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Dans cette thèse, nous étudions les transitions de phase dans les groupes aléatoires à densité. Un groupe aléatoire à densité d est défini par une présentation avec m générateurs et (2m -1) dℓ relations aléatoires, où ℓ est la longueur maximale des relations. Nous avons deux résultats principaux : un sur le problème des sous-groupes libres et l'autre sur l'existence des 2-complexes de van Kampen.

Pour tout entier r entre 1 et m -1, nous trouvons une transition de phase à la densité d r = min{ 1 2 , 1log 2m-1 (2r -1)} : Si d > d r , alors les r premiers générateurs engendrent le groupe entier ; si d < d r , alors les r premiers générateurs engendrent un sous-groupe libre. Ce résultat donne de nouveaux exemples de présentations de groupes satisfaisant la propriété de Freiheitssatz, avec une grande variété de longueurs de relations.

Pour chaque 2-complexe d'une forme géométrique donnée, nous donnons une densité critique d c qui caractérise l'existence d'un 2-complexe de van Kampen dont le 2-complexe sous-jacent est celui donné. Afin de prouver ce résultat, nous étudions en détail la formule d'intersection pour les sous-ensembles aléatoires et donnons une version multidimensionnelle de cette formule.

Chapter 0

Introduction en français "I feel, random groups altogether may grow up as healthy as random graphs, for example." --M. Gromov, "Spaces and Questions" [START_REF] Gromov | Spaces and Questions[END_REF].

L'étude des groupes aléatoires est très similaire à celle des graphes aléatoires : nous nous intéressons aux comportements asymptotiques et aux transitions de phase. Dans cette thèse, nous étudions les transitions de phase dans le modèle à densité des groupes aléatoires introduit par M. Gromov dans [START_REF] Gromov | Finitely presented groups[END_REF]. Il y a deux objectifs principaux : découvrir les propriétés génériques des présentations de groupes, et construire de nouveaux exemples de groupes hyperboliques.

Les contributions principales de cette thèse sont présentées dans les chapitres 2, 3 et 4. Dans le chapitre 2, nous étudions la formule d'intersection pour les sous-ensembles aléatoires à densité, qui est un outil de base pour prouver les transitions de phase dans les groupes aléatoires. Dans le chapitre 3, nous prouvons une transition de phase montrant que les r premiers générateurs d'une présentation aléatoire de groupe engendrent soit le groupe entier, soit un sous-groupe libre et quasi-convexe. Dans le chapitre 4, nous établissons une transition de phase qui caractérise l'existence des diagrammes de van Kampen. Quelques questions ouvertes sont proposées dans le chapitre 5.

0.1 Qu'est-ce qu'un groupe aléatoire ?

Définitions et exemples

Les groupes aléatoires sont des groupes obtenus par une construction probabiliste. En général, un groupe aléatoire peut être défini comme suit.

Définition 1. Un groupe aléatoire est une variable aléatoire à valeurs dans un ensemble donné de groupes.

Nous nous concentrons sur les groupes aléatoires construits à partir d'un ensemble fini de présentations finies de groupes. Plus précisément, en fixant un ensemble de m générateurs X m = {x 1 , . . . , x m }, un groupe aléatoire est défini par une présentation aléatoire de groupe G = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩ où r 1 , . . . , r k sont des relateurs choisis au hasard parmi un ensemble fini de mots réduits de X ± m . Si G est un groupe aléatoire et que P est une propriété de groupe (par exemple, trivial, libre, sans torsion, etc.), nous pouvons parler de la probabilité que G satisfasse P . Nous gardons ce point de vue de "variable 2 CHAPTER 0. INTRODUCTION EN FRANÇAIS aléatoire" pour tout objet aléatoire. Par exemple, le rang (le nombre minimal de générateurs) d'un groupe aléatoire est une N-variable aléatoire. Toute variable aléatoire considérée dans cette thèse est à valeurs dans un ensemble fini muni de la tribu discrète.

Voici quelques exemples de groupes aléatoires.

Exemples. Dans les exemples suivants, un groupe aléatoire est défini par une présentation G = ⟨x 1 , . . . , x m |R⟩ où R est un ensemble aléatoire de relateurs à spécifier.

1. (longueur fixe, modèle uniforme) Soit k, ℓ des entiers. L'ensemble des relateurs R = {r 1 , . . . , r k } suit la loi uniforme dans l'ensemble de tous les k-uplets de mots réduits de longueur ℓ.

2. (longueurs variées, modèle d'échantillonnage) Soit k, ℓ, ℓ ′ des entiers avec ℓ < ℓ ′ . Pour construire R, choisir un relateur uniformément dans l'ensemble de tous les mots réduits de longueurs comprises entre ℓ et ℓ ′ , répéter k fois.

Notons qu'un mot peut être pris deux fois, mais cela se produit avec une très faible probabilité si le nombre de relateurs k est beaucoup plus petit que le nombre total de mots considérés ((2m -1) ℓ ′ +O(1) dans ce cas).

3. (longueur bornée, modèle de Bernoulli) Soit ℓ un entier, soit p ∈ [0, 1]. Pour construire l'ensemble des relateurs R, chaque mot réduit r de longueur au plus ℓ est choisi indépendamment avec la même probabilité p.

Notons que le nombre de relateurs suit la loi binomiale B(N, p) avec N = (2m -1) ℓ+O(1) le nombre total de mots de longueur au plus ℓ.

Nous nous intéressons au comportements asymptotiques d'un groupe aléatoire. C'est-à-dire, que se passet-il lorsque le nombre de générateurs ou le nombre de relateurs tend vers l'infini ? Pour décrire ce phénomène, nous utilisons la définition suivante.

Définition 2. Soit (Q n ) n≥1 une suite d'événements. On dit que l'événement Q n est satisfait asymptotiquement presque sûrement, noté a.p.s. Q n , si la probabilité de Q n converge vers 1 lorsque n tend vers l'infini.

Si (G n ) est une suite de groupes aléatoires et (P n ) est une suite de propriétés de groupes (par exemple, être trivial, être hyperbolique, de rang n etc.), on peut dire que a.p.s. G n a la propriété P n . L'indice n peut être le nombre de générateurs m ou la longueur des relateurs ℓ.

Exemple. Soit G m un groupe aléatoire avec m générateurs et un relateur choisi uniformément parmi tous les mots réduits de longueur 3. Si le nombre de générateurs m est très grand, alors avec une probabilité supérieure à 1 -m -2/3+o(1) le relateur choisi est du type r = xyz avec x, y, z éléments différents dans X ± m . On peut supprimer le générateur z par la relation z = x -1 y -1 . Ainsi, avec une probabilité convergeant vers 1 lorsque m tend vers l'infini, le groupe aléatoire G m est un groupe libre de rang m -1.

On en conclut que a.p.s. le groupe aléatoire G m est un groupe libre de rang m -1.

Modèles de groupes aléatoires et résultats classiques

Un modèle de groupes aléatoires est une suite de groupes aléatoires à spécifier. Tout au long de cette thèse, nous ferons clairement la distinction entre un groupe aléatoire et une suite de groupes aléatoires.

Voici une liste de modèles de groupes aléatoires étudiés dans la littérature.

0.1.2.a Le modèle de longueurs diverses, M. Gromov [Gro87] §0.2 Soit m ≥ 2, k ≥ 1. Soit ℓ 1 , . . . , ℓ k des entiers. Un groupe aléatoire avec m générateurs et k relateurs de longueurs diverses est défini par G(m, ℓ 1 , . . . , ℓ k ) = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩ où r i est choisi uniformément parmi tous les mots réduits de x ± 1 , . . . , x ± m de longueur ℓ i . Supposons que ℓ 1 ≤ • • • ≤ ℓ k . On étudie le comportement asymptotique lorsque la longueur minimale ℓ 1 tend vers l'infini. Nous pouvons considérer un sous-modèle dans lequel la longueur maximale ℓ k dépend de ℓ 1 . Par exemple, ℓ k = 2ℓ 1 ou ℓ k = e 10ℓ1 . Avec ce modèle, Gromov a remarqué que l'hyperbolicité est générique pour les groupes de présentation finie :

Théorème (M. Gromov, [Gro87] §0.2). Soit G(m, ℓ 1 , . . . , ℓ k ) un groupe aléatoire avec longueurs diverses de relateurs ℓ 1 ≤ • • • ≤ ℓ k , alors a.p.s. (lorsque la longueur minimale ℓ 1 tend vers l'infini) le groupe aléatoire G(m, ℓ 1 , . . . , ℓ k ) est un groupe hyperbolique non élémentaire.

Une preuve détaillée de ce théorème est donnée par C. Champetier dans [START_REF] Champetier | Propriétés génériques des groupes de présentation finie[END_REF]. 0.1.2.b Le modèle à densité, M. Gromov [START_REF] Gromov | Finitely presented groups[END_REF] 9.B Soit S ℓ l'ensemble des mots réduits d'une longueur fixée ℓ dans l'alphabet {x 1 , . . . , x m }. Notons que |S ℓ | = (2m -1) ℓ+O(1) (lorsque ℓ → ∞). Une suite de groupes aléatoires (G ℓ (m, d)) avec m ≥ 2 générateurs à densité d ∈ [0, 1] est définie par G ℓ (m, d) = ⟨x 1 , . . . , x m |R ℓ ⟩ avec R ℓ choisi uniformément parmi tous les sous-ensembles de S ℓ de cardinal ⌊(2m -1) dℓ ⌋.

Par rapport au modèle précédent, la longueur des relateurs est fixée, mais le nombre de relateurs croît exponentiellement avec la longueur. Gromov a montré qu'il y a une transition de phase à la densité d = 1/2. Une preuve détaillée de ce théorème se trouve dans [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] Section 2 par Y. Ollivier.

Théorème (M. Gromov, [START_REF] Gromov | Finitely presented groups[END_REF] 9.B). Soit (G ℓ (m, d)) une suite de groupes aléatoires de densité d.

• Si d < 1/2, alors a.p.s. le groupe aléatoire G ℓ (m, d) est hyperbolique non élémentaire.

• Si d > 1/2, alors a.p.s. le groupe aléatoire G ℓ (m, d) est soit trivial soit isomorphe à Z/2Z.

Dans le même paragraphe [START_REF] Gromov | Finitely presented groups[END_REF] 9.B), il est remarqué qu'il y a une transition de phase pour la condition de petite simplification C ′ (λ) (cf. [START_REF] Lyndon | Combinatorial Group Theory[END_REF] pour une définition).

Théorème (M. Gromov,[START_REF] Gromov | Finitely presented groups[END_REF] 9.B). Soit (G ℓ (m, d)) une suite de groupes aléatoires de densité d. Soit 0 < λ < 1.

• Si d < λ/2, alors a.p.s. la présentation définissant G ℓ (m, d) satisfait C ′ (λ).

• Si d > λ/2, alors a.p.s. la présentation définissant G ℓ (m, d) ne satisfait pas C ′ (λ).

Une preuve détaillée par un analogue du principe des tiroirs probabiliste est donnée dans [START_REF] Bassino | Random presentations and random subgroups: a survey[END_REF] Théorème 2.1. Dans cette thèse, nous donnons une preuve (Théorème 2.46) comme application de notre Théorème C, et une preuve beaucoup plus simple (Théorème 4.23) comme application de notre Théorème H. 0.1.2.c Le modèle à peu de relateurs, G. Arzhantseva et A. Ol'shanskii [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] Soit m ≥ 2 et k ≥ 1. Une suite de groupes aléatoires (G ℓ ) avec m générateurs et k relateurs est définie par G ℓ = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩ où l'ensemble des relateurs {r 1 , . . . , r k } suit la loi uniforme dans l'ensemble de tous les k-uplets de mots réduits de longueur au plus ℓ.
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Notons qu'il s'agit d'une version plus simple du modèle des longueurs diverses. Bien que les relateurs de toutes les longueurs plus petit que ℓ soient pris en compte, pour tout c < 1 a.p.s. il n'existe aucun relateur plus court que cℓ. Ce modèle est un cas particulier du modèle à densité de Gromov, avec la densité d = 0. Nous avons les deux propriétés suivantes.

• Pour tout λ > 0, a.p.s. la présentation définissant G ℓ satisfait la condition de petite simplification C ′ (λ).

• A.p.s. G ℓ est un groupe hyperbolique non élémentaire.

Le résultat principal dans [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] est le suivant.

Théorème (G. Arzhantseva et A. Ol'shanskii, [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF]). Soit (G ℓ ) une suite de groupes aléatoires à peu de relateurs avec m ≥ 2 générateurs et k relateurs. A.p.s. tout sous-groupe de rang (m -1) de G ℓ est libre.

0.1.2.d Le modèle triangulaire, A. Żuk [ Żuk03] Un relateur triangulaire par rapport à X m = {x 1 , . . . , x m } est un mot cycliquement réduit de longueur 3.

Notons que le nombre de relateurs triangulaires est (2m -1) 3+o(1) (avec m → ∞). Une suite de groupes triangulaires aléatoires (G m (d)) à densité d est définie par G m (d) = ⟨X m |R m ⟩ avec R m uniformément choisi parmi tous les ensembles de relateurs triangulaires de cardinal compris entre c -1 (2m -1) 3d et c(2m -1) 3d avec un c > 1.

Par rapport au modèle à densité, le nombre de générateurs tend vers l'infini, au lieu de la longueur des relateurs. Żuk a remarqué que la transition de phase de Gromov à la densité d = 1/2 est encore valable dans ce modèle, et a montré une transition de phase à la densité d = 1/3. Théorème (A. Żuk, [ Żuk03]). Soit G m (d) un groupe aléatoire triangulaire avec une densité d.

• Si d < 1/2, alors a.p.s. G m (d) est hyperbolique non élémentaire.

• Si d > 1/2, alors a.p.s. G m (d) est trivial.

Théorème (A. Żuk, [ Żuk03]). Soit G m (d) un groupe aléatoire triangulaire avec une densité d.

• Si d < 1/3, alors a.p.s. G m (d) est un groupe libre.

• Si d > 1/3, alors a.p.s. G m (d) admet la propriété (T ) de Kazhdan. 0.1.2.e Le modèle triangulaire de Bernoulli, S. Antoniuk, T. Łuczak et J. Świ ątkowski [AŁ Ś15] Une suite de groupes aléatoires triangulaires (de Bernoulli) (G(m, p)) m≥1 est définie par G(m, p) = ⟨X m |R m ⟩ avec R m construite de façon suivante : chaque relateur triangulaire est choisi indépendamment avec une probabilité p = p(m).

Si p = (2m -1) 3d-3 , alors l'espérance du nombre de relateurs est (2m -1) 3d+o(1) , et ce modèle est très proche du modèle triangulaire (uniforme) de Żuk. Antoniuk, Łuczak et Świ ątkowski ont adapté le résultat de Żuk dans leur modèle triangulaire de Bernoulli, et ont donné une transition de phase plus fine à la densité d = 1/3, c'est-à-dire autour de la probabilité p ∼ m -2 . Théorème (S. Antoniuk, T. Łuczak et J. Świ ątkowski, [AŁ Ś15]). Soit G(m, p) un groupe aléatoire triangulaire de Bernoulli. Il existe des nombres réels positifs c < c ′ , C ′ < C tels que :

• Si p < cm -2 , alors a.p.s. G m (p) est un groupe libre.

• Si c ′ m -2 < p < C ′ m -2 log m, alors a.p.s. G m (p) n'est ni libre ni ayant la propriété (T).

• Si p > Cm -2 log m, alors a.p.s. G m (p) a la propriété (T). 0.1.2.f Le modèle à densité de Bernoulli (un nouvel exemple) L'espérance du nombre de relateurs est |B ℓ | d = (2m -1) dℓ+O(1) , ce modèle est très proche du modèle à densité original de [START_REF] Gromov | Finitely presented groups[END_REF]. Les résultats suivants sont encore valables :

• La transition de phase trivialité-hyperbolicité de Gromov à la densité d = 1/2.

• La transition de phase C ′ (λ) de Gromov à la densité d = λ/2.

Questions principales

En 2003, Gromov a défini la notion générale de groupes aléatoires dans [START_REF] Gromov | Random walk in random groups[END_REF] et a proposé dans Section 1.9 le problème général suivant : "déterminer des invariants asymptotiques et des phénomènes de transition de phase pour les groupes aléatoires."

0.1.3.a Sous-groupes libres

En particulier, le problème de Gromov [START_REF] Gromov | Random walk in random groups[END_REF] 1.9 (iv) est l'"existence/non-existence de sous-groupes non libres". Notre objectif est de généraliser le résultat "tout sous-groupe de rang (m-1) est libre" d'Arzhantseva-Ol'shanskii dans le modèle à densité de Gromov. Soit G ℓ (m, d) une suite de groupes aléatoires avec m générateurs à densité d, dans le modèle à densité de Gromov. On cherche une transition de phase : Question 1. Existe-t-il une densité critique d(m) telle que, si d < d(m), alors a.p.s. tout sous-groupe de rang (m -1) de G ℓ (m, d) est libre ; par contre, si d > d(m), alors a.p.s. il existe un sous-groupe de rang (m -1) qui est non libre ?

Plus généralement, on peut se demander : Question 2. Soit 1 ≤ r ≤ m -1. Existe-t-il une densité critique d(m, r) telle que, si d < d(m, r), alors a.p.s. tout sous-groupe de rang r de G ℓ (m, d) est libre ; par contre, si d > d(m, r), alors a.p.s. il existe un sous-groupe de rang r qui est non libre ?

Nous répondons partiellement à la question 2 (Théorème D et Théorème E).

0.1.3.b Les 2-complexes de van Kampen

Dans [START_REF] Gromov | Finitely presented groups[END_REF], afin de prouver l'hyperbolicité des groupes aléatoires à densité d < 1/2, Gromov a montré que tout diagramme de van Kampen satisfait une certaine inégalité isopérimétrique. Plus précisément, on a le lemme suivant.

Lemme (M. Gromov [START_REF] Gromov | Finitely presented groups[END_REF], énoncé par Y. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF]). Soit (G ℓ (m, d)) une suite de groupes aléatoires. Si d < 1/2, alors pour tout entier K ≥ 1 et tout nombre réel s > 0, a.p.s. tout diagramme de van Kampen réduit D de G ℓ (m, d) d'au plus K faces satisfait l'inégalité isopérimétrique

|∂D| ≥ (1 -2d -s) ℓ|D|.
Autrement dit, a.p.s. il n'existe pas de diagramme de van Kampen D de G ℓ (m, d) d'au plus K faces satisfaisant l'inégalité |∂D| ℓ|D| < 1 -2d. On peut se demander si la réciproque est vraie : Question 3. Soit c > 1 -2d un nombre réel et soit K ≥ 1 un nombre entier. Existe-t-il a.p.s. un diagramme de van Kampen D de G ℓ (m, d) avec K faces qui satisfait l'égalité |∂D| = cℓ|D| ?

Le théorème H donne une réponse à cette question dans un cas plus général, pour les 2-complexes de van Kampen.

Densité des sous-ensembles aléatoires

Soit S ℓ l'ensemble de tous les mots réduits de longueur ℓ de l'alphabet {x ± 1 , . . . , x ± m }. Dans [START_REF] Gromov | Finitely presented groups[END_REF], pour construire un groupe aléatoire G = ⟨x 1 , . . . , x m |R ℓ ⟩, l'idée originale de Gromov est de choisir un sousensemble aléatoire R ℓ de S ℓ , d'un cardinal très proche de |S ℓ | d . Le paramètre d est appelé la densité de R ℓ dans S ℓ .

On peut considérer la distribution uniforme dans l'ensemble des sous-ensembles de cardinal ⌊|S ℓ | d ⌋ (comme dans les travaux d'Ollivier [Oll04; Oll05; Oll07]), ou par le modèle de Bernoulli de paramètre |S ℓ | d-1 (comme dans [AŁ Ś15], ou le modèle 0.1.2.f). Dans cette sous-section, nous introduisons un modèle de sous-ensemble aléatoire, appelé le modèle invariant par permutation de densité, dont l'origine se trouve dans un paragraphe de [START_REF] Gromov | Finitely presented groups[END_REF] La formule d'intersection pour les sous-ensembles aléatoires, introduite par Gromov dans [START_REF] Gromov | Finitely presented groups[END_REF], est l'outil principal pour prouver les transitions de phase dans le modèle à densité des groupes aléatoires. La formule s'énonce comme suit :

Métathéorem ([Gro93] p.270). Deux sous-ensembles aléatoires A et B d'un ensemble fini E satisfont dens(A ∩ B) = dens A + dens B -1 avec la convention dens(A ∩ B) < 0 ⇐⇒ A ∩ B = Ø.
Gromov n'a pas précisé comment prendre les sous-ensembles aléatoires à densité dans l'énoncé original de la formule d'intersection. Dans [START_REF] Gromov | Finitely presented groups[END_REF] p.272, il affirme que la classe des sous-ensembles aléatoires qui sont densables et invariants par permutations est stable par les opérations de la théorie des ensembles et satisfait la formule d'intersection.

Les définitions de densable et invariant par permutations sont données ci-dessous. Comme nous nous intéressons aux comportements asymptotiques, nous fixons une suite d'ensembles finis 

E = (E n ) avec |E n | → ∞,

Le modèle de groupe aléatoire considéré dans cette thèse

A l'aide des sous-ensembles aléatoires, nous pouvons définir le modèle de groupes aléatoires considéré dans cette thèse : les modèles invariants par permutation à densité de groupes aléatoires.

Fixons un alphabet X m = {x 1 , . . . , x m } comme générateurs de présentations de groupes. Dans le modèle à densité original de Gromov, la longueur du relateur d'un groupe aléatoire G ℓ (m, d) est un nombre fixé ℓ. Dans le cas où ℓ est pair, lorsque d > 1/2, a.p.s. G ℓ (m, d) est Z/2Z mais pas trivial. Pour éviter cette situation, nous considérons des mots de longueur au plus ℓ, comme dans [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF]. Soit B ℓ l'ensemble des mots cycliquement réduits de longueur au plus ℓ. Définition 6. Une suite de groupes aléatoires (G ℓ (m, d)) avec m générateurs de densité d est définie par

G ℓ (m, d) = ⟨X m |R ℓ ⟩,
où (R ℓ ) est une suite de sous-ensembles aléatoires densable et invariante par permutation de (B ℓ ), de densité d.

Notons que le cardinal de B ℓ est (2m -1) ℓ+O(1) , donc le cardinal de R ℓ est (2m -1) dℓ+o(ℓ) avec une grande probabilité (cf. Proposition 2.6). Le modèle 0.1.2.f est inclus dans ce modèle, car un sous-ensemble aléatoire de Bernoulli est invariant par permutations. Le modèle à peu de relateurs d'Arzhantseva-Ol'shanskii est inclus dans ce modèle avec d = 0, car la loi uniforme est invariante par permutations, et la densité dens B ℓ (R ℓ ) converge vers 0 si le nombre de relateurs |R ℓ | = k est fixé.

Résultats principaux de cette thèse

Les contributions de cette thèse sont présentées dans les chapitre 2, 3 et 4. Dans cette section, nous présentons une liste de nos résultats principaux.

Densité des sous-ensembles aléatoires et la formule d'intersection

Dans le chapitre 2, nous travaillons sur la formule d'intersection des sous-ensembles aléatoires, présentée dans l'article [START_REF] Tsai | Density of random subsets and applications to group theory[END_REF], à paraître dans le Journal of Combinatorial Algebra.

Nous prouvons d'abord la formule d'intersection pour les suites de sous-ensembles aléatoires qui sont densables et invariantes par permutation.
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Théorème A (Théorème 2.25). Soit A = (A n ), B = (B n ) deux suites de sous-ensembles aléatoires indépendantes, densables et invariantes par permutation d'une suite d'ensembles finis E = E n , de densités α, β. Si α + β ̸ = 1, alors la suite de sous-ensembles aléatoires A ∩ B := (A n ∩ B n ) est encore densable et invariante par permutation. De plus :

dens(A ∩ B) = α + β -1 si α + β > 1 -∞ si α + β < 1.
De plus, la formule d'intersection est valable entre une suite de sous-ensembles aléatoires et une suite de sous-ensembles fixés.

Théorème B (Théorème 2.28). Soit A une suite de sous-ensembles aléatoires densable et invariante par permutations de E, de densité de d. Soit X une suite de sous-ensembles fixés de E, de densité α. Si d + α ̸ = 1, alors la suite de sous-ensembles aléatoires A ∩ X est densable et

dens(A ∩ X) = d + α -1 sid + α > 1 -∞ si d + α < 1.
De plus, la suite A∩X est une suite de sous-ensembles aléatoires densable et invariante par permutations de X, de densité d+α-1 α .

Notons que

A n ∩ X n n'est pas invariant sous les permutations de E n si X n ̸ = E n .
Nous développons une forme généralisée : la formule d'intersection multidimensionnelle. Notons E (k) n l'ensemble des k-uplets 2 à 2 distincts de l'ensemble E n . Soit A une suite de sous-ensembles aléatoires densable et invariante par permutations. Nous nous intéressons à l'intersection entre A (k) et une suite de sous-ensembles densable X de E (k) .

Pour k ≥ 2, la formule d'intersection n'est pas correcte en général (c.f. contre-exemple dans 2.3.1.a). Nous montrons que par une condition d'auto-intersection supplémentaire sur X, nous pouvons obtenir la formule d'intersection.

Théorème C (Théorème 2.40). Soit A = (A n ) une suite de sous-ensembles aléatoires densable et invariante par permutations de E = (E n ), de densité 0 < d < 1. Soit X = (X n ) une suite de sous-ensembles fixés densable de E (k) , de densité de α.

(i) Si d + α < 1, alors a.p.s. -A (k) n ∩ X n = Ø. (ii) Si d + α > 1 et X satisfait la condition d'auto-intersection d-petite (Définition 2.33), alors la suite de sous-ensembles aléatoires A (k) ∩ X est densable et dens(A (k) ∩ X) = α + d -1.
Pour une application du théorème B, nous montrons que le résultat principal de [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] pour le modèle à peu de relateurs des groupes aléatoires peut être étendu au modèle à densité des groupes aléatoires avec une petite densité.

Théorème D (Théorème 2.48). Soit (G ℓ (m, d)) une suite de groupes aléatoires avec m générateurs à densité

0 ≤ d < 1 120m 2 ln(2m)
.

Alors a.p.s. tout sous-groupe de rang (m -1) de G ℓ (m, d) est libre.

Ceci répond partiellement à la question 1.

RÉSULTATS PRINCIPAUX DE CETTE THÈSE

Freiheitssatz pour les groupes aléatoires et la transition de phase

Le chapitre 3 fait l'objet de la prépublication [START_REF] Tsai | Freiheitssatz and phase transition for the density model of random groups[END_REF]. Nous présentons l'un des résultats principaux de cette thèse, qui répond partiellement à la question 2. Le Freiheitssatz (théorème de liberté en allemand) est un théorème fondamental en théorie combinatoires des groupes. Il a été proposé par M. Dehn et prouvé par W. Magnus dans sa thèse de doctorat [START_REF] Magnus | Ueber diskontinuierliche Gruppen mit einer definierenden Relation (der Freiheitssatz)[END_REF] en 1930 (cf. [LS77] II.5).

Théorème (W. Magnus,[START_REF] Magnus | Ueber diskontinuierliche Gruppen mit einer definierenden Relation (der Freiheitssatz)[END_REF]). Soit G = ⟨x 1 , . . . , x m |r⟩ une présentation de groupe avec m générateurs et un relateur cycliquement réduit. Si le dernier générateur x m apparaît dans l'unique relateur r, alors les m -1 premiers générateurs x 1 , . . . , x m-1 engendrent librement un sous-groupe libre de G.

On dit qu'une présentation finie de groupe G = ⟨X|R⟩ satisfait la propriété Freiheitssatz de Magnus si tout sous-ensemble de X de cardinal |X| -1 engendre librement un sous-groupe libre de G. En particulier, par le résultat d'Arzhantseva-Ol'shanskii [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF], a.p.s. un groupe aléatoire à peu de relateurs G ℓ possède cette propriété. Nous étudions la propriété de Magnus Freiheitssatz dans le modèle à densité des groupes aléatoires.

Soit G ℓ (m, d) = ⟨X|R ℓ ⟩ un groupe aléatoire à densité d. Pour tout 1 ≤ r ≤ m -1, nous trouvons une transition de phase à la densité

d r = min 1 2 , 1 -log 2m-1 (2r -1)
.

Théorème E (Théorème 3.22). Soit (G ℓ (m, d)) une suite de groupes aléatoires à densité d.

1. Si d > d r , alors a.p.s. x 1 , . . . , x r engendrent le groupe entier G ℓ (m, d).

2. Si d < d r , alors a.p.s. x 1 , . . . , x r engendrent librement un sous-groupe libre de G ℓ (m, d).

Par symétrie, l'ensemble {x 1 , . . . , x r } peut être remplacé par tout sous-ensemble X r de X de cardinal r. En effet, dans la deuxième assertion, on peut remplacer l'ensemble {x 1 , . . . , x r } par tout r-uplet de mots de X ± de longueurs au plus dr-d 5r ℓ. En particulier, si 0 ≤ d < d m-1 , alors la présentation de groupe G ℓ (m, d) = ⟨X|R ℓ ⟩ a la propriété Freiheitssatz de Magnus.

Plus précisément pour la première assertion, nous prouvons que si d > d r alors a.p.s. tout générateur x k avec r < k ≤ m s'écrit en un mot réduit de {x ± 1 . . . x ± r } de longueur ℓ -1 dans G ℓ (m, d). Par conséquent, tout relateur r i dansR ℓ peut être remplacé par un mot réduit r ′ i de {x ± 1 . . . x ± r } de longueur au plus ℓ(ℓ -1). Construisons R ′ ℓ en remplaçant chaque relateur de R ℓ de cette manière, nous avons le corollaire suivant.

Corollaire F. Si d r < d < d r-1 , alors a.p.s. le groupe G ℓ (m, d) = ⟨X|R ℓ ⟩ admet une présentation avec r générateurs ⟨X r |R ′ ℓ ⟩ satisfaisant la propriété Freiheitssatz de Magnus (chaque sous-ensemble de X r de cardinal r -1 engendre un sous-groupe libre).

Remarque. Notons que R ′

ℓ contient un ensemble de relateurs de longueurs variant de ℓ à ℓ 2 . Une telle présentation ne peut pas être étudiée à l'aide des méthodes connues en théorie géométrique ou combinatoire des groupes. Néanmoins, elle nous donne de nouveaux exemples de groupes hyperboliques ayant la propriété Freiheitssatz de Magnus.

Si en plus

d r > 1/3 (c'est-à-dire r < (2m-1) 2/3 +1 2
), alors par le résultat de Żuk dans [ Żuk03], ce sont des exemples de groupes hyperboliques ayant la propriété (T ) de Kazhdan et la propriété Freiheitssatz de Magnus.
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Soit r = r(m, d) le nombre maximal tel qu'a.p.s. x 1 , . . . , x r engendrent librement un sous-groupe libre de G ℓ (m, d). Par la transition de phase à la densité Théorème (M. Gromov [Gro93] p. 274, Y. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] chapitre 2). Pour tout s > 0 et K > 0, a.p.s. chaque diagramme de van Kampen réduit

1 2 [Gro93], si d > 1 2 , alors r(m, d) = 0. Si d ≤ 1 2 , par Théorème E, (2m -1) 1-d -1 2 ≤ r(m, d) ≤ (2m -1) 1-d + 1 2 .

Comme

D de G ℓ (m, d) avec |D| ≤ K satisfait l'inégalité isopérimétrique |∂D| ≤ (1 -2d -s)ℓ|D|.
Dans le chapitre 4, nous prouvons cette inégalité pour les 2-complexes de van Kampen, ce qui est un analogue du résultat de Gruber-Mackay [START_REF] Gruber | Random triangular Burnside groups[END_REF] pour les groupes aléatoires triangulaires. Pour un 2-complexe Y , on note |Y (1) | le nombre de ses arêtes et |Y | le nombre de ses faces.

Théorème G (Théorème 4.3). Soit ε > 0, K > 0. A.p.s. tout 2-complexe de van Kampen Y de complexité K de G ℓ (m, d) satisfait |Y (1) | + Red(Y ) ≥ (1 -d -ε)ℓ|Y |.
Le terme Red(Y ) désigne le degré de réduction (Définition 4.1) du 2-complexe Y . Si le 2-complexe de van Kampen est réduit, nous pouvons omettre ce terme.

En plus, nous montrons la réciproque : si chaque sous-complexe d'un 2-complexe satisfait une inégalité donnée, alors avec une grande probabilité il est un 2-complexe sous-jacent d'un 2-complexe de van Kampen de G ℓ (m, d). Nous avons en fait une transition de phase.

Théorème H (Théorème 4.15). Soit s > 0 et K > 0. Soit (Y ℓ ) une suite de 2-complexes de la même forme géométrique (Définition 4.13) de complexité K (Définition 4.2) telle que chaque face de Y ℓ a une longueur de bord d'au plus ℓ. Rappelons qu'une présentation de groupe G = ⟨X|R⟩ satisfait la condition de petite simplification C(p) (cf. [START_REF] Lyndon | Combinatorial Group Theory[END_REF]) si aucun relateur n'est un produit de moins de p pièces. C'est-à-dire qu'il n'existe pas de diagramme de van Kampen réduit de la forme suivante (ici p = 5).

(i) Si chaque sous-2-complexe Y ′ ℓ de Y ℓ satisfait |Y ′(1) ℓ | ≥ (1 -d + s)|Y ′ ℓ |ℓ
Comme application du théorème G et du théorème H, nous montrons la transition de phase pour la condition C(p), mentionnée dans [START_REF] Ollivier | Cubulating random groups at density less than 1/6[END_REF] Proposition 1.8 (avec seulement le cas d < 1/(p + 1)).

Théorème I (Théorème 4.24). Soit p ≥ 2 un entier. Il existe une transition de phase à densité d = 1/(p + 1) : 

(i) Si d < 1/(p + 1), alors a.p.s. G ℓ (m, d) satisfait C(p). (ii) Si d > 1/(p +

Autres modèles de groupes aléatoires

La première construction aléatoire sur les présentations de groupes est le modèle à densité de Gromov dans [START_REF] Gromov | Finitely presented groups[END_REF]. 9.B. De nombreux autres modèles de groupes aléatoires ont été proposés par Gromov dans [START_REF] Gromov | Finitely presented groups[END_REF], [START_REF] Gromov | Spaces and Questions[END_REF] et [START_REF] Gromov | Random walk in random groups[END_REF].

Modèles de base non libres Les groupes aléatoires considérés jusqu'à présent sont des quotients aléatoires de groupes libres. Gromov a mentionné dans [START_REF] Gromov | Spaces and Questions[END_REF] p.34 qu'on peut prendre une présentation de groupe hyperbolique comme groupe de base et ajouter des relateurs aléatoires d'une certaine densité. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] a prouvé qu'il existe une transition de phase hyperbolicité-trivialité pour de tels groupes aléatoires, et que la densité critique est déterminée par la co-croissance du groupe hyperbolique de base. D. Gruber et J. Mackay [START_REF] Gruber | Random triangular Burnside groups[END_REF] ont considéré des groupes triangulaires aléatoires basés sur un groupe de Burnside, et ont montré que le groupe est infini en dessous d'une certaine densité critique, mais une transition de phase n'a pas encore été trouvée.

Le modèle à température Dans [Gro00] p.34, ce modèle est la version à "présentation infinie" du modèle à densité : Un groupe aléatoire avec m générateurs et tout mot réduit r a la probabilité p(r) = (2m -1) -θ|r| 0.3. REMARQUES HISTORIQUES d'être dans l'ensemble des relateurs. Le paramètre θ est appelé la température. Notons F m le groupe libre avec m générateurs, Gromov a affirmé qu'il existe une transition de phase trivialité-infinité: si la fonction p : F m → R est dans ℓ 2 (F m ) alors le groupe est infini, sinon le groupe est trivial.

Le modèle à graphe Ce modèle est introduit dans [START_REF] Gromov | Random walk in random groups[END_REF] p.141. Gromov a considéré le quotient d'un groupe libre F m par le sous-groupe normal représenté par un graphe dont les arêtes sont marquées aléatoirement par les générateurs (au lieu d'un ensemble de relateurs comme dans [START_REF] Gromov | Finitely presented groups[END_REF]). Les constructions et résultats détaillés de ce modèle sont discutés dans [START_REF] Goulnara | Examples of random groups[END_REF] par G. Arzhantseva et T. Delzant. Certaines questions ouvertes sur ce modèle sont proposées dans la section 5.3.

Pour des revues détaillées de groupes aléatoires, nous renvoyons le lecteur à (par ordre chronologique) : [START_REF] Ghys | Groupes aléatoires (d'après Misha Gromov[END_REF] Introduction "I feel, random groups altogether may grow up as healthy as random graphs, for example." --M. Gromov, "Spaces and Questions" [START_REF] Gromov | Spaces and Questions[END_REF].

The study of random groups is very similar to that of random graphs: we are interested in asymptotic behaviors and phase transitions. In this thesis, we study phase transitions in the density model of random groups introduced by M. Gromov in [START_REF] Gromov | Finitely presented groups[END_REF]. There are two main objectives: to discover typical properties of group presentations for different densities of relators, and to construct new examples of hyperbolic groups.

Our main contributions are presented in Chapters 2, 3 and 4. In Chapter 2, we study the intersection formula for random subsets with density, which is a basic tool for proving phase transitions in random groups. In Chapter 3, we prove a phase transition showing that the first r generators of a random group presentation generate either the whole group or a free subgroup. In Chapter 4, we establish a phase transition that characterizes the existence of van Kampen diagrams. Some open questions are proposed in Chapter 5.

1.1 What is a random group?

Definitions and examples

Random groups are groups obtained by a probabilistic construction. In general, a random group can be defined as follows.

Definition 1. A random group is a random variable with values in a given set of groups.

We focus on random groups constructed from a finite set of finite group presentations. More precisely, fix a set of m generators X m = {x 1 , . . . , x m }, a random group is defined by a random group presentation

G = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩
where r 1 , . . . , r k are relators that are randomly chosen among a finite set of reduced words of X ± m . If G is a random group and P is a group property (for example, trivial, free, torsion free, etc.), we may discuss the probability that G satisfies P . We keep this "random variable" point of view for any random object. For example, the rank (the minimal number of generators) of a random group is an integer-valued random variable. All random variables considered in this thesis are with values in finite sets, endowed with the discrete σ-algebras.

Here are some examples of random groups.
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Examples. In the following examples, a random group is defined by G = ⟨x 1 , . . . , x m |R⟩ where R is a random set of relators to be specified.

1. (fixed length, uniform model) Let k, ℓ be integers. The set of relators R = {r 1 , . . . , r k } follows the uniform distribution in the set of all k-tuples of reduced words of length ℓ.

2. (various lengths, sampling model) Let k, ℓ, ℓ ′ be integers with ℓ < ℓ ′ . To construct R, choose one relator uniformly from the set of all reduced words of lengths between ℓ and ℓ ′ , repeat this procedure k times.

Note that one word may be taken twice, but it happens with a very low probability if the number of relators k is significantly smaller than the total number of considered words ((2m -1) ℓ ′ +O(1) in this case).

3. (bounded length, Bernoulli model) Let ℓ be an integer, let p ∈ [0, 1]. To construct the set of relators R, every reduced word r of length at most ℓ is independently chosen with probability p.

Note that the number of relators follows the binomial distribution of B(N, p) where N = (2m -1) ℓ+O(1) is the total number of words of lengths at most ℓ.

We are interested in the asymptotic behaviors of a random group. That is to say, what happens when the number of generators or the number of relators goes to infinity? To describe this phenomenon briefly, we have the following definition.

Definition 2. Let (Q n ) n≥1 be a sequence of probability events. We say that Q n is satisfied asymptotically almost surely, denoted a.a.s. Q n , if the probability of Q n converges to 1 when n goes to infinity.

If (G n ) is a sequence of random groups and (P n ) is a sequence of group properties (for instance, being trivial, being hyperbolic, of rank n etc.), we may say that a.a.s. G n has the property P n . The index n may be the number of generators m or some relator length ℓ.

Example. let G m be a random group with m generators and one relator uniformly chosen among all reduced words of length 3. If the number of generators m is very large, then with probability higher than 1m -2/3+o(1) the chosen relator is of the type r = xyz with x, y, z different elements in X ± m . We can remove the generator z by the relation z = x -1 y -1 . So with probability converging to 1 when m tends to infinity, the random group G m is a free group of rank m -1.

We conclude that a.a.s. the random group G m is a free group of rank m -1.

Models of random groups and classic results

A model of random groups is a specified sequence of random groups. Throughout this thesis, we will clearly distinguish between a random group and a sequence of random groups.

Here is a list of random group models studied in the literature. 

, . . . , x ± m of length ℓ i . Suppose that ℓ 1 ≤ • • • ≤ ℓ k .
The asymptotic behavior is studied when the minimal length ℓ 1 goes to infinity. We may consider a sub-model that the maximal length ℓ k depends on ℓ 1 . For example, ℓ k = 2ℓ 1 or ℓ k = e 10ℓ1 . With this model, Gromov remarked that the hyperbolicity is generic for finitely presented groups:
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Theorem (M. Gromov, [Gro87] §0.2). Let G(m, ℓ 1 , . . . , ℓ k ) be a random group with various relator lengths ℓ 1 ≤ • • • ≤ ℓ k . A.a.s. (when the minimal length ℓ 1 goes to infinity) the random group G(m, ℓ 1 , . . . , ℓ k ) is a non-elementary hyperbolic group.

A detailed proof of this theorem is given by C. Champetier in [START_REF] Champetier | Propriétés génériques des groupes de présentation finie[END_REF].

1.1.2.b The density model, M. Gromov [START_REF] Gromov | Finitely presented groups[END_REF] 9.B Let S ℓ be the set of reduced words of a fixed length ℓ in the alphabet {x 1 , . . . , x m }. Note that |S ℓ | = (2m -1) ℓ+O(1) (when ℓ → ∞). A sequence of (uniform) random groups (G ℓ (m, d)) with m ≥ 2 generators at density d ∈ [0, 1] is defined by G ℓ (m, d) = ⟨x 1 , . . . , x m |R ℓ ⟩ where R ℓ is uniformly chosen among all subsets of S ℓ of cardinality ⌊(2m -1) dℓ ⌋.

Compare to the previous model, the length of relators is fixed, but the number of relators grows exponentially with the length. Gromov showed that there is a phase transition at density d = 1/2. A detailed proof of this theorem is in [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] Section 2 by Y. Ollivier.

Theorem (M. Gromov, [Gro93] 9.B). Let (G ℓ (m, d)) be a sequence of (uniform) random groups at density d.

• If d < 1/2, then a.a.s. the random group G ℓ (m, d) is non-elementary hyperbolic.

• If d > 1/2, then a.a.s. the random group G ℓ (m, d) is either trivial or isomorphic to Z/2Z.

In the same paragraph ([Gro93] 9.B), it is remarked that there is a phase transition for the C ′ (λ) small cancellation condition (c.f. [START_REF] Lyndon | Combinatorial Group Theory[END_REF] for a definition).

Theorem (M. Gromov, [Gro93] 9.B). Let (G ℓ (m, d)) be a sequence of random groups at density d. Let 0 < λ < 1.

• If d < λ/2, then a.a.s. the presentation defining G ℓ (m, d) satisfies C ′ (λ).
• If d > λ/2, then a.a.s. the presentation defining G ℓ (m, d) does not satisfy C ′ (λ).

A detailed proof by an analog of the probabilistic pigeonhole principle is given in [START_REF] Bassino | Random presentations and random subgroups: a survey[END_REF] Theorem 2.1. In this thesis, we give a proof (Theorem 2.46) as an application of our Theorem C, and a much simpler one (Theorem 4.23) as an application of our Theorem H.

1.1.2.c

The few relator model, G. Arzhantseva and A. Ol'shanskii [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] Let m ≥ 2 and k ≥ 1. A sequence of random groups (G ℓ ) with m generators and k relators is defined by G ℓ = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩ where the set of relators {r 1 , . . . , r k } follows the uniform distribution in the set of all k-tuples of reduced words of lengths at most ℓ.

Note that it is a simpler version of the various lengths model. Although relators of all lengths ≤ ℓ are taken into account, for any c < 1 a.a.s. there is no relator shorter than cℓ. This model is an analog of the Gromov density model with density d = 0, and we have the following two properties.

• For any λ > 0, a.a.s. the presentation defining G ℓ satisfies the C ′ (λ) small cancellation condition.

• A.a.s. G ℓ is a non-elementary hyperbolic group.

The main result in [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] is the following.

Theorem (G. Arzhantseva and A. Ol'shanskii, [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF]). Let (G ℓ ) be a sequence of few relator random groups with m ≥ 2 generators and k relators. A.a.s. every (m -1)-generated subgroup of G ℓ is free.
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1.1.2.d The triangular model, A. Żuk [ Żuk03]

A triangular relator with respect to X m = {x 1 , . . . , x m } is a cyclically reduced word of X ± m length 3. Note that the number of triangular relators is (2m -1) 3+o(1) (with m → ∞). A sequence of random triangular groups (G m (d)) at density d is defined by G m (d) = ⟨X m |R m ⟩ where R m is uniformly chosen among all sets of triangular relators of cardinality between c -1 (2m -1) 3d and c(2m -1) 3d with some c > 1.

Compare to the density model, the number of generators, instead of the relator lengths, goes to infinity. Żuk remarked that Gromov's phase transition at density d = 1/2 still holds in this model, and showed a phase transition at density d = 1/3. Theorem (A. Żuk, [ Żuk03]). Let G m (d) be a triangular random group with density d.

• If d < 1/2 then a.a.s. G m (d) is non-elementary hyperbolic. • If d > 1/2 then a.a.s. G m (d) is trivial.
Theorem (A. Żuk, [ Żuk03]). Let G m (d) be a triangular random group with density d.

• If d < 1/3 then a.a.s. G m (d) is a free group. • If d > 1/3 then a.a.s. G m (d) has Kazhdan's property (T ).

1.1.2.e The Bernoulli triangular model, S. Antoniuk, T. Łuczak and J. Świ ątkowski [AŁ Ś15]

A sequence of (Bernoulli) random triangular groups

(G(m, p)) m≥1 is defined by G(m, p) = ⟨X m |R m ⟩
where R m is a Bernoulli sampling in the set of triangular relators of X m with probability p = p(m) (every triangular relator is independently chosen with probability p).

If p = (2m -1) 3d-3 , then the expected value of the number of relators is (2m -1) 3d+o(1) , and this model is very close to the Żuk's (uniform) triangular model. Antoniuk, Łuczak and Świ ątkowski adapted Żuk's result in their Bernoulli triangular model, and gave a sharper phase transition at density d = 1/3, i.e. with parameter p ∼ m -2 . Theorem (S. Antoniuk, T. Łuczak and J. Świ ątkowski, [AŁ Ś15]). Let G(m, p) be a random triangular group. There exists positive real numbers c < c ′ , C ′ < C such that:

• If p < cm -2 , then a.a.s. G m (p) is a free group. • If c ′ m -2 < p < C ′ m -2 log m, then a.a.s. G m (p)

is neither free nor having property (T).

• If p > Cm -2 log m, then a.a.s. G m (p) has property (T).

1.1.2.f The Bernoulli density model (a new example)

Let us mix up the three models in [START_REF] Gromov | Finitely presented groups[END_REF], [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] and [AŁ Ś15]. Let B ℓ be the set of cyclically reduced relators of

X m = {x 1 , . . . , x m } of length at most ℓ. A sequence of (Bernoulli) random groups (G ℓ (m, d)) with m generators at density d ∈ [0, 1] is defined by G ℓ (m, d) = ⟨X m |R ℓ ⟩ where R ℓ is a Bernoulli sampling of B ℓ with parameter |B ℓ | d-1 .
The expected value of the number of relators is

|B ℓ | d = (2m -1) dℓ+O(1)
, and this model is very close to the original density model in [START_REF] Gromov | Finitely presented groups[END_REF]. The following results are still true:

• Gromov's triviality-hyperbolicity phase transition at density d = 1/2.

• Gromov's C ′ (λ) phase transition at density d = λ/2.

WHAT IS A RANDOM GROUP?

Main questions

In 2003, Gromov defined the general notion of random groups in [START_REF] Gromov | Random walk in random groups[END_REF] and proposed in Section 1.9 the following general problem: "determining asymptotic invariants and phase transition phenomena for random groups."

1.1.3.a Free subgroups

In particular, Gromov's problem [START_REF] Gromov | Random walk in random groups[END_REF] 1.9 (iv) ask for "existence/nonexistence of non-free subgroups". Our aim is to generalize Arzhantseva-Ol'shanskii's "every (m -1)-generated subgroup is free" result in the Gromov density model. Let G ℓ (m, d) be a sequence of random groups with m generators at density d, in the Gromov density model. We look for a phase transition:

Question 1. Does there exist a critical density d(m) such that, if d < d(m) then a.a.s. every (m -1)- generated subgroup of G ℓ (m, d) is free; while if d > d(m)
then a.a.s. there exists a non-free (m -1)generated subgroup?

More generally, we can ask:

Question 2. Let 1 ≤ r ≤ m -1. Does there exist a critical density d(m, r) such that, if d < d(m, r) then a.a.s. every r-generated subgroup of G ℓ (m, d) is free; while if d > d(m,
r) then a.a.s. there exists a non-free r-generated subgroup?

We will give partial answers to Question 2 (Theorem D and Theorem E).

1.1.3.b Van Kampen 2-complexes

In [START_REF] Gromov | Finitely presented groups[END_REF], to prove the hyperbolicity of random groups at density d < 1/2, Gromov showed that every van Kampen diagram satisfies some isoperimetric inequality. More precisely, we have the following lemma.

Lemma (M. Gromov [START_REF] Gromov | Finitely presented groups[END_REF], stated by Y. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF]). Let (G ℓ (m, d)) be a sequence of random groups. If d < 1/2, then for any integer K ≥ 1 and any real number s > 0, a.a.s. every reduced van Kampen diagram D of G ℓ (m, d) with at most K faces satisfies the isoperimetric inequality

|∂D| ≥ (1 -2d -s) ℓ|D|.
In other words, a.a.s. there is no van Kampen diagrams D of G ℓ (m, d) with at most K faces satisfying the inequality |∂D| ℓ|D| < 1 -2d. We may ask the converse: Question 3. Let c > 1 -2d be a real number and let K ≥ 1 be an integer. Does there exist a.a.s. a van Kampen diagram D of G ℓ (m, d) with K faces that satisfies the equality |∂D| = cℓ|D| ? Theorem H gives an answer to this question in a more general case, for van Kampen 2-complexes.

Density of random subsets

Let S ℓ be the set of all reduced words of length ℓ of the alphabet {x

± 1 , . . . , x ± m }. In [Gro93], to construct a random group G = ⟨x 1 , . . . , x m |R ℓ ⟩, the original idea of Gromov is to choose a random subset R ℓ of S ℓ , with cardinality very close to |S ℓ | d . The parameter d is called the density of R ℓ in S ℓ .
One may consider the uniform distribution in the set of subsets of cardinality ⌊|S ℓ | d ⌋ (as in the works of Ollivier [Oll04; Oll05; Oll07]), or the Bernoulli sampling of parameter |S ℓ | d-1 (as in [AŁ Ś15], or the model 1.1.2.f). In this subsection, we introduce a random subset model, called the permutation invariant density model, originated in a paragraph of [START_REF] Gromov | Finitely presented groups[END_REF] p.272.

CHAPTER 1. INTRODUCTION Definition 3 ([Gro93] 9.A). The density of a subset A in a finite set E is dens E A := log |E| (|A|). Namely, dens E (A) is the number d ∈ {-∞}∪[0, 1] such that |A| = |E| d .
The case d = -∞ corresponds to the case that A is an empty set. We omit the subscript and simply denote the density by dens A if there is no ambiguity of the ambiance set E.

A random subset of a finite set E is a random variable with values in the set of subsets of E.

The density of a random subset is then a random variable with values in {-∞} ∪ [0, 1].

The intersection formula for random subsets, introduced by Gromov in [START_REF] Gromov | Finitely presented groups[END_REF], is the main tool for proving phase transitions in the density model of random groups. The formula is stated as follows:

Metatheorem ([Gro93] p.270). Random subsets A and B of a finite set E satisfy

dens(A ∩ B) = dens A + dens B -1 with the convention dens(A ∩ B) < 0 ⇐⇒ A ∩ B = Ø.
Gromov did not specify how to take random subsets with densities in the original statement of the intersection formula. In [START_REF] Gromov | Finitely presented groups[END_REF] p.272, he claimed that the class of random subsets that are densable and permutation invariant is closed under set theoretic operations and satisfies the intersection formula.

The definitions of densable and permutation invariant are given below. As we are interested in the asymptotic behaviors, we fix a sequence of finite sets

E = (E n ) with |E n | → ∞, and study a sequence of random subsets A = (A n ) where A n is a random subset of E n . Definition 4. A sequence of random subsets A = (A n ) of E = (E n ) is densable with density d ∈ {-∞} ∪ [0, 1] if the
sequence of random variables (dens En (A n )) converges in distribution to the constant d when n goes to infinity. We denote

dens E A = d. Definition 5. A densable sequence of permutation invariant random subsets A = (A n ) of E = (E n ) is a densable sequence such that the measure of A n is invariant under the permutations of E n .
That is to say, for any subset a ⊂ E n and any permutation σ ∈ S(E n ), we have Pr(A n = a) = Pr(A n = σ(a)). A complete statement of the intersection formula for densable sequences of random subsets is given in Section 1.2, Theorem A.

The random group model considered in this thesis

Now with random subsets, we can define the model of random groups considered in this thesis: permutation invariant density models of random groups.

Fix an alphabet X m = {x 1 , . . . , x m } as generators of group presentations. In the original Gromov density model, the relator length of a random group G ℓ (m, d) is a fixed number ℓ. In the case that ℓ is pair, when d > 1/2, a.a.s. G ℓ (m, d) is Z/2Z but not trivial. To avoid this situation, we consider words of length at most ℓ, as in [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF]. Let B ℓ be the set of cyclically reduced words of lengths at most ℓ.
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21 Definition 6. A sequence of random groups (G ℓ (m, d)) with m generators of density d is defined by

G ℓ (m, d) = ⟨X m |R ℓ ⟩,
where (R ℓ ) is a densable sequence of permutation invariant random subsets of (B ℓ ) with density d.

Note that the cardinality of B ℓ is (2m -1) ℓ+O(1) , so the cardinality of R ℓ is (2m -1) dℓ+o(ℓ) with high probability (c.f. Proposition 2.6). The model 1.1.2.f is included in this model, because a Bernoulli random subset is permutation invariant. The Arzhantseva-Ol'shanskii few relator model is included in this model with density 0, because the uniform distribution is permutation invariant, and the density dens

B ℓ (R ℓ ) converges to 0 if the number of relators |R ℓ | = k is fixed.

Main results of this thesis

The contributions of this thesis are presented in Chapters 2, 3 and 4. In this section, we present a list of our main results.

Density of random subsets and the intersection formula

In Chapter 2, we work on the intersection formula for random subsets, presented in the article [START_REF] Tsai | Density of random subsets and applications to group theory[END_REF], to appear in the Journal of Combinatorial Algebra.

We first prove the intersection formula for densable sequences of permutation invariant random subsets.

Theorem A (Theorem 2.25). Let A = (A n ), B = (B n ) be independent densable sequences of permutation invariant random subsets of a sequence of finite sets E = E n , with densities α, β. If α + β ̸ = 1, then the sequence of random subsets A ∩ B := (A n ∩ B n
) is also densable and permutation invariant. In addition:

dens(A ∩ B) = α + β -1 if α + β > 1 -∞ if α + β < 1.
Moreover, the intersection formula holds between a sequence of random subsets and a sequence of fixed subsets.

Theorem B (Theorem 2.28). Let A be a densable sequence of permutation invariant random subsets of E with density d. Let X be a sequence of (fixed) subsets of E with density α. If d + α ̸ = 1, then the sequence of random subsets A ∩ X is densable and

dens(A ∩ X) = d + α -1 if d + α > 1 -∞ if d + α < 1.
In addition, the sequence A ∩ X is a densable sequence of permutation invariant random subset of X with density d+α-1 α .

Note that

A n ∩ X n is never invariant under the permutations of E n if X n ̸ = E n .
We develop a generalized form: the multi-dimensional intersection formula. Denote E (k) n the set of pairwise distinct k-tuples of the set E n . Let A be a densable sequence of permutation invariant random subsets. We are interested in the intersection between A (k) and a densable sequence of subsets X of E (k) .

For k ≥ 2, the intersection formula is in general not correct (c.f. Counter example in 2.3.1.a). We show that by an additional self-intersection condition on X, we can achieve the intersection formula.
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Theorem C (Theorem 2.40). Let A = (A n ) be a densable sequence of permutation invariant random subsets of E = (E n ) with density 0 < d < 1. Let X = (X n ) be a densable sequence of fixed subsets of E (k) with density α.

(i) If d + α < 1, then a.a.s. A (k) n ∩ X n = Ø.
(ii) If d + α > 1 and X satisfies the d-small self intersection condition (Definition 2.33), then the sequence of random subsets A (k) ∩ X is densable and

dens(A (k) ∩ X) = α + d -1.
As an application of Theorem B, we show that the main result of [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] for the few relator model of random groups can be extended to the density model of random groups with a small density.

Theorem D (Theorem 2.48). Let (G ℓ (m, d)) be a sequence of random groups with m generators at density

0 ≤ d < 1 120m 2 ln(2m)
.

Then a.a.s. every (m -1)-generated subgroup of G ℓ (m, d) is free.

This answers Question 1 partially.

Freiheitssatz for random groups and the phase transition

Chapter 3 is the subject of the preprint [START_REF] Tsai | Freiheitssatz and phase transition for the density model of random groups[END_REF]. We present one of the main results of this thesis, which answers Question 2 partially. The Freiheitssatz (freedom theorem in German) is a fundamental theorem in combinatorial group theory. It was proposed by M. Dehn and proved by W. Magnus in his doctoral thesis [START_REF] Magnus | Ueber diskontinuierliche Gruppen mit einer definierenden Relation (der Freiheitssatz)[END_REF] in 1930 (c.f. [LS77] II.5).

Theorem (W. Magnus, [Mag30]

). Let G = ⟨x 1 , . . . , x m |r⟩ be a group presentation with m generators and one cyclically reduced relator. If the last generator x m appears in the single relator r, then the first m -1 generators x 1 , . . . , x m-1 freely generate a free subgroup of G.

We say that a finite group presentation G = ⟨X|R⟩ satisfies the Magnus Freiheitssatz property if every subset of X of cardinality |X| -1 freely generates a free subgroup of G. In particular, by Arzhantseva-Ol'shanskii's result [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF], a.a.s. a few-relator random group G ℓ has this property. We study the Magnus Freiheitssatz property in the density model of random groups.

Let G ℓ (m, d) = ⟨X|R ℓ ⟩ be a random group at density d. For any 1 ≤ r ≤ m -1, we find a phase transition at density

d r = min 1 2 , 1 -log 2m-1 (2r -1)
.

Theorem E (Theorem 3.22). Let (G ℓ (m, d)) be a sequence of random groups at density d.

1. If d > d r , then a.a.s. x 1 , . . . , x r generate the whole group G ℓ (m, d).

2. If d < d r , then a.a.s. x 1 , . . . , x r freely generate a free subgroup of G ℓ (m, d).
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23 By symmetry, the set {x 1 , . . . , x r } can be replaced by any subset X r of X of cardinality r. In fact, in the second assertion, we can replace the set {x 1 , . . . , x r } by any set of r words of X ± of lengths at most

dr-d 5r ℓ. In particular, if 0 ≤ d < d m-1 , then the group presentation G ℓ (m, d) = ⟨X|R ℓ ⟩ has the Magnus Freiheitssatz property.
More precisely for the first assertion, we prove that if d > d r then a.a.s. any generator x k with r < k ≤ m equals to a reduced word of {x ± 1 . . . x ± r } of length ℓ -1 in G ℓ (m, d). Therefore, any relator r i ∈ R ℓ can be replaced by a reduced word r ′ i of {x ± 1 . . . x ± r } of length at most ℓ(ℓ -1). Construct R ′ ℓ by replacing every relator of R ℓ in this way, we have the following corollary.

Corollary F. If d r < d < d r-1 , then a.a.s. the group G ℓ (m, d) = ⟨X|R ℓ ⟩ admits a presentation with r generators ⟨X r |R ′
ℓ ⟩ satisfying the Magnus Freiheitssatz property (i.e. every subset of X r of cardinality r -1 generate a free subgroup).

Remark. Note that R ′ ℓ contains a bunch of relators of lengths varying from ℓ to ℓ 2 . Such a presentation can not be studied using known methods in geometric or combinatorial group theory. Nevertheless, it gives us new examples of hyperbolic groups having the Magnus Freiheitssatz property.

If in addition d r > 1/3 (i.e. r < (2m-1) 2/3 +1 2

), then by Żuk's result in [ Żuk03], these are examples of hyperbolic groups with the property (T ) having the Magnus Freiheitssatz property.

Let r = r(m, d) be the maximal number such that a.a.s. x 1 , . . . , x r freely generate a free subgroup of G ℓ (m, d). By the phase transition at density

1 2 [Gro93], if d > 1 2 , then r(m, d) = 0. If d ≤ 1 2 , by Theorem E, (2m -1) 1-d -1 2 ≤ r(m, d) ≤ (2m -1) 1-d + 1 2 .
As shown in the diagram below, because r(m, d) is an integer, its value is determined when d is not in the set {d 1 , . . . , d m-1 , 1/2}. While the value of r(m, d) is not determined when d ∈ {d 1 , . . . , d m-1 , 1/2}. 

Existence of diagrams and 2-complexes in random groups

We consider van Kampen 2-complex with respect to a group presentation as van Kampen diagrams in [START_REF] Lyndon | Combinatorial Group Theory[END_REF]: it is a 2-complex with labels on edges by generators and labels on faces by relators. A pair of faces is called reducible if they have the same label and there is a common edge on their boundaries at the same position.
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A van Kampen 2-complex is called reduced if there is no reducible pair of faces. C.f. Subsection 3.1.2 and Subsection 4.1 for more details.

In [START_REF] Gromov | Finitely presented groups[END_REF], Gromov showed that a.a.s. local van Kampen diagrams of G ℓ (m, d) satisfy an isoperimetric inequality (depending on the density d).

Theorem (M. Gromov [START_REF] Gromov | Finitely presented groups[END_REF] p. 274, Y. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] chapter 2). For any s > 0 and K > 0, a.a.s. every reduced van Kampen diagram D of G ℓ (m, d) with |D| ≤ K satisfies the isoperimetric inequality

|∂D| ≤ (1 -2d -s)ℓ|D|.
In Chapter 4, we prove a van Kampen 2-complex version of this inequality, which is an analog of Gruber-Mackay's [START_REF] Gruber | Random triangular Burnside groups[END_REF] result for random triangular groups. For a 2-complex Y , denote |Y (1) | the number of its edges and |Y | the number of its faces.

Theorem G (Theorem 4.3). Let ε > 0, K > 0. A.a.s. every van Kampen 2-complex Y of complexity K of G ℓ (m, d) satisfies |Y (1) | + Red(Y ) ≥ (1 -d -ε)ℓ|Y |.
The term Red(Y ) means the reduction degree (Definition 4.1) of the 2-complex Y . If the van Kampen 2-complex is reduced, we can omit this term.

More interestingly, we show the converse: if every sub-complex of a 2-complex satisfies a given inequality, then with high probability it is an underlying 2-complex of a van Kampen 2-complex of G ℓ (m, d). We have in fact a phase transition.

Theorem H (Theorem 4.15). Let s > 0 and K > 0. Let (Y ℓ ) be a sequence of 2-complexes of the same geometrical form (Definition 4.13) of complexity K (Definition 4.2) such that every face of Y ℓ is with boundary length at most ℓ.

(i) If every sub-2-complex Y ′ ℓ of Y ℓ satisfies |Y ′(1) ℓ | ≥ (1 -d + s)|Y ′ ℓ |ℓ,
then a.a.s. there exists a van Kampen 2-complex of

G ℓ (m, d) whose underlying 2-complex is Y ℓ . (ii) If there is a sub-2-complex Y ′ ℓ of Y ℓ satisfying |Y ′(1) ℓ | ≤ (1 -d -s)|Y ′ ℓ |ℓ, then a.a.s. there is no van Kampen 2-complex of G ℓ (m, d) whose underlying 2-complex is Y ℓ .
Recall that a group presentation G = ⟨X|R⟩ satisfies the C(p) small cancellation condition (c.f. [LS77]) if no relator is a product of fewer than p pieces. That is to say, there is no reduced van Kampen diagram of the following form (here p = 5).

As an application of Theorem G and Theorem H, we show the phase transition for the C(p) condition, mentioned in [START_REF] Ollivier | Cubulating random groups at density less than 1/6[END_REF] Proposition 1.8 (with only d < 1/(p + 1) case).

Theorem I (Theorem 4.24). Let p ≥ 2 be an integer. There is a phase transition at density d = 1/(p + 1):

(i) If d < 1/(p + 1), then a.a.s. G ℓ (m, d) satisfies C(p). (ii) If d > 1/(p + 1), then a.a.s. G ℓ (m, d) does not satisfy C(p).
The same argument holds for the B(2p) condition (c.f. [OW11] Definition 1.7 by Y. Ollivier and D. Wise): half of a relator can not be the product of fewer than p pieces (p = 3 in the diagram below). By similar computations, we can find that a phase transition occurs at density d = 1 2(p+1) .

Historical remarks 1.3.1 Generic properties of finitely presented groups

The origin of random groups was from a statistical point of view: observations that some properties are "generic" for finitely presented groups. It first appeared in the works of V. Guba [START_REF] Victor | Conditions under which 2-generated subgroups in small cancellation groups are free[END_REF] and M. Gromov [Gro87] §0.2 in the late 1980s. Guba [START_REF] Victor | Conditions under which 2-generated subgroups in small cancellation groups are free[END_REF] showed that "almost all" m-generated, m ≥ 4, groups with one relator have every 2generated subgroup free. Here "almost all" means that within the set of m-generated one relator groups, when the relator length tends to infinity, the ratio of the number of groups satisfying the demanded property to the number of all groups converges to 1.

The various lengths model constructed in [Gro87] §0.2 is actually in this point of view, showing that the hyperbolicity is a "generic property" of finitely presented groups. A similar model is considered by A. Ol'shanskii in the Kourovka Notebook [START_REF]Unsolved problems in group theory[END_REF], Question 11.75. To answer this question, Arzhantseva and Ol'shanskii introduced the few relator model in [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF], which is a simpler but rather convenient model.

The study of generic properties of group presentations (with the few relator model) is continued by Arzhantseva in the following years [Arz97; Arz98; Arz00]. We refer the reader to [START_REF] Kapovich | On group-theoretic models of randomness and genericity[END_REF] for a survey.

Other random group models

The first randomness construction on group presentations is the Gromov density model in [START_REF] Gromov | Finitely presented groups[END_REF] 9.B. A lot more random group models were proposed by Gromov in [START_REF] Gromov | Finitely presented groups[END_REF], [START_REF] Gromov | Spaces and Questions[END_REF] and [START_REF] Gromov | Random walk in random groups[END_REF].

Non-free basis models Random groups considered so far are random quotients of free groups. Gromov mentioned in [START_REF] Gromov | Spaces and Questions[END_REF] p.34 that one can take a hyperbolic group presentation as a base group and add random relators with density. Ollivier [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] proved that there is a hyperbolicity-triviality phase transition for such random groups, and the critical density is determined by the cogrowth of the base hyperbolic group. D. Gruber and J. Mackay [START_REF] Gruber | Random triangular Burnside groups[END_REF] considered random triangular groups based on a Burnside group, and showed that the group is infinite below some critical density, but a phase transition has not been found yet.

The temperature model In [START_REF] Gromov | Spaces and Questions[END_REF] p.34, this model is the infinite presentation version of the density model: A random group with m generators and every reduced word r has probability p(r) = (2m -1) -θ|r| to be in the set of relators. The parameter θ is called temperature. Denoting F m the free group with m generators, Gromov claimed that there is a triviality-infinity phase transition for p :

F m → R in ℓ 2 (F m ) or not.
The graphic model This model is introduced in [Gro03] p.141. Gromov considered the quotient of a free group F m by the normal subgroup represented by a graph with edges randomly labeled by the generators (instead of a set of relators as in [START_REF] Gromov | Finitely presented groups[END_REF]). Detailed constructions and results of this model are discussed in [START_REF] Goulnara | Examples of random groups[END_REF] by G. Arzhantseva and T. Delzant. Some open question about this model are proposed in Section 5.3.

For detailed surveys on random groups, we refer the reader to (in chronological order) [START_REF] Ghys | Groupes aléatoires (d'après Misha Gromov[END_REF] Chapter 2

Random subsets with density and the intersection formula

In this chapter, we study the intersection formula for random subsets with density (Metatheorem 1.1.4) considered by M. Gromov in [Gro93] 9.A. We will mainly discuss the permutation invariant density models, with two particular cases: the Bernoulli density model and the uniform density model.

The goal is to prove the intersection formula between random subsets (Theorem A, Theorem 2.25) and the multidimensional intersection formula (Theorem C, Theorem 2.40). The random-fixed intersection formula (Theorem B) is regarded as a corollary (Theorem 2.28) of the multidimensional intersection formula.

For each theorem, we will first give a proof for the Bernoulli density model, as it is much easier to manipulate. We then adapt the proofs for the uniform density model. As any permutation invariant random subset can be decomposed into a sum of uniform random subsets (see Proposition 2.11), properties of the uniform density model are the main tools to study the permutation invariant density model.

Models of random subsets

In this section, we discuss models of random subsets in detail.

Examples of random subsets

Fix a finite set E. We will often use uppercase letters A, B, C, . . . to denote random subsets and lowercase letters a, b, c . . . for fixed subsets. Let us recall the definition of a random subset.

Definition 2.1. A random subset A of a finite set E is a random variable with values in the set of subsets of E.

The law of a random subset A is determined by instances Pr(A = a) through all subsets a ⊂ E (or a ∈ P(E) where P(E) is the set of subsets of E). The cardinality |A| is a usual real-valued random variable.

Here are some basic examples of random subsets.
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(i) (Dirac model) A fixed subset c ⊂ E can be regarded as a constant random subset. Its law is

Pr(A = a) = 1 if a = c 0 if a ̸ = c.
(ii) (Uniform random subset) Fix an integer k ≤ |E|. A uniform random subset A of cardinality k is the uniform distribution on all subsets of E of cardinality k. Its law is

Pr(A = a) = |E| k -1 if |a| = k 0 if |a| ̸ = k.
The cardinality |A| is then a constant random variable, equal to k.

(iii) (Bernoulli random subset) Let p ∈ [0, 1].
A Bernoulli random subset of parameter d is the Bernoulli sampling of parameter p on the set E: The events {x ∈ A} through all x ∈ E are independent of the same probability p. The law of A is

Pr(A = a) = p |a| (1 -p) |E|-|a| .
In this case the random variable |A| follows the binomial law B(|E|, p).

As usual random variables, a random subset can be constructed by other random subsets.

Examples. (Set theoretic operations) The intersection of two random subsets A, B of a finite set E is another random subset, defined by instances

Pr(A ∩ B = c) := a,b∈P(E);a∩b=c Pr(A = a, B = b).
In particular, if A, B are independent random subsets, then The union of two random subsets and the complement of a random subset can be similarly defined.

Pr(A ∩ B = c) = a,
Definition 2.2. Let E be a finite set.

1. Let a be a subset of E. The density of a in E is the number

dens E a := log |E| |a| = log |a| log |E| .
2. Let A be a random subset of E. The density of A in E is the random variable

dens E A := log |E| |A| = log |A| log |E| .
That is to say, the density of a subset a of E is a number d ∈ [0, 1] ∪ {-∞} such that |E| d = |a|. We will omit the subscript if there is no ambiguity on the ambiance set E. Note that dens a = -∞ if and only if a = Ø.
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Densable sequences of random subsets

We are interested in the asymptotic behavior of random subsets when the cardinality of the ambiance set |E| tends to infinity. Consider a sequence of finite sets

E = (E n ) n∈N with |E n | ----→ n→∞ ∞.
Definition 2.3 (Densable sequence of random subsets).

1. A sequence of random subsets of E is a sequence A = (A n ) n∈N such that A n is a random subset of E n for all n ∈ N. 2. Let d ∈ {-∞} ∪ [0, 1]. A sequence of random subsets A is densable with density d if the sequence of random valuables dens En (A n ) = log |En| |A n | converges in distribution to the constant d.

Two sequences of random subsets

A = (A n ), B = (B n ) of E are independent if A n , B n are indepen- dent random subsets of E n for all n.
We are interested in asymptotic behaviors of a sequence of random groups. Recall the definition of a.a.s.

Definition 2.4. Let Q = (Q n ) be a sequence of events. The event Q n is asymptotically almost surely true if Pr(Q n ) ----→ n→∞ 1.
We denote briefly a.a.s. Q n .

The following proposition shows that one may study under the condition of some a.a.s. event.

Proposition 2.5.

Let Q = (Q n ), R = (R n ) be sequences of events. If a.a.s. Q n and a.a.s. "R n under the condition Q n ", then a.a.s. R n . Proof. Denote by Q n the complement of Q n . By the two hypotheses, Pr(Q n ) → 1 and Pr (R n | Q n ) → 1. Either Q n is empty and Pr(R n ) = Pr (R n | Q n ) → 1,
or by the formula of total probability

Pr(R n ) = Pr(Q n )Pr (R n | Q n ) + Pr(Q n )Pr R n Q n - → 1.
Proposition 2.6 (Characterization of densability). Let A be a sequence of random subsets of E.

(i) The sequence A is densable with density -∞ if and only if a.a.s.

A n = Ø (ii) Let d ≥ 0. The sequence A is densable with density d if and only if ∀ε > 0 a.a.s. |E n | d-ε ≤ |A n | ≤ |E n | d+ε .

Proof.

(i) There is no density between -∞ and 0, so 

dens En A n converges to -∞ if
so ∀ε > 0 Pr(|E n | d-ε ≤ |A n | ≤ |E n | d+ε ) ----→ n→∞ 1.
Which gives the assertion ∀ε > 0 a.a.s.

|E n | d-ε ≤ |A n | ≤ |E n | d+ε .
Remark. The terms "∀ε > 0" and "a.a.s." can not be swapped. Because here "a.a.s." means "there exists n 0 such that for every n ≥ n 0 ", and the number n 0 may depend on ε.

Here are some examples of densable sequences of random subsets.

Example.

(i) A sequence of fixed subsets a = (a n ) can be regarded as a sequence of random subsets (Dirac model on each term). The sequence a is densable with density

d ∈ {-∞} ∪ [0, 1] if the numerical sequence dens En (a n ) = log |En| |a n | converges to d (for example, |a n | = ⌊|E n | d ⌋).
Note that dens(a) = -∞ if and only if a n = Ø for every large enough n.

(ii) (Uniform density model) Let d ≤ 1. A sequence of random subsets A = (A n ) of E is a sequence of uniform random subsets with density d if A n is the uniform distribution on all subsets of E n of cardinality ⌊|E n | d ⌋. The law of A n is Pr(A n = a) = |En| ⌊|En| d ⌋ -1 if |a| = ⌊|E n | d ⌋ 0 if |a| ̸ = ⌊|E n | d ⌋. (iii) (Bernoulli density model) Let d ≤ 1. A sequence of random subsets A = (A n ) of E is a sequence of Bernoulli random subsets with density d if A n is a Bernoulli sampling of E n with parameter p = |E n | d-1 .
That is to say, every element x ∈ E n is taken independently with the same probability

p = |E n | d-1 . The law of A n is Pr(A n = a) = p |a| (1 -p) |En|-|a| with p = |E n | d-1 .
Remark. It is not obvious that a sequence of Bernoulli random subsets is densable. In fact, a sequence of Bernoulli random subsets with density d = 0 is not densable.

Remind that the random variable

|A n | follows the binomial law B(|E n |, |E n | d-1 ) and E(|A n |) = |E n | d . We have Pr(|A n | = 0) = (1 -|E n | -1 ) |En| ----→ n→∞ 1/e, so Pr(dens A n = -∞) ----→ n→∞ 1/e.
Which means that the sequence of random variables (dens A n ) does not converge to any constant random variable.

Let us show that with d ̸ = 0, a sequence of Bernoulli random subsets is densable.

Proposition 2.7. Let A be a sequence of Bernoulli random subsets with density d. If d ̸ = 0, then A is densable and:

dens A = d if 0 < d ≤ 1 -∞ if d < 0.
Proof. Let us separate the cases d < 0 and 0 < d ≤ 1.

(i) If d < 0, by Markov's inequality, Pr(|A n | ≥ 1) ≤ |E n | d ----→ n→∞ 0. Which means that Pr(|A n | = 0) ----→ n→∞ 1, or a.a.s. A n = Ø. So by the characterization of density, A is dens A = -∞. (ii) If 0 < d ≤ 1, By Chebyshev's inequality, Pr |A n | -|E n | d > 1 2 |E n | d ≤ Var(|A n |) 1 4 |E n | 2d ≤ 4|E n | d (1 -|E n | d-1 ) |E n | 2d ----→ n→∞ 0.
So a.a.s.

1 2 |E n | d ≤ |A n | ≤ 3 2 |E n | d .
For every ε > 0, the inequality 

|E n | d-ε < 1 2 |E n | d < 3 2 |E n | d < |E n | d+ε

Definition 2.8 (Permutation invariant random subsets).

Let A be a random subset of E. It is permutation invariant if its law is invariant under the permutations of E. i.e.

∀a ∈ P(E) ∀σ ∈ S(E)

Pr(A = a) = Pr(A = σ(a)).
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Equivalently, subsets of E of the same cardinality have the same probability. That is to say, there exists real numbers p 0 , . . . , p n ∈ [0, 1] satisfying

n k=0 n k p k = 1 such that ∀a ∈ P(E) |a| = k ⇒ Pr(A = a) = p k .
Uniform random subsets and Bernoulli random subsets are permutation invariant. The class of such random subsets is closed under set theoretic operations.

Lemma 2.9 (Closed under set operations). Let E be a finite set. The class of permutation invariant random subsets of E is closed under unions, complements and intersections.

Proof.

(i) (Complement) Let A be a permutation invariant random subset. Let a ∈ P(E) and σ ∈ S(E). Then

Pr(E\A = a) = Pr(A = E\a) = Pr(A = σ(E\a)) = Pr(A = E\σ(a)) = Pr(E\A = σ(a)).
(ii) (Intersection) Let A, B be independent permutation invariant random subsets. Then for σ ∈ S(E) (iii) (Union) Let A, B be independent permutation invariant random subsets. We have A∪B = E\((E\A)∩ (E\B)), so A ∪ B is permutation invariant.

Pr(A ∩ B = c) = a,
For a permutation invariant random subset A, let us express the expected value and the variance of the random variable |A| in terms of Pr(x ∈ A) and Pr(x ∈ A, y ∈ A) where x, y are distinct elements in E.

Lemma 2.10. Let E be a finite set with cardinality |E| = n. Let A be a permutation invariant random subset of E. Let x, y be distinct elements in E. Then

(i) E(|A|) = nPr(x ∈ A), (ii) Var(|A|) = E(|A|) + n(n -1)Pr(x ∈ A, y ∈ A) -E(|A|) 2 .
Proof.

(i) By definition the probability Pr(z ∈ A) does not depend on the choice of element z ∈ E. So

E(|A|) = E z∈E 1 z∈A = z∈E Pr(z ∈ A) = nPr(x ∈ A).
(ii) By the same argument, the probability Pr(z ∈ A, w ∈ A) does not depend on the choice of pair of distinct elements (z, w) in E. So

E(|A| 2 ) = E   z∈E 1 z∈A 2   = z∈E Pr(z ∈ A) + (z,w)∈E 2 ;z̸ =w Pr(z ∈ A, w ∈ A) = E(|A|) + n(n -1)Pr(x ∈ A, y ∈ A).
A permutation invariant random subset can be decomposed into uniform random subsets. When proving properties for the permutation invariant model (Theorem 2.25 and Theorem 2.40), it is convenient to decompose a permutation invariant random subset into uniform random subsets and apply results of uniform random subsets.

Proposition 2.11 (Decomposition into uniform random subsets). Let E be a finite set with cardinality |E| = n. Let A be a permutation invariant random subset of E.

1. Let k ≤ n be an integer. If Pr(|A| = k) ̸ = 0, then the random subset A under the condition {|A| = k} is a uniform random subset of E of cardinality k.

2. Let Q be a probability event. Denote

N A = {k ∈ N | Pr(|A| = k) ̸ = 0}. We have Pr(Q) = k∈N A Pr(Q | |A| = k)Pr(|A| = k).
Proof. Let us prove the first assertion. Suppose that Pr(|A| = k) ̸ = 0. Let a ⊂ E with |a| = k. As A is permutation invariant, the n k subsets of E of cardinality k have the same probability. So

Pr(|A| = k) = n k Pr(A = a).
Hence

Pr (A = a | |A| = k) = Pr(A = a) Pr(|A| = k) = n k -1 . If |a| ̸ = k, then Pr (A = a | |A| = k) = 0.
So the random subset A under the condition {|A| = k} is a uniform random subset of cardinality k.

The second assertion is the formula of total probability.

2.1.3.b Densable sequences of permutation invariant random subsets

Definition 2.12. Let A = (A n ) be a sequence of random subsets of E = (E n ). It is a densable sequence of permutation invariant random subsets if it is densable and A n is a permutation invariant random subset of E n for all n.
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Examples.

1. A sequence of Bernoulli random subsets of E with density d ̸ = 0 is densable and permutation invariant.

2. A sequence of uniform random subsets of E with density d ∈ -∞ ∪ [0, 1] is densable and permutation invariant.

3. We will discuss another example in subsection 2.1.4, at the end of this section.

Except for some special cases (specified in the following propositions), the class of densable sequences of permutation invariant random subsets is closed under set theoretic operations. We prove here the closure under complements and unions. The proof for the closure under intersections is in the next section (Theorem 2.25, the intersection formula).

Proposition 2.13. Let A, B be densable sequences of permutation invariant random subsets with densities α, β. The union A ∪ B is densable and permutation invariant with density dens(A ∪ B) = max(α, β).

Proof. By Lemma 2.9 the sequence of random subsets A ∪ B is permutation invariant. The cases α = -∞ or β = -∞ can be easily shown. Without loss of generality, assume that α ≥ β ≥ 0.

Let ε > 0. By the densabilities of A and B, a.a.s.

n α-ε/2 ≤ |A n | ≤ n α+ε/2 , n β-ε/2 ≤ |B n | ≤ n β+ε/2 .
Thus, a.a.s.

n α-ε ≤ |A n | ≤ |A n ∪ B n | ≤ n α+ε/2 + n β+ε/2 ≤ 2n α+ε/2 ≤ n α+ε .
We conclude by the characterization of densability (Proposition 2.6).

Proposition 2.14. Let A be a densable sequence of permutation invariant random subsets with density α < 1. Then the complement E\A is a densable sequence of permutation invariant random subsets and dens(E\A) = 1.

Proof. Again by Lemma 2.9 the sequence of random subset E\A is permutation invariant. Let 0 < ε < (1 -α)/2. By the densability of A, a.a.s.

|A n | ≤ n α+ε .
As n α+ε + n 1-ε ≤ n for n large enough, a.a.s.

|E n \A n | ≥ n -n α+ε ≥ n 1-ε .
We conclude by the characterization of densability (Proposition 2.6).

Note that if dens A = 1, then E\A can be with any density. For example, if A is a densable sequence of random subsets with density d < 1, then E\A is with density 1, and E\(E\A) is with density d. For another example, if A = (A n ) is a sequence of uniform random subsets defined by |A n | = ⌊|E n |/n⌋, then dens A = 1 and dens(E\A) = 1.

Another model: random functions

We give here another natural model of random subsets: image of a random function. It can be found in [START_REF] Gromov | Finitely presented groups[END_REF] p.270. This is also a variance of random groups considered by Ollivier in [START_REF] Ollivier | A January 2005 invitation to random groups[END_REF] Lemma 59. In this subsection, we show that this model is densable and permutation invariant.

Definition 2.15. Let E, F be finite subsets of cardinalities n, m. Denote E F the set of functions from F to E. A random function Φ from F to E is a E F -valued random variable.

Let Φ be a random function from F to E. Its law is determined by the instances Pr(Φ = φ) through all φ ∈ E F .

The random function Φ can be regarded as a vector of E-valued random variables (Φ(y)) y∈F indexed by F . The image Im(Φ) = Φ(F ) := {Φ(y)|y ∈ F } is a random subset of E. Note that the random variables in a given vector are not necessarily independent.

Example. (Uniform random function) Let Φ be the uniform distribution on all functions from F to E. Its law is

Pr(Φ = φ) = 1 |E F | = 1 n m through all φ ∈ E F .
Proposition 2.16. Let Φ be a uniform random function from F to E. Then the random elements (Φ(y)) y∈F are independent (identical) uniform distributions on E.

Proof. Let x ∈ E, y ∈ F . The number of functions from F to E such that ϕ(y) = x is n m-1 . So the law of Φ(y) is Pr(Φ(y) = x) = n m-1 n m = 1 n .
Which is an uniform distribution on E. Denote F = {y 1 , . . . , y m }. Let (x 1 , . . . , x m ) be a vector of m elements in

E. Let φ ∈ E F such that φ(y i ) = x i for all 1 ≤ i ≤ m. Then Pr m i=1 Φ(y i ) = x i = Pr(Φ = φ) = 1 n m = m i=1 Pr(Φ(y i ) = x i ).
Proposition 2.17. The image of a uniform random function is a permutation invariant random subset.

Proof. Let Φ be a uniform random function from F to E. Let σ ∈ S(E), then for all φ ∈ E F :

Pr(Φ = φ) = Pr(Φ = σ • φ) = Pr(σ -1 • Φ = φ).
The random function σ -1 • Φ has the same law of Φ. Now let a ⊂ E, we have

Pr(Im(Φ) = a) = Pr(Im(σ -1 • Φ) = a) = Pr(Im(Φ) = σ(a)).
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The intersection formula

In general, the intersection of two densable sequences can be not densable. The intersection formula (Metatheorem 1.1.4) is not satisfied by the class of densable sequences of random subsets. It is the reason that we need to introduce the permutation invariant density model of random subsets.

Here is an example. 

|E n | d = n d ∼ ⌊n d ⌋ while n → ∞ for d ∈ [0, 1].

The Bernoulli density model

Recall that a sequence of Bernoulli random subsets with density

d of E = (E n ) is a sequence of random subsets A = (A n ) such that A n is a Bernoulli sampling of E n with parameter |E n | d-1
. The proof of the intersection formula for the Bernoulli density model is much easier than the proofs for the uniform density model and the permutation invariant density model.

Theorem 2.18 (The intersection formula for Bernoulli density model). Let A, B be independent sequences of Bernoulli random subsets of E = (E n ) with densities α, β. Then A∩B is a sequence of Bernoulli random subsets of E with density α + β -1, and

dens(A ∩ B) = α + β -1 if α + β > 1 -∞ if α + β < 1. Proof. For every element x ∈ E n , Pr(x ∈ A n ∩ B n ) = Pr(x ∈ A n )Pr(x ∈ B n ) = |E n | (α+β-1)-1 . In addition, for every pair of distinct elements x, y in E n Pr(x, y ∈ A n ∩ B n ) = Pr(x, y ∈ A n )Pr(x, y ∈ B n ) = Pr(x ∈ A n )Pr(y ∈ A n )Pr(x ∈ B n )Pr(y ∈ B n ) = Pr(x ∈ A n ∩ B n )Pr(y ∈ A n ∩ B n ).
So A ∩ B is a sequence of Bernoulli random subsets with density α + β -1. Proposition 2.7 gives its density.

Note that by the remark after Proposition 2.7, if α + β = 1 then the sequence A ∩ B is not densable. As Theorem 2.18 shows, the class of Bernoulli random subsets is closed under intersections. Thereby the intersection formula works for multiple independent sequences of random subsets. The formula is more concise in terms of codensities.

Definition 2.19 (c.f. [Gro93] p.269). Let A be a densable sequence of random subsets. The codensity of A is defined by codens A = 1 -dens A.

In particular, if dens A = -∞, then codens A = ∞.

Theorem 2.18 can be rephrased as (see [START_REF] Gromov | Finitely presented groups[END_REF] p.270):

Corollary 2.20 (The intersection formula by codensities). Let A, B be independent sequences of Bernoulli random subsets of E with positive densities.

(i) If codens A + codens B < 1, then codens(A ∩ B) = codens A + codens B. (ii) If codens A + codens B > 1, then codens(A ∩ B) = ∞.
Now we can express the codensity of the intersection of several sequences of random subsets. Note that the following corollary holds because the Bernoulli density model is closed under intersections.

Corollary 2.21 (Generalized intersection formula by codensities). Let A 1 , . . . , A k be independent sequences of Bernoulli random subsets with positive densities.

(i) If k i=1 codens A i < 1, then codens k i=1 A i = k i=1 codens A i . (ii) If k i=1 codens A i > 1, then codens k i=1 A i = ∞.

The uniform density model

Recall that a sequence of uniform random subsets of E = (E n ) with density d is a sequence of random subsets A = (A n ) with the following law:

Pr(A n = a) = n ⌊n d ⌋ -1 if |a| = ⌊n d ⌋ 0 if |a| ̸ = ⌊n d ⌋.
Theorem 2.22 (The intersection formula for the uniform density model). Let A, B be independent sequences of uniform random subsets of E with densities α, β. If α + β ̸ = 1, then the sequence A ∩ B is densable and

dens(A ∩ B) = α + β -1 if α + β > 1 -∞ if α + β < 1.
Let us first estimate the expected value and the variance of the random variable |A n ∩ B n |.
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Lemma 2.23. Let A, B be independent sequences of uniform random subsets of E with densities α, β ∈

[0, 1]. (i) n α+β-1 -2 ≤ E(|A n ∩ B n |) ≤ n α+β-1 . (ii) If α < 1 and β < 1, then Var(|A n ∩ B n |) ∼ n α+β-1 . Moreover, if n ≥ 3, then Var(|A n ∩ B n |) ≤ 3n α+β-1 .
Proof.

(i) By Lemma 2.9, as uniform random subsets are permutation invariant, A n ∩ B n is a permutation invariant random subset of E n . Apply Lemma 2.10 (i) on A n ∩ B n , A n and B n ,

E(|A n ∩ B n |) = nPr(x ∈ A n ∩ B n ) = nPr(x ∈ A n )Pr(x ∈ B n ) = n E(|A n |) n E(|B n |) n = ⌊n α ⌋⌊n β ⌋n -1 .
Because α, β ≤ 1, we have

n α+β-1 -2 ≤ n α+β-1 -n α-1 -n β-1 + n -1 ≤ ⌊n α ⌋⌊n β ⌋n -1 ≤ n α+β-1 .
(ii) Let x, y be distinct elements in E. The number of subsets of E containing x, y of cardinality

⌊n α ⌋ is n-2 ⌊n α ⌋-2 , so Pr(x, y ∈ A n ) = n-2 ⌊n α ⌋-2 n ⌊n α ⌋ = ⌊n α ⌋(⌊n α ⌋ -1) n(n -1) .
Similarly,

Pr(x, y ∈ B n ) = ⌊n β ⌋(⌊n β ⌋ -1) n(n -1) .
Denote k = ⌊n α ⌋ and l = ⌊n β ⌋ to simplify the notation. Note that k = o(n) and l = o(n) as α < 1 and β < 1. Apply Lemma 2.10 (ii) on |A n ∩ B n |. By the proof of (i), E(|A n ∩ B n |) = kln -1 . We have

Var(|A n ∩ B n |) = kln -1 + n(n -1)Pr(x, y ∈ A n )Pr(x, y ∈ B n ) -(kln -1 ) 2 = kln -1 + k(k -1)l(l -1) n(n -1) -(kln -1 ) 2 = kl n 2 (n -1) (n 2 -n + nkl -nl -nk + n -nkl + kl) = kl n 2 (n -1) (n 2 -nl -nk + kl) ∼ kl n 2 (n -1) • n 2 ∼ n α+β-1 . Moreover, if n ≥ 3, then Var(|A n ∩ B n |) = kl n 2 (n -1) (n 2 -nl -nk + kl) ≤ 2kl n -1 ≤ 2n α+β n -1 ≤ 3n α+β-1 .
Lemma 2.24 (The concentration lemma). Let A, B be independent sequences of uniform random subsets of

E with densities α, β ∈ [0, 1]. If α + β -1 > 0 and n ≥ 8 1 α+β-1 , then Pr |A n ∩ B n | -n α+β-1 > 1 2 n α+β-1 ≤ 48 n α+β-1 ----→ n→∞ 0.
In particular, a.a.s.

|A n ∩ B n | -n α+β-1 ≤ 1 2 n α+β-1 .
Proof. By Lemma 2.23 (i) with n ≥ 8 

1 α+β-1 ≥ 4, we have E(|A n ∩ B n |) -n α+β-1 ≤ 1 4 n α+β-1 . If α = 1 or β = 1,
Pr |A n ∩ B n | -n α+β-1 > 1 2 n α+β-1 ≤ Pr ||A n ∩ B n | -E(|A n ∩ B n |)| > 1 4 n α+β-1 ≤ 16 Var(|A n ∩ B n |) n 2α+2β-2 ≤ 48 n α+β-1 .
Remark. Some constants in this lemma (8 1 α+β-1 and 48 n α+β-1 ) are not useful for proving the intersection formula for the uniform density model, but will be used to prove the intersection formula for the permutation invariant density model (see Lemma 2.26).

Remark. The concentration lemma shows that the cardinality of A n ∩ B n is close to n α+β-1 with high probability, but not with probability 1. If α ̸ = 1 and β ̸ = 1, then for n large enough ⌊n α ⌋ + ⌊n β ⌋ < n, so Pr(A n ∩ B n = Ø) ̸ = 0. Which means that A ∩ B is not a sequence of uniform random subsets. As the class of sequences of uniform random subsets is not closed under intersections, Corollary 2.21 can not be applied for the uniform density model.

Now we can prove the intersection formula for the uniform density model.

Proof of Theorem 2.22.

(i) If α + β < 1, then by Markov's inequality and Lemma 2.23 (i),

Pr(|A n ∩ B n | ≥ 1) ≤ E(|A n ∩ B n |) ----→ n→∞ 0, which implies a.a.s. A n ∩ B n = Ø, so dens(A ∩ B) = -∞. (ii) If α + β > 1, by Lemma 2.24, a.a.s. |A n ∩ B n | -n α+β-1 ≤ 1 2 n α+β-1 .
By the argument proving the densability for the Bernoulli density model (Proposition 2.7), ∀ε > 0 a.a.s.

n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε .
By the characterization of densability (Proposition 2.6), the sequence of random subsets (A n ∩ B n ) is densable with density α + β -1.

The permutation invariant model

Here is our Theorem A in Introduction.

Theorem 2.25 (The intersection formula). Let A, B be independent sequences of permutation invariant random subsets with densities α, β. If α + β ̸ = 1, then the sequence A ∩ B is densable and permutation invariant, with density

dens(A ∩ B) = α + β -1 if α + β > 1 -∞ if α + β < 1. Lemma 2.26. Let α, β ∈ [0, 1] such that α+β > 1. Let 0 < ε < α+β -1. Let A, B independent sequences of uniform random subsets of E with densities α ′ , β ′ with α ′ ∈ [α-ε/3, α+ε/3] and β ′ ∈ [β -ε/3, β +ε/3]. If n ≥ max 2 3/ε , 8 1/(α+β-1-ε) , then Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε ≥ 1 - 48 n α+β-1-ε ----→ n→∞ 1. Proof. By hypothesis α ′ + β ′ -1 ≥ α + β -2ε/3 -1 > 0. Apply Lemma 2.24 (iii), if n ≥ 8 1/(α+β-1-ε) ≥ 8 1/(α ′ +β ′ -1) , then Pr |A n ∩ B n | -n α ′ +β ′ -1 ≥ 1 2 n α ′ +β ′ -1 ≤ 48 n α ′ +β ′ -1 .
This can be rewritten as

Pr 1 2 n α ′ +β ′ -1 < |A n ∩ B n | < 3 2 n α ′ +β ′ -1 > 1 - 48 n α ′ +β ′ -1 . By hypothesis α + β -1 -2ε/3 ≤ α ′ + β ′ -1 ≤ α + β -1 + 2ε/3. If n ≥ 2 3/ε , then n α+β-1-ε ≤ 1 2 n α+β-1-2ε/3 ≤ 3 2 n α+β-1+2ε/3 ≤ n α+β-1+ε .
Hence, for n ≥ 2 3/ε ,

Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε ≥Pr 1 2 n α+β-1-2ε/3 ≤ |A n ∩ B n | ≤ 3 2 n α+β-1+2ε/3 ≥Pr 1 2 n α ′ +β ′ -1 < |A n ∩ B n | < 3 2 n α ′ +β ′ -1 .
Combine two estimations on n. If n ≥ max 2 3/ε , 8 1/(α+β-1-ε) , then

Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε ≥ 1 - 48 n α ′ +β ′ -1 ≥ 1 - 48 n α+β-1-ε . As α + β -1 -ε > 0, 48 n α+β-1-ε ----→ n→∞ 0.
Now we can prove the intersection formula for the permutation invariant model. The idea is to decompose permutation invariant random subsets A n and B n into uniform random subsets, so that we can apply Lemma 2.26.

Proof of Theorem 2.25. By Lemma 2.9 the intersection A∩B is a sequence of permutation invariant random subsets. Denote (Q n ) the sequence of events defined by

Q n = {n α-ε/3 ≤ |A n | ≤ n α+ε/3 and n β-ε/3 ≤ |B n | ≤ n β+ε/3 }
for some small ε > 0 to be specified. By Proposition 2.6 and the densabilities of A and B, a.a.s. Q n is true. Note that Q n is a union of events of type

{|A n | = k, |B n | = l}. Denote N 2 A,B,n,ε := (k, l) ∈ N 2 n α-ε/3 ≤ k ≤ n α+ε/3 , n β-ε/3 ≤ l ≤ n β+ε/3 and Pr(|A n | = k, |B n | = l) ̸ = 0 . For (k, l) ∈ N 2 A,B,n,ε , by a change of variables k = n α ′ , l = n β ′ , we have α -ε/3 ≤ α ′ ≤ α + ε/3 and β -ε/3 ≤ β ′ ≤ β + ε/3. (i) Suppose that α + β < 1. Let 0 < ε < 1 -α -β.
We shall prove that a.a.s.

A n ∩ B n = Ø.
By the formula of total probability and Markov's inequality,

Pr(A n ∩ B n ̸ = Ø) ≤ Pr (|A n ∩ B n | ≥ 1 | Q n ) Pr(Q n ) + Pr(Q n ) ≤ (k,l)∈N 2 A,B,n,ε Pr (|A n ∩ B n | ≥ 1 | |A n | = k, |B n | = l) Pr(|A n | = k, |B n | = l|) + Pr(Q n ). ≤ (k,l)∈N 2 A,B,n,ε E (|A n ∩ B n | | |A n | = k, |B n | = l) Pr(|A n | = k, |B n | = l|) + Pr(Q n ).
For any (k, l) ∈ N 2 A,B,n,ε , by Lemma 2.23 (i)

E (|A n ∩ B n | | |A n | = k, |B n | = l) = E |A n ∩ B n | |A n | = n α ′ , |B n | = n β ′ ≤ n α ′ +β ′ -1 ≤ n α+β+2ε/3-1 ≤ n -ε/3 . Hence Pr(A n ∩ B n ̸ = Ø) ≤ n -ε/3 Pr(Q n ) + Pr(Q n ) ----→ n→∞ 0.
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(ii) Suppose that α + β > 1. Let 0 < ε < α + β -1. We shall prove that a.a.s.

n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε .
By the formula of total probability,

Pr(n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε ) ≥ Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε Q n Pr(Q n ) = (k,l)∈N 2 A,B,n,ε Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε |A n | = k, |B n | = l Pr(|A n | = k, |B n | = l|) .
Apply Lemma 2.26 and Proposition 2.11 (decomposition into uniform random subsets). If n is large enough (n ≥ max 2 3/ε , 8 1/(α+β-1-ε) ), then for any (k, l) ∈ N 2 A,B,n,ε ,

Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε |A n | = k, |B n | = l = Pr n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε |A n | = n α ′ , |B n | = n β ′ ≥ 1 - 48 n α+β-1+ε ----→ n→∞ 1.
Hence, for n large enough,

Pr(n α+β-1-ε ≤ |A n ∩ B n | ≤ n α+β-1+ε ) ≥ (k,l)∈N 2 A,B,n,ε 1 - 48 n α+β-1+ε Pr(|A n | = k, |B n | = l) ≥ 1 - 48 n α+β-1+ε Pr(Q n ) ----→ n→∞ 1.

Which completes the proof by the characterization of densability (Proposition 2.6).

Remark that when α + β = 1 the density is not determined, as the remark for Proposition 2.7 showed for Bernoulli random subsets. Because the class of permutation invariant random subsets is closed under intersections, we can conclude on multiple intersections, as for the Bernoulli density model (Corollary 2.21).

Corollary 2.27. Let A 1 , . . . , A k be independent sequences of permutation invariant random subsets of positive densities.

(i) If k i=1 codens A i < 1, then codens k i=1 A i = k i=1 codens A i . (ii) If k i=1 codens A i > 1, then dens k i=1 A i = -∞.

The random-fixed intersection formula

The intersection formula can be established between a densable sequence of random subsets and a densable sequence of fixed subsets (Theorem B).

Theorem 2.28 (The random-fixed intersection formula, Theorem B). Let A be a densable sequence of permutation invariant random subsets of E with density d. Let X be a sequence of (fixed) subsets of E with density α. If d + α ̸ = 1, then the sequence of random subsets A ∩ X is densable and

dens(A ∩ X) = d + α -1 if d + α > 1 -∞ if d + α < 1.
In addition, the sequence A ∩ X is a densable sequence of permutation invariant random subset of X with density d+α-1 α .

As this theorem can be regarded as a special case of the multidimensional intersection formula with k = 1 (see Remark for Theorem 2.40), we will not repeat the proof.

The multidimensional intersection formula

Let E = (E n ) be a sequence of finite sets with |E n | = n. Let k ≥ 1 be an integer. Denote the set of pairwise different k-tuples of E n by

E (k) n = {(x 1 , . . . , x k ) ∈ E k n | x i ̸ = x j ∀i ̸ = j}. Denote E (k) = (E (k) n ) n∈N . Similarly, for a sequence of random subsets A = (A n ) of E, A (k) n := {(x 1 , . . . , x k ) ∈ A k n | x i ̸ = x j ∀i ̸ = j}.
The sequence

A (k) = (A (k)
n ) is a sequence of random subsets of E (k) . In this section, we establish an intersection formula between a sequence of random subsets of type A (k) and a densable sequence of fixed subsets X = (X n ) of E (k) . To this end, we need an additional condition on X. More precisely, X can not have too much "self-intersection". We will discuss this condition in the first subsection.

Following the path for proving the intersection formula (Theorem 2.25), we study first the case that A is a sequence of Bernoulli random subsets with density d. We then adapt the proof for the uniform density model, and prove the theorem for the permutation invariant model by decomposing permutation invariant random subsets into uniform random subsets.

The set of pairwise distinct k-tuples

In this subsection, we focus on the sequence of the set of pairwise distinct k-tuples E (k) . We will discuss the following two points. a. Sequences of random subsets of the type A (k) b. The self-intersection partition, and the d-small self-intersection condition of a sequence of subsets X of E (k) .
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2.3.1.a Random subsets of the type A (k)

Proposition 2.29. Let A be a densable sequence of random subsets of E with density d > 0. Then A (k) is a densable sequence of random subsets of E (k) with density d. Namely,

dens E (k) (A (k) ) = dens E (A).
Proof. Let ε > 0 be a small real number. Note that

n k -k 2 (n -1) k ≤ |E (k) n | ≤ n k , so for n large enough, n k(1-ε) ≤ |E (k) n | ≤ n k(1+ε) .
By densability of A and Proposition 2.6, a.a.s. 1+ε) . By the same argument above, a.a.s.

n d(1-ε) ≤ |A n | ≤ n d(
n dk(1-ε) 2 ≤ |A (k) n | ≤ n dk(1+ε) 2 .
Hence, a.a.s.

|E (k) n | d(1-ε) 2 (1+ε) -1 ≤ |A (k) n | ≤ |E (k) n | d(1+ε) 2 (1-ε) -1 .
We conclude by the characterization of densability (Proposition 2.6).

Although the densability of A (k) is preserved, it is not the case for being permutation invariant. Given a permutation invariant random subset A n of E n , the random subset

A (k) n is not permutation invariant in E (k) n
for k ≥ 2. Here is a simple example.

Counter example. Let (A n ) be a sequence of Bernoulli random subsets of (E n ) with density 0 < d < 1. Recall that subsets of the same cardinality have the same probability. Let x 1 , . . . , x 4 be distinct elements in E n .

Pr {(x 1 , x 2 ), (x 3 , x 4 )} ⊂ A (2) n = Pr ({x 1 , x 2 , x 3 , x 4 } ⊂ A n ) = n 4(d-1) , while Pr {(x 1 , x 2 ), (x 2 , x 3 )} ⊂ A (2) n = Pr ({x 1 , x 2 , x 3 } ⊂ A n ) = n 3(d-1) .
In particular, the classical intersection formula (Theorem 2.28) can not be applied. Actually, for k ≥ 2 the intersection formula does not work for some sequences of random subsets X. We give here a counterexample.

Example. Let A be a densable sequence of permutation invariant random subsets with density 3/4. Let X = (X n ) be a sequence of subsets defined by

X n = {x n } × (E n \{x n }) ⊂ E (2)
n with some x n ∈ E n . By its construction dens E (2) (X) = 1/2, so we expected that dens(A (2) ∩ X) = 3/4 + 1/2 -1 = 1/4. However, we have

dens(A (2) ∩ X) = 0 because a.a.s. A n ∩ {x n } = Ø.

2.3.1.b The self-intersection partition of a subset

Definition 2.30 (Self-intersection). Let X = (X n ) be a sequence of fixed subsets of E (k) with density α.

For 0 ≤ i ≤ k, the i-th self-intersection of X n is Y i,n := {(x, y) ∈ X 2 n | |x ∩ y| = i}
where |x ∩ y| is the number of common elements between the sets x = (x 1 , . . . , x k ) and y = (y 1 , . . . , y k ).

For example, with k = 3 and x 1 , x 2 , x 3 , x 4 different elements of E n , the pair ((x 1 , x 2 , x 3 ), (x 2 , x 3 , x 4 )) is in Y 2,n because x 2 , x 3 are repeated.

In particular, Y 0,n is the set of pairs (x, y) in X 2 n having no intersection; Y k,n is the set of pairs (x, y) in

X 2 n such that y is a permutation of x. Note that (Y i,n ) 0≤i≤k is a partition of X 2 n , called the self-intersection partition of X n . Namely, X 2 n = k i=0 Y i,n .
Definition 2.31 (Self-intersection partition). The sequence

Y i = (Y i,n ) n∈N is called the i-th self intersection of X.
The family of sequences (Y i ) 0≤i≤k is called the self-intersection partition of X. Namely,

X 2 = k i=0 Y i .
The sequences X 2 and Y i are sequences of fixed subsets of (E

(k) ) 2 = (E (k) n ) 2 n∈N . Note that dens (E (k) ) 2 (X 2 ) = dens E (k) (X) = α.
To give a condition on Y i , we need the notion of upper density. We introduce here, for a sequence of densable fixed subsets X of E (k) with density α, the small selfintersection condition: Definition 2.33 (d-small self-intersection condition). Let X be a sequence of subsets of E (k) with density α and let (Y i ) 0≤i≤k be its self-intersection partition. Let d > 1 -α. We say that X satisfies the d-small self-intersection condition if, for every

1 ≤ i ≤ k -1, dens (E (k) ) 2 (Y i ) < α -(1 -d) × i 2k .
Remark (The cases i = 0 and i = k).

For i = k, we have |Y k,n | = |{(x, y) ∈ X 2 n | y is a permutation of x}| = k!|X n |, so dens (E (k) ) 2 Y k = α 2 < α -(1 -d) k 2k .
For i = 0, as the upper densities of Y i for 1 ≤ i ≤ k are all smaller than α (because

0 < 1 -d < α) and Y 0,n = X 2 n \ k i=1 |Y i,n |
, by Proposition 2.13 (density of unions) and Proposition 2.14 (density of complements), the sequence Y 0 is densable in (E (k) ) 2 with density

dens (E (k) ) 2 Y 0 = dens (E (k) ) 2 X 2 = α.
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We shall represent the expected value and the variance of the random variable |A Lemma 2.34. Let E, A and X given by Theorem 2.40 and let (Y i ) 0≤i≤k be the self-intersection partition of X. Let x 1 , . . . , x 2k be distinct 2k elements of E n .

(i) E |A (k) n ∩ X n | = |X n |Pr ({x 1 , . . . , x k } ⊂ A n ). (ii) Var |A (k) n ∩ X n | = |X n | 2 Pr({x 1 , . . . , x 2k } ⊂ A n ) -Pr({x 1 , . . . , x k } ⊂ A n ) 2 + k i=1 |Y i,n | Pr({x 1 , . . . , x 2k-i } ⊂ A n ) -Pr({x 1 , . . . , x 2k } ⊂ A n ) . Proof. (i) As A n is permutation invariant, the probability Pr({x 1 , . . . , x k } ⊂ A n ) does not depend on the choice of {x 1 , . . . , x k }. So E(|A (k) n ∩ X n |) = E x∈Xn 1 x∈A (k) n = x∈Xn Pr x ∈ A (k) n = |X n |Pr ({x 1 , . . . , x k } ⊂ A n ) .
(ii) By the same reason Pr({x 1 , . . . , x r } ⊂ A n ) does not depend on the choice of {x 1 , . . . , x r } for all r ∈ N. Note that

Var(|A (k) n ∩ X n |) = E |A (k) n ∩ X n | 2 -E |A (k) n ∩ X n | 2 .
If (x, y) ∈ Y i,n , then there are 2k -i different elements of E n in x and y, so Pr x, y ∈ A

(k) n = Pr({x 1 , . . . , x 2k-i } ⊂ A n ). Hence, E |A (k) n ∩ X n | 2 = E   x∈Xn 1 x∈A (k) n 2   = x,y∈Xn Pr x, y ∈ A (k) n = k i=0 (x,y)∈Yi,n Pr x, y ∈ A (k) n = k i=0 |Y i,n |Pr({x 1 , . . . , x 2k-i } ⊂ A n ).
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Recall that |Y 0,n | = |X 2 n | - k i=1 |Y i,n |.
The above can be rewritten as

E |A (k) n ∩ X n | 2 = |X 2 n | - k i=1 |Y i,n | Pr({x 1 , . . . , x 2k } ⊂ A n ) + k i=1 |Y i,n |Pr({x 1 , . . . , x 2k-i } ⊂ A n ) = |X 2 n |Pr({x 1 , . . . , x 2k } ⊂ A n ) + k i=1 Pr({x 1 , . . . , x 2k-i } ⊂ A n ) -Pr({x 1 , . . . , x 2k } ⊂ A n ) . Combined with E |A (k) n ∩ X n | 2 = |X n | 2 Pr ({x 1 , . . . , x k } ⊂ A n ) 2 , we have 
Var(|A (k) n ∩ X n |) = |X n | 2 Pr({x 1 , . . . , x 2k } ⊂ A n ) -Pr({x 1 , . . . , x k } ⊂ A n ) 2 + k i=1 |Y i,n | Pr({x 1 , . . . , x 2k-i } ⊂ A n ) -Pr({x 1 , . . . , x 2k } ⊂ A n .
Remark. Lemma 2.10 is a special case of this lemma, with k = 1 and X n = E n .

The Bernoulli density model

In this subsection, we prove the multidimensional intersection formula for the Bernoulli density model. The Bernoulli density model is easier to manipulate because of the following proposition.

Proposition 2.35. Let A be a sequence of Bernoulli random subsets of E with density 0 < d < 1. For any integer r ∈ N and any distinct elements x 1 , . . . , x r in E n , we have

Pr ({x 1 , . . . , x r } ⊂ A n ) = Pr ({x 1 ∈ A n }, . . . , {x r ∈ A n }) = r i=1 Pr(x i ∈ A n ) = n r(d-1) .
The proof is evident by the independence of the events Pr(x i ∈ A n ). Because of this equality, the proof of the multidimensional intersection formula is much simpler for the Bernoulli density model. We establish later a similar proposition for the uniform density model (Proposition 2.38).

Theorem 2.36 (The multidimensional intersection formula for the Bernoulli density model). Let A be a sequence of Bernoulli random subsets of E with density d > 0. Let X = (X n ) be a sequence of subsets of E (k) with density α.

(i) If d + α < 1, then A (k) ∩ X is densable and dens(A (k) ∩ X) = -∞.
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(ii) If d + α > 1 and X satisfies the d-small self intersection condition (Definition 2.33), then A (k) ∩ X is densable and

dens(A (k) ∩ X) = α + d -1.
Proof.

(i) Suppose that α + d < 1. To prove that dens(A

(k) ∩ X) = -∞, it is enough to prove that Pr A (k) n ∩ X n ̸ = Ø ----→ n→∞ 0.
By Markov's inequality and Lemma 2.34 (i) and Proposition 2.35,

Pr A (k) n ∩ X n ̸ = Ø = Pr |A (k) n ∩ X n | ≥ 1 ≤ E |A (k) n ∩ X n | = |X n |Pr ({x 1 , . . . , x k } ⊂ A n ) ≤ n kα+o(1) n k(d-1) ≤ n k(α+d-1)+o(1) ----→ n→∞ 0 as α + d -1 < 0.
(ii) Suppose that α + d > 1. To simplify the notation, denote

B n = A (k)
n ∩ X n and B = X ∩ A (k) . We shall prove that dens B = α + d -1. Let ε > 0 be a small real number. We want to prove that a.a.s.

n k(α+d-1-ε) ≤ |B n | ≤ n k(α+d-1+ε) .
By Lemma 2.34 (i) and Proposition 2.35,

E (|B n |) = |X n |Pr ({x 1 , . . . , x k } ⊂ A n ) = |X n |n k(d-1)
= n k(α+d-1)+o(1) .

For n large enough,

n k(α+d-1-ε) < 1 2 n k(α+d-1)+o(1) < 3 2 n k(α+d-1)+o(1) < n k(α+d-1+ε) .
So it is enough to prove that a.a.s.

1 2 E (|B n |) < |B n | < 3 2 E (|B n |) , which is equivalent so a.a.s. ||B n | -E (|B n |)| < 1 2 E (|B n |) .

By Chebyshev's inequality

Pr ||B n | -E (|B n |)| ≥ 1 2 E (|B n |) ≤ 4 Var (|B n |) E (|B n |) 2 .
We shall prove that 4 Var(|Bn|) E(|Bn|) 2 converges to 0 when n goes to infinity. By Lemma 2.34 (ii) and Proposition 2.35,

Var(|B n |) = |X n | 2 Pr({x 1 , . . . , x 2k } ⊂ A n ) -Pr({x 1 , . . . , x k } ⊂ A n ) 2 + k i=1 |Y i,n | Pr({x 1 , . . . , x 2k-i } ⊂ A n ) -Pr({x 1 , . . . , x 2k } ⊂ A n = k i=1 |Y i,n | n (2k-i)(d-1) -n 2k(d-1) ≤ k i=1 |Y i,n |n (2k-i)(d-1)
Note that n (2k-i)(d-1) > n 2k(d-1) because d < 1. By the d-small self-intersection condition (Definition 2.33), there exists ε > 0 such that, for all 1 ≤ i ≤ k,

|Y i,n | ≤ n 2k(α+(d-1) i 2k )-ε
for n large enough. Hence, for n large enough,

Var(|B n |) ≤ kn 2k(α+d-1)-ε . Recall that E (|B n |) 2 = n 2k(α+d-1)+o(1) , so 4 Var (|B n |) E (|B n |) 2 ----→ n→∞ 0.

The uniform density model

In this subsection we prove the theorem for the uniform density model.

Theorem 2.37 (The multidimensional intersection formula for the uniform density model). Let A be a sequence of uniform random subsets of E with density d. Let X = (X n ) be a sequence of subsets of E (k) with density α.

(i) If d + α < 1, then A (k) ∩ X is densable and dens(A (k) ∩ X) = -∞.
(ii) If d + α > 1 and X satisfies the d-small self intersection condition (Definition 2.33), then A (k) ∩ X is densable and

dens(A (k) ∩ X) = α + d -1.
Recall that to prove this theorem in the Bernoulli density model, we rely on the following two facts:

Pr({x 1 , . . . , x r } ⊂ A n ) = n r(d-1) ,
and

Pr({x 1 , . . . , x k } ⊂ A n ) 2 -Pr({x 1 , . . . , x 2k } ⊂ A n ) = 0.
We shall estimate the two quantities on the left-hand side for the uniform density model.

Proposition 2.38. Let A be a sequence of uniform random subsets of E with density d. Let 0 < ε < d be a small real number and let k ≥ 1 be an integer. If n ≥ (1 + 2k)

1 ε , then (i) For any integer 1 ≤ r ≤ 2k, n r(d-1-ε) ≤ Pr({x 1 , . . . , x r } ⊂ A n ) ≤ n r(d-1+ε) . (ii) 0 ≤ Pr({x 1 , . . . , x k } ⊂ A n ) 2 -Pr({x 1 , . . . , x 2k } ⊂ A n ) ≤ n 2k(d-1+ε)-d
In fact, for (ii), we will only need the left-hand side inequality.

Proof. Recall that |E n | = n and that A n is a uniform distribution on all subsets of E n of cardinality ⌊n d ⌋.

(i) Because ε < d, we have ⌊n d ⌋ ≥ n ε -1 ≥ 2k ≥ r. Among all subsets of E n of cardinality ⌊n d ⌋, there are n-r ⌊n d ⌋-r subsets that include {x 1 , . . . , x r }. So

Pr({x 1 , . . . , x r } ⊂ A n ) = n-r ⌊n d ⌋-r n ⌊n d ⌋ = ⌊n d ⌋ . . . (⌊n d ⌋ -r + 1) n . . . (n -r -1) .
We have

n d -r n r ≤ ⌊n d ⌋ . . . (⌊n d ⌋ -r + 1) n . . . (n -r -1) ≤ n d n -r r . The condition n ≥ (1 + 2k) 1 ε ≥ (1 + r) 1 ε implies n ≥ n 1-ε (1 + r) n d ≥ n d-ε (1 + r), so n 1-ε ≤ n -r n d-ε ≤ n d -r.
Hence,

n d-1-ε r ≤ ⌊n d ⌋ . . . (⌊n d ⌋ -r + 1) n . . . (n -r -1) ≤ n d-1+ε r . Which means that n r(d-1-ε) ≤ Pr({x 1 , . . . , x r } ⊂ A n ) ≤ n r(d-1+ε) .
(ii) By the same argument,

Pr({x 1 , . . . , x k } ⊂ A n ) 2 -Pr({x 1 , . . . , x 2k } ⊂ A n ) = ⌊n d ⌋ . . . (⌊n d ⌋ -k + 1) n . . . (n -k -1) 2 - ⌊n d ⌋ . . . (⌊n d ⌋ -2k + 1) n . . . (n -2k -1) = ⌊n d ⌋ . . . (⌊n d ⌋ -k + 1) n . . . (n -k -1) ⌊n d ⌋ . . . (⌊n d ⌋ -k + 1) n . . . (n -k -1) - (⌊n d ⌋ -k) . . . (⌊n d ⌋ -2k + 1) (n -k) . . . (n -2k -1) .
This number is positive because

⌊n d ⌋-i n-i ≥ ⌊n d ⌋-i-k n-i-k for every 0 ≤ i ≤ k -1. By a simple estimation of type n -k + i ≥ n -k, we have Pr({x 1 , . . . , x k } ⊂ A n ) 2 -Pr({x 1 , . . . , x 2k } ⊂ A n ) ≤ n d n -k k n dk (n -k) k - (n d -2k) k (n -k) k ≤ n dk (n -k) 2k n dk - k i=0 k i n d(k-i) (-2k) i ≤ n dk (n -k) 2k (1 + 2k) k n d(k-1) = n d √ 1 + 2k n -k 2k n -d . As n ε ≥ 1 + 2k, we have n -k ≥ n 1-ε (1 + 2k) -k ≥ n 1-ε (1 + k) ≥ n 1-ε √ 1 + 2k, so n d √ 1 + 2k n -k ≤ n d-1+ε .
Hence,

Pr({x 1 , . . . , x k } ⊂ A n ) 2 -Pr({x 1 , . . . , x 2k } ⊂ A n ) ≤ n 2k(d-1+ε)-d .
Notation. Let X be a sequence of subsets of E (k) with density α and let (Y i ) 0≤i≤k be its self-intersection partition (Definition 2.31). Recall that the upper density densY i is defined as an upper limit of densities (Definition 2.32). Denote the density difference by

ε 0 (d) = min 1≤i≤k α + (d -1) i 2k -densY i .
By Definition 2.33, the sequence of subsets X has d-small self-intersection if and only if ε 0 (d) > 0. In addition, for every small real number 0 < ε < ε0 (d) 10 , there exists n ε ∈ N such that for all n ≥ n ε we have, simultaneously for all

1 ≤ i ≤ k, |Y n,i | ≤ n 2k(α+(d-1) i 2k -10ε) = n 2kα+(d-1)i-2k×10ε .
By the densability of X, we can choose n ε such that at the same time

n k(α-ε) ≤ |X n | ≤ n k(α+ε) .
Combine with Proposition 2.38, we can now estimate the expected value and the variance of

|A (k)
n ∩ X n | for the uniform density model. Lemma 2.39. Let A be a sequence of uniform random subsets of E with density d. Let X be a sequence of subsets of E (k) with density α. Let 0 < ε < min{ ε0 (d) 10 , d} be a small real number. If n ≥ max n ε , (1 + 2k)

1 ε , then 52 CHAPTER 2. RANDOM SUBSETS WITH DENSITY AND THE INTERSECTION FORMULA (i) n k(α+d-1-2ε) ≤ E |A (k) n ∩ X n | ≤ n k(α+d-1+2ε) . (ii) If in addition α + d -1 > 2ε > 0 and X has d-small self-intersection, then Var |A (k) n ∩ X n | ≤ kn 2k(α+d-1-9ε) .
In particular,

Var |A (k) n ∩ X n | E |A (k) n ∩ X n | 2 ≤ kn -14kε .
Proof.

(i) Recall Lemma 2.34 (i),

E |A (k) n ∩ X n | = |X n |Pr ({x 1 , . . . , x k } ⊂ A n ) .
By Proposition 2.38 (i) and the fact that

n k(α-ε) ≤ |X n | ≤ n k(α+ε) , we have n k(α-ε) n k(d-1-ε) ≤ E |A (k) n ∩ X n | ≤ n k(α+ε) n k(d-1+ε) .
(ii) By the left-hand side inequality of Proposition 2.38 (ii), Pr({x 1 , . . . ,

x 2k } ⊂ A n )-Pr({x 1 , . . . , x k } ⊂ A n ) 2 ≤ 0.
Let us eliminate negative parts of Lemma 2.34 (ii).

Var

|A (k) n ∩ X n | = |X n | 2 Pr({x 1 , . . . , x 2k } ⊂ A n ) -Pr({x 1 , . . . , x k } ⊂ A n ) 2 + k i=1 |Y i,n | Pr({x 1 , . . . , x 2k-i } ⊂ A n ) -Pr({x 1 , . . . , x 2k } ⊂ A n ) ≤ k i=1 |Y i,n |Pr({x 1 , . . . , x 2k-i } ⊂ A n ).
By Proposition 2.38 (i) and the fact that

|Y i,n | ≤ n 2kα+i(d-1)+2k×10ε , Var |A (k) n ∩ X n | ≤ k i=1 n 2kα+i(d-1)-2k×10ε n (2k-i)(d-1+ε)
≤ kn 2k(α+d-1-9ε) .

Now we can prove the multidimensional intersection formula for the uniform density model.

Proof of Theorem 2.37.

(i) Suppose that α + d < 1. We shall prove that Pr A

(k) n ∩ X n ̸ = Ø ----→ n→∞ 0. Let ε > 0 such that ε < min 1 -d -α 2 , ε 0 (d) 10 , d .
By Markov's inequality and Lemma 2.39 (i). If n ≥ max{n ε , (1 + 2k)

1 ε }, then Pr A (k) n ∩ X n ̸ = Ø = Pr |A (k) n ∩ X n | ≥ 1 ≤ E |A (k) n ∩ X n | ≤ n k(α+d-1+2ε) ----→ n→∞ 0. (ii) Suppose that α + d > 1. Denote B n = A (k) n ∩ X n . Let ε > 0 such that ε < min α + d -1 3 , ε 0 (d) 10 , d .
We shall prove that a.a.s.

n k(α+d-1-3ε) ≤ |B n | ≤ n k(α+d-1+3ε) . By Lemma 2.39 (i), if n ≥ max{n ε , (1 + 2k) 1 ε }, then n k(α+d-1-2ε) ≤ E (|B n |) ≤ n k(α+d-1+2ε) .
In addition, if n ≥ 2 1 kε , we have

n k(α+d-1-3ε) ≤ 1 2 n k(α+d-1-2ε) ≤ 1 2 E (|B n |) and 3 2 E (|B n |) ≤ 3 2 n k(α+d-1+2ε) ≤ n k(α+d-1+3ε) .
So it is enough to prove that a.a.s.

||B n | -E (|B n |)| ≤ 1 2 E (|B n |) .
By Chebyshev's inequality,

Pr ||B n | -E (|B n |)| > 1 2 E (|B n |) ≤ 4 Var (|B n |) E (|B n |) 2 .
Apply Lemma 2.39 (i) and

(ii), if n ≥ max n ε , (1 + 2k) 1 ε , 2 1 kε , then 4 Var (|B n |) E (|B n |) 2 ≤ 4kn 2k(α+d-1-9ε) n 2k(α+d-1-2ε) ≤ 4k n 14kε ----→ n→∞ 0.
Which completes the proof.
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(i) Suppose that α + d < 1. Assume in addition that ε < 1-d-α 3 .
We shall prove that

Pr Qn (A (k) n ∩ X n ̸ = Ø) = Pr Qn (|A (k) n ∩ X n | ≥ 1) ----→ n→∞ 0.
By the formula of total probability and Markov's inequality,

Pr Qn |A (k) n ∩ X n | ≥ 1 ≤ l∈N A,ε,n Pr Qn (A n = l)Pr |A (k) n ∩ X n | ≥ 1 |A n | = l ≤ l∈N A,ε,n Pr Qn (A n = l)E |A (k) n ∩ X n | |A n | = l . By a change of variable l = n d ′ with d -ε ≤ d ′ ≤ d + ε, apply Lemma 2.41 (i), Pr Qn |A (k) n ∩ X n | ≥ 1 ≤ l∈N A,ε,n Pr Qn (A n = l = n d ′ )n α+d-1+3ε ≤ n α+d-1+3ε ----→ n→∞ 0.
(ii) Suppose that α + d > 1. Assume in addition that ε < α+d-1

4

, so that we can apply Lemma 2.42.

We shall prove that

Pr Qn n k(α+d-1-4ε) ≤ |A (k) n ∩ X n | ≤ n k(α+d-1+4ε) ----→ n→∞ 1.
By Proposition 2.11 (decomposition into uniform random subsets), Lemma 2.42 and a change of variables l = n d ′ ,

Pr Qn n k(α+d-1-4ε) ≤ |A (k) n ∩ X n | ≤ n k(α+d-1+4ε) = l∈N A,ε,n Pr Qn (A n = l)Pr n k(α+d-1-4ε) ≤ |A (k) n ∩ X n | ≤ n k(α+d-1+4ε) |A n | = l = n d ′ ≥ l∈N A,ε,n Pr Qn (A n = l) 1 -kn -10kε ≥ 1 -kn -10kε ----→ n→∞ 1.

Applications to random groups

Fix an alphabet X m = {x 1 , . . . , x m } as generators of groups. Let B ℓ be the set of cyclically reduced words of X ± m of length at most ℓ. Recall the definition of a random group in the permutation invariant density model. Definition 2.43. A sequence of random groups (G ℓ (m, d)) ℓ∈N with m generators at density 0

≤ d ≤ 1 is defined by G ℓ (m, d) = ⟨X m |R ℓ ⟩
where R = (R ℓ ) is a sequence of permutation invariant random subsets of B = (B ℓ ) with density d.
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By the random-fixed intersection formula (Theorem 2.28), we have the following properties.

Properties. Let (G ℓ (m, d)) be a sequence of random groups with m generators at density d, R ℓ is the set of relators of G ℓ (m, d).

• For any s > 0, a.a.s. there is no relator of length shorter than (1 -d -s)ℓ in R ℓ .

• For any s > 0, a.a.s. there are relators of length shorter than (1

-d + s)ℓ in R ℓ .
The set of such relators is with density s in B ℓ .

• Let w be a reduced word of length ⌊(d -s)ℓ⌋ with s > 0. Then a.a.s. there are relators in R ℓ having w as a cyclic subword.

The set of such relators is with density s in B ℓ .

• If d < 1/2, then a.a.s. there is no relator of the form r = w n with n ≥ 2 in R ℓ .

Proof. Recall that the cardinality of B ℓ is |B ℓ | = (2m -1) ℓ+O(1) , and that (R ℓ ) is a sequence of permutation invariant random subsets of density d.

• Let A ℓ be the set of words of length shorter than (1 -d -s)ℓ. Its cardinality is (2m -1) (1-d-s)ℓ+O(1) , hence A = (A ℓ ) a sequence of fixed subsets with density 1 -d -s in B. By the intersection formula a.a.s. R ℓ ∩ A ℓ = Ø.

• Let A ℓ be the set of words of length shorter than (1 -d + s)ℓ. By the same argument, A = A ℓ is a sequence of fixed subsets with density 1 -d + s in B. By the intersection formula, a.a.s. R ℓ ∩ A ℓ is not empty, and the sequence of with density (1

-d + s) + d -1 = s.
• Let A ℓ be the set of cyclically relators of length ℓ having w as a subword. There are ℓ choices for the position of w as a cyclic subword, and (2m -1) ℓ-⌊(d-s)ℓ⌋-1 (2m -2) (2m -1) ℓ-⌊(d-s)ℓ⌋ choices for other letters. So A = (A ℓ ) is a sequence of subsets of B with density 1 -d + s. By the intersection formula, R ∩ A is with density s.

• For any integer 2 ≤ n ≥ ℓ, the number of words of the form w n of length at most ℓ is smaller than ℓ(2m)(2m -1) ℓ/n . So the number of words of the form w n for some n ≥ 2 of length at most ℓ is smaller than ℓ 2 (2m)(2m -1) ℓ /2. It is a set of density 1/2. By the intersection formula, a.a.s. it does not intersect R ℓ .

We have the following proposition, similar to Proposition 2.35 and Proposition 2.38. This result will be useful in the next two chapters.

Proposition 2.44. Let R = (R ℓ ) be a densable sequence of permutation invariant random subsets of B = (B ℓ ) with density d. Let 0 < ε < d/2. Denote by Q ℓ the event (2m -1) (d-ε)ℓ ≤ |R ℓ | ≤ (2m -1) (d+ε)ℓ
, we have a.a.s. Q ℓ by the characterization of densability (Proposition 2.6). Let r 1 , . . . , r k be distinct elements in R ℓ . For ℓ large enough,

(2m -1) kℓ(d-1-2ε) ≤ Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤ (2m -1) kℓ(d-1+2ε) .
Proof. The key is to decompose the permutation invariant random subset R ℓ into uniform random subsets, and apply Proposition 2.38 (i). As |B ℓ | = (2m -1) ℓ+O(1) , we choose ℓ large enough such that

|B ℓ | ≥ (1 + 2k) 4 ε , |B ℓ | d-5ε/4 ≤ (2m -1) (d-ε)ℓ ≤ (2m -1) (d+ε)ℓ ≤ |B ℓ | d+5ε/4 , and (2m -1) kℓ(d-1-2ε) ≤ |B ℓ | k(d-1-3ε/2) ≤ |B ℓ | k(d-1+3ε/2) ≤ (2m -1) kℓ(d-1+2ε) .
So under the condition Q ℓ , we have

|B ℓ | d-5ε/4 ≤ |R ℓ | ≤ |B ℓ | d+5ε/4 . Denote N ℓ,ε = {s ∈ N | |B ℓ | d-5ε/4 ≤ s ≤ |B ℓ | d+5ε/4 , Pr(|R ℓ | = s) ̸ = 0}.
Now we can decompose R ℓ into uniform random subsets, with a change of variables

s = |B ℓ | d ′ , d ′ ∈ d -5ε 4 , d + 5ε 4
. By Proposition 2.11,

Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) = s∈N ℓ,ε Pr r 1 , . . . , r k ∈ R ℓ |R ℓ | = s = |B ℓ | d ′ Pr (|R ℓ | = s | Q ℓ ) . As |B ℓ | ≥ (1 + 2k) 4 ε and ε 4 < d -5ε 4 ≤ d ′ for any d ′ ∈ d -5ε 4 , d + 5ε 4 , we can apply Proposition 2.38. For any d ′ ∈ d -5ε 4 , d + 5ε 4 , |B ℓ | k(d ′ -1-ε/4) ≤ Pr r 1 , . . . , r k ∈ R ℓ |R ℓ | = |B ℓ | d ′ ≤ |B ℓ | k(d ′ -1+ε/4) , so |B ℓ | k(d-1-3ε/2) ≤ Pr r 1 , . . . , r k ∈ R ℓ |R ℓ | = |B ℓ | d ′ ≤ |B ℓ | k(d-1+3ε/2) . Because s∈N ℓ,ε Pr |R ℓ | = s = |B ℓ | d ′ Q ℓ = 1, we have |B ℓ | k(d-1-3ε/2) ≤ Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤ |B ℓ | k(d-1+3ε/2) .
Hence,

(2m -1) kℓ(d-1-2ε)ℓ ≤ Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤ (2m -1) kℓ(d-1+2ε)ℓ .

Phase transition at density 1/2

Theorem 2.45 (Gromov, phase transition at density 1/2). Let (G ℓ (m, d)) be a sequence of random groups with density d. In [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] 2.1 (or [Oll05] I.2.b), Ollivier proved the first assertion by the probabilistic pigeon-hole principle. We give a proof here by the intersection formula (Theorem 2.25 and Theorem 2.28).

(i) If d > 1/2, then a.a.s G ℓ (m, d) is isomorphic to the trivial group. (ii) If d < 1/2, then a.a.s G ℓ (m,
Proof of Theorem 2.45 (i). Let x ∈ X m be a generator. Let A ℓ be the set of cyclically reduced words that does not start or end by x, of lengths at most ℓ -1 (so that xA ℓ ⊂ B ℓ ). The sequences A = (A ℓ ) and xA = (xA ℓ ) are sequences of fixed subsets of B = (B ℓ ) of density 1. By the random-fixed intersection formula (Theorem 2.28), the sequences x(R∩A) and R∩xA are sequences of permutation invariant random subsets of xA of density d.

By the (random-random) intersection formula (Theorem 2.25), the intersection This argument works for any generator x ∈ X m . By intersecting a finite number of a.a.s. events, a.a.s. all generators x ∈ X m are trivial in G ℓ . Hence, a.a.s. G ℓ is isomorphic to the trivial group.

(R ∩ xA) ∩ x(R ∩ A) = R ∩ xR ∩ xA
The proof of Theorem 2.45 (ii) is based on the study of van Kampen diagrams [START_REF] Van Kampen | On Some Lemmas in the Theory of Groups[END_REF]. See [START_REF] Gromov | Finitely presented groups[END_REF] 9.B. for the original idea by Gromov, [Oll04] Section 2.2 or [START_REF] Ollivier | A January 2005 invitation to random groups[END_REF] Section V for a proof by Ollivier. The local case is a corollary of our Theorem 4.3 or Theorem 3.23. For a precise estimation of hyperbolicity constants, c.f. [Cha94] Lemma 3.11 by C. Champetier.

Phase transition at density λ/2

We prove that there is a phase transition for the λ-small cancellation condition (see [START_REF] Lyndon | Combinatorial Group Theory[END_REF] for a definition). We will give a simpler proof in Section 4.3, Theorem 4.23. using the characterization of existence of diagrams (Theorem H, Theorem 4.15). 

Proof.

1. Recall that (Lyndon-Schupp [LS77] p.240) a piece with respect to a set of relators is a cyclic sub-word that appears at least twice. There are two cases to verify.

(a) Let A ℓ be the set of cyclically reduced words of length at most ℓ having a piece longer than λ times itself that appears twice, and these two paths do not overlap (figure 1). We shall prove that a.a.s. the intersection A ℓ ∩ R ℓ is empty.
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We estimate first the number of relators of length t ≤ ℓ with a piece of length s ≥ λt. There are 2t ways (including orientations) to choose the first position of the piece, and 2t -s ways to choose the second position (note that because r is reduced, it can not overlay the first one if they are with opposite orientations). For each way of positioning we can determine freely t -s letters, each with (2m -1) choices, except for the first letter and the last letter having respectively 2m and 2m -2 or 2m -1 choices. So this number is 2t(2t -s)C(m)(2m -1) t-s where C(m) is a real number that depends only on m. Hence,

|A ℓ | = ℓ t=1 t s=⌊λt⌋ 2t(2t -s)C(m)(2m -1) t-s = (2m -1) (1-λ)ℓ+o(ℓ) ,
which means that (A ℓ ) is a sequence of fixed subsets of (B ℓ ) with density 1 -λ. By the intersection formula (Theorem 2.28), because 1 -λ + d < 1, we have a.a.s.

A ℓ ∩ R ℓ = Ø.
The case that the two paths on the relator are overlapping can be treated similarly. Note that if they overlap then they are in the same direction, otherwise we would either have x = x -1 for a generator x ∈ X ± or a sub-path xx -1 appearing on the reduced relator. For the set of such relators with overlapping lengths longer than λ/2, we get a subset of density at most 1-λ because the (1 -λ)ℓ letters excluding one of the pieces determine the relator; for the set of such relators with overlapping lengths shorter than λ/2, we get a subset of density at most 1-λ/2; because the (1 -λ/2)ℓ letters excluding the non-overlapping part of one of the pieces determine the relator.

(b) Let X ℓ be the set of distinct pairs of relators r 1 , r 2 in B ℓ having a piece (figure 2) longer than

λ min{|r 1 |, |r 2 |}. It is a fixed subset of B (2) 
ℓ . We shall prove that a.a.s the intersection X ℓ ∩ R

(2) ℓ is empty.

r 1 r 2 figure 2
There are 4ℓ 2 possible positions for pieces, (2m -1) ℓ+o(ℓ) choices for r 1 and (2m -1) ℓ-λℓ+o(ℓ) choices for r 2 . So

|X ℓ | = (2m -1) (2-λ)ℓ+o(ℓ) , which means that (X ℓ ) is a sequence of fixed subsets of (B (2) 
ℓ ) with density 1 -λ 2 . By the multi-dimension intersection formula (Theorem 2.40 (i)), because 1 -λ 2 + d < 1, we have a.a.s.

X ℓ ∩ R (2) ℓ = Ø.
2. Take the sequence of sets X = (X ℓ ) constructed in 1(b). We shall prove that a.a.s. the intersection

X ℓ ∩ R (2) 
ℓ is not empty. We have already dens X + dens R (2) > 1.
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To apply Theorem 2.40(ii), we need to calculate the size of the self-intersection

Y 1,ℓ = {(x 1 , x 2 ) ∈ X 2 ℓ | |x 1 ∩ x 2 | = 1}.
Take x 1 = (r 1 , r 2 ) and x 2 = (r 1 , r 3 ) where r 1 , r 2 , r 3 are three different relators in B ℓ . There are (2m -1) ℓ+o(ℓ) choices for r 1 , (2m -1) ℓ-λℓ+o(ℓ) choices for r 2 and (2m -1) ℓ-λℓ+o(ℓ) choices for r 3 . The other three cases (x 2 = (r 2 , r 3 ), (r 3 , r 1 ) or (r 3 , r 2 )) are symmetric. Multiply these numbers, we have

|Y 1,ℓ | = (2m -1) 3ℓ-2λℓ+o(ℓ) .
The density of

Y 1 = (Y 1,ℓ ) is 3-2λ 4 in (B (2) ℓ ) 2 . As d > 0, we have 3-2λ 4 < 1 -λ 2 + 1 4 (d -1), which implies dens Y 1 < dens X + (d -1) 1 2 × 2 .
Thus we have the d-small self intersection condition (definition 2.33). By the multidimensional intersection formula, a.a.s.

X ℓ ∩ R (2) 
ℓ ̸ = Ø.

Every (m -1)-generated subgroup is free

Fix an integer k ≥ 1. Recall that the few relator model of random groups is constructed by

G ℓ = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩
where R ℓ = {r 1 , . . . , r k } is a random subset of B ℓ given by the uniform distribution on all subsets of B ℓ with cardinality k.

It is a sequence of (permutation invariant) random groups with density d = 0. By Proposition 2.46, a.a.s. G ℓ satisfies C ′ (λ) for arbitrary small λ > 0. Recall the Arzhantseva-Ol'shanskii's result in [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF].

Theorem 2.47 (Arzhantseva-Ol'shanskii, [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] Theorem 1). Let (G ℓ ) be a sequence of random groups with k relators. Then a.a.s. every (m -1)-generated subgroup of G ℓ is free.

Combining the (random-fixed) intersection formula and their arguments, we can extend the density from 0 to a small number depending on m.

Theorem 2.48. Let (G ℓ (m, d)) be a sequence of random groups with density 0 ≤ d < 1 120m 2 ln(2m) . Then a.a.s. every (m -1)-generated subgroup of G ℓ (m, d) is free.

Let us recall the definition of "µ-readable words" in [AO96] §2. Denote X m = {x 1 , . . . , x m } the set of relators.

Definition 2.49 ([AO96] §2). Let 0 < µ ≤ 1. A cyclically reduced word w of X ± m of length ℓ is µ-readable if there exists a graph Γ marked by X ± m with the following properties :

(a) the number of edges of Γ is less than µℓ;

(b) the rank of Γ is at most m -1;

(c) the word w can be read along some path of Γ.

Chapter 3

The Freiheitssatz for random groups In the first section, we recall some essential tools in combinatorial group theory (Stallings graphs [START_REF] Stallings | Topology of finite graphs[END_REF] and van Kampen diagrams [START_REF] Van Kampen | On Some Lemmas in the Theory of Groups[END_REF]), and introduce distortion van Kampen diagrams to study the distortion of subgroups of a finitely presented group. In Section 3.2, we study abstract van Kampen diagrams introduced by Y. Ollivier in [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF], and apply his idea to define abstract distortion diagrams. The main technical lemma for our main theorem (Theorem 3.22) is to estimate the number of fillings of a given abstract distortion diagram (Lemma 3.21). In the last section, we state a local result on distortion van Kampen diagrams (Lemma 3.23) and prove the main theorem by this lemma. The last subsection is for the proof of this lemma.

Let (G ℓ (m, d)) = ⟨X m |R ℓ ⟩

Preliminaries on group theory

In this section, we fix a finite group presentation G = ⟨X|R⟩ where X is the set of generators and R is the set of relators. A word u in the alphabet X ± is called reduced if it has no sub-words of type xx -1 or x -1 x for any x ∈ X. If u and v are words that represent the same element in G, we denote u = G v.

Stallings graphs (graphs generating subgroups)

We consider oriented combinatorial graphs and 2-complexes as defined in Chapter III.2. of Lyndon and Schupp [START_REF] Lyndon | Combinatorial Group Theory[END_REF].

A graph is a pair Γ = (V, E) where V is the set of vertices (also called points) and E is the set of (oriented) edges. Every edge e ∈ E has a starting point α(e) ∈ V , an ending point ω(e) ∈ V and an inverse edge e -1 ∈ E, satisfying α(e -1 ) = ω(e), ω(e -1 ) = α(e) and (e -1 ) -1 = e. The vertices α(e) and ω(e) are called the endpoints of the edge e. An undirected edge is a pair of inverse edges {e, e -1 }. The size |Γ| of a graph is the number of its undirected edges. The rank rk(Γ) is the rank of its fundamental free group, which equals to |Γ| -|V | + 1 by Euler's characteristic.

A path on a graph Γ is a non-empty finite sequence of edges p = e 1 . . . e k such that ω(e i ) = α(e i+1 ) for i ∈ {1, . . . k -1}. The starting point and the ending point of the path p are defined by α(p) = α(e 1 )

Proof. Let H be a subgroup of G generated by Γ. Suppose that H is not a free group. There exists a reduced non empty cycle p of Γ such that p = G 1. But ∥p∥ G ≥ λ -1 |p| > 0, so p can not be trivial in G.

By this lemma, to show that a subgroup generated by a labeled graph Γ is free, it is enough to show that Γ → Cay(G, X) is a quasi-isometric embedding. To study this question, we introduce distortion van Kampen diagrams. 

satisfies |p| ≤ λ 1 + λ |∂D|, (⋆) 
then the map Γ → Cay(G, X) is a λ-quasi isometric embedding.

In particular, by Lemma 3.4, any subgroup generated by Γ is free.

Proof. Let u be a reduced word that is readable on Γ. Let v be one of the shortest word such that uv = G 1 (so that |v| = ∥u∥ G ). By van Kampen's lemma (Lemma 3.3), there exists a reduced van Kampen diagram D whose boundary word is uv. If D is disk-like, then by the hypothesis (⋆) we have |u| ≤ λ 1+λ (|u| + |v|), which gives |u| ≤ λ|v|.

Otherwise, we decompose D into disks and segments D 1 , . . . , D k (as in [START_REF] Collins | Spherical diagrams and identities among relations[END_REF] p.159). The path of v does not intersect itself because it is a geodesic in G. The path of u on D does not intersect itself. If it did, as u is reduced, there would be a disk-like sub-diagram whose boundary word is readable on Γ, which is impossible because of (⋆).

Hence, for any 1 ≤ i ≤ k, there are exactly two vertices on ∂D i separating u and v, which are the only possible vertices of degree not equal to 2. The boundary word of D i is written as u i v i where u i is a subword of u and v i is a subword of v. If D i is a segment, then it is read once by u and once by v with opposite directions, so

|u i | = |v i | ≤ λ|v i |. If D i is a disk, then |u i | ≤ λ|v i | by (⋆). We conclude that |u| = k i=1 |u i | ≤ k i=1 λ|v i | = λ|v|.
Now we shall prove that any subgroup generated by Γ is free. For any reduced word u readable on Γ, we have |u| ≤ λ∥u∥ G .
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Abstract diagrams

According to Proposition 2.44, the probability that a fixed van Kampen diagram (with respect to all possible cyclically reduced relators of length at most ℓ) appears in the random group G ℓ (m, d) is determined by the number of relators used in this diagram. Two van Kampen diagrams having the same underlying 2-complex may not use the same number of relators, and should be treated separately.

For example, to check that if a group satisfies the C ′ (λ) small cancellation condition (Theorem 2.46), we consider van Kampen diagrams whose underlying 2-complex consists of two faces f 1 , f 2 sharing a common path of length λ min{|∂f 1 |, |∂f 2 |}. We then need to consider the two types of diagrams in Figure 3.3, one using two distinct relators and the other one using one relator. For a 2-complex of size k, the number of diagram types is of order k k and the problem of its existence can be very complicated. Y. Ollivier introduced abstract van Kampen diagrams in [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] p.10 to study this problem. We assume that faces with the same label of D have the same boundary length, otherwise D would never be fillable. Denote ℓ i the length of the abstract relator i for 1 ≤ i ≤ k. Let ℓ = max{ℓ 1 , . . . , ℓ k } be the maximal boundary length of faces of D. Notation. The pairs of integers (i, 1), . . . , (i, ℓ i ) are called abstract letters of i.

Abstract van Kampen diagrams

The set of abstract letters of D, denoted X, is then a subset of {1, . . . , k} × {1, . . . , ℓ}, endowed with the lexicographic order.

We decorate undirected edges of D by abstract letters and directions. Let f ∈ F labeled by i and let e ∈ E at the j-th position of ∂f . The edge {e, e -1 } is decorated, on the side of {f, f -1 }, by an arrow indicating the direction of e and the abstract letter (i, j). This decoration on {e, e -1 } is called the decoration from f at the position j. The number of decorations on an edge {e, e -1 } is the number of its adjacent faces {f, f -1 } with multiplicity (0, 1 or 2 when D is planar).

For any filling (r 1 , . . . , r k ) of D, we construct the canonical function ϕ : X → X ± such that r i = ϕ(i, 1) . . . ϕ(i, ℓ i ) for any 1 ≤ i ≤ k. If an edge {e, e -1 } is decorated by two abstract letters (i, j), (i ′ , j ′ ), then ϕ(i ′ , j ′ ) = ϕ(i, j) if they have the same direction, or ϕ(i ′ , j ′ ) = ϕ(i, j) -1 if they have opposite directions. For example, in the diagram of Figure 3.5, there is an edge decorated by two abstract letters (1, 4) and (2, 3) with opposite directions, so we have φ(1, 4) = φ(2, 3) -1 .

1

(2, 3) (1, 4) Figure 3.5: an edge decorated by two abstract letters Note that if D is reduced, then by definition an abstract letter can not be decorated twice on an edge with the same direction (Figure 3.6 left-hand side). If D is fillable (by the set of all relators), then an abstract letter (i, j) can not be decorated twice on an undirected edge with opposite directions (Figure 3.6 right-hand side), otherwise we have ϕ(i, j) = ϕ(i, j) -1 in the set of generators X. In the following, we assume that D is fillable and reduced, so that the abstract letters decorated on an edge {e, e -1 } are all different, and the two types of sub-diagrams in Figure 3.6 can not appear in D. In particular, for any edge {e, e -1 }, there exists a unique face {f, f -1 } (at a unique position) from which the decoration is (lexicographically) minimal. Whence the following two definitions. Definition 3.11 (Preferred face of an edge). Let {e, e -1 } be an edge of D. Let {f, f -1 } be the adjacent face of {e, e -1 } from which the decoration is minimal. Then {f, f -1 } is called the preferred face of {e, e -1 }. Definition 3.12 (free-to-fill). An abstract letter (i, j) of D is free-to-fill if, for any edge {e, e -1 } decorated by (i, j), it is the minimal decoration on {e, e -1 }.

1 1 (1, 4) (1, 4) 1 1 (1, 4) (1, 4)
Note that an abstract letter (i, j) is free-to-fill if and only if every face f labeled by i is the preferred face of its j-th boundary edge. In other words, if (i, j) is not free-to-fill, then there exists an edge {e, e -1 } decorated by (i, j) that has another decoration (i ′ , j ′ ) < (i, j).

For example, in the abstract diagram of Figure 3.7, (1, 4), (2, 1) and (2, 2) are not free-to-fill. The other abstract letters are free-to-fill. Lemma 3.13. Let D be a reduced fillable abstract diagram without isolated edges. For every face f ∈ F + , let E f be the set of edges {e, e -1 } on the boundary of {f, f -1 } such that {f, f -1 } is the preferred face of {e, e -1 }. Then

E = f ∈F + E f .
Proof. For every edge {e, e -1 } there exists a unique face f ∈ F + such that {e, e -1 } ∈ E f . Hence, the sets E f with f ∈ F + are pairwise disjoint. Their reunion is the set of edges because every edge is adjacent to at least one face.

Abstract distortion van Kampen diagrams

We generalize the idea of abstract diagrams to distortion van Kampen diagrams. In the following, an abstract distortion diagram ( D, p) is reduced, fillable, and without isolated edges. Recall that X ⊂ {1, . . . , k} × {1, . . . , ℓ} is the set of abstract letters. Let p be the set of undirected edges given by p. In an abstract distortion diagram, we distinguish between two types of free-to-fill abstract letters: those that decorate an edge of p and those that do not. Definition 3.15. Let (i, j) be an abstract letter of ( D, p).

(i) (i, j) is free-to-fill if it is free-to-fill for the abstract diagram D and it does not decorate any edge of p.

(ii) (i, j) is semi-free-to-fill if it is free-to-fill for the abstract diagram D and it decorates an edge of p.

(iii) Otherwise, (i, j) is not free-to-fill.

Notation. Let i be an abstract relator of D. We denote α i the number of faces labeled by i, η i the number of free-to-fill abstract letters of i, and η ′ i the number of semi-free-to-fill abstract letters of i.

Note that ℓ i -η i -η ′ i is the number of non free-to-fill edges.

Lemma 3.16. Recall that E f is the set of edges on the boundary of f that prefers {f, f -1 }. Let i be an abstract relator. For any face f ∈ F with φ 2 (f ) = i, we have

η ′ i ≤ |E f ∩ p| and η i ≤ |E f | -|E f ∩ p|.
Proof. Let {e, e -1 } be the edge at the j-th position of ∂f . It is decorated by (i, j). If {f, f -1 } is not preferred by {e, e -1 }, then (i, j) is not free-to-fill because there is a smaller decoration on {e, e -1 }. Thus, if {e, e -1 } ∈ E f ∩ p then (i, j) is semi-free-to-fill, which gives the first inequality. Similarly, if {e, e -1 } ∈ E f \p, then (i, j) is free-to-fill, so we have the second inequality.

Lemma 3.17. Recall that E is the set of undirected edges. The following two inequalities hold.

k i=1 α i η ′ i ≤ |p|, k i=1 α i η i ≤ |E| -|p|.
Proof. By Lemma 3.16, for every

1 ≤ i ≤ k α i η ′ i ≤ f ∈F, φ2(f )=i |E f ∩ p|. Apply Lemma 3.13, k i=1 α i η ′ i ≤ f ∈F + |E f ∩ p| ≤ |p|.
We get the second inequality by replacing η ′ i by η i and |p| by |E\p|. Let Q ℓ be the probability event (2m -1)

(d-ε d )ℓ ≤ |R ℓ | ≤ (2m -1) (d+ε d )ℓ
. We have a.a.s. Q ℓ by the characterization of densability (Proposition 2.6). Then for ℓ large enough,

P = Pr ( D, p) is fillable by (G ℓ , Γ) Q ℓ ≤ ℓ 10K 3 (2m -1) -2ε d ℓ .
Proof. We shall prove the lemma in four steps. We omit "for ℓ large enough" in every step. Recall that α i is the number of faces labeled by i, η i the number of free-to-fill abstract letters of i, and η ′ i the number of semi-free-to-fill abstract letters of i.

Step 1:

log 2m-1 P ≤ k i=1 (η i + c r η ′ i + (d -1 + 2ε d )ℓ) + 10K 3 log 2m-1 ℓ. (1) 
According to Proposition 2.44, if (r 1 , . . . , r k ) is a filling of D by B ℓ , then for ℓ large enough,

Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤ (2m -1) k(d-1+2ε d )ℓ .
Recall that N ℓ ( D, p, Γ) is the set of fillings of ( D, p) by (B ℓ , Γ). Apply Lemma 3.21 with |Γ| ≤ ε d ℓ and | D| ≤ K,

Pr ( D, p) is fillable by (G ℓ , Γ) Q ℓ ≤ (r1,...,r k )∈N ℓ ( D,p,Γ) Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤|N ℓ ( D, p, Γ)|(2m -1) k(d-1+2ε d )ℓ ≤ℓ 10K 3 (2m -1) k i=1 ηi (2r -1) k i=1 η ′ i (2m -1) k(d-1+2ε d )ℓ .
Hence the inequality (1) by applying log 2m-1 .
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Step 2:

| D| log 2m-1 P -10K 3 log 2m-1 ℓ ≤ k i=1 α i (η i + c r η ′ i + (d -1 + 2ε d )ℓ). (2)
Let D i be the sub-diagram of D consisting of the faces labeled by the first i abstract relators 1 ± , . . . , i ± and the edges attached to them. Apply (1) to D i , and denote P i the probability obtained. We have

log 2m-1 P ≤ log 2m-1 P i ≤ i s=1 (η s + c r η ′ s + (d -1 + 2ε d )ℓ) + 10K 3 log 2m-1 ℓ.
Without loss of generality, we assume

α 1 ≥ α 2 ≥ • • • ≥ α k .
Note that log 2m-1 P is negative and that α 1 ≤ | D|. By Abel's summation formula, with convention α k+1 = 0,

k i=1 α i (c r η ′ i + η i + (d -1 + 2ε d )ℓ) = k i=1 (α i -α i+1 ) i s=1 (c r η ′ s + η s + (d -1 + 2ε d )ℓ) ≥ k i=1 (α i -α i+1 )(log 2m-1 P -10K 3 log 2m-1 ℓ) ≥α 1 (log 2m-1 P -10K 3 log 2m-1 ℓ) ≥| D|(log 2m-1 P -10K 3 log 2m-1 ℓ).
Step 3:

log 2m-1 P ≤ d - 1 2 + 2ε d ℓ + c r - 1 2 + ε d |∂ D| | D| + 10K 3 log 2m-1 ℓ. (3) Let ε ′ d > 0 such that |p| = (1 -ε ′ d )|∂ D|. By hypothesis ε ′ d < ε d .
Because D is disc-like and the boundary length of every face is ≤ ℓ, the number of undirected edges |E| is less than | D|ℓ-|∂ D| 2 + |∂ D|. Apply Lemma 3.17, we get

k i=1 α i η ′ i ≤ |p| = (1 -ε ′ d )|∂ D|, k i=1 α i η i ≤ |E| -|p| ≤ | D|ℓ 2 + ε ′ d - 1 2 |∂ D|. Note that k i=1 α i = | D|. So we have k i=1 α i (c r η ′ i + η i + (d -1 + 2ε d )ℓ) ≤c r (1 -ε ′ d )|∂ D| + | D|ℓ 2 + ε ′ d - 1 2 |∂ D| + (d -1 + 2ε d )| D|ℓ ≤ d - 1 2 + 2ε d | D|ℓ + c r - 1 2 + ε d |∂ D|.
Combine this inequality with (2), we get (3)

Chapter 4

Existence of van Kampen 2-complexes 

Let (G ℓ (m, d)) = (⟨X m |R ℓ ⟩)

D ℓ

We consider van Kampen 2-complexes as van Kampen diagrams that are not necessarily planar. The goal of this chapter is to establish a theorem (Theorem H, Theorem 4.15) that generalize this result to any geometric form of 2-complexes. More precisely, for a given sequence of 2-complexes Y = (Y ℓ ) of the same geometric form (Definition 4.13), we show that there is a critical density d c (Y ) such that, if d + d c (Y ) > 1, then a.a.s. Y ℓ is the underlying 2-complex of a van Kampen 2-complex of G ℓ (m, d); if d + d c (Y ) < 1, then there is no van Kampen 2-complex of G ℓ (m, d) having Y ℓ as the underlying 2-complex. The proof is given in Section 4.2.

In [GM18] §2, D. Gruber and J. Mackay proved a 2-complex version of the isoperimetric inequality (Theorem 2.45 (ii)) for random triangular groups. In the first section of this chapter, we adapt this result to the Gromov density model, showing that a.a.s. every van Kampen 2-complex of a random group G ℓ (m, d) satisfies some inequality (Theorem G, Theorem 4.3). The last section is for applications to small cancellation theory.

Isoperimetric inequality for van Kampen 2-complexes

A van Kampen 2-complex with respect to a group presentation G = ⟨X|R⟩ is a 2-complex Y = (V, E, F ) with two compatible labeling functions φ 1 : E → X ± and φ 2 : F → R ± . We denote briefly Y = (V, E, F, φ 1 , φ 2 ). Notions for van Kampen diagrams in Subsection 3.1.2 can be applied for van Kampen 2-complexes.

Definition 4.7 (The 2-complex version of Definition 3.10). An abstract van Kampen 2-complex Y is a 2complex (V, E, F ) with a labeling function on faces by integer numbers and their inverses φ 2 : F → {1, 1 -, 2, 2 -, . . . , k, k -} such that φ 2 (f -1 ) = φ 2 (f ) -. We denote simply Y = (V, E, F, φ 2 ).

The notions of Section 3.2 for abstract van Kampen diagrams can be applied for abstract van Kampen 2-complexes. Let us recall some of them.

By convention (i -) -= i. The integers {1, . . . , k} are called abstract relators. Denote ℓ i the length of the abstract relator i for 1 ≤ i ≤ k. Let ℓ = max{ℓ 1 , . . . , ℓ k } be the maximal boundary length of faces. The pairs of integers (i, 1), . . . , (i, ℓ i ) are called abstract letters of i. The set of abstract letters of Y is then a subset of {1, . . . , k} × {1, . . . , ℓ}.

We decorate undirected edges of Y by abstract letters and directions. Let f ∈ F labeled by i and let e ∈ E at the j-th position of ∂f . The edge {e, e -1 } is decorated, on the side of {f, f -1 }, by an arrow indicating the direction of e and the abstract letter (i, j). The number of decorations on an edge is the number of its adjacent faces with multiplicity. Definition 4.8 (free-to-fill). An abstract letter (i, j) of D is free-to-fill if, for any edge {e, e -1 } decorated by (i, j), it is the minimal decoration on {e, e -1 }.

The following lemma is the 2-complex non-reduced version of Lemma 3.17. Lemma 4.9. Let Y be an abstract van Kampen 2-complex with k abstract relators. Denote α i the number of faces labeled by the abstract relator i and η i the number of free-to-label edges of i. Then

k i=1 α i η i ≤ Edge( Y ) + Red( Y ).
Lemma 4.10. Let Y be an abstract van Kampen 2-complex with k abstract relators.

Pr Y is fillable by G ℓ (m, d) Q ℓ ≤ 2m 2m -1 k (2m -1) k i=1 (ηi+(d-1+ ε 2 )ℓ) .
Proof. Let us estimate the number of fillings of Y . For every free-to-fill abstract letter (i, j), there are at most 2m ways to fill a generator if j = 1, at most (2m -1) ways to fill if j ̸ = 1 for avoiding reducible word. As there are η i free-to-fill abstract letters on the i-th abstract relator, there are at most 2m(2m -1) ηi-1 ways to fill it. So there are at most k i=1 2m(2m -1) ηi-1 ways to fill Y . Let Y be a van Kampen 2-complex, which is a filling of Y . The 2-complex Y is labeled by k different relators in B ℓ , denoted r 1 , . . . , r k . By lemma 4.6,

Pr (Y is a 2-complex of G ℓ (m, d) | Q ℓ ) = Pr (r 1 , . . . , r k ∈ R ℓ | Q ℓ ) ≤ (2m -1) k(d-1+ ε 2 )ℓ . Hence Pr Y is fillable by G ℓ (m, d) Q ℓ ≤ Y is a filling of Y Pr (Y is a 2-complex of G ℓ (m, d) | Q ℓ ) ≤ k i=1 2m(2m -1) ηi-1 (2m -1) k(d-1+ ε 2 )ℓ ≤ 2m 2m -1 k (2m -1) k i=1 (ηi+(d-1+ ε 2 )ℓ) .

Proof of Theorem G (Theorem 4.3)

The following lemma is the key to prove Theorem 4.3. Recall that Q ℓ is the a.a.s. event

(2m -1) (d-ε 4 ℓ) ≤ |R ℓ | ≤ (2m -1) (d+ ε 4 ℓ) .
Lemma 4.11. Suppose that Y does not satisfy the inequality given in Theorem 4.3, i.e.

Edge( Y ) + Red( Y ) < (1 -d -ε)| Y |ℓ, then Pr Y is fillable by G ℓ (m, d) Q ℓ ≤ 2m 2m -1 (2m -1) -ε 2 ℓ .
Proof. Let Y i be the sub-2-complex of Y consisting of faces labeled by the i first abstract relators. Denote

P i = Pr Y i is fillable by G ℓ (m, d) Q ℓ .
Apply lemma 4.10 on Y i , we have

P i ≤ 2m 2m -1 i (2m -1) i j=1 (ηj+(d-1+ ε 2 )ℓ) .
Note that if Y is fillable by G ℓ (m, d) then its sub 2-complex Y i is fillable by the same group. So for any

1 ≤ i ≤ k, log 2m-1 (P k ) ≤ log 2m-1 (P i ) ≤ i j=1 η j + d -1 + ε 2 ℓ + log 2m-1 2m 2m -1 . Without loss of generality, suppose that α 1 ≥ α 2 ≥ • • • ≥ α k , with convention α i+1 = 0. Note that log 2m-1 (P k ) is negative and that α 1 ≤ | Y | = k i=i α i , so | Y | log 2m-1 (P k ) ≤ α 1 log 2m-1 (P k ). By Abel's summation formula, | Y | log 2m-1 (P k ) ≤ α 1 log 2m-1 (P k ) = k i=1 (α i -α i+1 ) log 2m-1 (P k ) ≤ k i=1 (α i -α i+1 ) i j=1 η i + d -1 + ε 2 ℓ + log 2m-1 2m 2m -1 = k i=1 α i η i + d -1 + ε 2 ℓ + log 2m-1 2m 2m -1 = k i=1 α i η i + k i=1 α i d -1 + ε 2 ℓ + log 2m-1 2m 2m -1 . Note that k i=1 = | Y |.
By Lemma 4.9 and the hypothesis of Lemma 4.3, with some s > 0, does there exist a sequence of reduced van Kampen 2-complexes (D ℓ ) of (G ℓ (m, d)) such that underlying 2-complex of D ℓ is Y ℓ ? Although the "dimension reasoning" of Y. Ollivier in [START_REF] Ollivier | A January 2005 invitation to random groups[END_REF] p.30 suggested that we have this intuition, the answer is no in general. We give here a counterexample.

k i=1 α i η i ≤ Edge( Y ) + Red( Y ) < (1 -d -ε)| Y |ℓ.

A counterexample

Let G ℓ (m, d) be a sequence of random groups at density d = 0.4. Let (D ℓ ) be a sequence of 2-complexes where D ℓ is of the following form.

The given inequality is satisfied because Edge In this section, we show that if every sub-complex of a 2-complex satisfies the given inequality, then with high probability it is an underlying 2-complex of a van Kampen 2-complex of G ℓ (m, d). This gives a phase transition for the existence of a geometric form of van Kampen 2-complexes in a random group at density (Theorem H, Theorem 4.15). This result can be regarded as a generalization Theorem 2.46 (phase transition for the C ′ (λ) condition).

(D ℓ ) = 1.9ℓ > 1.8ℓ = (1 -d)|D ℓ |ℓ. However, the sub- diagram D ′ ℓ contradicts Theorem 4.3 (Edge(D ′ ℓ ) = 1.1ℓ < 1.2ℓ = (1 -d)|D ′ ℓ |ℓ),

Definitions and statement of the theorem

Let Y = (V, E, F ) be a finite, connected 2-complex without isolated edges. Denote here Edge(Y ) = {{e, e -1 }|e ∈ E} the set of undirected edges. To simplify notations, we denote e instead of {e, e -1 } for undirected edges in this subsection. Let (Y ℓ ) be a sequence of 2-complexes where Y ℓ is obtained from Y by dividing every edge e into ⌊λ e ℓ⌋ edges of length 1. The sequence (Y ℓ ) is called the sequence of divided 2-complexes associated to (Y, λ). We say that the sequence of 2-complexes (Y ℓ ) is with the same geometric form (Y, λ).

It remains to prove that if dens c Y > 1 -d, then the sequence (Y ℓ ) is densable (Lemma 4.21) and it satisfies the d-small self intersection condition (Lemma 4.22).

To construct a van Kampen diagram by the set of all relators B ℓ from the 2-complex Y ℓ , we may start by filling edges in the neighborhoods of vertices that are originally vertices of Y (before dividing). Definition 4.19 (Vertex labeling). Consider the set of oriented edges of Y ℓ starting at some vertex that is originally a vertex of Y before dividing. A vertex labeling is a labeling on these edges by X ± m such that, for every pair of different edges e 1 , e 2 starting at the same vertex and labeled by the same generator x ∈ X ± m , the path e -1 1 e 2 is not cyclically part of a face boundary loop.

As m ≥ 2 and ⌊λ e ℓ⌋ ≥ 3 for ℓ large enough, if there exists an vertex labeling, then it can be completed as a van Kampen 2-complex (with respect to B ℓ ). Proof. We shall estimate |Y ℓ | by counting the number of labelings on edges of Y ℓ that produce van Kampen diagrams. As the 2-complex Y ℓ is fillable, the set of vertex labelings is not empty. Denote C ≥ 1 the number of vertex labelings.

To label the remaining ⌊λℓ⌋ -2 edges on the arc divided from the edge e ∈ Edge(Y ), there are 2m -1 choices for the first ⌊λℓ⌋ -3 edges, and 2m -2 or 2m -1 choices for the last edge. So )) of Y ℓ by all possible relators B ℓ (i.e. a pair of k-tuples of relators) such that, the i relators in the first filling (r 1 , . . . , r k ) corresponding to Z ℓ are identical to the i relators in the second filling (r ′ 1 , . . . , r ′ k ) corresponding to W ℓ , and that the other 2k -2i relators are pairwise different, not repeating the relators in Z ℓ and W ℓ .

To estimate the cardinality |S ℓ (Z, W )|, we first fill the first k-tuple (r 1 , . . . , r k ), so the i relators in the second k-tuple (r ′ 1 , . . . , r ′ k ) corresponding to the sub 2-complex W ℓ is determined, and there are at most i! choices for ordering these i relators. To fill the remaining k -i relators, by the same arguments of Lemma 4.20, we get This completes the proof of Theorem 4.15.

Applications to small cancellation theory

Let (G ℓ (m, d)) be a sequence of random groups in the Gromov density model. We give here two phase transitions for small cancellation theory. Theorem 4.15 allows us to construct the 2-complexes needed.

The C ′ (λ) small cancellation condition

Recall that ([LS77] p.240) a piece with respect to a set of relators is a cyclic sub-word that appears at least twice, and a group presentation satisfies the C ′ (λ) condition ([LS77] p.240) if the length of a piece is at most λ times the length of any relator that it appears.

The following result has been proved in [START_REF] Bassino | Random presentations and random subgroups: a survey[END_REF], and in Section 2.4 of this thesis using the multidimensional intersection formula (Theorem 2.40). We give here a much simpler proof using Theorem 4.15. 

The C(p) small cancellation condition

Recall that a group presentation satisfies the C(p) small cancellation condition if no relator is a product of fewer than p pieces. To deal with this condition, we need to consider diagrams with (p + 1) faces. Compared to the C ′ (λ) condition (with only 2 faces), it is a lot harder to prove the existence of such a diagram only by the multidimensional intersection formula. The proof of the following result shows us the convenience of Theorem 4.15 for proving the existence of certain van Kampen 2-complexes. The same argument holds for the B(2p) condition (c.f. [OW11] Definition 1.7 by Y. Ollivier and D. Wise): half of a relator can not be the product of fewer than p pieces. One can construct a marked 2-complex with p faces, one of the faces is in the center, with half of its boundary attached by the other p faces, each with length 1/p. Its critical density is p+1/2 p+1 , so a phase transition occurs at density d = 1 2(p+1) . Open questions

In addition to Questions 1, 2 and 3 proposed in the Introduction, we propose here a list of open questions for random groups in different models, especially for phase transitions.

General Freiheitssatz for random groups

Let (G ℓ (m, d)) be a sequence of random groups with m generators at density d. Let 1 ≤ r ≤ m -1. Our Question 2 ask if there is a phase transition for the property "every r-generated subgroup is free". In Section 3.3, we propose a critical density d r := min 1 2 , 1 -log 2m-1 (2r -1) .

Theorem 3.22 (i) shows that if d > d r , then a.a.s. the first r generators generate the whole group G ℓ (m, d), so the "every r-generated subgroup is free" property does not hold. In the case d < d r , Theorem 3.22 (ii) shows that a.a.s. every subgroup generated by a labeled graph Γ of rank r with |Γ| ≤ dr-d 5 ℓ is free. By G. Arzhantseva and A. Ol'shanskii's method in [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF], the "every r-generated subgroup is free" property is a.a.s. satisfied for random groups with a much smaller density d < 1 120m 2 ln(2m) (c.f. Theorem 2.48). We wish to push this density up to our critical density d r , which fully answers Question 2. Question 4. Let (G ℓ (m, d)) be a sequence of random groups at density d. Is it true that, if d < d r , then a.a.s. every r-generated subgroup of G ℓ (m, d) is free?

Our method is not enough to achieve the result for every r-generated subgroups, only for subgroups generated by "microscopic" graphs (of size much smaller than the hyperbolicity constant 4ℓ 1-2d of G ℓ (m, d)). By [Gro87] 5.3.A (c.f. [START_REF] Kapovich | Nielsen Methods and Groups Acting on Hyperbolic Spaces[END_REF] or [START_REF] Goulnara | A dichotomy for finitely generated subgroups of word hyperbolic groups[END_REF] for detailed proofs), as a.a.s. G ℓ (m, d) is 4ℓ 1-2d hyperbolic, there exists a constant K = K(m, d) such that, every subgroup generated by a labeled graph Γ of rank r with every maximal arc longer than Kℓ is free and quasi-convex. This case is called the "macroscopic" case. It can be regarded either as a quotient of a Burnside group by random triangular relators or as a Burnside quotient of a random triangular group. The main result of Gruber and Mackay in [START_REF] Gruber | Random triangular Burnside groups[END_REF] is the following. As their method does not work for densities larger than ≈ 0.38307, Gruber and Mackay asked that does their theorem hold for random triangular groups at any density d 0 < 1/2 ([GM18] Question 1.6). We may ask that, is there an analog for the Gromov Parallel geodesics The main technical point in [START_REF] Gruber | Random triangular Burnside groups[END_REF] is the estimation of the number of parallel geodesics in a random triangular group.

Recall that random triangular groups at density d < 1/2 are a.a.s. hyperbolic (c.f. model 1.1.2.d). For a hyperbolic group G = ⟨X|R⟩, two geodesics in the Cayley graph Cay(G, X) are called parallel if they have the same pair of limit points (c.f. [START_REF] Coornaert | Géométrie et théorie des groupes : les groupes hyperboliques de Gromov[END_REF] for a definition) in the hyperbolic boundary of Cay(G, X) and they have no intersection. A set of k ≥ 2 geodesics are called parallel if they are pairwise parallel. Denote by P (G) the maximal number k such that k geodesics can be parallel in the hyperbolic space Cay(G, X). If Cay(G, X) is δ-hyperbolic, as the distance between two parallel geodesics is most 2δ (c.f. [START_REF] Coornaert | Géométrie et théorie des groupes : les groupes hyperboliques de Gromov[END_REF] Chapter 2), we know that P (G) is bounded above by a number C exp aδ with some universal constants C and a.

Using an analog of the isoperimetric inequality for 2-complexes (Theorem 2.45 (ii), [GM18] Theorem 2.6), Gruber and Mackay obtained an upper bound of the number of parallel geodesics in a random triangular group. In [START_REF] Gruber | Random triangular Burnside groups[END_REF] Section 3, it is shown that for a sequence of random triangular groups (G m (d)) at density

  p.272. Définition 3 ([Gro93] 9.A). La densité d'un sous-ensemble A dans un ensemble fini E est dens E A := log |E| (|A|). En particulier, dens E (A) est le nombre d ∈ {-∞} ∪ [0, 1] tel que |A| = |E| d . Le cas d = -∞ correspond au cas où A est un ensemble vide. S'il n'y a pas d'ambiguïté de l'ensemble d'ambiance E, nous omettons l'indice et désignons simplement la densité par dens A. Un sous-ensemble aléatoire d'un ensemble fini E est une variable aléatoire à valeurs dans l'ensemble des sous-ensembles de E. Le densité d'un sous-ensemble aléatoire est alors une variable aléatoire à valeurs dans {-∞} ∪ [0, 1].

  et étudions une suite de sous-ensembles aléatoires A = (A n ) où A n est un sous-ensemble aléatoire de E n . Définition 4. Une suite de sous-ensembles aléatoires A = (A n ) de E = (E n ) est dite densable de densité d ∈ {-∞}∪[0, 1] si la suite de variables aléatoires (dens En (A n )) converge en loi vers la constante d lorsque n tend vers l'infini. Notons dens E A = d. Définition 5. Une suite de sous-ensembles aléatoires A = (A n ) de E = (E n ) est dite invariante par permutations si la mesure de A n est invariante sous les permutations de E n . C'est-à-dire que pour tout sous-ensemble a ⊂ E n et toute permutation σ ∈ S(E n ), on a Pr(A n = a) = Pr(A n = σ(a)). Un énoncé complet de la formule d'intersection pour les suites de sous-ensembles aléatoires densables et invariantes par permutations est donné dans Section 0.2, Théorème A.

  le montre le schéma ci-dessous, puisque r(m, d) est un entier, sa valeur est déterminée lorsque d n'est pas dans l'ensemble {d 1 , . . . , d m-1 , 1/2}. Tandis que la valeur de r(m, d) n'est pas déterminée lorsque d ∈ {d 1 , . . . , d m-1 , 1d) with m = 100.2.3 Existence de 2-complexes de van Kampen dans les groupes aléatoiresNous considérons un 2-complexe de van Kampen par rapport à une présentation de groupe comme un diagramme de van Kampen dans[START_REF] Lyndon | Combinatorial Group Theory[END_REF] : c'est un 2-complexe dont les arêtes sont étiquetées par des générateurs et les faces étiquetées par des relateurs. Une paire de faces est dite réductible si elles ont la même étiquette et s'il existe une arête commune sur leurs bords à la même position. Un 2-complexe de van Kampen est dit réduit s'il n'existe pas de paire de faces réductibles. C.f. Sous-section 3.1.2 et Sous-section 4.1 pour plus de détails.Dans[START_REF] Gromov | Finitely presented groups[END_REF], Gromov a montré que a.p.s. les diagrammes de van Kampen locaux de G ℓ (m, d) satisfont une inégalité isopérimétrique (dépendant de la densité d).

  1) 1-d +1 2 (2m-1) 1-d -1 2 r(m, d) r(m, d) with m = 10

  by E. Ghys, [Oll05] by Y. Ollivier, [KS08] by I. Kapovich and P. Schupp, and [BNW20] by F. Bassino, C. Nicaud and P. Weil.

  b∈P(E);a∩b=c Pr(A = a)Pr(B = b).

  holds for n large enough, which gives ∀ε > 0 a.a.s. |E n | d-ε ≤ |A n | ≤ |E n | d+ε . By the characterization of densability (Proposition 2.6), the sequence of random subsets A = (A n ) is densable with density d 2.1.3 The permutation invariant density model 2.1.3.a Permutation invariant random subsets Let E be a finite set with cardinality |E| = n. Denote S(E) as the group of permutations of E. The action of S(E) on E can be extended on the set of subsets P(E), defined by σ({x 1 , . . . , x k }) := {σ(x 1 ), . . . , σ(x k )}. Note that this action has (n + 1) orbits of the form {a ∈ S(E) | |a| = k} for k ∈ {0, . . . , n}. Moreover, the action commutes with set theoretic operations: for any permutation σ ∈ S(E), we have σ(E\a) = E\σ(a), σ(a ∩ b) = σ(a) ∩ σ(b) and σ(a ∪ b) = σ(a) ∪ σ(b).

  b∈P(E);a∩b=c Pr(A = a)Pr(B = b) = a,b∈P(E);σ(a)∩σ(b)=σ(c) Pr(A = σ(a))Pr(B = σ(b)) = a ′ ,b ′ ∈P(E);a ′ ∩b ′ =σ(c) Pr(A = a ′ )Pr(B = b ′ ) (by substitution) = Pr(A ∩ B = σ(c)).

Example.

  Let E = (E n ) be a sequence of sets with |E n | = 2n. Let a = (a n ), b = (b n ) be sequences of subsets of E such that b n = E n \a n and |a n | = |b n | = n. They are both densable subsets with density 1 because log(n)/ log(2n) → 1. Whereas dens(a ∩ b) = -∞. They do not satisfy the intersection formula. Define another sequence of subset c = (c n ) by c n := a n if n is odd and c n := b n if n is even. By its definition, c is densable with density 1. But the intersection b ∩ c is empty when n is odd and non-empty when n is even, so b ∩ c is not densable. In this section, we prove the intersection formula for the Bernoulli density model, the uniform density model, and the permutation invariant density model. Throughout this section (and the next section), E = (E n ) is a sequence of finite sets with |E n | → ∞. To simplify, we assume that |E n | = n. For an arbitrary sequence E with |E n | → ∞ we can proceed the same proofs by replacing n by |E n |. Note that

Definition 2. 32 (

 32 Upper density). Let Y = (Y n ) be a sequence of subsets of E = (E n ). The upper density of Y in E is dens E Y := lim n→∞ log |En| (|Y n |).

n

  ∩ X n | by probability values of the type Pr ({x 1 , . . . , x r } ⊂ A n ).

  d) is a hyperbolic group, and the Cayley graph Cay(G ℓ (m, d), X m ) is δ-hyperbolic with δ = 4ℓ 1-2d . In addition, for any s > 0, a.a.s. every reduced van Kampen diagram D of G ℓ (m, d) satisfies the isoperimetric inequality |∂D| ≥ (1 -2d -s)ℓ|D|.

  is a sequence of permutation invariant random subsets of xA with density (2d -1) > 0. So a.a.s. (when ℓ → ∞) the set R ℓ ∩ xR ℓ ∩ xA ℓ is not empty. Thus, a.a.s. there exists a word w ∈ A ℓ such that w ∈ R ℓ and xw ∈ R ℓ . It gives a.a.s. x = 1 in G ℓ by canceling w.

  Theorem 2.46. Let G(m, d) = (G ℓ (m, d)) be a sequence of random groups with density d. Let λ ∈]0, 1[. 1. If d < λ/2, then a.a.s. G ℓ (m, d) satisfies C ′ (λ).

2.

  If d > λ/2, then a.a.s. G ℓ (m, d) does not satisfy C ′ (λ).

  be a sequence of random groups at density d, in the permutation invariant density model. In this chapter, we prove the phase transition at densityd r = min 1 2 , 1 -log 2m-1 (2r -1) (Theorem E): If d > d r ,then a.a.s. the first r generators x 1 , . . . , x r generate the whole group G ℓ (m, d); if d < d r , then a.a.s. the first r generators x 1 , . . . , x r freely generate a free subgroup of G ℓ (m, d). Our main result (Theorem 3.22) is a strong version of this result, replacing "the first r generators" by a Stallings graph of rank r of bounded size.

Definition 3. 5 (Γ

 5 Figure 3.2: a path p on the boundary ∂D is readable on a graph Γ

Figure 3

 3 Figure 3.3: the two types of diagrams for checking if a group satisfies C ′ (λ)

  Definition 3.10 (Abstract diagram, Ollivier[START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF] p.10). An abstract van Kampen diagram D is a finite, planar and simply-connected 2-complex (V, E, F ) with a labeling function on faces by integer numbersφ 2 : F → {1, 1 -, 2, 2 -, . . . , k, k -} satisfying φ 2 (f -1 ) = φ 2 (f ) -. We denote D = (V, E, F, φ 2 ),By convention, (i -) -= i for any 1 ≤ i ≤ k. The numbers {1, . . . , k} are called abstract relators of D. Similar to a van Kampen diagram, a pair of faces f, f ′ ∈ F is reducible if they have the same label, and they share an edge at the same position of their boundaries. An abstract diagram is called reduced if there is no reducible pair of faces.Let D = (V, E, F, φ 1 , φ 2 ) be a van Kampen diagram of a group presentation G = ⟨X|R⟩. Let {r 1 , . . . , r k } ⊂ R be the set of relators used in D. Define φ 2 : F → {1, 1 -, . . . , k, k -} by φ 2 (f ) = i if φ 2 (f ) = r i .We obtain an abstract diagram D = (V, E, F, φ 2 ) with k abstract relators, called an underlying abstract diagram of D. An abstract diagram D is fillable by a group presentation G = ⟨X|R⟩ (or by a set of relators R) if there exists a van Kampen diagram D of G, called a filled diagram of D, whose underlying abstract diagram is D. That is to say, there exists k different relators r 1 , . . . , r k ∈ R such that the construction φ 2 (f ) := r φ2(f ) gives a diagram D = (V, E, F, φ 1 , φ 2 ) of G. In Figure 3.4, the abstract diagram has two abstract relators 1, 2 and is filled by the relators r 1 , r 2 . The k-tuple (r 1 , . . . , r k ) is called a filling of D. As we picked different relators, D is reduced if and only if a filled diagram D is reduced.

D

  Figure 3.4: filling an abstract diagram

Figure 3

 3 Figure 3.6: an edge decorated twice by the same abstract letter

Figure 3

 3 Figure 3.7: example of an abstract diagram

Definition 3. 14 (

 14 Abstract distortion diagram). An abstract distortion van Kampen diagram is a pair ( D, p) where D is an abstract diagram and p is a path on ∂ D. Let G = ⟨X|R⟩ be a group presentation and let Γ be a labeled graph. An abstract distortion diagram ( D, p) is fillable by the pair (G, Γ) (or by the pair (R, Γ)) if there exists a filled diagram D of D such that (D, p) is a distortion diagram of (G, Γ). The distortion diagram (D, p) is called a filled distortion diagram of ( D, p).

3. 3 . 2

 32 Proof of Lemma 3.23 Let (G ℓ ) = (G ℓ (m, d)) = (⟨X|R ℓ ⟩) be a sequence of random groups with density d < d r . To prove Proposition 3.23, we work first on the fillability of an abstract distortion diagram. Denote ε d = d r -d 5 .

  Lemma 3.24 (Fillability of an abstract distortion diagram). Let K > 0. Let Γ be a reduced labeled graph with rk(Γ) ≤ r and |Γ| ≤ ε d ℓ. Let ( D, p) be a disc-like abstract distortion diagram with | D| ≤ K that satisfies |p| > (1 -ε d ) |∂ D|.

Hence 4. 2

 2 Existence of van Kampen 2-complexes By Theorem 4.3, we may ask that, if a sequence of 2-complexes (Y ℓ ) with bounded complexity satisfies the inequality Edge(Y ℓ ) ≥ (1 -d + s)|Y ℓ |ℓ

  and can not be a van Kampen diagram of G ℓ (m, d).

  A length label on Y is a label on undirected edges of Y by real numbers λ : Edge(Y ) →]0, 1]. For any edge e ∈ Edge(Y ), the number λ e := λ(e) is the called the length of e. If p = e 1 . . . e k is a path on Y , the length of p is |p| = k i=1 λ ei .Definition 4.13. A marked 2-complex is a couple (Y, λ) where Y is a 2-complex and λ is a length label, such that for every face f of Y , the boundary length |∂f | is bounded by 1.

  Lemma 4.20. Let Y ℓ be the set of k-tuples of relators inB ℓ filling Y ℓ . If Y ℓ is fillable by B ℓ , then dens (B k ℓ ) (Y ℓ ) = dens Y.

C

  e∈Edge(Y ) (2m -1) ⌊λeℓ⌋-3 (2m -2) ≤ |Y ℓ | ≤ C e∈Edge(Y ) (2m -1) ⌊λeℓ⌋-2 . Recall that k = |Y | = |Y ℓ |, note that |B k ℓ | = (2m -1) kℓ+o(ℓ) . We havedens (B k ℓ ) (Y ℓ ) = e∈Edge(Y ) λ e |Y | = dens Y. Lemma 4.21. If dens c Y > 1/2 and Y ℓ is fillable by B ℓ , then (Y ℓ ) is densable in (B(k)ℓ ) anddens (B (k) ℓ ) (Y ℓ ) = dens Y. Proof. Let Z < Y with two faces f 1 , f 2 . Because dens Z ≥ dens c Y > 1 2 , we have e∈Edge(Z) λ e > 1 2 |Z| = 1 ≥ |∂f 1 |.Let Y Z ℓ be the set of fillings of Y ℓ by B ℓ such that the two faces of Z are filled by the same relator. By the same arguments of the previous lemma,|Y Z ℓ | ≤ C(2m -1) |∂f1| e∈Edge(Y )\ Edge(Z) (2m -1) ⌊λeℓ⌋-2 , |Y ℓ | ≤ |Y ℓ |.There are |Y | 2 terms in the union, with densities strictly smaller than dens(Y ℓ ). They do not affect the density according to Proposition 2.14 and Proposition 2.13. Together with the previous lemma,dens (B k ℓ ) (Y ℓ ) = dens (B k ℓ ) (Y ℓ ) = dens Y. Because dens (B k ℓ ) (B(k)ℓ ) = 1, by the random-fixed intersection formula (Theorem 2.28), we havedens (B (k) ℓ ) (Y ℓ ) = dens Y.Recall that Y ℓ is the set of fillings of Y ℓ by pairwise distinct relators in B ℓ . Denote k = |Y |.Lemma 4.22. Suppose that dens c Y > 1 -d. Let S i,ℓ be the i-th self intersection of the set Y ℓ . We havedens (B (k) ℓ ) 2 (S i,ℓ ) < dens Y -(1 -d) × i 2k . Proof. Let Z, W be sub complexes of Y with |Z| = |W | = i < k = |Y |.Let (Z ℓ ), (W ℓ ) be the corresponding sequences of dividing 2-complexes. Denote S ℓ (Z, W ) the set of pairs of fillings ((r 1 , . . . , r k ), (r ′ 1 . . . , r ′ k

  |S ℓ (Z, W )| ≤ |Y ℓ | × i! × C e∈Edge(Y )\ Edge(W ) (2m -1) ⌊λeℓ⌋-2 . Recall that the density of Y is dens Y = 1 |Y | e∈Edge(Y ) λ e ,and that the critical density dens c Y is the minimum of densities of its sub-2-complexes (Definition 4.14). Together with the hypothesis dens W ≥ 92 CHAPTER 4. EXISTENCE OF VAN KAMPEN 2-COMPLEXES dens c Y > 1 -d, we havedens (B (k) ℓ ) 2 (S ℓ (Z, W )) Note that S i,ℓ = Z<Y,W <Y,|Z|=|W |=i S ℓ (Z, W ).It is a union ofk i 2 subsets of densities strictly smaller than dens Y -i 2k (1 -d), so by Proposition 2.13 dens (B (k) ℓ ) 2 (S i,ℓ ) < dens Y -i 2k (1 -d).

Theorem 4. 23 .

 23 Let 0 < λ < 1. There is a phase transition at density d = λ/2:(i) If d < λ/2, then a.a.s. G ℓ (m, d) satisfies C ′ (λ).

(

  ii) If d > λ/2, then a.a.s. G ℓ (m, d) does not satisfy C ′ (λ).

  APPLICATIONS TO SMALL CANCELLATION THEORY 93Proof. We refer to the proof of Theorem 2.46 (i) for the first assertion.For the second assertion, consider a marked 2-complex Y with two faces of boundary length 1, sharing a common edge of length λ. We have dens Y = 2(1-λ)+λ 2 > 1 -d, and every sub 2-complex is with density1 > 1 -d. So dens c Y > 1 -d.By Theorem 4.15, a.a.s. there exists a reduced van Kampen diagram D ℓ of G ℓ (m, d) having two faces of boundary length ℓ, sharing a common side of length ⌊λℓ⌋. Hence, a.a.s. G ℓ (m, d) does not satisfy C ′ (λ).

  Theorem 4.24. Let p ≥ 2 be an integer. There is a phase transition at density d = 1/(p + 1):(i) If d < 1/(p + 1), then a.a.s. G ℓ (m, d) satisfies C(p).

(

  ii) If d > 1/(p + 1), then a.a.s. G ℓ (m, d) does not satisfy C(p).

p

  Let us prove by contradiction. Suppose that a.a.s. G ℓ (m, d) = ⟨X m |R ℓ ⟩ does not satisfy C(p). That is to say, a.a.s. there exists a reduced van Kampen diagram D of R ℓ with (p + 1) faces, one face is placed in the center, attached by the other p faces on the whole boundary, and there is no other attachments. We have |D| = p + 1 and Edge(D) ≤ pℓ. By Theorem 4.3 with ε= 1 p+1 -d /2, we have Edge(D) ≥ (1 -d -ε)ℓ|D|. So d ≥ 1/(p + 1) -ε > d, which gives a contradiction.(ii) Consider a marked 2-complex with p+1 faces, one of the faces is placed in the center, having p edges of length 1/p, such that every edge is attached by another faces with two edges of lengths 1/p and 1 -1/p. There are no other attachments.Thedensity of Y is 1+p(1-1/p) p+1 = p/(p + 1) > 1 -d. If Z is a sub 2-complex of Y notcontaining the center face, then dens Z = 1. If Z contains the center face and i ≤ p other faces, then dens Z = 1+i(1-1/p) i+1 > 1 -d. So dens c Y > 1 -d. By Theorem 4.15, a.a.s. there exists a reduced van Kampen diagram D ℓ of G ℓ (m, d) having p + 1 faces of boundary length ℓ, where one of the faces is attached by p faces. Hence, a.a.s. G ℓ (m, d) does not satisfy C(p).

  It remains the "mesoscopic" case: what happens when cℓ ≤ |Γ| ≤ Cℓ with a given pair of constants c, C depending on m and d? The statement of Question 4 has an interesting corollary: if d r < d < d r-1 , then a.a.s. the rank of G ℓ (m, d) is r. Effectively, by Theorem 2.45 (ii) shows that a.a.s. G ( m, d) is not free, so it is not of rank (r -1) because d < d r-1 , and Theorem 3.22 (i) shows that a.a.s. G ℓ (m, d) is r-generated because d > d r . 95 96 CHAPTER 5. OPEN QUESTIONS 5.2 Parallel geodesics in Cayley graphs and the Burnside problem for random groups Fix an alphabet X m = {x 1 . . . , x m } as generators of group presentations. Denote F (X m ) the free group generated by X m . Recall that a (free) Burnside group with m generators and exponent n, defined by B(m, n) = {X m |x n , x ∈ F (X m )} is infinite when n is large enough. In [GM18], D. Gruber and J. Mackay studied random triangular groups based on Burnside groups. Recall that (model 1.1.2.d) a sequence of random triangular groups (G m (d)) at density d is defined by G m (d) = ⟨X m |R m ⟩ where R m is uniformly chosen among all sets of triangular relators of cardinality between c -1 (2m -1) 3d and c(2m -1) 3d with some c > 1. Definition ([GM18] Definition 1.1). A sequence of random triangular n-periodic groups (G m (d, n)) with density d is defined by G m (d, n) = ⟨X m |R m , x n , x ∈ F (X m )⟩ where (⟨X m |R m ⟩) is a sequence of random triangular groups at density d.

  Theorem ([GM18] Theorem 1.2). Let (G m (d, n)) be a sequence of random triangular n-periodic groups at density d. For any d 0 < 11- √ 41 12 ≈ 0.38307, there exists an integer n 0 ∈ N such that for any 0 < d ≤ d 0 and any n ≥ n 0 , a.a.s. the random n-periodic triangular group G m (d, n) is infinite.

  density model of random groups? Let us define a sequence of random n-periodic groups (G ℓ (m, d, n)) with density d byG ℓ (m, d, n) = ⟨X m |R ℓ , x n , x ∈ F (X m )⟩where (⟨X m |R ℓ ) is a sequence of random groups at density d.Question 5. For any d 0 < 1/2, does there exist n 0 ∈ N such that for any 0 < d ≤ d 0 and any n ≥ n 0 , a.a.s. the random n-periodic group G ℓ (m, d, n) is infinite?

  

  1), alors a.p.s. G ℓ (m, d) ne satisfait pas C(p). est libre. Ici, "presque toute" signifie que dans l'ensemble des présentations avec m ≥ 4 générateurs et un relateur, lorsque la longueur du relateur tend vers l'infini, le rapport entre le nombre de groupes satisfaisant la propriété demandée et le nombre de tous les groupes converge vers 1.

	CHAPTER 0. INTRODUCTION EN FRANÇAIS
	0.3 Remarques historiques
	0.3.1 Propriétés génériques des groupes de présentation finie
	L'origine des groupes aléatoires provient d'un point de vue statistique : l'observation que certaines propriétés
	sont "génériques" pour les groupes de présentation finie. Elle est apparue pour la première fois dans les
	travaux de V. Guba [Gub86] et M. Gromov [Gro87] §0.2 à la fin des années 1980.
	Guba [Gub86] a montré que pour "presque toute" présentation avec m ≥ 4 générateurs et un relateur,
	tout sous-groupe de rang 2 Le modèle de longueurs diverses construit dans [Gro87] §0.2 est en fait de ce point de vue, montrant
	que l'hyperbolicité est une "propriété générique" des groupes de présentation finie. Un modèle similaire est
	considéré par A. Ol'shanskii dans le Kourovka Notebook [MK22], question 11.75. Pour répondre à cette
	question, Arzhantseva et Ol'shanskii ont introduit le modèle à peu de relateurs dans [AO96], qui est un
	modèle plus simple mais plutôt commode.
	L'étude des propriétés génériques des présentations de groupes (avec le modèle à peu de relateurs) est
	poursuivie par Arzhantseva dans les années suivantes : [Arz97; Arz98; Arz00]. Nous renvoyons le lecteur à
	[KS08] pour une revue.
	Le même argument tient pour la condition B(2p) (cf. [OW11] Définition 1.7 par Y. Ollivier et D. Wise) :
	la moitié d'un relateur ne peut pas être le produit de moins de p pièces (p = 3 dans le diagramme ci-dessous).
	Par des calculs similaires, on peut trouver qu'une transition de phase se réalise à densité d = 1 2(p+1) .

  Let m ≥ 2, k ≥ 1. Let ℓ 1 , . . . , ℓ k be integers. A random group with m generators with k relators of various lengths is defined by G(m, ℓ 1 , . . . , ℓ k ) = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩ where r i is uniformly chosen among all reduced words of x ± 1

	1.1.2.a The various lengths model, M. Gromov [Gro87] §0.2

  For a sequence of random variables, the convergence in distribution to a constant is equivalent to the convergence in probability. So dens En (A n ) = log |En| |A n | converges in distribution to d if and only if it converges in probability to d, i.e. ∀ε > 0 Pr(| log |En| |A n | -d| ≤ ε) ----→

	CHAPTER 2. RANDOM SUBSETS WITH DENSITY AND THE INTERSECTION FORMULA
	n→∞	1,

and only if a.a.s. dens En (A n ) = -∞, which means a.a.s. A n = Ø. (ii)

  Otherwise, we decompose D into discs and segments. By the same argument of Lemma 3.6, because every disc-like sub-diagram is a distortion diagram satisfying (⋆), we still have |u| ≤ λ|v|.

	Apply Lemma 3.23 with K = 50000λ (1-2d) 2 =	250000 (1-2d) 2 (dr-d) . If D is disk-like, then by (⋆), we have
	|u| ≤ 1 -	d r -d 5	(|u| + |v|) ≤	λ 1 + λ	(|u| + |v|),
	which implies |u| ≤ λ|v|.				

  be a sequence of random groups in the permutation invariant density model. In Subsection 2.4.2 , it is shown that there is a phase transition at density d = λ/2 for the C ′ (λ) small cancellation condition. In other words, we ask if there exists van Kampen diagrams D ℓ in G ℓ (m, d) with the following "geometric form" (Definition 4.13): there are exactly 2 faces of boundary length ℓ, sharing a common path of length ⌊λℓ⌋.

CHAPTER 2. RANDOM SUBSETS WITH DENSITY AND THE INTERSECTION FORMULA

The permutation invariant density model

In this subsection, we prove Theorem C.

Theorem 2.40 (The multidimensional intersection formula, Theorem C). Let A be a densable sequence of permutation invariant random subsets of E with density d. Let X = (X n ) be a sequence of subsets of E (k) with density α.

(i) If d + α < 1, then A (k) ∩ X is densable and

(ii) If d + α > 1 and X satisfies the d-small self intersection condition (Definition 2.33), then A (k) ∩ X is densable and

Remark. When k = 1, we get the usual random-fixed intersection formula (Theorem 2.28). In this case, the self intersection partition of X contains only Y 0 and Y 1 , and the self intersection condition does not make sense.

Let X be a sequence of subsets of E (k) having the d-small intersection condition. Recall that the density difference is ε 0 (d) = min 1≤i≤k α + (d -1) i 2k -densY i > 0. Note that if d ′ < d then ε 0 (d ′ ) < ε 0 (d). We will decompose the permutation invariant random subset A n into uniform random subsets and apply lemma 2.39 in a small interval [d -ε, d + ε]. We choose 0 < ε < min ε0 (d) 20 , d 2 so that ε <

. By the definition of ε 0 (d) and the densability of X, we can choose n ε ∈ N large enough, such that for all n ≥ n ε we have, for any 1 ≤ i ≤ k, |Y n,i | ≤ n 2kα+(d-1)i-2k×20ε ≤ n 2kα+(d ′ -1)i-2k×10ε

and n k(α-ε) ≤ |X n | ≤ n k(α+ε) .

Lemma 2.41. Let 0 < ε < min ε0(d) 20 , d 2 be a small real number. Let A be a sequence of uniform random subsets of E with density d ′ ∈ [d -ε, d + ε]. Let X be a sequence of subsets of E (k) with density α. If n ≥ max n ε , (1 + 2k)

(ii) If in addition α + d -1 > 3ε > 0 and X has d-small self-intersection, then

Var(|A

Proof.

(i) Recall from the above discussion that ε < min ε0(d ′ ) 10 , d ′ . By Lemma 2.39 (i)

We then have the inequality by d -ε ≤ d ′ ≤ d + ε.
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(ii) Because ε 0 (d ′ ) > 0, X has d ′ -small self-intersection. By Lemma 2.39 (ii) and the fact that d ′ ≤ d + ε, Var(|A (k) n ∩ X n |) ≤ kn 2k(α+d ′ -1-9ε) ≤ kn 2k(α+d-1-8ε) .

Lemma 2.42. Let 0 < ε < min{ ε0 10 , d 2 }. Let A be a sequence of uniform random subsets of E with density

Let X be a sequence of subsets of E (k) with density α. Suppose that α + d -1 > 4ε > 0 and that X satisfies the d-small self-intersection condition. If n ≥ max n ε , (1 + 2k)

Pr n k(α+d-1-4ε) ≤ |A (k) n ∩ X n | ≤ n k(α+d-1+4ε) > 1 -kn -10kε .

Proof.

n ∩ X n . By Lemma 2.41 (i) and the fact that n kε ≥ 2,

and -1+4ε) .

By Chebyshev's inequality,

By Lemma 2.41 (i) and (ii), 4 Var(|B n |)

kn 2k(α+d-1-8ε) n 2k(α+d-1-3ε) ≤kn -10kε .

Proof of Theorem 2.40.

Let ε > 0 be a small real number to be specified. Denote

By the densability of A, Q n is an a.a.s. event. Denote by Pr Qn := Pr (• | Q n ) the probability measure under the condition Q n . Define similarly E Qn and Var Qn . In order to prove that some sequence of properties (R n ) is a.a.s. true, by proposition 2.5, it is enough to prove that Pr Qn (R n ) ----→ n→∞ 0.

To apply Lemma 2.41 and Lemma 2.42, we assume that ε < min d 2 , ε0(d)

20

.

CHAPTER 2. RANDOM SUBSETS WITH DENSITY AND THE INTERSECTION FORMULA

Note that the condition (b) is essential, because every word of X ± m can be read along the wedge of m circles of length 1 marked by x 1 , . . . , x m respectively. Let M µ ℓ be the set of words r ∈ B ℓ having a cyclic sub-word w < r such that |w| ≥ 1 2 |r| and w is µ-readable. The following two lemmas are from [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF].

Lemma 2.50 ([AO96] Lemma 4). If µ < log 2m 1 + 1 4m-4 , then there exists a constant C(µ, m) such that The set of true powers in B ℓ is with density 1/2. By the intersection formula (Theorem 2.28), because d < 1/2, a.a.s. R ℓ has no true powers. By Lemma 2.50 and the intersection formula, we need d(m) < 1 -dens(M µ ℓ ) < 1 -log 2m-1 2m -5 4 so that a.a.s. R ℓ does not intersect M µ ℓ by the intersection formula. At the end we need a.a.s. R ℓ satisfies C ′ (λ) with

.

By Theorem 2.46, we need d(m) < λ/2. Note that this inequality implies the previous one. For ε small enough we have λ >

.
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and ω(p) = ω(e k ). The inverse of p is the path p -1 = e -1 k . . . e -1 1 . A path is called reduced if there is no subsequence of the form ee -1 . A loop is a path whose starting point and ending point coincide. In this case α(p) = ω(p) is called the starting point of the loop. A loop p = e 1 . . . e k is cyclically reduced if it is a reduced path with e k ̸ = e -1

1 . An arc of a graph Γ is a reduced path passing only by vertices of degree 2, except possibly for its endpoints. A maximal arc is an arc that is not a subpath of another arc. By definition, the endpoints of a maximal arc can not be of degree 2. The following fact for finite connected graphs can be deduced by Euler's characteristic.

Lemma 3.1. Let Γ be a finite connected graph of rank r ≥ 1 with no vertices of degree 1.

1. The number of vertices of degree at least 3 is bounded by 2(r -1).

2. The number of maximal arcs of Γ is bounded by 3(r -1).

Proof. If an arc of Γ can not be extended to a maximal arc, then Γ is a simple cycle and r = 1. In this case, both assertions are true. Otherwise, suppose that any arc can be extended to a maximal arc, so Γ can be divided into maximal arcs.

Let v be the number of vertices of degree at least 3; let a be the number of maximal arcs. By Euler's characteristic, a -v = r -1. By a combinatorial fact on graphs, 3v ≤ 2a, so a ≥ 3 2 v. Hence v ≤ 2(r -1) and a ≤ 3(r -1).

Lemma 3.2. The number of topological types of finite connected graphs of rank at most r with no vertices of degree 1 is bounded by (2r) 6r .

Proof. If r = 1 then the only topological type is a simple cycle. If r ≥ 2, we may draw a ≤ 3(r -1) arcs on a set of v ≤ 2(r -1) vertices. There are at most (v 2 ) a ≤ (2r) 6r ways.

A labeled graph (with respect to the alphabet X) is a graph Γ = (V, E) with a labelling function on edges by generators φ : E → X ± , satisfying φ(e -1 ) = φ(e) -1 . We denote briefly Γ = (V, E, φ). The labeling function φ extends naturally on the paths of Γ. If p = e 1 . . . e k is a path of Γ, then the word φ(p) = φ(e 1 ) . . . φ(e k ) is called the labeling word of p. We say that a word u is readable on a labeled graph Γ if there exists a path p of Γ whose labeling word is u.

Labeled graphs are considered by Stallings [Sta83] to represent subgroups of a free group. Let Γ = (V, E, φ) be a finite connected labeled graph. Labeling words of the loops starting at a vertex o ∈ V form a subgroup H of G = ⟨X|R⟩, which is the image of the fundamental group π 1 (Γ, o) by the group homomorphism induced by φ. If H is a conjugate of the subgroup φ(π 1 (Γ, o)) in G for some o ∈ V , we say that H is a subgroup generated by the labeled graph Γ.

Conversely, any finitely generated subgroup H can be generated by a labeled graph. One can choose a system of generators h 1 , . . . , h r of H, and label them on the wedge of r simple cycles of lengths |h 1 |, . . . , |h r |. A labeled graph is reduced if it has no pair of edges with the same label and starting point, and, it has no vertices of degree 1. By doing reductions on the construction above, if H is a subgroup of rank r, then there is a reduced labeled graph of rank r that generates H. We refer the reader to [START_REF] Margolis | Free inverse monoids and graph immersions[END_REF] and [START_REF] Goulnara | The class of groups all of whose subgroups with lesser number of generators are free is generic[END_REF] for details.

Van Kampen diagrams

A 2-complex is a triplet D = (V, E, F ), where (V, E) is a graph and F is the set of (oriented) faces. Every face f ∈ F has a boundary ∂f , which is a cyclically reduced loop of (V, E), and an inverse face f -1 ∈ F satisfying ∂(f -1 ) = (∂f ) -1 and (f -1 ) -1 = f . An undirected face is a pair of inverse faces {f, f -1 }. The size |D| is the number of undirected faces.
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Note that our definition is slightly different from the definition of [START_REF] Lyndon | Combinatorial Group Theory[END_REF] chapter III.9: Every face f ∈ F has a starting point and an orientation given by its boundary path ∂f . If ∂f = e 1 . . . e k , for 1 ≤ i ≤ k, we say that e i is attached to f and is the i-th boundary edge of f . We say that the undirected edge {e i , e -1 i } is attached to the undirected face {f, f -1 }. An edge (or an undirected edge) is called isolated if it is not attached to any face.

A van Kampen diagram with respect to a group presentation G = ⟨X|R⟩ is a finite, planar (embedded in R 2 ) and simply connected 2-complex D = (V, E, F ) with two compatible labeling functions: labels on edges by generators φ 1 : E → X ± , and labels on faces by relators φ 2 : F → R ± . Compatible means that (V, E, φ 1 ) is a labeled graph, φ 2 (f -1 ) = φ 2 (f ) -1 and φ 1 (∂f ) = φ 2 (f ). We denote briefly D = (V, E, F, φ 1 , φ 2 ). Note that if a van Kampen diagram D has no isolated edges (for example, a disk), then the labeling function φ 1 on edges is determined by the labeling function φ 2 on faces.

According to [START_REF] Collins | Spherical diagrams and identities among relations[END_REF] p.159, a van Kampen diagram is either a disk or a concatenation of disks and segments. The boundary ∂D is the boundary of R 2 \D, which is a sub-graph of its underlying graph (V, E). A boundary path is a (combinatorial) path on ∂D defined as in [START_REF] Lyndon | Combinatorial Group Theory[END_REF] p.150. A boundary word of D is the labeling word of a boundary path, unique up to cyclic conjugations and inversions. The boundary length of D is the length of a boundary path, denoted by |∂D|.

Let D = (V, E, F, φ 1 , φ 2 ) be a van Kampen diagram. A pair of faces f, f ′ ∈ F is reducible if they have the same label and there is a common edge on their boundaries at the same position (see Figure 3.1). A van Kampen diagram is called reduced if there is no reducible pair of faces. 

Distortion van Kampen diagrams

Let G = ⟨X|R⟩ be a finitely presented group. For any word u of X ± , we denote |u| its word length and ∥u∥ G the distance between the endpoints of its image in the Cayley graph Cay(G, X). Let H be a finitely generated subgroup of G, let Γ be a reduced labeled graph generating H. Its universal covering Γ is an infinite, connected and reduced labeled tree, with a natural label-preserving map φ : Γ → Cay(G, X).

Recall that the map between metric spaces φ is called λ-quasi isometric with some λ ≥ 1 if, for any points

As the labeling on Γ is reduced, proving this inequality is equivalent to showing that for any reduced word u readable on Γ, we have |u| ≤ λ∥u∥ G .

Lemma 3.4. Let Γ be a finite connected labeled graph. If the map φ : Γ → Cay(G, X) is λ-quasi isometric with some λ ≥ 1, then any subgroup generated by Γ is a free group.

Hyperbolic groups

In this subsection, we recall several facts about hyperbolic groups introduced by M. Gromov in [START_REF] Gromov | Hyperbolic groups[END_REF]. Let G = ⟨X|R⟩ be a finite group presentation. A geodesic metric space is called δ-hyperbolic if each side of any geodesic triangle is δ-close to the two other sides ([CDP90] Chapter 1). A group G is called a hyperbolic group if there exists a finite generating set X such that the Cayley graph Cay(G, X) is δ-hyperbolic with some δ > 0.

We start with a criterion of hyperbolicity in [START_REF] Gromov | Hyperbolic groups[END_REF] Chapter 2.3. We refer the reader to [START_REF] Short | Notes on word hyperbolic groups[END_REF] or [START_REF] Coornaert | Géométrie et théorie des groupes : les groupes hyperboliques de Gromov[END_REF] Chapter 6 for detailed proofs. For a precise estimation of hyperbolicity constants, we refer to [START_REF] Champetier | Petite simplification dans les groupes hyperboliques[END_REF] Recall that a path p in a Cayley graph Cay(G, X) is a λ-quasi-geodesic if every sub-path u of p satisfies |u| ≤ λ∥u∥ G . It is called a L-local λ-quasi geodesic if the inequality is satisfied by every sub-path of length at most L. Here is the local-global principle for quasi-geodesics in hyperbolic groups, stated by Gromov in [Gro87] 7.2.A and 7.2.B. See [START_REF] Coornaert | Géométrie et théorie des groupes : les groupes hyperboliques de Gromov[END_REF] Chapter 3 for a proof. Theorem 3.9. Let G = ⟨X|R⟩ be a group presentation such that Cay(G, X) is δ-hyperbolic. Let λ ≥ 1.

1. Every λ-quasi-geodesic is 100δ(1 + log λ) close to any geodesic joining its endpoints.

Every 1000λδ-local

By this theorem and the fact that random groups defined in the last chapter are a.a.s. hyperbolic, the main theorem in this chapter (Theorem 3.22) can be simplified to a local problem (Lemma 3.23).
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The number of fillings of an abstract distortion diagram

Recall that B ℓ is the set of cyclically reduced words on X ± = {x ± 1 , . . . , x ± m } of length at most ℓ. Let Γ be a graph labeled by X with rk(Γ) ≤ r.

Let ( D, p) be an abstract distortion diagram with k abstract relators. Assume that D is reduced, fillable and has no isolated edges. Let ℓ be the longest boundary length of faces of D.

Denote N ℓ ( D, p, Γ) the set of fillings (r 1 , . . . , r k ) of ( D, p) by (B ℓ , Γ). In this subsection, we give an upper bound of the number of fillings |N ℓ ( D, p, Γ)| (Lemma 3.21).

Lemma 3.18. The number of reduced words u of length L that is readable on Γ is at most 2|Γ|(2r -1) L .

Proof. We estimate the number of paths p on Γ whose labeling word can be reduced. Take an oriented edge of Γ as the first edge of p, there are 2|Γ| choices. Every vertex is of degree at most 2r because rk(Γ) ≤ r. As p is reduced, every time we take the next edge, there are at most (2r -1) choices. Hence, there are at most 2|Γ|(2r -1) L paths.

A vertex of ( D, p) is called distinguished if it is either of degree at least 3, or the starting point of a face, or an endpoint of p. Let i be an abstract letter of ( D, p). It can be regarded as a 2-complex (see Figure 3.8) with two inverse faces {i, i -} and 2ℓ i edges (i, 1), . . . , (i, ℓ i ) with their inverses, such that ∂i = (i, 1) . . . (i, ℓ i ). i (i, j) Figure 3.8: the 2-complex of the abstract letter i A vertex of ∂i is marked if there exists a face f of D labeled by i such that the corresponding vertex is distinguished. Note that the starting point of ∂i is marked. Marked vertices divide the loop ∂i into segments, called elementary segments.

Consequently, an elementary segment is a sequence of abstract letters (i, j)(i, j + 1) . . . (i, j + t) such that, if a path e j . . . e j+t on D is decorated by (i, j) . . . (i, j + t), then it passes by no distinguished points except for its endpoints.

Lemma 3.19. Let (i, j) . . . (i, j + t) be an elementary segment. The abstract letters (i, j), . . . , (i, j + t) are either all free-to-fill, or all semi-free-to-fill, or all not free-to-fill.

Proof. We shall check that if the vertex between two consecutive abstract letters (i, j) and (i, j + 1) is not marked, then they are of the same type.

Recall that if an edge {e 1 , e -1 1 } is decorated by (i, j) from the face {f, f -1 }, then there is an edge {e 2 , e -1 2 } next to {e 1 , e -1 1 }, decorated by (i, j + 1) from the same face {f, f -1 }. Assume that the vertex between (i, j) and (i, j + 1) is not marked so that the vertex between {e 1 , e -1 1 } and {e 2 , e -1 2 } is not distinguished.

We suppose by contradiction that (i, j) and (i, j + 1) are not of the same type. There are 3 2 -3 = 6 cases, grouped into three cases. case 1. (i, j) is semi-free-to-fill and (i, j + 1) is free-to-fill, or inversely:

Recall that if (i, j) is semi-free-to-fill in the abstract distortion diagram ( D, p), then it decorates an undirected edge {e 1 , e -1 1 } on p. As (i, j + 1) is free-to-fill, the edge {e 2 , e -1 2 } decorated by (i, j + 1) from the same face is not on p (see Figure 3.9). So the vertex between {e 1 , e -1 1 } and {e 2 , e -1 2 } is distinguished, contradiction. p (i, j) (i, j + 1) i Figure 3.9: case 1 of Lemma 3.19 case 2. (i, j) is not free-to-fill, and (i, j + 1) is free-to-fill or semi-free-to-fill: By definition, there is an edge {e 1 , e -1 1 } decorated by (i, j) having a smaller decoration (i ′ , j ′ ) < (i, j) (see Figure 3.10). Let {f, f -1 }, {f ′ , f ′ -1 } be the faces attached by {e 1 , e -1 1 } such that f is labeled by i and f ′ is labeled by i ′ .

Let {e 2 , e -1 2 } be the edge next to {e 1 , e -1 1 }, decorated by (i, j + 1) from the face {f, f -1 }. As the vertex between e 1 and e 2 is not distinguished, {e 2 , e -1 2 } is attached to the face {f (i,j) is free-to-fill or semi-free-to-fill, and (i, j + 1) is not free-to-fill:

There is an edge {e 1 , e -1 1 } decorated by (i, j + 1) having a smaller decoration (i ′ , j ′ ) < (i, j + 1) (Figure 3.11). By the same argument of case 2, (i, j) < (i ′ , j ′ + 1) or (i, j) < (i ′ , j ′ -1). The second one is obviously impossible. If the first one held, then (i ′ , j ′ ) < (i, j + 1) < (i ′ , j ′ + 2), so (i ′ , j ′ ) = (i, j), and there was an edge decorated by (i, j) and (i, j + 1) with opposite directions. The canonical function ϕ : X → X gives ϕ(i, j + 1) = ϕ(i, j) -1 , which is impossible because r i = ϕ(i, 1) . . . ϕ(i, ℓ i ) should be a reduced word.

(i, j) (ii) The number of elementary segments of an abstract letter i is at most 3| D| 2 .

Proof. The underlying 1-complex of D is a graph of rank | D| without isolated edges. By Lemma 3.1 there are at most 2(| D| -1) vertices of degree ≥ 3. We add k ≤ | D| starting points and 2 endpoints of p, there are at most 3| D| distinguished vertices on ( D, p).

The number of faces of D labeled by i is at most | D|. Every face brings at most 3| D| marked vertices to ∂i, so there are at most 3| D| 2 marked vertices on ∂i.

Lemma 3.21. Let ( D, p) be a reduced abstract distortion diagram with no isolated edges and with k abstract relators. Recall that η i is the number of free-to-fill abstract letters of i and η ′ i is the number of semi-free-to-fill abstract letters of i. Let Γ be a labeled graph with rk(Γ) ≤ r. Recall that N ℓ ( D, p, Γ) is the set of fillings (r 1 , . . . , r k ) of ( D, p) by (B ℓ , Γ). We have

Proof. We fill abstract letters of D in lexicographic order. We shall prove that if the abstract relators 1, . . . , i-1 are filled, then there are at most

ways to fill the i-th abstract relator. By Lemma 3.19, we fill elementary segments of i in order. Let u be an elementary segment of i. If u is free-to-fill, then there are at most (2m -1) |u| ways to fill u (or at most 2m(2m -1) |u|-1 ways if u is the first segment of i). If u is semi-free-to-fill, then there are at most 2|Γ|(2r -1) |u| ways to fill u by lemma 3.18. If u is not free-to-fill, there is only one choice.

The sum of the lengths of free-to-fill segments is η i , and the sum of the lengths of semi-free-to-fill segments is η ′ i . As the number of semi-free-to-fill segments is at most 3| D| 2 (Lemma 3.20), there are at most 2m(2m -1) ηi-1 (2|Γ|) 3| D| 2 (2r -1) η ′ i ways to fill the abstract relator i.

The Freiheitssatz for random groups

Recall that B ℓ is the set of cyclically reduced words of X ± = {x ± 1 , . . . , x ± m }, and that |B ℓ | = (2m -1) ℓ+o(ℓ) . The set of cyclically reduced words on

In this section, we prove that there is a phase transition at density

, 1 -log 2m-1 (2r -1) . (ii) If d < d r , then a.a.s., for every reduced labeled graph Γ with rk(Γ) ≤ r and |Γ| ≤ dr-d 5 ℓ, the canonical map Γ → Cay(G ℓ , X) is a 10 dr-d -quasi-isometric embedding. In particular, a.s.s. every subgroup of G ℓ (m, d) generated by a reduced labeled graph Γ with rk(Γ) ≤ r and |Γ| ≤ dr-d 5 ℓ is a free group of rank r. In particular, a.a.s. x 1 , . . . , x r freely generate a free subgroup of G ℓ (m, d).

Statement of the theorem

Proof of theorem 3.22 (i). Assume that d < 1/2. Otherwise, a.a.s. G ℓ (m, d) is trivial by Theorem 2.45 (i).

Recall that X = {x 1 , . . . , x m } and X r = {x 1 , . . . , x r }.

Let A ℓ be the set of words of type x r+1 w where w is a cyclically reduced word of X ± r of length ℓ -1. The density of (A ℓ ) in (B ℓ ) is c r . By hypothesis c r + d > 1. Apply the intersection formula (Theorem 2.25), a.a.s. the intersection R ℓ ∩ A ℓ is not empty. Hence, a.a.s. there exists a cyclically reduced word w r+1 of X ± r such that x r+1 w r+1 ∈ R ℓ , which implies x r+1 = G ℓ w r+1 .

Apply the same argument to the other generators x r+2 , . . . , x m . A.a.s. there are cyclically words w r+1 , . . . , w m of X ± r such that x i = G ℓ w i for any r + 1 ≤ i ≤ m. Hence, a.a.s. every word of X ± equals to a word of X ± r in G ℓ .

The proof of the second assertion is similar to Ollivier's proof of Theorem 2.45 (ii) in [START_REF] Ollivier | Sharp phase transition theorems for hyperbolicity of random groups[END_REF]. We work first on a local result. The proof of this lemma is in the next subsection.

Proof of Theorem 3.22 (ii) by Lemma 3.23. By Lemma 2.5 and Theorem 2.45 (ii), we work under the condition that every diagram

1-2d . Let Γ be a reduced labeled graph with |Γ| ≤ dr-d 5 ℓ and rk(Γ) ≤ r. Let λ = 5 dr-d . By the local-global principle of quasi-geodesics (Theorem 3.9), in order to prove that Γ → Cay(X, G ℓ ) is a (global) 2λ-quasiisometric embedding, we prove that every reduced word u readable on Γ is a 4000λℓ 1-2d -local λ-quasi-geodesic. Let u be a reduced word that is readable on Γ with |u| ≤ 4000λℓ 1-2d . Let v be a geodesic in G ℓ joining endpoints of the image of u in G ℓ . We shall prove that |u| ≤ λ|v|. By van Kampen's lemma (Lemma 3.3) there exists a diagram D of G ℓ whose boundary word is uv. By the isoperimetric inequality (Theorem 2.45 (ii)),
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Step 4:

Recall that c r = log 2m-1 (2r -1). Note that |∂ D| ≤ ℓ| D| and that d = d r -5ε d . There are two cases:

By (3) and (4), for ℓ large enough log 2m-1 (P) ≤ -2ε d ℓ + 10K 3 log 2m-1 ℓ.

By Lemma 3.1 and Lemma 3.2, we have the following two results. Proof of Lemma 3.23. Recall that ε d = dr-d 5 . We shall prove that a.a.s. for every reduced labeled graph Γ with rk(Γ) ≤ r and

Apply Lemma 3.24, Lemma 3.25 and Lemma 3.26. The probability that there exists a reduced labeled graph Γ with rk(Γ) ≤ r, |Γ| ≤ ε d ℓ and there exists a disc-like reduced abstract distortion diagram ( D, p)
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So the probability that there exists a reduced labeled graph Γ with rk(Γ) ≤ r, |Γ| ≤ ε d ℓ and there exists a disc-like reduced distortion diagram (D, p) of (G ℓ , Γ) with |D| ≤ K that satisfies |p| > (1 -ε d ) |∂ D| is bounded by (2m -1) -ε d ℓ+O(log ℓ) , which goes to 0 when ℓ goes to infinity. This completes the proof of Theorem 3.22.

CHAPTER 4. EXISTENCE OF VAN KAMPEN 2-COMPLEXES

Recall that faces f ∈ F are oriented and F + := {f ∈ F |φ 2 (f ) ∈ R} is a choice of orientation for each undirected face {f, f -1 }. We denote |Y | the number of undirected faces and Edge(Y ) the number of undirected edges. A pair of faces f, f ′ is called reducible if they have the same label and there is a common edge on their boundaries at the same position. A van Kampen 2-complex is called reduced if there is no reducible pair of faces.

In this section, we show that a.a.s. every van Kampen 2-complex Y of the random group G ℓ (m, d) with a bounded complexity (Definition 4.2) satisfies an inequality presented by its number of edges Edge(Y ), its number of faces |Y | and its reduction degree Red(Y ) (Definition 4.1).

Definitions and statement of the theorem

As in [START_REF] Gruber | Random triangular Burnside groups[END_REF], we establish the inequality for non-reduced van Kampen 2-complexes. We need to count the number of edges causing reducible pair of faces, with multiplicity: for any edge e ∈ E, any relator r ∈ R and any integer i, we count the number of faces f ∈ F labeled by r and having e as the i-th boundary edge. If this number is k ≥ 2, we add k -1 to the reduction degree, otherwise we add 0. The reduction degree Red(Y ) is hence defined as follows.

Definition 4.1 (Reduction degree, [GM18] Definition 2.5). Let Y = (V, E, F, φ 1 , φ 2 ) be a van Kampen 2-complex of a group presentation G = ⟨X|R⟩. Let ℓ be the maximal boundary length of faces of Y . The reduction degree of Y is

Remark. A van Kampen 2-complex Y is reduced if and only if, for any face f , any relator r and any integer i, the cardinality of the set {f ∈ F | φ 2 (f ) = r, e is the i-th edge of ∂f } is either 0 or 1, hence if and only if Red(Y ) = 0.

We define here the complexity of a 2-complex. It is not needed in [START_REF] Gruber | Random triangular Burnside groups[END_REF] for triangular random groups, because the number of triangular 2-complexes Y of bounded size |Y | ≤ K is bounded by a constant depending only on K. We give later an upper bound of the number of 2-complexes with a given complexity K (Lemma 4.12). We will see that the two additional conditions (other than |Y | ≤ K) are essential for the estimation.

Definition 4.2. Let Y be a 2-complex. Let K > 0. We say that Y is of complexity K if the following three conditions hold:

• The number of maximal arcs of Y is bounded by K.

• For any face f of Y , the boundary path ∂f is divided into at most K maximal arcs.

Remark. If D is a disk-like 2-complex with |D| ≤ K, then the complexity of D is 6K. In fact, as the rank of its underlying graph is K, by Proposition 3.1, the number of maximal arcs is at most 3K, and every boundary path is divided into at most 6K maximal arcs (an arc may be used twice). With this point of view, the local inequality of Theorem 2.45 (ii) is a corollary of Theorem 4.3.

We can now state Theorem G of Introduction. 

Recall that a 2-complex Y without isolated edges is called contractible if there is an edge of Y that is adjacent to one single face. If Y is a non contractible 2-complex, then each of its edge is adjacent to at least 2 faces, and we have Edge(Y ) ≤ 1 2 |Y |ℓ where ℓ is the maximal face boundary length. As this contradicts the inequality in Corollary 4.4 for any density d < 1/2, there is a further corollary.

Corollary 4.5. Let (G ℓ (m, d)) be a sequence of random groups with density d < 1/2. Let K > 0. A.a.s. every reduced van Kampen 2-complex of complexity K of G ℓ (m, d) is contractible.

Remark. Theorem 4.3 is not true if the complexity of 2-complexes is not bounded. For example, Calegari-Walker [START_REF] Calegary | Random groups contain surface subgroups[END_REF] proved that at any density d < 1/2, a.a.s. a random group G ℓ (m, d) contains a surface subgroup of genus O(ℓ), so with complexity at least O(ℓ).

Remark. Denote Cancel(Y ) the number of canceled undirected edges of a 2-complex Y by attaching maps. That is to say, we have

If the length of every face boundary is at most ℓ, we have

So the inequality of Theorem 4.3 implies

It is an analog of Gruber-Mackay's result in [START_REF] Gruber | Random triangular Burnside groups[END_REF] §2. for triangular random groups.

Abstract van Kampen 2-complexes

Abstract van Kampen 2-complexes, as abstract van Kampen diagrams and abstract distortion diagrams (Section 3.2), is a structure between 2-complexes and van Kampen 2-complexes that helps us solve random group problems.

Let (G ℓ (m, d)) = (⟨X m |R ℓ ⟩) be a sequence of random groups at density d. Let 0 < ε < 1 -d. We shall work under the condition Q ℓ :

By the densability of R ℓ , we have a.a.s. Q ℓ . The following proposition is a variant of Proposition 2.44.

Proposition 4.6. Let r 1 , . . . , r k be pairwise different relators in B ℓ . We have

Lemma 4.12. Let K > 0. For ℓ large enough, the number of abstract van Kampen 2-complexes of complexity K with face boundary lengths at most ℓ is bounded by ℓ 3K .

Proof. As there are at most K maximal arcs, the number of vertices of valency greater than 3 is at most 2K/3 ≤ K. There are at most K 2 ways to draw an arc connecting two of these vertices, every arc is with length at most ℓ. The number of underlying graphs is then at most (K 2 ) K ℓ K .

To attach K faces on a graph, we choose K loops passing by at most K arcs, there are at most (K 2 ) K 2 choices. There are at most (2ℓ) K ways to choose a starting point and an orientation for every face we; and at most K 2K ways to label the faces by abstract relators {1 ± , . . . , K ± }. The number of such abstract 2-complex is bounded by

, the probability that there exists a van Kampen 2-complex of complexity K of G ℓ (m, d) satisfying

is smaller than

Pr Y is fillable by Q ℓ .

By Lemma 4.12 and Lemma 4.11, it is smaller than

, so the probability that there exists a van Kampen 2-complex of G ℓ (m, d)

of complexity K satisfying ( * ) converges to 0 as ℓ goes to infinity. That is to say, a.a.s. every van Kampen diagram of G ℓ (m, d) of complexity K satisfies the inequality

EXISTENCE OF VAN KAMPEN 2-COMPLEXES

For example, for the C(5) small cancellation condition, we study the following geometric form of 2complexes.

Note that Every face f of Y ℓ is with boundary length at most ℓ. We may replace the sequence of lengths (⌊λ e ℓ⌋) ℓ∈N by any sequence with λ e ℓ+o(ℓ). If Z is a sub 2-complex of Y , we denote Z < Y . By convention, if (Z ℓ ) is the sequence of divided sequences of Z, we have Z ℓ < Y ℓ for any integer ℓ. Definition 4.14. Let (Y, λ) be a marked 2-complex with coefficients (λ e ) e∈Edge(Y ) . The density of Y is

) be a sequence of random groups with m generators at density d. We say that Y ℓ is fillable by G ℓ (m, d) (or by R ℓ ) if there exists a reduced van Kampen 2-complex of G ℓ (m, d) whose underlying 2-complex is Y ℓ . Note that in the second assertion, we need that Y ℓ has at least one filling by the set of all possible relators B ℓ .

Proof of Theorem H (Theorem 4.15)

The first assertion can be proved by Theorem 4.3.

Proof of Theorem 4.15 (i). Suppose that dens c Y + d < 1. There exists a sub-2-complex Z < Y satisfying dens Z + d < 1. Let (Z ℓ ) be the sequence of divided 2-complexes of Z. We shall prove that a.a.s. Z ℓ is not fillable by G ℓ (m, d) by Theorem 4.3.

Let ε > 0 such that dens Z = 1 -d -3ε. By definition,

The complexity of Z ℓ is K = max |Z|, Edge(Z), max{ 1 λe | e edge of Z} , independent of ℓ. Apply Theorem 4.3 with ε and K given above, a.a.s. every van Kampen 2-complex

So a.a.s. Z ℓ is not fillable by G ℓ (m, d), which implies that a.a.s. Y ℓ is not fillable by G ℓ (m, d).

To prove the second assertion, we need the multidimensional intersection formula (Theorem C, Theorem 2.40).

Recall that B ℓ is the set of cyclically reduced words of length at most ℓ. For an integer k, denote kℓ+o(ℓ) . Recall the following notions in Section 2.3. Definition 4.16 (Self-intersection partition). Let (Y ℓ ) be a sequence of fixed subsets of the sequence

where |x ∩ y| is the number of common elements between the sets x = (r 1 , . . . , r k ) and y = (r ′ 1 , . . . , r ′ k ).

The family of subsets {S

, with density smaller than

Definition 4.17 (Definition 2.33). Let (Y ℓ ) be a sequence of fixed subsets of B (k) ℓ with density α. Let S i,ℓ with 0 ≤ i ≤ k be its self-intersection partition. Let d > 1 -α. We say that (Y ℓ ) satisfies the d-small self-intersection condition if, for every 

However, this proposition is not enough to answer Question 5, even for smaller densities d < 1/4. There is an essential difference between the triangular density model and the traditional Gromov density model: The hyperbolicity constant of (the Cayley graph of) a random triangular group G m (d) at density d < 1/2 is bounded by 12 1-2d . This constant is independent of the sequence index m, which is an important point in Gruber-Mackay's proof. While the hyperbolicity constant for a random group G ℓ (m, d) at density d < 1/2 is 4ℓ 1-2d , which depends on ℓ.

Since the maximal number of parallel geodesics in the above proposition diverges as the density d increases to 1/4, we believe that when d > 1/4, this number is no longer uniformly bounded (i.e. increases with the relator length ℓ), and there is a phase transition at density 1/4. Question 6. If d > 1 4 , is it true that for any k ≥ 0 a.a.s. P (G ℓ (m, d)) > k?

The graph model of random groups

As we have seen in Subsection 3.1.1, a finite connected graph Γ labeled by X ± m generate a subgroup of a finitely presented group G = ⟨X m |R⟩. Denote G/Γ the quotient of G by the normal subgroup generated by Γ. If Γ is randomly labeled graph, then G/Γ defines a random group. The first appearance of this model is in [START_REF] Gromov | Random walk in random groups[END_REF] p.141, introduced by M. Gromov, to construct a finitely presented group that can not be coarsely embedded into any Hilbert space, called Gromov's monster group in [START_REF] Goulnara | Examples of random groups[END_REF].

Note that this notion generalizes the uniform model of random finitely presented groups: Let F m = F (X m ) be the free group generated by X m . Fix an integer k ≥ 1, if Γ is a wedge of k simple cycles of length ℓ with reduced label on each cycle (not necessary on the common vertex), then F m /Γ defines a uniform random group with k generators G = ⟨x 1 , . . . , x m |r 1 , . . . , r k ⟩.

If (Γ n ) is a "well-chosen" interesting sequence of random labeled graphs, we may discuss asymptotic behaviors of the sequence of random groups (F m /Γ n ). We are in particular interested in a certain family of Ramanujan graphs: let p, q ≥ 3 be distinct prime numbers, and let j ≥ 1 be an integer. Let C(p, q) be the Cayley graph of the projective general linear group P GL 2 (q) over the field of q elements, for a particular set S p,q of (p + 1) generators (c.f. [LPS88], [START_REF] Valette | Graphes de Ramanujan et applications[END_REF]). It is a (p + 1)-regular graph on q 2 (q -1) vertices with girth (minimal simple cycle length) ρ(p, q) ∼ 4 log p q. Denote C(p, q, j) the graph obtained from C(p, q) by dividing every edge into j edges.

Let Γ(p, q, j) be the random labeled graph that is uniformly chosen among all labeled graphs with respect to the generators X ± m having C(p, q, i) as the underlying graph. Let (G q (m, p, j)) q prime,q̸ =p be the sequence of random groups defined by G q (m, p, j) = F m /Γ(p, q, j). What we are interested in is an intermediate result in Gromov's construction.

Theorem (M. Gromov, [START_REF] Gromov | Random walk in random groups[END_REF]). For any m, p, there exists j 0 large enough such that for any j ≥ j 0 a.a.s. the random group G q (m, p, j) is non-elementary hyperbolic.

By its construction, an analog of the "density" for the sequence of random groups (G q (m, p, j)) q prime,q̸ =p is the three parameters m, p, and j. We may ask that, is there a triviality-hyperbolicity phase transition? CHAPTER 5. OPEN QUESTIONS Question 7. Let (G q (m, p, j)) q prime,q̸ =p be a sequence of random groups defined as above. Does there exist a number c = c(m, p, j) such that (i) if c > 1, then a.a.s. G q (m, p, j) is trivial, (ii) if c < 1, then a.a.s. G q (m, p, j) is non-elementary hyperbolic?

We will give a speculation on the constant c at the end of this section. The same question can be proposed for any phase transition that appeared in the density model: small cancellation conditions, free subgroup problems, the existence of van Kampen diagrams, etc.

Non-reduced graphical small cancellation Let F m = F (X m ) be the free group generated by the set X m = {x 1 , . . . , x m }.

Definition. Let Γ be a graph labeled by X m , not necessarily reduced. A piece of Γ is the labeling word of a simple path of Γ that equals to, in F m , the labeling word of another simple path of Γ.

Let ρ be the girth (minimal simple cycle length) of Γ. For any 0 < λ ≤ 1, we say that Γ satisfies the G ′ (λ) non-reduced graphical small cancellation condition if the length of a piece is at most λρ.

To study the random group G q (m, p, j) = F m /Γ(p, q, j) defined as above, we may ask that does the randomly labeled graph Γ(p, q, j) satisfy the G ′ (λ) condition, asymptotically when q goes to infinity. Recall that the girth of its underlying graph C(p, q, j) is of order ρ q = 4j log p q + O(1) (c.f. [LPS88], [START_REF] Valette | Graphes de Ramanujan et applications[END_REF]). Let us estimate the number of simple paths on the graph C(p, q, j) of length λρ q with λ < 1/2: from each vertex of valency (p + 1), there are p ⌊ 1 j λρq⌋ such paths (because C(p, q) is p-regular), the number of vertices is of order q 3 = p 3 4j ρq+O(1) . Counting paths starting at vertices of valency 2 will only multiply the number by j and will not affect the exponential term. So the number of simple paths of length λρ q is C q = p 1 j (1+ 3 4λ )λρq+O(1) .

The set E q of non-reduced words of X ± m of length λρ q is with cardinality (2m) λρq . The set A q of the labeling words produced by the simple paths C q on Γ(p, q, j) is a random subset of E q .

Let us assume that the sequence (A q ) has similar properties of a sequence of permutation invariant random subsets (although it is not). The cardinality of A q is very close to C q , so the density of the sequence (A q ) in (E q ) is dens(A q ) = 1 j 1 + 3 4λ log 2m p.

Studying the G ′ (λ) condition is to ask if A q has self-intersection after reduction. If fact, it happens at the same density that A q intersects the set of words that equal to the identity in F m , which is with density log 2m (2 √ 2m -1) < 1. Now we can ask the following question:

Question 8. Let (G q (m, p, j)) q prime,q̸ =p be a sequence of random groups in the graph model. Is it true that (i) if 1 j 1 + 3 4λ log 2m p + log 2m (2 √ 2m -1) < 1, then a.a.s. G q (m, p, j) satisfies G ′ (λ),

(ii) if 1 j 1 + 3 4λ log 2m p + log 2m (2 √ 2m -1) > 1, then a.a.s. G q (m, p, j) does not satisfy G ′ (λ)?

In the Gromov density model, the triviality-hyperbolicity phase transition happens at density d = 1/2, which is the critical density for the C ′ (λ) condition with "λ = 1". We believe that there is an analog in the graph model, and guess that the constant c = c(m, p, j) in Question 7 may be c = 7 4j log 2m p + log 2m (2 √ 2m -1).

Abstract

In this thesis, we study phase transitions in random groups at density. A random group at density d is defined by a presentation with m generators and (2m -1) dℓ random relations, where ℓ is the maximal length of the relations. We have two main results : one on the free subgroup problem and the other on the existence of van Kampen 2-complexes.

For any integer r between 1 and m -1, we find a phase transition at the density d r = min{ 1 2 , 1log 2m-1 (2r -1)} : If d > d r , then the r first generators generate the whole group ; if d < d r , then the r first generators generate a free subgroup. This result gives new examples of group presentations satisfying the Freiheitssatz property, with a wide variety of relation lengths.

For each 2-complex of a given geometric form, we give a critical density d c which characterizes the existence of a van Kampen 2-complex whose underlying 2-complex is the given one. In order to prove this result, we study in detail the intersection formula for random subsets and give a multidimensional version of this formula.