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Abstract

Title: Statistical learning and inverse uncertainty quantification in nuclear thermal-hydraulic
simulation: application to the condensation modelling at the safety injection

The methodology called BEPU (which stands for Best Estimate Plus Uncertainty) is increas-
ingly attracting interest in the nuclear thermal-hydraulic field. It is composed of two steps: the
simulation of physical phenomena through the best available knowledge (e.g. using physical
models, also called correlations) and the estimation of the uncertainties affecting the predic-
tions. Before the application of the BEPU methodology to safety studies, the thermal-hydraulic
models used in the nuclear codes should be appropriately developed, validated and the asso-
ciated uncertainties quantified. These correlations are assessed tuning their parameters using
the available experimental databases. Ideally, the database is composed by Separate Effect
Tests (SETs) (i.e. tests where the phenomenon to be modelled has an effect on the measurable
Quantity of Interest (QoI) that can be separated and quantified). Nevertheless, SETs are not
often available, but Combined Effect Tests (CETs) are. If the database is composed by CETs,
the correlation modelling the physical phenomenon of interest interacts with, at least, another
one (which is uncertain as well).

This doctoral research aims at developing advanced statistical methodologies for the In-
verse Uncertainty Quantification (IUQ) (i.e. the estimation of the input uncertainties from
the discrepancy between the predicted QoI and its experimental value) of thermal-hydraulic
models and apply them to the practical case of the condensation model at the Emergency Core
Cooling (ECC) system of a nuclear reactor. It consists, more in detail, on the development,
validation and uncertainty quantification of a new physical correlation in presence of SETs and
the IUQ of an existing model against a CETs database. The PhD thesis is arranged in three
main parts. In the first part, the development, validation and quantification of the uncertainty
of thermal-hydraulic models is approached by Bayesian inference using SETs. In this approach,
a multiplicative random variable (representing the model uncertainty) links the experimental
value to the model prediction. This multiplicative variable suits models that scale many or-
ders of magnitude, as in the case of thermal-hydraulic tests. A set of statistical indicators is
identified to assess the predictive performance of the best-estimate model. Moreover, since the
available thermal-hydraulic databases are often composed by a limited number of tests, the
physical model is validated using a cross-validation technique called Leave One Out (LOO),
which allows using the same database for both the assessment and validation phases.

The second part is focused on one of the most widely applied IUQ methods in nuclear
thermal-hydraulic: the CIRCE methodology (French acronym for Calculation of the Uncertain-
ties Related to the Elementary Correlations) and its extension to CETs applications. CIRCE
estimates the (log-)normal probability distribution representing the reference model uncertainty
in the computer code. However, when applied to several models using CETs, this methodology
may suffer of unidentifiability (i.e. different combination of uncertainties explain the missmatch
between the code output and the experimental data) resulting in less accurate and precise es-
timated uncertainties. The unidentifiability may result in an estimation of the least influential
model uncertainty (least influential on the code output) characterised by low accuracy and pre-
cision (in the estimation of the (log-)normal law parameters). Furthermore, even the estimation
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of the most influential model uncertainty may be affected by low precision. Thus, an extension
of the method (named CIRCE 2-Steps) is proposed for the improved estimation of the most
influential model uncertainty. The methodology is composed of two successive steps. In the
first step, the uncertainties for which SETs are available are evaluated. These uncertainties are
then properly taken into account when quantifying the remaining uncertainties against CETs.
Such an approach is proven to provide more accurate and precise results.

In the third part, the two methodologies are applied to a practical case: the physical models
used for the prediction of the condensation in the cold leg of a nuclear Pressurised Water Re-
actor (PWR) during a Loss of Coolant Accident (LOCA). In such a scenario, two condensation
phenomena are influent on the QoI, i.e. the temperature of the liquid at the entrance of the
downcomer. The former is the condensation of the steam on the cold jet of the ECC system
and then its impact in the liquid flow. The latter is the condensation of the steam at the liquid
interface of the stratified flow between the jet region and the downcomer. The experimental
facilities COSI, TOPFLOW-PTS and UPTF compose the experimental database. The configu-
ration and scale is different for all of them, resulting in a broad range of injection temperature,
mass flowrate and pressure. These experiments are classified as CETs. Nevertheless, since the
condensation at the safety injection can be isolated, they can also be rearranged as SETs. This
database is thus appropriate to test both methodologies. After testing correlations from the
literature on the new experimental database with poor results, a new approach is presented.
The condensation is quantified by a potential, which describes the heat exchanger that models
the cold jet. In this way, the condensation is a function of the shape of the jet and a variable
η depending on the ECC fluid velocity, the ECC geometry, the steam mass flowrate, the fluid
temperature and the pressure. The Bayesian framework presented in the first part is applied
to the COSI and TOPFLOW-PTS SETs to calibrate a correlation for the variable η. The new
model reduces significantly the standard deviation between the predictions and the correspond-
ing experimental values. The new correlation is then statistically validated and applied to the
UPTF database for physical validation. The correlation shows a good capability of accurately
predict the condensation at the injection in all the studied configurations. The newly devel-
oped CIRCE 2-Steps methodology is then applied, showing significant improvements on the
estimation of the uncertainty of the jet condensation model (i.e. the most influential one). The
resulting model uncertainty is compared with the one computed by the Bayesian framework,
showing good agreement between the two results.

Keywords: Bayesian calibration, Inverse Uncertainty Quantification, CIRCE, Combined Ef-
fect Tests, Condensation, ECC
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With 56 nuclear reactors in operation, 1 under construction and 6 more planned, France is
a pioneer in the production of electricity from nuclear energy [1]. The French fleet is composed
by Pressurised Water Reactors (PWRs), where the nuclear core is cooled down by light water
at high pressure. The performances of these reactors must be assessed during the design phase,
for safety analyses of accidental scenarios and for licensing purposes. In particular, the cooling
of the reactor core should be ensured at any time to avoid fuel damage and potential release
of radiation. For those reasons, simulation tools have been developed in the past 70 years to
simulate the transient behaviour of the reactors.

1.1 . Simulation tools for nuclear systems and calibration of empirical correla-
tions

Since the 70s, simulations of a complex and large system, such as a PWR composed by
several compontents (e.g. pipes, pumps and steam generators), have been a challenge. The
behaviour of all the components in the reactor must be simulated in a wide range of physical
situations (e.g. all two-phase flow regimes, heat transfer regimes, flow conditions and geome-
tries) to prove to the regulatory authority the safety of the nuclear power plant during normal
and accidental conditions [2].

Different levels of detail can be reached on the description of the thermal-hydraulic phe-
nomena in the cooling loops. For example, the understanding of local aspects can be handled
with a CFD (Computational Fluid Dynamics) code (e.g. one-phase flow inlet pressure drop in
the nuclear core [3]), but a significant computational cost is required. The whole cooling loop
is instead modelled via thermal-hydraulic system codes which capture its macroscopic behavior
and represent a good compromise between simulation accuracy and computational cost.

Thermal-hydraulic system codes (such as RELAP [4], TRACE [5] and CATHARE [6]) are
usually based on the so-called 2-fluid 6-equations model [7]. In order to reduce the complexity
of the simulation, the balance equations of mass, momentum and energy (3 for liquid and 3 for
gas) are time- and space-averaged on appropriate time steps and control volumes. Hence, the
spatial distribution and the temporal variations of the phases in the control volumes are not
taken into account.

Due to the time- and space-averaging procedure, several closure laws (also called physical
models or correlations) need to be defined in the equations. The energy equation [8] to be
averaged is reported as example here below:

1



CHAPTER 1. INTRODUCTION

ρ · DI
Dt

= −grad(q̇′′) + q̇′′′ + DP

Dt
+ ϕ (1.1)

where the product of the density ρ and the Lagrangian derivative of the entalphy I in the
control volume is equal to the sum of the negative gradient of the specific heat flux vector
q̇′′, the volumetric heat flux q̇′′′, the Lagrangian derivative of the pressure P and a dissipation
function ϕ (i.e. the dissipation to heat due to viscous stresses). In this equation, the specific
heat flux vector q̇′′ can represent the heat transfer with the walls and the volumetric heat flux
q̇′′′ the heat transfer at the liquid interface. These heat fluxes are part of the Quantities of
Interest (QoIs) for thermalhydraulic codes. Unfortunately, they are unknown and they should
be modelled through empirical correlations. Let us call zcalc(x, θ) a generic QoI (e.g. q̇′′, q̇′′′) as
a function of state variables x (e.g. the experimental conditions, such as temperature, pressure
or dimensionless numbers) and a set of parameters θ. An example of physical model is the
following one:

zcalc(x,θ) = θ0 · xθ1
1 · xθ2

2 (1.2)

where (x1, x2) are 2 state variables and (θ0, θ1, θ2) are 3 parameters (e.g. the Dittus and
Boelter correlation [9] for the turbulent wall-liquid heat transfer in a circular smooth pipe
Nu = 0.023 ·Re0.8 · Pr0.4).

The estimation of zcalc(x, θ) requires to calibrate the model parameters θ through com-
parison between experiments and the calculated QoI [10]. The discrepancy between real world
experiments and their mathematical representation shoud be reduced as low as possible in or-
der to have an accurate representation of the reality. Moreover, the experimental QoI used
in the calibration phase should be dependent as much as possible on the phenomenon to be
mathematically modelled. Thus, the employed experimental database is of great importance.

In thermal-hydraulic, the experiments (often carried out at a smaller scale than a real PWR)
can be divided in:

• Separate Effect Tests (SETs), where only one physical phenomenon has a measurable
effect on the experimental QoI (e.g. in single-phase flow experiments, the measured wall
temperature is mostly impacted by the wall-liquid heat transfer coefficient);

• Combined Effect Tests (CETs), where multiple phenomena interact with each other and
affect simultaneously the experimental QoI;

• Integral Effect Tests (IETs), where all the main components of a PWR are simulated and
the integral effect on the thermal-hydraulic system is observed.

When SETs are available, the calibration of the mathematical model can be easily performed
(e.g. [9]). However, sometimes only CETs are available. This complicates the calibration with
a risk to introduce compensating errors. In some cases, an experimental analysis of the tests
may allow the thermal-hydraulic experts to decouple the effects and reduce the CETs in SETs.
Hence, the experimental analysis is fundamental for the robustness of the calibration.

Finally, the whole process described above allows computing the macroscopic behaviour of
the cooling system in a fast and reliable way.
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1.2. BEST ESTIMATE PLUS UNCERTAINTY (BEPU)

1.2 . Best Estimate Plus Uncertainty (BEPU)

The aim of the licensing and safety studies is to prove to the regulatory authority that the
reactor can operate safely in nominal conditions and that certain safety limits (e.g. the fuel
cladding should not melt) are respected during postulated accidental scenarios. As schematised
in Fig. 1.1, the real safety margin can be ideally evaluated comparing the real value of the QoI
(e.g. the peak cladding temperature in the core) to its associated safety limit (e.g. the fusion
temperature of the cladding).

Figure 1.1: Safety margin calculations with different approaches.

Unfortunately, the real value is unknown in practical applications. The safety limit is de-
fined by the regulatory body as an acceptance criterion, lower than the actual safety limit. For
example, the acceptance criterion for the peak cladding temperature is 1204.4 °C, according to
the US federal regulation 10 CFR50.46 [11].

The real value of the QoI can be estimated only via simulations with thermal-hydraulic
system codes. Two main kinds of approaches are possible [12]: the conservative (green in Fig.
1.1) and the Best Estimate Plus Uncertainty (BEPU) one (blue in Fig. 1.1). The conservative
simulations are performed with penalising (and sometimes unphysical) assumptions both for
the input parameters and the physical models in the code. The goal is to obtain the worst
possible value of the QoI, in order to quantify a conservative safety margin. This approach
started to be questioned at the end of the 80s, since it may lead to results which are unrealistic
and possibly non-conservative. In fact, the use of individually penalising assumptions does not
guarantee that their combination results in the worst possible set of conditions. These consid-
erations led to the development of BEPU. In this approach, the simulations are performed via
Best-Estimate (BE) system codes, where the physical phenomena are modelled as realistically
as possible (the blue point in Fig. 1.1, i.e. nearer to the real value than the green one). The
uncertainties associated to the BE value of the QoI are then quantified and the upper (or lower)
limit of the uncertainty band is employed to evaluate the safety margin.
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In order to demonstrate the capability of the system codes to be best-estimate, a process of
Verification and Validation (V&V) is necessary [13, 14]. The verification phase aims at verifying
that the equations are correctly implemented and solved and the code behaves numerically as
intended. The validation consists in comparing the code calculation results with the measure-
ments obtained in thermal-hydraulic experiments, in order to demonstrate the capability of the
code to predict the reactor behaviour in the range of conditions of interest. In the validation
phase, all the experiments (i.e. SETs, CETs and IETs) can be simulated through the BE code
to validate its predictions. The Uncertainty Quantification (UQ) aims at evaluating the uncer-
tainty on the QoI.

Several methods (e.g. CSAU [15], GRS [16], CIAU [17]) have been developed for the UQ
required by BEPU. Among these methods, the most commonly used are based on the propa-
gation of input uncertainties. Thus, one of the crucial issue in the BEPU methodology is the
identification and quantification of the input uncertainties to be propagated. The latter are
part of the following sources of input uncertainty [13]:

• Experimental uncertainty, e.g. due to the measurement noise;

• Model (or epistemic) and parameter uncertainties, caused by the incomplete mathematical
modelling of the phenomena and the inaccurate calibration of the correlation parameters
θ;

• Code uncertainty, due to the mathematical approximations and numerical schemes of the
code when computing the output value;

• Plant uncertainty, related to the geometry of the system and its initial and boundary
conditions;

• Scaling uncertainty, due to the use of models developed on scaled experiments to a full
scale reactor;

• Representation uncertainty, caused by the nodalisation of the systems [18], i.e. the un-
certainty in the physical discretisation;

• User’s uncertainty, related to the modelling choices of the code user.

Figure 1.2: Forward UQ for BEPU applications.

The thermal-hydraulic expert, depending on the chosen UQ method, select several uncertainties
from the list above as input uncertainties (expressed via a probability distribution function -
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pdf). Then, the pdfs are propagated throughout the BE code and a pdf of the output QoI is
obtained (as shown in Figure 1.2). This process is called Forward UQ.

1.3 . Inverse Uncertainty Quantification (IUQ)

One of the major issues for the Forward UQ is to define the input uncertainties. Historically,
the estimation of these uncertainties relied heavily on expert judgment [19]. However, nowadays,
more rigorous and robust methodologies (e.g. CIRCE [20] and many more [21]) are usually
applied. These methodologies quantify the uncertainties associated to the physical models in
the code through an Inverse Uncertainty Quantification (IUQ). As shown in Figure 1.3, the
input uncertainties are estimated by comparing the BE simulation results to the measurements
from experiments representative of the phenomenon, component or cooling system under study.

Figure 1.3: IUQ for the estimation of the input uncertainties.

Ideally, the IUQ should be applied to SETs in order to quantify the uncertainty of the model
influencing the QoI. However, SETs are not always available and sometimes CETs should be
used. In this case, the IUQ methodology is applied to jointly assess the uncertainty of two or
more models. The model uncertainty of a closure law can be modelled as follows:

zpred(x,θ) = Λ · zcalc(x,θ) (1.3)

where zcalc(x,θ) is the punctual value computed by the physical model, Λ = (L )N (mλ, σ
2
λ)

is the (log-)normal distribution that represents the model uncertainty and links the calculated
value to the predicted one zpred(x,θ).

The goal of the IUQ is to estimate the meanmλ and variance σ2
λ of the distribution. However,

in the case where CETs are used to jointly quantify the uncertainties of several models, if one
model is not highly influential on the code output, the IUQ methodology (namely CIRCE)
might estimate its uncertainty with low accuracy and precision due to the identifiability issue
[22].

1.4 . Condensation phenomena in the cold leg of a PWR in case of LOCA

In this doctoral work, we focus on the calibration and IUQ of the steam-liquid heat transfer
closure law in the energy equation (i.e. q̇′′′ in Eq. 1.1). In particular, we focus on the Emergency
Core Cooling (ECC) condensation model, for which only CETs are available. Indeed, during a
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postulated Loss of Coolant Accident (LOCA), a break occurs in the primary loop that causes a
sudden depressurisation, a loss of liquid inventory and a significant steam production. In order
to cool down the reactor core, cold water is injected in the cold legs of the PWR via the ECC
system, as shown in Fig. 1.4.

Figure 1.4: Main phenomena occurring in the cold leg of a PWR during the ECC injection.

Figure 1.5: Local condensation phenomena occurring in the ECC region.

The contact between the cold water (in blue) and the steam (in yellow) causes the condensa-
tion of the latter which heats up the injected water. An accurate modelling of the condensation
in the cold leg is crucial to correctly predict the pressure evolution in the primary loop and to
evaluate the potential risk of Pressurized Thermal Shock (PTS) on the vessel walls. The PTS
phenomenon can occur when the cold liquid flow coming from the cold leg enters in contact with
the vessel generating high temperature gradients, which could damage its structural integrity
[23].
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In Fig. 1.4, two main condensation phenomena can be identified at the safety injection:
the condensation induced by the cold liquid injection on the liquid jet, turbulence and steam
entrainment in the ECC region (red circle) and the condensation at the liquid interface of the
stratified flow (green ellipse). The former is the main driver mechanism of the global conden-
sation inside the cold leg [24] and we are interested in modelling it.

In Fig. 1.5, the local phenomena occurring during the cold injection are illustrated [25].
From the ECC pipe exit until the impact with the liquid flow, the steam condenses over the
cold jet. Then, the impact generates steam entrainment in the liquid that strengthens the con-
densation. At the same time, mixing phenomena occur in the liquid flow between the cold and
hot water. At the flow surface, the lateral rebounds caused by the injection create waves that
increase the condensation. These phenomena have been studied in the past [25] as presented
in Chapter 5. However, the condensation mechanisms at the ECC are not clear nowadays and
further investigations are needed to model them.

1.5 . Objective of the research work

The current doctoral research aims at developing, validating and quantifying the uncertain-
ties of a new ECC condensation model. Advanced statistical methodologies for the calibration
and IUQ of thermal-hydraulic models are presented.

The first objective is the development of a Bayesian framework for the calibration, vali-
dation and uncertainty quantification of thermal-hydraulic models, where the predictions and
the model outputs are linked by a multiplicative model uncertainty (Eq. 1.3). Usually, the
parameters of the correlations are calibrated against SETs (e.g. through a multivariate linear
regression) and only the model uncertainty is quantified. However, if the experimental database
is small (as it is the case in nuclear thermal-hydraulic), the uncertainty on the parameter val-
ues may not be negligible. Thus, in this new framework the Bayesian inference is employed to
estimate also the uncertainty of the model parameters.

The second objective of the work is the extension of the CIRCE methodology (i.e. one of
the most widely applied IUQ methods in nuclear thermal-hydraulic [26]) to improve the IUQ
in the presence of CETs. The goal is to find an appropriate solution to this issue extending the
applicability of the CIRCE methodology.

The third objective is the detailed experimental analysis of three CET experiments (COSI,
TOPFLOW-PTS and UPTF) with the goal to decouple the condensation phenomena into SETs.
Then, a condensation model at the ECC injection is assessed, developed and validated using
the reduced experimental database.

1.6 . Outline of the thesis

This doctoral thesis is composed by 7 chapters. In Chapter 2, the Bayesian framework for
the assessment, validation and UQ of a thermal-hydraulic model is presented. In particular,
the model updating equation and its main assumptions are introduced. Then, the Bayesian
calibration is proposed to estimate the parameter and the model uncertainties. In Chapter
3, the CIRCE methodology is briefly summarised and improved for CETs under the name
of CIRCE 2-Steps. Chapter 4 presents the ECC injection phenomenology and the thermal-
hydraulic analysis of the experimental database. In Chapter 5, the correlations found in the
literature are assessed and a new ECC condensation model is developed and validated using
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the Bayesian framework described in Chapter 2 and the experimental database established in
Chapter 4. In Chapter 6, the CIRCE methodology and the newly developed CIRCE 2-Steps
are applied to the IUQ of the condensation models in the cold leg. The results are summarised
in Chapter 7 and recommendations for future works are given.

1.7 . Outline of the published work

Paper I is related to the Bayesian methodology proposed in Chapter 2. Moreover, the
framework is applied to a reduced experimental database (with respect to the one used in this
doctoral work) to calibrate a condensation model. In Paper II, the thermal-hydraulic analysis of
Chapter 4 and the calibration of the new condensation model (Chapter 5) through a multivariate
linear regression are presented. Paper III briefly summarises the CIRCE methodology and
improves it for CETs under the name of CIRCE 2-Steps. After the application of both methods
to some analytical exercises, they are applied to the correlations simulating the condensation
in the cold leg.
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2 - The Bayesian framework for the development, valida-
tion and uncertainty quantification of a physical model

This chapter is related to Paper I, where the Bayesian methodology is proposed and the
framework is applied to the COSI database to calibrate a condensation model.

2.1 Model updating equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Bayesian calibration of the model parameters . . . . . . . . . . . . . . . . . . . 10
2.3 Model performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The R-squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Relative and absolute residuals . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Statistical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Propagation of the parameter uncertainties . . . . . . . . . . . . . . . . . 13
2.5.2 Derivation of the model uncertainty . . . . . . . . . . . . . . . . . . . . . 13

The calibration of physical correlations is generally performed by minimising a cost function,
which quantifies the discrepancy between the model outputs and the experimental values [10].
The correlation best-fitting parameters θ (see Eq. 1.2) are often calibrated through a multivari-
ate log-linear regression [27]. A disadvantage of this calibration is that it does not allow jointly
estimating the parameter and model uncertainties. On the contrary, modelling θ as a random
variable, the Bayesian probabilistic framework [28, 29] is more and more employed in nuclear
thermal-hydraulics [30, 31, 32] and permits the calibration of the best-fitting parameters and
the estimation of the associated uncertainties [33]: the one called parameter uncertainty and
associated to the parameters θ and the one called model uncertainty and associated to the lack
of knowledge of the phenomenon and its imperfect modelling [34].

In Section 2.1, the model updating equation and the modelling of the associated uncertain-
ties are defined. The Bayes theorem and its resolution when a noninformative prior probability
is selected is presented in Section 2.2. In Section 2.3, the statistical indicators used to assess the
best-estimate model performances are introduced. Finally, the model is statistically validated
in Section 2.4 and the associated uncertainties are quantified in Section 2.5.

2.1 . Model updating equation

The predicted QoI zpred(x,θ) of a physical model is composed by two terms, the punc-
tual value calculated by the mathematical function zcalc(x,θ), which includes the parameters
uncertainty, and the probability density representing the model uncertainty Λ(x) [30]:

zpred(x,θ) = zcalc(x,θ) + Λ(x) (2.1)

where x is the vector of the state features (e.g. dimensionless numbers) and θ are the model
parameters to be calibrated against the experimental database.
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The following model updating equation [35] represents the statistical problem, which as-
sumes that the experimental QoI zexp(x) is equal to the predicted value in Eq. 2.1 up to an
experimental error or uncertainty ϵ:

zexp(x) = zpred(x,θ) + ϵ = zcalc(x,θ) + Λ(x) + ϵ (2.2)
where the experimental uncertainty is modelled as a normal distribution ϵ ∼ N (0, σ2

ϵ ). Being
often difficult or impossible to quantify, the variance σ2

ϵ can be neglected. This strong assump-
tion is motivated by the request of nuclear safety authorities to conservatively quantify the
uncertainties of physical models used in thermal-hydraulic system codes. Thus, the experimen-
tal uncertainty is neglected and the model one is overestimated [26, 36].

Following this assumption, the probabilistic relationship between zexp(x) and zcalc(x,θ)
from Eq. 2.2 can be rewritten as:

zexp(x) = zcalc(x,θ) + Λ(x) (2.3)
where the variance of the model uncertainty is dependent on the experimental conditions:
Λ(x) ∼ N (0, σ2(x)).

The Bayesian framework calibrates the set of parameters θ so that the physical model
zcalc(x,θ) can reproduce as correctly as possible the experimental data zexp(x).

The additive model uncertainty in Eq. 2.3 is function of the experimental setups and
thus difficult to estimate (e.g. in [37] it is modelled as a Gaussian Process). In [30, 31], the
authors proposed to drop the hypothesis of dependance between the uncertainty variance and
the experimental conditions: Λ ∼ N (0, σ2). However, this approach leads to homoscedastic
realisations of Λ which are not appropriate for the calibration of thermal-hydraulic models
(where the absolute error is proportional to the experimental value). In this doctoral work, the
model uncertainty is thus scaled with the calculated QoI [38], taking indirectly into account
the different thermal-hydraulic scales of the experiments composing the database:

zexp(x) = zpred(x,θ) = Λ · zcalc(x,θ) (2.4)
where the uncertainty Λ is equal to Λ ∼ L N (0, σ2). After the application of the logarithm
function, Eq. 2.4 gives homoscedastic discrepancies ln(zexp(x)) − ln(zcalc(x,θ)). Thus, the
variance is constant and independent to the experimental conditions (resulting in an easier
estimation of σ2).

The Bayesian methodology can be applied to Eq. 2.4, where the unknown parameters θ are
estimated as probability densities.

2.2 . Bayesian calibration of the model parameters

In the proposed Bayesian inference [39] approach, the model parameters θ are modelled as
random variables and the joint posterior distribution τ(θ, σ2|zexp(x)) is estimated. The Bayes
formula relies the posterior distributions to its prior τ(θ, σ2) through the likelihood-function
L(zexp(x)|θ, σ2):

τ(θ, σ2|zexp(x)) ∝ L(zexp(x)|θ, σ2) · τ(θ, σ2) (2.5)
The estimator denoted by θMAP (Maximum A Posteriori) refers to the parameter value that

maximises this posterior distribution.
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Assuming that the experimental database is composed by n experimental realisations zexp(xi),
the logarithm of Eq. 2.4 reads for 1 ≤ i ≤ n:

ln(zexp(xi)) = ln(zcalc(xi,θ)) + ln(λi) with ln(λi) ∼ N (0, σ2) (2.6)
If ln(zcalc(xi,θ)) is linear in the parameters θ, we can write ln(zcalc(x,θ)) = K(x) · θ (with

K(x) = [k(x1), ..., k(xn)]T matrix of the model features). Eq. 2.6 is a log-log linear regression
characterised by a dimensionless and symmetrical uncertainty distribution. The analytical
solution reads:

θMAP =
(
K(x)T ·K(x)

)−1
·K(x)T · ln(zexp(x)) (2.7)

In order to estimate the parameter uncertainty, the distribution of θ must be computed.
Since we have no information on the parameters, their joint prior distribution τ(θ, σ2) is as-
sumed to be uninformative. Thus, a common choice is to select the independent Jeffreys prior
[40], resulting in θ and σ2 to be independent:

τ(θ, σ2) ∝ τ(θ) · τ(σ2) ∝ 1 · 1
σ2 (2.8)

where the marginal prior distribution of θ is set to 1 since all the values have the same proba-
bility. The Bayes formula gives a well-defined posterior distribution, which is normalised and
explicited as a normal-inverse-gamma distribution:

τ(θ, σ2| ln(zexp(x))) =
N︷ ︸︸ ︷

τ(θ| ln(zexp(x)), σ2)
I G︷ ︸︸ ︷

τ(σ2| ln(zexp(x))) (2.9)
The marginal posterior distribution of θ is a Student law. This distribution can be traced

by firstly sampling σ2| ln(zexp(x)) and then sampling θ conditional on σ2 and ln(zexp(x)). When
n is high enough, the marginal posterior distribution τ(θ| ln(zexp(x)), σ2) can be approximated
by a normal distribution [41].

Finally, the model calculates the best estimate value of the QoI zcalc(x,θMAP ) with a model
uncertainty equal to Λ = L N (0, σ2MAP ) (where σ2MAP is the MAP value of τ(σ2| ln(zexp(x))))
and a parameter uncertainty given by τ(θ| ln(zexp(x)), σ2). The final expressions for the model
and parameters uncertainty are described in Section 2.5.

2.3 . Model performance assessment

The performance of the correlation at predicting the QoI can be evaluated over two statistical
indicators: the R-squared and relative and absolute residuals.

2.3.1 . The R-squared
The measure of goodness of the fit can be measured by the coefficient of determination R2.

It reads [42]:

R2 = 1 −
∑n

i=1(ln(zexp,i(xi)) − ln(zcalc,i(xi,θ
MAP )))2∑n

i=1(ln(zexp,i(xi)) − ln(zexp(x)))2
(2.10)

The statistical indicator R2 can be seen as the ratio of the predictions variance to the
experimental variance. Hence, it varies between 0 and 1. A R2 = 1 corresponds to the higher
prediction quality.
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2.3.2 . Relative and absolute residuals
The residuals can be calculated using the experimental and calculated data. From Eq.

2.6, the residual is the difference between two logarithms. However, this difference is hardly
interpretable from a physical point of view. Thus, the residuals rQoI are written as a relative
or absolute difference between the calculated and experimental QoI.

Without loss of generality, let us take a calculated zcalc and experimental zexp value. The
relative difference (in percentage) is expressed in Eq. 2.11, while the absolute difference in Eq.
2.12. Both the residuals are given with and without modulus.

rrel,z = zcalc,i − zexp,i

zexp,i

|rrel,z| =
∣∣∣∣∣zcalc,i − zexp,i

zexp,i

∣∣∣∣∣
(2.11)

rabs,z = zcalc,i − zexp,i

|rabs,z| = |zcalc,i − zexp,i|
(2.12)

If the residual is small, the metric in Eq. 2.11 is similar to (and preferred over) the difference
between logarithms.

For our calibrated model, the arithmetic mean µ over n (the number of tests) of the relative
residuals (i.e. µ(rrel,z)) is expected close to zero by definition [43] and estimates the accuracy
of the correlation. The standard deviation σ of the same residuals batch gives the precision of
the estimation. The mean of the values with the modulus (i.e. µ(|rrel,z|)) is also proposed since
it indicates the average error over the prediction.

Sometimes, it makes more sense from an engineering point of view to analyse the absolute
residuals. When approppriate, the same statistics (i.e. µ and σ) can also be computed for the
absolute residuals in Eq. 2.12.

2.4 . Statistical validation

The normality assumptions of the model uncertainty ln(Λ) needs a statistical validation.
Since the experiments are limited and the thermal-hydraulic databases are often small, the
same tests can be used both for model calibration and normality validation. Thus, a cross
validation technique named Leave One Out (LOO) [44] is employed. It is composed of two
steps:

1. The assessment database is reduced to n− 1 experimental data removing the test ν. The
new database is referred as ln(z−ν

exp(x−ν));

2. The predictive posterior distribution of the unused experiment τ(ln(zν(xν))| ln(z−ν
exp(x−ν)))

is compared to the removed experimental value ln(zν
exp(xν)).

The predictive distribution of step 2 reads:

τ(ln(zν(xν))| ln(z−ν
exp(x−ν))) =

∫
RΘ

∫ +∞

0

N︷ ︸︸ ︷
τ(ln(zν(xν))| ln(z−ν

exp(x−ν)),θ, σ2)
N I G︷ ︸︸ ︷

τ(θ, σ2| ln(z−ν
exp(x−ν))) dσ2dθ (2.13)
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If n is adequately high, the analytical solution of the integral (i.e. a Student law [41]) can
be approximated by a Gaussian distribution.

The two steps are repeated n times, interchanging each time the suppressed test ν. Finally,
the n standardised residuals between the suppressed values and the associated predictions
(Eq. 2.4) can be plotted. The resulting distribution is compared with a standard Gaussian
distribution through the Kolmogorov-Smirnov test [45] and the Quantile-Quantile (QQ) plot
[46] (i.e. experimental quantiles plotted as a function of the theoretical ones). If these tests are
not rejected at 5% threshold, the normality assumption is not put into question.

2.5 . Uncertainty quantification

The model and parameter uncertainties can be evaluated after the calibration and statistical
validation phases.

2.5.1 . Propagation of the parameter uncertainties
The marginal posterior distribution τ(θ| ln(zexp(x)), σ2) in Eq. 2.9 can be used to propagate

the parameter uncertainties to the model output. The probability density of the calculated
value i is a normal distribution with expected value E(zcalc(x,θ)| ln(zexp(x))) and variance
V(zcalc(x,θ)| ln(zexp(x))). It reads:

τ(ln(zcalc,i(xi,θ))| ln(zexp(x)))) ∼
N (E(ln(zcalc(x,θ))| ln(zexp(x))),V(ln(zcalc(x,θ))| ln(zexp(x)))) (2.14)

In Eq. 2.14, the model variance σ2 is not taken into account, which results in propagating
only the parameter uncertainty.

2.5.2 . Derivation of the model uncertainty
If the features of the model are sufficiently influential on the modelled physical phenomenon,

the parameters θ have low uncertainty, which may be neglected. The parameters can then be
fixed at their MAP values and the model uncertainty Λ stems from the posterior distribution
of σ2. The predicted value for a test i has the following distribution:

τ(ln(zpred,i(xi))| ln(zcalc,i(xi,θ
MAP ))) =

∫
RΣ

N︷ ︸︸ ︷
τ(ln(zpred,i(xi))| ln(zcalc,i(xi,θ

MAP )), σ2)
I G︷ ︸︸ ︷

τ(σ2| ln(zexp(x))) dσ2 (2.15)

For practical applications, the MAP value of σ2 can be used to compute the distribution of
the predicted output:

ln(zpred,i(xi)) = ln(zcalc,i(xi,θ
MAP )) + ln(λi) with ln(λi) ∼ Λ = N (0, σ2MAP ) (2.16)

In Eq. 2.16, the predicted QoI is the sum of the calculated value plus the model uncertainty.
Neglecting the uncertainty on σ2 and fixing its value to σ2MAP , the fluctuation interval at 95%
(IF95%) can be computed from the model uncertainty log-normal distribution:
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IF95%(Λ) =
[
exp(−1.96 ·

√
σ2MAP ), exp(1.96 ·

√
σ2MAP )

]
(2.17)
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3 - The extension of the CIRCE methodology for the
inverse uncertainty quantification of several coupled
thermal-hydraulic models

This chapter is related to the second part of Paper III, where the CIRCE methodology
is summarised and improved for CETs under the name of CIRCE 2-Steps. Moreover, the
methodologies are applied to some analytical exercises.

3.1 Brief introduction to the CIRCE methodology . . . . . . . . . . . . . . . . . . . 15
3.2 The identifiability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Assessement of CIRCE on an analytical case . . . . . . . . . . . . . . . . . . . . 18
3.4 CIRCE 2-Steps methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Evaluation of the performances of CIRCE 2-Steps . . . . . . . . . . . . . . . . . 19

The CIRCE (French acronym for Calculation of the Uncertainties Related to the Elementary
Correlations) methodology was developed at CEA [20] and its comprehensive description can
be found in [47] and [48]. It aims at quantifying the model uncertainty of p correlations zcalc(x)
(with their θ already calibrated) used as closure laws in computer codes. CIRCE represents
this model uncertainty, similarly to Eq. 2.4, through a multiplicative factor λ applied to the
reference model. If the experimental database is composed by n experimental realisations, we
can write for 1 ≤ j ≤ p and 1 ≤ i ≤ n:

zpred,j(xi) = λi,j · zcalc,j(xi) (3.1)
where λi,j is the realisation i of the uncertainty distribution j, Λj.

As already explained in Section 2.1, the use of a multiplicative factor has the advantage
to define a model uncertainty that can adapt to the different scales of the experiments in a
database.

3.1 . Brief introduction to the CIRCE methodology

In this section, the CIRCE methodology and its hypotheses are briefly recalled. The vector
of (log)-normal distributions ΛΛΛ = (L )N (mλ, ΣΣΣλ) models the multiplicative realisations in Eq.
3.1. The distributions are described by a p-sized mean vector mλ and a diagonal variance-
covariance matrix ΣΣΣλ = diag(σ2

λ1 , ..., σ
2
λj
, ..., σ2

λp
) of size p× p. The matrix is diagonal since the

correlations are assumed to be independent.
The mean mλ and the variance-covariance matrix ΣΣΣλ can be estimated through the resolu-

tion of the following probabilistic equation, for 1 ≤ i ≤ n:

zexp(xi) = zcode(xi, zpred(xi)) + ϵi (3.2)
where zcode(xi, zpred(xi)) is the code output (function of the input parameters and the reference
models) that takes into account the model uncertainties and ϵi is the realisation of the experi-
mental uncertainty ∼ N (0, σ2

ϵi
) (where σ2

ϵi
is the experimental variance of the test i).
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In Fig. 3.1, the function of the code output in Eq. 3.2 zcode(xi, zpred(xi)) (in green) is un-
known and time-consuming to compute. It is therefore approximated with a first-order Taylor
expansion (in red). As explained in Paper III, two linearization strategies can be adopted:
w.r.t. λλλj or log(λλλ)j. In this chapter, the linearization w.r.t. λλλj is briefly recalled. In the figure,
the code output function at the reference value is zcode(xi, zcalc(xi)). This reference code output
is the result of the simulation where no models have been modified (i.e. the best-estimate value
λref

i,j = 1).

Figure 3.1: Code output i (in green) and its first-order Taylor approximation (in red) as function
of the model uncertainty j λj.

In order to approximate the green function, its partial derivatives i w.r.t. the model un-
certainties j are computed in the neighborhood of the reference calculation through the finite
difference method. For each uncertain model j, the following derivative can be computed:
∂zcode(xi)

∂λj
= zcode(xi,z+

calc
(xi))−zcode(xi,z−

calc
(xi))

λref,+
i,j −λref,−

i,j

.
Thus, Eq. 3.2 can be rewritten as:

zexp(xi) ≈ zcode(xi, zcalc(xi)) + J(xi) · bT
i + ϵi (3.3)

where J(xi) = (∂zcode(xi)
∂λ1

, ..., ∂zcode(xi)
∂λp

)
∣∣∣∣∣
λλλ=λλλref

is the row i of the Jacobian matrix (i.e. the vector

of the partial derivatives i w.r.t. the model j) computed at the value of reference and bi ∈ R1×p

is the bias vector corresponding to the shift w.r.t. the reference value.
The realisations of the bias vector are the only unknowns of Eq. 3.3 and they are supposed

to follow a vector of normal distributions, bi ∼ N (mb, ΣΣΣb) with mb = (λ1 −λref
1 , ..., λp −λref

p )
and ΣΣΣb = diag(σ2

λ1 , ..., σ
2
λp

).
The CIRCE methodology then operates the following steps:

1. The algorithm ECME [49] is applied to estimate mMLE
bj

and σ2
bj

MLE for each model j;

2. The realisations bi are verified to be normally distributed;
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3. The code output near the reference value (in this work assumed λref
j = 1) is verified to

be linear. If the model j is linear w.r.t. λj, then Λj = N (mMLE
bj

+ 1, σ2
bj

MLE). If the
model j is linear w.r.t. log(λ)j, then Λj = L N (mMLE

bj
, σ2

bj

MLE).

Finally, a statistical validation similar to the one described in Section 2.4 is applied to the
estimated uncertainty. CIRCE is applied to n − 1 experimental data (removing data ν from
the IUQ database) and the resulting uncertainty ΛΛΛ−ν is propagated to find the output distri-
bution zcode(xν , zpred(xν) |λλλ−ν) ∼ N (E(zcode(xν , zpred(xν) |λλλ−ν)), V(zcode(xν , zpred(xν) |λλλ−ν))).
The uncertainty is statistically validated if at least 95% of the experimental QoIs zexp(xν) lay
in the 95% level quantile of the associated distribution zcode(xν , zpred(xν) |λλλ−ν).

3.2 . The identifiability problem

When CETs are employed for the joint estimation of more than one model uncertainty
(p > 1), the statistical resolution of the inverse problem in Eq. 3.3 may be affected by uniden-
tifiability [47]. This means that the mean and variance of the bias distribution of a model j
N (mMLE

bj
, σ2

bj

MLE) may be difficult to statistically estimate. Several combinations of means
and variances of the estimated uncertainties may explain the discrepancy between the experi-
mental and computed values, leading to unidentifiability [22].

In [49], the identifiability of a parameter is assessed through the computation of the Nor-
malised Error Coefficients (NECs). They are defined as the ratio of the epistemic uncertainty
of a parameter over the intrinsic variability of the distribution. For a bias j, they read:

NEC(mMLE
bj

) =
σ(mMLE

bj
)√

σ2
bj

MLE

NEC

(√
σ2

bj

MLE

)
=
σ
(√

σ2
bj

MLE
)

√
σ2

bj

MLE

(3.4)

When the NEC is close to zero the problem is well identifiable and, consequentially, the
CIRCE estimations are robust.

In [21, 50], the low sensitivity of the calculated QoI zcode(xi, zcalc(xi)) to the model j is
identified as one of the causes that might lead to non-identifiability. In order to quantify the
sensitivity, the first-order Sobol index [51] must be computed. However, its computation is
dependent on the model uncertainty variance (which is unknown as we want to estimate it)
and some hypotheses must be made a priori [52].

Another way to investigate the identifiability of the inverse problem is to use the model
derivatives as sensitivity indicators (as shown in Paper III). Thus, a scale parameter k between
two models can be computed as the increment of the derivative mean of the first model with
respect to one of the second model:

k = µ (J1(x))
µ (J2(x)) − 1 (3.5)

The parameter k is indipendent on the uncertainties variance and it is computed without a
priori hypotheses.
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3.3 . Assessement of CIRCE on an analytical case

In order to visualise and quantify the identifiability problem an analytical case was per-
formed. The full description can be found in Paper III, while the main results are summarized
here.

In the analytical exercise, CIRCE is applied to the joint estimation of the uncertainties of
two different models zcalc,1(x) and zcalc,2(x). The parameter k links the arithmetic means of the
two model derivatives (J1(x) and J2(x) respectively) in the following way:

µ (J1(x)) = (1 + k) · µ (J2(x)) (3.6)
The data is generated from known distributions, especially the bias distributions from cen-

tered reduced normal distributions:

b1,i ∼ N (mb1 , σ
2
b1) = N (0, 1)

b2,i ∼ N (mb2 , σ
2
b2) = N (0, 1)

(3.7)

Then, CIRCE is run 1000 times (each run with different sampled data) and the resulting
estimations (1000 values for mMLE

b1 , σ2
b1

MLE
, mMLE

b2 and σ2
b2

MLE) are compared to the associated
actual values.

In Fig. 3.2, the arithmetic mean µ and the standard deviation σ of the 1000 realisations
are plotted.

Figure 3.2: Statistical indicators of the MLE estimators for the two models as a function of the
scaling parameter k.
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The more the estimated mean departs from the actual value (i.e. low accuracy) and its
standard deviation is high (i.e. low precision), the less the problem is statistically well-identified.

In the top left subgraph, the bias mean of the least influential model (Model 1) has low
accuracy and high dispersion as opposed to Model 2 (i.e. the most influential one). For the
other subgraphs, the accuracy and precision of Model 1 degrade as k increases. A degradation
of the accuracy and precision of the model with the largest derivatives (i.e. zcalc,2(x) for k ≳ 3)
was also observed.

In order to improve the estimation of the most influential bias distribution, a new extension
of the CIRCE methodology called CIRCE 2-Steps is developed.

3.4 . CIRCE 2-Steps methodology

The new methodology CIRCE 2-Steps is established for a CETs database characterised by p
combined phenomena. Each phenomenon is modelled by a physical correlation. In particular,
p+ models are more influential than the others (i.e. p − p+) over the output QoI. In order to
minimize the identifiability problem, CIRCE 2-Steps reduces the number of uncertainties to be
jointly estimated when using CETs.

In the first step, the uncertainties of the p − p+ least influential models (marked with an
asterisk in Eqs. 3.8, 3.10 and 3.11) are separately assessed using the CIRCE methodology
against the available SETs. In the second step, the p+ most influential model uncertainties
(marked with a plus in the following equations) are estimated from the CETs database taking
into account the previously quantified uncertainties. In this step, Eq. 3.3 is modified in:

zexp(xi) ≈ zcode(xi, zcalc(xi)) + J+
p (xi) · b+

i + J∗(xi) · b∗
i + ϵi (3.8)

where b∗
i ∈ R1×p−p+ has already been estimated from the first step. Each bias j follows a known

normal distribution N (mbj
, σ2

bj
).

The p − p+ means and variances of the distributions are added respectively to the code
output and the experimental uncertainty distribution. Hence, Eq. 3.8 can be rewritten as:

zexp(xi) ≈ z′
code(xi, zcalc(xi)) + J+(xi) · b+

i + ϵ′
i (3.9)

where:

z′
code(xi, zcalc(xi)) = zcode(xi, zcalc(xi)) +

p−p+∑
j=1

(J∗
j (xi) ·mbj

) (3.10)

ϵ′
i ∼ N (0, σ2

ϵi
+

p−p+∑
j=1

(J∗
j

2(xi) · σ2
bj

)) (3.11)

The CIRCE methodology is then applied to Eq. 3.9 as described in Section 3.1.

3.5 . Evaluation of the performances of CIRCE 2-Steps

CIRCE 2-Steps is applied to the same analytical case of Section 3.3 for the IUQ of the most
influential model uncertainty (Model 2). In Fig. 3.3, the arithmetic mean µ and the standard
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Figure 3.3: Statistical indicators of the MLE estimators for zcalc,2(x) computed by C2M and
C2S as a function of the scaling parameter k.

Figure 3.4: NECs of the MLE estimators for zcalc,2(x) computed by C2M and C2S as a function
of the scaling parameter k.

deviation σ respectively corresponding to CIRCE applied jointly to two models (C2M) and
CIRCE 2-Steps (C2S) are shown as functions of k. The accuracy and precision of the estimations
obtained by C2S are improved for both the mean and variance of the uncertainty distribution.
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3.5. EVALUATION OF THE PERFORMANCES OF CIRCE 2-STEPS

The NECs in Eq. 3.4 are computed and shown in Fig. 3.4. For both the mean and standard
deviation, C2S gives more identifiable results than C2M. The most relevant improvement is
related to the identiafibility of the mean.
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4 - Thermal-hydraulic analysis of the experimental database

This chapter is related to the first part of Paper II, where the thermal-hydraulic analysis of
the experimental tests is carried out.

4.1 Experimental databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 The COSI experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 The TOPFLOW-PTS experiments . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 The UPTF experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 Summary and experimental uncertainties . . . . . . . . . . . . . . . . . . 28

4.2 Thermal-hydraulic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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4.2.3 Hot ECC injections in TOPFLOW-PTS . . . . . . . . . . . . . . . . . . 32
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4.3 Methodology for the quantification of the condensation rate . . . . . . . . . . . 32
4.3.1 Evaluation of the liquid level height and of the mean liquid temperature 32
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In this chapter, the experimental database used for the assessment of the condensation
modelling at the ECC injection is presented. Then, a thermal-hydraulic analysis is carried out.

4.1 . Experimental databases

The data were obtained from three experimental facilities: COSI, TOPFLOW-PTS and
UPTF.

4.1.1 . The COSI experiments
The COSI (COndensation at Safety Injection) experiments have been carried out using two

test sections, simulating the cold leg of a French (Framatome or Fra) and American (Westing-
house or West) PWR.

In Fig. 4.1, the two configurations are composed by:

• A cold leg of 0.118 m in diameter and long 1.4 m for Fra and 3.77 m for West;

• An inlet pipe for the steam produced in the boiler;

• An outlet pipe to evacuate the steam to the condenser;

• A vertical pipe representing the downcomer (DC);

• Different ECC pipes, welded to the cold leg.

The orange arrows show the direction of the steam. In Fig. 4.1, the steam is in co-current
with the liquid as highlighted by the orange arrows. Nevertheless, in the experimental database
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(a) Framatome test section in the COSI experiment.

(b) Westinghouse test section in the COSI experiment.

(c) Geometrical configurations of the COSI ECC pipe.

Figure 4.1: Test sections features of the COSI experiment.
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there are tests with steam also in counter-current flow.
The Fra cold leg is equipped with 8 thermocouple rakes (whose geometry is illustrated in

4.1a), the West one with 5 rakes. Each rake has 16 thermocouples. One injection pipe in the
West test section is equipped with 3 rakes. One thermocouple is also present in the DC.

A weir of adjustable height is placed at the end of the cold leg, just before the DC. It keeps
the water level constant in the experimental section.

In Fig. 4.1c, the different ECC pipe configurations are shown. The Fra configuration has
an injection pipe with an angle ψecc = 30◦ in the vertical plane and a diameter decc = 22 mm.
The West configuration presents two different types of ECC: the Accumulator (shortened Acc)
and the High Pressure (shortened HP) injections. Both pipes have ψecc = 90◦ but the HP pipe
is also inclined in the horizontal plane φecc = 45◦. The accumulator has two configurations, one
with decc = 5.6 mm and the other with decc = 23 mm. The HP pipe has a diameter of 38 mm.

A total of 219 Fra and 96 West tests compose the COSI database.
In Fig. 4.2, the phenomena occurring in the COSI experiment during the ECC injection

are schematised.

Figure 4.2: Phenomenology in the COSI cold leg.

Four different zones are identified [53]:

• The ECC jet zone, where the jet impacts the liquid entraining the steam in the liquid
phase;

• The upstream zone, which is a recirculation zone originated by large temperature gradi-
ents;

• The downstream zone, where thermal stratification occurs. Moreover, a recirculation zone
may be created by the presence of the weir;

• The zone after the weir, where a cascade is generated by the water falling in the DC.
4.1.2 . The TOPFLOW-PTS experiments

The goal of the TOPFLOW-PTS (Pressurised Thermal Shock) experiment was to study
and improve the knowledge of the phenomena behind the PTS.

In Fig. 4.3a, the test section is composed by:
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• A pump simulator (PS) where water can be injected and/or extracted. The PS is defined
enabled if water is injected and disabled otherwise;

• An horizontal pipe 2.95 m long to simulate the cold leg, with a diameter of 0.2792 m;

• An annular space to simulate the DC;

• An ECC pipe welded at 30° in the vertical plane (see Fig. 4.3b) with a diameter of 0.0531
m.

(a) Test section in the TOPFLOW-PTS experiment.

(b) Geometrical configuration of the TOPFLOW-PTS ECC pipe.

Figure 4.3: Test section features of the TOPFLOW-PTS experiment.

Four thermocouple rakes of 25 thermocouples each equip the test section, while in the DC
there are several other rakes.

The TOPFLOW-PTS database consists of 28 sssw tests with PS enabled, 9 sssw tests with
PS disabled and 3 tsw tests defined below.
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Excluding the cascade zone, the same phenomena occurring in COSI are also present in
TOPFLOW-PTS. That is because the liquid free level is kept constant by a Feed & Bleed
(F&B) system, which keeps the liquid level constant in the DC.

Two different typologies of tests have been realised:

1. Steady-state steam water (called sssw): the condensation at the ECC is evaluated after a
stabilisation phase, when the steady-state conditions are reached (i.e. the last 60 seconds
of the test). The PS can be either enabled or disabled.

2. Transient state steam water (called tsw): the whole transient is registered, from the start
of the ECC injection until the steady-state conditions are obtained. The last 100 seconds
of each transient are time-averaged and used to evaluate the condensation in this work.
In that period, all the thermal-hydraulic parameters are approximately constant and can
be considered steady-state. The PS is always disabled.

4.1.3 . The UPTF experiments
The UPTF (Upper Plenum Test Facility) facility [54] is an IET since it is composed of all

the thermal-hydraulic components of a PWR. Hence, all the main phenomena taking place in
a nuclear reactor interact with each other. The primary system is shown in Fig. 4.4.

Figure 4.4: UPTF primary system [55].

The cold leg in loop II is well instrumented and can be used to investigate the condensation
at the ECC injection.

The test section in Fig. 4.5a is equipped with:

• A PS, always disabled;

• A horizontal pipe 9.48 m long with a diameter of 0.75 m;
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• An annular space as a DC;

• An injection pipe welded at 60° in the horizontal plane (see Fig. 4.5b) of 0.2225 m in
diameter.

The cold leg is equipped with 4 thermocouple rakes of 6 thermocouples each (8 in TRAM
configuration). In UPTF, the liquid flow is oriented towards the DC through the ECC pipe
angle. Since the liquid level is not constant, there is no recirculation zone. Thus, the phenomena
occurring during the ECC injection are different compared to COSI’s.

The UPTF database consists of 24 tests, of which UPTF 8, 25 and 27 with steam coming
from the PS and UPTF TRAM C2 6a with steam coming from the DC (since the PS is full of
water and blocks the steam flow).

(a) Cold leg in loop II.

(b) Geometrical configuration of the ECC pipe.

Figure 4.5: Main features of the UPTF experimental setup.

4.1.4 . Summary and experimental uncertainties
The main physical characteristics are briefly summarised in Table 4.1.

COSI TOPFLOW-PTS UPTF
Number of tests 315 42 24
Pressure [MPa] [2; 7] [3; 5] [0.3; 1.5]
Injection temperature [°C] 20, 80 [45; 210] [30; 40]
Injection mass flowrate [kg/s] [0.1; 0.6] [0.7; 2.5] [10; 160]

Table 4.1: Main characteristics of the experiments.

28



4.2. THERMAL-HYDRAULIC ANALYSIS

The several types of ECC configurations of the experimental database are summarised
in Table 4.2. The test section diameter and the volumetric scale of the experiments are also
reported. The volumetric scale is the scale in volume (of the primary circuit) of the experiments
with respect to the actual PWR.

COSI COSI COSI TOPFLOW-PTS UPTF UPTF
Fra West Acc West HP TRAM

Diameter [mm] 22 5.6, 23 38 53.1 222.5 222.5
Inclination in the
vertical plane ψecc [◦] 30 90 90 30 0 0
Inclination in the
horizontal plane φecc [◦] 0 0 45 0 60 60
Test section diameter [mm] 118 118 118 279.2 750 750
Volumetric scale [%] 1* 1* 1* 40* 100** 100**

Table 4.2: ECC pipe configurations and volumetric scales for the experimental database. The
scale is w.r.t. a 900* (1300**) MWe French PWR.

In Table 4.3, the measurement errors (also called experimental uncertainties) are shown.
These uncertainties are associated to pressure, temperature, mass flowrate and geometries (e.g.
cold leg and ECC pipes).

COSI TOPFLOW-PTS UPTF
Diameter ±0.5 mm ±0.5 mm ±0.5 mm
ECC temperature ±0.5 ◦C ±1 ◦C ±2.9 ◦C
ECC flowrate ±0.005 kg/s ±0.5 % ±1.5 %
Pressure ±0.5 % ±0.5 % ±0.0146 MPa

Table 4.3: Experimental uncertainties.

4.2 . Thermal-hydraulic analysis

A thermal-hydraulic analysis is required to make the experimental data reliable and coher-
ent with the phenomenon of interest to be modelled (i.e. the condensation at the ECC).

Several tests are immediately suppressed because of different problems: no available data,
defective instrumentations, incoherent measurements, no ECC injections, no stabilised tests,
presence of overheated steam, repeated tests, tests without condensation and calibration tests.
For these reasons, from 382 experimental tests, 198 are the object of the thermal-hydraulic
analysis.

In the following subsections, some not-trivial physical phenomena affecting the conden-
sation and present in the experimental database are discussed. The goal is to point out the
phenomenologies not yet highlighted and justify the final experimental database. Among these,
some physical phenomena affecting the condensation are the flow stratification inside the ECC
pipe, the ECC injection in the liquid and the hot ECC injections in TOPFLOW-PTS.

4.2.1 . Stratified flow in the ECC pipe
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At low ECC mass flowrates, a stratification in the ECC pipe was sometimes observed as
shown in Fig. 4.6. This phenomenon has been observed in all three experiments (COSI,
TOPFLOW-PTS and UPTF).

In TOPFLOW-PTS [56], experimenters discovered (thanks to a camera pointed over the
jet) the presence of a stratified flow in the ECC pipe. They identified a threshold ECC mass
flowrates of 1.7 kg/s. Hence, 2 sssw and 1 tsw tests are suppressed from our database.

In the COSI experiment, despite the absence of a camera, a stratification is observed in
the HP injection of the West configuration. Indeed, the thermocouple rake 8 shows a stratified
flow at every injection mass flowrate (probably bacause of the injection diameter decc being the
biggest one for COSI).

Figure 4.6: Representation of a stratified flow in the ECC pipe.

The UPTF experimenters observed the same phenomenon [57], as shown in Fig. 4.7.

Figure 4.7: Stratified flow in the UPTF ECC pipe.

In Fig. 4.7, ωecc is the angle at the center of the ECC pipe.
In the UPTF tests, no camera nor thermocouples in the ECC pipe are present. Nevertheless,

the experimenters evaluated the stratification through the Schröder formula [58]. It calculates
the liquid height inside a two-phase low inclined pipe:

(ωecc − sin(ωecc))3

sin(ωecc/2) = 512 · Q̇2
ecc · ρecc

g · d5
ecc · (ρecc − ρv) (4.1)
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The formula is solved iteratively for ωecc. Then, the liquid height can be calculated as:

Hecc = decc · sin2(ωecc/4) (4.2)

The Schröder formula is applied to COSI and TOPFLOW-PTS experiments, well predict-
ing the occurrence of stratification in the tests where it was experimentally observed. In 2
TOPFLOW-PTS tests (1 sssw and 1 tsw), the stratification in the ECC pipe can be estimated
through the experimental images. As reported in Table 4.4, the actual surface Secc (the surface
associated to Hecc in Fig. 4.7) is approximately 50% of the injection surface (i.e. Sinj = π·d2

ecc/4).
The Schröder formula in Eq. 4.1 is applied and it gives overestimated results.

TOPFLOW-PTS Tecc [◦C] Secc,exp Secc by Schröder
sssw 143.7 ∼50 % Sinj 87 % Sinj

tsw 42.6 ∼50 % Sinj 78 % Sinj

Table 4.4: ECC stratification quantification in some TOPFLOW-PTS tests.

This formula predicts in a reliable way the occurrence of stratification in the ECC pipe, but
unfortunately it does not provide a good quantification of the liquid height. Eq. 4.1 was thus
used as a criterion for the ECC stratification.

The criterion is applied to the whole database, highlighting 13 UPTF tests and 46 COSI
tests where stratification occurs. Since the condensation is highly affected by the stratification
phenomenon, which influences the calculation of the ECC jet velocity uecc and the heat exchange
area Aex, a high uncertainty is expected. Hence, the tests with a stratified ECC pipe are
excluded from both the assessment and validation databases.

4.2.2 . Injection in the liquid
When the liquid level in the cold leg is too high, the ECC injection occurs directly into the

liquid. In TOPFLOW-PTS, the phenomenon is shown by the camera pointing towards the jet.
The COSI tests with the highest weir (0.6 ·D) may show the same behaviour, as shown in

Fig. 4.8.

Figure 4.8: Assumed behaviour of COSI tests with a 0.6 weir.

Due to the small condensation flowrates and the short jet length, the estimation of the
condensation may be unreliable. Two TOPFLOW-PTS and 6 COSI tests are thus eliminated
from the assessment database.
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4.2.3 . Hot ECC injections in TOPFLOW-PTS
The TOPFLOW-PTS tests with enabled PS are charactherised by a hot water ECC in-

jection (i.e. a sub-cooling (Tsat − Tecc) between 27 and 80 ◦C). The resulting condensation
mass flowrates are very low and their computation is greatly impacted by the experimental
uncertainties. Thus, these tests are moved to the validation database in order to prevent any
bias in the calibration of the model.

4.2.4 . Reduced database
In Table 4.5, the revised database is shown. The COSI and TOPFLOW experiments are

CETs, suitable to calibrate the condensation model. Thus, they are included in the assessment
database. The UPTF experiments, as IETs, and TOPFLOW-PTS tests with hot ECC injection
are used for the physical validation of the new correlation. The range of the most important
variables is different between the assessement and the validation database. Assuming that
the condensation phenomena at full scale are similar to the ones assessed on the development
database, the new condensation model should behave well even outside the assessment ranges.

Test P [MPa] Tecc [◦C] ṁecc [kg/s]
Tests in the
assessment
database

Tests in the
validation
database

COSI-Fra 2, 7 20, 80 [0.2, 0.6] 73 0
COSI-West 4.2, 5.6, 7 20 [0.06, 0.4] 29 0
TOPFLOW-PTS sssw 3, 5 [110, 220] [1.7, 2.5] 6 11
TOPFLOW-PTS tsw 5 45 1.7, 2 2 0
UPTF [0.3, 1.5] [29, 39] [61, 161] 0 7

Total number of tests 110 18

Table 4.5: Reduced database after the thermal-hydraulic analysis.

At the end of the experimental analysis, 110 tests compose the assessment database and
18 tests the validation database. The experimental conditions range between 0.3 and 7 MPa
for the pressure, 0.2-161 kg/s for the ECC flowrate and between 20 and 220 ◦C for the ECC
temperature.

4.3 . Methodology for the quantification of the condensation rate

The next two subsections describe the methodologies for the evaluation of the QoIs required
to evaluate the condensation in the cold leg:

1. The mean liquid temperature T rk,i from the thermocouple rake. It is based on the
weighted mean, where the weight is the surface of every thermocouple immerged in the
liquid. The definition of the liquid heigth is necessary to evaluate T rk,i;

2. The condensation mass flow rate at the ECC ṁcond,ecc, obtained by a mass and energy
balance in a defined control volume for each experimental device.

4.3.1 . Evaluation of the liquid level height and of the mean liquid temperature
The mean liquid temperature of each rake and the free level height in the cold leg must

be computed in order to calculate respectively the condensation mass flowrate and the heat
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exchange area Aex between the sub-cooled liquid and the steam.
The waves created at the interface between the steam and the liquid by the jet impact in

the cold leg complicate the calculation of the rake mean liquide temperature. As observed
in the TOPFLOW-PTS tests (Fig. 4.9), the effect of these waves modifies the thermocouple
temperature profiles in time. The temperature is normalised with respect to the saturation
temperature plus a random small constant ξ and plotted as function of time. Three thermo-
couples are plotted: one in the steam (in yellow) at the saturation temperature, one in the
liquid (in light blue) and one at the interface (in grey).

Figure 4.9: Typical temperature profiles in time in a TOPFLOW-PTS test.

The thermocouple at the interface is in the steam and wetted regularly by the waves.
In Fig. 4.10, the normalised temperature is plotted as function of the dimensionless height

of the thermocouple in the test section, showing the typical time-averaged temperature profile
of a rake. The saturation temperature Tsat and Tsat − 5 ◦C are plotted as a black and red line
respectively.

In Fig. 4.10, three regions can be identified. For z/D < 0.4, the thermocouples are considered
in the liquid. The remaining thermocouples are either in the middle zone at the liquid-steam
interface (0.4 < z/D < 0.5 and T < Tsat − 5 ◦C) or in the steam (T > Tsat − 5 ◦C). In this test,
three thermocouples are characterised by significant temperature fluctuations in the experiment
(as seen in Fig. 4.9) and thus are identified at the liquid-steam interface (they are marked by
a black cross).

To rigorously identify the thermocouples in the liquid and those at the interface, a cri-
terion has been developed and validated according to the experimental observations on the
TOPFLOW-PTS tests. The first thermocouple on the left (i.e. the bottom thermocouple)
is always supposed in the liquid. Then, the temperature difference of two successive thermo-
couples is compared to the sub-cooling of the thermocouple (i.e. Tsat − Tthermocouple). If the
temperature difference is above 80 % of the sub-cooling, the thermocouple is supposed to be at
the interface. Thus, all the above thermocouples are neglected in the mean liquid temperature
calculation since they are considered in the steam.
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In the end, the liquid-steam interface is evaluated as the halfway between the last thermo-
couple in the liquid and the first one selected at the interface by the criterion.

Figure 4.10: Typical time-averaged temperature profile of a rake in a TOPFLOW-PTS test.

Both COSI and UPTF have very similar time-averaged thermocouple profiles to the TOPFLOW-
PTS one (Fig. 4.10). Nevertheless, their time evolution is not available. Thus, the new devel-
oped criterion is used to identify all the thermocouples in the liquid.

Finally, for all the experiments and assuming a uniform liquid velocity field, the rake mean
liquid temperature is calculated as the weighted mean of the liquid temperatures with the
associated surfaces as weights [59]:

T rk =
∑t=last T C in the liquid

t=1 Tt · St∑t=last T C in the liquid
t=1 St

(4.3)

The experimental uncertainties in Table 4.3 influence the mean liquid temperature com-
putation. Those uncertainties are propagated to compute the uncertainty on the mean liquid
temperature. The calculation is made under two main hypotheses: no uncertainty on which
thermocouple is the last in the liquid and the uncertainty on the liquid height in the test section
H is equal to the half space between the last thermocouple in the liquid and the first in the
steam.

The uncertainties on the rake mean liquid temperature are then estimated to be: ± 6 ◦C for
COSI, ± 4 ◦C for TOPFLOW-PTS and ± 3.5 ◦C for UPTF experiments.

4.3.2 . Quantification of the condensation mass flowrate
The COSI experiments have always been considered as SETs. This introduced a systematic

bias in their model since the condensation due to the cascade and to the stratification were
accounted to the jet.
In this work, a new methodology has been developed to separate the effects and rearrange
the CETs as SETs. It quantifies the condensation in each region, isolating the one at the
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ECC injection. First, a control volume (Fig. 4.11) is defined from the ECC injection and a
thermocouple rake (whose mean temperature is known).

Second, the condensation mass flowrate is quantified by applying an entalphy balance to
that control volume:

ṁcond,ecc = ṁecc · Irk,i − Iecc

Is,sat − Irk,i

(4.4)

Figure 4.11: Control volume between the ECC and a thermocouple rake.

Due to the reduced test section length after the ECC, the condensation in the stratification
zone can be neglected and Eq. 4.4 can be applied between the ECC and rake 8 for COSI-Fra
(rake 5 for COSI-West). A similar control volume can be defined from the rake 8 for COSI-
Fra (rake 5 for COSI-West) and the thermocouple inside the DC. In that control volume, we
estimate the condensation at the cascade. In Fig. 4.12, the condensation at the cascade is
compared to the global one as function of the injection flowrate. At low ECC mass flowrates,
the condensation in the cascade zone ramps up to 60% of the global condensation. Thus, a
coherent control volume is of extreme importance to properly quantify the condensation in the
ECC region.

This methodology allows us to have a versatile experimental database (Table 4.5) since,
based on which thermocouple rake is considered, the database can be composed by either SETs
(where the only effect is the condensation at the ECC) or CETs (where the phenomena are the
condensation at both the jet and the stratified interface). The thermocouple to be considered
for this division is reported in Table 4.6.

For the COSI-Fra experiments, the rake 8 is always used regardless of SET or CET. That
is because the distance between rakes 5 and 8 is so small than the stratified condensation can
be neglected. The COSI-West tests cannot be used as CETs, since there is no thermocouple
rake at the end of the cold leg.

Regarding the TOPFLOW-PTS experiments, the stratified condensation is not negligible
anymore. Hence, the ECC condensation mass flowrate must be calculated between the ECC and
rake 4. On the contrary, the TOPFLOW-PTS tests are considered CETs if the condensation
is computed between the ECC and rake 3.

For UPTF, the ECC condensation is estimated using rake 5, while the global condensation
in the cold leg is computed with rake 3. These estimations may be affected by the behaviour of
the thermal-hydraulic loop, since UPTF is an IET. This explains why the UPTF data are used
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exclusively for the validation of the model and not in the assessment database, as discussed in
Subsection 4.2.4.

Figure 4.12: Percentage of the condensation due to the cascade over the total condensation for
the COSI experiments.

Test T rk,exp SET T rk,exp CET
COSI-Fra 8 8

COSI-West 5 -
TOPFLOW-PTS sssw 4 3
TOPFLOW-PTS tsw 4 3

UPTF 5 3

Table 4.6: Thermocouple rake to be considered for a SET or CET experiment.
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5 - Development and validation of a new ECC condensa-
tion model

This chapter is related to the second part of Paper II, where a new ECC condensation model
is developed and validated.

5.1 Assessment of correlations found in the literature . . . . . . . . . . . . . . . . . 37
5.2 Modelling of the ECC jet as a heat exchanger . . . . . . . . . . . . . . . . . . . 39
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In this chapter, the condensation models found in the literature are reviewed and assessed
in Section 5.1 using the COSI and TOPFLOW-PTS new revised databases (Table 4.5). The
classical modelling of the Nusselt number as a function of other dimensionless numbers does
not seem to lead to accurate results. Thus, a new modelling strategy is proposed. In Section
5.2, the cold jet is modelled as a concentric heat exchanger with the steam. Sections 5.3 and 5.4
model respectively the heat exchanger area and the condensation potential. The condensation
potential R, which describes the ECC capability to condense the steam, is function of a shape
term and a functional variable called η. In Section 5.5, the Bayesian framework described in
Chapter 2 is applied to calibrate a new correlation for η. Then, in Sections 5.6 and 5.7 the
model is statistically and physically validated respectively. The uncertainties of the model are
quantified in Section 5.8. Finally, the impact of the ECC stratification on the condensation is
analysed in Section 5.9.

5.1 . Assessment of correlations found in the literature

In the introduction, the main condensation phenomena occuring in the cold leg during a
LOCA have already been illustrated (Fig. 1.4) and commented. At the ECC, the condensation
is mainly generated by the contact between the steam and the cold jet. However, this type
of condensation was studied in a limited number of works and the proposed physical models
should be assessed as proposed in Paper II.

The condensation phenomenology at the ECC jet was described in [60] by Bestion and Gros
d’Aillon. They based the thermal-hydraulic analysis on the experimental results obtained in the
COSI facility, finding out that the turbulence generated by the injection into the stratified liquid
was responsible for the largest part of condensation in the test section. Hence, they decided to
model the steam condensation using the Nusselt, Reynolds and Prandtl dimensionless numbers.
The correlation depending only on the Reynolds was then improved by Janicot and Bestion in
[53]. They modelled the turbulence as proportional to the liquid height in the test section H
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and the exchange area as function of the void fraction and the ECC diameter.
In 2015, Liao et al. [25] proposed a new physical model based on the same features and

using some other COSI tests. However, the turbulence length was defined as a function of the
liquid height f(H) and the heat exchange area was proportional to f(H). The correlation has
also been tested against some UPTF experiments.

Always in 2015, Ren et al. [61] described the Emergency Core Cooling System (ECCS)
facility, which is very similar to COSI. The authors proposed some condensation models with
the same heat exchange area defined by Liao et al.

Finally, Gaillard and Rodio [62] proposed a thermal stratification criterion for cold legs with
ECC enabled. In their article, the condensation at the ECC injection is calculated by a new
model but the tests used to calibrate the correlation are unknown. In this new model, the Froude
number, the void fraction and the ratio of the ECC diameter over the test section diameter were
added to better model the phenomenon. Indeed, their addition takes into account the disruption
of the free surface of the jet. Differently from the other thermal-hydraulic correlations, the heat
exchange area is defined as the cross section of the jet.

These physical models, as well as their characteristic lengths, reference temperature and
temperature difference, are summarised in Table 5.1.

Authors Correlation Characteristic lengths,
Tref and ∆T

Janicot et al. Nu = 0.5 ·Re lNu = lRe = H
[53] uRe = uecc

Aex = decc ·
√

(1 − α) · α ·D
Tref = unknown
∆T = Tsat − Tecc

Liao et al. Nu = 0.245 ·Re1.1 · Pr0.6 lNu = f(H) ·D
[25] lRe = decc

uRe = uecc

Aex = decc · f(H) ·D
Tref = (Tsat + Tecc)/2

∆T = Tsat − Tecc

Ren et al. Nu = 3.773 ·Re lNu = unknown
[61] lRe = decc

uRe = uecc

Aex = decc · lNu

Tref = unknown
∆T = Tsat − Tecc

Gaillard et al. Nu = Re · Pr · Fr0.5 · α · decc

D
lNu = lRe = lF r = H

[62] uRe = uF r = uecc

Aex = d2
ecc

Tref = unknown
∆T = Tsat − Tecc

Table 5.1: ECC condensation correlations found in the literature.

These correlations are mainly calibrated using the COSI experiments (except for Ren et al.
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who used the ECCS data) but the modelling features do not seem coherent with each other (i.e.
different choices for dimensionless numbers and characteristic lengths). Thus, an assessment of
these models against the new defined database is required. The correlation ability to calculate
the output physical quantity is assessed through the absolute residuals defined in Eq. 2.12.

The performances of the models in Table 5.1 are tested against the reduced database in
Table 4.5. If the reference temperature of the correlation is unknown, it is assumed to be equal
to the Liao et al. one. The results are summarised in Table 5.2.

Model µ(|rabs,Trk
|)COSI [◦C] µ(|rabs,Trk

|)T OP F LOW −P T S [◦C]
Janicot et al. 53 87

Liao et al. 48 86
Gaillard et al. 72 20

Ren et al. 71 89

Table 5.2: Model errors against the new revised database.

The correlations do not show good predictive capabilities.
The Janicot et al., Liao et al. and Ren et al. physical models overestimate the mean liquid

temperatures T rk,calc. This might be due to the wrong choice of control volume (e.g. the whole
test section) to evaluate the ECC condensation.

The bad results of these correlations with respect to the TOPFLOW-PTS experiments could
be explained by the models not scaling well with bigger geometries of ECC.

The Gaillard et al. model underestimates instead the condensation and performs better
when applied to the TOPFLOW-PTS database. An explication could be the implementation
of a shape factor decc/D, which takes into account the jet dimensions.

With these poor results, a new approach for modelling the condensation of a liquid jet in a
stratified flow is necessary.

5.2 . Modelling of the ECC jet as a heat exchanger

The jet can be modelled as a concentric heat exchanger, where the primary side is composed
by the ECC jet and the secondary side by the steam. A visualisation of the heat exchanger
is given in Fig. 5.1. The liquid enters the heat exchanger at Tecc and leaves at T rk while the
steam is always at Tsat.

Along the jet length, the representative temperature differences between liquid and steam
driving the heat exchange is chosen as the logarithmic mean temperature difference. It reads:

∆Tln = ∆Tin − ∆Tout

ln (∆Tin/∆Tout)
= T rk − Tecc

ln ((Tsat − Tecc)/(Tsat − T rk)) (5.1)

where ∆Tin and ∆Tout are the inlet and outlet temperature difference between the liquid and
the steam respectively. From the definition in Eq. 5.1, the condensation heat flux can be
rewritten as:

q̇cond = ṁcond · Ils = h · Aex · ∆Tln (5.2)
where Ils is the latent heat of condensation, h is the heat transfer coefficient and Aex is the
heat transfer area, which should be carefully modelled.
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Figure 5.1: Visualisation of the ECC jet as a heat exchanger.

5.3 . Modelling of the heat transfer area Aex

The heat transfer area Aex in Eq. 5.2 has to be modelled. However, the chaotic and turbulent
nature of the phenomena leads to different types of exchange areas (as shown schematically in
Fig. 5.2 for a vertical injection).

Figure 5.2: Heat exchange areas for a vertical ECC injection.

At least three zones may be identified. The first one is ideally cylindrical, from the outlet of
the ECC pipe to the liquid flow. The second one is the entrainment zone, where the jet impacts
the liquid. The third zone is called "rebound" zone, as the liquid rebounds on the cold leg sides
(i.e. above the liquid free level). The last two areas are difficult to model. As supposed in [63],
most of the condensation occurs in the cylindrical zone. For that reason, the heat exchange
area in Eq. 5.2 is supposed to be:
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Aex = π · decc · L = 4 · Aecc · L

decc

(5.3)

The jet length L can be estimated (for ψecc <90◦ in Fig. 4.1c) by the Clausnitzer & Hager
formula [64], which computes the lower trajectory (also called nappe) of a water jet exiting a
quasi-horizontal pipe:

y′ = 1
3 · x′ · Fr−0.8 + 1

4 · decc

· x′2 · Fr−1.6 (5.4)

where (x’, y’) is the reference system in Fig. 5.3.
The velocity uecc and the diameter decc of the ECC jet describe the Froude number. Hence,

the nappe is dependent on the geometry and kinetic energy of the jet: a faster and thinner jet
(high Froude) results in a longer trajectory.

The Clausnitzer & Hager formula has originally been developed for horizontal pipes with
stratified flows at 1 bar. Thus, its application to our experimental database must be prop-
erly justified. Its application for inclined pipes at high pressure is validated thanks to the
TOPFLOW-PTS tests images. In Fig. 5.3, the dimensionless experimental nappes (in light
blue) of a TOPFLOW-PTS test are plotted. Eq. 5.4 is applied (using the experimental Froude
number of the test) and rotated counter-clockwise of the injection angle ψecc (Fig. 4.1c), re-
sulting in a lower nappe (in green) that reproduces accurately the experimental curve. Then,
the jet trajectory (in black) is obtained translating the green curve of decc/2 towards the centre
of symmetry of the jet. Finally, the segment between the ECC pipe exit and the parabola first
point (the thin black segment) is added to the nappe. The length is finally obtained integrating
the black curve.

This process is applied to the available TOPFLOW-PTS test images, leading to very good
results. Thus, it is applied to the whole experimental database.

Figure 5.3: Application of the Clausnitzer & Hager formula to compute the lower nappe and
the centred trajectory of the ECC jet in a TOPFLOW-PTS test.
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5.4 . Modelling of the condensation potential R

As shown in Fig. 5.1, the temperature of the jet increases along its length due to the
condensation of steam. The final temperature T rk can vary between Tecc (if no condensation
occurs) and Tsat. We can thus define an ECC condensation potential R as:

R = T rk − Tecc

Tsat − Tecc

(5.5)

R can range between 0 and 1 and it can be interpreted as a measure of the efficiency of the
jet to condense the steam.

In the literature, a condensation potential has already been analytically modelled [65] in
analogy with the potential used to describe boiling [66, 67]. Eqs. 4.4 (to compute the ECC
condensation mass flowrate), 5.2 and 5.3 can be combined to obtain the temperature difference
between the outlet and the inlet of the heat exchanger:

T rk − Tecc = q”cond

Ġecc · cp,ref

· 4 · L

decc

· Is,sat − Irk

Ils

(5.6)

Assuming that the Nusselt and Reynolds numbers have the same characteristic lengths, the
Stanton number (defined from the heat flux in Eq. 5.2) can be written as:

St = q”cond

Ġecc · cp,ref

· ρecc

ρref

· 1
∆Tln

(5.7)

Thus, Eq. 5.6 can be combined with Eq. 5.7 giving:

T rk − Tecc = St · ρref

ρecc

· ∆Tln · 4 · L

decc

· Is,sat − Irk

Ils

(5.8)

In the end, Eq. 5.8 can be put in Eq. 5.5:

R = 1 − exp

(
−4 · St · ρref

ρecc

· Is,sat − Irk

Ils

· L

decc

)
(5.9)

where the argument of the logarithm in Eq. 5.1 has been rewritten as (1 −R)−1.
To summarise, the condensation potential can be analytically written as:

R = 1 − exp
(
−4 · η · L

decc

)
η = St · ρref

ρecc
· Is,sat−Irk

Ils

(5.10)

The condensation potential is thus dependent on a jet shape parameter L/decc and a variable
η.

In Fig. 5.4, R is plotted as function of the shape parameter.
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Figure 5.4: Condensation potential R plotted against the jet length over diameter ratio. The
triangles are the validation tests (also marked as * in the legend).

The relationship between the two quantities seems to be exponential. The better exploited
jet are thus the longer and thinner ones.

The analytical dependence in Eq. 5.9 matches with the exponential behaviour observed
experimentally. A correlation for η can then be calibrated in order to fit the experimental data.

5.5 . Development of the correlation for η

During the experiments, the steam flowrate entering the test section (and consequently
reaching the jet) varied and was often larger than the measured ECC condensation flowrate. It
could be observed experimentally that increasing the steam flowrate (and therefore its velocity)
could lead to a higher condensation due to the improved heat exchange between the steam and
the jet. This phenomenon is visualised in Fig. 5.5, where the condensation potential of 11
COSI-Fra tests at different pressures are plotted against the steam mass flowrate ṁs reaching
the jet. These tests have the same (or very similar) ṁecc, Tecc, L/decc and no weir at the end
of the cold leg.

In Fig. 5.5, the condensation potential R is proportional to the steam reaching the jet. This
dependency is modelled through the following Nusselt number:

Nupot = ṁs · Ils · lNupot

Aex · kth,ref · (Tsat − Tecc)
(5.11)

where the characteristic length lNupot is equal to the ECC diameter decc and kth,ref is the thermal
conductivity calculated at the reference temperature, which is assumed to be (Tsat + Tecc)/2. This
Nusselt number is defined potential (subscripted pot) since it is calculated assuming that all the
steam flowrate reaching the jet condenses, with the maximum temperature difference possible
(i.e. Tsat − Tecc).

In Fig. 5.6, the experimental values of η are plotted against Nupot. The axes are in a
logarithmic scale.
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Figure 5.5: Condensation potential R plotted against the steam mass flowrate reaching the jet
for some COSI-Fra tests. All the tests have the same ṁecc, Tecc, L/decc and no weir at the end
of the cold leg.

Figure 5.6: Experimental η plotted against the potential Nusselt dimensionless number. The
axes are logarithmic.

The variable η is logarithmically proportional to the potential Nusselt number with a slope of
about 0.5. Thus, the condensation occurring at the jet is not only dependent on its geometrical
features (i.e. L/decc), but a high steam mass flowrate reaching the jet enhances the condensation
phenomena.

Moreover, η was observed to depend on the ECC injection properties. In order to isolate
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the effect of the steam on the condensation, η is divided by Nu0.5
pot and it is plotted against the

Reynolds number of the ECC injection (where lReecc = decc). The axes are in a logarithmic
scale.

Figure 5.7: Ratio of ηexp over Nu0.5
pot plotted against the injection Reynolds dimensionless num-

ber. The axes are logarithmic.

In Fig. 5.7, the relationship between η/Nu0.5
pot and Reecc seems to be logarithmically linear

and negative. To parity of steam arriving to the cold jet, an higher Reynolds jet has a lower η
than a lower Reynolds jet, resulting in an higher condensation potential R.

Since the dependencies in Figs. 5.6 and 5.7 show high dispersion, the Prandtl number
(calculated at the reference temperature Tref = (Tsat + Tecc)/2) is introduced to obtain a better
fit of the data. The variable η can thus be modelled as a function of these three dimensionless
numbers:

ηcalc(x) = θ0 ·Nupot(x)θ1 ·Reecc(x)θ2 · Prref (x)θ3 (5.12)

The coefficients θ are calibrated applying the Bayesian framework presented in Section 2.2
to the assessment database.

The range of applicability is given in Table 5.3.

Applicability range
Nupot [1159; 18624]
Reecc [6216; 312118]
Prref [0.85; 1.47]
Frecc [1.04; 44.52]

Table 5.3: Range of applicability for the new condensation model for the development database.

The physical model in Eq. 5.12 is applied to the statistical model in Eq. 2.6:
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ln(ηexp,i(xi)) = ln(θ0) + θ1 · ln(Nupot,i(xi)) + θ2 · ln(Reecc,i(xi)) + θ3 · ln(Prref,i(xi)) (5.13)

Through the Bayes theorem in Eq. 2.5, the joint posterior distribution τ(ln(θ0), θ1, θ2, θ3, σ
2|

ln(ηexp,i(xi))) can be calculated, sampled and the marginal posterior distributions plotted. The
relative histograms are shown in Fig. 5.8. In these distributions, the MAP values are shown
and the associated low standard deviations prove the accuracy of their Bayesian calibration.

Figure 5.8: Marginal posterior distributions for the new condensation model.

In each distribution, the MAP value and the associated standard deviation are shown.
The standard deviation are 2 orders of magnitude smaller than the MAP values, proving the
accuracy of the Bayesian inference. Then, the MAP values are put in Eq. 5.13 and the assessed
correlation for Eq. 5.12 is written through the application of the exponential function:

46



5.5. DEVELOPMENT OF THE CORRELATION FOR η

ηcalc(x,θMAP ) = 0.014 ·Nupot(x)0.58 ·Reecc(x)−0.33 · Prref (x)−1.2 (5.14)

with the associated model uncertainty:

Λ = L N (0, 0.02334) (5.15)

The correlation capability to reproduce the experimental data is good since the coefficient
R2 (referred to the log-log model) is equal to 0.82.

Eq. 5.14 is applied to the assessment database and the results are plotted in Fig. 5.9. In
Table 5.4, the errors are quantified.

Figure 5.9: The η variable issued by the new condensation model (Eq. 5.14) against experi-
mental over the assessment database.

Statistical
indicator

Mean
µ [%]

Standard
deviation

σ [%]
Min [%] Max [%]

rrel,η 1.2 15.4 -30.3 40
|rrel,η| 12.3 - - -

|rrel,η|COSI 12 - - -
|rrel,η|T OP F LOW −P T S 16.3 - - -

Table 5.4: Relative prediction error on η for the new condensation model (Eq. 5.14).

The statistical indicators in Table 5.4 prove the good accuracy and precision of the model,
with 2σ = 30.8% and 12.3% average relative error.

Eq. 5.10 is then coupled with the new model and the mean liquide temperature T rk is
shown (as experimental versus calculated) for the assessment database. In Fig. 5.10, the red
error bands quantify an error of ±30◦C.
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Figure 5.10: Prediction of the mean liquid temperature issued by the new condensation model
against the assessment database.

In Table 5.5, the errors on the temperature are quantified:

Statistical
indicator

Mean
µ [◦C]

Standard
deviation

σ [◦C]
Min [◦C] Max [◦C]

rabs,T rk
-1 13 -32 31

|rabs,T rk
| 10 - - -

|rabs,T rk
|COSI 10 - - -

|rabs,T rk
|T OP F LOW −P T S 5 - - -

Table 5.5: Absolute errors on the temperature with respect to the assessment database.

The predictions are centred and the dispersion is equal to 2σ = 26◦C. Since the min and
max are similar, the correlation is not systematically biased (i.e. the model does not have
the trend to under- or over-estimate the temperature). Moreover, the model capability to
simulate the experimental data is proved by the mean absolute errors being comparable with
the experimental errors quantified in Subsection 4.3.1.

5.6 . Statistical validation of the condensation model

The statistical validation by LOO (described in Section 2.4) is applied to the correlation in
Eq. 5.14. Figs. 5.11 and 5.12 show respectively the LOO residuals and the QQ plot. They
seem confirming the normality assumption. The Kolmogorov-Smirnov normality test yields a
p-value = 0.97, which is higher than the significance level (5%). Thus, the normality hypothesis
is not contested.
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Figure 5.11: Standard residual histogram computed by LOO technique for the new condensation
model (Eq. 5.14).

Figure 5.12: Calculated against theoretical quantiles for the new condensation model (Eq.
5.14).

5.7 . Physical validation of the condensation model

Once the correlation for η is statistically validated, the condensation model should be
physically validated against the independent validation database (i.e. 7 UPTF tests and 11
TOPFLOW-PTS tests with a hot injection, as shown in Table 4.5). The dimensionless num-
bers range is shown in Table 5.6.
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Applicability range TOPFLOW-PTS UPTF
Nupot [12 013; 22 210] [79 023; 439 013]
Reecc [262 406; 337 139] [435 417; 1 309 511]
Prref [0.84; 0.91] [1.54; 2.16]
Frecc [1.22; 1.35] [1.07; 2.81]

Table 5.6: Dimensionless numbers range for the validation database.

While the TOPFLOW-PTS ranges are slightly above the range of applicability in Table 5.3,
the UPTF tests are far above those limits. However, the UPTF experiments (see Subsection
4.1.3) are representative of a full scale PWR and the prediction of these experiments is essential
to establish the good behavior of the model in the reactor case. Assuming that the condensation
phenomena at full scale are similar to the ones modelled by the new-developed correlation in
Eq. 5.14, the condensation model should behave well even outside the assessment ranges.

In Fig. 5.13, the experimental and calculated temperatures are shown.

Figure 5.13: Prediction of the mean liquid temperature against the validation database.

In Table 5.7, the absolute errors on the temperature are summarised.

Statistical indicator Mean µ [◦C]
|rabs,T rk

|UP T F 10
|rabs,T rk

|T OP F LOW −P T S 2

Table 5.7: Absolute errors on the temperature with respect to the validation database.

The errors have the same order of magnitude of the ones computed for the assessment
database (see Table 5.5), confirming the good capability of the model to predict the condensa-
tion at the ECC.
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5.8 . Uncertainty quantification

In Fig. 5.14, the model and parameters uncertainties of Eq. 5.14 are computed and com-
pared. For each test in the assessment database, the value calculated by the correlation is
plotted as a blue point, the parameter uncertainty is the blue error bar (i.e. the 95% level
quantile of the distribution in Eq. 2.14) and the model uncertainty is the red error bar (i.e.
the 95% level quantile of the exponential values of Eq. 2.16).

Figure 5.14: Uncertainties quantification for the new condensation model (Eq. 5.14).

As expected from the small standard deviations of the parameters in Fig. 5.8, the blue bars
are negligible with respect to the model uncertainty. This can be explained by the relatively
high number of tests in the experimental database that reduces the parameter uncertainty, but
not the uncertainty intrinsically associated to the model.

Eq. 2.17 is applied to compute the fluctuation interval at 95% of the new correlation:

IF95%(Λ) = [0.74, 1.35] (5.16)

5.9 . Impact of the ECC stratification on condensation

As shown in Subsection 4.2.1, a stratification can occur in the ECC pipe at low injection
mass flowrates. This phenomenon strongly impacts the injection velocity and the heat exchange
area, thus the condensation.

To investigate the impact of the stratification on the condensation, the new condensation
model is applied to the 2 tests in Table 4.4 doing two different hypotheses: the ECC pipe is
either full or half-full. The results are in Table 5.8.

For both tests, taking into account the stratification results in a smaller absolute error
between the calculated and experimental mean liquid temperature.

A reliable modelling of the stratification phenomenon is thus necessary for the rigorous
simulation of the ECC condensation.
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T rk,calc with T rk,calc with
T rk,exp Secc = 100%Sinj Secc = 50%Sinj

sssw 195.4 188.6 195
tsw 146.9 130.7 142.9

Table 5.8: Impact of the ECC stratification on the condensation in some TOPFLOW-PTS tests
(values in ◦C).
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6 - Application of CIRCE and CIRCE 2-Steps

This chapter is related to the second part of Paper III, where CIRCE and CIRCE 2-Steps
are applied to the correlations simulating the condensation in the cold leg.

6.1 The CETs experimental database and its modelling . . . . . . . . . . . . . . . . 53
6.2 CIRCE joint estimation of the model uncertainties . . . . . . . . . . . . . . . . . 54
6.3 Application of CIRCE 2-Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

In Chapter 5, a new ECC condensation model was developed and its uncertainties quantified
using an appropriate SETs database. This has been possible since the CETs presented in
Chapter 4 have been carefully analysed and finally reduced to SETs. However, the possibility
of separating the effects is not always available in practical applications.

In this chapter, we are thus interested in applying the newly developed CIRCE 2-Steps
methodology (see Chapter 3) to our CETs database and compare it to the standard CIRCE
methodology. Section 6.1 presents the CETs database used for the IUQ and its modelling. In
Section 6.2, the standard CIRCE methodology is applied to jointly quantify the two model
uncertainties. In Section 6.3, the model uncertainty of the newly developed correlation (Eq.
5.14) is quantified with CIRCE 2-steps and the results are discussed.

6.1 . The CETs experimental database and its modelling

The CETs database for the IUQ is composed by 73 COSI-Fra and 8 TOPFLOW-PTS tests.
As explained at the end of Subsection 4.3.2, the COSI-West configuration cannot be used since
there are no experimental measurements at the end of the cold leg. As seen in Table 4.6, the
chosen experimental QoI for the IUQ is T rk8 for COSI-Fra and T rk3 for TOPFLOW-PTS.

The modelling of the experiments is shown in Fig. 6.1.

Figure 6.1: Control volumes to model the two condensation phenomena.

The test section is modelled with two cells where L is the jet length and ∆l is the liquid-
steam interface length. In the cell on the left, the newly developed model (Eq. 5.14) is used
to calculate the ECC condensation. For simplicity, this model will be indicated as Cocci in the
rest of the chapter. In the other cell, the Chu model [68] quantifies the condensation due to
the contact of the two phases at the stratified interface:
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Nu = 2.21 · 10−8 ·Re0.31
s ·Re1.32

l · Ja1.36
l (6.1)

This model has been calibrated against experiments simulating a two-phase flow (at different
values of liquid and steam mass flowrates) inside an horizontal circular pipe without sub-cooled
injection.

In Eq. 6.1, the input dimensionless numbers are computed from the QoIs calculated by the
first model.

The associated model uncertainty has already been estimated at CEA [69] and it is equal
to:

ΛChu = N (0.98, 0.101) (6.2)

The system in Fig. 6.1 is solved in Python 3 where the models are coupled with the
conservation equations for energy and mass. The final T rk,code is used in the CIRCE statistical
equation (Eq. 3.3) as the code output:

T rk,exp(xi) ≈ T rk,code(xi, R
ΛCocci,ref (xi), NuΛChu,ref (xi)) + J(xi) · bT

i + ϵi (6.3)

6.2 . CIRCE joint estimation of the model uncertainties

The CIRCE methodology is applied to the CETs to jointly calculate the uncertainties of
both the models where, for the model j and the test i, the derivative is calculated through the
finite difference method:

∂T rk,code(xi)
∂λj

∣∣∣∣∣
λj,ref =1

=
T

λj=1.1
rk,code(xi) − T

λj=0.9
rk,code(xi)

1.1 − 0.9 (6.4)

where T
λj=λ∗

rk,code(xi) is the code output computed modifying Λj in Fig. 6.1. The calculated
derivatives are shown in Fig. 6.2. The arithmetic mean of the Cocci derivatives is equal to 78.3
◦C, while the Chu one is equal to 0.9 ◦C. The scaling parameter k is thus ∼ 86. Hence, the
estimation of the Chu model uncertainty is expected to be affected by great uncertainty and
poor identifiability.

CIRCE is applied to jointly estimate the two model uncertainties. As discussed in Section
2.1, the safety authorities agree to consider only the model uncertainty, neglecting the experi-
mental one.

In Table 6.1, the bias distribution estimated through the ECME algorithm are reported. In
Table 6.2, the associated NECs are available.

Distribution
bCocci N (0.05253, 0.01837)
bChu N (−1.12071, 0.00334)

Table 6.1: Bias probability distribution estimated by the CIRCE methodology.
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NEC(mMLE) NEC
(√

σ2MLE
)

bCocci 0.17 0.02
bChu 21.48 85.89

Table 6.2: NECs associated to the parameters in Table 6.1.

Figure 6.2: Derivatives of the two models obtained with the finite difference method.

While the NECs of the Cocci model are small, the indicators of the Chu correlation are
dramatically above 1. This proves that the Chu bias distribution is not identifiable and the
values obtained by CIRCE are affected by low accuracy and precision.

After an analysis about the linearisation of the code output near the reference value, the
Cocci model uncertainty is assumed to follow a log-normal probability density while Chu a
normal one. From Table 6.1, the model uncertainties read:

ΛCocci = L N (0.05253, 0.01837)
ΛChu = N (−0.12071, 0.00334)

(6.5)

In Eq. 6.5, the Cocci uncertainty is similar to Eq. 5.15 but the CIRCE methodology
penalises the mean estimation trading a part of the variance for an increased mean. However,
the difference between the two approaches may be due to the different assumptions made
during the IUQs. The Bayesian IUQ neglected the contribution of the stratified condensation
on T rk,8 in the COSI-Fra experiments. It used a different thermocouple rake than CIRCE
for the TOPFLOW-PTS tests (T rk,4 replaces T rk,3), since the stratified condensation is not
negligible. Finally, the COSI-West tests were not considered in the estimation with CIRCE.
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Taking those in account, it is not surprising that the two estimations sligthly differ.
The Chu model uncertainty distribution is however very different from Eq. 6.2 and has a

negative mean. This results in a negative Nusselt number (on average) and thus a negative
condensation mass flowrate (i.e. the cold water evaporates in the hot steam). Hence, the
CIRCE estimation is physically inconsistent.

The high value of the scaling parameter led to a degradated joint estimation of the model
uncertainties. The CETs database is thus not appropriate to quantify the uncertainty of the
Chu model (too small derivatives) but can be used to estimate the Cocci model uncertainty
through the CIRCE 2-Steps methodology.

6.3 . Application of CIRCE 2-Steps

As discussed in Section 6.1, the model uncertainty of the Chu model was already quantified
on an appropriate SETs database (Step 1 of CIRCE 2-Steps). We can then apply the second
step of the methodology (see Section 3.4) to evaluate the model uncertainty of the Cocci model,
which is the most influent model on the QoI. The bias distribution reads:

bCocci = N (0.03670, 0.01857) (6.6)

The mean is significantly lower than the value in Table 6.1 while the variance is nearly
unchanged.

The associated NECs read:

NEC(mMLE
bCocci

) = 0.11, NEC
(√

σ2MLE
bCocci

)
= 0.02 (6.7)

While the NEC of the standard deviation is unchanged, the mean one is reduced. This
results in a better inverse problem identificability, as well as a more accurate and precise
estimation of the bias mean (i.e. closer to the zero-mean).

The Cocci model uncertainty is written as:

ΛCocci = L N (0.03670, 0.01857) (6.8)

and its interval of fluctuation at 95% (Eq. 2.17) reads:

IF95%(ΛCocci) = [0.79, 1.35] (6.9)

The uncertainties calculated in Eqs. 6.1 and 6.8 should be validated through the LOO cross
validation described at the end of Section 3.1.

The experimental QoIs are enveloped by the computed distributions 76 times out of 81.
The associated envelope rate is 93.8%. It can be accepted for two main reasons: the size
of the IUQ database is quite small (less than 100 tests) and the 5 tests which fail the cross
validation are not enveloped by less than the experimental error (quantified in Subsection 4.3).
The uncertainties are thus considered validated.

In Table 6.3, the results of the three IUQ methodologies are summarised.
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Bayesian IUQ CIRCE CIRCE 2-Steps
ΛCocci L N (0, 0.02334) L N (0.05253, 0.01837) L N (0.03670, 0.01857)
IF95%(ΛCocci) [0.74, 1.35] [0.81, 1.37] [0.79, 1.35]
NEC(mMLE

bCocci
) - 0.17 0.11

NEC
(√

σ2MLE
bCocci

)
- 0.02 0.02

Table 6.3: Summary of the IUQ of the Cocci model with different IUQ methodologies.

CIRCE 2-Steps improves the estimation of the fluctuation interval: the higher bound is
equal to the one computed by Bayesian IUQ in Eq. 5.16. However, the lower bound is higher
resulting in a more narrow fluctuation interval. The identifiability of the mean is also improved
(i.e. lower NEC).

It would be interesting to apply CIRCE 2-Steps using the derivatives and the calculated
quantities issued by a thermal-hydraulic system code. In this case, the estimated model un-
certainties may interact with other uncertainties linked to the simulation (e.g. the code uncer-
tainty), resulting in a more uncertain estimations.
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In this doctoral work, advanced statistical methodologies for the calibration and the inverse
uncertainty quantification of thermal-hydraulic correlations have been developed and applied to
the condensation model at the Emergency Core Cooling (ECC) system of a nuclear Pressurised
Water Reactor. These contributions have the goal to improve the thermal-hydraulic system
simulations and uncertainty quantification for nuclear safety analyses and licensing processes.

7.1 . Summary and conclusions

The summary and conclusions are divided according to the main contribution of this Ph.D.
thesis:

• Proposal of a new Bayesian framework for the calibration and inverse uncertainty quantifi-
cation of thermal-hydraulic correlations using a multiplicative model uncertainty (Paper
I and Chapter 2);

• Development of a new ECC condensation model based on a detailed thermal-hydraulic
and physical analysis of available experimental data (Paper II and Chapters 4 and 5);

• Extension of the CIRCE methodology to better predict the model uncertainties in the
presence of Combined Effect Tests (CETs) (Paper III and Chapters 3 and 6).

7.1.1 . Bayesian framework for the calibration and inverse uncertainty quantifica-
tion of thermal-hydraulic models

In nuclear thermal-hydraulic, the experiments are expensive and difficult to perform, result-
ing in a limited number of available data. However, they are necessary to assess physical models
(or correlations) for thermal-hydraulic codes through the calibration of parameters. Since the
dimension of the experimental database can be small, the calibrated parameters may have high
uncertainty.

In this thesis, a new framework for the calibration and inverse uncertainty quantification
of thermal-hydraulic correlations is proposed. The physical models are calibrated through
Bayesian inference, which allows modelling the uncertain parameters as random variables. In
order to take into account the scaling of the model, the model uncertainty is represented as a
multiplicative distribution between the calculated and experimental data.
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After the calibration, a set of statistical indicators are proposed to assess the linearity, ac-
curacy and precision of the physical model. Moreover, the normality assumption of the model
uncertainty is statistically checked through a Leave-One-Out cross validation technique. In the
end, the probability densities of the model uncertainty and the parameters are used to quantify
the global uncertainty of the thermal-hydraulic correlation.

7.1.2 . Development of a new ECC condensation model
The condensation phenomena at the ECC injection have been studied in different experi-

ments called COSI, TOPFLOW-PTS and UPTF. The first two experiments are classified as
CETs, since at least two macroscopic condensation phenomena take place in the cold leg. The
UPTF experiment is an Integral Effect Test (IET), since it has all the main components of a
PWR.

A detailed physical analysis is performed over the experimental database and two method-
ologies are proposed to improve the computation of some experimental quantities:

1. The mean liquid temperature of a thermocouple rake: the methodology selects the last
thermocouple in the liquid and, assuming a uniform velocity field, averages the tempera-
tures;

2. The ECC condensation mass flowrate: following local heat balances between different
thermocouple rakes, it allows establishing the distribution of the condensation in the
different zones of the cold leg.

The second methodology allows us to reduce the CETs/IETs in Separate Effect Tests (SETs).
The condensation mass flowrate in the ECC region can be isolated and thus be modelled by a
correlation.

The reduced database is composed by 110 tests for the assessment of the model and 18 tests
for its physical validation. The assessment database is used to assess the correlations found in
the literature, which are all characterised by a heat transfer coefficient modelled through the
Nusselt number (i.e. as a function of other dimensionless numbers). The results show a large
discrepancy between the calculated and experimental values. Thus, a new modelling approach is
proposed. The jet is modelled as a concentric heat exchanger through a condensation potential,
which quantifies the efficiency of the ECC to condense the steam. The equation of the potential
is analytically derived. It follows an exponential function of a variable η and a shape factor
L/decc (i.e. proportional to the ratio between the heat exchange and jet cross section areas).
An empirical model for η is calibrated as a function of the steam potential Nusselt, the ECC
Reynolds and the Prandtl numbers. The steam potential Nusselt takes into account the quantity
of steam reaching the jet and the maximum temperature difference driving the heat exchange.
The condensation model is assessed on the assessment database and validated independently on
the validation one, showing a good agreement between the calculated and experimental results.
The mean error on the liquid temperature in the cold leg is around 10◦C for both database.

7.1.3 . Extension of the CIRCE methodology to CETs
The CIRCE methodology is usually devoted to the inverse uncertainty quantification of

physical models. The model uncertainty is modelled through a multiplicative (log-)normal
distribution, which is applied to the reference model. The goal of CIRCE is the empirical
estimation of the mean and variance of the probability distribution. However, when the uncer-
tainties of several models are jointly estimated using CETs (where two or more models interact
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with each other and impact the code output), the estimation of the least influential model
uncertainty may suffer of unidentifiability (i.e. the mean and variance are affected by large
statistical uncertainty). The problem is investigated thanks to analytical examples through a
scaling parameter between two correlations, which is proportional to the ratio of the deriva-
tives mean. We have shown that the unidentifiability of the problem gets worse as the scaling
parameter grows.

The new methodology CIRCE 2-Steps is proposed in order to reduce the identifiability prob-
lem. In the first step, the least influential model uncertainties are estimated using the available
SETs (where the model whose uncertainty has to be assessed is the only one that impacts the
code output). In the second step, the most influential model uncertainty is calculated through
CETs, taking into account the uncertainties already quantified in the first step. CIRCE 2-Step
is then applied to some analytical exercises, leading to better accuracy and precision.

Finally, CIRCE 2-Steps is applied to two condensation models simulating the condensa-
tion in the cold leg. The new methodology is used to estimate the uncertainty of the new
condensation model at the ECC, leading to coherent results with the Bayesian IUQ.

7.2 . Perspectives for future work

This research has identified some points that would require further investigations. The
recommendations for future works can be divided in two: from a physical and a statistical
point of view.

7.2.1 . Future work to improve the physical modelling
• The flow stratification inside the ECC pipe can impact significantly the condensation

occurring during a safety injection. Thus, this phenomenon should be further investigated,
both from the experimental and the modelling point of view to obtain the stratification
height in the ECC pipe. In particular, new experiments are necessary for the stratification
in inclined pipes. The development of an experimental database may begin from the
study of the flow in an inclined pipe with air-water at atmospheric pressure. Then, more
complex experiments with steam-water stratification at high pressure would be needed;

• Once a physical model for the stratified height in inclined pipes is assessed, it should be
coupled with the newly developed condensation model which is valid only for fully filled
ECC pipes. In this way, the applicability and validity of the ECC modelling could be
extended;

• The new condensation model should be implemented in a thermal-hydraulic system code.
Its performance and potential interaction with other physical models in the code should
be analysed. The Clausnitzer & Hager formula should be implement as well to compute
the ECC jet length.

7.2.2 . Future works to improve the Inverse Uncertainty Quantification
• The experimental uncertainty ϵ (if it is available) should be integrated in the model

updating equation of the Bayesian framework and CIRCE 2-Steps to study its potential
impact. The CIRCE algorithm implemented in the URANIE platform [70, 71] is already
developed to take into account ϵ and just need the values as input data. Currently, the
quantified uncertainty is fully associated to the model, resulting in a more conservative
fluctuation interval;
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• The proposed Bayesian framework with a multiplicative model uncertainty should be com-
pared to the approach with additive uncertainty function of the experimental conditions.
This additive uncertainty could be modelled by a Gaussian process;

• The proposed methodologies should be compared to other IUQ techniques, e.g. the
improved Modular Bayesian Approach [37] or IPREM [72];

• CIRCE 2-Steps has been applied to compute Maximum Likelihood Estimation of factors’
mean and variance. However, the parameter uncertainty should also be quantified. The
recently developed Bayesian CIRCE [73] should thus be tested. It computes posterior
probability of factor’s mean and variance, which can then be propagated to the calculation
of fluctuation intervals;

• CIRCE 2-Steps should be applied to three or more coupled models. For example, it would
be interesting to study the case with three models of which two are more influential than
the third one over the code output. The less influential model uncertainty could then
be estimated with appropriate SETs and the other two uncertainties could be jointly
estimated against CETs;

• CIRCE 2-Steps should be tested to estimate the uncertainties of two models with similar
influence over the code output. The results should be compared with the ones obtained
with the standard CIRCE methodology;

• The application of CIRCE 2-Steps should be studied in combination with thermal-hydraulic
system codes to identify possible interactions/compensations with other uncertainties
linked to the simulation (e.g. the code uncertainty). Basically, CIRCE 2-Steps should
use input data (i.e. code outputs and derivatives) calculated by the system code;

• The non-linear approach of CIRCE [73] based on Gaussian process [74] could be used if
the linearity assumption is not well respected.
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Abstract in French (Résumé substantiel)

Titre : Apprentissage statistique et quantification inverse des incertitudes en simulation ther-
mohydraulique nucléaire : application à la modélisation de la condensation à l’injection de
sécurité

Résumé : La méthodologie appelée BEPU (en anglais Best Estimate P lus Uncertainty)
suscite de plus en plus d’intérêt dans le domaine de la thermohydraulique nucléaire. Elle se
compose de deux étapes : la simulation des phénomènes physiques au travers de la meilleure
connaissance disponible (e.g. en utilisant des modèles physiques, également appelés corréla-
tions) et l’estimation des incertitudes qui affectent les prédictions. Avant l’application de la
méthodologie BEPU aux études de sûreté, les modèles thermohydrauliques utilisés dans les
codes nucléaires doivent être correctement developpés, validés et leur incertitudes quantifiées.
Ces corrélations sont développées en calibrant leurs paramètres à l’aide des bases de données
expérimentales disponibles. Idéalement, la base de données est composée de tests à effets sé-
parés (en anglais Separate Effect Tests – SETs, i.e. des essais où le phénomène à modéliser a un
effet sur la quantité d’intérêt mesurable qui peut être séparée et quantifiée). Néanmoins, des
SETs ne sont pas toujours disponibles. Le plus souvent, des tests à effets combinés (en anglais
Combined Effect Tests – CETs) sont accessibles. Si la base de données est composée par des
CETs, la corrélation modélisant le phénomène physique d’intérêt interagit avec, au moins, une
autre (qui est également incertaine).

Cette recherche doctorale vise à développer des méthodologies statistiques avancées pour la
quantification inverse de l’incertitude (en anglais Inverse Uncertainty Quantification - IUQ, i.e.
estimer l’incertitude de paramètres d’entrée incertains à partir de l’incertitude d’une quantité
prédite en réponse pour laquelle on dispose de réalisations expérimentales) des modèles thermo-
hydrauliques en présence de CETs et à les appliquer au cas pratique du modèle de condensation
à l’Injection de Sécurité (IS) d’un réacteur nucléaire. Elle se compose du développement, la
validation et la quantification de l’incertitude d’une nouvelle corrélation physique en présence
de SETs et l’IUQ d’un modèle existant par rapport à une base de données CETs. La thèse
de doctorat est organisée en trois parties principales. Dans la première partie, l’élaboration,
la validation et la quantification de l’incertitude des modèles thermohydrauliques est abordée
par inférence bayésienne à l’aide de SETs. Dans cette approche, une variable aléatoire multi-
plicative (représentant l’incertitude du modèle) relie la valeur expérimentale à la prédiction du
modèle. Cette variable multiplicative convient aux modèles qui mesurent de nombreux ordres
de grandeur, comme dans le cas des essais thermohydrauliques. Un ensemble d’indicateurs
statistiques est défini pour évaluer le rendement prédictif du meilleur modèle. De plus, comme
les bases de données thermohydrauliques disponibles sont souvent composées d’un nombre lim-
ité d’essais, le modèle physique est validé par le biais d’une technique de validation croisée
appelée Leave One Out (LOO), qui permet d’utiliser la même base de données pour les étapes
de calibration et de validation.

La deuxième partie est centrée sur l’une des méthodes IUQ les plus largement appliquées en
thermohydraulique nucléaire : la méthodologie CIRCE (Calcul des Incertitudes Relatives aux
Corrélations Elementaires) et son extension aux essais CETs. CIRCE estime la distribution
de probabilité (log-)normale représentant l’incertitude du modèle de référence dans le code de
calcul. Cependant, lorsqu’elle est appliquée à l’estimation jointe des incertitudes de plusieurs
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modèles utilisant des CETs, cette méthodologie peut souffrir de non-identifiabilité (i.e. une
combinaison différente d’incertitudes explique l’erreur entre la valeur calculée par le code et
les données expérimentales), ce qui entraîne des incertitudes statistiquement peu fiables. La
non-identifiabilité peut aboutir à une estimation de l’incertitude du modèle le moins influent
(moins influent sur la sortie du code) caractérisée par une faible précision (dans l’estimation
des paramètres de la loi (log-)normale) et aussi à la dégradation de l’estimation de l’incertitude
du modèle le plus influent. Ainsi, une extension de la méthode (nommée CIRCE 2-Steps) est
proposée pour améliorer l’estimation de l’incertitude du modèle le plus influent. La méthodolo-
gie est composée par deux étapes successives. Dans la première étape, les incertitudes pour
lesquelles des SETs sont disponibles sont évaluées. Ces incertitudes sont ensuite prises en
compte lors de la quantification des incertitudes restantes en utilisant des CETs. Il est prouvé
que cette nouvelle approche donne des résultats plus précis.

Dans la troisième partie, les deux méthodologies sont appliquées à un cas pratique : les
modèles physiques utilisés pour la prédiction de la condensation dans la branche froide d’un
Réacteur nucléaire à Eau Pressurisée (REP) lors d’un Accident de Perte de Refrigerant Pri-
maire (APRP). Dans un tel scénario, deux phénomènes de condensation sont influents sur la
variable d’intérêt, i.e. la température du liquide à l’entrée du downcomer. Le premier est la
condensation de la vapeur sur le jet froid de l’IS et ensuite son impact dans l’écoulement liquide.
Le dernier est la condensation de la vapeur à l’interface liquide de l’écoulement stratifié entre
la région du jet et le downcomer. Les installations expérimentales COSI, TOPFLOW-PTS
et UPTF composent la base de données expérimentale. La configuration et l’échelle sont dif-
férentes pour chacune d’entre elles, ce qui donne une large gamme de température d’injection,
de débit massique et de pression. Ces expériences sont classées comme CETs. Cependant,
comme la condensation à l’IS peut être isolée, elles peuvent également être réarrangées comme
SETs. Cette base de données est donc appropriée pour tester les deux méthodologies. Après
avoir testé les corrélations de la littérature sur la nouvelle base de données expérimentale avec
des résultats non satisfaisants, une nouvelle approche est présentée. La condensation est quan-
tifiée par un potentiel de l’échangeur de chaleur qui modélise le jet froid. De cette façon, la
condensation est une fonction de la forme du jet et d’une variable η. Le cadre bayésien présenté
dans la première partie est appliqué aux SETs COSI et TOPFLOW-PTS afin de calibrer une
corrélation pour la variable η. Le nouveau modèle réduit considérablement l’écart-type entre
les prédictions et les valeurs expérimentales correspondantes. La nouvelle corrélation est en-
suite validée statistiquement et appliquée à la base de données UPTF pour validation physique.
La corrélation montre une bonne capacité à prédire avec précision la condensation à l’IS dans
toutes les configurations étudiées. La nouvelle méthodologie CIRCE 2-Steps est ensuite ap-
pliquée, montrant des améliorations significatives sur l’estimation de l’incertitude du modèle
de condensation è l’IS (i.e. le plus influent). L’incertitude résultante du modèle est comparée
à celle calculée par le cadre bayésien, montrant un bon accord entre les deux résultats.

Mots clés : Calage bayésien, Quantification inverse des incertitudes, CIRCE, Tests à effets
combinés, Condensation, Injection de Sécurité (IS)
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Titre : Apprentissage statistique et quantification inverse des incertitudes en simulation thermohydraulique
nucléaire : application à la modélisation de la condensation à l’injection de sécurité
Mots clés : Calage bayésien, Quantification inverse des incertitudes, CIRCE, Tests à effets combinés, Conden-
sation, Injection de Sécurité (IS)
Résumé : La méthodologie BEPU (Best Estimate Plus
Uncertainty) repose sur la validation et la quantifi-
cation des incertitudes des modèles physiques utilisés
dans les codes de calcul nucléaires. Disposer d’une
méthodologie robuste permettant de caler un modèle
physique, de le valider et d’en quantifier les incerti-
tudes est un enjeu majeur. Cette thèse a donc comme
objectif de développer des méthodologies pour la vali-
dation et la quantification d’incertitudes appliquées au
cas pratique du modèle de condensation à l’Injection
de Sécurité (IS). La première étape a été le développe-
ment d’un nouveau cadre bayésien pour la calibration
et la quantification inverse de l’incertitude des mod-
èles physiques en utilisant une incertitude de modèle
multiplicative. La deuxième étape a été une analyse
thermohydraulique détaillée des données expérimen-
tales afin d’améliorer la compréhension physique de
la condensation à l’IS dans la branche froide d’un re-
acteur à eau pressurisée lors d’un Accident de Perte

de Réfrigérant Primaire (APRP). Pendant cet acci-
dent, deux types de condensation surviennent dans la
branche froide : la condensation à l’IS et la conden-
sation en aval du jet. La température en sortie de la
branche froide, et donc à l’entrée du cœur du réacteur,
dépend de ces deux modèles. Le cadre bayésien est
appliqué afin de calibrer un nouveau modèle de con-
densation à l’IS. Ce modèle a été validé et ses incerti-
tudes ont été quantifiées. Dans la dernière étape, une
extension de la méthodologie CIRCE (appelée CIRCE
2-Steps) a été développée. CIRCE est une méthodolo-
gie pour déterminer l’incertitude du modèle basée sur
la différence entre la valeur expérimentale et la valeur
calculée d’une quantité d’intérêt. L’extension proposée
améliore l’estimation des incertitudes de plusieurs mod-
èles combinés entre eux et qui interagissent sur la
même variable de sortie, comme la température en sor-
tie de la branche froide.

Title: Statistical learning and inverse uncertainty quantification in nuclear thermal-hydraulic simulation: appli-
cation to the condensation modelling at the safety injection
Keywords: Bayesian calibration, Inverse Uncertainty Quantification, CIRCE, Combined Effect Tests, Conden-
sation, ECC

Abstract: The BEPU (Best Estimate Plus Uncer-
tainty) methodology is based on the validation and
the uncertainty quantification of the physical models
used in the nuclear computer codes. Having a ro-
bust methodology to calibrate a physical model, val-
idate it and quantify its uncertainty is a major chal-
lenge. Therefore, the objective of this thesis is to
develop methodologies for the validation and uncer-
tainties quantification and apply them to the practical
case of the condensation model at the Emergency Core
Cooling (ECC) system. The first step was the devel-
opment of a new Bayesian framework for the calibra-
tion and inverse uncertainty quantification of physical
models using a multiplicative model uncertainty. The
second step was a detailed thermohydraulic analysis of
the experimental data in order to improve the physical
understanding of the ECC condensation in the cold leg
of a pressurised water reactor during a Loss Of Coolant

Accident (LOCA). Two types of condensations occur in
the cold leg: the condensation at the ECC and the con-
densation downstream the jet. The temperature at the
outlet of the cold leg, and therefore at the entrance
of the reactor’s core, depends on these two models.
The Bayesian framework is applied to calibrate a new
condensation model at the ECC. This model has been
validated and the uncertainties have been quantified.
In the last step, an extension of the CIRCE method-
ology (called CIRCE 2-Steps) was developed. CIRCE
is a methodology to determine the model uncertainty
based on the difference between the experimental and
calculated value of a quantity of interest. The proposed
extension improves the estimation of the uncertainties
of several models combined together and interacting
on the same output variable, such as the temperature
at the end of the cold leg.
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