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Abstract

In decentralized, decision-oriented communication networks, information compression
policies are designed to satisfy a long-term strategic goal. The encoders select signals in
order to trigger preferred actions from the decoders by controlling their local information
environments. Henceforth, strategic communication can be naturally studied at the inter-
section of two disciplines: Information theory, which analyzes the optimal performance of
communication systems, and game theory, which describes the behavior of agents in strate-
gic interactions. Originally formulated with no restrictions on the amount of transmitted
information, the Bayesian persuasion game models a strategic communication between an in-
formed encoder observing a source variable, and transmitting signals to one or many decoders
who are supposed to take actions that affect the encoder’s performance. Before observing the
source, the encoder commits to, and announces the encoding strategy to be implemented.
All communicating agents are assumed to be rational, and endowed with mismatched objec-
tives captured by distinct and arbitrary cost functions. In this thesis, we consider a large
number of independent and identically distributed (i.i.d.) copies of the one-shot Bayesian
persuasion game, subject to information constraints. Because of the restrictions imposed
on the communication, not enough messages are available to transmit the whole source.
We need to consider block-coding instead of one-shot coding. This setting generalizes the
lossy source coding problem of Shannon, where agents fully cooperate to achieve truthful
and reliable information transmission that minimizes their aligned distortion measures, to
the non-cooperative scenario in which players do not necessarily share a common objective,
but select the coding strategies that minimize their respective non-aligned cost functions.
We investigate the strategic communication problem in three different settings. First, we
consider the successive refinement coding setup in which a single encoder communicates a
public message to two decoders, and a private message to only one of them. Upon reception
of the message from the encoder, each decoder draws the action sequence that minimizes
its respective long-run cost functions. Second, we consider the Gray-Wyner communication
network, with a single encoder and two decoders, each observing a public and a private signal
from the encoder, and are endowed with cost functions that depend on the actions of both
decoders and the state. In this setting, each commitment of the encoder induces a Bayesian
game among the decoders which admits perfect Bayes-Nash equilibria. Third, we combine the
Bayesian persuasion model with the cascade multiple description network, where information
is transmitted from the encoder to the decoder through an interested relay. In each of these
settings, we study the information-theoretic limits of strategic communication and describe
the asymptotic behavior of the encoder’s optimal long-run cost function. Using auxiliary
random variables, we characterize the encoder’s minimal single-letter cost function subject
to the optimal compression scheme that satisfies the constraints imposed on the amount of
information transmitted in each model, as well as the incentive constraints of the decoders.

Keywords:

Information Theory; Game Theory; Strategic Communication; Bayesian Persuasion; Lossy
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Résumé

Dans les réseaux de communication décentralisés et orientés décision, les politiques de
compression de l’information sont conçues pour satisfaire un objectif stratégique à long terme.
Les codeurs sélectionnent des signaux afin de déclencher des actions préférées chez les dé-
codeurs en contrôlant leurs environnements d’informations locaux. Désormais, la communi-
cation stratégique peut être naturellement étudiée à l’intersection de deux disciplines : la
théorie de l’information, qui analyse les performances optimales des systèmes de communi-
cation, et la théorie des jeux, qui décrit le comportement des agents dans les interactions
stratégiques. Formulé à l’origine sans restriction sur la quantité d’informations transmises,
le jeu de persuasion Bayésienne modélise une communication stratégique entre un encodeur
informé observant une variable de source et transmettant des signaux à un ou plusieurs dé-
codeurs censés prendre des actions affectant la performance de l’encodeur. Avant d’observer
la source, l’encodeur s’engage et annonce la stratégie d’encodage à mettre en œuvre. Tous
les agents communicants sont supposés rationnels, et dotés d’objectifs variés capturés par
des fonctions de coût distinctes et arbitraires. Dans cette thèse, nous considérons un grand
nombre de copies indépendantes et identiquement distribuées (i.i.d.) du jeu de persuasion
Bayésienne, sous contraintes d’information. En raison des restrictions imposées à la commu-
nication, il n’y a pas assez de messages disponibles pour transmettre la source. Nous devons
donc envisager le codage par blocs au lieu du codage ponctuel. Ce modèle généralise le prob-
lème de codage source avec perte de Shannon, où les agents coopèrent pleinement pour obtenir
une transmission d’informations véridique et fiable qui minimise leurs mesures de distortion
alignées, au scénario non-coopératif dans lequel les joueurs ne partagent pas nécessairement
un objectif commun, mais sélectionnent les stratégies de codage qui minimisent leurs fonctions
de coût respectives et non alignées. Nous étudions le problème de communication stratégique
dans trois scénarios différents. Premièrement, nous considérons la configuration de codage
par raffinement successif dans laquelle un seul encodeur communique un message public à
deux décodeurs, et un message privé à un seul décodeur d’entre eux. Lors de la réception
du message, chaque décodeur dessine la suite d’action qui minimise sa fonction de coût à
long terme. Deuxièmement, nous considérons le réseau de communication Gray-Wyner, avec
un seul encodeur et deux décodeurs, dont le coût de l’un dépend de l’action de l’autre, et
chacun observant un signal public et un signal privé. Dans ce cadre, chaque engagement
du codeur induit un jeu Bayésien entre les décodeurs qui admet des équilibres Bayes-Nash
parfaits. Troisièmement, nous combinons le modèle de persuasion Bayésienne avec le réseau
de description multiple en cascade, où l’information est transmise de l’encodeur au décodeur
via un relais. Dans chacun de ces cas, nous étudions les limites théoriques de l’information
de la communication stratégique et décrivons le comportement asymptotique de la fonction
de coût à long terme optimale de l’encodeur. À l’aide de variables aléatoires auxiliaires,
nous caractérisons la fonction de coût minimal du codeur soumise au schéma de compression
optimal qui satisfait les contraintes imposées sur la quantité d’informations transmises, ainsi
que les contraintes d’incitation des décodeurs.

Mots-Clés:

Théorie de l’information; Théorie des jeux; Communication Stratégique; Persuasion Bayési-

enne; Codage Source; Canal Multi-utilisateur; Raffinement Successif; Réseau Gray-Wyner;

Réseau de Description Multiple en Cascade
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1
Introduction

1.1 Strategic communication

When communicating information about themselves in order to reach a certain goal,

individuals can attempt to obtain a more favorable outcome by manipulating, selecting or

disclosing parts of the available information to influence the decision of a decision-maker.

Such strategic individuals exploit the information they possess about the decision-maker,

like the decision-maker’s objective function, while designing their information disclosure

policy. Situations like these are increasingly being observed in Machine Learning (ML), for

instance in classification problems Brückner et al. (2012). As ML is being used to make

important decisions about individuals in areas such as education, health, employment, and

commerce among others, a strategic person can try to get a better classification result by

selectively revealing information to the classifier, especially if the transmitter is in possession

of information about the classifier like its objective function. Another interesting situation

observed in ML and involving strategic communication between multiple agents is nego-

tiation. ML is used to train agents in complex multiple-agent contexts featuring private

information. For instance, Lewis et al. (2017) found out that an agent trained on negotia-

tions under incomplete information with reinforcement learning, fails to reach an agreement

with humans more often than a human-imitative model did.

As Kamenica and Gentzkow (2011) described it, the problem of strategic communica-

tion comes about each time the question of who gets to know what arises. They described a

setting from court where a prosecutor (the encoder) tries to persuade a judge (the decoder)
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that a certain defendant is guilty. The prosecutor is better off if the judge chooses to con-

vict regardless of whether the defendant is innocent or guilty. However, the judge prefers to

convict a guilty defendant and acquit an innocent one.

Other real-world examples involving persuasion arise from a wide range of domains

including economics, finance, marketing, politics, education, and security among others.

When a seller wants to advertise for a product so a potential client would buy it, or a political

candidate devises an electoral campaign trying to persuade people to vote for him/her, or a

student fills in an application for a university scholarship program, or a potential employee

presents to a job interview, (the list goes on and on), the transmitted information in each

of these different cases is strategically selected in a way that best achieves the objective

of the interested encoder. The decoder on the other end, updates its Bayesian beliefs

about the state based on the strategically selected information by the encoder, and takes an

action accordingly. In other words, the encoder’s goal consists of designing an information

disclosure policy specifying what bits of information should be revealed in order to attain a

specific objective subject to the challenges imposed by the channel’s bandwidth.

Communication systems involving strategic agents are not exclusive to human interac-

tions, or human-machine interactions but can also be found in the interactions of connected

autonomous devices. The Internet of Things (IoT) has enabled seamless communication

between connected devices with minimal human intervention. In such settings, autonomous

devices use collected data to make informed decisions, according to the goals that have been

ingrained as their purpose. For example, autonomous vehicles perceive their surroundings

information from a combined variety of sensors which makes them capable of moving safely

with little or no human input. As artificial intelligence (AI) systems are deployed to act

on behalf of humans in more real-world circumstances, from commercial negotiations in the

nearer term Chakraborty et al. (2020), to high-stakes strategic decision-making in the longer

term Geist and Lohn (2018), they will need to be able to act effectively in environments

where agents can have common or conflicting interests. Such contexts of multi-agent com-

munication and interaction often exhibit opportunities for cooperation (when a joint action

leads to mutual benefit) or conflict (when interests of different agents are misaligned). In

fact, these advanced computer agents don’t just think and act like humans, but they think



1.2. Position of the problem 3

and act rationally, and rationality is a descriptive feature of game-theoretical behaviors.

This brings us to the essence of this thesis, which explores an emerging line of inter-

disciplinary research, between information theory and game theory. Information Theory

is a mathematical science concerned with the representation, communication, processing

and utilization of Information using optimal methods and algorithms. While Game Theory

is a branch of applied Mathematics, that provides a theoretical framework for the analy-

sis of strategic interactions among rational agents. As this work addresses the problem of

strategic information selection and transmission through decentralized, decision-oriented,

multi-user communication networks, it can be naturally studied at the intersection of these

two disciplines.

1.2 Position of the problem

Shannon’s theory of communication is mainly descriptive of settings involving cooper-

ating agents. But what if agents are self-interested, and the communication of information

involves incentive constraints? Such non-cooperative communication scenarios which fre-

quently arise in real-world circumstances, require new multi-disciplinary approaches and

techniques to achieve optimal outcomes. In this thesis, we are interested in scenarios where

an informed and interested encoder aims to "persuade" one or two decoders to choose a cer-

tain action from a finite set of actions by controlling their information environment. In the

persuasion problem discussed above, between a classifier and an individual generating data,

the individual interested in improving their classification result can be viewed as the encoder

and the classifier making the utmost decision that affects the encoder is the decoder.

We study a strategic communication game through a decentralized network with re-

stricted communication. A decentralized network is one where information-processing work-

load is distributed across multiple separate devices instead of relying on a single central

server. We consider several models of such decentralized networks, where communica-

tion happens between one informed encoder, observing an independent and identically dis-

tributed (i.i.d) source sequence, and one or two decoders making the ultimate decisions that
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affect the encoder, based on locally available information. All communicating agents are

endowed with non-aligned objectives captured by distinct and arbitrary cost functions. We

assume that each player is aware of the objectives of other players, i.e cost functions are

known by all players and thus encoding and decoding functions are selected accordingly.

The strategic communication game is assumed to be played by blocks of n symbols, and

the Bayesian beliefs of the decoders about the state are updated once the transmission is

over. The state is an n-sequence of random variables generated by a memoryless source.

Before the game starts, the encoder commits to and reveals its encoding function to the

decoders. Because of the restrictions imposed on communication, not enough messages are

available to transmit the whole source. We need to consider block-coding instead of one-

shot coding. This setting generalizes the lossy source coding problem of Shannon, where

agents fully cooperate to achieve truthful and reliable information transmission that min-

imizes their aligned distortion measures, to the non-cooperative scenario in which players

do not necessarily share a common objective, but select the coding strategies that minimize

their respective non-aligned cost functions. This setting, also referred to as the Bayesian

persuasion game, enables the use of entropy constraints in order to derive the fundamental

information-theoretic limits of compression and communication.

The timeline of the game is as follows: The encoder commits to an encoding scheme

and reveals its commitment to the decoder(s). Then, the source sequence of independent

and identically distributed random variables is drawn and observed by the encoder who

then transmits one or many signals to the decoder(s), according to its encoding function. In

situations involving two decoders, our models assume that at least one decoder has access to

a private signal transmitted by the encoder. Thereafter, each decoder observes its received

message, and draws a sequence of actions according to its respective decoding function.

When communication involves two decoders, we model two distinct scenarios: In one

case, we consider communication involving independent decoders, i.e the cost function of

one decoder depends on its choice of action and on the state only and does not depend on the

action taken by the other decoder. In the other, communication involves cost-dependent

decoders, i.e the cost function of one decoder depends on the action taken by the other

decoder in addition to its own action and the state. The latter case turned out to be quite
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more challenging as each commitment of the encoder induces a Bayesian game among the

decoders. This Bayesian game admits Bayes-Nash equilibria at which the pair of decoding

functions will be played.

We are interested in the asymptotic behavior of the long-run cost function of the

encoder in each of the considered scenarios. The goal is to design an achievable coding

scheme that minimizes the encoder’s long-run cost function subject to the challenges imposed

by the channel, and satisfying the incentive constraints of the decoders.

1.3 Literature Review

The information-theoretic approach to Bayesian persuasion, which takes into account

the limits of the communication capacity, is an emerging field of research. Strategic compres-

sion in the context of strategic information transmission was addressed in Akyol et al. (2017).

The problem is modeled as a Stackelberg game with mismatched objectives, and asymptotic

limits of equilibrium strategies are characterized along with their associated costs for three

different problem settings. In several recent contributions, Vora and Kulkarni investigate

the region of achievable rates of strategic communication between agents with distinct util-

ity functions. In Vora and Kulkarni (2020d), Vora and Kulkarni (2020c), and Vora and

Kulkarni (2021), authors address the problem of extracting truthful information from a

strategic sender with an incentive to misreport information. Modeled as a Stackelberg game

in which the decoder is the Stackelberg leader, authors investigate the fundamental limits

to the amount of truthful information that can be perfectly recovered by the receiver. They

introduce the notion of information extraction capacity which quantifies the rate at which

the number of perfectly recovered source sequences grows with the sequence block-length in

the presence of a noiseless channel. They compute upper and lower bounds on the maximal

rate of information extraction from the strategic sender. Vora and Kulkarni (2020b), Vora

and Kulkarni (2020a), study a related information extraction problem and show that there

exists a strategy which allows the receiver to recover a large number of source sequences

while achieving an asymptotically vanishing error probability. The computational aspects
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of the persuasion game are considered in Dughmi et al. (2016), where the impact of the

channel’s capacity on the optimal utility is investigated.

When objective functions of the players are perfectly aligned, the common goal of the

encoder and the decoder is to reliably and truthfully transmit information over the com-

munication channel. In this case, the communication problem under study, boils down to

the lossy source coding problem of Shannon (1959). Kamenica and Gentzkow (2011) con-

sider mismatched utility functions, and assume that the communication channel is perfect.

However; if the channel is imperfect and the players have common objectives, the problem

becomes the joint source-channel coding problem of Shannon (1959). In fact, in his theory

of information Shannon (1948), Shannon (1959) analyzes the rate at which a source of infor-

mation can be reliably transmitted over a channel, i.e with an arbitrarily small probability

of error. Lapidoth (1997) studies the source coding problem with mismatched distortions

between the encoder and the decoder. The author analyzes the minimun distortion at which

the source sequence can be encoded knowing that the reconstruction of the source sequence

is done to minimize the decoder’s distortion. Using a random coding argument, Lapidoth

derives an upper bound on the resulting distortion. Coding for multiple distortion functions

is also addressed in Wolf et al. (1980), El Gamal and Cover (1982), multiple description

coding where several descriptions are produced from the same source, and the distortion of

the reconstruction depends on which subset of descriptions is available to the decoder.

The problem of strategic communication was formulated in the game theory literature,

and originally referred to as the sender-receiver game, with no communication constraints.

The Nash equilibrium solution of the cheap talk game was investigated in the seminal paper

of Crawford and Sobel (1982), in which the encoder and the decoder are endowed with

distinct objectives and choose their coding strategies simultaneously. The message sent

by the sender is assumed to be costless and unverifiable and the communication happens

in a single transmission. Crawford and Sobel’s solution is based on the quantization of

a continuous state. In our approach, the source is discrete and the solution relies on the

quantization of the source using an auxiliary random variable which is correlated to the

source according to a conditional distribution over the auxiliary random variable given the

source. In the continuous case, a different kind of quantization based on intervals is required.
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Blume et al. (2007) study the cheap talk through a noisy channel. They show that the

presence of noise could possibly improve the sender’s welfare. Kamenica and Gentzkow

(2011) study strategic communication with sufficiently large message sets. The encoder

commits to an encoding strategy before observing the source. In this thesis, we generalize

their model, which is presented in section 2.2, to limited communication scenarios with two

decoders.

In our approach, we investigate the Bayesian persuasion game that is played by blocks

of source sequences and action sequences which allows us to use coding techniques. We

combine the game-theoretic mismatched motives, with the information-theoretic bounds on

communication. The mismatched objectives of the players are captured by cost functions,

defined as the distortion functions in the lossy source coding problem. We use the bounds on

the regions of achievable rates (i.e the rates that achieve truthful information transmission)

derived in information theory, to restrict the sets of target distributions of the encoder,

and we analyze the asymptotic behavior of the encoder’s optimal cost. We follow the

approach of Le Treust and Tomala (2019a) who study the fundamental limits of the one-to-

one Bayesian persuasion game through the lens of Information Theory. This model will be

further explained in section 2.3.

Our approach to Bayesian persuasion under information constraints, is closely related

to the rate-distortion theory which describes the trade-offs between lossy compression rate

and the resulting distortion. We model Bayesian persuasion as a similar trade-off problem

between the rate of symbols per transmission, and the cost function of the encoder subject

to the incentive constraints of the decoders. For a given compression rate, we analyze the

minimal cost of the encoder for sufficiently large blocklengths. Rate-distortion theory has

been used in wide range of applications including secrecy systems Schieler and Cuff (2014),

cellular signaling Andrews and Iglesias (2007), image caching Weidmann et al. (1997) among

other. Dumas et al. (2017) study the problem of image compression in which learning is per-

formed on whole images under a global rate-distortion constraint. Image patches compete

together when computing their sparse representation, enabling variable rate image com-

pression for images of any size after a single training. Nikbakht et al. (2022) surveyed the

mixed-delay traffic in 5G and 6G wireless networks from an information-theoretic perspec-
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tive. Applications of these modern networks differ in reliability and latency requirements.

Authors focus on the set of simultaneously achievable rate pairs for Ultra-Reliable Low-

Latency Communication and enhanced Mobile Broadband messages. Saeidian et al. (2021)

investigate membership privacy in machine learning models via an operationally meaning-

ful privacy metric: maximal leakage. Authors propose a pointwise membership privacy

approach for studying information leakage of individual data entries in a database.

Bayesian persuasion has been studied in contexts where communication is restricted by

either exogenous constraints imposed by the adopted model, or endogenous constraints that

eventually emerge. Our work considers Bayesian persuasion under exogenous constraints

imposed by the communication channel’s capacity which is determined by a fixed and lim-

ited rate of transmission and hence imposes constraints on the cardinality of the message

sets. Bayesian persuasion under exogenous constraints has been the subject of interest of

several papers in the literature. In such settings, the encoder’s set of signals is restricted,

which results in a smaller set of feasible posterior beliefs of the decoder. This could result

from constraints on the amount of information, Le Treust and Tomala (2019a), Dughmi

et al. (2016), or communication being coarse Gradwohl et al. (2021), or the presence of

other considerations like privacy or discrimination Babichenko et al. (2021). Dughmi et al.,

used Bayesian persuasion under exogenous restrictions to model auction settings S. Dughmi

and Roth (2014) and bilateral trade Dughmi et al. (2016). Recently, Babichenko et al.

(2021), consider the problem of strategic signaling in online ad auctions in a way that pre-

vents discrimination and protects the privacy of the user when sending information to an

advertiser. Authors classify exogenous constraints into two families: ex-ante and ex-post.

Posteriors in both cases are mapped via a continuous function to a real value. Ex-ante

constraints impose restrictions in expectation, while ex-post constraints limit each instance

of Sender-Receiver communication to be below a certain value (refer to Volund (2018)). In

our model, the encoder commits to an encoding strategy and reveals it to the decoder(s)

before observing the source which induces ex-ante restrictions.

Endogenously emerging constraints on Bayesian persuasion have also been studied in

several models. In such setups, the encoder’s commitment to truthfully reveal information

is weakened, but there are no restrictions on the set of feasible signals that are available
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for the encoder. In Nguyen and Tan (2021), the commitment assumption of the encoder is

weakened in the persuasion problem and quantified as a communication cost. The encoder

observes the signal realization in private and transmits any message to the decoder. In a

similar model, Guo and Shmaya (2021) study a sender-receiver game between a platform and

its customers, while assuming that customers trust the platform’s forecasts in an equilibrium

even though they do not observe the algorithm used by the platform to generate information.

The platform, which is the encoder in that case, does not reveal ex-ante the experiment to

the customer or the decoder. As in the cheap-talk literature Crawford and Sobel (1982),

the decoder observes only the message, but not the strategy of the encoder.

1.4 Contributions

It is only recently that the problem of strategic communication started to gain at-

tention from the information-theoretic community in response to the arising challenges in

communication settings involving strategic agents. We are proud to be among the earliest

to put together the rate-distortion theory with strategic, non-cooperative communication

settings involving agents with mismatched objectives, and study the fundamental limits of

communication in multi-user networks under incentive constraints.

Chapter 2: Our first contribution to this work was to analyze the impact of the side

information on the encoder’s optimal cost via a binary example. Using the convex charac-

terizations of the optimal costs derived in Le Treust and Tomala (2021), with and without

side information, we run numerical simulations to get the favorable settings under which the

encoder can benefit from persuasion. We identify the optimal splitting of the decoder’s be-

liefs satisfying the information constraint imposed by the restricted communication channel,

and we compute the encoder’s optimal cost value, with and without private signal. Varying

the parameters such as the prior belief, the precision of the private signal and the channel

capacity, we propose the settings that are more favorable to the encoder.
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Chapter 3: We are the first to model the Bayesian persuasion game with two decoders

in a successive refinement coding setup. We establish a model for strategic successive re-

finement coding setup, in which each decoder is endowed with a non-aligned cost function

that depends on the state, and its own action, whereas the encoder is endowed with a cost

function that depends on the actions of both decoders and the state. This setting differs

from the standard successive refinement coding setup where only decoders are endowed with

distortion measures and the encoder’s goal is to transmit information subject to a fidelity

criterion. We define the encoder’s optimal signal as a conditional distribution on the mes-

sage pairs given the source under the constraints imposed on the achievable region of rates

in the successive refinement setup. We characterize the single-letter best responses of the

decoders that satisfy their respective incentives, and we derive the expected value of the

encoder’s optimal single-letter cost as a function of the rate pairs. We fully describe the

limiting behavior of the encoder’s long run expect cost as well as its lower bound for a

sufficiently large block-length n.

We provide a technical novelty in proving the achievability statement of our strategic

successive refinement: We reformulate the single-letter solution as an optimization over

a dense subset of target distributions in which every commitment of the encoder induces

Bayesian beliefs according to which the decoders are not indifferent between two actions.

Moreover, as we shift from the game by blocks of length n, to the one-shot game, we

characterize the single-letter Bayesian beliefs using auxiliary random variables, and we show

that those beliefs are close on average, under the kl-divergence, to the beliefs induced by

the coding functions. which relies on the standard arguments of codebook generation and

analysis of the probability of the error events, was to investigate the beliefs of the decoders

about the state. These arguments are crucial in order to guarantee the desired convergence.

In the converse proof, we identify our auxiliary random variables and show that the single-

letter characterization is a lower bound for the expected value of the encoder’s long-run

optimal cost.

Chapter 4: We are the first to model the Bayesian persuasion game with two decoders

under the information constraints imposed by the Gray-Wyner network. We establish a
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model for strategic lossy compression via a Gray-Wyner network. Each decoder is endowed

with a non-aligned cost function that depends on the state, and on actions of both decoders,

and the encoder is endowed with a cost function that depends on the actions of both de-

coders and the state. We define the encoder’s optimal signal as a conditional distribution on

the message pairs given the source under the constraints imposed on the achievable region

of rates in the successive refinement setup. Every commitment of the encoder in this set-

ting induces a finite Bayesian game among the decoders which admits perfect Bayes-Nash

equilibria. Using two auxiliary random variables, we characterize the single-letter Bayesian

game and its set of Bayes-Nash equilibria. We characterize the encoder’s optimal signal

as a conditional distribution on the auxiliary random variables given the source subject to

the achievable rate region of the Gray-Wyner network. We group them in two sets: one

with all conditional distributions that satisfy a certain Markov chain, and one with the

general distributions. We derive an upper bound on the long run cost of the encoder in the

achievability statement of our main result which depends on the set of target distributions

that satisfies a Markov chains, and a lower bound in the converse statement, which depends

on the set of target distributions that does not satisfy any Markov chains. Besides from

the standard arguments of codebook generation and analysis of the probabilities of error

events, our achievability proof presents a novel technique which allows the passage from the

long run cost of the encoder in the game by blocks of length n, to the single-letter optimal

cost in the one shot game. We characterize each of the intermediate games and we control

the beliefs of each decoder about the state and about the type of the other decoder. In

our converse proof we identify the auxiliary random variables and show that single-letter

characterizations induce decoding strategies that form Bayes-Nash equilibria.

Chapter 5: We model the sequential Bayesian persuasion game through a relay using a

Cascade multiple description network with an encoder, a decoder and a relay. We modify

the standard cascade multiple description network by assuming that all three players have

distinct cost functions which depend on the state and on the decoder’s action. We study

several cases which either relate to other works in the information theory literature or

game theory literature: 1) the cooperative case with equal cost functions 2) unrestricted

communication 3) locally restricted communication 4) local cooperation. We also study a
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binary example under which communication is not subject to any information constraints.

Following the convexification method of Kamenica and Gentzkow, we use the convex closure

of the relay’s expected cost in order to characterize the optimal solution for the encoder.

1.5 Thesis organization

This thesis is organized as follows. In chapter 2, we start with the point-to-point com-

munication model in which a single encoder communicates to persuade one decoder to change

action. In section 2.1, we review some fundamental concepts of point-to-point communi-

cation: the lossy source coding setup in subsection 2.1.1, the joint source-channel coding

and the separation theorem in subsection 2.1.2. Wyner-Ziv’s communication model with

side Information at the decoder in subsection 2.1.3. In section 2.2, we start with the game

theoretic approach to Bayesian persuasion with no restrictions on the amount of transmitted

information. In subsection 2.2.1, we introduce the base model of Kamenica and Gentzkow

(2011) and in subsection 2.2.2, we present their convexification method. In section 2.3, we

study Bayesian persuasion under information constraints in two different models: In sub-

section 2.3.1, we review the model of Le Treust and Tomala (2019a), which considers noisy

Bayesian persuasion by combining both the model of Kamenica and Gentzkow (2011) with

Shannon’s lossy source coding. In subsection 2.3.2, we present Le Treust and Tomala (2021)

model of noisy Bayesian persuasion with side information at the decoder. In section 2.4, we

analyze a binary example subsection 2.4.1, and study the impact of side information on the

encoder’s optimal cost in subsection 2.4.2. We conclude the chapter in section 2.5.

In chapter 3, we study the multi-user Bayesian persuasion between one encoder and

two decoders via a successive refinement coding setup. In section 3.1 we summarize our

problem and contributions. In section 3.2, we review the successive refinement coding setup.

In section 3.3, we present the Bayesian persuasion model with two independent decoders

endowed with distinct cost functions (subsection 3.3.1), and we characterize the optimal

encoding subject to the successive refinement information constraints, as well as the optimal

single letter expected cost of the encoder (subsection 3.3.2). Then we present our main result

which describes the asymptotic behavior of the encoder’s optimal long run expected cost
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and determines its lower bound. In section 3.4, we present the proof of achievability which

consists of four main parts: first, in subsection 3.4.3, we provide an alternative formulation

to our solution concept by restricting the set of target distributions to a dense subset of

distributions inducing beliefs based on which the decoders are not indifferent between two

or more actions. Second, in subsection 3.4.2, we generate the codebook and analyze the

error probability. Third in subsection 3.4.1, we restrict our optimization to a dense subset

of target distributions in order to eliminate decoder’s indifferences between two pairs of

actions.. Finally in subsection 3.4.4, we control the Bayesian beliefs of each decoder about

the state concluding by that our proof of achievability. In section 3.5, we present the proof

of the converse statement of our main result. In section 3.6, we wrap up the chapter with

some concluding remarks.

In chapter 4, we investigate Bayesian persuasion over the Gray-Wyner network. In

section 4.1, we summarize our contributions. Insection 4.2 we introduce the model of Gray-

Wyner and the region of achievable rates. In section 4.3, we study the persuasion game

between one encoder and two cost-dependent decoders, i.e the cost function of one de-

coder depends on the action of the other. In subsection 4.3.1, we present the model via

a Gray-Wyner network. In subsection 4.3.2, we introduce auxiliary random variables and

characterize the sets of optimal distributions subject to the Gray-Wyner information con-

straints. We characterize the one-shot Bayesian game, and two formulations of the optimal

single-letter cost of the encoder: one which corresponds to the case where auxiliary random

variables satisfy a certain Markov chain and another formulation in which auxiliary random

variables do not satisfy a Markov chain. Our main result consists of two statements: an

achievability statement and a converse statement.In section 4.4, we study a particular case

with R2 = 0. This corresponds to the strategic successive refinemnt network with interde-

pendent decoders’ cost functions. In section 4.5, we present the achievability proof of our

main result. This proof consists of four main parts: First in subsection 4.5.2, we present the

Gray-Wyner codebook generation and analyze the error events. Second in subsection 4.5.3,

we reformulate our solution using a dense subset of target distributions which induce essen-

tial equilibria only for decoder’s subsequent Bayesian game. Third in subsection 4.5.4, we

control the Bayesian beliefs of each decoder about the state and about the type of the other
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decoder. Finally in subsection 4.5.1, we define and analyze the different Bayesian games at

each stage t ∈ {1, 2, .., n} which concludes our proof of achievability. In 4.5, we identify the

auxiliary random variables and prove the converse statement of our main result. In 4.6, we

sum up the chapter with some concluding remarks and possible extensions.

In chapter 5, we study the problem of persuasion in which information is cascaded from

an encoder to a relay, and from the relay to the decoder. In section 5.1 we briefly summarize

the chapter. In section 5.2, we present the cascade multiple description coding setup. In

section 5.3, we present the Bayesian persuasion game via a Cascade network. In section 5.4,

we consider the unrestricted communication with R1 = R2 = log |U|. Second in section 5.5,

we consider the cooperative scenario with c1 = c2 = c3. In section 5.6, we consider the

case where either the encoding is unrestricted i.e R1 = log |U| or relaying information is

not subject to any information constraint with R2 = log |U|. We also present the covering

lemma with a slight modification. In section 5.7, we consider local cooperation between

either the relay and the encoder with c1 = c2 or the relay shares the same cost function

with the decoder c2 = c3. In section 5.8, we illustrate the problem with a binary example.

We apply the convexification method of Kamenica-Gentzkow, and we illustrate the optimal

settings for the encoder. In section 5.9, we conclude this section. Finally, in chapter 6, we

wrap-up this thesis with some concluding remarks and perspectives.
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Point-to-Point Strategic

Communication
In this chapter, we present the base models of strategic communication between one

encoder and one decoder. We start by reviewing some preliminary concepts of point-to-point

communication theory. Obviously, section 2.1 can be omitted by the familiar reader.
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2.1 Introduction to point-to-point communication

A point-to-point communication scheme is the simplest form of communication net-

works. It is represented by a directed graph G = (V, e), where V = {E ,D} is the set of

vertices or nodes in the communication network consisting of an encoder E and a decoder

D, and e = {(E ,D)} is the set of edges which contains a single edge (E ,D) representing a

wireless communication link from the encoder to the decoder. In the context of telecom-

munication, point-to-point communication without any relay or compression of data is a

rare sight in modern networks. A simple phone call is the most prominent example of

point-to-point communication between two connected nodes sending and receiving audio.

However; a call via Whatsapp or Zoom cannot be considered as a point-to-point commu-

nication as data input is first received and encrypted by a cloud or gateway, before it is

broadcasted to the terminal node. In the following, we will briefly review the results of

point-to-point information theory. We present the models of lossy source coding in subsec-

tion 2.1.1, joint source-channel separation result in subsection 2.1.2, and the communication

model of Wyner-Ziv with decoder’s side information in subsection 2.1.3. These concepts are

fundamental for the study of the Bayesian persuasion game under information constraints

which will be developed in section 2.3 and section 2.4, whereas section 2.2 will be devoted

for the model of Kamenica and Gentzkow where information is unconstrained.

2.1.1 Lossy source coding

Shannon (1959) introduced the concept of specifying the rate R > 0, i.e the exponential

growth rate of the number of available messages, required to represent a discrete source under

a certain fidelity criterion. The communication system in Shannon’s theory represents a

cooperative scenario in which the transmitter and the receiver share the same objective of

transmitting reliable and truthful information. Let U denote a discrete alphabet representing

the source, and PU ∈ ∆(U) a probability distribution over U that is assumed to be known

by the encoder and the decoder. The lossy source coding setup, depicted in Figure 2.1,

models communication between an encoder E observing an n-sequence, n ∈ N?, of discrete,

independent and identically distributed (i.i.d) random variables Un, distributed according
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E D
V nUn M

Figure 2.1: Source coding setup

to the i.i.d distribution PUn = ∏n
t=1 PUt , and transmitting to decoder D a messageM taking

values from a set of size 2bnRc. The decoder observes the encoded message and draws an

n-sequence V n from a discrete alphabet V that is different from U . The encoder and the

decoder share a cost function c : U × V 7→ R, and a common goal of keeping the expected

average distortion between Un and V n small. In the following, we define an (R,n) lossy

source code and present the lossy source coding theorem of Shannon. More details about

lossy source coding can be found in (El Gamal and Kim, 2011, section 3.6).

Definition 2.1.1. An (R,n) lossy source code consists of the following:

• An index set {1, 2, ..2bnRc}.

• An encoding function σ : Un −→ {1, 2, ..2bnRc} which assigns an index m to each

sequence un.

• A decoding function τ : {1, 2, ..2bnRc} −→ Vn which assigns an estimate vn ∈ Vn to

each index m.

• A joint distribution defined by

Pσ,τ =
( n∏
t=1
PUt

)
PσUn|MP

τ
V n|M . (2.1)

We denote by C(R,n) the set of pairs (σ, τ) of an (R,n) code.

Definition 2.1.2. Let c : U × V −→ R a cost function. We define the long run distortion

function cn(σ, τ) as follows:

cn(σ, τ) =
∑
un,vn

Pσ,τ (un, vn) 1
n

n∑
t=1

c(ut, vt). (2.2)

In the following, we present the analogous problem of minimizing the cost for a given

rate R as it is more relevant to the models we present in the next chapters.



18 2. Point-to-Point Strategic Communication

Definition 2.1.3. The long-run cost-rate function Γn(R) gives, for a rate R, the minimal

long-run cost that could be achieved by an (R,n) lossy source code

Γn(R) = min
(σ,τ)∈C(R,n)

cn(σ, τ). (2.3)

Definition 2.1.4. We define the single-letter cost-rate function Γ(R) that gives the lowest

cost provided R ≥ 0 by

Γ(R) = min
PV |U :I(U ;V )≤R

E(c(U, V )). (2.4)

Theorem 2.1.1 (Lossy Source Coding for a DMS Shannon (1959)). For a rate R ∈ R+,

we have

lim
n−→∞

Γn(R) = inf
n∈N?

Γn(R) = Γ(R). (2.5)

The achievability proof of Theorem 2.1.1 consists of showing that limn−→∞ Γn(R) ≤

Γ(R) and the converse proof shows that for all n, infn∈N? Γn(R) ≥ Γ(R). Along with Fekete’s

lemma we get limn−→∞ Γn(R) = infn∈N? Γn(R).

2.1.2 Joint source-channel coding

Consider the case where the encoder wishes to communicate n symbols of an uncom-

pressed discrete memoryless source U with entropy H(U) in n transmissions through the

discrete memoryless channel (X ,Y,PY |X) with capacity C. Let c : U × V 7→ R a cost

function, C(R) a cost-rate function, a DMS source U and a DMC PY |X of capacity C.

E Channel D
V nUn Xn Y n

Figure 2.2: Lossy joint source-channel coding setup

Definition 2.1.5. A lossy joint source-channel n−code consists of the following:
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• An encoding function σ : Un −→ X n which assigns a codeword xn ∈ X n to each

sequence un ∈ Un.

• A decoding function τ : Yn −→ Vn which assigns an estimate vn ∈ Vn to each sequence

yn ∈ Yn.

• A joint distribution defined by

Pσ,τ =
( n∏
t=1
PUt

)
PσXn|Un

( n∏
t=1
PY |X

)
PτV n|Y n (2.6)

The long-run distortion cn(σ, τ) of the decoder is defined as in Def. 2.1.2. We are

interested in the asymptotic behavior of the optimal long-run cost i.e. the limit as n goes

to infinity of Γn = minσ,τ cn(σ, τ). The single-letter cost-rate function Γ(R) is given as in

Def. 2.1.4

Note that the channel’s capacity C (Shannon (1948)) is given by

C = max
PX

I(X;Y ) = max
PX

∑
(x,y)∈suppPXPY |X

PX(x)PY |X(y|x) log2
PY |X(y|x)∑

x′ PX(x′)PY |X(y|x′) .

(2.7)

The maximum in (2.7) is taken over the set of probability distributions PX ∈ ∆(X ). When

the channel is perfect, i.e PY |X(y|x) = 1{y=x}, the channel capacity C satisfies

C = max
PX

I(X;Y ) = max
PX

H(X) = log2 |X |. (2.8)

Theorem 2.1.2 (Lossy Source-Channel Separation). Given a DMC channel (X ,PY |X ,Y)

of capacity C, the following holds:

lim
n−→∞

Γn = inf
n∈N?

Γn = Γ(C). (2.9)

Es Ec
M PY |X Dc Ds

M̂ V nUn Xn Y n

Figure 2.3: Source-channel separation
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2.1.3 Communication with side information at the decoder

Wyner and Ziv (1976) extended the work of Slepian and Wolf (1973), to establish

information-theoretic bounds for lossy compression with side information at the decoder.

Let U and Z represent two i.i.d. random variables, distributed according to P⊗nUZ , of possibly

infinite alphabets U and Z, modeling source data and side information respectively. We

assume that the source values are encoded without access to the side information as depicted

in Figure 2.4. Unlike the encoder, the decoder has access to the side information Z, and

obtains a reconstruction of the source values in alphabet V.

PUZ E D
V n

Zn

Un Y n

Figure 2.4: Lossy compression with side information at the decoder

Definition 2.1.6. A lossy source n−code with side information at the decoder consists of

the following:

• An encoding function σ : Un −→ Yn which assigns a codeword yn ∈ Yn to each

sequence un ∈ Un.

• A decoding function τ : Yn × Zn −→ Vn which assigns an estimate vn ∈ Vn to each

pair of sequences (yn, zn) ∈ Yn ×Zn.

• A joint distribution defined by

Pσ,τ =
( n∏
t=1
PUtZt

)
PσY n|UnP

τ
V n|Y nZn (2.10)

Given PUZ , the long run cost function cn(σ, τ) is given as in Def. 2.1.2. Let W ∈ W

denote an auxiliary random variable such that |W| ≤ |U|+ 1.

Definition 2.1.7. Let R > 0 be given. We define the Wyner-Ziv’s cost-rate function

ΓU |Z(R) with side information at the decoder by

ΓU |Z(R) = min
PW |UPV |WZ :R≥I(U ;W |Z)

E( 1
n

n∑
t=1

c(Ut, Vt)). (2.11)
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In the following, we present Wyner and Ziv (1976)’s Theorem for lossy compression

with side information at the decoder.

Theorem 2.1.3 (Lossy Compression with Side Information at the Decoder). Given a rate

R ≥ 0, a cost function c : U × V −→ R, a DMS source U and a side information Z,

distributed according to P⊗nUZ , the following holds:

lim
n−→∞

Γn(R) = inf
n

Γn(R) = ΓU |Z(R). (2.12)

2.2 Bayesian persuasion with unlimited communication ca-

pacity

Bayesian persuasion analyzes situations in which one party, the encoder, transmits

information optimally to the other party, the decoder, who has to make a decision based

on the provided information. Optimality means either maximizing the encoder’s payoff,

or minimizing its cost. In the game theory literature, the Bayesian persuasion game was

introduced as a point-to-point communication model with no limits on the amount of infor-

mation transmitted. Each player is endowed with a distinct, non-aligned cost function which

is known by the other player. The informed encoder communicates the i.i.d. source, with a

sufficiently large number of bits, to a decoder who updates its Bayesian beliefs based on the

signal received from the encoder, and draws an action sequence that affects the encoder’s

cost.

Kamenica and Gentzkow (2011) formulate the Stackelberg version of the one-shot

strategic communication game, in which the encoder (the Stackelberg leader) commits to

and reveals an encoding strategy before observing the state, and the decoder (the Stackel-

berg follower) chooses its strategies as a best-response to the encoder’s strategy. The authors

study the ex ante solution of a belief-based model of persuasion, in which a strategic trans-

mitter wants to persuade a decoder to change its action, which affects the welfare of both

agents, by influencing its Bayesian beliefs about the state. This model considers the encoder

to be an information designer (Bergemann and Morris (2019)) who commits to and reveals
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the signaling scheme, without knowledge of the state. A signal in this model is assumed to

be costless and can be viewed as a map from the true state of the world to a distribution over

some signal realization space. The utility functions in this game are known by all players.

The encoder’s goal is to select the signal that maximizes it own payoff while satisfying the

incentive constraints of the decoder. Kamenica and Gentzkow characterize the signals that

are optimal from the encoder’s perspective and derive necessary and sufficient conditions

for the existence of such signals. They show that the problem of choosing an optimal signal

can be reexpressed as a problem of choosing a distribution of posterior beliefs such that the

average of posteriors equal the prior belief. This allows the use of a geometric approach (the

concavification/convexification method) in order to find the optimal signals.

Information design with multiple designers interacting with a set of agents is studied

in Koessler et al. (2021). Authors establish the existence of equilibria, characterize mixed

or pure equilibria in special situations where interested parties design information to in-

fluence the behavior of decision-makers, and show when it is without loss of generality to

restrict designers to the use of simple information policies. In Sarıtaş et al. (2017), Sarıtaş

et al. (2019), the Nash equilibrium solution is investigated for multi-dimensional sources

and quadratic cost functions, whereas the Stackelberg solution is studied in Sarıtaş et al.

(2020). The one shot noisy Bayesian persuasion game was also studied in Tsakas and Tsakas

(2021) where they show the existence of an optimal signaling structure and establish nec-

essary and sufficient conditions to weakly increase the sender’s payoff with respect to the

Blackwell-informativeness of the noisy channel when the message space and the channel are

binary.

2.2.1 The model of Kamenica-Gentzkow with distinct objectives

E D
VU X

ce(U, V ) cd(U, V )

Figure 2.5: Kamenica-Gentzkow’s one-shot Bayesian persuasion
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As depicted in Figure 2.5, the encoder E observes a state variable U drawn by nature

according to PU and taking its values from a finite alphabet U , and sends a symbol x ∈ X ,

where X is a finite alphabet such that |X | ≥ |U|, to decoder D who then selects an action v

from a finite action set V. Players in this game are endowed with distinct costs defined as

follows.

Definition 2.2.1. The encoder and decoder’s cost functions ce and cd respectively are given

by

ce : U × V 7→ R, (2.13)

cd : U × V 7→ R. (2.14)

We assume that cost functions and alphabets are known by all players. The sender

and the receiver share a prior belief PU ∈ ∆(U) about the state. The signal designed and

revealed by the encoder before observing the source, is a profile of conditional distributions

over the symbols x ∈ X for each given source symbol u ∈ U . We denote the encoder’s signal

by σ and the decoder’s strategy by τ .

Definition 2.2.2. The encoding σ and decoding τ of the encoder and the decoder are given

as follows:

σ : U −→ ∆(X ), (2.15)

τ : X −→ ∆(V). (2.16)

Each pair of stochastic strategies (σ, τ) induces a joint distribution Pσ,τUXV over U×X×V

defined by

Pσ,τUXV = PUPσX|UPτV |X (2.17)

For every given signal σ of the encoder, the decoder’s set BR(σ) of best-response
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strategies τ is defined as follows

BR(σ) =
{
τ, EPσ,τ [cd(U, V )] ≤ EPσ,τ̃ [cd(U, V )], ∀τ̃ 6= τ

}
. (2.18)

The encoder’s optimal signal is the one that minimizes its expected cost and satisfies the

incentives of the decoder. Therefore, the encoder has to solve the following problem:

Γe = min
σ

min
τ∈BR(σ)

EPσ,τ [ce(U, V )]. (2.19)

Below is the ordered timeline of the Bayesian persuasion game:

• The encoder E chooses, announces the signal σ.

• The state U is drawn according to PU .

• The symbol x ∈ X is transmitted by the encoder according to PσX|U .

• Knowing σ, decoder D observes x and selects an action V according to the behavior1

strategy τ ∈ BR(σ).

• The cost values are given by ce(U, V ) and cd(U, V )

2.2.2 Kamenica-Gentzkow’s convexification method

Kamenica and Gentzkow’s solution concept is an encoder-preferred subgame perfect

equilibrium, i.e for a given encoding strategy σ, and a signal realization x, the decoder

updates its posterior belief PU (·|x) about the state using Bayes’s rule, and accordingly

selects a best-response action v. Let p ∈ ∆(U) denote the posterior belief of the decoder

about the state.

Definition 2.2.3. For a given posterior belief p ∈ ∆(U), we define the decoder’s set of

best-response actions V ?(p) ⊂ V as follows

V ?(p) = arg min
v∈V

Ep[cd(U, v)]. (2.20)

1A behavior strategy τi of player i in a Bayesian game is a mapping Ti 7→ ∆(Vi), where Ti is the set of
types of player i and Vi is the set of actions.
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If at a given belief, the decoder is indifferent between two or more actions, the model

assumes it takes the one that minimizes the encoder’s expected cost.

For a given posterior belief p ∈ ∆(U), let v?(p) denote a best-response action in V ?(p).

The sender’s expected cost value Ψe(p) is given by

Ψe(p) = Ep[ce(U, v?(p))] (2.21)

The optimal cost of the encoder is the convex envelop of the encoder’s expected cost

function evaluated at the prior PU as follows

Γe = inf
(λx,px)x∈X

{ ∑
x∈X

λx ·Ψe(px),
∑
x∈X

λx = 1,
∑
x∈X

λx · px = PU
}

(2.22)

The infimum is taken over (λx, px)x∈X which is an optimal splitting of the prior belief PU of

the decoder. This splitting needs to be Bayes plausible (Kamenica and Gentzkow (2011)),

or in other words it needs to satisfy the splitting lemma (Aumann and Maschler (1995))

which says that on average the posterior beliefs are equal to the prior belief. This convex

formulation provides an interesting geometric approach to compute the encoder’s optimal

cost for the one-shot scenario.

2.3 Bayesian Persuasion under information constraint

The model of Le Treust and Tomala Le Treust and Tomala (2019a) considers that the

communication channel is subject to exogenous noise, and assumes that the encoder and

the decoder are engaged in a large number of i.i.d. copies of the same base game. They

formulate the strategic communication problem as a joint source-channel coding problem,

in which one informed encoder transmits to a decoder who’s suppose to choose an action

that affects the encoder. The players are endowed with mismatched objectives captured

by distinct utility functions. Each player aims to maximize its respective payoff. They

investigate the effect of the noise on the sender’s expected utility as the number of problems

and reported messages increases, and formulate their solution as a function of the channel’s
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capacity. They show that the optimal strategy of the sender correlates all the messages with

the state parameters of all the problems, and hence the sender can achieve a better payoff

by linking the independent problems together. The main result describes two features of

the asymptotic behavior of the long-run optimal utility of the encoder: 1) An achievabil-

ity statement showing that the encoder’s optimal long-run expected utility converges to its

single letter expected utility. 2) A converse statement showing that the expected single

letter utility of the encoder forms an upper bound to its optimal long run expected utility.

Using separation source-channel coding, the authors prove the existence of an achievable

coding scheme that is optimal for the encoder while satisfying the incentive constraints of

the decoder. Then they show that the beliefs of the decoder that are induced by the cod-

ing strategies and the single-letter beliefs that correspond to the target distribution that

satisfies the information constraints imposed by the channel are close on average under the

KL−divergence. Using Lagrangian methods, the authors characterize the optimal payoff

of the encoder as the concave closure of its expected payoff function evaluated at the prior

belief of the decoder. The presence of noise reduces the set of feasible posterior beliefs of

the decoders, which harms the encoder’s payoff compared to what it could have achieved in

persuasion through a perfect communication channel. The result of Le Treust and Tomala

(2019a) is reviewed and generalized by Doval and Skreta (2018) to multiple constraints, pro-

viding by that a general toolbox for studying constrained Bayesian persuasion. In the same

spirit, Jackson and Sonnenschein (2007), found that in an incentive compatible mechanism

design problem, the designer can achieve a better outcome when the problem is linked with

a large number of independent copies of itself. We generalize the model in Le Treust and

Tomala (2019a) to strategic communication involving multiple agents. In Matysková and

Montes (2021), authors extend the Bayesian persuasion game to the case where decision

makers may have access to some additional information at a costly effort. Unlike in the

model of Kamenica and Gentzkow (2011), the receiver chooses her own signal at a cost to

acquire more information before taking an action. In this setting, such additional informa-

tion can decrease the encoder’s payoff. Therefore, the encoder has to solve the Bayesian

persuasion game under an additional constraint: the receiver never learns. Authors suggest

a new solution method that does not rely directly on the concavification of the encoder’s

expected payoff, and which is also applicable to the standard Bayesian persuasion model.
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The case where the decoder privately observes a signal correlated to the state, also

referred to as the Wyner and Ziv (1976) setting, is studied in Akyol et al. (2017), Bou

Rouphael and Le Treust (2020a) and Le Treust and Tomala (2021). Wyner and Ziv establish

a lower bound for the achievable rates under a distortion constraint when a single source in

encoded independently but encoded with the presence of a side information at the decoder

Wyner and Ziv (1976). The main result of Wyner and Ziv shows that in presence of decoder’s

side information, encoding the source independently can result in a rate loss compared to

the setting where the side information is also accessible by the encoder.

In Le Treust and Tomala (2021), authors extend the model in Le Treust and Tomala

(2019a) by assuming that the decision maker or the decoder has access to a side infor-

mation correlated to the state. They assume an analogous scenario in which mismatched

utilities are replaced by misaligned distortion functions and that the strategic goal of each

player is to minimize its respective distortion function. They showed that the main result of

Le Treust and Tomala (2019a) can be extended to the noisy communication involving side

information at the decoder. The solution has also been characterized as the convex envelop

of the encoder’s optimal expected distortion evaluated at the prior. Our first contribution

to this work was to investigate the impact of the decoder’s side information on the outcome

that could be achieved by the encoder Bou Rouphael and Le Treust (2020a). The work by

Akyol et al. in Akyol et al. (2017), Akyol et al. (2016), and Akyol et al. (2015) considers

Gaussian source and channels with the Crawford-Sobel’s quadratic cost functions. Their

result suggests that the optimal solution for the one-shot communication problem remains

optimal when considering several strategic communication problems. This is not the case

when the source and the channel are general and discrete source, channel and general mis-

matched cost functions. In Nadendla et al. (2018), authors further expanded these results

for cases where the prior beliefs about the source and the channel are heterogeneous and non

identical. Bayesian persuasion involving rational individuals with different prior beliefs was

also studied in Alonso and Câmara (2016). Authors provide necessary and sufficient con-

ditions under which a sender benefits from persuading decoders with distinct prior beliefs.

Quadratic cost measures that depend on the state in the context of Bayesian persuasion

were also addressed in Sayin and Başar (2021). In our model, the cost functions are general,
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PU σ TY |X τ

cd(U, V )ce(U, V )

V nUn Xn Y n

Figure 2.6: Noisy Bayesian persuasion

and the source is discrete. When two decoders are considered, we assume they both share

the same prior belief about the state. The case of general cost functions with a Gaussian

source could be very interesting to tackle.

2.3.1 Le Treust and Tomala’s approach to strategic lossy source-channel

coding

The encoder E observes an i.i.d. source Un ∼ P⊗nU taking its values from a finite

alphabet U , and inputs a sequence Xn, where X is a finite alphabet into the channel. Y n

is the channel output drawn according to the memoryless channel TY |X and observed by

decoder D who then selects an action sequence V n with V a finite alphabet as in Figure 2.6.

Definition 2.3.1. Let n ∈ N?. The encoding σ and decoding τ of the encoder and the

decoder respectively are given as follows:

σ : Un −→ ∆(X n), (2.23)

τ : Yn −→ ∆(Vn). (2.24)

Every coding pair (σ, τ) induces a joint probability distribution Pσ,τ over Un × X n ×

Yn × Vn given by

Pσ,τ =
( n∏
t=1
PUt

)
× PσXn|Un ×

( n∏
t=1
TYt|Xt

)
× PτV n|Y n . (2.25)

Definition 2.3.2. The long run cost functions of the encoder and the decoder are defined

by

cne (σ, τ) =Eσ,τ
[ 1
n

n∑
t=1

ce(Ut, Vt)
]

=
∑
un,vn

Pσ,τUnV n(un, vn) ·
[ 1
n

n∑
t=1

ce(ut, vt)
]
, (2.26)
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cnd (σ, τ) =Eσ,τ
[ 1
n

n∑
t=1

cd(Ut, Vt)
]

=
∑
un,vn

Pσ,τUnV n(un, vn) ·
[ 1
n

n∑
t=1

cd(ut, vt)
]
. (2.27)

where single-letter costs ce and cd are the same as in Definition 2.2.1.

Definition 2.3.3. For a given encoding σ, the set of decoder’s best-response strategies

BR(σ) is given by

BR(σ) =
{
τ, cnd (σ, τ) ≤ cnd (σ, τ̃),∀τ̃ 6= τ

}
. (2.28)

If for a given σ, there exists more than one strategy τ ∈ BR(σ), we assume that the

decoder will select the one that maximizes the encoder’s long-run cost.

Definition 2.3.4. The encoding problem for the noisy Bayesian persuasion is given by

Γne = inf
σ

max
τ∈BR(σ)

cne (σ, τ). (2.29)

2.3.1.1 Solution Formulation

Let W be an auxiliary random variable taking values from W such that |W| =

min(|U| + 1, |V|). The authors characterize the optimal signal of the encoder as a condi-

tional distribution that satisfies the information constraints imposed by the noisy channel,

and formulate the optimal single-letter cost of the encoder accordingly.

Definition 2.3.5. The encoder’s set of target distributions Q0, and the decoder’s set of best-

responses Q2(QW |U ) for every conditional distribution QW |U are respectively characterized

as follows

Q0 =
{
QW |U , max

PX
I(X;Y )− I(U ;W ) ≥ 0

}
, (2.30)

Q2(QW |U ) = arg min
QV |W

EPUQW |UQV |W
[
cd(U, V )

]
. (2.31)
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Therefore, the linear program formulation of the encoder’s optimal single-letter cost is

given by

Γ?e = inf
QW |U∈Q0

max
QV |W∈Q2(QW |U )

EPUQW |UQV |W
[
ce(U, V )

]
. (2.32)

The main result of Le Treust and Tomala (2019a), fully describes the limiting behavior of

the encoder’s optimal long-run expected cost Γne , and describes its lower bound.

Theorem 2.3.1 (Le Treust and Tomala (2019a)).

lim
n−→∞

Γne = inf
n∈N?

Γne = Γ?e. (2.33)

The proof of Theorem 2.3.1 can be found in (Le Treust and Tomala, 2019a, Subsection

3.1.1) and consists of proving the achievability of the optimal single-letter cost for sufficiently

large blocklength n, and conversely, the proof of the lower bound. Note that the problem

in Le Treust and Tomala (2019a) was formulated with utility functions instead of costs

where the player’s goal is to maximize their respective utility functions and the converse

statement of the main result provides an upper bound for the encoder’s optimal long-run

expected cost. In the following, we provide the convex formulation of the solution for the

Bayesian persuasion game over a noisy channel.

Let C > 0 denote the channel’s capacity and p ∈ ∆(U) the belief parameter of the

decoder about the state. Assuming that if two or more actions minimize the decoder’s cost,

the latter will select the action that maximizes the encoder’s cost, the best-response action

of the decoder for a given belief p is given by

v?(p) ∈ arg max
v∈arg minEp

[
cd(U,v)

]Ep[ce(U, v)
]
. (2.34)

The encoder’s expected cost for a belief p of the decoder is given by

Ψe(p) = Ep
[
ce(U, v?(p))

]
. (2.35)
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Therefore, the optimal single-letter cost that can be achieved by the encoder in the noisy

Bayesian persuasion game is characterized as the convex envelop of its expected cost formu-

lated as a function of the decoder’s beliefs as follows

Γ?e = inf
(λw,pw)w∈W

{ ∑
w∈W

λw ·Ψe(pw),
∑
w∈W

λw = 1,
∑
w∈W

λw · pw = PU ,

∑
w

λw ·H(pw) ≥ H(U)− C, |W| = min(|U|+ 1, |V|)
}
.

(2.36)

If we remove the information constraint imposed by the noisy channel from (2.36), and

the cardinality bound of W, we revert back to convex formulation (2.22) of Kamenica and

Gentzkow (2011).

2.3.2 Persuasion with decoder’s side information

PUZ σ TY |X τ

cd(U, V )ce(U, V )

V nUn Xn Y n

Zn

Figure 2.7: Noisy Bayesian persuasion with decoder’s side information

Now we study the Bayesian persuasion problem over a noisy channel with the additional

assumption that the decoder privately observes a side information Z correlated to the state U

according to the conditional probability distribution PZ|U as in Figure 2.7. In the following,

we present the system model and the solution formulation for the noisy Bayesian persuasion

with decoder’s side information. Finally we derive the convex formulation of the solution.

Definition 2.3.6. The encoding σ and decoding τ of the encoder and the decoder respectively

are given as follows:

σ : Un −→ ∆(X n), (2.37)

τ :Yn ×Zn −→ ∆(Vn). (2.38)
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Every coding pair (σ, τ) induces a joint probability distribution Pσ,τ over Un × Zn ×

X n × Yn × Vn given by

Pσ,τ =
( n∏
t=1
PUtZt

)
× PσXn|Un ×

( n∏
t=1
TYt|Xt

)
× PτV n|Y nZn . (2.39)

Definition 2.3.7. The encoding problem for the noisy Bayesian persuasion with side infor-

mation at the decoder is given by

Γns = inf
σ

max
τ∈BR(σ)

cne (σ, τ),

where BR(σ) =
{
τ, cnd (σ, τ) ≤ cnd (σ, τ̃), ∀τ̃ 6= τ

}
is the set of best-response strategies τ

of the decoder for a given encoding σ.

2.3.2.1 Solution Formulation

Let W be an auxiliary random variable such that |W| = min(|U|+ 1, |V||Z|. Le Treust

and Tomala (2021) characterize the single letter solution and derive the convex formulation

for Bayesian persuasion over a noisy channel with decoder’s side information.

Definition 2.3.8. The encoder’s set of target distributions Q0, and the decoder’s set of best-

responses Q2(QW |U ) for every conditional distribution QW |U are characterized as follows

Q0 =
{
QW |U ,max

PX
I(X;Y )− I(U ;W |Z) ≥ 0

}
, (2.40)

Q2(QW |U ) = arg min
QV |WZ

EPUZQW |UQV |WZ

[
cd(U, V )

]
. (2.41)

Definition 2.3.9. The optimal single-letter cost of the encoder Γs for the noisy Bayesian

persuasion with decoder’s side information is characterized as follows

Γs = inf
QW |U∈Q0

max
QV |ZW∈Q2(QW |U)

EPUZQW |UQV |WZ

[
ce(U, V )

]
. (2.42)
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Theorem 2.3.2 (Le Treust and Tomala (2021)).

lim
n−→∞

Γns = inf
n∈N?

Γns = Γs. (2.43)

The proof of Theorem 2.3.2 can be found in (Le Treust and Tomala, 2018, App. B and

C).

Let p ∈ ∆(U) denote the decoder’s belief about the state. The encoder’s expected cost

for belief p is given by

ψe(p) = Ep[ce(U, v?(p))], (2.44)

where v?(p) ∈ arg maxv∈arg minE[cd(U,v)] Ep
[
ce(U, v)

]
the decoder’s best-response action for

belief p.

Because of the presence of side information at the decoder, we define the encoder’s cost

function for a given belief of the decoder about the state averaged over Z. Similarly, we

define the average entropy which is the conditional entropy H(U |Z) evaluated with respect

to p · PZ|U instead of PUZ .

Definition 2.3.10. The encoder’s average utility function Ψe(p) and the average entropy

function h(p) are given as follows:

Ψe(p) =
∑
u,z

p(u) · P(z|u) · ψe
( p(·)P(z|·)∑

u′ p(u′) · P(z|u′)
)
, (2.45)

h(p) =
∑
u,z

P(z) p(u)P(z|u)∑
u′ p(u′)P(z|u′) · log2

∑
u′ p(u′) · P(z|u′)
p(u) · P(z|u) . (2.46)

Therefore, the convex formulation of the optimal single-letter cost for channel’s capacity

C = max
PX

I(X;Y ) is given as follows

Γs = inf
(λw,pw)w∈W

{ ∑
w∈W

λw · δze(pw),
∑
w∈W

λw = 1,
∑
w∈W

λw · pw = PU ,
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∑
w

λw · hz(pw) ≥ H(U |Z)− C, |W| = min(|U|+ 1, |V||Z|)
}
.

(2.47)

When removing the information constraints imposed by the noisy channel from formulas

(2.36) and (2.47) we revert back to the persuasion game (2.22) of Kamenica and Gentzkow

(2011). When the cost functions ce = cd, we are in the Wyner and Ziv (1976) setting and

when ce 6= cd, the problem is the one in Le Treust and Tomala (2019a). If the state variable

U and the side information of the decoder Z are two independent random variables, then

formulas (2.36) and (2.47) are equal.

2.4 Impact of side observation on Bayesian persuasion

The convex formulations that were presented in the previous sections, are particularly

interesting for the one-shot scenario as they allow a geometric representation of the solution

as the convex envelop of the encoder’s expected cost evaluated at the prior belief of the

decoder. In the following, we illustrate the problem using an example with a binary state U ,

binary action V , and binary side observation Z. We analyze the impact of side information

on the encoder’s cost by comparing the convex formulations for noisy Bayesian persuasion

with (2.47) and without (2.36) decoder’s side information.

2.4.1 Binary example

Let U = {u0, u1} the binary state space, V = {v0, v1} the decoder’s action space,

and p0 = P(U = u1) ∈ [0, 1] the decoder’s prior belief parameter. We consider a binary

symmetric noisy channel where X = {x0, x1} denotes the set of channel inputs, Y = {y0, y1}

denotes the set of channel outputs. The binary symmetric channel’s capacity is given by C =

max
PX

(Hb(X)−Hb(X|Y )) = max
PX

(Hb(X)−∑x P(x)Hb(ε)) = 1−Hb(ε) bits per transmission,

where ε ∈ [0, 1
2 ] is the noise level such that ε = P(yj |xi), i 6= j as in Figure 2.8 and Hb(p)

denotes the binary entropy. Let δ ∈ [0, 1
2 ] denote the correlation parameter between the

state U and the side information Z such that δ = PU |Z(u0|z1) = PU |Z(u1|z0). Note that if
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δ = 0.5, then the state U and the side Z are independent, and the persuasion game is as in

subsection 2.3.1.

1− p0

p0

u0

u1

x0

x1

y0

y1

α

β

1− α

1− β

ε

1− ε

1− ε

ε

Figure 2.8: Encoder’s joint strategy σ over the binary symmetric channel

The cost functions of the decoder and the encoder are given in Table 2.2 and Table 2.1

respectively and the expected costs as functions of the belief PU (u1) of the decoder are given

in Figure 2.9. As the decoder’s goal is to minimize its cost, the red lines show the decoder’s

expected cost for the best-response actions that depend on its belief about the state. The

parameter γ ∈ [0, 1] denotes the threshold at which the decoder changes action from v0, the

default action that corresponds to belief p0, to action v1 which is preferred by the encoder.

In this example, we consider the prior p0 = 0.8 and the utility threshold γ = 0.6.

Table 2.1: Decoder’s cost
v0 v1

u0 9 0
u1 4 10

Table 2.2: Encoder’s cost
v0 v1

u0 1 0
u1 1 0

v1

v0

γ 1

9

p0

4

10

P(u1)

v0

v1
γ p0

1

Γe = 0.5

P(u1)

Figure 2.9: Expected cost functions of decoder and encoder with p0 = 0.8, δ = 0.5, and
γ = 0.6.

The encoder’s optimal cost value Γe given in (2.22), which corresponds to the Bayesian

persuasion game of Kamenica and Gentzkow (2011) in which the side and the state are

independent, i.e δ = 0.5, and the channel is perfect, i.e ε = 0, is computed by taking the
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convex envelop of the encoder’s expected utility represented by the green dotted line in

Figure 2.9. The optimal splitting of the decoder’s prior belief in this case corresponds to

posterior beliefs p1 = γ and p2 = 1. When evaluated at the prior p0 so as to satisfy the

splitting lemma, we get the optimal cost value Γe = 0.5.

Using Bayes-rule we compute the decoder’s beliefs as follows

p1 =P(u1|x0) = p0α

p0α+ (1− p0)(1− β) , (2.48)

p2 =P(u1|x1) = p0(1− α)
p0(1− α) + (1− p0)β . (2.49)

Therefore, the encoder’s strategy can be derived as follows

α =p1(p2 − p0)
p0(p2 − p1) , (2.50)

β =(1− p2)(p0 − p1)
(1− p0)(p2 − p1) . (2.51)

Thus, the posterior belief that are feasible need to satisfy either 0 ≤ p1 ≤ p2 ≤ 1 or

0 ≤ p1 ≤ p2 ≤ 1. By substituting p1 and p2 with their optimal values 1 and γ as in

Figure 2.9, we get the optimal strategy of the encoder for α = 0.625 and β = 1.

Noisy Bayesian Persuasion without Side Information (Equation for Γ?e (2.36))

Now assume that the communication is imperfect i.e ε > 0, and we still assume that

the decoder’s threshold γ < p0. In fact, if γ ≥ p0, then the decoder will play v1 by default as

shown in Figure 2.9, and therefore the encoder has no interest in persuasion. The optimal

number of posterior beliefs when no side information is available at the decoder is two

(Le Treust and Tomala, 2019a, lemma 6.1). Let λ ∈ [0, 1] and posteriors p1, p2 ∈ ∆(U).

These posterior beliefs of the decoder need to satisfy the splitting condition and information

constraint imposed by the noisy channel.


λp1 + (1− λ)p2 = p0 ⇐⇒ λ = p0−p2

p1−p2
⇐⇒ 1− λ = p1−p0

p1−p2
,

λHb(p1) + (1− λ)Hb(p2) ≥ Hb(p0)− C.
(2.52)
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Assuming that the information constraint is binding at the optimal, we get

λHb(p1) + (1− λ)H1(p2) = H1(p0)− C (2.53)

⇐⇒Hb(p1) = p0Hb(p2)− p2(Hb(p0)− C)
(p0 − p2) + p1

(−Hb(p2) +Hb(p0)− C)
(p0 − p2) (2.54)

Let p ∈ [0, 1] denote a belief parameter. The encoder’s expected cost function depicted

in Figure 2.9 is given by Ψe(p) = 1p∈[γ,1]. For each p2 ∈ [p0, 1], we denote by p1(p2) the

unique solution of (2.54) for a given pair (p0, C) . Since the decoder’s threshold γ > p0,

hence at the optimum p2 = γ, thus

Γ?e = inf
p2∈[0,1]

(
λΨe(p1(p2)) + (1− λ)Ψe(p2)

)
= p1(γ)− p0

p1(γ)− γ . (2.55)

As depicted in Figure 2.10, the orange curve is the binary entropy Hb(p) and the red lines

represent the encoder’s expected cost as a function of the decoder’s belief about the state.

The green dotted line corresponds to the convexification of (2.22) for prior p0 = 0.7 and

threshold γ = 0.6. Assuming that the channel’s capacity is C = 0.1, the optimal splitting of

the prior has to satisfy the information constraint (2.53). Therefore, the optimal posteriors

are γ and p1 = 0.8. The blue dotted line represents the convexification of the expected

cost and it intersects the prior at the optimal cost Γ?e which could be achieved in this noisy

persuasion game without decoder’s side information.

Persuasion with Side Information (Equation for Γs (2.47))

Assume δ 6= 0.5, i.e. the decoder observes a side information Z correlated to the

state U . In this case, (Le Treust and Tomala, 2019a, Lemma 6.3) ensures that the optimal

number of posterior beliefs is three. The posterior distributions (p1, p2, p3) from observing

the message delivered by the encoder, must satisfy the information constraint given by

λ1 · h(p1) + λ2 · h(p2) + λ3 · h(p3) ≥ H(U |Z)−max
P(x)

I(X;Y ) =: IC. (2.56)
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v0

v1

γ 1p0

1

1p∗1

1

Hb(p0)− C

1

P(u1)p1

Γe = 0.5

Γ?e = 0.24

Figure 2.10: Optimal splitting for noisy persuasion without side information for C = 0.1,
γ = 0.6 and p0 = 0.7

Thus (λ1, λ2, λ3) can be computed from the above information constraint (2.56), and the

splitting lemma λ1p1+λ2p2+λ3q3 = p0 and the fact that λ1+λ2+λ3 = 1.We assume that the

information constraint is binding. Using (Le Treust and Tomala, 2019b, Eq. (57)-(59)),

λ1 = IC · (p2 − q3) + h(p2) · (q3 − p0) + h(q3) · (p0 − p2)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2) , (2.57)

λ2 = IC · (q3 − p1) + h(q3) · (p1 − p0) + h(p1) · (p0 − q3)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2) , (2.58)

λ3 = IC · (p1 − p2) + h(p1) · (p2 − p0) + h(p2) · (p0 − p1)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2) . (2.59)

Given a interim belief parameter q ∈ [0, 1], the decoder’s side information might be z0 or

z1, thus inducing the two following posterior beliefs

p1(q) = q.δ

(1− q).(1− δ) + q.δ
, (2.60)

p2(q) = q.(1− δ)
(1− q).δ + q.(1− δ) . (2.61)

The decoder’s threshold γ induces the two corresponding thresholds ν1 and ν2 for the

interim belief parameter q ∈ [0, 1] such that

ν1 = γ.(1− δ)
δ.(1− γ) + γ(1− δ) , (2.62)
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Figure 2.11: Splitting over 2 posteriors (q1 = ν2; q2 = ν1) with C = 0.25, p0 = 0.65, δ =
0.35, γ = 0.6.

ν2 = γ.δ

γ.δ + (1− δ).(1− γ) . (2.63)

Thus the encoder’s utility function Ψe(q) represented by the red lines in Fig. 2.11 and the

conditional entropy h(q) reformulate as

Ψe(q) =0 · 1{q∈]0,ν2]} + ((1− q) · δ + q · (1− δ)) · 1{q∈]ν2,ν1] + 1 · 1{q∈]ν1,1]}, (2.64)

h(q) =((1− q) · (1− δ) + q · δ) ·Hb(p1(q)) + ((1− q) · δ + q · (1− δ))Hb(p2(q). (2.65)

The encoder’s optimal utility value is given by

Γs = inf
p1∈[0,ν2],p2∈[ν2,ν1],

q3∈[ν1,1]

(
λ1 ·Ψe(p1) + λ2 ·Ψe(p2) + λ3 ·Ψe(q3)

)
(2.66)

= inf
p1∈[0,ν2],p2∈[ν2,ν1],

q3∈[ν1,1]

((h(p0)− C)
(
(q3 − p1) ·

(
p2 · (1− 2δ) + δ

)
+ (p1 − p2)

)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2)

+
(
h(q3) · (p1 − p0) + h(p1) · (p0 − q3)

)
·
(
p2 · (1− 2δ) + δ

)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2)

+ h(p1) · (p2 − p0) + h(p2) · (p0 − p1)
h(p1) · (p2 − q3) + h(p2) · (q3 − p1) + h(q3) · (p1 − p2)

)
(2.67)

As depicted in Figure 2.12, the average entropy is the orange curve and the red lines are

the encoder’s expected cost function averaged over Z. The green triangle represents the



40 2. Point-to-Point Strategic Communication

v0

v1

γ

1

1p0ν2 ν1

1

h(0.65)− C

1

q

Γs = 0.3815

Figure 2.12: Optimal splittings over 3 posteriors with C = 0.25, p0 = 0.65, δ = 0.35, γ =
0.6.

information constraint, where the edges are the entropy values of the optimal posterior

beliefs of the decoder. The edges of the orange triangle are the expected cost that could be

achieved by the encoder with respect to the optimal splitting.

2.4.2 When is side information beneficial for the encoder?

In the following, we investigate the impact of the private observation on the encoder’s

optimal cost. We perform numerical simulations over the (C,δ) region for both convexifica-

tion formulas Γ?e given in (2.36) and Γs given in (2.47), revealing the encoder’s optimal cost

values with and without decoder’s private observation respectively. The optimal splitting

of the prior over 3 posterior beliefs results in the encoder’s optimal payoff values shown in

Fig.2.13 with respect to the (C, δ) regions.

As the channel’s capacity increases, the encoder’s cost decreases without decoder’s

side information. This is due to the fact that more capacity allows the transmission of more

information and hence information can be optimally disclosed. However; with low capacity,

the decoder’s side observation can be beneficial for the encoder until the encoder has no

capacity at all, it becomes optimal to have private information up to some threshold δ?

evaluated in Proposition 2.4.1 below.
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Figure 2.13: Encoder’s optimal cost evaluated with three posteriors w.r.t. δ and C for
p0 = 0.4 and γ = 0.6.

Proposition 2.4.1. Let C = 0.

• If p0 < γ and δ ∈ [0, p0·(γ−1)
p0·(−1+2γ)−γ ] ∪ [ γ·(1−p0)

p0·(1−2γ)+γ , 1], then Γs > Γ?e.

• If p0 ≥ γ then Γ?e ≥ Γs.

The proof of Proposition 2.4.1 can be found in Appendix A.

Comparing the encoder’s cost values for three posterior splittings versus 2 posterior

splittings, Figure 2.16 confirms the result of Le Treust and Tomala (2021) that the optimal

number of posteriors for the noisy Bayesian persuasion game with decoder’s side information

potentially achieve a lower cost than splitting the prior over two posteriors only.

2.5 Conclusion

Point-to-point communication theory provides a rigorous mathematical framework to

study the fundamental information-theoretic limits of communication between a single en-

coder and a single decoder. Our approach is closely related to the rate-distortion theory

(Shannon (1959)) in which the rate region which achieves a small distortion up to a fidelity
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Figure 2.14: (δ, C) regions for encoder’s optimal cost with (blue) and without (green) de-
coder’s private observation for p0 = 0.4 and γ = 0.6.

Figure 2.15: Encoder’s optimal cost with three posterior splittings for (δ, C) with (blue) and
without (green) decoder’s side information for p0 = 0.4 and γ = 0.6.
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Figure 2.16: Difference between optimal cost values obtained by splitting with three poste-
riors and two posteriors.

criterion is derived. We consider distinct cost functions instead of distortions and we mini-

mize the encoder’s cost function subject to the optimal signal that satisfies the bounds of the

achievable rate region. Bayesian persuasion in game theory does not take into consideration

information constraints. Adding information constraints to the Bayesian persuasion game

is an emerging research field. The cases where the channel is noisy and the decoder either

has or not access to a side observation have been fully studied. The impact of the side

information on the encoder’s cost function was also investigated through a binary example.

We illustrate the unrestricted communication, the noisy communication and the noisy com-

munication with decoder’s side information. We compute the optimal splittings in each case

and derive the encoder’s optimal settings.

In the following chapter, we extend the analysis to multi-user communication models

with two decoders. We study strategic lossy source coding for the successive refinement

setup.



3
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Coding for Bayesian Persuasion
In this chapter, we propose a new model to study strategic communication via a succes-
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3.1 Introduction

From the point-to-point communication paradigms, we shift our attention to multi-user

communication networks. We study a Bayesian persuasion game modeled by the successive

refinement source coding setup. This setting puts together an encoder and two decoders, one

of which has access to the observation of the other. The importance of successive refinement

coding is that it can be applied to cases that go beyond the traditional rate-distortion coding

to different settings including multimedia systems Verbist et al. (2013), hypothesis testing

Tian and Chen (2008), pattern recognition O’Sullivan et al. (2006), and privacy Girgis

et al. (2020) among others. In the standard successive refinement source coding scheme,

formulated as a rate-distortion problem, a source stream is encoded into more than one

description in a progressive order, which allows later descriptions to be used in order to

refine the early ones. This improves the quality of the reconstructions progressively. The

early works of Koshelev (1980) and Rimoldi (1994), focused on the fundamental problem of

characterizing the optimal rate-distortion region, in which such a progressive coding does

not result in any performance loss, compared to single stage coding systems. Subsequently,

the problem has been thoroughly researched with various extensions including the notable

works by Tuncel and Rose (2003a), Tuncel and Rose (2003b), Effros (1999), and Effros

(2001).

We propose a non-cooperative setup with a strategic encoder linked to two decoders via

two perfect links: one to the first decoder only, and the other to both decoders. We consider

that the encoder and both decoders are endowed with distinct and arbitrary cost functions,

unlike the standard model in which only decoders are endowed with distortion measures. We

investigate the strategic source coding problem in which the encoder commits to an encoding

while the decoders select the sequences of symbols that minimize their long-run respective

cost functions. We fully characterize the optimal single-letter cost of the encoder using

successive refinement coding with respect to a specific probability distribution which involves

two auxiliary random variables, and captures the incentive constraints of both decoders. Our

achievability proof presents a technical novelty which consists of characterizing the beliefs of

the decoders that are induced by the successive refinement coding, and we show that these
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beliefs are close on average to the posterior beliefs induced by block coding.

3.2 Successive refinement coding setup

Successive refinement is a special case of multiple description code for a discrete mem-

oryless source U with two descriptions one of which is a refinement of the other. We review

a setup with one encoder and two decoders as depicted in Figure 3.1. Decoder D1 receives

two descriptions M0 at rate R0 and M1 at rate R1, and decoder D2 receives only one de-

scription M0. Both decoders D1 and D2 are endowed with cost functions to be minimized.

More details about successive refinement coding can be found in (El Gamal and Kim, 2011,

Chapter 13.5). Obviously, this section can be omitted by the familiar reader.

E

c1(U, V1)

c2(U, V2)

D1

D2 V n
2

V n
1

Un

M1 ∈ {1, ..2bnR1c}

M0 ∈ {1, ..2bnR0c}

Figure 3.1: Successive refinement coding setup

Definition 3.2.1. Let (R0, R1) ∈ R2
+. An (R1, R0, n) successive refinement multiple de-

scription code consists of the following:

• Two index sets {1, 2, ..2bnR0c} and {1, 2, ..2bnR1c}.

• An encoding function σ : Un −→ {1, 2, ..2bnR0c} × {1, 2, ..2bnR1c} which assigns a pair

(m1,m0) to each sequence un ∈ Un.

• Two decoding functions τ1 : {1, 2, ..2bnR0c}×{1, 2, ..2bnR1c} −→ Vn1 and τ2 : {1, 2, ..2bnR0c} −→

Vn2 .

Definition 3.2.2. Let c1 : U × V1 −→ R and c2 : U × V2 −→ R two cost functions. We

define the long run distortion functions cn1 (σ, τ1) and cn2 (σ, τ1) as follows:

cni (σ, τi) =
∑
un,vn

Pσ,τi(un, vni ) 1
n

n∑
t=1

ci(ut, vi,t), i ∈ {1, 2}. (3.1)
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Definition 3.2.3. A rate-cost quadruple (R0, R1, C1, C2) ∈ R4
+ is said to be achievable if

there exits a sequence of (R0, R1, n) successive refinement multiple description codes such

that lim supn−→∞ cni (Un, V n
i ) ≤ Ci, for i ∈ {1, 2}.

For a given rate pair (R0, R1), we denote by B(R0, R1) the closure of the set of pairs

(C1, C2) such that the quadruples (R0, R1, C1, C2) are achievable.

Theorem 3.2.1 (Successive Refinement Multiple Description Coding for a DMS). Let U

be a discrete memoryless source, distributed according to a probability distribution PU over

U . Let V1 and V2 be two discrete alphabets and ci : U × Vi 7→ R+ for i ∈ {1, 2} be two cost

functions. Then, given a rate pair (R0, R1), we have

B(R0, R1) =
{(
EQ(c1(U, V1)),EQ(c2(U, V2))

)
, Q ∈ Q(R0, R1)

}
(3.2)

where

Q(R0, R1) = {QV1V2|U , I(U ;V2) ≤ R0, I(U ;V1, V2) ≤ R0 +R1}. (3.3)

3.3 Bayesian persuasion with two decoders

We investigate the Bayesian persuasion game between an encoder and two decoders

under restricted communication. We assume that the encoder is also endowed with a cost

function that depends on the state and actions of both decoders. The observation of the

first decoder contains the observation of the second decoder, as depicted in Figure 3.2. The

source sequence is drawn according to the i.i.d. distribution PU ∈ ∆(U), and the encoder

E selects and announces beforehand the compression scheme to be implemented. All three

players are endowed with distinct and arbitrary cost functions capturing their mismatched

objectives. The encoder’s cost depends on the state and on the action of both decoders.

However; the cost function of each decoder depends on the state and on its own action.

Upon reception of the indices, the decoders D1 and D2 update their Bayesian beliefs about

the source sequence and select the action sequences that minimizes their respective cost
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functions. In the following, we present our model of strategic successive refinement coding

with mismatched costs at all players, and we characterize the optimal cost of the encoder

subject to the information constraint imposed by the successive refinement network and the

incentive constraints of the decoders.

3.3.1 New model for strategic successive refinement

E

ce(U, V1, V2) c1(U, V1)

c2(U, V2)

D1

D2 V n
2

V n
1

Un

M1 ∈ {1, ..2bnR1c}

M0 ∈ {1, ..2bnR0c}

Figure 3.2: Strategic successive refinement source coding

Definition 3.3.1. Let R0, R1 ∈ R2
+ = [0,+∞[2, and n ∈ N? = N\{0}. The encoding σ and

decoding τi strategies of the encoder E and decoders Di, i ∈ {1, 2} are defined by

σ :Un −→ ∆({1, 2, ..2bnR0c} × {1, 2, ..2bnR1c}), (3.4)

τ1 :{1, 2, ..2bnR0c} × {1, 2, ..2bnR1c} −→ ∆(Vn1 ), (3.5)

τ2 :{1, 2, ..2bnR0c} −→ ∆(Vn2 ), (3.6)

We denote by S(n,R1, R0) the set of coding triplets (σ, τ1, τ2).

The stochastic coding strategies (σ, τ1, τ2) ∈ S(n,R1, R0) induce a joint probability

distribution Pστ1τ2 ∈ ∆(Un × {1, 2, ..2bnR1c} × {1, 2, ..2bnR0c} × Vn1 × Vn2 ) defined for all

(un,m1,m0, v
n
1 , v

n
2 ) by

Pστ1τ2(un,m1,m0, v
n
1 , v

n
2 ) =

( n∏
t=1
PU (ut)

)
σ(m1,m0|un)τ1(vn1 |m1,m0)τ2(vn2 |m0). (3.7)

Definition 3.3.2. We consider arbitrary single-letter cost functions ce : U ×V1 ×V2 −→ R

for the encoder E, c1 : U ×V1 −→ R for the decoder D1 and c2 : U ×V2 −→ R for the decoder
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D2. The long-run cost functions are defined by

cne (σ, τ1, τ2) =Eσ,τ1,τ2

[
1
n

n∑
t=1

ce(Ut, V1,t, V2,t)
]

(3.8)

=
∑

un,vn1 ,v
n
2

Pσ,τ1,τ2UnV n1 V
n
2

(un, vn1 , vn2 ) ·
[

1
n

n∑
t=1

ce(ut, v1,t, v2,t)
]
, (3.9)

cn1 (σ, τ1) =
∑
un,vn1

Pσ,τ1UnV n1
(un, vn1 ) ·

[
1
n

n∑
t=1

c1(ut, v1,t)
]
, (3.10)

cn2 (σ, τ2) =
∑
un,vn2

Pσ,τ2UnV n2
(un, vn2 ) ·

[
1
n

n∑
t=1

c2(ut, v2,t)
]
. (3.11)

In the above equations, Pστ1τ2UnV n1 V
n
2
, Pσ,τ1UnV n1

and Pσ,τ2UnV n2
denote the marginal distributions

of Pστ1τ2 defined in (3.7) over (Un, V n
1 , V

n
2 ), (Un, V n

1 ), and (Un, V n
2 ) respectively.

Definition 3.3.3. For any encoding strategy σ, the set of best-response strategies of decoder

Di for i ∈ {1, 2} is defined by

BRi(σ) =
{
τi, c

n
i (σ, τi) ≤ cni (σ, τ̃i), ∀ τ̃i

}
. (3.12)

If several pairs of best-response strategies (τ1, τ2) ∈ BR1(σ)×BR2(σ) are available, we

assume that the pair (τ1, τ2) that maximizes the encoder’s cost is selected. This assumption

is motivated by our attempt to obtain a robust solution concept by solving for the worst

case scenario. Our solution is robust to the exact specification of the decoding strategies.

For (R0, R1) ∈ R2
+ and n ∈ N?, the strategic successive refinement coding problem under

study is given by

Γnsr(R0, R1) = inf
σ

max
τ1∈BR1(σ),
τ2∈BR2(σ)

cne (σ, τ1, τ2). (3.13)

Remark 3.3.1. Suppose that the decoders choose, among their best-response strategies, the

pair that also minimizes the encoder distortion. This “optimistic” coding problem writes

Γno (R0, R1) = min
σ

min
τ1∈BR1(σ),
τ2∈BR2(σ)

cne (σ, τ1, τ2). (3.14)
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For generic problems, i.e. on a dense subset of the game space, Γno (R0, R1) = Γnsr(R0, R1)

(Le Treust and Tomala, 2019a, pp. 8).

The operational significance of (3.13) corresponds to the persuasion game that is played

in the following steps:

• Encoder E chooses, announces the encoding σ.

• Sequence Un is drawn i.i.d with distribution PU .

• Messages (M1,M0) are encoded according to PσM1M0|Un .

• Knowing σ, decoder D1 observes (M1,M0) and draws V n
1 according to τ1 ∈ BR1(σ),

and decoder D2 observes M0 and draws V n
2 according to τ2 ∈ BR2(σ).

• Distortion values are cne (σ, τ1, τ2), cn1 (σ, τ1), cn2 (σ, τ2).

Lemma 3.3.1. The sequence
(
nΓnsr(R0, R1)

)
n∈N? is sub-additive.

The proof of Lemma 3.3.1 is stated in Appendix B.

3.3.2 Proposed single-letter characterizations and fundamental limit of

the encoder’s optimal long-run cost

In the following, we characterize the asymptotic behaviour of Γnsr(R0, R1). Our main

theorem consists of an achievability statement describing the limiting behaviour of the en-

coder’s long-run cost function and a converse statement determining its lower bound. Our

solution combines the decoders incentive constraints with the information constraints of the

successive refinement source coding.

Definition 3.3.4. We consider two auxiliary random variables W1 ∈ W1 and W0 ∈ W0

with |W1| = |V1|, and |W0| = |V2|. For (R0, R1) ∈ R2
+, we define

Q̄0(R0, R1) =
{
QW1W0|U , R0 ≥ I(U ;W0), R1 +R0 ≥ I(U ;W1,W0)

}
. (3.15)
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For every distribution QW1W0|U ∈ ∆(W1 ×W0)|U|, we define

Q1(QW1W0|U ) = arg min
QV1|W1W0

E QW1W0|U
QV1|W1W0

[
c1(U, V1)

]
, (3.16)

Q2(QW0|U ) = arg min
QV2|W0

E QW0|U
QV2|W0

[
c2(U, V2)

]
. (3.17)

Note that Q1(QW1W0|U ) ∈ ∆(V1)|W1×W0| and Q2(QW0|U ) ∈ ∆(V2)|W0|. The encoder’s

optimal cost is defined by

Γ?sr(R0, R1) = inf
QW1W0|U
∈Q̄0(R0,R1)

max
QV1|W1W0

∈Q1(QW1W0|U
)

QV2|W0
∈Q2(QW0|U

)

E
[
ce(U, V1, V2)

]
, (3.18)

where the expectation in (3.18) is evaluated with respect to PUQW1W0|UQV1|W1W0QV2|W0 .

Remark 3.3.2. The random variables U,W1,W0, V1, V2 satisfy

(U, V2)−
− (W1,W0)−
− V1, (U,W1, V1)−
−W0 −
− V2.

Given QW1W0|U , we denote by QU |W1W0 ∈ ∆(U)|W1×W0| and QU |W0 ∈ ∆(U)|W0| the

posterior beliefs of decoders D1 and D2. Moreover, for (w1, w0) ∈ W1 ×W0, we introduce

the notations Qw1w0
U = QU |W1W0(.|w1, w0) ∈ ∆(U) and Qw0

U = QU |W0(.|w0) ∈ ∆(U).

Theorem 3.3.1. Let (R0, R1) ∈ R2
+, we have

a) ∀ε > 0, ∃n̂ ∈ N, ∀n ≥ n̂,Γnsr(R0, R1) ≤ Γ?sr(R0, R1) + ε,

b) ∀n ∈ N,Γnsr(R0, R1) ≥ Γ?sr(R0, R1).

The proof of Theorem 3.3.1 is stated in section 3.4 and section 3.5. Together with

Fekete’s Lemma for the sub-additive sequence
(
nΓnsr(R0, R1)

)
n∈N? (see Lemma 3.3.1), we

obtain

lim
n→∞

Γnsr(R0, R1) = inf
n∈N?

Γnsr(R0, R1) = Γ?sr(R0, R1). (3.19)



52 3. Strategic Successive Refinement Coding for Bayesian Persuasion

3.4 Proof of achievability for strategic successive refinement

The proof of achievability of Theorem 3.3.1 consists of four main parts. In subsec-

tion 3.4.3, we provide an alternative formulation to our solution concept by restricting the

set of target distributions to a dense subset of distributions inducing beliefs based on which

the decoders are not indifferent between two or more actions. In subsection 3.4.2, we gen-

erate the codebook and analyze the error probability. In subsection 3.4.1, we restrict our

optimization to a dense subset of target distributions in order to eliminate decoder’s indif-

ferences between two pairs of actions.. Finally in subsection 3.4.4, we control the Bayesian

beliefs of each decoder about the state concluding by that our proof of achievability.

E

D1

D2

Un

M1

M0

V n
1

V n
2

PV1|W1W0

PV2|W0

ce(U, V1, V2) Wn
1 ,W

n
0

Wn
0

c2(U, V2)

c1(U, V1)

Figure 3.3: Achievability of successive refinement source coding.

3.4.1 Alternative formulation

In the following, we reformulate the optimal cost of the encoder Γ?sr(R0, R1) by restrict-

ing the set of target distribution Q0(R0, R1) to distributions that induce beliefs according

to which the decoders are not indifferent between two actions. We show that both problems

since the restricted subset is dense in Q0(R0, R1), and optimizing over a dense subset is

equal to optimizing over the full set.

Definition 3.4.1. We denote by V ?
1 (q1) and V ?

2 (q2), the respective action sets of decoders

D1 and D2 for belief parameters q1 ∈ ∆(U) and q2 ∈ ∆(U).

V ?
1 (q1) = arg min

v1∈V1

∑
u

q1(u)c1(u, v1), (3.20)

V ?
2 (q2) = arg min

v2∈V2

∑
u

q2(u)c2(u, v2). (3.21)
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Definition 3.4.2. Fix a strategy QW1W0|U . Let Ã(QW1W0|U , w1, w0) denote the set of action

pairs (v1, v2) that are optimal for the decoders and worst for the encoder. This set is given

by:

Ã(QW1W0|U , w1, w0) = arg max
(v1,v2)∈V ?1 (Qw1w0

U
)×

V ?2 (Qw0
U

)

{∑
u

Qw1,w0(u)ce(u, v1, v2)
}
⊂ V1 × V2. (3.22)

The set Q̃0(R0, R1) of target probability distributions for (R0, R1) ∈ R2
+ is given by:

Q̃0(R0, R1) =
{
QW1W0|U , R0 > I(U ;W0) , R1+R0 > I(U ;W1,W0), max

w1,w0
|Ã(QW1W0|U , w1, w0)| = 1

}
.

(3.23)

Definition 3.4.3. Consider the following program:

Γ̃sr(R0, R1) = inf
QW1W0|U∈Q̃0(R0,R1)

max
QV1|W1W0

∈Q1(QW1W0|U
)

QV2|W0
∈Q2(QW0|U

)

E PUQW1W0|U
QV1|W1W0

QV2|W0

[
ce(U, V1, V2)

]
.

(3.24)

Lemma 3.4.1. For (R0, R1) ∈ R2
+, we have

Γ?sr(R0, R1) = Γ̃sr(R0, R1) (3.25)

Proof. of lemma 3.4.1 Consider the following sets:

Q̄0(R0, R1) ={QW1W0|U s.t. R0 ≥ I(U ;W0) , R1 +R0 ≥ I(U ;W1,W0)}, (3.26)

Q01 ={QW1W0|U s.t. max
w1,w0

|Ã(QW1W0|U , w1, w0)| = 1}, (3.27)

Q02(R0, R1) ={QW1W0|U s.t. R0 > I(U ;W0) , R1 +R0 > I(U ;W1,W0)}. (3.28)

We will show that Q01 ∩ Q02(R0, R1) = Q̃0(R0, R1) is dense in Q̄0(R0, R1). We first

show that Q01 ∩ Q̄0(R0, R1) is open and dense in Q̄0(R0, R1).
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Definition 3.4.4 (Equivalent actions). Two action vi and ṽi for decoder Di, i ∈ {1, 2}

are said to be equivalent if: ci(u, vi) = ci(u, ṽi) for all u ∈ U , i ∈ {1, 2}. We denote this

equivalence relation by ∼i. We use �i for non equivalent actions vi and ṽi, i.e. there exists

u ∈ U , such that ci(u, vi) 6= ci(u, ṽi) for i ∈ {1, 2}.

Two action pairs (v1, v2) and (ṽ1, ṽ2) are equivalent for the encoder E if : ce(u, v1, v2) =

ce(u, ṽ1, ṽ2) for all u ∈ U . We denote this equivalence relation by ∼e. We use �e for non

equivalent action pairs (v1, v2) and (ṽ1, ṽ2) i.e. there exists u ∈ U , such that ce(u, v1, v2) 6=

ce(u, ṽ1, ṽ2). We say that two pairs of actions (v1, v2) and (ṽ1, ṽ2) are completely equivalent

if:

1. (v1, v2) ∼e (ṽ1, ṽ2),

2. v1 ∼1 ṽ1,

3. v2 ∼0 ṽ2.

Without loss of generality we can assume that no pairs of actions are completely equivalent,

otherwise we can merge them into one action and reduce the set of actions.

Definition 3.4.5. For a fixed i.i.d distribution PU ∈ ∆(U), we denote by Qi for i ∈ {1, 2},

the set of distributions QW1W0|U ∈ ∆(W1×W0)|U| for which decoder Di is indifferent between

two actions vi and ṽi that are not equivalent,

Q1 =
{
QW1W0|U , ∃v1 �1 ṽ1,∃w1, w0,

EQw1w0
U

[c1(U, v1)] = EQw1w0
U

[(c1(U, ṽ1)]
}
, (3.29)

Q2 =
{
QW1W0|U , ∃v2 �2 ṽ2,∃w0,

EQw0
U

[c2(U, v2)] = EQw0
U

[(c2(U, ṽ2)]
}
, (3.30)

and by Qe, the set of distributions QW1W0|U ∈ ∆(W1 ×W0)|U| for which the encoder E is

indifferent between two action pairs (v1, v2) and (ṽ1, ṽ2) that are not equivalent:

Qe =
{
QW1W0|U ,∃(v1, v2) �e (ṽ1, ṽ2), ∃w1, w0
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EQw1w0
U

[ce(U, v1, v2)] = EQw1w0
U

[ce(U, ṽ1, ṽ2)]
}
. (3.31)

Let Qc = ∆(W1 ×W0)|U|\
(
Qe ∪ Q1 ∪ Q2

)
the set of distributions QW1W0|U where for

all w1, w0, at least one of the following statements hold: i) The encoder is not indifferent

between any two pairs of actions, ii) At least one of the decoders is not indifferent between

any two actions.

Lemma 3.4.2. For each distribution QW1W0|U in Qc, the set Ã(QW1W0|U , w1,t, w0,t) is a

singleton.

Proof. of lemma 3.4.2 We proceed by contradiction. Let QW1W0|U ∈ Qc and suppose there

exists (w1, w0) ∈ W1×W0 such that |Ã(QW1W0|U , w1, w0)| = 2. This means there exists two

distinct action pairs (v1, v2) 6= (ṽ1, ṽ2) with v1, ṽ1 ∈ V ?(Qw1w0
U ) and v2, ṽ2 ∈ V ?(Qw0

U ) such

that:

EQw1w0
U

[ce(U, v1, v2)] =EQw1w0
U

[ce(U, ṽ1, ṽ2)], (3.32)

EQw1w0
U

[c1(U, v1)] =EQw1w0
U

[(c1(U, ṽ1)], (3.33)

EQw0
U

[c2(U, v2)] =EQw0
U

[(c2(U, ṽ2)]. (3.34)

By hypothesis, (v1, v2) and (ṽ1, ṽ2) are not completely equivalent. Therefore, we must have

either (v1, v2) �e (ṽ1, ṽ2), or v1 �1 ṽ1, or v2 �0 ṽ2, which imply that QW1W0|U ∈ Qe∪Q1∪Q2.

This contradicts the hypothesis QW1W0|U ∈ Qc. Thus, Ã(QW1W0|U , w1,t, w0,t) is a singleton.

Lemma 3.4.3. The set Qc is open and dense in ∆(W1 ×W2)|U|.

Proof. of lemma 3.4.3 For each vi �i ṽi, i ∈ {1, 2}, and pairs (v1, v2) �e (ṽ1, ṽ2) each set

Q(vi, ṽi) =
{
QU ∈ ∆(U),EQU [ci(U, vi)] = EQU [ci(U, ṽi)]

}
, i ∈ {1, 2}, (3.35)

Q(v1, v2, ṽ1, ṽ2) =
{
QU ∈ ∆(U),EQU [(ce(U, v1, v2)] = EQU [(ce(U, ṽ1, ṽ2)]

}
, (3.36)
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is a closed hyperplane of dimension dim(Q(vi, ṽi) = dimQ(v1, v2, ṽ1, ṽ2) = |U| − 2. Consider

the set B =
(⋃

v1,ṽ1 Q(v1, ṽ1)
)
∪
(⋃

v2,ṽ2 Q(v2, ṽ2)
)
∪
(⋃

v1,v2,ṽ1,ṽ2 Q(v1, v2, ṽ1, ṽ2)
)
. The

set B is a finite union of hyperplanes of dimension at most |U| − 2. Hence, ∆(U)\B is

dense in ∆(U). If we consider the set A0 := ([0, 1] ×∆(U))|W1×W0|, it follows that the set

A := ([0, 1]× (∆(U)\B))|W1×W0| is a dense subset of A0.

Let Ψ : A0 7→ ∆(W1×W0)|U| a continuous and onto function such that Ψ((λw1w0 ,Q
w1w0
U )w1,w0) =

λw1w0Q
w1w0
U

PU . Let Ψ(A) denote the image of A under Ψ. We show that Ψ(A) is dense in

∆(W1×W0)|U|. Take a distribution QW1W0|U ∈ ∆(W1×W0)|U|. Since A is dense in A0, for

each distribution Qw1w0
U ∈ ∆(U), there exists a sequence (Qw1w0

U )(w1,w0) ∈ ∆(U\B) that con-

verges to it under the KL-divergence. By the continuity of Ψ, the image Ψ((Qw1w0
U )(w1,w0)) ∈

Ψ(A) of (Qw1w0
U )(w1,w0), is a sequence that converges to Ψ(QW1W0|U ) ∈ ∆(W1 × W0)|U|.

Therefore, Ψ(A) is dense in ∆(W1 ×W0)|U|.

It follows that Qc ∩Q0(R0, R1) = Q01 ∩Q0(R0, R1) is open and dense in Q̄0(R0, R1)∩

∆(W1 ×W0)|U| = Q̄0(R0, R1) as desired.

Lemma 3.4.4. If (R0, R1) ∈ R2
+, the set Q02(R0, R1) is nonempty, open and dense in

Q̄0(R0, R1).

Proof. of lemma 3.4.4 For (R0, R1) ∈ R2
+, the sets Q̄0(R0, R1) and Q02(R0, R1) are non-

empty. Moreover, the set Q02(R0, R1) is open being defined with strict inequalities on

the continuous mutual information function, which means its complement Qc02(R0, R1) =

{QW1W0|U s.t. R0 ≤ I(U ;W0) , R1 + R0 ≤ I(U ;W1,W0)} is closed. Take a feasible dis-

tribution QW1W0|U ∈ Q̄0(R0, R1) such that R0 ≥ I(U ;W0) and R1 + R0 ≥ I(U ;W1,W0).

Consider the distributions PW1W0(w1, w0) = ∑
u P(u)Q(w1, w0|u)∀(w1, w0) ∈ W1 ×W2 and

PW0(w0) = ∑
u P(u)Q(w0|u)∀w0 ∈ W2. For ε > 0, consider the perturbed distributions

QεW1W0|U = (1− ε)QW1W0|U + εPW1W0, and QεW0|U = (1− ε)QW0|U + εPW0. As ε −→ 0, we

have QεW1W0|U −→ QW1W0|U , and QεW0|U −→ QW0|U . Therefore,

IQεW1W0|U
(U ;W1W0) ≤ (1− ε) · IQW1W0|U

(U ;W1W0) + ε · IPW1W0
(U ;W1W0) (3.37)

< IQW1W0|U
(U ;W1W0) (3.38)

≤ R1 +R0. (3.39)
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Similarly,

IQεW0|U
(U ;W0) ≤ (1− ε) · IQW0|U

(U ;W0) + ε · IPW0
(U ;W0) (3.40)

< IQW0|U
(U ;W0) (3.41)

≤ R0. (3.42)

Equations (3.37) and (3.40) follow from the convexity of the mutual information with respect

to QW1W0|U and QW0|U respectively for fixed PU . The strict inequalities in (3.38) and (3.41)

follow since IPW1W0
(U ;W1W0) = 0 and IPW0

(U ;W0) = 0 and ε > 0, and last inequalities

in equations (3.39) and (3.42) come from the definition of the set Q̄0(R0, R1). This means

that both distributions QεW1W0|U and QεW0|U belong to the set Q̄0(R0, R1). Hence, the set

Q02(R0, R1) is dense in Q̄0(R0, R1) which concludes the proof of lemma 3.4.4.

Since Q01 and Q02(R0, R1) are open and dense, Q01 ∩ Q02(R0, R1) is also open and dense

in Q̄0(R0, R1). We now show that Γ?sr(R0, R1) = Γ̃e(R0, R1). In fact, the function

QW1W0|U 7→ max
QV1|W1W0

∈Q1(QW1W0|U
)

QV2|W0
∈Q2(QW0|U

)

E PUQW1W0|U
QV1|W1W0

QV2|W0

[
ce(U, V1, V2)

]

is upper semi-continuous (u.s.c) and the infimum of an u.s.c function over a dense set is

the infimum over the full set.

In this part of the proof, the assumption that each decoder chooses the optimal action that

is worst for the encoder plays an important role. In fact, if decoders were to choose the pair

of actions that is best for the encoder’s cost, our function becomes

QW1W0|U 7→ min
QV1|W1W0

∈Q1(QW1W0|U
)

QV2|W0
∈Q2(QW0|U

)

E PUQW1W0|U
QV1|W1W0

QV2|W0

[
ce(U, V1, V2)

]

which is lower semi continuous. The infimum of a lower semi continuous (l.s.c) function

over a dense subset Q01 ∩Q02(R0, R1) might be greater than the infimum over the whole set

Q̄0(R0, R1). However, this is only the case whenever the information is constrained, and

the information constraint is binding at optimum and all posterior beliefs of each decoder

induce actions between which decoder is indifferent. This case in nongeneric in our class of

persuasion games: if we slightly perturb the cost functions of our decoders, we perturb the
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points of indifference for each decoder, and thus the points of discontinuity in our l.s.c. or

u.s.c. This ends the proof of lemma 3.4.1.

Remark 3.4.1. Our achievability proof assumes that both rates R0 and R1 are strictly

positive. Some particular cases with at least one of the rates equal to zero are also interesting:

• If R1 = R0 = 0. The auxiliary random variables (W1,W0) are independent of U .

The message sets are singletons, and the only possible encoding strategy σ0 is given by

σ0 : Un −→ {1} × {1}. The codebook consists of two sequences Wn
0 (1) and Wn

1 (1, 1)

only. Therefore, ∀n ∈ N?, Γ?sr(0, 0) = Γnsr(0, 0).

• If R1 > 0 and R0 = 0. Random variables W0 and U are independent for R1 > 0 and

R2 = 0, i.e. QW1W0|U = QW0QW1|W0U . This means that decoder D2 will repeatedly

chose the action v2,0 ∈ V ?(PU ) that corresponds to its prior belief PU and maximizes

the encoder’s distortion. The persuasion game is thus reduced to the point-to-point

problem with one decoder D1, as in Le Treust and Tomala (2019a).

• If R1 = 0 and R2 > 0. The auxiliary random variable W1 is independent of U . Hence,

the encoder transmits the same index to both decoders. Therefore, both decoders will

have the same posterior belief Qw0
U ∈ ∆(U), ∀w0 ∈ W0. In that case, the optimal

distortion can be reformulated in terms of a convexification of its expected distortion

as in Le Treust and Tomala (2019a), Γ?sr(0, R0) = inf
(λw0 ,Q

w0
U )w0∈W0

∑
w0∈W0 λw0Ψe(Qw0

U )

where Ψe(q) = max
(v1,v2)∈

V ?1 (q)×V ?2 (q)

Eq
[
ce(U, v1, v2)

]
.

3.4.2 Successive refinement codebook generation

Let (R0, R1) ∈ R2
+. Fix a conditional probability distribution QW1W0|U ∈ Q̃0(R0, R1)

given in (3.23). There exists η > 0 such that

R0 =I(U ;W0) + η, (3.43)

R1 =I(U ;W1|W0) + η. (3.44)
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Randomly and independently generate 2bnR0c sequences wn0 (m0) for m0 ∈ [1 : 2bnR0c], ac-

cording to the i.i.d distribution QWn
0

= Πn
t=1QW0(w0t). For each (m1,m0) ∈ [1 : 2bnR1c]×[1 :

2bnR0c] generate a sequence wn1 (m1,m0) randomly and conditionally independently accord-

ing to the i.i.d conditional distribution QWn
1 |W

n
0

= Πn
t=1QW1|W0(w1t|w0t(m0)). Encoder E

observes un and chooses (m1,m0) such that (un, wn1 (m1,m0), wn0 (m0)) ∈ T nδ (PUQW1W0|U ),

i.e. the sequences are jointly typical with tolerance parameter δ > 0. If such a jointly typical

tuple doesn’t exist, the source encoder sets (m1,m0) to (1, 1). Then, it sends m0 to decoder

D2, and (m1,m0) to decoder D1.

Here comes the main difference with the successive refinement coding, which is due to

the strategic nature of the problem. Instead of declaring wn1 (m1,m0) and wn0 (m0) and select-

ing V n
1 and V n

2 i.i.d. with respect to QV1|W1W0 ∈ Q1(QW1W0|U ) and QV2|W0 ∈ Q2(QW0|U ),

at each stage t ∈ {1, . . . , n} the decoders D1 and D2 compute their Bayesian posterior be-

liefs PσUt|M1M0
(·|m1,m0) and PσUt|M0

(·|m0) and select the actions v1,t ∈ V ?
1 (PσUt|M1M0

) and

v2,t ∈ V ?
2 (PσUt|M0

) that minimize their own cost functions. If several pairs are available, they

select the worst one for the encoder’s cost.

3.4.3 Analysis of the error probability

Given a tolerance δ > 0, the error event is given by

F = {(Un,Wn
0 (m0),Wn

1 (m0,m1) /∈ T nδ }. (3.45)

We have by the union of events bound

P(F) ≤ P(F1) + P(F2(M0) ∩ Fc1), (3.46)

where

F1 ={(Un,Wn
0 (m0)) /∈ T nδ ∀m0}, (3.47)

∀m0, F2(m0) ={(Un,Wn
0 (m0),Wn

1 (m0,m1)) /∈ T nδ ∀m1}. (3.48)
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By (El Gamal and Kim, 2011, Lemma 3.3, pp. 62), P(F1) tends to zero as n → ∞ if

R0 > I(U ;W0) + η. By (El Gamal and Kim, 2011, Lemma 3.3, pp. 62), P(Fc1 ∩ F2(M0))

goes to zero if R1 +R0 > I(U ;W1,W0) + η.

Since the expected error probability evaluated with respect to the random codebook is

small, we have that for all ε2 > 0, for all η > 0, there exists δ̄ > 0, for all δ ≤ δ̄, there exists

n̄ ∈ N such that for all n ≥ n̄, we have

E
[
P(F1)

]
≤ε2, (3.49)

∀m0, E
[
P(F2(m0))

]
≤ε2. (3.50)

The proof of achievability consists of four main parts: first, in subsection 3.4.2, we

generate the codebook and analyze the error probability. Second in subsection 3.4.3, we

provide an alternative formulation to our solution concept by restricting the set of target

distributions to a dense subset of distributions inducing beliefs based on which the decoders

are not indifferent between two or more actions. third in subsection 3.4.1, we restrict

our optimization to a dense subset of target distributions in order to eliminate decoder’s

indifferences between two pairs of actions.. Finally in subsection 3.4.4, we control the

Bayesian beliefs of each decoder about the state concluding by that our proof of achievability.

3.4.4 Control of the Bayesian beliefs

We introduce the indicators of error events E1
δ ∈ {0, 1} for decoder D1, and E2

δ ∈ {0, 1}

for decoder D2 defined as follows

E1
δ =


1, if (un, wn1 , wn0 ) /∈ T nδ (PUQW1W0|U ).

0, otherwise.
(3.51)

E2
δ =


1, if (un, wn0 ) /∈ T nδ (PUQW0|U ).

0, otherwise.
(3.52)
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Remark 3.4.2. Note that E1
δ = 0 ⇐⇒ (un, wn1 , wn0 ) ∈ T nδ (PUQW1W0|U ) =⇒ (un, wn0 ) ∈

T nδ (PUQW0|U ) ⇐⇒ E2
δ = 0. Conversely, E2

δ = 1 ⇐⇒ (un, wn0 ) /∈ T nδ (PUQW0|U ) =⇒

(un, wn1 , wn0 ) /∈ T nδ (PUQW1W0|U ) ⇐⇒ E1
δ = 1 Moreover, P(E1

δ = 0) ≤ P(E2
δ = 0) and

P(E1
δ = 1) ≥ P(E2

δ = 1) Assuming the distribution PU |W1W0 is fully supported, the beliefs

of decoder D1 are controlled as follows

E
[ 1
n

n∑
t=1

D(Pm1,m0
t ||PU |W1W2(·|W1t,W0t))

∣∣∣E1
δ = 0

]
(3.53)

=
∑

m1,m0,wn1 ,w
n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

D(Pm1,m0
t ||PU |W1W0(·|W1t,W0t))

(3.54)

=
∑

m1,m0,wn1 ,w
n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

Pm1m0
t (u)

PU |W1W2(u|w1t, w0t)

(3.55)

=
∑

m1,m0,wn1 ,w
n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1
PU |W1W0(u|w1t, w0t)

−
∑

m1,m0,wn1 ,w
n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1
Pm1m0
t (u)

(3.56)

= 1
n

∑
m1,m0,wn1 ,w

n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1
PU |W1W0(u|w1t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0) (3.57)

= 1
n

∑
un,wn1 ,w

n
0

Pστ1τ2(un, wn1 , wn0
∣∣∣E1

δ = 0) · log2
1

Πn
t=1PU |W1W0(ut|w1t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0) (3.58)

= 1
n

∑
un,wn1 ,w

n
0∈T

n
δ

Pστ1τ2(un, wn1 , wn0
∣∣∣E1

δ = 0) · log2
1

Πn
t=1PU |W1W0(ut|w1t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0) (3.59)

≤ 1
n

∑
un,wn1 ,w

n
0∈T

n
δ

Pστ1τ2(un, wn1 , wn0
∣∣∣E1

δ = 0) · n ·
(
H(U |W1,W0) + δ

)
− 1
n
H(Un|M1,M0, E

1
δ = 0)

(3.60)

≤ 1
n
I(Un;M1,M0

∣∣∣E1
δ = 0)− I(U ;W1,W0) + δ + 1

n
+ log2 |U| · Pστ1τ2(E1

δ = 1) (3.61)
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≤η + δ + 1
n

+ log2 |U| · Pστ1τ2(E1
δ = 1). (3.62)

• Equation (3.54) comes from the definition of expected K-L divergence.

• Equation (3.55) comes from the definition of K-L divergence.

• Equation (3.56) comes from splitting the logarithm.

• Equation (3.57) follows since:

∑
m1,m0,wn1 ,w

n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1
Pm1m0
t (u)

(3.63)

=
∑

m1,m0,wn1 ,w
n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

H(Ut|M1 = m1,M0 = m0)

(3.64)

= 1
n

n∑
t=1

∑
m1,m0,wn1 ,w

n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · H(Ut|M1 = m1,M0 = m0)

(3.65)

= 1
n

n∑
t=1

∑
m1,m0

Pστ1τ2(m1,m0
∣∣∣E1

δ = 0) ·H(Ut|M1 = m1,M0 = m0) (3.66)

= 1
n

n∑
t=1

H(Ut|M1,M0, E
1
δ = 0). (3.67)

• Equation (3.58) follows since:

∑
m1,m0,wn1 ,w

n
0

Pστ1τ2(m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · 1

n

n∑
t=1

∑
u

Pm1m0
t (u) log2

1
PU |W1W0(u|w1t, w0t)

(3.68)

= 1
n

n∑
t=1

∑
ut,m1,m0,wn1 ,w

n
0

Pστ1τ2(ut,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1
PU |W1W0(ut|w1t, w0t)

(3.69)

= 1
n

n∑
t=1

∑
un,m1,m0,wn1 ,w

n
0

Pστ1τ2(un,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1
PU |W1W0(ut|w1t, w0t)

(3.70)
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= 1
n

∑
un,m1,m0,wn1 ,w

n
0

Pστ1τ2(un,m1,m0, w
n
1 , w

n
0

∣∣∣E1
δ = 0) · log2

1
Πn
t=1PU |W1W0(ut|w1t, w0t)

(3.71)

= 1
n

∑
un,wn1 ,w

n
0

Pστ1τ2(un, wn1 , wn0
∣∣∣E1

δ = 0) · log2
1

Πn
t=1PU |W1W0(ut|w1t, w0t)

. (3.72)

• Equation (3.59) follows since the support of Pστ1τ2(un, wn1 , wn0 |E1
δ ) = P{(un, wn1 , wn0 ) ∈

T nδ } is included in T nδ .

• Equation (3.60) follows from the typical average lemma property (Property 1 pp.26

in El Gamal and Kim (2011)) given in lemma G.0.1, and the chain rule of entropy:

H(Un|M1,M0,W
n
1 ,W

n
0 ) ≤∑n

t=1H(Ut|M1,M0,W1,W0).

• Equation (3.61) comes from the conditional entropy property and the fact that H(Un) =

nH(U) for an i.i.d random variable U and lemma G.0.2.

• Equation (3.62) follows since I(Un;M1,M0) ≤ H(M1,M0) ≤ log2 |C| = n·(R1+R0) =

n · (I(U ;W1,W0) + η) and lemma G.0.2.

Similarly for decoder D2 we have

E
[ 1
n

n∑
t=1

D(Pm0
t

∣∣∣∣∣∣Πn
t=1PUt|W0t)

∣∣∣E2
δ = 0

]
(3.73)

= 1
n

∑
(un,m0,wn0 )∈T n

δ

Pσ,τ2(m0, w
n
0

∣∣∣E2
δ = 0) · log2

1
Πn
t=1PUt|W0t

− 1
n

n∑
t=1

H(Ut|M0, E
2
δ = 0)

(3.74)

≤ 1
n

∑
(un,m0,wn0 )∈T n

δ

Pσ,τ2(un,m0, w
n
0

∣∣∣E2
δ = 0) · n ·

(
H(U |W0) + δ

)
− 1
n
H(Un|M0, E

2
δ = 0)

(3.75)

≤ 1
n
I(Un;M0, E

2
δ = 0)− I(U ;W0) + δ + 1

n
+ log2 |U| · Pσ,τ2(E2

δ = 1) (3.76)

≤η + δ + 1
n

+ log2 |U| · Pστ1τ2(E1
δ = 1). (3.77)
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By combining equations (3.49), (3.50), (3.62), (3.77) with (Le Treust and Tomala,

2019a, Lemma A.21, equations (40)-(46), Lemma A.8 ), we obtain ∀ε > 0, ∃n̂, ∀n ≥ n̂,

Γne (R0, R1) ≤ Γ?e(R0, R1) + ε. This completes the proof of achievability.

3.5 Converse proof for strategic successive refinement

In the following, we prove the converse statement of our main result Theorem 3.3.1. We

provide identifications for our auxiliary random variables satisfying Markov chain properties,

and we show they satisfy the information constraints of the successive refinement coding

setup for any given rate pair.

Let (R0, R1) ∈ R2
+ and n ∈ N?. We consider (σ, τ1, τ2) ∈ S(n,R1, R0) and a random

variable T uniformly distributed over {1, 2, ..., n} and independent of (Un,M1,M0, V
n

1 , V
n

2 ).

We introduce the auxiliary random variables W1 = (M1, T ), W0 = (M0, T ), (U, V1, V2) =

(UT , V1,T , V2,T )1, distributed according to Pστ1τ2UW1W0V1V2
defined for all (u,w1, w0, v1, v2) =

(ut,m1,m0, t, v1,t, v2,t) by

Pστ1τ2UW1W0V1V2
(u,w1, w0, v1, v2) = Pστ1τ2UTM1M0TV1TV2T

(ut,m1,m0, t, v1,t, v2,t) (3.78)

= 1
n

∑
ut−1
un
t+1

∑
vt−1
1 ,vn1,t+1
vt−1
2 ,vn2,t+1

( n∏
t=1
PU (ut)

)
σ(m1,m0|un)τ1(vn1 |m1,m0)τ2(vn2 |m0). (3.79)

Lemma 3.5.1. The distribution Pστ1τ2UW1W0V1V2
has marginal on ∆(U) given by PU and sat-

isfies the Markov chain properties

(U, V2)−
− (W1,W0)−
− V1, (U,W1, V1)−
−W0 −
− V2.

Proof . [Lemma 3.5.1] The i.i.d. property of the source ensures that the marginal distribution

1We denote by UT , V1,T , V2,T components of sequences Un, V n1 , V n2 respectively, selected uniformly at ran-
dom.
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is PU . By the definition of the decoding functions τ1 and τ2 we have

(UT , V2,T )−
− (M1,M0, T )−
− V1,T ,

(UT ,M1, V1,T )−
− (M0, T )−
− V2,T .

Therefore Pστ1τ2UW1W0V1V2
= PUPσW1W0|UP

τ1
V1|W1W0

Pτ2V2|W0
.

Lemma 3.5.2. For all σ, the distribution PσW1W0|U ∈ Q̄0(R0, R1).

Proof . [Lemma 3.5.2] We consider an encoding strategy σ, then

bnR0c ≥ H(M0) ≥ I(M0;Un) (3.80)

=
n∑
t=1

I(Ut;M0|U t−1) (3.81)

= nI(UT ;M0|UT−1, T ) (3.82)

= nI(UT ;M0, U
T−1, T ) (3.83)

≥ nI(UT ;M0, T ) (3.84)

= nI(U ;W0). (3.85)

In fact, (3.82) follows from the introduction of the uniform random variable T ∈ {1, . . . , n},

(3.83) comes from the i.i.d. property of the source, and (3.85) follows from the identifica-

tion of the auxiliary random variables (U,W0) and the independence between T and UT .

Similarly,

bn(R1 +R0)c ≥ H(M1,M0) ≥ I(Un;M1,M0) (3.86)

=
n∑
t=1

I(Ut;M1,M0|U t−1) (3.87)

=nI(UT ;M1,M0|UT−1, T ) (3.88)

≥nI(UT ;M1,M0, T ) (3.89)

=nI(U ;W1,W0). (3.90)
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Lemma 3.5.3. For all (σ, τ1, τ2) and i ∈ {1, 2}, we have

cne (σ, τ1, τ2) = E
[
ce(U, V1, V2)

]
(3.91)

cni (σ, τi) = E
[
ci(U, Vi)

]
(3.92)

evaluated with respect to PUPσW1W0|UP
τ1
V1|W1W0

Pτ2V2|W0
. Moreover, for all σ, we have

Q1(PσW1W0|U ) =
{
QV1|W1W0 , ∃τ1 ∈ BR1(σ), QV1|W1W0 = Pτ1V1|W1W0

}
, (3.93)

Q2(PσW0|U ) =
{
QV2|W0 , ∃τ2 ∈ BR2(σ), QV2|W0 = Pτ2V2|W0

}
. (3.94)

Proof . [Lemma 3.5.3] By Definition 3.3.2 and (3.7), (3.79), we have

cne (σ, τ1, τ2) =
∑

un,m1,m0,
vn1 ,v

n
2

( n∏
t=1
PU (ut)

)
σ(m1,m0|un)× τ1(vn1 |m1,m0)τ2(vn2 |m0)

[
1
n

n∑
t=1

ce(ut, v1,t, v2,t)
]

=
n∑
t=1

∑
ut,m1,m0,
v1,t,v2,t

Pστ1τ2(ut,m1,m0, t, v1,t, v2,t)× ce(ut, v1,t, v2,t)

=E
[
ce(UT , V1,T , V2,T )

]
= E

[
ce(U, V1, V2)

]
. (3.95)

Now we prove the second part of lemma 3.5.3. For any σ and any QV1|W1W0 ∈ Q1(PσW1W0|U ),

we define τ̃1 by

τ̃1(vn1 |m1,m0) =
n∏
s=1
QV1|W1W0(v1,s|m1,m0, s), ∀(m1,m0, v

n
1 ). (3.96)

Then for all (w1, w0, v1) = (m1,m0, t, v1,t)

P τ̃1V1|W1W0
(v1|w1, w0) = P τ̃1V1|W1W0

(v1,t|m1,m0, t) (3.97)

=
∑

vt−1
1 ,vn1,t+1

τ̃1(vn1 |m1,m0) (3.98)

=
∑

vt−1
1 ,vn1,t+1

n∏
s=1
QV1|W1W0(v1,s|m1,m0, s) (3.99)

=QV1|W1W0(v1,t|m1,m0, t)
∑

vt−1
1 ,vn1,t+1

∏
s 6=t
QV1|W1W0(v1,s|m1,m0, s) (3.100)
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=QV1|W1W0(v1,t|m1,m0, t) = QV1|W1W0(v1|w1, w0). (3.101)

Moreover assume that τ̃1 /∈ BR1(σ), then there exists τ̄1 6= τ̃1 such that

E Pσ
W1W0|U

Pτ̄1
V1|W1W0

[
c1(U, V1)

]
= cn1 (σ, τ̄1) < cn1 (σ, τ̃1) (3.102)

= E Pσ
W1W0|U

Pτ̃1
V1|W1W0

[
c1(U, V1)

]
= E Pσ

W1W0|U
QV1|W1W0

[
c1(U, V1)

]
, (3.103)

which contradicts QV1|W1W0 ∈ Q1(PσW1W0|U ). Therefore, τ̃1 ∈ BR1(σ) and thus QV1|W1W0

belongs to the right-hand side of (3.93). For the other inclusion, we assume that QV1|W1W0

belongs to the right-hand side of (3.93) and does not belong to Q1(PσW1W0|U ), then we show

that it leads to a contradiction. Similar arguments imply (3.94).

For any strategy σ, we have

max
τ1∈BR1(σ),
τ2∈BR2(σ)

cne (σ, τ1, τ2) = max
τ1∈BR1(σ),
τ2∈BR2(σ)

E Pσ
W1W0|U

Pτ1
V1|W1W0

Pτ2
V2|W0

[
ce(U, V1, V2)

]
(3.104)

= max
QV1|W1W0

∈Q1(Pσ
W1W0|U

)

QV2|W0
∈Q2(Pσ

W0|U
)

E Pσ
W1W0|U

QV1|W1W0
QV2|W0

[
ce(U, V1, V2)

]
(3.105)

≥ inf
QW1W0|U
∈Q̄0(R0,R1)

max
QV1|W1W0

∈Q1(QW1W0|U
)

QV2|W0
∈Q2(QW0|U

)

E
[
ce(U, V1, V2)

]
(3.106)

=Γ?sr(R0, R1). (3.107)

Equations (3.104) and (3.105) come from Lemma 3.5.3, whereas (3.106) comes from Lemma

3.5.2 and (3.107) follows from (3.18). Therefore, Γ?sr(R0, R1) ≤ inf
σ

max
τ1∈BR1(σ),
τ2∈BR2(σ)

cne (σ, τ1, τ2) =

Γnsr(R0, R1), for all n.

3.6 Conclusion

We study strategic lossy source coding through a modified model of the successive

refinement network where one decoder observes a public message from the encoder, and

the other decoder observes a private message in addition to the common public message.
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In addition to the distinct and arbitrary cost functions of both decoders, we assume that

the encoder is endowed with a cost function that depends on the state and on the actions

from both decoders. We characterize the single-letter signal of the encoder as a conditional

distribution over a pair of auxiliary random variables satisfying the information constraints

imposed by the successive refinement coding setup. The encoder’s optimal single-letter

cost is characterized using the set of optimal encoding signals which satisfy the incentive

constraints of both decoders. We fully describe the limiting behaviour of the long-run

optimal cost function of the encoder and we determine its lower bound for any blocklength

n ∈ N?. Our achievability proof consists of 1) reformulating the problem by restricting

the set of optimal signals to a dense subset of signals that induce beliefs acording to which

the decoders are not indifferent between any pairs of actions so as to ensure convergence,

2) generating the codebook and analyzing the probability of the error events according

to the successive refinement coding setup, 3) showing that the Bayesian beliefs defined

using auxiliary random variables are close under the KL-divergence to the beliefs induced

by the coding strategies. Our converse proof provides an identification of the auxiliary

random and shows that the long-run cost of the encoder does not go below its single-

letter expected cost. A natural extension to this model is to assume that the links are not

perfect and add one or two noisy channels on each link. This corresponds to considering

the degraded broadcast channel model, whose capacity region was conjectured by Cover

(1972) and proven by Bergmans (1973) and Gallager (1974), with a strategic encoder. The

information constraints imposed by the noisy channel are then added to the encoder’s set

of target distributions.



4
Strategic Communication via the

Gray-Wyner Network
In this chapter, we propose a strategic Gray-Wyner network coding for Bayesian per-

suasion. Our solution determines upper and lower bounds on the encoder’s long-run cost.
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4.1 Introduction

Persuading two decoders endowed with distinct objectives is a challenging problem

that can be studied in various settings. When both decoders have access to a public and

a private information from a single encoder, the setting can be modeled using a Gray-

Wyner network. The simple Gray-Wyner network was formulated in the seminal work Gray

and Wyner (1974) modeling a broadcast communication scenario composed of an encoder,

encoding a correlated source into a common or public message and two private messages,

and two decoders which aim to recover the source based on their respective observations of

the received messages. Gray and Wyner (1974) fully characterized the region of attainable

rates, both in the lossless and lossy cases. The optimal region of second-order coding for

the lossy Gray-Wyner network was derived in Zhou et al. (2016). The rate region for jointly

Gaussian sources, has been partially computed in Xu et al. (2011), Viswanatha et al. (2014)

before being fully computed in a recent contribution Sula and Gastpar (2022). However;

the question of optimal rate region for any other sources remains open. We propose a novel

communication setting à la Gray-Wyner, in which the encoder is also endowed with a cost

function that depends on the state and the actions of both decoders, and we assume that

the cost of each decoder depends on the state and on the actions of both decoders. Under

these assumptions, every agent is strategic and has a goal which consists of minimizing its

cost. We still assume the encoder commits to and reveals an encoding before observing the

source. However; in this setting, every commitment of the encoder induces a finite Bayesian

game among the decoders.

4.2 Gray-Wyner’s model

The Gray–Wyner system depicted in Figure 4.1 is a lossy source coding setup in which

a single encoder transmits three descriptions: one public and two private descriptions. De-

coder Di for i ∈ {1, 2}, receives the common description M0 transmitted at rate R0, and a

private description Mi transmitted at rate Ri. Then each decoder draws a reconstruction
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sequence V n
i that minimizes its cost ci(U, Vi). More details can be found in (El Gamal and

Kim, 2011, chapter 14.2.1).

E

D1

D2
V n

2

V n
1

Un M0

M1

M2

R0

R2

R1

c1(U, V1)

c2(U, V2)

Figure 4.1: Gray-Wyner’s lossy source coding setup

Definition 4.2.1. Let (R0, R1, R2) ∈ R3
+. An (R0, R1, R2, n) code for the Gray-Wyner

system consists of the following:

• Three index sets {1, 2, ..2bnR0c}, {1, 2, ..2bnR1c}, and {1, 2, ..2bnR2c}.

• An encoding function σ : Un −→ {1, 2, ..2bnR0c}×{1, 2, ..2bnR1c}×{1, 2, ..2bnR2c} which

assigns a triple (m0,m1,m2) to each sequence un ∈ Un.

• Two decoding functions τ1 : {1, 2, ..2bnR0c×{1, 2, ..2bnR1c} −→ Vn1 and τ2 : {1, 2, ..2bnR0c×

{1, 2, ..2bnR1c} −→ Vn2 .

Long-run cost functions are given as in definiion 3.2.2.

Definition 4.2.2. Let c1 : U × V1 −→ R and c2 : U × V2 −→ R two cost functions. We

define the long run distortion functions cn1 (σ, τ1) and cn2 (σ, τ1) as follows:

cni (σ, τi) =
∑
un,vni

Pσ,τi(un, vni ) 1
n

n∑
t=1

ci(ut, vi,t), i ∈ {1, 2}. (4.1)

Definition 4.2.3. A rate-cost quintuple (R0, R1, R2, C1, C2) ∈ R5
+ is said to be achiev-

able if there exits a sequence of (R0, R1, R2, n) codes for the Gray-Wyner system such that

lim supn−→∞ E(cni (Un, V n
i )) ≤ Ci, for i ∈ {1, 2}.



72 4. Strategic Communication via the Gray-Wyner Network

For a rate triple (R0, R1, R2), we denote by J (R0, R1, R2) the closure of the set of pairs

(C1, C2) such that quintuples (R0, R1, R2, C1, C2) are achievable. Let W0 ∈ W0, W1 ∈ W1,

and W2 ∈ W2 three auxiliary random variables such that |W0| = |U|, |W1| = |V1| and

|W2| = |V2|.

Theorem 4.2.1 (Gray-Wyner Lossy source coding). Let U be a discrete memoryless source,

distributed according to a probability distribution PU over U . Let V1 and V2 be two discrete

alphabets and ci : U × Vi 7→ R for i ∈ {1, 2} be two cost functions. Then, given a rate triple

(R0, R1, R2), we have

J (R0, R1, R2) =
{(
EQ(c1(U, V1)),EQ(c2(U, V2))

)
, Q ∈ Q(R0, R1, R2)

}
(4.2)

where

Q(R0, R1, R2) =
{
QW0W1|UQW2|UW0 , I(U ;W0) ≤ R0, I(U ;W1|W0) ≤ R1,

I(U ;W2|W0) ≤ R2
}

(4.3)

4.3 Gray-Wyner network for Bayesian persuasion with cost-

dependent Decoders

Our strategic communication model via the Gray-Wyner network considers an informed

encoder endowed with a cost function that depends on the (i.i.d.) source and on the actions

of both decoder as in Figure 4.2. We also assume that decoders are cost-dependent, i.e. the

cost of each decoder depends on the action taken by the other decoder. We still assume

that the encoder commits to an encoding strategy and announces it before the game starts.

This setting is particularly challenging since each commitment of the encoder induces a

finite Bayesian game among the decoders which admits perfect Bayes-Nash equilibria. In

the following, we introduce the strategic Gray-Wyner setup and the coding problem to be

solved by the encoder. We formally define coding strategies, cost functions and formulate

the Bayesian game induced by each encoding function.
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4.3.1 Novel model of strategic Gray-Wyner network

ce(U, V1, V2)

E

c1(U, V1, V2)

D1

c2(U, V1, V2)

D2
V n

2

V n
1

Un M0

M1

M2

R0

R2

R1

Figure 4.2: Strategic Gray-Wyner network with cost-dependent decoders.

Definition 4.3.1. Let R0, R1, R2 ∈ R3
+ = [0,+∞[3, and n ∈ N? = N\{0}. The encoding

function σ and the decoding functions τi of the encoder E and decoders Di for i ∈ {1, 2}

respectively, are given by

σ : Un 7→ ∆
(
{1, ..2bnR0c} × {1, ..2bnR1c} × {1, ..2bnR2c}

)
, (4.4)

τ1 : ({1, 2, ..2bnR0c} × {1, 2, ..2bnR1c}) 7→ ∆(Vn1 ), (4.5)

τ2 : ({1, 2, ..2bnR0c} × {1, 2, ..2bnR2c}) 7→ ∆(Vn2 ). (4.6)

The coding triplets (σ, τ1, τ2) are stochastic and induce a joint probability distribution

Pστ1τ2 ∈ ∆(Un × {1, 2, ..2bnR0c} × {1, 2, ..2bnR1c} × {1, 2, ..2bnR2c} × Vn1 × Vn2 ) defined by

Pσ,τ1,τ2UnM0M1M2V n1 V
n
2

=
( n∏
t=1
PUt

)
PσM0M1M2|UnP

τ1
V n1 |M0M1

Pτ2V n2 |M0M2
.

Definition 4.3.2. Single-letter cost functions ce : U × V1 × V2 7→ R of the encoder and

ci : U ×V1 ×V2 7→ R of decoder Di for i ∈ {1, 2} induce long-run cost functions cne (σ, τ1, τ2)

and cni (σ, τ1, τ2) for i ∈ {1, 2} as follows

cne (σ, τ1, τ2) =Eσ,τ1,τ2

[
1
n

n∑
t=1

ce(Ut, V1,t, V2,t)
]

(4.7)

=
∑

un,vn1 ,v
n
2

Pσ,τ1,τ2UnV n1 V
n
2

(un, vn1 , vn2 ) ·
[

1
n

n∑
t=1

ce(ut, v1,t, v2,t)
]
, (4.8)
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cni (σ, τ1, τ2) =Eσ,τ1,τ2

[
1
n

n∑
t=1

ci(Ut, V1,t, V2,t)
]
. (4.9)

where Pστ1τ2UnV n1 V
n
2
denotes the marginal distributions of Pστ1τ2 over the n-sequences (Un, V n

1 , V
n

2 ).

We consider the strategic communication game in which each player aims to minimize

its long-run cost function. Since the decoders’ cost functions are interdependent, each

encoding function σ induces a Bayesian game Gσ(M0,M1,M2, V
n

1 , V
n

2 ) among the decoders

which is defined below.

Definition 4.3.3. For each encoding σ, the finite Bayesian game Gσ(M0,M1,M2, V
n

1 , V
n

2 )

consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vni is the set of action sequences of Di,

• (M0,Mi) is the type1 of decoder Di,

• τi is a behavior2 strategy of decoder Di,

• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

PσM2|M0M1
(resp. PσM1|M0M2

).

• Cσi : {1, 2, ..2bnR0c} × {1, 2, ..2bnR1c} × {1, 2, ..2bnR2c} × Vn1 × Vn2 7→ R is the σ-cost

function of Di such that ∀vn1 , vn2 ,m0,m1,m2,

Cσi (m0,m1,m2, v
n
1 , v

n
2 ) =

∑
un
Pσ(un|m0,m1,m2)

[
1
n

n∑
t=1

ci(ut, v1,t, v2,t)
]
.

• For a fixed strategy profile (τ1, τ2), the expected σ-costs Ψσ
1 (τ1, τ2,m0,m1) of D1 with

type (m0,m1) is given by

Ψσ
1 (τ1, τ2,m0,m1) =

∑
m2

Pσ(m2|m0,m1)
∑
vn1 ,v

n
2

Pτ1(vn1 |m0,m1)Pτ2(vn2 |m0,m2)

× Cσ1 (vn1 , vn2 ,m0,m1,m2). (4.10)

1Note that we use the term "type" to refer to the observation of a decoder. The term type in this manuscript
does not refer to the empirical distribution of a "typical" sequence.

2A behavior strategy τi of player i in a Bayesian game is a mapping Ti 7→ ∆(Vi), where Ti is the set of
types of player i and Vi is the set of actions.
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Similarly, Ψσ
2 (τ1, τ2,m0,m2) can be defined.

Definition 4.3.4. Given σ, for each behavior strategy τ2, decoder D1, computes the set

BRσ1 (τ2) of best-response strategies

BRσ1 (τ2) =
{
τ1,Ψσ

1 (τ1, τ2,m0,m1) ≤ Ψσ
1 (τ̃1, τ2,m0,m1), ∀ τ̃1,m0,m1

}
.

Similarly, D2 computes BRσ2 (τ1).

This Bayesian game Gσ(M0,M1,M2, V
n

1 , V
n

2 ) is finite, the players use behavioral strate-

gies and the Theorem of Nash (1951) ensures the existence of at least one Bayes-Nash

equilibrium. In the following, we define the set of such equilibria.

Definition 4.3.5. For each encoding strategy σ, we define the set BNE(σ) of Bayes-Nash

equilibria (τ1, τ2) of Gσ(M0,M1,M2, V
n

1 , V
n

2 ) as follows

BNE(σ) = {(τ1, τ2), τ1 ∈ BRσ1 (τ2) and τ2 ∈ BRσ2 (τ1)}.

The communication game goes in the following order:

• The encoder E chooses, announces the encoding σ.

• The sequence Un is drawn i.i.d with distribution PU , and the gameGσ(M0,M1,M2, V
n

1 , V
n

2 )

begins.

• The messages (M0,M1,M2) are encoded according to PσM0M1M2|Un .

• Knowing σ, decoder D1 observes (M0,M1) and draws a sequence V n
1 according to the

behavior strategy τ1 ∈ BRσ1 (τ2), such that (τ1, τ2) ∈ BNE(σ). Similarly, decoder D2

observes (M0,M2) and draws a sequence V n
2 according to the strategy τ2 ∈ BRσ2 (τ1)

such that (τ1, τ2) ∈ BNE(σ).

• The cost values are given by cne (σ, τ1, τ2), Ψσ
1 (τ1, τ2,m0,m1), Ψσ

2 (τ1, τ2,m0,m2).

For (R0, R1, R2) ∈ R3
+ and n ∈ N?, the encoder has to solve the following coding

problem.

ΓnGW (R0, R1, R2) = inf
σ

max
(τ1,τ2)∈BNE(σ),

cne (σ, τ1, τ2). (4.11)
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4.3.2 Proposed bounds on encoder’s optimal cost

We consider three auxiliary random variables W0 ∈ W0, W1 ∈ W1 and W2 ∈ W2 with

|W0| = |V1| × |V2|+ 1, and |Wi| = |Vi|, for i ∈ {1, 2}.

Definition 4.3.6. For (R0, R1, R2) ∈ R3
+, we define

Q0(R0, R1, R2) =
{
QW0|UQW1|UW0QW2|UW0 , R0 ≥ I(U ;W0), R1 ≥ I(U ;W1|W0),

R2 ≥ I(U ;W2|W0)
}
, (4.12)

Q̂0(R0, R1, R2) =
{
QW0W1W2|U , R0 ≥ I(U ;W0), R1 ≥ I(U ;W1|W0),

R2 ≥ I(U ;W2|W0)
}
. (4.13)

In the following, we define the Bayesian game played among the decoders in the one-shot

scenario where the types are expressed using our three auxiliary random variables.

Definition 4.3.7. For each distribution QW0W1W2|U ∈ ∆(W0 ×W1 ×W2)|U|, the auxiliary

single-letter Bayesian game Gw(W0,W1,W2, V1, V2) is given as follows:

• (w0, wi) is the type of decoder Di, i ∈ {1, 2},

• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

QW2|W0W1 (resp. QW1|W0W2).

• C?i : V1×V2×W0×W1×W2 7→ R is the single-letter cost of Di such that ∀v1, v2, w0, w1, w2

C?i (v1, v2, w0, w1, w2) =
∑
u

Q(u|w0, w1, w2)ci(u, v1, v2),

• For each pair (QV1|W0W1 ,QV2|W0W2) and profile (w0, wi), the single-letter expected costs

Ψ?
i (QV1|W0W1 ,QV2|W0W2 , w0, wi) of Di are given by

Ψ?
1(QV1|W0W1 ,QV2|W0W2 , w0, w1) =

∑
w2

Q(w2|w0, w1)
∑
v1,v2

Q(v1|w0, w1)×

Q(v2|w0, w2)C?1 (v1, v2, w0, w1, w2), (4.14)
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Ψ?
2(QV1|W0W1 ,QV2|W0W2 , w0, w2) =

∑
w1

Q(w1|w0, w2)
∑
v1,v2

Q(v1|w0, w1)×

Q(v2|w0, w2)C?2 (v1, v2, w0, w1, w2). (4.15)

For each distribution QW0W1W2|U ∈ ∆(W0 ×W1 ×W2)|U|, the auxiliary set of Bayes-

Nash equilibria is given by

BNE(QW0W1W2|U ) =
{

(QV1|W0W1 ,QV2|W0W2),

Ψ?
1(QV1|W0W1 ,QV2|W0W2 , w0, w1) ≤ Ψ?

1(Q̃V1|W0W1 ,QV2|W0W2 , w0, w1) ∀ Q̃V1|W0W1 , w0, w1,

Ψ?
2(QV1|W0W1 ,QV2|W0W2 , w0, w2) ≤ Ψ?

2(QV1|W0W1 , Q̃V2|W0W2 , w0, w2) ∀ Q̃V2|W0W2 , w0, w2
}
.

(4.16)

The encoder’s optimal cost is defined with respect to Q0(R0, R1, R2) and Q̂0(R0, R1, R2)

respectively as follows

Γ?GW (R0, R1, R2) = inf
QW0|U

QW1|W0U
QW2|W0U

∈Q0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(QW0|U
QW1|W0U

QW2|W0U
)

E
[
ce(U, V1, V2)

]
, (4.17)

Γ̂GW (R0, R1, R2) = inf
QW0W1W2|U
∈Q̂0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(QW0W1W2|U
)

E
[
ce(U, V1, V2)

]
, (4.18)

where in (4.17), the inf. is taken over the set Q0(R0, R1, R2), and the expectation is evaluated

with respect to PUQW0|UQW1|W0UQW2|UW0QV1|W0W1QV2|W0W2. In (4.18), the inf. is taken

over Q̂0(R0, R1, R2) and the expectation is evaluated with respect to PUQW0W1W2|UQV1|W0W1QV2|W0W2.

Remark 4.3.1. The random variables U,W0,W1,W2, V1 and V2 satisfy the following Markov

chains

(U,W2, V2)−
− (W0,W1)−
− V1,

(U,W1, V1)−
− (W0,W2)−
− V2.

For each distribution of Q0(R0, R1, R2), the following Markov chain is satisfied

W1 −
− (U,W0)−
−W2.
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Our main result consists of an achievability statement determining an upper bound on

the encoder’s long-run optimal cost ΓnGW (R0, R1, R2), and a converse statement determining

its lower bound.

Theorem 4.3.1. Let (R0, R1, R2) ∈ R3
+, we have

∀ε > 0,∃n̂ ∈ N,∀n ≥ n̂, ΓnGW (R0, R1, R2) ≤ Γ?GW (R0, R1, R2) + ε, (4.19)

∀n ∈ N, ΓnGW (R0, R1, R2) ≥ Γ̂GW (R0, R1, R2). (4.20)

The proof of Theorem 4.3.1 is provided in section 4.5 and section 4.6.

Lemma 4.3.1. Let (R0, R1, R2) ∈ R3
+, and consider ce1 : U×V1 7→ R, and ce2 : U×V2 7→ R.

If for all (u, v1, v2), ce(u, v1, v2) = ce1(u, v1) + ce2(u, v2), then

Γ?GW (R0, R1, R2) = Γ̂GW (R0, R1, R2) (4.21)

Using Fekete’s Lemma for the sub-additive sequence
(
nΓnGW (R0, R1, R2)

)
n∈N? (App.

3.3.1), we get

lim
n→∞

ΓnGW (R0, R1, R2) = inf
n

ΓnGW (R0, R1, R2) = Γ?GW (R0, R1, R2). (4.22)

In the following, we consider a special case with R2 = 0 and the cost functions c1 and

c2 of decoders D1 and D2 respectively are interdependent.

4.4 Special case: Strategic successive refinement with inter-

dependent decoders

Consider the Gray-Wyner network with R2 = 0 (or analogously R1 = 0). In other

words, the messageM2 is no longer informative and takes values from the singleton {1}. This

particular case corresponds to the strategic successive refinement model with interdependent
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decoders’ cost functions as depicted in Figure 4.3. Therefore, it combines the encoding and

decoding strategies of subsection 3.3.1 given in Definition 3.3.1 with the cost functions of

subsection 4.3.1 given in Definition 4.3.2.

Definition 4.4.1. Let (R0, R1) ∈ R2
+ be given. We define the encoder’s optimal cost for the

successive refinement network with interdependent decoders as follows

Γ?SRID(R0, R1) = inf
QW0W1|U
∈Q̄0(R0,R1)

max
(QV1|W0W1

,QV2|W0
)∈

BNE(QW0W1|U
)

E
[
ce(U, V1, V2)

]
, (4.23)

where the expectation in (4.23) is evaluated with respect to the distribution PUQW0W1|UQV1|W0W1QV2|W0,

the set Q̄0(R0, R1) is given in Equation 3.15 and for each QW0W1|U ∈ ∆(W0 ×W1)|U|, the

set BNE(QW0W1|U ) is given as follows

BNE(QW0W1|U ) =
{

(QV1|W0W1 ,QV2|W0), Ψ?
1(QV1|W0W1 ,QV2|W0 , w0, w1) ≤ Ψ?

1(Q̃V1|W0W1 ,QV2|W0 , w0, w1)

∀Q̃V1|W0W1 , w0, w1,Ψo
2(QV1|W0W1 ,QV2|W0 , w0) ≤ Ψo

2(QV1|W0W1 , Q̃V2|W0 , w0) ∀Q̃V2|W0 , w0
}
.

with Ψ?
1(QV1|W0W1 ,QV2|W0W2 , w0, w1) as given in Equation 4.14, and

Ψ0
2(QV1|W0W1 ,QV2|W0 , w0) =

∑
w1

Q(w1|w0)
∑
v1,v2

Q(v1|w0, w1)Q(v2|w0)Co2(v1, v2, w0, w1).

(4.24)

and Co2 : V1 × V2 ×W0 ×W1 7→ R such that for all v1, v2, w0, w1,

Coi (v1, v2, w0, w1) =
∑
u

Q(u|w0, w1)c2(u, v1, v2). (4.25)

Lemma 4.4.1. Let (R0, R1) ∈ R2
+ be given. The following holds

Γ?SRID(R0, R1) = Γ?GW (R0, R1, 0). (4.26)

Proof . We have Γ?SRID(R0, R1) ≥ Γ?GW (R0, R1, 0) by identifying the auxiliary random vari-

ableW2 to a constant. The setQ0(R0, R1, 0) is now restricted to distributionsQW0|UQW1|UW0
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which coincides with Q̄0(R0, R1) and gives the desired inequality. For the second inequality

Γ?SRID(R0, R1) ≤ Γ?GW (R0, R1, 0), we have by the achievability of Theorem 4.3.1,

inf
n

ΓnGW (R0, R1, R2) = lim
n→∞

ΓnGW (R0, R1, R2) ≤ Γ?GW (R0, R1, R2). (4.27)

By the converse statement of Bou Rouphael and Le Treust (2022), we have

Γ?SRID(R0, R1) ≤ inf
n

ΓnGW (R0, R1, R2). (4.28)

This can be shown following similar arguments as in the converse proof of Theorem 4.3.1

given below in section 4.6 with the identification of the auxiliary random variable W2 = M2

which is a constant since R2 = 0

max
τ1,τ2

cne (σ, τ1, τ2) = max
τ1,τ2

E Pσ
W0W1W2|U

Pτ1
V1|W0W1

Pτ2
V2|W0W2

[
ce(U, V1, V2)

]
(4.29)

= max
(QV1|W0W1

,QV2|W0
)∈

BNE(Pσ
W0W1|U

)

E Pσ
W0W1|U

QV1|W0W1
QV2|W0

[
ce(U, V1, V2)

]
(4.30)

≥ inf
QW0W1|U
∈Q̄0(R0,R1)

max
(QV1|W0W1

,QV2|W0
)∈

BNE(Pσ
W0W1|U

)

E
[
ce(U, V1, V2)

]
(4.31)

=Γ?SRID(R0, R1). (4.32)

We have solved the problem of strategic communication with interdependent decoders’

cost functions via a successive refinement network in Bou Rouphael and Le Treust (2022)

where we have shown that the optimal long cost of the encoder converges to Γ?SRID(R0, R1).

In Bou Rouphael and Le Treust (2022), the solution is characterized with only two auxiliary

random variables W0 and W1. However, for the Gray-Wyner model with R2 = 0, whether

Γ̂GW (R0, R1, 0) = Γ?GW (R0, R1, 0), or Γ̂GW (R0, R1, 0) < Γ?GW (R0, R1, 0) is still unsolved.

In the following section, we prove the achievability statement (4.19) of our main result

Theorem 4.3.1.
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E

ce(U, V1, V2) c1(U, V1, V2)

c2(U, V1, V2)

D1

D2 V n
2

V n
1

Un
M1 ∈ {1, ..2bnR1c}

M0 ∈ {1, ..2bnR0c}

Figure 4.3: Strategic successive refinement coding
setup with cost-interdependent decoders

4.5 Proof of achievability for the strategic Gray-Wyner com-

munication network

Our proof consists of three main parts: Firstly, we restrict the optimization to a dense

subset of distributions inducing essential equilibria only. Secondly, we generate the codebook

and show that the probability of error over the codebook is small. Thirdly, we show that the

beliefs induced by the coding functions are close under the KL-distance to the single-letter

beliefs described using auxiliary random variables.

4.5.1 Essential equilibria

The random coding scheme may induce some perturbations in the probability distribu-

tion QW0|UQW1|W0UQW2|W0U of the Bayesian game of Definition 4.3.7. A non-cooperative

game is essential (Yu, 1999, Definition 4.1) if small perturbations of the probability distribu-

tions may induce small perturbations of the set of Bayes-Nash equilibria. According to (Yu,

1999, Theorem 4.2), the set of essential games is a dense subset of the set of non-cooperative

games. In the following we formally develop those ideas and derive an alternative formula-

tion to our encoding problem.

Definition 4.5.1. Given QW0W1W2|U ∈ ∆(W0×W1×W2)|U|, an equilibrium (QV1|W1,W0 ,QV2|W2,W0) ∈

BNE(QW0W1W2|U ) is said to be essential if for all ε > 0, there exists an open neighborhood
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Ω of QW0W1W2|U such that for all Q̂W0W1W2|U ∈ Ω,

(Q̂V1|W1,W0 , Q̂V2|W2,W0) ∈ BNE(Q̂W0W1W2|U ) =⇒

||QV1|W0,W1 − Q̂V1|W0,W1 ||+ ||QV2|W0,W2 − Q̂V2|W0,W2 || ≤ ε. (4.33)

We denote by EBNE(QW0W1W2|U ) the set of essential Bayes-Nash equilibria.

Definition 4.5.2. For (R0, R1, R2) ∈ R3
+, we define the set

Q̃0(R0, R1, R2) =
{
QW0|UQW1|W0UQW2|W0U , min

u,w0,w1,
w2

Q(w0|u)Q(w1|w0, u)Q(w2|w0, u) > 0,

R0 > I(U ;W0), R1 > I(U ;W1|W0), R2 > I(U ;W2|W0),

BNE(QW0|UQW1|W0UQW2|W0U ) = EBNE(QW0|UQW1|W0UQW2|W0U )
}
.

In the following, we show that optimizing over the full set of target distributions results

in the same cost as when the optimization is taken over the set of target distributions

restricted to unique Nash Equilibrium.

Definition 4.5.3. We replace the set Q0(R0, R1, R2) by the set Q̃0(R0, R1, R2) and we define

the following program:

Γ̃GW (R0, R1, R2) = inf
QW0|U

QW1|W0U
QW2|W0U

∈Q̃0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

EBNE(QW0|U
QW1|W0U

QW2|W0U
)

E
[
ce(U, V1, V2)

]
. (4.34)

Lemma 4.5.1. For (R0, R1, R2) ∈ R3
+, we have

Γ?GW (R0, R1, R2) = Γ̃GW (R0, R1, R2). (4.35)

Proof . The proof of Lemma 4.5.1 follows from [Theorem 4.2, Yu (1999)] and Lemmas 4.5.2,

and 4.5.3 given below. For a given (R0, R1, R2), the set Q̃0(R0, R1, R2) is dense in the set
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Q0(R0, R1, R2) of target distributions QW0W1W2|U . The function

QW0W1W2|U 7→ max
(QV1|W0W1

,QV2|W0W2
)∈

EBNE(QW0|U
QW1|W0U

QW2|W0U
)

E
[
ce(U, V1, V2)

]
= max

(QV1|W0W1
,QV2|W0W2

)∈
BNE(QW0|U

QW1|W0U
QW2|W0U

)

E
[
ce(U, V1, V2)

]

is upper semi-continuous (u.s.c) and the infimum of an u.s.c function over a dense set is the

infimum over the full set.

Lemma 4.5.2. Given a distribution QW0W1W2|U ∈ ∆(W0 ×W1 ×W2)|U|, we have

max
(QV1|W0W1

,QV2|W0W2
)

∈EBNE(QW0W1W2|U
)

E
[
ce(U, V1, V2)

]
= max

(QV1|W0W1
,QV2|W0W2

)
∈BNE(QW0W1W2|U

)

E
[
ce(U, V1, V2)

]
. (4.36)

Proof . [Lemma 4.5.2] Consider the upper semi-continuous [Theorem 3.3, Yu (1999)] corre-

spondence

QW0W1W2|U ⇒ BNE(QW0W1W2|U ).

Using (Fort, 1951, Theorem 2), the correspondence is lower semi-continuous, therefore con-

tinuous. Using Def. 4.5.1 and Berge’s Maximum Theorem Berge (1963), the result follows.

Lemma 4.5.3. Let (R0, R1, R2) ∈ R3
+, the set Q̃0(R0, R1, R2) is a dense subset of Q0(R0, R1, R2).

Proof . [Lemma 4.5.3] Fix a distributionQW0W1W2|U ∈ ∆(W0×W1×W2)|U|. The Bayes-Nash

equilibrium correspondence QW0W1W2|U ⇒ BNE(QW0W1W2|U ) is non-empty for finite games,

compact valued and upper semi-continuous (Yu, 1999, Theorems 3.2, 3.3). Therefore, every

probability distribution in the set Q̃0(R0, R1, R2) induces an essential equilibria. Using (Yu,

1999, Theorem 4.2), the result follows.
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4.5.2 Codebook Generation for the Gray-Wyner Network

Fix a conditional probability distribution QW0|UQW1|UW0QW2|UW0 ∈ Q̃0(R0, R1, R2).

There exists η > 0 such that

R0 =I(U ;W0) + η, (4.37)

R1 =I(U ;W1|W0) + η, (4.38)

R2 =I(U ;W2|W0) + η. (4.39)

Randomly and independently generate 2bnR0c sequences wn0 (m0) for m0 ∈ [1 : 2bnR0c],

according to the i.i.d distribution QWn
0

= Πn
t=1QW0(w0t). For each (m1,m0) ∈ [1 : 2bnR1c]×

[1 : 2bnR0c] generate a sequence wn1 (m1,m0) randomly and conditionally independently ac-

cording to the i.i.d conditional distribution QWn
1 |W

n
0

= Πn
t=1QW1|W0(w1t|w0t(m0)). For

each (m2,m0) ∈ [1 : 2bnR2c] × [1 : 2bnR0c] generate a sequence wn2 (m2,m0) randomly

and conditionally independently according to the i.i.d conditional distribution QWn
2 |W

n
0

=

Πn
t=1QW2|W0(w2t|w0t(m0)).

Coding algorithm: Encoder E observes un and determines m0 such that (Un,Wn
0 (m0)) ∈

T nδ (PUQW0|U ), m1 such that (Un,Wn
0 (m0),Wn

1 (m1,m0)) ∈ T nδ (PUQW0W1|U ), and m2 such

that (Un,Wn
0 (m0),Wn

2 (m2,m0)) ∈ T nδ (PUQW0W2|U ). If such a jointly typical tuple doesn’t

exist, the source encoder sets (m0,m1,m2) to (1, 1, 1). Then, it sends (m0,m1) to decoder

D1, and (m0,m2) to decoder D2 Decoder D1 declares vn1 and decoder D2 declares vn2 accord-

ing to τ1 and τ2.

4.5.3 Analysis of the Error Probability

We define the following error events

F0 ={(Un,Wn
0 (m0)) /∈ T nδ , ∀m0},

∀m0, F1(m0) ={(Un,Wn
0 (m0),Wn

1 (m1,m0)) /∈ T nδ ∀m1},

∀m0, F2(m0) ={(Un,Wn
0 (m0),Wn

2 (m2,m0)) /∈ T nδ ∀m2}.
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By the covering lemma (El Gamal and Kim, 2011, Lemma 3.3) given in Lemma G.0.3,

P(F0) tends to zero as n −→∞ if R0 ≥ I(U ;W0) + η, , P(F1(M0)|Fc0) goes to zero by the

covering lemma if R1 ≥ I(U ;W1|W0) + η, and P(F2(M0)|Fc0) goes to zero by the covering

lemma if R2 ≥ I(U ;W2|W0) + η.

The expected probability of error over the codebook being small means that for all

ε2 > 0, for all η > 0, there exists δ̄ > 0, for all δ ≤ δ̄, there exists n̄ ∈ N such that for all

n ≥ n̄ we have:

E
[
P(F0)

]
≤ε2, (4.40)

E
[
P(F1(m0)|Fc0)

]
≤ε2, (4.41)

E
[
P(F2(m0)|Fc0)

]
≤ε2, (4.42)

4.5.4 Analysis of the Bayes-Nash equilibria

In this section, we break down the Bayesian game Gσ(M0,M1,M2, V
n

1 , V
n

2 ) played by

blocks of n-sequences, into several games of stage t, for t ∈ {1, 2, ..., n} selected uniformly

at random, that differ in the decoders’ types and actions until we reach the single-letter

game characterized with auxiliary random variables as illustrated in Fig.4.4. We analyze

the different Bayes-Nash equilibria of these Bayesian games. In order to do so, we need to

control the beliefs of each decoder about the state and about the type of the other decoder.

Gw(W0,W1,W2, V1, V2) QW2|W0 ,QW1|W0

∑
uQ(u|w0, w1, w2)c1(u, v1, v2)

Gσ,tw (W0t,W1t,W2t, V1t, V2t) PσW2t|W0tW1t
,PσW1t|W0tW2t

∑
ut Q(ut|w0t, w1t, w2t)c1(ut, v1t, v2t)

G̃σ,t(M0,M1,M2, V1t, V2t) PσM2|M0M1
,PσM1|M0M2

∑
ut Q(ut|w0t, w1t, w2t)c1(ut, v1t, v2t)

Gσ,t(M0,M1,M2, V1t, V2t) PσM2|M0M1
,PσM1|M0M2

∑
ut P(ut|m0,m1,m2)c1(ut, v1t, v2t)

Gσ(M0,M1,M2, V
n

1 , V
n

2 ) PσM2|M0M1
,PσM1|M0M2

1
n

∑n
t=1

∑
ut P(ut|m0,m1,m2)c1(ut, v1t, v2t)

Figure 4.4: Chain of the Bayesian games played among the decoders for achievability.
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Definition 4.5.4. For each encoding σ, and t ∈ {1, 2, ...n}, the finite Bayesian game

Gσ,t(M0,M1,M2, V1,t, V2,t) at stage t consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action sequences of Di,

• (M0,Mi) is the type of decoder Di,

• τi,t : ({1, 2, ..2bnR0c} × {1, 2, ..2bnRic}) 7→ ∆(Vi,t) is a behavior strategy of decoder Di,

• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

PσM2|M0M1
(resp. PσM1|M0M2

).

• Cσ,ti : {1, 2, ..2bnR0c}× {1, 2, ..2bnR1c}× {1, 2, ..2bnR2c}×V1,t×V2,t 7→ R is the σ, t-cost

function of Di at stage t such that

Cσ,ti (m0,m1,m2, v1,t, v2,t) =
∑
ut

Pσ(ut|m0,m1,m2)ci(ut, v1,t, v2,t). ∀m0,m1,m2, v1,t, v2,t.

• For a fixed strategy profile (τ1,t, τ2,t), the expected σ, t-costs Ψσ,t
1 (τ1,t, τ2,t,m0,m1) of

D1 at stage t with type (m0,m1) is given by

Ψσ,t
1 (τ1,t, τ2,t,m0,m1) =

∑
m2

Pσ(m2|m0,m1)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1)Pτ2,t(v2,t|m0,m2)×

Cσ,t1 (m0,m1,m2, v1,t, v2,t). (4.43)

Similarly, Ψσ,t
2 (τ1,t, τ2,t,m0,m2) can be defined.

For each encoding strategy σ and stage t, we define the set BNE(σ, t) of Bayes-Nash

equilibria (τ1,t, τ2,t) of Gσ,t(M0,M1,M2, V1,t, V2,t) as follows

BNE(σ, t) =
{

(τ1,t, τ2,t),Ψσ,t
1 (τ1,t, τ2,t,m0,m1) ≤ Ψσ,t

1 (τ̃1,t, τ2,t,m0,m1)∀ τ̃1,t,m0,m1

Ψσ,t
2 (τ1,t, τ2,t,m0,m2) ≤ Ψσ,t

2 (τ1,t, τ̃2,t,m0,m2)∀ τ̃2,t,m0,m2

}
.

(4.44)

The following lemma shows that every Bayes-Nash equilibrium of the gameGσ(M0,M1,M2, V
n

1 , V
n

2 )

played by blocks of n-sequences induces an equilibrium of the gameGσ,t(M0,M1,M2, V1,t, V2,t)

at stage t, for t ∈ {1, 2, ...n}. The converse is also true.
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Lemma 4.5.4. 1. If (τ1, τ2) ∈ BNE(σ), then (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}.

2. If (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}, then (∏n
t=1 τ1,t,

∏n
t=1 τ2,t) ∈ BNE(σ).

Proof . Given σ, let (τ1, τ2) ∈ BNE(σ). Assume that there exists t such that (τ1,t, τ2,t) /∈

BNE(σ, t). This means that at t, at least one of the decoders is better off if it deviates from

its strategy. Without loss of generality, assumeD1 deviates to τ̃1,t and selects ṽ1,t accordingly.

This shifts the action sequence vn1 that corresponds to τ1, to ṽn1 = (v1,1, v1,2, ..., ṽ1,t, ..., v1,n).

Thus τ1 /∈ BRσ1 (τ2), and (τ1, τ2) /∈ BNE(σ).

Conversely, if (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}, we define (τ1, τ2) such that

Pτ1(vn1 |m0,m1) =
n∏
t=1
Pτ1,t(v1,t|m0,m1), ∀vn1 ,m0,m1 (4.45)

Pτ2(vn2 |m0,m2) =
n∏
t=1
Pτ2,t(v2,t|m0,m2), ∀vn2 ,m0,m2. (4.46)

Suppose that (τ1, τ2) /∈ BNE(σ). Without loss of generality, assume τ1 /∈ BRσ1 (τ2), i.e there

exists τ̃1 ∈ BR1(σ) such that Ψσ
1 (τ1, τ2,m0,m1) ≥ Ψσ

1 (τ̃1, τ2,m0,m1) ∀m0,m1. Therefore,

there exists t ∈ {1, ..., n} such that Ψσ,t
1 (τ1,t, τ2,t,m0,m1) ≥ Ψσ,t

1 (τ̃1,t, τ2,t,m0,m1) ∀m0,m1.

Thus, (τ1,t, τ2,t) /∈ BNE(σ, t) which leads to the desired contradiction.

Lemma 4.5.5. For all σ, we have

max
(τ1,τ2)
∈BNE(σ)

E
[

n∑
t=1

1
n
ce(Ut, V1,t, V2,t)

]
= 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNE(σ,t)

E
[
ce(Ut, V1,t, V2,t)

]
. (4.47)

Proof . Let σ be given. We will show the equality by showing double inequalities. Let

(τ1, τ2) ∈ BNE(σ) be arbitrarily chosen, and for all t ∈ {1, 2, ..., n}, let (τ1,t, τ2,t) ∈

BNE(σ, t) the corresponding equilibrium strategy pair for the game of stage t. Therefore,

Eσ,τ1,τ2

[
n∑
t=1

1
n
ce(Ut, V1,t, V2,t)

]
= 1
n

n∑
t=1
Eσ,τ1,τ2

[
ce(Ut, V1,t, V2,t)

]
(4.48)

≤ 1
n

n∑
t=1
Eσ,τ1,t,τ2,t

[
ce(Ut, V1,t, V2,t)

]
(4.49)

≤ 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNE(σ,t)

E
[
ce(Ut, V1,t, V2,t)

]
. (4.50)
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where (4.50) follows since (τ1, τ2) ∈ BNE(σ). Since this is true for all (τ1, τ2) ∈ BNE(σ),

then

max
(τ1,τ2)
∈BNE(σ)

E
[

n∑
t=1

1
n
ce(Ut, V1,t, V2,t)

]
≤ 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNE(σ,t)

E
[
ce(Ut, V1,t, V2,t)

]
. (4.51)

Similarly, let (τ1,t, τ2,t) ∈ BNE(σ, t) be arbitrarily chosen for each t ∈ {1, 2, ..., n}. We have,

1
n
·
n∑
t=1
Eσ,τ1,t,τ2,t

[
ce(Ut, V1,t, V2,t)

]
= 1
n
· Eσ,τ1,t,τ2,t

[
n∑
t=1

ce(Ut, V1,t, V2,t)
]

(4.52)

≤ 1
n
Eσ,τ1,τ2

[
n∑
t=1

ce(Ut, V1,t, V2,t)
]

(4.53)

≤ max
(τ1,τ2)
∈BNE(σ)

E
[

n∑
t=1

1
n
ce(Ut, V1,t, V2,t)

]
. (4.54)

where (4.53) follows since (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}. Since this is true

for all (τ1,t, τ2,t) ∈ BNE(σ, t), then

max
(τ1,τ2)
∈BNE(σ)

E
[

n∑
t=1

1
n
ce(Ut, V1,t, V2,t)

]
≥ 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNE(σ,t)

E
[
ce(Ut, V1,t, V2,t)

]
. (4.55)

This concludes the proof.

We introduce the indicator of error events Eδ ∈ {0, 1} defined as follows

Eδ =


1, if (un, wn1 , wn2 , wn0 ) /∈ T nδ .

0, otherwise.
(4.56)

We control the Bayesian belief of decoder D1 (resp. D2) about the type of D2 (resp.

D1). Let Pw
n
0 ,w

n
1

W2,t
∈ ∆(W2) denote PW2,t|Wn

0 ,W
n
1

(.|wn0 , wn1 ) and Pw
n
0 ,w

n
2

W1,t
∈ ∆(W1) denote

PW1,t|Wn
0 ,W

n
2

(.|wn0 , wn2 ).

Lemma 4.5.6. For all wn0 , wn1 , wn2 , w0, w1, w2, we have

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pw
n
0 ,w

n
1

W2,t
||Qw0,w1

W2
)
∣∣∣Eδ = 0

]
= 0, (4.57)

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pw
n
0 ,w

n
2

W1,t
||Qw0,w2

W1
)
∣∣∣Eδ = 0

]
= 0. (4.58)
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Proof . The proof of Lemma 4.5.6 is stated in Appendix C.

We denote the Bayesian posterior beliefs PσUt|M1M2M0
(·|m1,m2,m0) ∈ ∆(U) by Pm1m2m0

Ut
and

by Qw1w2w0
U the single-letter belief QU |W1W2W0(·|w1, w2, w0).

Lemma 4.5.7. For all m0,m1,m2, w0, w1, w2 , we have

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pm1m2m0
Ut

||Qw1w2w0
U )

∣∣∣Eδ = 0
]

= 0. (4.59)

Proof . The proof of Lemma 4.5.7 is stated in Appendix D. In a similar fashion, we

denote by Qw0,w1
W2

and Qw0,w2
W1

the distributions QW2|W0,W1(.|w0, w1) and QW1|W0,W2(.|w0, w2)

respectively.

Lemma 4.5.8. For all wn0 , wn1 , wn2 , we have

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(PσW1,t|W0,tW2,t
||Qw0,w2

W1
)
∣∣∣Eδ = 0

]
= 0, (4.60)

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(PσW2,t|W0,tW1,t
||Qw0,w1

W2
)
∣∣∣Eδ = 0

]
= 0. (4.61)

Proof . The proof of lemma 4.5.8 is stated in Appendix E.

In the following we define the game G̃σ,t(M0,M1,M2, V1,t, V2,t) of stage t, for t ∈

{1, 2, ...n}, in which the costs are computed using the single-letter beliefs that correspond

to essential equilibria.

Definition 4.5.5. For each encoding σ, the Bayesian game G̃σ,t(M0,M1,M2, V1,t, V2,t) at

stage t, for t ∈ {1, 2, ...n} consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action sequences of Di,

• (M0,Mi) is the type of decoder Di,

• τi,t : ({1, 2, ..2bnR0c} × {1, 2, ..2bnRic}) 7→ ∆(Vi,t) is a behavior strategy of decoder Di,
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• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

PσM2|M0M1
(resp. PσM1|M0M2

).

• C̃σ,ti : {1, 2, ..2bnR0c} × {1, 2, ..2bnR1c} × {1, 2, ..2bnR2c} × V1,t × V2,t 7→ R is the σ-cost

function of Di at stage t such that

C̃σ,ti (m0,m1,m2, v1,t, v2,t) =
∑
ut

Q(ut|w0,t(m0), w1,t(m0,m1), w2,t(m0,m2))×

ci(ut, v1,t, v2,t), ∀v1,t, v2,t,m0,m1,m2.

• For a fixed strategy profile (τ1,t, τ2,t), the expected σ-costs Ψσ
1 (τ1,t, τ2,t,m0,m1) of D1

at stage t with type (m0,m1) is given by

Ψ̃σ,t
1 (τ1,t, τ2,t,m0,m1) =

∑
m2

Pσ(m2|m0,m1)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1)Pτ2,t(v2,t|m0,m2)×

C̃σ,t1 (v1,t, v2,t,m0,m1,m2). (4.62)

Similarly, Ψ̃σ,t
2 (τ1,t, τ2,t,m0,m2) can be defined.

For each distribution PσW0,tW1,tW2,t|U ∈ ∆(W0,t×W1,t×W2,t)|Ut|, the set of Bayes-Nash

equilibria of stage t is given by

˜BNE(σ, t) =
{

(τ1,t, τ2,t),Ψ̃σ,t
1 (τ1,t, τ2,t,m0,m1) ≤ Ψ̃σ,t

1 (τ̃1,t, τ2,t,m0,m1)∀τ̃1,t,m0,m1

Ψ̃σ,t
2 (τ1,t, τ2,t,m0,m2) ≤ Ψ̃σ,t

2 (τ1,t, τ̃2,t,m0,m2)∀τ̃2,t,m0,m2
}
.

(4.63)

Lemma 4.5.9. For all σ, and ε > 0, we have

lim
n7→∞

n∑
t=1

∣∣∣∣ max
(τ1,t,τ2,t)
∈BNE(σ,t)

E[ce(Ut, V1,t, V2,t)]− max
(τ1,t,τ2,t)
∈ ˜BNE(σ,t)

E[ce(Ut, V1,t, V2,t)]
∣∣∣∣ ≤ ε. (4.64)

Proof . Consider the following correspondence

PσUt|M0M1M2
⇒
{

(Pτ1,tV1,t|M0M1
,Pτ2,tV2,t|M0M2

),Ψ̃σ,t
1 (τ1,t, τ2,t,m0,m1) ≤ Ψ̃σ,t

1 (τ̃1,t, τ2,t,m0,m1)∀τ̃1,t,m0,m1
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Ψ̃σ,t
2 (τ1,t, τ2,t,m0,m2) ≤ Ψ̃σ,t

2 (τ1,t, τ̃2,t,m0,m2)∀τ̃2,t,m0,m2

}
.

(4.65)

Denote by N(PσUt|M0M1M2
) the RHS of equation (4.65). It follows from lemma 4.5.7 that for

a given ε > 0, we have,

lim
n7→∞

1
n

n∑
t=1

∣∣∣∣Cσ,ti (m0,m1,m2, v1,t, v2,t)− C̃σ,ti (m0,m1,m2, v1,t, v2,t)
∣∣∣∣ =

lim
n 7→∞

1
n

n∑
t=1

∣∣∣∣∑
ut

Pσ(ut|m0,m1,m2)ci(ut, v1,t, v2,t)−
∑
ut

Q(ut|w0,t(m0), w1,t(m0,m1), w2,t(m0,m2))×

ci(ut, v1,t, v2,t)
∣∣∣∣ ≤ ε, ∀m0,m1,m2, v1,t, v2,t. (4.66)

Consequently, for all m0,m1,m2, v1,t, v2,t,

lim
n 7→∞

1
n

n∑
t=1

∣∣∣∣Ψσ,t
1 (τ1,t, τ2,t,m0,m1)− Ψ̃σ,t

1 (τ1,t, τ2,t,m0,m1)
∣∣∣∣

= lim
n7→∞

1
n

n∑
t=1

∣∣∣∣∑
m2

Pσ(m2|m0,m1)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1)Pτ2,t(v2,t|m0,m2)Cσ1 (v1,t, v2,t,m0,m1,m2)

−
∑
m2

Pσ(m2|m0,m1)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1)Pτ2,t(v2,t|m0,m2)C̃σ1 (v1,t, v2,t,m0,m1,m2)
∣∣∣∣ ≤ ε.

(4.67)

Therefore, using (Fort, 1951, Theorem 2), the correspondence in (4.65) is continuous. Using

Berge’s Maximum Theorem Berge (1963), the function

PσUt|M0M1M2
7→ max

(τ1,t,τ2,t)
∈N(Pσ

Ut|M0M1M2
)

E[ce(Ut, V1,t, V2,t)] (4.68)

is well-defined and continuous. Hence, (τ1,t, τ2,t) ∈ ˜BNE(σ, t). Therefore, varying σ in

a small neighborhood, slightly perturbs the expected cost functions resulting in a slightly

perturbed set of Bayes-Nash equilibria. By the continuity of the max-value function in

(4.68), we get the desired inequality.

Similarly, denote by Gσ,tw (W0,t,W1,t,W2,t, V1,t, V2,t) the Bayesian game restricted to

types W0,t,W1,t,W2,t at stage t, for t ∈ {1, 2, ...n} defined as follows.
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Definition 4.5.6. For each encoding σ, the finite Bayesian game Gσ,tw (W0,t,W1,t,W2,t, V1,t, V2,t)

at stage t, for t ∈ {1, 2, ...n} consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action sequences of Di,

• (W0,t,Wi,t) is the type of decoder Di,

• τi,t : ({1, 2, ..2bnR0c} × {1, 2, ..2bnRic}) 7→ ∆(Vi,t) is a behavior strategy of decoder Di,

• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

PσW2,t|W0,tW1,t
(resp. PσW1,t|W0,tW2,t

).

• Cσ,w,ti : W0 ×W1 ×W2 × V1,t × V2,t 7→ R is the σ-cost function of Di at stage t such

that ∀v1,t, v2,t, w0,t, w1,t, w2,t,

Cσ,w,ti (w0,t, w1,t, w2,t, v1,t, v2,t) =
∑
ut

Q(ut|w0,t, w1,t, w2,t)ci(ut, v1,t, v2,t). (4.69)

• For a fixed strategy profile (τ1,t, τ2,t), the expected σ-costs Ψσ,w,t
1 (τ1,t, τ2,t, w0,t, w1,t) of

D1 at stage t with type (w0,t, w1,t) is given by

Ψσ,w,t
1 (τ1,t, τ2,t, w0,t, w1,t) =

∑
w2,t

Pσ(w2,t|w0,t, w1,t)
∑

v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t, w2,t)×

Cσ,w,t1 (v1,t, v2,t, w0,t, w1,t, w2,t). (4.70)

Similarly, Ψσ,w,t
2 (τ1,t, τ2,t, w0,t, w2,t) can be defined.

For each encoding strategy σ and stage t, we define the set BNEw(σ, t) of Bayes-Nash

equilibria (τ1,t, τ2,t) of Gσ,tw (W0,t,W1,t,W2,t, V1,t, V2,t) as follows

BNEw(σ, t) =
{

(τ1,t, τ2,t),Ψσ,w,t
1 (τ1,t, τ2,t, w0, w1) ≤ Ψσ,w,t

1 (τ̃1,t, τ2,t, w0, w1)∀τ̃1,t, w0, w1

Ψσ,w,t
2 (τ1,t, τ2,t, w0, w2) ≤ Ψσ,w,t

2 (τ1,t, τ̃2,t, w0, w2)∀τ̃2,t, w0, w2
}
.

The gameGσ,tw (W0,t,W1,t,W2,t, V1,t, V2,t) of stage t directly derives from G̃σ,t(M0,M1,M2, V1,t, V2,t)

by marginalizing with respect to components W0,t, W1,t and W2,t of Wn
0 (M0), Wn

1 (M0,M1)

and Wn
2 (M0,M2) respectively according to the injections in Fig. 4.5.
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M2 Wn
2 (M0,M2) W t−1

2 (M0,M2),W2,t(M0,M2),Wn
2,t+1(M0,M2) W2,t(M0,M2)

M1 Wn
1 (M0,M1) W t−1

1 (M0,M1),W1,t(M0,M1),Wn
1,t+1(M0,M1) W1,t(M0,M1)

M0 Wn
0 (M0) W t−1

0 (M0),W0,t(M0),Wn
0,t+1(M0) W0,t(M0)

Figure 4.5: Marginalization scheme of the decoders’ types

Lemma 4.5.10. For all σ, we have

lim
n7→∞

1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈ ˜BNE(σ,t)

E[ce(Ut, V1,t, V2,t)] = lim
n7→∞

1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNEw(σ,t)

E[ce(Ut, V1,t, V2,t)] (4.71)

Proof . We will proceed by showing that every equilibrium (τ1,t, τ2,t) ∈ ˜BNE(σ, t) induces

an equilibrium in BNEw(σ, t). For all σ, τ1,t, τ2,t, w0,t, w1,t, we have,

Ψσ,w,t
1 (τ1,t, τ2,t, w0,t, w1,t) (4.72)

=
∑
w2,t

Pσ(w2,t|w0,t, w1,t)
∑

v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t, w2,t)

×
∑
ut

Q(ut|w0,t, w1,t, w2,t)ci(ut, v1,t, v2,t) (4.73)

=
∑

wn2 ,w
n
0,t+1,w

t−1
0

wt−1
1 ,wn1,t+1

Pσ(wn2 |wn0 , wn1 )Pσ(wn0,t+1, w
t−1
0 , wt−1

1 , wn1,t+1|w0,t, w1,t)

×
∑

v1,t,v2,t

∑
wn0,t+1,w

t−1
0

wt−1
1 ,wn1,t+1

Pτ1,t(v1,t|wn0 , wn1 )P(wn0,t+1, w
t−1
0 , wt−1

1 , wn1,t+1|w0,t, w1,t)

×
∑

wn0,t+1,w
t−1
0

wt−1
2 ,wn2,t+1

Pτ2,t(v2,t|wn0 , wn2 )P(wn0,t+1, w
t−1
0 , wt−1

2 , wn2,t+1|w0,t, w2,t)

×
∑

ut,w
n
0,t+1,w

t−1
0

wt−1
1 ,wn1,t+1,w

t−1
2 ,wn2,t+1

Q(ut|wn0 , wn1 , wn2 )Q(wn0,t+1, w
t−1
0 , wt−1

1 , wn1,t+1, w
t−1
2 , wn2,t+1|w0,t, w1,t, w2,t)

× c1(ut, v1,t, v2,t). (4.74)

Thus, if (τ1,t, τ2,t) ∈ BNE(σ), then (τ1,t, τ2,t) ∈ BNEw(σ, t).
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Finally, we define the essential game G̃w,t(W0,t,W1,t,W2,t, V1,t, V2,t) of stage t, for t ∈

{1, 2, ...n}.

Definition 4.5.7. For each encoding σ, the essential Bayesian game G̃w,t(W0,t,W1,t,W2,t, V1,t, V2,t)

at stage t, for t ∈ {1, 2, ...n} consists of:

• The decoders Di, i ∈ {1, 2} as the players of the game,

• Vi,t is the set of action sequences of Di,

• (W0,t,Wi,t) is the type of decoder Di,

• τi,t : W0,t ×Wi,t 7→ ∆(Vi,t) is a behavior strategy of decoder Di,

• The belief of decoder D1 (resp. D2) over the type of decoder D2 (resp. D1) is given by

QW2,t|W0,t (resp. QW1,t|W0,t).

• C̃w,ti : W0 ×W1 ×W2 × V1,t × V2,t 7→ R is the σ-cost function of Di at stage t such

that ∀v1,t, v2,t, w0,t, w1,t, w2,t,

C̃σi (w0,t, w1,t, w2,t, v1,t, v2,t) =
∑
ut

Q(ut|w0,t, w1,t, w2,t)ci(ut, v1,t, v2,t).

• For a fixed strategy profile (τ1,t, τ2,t), the expected σ-costs Ψ̃σ,t
1 (τ1,t, τ2,t, w0,t, w1,t) of D1

at stage t with type (w0,t, w1,t) is given by

Ψ̃w,t
1 (τ1,t, τ2,t, w0,t, w1,t) =

∑
w2,t

Q(w2,t|w0,t)
∑

v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)Pτ2,t(v2,t|w0,t,m2)×

C̃w,t1 (v1,t, v2,t, w0,t, w1,t, w2,t). (4.75)

Similarly, Ψ̃w,t
2 (τ1,t, τ2,t, w0,t, w2,t) can be defined.

For each distribution QW0,tW1,tW2,t|Ut ∈ ∆(W0,t ×W1,t ×W2,t)|Ut|, the set of essential

Bayes-Nash equilibria of stage t is given by

BNE(QW0,tW1,tW2,t|Ut) =
{

(QV1,t|W0,tW1,t ,QV2,t|W0,tW2,t),

Ψ̃w,t
1 (QV1,t|W0,tW1,t ,QV2,t|W0,tW2,t , w0,t, w1,t) ≤ Ψ̃w,t

1 (Q̃V1,t|W0,tW1,t ,QV2,t|W0,tW2,t , w0,t, w1,t)

∀ Q̃V1,t|W0,tW1,t , w0,t, w1,t,

Ψ̃w,t
2 (QV1,t|W0,tW1,t ,QV2,t|W0,tW2,t , w0,t, w2,t) ≤ Ψ̃w,t

2 (QV1,t|W0,tW1,t , Q̃V2,t|W0,tW2,t , w0,t, w2,t)
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∀ Q̃V2,t|W0,tW2,t , w0,t, w2,t
}
. (4.76)

Lemma 4.5.11. For all t, σ, QW0,t|UQW1,t|W0,tUQW2,t|W0,tU ∈ Q0(R0, R1, R2) and ε > 0,

we have

∣∣∣∣∣ lim
n7→∞

1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNEw(σ,t)

E[ce(Ut, V1,t, V2,t)] − max
(QV1,t|W0,tW1,t

,QV2,t|W0,tW2,t
)∈

BNE(QW0,t|Ut
QW1,t|W0,tUt

QW2,t|W0,tUt
)

E[ce(Ut, V1,t, V2,t)]
∣∣∣∣∣ ≤ ε.

(4.77)

Proof . Consider the following correspondence

PσUt|W0,tW1,tW2,t
⇒
{

(Pτ1,tV1,t|W0,tW1,t
,Pτ2,tV2,t|W0,tW2,t

),

Ψ̃w,t
1 (τ1,t, τ2,t, w0,t, w1,t) ≤ Ψ̃w,t

1 (τ̃1,t, τ2,t, w0,t, w1,t),∀τ̃1,t, w0,t, w1,t,

Ψ̃w,t
2 (τ1,t, τ2,t, w0,t, w2,t) ≤ Ψ̃w,t

2 (τ1,t, τ̃2,t, w0,t, w2,t),∀τ̃2,t, w0,t, w2,t

}
.

(4.78)

Denote by Nw(PσUt|W0,tW1,tW2,t
) the RHS of equation (4.65). It follows from lemma 4.5.8

that for a given ε > 0, and for all w0,t, w1,t, w2,t, v1,t, v2,t,

∣∣∣∣ lim
n7→∞

1
n

n∑
t=1

Ψw,t
1 (τ1,t, τ2,t, w0,t, w1,t)− Ψ̃w,t

1 (τ1,t, τ2,t, w0,t, w1,t)
∣∣∣∣

=
∣∣∣∣ lim
n7→∞

1
n

n∑
t=1

∑
w2,t

Pσ(w2,t|w0,t, w1,t)
∑

v1,t,v2,t

Pτ1,t(v1,t|w0,t, w1,t)×

Pτ2,t(v2,t|w0,t, w2,t)Cw,t1 (v1,t, v2,t, w0,t, w1,t, w2,t)−∑
w2,t

Q(w2,t|w0,t)
∑

v1,t,v2,t

Qτ1,t(v1,t|w0,t, w1,t)×

Qτ2,t(v2,t|w0,t, w2,t)C̃w,t1 (v1,t, v2,t, w0,t, w1,t, w2,t)
∣∣∣∣ ≤ ε. (4.79)

Therefore, using (Fort, 1951, Theorem 2), the correspondence in (4.78) is continuous. Using

Berge’s Maximum Theorem Berge (1963), the function

PσUt|W0,tW1,tW2,t
7→ max

(τ1,t,τ2,t)
∈Nw(Pσ

Ut|W0,tW1,tW2,t
)

E[ce(Ut, V1,t, V2,t)] (4.80)
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is well-defined and continuous. Hence, (τ1,t, τ2,t) ∈ ˜BNE(σ, t). Therefore, varying σ in

a small neighborhood, slightly perturbs the expected cost functions resulting in a slightly

perturbed set of Bayes-Nash equilibria. By the continuity of the max-value function in

(4.80), we get the desired inequality.

It follows from lemmas 4.5.5, 4.5.9, 4.5.10, and 4.5.11 that for all ε > 0, there exists n̂ such

that for all n ≥ n̂,

max
(τ1,τ2)
∈BNE(σ)

E[
n∑
t=1

1
n
ce(Ut, V1,t, V2,t)] = 1

n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNE(σ,t)

E[ce(Ut, V1,t, V2,t)] (4.81)

≤ 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈ ˜BNE(σ,t)

E[ce(Ut, V1,t, V2,t)] (4.82)

≤ 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈ ˜BNE(σ,t)

E[ce(Ut, V1,t, V2,t)] (4.83)

= 1
n

n∑
t=1

max
(τ1,t,τ2,t)
∈BNEw(σ,t)

E[ce(Ut, V1,t, V2,t)] (4.84)

≤ max
(QV1,t|W0,tW1,t

,QV2,t|W0,tW2,t
)∈

BNE(QW0,t|Ut
QW1,t|W0,tUt

QW2,t|W0,tUt
)

E[ce(Ut, V1,t, V2,t)] + ε.

(4.85)

This concludes the proof of the achievability statement of Theorem 4.3.1.

4.6 Converse proof for the strategic Gray-Wyner communi-

cation network

Let (R0, R1, R2) ∈ R3
+ and n ∈ N?. Fix (σ, τ1, τ2), and consider a random variable T

uniformly distributed over {1, 2, ..., n} and independent of (Un,M0,M1,M2, V
n

1 , V
n

2 ). We

introduce the auxiliary random variables W0 = (M0, T ), W1 = M1, W2 = M2, (U, V1, V2) =

(UT , V1,T , V2,T )3, distributed according to Pστ1τ2UW0W1W2V1V2
defined for all (u,w0, w1, w2, v1, v2) =

3We denote by UT , V1,T , V2,T components of sequences Un, V n1 , V n2 respectively, selected uniformly at ran-
dom.
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(ut,m0,m1,m2, t, v1,t, v2,t) by

Pστ1τ2UW0W1W2V1V2
(u,w0, w1, w2, v1, v2) =Pστ1τ2UTM0M1M2TV1TV2T

(ut,m0,m1,m2, t, v1,t, v2,t)

= 1
n

∑
ut−1
un
t+1

∑
vt−1
1 ,vn1,t+1
vt−1
2 ,vn2,t+1

( n∏
t=1
PU (ut)

)
PσM0M1M2|Un(m0,m1,m2|un)

×Pτ1V n1 |M0M1
(vn1 |m0,m1)Pτ2V n2 |M0M2

(vn2 |m0,m2).

Lemma 4.6.1. The distribution Pστ1τ2UW0W1W2V1V2
has marginal on ∆(U) given by PU and

satisfies the Markov chain properties

(U, V2)−
− (W0,W1)−
− V1;

(U,W1, V1)−
− (W0,W2)−
− V2.

Proof . [Lemma 4.6.1] The i.i.d. property of the source ensures that the marginal distribution

is PU . By the definition of the decoding functions τ1 and τ2 we have

(UT , V2,T )−
− (M1,M0, T )−
− V1,T ,

(UT ,M1, V1,T )−
− (M2,M0, T )−
− V2,T .

Therefore Pστ1τ2UW0W1W2V1V2
= PUPσW0|UP

σ
W1|W0U

PσW2|W0U
Pτ1V1|W0W1

Pτ2V2|W0W2
.

Lemma 4.6.2. For all σ, the distribution PσW0W1W2|U ∈ Q0(R0, R1, R2).

Proof . [Lemma 4.6.2] We consider an encoding strategy σ, then

bnR0c ≥H(M0) ≥ I(M0;Un) (4.86)

=
n∑
t=1

I(Ut;M0|U t−1) (4.87)

=nI(UT ;M0|UT−1, T ) (4.88)

=nI(UT ;M0, U
T−1, T ) (4.89)

≥nI(UT ;M0, T ) (4.90)
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=nI(U ;W0). (4.91)

In fact, (4.88) follows from the introduction of the uniform random variable T ∈ {1, . . . , n},

(4.89) comes from the i.i.d. property of the source and (4.91) follows from the identification

of the auxiliary random variables (U,W2). Similarly,

bnR1c ≥H(M1) ≥ I(Un;M1|M0) (4.92)

=
n∑
t=1

I(Ut;M1,M0|U t−1) (4.93)

=nI(UT ;M1,M0|UT−1, T ) (4.94)

≥nI(UT ;M1,M0, T ) (4.95)

≥nI(UT ;M1|M0, T ) (4.96)

=nI(U ;W1|W0). (4.97)

Similarly, nR2 ≥ nI(U ;W2|W0).

Lemma 4.6.3. For all (σ, τ1, τ2) and i ∈ {1, 2}, we have

cne (σ, τ1, τ2) =E
[
ce(U, V1, V2)

]
, (4.98)

cni (σ, τ1, τ2) =E
[
ci(U, V1, V2)

]
. (4.99)

evaluated with respect to PUPσW0W1W2|UP
τ1
V1|W0W1

Pτ2V2|W0W2
.

Moreover, for each (m0,m1,m2, v
n
1 , v

n
2 ), we have

Cσi (m0,m1,m2, v
n
1 , v

n
2 ) = C?i (w0, w1, w2, v1, v2), (4.100)

Ψσ
i (τ1, τ2,m0,mi) = EPU

[
Ψ?
i (Pτ1V1|W0W1

,Pτ2V2|W0W2
, w0, wi)

]
.

Proof . [Lemma 4.6.3] By Definition 4.3.2 we have

cne (σ, τ1, τ2) =
∑

un,m0,m1,m2,
vn1 ,v

n
2

( n∏
t=1
PU (ut)

)
PσM0M1M2|Un(m0,m1,m2|un)Pτ1V n1 |M0M1

(vn1 |m0,m1)
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× Pτ2V n2 |M0M2
(vn2 |m0,m2) ·

[
1
n

n∑
t=1

ce(ut, v1,t, v2,t)
]

(4.101)

=
n∑
t=1

∑
ut,m0,m1,m2,

v1,t,v2,t

Pστ1τ2(ut,m0,m1,m2, t, v1,t, v2,t)ce(ut, v1,t, v2,t) (4.102)

=E
[
ce(U, V1, V2)

]
. (4.103)

For all (m0,m1,m2, v
n
1 , v

n
2 ) and i ∈ {1, 2} we have

Cσi (m0,m1,m2, v
n
1 , v

n
2 ) =

∑
un
PσUn|M0M1M2|(u

n|m0,m1,m2)
[

1
n

n∑
t=1

ci(ut, v1,t, v2,t)
]

(4.104)

=
n∑
t=1

∑
ut

Pσ(ut|m0,m1,m2, t)ci(ut, v1,t, v2,t) (4.105)

=
∑
u

Pσ(u|w0, w1, w2)ci(u, v1, v2) (4.106)

= C?i (v1, v2, w0, w1, w2). (4.107)

Moreover,

Ψσ
1 (τ1, τ2,m0,m1) =∑
un

( n∏
t=1
PU (ut)

)∑
m2

Pσ(m2|m0,m1)
∑
vn1 ,v

n
2

Pτ1(vn1 |m0,m1)Pτ2(vn2 |m0,m2)

×
[

1
n

n∑
t=1

c1(ut, v1,t, v2,t)
]

(4.108)

=
n∑
t=1

∑
m2,ut

PU (ut)Pσ(m0,m2, ut, t|m0,m1, t)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1, t)Pτ2,t(v2,t|m0,m2, t)

×
[
c1(ut, v1,t, v2,t)

]
. (4.109)

=
∑

m2,ut,t

PU (ut)Pσ(m2, t|m0,m1, t)
∑

v1,t,v2,t

Pτ1,t(v1,t|m0,m1, t)Pτ2,t(v2,t|m0,m2, t)×

C?1 (v1,t, v2,t,m0,m1,m2, t) (4.110)

=
∑
w2,u

PU (u)Pσ(w0, w2|w0, w1)
∑
v1,v2

Pτ1,t(v1|w0, w1)Pτ2,t(v2|w0, w2)C?1 (v1, v2, w0, w1, w2)

(4.111)

=EPU [Ψ?
1(Pτ1,tV1|W0W1

,Pτ2,tV2|W0W2
, w0, w1)]. (4.112)
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Lemma 4.6.4. For all σ, we have

BNE(PσW0W1W2|U ) =
{

(QV1|W0W1 ,QV2|W0W2), ∃(τ1, τ2), τ1 ∈ BRσ1 (τ2), τ2 ∈ BRσ2 (τ1),

QV1|W0W1 = Pτ1V1|W0W1
,QV2|W0W2 = Pτ2V2|W0W2

}
. (4.113)

Proof . [Lemma 4.6.4] Fix σ and let (QV1|W0W1 ,QV2|W0W2) ∈ BNE(PσW0W1W2|U ). We consider

(τ1, τ2) such that

Pτ1V n1 |M0M1
(vn1 |m0,m1) =

n∏
t=1
QV1|W0W1(v1,t|m0,m1, t),

Pτ2V n2 |M0M2
(vn2 |m0,m2) =

n∏
t=1
QV2|W0W2(v2,t|m0,m2, t).

Then ∀(w0, w1, v1) = (m0,m1, t, v1,t),

Pτ1V1|W0W1
(v1|w0, w1) = Pτ1V1|W0W1

(v1,t|m0,m1, t) (4.114)

=
∑

vt−1
1 ,vn1,t+1

n∏
s=1
QV1|W0W1(v1,s|m0,m1, s) (4.115)

= QV1|W0W1(v1,t|m0,m1, t)
∑

vt−1
1 ,vn1,t+1

∏
s 6=t
QV1|W0W1(v1,s|m0,m1, s)

(4.116)

= QV1|W0W1(v1,t|m0,m1, t) = QV1|W0W1(v1|w0, w1). (4.117)

Assume that ∀τ2, τ1 /∈ BRσ1 (τ2), then there exists τ̄1 6= τ1 such that

EPσU
[
Ψ?

1(P τ̄1V1|W0W1
,Pτ2V2|W0W2

, w0, w1)
]

=Ψσ
1 (τ̄1, τ2,m0,m1) < Ψσ

1 (τ1, τ2,m0,m1)

=EPσ
U|W0W1W2

[
Ψ?

1(Pτ1V1|W0W1
,Pτ2V2|W0W2

, w0, w1)
]
, ∀τ2,

which contradicts (QV1|W0W1 ,QV2|W0W2) ∈ BNE(PσW0W1W2|U ). Therefore, τ1 ∈ BRσ1 (τ2) and

thus QV1|W0W1 belongs to the right-hand side of (4.113).
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Therefore for all m0,m1,

Ψσ
1 (τ1, τ2,m0,m1) =EPσU

[
Ψ?

1(Pτ1V1|W0W1
,Pτ2V2|W0W2

, w0, w1)
]

= min
QV1|W0W1

EPσU
[
Ψ?

1(QV1|W0W1 ,QV2|W0W2 , w0, w1)
]

≤min
τ̃1
EPσU

[
Ψ?

1(P τ̃1V1|W0W1
,Pτ2V2|W0W2

, w0, w1)
]

= min
τ̃1

Ψσ
1 (τ̃1, τ2,m0,m1).

Hence τ1 ∈ BRσ1 (τ2). Similarly, τ2 ∈ BRσ2 (τ1). The other inclusion is direct.

For any strategy σ, we have

max
τ1,τ2

cne (σ, τ1, τ2) = max
τ1,τ2

E Pσ
W0W1W2|U

Pτ1
V1|W0W1

Pτ2
V2|W0W2

[
ce(U, V1, V2)

]
(4.118)

= max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(Pσ
W0W1W2|U

)

E Pσ
W0W1W2|U

QV1|W0W1
QV2|W0W2

[
ce(U, V1, V2)

]
(4.119)

≥ inf
QW0W1W2|U
∈Q̂0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(QW0W1W2|U
)

E
[
ce(U, V1, V2)

]
(4.120)

=Γ̂GW (R0, R1, R2). (4.121)

Equations (4.118) and (4.119) follow from Lemma 4.6.3, whereas (4.120) comes from Lemma

4.6.2. This concludes the converse proof of Theorem 4.3.1.

4.7 Conclusion

Strategic communication between one encoder and two decoders is under study. We

propose a non-cooperative Gray-Wyner setting, in which the encoder is endowed with a cost

function that depends on the actions of both decoders and on the state, and the decoders

are cost-dependent, i.e. the cost function of each decoder depends on the action of the other

decoder. The encoder commits to an encoding before observing the source. Upon revelation

of the encoder’s commitment, a Bayesian game is played among the decoders. This game

admits perfect Bayes-Nash equilibria. Henceforth, the strategic goal of the encoder consists
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of minimizing its long-run cost subject to the information constraints imposed by the Gray-

Wyner network, and the equilibrium strategies of the decoders in the subsequent Bayesian

game. Using the Gray-Wyner lossy source coding that satisfies the incentive constraints of

both decoders, we derive two single-letter characterizations of the encoder’s optimal cost,

one with an optimal signal that satisfies a Markov chain and forms an upper bound for

the encoder’s optimal long-run cost in our achievability statement, and one with a general

joint distribution that serves as a lower bound to the long-run cost of the encoder in the

converse statement. Our achievability proof provides a technical novelty which consists

of identifying a series of intermediate Bayesian games starting from the block-game until

reaching the one-shot game. We characterize each game, and we analyze the encoder’s

expected cost that corresponds to the set of Bayes-Nash equilibria of each game. This

analysis requires controlling the Bayesian beliefs of the decoders which can be done under

specific considerations in selecting the codebook sequences.
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5.1 Introduction

We consider a three-node cascade network with an encoder, a relay and a decoder,

having distinct objectives captured by cost functions. In such a cascade network, agents

choose their respective strategies sequentially, as a response to the former agent’s strategy

and in a way to influence the decision of the latter agent in the network. We assume the

encoder commits to a strategy before the communication takes place. Upon revelation of

the encoding strategy, the relay commits to a strategy and reveals it. The communication

starts, the source sequence is drawn and processed by the encoder and relay. Then, the

decoder observes a sequences of symbols, updates its Bayesian posterior beliefs accordingly,

and takes the optimal action. This is an extension of the Bayesian persuasion problem in

the Game Theory literature. In this work, we provide an information-theoretic approach to

study the fundamental limit of the strategic communication via three-node cascade network.

Our goal is to characterize the optimal strategies of the encoder, the relay and the decoder,

and study the asymptotic behavior of the encoder’s minimal long-run cost function.

Cascade source coding consists of compressing a source sequence through an interme-

diate or relay node which then reconstructs the source and transmits it to the next node.

Yamamoto (1981) considered the source coding problem for cascade and branching com-

munication systems, and established the region of achievable rates for cascade systems and

bounds for the branching systems. Lossy source coding for cascade communication systems

was also considered in Vasudevan et al. (2006) where both the relay and the terminal node

have access to side information and wish to reconstruct the source with certain fidelities. The

cascade source coding framework is a building block for various compression and communi-

cation scenarios. It captures major aspects of multihop coding for wireless communication

networks Broch et al. (1998), including cellular communication Lin and Hsu (2000), ad hoc

networks Johnson et al. (2002), and sensor networks Woo et al. (2003).

Information transmission via relays can also involve endogenous constraints. In Kosenko

(2020), a strategic designer transmits state-dependent signals to a decoder through a relay

who can garble these signals. Comparing outcomes with and without a relay, the encoder

seems to never benefit from mediation, while the decoder might. Arieli et al. (2022) studied
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a similar model of communication between an informed encoder and a decoder through a

sequence of relays. Authors characterize the encoder’s optimal value for any number of re-

lays and show that the presence of a relay is never beneficial for the sender. In this regard,

the last model investigated in this thesis, considers a Cascade channel where information

travels from a strategic encoder to a decoder through a relay. However, we assume the

encoder commits to an encoding and announces its commitment. Then, the relay commits

to a strategy accordingly. Henceforth, our model takes the relay as well as the amount of

information transmitted as exogenous parameters. Note here that the order of commitment

between the encoder and the relay is crucial. In our setting, the encoder is the Stackleberg

leader, who commits first and declares its commitment to the other players. If the relay

was assumed to commit to a strategy before the encoder, then the problem boils down to a

strategic joint source-channel coding of Shannon, like the one investigated in Le Treust and

Tomala (2019a).

5.2 Cascade multiple description coding

The three-node Cascade communication system depicted in Figure 5.1 is a lossy source

coding setup in which an encoder transmits a description M1 at rate R1 to a relay which

reconstructs the source with V n
1 and relays a descriptionM2 at rate R2 to the decoder which

reconstructs the source with V n
2 . All alphabets U , V1 and V2 are discrete and the source U

is memoryless. More details can be found in (El Gamal and Kim, 2011, chapter 20.2.1).

σ µ τ

c1(U, V1) c2(U, V2)

V n
2

V n
1

Un M1 M2

R1 R2

Figure 5.1: Cascade multiple description coding.

Definition 5.2.1. Let (R1, R2) ∈ R2
+. An (R1, R2, n) code for the three-node Cascade

multiple description network consists of the following:

• Two index sets {1, 2, ..2bnR1c}, and {1, 2, ..2bnR2c}.
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• An encoding function σ : Un −→ {1, 2, ..2bnR1c} which assigns a message m1 ∈

{1, 2, ..2bnR1c} to each sequence un ∈ Un.

• A relay function µ : {1, 2, ..2bnR1c} −→ {1, 2, ..2bnR2c} × Vn1

• A decoding function τ : {1, 2, ..2bnR2c} −→ Vn2 .

Definition 5.2.2. Let c1 : U × V1 −→ R and c2 : U × V2 −→ R two single-letter cost

functions of the relay and the decoder respectively. We define the long-run cost functions

cn1 (σ, µ) and cn2 (σ, τ) as follows:

cn1 (σ, µ) =
∑
un,vn1

Pσ,µ(un, vn1 ) 1
n

n∑
t=1

c1(ut, v1,t), (5.1)

cn2 (σ, τ) =
∑
un,vn2

Pσ,τ (un, vn1 ) 1
n

n∑
t=1

c2(ut, v2,t). (5.2)

Definition 5.2.3. A rate-cost quadruple (R1, R2, C1, C2) ∈ R4
+ is said to be achievable if

there exits a sequence of (R1, R2, n) codes for the three-node Cascade network such that

lim supn−→∞ E(cni (Un, V n
i )) ≤ Ci, for i ∈ {1, 2}.

For a rate pair (R1, R2), we denote by K(R1, R2) the closure of the set of pairs (C1, C2)

such that quadruples (R1, R2, C1, C2) are achievable.

Let W1 ∈ W1, and W2 ∈ W2 two auxiliary random variables such that |W1| = |V1| and

|W2| = |V2|.

Theorem 5.2.1 (Three-node Cascade multiple description coding). Let U be a discrete

memoryless source, distributed according to a probability distribution PU over U . Let V1

and V2 be two discrete alphabets and ci : U × Vi 7→ R for i ∈ {1, 2} be two cost functions.

Then, given a rate pair (R1, R2) we have

K(R1, R2) =
{(
EQ(c1(U, V1)),EQ(c2(U, V2))

)
, Q ∈ Q(R1, R2)

}
(5.3)

where

Q(R1, R2) =
{
QW1W2|U , I(U ;W2) ≤ R2, I(U ;W1,W2) ≤ R1

}
(5.4)
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5.3 Modified model for strategic information cascade

We propose a strategic model for the Bayesian persuasion game via the three-node

cascade multiple description network. We modify the original model by assuming that the

encoder is endowed with a cost function which depends on the state U and the decoder’s

action V . We also assume that the relay, unlike the standard model presented in section 5.2,

does not draw a sequence V n
1 upon receiving the message from the encoder, but only relays

the message M1 of the encoder. The cost function of the relay in our setting depends on

the action V taken by the decoder and on the state U . We still assume that the encoder

commits to an encoding function σ before observing the source. Upon the announcement

of the encoder’s commitment, the relay commits to a strategy µ and announces it as well.

In the following, we formulate the Strategic cascade lossy source coding problem.

σ µ τ

c2(U, V ) c3(U, V )c1(U, V )

V nUn M1 M2

R1 R2

Figure 5.2: Strategic source coding for cascade channel with successive commitment.

Let n ∈ N?, and (R1, R2) ∈ R2
+ denote the rate pair.We assume that the information

source U follows the i.i.d probability distribution PU ∈ ∆(U).

Definition 5.3.1. The coding strategies σ, µ and τ of the encoder, relay, and decoder

respectively are defined by

σ : Un −→ ∆
(
{1, ..2bnR1c}

)
, (5.5)

µ :{1, ..2bnR1c} −→ ∆
(
{1, ..2bnR2c}

)
, (5.6)

τ :{1, ..2bnR2c} −→ ∆
(
Vn
)
. (5.7)

The stochastic coding strategies (σ, µ, τ) induce a joint probability distribution Pσµτ ∈
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∆
(
Un × {1, 2, ..2bnR1c} × {1, 2, ..2bnR2c} × Vn

)
defined for all (un,m1,m2, v

n) by

Pσµτ (un,m1,m2, v
n) =

( n∏
t=1
PU (ut)

)
σ(m1|un)µ(m2|m1)τ(vn|m2). (5.8)

Definition 5.3.2. We consider arbitrary single-letter cost functions c1 : U × V −→ R for

the encoder E, c2 : U × V −→ R for the relay, and c3 : U × V −→ R for the decoder. The

long-run cost functions are defined for i ∈ {1, 2, 3} by

cni (σ, µ, τ) =Eσ,µ,τ
[

1
n

n∑
t=1

ci(Ut, Vt)
]

(5.9)

=
∑
un,vn

Pσ,µ,τUnV n(un, vn) ·
[

1
n

n∑
t=1

ci(ut, vt)
]
. (5.10)

In the above equations, PσµτUnV n denote the marginal distributions over the sequences

(Un, V n) of Pσµτ defined in (5.8) over the n-sequences (Un,M1,M2, V
n).

Definition 5.3.3. For any strategy pair (σ, µ), of the encoder and the relay, the set of

best-response strategies τ of the decoder is defined by

A3(σ, µ) = arg min
τ

cn3 (σ, µ, τ). (5.11)

For any strategy σ, the set of pairs (µ, τ) which are best-responses for the relay and the

decoder is defined by

A2(σ) = arg min
(µ,τ)s.t.
τ∈A3(σ,µ)

cn2 (σ, µ, τ). (5.12)

Therefore, the encoder has to solve the following coding problem,

Γncas(R1, R2) = inf
σ

max
(µ,τ)∈
A2(σ)

cn1 (σ, µ, τ). (5.13)

Remark 5.3.1. In order to get a robust solution concept, we assume that the encoder solves

the problem for the worst case scenario, i.e. if more than one pair of strategies are available

in A2(σ), we consider the one that maximizes the encoder’s cost.



5.4. Cooperative scenario 109

The operational significance of (5.13) corresponds to the persuasion game that is played

in the following steps:

• The encoder chooses, announces the encoding σ.

• knowing σ, the relay chooses, announces the encoding µ.

• Knowing (σ, µ), the decoder compute its best-response strategy τ .

• Sequences Un are drawn i.i.d with distribution PU .

• Message sequence M1 are encoded according to σM1|Un .

• Message sequence M2 are encoded according to µM2|M1 .

• The decoder observes M2 and draws V n according to τV n|M2 .

• Cost functions cn1 (σ, µ, τ), cn2 (σ, µ, τ), cn3 (σ, µ, τ) are computed.

5.4 Cooperative scenario

Consider the cooperative communication scenario where c1 = c2 = c3, and all three

agents share the objective of minimizing the same cost function. This setting corresponds

to the standard coding setup of a cascade multiple description network El Gamal and Kim

(2011), under the assumption that the relay does not reconstruct the source, but only relays

a message M2, and the cost functions of the three players depend on the source and the

decoder’s action.

Consider an auxiliary random variables W ∈ W such that |W| = |U|. The set

Qc0(R1, R2) of target distributions is defined by:

Qc0(R1, R2) ={QW2|U ; min(R1, R2) ≥ I(U ;W2)}. (5.14)

The single-letter best-response of the decoder is defined by:

Qc3(QW2|U ) = arg min
QV |W2

E[c3(U, V )]. (5.15)
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The single-letter optimal cost Γccas(R1, R2) of the encoder is given by

Γccas(R1, R2) = inf
QW2|U

∈
Qc0(R1,R2)

max
QV |W2

∈
Qc3(QW2|U

)

E
[
c3(U, V )

]
. (5.16)

Theorem 5.4.1. Let (R1, R2) ∈ R2
+. If c1 = c2 = c3, then

lim
n−→∞

Γncas(R1, R2) = inf
n∈N?

Γncas(R1, R2) = Γccas(R1, R2). (5.17)

Achievability of Theorem 5.4.1

The proof of Theorem 5.4.1 can be directly derived from the proof of (El Gamal and

Kim, 2011, Theorem 20.4) by considering the relay’s estimate to be a constant and its role

is to only transition the message received from the encoder.

Fix probability distributions QW2|U ∈ Qc0(R1, R2). There exists η > 0 such that

min(R1, R2) =I(U ;W2) + η, (5.18)

Let (R1, R2) ∈ R2
+. Randomly and independently generate 2nR2 sequences wn2 (m2) for each

m2 ∈ {1, ..2bnR2c}, according to the i.i.d distribution QWn
2

= Πn
t=1QW2(w2t).

Encoder E observes un and looks in the codebook for a sequence wn2 (m2) such that

(un, wn2 (m2)) ∈ T nδ (PUQW2|U ). If such a jointly typical tuple doesn’t exist, the source

encoder sets wn2 to (1, 1, .., 1). Then, it sends m2 to the relay. The relay observes m2 and

sends it to the decoder. Then, the decoder D observes m2 and declares vn according to τ .

The error event is given by F = {(Un,Wn
2 (M2)) /∈ T nδ (PUQW2|U )}.

By the covering lemma, we get P(F) tends to zero as n −→∞ since

R2 ≥ I(U ;W2) + η. (5.19)
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Converse of Theorem 5.4.1

The converse proof of Theorem 5.4.1 follows the same line of arguments as in the

previous chapters. The full proof can be found in Appendix F.

5.5 Bayesian persuasion with unrestricted communication

We assume that the communication is perfect and unrestricted,i.e. R1 = R2 = log |U|.

Fix QW1|UQW2|W1 . Consider two auxiliary random variables W1 ∈ W1 and W2 ∈ W2 such

that |W1| = |W2| = |U| and

U −
−W1 −
−W2, W1 −
−W2 −
− V.

The single-letter best-responses are defined by:

Q3(QW1|U ,QW2|W1) = arg min
QV |W2

E[c3(U, V )],

Q2(QW1|U ) = arg min
(QW2|W1

,QV |W2
),

QV |W2
∈Q3(QW1|U

,QW2|W1
)

E[c2(U, V )],

The single-letter optimal cost Γe of the encoder is given by

Γe = inf
QW1|U

max
QW2|W1

,QV |W2
∈Q2(QW1|U

)

E PUQW1|U
QW2|W1

QV |W2

[
c1(U, V )

]
.

Theorem 5.5.1. If R1 = R2 = log |U|, then

lim
n−→∞

Γne = inf
n∈N?

Γne = Γe (5.20)
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Achievability of Theorem 5.5.1

Let R1 = R2 = log |U|, and fix a joint probability distribution QW1|UQW2|W1. The

sequences Un are drawn according to the i.i.d. distribution PUn. Randomly and indepen-

dently generate 2nR1 sequences wn1 (m1) for each m1 ∈ {1, ..2bnR1c}, according to the i.i.d

distribution QWn
1 |Un = Πn

t=1QW1|U (w1t|ut). Similarly, generate 2nR2 sequences wn2 (m2) for

m2 ∈ {1, ..2bnR2c} randomly and independently according to the i.i.d distribution QWn
2 |W

n
1

=

Πn
t=1QW2|W1(w2t|w1t).

Since R1 = log |U| = log |W1| and R2 = log |U| = log |W2|, encoder E observes un and

looks in the codebook for the corresponding sequences wn1 (m1) and sends m1 to the relay.

The relay observes m1 and sends m2 to the decoder. Then, the decoder D observes m2 and

declares vn according to τ .

Converse Proof of Theorem 5.5.1

Given a triple (σ, µ, τ) and a random variable T uniformly distributed over {1, 2, ..., n}

and independent of (Un,M1,M2, V
n). We identify the auxiliary random variables W1 =

(M1, T ), W2 = M2, (U, V ) = (UT , VT ), distributed according to PσµτUW1W2V
defined for all

(u,w1, w2, v) = (ut, x1, x2, t, vt) by

PσµτUW1W2V
(u,w1, w2, v) =PσµτUTW1W2TVT

(ut, x1, x2, t, vt)

= 1
n

∑
ut−1
un
t+1

∑
xt−1
1 ,xn1,t+1
xt−1
2 ,xn2,t+1

∑
vt−1,vnt+1

( n∏
t=1
PU (ut)

)
PσM1|Un(m1|un)

× PµM2|M1
(m2|m1)PτV n|M2

(vn|m2).

Lemma 5.5.1. The distribution PσµτUW1W2V
has marginal on ∆(U) given by PU and satisfies

the following Markov chain property

U −
−W1 −
−W2, W1 −
−W2 −
− V.
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Proof. [Lemma 5.5.1] The i.i.d. property of the source ensures that the marginal distribution

is PU . By the definition of the coding functions σ, µ and τ we have

(UT )−
− (M1, T )−
−M2,

(M1, T )−
−M2 −
− VT .

Therefore PσµτUW1W2V
= PUPσW1|UP

µ
W2|W1

PτV |W2
.

Lemma 5.5.2. For all (σ, τ1, τ2) and i ∈ {1, 2, 3}, we have

cni (σ, µ, τ) =E
[
ci(U, V )

]
, (5.21)

evaluated with respect to PUPσW1|UP
µ
W2|W1

PτV |W2
. Moreover for all σ, µ we have

Q3(PσW1|U ,P
µ
W2|W1

) =
{
QV |W2 , ∃τ ∈ A3(σ, µ), QV |W2 = PτV |W2

}
, (5.22)

Q2(PσW1|U ) =
{

(QW2|W1 ,QV |W2), ∃(µ, τ) ∈ A2(σ), QW2|W1 = PµW1|W2
,

QV |W2 = PτV |W2

}
. (5.23)

Proof. [Lemma 5.5.2] By Definition 5.3.2 we have for i ∈ {1, 2, 3}

cni (σ, µ, τ) =
∑

un,m1,
m2,vn

( n∏
t=1
PU (ut)

)
PσM1|Un(m1|un)PµM2|M1

(m2|m1)

× PτV n|M2
(vn|m2) ·

[
1
n

n∑
t=1

ci(ut, vt)
]

(5.24)

=
n∑
t=1

∑
ut,x1,
x2,t,vt

Pσ,µ,τ (ut, x1, x2, t, vt)× ci(ut, vt) = E
[
ci(U, V )

]
. (5.25)

Given QV |W2 ∈ Q3(PσW1|U ,P
µ
W2|W1

), we consider τ such that

PτV n|M2
(vn|m2) =

n∏
t=1
QV |W2(v1,t|m2). (5.26)
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Given (QW2|W1 ,QV |W2) ∈ Q2(PσW1|U ), we consider (µ, τ) such that

PµM2|M1
(m2|m1) =

n∏
t=1
QW2|W1(m2|m1, t), (5.27)

PτV n|M2
(vn|m2) =

n∏
t=1
QV |W2(v1,t|m2). (5.28)

Therefore

cn3 (σ, µ, τ) =E Pσ
W1|U

Pµ
W2|W1

QV |W2

[
c3(U, V )

]
(5.29)

= min
PV |W2

E Pσ
W1|U

Pµ
W2|W1

,PV |W2

[
c3(U, V )

]
(5.30)

≤min
τ̃
E Pσ

W1|U
Pµ
W2|W1

,Pτ̃
V |W2

[
c3(U, V )

]
(5.31)

= min
τ̃
cn3 (σ, µ, τ̃), (5.32)

hence τ ∈ A3(σ, µ). Similarly,

cn2 (σ, µ, τ) =E Pσ
W1|U

QW2|W1
QV |W2

[
c2(U, V )

]
(5.33)

= min
(PW2|W1 ,PV |W2 )

E Pσ
W1|U

PW2|W1
,PV |W2

[
c2(U, V )

]
(5.34)

≤min
(µ̃,τ̃)

E Pσ
W1|U

Pµ̃
W2|W1

,Pτ̃
V |W2

[
c2(U, V )

]
(5.35)

= min
(µ̃,τ̃)

cn2 (σ, µ, τ̃), (5.36)

and thus (µ, τ) ∈ A2(σ). The other inclusions are direct and the same arguments imply

(5.23) and (5.22).

For any strategy σ, we have

max
µ,τ

cn1 (σ, µ, τ) =max
µ,τ

E Pσ
W1|U

Pµ
W2|W1

Pτ
V |W2

[
c1(U, V )

]
(5.37)

≥ max
QW2|W1

,QV |W2
∈Q2(QW1|U

)

E Pσ
W1|U

QW2|W1
QV |W2

[
c1(U, V )

]
(5.38)
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≥ inf
QW1|U

max
QW2|W1

,QV |W2
∈Q2(QW1|U

)

E
[
c1(U, V )

]
(5.39)

=Γe(R1, R2). (5.40)

Equations (5.37) and (5.38) comes from Lemma 5.5.2, whereas (5.39) comes from taking

the infimun over QW1|U . This concludes the converse proof of Theorem 5.5.1.

5.6 Locally restricted communication

Relay’s Restriction

Assume that the encoder can send messages at large enough rate R1 = log |U|, but

the relay sends at a fixed smaller rate R2. Fix QW1|U . In this setting, the single-letter

best-responses are defined by:

Q3(QW1|U ,QW2|W1) = arg min
QV |W2

E[c3(U, V )], (5.41)

Qr2(QW1|U ) = arg min
(QW2|W1

,QV |W2
))s.t.R2≥I(W1;W2),

QV |W2
∈Q3(QW1|U

,QW2|W1
)

E[c2(U, V )], (5.42)

The single-letter optimal cost Γrcas(R2) of the encoder is given by

Γrcas(R2) = inf
QW1|U

max
QW2|W1

,QV |W2
∈Q2(QW1|U

)

E
[
c1(U, V )

]
. (5.43)

Theorem 5.6.1. Let R2 ∈ R+. If R1 = log |U|, then

lim
n−→∞

Γncas(R2) = inf
n∈N?

Γncas(R2) = Γrcas(R2). (5.44)

The proof of Theorem 5.6.1 relies on the lossy source coding at the relay by considering

the source to be the observed message which is uniformly drawn from the codebook of size
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2nR1. This slight modification does not affect the condition on the covering lemma as the

coding will only depend on the size 2nR2 of the message set of the relay.

Encoder’s Restriction

Now assume that R2 = log |U|, i.e. the encoder is restricted to a limited amount of bits

per transmission, but the relay can transmit with no information constraints. Therefore, the

set Qe0(R1) of the encoder’s target distributions is given by

Qe0(R1) ={QW1|U ; R1 ≥ I(U ;W1)}. (5.45)

Single-letter best-responses are defined by:

Q3(QW1|U ,QW2|W1) = arg min
QV |W2

E[c3(U, V )], (5.46)

Qe2(QW1|U ) = arg min
(QW2|W1

,QV |W2
)),

QV |W2
∈Q3(QW1|U

,QW2|W1
)

E[c2(U, V )], (5.47)

The single-letter optimal cost Γ?cas(R1) of the encoder is given by

Γ̃cas(R1) = inf
QW1|U∈Q

e
0(R1)

max
QW2|W1

,QV |W2
∈Qe2(QW1|U

)

E
[
c1(U, V )

]
. (5.48)

Theorem 5.6.2. Let R1 ∈ R+. If R2 = log |U|, then

lim
n−→∞

Γncas(R2) = inf
n∈N?

Γncas(R2) = Γ̃cas(R2). (5.49)

5.7 Locally cooperating agents

Consider now that either the relay and the encoder or the relay and the decoder are

cooperating. In other words, we assume that either c1 = c2 or c2 = c3 holds.
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Encoder-Relay Cooperation

Assume c1 = c2 the encoder and the relay are cooperating. The encoder will reveal

information using the maximal rate R1. The set Qs0(R1, R2) of target distributions:

Qs0(R1, R2) ={QW1|U ; R1 ≥ I(U ;W1)}. (5.50)

Single-letter best-responses are defined by:

Q3(QW1|U ,QW2|W1) = arg min
QV |W2

E[c3(U, V )], (5.51)

Qs2(QW1|U ) = arg min
(QW2|W1

,QV |W2
)),R2≥I(W1;W2)

QV |W2
∈Q3(QW1|U

,QW2|W1
)

E[c2(U, V )], (5.52)

The single-letter optimal cost Γscas(R1, R2) of the encoder is given by

Γscas(R1, R2) = inf
QW1|U∈Q

s
0(R1,R2)

max
QW2|W1

,QV |W2
∈Qs2(QW1|U

)

E
[
c1(U, V )

]
. (5.53)

Theorem 5.7.1. Let (R1, R2) ∈ R2
+. If c1 = c2, then

lim
n−→∞

Γncas(R1, R2) = inf
n∈N?

Γncas(R1, R2) = Γscas(R1, R2). (5.54)

The proof relies on considering that the relay observes the source as the encoder can fully

reveal it, and the Bayesian persuasion setting between the relay and the decoder.

Relay-Decoder Cooperation

Assume now that the decoder cooperates with the relay because c2 = c3. The set

Qd0(R1, R2) of target distributions:

Qd0(R1, R2) ={QW1|U ; R1 ≥ I(U ;W1)}. (5.55)
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Single-letter best-responses are defined by:

Q3(QW1|U ,QW2|W1) = arg min
QV |W2

E[c3(U, V )], (5.56)

Qd2(QW1|U ) = arg min
(QW2|W1

,QV |W2
)),R2≥I(W1;W2)

QV |W2
∈Q3(QW1|U

,QW2|W1
)

E[c2(U, V )]. (5.57)

The single-letter optimal cost Γdcas(R1, R2) of the encoder is given by

Γdcas(R1, R2) = inf
QW1|U∈Q

d
0(R1,R2)

max
QW2|W1

,QV |W2
∈Qd2(QW1|U

)

E
[
c1(U, V )

]
. (5.58)

Theorem 5.7.2.

lim
n−→∞

Γncas(R1, R2) = inf
n∈N?

Γncas(R1, R2) = Γdcas(R1, R2). (5.59)

The proof follows by considering the relay and the decoder as one party, and lossy source

coding at the encoder.

5.8 Illustrating example

Assume that R1 = R2 = log |U|, and c1 = c3. We illustrate the problem using a binary

source information U = {u0, u1}, binary channel inputs X2 = {x2,0, x2,1}, X1 = {x1,0, x1,1}

and binary action set V = {v0, v1}. We denote by the parameter p0 ∈ [0, 1], the prior belief

p0 = PU (u1) of the decoder about the state U . Single-letter cost functions of the encoder,

the relay and the decoder are given in the tables below.

Table 5.1: c1(u, v)
v0 v1

u0 9 0
u1 4 10

Table 5.2: c2(u, v)
v0 v1

u0 1 0
u1 1 0

Table 5.3: c3(u, v)
v0 v1

u0 9 0
u1 4 10

Let (α, β), (γ, δ),and (ε, η) ∈ [0, 1]2. The expected cost functions of the encoder, the

relay and the decoder are respectively given in Figure 5.4 for p0 = 0.4. The threshold γ

corresponds to the belief PU (u1) about the state at which the decoder changes action from
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its default action v1 (which corresponds to its prior belief p0), to action v0. In the absence

of the relay, i.e. when the relaying strategy is to fully reveal the encoder’s message (δ =

γ = 0, orδ = γ = 1), the encoder’s optimal cost Γe can be obtained using the convexification

method represented by the green dashed line in Figure 5.4, evaluated at the prior p0. This

case corresponds to the setting of Kamenica and Gentzkow (2011). .

α

1− α

β

1− β

u0

u1

x1,0

x1,1

x2,0

x2,1

v0

v1

δ

γ

1− δ

1− γ

ε

1− η

1− ε

η

Figure 5.3: Encoders’ joint strategies σ1 and σ2 and decoder’s strategy σ3.

Using Baye’s rule, we compute the posterior beliefs of the decoder about the state, and

about the observation of the relay updated after observing the symbol realization x2,0 and

x2,1 from the relay as follows,

q1
0 = P(u1|x2,0) = P(u1, x2,0)

P(x2,0) = (β(1− γ) + (1− β)δ) · p0
(β(1− γ) + (1− β)δ) · p0 + ((1− α)(1− γ) + αδ) · (1− p0) ,

(5.60)

q1
1 = P(u1|x2,1) = P(u1, x2,1)

P(x2,1) = (βγ + (1− β)(1− δ)) · p0
(βγ + (1− β)(1− δ)) · p0 + ((1− α)γ + α(1− δ)) · (1− p0) .

(5.61)

Given an encoding (α, β) of the encoder, a Bayesian persuasion game G(α, β) takes place

between the relay and the decoder. We denote by p1(α, β) = PX1(x1,1), the belief of the

decoder about X1 before receiving the relay’s message. Thus,

p1(α, β) = PX1(x1,1) =
∑
u

PU (u) · PX1|U (x1,1|u) = (1− p0)α+ p0(1− β). (5.62)

We define the costs cxi (x1, v), i ∈ {1, 2, 3} of all players as functions of the channel input X1

and the decoder’s action V as follows

cx1(x1, v) =
∑
u

PU |X1(u|x1)c1(u, v), ∀x1, v (5.63)
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cx2(x1, v) =
∑
u

PU |X1(u|x1)c2(u, v), ∀x1, v (5.64)

cx3(x1, v) =
∑
u

PU |X1(u|x1)c3(u, v). ∀x1, v, (5.65)

where the distributions PU |X1(u0|x1,0) and PU |X1(u1|x1,1) are computed as follows

P(u0|x1,0) =P(u0, x1,0)
P(x1,0) = (1− α) · (1− p0)

β · p0 + (1− α) · (1− p0) , (5.66)

P(u1|x1,1) =P(u1, x1,1)
P(x1,1) = (1− β) · p0

(1− β) · p0 + α · (1− p0) . (5.67)

By setting EPX1

[
cx3(x1, v0)

]
= EPX1

[
cx3(x1, v1)

]
, the threshold g(α, β) = PX1(x1,1) at

which the decoder changes action is computed as follows

g(α, β) = 2− P(u0|x1,0) · 5
5 · (1− P(u1|x1,1)− P(u0|x1,0)) (5.68)

Remark 5.8.1. The order of commitment is crucial in this setting. If the relay commits to

a strategy (γ, δ) and announces it before the encoder commits to and announces a strategy,

thus the problem boils down to the one tackled in Le Treust and Tomala (2019a).

Remark 5.8.2. • If α + β = 1, then the source U and channel’s input X1 are inde-

pendent. In that case, the decoder will stick to its prior belief p0 disregarding any

information received from the relay, and play its default action v1. The corresponding

costs are 10× 0.4 = 4 for the encoder, and 1 for the relay.

• If α = β = 1 or α = β = 0, the encoder is fully revealing the source to the relay. In

this case, the communication can be considered as a one-to-one Bayesian persuasion

game between the relay and the decoder. The optimal cost of the relay is given by C?2
in Figure 5.4.

We define the single-letter cost of the encoder and the relay as a function of the belief

parameter q ∈ [0, 1] about X1 as follows:

cx1(q) =
∑
x1

q(x1)cx1(x1, v
?(q(x1))), (5.69)
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v1

v0

g 1

9

p0

4

10

Γe

P(u1)

v0

v1
gp0

1

C?2

P(u1)

v1

v0

g 1

9

p0

4

10

P(u1)

Figure 5.4: Expected cost functions with p0 = 0.4, g = 0.6, C?2 = 0.33 and Γe = 1.6 for large
enough rates R1, R2 ≥ log |U| = 1.

Figure 5.5: The relay’s optimal cost C?2 (α, β) for p0 = 0.4 and α, β ∈ [0, 1].

cx2(q) =
∑
x1

q(x1)cx2(x1, v
?(q(x1))), (5.70)

where

v?(q(x1)) = arg min
v

∑
x1

q(x1)cx3(x1, v). (5.71)

For a given (α, β), the optimal cost of the relay can be computed using the convexifica-

tion method as follows:

C?2 (α, β) = inf
(λ,q)x2

{∑
x2

λx2c
x
2(qx2),

∑
k

λ2
k = 1,

∑
x2

λx2qx2 = p1(α, β)
}
. (5.72)
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The optimal single-letter cost of the encoder is therefore given by

Γ?cas(R1, R2) = inf
α,β

{∑
x2

λx2c
x
1(qx2), (λx2 , qx2)x2 ∈ arg min

(λx2 ,qx2 )x2

C?2 (α, β)
}
. (5.73)

5.9 Conclusion

We modify the base model of a three-node cascade by assuming that the encoder, the re-

lay and the decoder are endowed with distinct and arbitrary cost functions that depend on the

state and on the decoder’s action. We assume that the encoder commits to and announces

an encoding before observing the i.i.d. source. Then, the relay commits to and announces

a relaying strategy. This setting differs from the original cooperative setting where only

the relay and the decoder are endowed with distortions that depend on the source and their

respective reconstructions. We study the fundamental limit of the encoder’s long run cost

subject to the information constraints and the incentives of the relay and the decoder. We

study particular cases by relating them to existing models in the literature. When commu-

nication is unrestricted, the problem boils down to two persuasion games of Kamenica and

Gentzkow (2011), repeated in n independent copies. The fully cooperative scenario where

players share the same cost functions can be approached using standard cascade multiple

description coding. Partial cooperation or partial communication restrictions require a com-

bination of information-theoretic tools with game-theoretic behavior strategies as in Le Treust

and Tomala (2019a).
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Conclusion and Perspectives

Communication systems involving strategic agents with misaligned objectives are being

increasingly observed in modern wireless networks. Coding the source in these systems is not

only subjected to the information constraints imposed by the channel, but also to the incentive

constraints of the rational decoders. We propose a multidisciplinary approach that studies the

information-theoretic limits of strategic communication in a game-theoretic framework. The

Bayesian persuasion of Kamenica and Gentzkow (2011), investigate the Stackleberg version

of the one-shot strategic communication game between a single encoder (the Stackleberg

leader) and a decoder (the Stackleberg follower) with no limits on the amount of transmitted

information. The encoder commits to an encoding before observing the source and reveals

its commitment to the decoders. We consider a large number of identical and independent

Bayesian persuasion games under information constraints. We modify the standard lossy

source coding setup of Shannon (1959), by assuming that the encoder is endowed with a cost

function that depends on the source and on the actions taken by the decoders upon reception

of the encoder’s signal. The informed encoder transmits description(s) of the source to the

decoder(s) in order to minimize its own long-run cost function. We follow the approach

of Le Treust and Tomala (2019a) which studies noisy point-to-point Bayesian persuasion,

to the multi-user strategic communication in three different settings. First, we consider the

Successive Refinement coding setup in which a single encoder communicates a public message

to two decoders, and a private message to only one of them. Upon reception of the message

from the encoder, each decoder draws the action sequence that minimizes its respective long-

run cost functions. Second, we consider the Gray-Wyner communication Network, with

a single encoder and two decoders, each observing a public and a private signal from the

encoder, and are endowed with cost functions that depend on the actions of both decoders and



124 6. Conclusion and Perspectives

the state. In this setting, each commitment of the encoder induces a Bayesian game among

the decoders which admits perfect Bayes-Nash equilibria. Third, we combine the Bayesian

Persuasion model with the Cascade Multiple Description Network, where information is

transmitted from the encoder to the decoder through an interested relay. In each of these

settings, we study the information-theoretic limits of strategic communication and describe

the asymptotic behavior of the encoder’s optimal long-run cost function. Using auxiliary

random variables, we characterize the encoder’s minimal single-letter cost function subject

to the optimal compression scheme that satisfies the constraints imposed on the amount of

information transmitted in each model, as well as the incentive constraints of the decoders.

Further extensions of the models considered in this manuscript could be interesting to

investigate. In our communication systems, the encoder is linked to the decoders through

perfect links with a fixed and limited rate of information transmission. A noisy channel can

be added on each of these links with a conditional distribution that is known by all players.

As source-channel separation does not hold in general for networks, optimal compression

schemes which capture the incentive constraints of the decoders need to be derived. When

the cost of each decoder depends on the action of the other decoder, each commitment of

the encoder induces a Bayesian game among the decoders. Since the first decoder in the

successive refinement setting has access to the observation of the second decoder, assuming

that the cost function of the first decoder depends on the action of the second decoder won’t

modify our solution. Another interesting extension to the models is to assume that the

decoders have access to side information correlated to the state. Under such assumption,

the joint distributions would include the side variable and the encoder’s expected optimal

cost and entropy constraints will be averaged over the side variable. Considering particular

distributions of the source, like the Gaussian distribution, could also be interesting to study.
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A
Proof of Proposition 2.4.1

Proposition. Let C = 0.

• If p0 < γ and δ ∈ [0, p0·(γ−1)
p0·(−1+2γ)−γ ] ∪ [ γ·(1−p0)

p0·(1−2γ)+γ , 1], then Γs > Γ?e.

• If p0 ≥ γ then Γ?e ≥ Γs.

Proof. Assume p0 < γ By the feasibility condition (Le Treust and Tomala, 2018, Lemma 2),

δ belongs to the interval [0, 0.5] whenever either one of the following conditions is satisfied:

p1 ≤ p0 ≤ p2 or p2 ≤ p0 ≤ p1

Since the decoder changes action at threshold γ the encoder’s utility increases with

either p1 > γ or p2 > γ. Otherwise, if both p1 and p2 are smaller than γ the receiver will

not change action and thus the sender will get a utility of 0 Fig. 3(b).

p2 > γ ⇐⇒ p0 · (1− δ)
p0 · (1− δ) + (1− p0) · δ > γ (A.1)

⇐⇒ p0 · (1− δ) > γ(p0 · (1− δ) + (1− p0) · δ) (A.2)

⇐⇒ δ(−p0 + γ · p0 − γ + γ · p0) > γ · p0 − p0 (A.3)

⇐⇒ δ <
p0 · (γ − 1)

p0 · (−1 + 2γ)− γ =: δ?. (A.4)

Symmetrically, one could also tackle the problem as follows:

p1 > γ ⇐⇒ p0 · δ
p0 · δ + (1− p0) · (1− δ) > γ (A.5)

⇐⇒ p0 · γ > γ·0 ·δ + γ · (1− p0) · (1− δ) (A.6)

⇐⇒ δ · (p0 − 2 · γ·0 +γ > γ − γ·0 (A.7)
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⇐⇒ δ >
γ · (1− p0)

p0 · (1− 2γ) + γ
=: δ??. (A.8)

Since the channel’s capacity is C = 0, we evaluate the utility of the encoder as a function of

δ by applying the splitting lemma to p1 and p2. Let λ = P(z01) ∈ [0, 1] hence 1− λ = P(z02).

Applying the splitting lemma, we have

λ · p1 + (1− λ) · p2 = p0 ⇐⇒ λ · (p1 − p2) = p0 − p2 (A.9)

⇐⇒ λ = p0 − p2
p1 − p2

(A.10)

⇐⇒ 1− λ = p1 − p0
p1 − p2

(A.11)

The encoder’s expected utility Ψe is defined as follows:

Ψe =[λ · 0 + (1− λ) · 1] · 1{p2>γ} · 1{p1≤γ} + [λ · 0 + (1− λ) · 0] (A.12)

×1{p2 <γ} · 1{p1<γ} + [λ · 1 + (1− λ) · 0] · 1{p2 ≤γ} · 1{p1>γ} (A.13)

=[λ · 0 + (1− λ) · 1] · 1{0≤δ<δ?} + 0 · 1{δ?<δ<δ??} (A.14)

+[λ · 1 + (1− λ) · 0] · 1{δ??<δ≤1}. (A.15)

Hence, Γs = Γ?e = 0 for δ ∈ [δ?, δ??] and otherwise Γs > Γ?e = 0. Now assume p0 ≥ γ. The

sender’s expected utility Us becomes:

Ψe =[λ · 0 + (1− λ) · 1] · 1{p2≥γ} · 1{p1<γ} + [λ · 0 + (1− λ) · 0] · 1{p2 <γ} · 1{p1<γ}

+ [λ · 1 + (1− λ) · 0] · 1{p2 <γ} · 1{p1≥γ} + [λ · 1 + (1− λ) · 1] · 1{p2 ≥γ} · 1{p1≥γ}

(A.16)

= [λ · 0 + (1− λ) · 1] · 1{0≤δ≤δ?} + [λ · 1 + (1− λ) · 0] · 1{δ?≤δ≤1} + 1 · 1{δ?≤δ≤δ??}.

(A.17)

Therefore, Γ?e = 1 ≥ Γs ∀δ ∈ [0, 0.5].



B
Proof of Lemma 3.3.1

Lemma. The sequence
(
nΓnsr(R0, R1)

)
n∈N? is sub-additive.

Proof. [Lemma 3.3.1] Let n,m ∈ Z. We denote by σn+m
c , the concatenation of the strategies

σn, σm where σn is implemented over the first n stages and σm is implemented over the

last m stages. For decoder i ∈ {1, 2}, consider the best responses τin ∈ BRi(σn) and

τi
m ∈ BRi(σm). Then, the concatenation τn+m

i,c of τin and τi
m is also a best response

τn+m
i,c ∈ BRi(σn+m

c ). Therefore, we have the inequality

nΓnsr(R0, R1) +mΓmsr(R0, R1) =inf
σn

max
τ1n∈BR1(σn),
τ2n∈BR2(σn)

E
[ n∑
t=1

ce(Ut, V1,t, V2,t)
]

(B.1)

+ inf
σm

max
τ1m∈BR1(σm),
τ2m∈BR2(σm)

E
[ m∑
t=1

ce(Ut, V1,t, V2,t)
]

(B.2)

= inf
σn+m
c

max
τn+m
1 ∈BR1(σn+m

c ),

τn+m
2 ∈BR2(σn+m

c )

E
[ n+m∑
t=1

ce(Ut, V1,t, V2,t)
]

(B.3)

≥ inf
σn+m

max
τ1n+m∈BR1(σn+m),
τ2n+m∈BR2(σn+m)

E
[ n+m∑
t=1

ce(Ut, V1,t, V2,t)
]

(B.4)

=(n+m)Γn+m
sr (R0, R1), (B.5)

where the notation σn+m
c stands for the encoding strategies obtained by concatenation.



C
Proof of Lemma 4.5.6

Lemma. For all wn0 , wn1 , wn2 , w0, w1, w2, we have

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pw
n
0 ,w

n
1

W2,t
||Qw0,w1

W2
)
∣∣∣Eδ = 0

]
= 0, (C.1)

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pw
n
0 ,w

n
2

W1,t
||Qw0,w2

W1
)
∣∣∣Eδ = 0

]
= 0. (C.2)

Proof. In the following, we control the beliefs of decoder D2 about the type of decoder

D1. The analogous case can be proven following similar arguments. We denote the code-

book by C, and for each m0, we denote the inner codebook by C1(m0) = {wn1 (m0,m1) ∈

C,m1 ∈ {1, ..2bnR1c}}, and C2(m0) = {wn2 (m0,m2) ∈ C,m2 ∈ {1, ..2bnR2c}}. For each

m0 ∈ {1, ..2bnR0c}, w1 ∈ W1, w2 ∈ W2, t ∈ {1, . . . , n} and δ > 0, we introduce the following

sets

At1(w1|m0) =
{
wn1 ∈ C(m0), w1,t = w1

}
, (C.3)

At2(w2|m0) =
{
wn2 ∈ C(m0), w2,t = w2

}
, (C.4)

J (m0) =
{
t ∈ {1, .., n},

∣∣∣∣∣∣∣∣QW1|W0(·|w0t)−
|At1(·|m0)|
|C1(m0)|

∣∣∣∣∣∣∣∣ > δ,

∣∣∣∣∣∣∣∣QW2|W0(·|w0t)−
|At2(·|m0)|
|C2(m0)|

∣∣∣∣∣∣∣∣ > δ

}
, (C.5)

where ||·|| denote the L1-norm. We have by the law of large numbers, P(|J (m0)| > δ) −→
n7→∞

0.

For any wn1 , wn0 , and sufficiently small δ > 0, and sufficiently large n we have

P(wn1 |wn0 ) =
∑

un∈T n
δ

(PU|W0W1 ,w
n
0 ,w

n
1 )
P(wn1 , un|wn0 ) (C.6)
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=
∑

un∈T n
δ

(PU|W0W1 ,w
n
0 ,w

n
1 )
P(un|wn0 )P(wn1 |un, wn0 ) (C.7)

=
∑

un∈T n
δ

(PU|W0W1 ,w
n
0 ,w

n
1 )

2−nH(U |W0)
1(Eδ = 0) (C.8)

=|T nδ (PU |W0W1 , w
n
0 , w

n
1 )|2−nH(U |W0) (C.9)

'2nH(U |W0W1)2−nH(U |W0) (C.10)

=2−nI(U ;W1|W0) (C.11)

=2−n(R1−η). (C.12)

For any t, w1t, w
n
0 , and sufficiently small δ > 0, we have

PW1t|Wn
0

(w1t|wn0 ) =
∑

wn1∈T
n
δ

(PW1|W0 ,w
n
0 )
P(wn1 |wn0 ) (C.13)

=
∑

wn1∈A
t
1(w1t|wn0 )

2−n(R1−η) (C.14)

= |At1(w1t|wn0 )|2−n(R1−η) (C.15)

= |A
t
1(w1t|wn0 )|
|C1(wn0 )| (C.16)

= QW1t|W0t(w1t|w0t) (C.17)

where (C.14) follows from (C.12) , and (C.17) follows from (C.5). Therefore, we get

lim
n7→∞

E
[ 1
n

n∑
t=1

D(PW1t|Wn
0

(.|Wn
0 )||QW1t|W0t(.|W0t))

∣∣∣Eδ = 0
]

(C.18)

= lim
n7→∞

∑
wn1 ,w

n
0

Pσ(wn1 , wn0
∣∣∣Eδ = 0) 1

n

n∑
t=1

∑
w1

P(w1|wn0 ) log2
P(w1|wn0 )
Q(w1t|w0t)

(C.19)

=0. (C.20)

where (C.20) follows since lim
n 7→∞

log
PW1t|Wn

0
(w1t|wn0 )

QW1t|W0t (w1t|w0t) = 0.
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Proof of Lemma 4.5.7

Lemma. For all m0,m1,m2, w0, w1, w2 , we have

lim
n7→∞

E
[ 1
n

n∑
t=1

D(Pm1m2m0
Ut

||Qw1w2w0
U )

∣∣∣Eδ = 0
]

= 0. (D.1)

Proof. We denote the Bayesian posterior belief about the state PσUt|M1M2M0
(·|m1,m2,m0) ∈

∆(U) by Pm1,m2,m0
Ut

. We show that on average, the Bayesian belief is close in KL distance to

the target belief QU |W0W1W2 induced by the single-letter distribution QW0W1W2|U . The indi-

cator of error event Eδ ∈ {0, 1} is as given in (4.56). Assuming the distribution QU |W1W2W0

is fully supported, the beliefs about the state are controlled as follows

E
[ 1
n

n∑
t=1

D(P
m1,m2,
m0

Ut
||QU (·|W1t,W2t,W0t))

∣∣∣Eδ = 0
]

(D.2)

=
∑

m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

D(P
m1,m2,
m0

Ut
||QU |W0W1W2(·|W1t,W2t,W0t))

(D.3)

=
∑

m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
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∣∣∣Eδ = 0) 1
n
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∑
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P
m1,m2,
m0

Ut
(u) log2

P
m1,m2,
m0

Ut
(u)

QU |W0W1W2(u|w1t, w2t, w0t)

(D.4)

=
∑
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wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

∑
u

P
m1,m2,
m0

Ut
(u) log2

1
QU |W0W1W2(u|w1t, w2t, w0t)

−
∑

m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

∑
u

P
m1m2,
m0

Ut
(u) log2

1

P
m1,m2,
m0

Ut
(u)

(D.5)
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= 1
n

∑
m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0)
n∑
t=1

∑
u

Pm1m2m0
Ut

(u) log2
1

QU |W0W1W2(u|w1t, w2t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M2,M0, Eδ = 0) (D.6)

= 1
n

∑
un,wn1 ,w

n
2 ,w

n
0

Pστ1τ2(un, wn1 , wn2 , wn0
∣∣∣Eδ = 0) log2

1
Πn
t=1QU |W0W1W2(ut|w1t, w2t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M2,M0, Eδ = 0) (D.7)

= 1
n

∑
un,wn1 ,w

n
2 ,w

n
0∈T

n
δ

Pστ1τ2(un, wn1 , wn2 , wn0
∣∣∣Eδ = 0) log2

1
Πn
t=1QU |W0W1W2(ut|w1t, w2t, w0t)

− 1
n

n∑
t=1

H(Ut|M1,M2,M0, Eδ = 0) (D.8)

≤ 1
n

∑
un,wn1 ,

wn2 ,w
n
0 ∈T

n
δ

Pστ1τ2(un, wn1 , wn2 , wn0
∣∣∣Eδ = 0) · n

(
H(U |W1,W2,W0) + δ

)
− 1
n
H(Un|M1,M2,M0, Eδ = 0)

(D.9)

≤ 1
n
I(Un;M1,M2,M0

∣∣∣Eδ = 0)− I(U ;W1,W2,W0) + δ + 1
n

+ log2 |U| · Pστ1τ2(Eδ = 1) (D.10)

≤ η + δ + 1
n

+ log2 |U| · Pστ1τ2(Eδ = 1). (D.11)

• Equation (D.3) comes from the definition of expected K-L divergence.

• Equation (D.4) comes from the definition of K-L divergence.

• Equation (D.5) comes from splitting the logarithm.

• Equation (D.6) follows since:

∑
m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

∑
u

Pm1m2m0
Ut

(u) log2
1

Pm1m2m0
Ut

(u)

(D.12)

=
∑
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wn2 ,w

n
1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

H(Ut|M1 = m1,M2 = m2,M0 = m0)

(D.13)

= 1
n

n∑
t=1

∑
m1,m2,m0,
wn2 ,w

n
1 ,w

n
0

P(m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0)H(Ut|M1 = m1,M2 = m2,M0 = m0)

(D.14)
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= 1
n

n∑
t=1

∑
m1,m2,m0

Pστ1τ2(m1,m2,m0
∣∣∣Eδ = 0)H(Ut|M1 = m1,M2 = m2,M0 = m0)

(D.15)

= 1
n

n∑
t=1

H(Ut|M1,M2,M0, Eδ = 0). (D.16)

• Equation (D.7) follows since:

∑
m1,m2,m0,
w2,wn1 ,w

n
0

Pστ1τ2(m1,m2,m0, w
n
1 , w

n
0

∣∣∣Eδ = 0) 1
n

n∑
t=1

∑
u

Pm1m2m0
Ut

(u) log2
1

QU |W0W1W2(u|w1t, w2t, w0t)

(D.17)

= 1
n

n∑
t=1

∑
ut,m1,m2,
m0,wn1 ,w

n
0

Pστ1τ2(ut,m1,m2,m0, w
n
1 , w

n
0

∣∣∣Eδ = 0) log2
1

QU |W0W1W2(ut|w1t, w2t, w0t)

(D.18)

= 1
n

n∑
t=1

∑
un,m1,m2,
m0,wn1 ,w

n
0

P
σ,τ1,
τ2 (un,m1,m2,m0, w

n
1 , w

n
0

∣∣∣Eδ = 0) log2
1

QU |W0W1W2(ut|w1t, w2t, w0t)

(D.19)

= 1
n

∑
un,m1,m2,
m0,wn1 ,w

n
0

Pστ1τ2(un,m1,m2,m0, w
n
1 , w

n
2 , w

n
0

∣∣∣Eδ = 0) log2
1

Πn
t=1QU |W0W1W2(ut|w1t, w2t, w0t)

(D.20)

= 1
n

∑
un,wn1 ,w

n
2 ,w

n
0

Pστ1τ2(un, wn1 , wn2 , wn0
∣∣∣Eδ = 0) log2

1
Πn
t=1QU |W0W1W2(ut|w1t, w2t, w0t)

. (D.21)

• Equation (D.8) follows since the support of Pστ1τ2(un, wn1 , wn2 , wn0 |Eδ) = P{(un, wn1 , wn2 , wn0 ) ∈

T nδ } is included in T nδ .

• Equation (D.9) follows from the typical average lemma property (Property 1 pp.26

in El Gamal and Kim (2011)) given in lemma G.0.1, and the chain rule of entropy:

H(Un|M1,M2,M0,W
n
1 ,W

n
2 ,W

n
0 ) ≤∑n

t=1H(Ut|M1,M2,M0,W1,W2,W0).

• Equation (D.10) comes from the conditional entropy property and the fact that H(Un) =

nH(U) for an i.i.d random variable U and lemma G.0.2.
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• Equation (D.11) follows since I(Un;M1,M2,M0) ≤ H(M1,M2,M0) ≤ log2 |J | = n ·

(R1 +R2 +R0) = n · (I(U ;W1,W2,W0) + η) and lemma G.0.2.

If the expected probability of error is small over the codebooks, then it has to be small

over at least one codebook. Therefore, equations (4.40) and (4.41) imply that:

∀ε2 > 0,∀η > 0,∃δ̄ > 0, ∀δ ≤ δ̄,∃n̄ ∈ N, ∀n ≥ n̄,∃b?,

such that Pb?(E2
δ = 1) ≤ ε2. (D.22)

The strategy σ of the encoder consists of using b? in order to transmit the pair (m1,m2,m0)

such that

(Un,Wn
0 (m0),Wn

1 (m0,m1)) is a jointly typical sequence. By construction, this satisfies

equation (D.22).

Lemma D.0.1. Let QW0W1W2|U ∈ Q̃0(R1, R2, R0), then ∀ε > 0, ∀α > 0,

Gammas > 0, there exists δ̄, ∀δ ≤ δ̄, ∃n̄, ∀n ≥ n̄, ∃σ, such that 1− Pσ(Bα,γ,δ) ≤ ε.

Proof. of lemma D.0.1 We have:

1− Pσ(Bα,γ,δ) :=Pσ(Bc
α,γ,δ) (D.23)

= Pσ(Eδ = 0)Pσ(Bc
α,γ,δ|Eδ = 0) (D.24)

≤ Pσ(Bc
α,γ,δ|Eδ = 0) (D.25)

≤ ε2 + Pσ(Bc
α,γ,δ|Eδ = 1). (D.26)

Moreover,

Pσ(Bc
α,γ,δ|Eδ = 0) =

∑
wn1 ,w

n
2 ,w

n
0 ,

m1,m2,m0

Pσ
(

(wn1 , wn0 ,m1,m2,m0) ∈ Bc
α,γ,δ

∣∣∣∣∣Eδ = 0
)

(D.27)

=
∑

wn1 ,w
n
2 ,w

n
0 ,

m1,m2,m0

Pσ
(

(wn1 , wn0 ,m1,m2,m0), |Tα(wn1 , wn0 ,m1,m2,m0)|
n

≤ 1− γ
∣∣∣∣∣Eδ = 0

)

(D.28)

= Pσ
(#
n

{
t,D

(
Pm1,m2,m0
Ut

∣∣∣∣∣∣∣∣QU |W0W1W2(·|W1t,W2t,W0t)
)
≤ α2

2 ln 2 < 1− γ
∣∣∣∣∣Eδ = 0

}
(D.29)
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= Pσ
(#
n

{
t,D

(
Pm1,m2,m0
Ut

∣∣∣∣∣∣∣∣QU |W0W1W2(·|W1t,W2t,W0t)
)
>

α2

2 ln 2 ≥ γ
∣∣∣Eδ = 0

}
(D.30)

≤ 2 ln 2
α2γ

· Eσ
[ 1
n

n∑
t=1

D

(
P
m1,m2,
m0

t

∣∣∣∣∣∣∣∣QU (·|W1t,W2t,W0t)
)]

(D.31)

≤ 2 ln 2
α2γ

·
(
η + δ + 2

n
+ 2 log2 |U| · Pσ(E2

δ = 1),
)

(D.32)

• Equations (D.27) to (D.30) are simple reformulations.

• Equation (D.31) comes from using Markov’s inequality given in lemma D.0.2.

• Equation (D.32) comes from equation (D.11).

Lemma D.0.2. (Markov’s Inequality). For all ε1 > 0 , ε2 > 0 we have:

Eσ
[ 1
n

n∑
t=1

D

(
Pm1,m2,m0
Ut

∣∣∣∣∣∣∣∣QU |W0W1W2(·|W1t,W2t,W0t)
)]
≤ ε0 =⇒

P
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Ut

∣∣∣∣∣∣∣∣Q(·|W1t,W2t,W0t)
)
> ε1

}
> ε2

)
≤ ε0
ε1 · ε2

. (D.33)

Proof. (of lemma D.0.2) We denote by Dt = D(Pm1,m2,m0
Ut

||QU |W0W1W2(·|W1t,W2t,W0t) and

Dn = {Dt}t the K-L divergence. We have that:

P
(#
n

{
t, s.t.Dt > ε1

}
> ε2

)
= P

( 1
n
·
n∑
t=1

1

{
Dt > ε1

}
> ε2

)
(D.34)

≤
E
[

1
n ·
∑n
t=1 1

{
Dt > ε1

}]
ε2

(D.35)

=
1
n

∑n
t=1 E

[
1

{
Dt > ε1
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(D.36)

=
1
n

∑n
t=1 P

(
Dt > ε1

)
ε2

(D.37)

≤
1
n

∑n
t=1

E

[
Dt

]
ε1

ε2
(D.38)

= 1
ε1 · ε2

· E
[ 1
n

n∑
t=1

Dt

]
≤ ε0
ε1 · ε2

. (D.39)
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• Equations (D.34), (D.36), (D.37) and (D.39) are reformulations of probabilities and

expectations.

• Equations (D.35) and (D.38), come from Markov’s inequality P(X ≥ α) ≤ E[X]
α , ∀α >

0.
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Proof of lemma 4.5.8

Lemma. For all wn0 , wn1 , wn2 , we have

lim
n7→∞

E
[ 1
n

n∑
t=1

D(PσW1,t|W0,tW2,t
||Qw0,w2

W1
)
∣∣∣Eδ = 0

]
= 0, (E.1)

lim
n7→∞

E
[ 1
n

n∑
t=1

D(PσW2,t|W0,tW1,t
||Qw0,w1

W2
)
∣∣∣Eδ = 0

]
= 0. (E.2)

Proof. Given a codebook C, a stage t ∈ {1, 2, .., n} and a symbol m0, we denote the t-codebook

by C1,t(m0) = {w1,t(m0,m1), wn1 (m0,m1) ∈ C,m1 ∈ {1, ..2bnR1c}} and C2,t(m0) = {w2,t(m0,m2),

wn2 (m0,m2) ∈ C,m2 ∈ {1, ..2bnR2c}}. For each m0 ∈ {1, ..2bnR0c}, w1 ∈ W1, w2 ∈ W2,

t ∈ {1, . . . , n} and δ > 0, we introduce the following sets

Bt1(w1|m0) =
{
w1,t ∈ Ct(m0), w1,t = w1

}
, (E.3)

Bt2(w2|m0) =
{
w2,t ∈ Ct(m0), w2,t = w2

}
, (E.4)

T (m0) =
{
t ∈ {1, .., n},

∣∣∣∣∣∣∣∣QW1|W0(·|w0t)−
|Bt1(·|m0)|
|Ct(m0)|

∣∣∣∣∣∣∣∣ > δ,

∣∣∣∣∣∣∣∣QW2|W0(·|w0t)−
|Bt2(·|m0)|
|Ct(m0)|

∣∣∣∣∣∣∣∣ > δ

}
, (E.5)

where ||·|| denote the L1-norm. We have by the law of large numbers, P(|T (m0)| > δ) −→
n7→∞

0.

For all wn0 , wn1 , wn2 , t, we have

Pσ(w1,t|w0,t, w2,t) =
∑

wt−1
0 ,wn0,t+1,

wt−1
2 ,wn2,t+1

Pσ(wt−1
0 , wn0,t+1, w

t−1
2 , wn2,t+1|w0,t, w2,t) · Pσ(w1,t|wn0 , wn2 ).

(E.6)
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Similarly,

Pσ(w2,t|w0,t, w1,t) =
∑

wt−1
0 ,wn0,t+1,

wt−1
1 ,wn1,t+1

Pσ(wt−1
0 , wn0,t+1, w

t−1
1 , wn1,t+1|w0,t, w1,t) · Pσ(w2,t|wn0 , wn1 ).

(E.7)

Therefore, using Lemma 4.5.6 the result follows.
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Converse Proof of Theorem 5.4.1
Theorem. Let (R1, R2) ∈ R2

+. If c1 = c2 = c3, then

lim
n−→∞

Γncas(R1, R2) = inf
n∈N?

Γncas(R1, R2) = Γccas(R1, R2). (F.1)

Proof. Given a triple (σ, µ, τ) and a random variable T uniformly distributed over {1, 2, ..., n}

and independent of (Un,M1,M2, V
n). We identify the auxiliary random variables W2 =

(M2, T ), (U, V ) = (UT , VT ), distributed according to PσµτUW2V
defined for all (u,w2, v) =

(ut, x1, x2, t, vt) by

PσµτUW2V
(u,w2, v) = PσµτUTW2TVT

(ut, x1, x2, t, vt)

= 1
n

∑
ut−1
un
t+1

∑
xt−1
1 ,xn1,t+1
xt−1
2 ,xn2,t+1

∑
vt−1,vnt+1

( n∏
t=1
PU (ut)

)
PσM1|Un(m1|un)PµM2|M1

(m2|m1)PτV n|M2
(vn|m2).

Therefore PσµτUW2V
= PUPσW2|UP

τ
V |W2

.

Lemma F.0.1. For all σ, the distribution PσW2|U ∈ Q
c
0(R1, R2).

Proof. [Lemma F.0.1] Given an encoding strategy σ, we have

bnR1c ≥H(M1) ≥ I(M1;Un) (F.2)

=
n∑
t=1

I(Ut;M1|U t−1) (F.3)

=nI(UT ;M1|UT−1, T ) (F.4)

=nI(UT ;M1, U
T−1, T ) (F.5)
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≥nI(UT ;M1, T ) (F.6)

≥nI(UT ;M2, T ) (F.7)

=nI(U ;W2) (F.8)

In fact, (F.4) follows from the introduction of the uniform random variable T ∈ {1, . . . , n},

(F.5) comes from the i.i.d. property of the source and (F.7) comes from the data processing

inequality, and equation (F.8) follows from the identification of the auxiliary random variable

W2. Similarly, one can show that

nR2 ≥ nI(U ;W2), (F.9)

which concludes the proof of Lemma F.0.1.

Lemma F.0.2. For all (σ, τ1, τ2) and i ∈ {1, 2, 3}, we have

cni (σ, µ, τ) =E
[
ci(U, V )

]
, (F.10)

evaluated with respect to PUPσW1|UP
µ
W2|W1

PτV |W2
. Moreover for all σ, µ we have

Qc3(PσW2|U ) =
{
QV |W2 , ∃τ ∈ A3(σ, µ), QV |W2 = PτV |W2

}
. (F.11)

Proof. [Lemma F.0.2] By Definition 5.3.2 we have for i ∈ {1, 2, 3}

cni (σ, µ, τ) =
∑

un,m1,
m2,vn

( n∏
t=1
PU (ut)

)
PσM1|Un(m1|un)PµM2|M1

(m2|m1)

× PτV n|M2
(vn|m2) ·

[
1
n

n∑
t=1

ci(ut, vt)
]

(F.12)

=
n∑
t=1

∑
ut,x1,
x2,t,vt

Pσ,µ,τ (ut, x1, x2, t, vt)× ci(ut, vt) = E
[
ci(U, V )

]
.

Given QV |W2 ∈ Qc3(PσW2|U , ), we consider τ such that

PτV n|M2
(vn|m2) =

n∏
t=1
QV |W2(v1,t|m2).
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Therefore

cn3 (σ, µ, τ) =EPσ
W2|U

QV |W2

[
c3(U, V )

]
(F.13)

= min
PV |W2

EPσ
W2|U

PV |W2

[
c3(U, V )

]
(F.14)

≤min
τ̃
EPσ

W2|U
P τ̃
V |W2

[
c3(U, V )

]
(F.15)

= min
τ̃
cn3 (σ, µ, τ̃), (F.16)

hence τ ∈ A3(σ, µ). Similarly,

cn2 (σ, µ, τ) =E Pσ
W1|U

QW2|W1
QV |W2

[
c2(U, V )

]
(F.17)

= min
(PW2|W1 ,PV |W2 )

E Pσ
W1|U

PW2|W1
,PV |W2

[
c2(U, V )

]
(F.18)

≤min
(µ̃,τ̃)

E Pσ
W1|U

Pµ̃
W2|W1

Pτ̃
V |W2

[
c2(U, V )

]
(F.19)

= min
(µ̃,τ̃)

cn2 (σ, µ, τ̃), (F.20)

and thus (µ, τ) ∈ A2(σ). The other inclusions are direct and the same arguments imply

(F.11).

For any strategy σ, we have

max
µ,τ

cn1 (σ, µ, τ) =max
µ,τ

EPσ
W2|U

Pτ
V |W2

[
c1(U, V )

]
(F.21)

≥ max
QV |W2∈Q

c
3(QW2|U )

EPσ
W2|U

QV |W2

[
c1(U, V )

]
(F.22)

≥ inf
QW2|U

∈
Qc0(R1,R2)

max
QV |W2∈Q

c
3(QW2|U )

E
[
c1(U, V )

]
(F.23)

=Γccas(R1, R2). (F.24)

Equations (F.21) and (F.22) comes from Lemma F.0.2, whereas (F.23) comes from Lemma

F.0.1. This concludes the converse proof of Theorem 5.4.1.



G
Additional Lemmas

Lemma G.0.1. (Typical Sequences Property 1, pp.26 in El Gamal and Kim (2011)). The

typical sequences (un, wn1 , wn0 ) ∈ T nδ satisfy:

∀ε > 0, ∃δ̄ > 0, ∀δ ≤ δ̄, ∀n, ∀(un, wn1 , wn0 ) ∈ T nδ ,∣∣∣∣∣ 1n · log2
1

Πn
t=1P(u|w1t, w2t)

−H(U |W1,W0)
∣∣∣∣∣ ≤ ε, (G.1)

where δ̄ = ε ·H(U |W1,W0).

Lemma G.0.2. Let Un an i.i.d random variable and M a random variable. For all ε > 0,

there exists n̄ ∈ N, such that for all n ≥ n̄, we have

H(Un|Eδ = 0) ≥ n ·
(
H(U)− ε). (G.2)

Proof.

H(Un|Eδ = 0) = 1
P(Eδ = 0) ·

(
H(Un|Eδ = 1)− P(Eδ = 1) ·H(Un|Eδ = 1)

)
(G.3)

≥H(Un|Eδ)− P(Eδ = 1) ·H(Un|Eδ = 1)
)

(G.4)

≥H(Un)−H(Eδ)− P(Eδ = 1) ·H(Un|Eδ = 1)
)

(G.5)

≥H(Un)− n · ε. (G.6)

• Equation (G.3) follows from the conditional entropy definition.
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• Equation (G.4) follows since P(Eδ = 0) ≤ 1.

• Equation (G.5) comes from the property H(Un|M,Eδ) = H(Un,M,Eδ) − H(M) −

H(Eδ) ≥ H(Un)−H(M)−H(Eδ).

• Equation (G.6) follows since U is i.i.d and the definition of Eδ = 1.Hence, for all ε,

there exists an n̄ ∈ N such that for all n ≥ n̄ we have H(P(Eδ = 1))+H(M)+P(Eδ =

1) · log2 |U| ≤ ε.

Lemma G.0.3. (Covering Lemma (El Gamal and Kim, 2011, Lemma 3.3)). Let δ >

0, R > 0, a block length n, and let Xn ∈ T nδ (PX) where PX is an i.i.d distribution. Let

{Y n(m)}2nR be a set of PY−i.i.d. sequences for m ∈ [1 : 2nR]. Assume {Xn, {Y n(m)}2nR

are mutually independent. For any joint distribution PXY with marginals PX and PY , if

R > I(X;Y ) +η, for all ε > 0, there exists δ̄ > 0, ∃n̄ ∈ N, ∃η → 0 such that ∀δ ≤ δ̄,∀n ≥ n̄

such that

P(
⋂

m∈[1:2nR]
(Xn, Y n(m)) /∈ T nδ (PXY )) ≤ ε. (G.7)
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