is the set of hyperparameters that minimizes

this score.

4.3.1 Cross-Validation

In order to determine the validation subset used to evaluate the performance of the

model during the hyperparameter search process, different validation techniques can

be considered.

Hold-out method

The original sample is divided into two sub-samples, usually called the training set

and the test set, respectively. Although the size of each sub-sample is arbitrary, the

training subset is commonly larger than 60%. The model is then trained on the

training subset and validated on the test sample.

k -fold method

Using this method, the original sample is divided into k sub-samples. k-1 sub-samples

are then used to train the model and the remaining sub-sample is used as the validation

subset. The operation is repeated to use each block as a validation subset. At the

end of the procedure, k performance scores are obtained. The mean and the standard

deviation of the k performance scores can then be calculated to estimate the bias and

variance of the validation performance.
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4.3.2 Navigating the Hyperparameter Space

Grid search

Arguably the most basic hyperparameter tuning method, Grid search evaluates the

Cartesian product of a specified finite set of hyperparameter values, and selects the

set which produces the best results, according to the chosen scoring method. Easily

parallelized, this method becomes inefficient for high dimensionality hyperparameter

spaces, since the number of evaluations exponentially increases as the number of

hyperparameters grows: assuming a set of k parameters, and each of them has n

distinct values, its computational complexity increases at a rate of O(nk).

Random search

This method differs from the grid search by randomly searching for hyperparameters

instead of exhaustively. Each parameter setting is sampled from a distribution over

possible parameter values. Compared to the grid search, it requires less time but

is no guarantee of finding the optimal combination of hyperparameters. It is also

easy to parallelize since each evaluation is independent. For large spaces however, as

it reduces the probability of wasting time on a small poor-performing region of the

hyperparameter space, it is in fact more efficient than the grid search method (see

Figure 4.9 for a visual explanation). Since the number of total evaluations is set to a

fixed value n before the optimization process starts, its computation complexity is

O(n).
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Figure 4.9: Grid & Random search comparison from Introduction to Deep Learning
(Varma and Das 2018)

Tree-structured Parzen Estimator (TPE)

TPE is a sequantial model-based optimization (SMBO). Unlike the two methods

previously presented, it is possible to use the information from previous experiments

to improve the next ones. The main idea is to build a probability model of the

objective function, and to use it to select the most promising hyperparameters, by

placing greater probability in regions where the true best hyperparameters lie. Then,

the aim is to maximize the selection function, like the Expected Improvement, that is

the criteria by which the next set of hyperparameters is chosen:

EIy∗(x) =
∫ y∗

−∞
(y∗ −y)Pr(y|x)dy

where x are the hyperparameters, y is the objective function score, y∗ is a threshold

value of the objective function detailed below and Pr(y|x) is the surrogate probability
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model, also called the response surface, expressing the probability of y given x.

First, TPE tries to sample the response surface by random search. Then, it splits the

observations in two groups: the best performing one and the other, defining a scoring

value y∗ as a threshold that splits the two groups. Then, it is possible to model the

likelihood probability to be in each of these groups as:

Pr(x|y) =


l(x) if y < y∗

g(x) if y ≥ y∗

By using these two different distributions of the hyperparameters and the Bayes rule

P (y|x) = P (x|y)P (y)/P (x), the Expected Improvement equation becomes:

EIy∗(x) = γ y∗l(x)− l(x)
∫ y∗

−∞ Pr(y)dy

γ l(x)+(1−γ)g(x) α(γ + g(x)
l(x) (1−γ))−1

Then, the Expected Improvement is proportional to the ratio l(x)/g(x), and therefore,

to maximize this ratio, it must prefer hyperparameters which are more likely under

l(x) than under g(x). However, this criterion allows the model, detailed in Figure 4.10,

to balance exploration versus exploitation.

TPE, in which time complexity is linearithmic (O(n logn)), is slightly slower than the

random search method, with a linear time complexity, but much better than grid

search.
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Figure 4.10: Tree-Structured Parzen Estimator details from NeuPy (Dr. Thorben Jensen)

4.4 Conclusion

Even if the efficiency of the classification algorithms previously presented is no longer

to be proved, the means to optimize their performances by tuning hyperparameters is

a good practice and the chosen evaluation metrics allow to have a good representation

of their performances, the algorithm is not the only artisan of a performing model.

And to reveal its full potential, a predictive analytics model needs to fully exploit the

data at its disposal.

By applying domain knowledge to extract relevant information, one can transform

the raw data into features that more accurately represent the problem underlying the

predictive model and perform better.
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5. Feature Engineering & Selection

Although the raw data scraped and stocked in the database seem to make sense for a

human, the creation of meaningful features for the predictive models used requires

a few selecting, transforming, and pre-processing stages. For any success in applied

machine learning, the features are key: the better they are, the more flexible, simple,

and efficient the model will be.

5.1 Feature Transformers

To change raw feature vectors into a representation that is more suitable for the

downstream estimators, it is common to use scaling, normalization, or standardization

methods for numerical features and encoding methods for categorical features, which

have all been used with the implementation proposed by the “Scikit-learn” framework.

5.1.1 Numerical transformations

Because some Machine Learning algorithms are sensitive to feature scaling, it is

common practice to rescale numerical features to use a common scale within the
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dataset. For example, algorithms that use gradient descent as an optimization

technique require the data to be scaled so that the gradient descent converges more

quickly toward the minima. Algorithms based on distances like K-Nearest Neighbors

(KNN) are also affected, because they use the distances between data points to

determine their similarity: since both features have different scales, there is a chance

that a higher weightage is given to features with a higher magnitude. This will impact

the performance of the machine learning algorithm and obviously, we do not want

our algorithm to be biased toward one feature.

Standardization Standardization is a scaling technique in which the values are

centered around the mean with a unit standard deviation. This means that the mean

of the attribute becomes zero and the resultant distribution has a unit standard

deviation. Also known as Z-score normalization, the transformation is performed

using the following formula:

X ′ = X −µ

σ

where µ and σ are respectively the observed mean and the standard deviation of the

feature.

Normalization Normalization is a scaling technique in which values are shifted

and rescaled so that they end up ranging between 0 and 1. Also known as Min-Max

scaling, the transformation is performed using the following formula:

X ′ = X −Xmin

Xmax −Xmin
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where Xmin and Xmax are respectively the observed minimum and the maximum of

the feature.

Other scaling methods can be considered for some issues, such as replacing the mean

by the median and the standard deviation by the interquartile difference in the

Standardization method, to obtain a more robust scaler for outliers.

5.1.2 Categorical transformations

Because many Machine Learning algorithms cannot directly operate on categorical

data, transforming this type of variable into a numerical form is necessary. The

two following methods are the most common, although many methods could be

considered.

The One Hot Encoder This encoding method consists in representing a categorical

variable with k categories in k binary variables in which the ith binary variable

represents the ith category:

Colour

red

blue

green

Red Blue Green

1 0 0

0 1 0

0 0 1

Table 5.1: One Hot Encoding

Traditionally, this transformer is useful for features in which no ordinal relationship

exists between categories.
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The Ordinal Encoder This encoding method consists in assigning an integer value

for each unique category of a categorical variable:

Intensity

low

medium

high

Intensity

1

2

3

Table 5.2: Ordinal Encoding

When the categories have an ordered relationship, this encoding method can be

sufficient. Then, the encoded feature is used as a numerical one.

5.2 Feature Construction

Mainly driven by an understanding of both the domain and the problem at hand, for

which proper definitions of the model’s objectives and of the specific characteristics

of the sport are necessary, the feature construction process requires an understanding

of how the sport is played and what the factors which could potentially influence

the model’s target are. This was defined through personal knowledge of the sports,

with help from the existing literature, and computed mainly using data manipulation

frameworks like Pandas or Dask.

As shown within chapter 2, the data used for this study have several granularities:

- match-level data: common to both opponents involved in the match, it can be the

importance of the match, the tournament or the league in which the match is played
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for example.

- team-level data: concerning each opponent involved in the match, it can be the

win/loss ratio since the beginning of the season for example. Usually, the different

values of a specific feature are directly compared to get an idea of the influence on

the target model.

- player-level data: concerning each player of a team for sports like soccer or basketball.

It can be the market value of players for example. Usually, the different values of a

specific feature are aggregated at a team level. For individual sports, like tennis, it is

similar to the team-level data.

- event-level data: concerning every single match-event like a pass or a shot, this

granularity is available only for soccer. They can be aggregated for each player or

each team for example.

Because our main task deals with the outcome of the match, numerical data are

aggregated at the team-level for soccer and basketball and at the player-level for

tennis, before calculating their percentage difference.

Data can also be divided between match-related sources and external sources. External

features do not concern events within the match and are known prior to the upcoming

match. The league or tournament, the teams involved, or the distance each team must

travel for the match are known. Match-related features, which concern the actual

events within a match, are then not known until the match is played. Aggregating

these features from previous matches is then necessary. For example, it is not possible

to use the service points won by a tennis player during a match, but it is possible

to use an average of this feature on different surfaces, since the beginning of the
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tournament, or since the beginning of the career of the said player.

5.2.1 Common features

Dates and times (match-level data) are, potentially, rich sources of information. Some

teams or players can have peaks of form at a specific period of the year or perform

differently depending on the date and time of the match. Therefore, features related

to the year, month, day, hour, or weekday are built from the datetime. Furthermore,

two other features are computed:

- Timestamp: which is the number of seconds that have elapsed since the 1st January

1970

- KSP date = Y ear +
year day −0.5
365+ leap year

where leap year is equal to 1 if it is a leap year and 0 else.

Then, opponents involved in the match (teams for soccer and basketball and players

for tennis), and the league or the tournament in which the match is played (except for

basketball, where only the NBA is considered) are used to create categorical features.

Skill rating features

A skill rating is a relative evaluation system of the ability of players and teams to win

a match. Based on the results of previous matches, this type of metric is frequently

used to rank the evaluated participants, like in tennis or football with respectively

the ATP or the FIFA rankings.
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Some papers have even been interested in creating new ranking systems, such as

Ley, Christophe and Van de Wiele, Tom and Van Eetvelde, Hans (2019), who built

a soccer-specific ranking system based on a Bivariate Poisson model to reflect the

teams’ current strengths. This ranking system also makes up for the shortcomings of

the FIFA ranking system, such as too much variability, which can be caused by the

choice of friendly matches for international teams, or the impossibility of using this

system to propose a match result prediction.

Other rating systems have proved to be effective in the past however, with successful

applications in the three considered sports. For the following rating systems, each

participant is assigned points such that participants with the same number of points

have the same strength. When a participant wins a match, points are gained

proportionally to the difference in rating with the opponent (the increase is low if the

winner was a favourite, high if the winner was an outsider) and similarly, points are

lost by the defeated opponent (again in proportion to the difference in rating).

The Elo rating Developed by Arpad Elo, the Elo rating system was first used to

evaluate the strengths of chess players in the 1960s. But this rating system has

been successfully adopted in many use cases, like Hvattum and Arntzen (2010) that

used a basic Elo rating and a goal-based extension for a soccer case, using the top

four divisions of the English league system from 1993 to 2008. The Elo system is

a zero-sum game in which the skill rating is a random variable that first follows

a normal distribution, before preferring a logistic distribution, to allow for heavier

distribution tails. Then, the participants’ points are updated at the end of their



CHAPTER 5. FEATURE ENGINEERING & SELECTION 80

match as follows:

elo′
i = eloi +K ×G× (O −E)

where E ∈ ]0,1[ is the expected outcome and the observed outcome is O ∈ {0,0.5,1}

respectively corresponding to a loss, a draw or a win. The K-factor is a scaling

parameter concerning the impact of more recent events. This parameter determines

the ranking volatility, which can be increased for participants who have played fewer

matches, provoking more important changes and a faster progression toward the real

skill ability. The G parameter is also a scaling parameter, which does not exist in

the original Elo rating system. It has been added to adapt to the specificities of the

different use cases by varying the points exchanged during the match, depending on

the importance of the match or the victory margin for example. The E parameter,

representing the expected outcome, is defined by the following equation:

E = 1

1+10

−drA

400

where drA = eloA − eloB is the difference in points between two participants A and

B. The closer E is to 1, the more the A participant will stand as favorite, and the

closer E is to 0, the more the B participant will stand as favorite.

Then, E can be directly used to predict a probabilistic forecast of the outcome of a

match. Inspired by Lasek (2016), who uses an ordered logit regression to estimate the

expected outcomes of soccer matches, a constant has been added in the formulas used

to calculate the expected outcomes and extend the use of Elo for soccer, including a
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draw probability. Then, the expected outcomes are defined as follows:

P (A) = 1

1+10
−c−

drA

400

P (B) = 1

1+10
−c+

drA

400

and P (draw) = 1−P (B)−P (A)

where c ∈ R+ is the constant parameter which determines the draw proportion.

In order to better fit with sport cases, some specificities are added:

• Home field advantage: because it is advantageous to play at home for soccer

and basketball cases, a home advantage is manually incorporated by adding a

constant value to the home team’s Elo:

dr = elohome − eloaway +HA[.]

where HAsoccer = 100 and HAbasketball = 87

• Margin of victory: because a large victory can be the sign of a greater per-

formance than a victory with a narrow score, a multiplier can be applied to

the amount of exchanged Elo points. In this situation, the larger the score the

team wins by, the more Elo points awarded to it at the end of the game are

maximized:
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– Soccer: According to World Football Elo Ratings, it can be useful to use

the following multiplier:

G =



1 if MOV ∈ {0,1},

1.5 if MOV = 2,

11+MOV
8 otherwise

– Basketball: According to Five Thirty Eight, the following multiplier can

be used:

G = (MOV +3)0.8

7.5+0.006× elo diff

• Year-to-Year Carry-Over: because from one season to the next a team’s level

can change (since players can be traded for example), a partial reset of the

rating can be done at the beginning of each new season. According to Five

Thirty Eight, a basketball team’s Elo points can be updated as follows:

elobeginning new season = 0.75× eloend previous season +0.25× elostart rating

• Surface specificity: because some tennis players perform better on certain

surfaces, it is possible to compute surface specific Elo points. Moreover, finding

the mean between surface specific and general Elo points will generate the best

trade-off.

The resulting models are the following:

• Tennis: Elo(base_rating = 1500, K_factor = 32, Surface_specificity =
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True)

• Soccer: Elo(base_rating = 1500, K_factor = 15, MOV = True, HA = 100,C =

0.25)

• Basketball: Elo(base_rating = 1500, K_factor = 20, Y oY _adjustment =

True, MOV = True, HA = 86)

Figure 5.1: Win rate using observed and predicted Elo on tennis ATP from 2015 to 2018

The Glicko-2 rating Invented by Mark Glickman in 1995, this system is supposed to

improve the Elo rating system by using a "rating reliability" (RD for rating deviation),

measuring the accuracy of a participant’s rating, with one RD being equal to one

standard deviation.

In this rating system, every participant has a rating r, a rating deviation RD and

a rating volatility σ. The volatility indicates the degree of expected fluctuation in

a participant’s rating. A higher value means that the participant has an erratic

performance, and a low value means that the participant’s performance is consistent.
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The participant’s strength can also be summarized in the form of an interval, with a

95% confidence interval (r ±RD).

The TrueSkill rating Developed by Microsoft Research (see Herbrich, Minka, and

Graepel (2007)), this skill-based ranking system is used for Xbox LIVE matchmaking

service. This system quantifies players’ True skill points using a Bayesian inference

algorithm. Like the Glicko-2 rating system, this system is characterized by two

numbers: the average skill of the participant (µ) and the degree of uncertainty in

the participant’s skill (σ) to define a Gaussian distribution N (µ,σ) representing the

participant’s rating. Then, the real skill of a participant is between µ±2σ with 95%

confidence.

Using the Python package developed by Lee (2018), the Gaussian distribution is

initialized with N (25,(25
3 )2). µ follows a participant’s records for wins, draws or

losses. A higher value means a higher game skill. σ follows the number of games, the

lower the value the more games have been played and the higher the rating confidence

is.

5.2.2 Tennis specific features

First, some features concerning the characteristics of a match are created. The

importance of the match can be considered as an informative feature when used with

players involved in a match, because these most certainly are not all equal when it

comes to dealing with the pressure. Then, seven features are defined to reflect this

importance:
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- the tournament category and the ATP points: not every tournament holds the

same interest and prestige. Moreover, the ATP points, that define the international

ranking of each professional player, depend on the tournament category, as shown in

Table 5.3. The tournament category is a categorical feature composed of 6 categories,

the ATP points for the tournament winner and the ATP points involved in the match

are two numerical features.

- the round order and the match order: as the tournament progresses, the pressure

for each game increases. Then, two ordinal features describe this effect.

- single draw: the bigger a tournament is, the more rounds there will be and the more

players will be involved. Then, an ordinal feature describes the number of players

involved in a tournament.

- the prize money: because it is usually proportional to the size and importance of

the tournament, this feature is a good indicator. For example, since the 2010’s, the

winner of a Grand Slam tournament receives a pay-out of more than $1,000,000,

while the pay-out for the winner of an ATP 250 is usually less than $100,000. This

continuous feature, converted in dollars, depends on both the tournament and the

season.
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Tournament category W F SF QF R16 R32 R64 R128 Q

Grand Slam 2000 1200 720 360 180 90 45 10 25

ATP Finals
+1100 +600 (200 for each round robin match win)

(1 500 max) (1 000 max) (600 max)

Masters 100 1000 600 360 180 90 45 10 (25) (10) 25 (12)

500 Series 500 300 180 90 45 (20) 20 (10)

250 Series 250 150 90 45 20 (5) 12 (5)

Masters Next Gen

Table 5.3: ATP point distribution since 2009

The fact that the surface is different depending on the tournament and that players

have different preferences for different surfaces, a nominal feature with the following

categories is used:

- grass: the ball moves at a faster pace with a lower bounce, favoring players with a

good serve and good net playing skills. It is the fastest tennis court surface.

- hard: the bounce of the ball is high and predictable, favoring players with a good

serve and base line players. This fast surface is the most commonly available in ATP

tournaments.

-clay: this surface slows down the speed of the ball, reduces the skid and increases

the bounce of the ball, favoring baseline players who use heavy spins.

Furthermore, a dummy variable indicates if the match is played outdoor or indoor.

Finally, because there were some missing values in the tournament category, a Ridge

classifier is used to impute missing values based on the tournament name, prize money,
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tournament surface and conditions (indoor or outdoor).

Some player-level features are also implemented, unrelated (detailed in Table 5.4) or

related (detailed in Table 5.5) to match performance:

Feature type Details
ATP rank number discrete [1, 2 000]

ATP ranking points discrete [0, 16 950]
ATP move positions discrete [-1 999, +1 999]

Age discrete difference between birthdate
and match date in number of days

Experience discrete difference between first apparition in ATP
and match date in number of days

Height continous in cm
Weight continuous in lbs

Body Mass Index continuous 0.45×W eight
Height/100

2

Nationality nominal {fr, usa, ... , unknown}
Handedness nominal {right, left, ambidextrous, unknown}
Backhand nominal {one, two, unknown}
PlayerSeed ordinal {1, 2, ... , 16, 17+}

Walk Over Shift dummy
1 if the player won his previous tournament
match by withdrawal before the match, 0

else

Retirement Shift dummy
1 if the player won his previous tournament
match by withdrawal during the match, 0

else

Table 5.4: Non match-related ATP player-level features
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Feature type Details
Aces ratio # aces

#total serves

Double faults ratio # double faults
# total serves

1st serve ratio # 1stserves in
# total serves

1st serve points won ratio # 1stserve points won
# 1st serve points

2nd serve points won ratio # 2ndserve points won
# 2nd serve points

Break points saved ratio # break points saved
# break points served

1st serve return points won ratio # 1stserve return points won
# 1st serve return points

2nd serve return points won ratio # 2ndserve return points won
# 2nd serve return points

Break points converted ratio # break points converted
# break points returned

Service points won ratio # service points won
# total serves

Return points won ratio # return points won
# total returns

Total points won ratio # points won
# total points

Serve rating continuous
% 1st serve + % 1st serve points won

+ % 2nd serve points won + % service games
won

+ % aces - % double faults

Return rating continuous
% 1st serve return points won

+ % 2nd serve return points won
+ % return games won + % break points

converted
Match duration continuous in minutes

Player sets, games
& tie-breaks lost discrete

Win rate continuous
Win rate head-to-head continuous

Average rounds continuous

Table 5.5: Match-related ATP player-level features
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Because the match duration feature has some missing values, an iterative imputation

based on a Bayesian Ridge regressor using the total number of games in the match is

used. Moreover, player rankings and player ATP points also have missing values for

players with no international ranking. These observations are imputed with the worst

ranking and the worst observed points (respectively 2 000 and 0). Then, the players’

age, experience, height, and weight are imputed by their respective medians, and

their nationality, handedness and backhand categories use an "unknown" category.

Finally, the match-related features are aggregated using different horizons, detailed

in Table 5.6:

Features Aggregate horizons

Win rate
Season; Career; Career & Surface;

Head-to-head; Head-to-head & Surface;
5 last head-to-head; 9 last matches

Average round Season; Career; Career & Surface; Tourney Type

Serve & Return rating Exponential Weighted Moving Average
over career and career & surface

Match duration Cumulative Sum over season and tournament

Sets; Games & Tiebreak lost Cumulative Sum over tournament

Aces; Double faults; 1st serve;
1st serve points won; 2nd serve points won;
Break points saved; Break points converted;

1st serve return points won;
2nd serve return points won;

Service; Return & Total points won

Career; Career & Surface;
Season; Season & Surface;

Tournament

Table 5.6: Aggregate horizons for match-related features
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5.2.3 Basketball specific features

To determine the importance of an NBA match, a dummy feature determining if it is

a playoff match, and a variable indicating the attendance for the match are used.

Then, for each team, a win-loss count from the beginning of the season and the

beginning of the playoff period is used. A ratio of these features is also computed.

Moreover, to identify possible fatigue for each team, a feature counting days off

between each match and one calculating the distance traveled since the previous game

are used. Another feature indicating the distance per day off is easily computed. For

each match, the following statistics are observed:

- minutes played, field goals (include both 2-point field goals and 3-point field goals),

field goal attempts (include both 2-point field goal attempts and 3-point field goal

attempts), 3-point field goals, 3-point field goal attempts, free throws, free throw

attempts, offensive rebounds, defensive rebounds, assists, steals, blocks, turnovers,

personal fouls, points, plus/minus, box plus/minus, offensive rating and defensive

rating.

Plus/Minus keeps track of the net changes in the score when a player is either on or off

the court. Invented by Daniel Myers, Box Plus/Minus estimates player performance

relative to the NBA average: since BPM is a per-100-possession stat where 0 is league

average, +5 means the player is 5 points better than an average player over 100

possessions, -2 is replacement level, and -5 is really poor. Individual Offensive and

Defensive Ratings are efficiency metrics developed by Oliver (2004). The offensive

and defensive ratings are respectively the number of points produced and allowed by

a player per hundred total individual possessions.
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Finally, using APBRmetrics, such that the variables defined by Kubatko et al. (2007),

the match-related features are also calculated, at team-level as in Table 5.7, or at

player-level as in Table 5.8 (see Table A.1 for abbreviation details):

Features Formulas
Points differential Tm Pts−Opp Pts

Projected Winning (2.7×Points differential +41)/82

Pythagorean Wins Tm Pts16.5/(Tm Pts16.5 +Opp Pts16.5)

Plays Tm FG/(Tm FGA−Tm ORB +Tm TOV )

Offensive Rebounds (ORB) Tm ORB/(Tm ORB +Opp DRB)

Defensive Rebounds (DRB) Tm DRB/(Tm DRB +Opp ORB)

Total Rebounds Tm ORB +Tm DRB/2

Field Goals (FG) Tm FG/Tm FGA

True Shootings Tm Pts/(2× (0.44×Tm FTA+Tm FGA))

Possession

0.4×
[
(Tm FGA+0.4×Tm FTA−1.07× Tm ORB

Tm ORB +Opp DRB

×(Tm FGA−Tm FG)+Tm TOV )+(Opp FGA+0.4×Opp FTA

−1.07× Opp ORB

Opp ORB +Tm DRB
(Opp FGA−Opp FG)+Opp TOV )

]
Plays 0.44×Tm FTA+Tm FGA+Tm TO

Offensive Efficiency (Tm Pts/Possession)×100

Defensive Efficiency (Opp Pts/Possession)×100

Efficiency Differential Offensive Efficiency −Defensive Efficiency

Assist (AST) ratio (Tm AST/Possession)×100

Turnover (TOV) ratio (Tm TOV/Poss)×100

Defensive Rating (Opp Pts/Opp Poss)×100

Value of Ball Possession (Tm Pts/Poss)×100

Four Factors 0.4×eFG%+0.1×TOV %+0.2×ORB%+0.15× (FT/FGA)

Table 5.7: Formulas of basketball team-level features
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Features Formulas

Pts per Shot Attempt
Pts

FGA

Herfindal Index (
Pts

Tm Pts
)2

Touches FGA+TOV +
FTA

Tm FTA/Opp PF
+

AST

0.17

Pass %
AST/0.17
Touches

×100

Shoot %
FGA

Touches
×100

Fouled %
FTA/(Tm FTA/Opp PF )

Touches
×100

TOV %
TOV

Touches
×100

Personal Foul Efficiency STL+BLK

PF

NBA Efficiency rating Pts+TRB +AST +STL+BLK − [(FGA−FG)+(FTA−FT )+TOV ]

Approximate Value NBA Efficiency rating0.75

21

Game Score [h]Pts+0.4×FG−0.7×FGA−0.4× (FTA−FT )
+0.7×AST +0.7×BLK −0.4×PF −TOV

Player Scoring Possession FG−0.37×FG×
5×MP × (Tm AST/Tm MP )−AST

5× (Tm FG/Tm MP )−AST
+0.37×AST +0.5×FT

Player Non Scoring Possession FGA−FG+0.4×FTA+TOV

Player Possession Player Scoring Possession+Player Non Scoring Possession

Individual Floor %
Player Scoring Possession

P layer Possession
×100

Table 5.8: Formulas of basketball player-level features - 1/2
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Features Formulas

Tendex [h] 1
MP

× [Pts+TRB +AST +STL+BLK − (FGA−FG)
−0.5× (FTA−FT )−TOV −PF ]

Win score Pts+TRB +STL+0.5× (AST +BLK −FTA−PF )−FGA−TOV

Unadjusted Player Effi-
ciency Rating

[h] 1
MP

×

[
3Pts− PF ×Lg FT

Lg PF
+0.5×FT × (2− Tm AST

3×Tm FG
)+2/3×AST

+FG×

2−
(2/3−

0.5× (Lg AST/Lg FG)
2× (Lg FG/Lg FT ) )×Tm AST

Tm FG

+Lg V BP

×
[
Lg DRB%× [2×ORB +BLK −0.2464× (FTA−FT )− (FGA−FG)−TRB]

+0.44×Lg FTA×PF

Lg PF
− (TOV +ORB)+STL+TRB −0.1936× (FTA−FT )

]]

Player Efficiency Rat-
ing

uPER ×
Lg Pace

Tm Pace
×

15
Lg uPER

Player Impact Esti-
mate

[h](Pts+FG+FT −FGA−FTA+DRB +ORB/2+AST +STL+BLK/2−PF −TOV )
/(Total P ts+Total FG+Total FT −Total FGA−Total FTA+Total DRB

+Total ORB/2+Total AST +Total STL+Total BLK/2−Total PF −Total TOV )

Points Created [h]Pts+AST × (2−Lg V BP )+(TRB +STL+BLK)×V BP
− [(FGA−FG)+(FTA−FT )+TOV ]×Lg V BP −0.5×Lg V BP ×PF

Points Produced
Offensive Rating × (FGA+0.44×FTA+TOV )

100

Points Allowed
DRTG

100 ×Tm Possession×
0.2×MP

Tm MP/5
Net Points Points Produced−Points Allowed

Table 5.8: Formulas of basketball player-level features - 2/2

Because the features computed and observed above are match-related, they are

aggregated using means and sums going back to the beginning of the player’s career,

the beginning of the season and the previous three, five and nine matches played. In

addition, an exponential weighted moving average is used. Concerning player-level
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features, they are also aggregated to team-level using the sum, mean, weighted mean

(by minutes played), median, minimum, maximum and standard deviation.

5.2.4 Soccer specific features

Concerning match-level features, weather conditions are defined by an ordinal feature

from 0 to 5 with no information on how the values are determined, and the attendance

in the stadium uses a continuous feature. To complete the missing values of these two

variables, a K-Nearest Neighbors is used, in which each missing value is imputed using

the mean value from 15 nearest neighbors found in the training set. Features used to

train this imputer are the team IDs, the division, the datetime, the attendance if the

weather code is the target and inversely if the target is the attendance.

For team-related features, goals and goal differences are computed using match scores,

and a Boolean feature determines whether the match is opposing two rival teams

or not. A continuous feature, defined by league and by season, indicates UEFA

points, which are based on points obtained by all clubs in a given season in the

UEFA Champions League (UCL), UEFA Europa League (UEL) and UEFA Europa

Conference League (UECL). Five ordinal features are built from the starting formation,

which defines how many players are playing at each position line (defense, defensive

midfield, midfield, offensive midfield, offense). Additionally, the team manager is used

as a categorical feature and some information on the defensive and offensive tactics

are also used as ordinal features. Their encodings are described in Table 5.9.
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Features Details Encoding

Build up play speed the speed in which attacks are put
together

slow: 1
balanced: 2

fast: 3

Build up play dribbling duel-oriented play
little: 1

normal: 2
lots: 3

Build up play passing passing distance and support from
teammates

short: 1
mixed: 2
long: 3

Build up play positioning team’s freedom of movement in the
1st two third of the pitch

free: -1
organized: 1

Chance creation passing amount of risk in pass decision and
run support

safe: 1
normal: 2
risky: 3

Chance creation crossing tendency / frequency of crosses into
the box

little: 1
normal: 2

lots: 3

Chance creation shooting tendency / frequency of shots taken
little: 1

normal: 2
lots: 3

Chance creation positioning team’s freedom of movement in the
final third of the pitch

free: -1
organized: 1

Defence pressure how high up the pitch the team will
start pressuring

deep: 1
medium: 2

high: 3

Defence aggression team’s approach to tackling the ball
possessor

contain: 1
double: 2
press: 3

Defence team width how narrow or wide the team shape
is set up when they does not have

possession of the ball

wide: 1
normal: 2
narrow: 3

Defender line shape and strategy of the defence offside trap: -1
cover: 1

Table 5.9: Soccer tactic encoding
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Also using video game data, fifteen discrete features, ranging from 0 to 100 (or 0 to

10 for a couple of features), and three continuous features are used:

• discrete

– Overall, Attack, Midfield and Defensive ratings

– Build up play speed, build up play speed, build up play dribbling and

build up play passing

– Chance creation passing, chance creation crossing and chance creation

shooting

– Defence pressure, defensive aggression and defensive team width

– International and domestic prestige

• continuous

– Transfer budget

– Starting 11 and whole team average age

Finally, by using event data, it is possible to aggregate the following event-related

features for each team at each match:

• Aerial challenges and Won Aerial challenges (with offensive and defensive

specification): when 2 players challenge the possession of the ball in the air

against each other. The player that wins the ball is deemed to have won the duel.

When more than two players are involved, the closest player to the challenge

winner is given an aerial challenge loss.

• Clearances: a defensive action where a player kicks the ball away from his own

goal with no intended recipient.
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• Corners and accurate corners: when the ball has left the field of play resulting

in a corner. A won corner is collected for the team being awarded a corner, and

a lost corner for the team that conceded a corner in favor of the opposing team.

A taken corner is added when the player taking the corner has carried out the

action, usually by doing a cross or a pass.

• Dispossessed: when a player is in possession and not attempting to beat a

tackler.

• Attempted and won dribbles: an attempt by a player to beat an opponent when

he has possession of the ball. A successful dribble means the player beats the

defender while retaining possession, unsuccessful ones are when the dribbler is

tackled.

• Errors: when a player makes an error, which leads to a goal or a conceded

shot. Also used for spills and attempted claims or saves by a goalkeeper which

directly leads to a second attempt to score.

• Fouls committed: any infringement that is penalised as foul play by a referee,

except offsides.

• Interceptions: when a player reads an opponent’s pass and intercepts the ball

by moving into the line of the intended pass.

• Caught offsides: awarded to the player deemed to be in an offside position

where a free kick is awarded. If two or more players are in an offside position

when the pass is played, the player considered to be the most active and trying

to play the ball is given offside.

• Total and accurate passes: any intentional played ball from one player to
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another. Passes include open play passes, goal kicks, corners and free kicks

played as pass – but exclude crosses, keeper throws and throw-ins.

• Key passes: the final pass or pass-cum-shot leading to the recipient of the ball

having an attempt at goal without scoring.

• Blocked shots: when any clear attempt to score that is going on target and is

blocked by an outfield player, where there are other defenders or a goalkeeper

behind the blocker.

• Shots off target: when any clear attempt to score misses the goal post without

making contact with another player, or would have missed the goal post if not

stopped by a goalkeeper’s save or by an outfield player, or even if it directly

hits the frame of the goal post and a goal is not scored.

• Shots on target: when any goal attempt that goes into the net regardless of

intent or would have gone into the net but for being saved by the goalkeeper

or is stopped by a player who is the last-man with the goalkeeper having no

chance of preventing the goal.

• Total shots

• Missed tackles: when a player attempts to challenge for the ball and does not

make it.

• Successful tackles: when a player connects with the ball in a ground challenge

where he successfully takes the ball away from the player in possession.

• Total and accurate throw-in

• Touches: sum of all events where a player touches the ball, so excludes things

like lost aerial or lost challenge.
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• Deep completed passes: a pass that is targeted to the zone within 20 meters of

the opponent goal.

• Offensive passes: a pass from the opposition pitch.

• Defensive actions: tackles, interceptions, challenges (failed tackles) or fouls

within its pitch.

• Passes per defensive actions: the number of offensive passes allowed by the

defending team by the total number of defensive actions.

• Key passes: a final pass or pass-cum-shot leading to the recipient of the ball

having an attempt at goal without scoring.

• Assists: a final touch leading to the recipient of the ball scoring a goal. If the

final touch (as defined in bold) is deflected by an opposition player, the initiator

is only given a goal assist if the receiving player was likely to receive the ball

without the deflection having taken place.

• Chances created: key passes plus assists.

• Chances created+ = #shots
minutes played ×90×(1+ #goals

#shots)+ #key passes
minutes played ×90×(1+ #assists

#key passes)

Then the mean, the sum, the weighted mean by minutes played by each player, the

median, the minimum, the maximum and the standard deviation of those features

are calculated for each team. To conclude, because those features are match-related

they are also aggregated using expanding, rolling mean and sum, since the beginning

of the available data, the beginning of the season and the previous three, five and

nine matches. Furthermore, cumulative sums since the beginning of the available

data and the season are used, as well as an exponential weighted moving average.
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Expected Goals (xG)

Despite the debate over the origin of this metric, Macdonald (2012) was the first to

use the term «expected goals», in a paper on ice hockey, before the concrete use of

this concept by Lucey et al. (2015) with football data.

The expected goal is an estimate of the number of goals a team should score in a

match. Each shot has an associated goal probability, based on the following variables:

• the distance: in general, the closer you get to the goal, the higher the xG score.

• the angle: in general, the sharper the shot angle, the lower the xG score.

• body part used for the shot: right foot, left foot or head.

• shooting situation: open play, free-kick or penalty.

• information pass type before the shot: location, angle, speed etc...

These event probabilities are then summed up to obtain the non-decreasing expected

goal curves of each team during the match. This measure allows to evaluate the

performance of players and teams. In a sport such as soccer, where the occurrence

of goals is low, the final score does not always provide a true picture of the match

and the performance of the teams. By statistically measuring the quality of goal

opportunities created and conceded, it seems possible to have a more detailed analysis

of the match and can be a good feature to predict the result of an upcoming match,

as shown by Steffen, Gerville-Réache, and Bisoffi (2019).

Then, using the Python package created by Robberechts and Davis (2020), to train and

analyze expected goal models in soccer, some xG models are trained using Whoscored

events data. Because some pre-initialized models, with optimal hyperparameters, are
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available with Soccer xG, it is not necessary to use a validation set. Then, the 2011

to 2016 seasons are used as a training set, and the next one as a test set, on which

classification metrics are computed as shown in Table 5.10.

Features Model Brier score AUC of ROC residual area of ROC

Advanced XGBoost 0.074 0.82 382

Advanced Logistic Regression 0.076 0.8 561

Basic XGBoost 0.077 0.79 488

Basic Logistic Regression 0.078 0.78 670

Table 5.10: Soccer xG model results

in which basic features are:

• categorical: body part

• numerical: (x, y) location, distance to goal and shot angle

and advanced features add the following features:

• categorical: body part, type and success of the two previous passes before the

shot

• numerical: (x, y) location, distance to goal and shot angle of the two previous

passes before the shot

Then, the XGBoost model with advanced features is chosen to predict xG score for

soccer actions.

The corresponding ROC and calibration curves, and the heatmap, highlighting score
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probabilities depending on the pitch location, are depicted in Figure 5.2 and Figure 5.3.

Figure 5.2: xG ROC and calibration curves

Figure 5.3: xG heatmap
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Valuing on-the-ball actions

The xG previously presented only consider shots and goals, which are very rare events,

representing only 2% of all events during a match, and are rarely practiced by some

players like the defenders. So other metrics make it possible to assign to each action

performed by a soccer player a value that reflects the usefulness of this action to win

the game. But two reasons make this difficult for actions that are not shots:

• Just considering the direct effect of an action is not a good idea, because

actions can produce longer lasting effects: a player should not just be rewarded

for moving the ball into a good shooting position, but also for moving into

threatening positions which can lead to a high probability of the ball reaching

an even better position for shooting.

• Even knowing the longer lasting effects, knowing how to assign credit to each

action in a sequence is not obvious. It would seem undesirable to penalize a

great pass that does not lead to a shot.

The idea is to consider a soccer match as a sequence of n consecutive on-the-ball

actions [a1,a2, . . . ,an] (e.g., [dribble,pass, . . . , interception]), and to assign a numeric

value to each of these actions. Rather than directly assigning values to actions, the

idea is to assign values to game states, and express the action usefulness as the

difference between the post-action game state and the pre-action game state:

U(ai) = V (Si)−V (Si−1)



CHAPTER 5. FEATURE ENGINEERING & SELECTION 104

where V captures the value of a particular game state, Si−1 = {a1, . . . ,ai−1} is the

pre-action game state, and Si = {a1, . . . ,ai−1,ai} is the post-action game state.

As shown by Van Roy et al. (2020), xT and VAEP approaches can be complementary

candidates to value actions in this way.

Expected Threat (xT) The expected threat or xT model is a possession-based

model. It divides matches into possessions, which are periods of the game where the

same team has the control of the ball. The main idea is that players perform actions

with the intention to increase their team’s chance of scoring and the chance of scoring

can be captured by only considering the location of the ball.

Then, as shown in Figure 5.4, the pitch is divided into a M ×N grid, in which each

zone z is assigned a value xT (z) that reflects how threatening teams are at that

location, in terms of scoring.

The value of each zone is learned with a Markov decision process, initializing all zones

at zero, and using the following formula:

xTx,y = (sx,y ×gx,y)+(mx,y ×
M∑

z=1

N∑
w=1

T(x,y)→(z,w)xTz,w)

where (x,y) is a location on the grid, sx,y the percentage of attempting a shot in this

location, mx,y is ther percentage of moving the ball, and gx,y is the probability of

scoring in this location. T(x,y)→(z,w) is the move transition matrix, expressing the

probability to move from (x,y) to (z,w).
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Figure 5.4: 16×22 xT interpolated heatmap

Valuing Actions by Estimating Probabilities (VAEP) Slightly different, the

VAEP, introduced by Decroos et al. (2019), supposes that each player tends to

perform an action with the intention to increase their team’s chance of scoring a goal

in the near future or to decrease their team’s chance of conceding a goal in the near

future:

V (Si) = Pscore(Si, t)−Pconcede(Si, t),

where Pscore(Si, t) and Pconcede(Si, t) are the probabilities that team t which possesses

the ball in state Si will respectively score or concede in the next 10 actions.

To estimate Pscore(Si, t) and Pconcede(Si, t), a gradient boosted binary classifier is

trained on historical data to predict how a game state will turn out based on what
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happened in similar game states that arose in previous games. Then, each game

state is represented with characteristics of the action itself such as its location and

type, or the distance and the angle to the goal, the context of the action, such as

the current tempo of the game, using features like distance covered and time elapsed

between consecutive actions. The current game context is also used, by looking at

the remaining time in the match and the current score differential.

Then, Pscore(Si, t) has a positive label if the team that possesses the ball after the

action ai scores in the subsequent k actions, and Pconcede(Si, t) has a positive label if

the team that possesses the ball after action ai concedes a goal in the subsquent k

actions. Then two models are independently trained, and the change in scoring and

conceding probabilities can be expressed as follows:

∆Pscore(ai, t) = P k
score(Si, t)−P k

score(Si−1, t)

∆Pconcede(ai, t) = P k
concede(Si, t)−P k

concede(Si−1, t)

Finally, the total VAEP can be expressed using the following formula:

VVAEP(ai) = ∆Pscore(ai, t)−∆Pconcede(ai, t)

Then, the example of an action is visually described, in order to identify the impact

of the characteristics of an action on the probability of scoring or taking a goal in the

next actions, and the resulting VAPE, with the Figure 5.5.

As other match-related features, xG, xT and VAEP are aggregated at team level, and

on previous matches, with the same operations previously expressed.
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Figure 5.5: VAEP of victory goal of MHSC-OGCN during the 2017/2018 season

5.3 Feature Selection

Unfortunately, the treatments outlined above tend to create a large number of features,

not all of which are necessarily useful. Selecting a subset of relevant features can make

training faster (or feasible in some cases), can increase the performance of our models

by removing irrelevant/non-informative features, which would introduce unnecessary

noise, and make the model simpler, therefore easier to understand and to explain. To

this end, three types of feature selection can be used.

Filter based

Faster and less computationally expensive, these methods, whose process is detailed

in Figure 5.6, select features based on statistics, independently from the machine

learning algorithm model. Then, only predictors with important relationships with

the target variable would be included in the model.



CHAPTER 5. FEATURE ENGINEERING & SELECTION 108

Figure 5.6: Filter method design

Following this, a correlation measure can be used, to quantify the relationships

between the features and the target variable. The xi correlation metric, developed

by Chatterjee (2020), is used, because it is as simple as the classical measures of

statistical association (like Pearson’s correlation coefficient, Spearman’s ρ or Kendall’s

τ), it is a consistent estimator of some measure of dependence which is 0 if and only if

the variables are independent and 1 if and only if one is a measurable function of the

other, and it has a simple asymptotic theory under the hypothesis of independence,

like the classical coefficients. Moreover, it can also detect associations that are not

monotonic and be used with one-hot encoded categorical variables.

Such a coefficient is presented below:

For (X,Y ) a pair of random variables, where Y is not a constant, data are arranged

as (X(1),Y(1)), . . . ,(X(n),Y(n)) such that X(1) ≤ ·· · ≤ X(n) and supposing that Xi’s

have no ties:

ξn(X,Y ) := 1− 3∑n−1
i=1 |ri+1 − ri|

n2 −1

where ri is the rank of Y(i), that is the number of j such that Y(j) ≤ Y(i).

In the case of ties among the Xi’s, an increasing rearrangement by uniformly breaking

ties at random is used:

ξn(X,Y ) := 1− n
∑n−1

i=1 |ri+1 − ri|
2∑n

i=1 li(n− li)
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where li is the number of j such that Y(j) ≥ Y(i) and there are no ties among Yi’s.

Unfortunately, this kind of method looks at individual features to identify its relative

importance, feature dependencies are then ignored.

Using the xi correlation metric, 62, 20 and 66 features were respectively selected for

tennis, basketball and soccer (see Table A.2, Table A.3, Table A.4).

Wrapper based

Wrapper methods, whose process is detailed in Figure 5.7, select features using a

machine learning algorithm that is fitted on a given subset. Then, it measures

the "usefulness" of features, by comparing the algorithm performance with different

combinations of features.

Figure 5.7: Wrapper method design

Initially implemented on the statistical programming language R by Kursa and

Rudnicki (2010), Boruta is an all-relevant feature selection algorithm, which is very

useful when we have no idea about which one is important in relation to our target

variable. Contrary to many other popular wrapper methods, it is not necessary to
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define a feature importance threshold at which the variables are selected, the Boruta

algorithm does it all by itself.

The idea behind Boruta is very simple. First, the training dataset is duplicated, and

the values of each column are randomly shuffled to obtain permuted features, also

called shadow features. Then, a machine learning estimator, such as a tree ensemble

method (like Random Forest) which can capture non-linear relationships between

predictors, is trained with the original and shadow features. The feature importance

describes which features are relevant by averaging over all the trees in the forest

how each feature decreases the impurity of the splits of each original feature. It

is then compared to the highest importance recorded among the shadow features.

If the feature importance is higher than this threshold, the feature is flagged as a

"hit". With this process, features are not compared between themselves, but with a

randomized version of themselves, and are defined as "useful" if it can do better than

the best randomized feature.

This process, visually detailed in Figure 5.8, is repeated n times, with a new random

shuffle, and new shadow features for each trial. Then, a "hit" vector is obtained by

feature.

Because each trial can give a binary outcome (hit or not hit) for each feature, the

experiment follows a binomial distribution, shown in Figure 5.9, with parameters

n trials and probability 0.5, defining the maximum level of uncertainty about the

feature. Then, using the probability mass function of this binomial distribution, 3

areas can be detected:
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Figure 5.8: Boruta process

• a refusal area, considered as noise and dropped, with several hits located at the

lowest tail of the probability mass function.

• an irresolution area, indecisive features, with a number of hits located at the

centre of the probability mass function.

• an acceptance area, considered as predictive and kept, with a number of hits

located at the highest tail of the probability mass function.

These tails are determined by an α parameter, generally fixed at 5%, which determines

the part of the distribution considered as tail.

Even if this kind of method is computationally costly and can be time-consuming, it

considers feature dependencies. Unfortunately, since it is a based machine learning

model there is a risk of over fitting.
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Figure 5.9: Probability Mass Function of a Binomial distribution with n = 100, p = 0.5 and
decision areas with α = 0.005

Using this algorithm, 29, 85, 94 features are respectively selected for tennis, basketball

and soccer cases (see Figure A.1, Figure A.2, Figure A.3).

Embedded

Embedded methods, whose process is detailed in Figure 5.10, combine the qualities

of both filter and wrapper methods, by integrating the feature selection as part of

the learning algorithm. Thus, it is possible to use regularization techniques, like the

Lasso, the Ridge or the Elastic Nets methods, with Logistic Regression, presented

in chapter 4, or an algorithm approach, like the tree-based algorithm does, by using

only some features to split the data.
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Figure 5.10: Embedded method design

5.4 Conclusion

Finally, mainly using Pandas, a Python package that provides a fast, flexible and

powerful open source data analysis / manipulation tool, “Scikit-learn”, a Python

module for machine learning, and Dask, a flexible parallel computing library to manage

large volumes like soccer event data, 130, 2125 and 120 features are respectively built

for tennis, basketball and soccer, before categorical encoding.

Because many classification algorithms need numerical inputs, this number of features

can reach 574, 5240 and 1901 for tennis, basketball and soccer respectively, after a

one-hot encoding of categorical features.

This preprocessing takes about 1.5 hours for tennis, 1:45 hours for basketball and

3.5 hours for soccer, using 12 CPUs and 32 GBs of memory locally for tennis and

basketball, and an AWS instance of 96 CPUs and 384 GBs for soccer, due to the

large volume of data generated by the event data.
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6. Experiments & Results

There are many ways of responding to our classification problems that can be con-

sidered. Although some of the processing steps are not challenged, such as feature

building, it is possible to compare the effectiveness of the transformations of some

features like the scaling of numerical features, or the encoding of categorical features,

the selected subset of features, the classifier or even the hyperparameters used to ini-

tialize it. Through multiple experiments using the different ways previously described,

it is possible to determine the best model to use to maximize the performance metric

of interest.

6.1 Benchmark

Theoretically, a sport odd should be fixed as the inverse of the probability that the

event E, concerned by the bet, occurs:

Fair OddE = 1
P (E) ∀ E ∈ Ω
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where Ω is the set of all possible outcomes and P (Ω) = 1

In order to generate revenues, bookmakers apply a commercial margin on their odds:

Commercial OddE = Fair OddE −Commercial Margin

In addition to the recovered data detailed in chapter 2, some observed odds have

been downloaded from Tennis-Data.co.uk, Sports Book Reviews Online and Football-

Data.co.uk. As previously expressed, these odds, from Bet365, the main bookmaker in

the United Kingdom, for soccer and tennis, and from a Nevada land-based bookmaker,

for basketball, include a commercial margin shown in Figure 6.1.

Figure 6.1: Bookmakers’ commercial margins
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Using the assumption that this margin is evenly distributed among all the selections

of a bet, or the events X of the set of all the possible outcomes Ω, the following

approximation is used:

Pbookmaker(E) ≈
1/Commercial OddE∑

X∈Ω 1/Commercial OddX

where ∑X∈Ω Pbookmaker(E) = P (Ω) = 1

Then, evaluation metrics is computed, on a test set, using these probabilities. A

benchmark of existing bookmakers is built and can be compared to the forecast of

the probabilistic model.

Basketball

Concerning basketball, the evaluation metrics calculation is released depending on

whether or not the match takes place during the playoffs.

Season Playoffs n Log Loss Brier ROC AUC Accuracy

2017 0 1230 0.592 0.407 0.734 0.686

2017 1 82 0.570 0.386 0.688 0.732

2017 - 1312 0.591 0.406 0.733 0.689

2018 0 1230 0.593 0.407 0.731 0.672

2018 1 82 0.630 0.432 0.689 0.634

2018 - 1312 0.595 0.409 0.729 0.669

Table 6.1: Bookmaker metrics on NBA

The probabilities induced by the bookmakers’ odds seem to be rather constant,

whether the match takes place in the playoffs or not, and over time.
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Tennis

Regarding tennis, the evaluation metric calculation is released according to the main

match characteristics, i.e. the surface, the quality of the tournament and the progress

within the tournament.

Season Surface Series Round n Log Loss Brier ROC AUC Accuracy
2017 Clay - - 803 0.596 0.411 0.742 0.665
2017 Grass - - 323 0.571 0.39 0.77 0.696
2017 Hard - - 1500 0.585 0.402 0.753 0.679
2017 - ATP 250 - 1104 0.621 0.432 0.711 0.645
2017 - ATP 500 - 434 0.588 0.404 0.751 0.672
2017 - Masters 1000 - 566 0.603 0.416 0.734 0.665
2017 - Masters Cup - 15 0.655 0.448 0.687 0.666
2017 - Grand Slam - 508 0.491 0.322 0.843 0.761
2017 - - Round Robin 12 0.572 0.396 0.736 0.666
2017 - - 1st Round 1173 0.593 0.409 0.742 0.670
2017 - - 2nd Round 752 0.575 0.391 0.769 0.692
2017 - - 3rd Round 176 0.587 0.404 0.752 0.664
2017 - - 4th Round 48 0.506 0.328 0.834 0.729
2017 - - Quarterfinals 264 0.606 0.421 0.727 0.666
2017 - - Semifinals 134 0.588 0.404 0.75 0.671
2017 - - Final 67 0.59 0.403 0.757 0.656
2017 - - - 2626 0.587 0.403 0.752 0.677
2018 Clay - - 808 0.599 0.415 0.735 0.678
2018 Grass - - 322 0.597 0.412 0.74 0.658
2018 Hard - - 1494 0.589 0.405 0.751 0.689
2018 - ATP 250 - 1105 0.635 0.446 0.687 0.630
2018 - ATP 500 - 431 0.592 0.406 0.752 0.719
2018 - Masters 1000 - 566 0.595 0.409 0.743 0.683
2018 - Masters Cup - 15 0.65 0.457 0.758 0.666
2018 - Grand Slam - 507 0.499 0.328 0.84 0.761
2018 - - Round Robin 12 0.552 0.372 0.861 0.75
2018 - - 1st Round 1176 0.589 0.405 0.751 0.691
2018 - - 2nd Round 747 0.605 0.42 0.729 0.665
2018 - - 3rd Round 176 0.518 0.346 0.83 0.744
2018 - - 4th Round 48 0.501 0.318 0.831 0.812
2018 - - Quarterfinals 264 0.627 0.436 0.707 0.655
2018 - - Semifinals 134 0.588 0.406 0.741 0.664
2018 - - Final 67 0.673 0.48 0.644 0.582
2018 - - - 2624 0.593 0.409 0.744 0.682

Table 6.2: Bookmaker metrics on ATP
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Figure 6.2: Evaluation of probabilities induced by Bet365 tennis odds

Therefore, we notice almost similar performances, depending on the surface on which

the match takes place, with a very slightly lower quality for clay matches.

Soccer

Finally, for soccer, performance metrics are split depending on the championship (see

Table 6.3).

As shown with Figure 6.3, the probabilities induced by the bookmakers’ odds reveal

better performances on Italian and English matches.
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Season Championship n Log Loss RPS ROC AUC Accuracy

2017 Bundesliga 306 0.998 0.596 0.651 0.503

2017 Premier League 380 0.945 0.560 0.704 0.547

2017 Ligue 1 380 0.953 0.566 0.685 0.547

2017 Serie A 380 0.892 0.522 0.736 0.597

2017 La Liga 380 0.960 0.571 0.657 0.550

2017 - 1826 0.947 0.562 0.690 0.551

2018 Bundesliga 306 0.963 0.571 0.674 0.536

2018 Premier League 380 0.893 0.522 0.714 0.584

2018 Ligue 1 380 1.005 0.603 0.652 0.482

2018 Serie A 380 0.945 0.559 0.721 0.550

2018 La Liga 380 1.010 0.603 0.652 0.487

2018 - 1826 0.963 0.571 0.688 0.527

Table 6.3: Bookmaker metrics on 5 main European soccer leagues

Figure 6.3: Evaluation of probabilities induced by Bet365 soccer odds
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6.2 Data split

Overfitting is the fact of producing a model that fits too closely or exactly into the

set of data used during the training of the model, running the risk of not fitting with

additional future observations. Thus, it is the noise, or the irrelevant information

or randomness, in the training data that are learned, to minimize the error of this

set, and not the signal, or the true underlying patterns of data, which are more

general, and more useful to generalize this learning. To detect this issue, the dataset

is split in a training set, to train and tune the model, and a test set, to evaluate

the performance. By comparing the performance of those two sets, models with a

satisfactory goodness of fit can be identified: it will be those which had the best

bias-variance tradeoff. On the other hand, overfitting models, which do much better

on the training set than the testing set, are discarded.

To prevent this overfitting problem, the cross-validation method can be used. By

partitioning the training dataset into multiple mini train-test splits, models can be

tuned, like defining hyperparameters, and overfitting issues can be avoided by keeping

the test set as a truly unseen dataset to select the final model. Then, a variation of

the k-fold method, described in section 4.3.1, is used. Detailed in Figure 6.4, this

method respects temporality of our data: in the kth split, the k oldest folds, are used

as train set and the (k +1)th fold, as test set.

For this content, the test set, used to evaluate the performance of the selected model

and get an idea of its performance in production usage, is fixed as the two last seasons
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Figure 6.4: Temporal 3-fold cross-validation split

(2017 and 2018). In addition, the 2015 and 2016 seasons will be used as validation

set, with a temporal 4-fold cross validation split.

6.3 Hyperparameter tuning

In order to identify the best model to predict the event probabilities, the algorithms

detailed in chapter 3, and the data obtained after the preprocessing presented

in chapter 5 and split following section 6.2’s process, have been used. Moreover,

the hyperparemeter search algorithms are used with “Optuna”, an open source

hyperparameter optimization framework to automate hyperparameter search, for

models implemented with “Scikit-learn”, “XGBoost” or CatBoost. For multi-layer

perceptron, “Auto-Keras”, an efficient neural architecture search system based on

Keras is used. To go even further, numerical features are standardized, except for
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tree-based algorithms, for which it is useless, and categorical features are one-hot

encoded.

Logistic regression is fitted with and without feature selection, with ℓ1, ℓ2 and elastic

net regularizations, with different solvers to resolve the optimization problem and

using a logarithmic scale to explore different inverses of the regularization strength,

ranging from 0.0001 to 100, during a grid search.

As can be seen in table 6.4, the best results are provided with an ℓ2 regularization using

a Logistic regression, to reach a log loss of 0.569. This experiment, also conducted on

basketball and soccer data, resulted in a log loss of 0.595 and 0.969, using the saga

resolver and the elasticnet regularization, with an inverse of regularization strength

of 0.001 and an ℓ1 ratio of 0.3 for the basketball case, and with the top 66 features

according to xicor coefficient on the soccer one.
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Selection method /

Regularization

Solver Inverse of

regularization strength

L1 ratio Mean time (in sec) Std time Mean Log Loss Std Log Loss

- lbfgs - - 8 0.34 0.5723 0.009

- sag - - 22.65 1.54 0.5721 0.0086

- saga - - 22.2 1.94 0.5707 0.0089

xicortop 65 saga - - 12.35 0.65 0.5739 0.0083

l1 liblinear 10 - 54.3 3.43 0.5751 0.0081

l1 liblinear 0.1 - 17.46 3.97 0.5693 0.0093

l1 liblinear 0.01 - 6.35 0.53 0.5708 0.0083

l1 saga 1 - 62.52 1.77 0.5702 0.009

l1 saga 0.1 - 38.11 1.26 0.5692 0.0093

l1 saga 0.01 - 14.05 1.07 0.5708 0.0083

l2 liblinear 0.1 - 34.39 2.04 0.5708 0.0087

l2 liblinear 0.01 - 17.58 1.39 0.5689 0.0089

l2 liblinear 0.001 - 7.63 0.89 0.5706 0.0080

l2 lbfgs 0.1 - 11.02 0.53 0.5705 0.0089

l2 lbfgs 0.01 - 10.00 0.69 0.5689 0.0089

l2 lbfgs 0.001 - 6.74 0.21 0.5706 0.008

l2 saga 1 - 36.69 1.32 0.5706 0.0089

l2 saga 0.01 - 25.88 0.84 0.5689 0.0089

l2 saga 0.001 - 5.92 0.73 0.5706 0.008

elasticnet saga 1 0.9 60.32 3.28 0.5702 0.0090

elasticnet saga 1 0.5 61.97 2.34 0.5704 0.0090

elasticnet saga 1 0.3 62.93 2.38 0.5705 0.0089

elasticnet saga 0.1 0.9 47.53 2.25 0.5692 0.0093

elasticnet saga 0.1 0.7 49.41 2.38 0.5691 0.0093

elasticnet saga 0.1 0.1 62.14 3.20 0.5697 0.009

elasticnet saga 0.01 0.7 19.73 0.58 0.5702 0.0084

elasticnet saga 0.01 0.1 42.36 1.52 0.5691 0.009

elasticnet saga 0.001 0.9 4.83 0.14 0.5789 0.0069

elasticnet saga 0.001 0.7 5.73 0.58 0.5773 0.007

elasticnet saga 0.001 0.1 8.47 0.43 0.5722 0.0077

Table 6.4: Partial Logistic Regression grid-search results on soccer data
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Still using an exploration of the hyperparameter space with the help of the grid search

algorithm, K-Nearest Neighbors is fitted with a number of neighbors ranging from 1

to 300, using a linear scale with an increment of 4, with Euclidean, Manhattan and

Minkowski distance metrics and with weights either depending on the distance or

not.

Figure 6.5: KNN performances depending on hyperparameters during Grid search on
tennis data

As shown in figure 6.5, the hyperparameter with the greatest impact on the model

performance is the number of neighbors. However, the performance of this algorithm

is well below those previously presented, reaching 0.585 for tennis, 0.601 for basketball

and 0.979 for soccer, with respectively 83, 279 and 299 neighbors, the Manhattan

metric and weights based on the distance.

Due to a polynomial time complexity with respect to the number of samples, the

SVM hyperparameter search space is greatly reduced compared to other algorithms.
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Figure 6.6: SVM performances depending on hyperparameters during Grid search on
soccer data

As for using KNN algorithm, the performance of this algorithm, is well below those

obtained with Logistic Regression, reaching 0.585 for tennis, 0.601 for basketball and

0.983 for soccer.

An increase in the number of hyperparameters and their possible ranges of values

enlarges the hyperparameter space, thus the TPE algorithm is preferred to explore

the hyperparameter search spaces of tree-based models and neural networks.

Decision Tree classifier is fitted using Gini and entropy criteria to measure the quality
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of splits, with a maximum depth of the tree between 1 and 500, the minimum number

of samples required to split an internal node between 2 and 1000, and a minimum

number of samples required to be at a leaf node between 1 and 1000. The same

hyperparameter search spaces are used for Random Forest and Extra Trees, with a

number of trees chosen on a logarithmic distribution, from 100 to 1000.

Figure 6.7: Decision Tree TPE performance history plot using basketball data

As shown in figure 6.7, and similarly for the tennis and soccer cases, except very bad

settings, Decision Trees seem to have constant performances, independently of their

hyperparameters. The best models reach a log loss value of 0.585 for tennis, 0.604 for
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basketball and 0.983 for soccer.

As is often the case, these results can be improved with a bagging technique, with

Random Forests, and Extra Trees.

Figure 6.8: Random Forest optimization history using TPE on soccer data

Contrary to Decision Trees in figure 6.7, the configuration of Random Forests matters.
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Figure 6.9: Extra Trees performances depending on hyperparameters during Bayesian
search on soccer data

Whether it is Extra Trees or Random Forests, whether it is about soccer, tennis or

basketball, the same conclusions on the hyperparameters can be drawn. As can be

seen on 6.9, the hyperparameter with the highest impact on the model performance

is the minimum number of samples required to be at a leaf node (min_samples_leaf ),

with which the best performances are obtained with relatively low values. It is the

same (with a lower impact) with the minimum number of samples required to split

an internal node (min_samples_split). On the other hand, nothing obvious appears

with different numbers of trees tried.

With Random Forests, the log loss obtained is 0.57 for tennis, 0.596 for basketball

and 0.969 for soccer. With Extra Trees, the log loss obtained is 0.577 for tennis, 0.607

for basketball and 0.974 for soccer.

As much as bagging methods can improve the performance of Decision Trees, the

same is true for for boosting such as gradient boosting machines with XGBoost and
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Catboost. Concerning boosting algorithms, many hyperparameters have been tuned:

Hyperparameter Distribution Range

Booster Categorical [gbtree, gblinear, dart]

Lambda Logarithmic [0.00000001, 5]

Alpha Logarithmic [0.00000001, 1]

Max depth Uniform [1, 21]

Eta Logarithmic [0.00000001, 1]

Gamma Logarithmic [0.00000001, 5]

Min child weight Logarithmic [1, 100]

Max delta step Logarithmic [0.00000001, 100]

Subsample Logarithmic [0.00000001, 1]

Col sample by tree Logarithmic [0.00000001, 1]

Col sample by level Logarithmic [0.00000001, 1]

Col sample by node Logarithmic [0.00000001, 1]

Grow policy Categorical [depthwise, lossguide]

Sample type Categorical [uniform, weight]

Normalize type Categorical [tree, forest]

Rate drop Logarithmic [0.00000001, 1]

Skip drop Logarithmic [0.00000001, 1]

Table 6.5: Hyperparameter search space used during Bayesian optimization of XGBoost
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Figure 6.10: Catboost performances depending on hyperparameters during Bayesian
search on tennis data

With XGBoost, the log loss obtained is 0.576 for tennis, 0.606 for basketball and

0.975 for soccer. With Catboost, the log loss obtained is 0.568 for tennis, 0.592 for

basketball and 0.968 for soccer.

Due to a large training time, the multi-layer perceptron hyperparameter search space

is limited to 100 different neural network structures.
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Figure 6.11: Neural Networks optimization history using TPE on tennis data

With Neural Networks, the log loss obtained is 0.575 for tennis, 0.596 for basketball

and 0.972 for soccer.

In view of these results, a regular underperformance of some models is noticed, such

as with the KNN and the SVM. Neural networks, that require some expertise and

more tuning, do not produce better results. To go even further, Decision Trees are

often outperformed by their ensemble method versions. Thus, the use of bagging and

boosting provides good results and, despite its simplicity, Logistic Regression is also

very competitive. Faced with performance measures that are sometimes very close,

choice was made to use a Logistic Regression, with ℓ2 regularization for tennis, a

Catboost model for basketball and a Random Forest, with Boruta feature selection

for soccer.
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6.4 Model results

To understand what decisions the model is making, the SHapley Additive exPla-

nations (SHAP by Lundberg and Lee 2017) are used. Based on a concept coming

from game theory, the Shapley values, SHAP, quantify the contribution that each

feature brings to the prediction made by the model by using the average marginal

contributions of a feature value across all possible coalitions of other features. These

marginal contributions are defined as the impact on the forecast of adding a feature.

Because adding each feature to all the possible combinations of other features is

a computationally unfeasible approach, SHAP use model-type specific estimation

methods. So, models become as easily interpretable as a linear model:

Figure 6.12: SHAP values attribute to each feature the change in the expected model
prediction when conditioning on that feature, from “A Unified Approach to Interpreting

Model Predictions”

Tennis

To obtain the best possible results, incremental learning is used, so that the model

learns from the observations after performing a prediction. Thus, the model predicts

the outcome of the games for the coming month, before partially training the model

with these observations.

Below, a summary plot combining feature importance, determined by the feature

order on y-axis, with feature effects, interpretable according to the color and the
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location on the x-axis.

Figure 6.13: Feature impact in logistic regression model applied to ATP data based on
SHAP value

At the sight of the perfect distribution of the color level on each side of the vertical

bar, an excellent correlation with the target variable can be concluded for these top

variables. Moreover, the feature rating systems play a decisive role in selecting the

model, with 6 features (4 based on Elo, 1 on True Skill and a last one on ATP ranking)

out of 14 in this top. Then, high values of these features cause higher predictions.

Below, a local interpretability of the 2018 Roland Garros final, between Rafael Nadal

and Dominic Thiem. For this match, the model is predicting a victory for R. Nadal
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at 0.68, and Bet365 offered odds of 1.22 (i.e an estimated probability after unmarging

of 0.78).

Figure 6.14: Explanation of the prediction of the 2018 Roland Garros final between R.
Nadal and D. Thiem using logistic regression

So, despite an age that is not playing in his favor, R. Nadal is mainly announced as

the probable winner of the match by the model thanks to rating features and all the

other variables.
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Season Surface Series Round n Log Loss Brier ROC AUC Accuracy

2017 Clay - - 806 0.603 0.417 0.734 0.664
2017 Grass - - 324 0.589 0.402 0.757 0.688
2017 Hard - - 1503 0.596 0.409 0.745 0.675

2017 - ATP 250 - 1108 0.629 0.439 0.702 0.647
2017 - ATP 500 - 435 0.594 0.408 0.748 0.659
2017 - Masters 1000 - 567 0.615 0.425 0.724 0.663
2017 - Masters Cup - 15 0.667 0.463 0.780 0.600
2017 - Grand Slam - 508 0.510 0.335 0.834 0.755

2017 - - Round Robin 12 0.604 0.420 0.777 0.583
2017 - - 1st Round 1180 0.601 0.416 0.733 0.657
2017 - - 2nd Round 752 0.590 0.400 0.759 0.695
2017 - - 3rd Round 176 0.600 0.415 0.741 0.670
2017 - - 4th Round 48 0.513 0.334 0.811 0.750
2017 - - Quarterfinals 264 0.607 0.421 0.732 0.674
2017 - - Semifinals 134 0.626 0.438 0.704 0.626
2017 - - Final 67 0.572 0.385 0.795 0.761

2017 - - - 2633 0.598 0.411 0.743 0.673

2018 Clay - - 810 0.617 0.431 0.712 0.653
2018 Grass - - 324 0.618 0.431 0.712 0.657
2018 Hard - - 1503 0.599 0.412 0.743 0.679

2018 - ATP 250 - 1112 0.651 0.460 0.663 0.616
2018 - ATP 500 - 435 0.598 0.410 0.747 0.701
2018 - Masters 1000 - 567 0.606 0.418 0.732 0.663
2018 - Masters Cup - 15 0.589 0.411 0.740 0.666
2018 - Grand Slam - 508 0.518 0.342 0.831 0.761

2018 - - Round Robin 12 0.521 0.346 0.925 0.750
2018 - - 1st Round 1184 0.613 0.425 0.718 0.663
2018 - - 2nd Round 752 0.613 0.424 0.725 0.656
2018 - - 3rd Round 176 0.539 0.360 0.810 0.727
2018 - - 4th Round 48 0.509 0.326 0.864 0.833
2018 - - Quarterfinals 264 0.616 0.429 0.715 0.670
2018 - - Semifinals 134 0.612 0.424 0.724 0.656
2018 - - Final 67 0.657 0.461 0.648 0.626

2018 - - - 2637 0.607 0.420 0.729 0.669

Table 6.6: Model metrics on ATP
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Figure 6.15: Performance comparison between probabilities forecast and the estimation of
the probabilities induced by the bookmakers’ odds on tennis ATP

From the Table 6.6 and Figure 6.15 above, the results appear to be very close to

those observed on Table 6.2. Indeed, the difference in log loss metric is only 0.011

over the 2017 season, and 0.014 over the 2018 season. Although not very useful for

probabilistic forecast, but more easily interpreted to see how close the performances

are, Bet365 has determined the winner of the match in 3567 out of 5250 games,

compared to 3537 out of 5270 for the model used over the 2 seasons. In addition, a

better performance of the model is noticed on highlighted cells, which concern the

tournament finals, and the 2018 Masters Cup.

Basketball

For basketball, in order to maximize the performance of the Catboost model, the

model is re-trained at the beginning of each seson, and at the beginning of the playoffs.

Below, the summary plot is split between regular and playoff periods of the 2017

season:
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Figure 6.16: 2017 NBA regular period

Figure 6.17: 2017 NBA playoff period

Figure 6.18: Feature impact in Catboost model applied to NBA data based on SHAP value
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Depending on the period of the season, the model does not use the same features

to take a decision. Thus, during the regular period, the rating system features are

of primary importance. So are the Sports Analytics features, aggregated over the

season, when it concerns the team, and since the beginning of their career, when it

concerns the players. For the playoffs, the results of the previous games between the

2 teams during this playoff period are the most important. This is certainly due to

the fact that, as only the best teams reach this stage of the competition, their level

is relatively close. In addition, because the teams play several times in a very short

period of time (about 1 week), the previous results are an excellent proxy for the

outcome of the game.

Below, a local interpretability of the last game of the 2017 and 2018 NBA finals,

opposing Golden State and Cleveland for the former and Golden State and Toronto

for the latter. For these games, the model is predicting a victory for Golden State at

0.83 in 2017 and a Toronto win at 0.91 in 2018. The bookmaker offered odds of 1.55

for Golden State in 2017 and 2.24 for Toronto in 2018 (i.e an estimated probability

after unmarging of 0.62 and 0.43). In view of Golden State’s 108-85 victory in 2017

and Toronto’s 114-110 victory in 2018, the model is better than the odds offered by

the bookmaker.

As shown in Figure 6.17, the most important feature for the playoff games is the result

of the previous playoff games between the two opponents. Then, with respectively 3

and 2 wins out of 3 during the previous games of the final, Golden State and Toronto

have put all the chances on their side according to the model.
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Figure 6.19: 2017 NBA final opposing Golden State to Cleveland

Figure 6.20: 2018 NBA final opposing Golden State to Toronto

Figure 6.21: Explanation of the prediction of the NBA finals using Catboost

Season Playoff n Log Loss Brier ROC AUC Accuracy

2017 0 1230 0.602 0.416 0.723 0.684

2017 1 82 0.362 0.224 0.918 0.841

2017 - 1312 0.587 0.404 0.738 0.694

2018 0 1230 0.604 0.416 0.718 0.675

2018 1 82 0.422 0.264 0.891 0.817

2018 - 1312 0.592 0.407 0.732 0.697

Table 6.7: Model metrics on NBA
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Figure 6.22: Performance comparison between probabilities forecast and the estimation of
the probabilities induced by the bookmakers’ odds on NBA

From Table 6.7 and Figure 6.22 above, the results per season appear to be very close

to those observed on Table 6.1. With very slightly worse results for the regular period,

and much better results during the playoffs (highlighted above), thanks to the Shifted

head-to-head Wins during playoff and Shifted head-to-head Score diff during playoff

features, the Catboost model achieves slightly better results. Thus, the bookmaker

designated the correct favorite in 1782 games against 1825 for the model, out of 2624

of the 2017 and 2018 NBA seasons.

Soccer

To track previous games and learn from the most recent ones, the Random Forest

model is re-trained at the beginning of each month during the season.

Below, the summary plot is a global explanation, to understand how the model makes

decisions:
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Figure 6.23: Feature impact in Random Forest model applied to soccer data based on
SHAP value

As for tennis and basketball, the rating system features have a major impact in the

decision making of the model by trusting 3 out of 9 top features. In addition, the

variables constructed using Sports Analytics, such as VAEP, xG, or xT are paramount,

occupying 4 of the top 9 places with their aggregating versions.

Below, a local interpretability of the 2017 and 2018 Champion’s League finals, opposing

Real Madrid to Liverpool for the former and Tottenham to Liverpool for the latter.

For these games, the model forecast a victory for Real Madrid at 0.55 in 2017 and

a Liverpool win at 0.376 in 2018. Bet365 offered odds of 2.3 for Real Madrid in

2017 and 1.95 for Liverpool in 2018 (i.e an estimated probability after unmarging of

0.41 and 0.5). In view of Real Madrid’s 3-1 victory and Liverpool’s 2-0 victory, the

bookmaker and the model has chosen the right favorite.
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Figure 6.24: 2017 Champion’s League final opposing Real Madrid to Liverpool

Figure 6.25: 2018 Champion’s league final opposing Tottenham to Liverpool

Figure 6.26: Explanation of the prediction of the Champion’s League finals using Random
Forest

As for the global interpretation of the model in Figure 6.23, decision making for the

Champion’s league finals is also mainly based on the rating system features.
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Season Championship n Log Loss RPS ROC AUC Accuracy

2017 Bundesliga 306 1.013 0.606 0.624 0.486

2017 Premier League 380 0.958 0.570 0.691 0.547

2017 Ligue 1 380 0.970 0.575 0.667 0.539

2017 Serie A 380 0.924 0.543 0.719 0.565

2017 La Liga 380 0.985 0.586 0.636 0.526

2017 Europa League 205 1.016 0.609 0.632 0.482

2017 Champion’s League 125 0.953 0.563 0.680 0.536

2017 - 1826 0.969 0.575 0.672 0.535

2018 Bundesliga 306 0.96 0.571 0.676 0.552

2018 Premier League 380 0.909 0.531 0.706 0.586

2018 Ligue 1 380 1.024 0.615 0.629 0.484

2018 Serie A 380 0.975 0.579 0.689 0.528

2018 La Liga 380 1.025 0.613 0.628 0.463

2018 Europa League 205 0.983 0.583 0.659 0.531

2018 Champion’s League 125 0.947 0.554 0.705 0.600

2018 - 1826 0.979 0.583 0.67 0.522

Table 6.8: Model metrics on 5 main European soccer leagues
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Figure 6.27: Performance comparison between probabilities forecast and the estimation of
the probabilities induced by the bookmakers’ odds on the 5 main European leagues

From Table 6.8 and Figure 6.27 above, the results appear to be close to those observed

on Table 6.3. Indeed, the difference in log loss metric is only 0.022 over the 2017

season, and 0.016 over the 2018 season. Although not very useful for probabilistic

forecast, but more easily interpreted to see how close the performances are, Bet365

has determined the winner of the match in 1969 out of 3652 games, compared to 1931

out of 3652 for the model used over the 2 seasons. In addition, a better performance

of the model is noticed on highlighted cells, which concerns the 2018 Bundesliga.

6.5 Conclusion

In view of the closeness of the results obtained by the classification models with the

odds offered by the bookmakers, it seems reasonable to say that these models can be

used to build reliable sports odds.

The outcome of the match being the main bet in the world of sports betting, it
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is logically the one that has been previously put forward. Moreover, it is the only

market on which it is possible to obtain reliable open source odds, in order to build a

benchmark.

However, by simply changing the target variable, it is possible to construct a whole

bunch of other odds. For example, by re-training soccer with the number of goals

scored by each team in the game as target variables, hundreds of odds can be built

on the total number of goals in the game, and per team, the goal difference, the exact

score etc...

Below, assuming the independence of the goals scored by each team, the score

matrix obtained by forecasting the 2018 Champion’s League opposing Tottenham to

Liverpool, with this multilabel classifier:

Liverpool

0 1 2 3 4 5+

Tottenham

0 0.075(+0.0054) 0.09(+0.0023) 0.058(+0.0015) 0.026(+0.0007) 0.008(+0.0002) 0.003

1 0.111(-0.0086) 0.132 (+0.0095) 0.086(+0.0022) 0.039(+0.0009) 0.012(+0.0003) 0.004(+0.0001)

2 0.062(-0.0048) 0.074(-0.0057) 0.048(+0.0035) 0.022(+0.0006) 0.007(+0.0002) 0.002

3 0.02(-0.0015) 0.031(-0.0024) 0.020(-0.0015) 0.009(+0.0006) 0.002 0.001

4 0.01(-0.0008) 0.011(-0.0008) 0.007(-0.0005) 0.003(-0.0002) 0.001 0.0004

5+ 0.002(-0.0002) 0.002(-0.0002) 0.001(-0.0001) 0.0007 0.0002 0.00008

Table 6.9: 2018 Champion’s League probabilities of final scores

Despite Liverpool’s 2-0 victory, the model predicts 1-1 as the most likely final score.
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By summing the blue, the gray and the red areas in Table 6.9, the winning, drawing

and losing probabilities can also be easily expressed. Thus, this model always identifies

Liverpool as the favorite of the match, but with a 36.65% chance of winning, against

37.56% previously. In order to match with the previous model, it is possible to adjust

the probabilities with the match result probability difference, proportionally to each

final score, as specified in Table 6.9.

To ensure the quality of the forecast made by such a model, the probabilities of

winning, drawing and losing have been recalculated, and log loss of 0.970 and 0.979

have been respectively obtained considering the 2017 and 2018 seasons (i.e 0.001

worse than initial model).

In the end, it is also possible to use such a model in other sports betting markets,

basketball and tennis being good examples. With simulations aimed at determining

whether a basketball team will make the playoffs or whether a tennis player will win

a tournament, or simply by modifying the target variable to predict point spreads for

example.
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7. Conclusion

This work presented a data-driven system to predict the outcome of the major sports

for the European bookmaker market. It differs mainly from the previous works on the

subject, mentioned in chapter 3, by its management of a large volume of data. Indeed,

the processing of several GiBs of data, retranscribing dozens of years of matches and

describing even the events during the match, in the case of soccer, was facilitated by

the technological means today at our disposal. However, it remains close to the most

recent approaches on the topic, by its use of classification algorithms, feature selection

or hyperparameter optimization, related to machine learning practices, but also for its

particular interest for the creation of new features, which can reach several thousands,

related to "Sports Analytics". In view of the presentation of the results obtained in

chapter 6 and the similarities between the various models used, this large volume

of data and the quality of the variables used are mainly the reasons explaining the

quality of the results obtained. Presenting results that are similar to the probabilities

induced by the bookmakers’ odds, the trained models can legitimately be used for the

elaboration of sports odds. However, we are far from Marty McFly’s Sports Almanac

from “Back to the Future”: as in any sport, "hazard" plays an important part in
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determining the outcome of a match and uncertainty is always present, whoever the

competitors involved in the match may be.

As this work cannot cover all the applications that require statistical modeling of

event probabilities in sports for a bookmaker, many avenues remain to be explored.

In the short term, we think that it would be interesting to study:

• The extension to other leagues in the same sports disciplines. Indeed, to get

a maximum amount of relevant data at our disposal, this study focused on

and limited itself to the most popular championships and tournaments of the 3

sports concerned. Using a professional sports data provider such as Opta could

allow for a better coverage of sport events in terms of data, and extend the

approach used to women’s sports for example.

• The use of other neural network architectures. Indeed, an architecture such as

Recurrent Neural Networks, that uses sequences of data, could make it possible

to no longer have to question past aggregation horizons when creating features.

• The extension to other markets. As presented in section 6.5, a bookmaker may

be interested in kinds of other events than the outcome of the match. Thus, a

model of the final score of a match is proposed here, but many other events

such as the number of aces in tennis, the score difference in basketball or the

scorer in a football match are possible. Moreover, odds for derivative markets,

composed of several dependent events, could be proposed using methods such

as copulas.

• The use of a rating proportional to the importance of the event. From a

bookmaker’s point of view, not all matches have the same importance. A World
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Cup final does not attract the same bets as an ordinary League 1 match, so it

is preferable for a bookmaker to use a more accurate model for major events.

This aspect could therefore be used when evaluating the models.

• The use of a live model. The models previously presented only used the

information available at the start of the match to suggest pre-live odds. However,

as bettors are increasingly interested in betting during the match, it would be

interesting to propose a model that could be updated according to the events

taking place during the match.

• The use of experts’ opinion. Finally, in view of the overperformance of certain

sports traders or confirmed bettors, the opinion of sports experts could be used

as a variable in the model to improve the predictions of the most important

matches.
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A. Appendix

Tm Team
Opp Opponent
Pts Points
FG Field Goals

FGA Field Goal Attempts
ORB Offensive Rebounds
DRB Defensive Rebounds
TRB Total Rebounds
FT Free Throws

FTA Free Trhow Attempts
AST Assists
STL Steals
BLK Blocks
TOV Turnovers
PF Personal Fouls

Poss Possession
3P 3-Point Field Goals

3PA 3-Point Field Goal Attempts
eFG% Effective Field Goal Percentage
TS% True Shooting Percentage

USG% Usage Percentage
DRtg Defensive Rating
ORtg Offensive Ratig
BPM Box Plus/Minus
3PAr 3-Point Attempt Rate
FTr Free Throw Attempt Rate

Table A.1: Basketball abbreviation table
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Figure A.1: Tennis features selected using Boruta algorithm
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Feature Xi Feature Xi
SpecificEloPts 0.446 BreakPointsSavedCareerRatio 0.355

EloPts 0.442 Exp 0.354
RankNumber 0.436 PlayerSeed1_nan 0.354
AtpLogRank 0.434 ServeRatingSurfaceCareerEwm 0.354

RankingPoints 0.433 WeightLbs 0.353
TrueSkillMu 0.433 FirstServePointsWonCareerRatio 0.353
Glicko2Mu 0.426 Rolling9WinrateCareer 0.353
HardEloPts 0.405 SecondServePointsWonSeasonRatio 0.352

TotalPointsWonSurfaceCareerRatio 0.389 MatchDurationTourneyCumsum 0.350
TotalPointsWonCareerRatio 0.389 PlayerGamesLoseTourneyCumsum 0.349

AvgRoundTourneyTypeCareer 0.386 BreakPointsSavedSeasonRatio 0.349
AvgRoundSurfaceCareer 0.385 PlayerSeed1_1 0.348

MatchDurationSeasonCumsum 0.384 BreakPointsSavedSurfaceCareerRatio 0.348
AvgRoundCareer 0.381 FirstServePointsWonSurfaceSeasonRatio 0.347
AvgRoundSeason 0.379 FirstServeReturnWonSurfaceCareerRatio 0.347
TrueSkillSigma 0.377 FirstServePointsWonSeasonRatio 0.347
CarpetEloPts 0.373 PlayerSeed2_1 0.347
Glicko2Sigma 0.371 Backhand1_unknown backhand 0.347

TotalPointsWonSeasonRatio 0.371 PlayerSeed1_WC 0.346
ClayEloPts 0.370 ServicePointsWonTourneyRatio 0.346

BMI 0.367 PlayerSetsLoseTourneyCumsum 0.346
SecondServePointsWonCareerRatio 0.366 AcesTourneyRatio 0.346

ServicePointsWonCareerRatio 0.366 PlayerSeed1_2 0.346
GrassEloPts 0.365 PlayerSeed2_WC 0.346

SecondServePointsWonSurfaceCareerRatio 0.364 ReturnPointsWonSurfaceCareerRatio 0.345
TotalPointsWonSurfaceSeasonRatio 0.364 AcesSurfaceCareerRatio 0.345

ServicePointsWonSeasonRatio 0.363 SecondServeReturnWonSurfaceCareerRatio 0.345
ServicePointsWonSurfaceCareerRatio 0.362 ReturnPointsWonCareerRatio 0.345
ServicePointsWonSurfaceSeasonRatio 0.362 SecondServePointsWonSurfaceSeasonRatio 0.344

PlayerSeed2_nan 0.359 WinrateSeason 0.344
FirstServePointsWonSurfaceCareerRatio 0.357

Table A.2: Tennis Xi correlation
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Figure A.2: Basketball features selected using Boruta algorithm
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Feature Xi
EloPts 0.452

Glicko2Mu 0.444
ShiftedExpandingMeanSeasonPythWins 0.440

TrueSkillMu 0.440
ShiftedSeasonLoses 0.438

ShiftedSeasonWlRatio 0.435
ShiftedSeasonWins 0.434

ShiftedCumSumSeasonWinScoreMeanTeam 0.431
ShiftedCumSumCareerWinScoreMeanTeam 0.431

ShiftedExpandingMeanSeasonNetPointsSumTeam 0.430
ShiftedCumSumCareerApproximateValueMeanTeam 0.427

ShiftedCumSumSeasonNetPointsSumTeam 0.426
ShiftedCumSumCareerGameScoreMeanTeam 0.426
ShiftedCumSumSeasonPlusMinusMaxTeam 0.426

ShiftedCumSumSeasonBpmMaxTeam 0.425
ShiftedExpandingMeanSeasonWinScoreSumTeam 0.425

ShiftedExpandingMeanCareerPlayerImpactEstimateMeanTeam 0.425
ShiftedCumSumSeasonNetPointsWeightedMeanTeam 0.425

ShiftedCumSumSeasonPlayerImpactEstimateMeanTeam 0.424
ShiftedExpandingMeanSeasonWinScoreMeanTeam 0.424

Table A.3: Basketball Xi correlation



APPENDIX A. APPENDIX 168

Figure A.3: Soccer features selected using Boruta algorithm
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Feature Xi Feature Xi
Overall 0.290 ShiftedRollingSum9SeasonXg 0.241

ShiftedExpandingMeanCareerVaepScores 0.289 ShiftedCumSumSeasonVaepConcedes 0.243
ShiftedExpandingMeanSeasonVaepScores 0.285 ShiftedCumSumCareerXg 0.243

ShiftedExpandingMeanCareerXg 0.282 ShiftedExpandingMeanSeasonOffensiveVaep 0.241
Attack 0.280 ShiftedRollingSum9SeasonVaep 0.237

ShiftedCumSumSeasonVaepScores 0.280 ShiftedRollingSum9SeasonXt 0.236
EloPts 0.279 ShiftedRollingSum5SeasonVaep 0.234

TrueSkillMu 0.278 ShiftedEwmSeasonXt 0.233
Midfield 0.277 ShiftedRollingSum5SeasonXg 0.231
Defence 0.277 TrueSkillSigma 0.226

Glicko2Mu 0.275 ShiftedRollingSum5SeasonXt 0.224
TransferBudget 0.272 ShiftedEwmSeasonXg 0.223

InternationalPrestige 0.267 ShiftedRollingSum3SeasonVaep 0.223
ShiftedExpandingMeanCareerVaep 0.267 DefencePressureValue 0.221

ShiftedCumSumSeasonXg 0.265 DefenceAggressionValue 0.221
ShiftedExpandingMeanCareerXt 0.263 ShiftedRollingSum3SeasonXg 0.221

DomesticPrestige 0.261 ShiftedEwmSeasonVaep 0.221
ShiftedCumSumSeasonXt 0.261 ShiftedRollingSum5SeasonOffensiveVaep 0.21

ShiftedRollingSum5SeasonVaepScores 0.260 ShiftedRollingSum9SeasonOffensiveVaep 0.217
ShiftedEwmSeasonVaepScores 0.258 Attendance 0.217

ShiftedRollingSum3SeasonVaepScores 0.257 BuildUpPlaySpeedValue 0.217
ShiftedRollingSum9SeasonVaepScores 0.257 ChanceCreationPassingValue 0.216

ShiftedExpandingMeanSeasonXg 0.256 ChanceCreationShootingValue 0.215
ShiftedCumSumSeasonOffensiveVaep 0.255 DefenceTeamWidthValue 0.214

ShiftedCumSumCareerVaepScores 0.254 ShiftedExpandingMeanSeasonDefensiveVaep 0.213
ShiftedCumSumCareerOffensiveVaep 0.254 ChanceCreationCrossingValue 0.213

ShiftedCumSumSeasonVaep 0.253 BuildUpPlayPassingValue 0.212
ShiftedExpandingMeanCareerOffensiveVaep 0.252 ShiftedEwmSeasonOffensiveVaep 0.212

ShiftedCumSumCareerXt 0.252 ShiftedRollingSum3SeasonXt 0.211
ShiftedCumSumCareerVaep 0.251 ShiftedEwmSeasonPassesPerDefensiveActions 0.211

ShiftedExpandingMeanSeasonXt 0.250 ShiftedExpandingMeanCareerDefensiveVaep 0.210
ShiftedExpandingMeanSeasonVaep 0.245 ShiftedRollingSum9SeasonDefensiveVaep 0.209

ShiftedCumSumCareerVaepConcedes 0.243 HomeBuildUpPlayPassingType 0.209

Table A.4: Soccer Xi correlation
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Figure A.4: Code example: Basketball Elo ranking
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Figure A.5: Code example: Basketball teams metrics computation
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Figure A.6: Code example: Basketball player metrics computation 1/2
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Figure A.7: Code example: Basketball player metrics computation 2/2
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