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Abstract

Multimodal analysis of neuroimaging and transcriptomic data in genetic
frontotemporal dementia

Frontotemporal dementia (FTD) represents the second most common type of de-
mentia in adults under the age of 65. Currently, there are no treatments that can cure
this condition. In this context, it is essential that biomarkers capable of assessing
disease progression are identified. Asymptomatic individuals who carry a genetic
mutation that causes FTD are the ideal population for research.

This thesis has two objectives. First, to analyze the expression patterns of mi-
croRNAs taken from blood samples of patients, asymptomatic individuals who have
certain genetic mutations causing FTD, and controls, to identify whether the expres-
sions of some microRNAs correlate with mutation status and disease progression.
Second, this work aims at proposing methods for integrating cross-sectional data
from microRNAs and neuroimaging to estimate disease progression.

We conducted three studies. Initially, we focused on plasma samples from C9orf72
expansion carriers. We identified four microRNAs whose expressions correlated
with the clinical status of the participants. This study suggested that some microR-
NAs may be dysregulated even before the onset of symptoms. Next, we tested all
microRNA signatures identified in the literature as potential biomarkers of FTD or
amyotrophic lateral sclerosis (ALS), in two groups of individuals (with C9orf72 ex-
pansion or with GRN mutation). The results of this study showed that microRNAs
previously identified in sporadic or mixed cohorts may be useful to follow the pro-
gression of C9orf72-associated disease, but not of GRN-associated disease. Finally, in
our third work, we proposed a new approach, using a supervised multimodal vari-
ational autoencoder, that estimates a disease progression score from cross-sectional
microRNA expression and neuroimaging datasets with small sample sizes.

The work conducted in this interdisciplinary thesis showed that it is possible
to use non-invasive biomarkers, such as circulating microRNAs and magnetic res-
onance imaging, to assess the progression of rare neurodegenerative diseases such
as FTD and ALS. The main challenge in the future is to gather larger cohorts, with
longitudinal data, to precisely assess the accuracy of these biomarkers in estimating
disease progression of individual patients.






Résumé

Analyse multimodale des données de neuroimagerie et transcriptomiques dans

la démence frontotemporale génétique

La démence frontotemporale (DFT) représente le deuxiéme type de démence le plus
fréquent chez les adultes de moins de 65 ans. Il n’existe aucun traitement capable
de guérir cette maladie. Dans ce contexte, il est essentiel d’identifier des biomar-
queurs capables d’évaluer la progression de la maladie. Les personnes asymptoma-
tiques porteuses d’'une mutation génétique constituent la population idéale pour
cette recherche.

Cette these a deux objectifs. Premiérement, analyser les profils d’expression
des microARNSs circulants prélévés dans le plasma sanguin de participants, afin
d’identifier si l’expression de certains microARNs est corrélée au statut mutation-
nel et a la progression de la maladie. Deuxiémement, proposer des méthodes pour
intégrer des données transversales de type microARN et de neuroimagerie pour es-
timer la progression de la maladie.

Nous avons mené trois études. D’abord, nous avons analysé des échantillons
de plasma provenant de porteurs d’une expansion dans le gene C9orf72. Nous
avons identifié quatre microARNs dont 'expression était corrélée avec 1'état clin-
ique. Cette étude a suggéré que certains microARNs peuvent étre dérégulés avant
méme l'apparition des symptomes. Ensuite, nous avons testé toutes les signatures
de microARNSs identifiées dans la littérature comme biomarqueurs potentiels de la
DFT ou de la sclérose latérale amyotrophique (SLA), dans deux cohortes indépen-
dantes, avec une mutation dans le gene C90rf72 ou GRN. Les résultats de cette étude
ont montré que les microARNs précédemment identifiés dans des cohortes spo-
radiques ou mixtes peuvent étre utiles pour suivre la progression de la maladie asso-
ciée au gene C90rf/2, mais pas celle de la maladie associée au gene GRN. Enfin, dans
notre troisieme étude, nous avons proposé une nouvelle méthode, utilisant un au-
toencodeur variationnel multimodal supervisé, qui estime a partir d’échantillons de
petite taille un score de progression de la maladie en fonction de données transver-
sales d’expression de microARNSs et de neuroimagerie.

Les travaux menés dans cette thése interdisciplinaire ont montré qu’il est pos-
sible d’utiliser des biomarqueurs non invasifs, tels que les microARNSs circulants et
I'imagerie par résonance magnétique, pour évaluer la progression de maladies neu-
rodégénératives rares telles que la DFT et la SLA. Le principal défi a ’avenir est de
rassembler des cohortes plus importantes, avec des données longitudinales, pour
mieux déterminer la précision de ces biomarqueurs dans I'estimation de la progres-

sion de la maladie a I’échelle du patient.
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Chapter 1

Introduction

1.1 Context

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disease, char-
acterized by significant alterations in personality and social behavior, and associ-
ated with brain atrophy in the frontal and temporal lobes (Neary et al., 2005). Al-
though a rare condition, FTD is the second most frequent early-onset dementia, after
Alzheimer’s disease, with an average age at onset being around 50 to 60 years (See-
laar et al., 2011). Currently, there are no effective treatments for this fatal disorder,
which has terrible personal, familial, and social consequences.

Genetic factors have an important contribution to FTD, since a positive family
history is observed in up to 50% of patients (DeJesus Hernandez et al., 2011). The
most common causes of familial FTD are repeat expansions in the chromosome 9
open reading frame 72 (C90rf/2) gene and mutations in the progranulin gene (GRN)
(DeJesus Hernandez et al., 2011; Renton et al., 2011).

FTD shares disease mechanisms with amyotrophic lateral sclerosis (ALS), a dev-
astating disorder caused by motor neuron degeneration, leading to progressive mus-
cle atrophy and eventually complete paralysis (Pasinelli and Brown, 2006). The hex-
anucleotide repeat expansion in the C9orf72 gene is the most frequent cause of both
familial FTD and familial ALS identified to date. Both diseases may occur within the
same family, or even the same patient (DeJesus Hernandez et al., 2011).

Most validated biomarkers in these diseases are used to distinguish patients from
neurologically healthy controls. However, future therapeutic trials also need to mon-
itor treatment responses, so research on potential progression biomarkers is becom-
ing increasingly important (Meeter et al., 2017). Particularly, the study of genetic
forms in the presymptomatic phase may provide valuable information about the
early disease stages, before any irreversible neuronal loss has occurred (Rohrer et
al., 2015).

In this context, the group led by Isabelle Le Ber at the Institut du Cerveau — Paris
Brain Institute — ICM and the Institute for Memory and Alzheimer’s Disease at the
Pitié-Salpétriere Hospital has put together some of the world’s largest cohorts on
familial variants of FTD/ALS. In each cohort, participants were divided into three

groups: symptomatic mutation carriers (patients), neurologically healthy mutation
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carriers (in the presymptomatic phase), and non-carriers (control group). Each sub-
ject underwent various examinations, including but not limited to structural mag-
netic resonance imaging (MRI) brain scans and blood samples.

Before the beginning of this PhD, the structural MRI scans were used to compute
the volumes of specific brain regions of interest, an extensively applied technique for
the study of neurodegenerative diseases. Statistical analyses of neuroimaging data
have led to the identification of potential biomarkers of preclinical disease progres-
sion (Bertrand et al., 2018). However, neuroimaging alone cannot totally explain
such complex disorders and reliably measure treatment response (Carreiro et al.,
2015).

Blood samples were extracted to allow the quantification of circulating microRNA
(miRNA) expression levels. MicroRNAs are a class of small ribonucleic acids (RNA)
that regulate gene expression by degrading certain messenger RNAs or inhibiting
their translation into proteins (Huntzinger and Izaurralde, 2011). Circulating miR-
NAs have been recently investigated as potential biomarkers for neurodegenerative
diseases, with promising but so far conflicting results (Grasso et al., 2014).

From a clinical standpoint, the main goal of these cohort studies is to use multi-
modal data to identify robust biomarkers of FTD/ALS, in order to evaluate disease
progression in future therapeutic trials.

1.2 Objectives

This thesis has two main objectives.

First, we aim to analyze miRNA expression levels in blood samples from presymp-
tomatic mutation carriers, FTD/ALS patients and controls, to identify potential non-
invasive biomarkers of disease progression. In particular, clinical trials would greatly
benefit from robust preclinical biomarkers, that could assess the effect of treatments
prior to the onset of symptoms and permanent brain damage.

Second, we intend to design a new approach to fuse multimodal data from miRNA
expression and neuroimaging and evaluate disease progression using a cross-sectional
study design. Indeed, research studies on rare neurodegenerative conditions, such
as FTD and ALS, lack sufficient longitudinal data to apply existing disease progres-
sion models.

Specifically, our work seeks to elucidate the following research questions regard-
ing genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis:

¢ Are circulating miRNAs promising disease progression biomarkers?

¢ Could we estimate disease progression using only cross-sectional miRNA and

neuroimaging data?
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1.3 Contributions

The contributions of this thesis are three-fold.

First, we investigate the expression levels of plasma miRNAs in a cohort of
C9orf72 mutation carriers, and we identify four miRNAs likely to play a role in neu-
rodegeneration and CY9orf72-associated pathogenesis. Our study suggests that the
expression levels of certain miRNAs are dysregulated during disease progression,
and can be detected even before neurological symptoms appear.

Second, we analyze two homogeneous cohorts of C9orf72 and GRN mutation
carriers, to assess all circulating miRNA signatures identified in previous conflict-
ing studies about FTD or ALS. Our findings indicate that miRNA expression is most
likely mutation specific, since miRNAs previously revealed in sporadic/mixed co-
horts can potentially serve as biomarkers in C9orf72-associated FTD or ALS, but not
in GRN-associated FTD.

Finally, we propose a novel approach for assessing disease progression scores
(DPS) using cross-sectional neuroimaging and miRNA data, which may be used in
small samples like those observed in rare disorders. The technique is developed
and tested using data from C9orf/2-associated FID and ALS, but it might be ap-
plied to other disorders as well. The method’s capacity to reliably predict the DPS
is demonstrated on synthetic data, while tests on a real-world dataset, in the ab-
sence of ground truth scores, reveal the classification of distinct diagnostic groups.
The results of this work support that a single disease progression score, computed
from cross-sectional data, might be used to represent a neurodegenerative disease

progression.

1.4 Outline of this manuscript

Following this Introduction (Chapter 1), the manuscript consists of six more chap-
ters:

¢ Chapter 2 describes the background related to this thesis, covering (1) genetic
FTD and ALS, (2) miRNA data, (3) neuroimaging data, (4) integrative data
analysis in neurodegenerative diseases, and (5) disease progression modeling
and disease progression scores.

¢ Chapter 3 shows the miRNA and neuroimaging datasets used in this work.

¢ Chapter 4 presents a study analysing the expression of circulating miRNAs in a
cohort of C9orf72 carriers and their first-degree relatives, aiming at identifying
potential plasma biomarkers in this genetic form of FTD and ALS.

¢ Chapter 5 extends the previous study by selecting all published articles that
identify miRNA signatures associated with FTD and/or ALS, and testing them
in an independent cohort focused on the C90rf/2 mutation and another cohort
focused on the GRN mutation.
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* Chapter 6 details the implementation of a novel framework, based on a su-
pervised multimodal variational autoencoder, that infers disease progression
scores from cross-sectional miRNA and neuroimaging data, evaluated on syn-

thetic datasets and on a real-world dataset.

¢ Finally, Chapter 7 summarizes our contributions and outlines perspectives for

future research.

In addition, the supplementary materials associated with the studies described
in Chapters 4, 5 and 6 are presented in, respectively, Appendices A, B and C.



Chapter 2

Background

This chapter provides the background knowledge regarding the main concepts in-
volved in this thesis. We initially present frontotemporal dementia and amyotrophic
lateral sclerosis, focusing on their familial forms (Section 2.1). Next, we describe the
usual preprocessing and feature extraction steps for microRNA (miRNA) expression
data (Section 2.2) and structural neuroimaging data (Section 2.3). Then, we give an
overview about integrative data analysis in neurodegenerative diseases, in particu-
lar the integration of transcriptomic and neuroimaging data (Section 2.4). Last, we
briefly review the literature on disease progression modeling and disease progres-
sion scores (Section 2.5).

2.1 Frontotemporal dementia & amyotrophic lateral sclerosis

In this section, we present the two neurodegenerative diseases discussed in this the-
sis. We begin with a brief definition of frontotemporal dementia (section 2.1.1), fol-
lowed by an explanation about its different familial forms (section 2.1.2), its overlap
with amyotrophic lateral sclerosis (section 2.1.3), and finally an overview about the
neuroimaging and fluid biomarkers associated with these diseases (section 2.1.4).

2.1.1 Frontotemporal dementia definition

Frontotemporal dementia (FTD) designates a group of clinically, pathologically and
genetically heterogeneous disorders, that have in common the degeneration of the
frontal and temporal lobes of the brain (Lashley et al., 2015). The annual incidence
of these devastating conditions is estimated to be approximately 4 new cases per
100,000 people (Ratnavalli et al., 2002). Although rare, these disorders represent
the second most common form of dementia in adults aged under 65 years, after
Alzheimer’s disease (AD) (Meeter et al., 2017).

FTD has two main clinical manifestations. First, behavioural variant FTD (bvFTD)
is characterized by a progressive decline in cognition and social relationships, lead-
ing to impulsive actions, loss of empathy, compulsive behaviours, and deficits in
executive functions (Rascovsky et al., 2011). Second, primary progression aphasia
(PPA) is marked by an increasing language deficit that impairs daily activities, and
is divided into semantic variant PPA (svPPA), nonfluent variant PPA (nfvPPA) and
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lopogenic variant PPA (IvPPA) (Gorno-Tempini et al., 2011). Depending on the vari-
ant, PPA may lead to fluent speech with impaired comprehension of single words
(svPPA), nonfluent speech with inability to use fundamental grammar and syntax
(nfvPPA), or nonfluent speech characterized by compromised word retrieval (IvPPA)
(Gorno-Tempini et al., 2011). Other clinical phenotypes include concomitant motor
neuron disease (MND) in the disease course, that may manifest as amyotrophic lat-
eral sclerois (ALS), corticobasal syndrome (CBD), or progressive supranuclear palsy
(PSP) (Lashley et al., 2015).

Pathological heterogeneity is revealed by analyzing postmortem brain tissues
collected from FTD patients. Different protein inclusions are observed, either of
transactive response DNA-binding protein 43 (TDP-43), RNA-binding protein FUS,
or microtubule associated protein tau (Lashley et al., 2015). The underlying pathol-
ogy cannot be accurately predicted from the clinical phenotype (Meeter et al., 2017).

2.1.2 Familial forms

FTD may occur in sporadic or familial forms. However, a clear distinction between
familial and sporadic disease is sometimes challenging, due to the difficulty to es-
tablish a reliable family history of cognitive disorders (Turner et al., 2017). Patients
frequently have a family history of a comparable condition, usually in a pattern
suggesting dominant inheritance (Lashley et al., 2015). Most familial forms of FTD
are caused by mutations in one of three genes: C90rf/2 (encoding protein C9orf72),
GRN (encoding progranulin), or MAPT (encoding microtubule associated protein
tau) (Meeter et al., 2017). Other genes rarely associated with FID include VCP,
TARDP, and TBK1 (Pottier et al., 2016).

Figure 2.1 shows the clinical, pathological and genetic heterogeneity of FTD.
We observe that genetic forms have a predictable pathology: GRN mutations and
CYorf72 repeat expansions result in TDP-43 pathology, while the MAPT mutation
causes tau pathology. However, a particular genetic mutation may result in distinct
phenotypes.

2.1.3 Overlap with amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive, degenerative disorder
characterized by the deterioration of motor neurons in the brain and spinal chord,
leading to the complete paralysis of voluntary muscles, and eventually death in-
duced by respiratory failure (Pasinelli and Brown, 2006). ALS is estimated to have
an incidence of 2.1 new cases per 100,000 people per year (Chio et al., 2013).

It is recognized that FTD and ALS form a disease spectrum, with remarkable
pathological and genetic overlap, both conditions occurring sometimes within the
same family, or even the same individual (Abramzon et al., 2020). According to

cross-sectional studies, up to 50% of ALS patients also show cognitive impairment
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FIGURE 2.1: Clinical, pathological and genetic spectrum of FID (re-
produced from (Meeter et al., 2017), with permission from the pub-
lisher). bvFTD: behavioural variant FTD; CBD: corticobasal degener-
ation; FUS: RNA-binding protein FUS; MND: motor neuron disease;
nfvPPA: nonfluent variant primary progressive aphasia; PSP: pro-
gressive supranuclear palsy; svPPA: semantic variant primary pro-
gressive aphasia; TDP-43: transactive response DNA-binding protein
43.

as a consequence of FID, and motor dysfunction affects up to 30% of FITD patients
(Burrell et al., 2011).

Pathological overlap between these disorders is supported by the fact that TDP-
43 represents the most frequent pathological protein aggregation in both FID and
ALS patients (DeJesus Hernandez et al., 2011). Genetic overlap is observed mainly
because the C9orf72 repeat expansion is the most common genetic abnormality ob-
served in familial forms of both FTD and ALS (DeJesus Hernandez et al., 2011), with
some other rarer genetic mutations, such as in VCP, TARDP, and TBK1 also playing
a role in this overlap (Abramzon et al., 2020). On the other hand, mutations in GRN
and MAPT are linked only to FTD.

2.1.4 Biomarkers

The Biomarkers Definitions Working Group defines a biomarker as "a characteris-
tic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic inter-
vention" (Biomarkers Definitions Working Group., 2001). The authors highlight the
main applications of biomarkers, including their use as a diagnostic tool, indicator
of disease staging, or measure of clinical response to a treatment (Biomarkers Defi-
nitions Working Group., 2001).

Since frontotemporal dementia and amyotrophic lateral sclerosis are heteroge-
neous disorders with no disease-modifying treatments to date, robust biomarkers
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are crucial for selecting individuals to clinical trials and evaluating treatment results
(Bertrand et al., 2018; Rohrer et al., 2015). Over the last two decades, a lot of effort
went into identifying these biomarkers, with a particular focus on fluid biomaterial
and neuroimaging features (Meeter et al., 2017). Ideally, biomarkers should be non-
invasive, reliable, and inexpensive, and ought to enable diagnosis, monitoring of
disease progression, and treatment response (Meeter et al., 2017).

Evidence suggests that alterations in certain biomarkers occur several years be-
fore symptoms appear, implying that the best time to treat FTD and ALS is before
clinical presentation, when the least amount of irreversible neuronal loss has hap-
pened and cognitive function is still preserved (Bertrand et al., 2018; Rohrer et al.,
2015). Studies focusing on familial forms of FTD and ALS are particularly impor-
tant, since mutation carriers in the presymptomatic stage may give insight into the
diseases’ initial phases and improve therapy options (Rohrer et al., 2015). Below, we
explore the main biomarkers associated with FTD and ALS in the literature, as well
as their limitations.

Neuroimaging biomarkers

Most imaging studies in FTD have used volumetric T1-weighted MRI to investigate
changes in gray matter structure, either to determine the volumes of specific brain
regions of interest (ROI) or to evaluate the rate of atrophy in longitudinal studies
(Meeter et al., 2017). Findings from investigations of FTD presymptomatic mutation
carriers have shown gray matter atrophy at least ten years before expected disease
onset (Bertrand et al., 2018; Rohrer et al., 2015).

To some degree, genetic forms can be distinguished by different patterns of gray
matter atrophy at a group level, as shown by Figure 2.2, displaying the characteristic
patterns of gray matter atrophy in FTD patients with different underlying mutations
(Meeter et al., 2017).

Asymmetrical frontotemporoparietal atrophy is commonly seen in patients with
GRN mutations, while most patients with a C90rf/72 repeat expansion exhibit a gen-
eralized symmetrical atrophy, and MAPT mutations cause symmetrical temporal at-
rophy (Meeter et al., 2017). Atrophy rates also vary between different genetic forms,
since patients carrying the GRN mutation present significantly faster brain atrophy
patterns than C9orf72 expansion carriers (Whitwell et al., 2015). Even though these
distinct patterns are visible in group-level studies, it is not possible to distinguish
between patients with different underlying pathologies by analyzing gray matter
atrophy alone (Whitwell and Josephs, 2012).

Recently, FTD imaging studies have also focused on white matter integrity us-
ing diffusion tensor imaging (DTI), which are more sensitive to detect the earli-
est changes in the brain, in comparison to gray matter atrophy (Bertrand et al.,
2018). Neurite orientation dispersion and density imaging (NODDI) has also been
explored, and seems to provide even higher sensitivity to changes in the presymp-
tomatic phase than DTI (Wen et al., 2019). Other neuroimaging modalities used in



2.1. Frontotemporal dementia & amyotrophic lateral sclerosis 9

GRN CYorf72 MAPT

FIGURE 2.2: Gray matter atrophy in different genetic subtypes of

frontotemporal dementia (reproduced from (Meeter et al., 2017), with

permission from the publisher). The characteristic patterns of gray

matter atrophy in patients carrying each mutation are highlighted in
red.

FTD studies include positron emission tomography with 18F-fluorodeoxyglucose as
the tracer (FDG-PET) to visualize alterations in brain metabolism, functional connec-
tivity between brain regions measured with resting-state functional MRI (RS-fMRI),
and arterial spin labelling (ASL) to create a tracer of cerebral blood flow (Meeter et
al., 2017).

Even though there is converging evidence that neuroimaging modalities are use-
ful to assess disease progression, their use in clinical practice is until now limited to
classification between FTD, AD and controls (Meeter et al., 2017). Larger studies are
necessary to validate robust biomarkers, before these modalities can be used at an
individual level to evaluate the outcomes of clinical trials (Meeter et al., 2017).

Fluid biomarkers

The main idea behind fluid biomarkers is that changes in specific protein concentra-
tions in different human fluid compartments, such as cerebrospinal fluid (CSF) or
blood, can indicate pathophysiological changes in disease processes (Meeter et al.,
2017).

CSF amyloid-p and tau have been extensively validated to distinguish between
Alzheimer’s disease and frontotemporal dementia (Rivero-Santana et al., 2017). These
biomarkers have also demonstrated potential to differentiate individuals with dif-
ferent genetic or pathological FTD subtypes, but additional studies are necessary to
validate these applications (Meeter et al., 2017).
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Moreover, increased levels of neurofilaments reflect axonal damage, and it has
been established that blood and CSF levels of neurofilaments are increased in FTD
patients when compared to controls, and could potentially be used as biomarkers
of disease progression (Rohrer et al., 2016; Saracino et al., 2021). However, these
proteins are also overexpressed in other neurodegenerative diseases, so they must
be combined with other disease-specific biomarkers to increase their clinical utility
(Meeter et al., 2017).

Additionally, some gene-specific fluid biomarkers, such as progranulin levels in
the CSF of GRN mutation carriers (Feneberg et al., 2016) and dipeptide-repeat pro-
teins in the CSF of C9orf72 expansion carriers (Su et al., 2014), have been identified
as potential progression biomarkers of FTD and FTD/ALS respectively, but need to
be combined with other biomarkers to have clinical value (Meeter et al., 2017).

Finally, recent studies have been focusing on miRNAs as potential biomarkers
for several neurodegenerative diseases (Grasso et al., 2014), including FID and ALS
(Eitan and Hornstein, 2016; Gascon and Gao, 2014). MicroRNAs act as regulators
of key biological functions in the central nervous system, such as synaptic plasticity
and neurogenesis, and are preserved in biofluids such as CSF and blood (Grasso et
al., 2014). Since miRNAs have an essential regulatory function in the brain, changes
in their concentration levels could indicate physiological changes that precede neu-
ronal cell loss (Watson et al., 2019).

The reasoning behind the link between miRNAs and FTD/ALS is that TDP-43
and FUS, two of the proteins frequently accumulated in the brains of FTD/ALS pa-
tients, are RNA-binding proteins that participate in DNA replication, mRNA trans-
lation, and miRNA synthesis (Buratti and Baralle, 2010). Therefore, the dysregu-
lation of these proteins associated with FTD and ALS pathogenesis could lead to
alterations in miRNNAs expression levels (Gascon and Gao, 2014).

It is highly unlikely that a single miRNA could be a useful biomarker of a neu-
rodegenerative disease, but a combination of miRNA biomarkers (a miRNA signa-
ture) could enable diagnosis and disease monitoring (Watson et al., 2019). Numer-
ous studies have recently identified specific miRNAs as potential biomarkers of FTD
(Denk et al., 2018; Grasso et al., 2019; Piscopo et al., 2018; Sheinerman et al., 2017)
and ALS (De Felice et al., 2014; Dobrowolny et al., 2021; Freischmidt et al., 2015, 2014;
Magen et al., 2021; Raheja et al., 2018; Sheinerman et al., 2017; Soliman et al., 2021;
Takahashi et al., 2015; Tasca et al., 2016; Waller et al., 2017). Although promising,
results among these different works are conflicting, for three main reasons: hetero-
geneous cohorts (genetic, sporadic or mixed), lack of independent validation cohorts
in most cases, and study designs with different assumptions about which miRNAs
to investigate. We tackle these issues by conducting a discovery study without a
priori assumptions in an homogeneous cohort of C9o0rf72 expansion carriers (Chap-
ter 4), and a comprehensive validation study using two independent homogeneous
cohorts of C9o0rf72 and GRN mutation carriers (Chapter 5).
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2.2 MicroRNA data

In this section, we begin by defining what is a miRNA (section 2.2.1). Then, we
describe the main steps of a typical RNA sequencing (RNA-seq) experiment (section
2.2.2), and finally we explain how to apply RNA-seq to assess miRNA expression
levels (section 2.2.3).

2.2.1 MicroRNA definition

The central dogma of molecular biology explains the flow of information contained
in genes: DNA is transcribed into messenger RNA (mRNA), which is translated into
proteins (Crick, 1970). As a consequence of encoding proteins via the genetic code,
mRNA molecules were historically the most investigated RNA species (Kukurba
and Montgomery, 2015).

Recently, novel classes of noncoding RNA have been identified, including miR-
NAs, which are small RNA molecules (average length of 22 nucleotides) that have
a regulatory role: they repress the expression of certain mRNA targets by inducing
translational inhibition, mRNA degradation, or both (Huntzinger and Izaurralde,
2011). One miRNA can target up to hundreds of mRNA transcripts, thus regulating
the levels of several genes (Gascon and Gao, 2014). Likewise, a particular mRNA
may be targeted by many different miRNAs (Watson et al., 2019).

Next-generation sequencing technologies, that allow the identification and quan-
tification of RNA molecules in biological samples, have enabled increased rates of
miRNA discovery in recent years (Kozomara and Griffiths-Jones, 2011). The most
used of these technologies, called RNA sequencing, is described below.

2.2.2 RNA sequencing

The first studies measuring RNA expression levels relied on low-throughput tech-
nologies such as polymerase chain reaction (PCR), which are limited to quantifying
individual transcripts (Becker-André and Hahlbrock, 1989). In the mid-1990s, meth-
ods evolved to high-throughput techniques such as microarrays, that quantify the
abundance of large sets of transcripts, and allowed the first genome-wide analyses
of gene expression patterns (Brown and Botstein, 1999). Nevertheless, these tech-
nologies have important limitations: they rely upon existing knowledge about the
sequences to be analyzed, and they have a narrow dynamic range of detection of
expression levels.

To overcome these limitations, a high-throughput next-generation sequencing
(NGS) technology called RNA sequencing (RNA-Seq) was developed, and began
to grow in popularity after 2008 (Lowe et al., 2017; Wang et al., 2009). RNA-Seq has
clear advantages compared to other approaches: it does not require prior knowledge
about the target sequences, it has a high accuracy even for very lowly expressed and
very highly expressed transcripts, and it has high levels of reproducibility (Wang
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etal., 2009). Since 2015, RNA-Seq surpassed microarrays as the most used technique
for measuring RNA expression (Lowe et al., 2017).

Specific RNA-Seq protocols may differ in several aspects, such as transcript en-
richment, fragmentation, and amplification (Lowe et al., 2017). Almost 100 different
methods have been created based on the standard RNA-Seq protocol (Stark et al.,
2019). Usually, the main steps of a typical RNA-Seq experiment are (1) extraction
and isolation of RNA from the organism, (2) sequencing library preparation, (3)
sequencing on a NGS platform, and (4) alighment of sequencing reads and quan-
tification of transcripts (Kukurba and Montgomery, 2015; Lowe et al., 2017). These
typical steps are displayed in Figure 2.3 and explained below, while more specific
procedures concerning miRNA sequencing are detailed in section 2.2.3.
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FIGURE 2.3: Main steps of the RNA Sequencing methodology (repro-

duced from (Lowe et al., 2017), CC BY 4.0). The three colored seg-

ments represent respectively the steps happening in the living organ-

ism, carried out in the laboratory, and performed by computational

tools. Pre-mRNA: precursor messenger RNA; ds-cDNA: double-
stranded complementary DNA.
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RNA extraction and isolation

The first step for a successful RNA-Seq experiment is to isolate high-quality RNA
from the analyzed biological samples (e.g. tissue, plasma) using a specific proto-
col, which is a critical factor to avoid incorrect conclusions in downstream analy-
ses (Kukurba and Montgomery, 2015). Within organisms, the transcription process
copies segments of DNA into precursor mRNA molecules, then the splicing process
removes introns (noncoding sequences) and joins exons (coding sequences), creating

mature mRNA molecules to be extracted (Lowe et al., 2017).

Sequencing library preparation

The next step is to construct RNA-Seq libraries. An appropriate library prepara-
tion protocol must be chosen, each with its own biases and limitations, in order
to enrich or deplete the RNA sample to target specific RNA species (Kukurba and
Montgomery, 2015). Usually, RNA molecules have to be fragmented, because mes-
senger RNA molecules are longer than the typical read-lengths supported by next-
generation sequencing methods (Lowe et al., 2017). Moreover, since most sequenc-
ing technologies require DNA libraries, it is necessary to convert RNA into sta-
ble double-stranded complementary DNA (ds-cDNA) (Kukurba and Montgomery,
2015). Next, DNA adaptors are attached to the ends of the complementary DNA
fragments (Kukurba and Montgomery, 2015). Finally, before sequencing, PCR am-
plification may be applied to allow sequencing of low-input amounts of RNA (Lowe
et al., 2017). In that case, to control for PCR amplification biases, unique molecular
identifiers (UMIs) may be used to tag cDNA fragments before amplification, allow-
ing the identification and removal of PCR duplicates (Stark et al., 2019).

Sequencing on a NGS platform

In recent years, although several next-generation sequencing platforms have been
developed and are now commercially available, the Illumina platform is the most
frequently applied in RNA-Seq experiments and has clearly dominated the indus-
try (Kukurba and Montgomery, 2015). Released in 2006, Illumina technology pro-
vides a highly accurate tool for measuring RNA expression (single read accuracy of
99.9%), with typical read lengths from 50 to 300 base pairs (Lowe et al., 2017), and
usual read depths of 10 to 30 million reads per sample (Stark et al., 2019). A re-
cent survey indicated that more than 95% of the published RNA-Seq data has been
generated using the Illumina sequencing technology (Stark et al., 2019). In order to
output high-quality and biologically meaningful data, sequencing parameters such
as read depth and read length must be carefully chosen, depending on the study
characteristics (Stark et al., 2019). The standard RNA-Seq pipeline outputs the raw
sequence data in FASTQ-format files. FASTQ is a standard text-based file format for

storing sequencing read data, that combines both the nucleotide sequences and the
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corresponding quality scores (Cock et al., 2010). The following steps are all compu-
tational.

Alignment and quantification of transcripts

Once the raw reads are available, the next step is to align them to an annotated
reference genome, a task for which several approaches exist (Kukurba and Mont-
gomery, 2015). Each alignment tool has advantages concerning performance and
resource utilisation, therefore selecting the best method depends on the peculiarities
of each RNA-Seq study (Kukurba and Montgomery, 2015). Regardless of the cho-
sen alignment tool, a quality control step is essential to remove any abnormalities
from the data, since sequence reads are not perfect (Lowe et al., 2017). After reads
have been mapped to genomic locations, a quantification step is performed to obtain
an expression matrix, where the rows represent features (genes or transcripts), the
columns represent samples, and the values are read counts (Stark et al., 2019). More
detailed quality assessment, alignment and quantification steps, specific to miRNA

sequencing, are described in the next subsection.

2.2.3 MicroRNA sequencing

In addition to quantifying messenger RNA transcripts, RNA-Seq can be applied
to analyze different populations of RNA, including miRNAs (Kukurba and Mont-
gomery, 2015). Since miRNAs are shorter and less abundant than messenger RNA,
specific protocols focused on miRNA sequencing have been developed and are com-
mercially available as extraction kits (Kukurba and Montgomery, 2015).

From a computational point of view, multiple tools are available for miRNA se-
quencing analysis, which may cause uncertainty in how to define the most appropri-
ate computation pipeline (Potla et al., 2021). The vast majority of RNA-Seq studies
performed to date are focused on messenger RNAs, and the few studies that per-
form miRNA sequencing do not provide enough details about particular choices of
their bioinformatics analysis (Potla et al., 2021).

Recently, a generic miRNA bioinformatics pipeline was proposed, using exclu-
sively open source software, with the goal to improve clarity and reproducibility
among miRNA sequencing studies (Potla et al., 2021). We thus describe below this
computation pipeline, which has five major steps: (1) quality assessment of raw
reads, (2) UMI extraction and adapter trimming, (3) alignment of reads to the ma-
ture miRNA sequences, (4) removal of PCR duplicates, and (5) creation of miRNA
count tables.

Quality assessment of raw reads

It is critical to analyze if the raw reads are of sufficient quality for downstream anal-
yses. Tools like FastQC (Andrews S. 2010') may be applied to FASTQ format files,

Thttps:/ /www.bioinformatics.babraham.ac.uk/projects/ fastqc
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generating summary graphs and tables that allow assessing the overall quality of
each sample by checking for unusual patterns. For instance, one may observe the
number of total reads, the quality scores of individual base sequences, the distri-
bution of sequence lengths, the amount of duplicate sequences, and other criteria
(Potla et al., 2021).

UMI extraction and adapter trimming

If in the previous step the raw reads are considered to be of sufficient quality, the
next step is to extract the UMIs from the reads, and save them for later use. For this
task, UMI-tools (Smith et al., 2017) removes UMIs from FASTQ files and appends
them to each read name. Then, Cutadapt (Martin, 2011) finds and eliminates all
adapter sequences, as well as discards reads that are either shorter (less than 18
nucleotides) or longer (more than 30 nucleotides) than the expected read lengths
with some tolerance. After UMI extraction, adapter trimming, and read filtering, the

remaining reads are of good quality and ready for alignment.

Alignment of reads to the mature miRNA sequences

Before describing the alignment of reads, it is useful to mention the importance
of miRBase’. Next-generation sequencing technologies have contributed to an in-
creasing rate of novel miRNA discovery, and the community maintained miRBase
database is the most important online repository for all published miRNA sequences,
curating a consistent nomenclature scheme and providing miRNA target predictions
and validations (Kozomara and Griffiths-Jones, 2011). It is recommended to use the
latest version of miRBase as the reference database. Alignment must be performed
with strict criteria, to avoid matches of the same read across multiple mature miRNA
sequences (Potla et al., 2021), so it is recommended to align reads using Bowtie
(Langmead et al., 2009), allowing no mismatches. After the alignment of reads to
the reference database, a second major quality-check must performed, since sam-
ples with too few aligned reads must be discarded to avoid biasing the results (Potla
etal., 2021). To give an idea about the order of magnitude of a successful alignment,
on average, a sequencing depth of 10 million reads per sample will yield at least 3
million aligned reads per sample (Potla et al., 2021).

Removal of PCR duplicates

Once the alignment step is complete for all samples, UMI-tools (Smith et al., 2017) is
used again, this time to collapse read counts with the same UMIs, in order to count
the number of reads corresponding to the original biological sample, before PCR

amplification.

2h’ctps: / /www.mirbase.org
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Creation of miRNA count tables

Finally, Samtools idxstats (Li et al., 2009) counts each miRNA in every sample, and
records the counts in a tab-separated values (TSV) file, where each row corresponds
to a mature miRNA, and each column represents a sample. These raw counts are

then ready to be used in downstream differential expression analyses.

2.3 Neuroimaging data

In the last decades, analyses of neuroimaging data have been extensively performed
to reveal neuroanatomical and functional differences between patients with neu-
rodegenerative diseases and healthy controls (Orru et al., 2012). One of the most
noticeable changes in the brains of patients with dementia is gray matter atrophy
resulting from the loss of neuronal cells, which is visualized by structural imaging
techniques such as structural MRI (Cedazo-Minguez and Winblad, 2010). Among
the existing structural MRI sequences, T1-weighted (T1w) MRI is one of the most
frequently used to assess brain abnormalities caused by neurodegenerative diseases
(Popuri et al., 2018; Tartaglia et al., 2011).

Indeed, in the clinical research cohorts that we had access, T1w MRI is the most
commonly available sequence, and with the most reliable harmonization across cen-
ters. Furthermore, it is recommended to be systematically included in the clinical
follow-up of patients with suspected dementia. This explains our focus on this
imaging modality, even though other MRI sequences (including diffusion MRI and
functional MRI) or imaging modalities (including PET) have the potential to provide
more sensitive biomarkers.

In this section, we briefly describe the two main steps usually carried out prior
to T1-weighted MRI data analysis: image acquisition (section 2.3.1) and image pre-
processing (section 2.3.2) for feature extraction. For more details on T1lw MRI, or on
other MRI modalities unrelated to this thesis, one can refer to Bernstein et al., 2004;
Haacke et al., 1999; McRobbie et al., 2006.

2.3.1 T1-weighted MRI acquisition

MRI scanners apply a uniform magnetic field to align the hydrogen nuclei within
the tissues being examined, then generate radiofrequency (RF) pulses to perturb
this alignment (Bitar et al., 2006). After a perturbation, the scanner measures the RF
signals emitted from the realignment of the nuclei from different tissues, each with
their own characteristic relaxation times, allowing the detection of locations with
distinct concentrations of fat and water (Bitar et al., 2006).

To create tissue contrast on MRI, there are two key parameters: repetition time
(TR) is the time between the application of two RF pulses, and echo time (TE) is the
time between the application of a RF pulse and the echo detected (Bitar et al., 2006).
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These parameters may be tuned to emphasize a particular type of contrast: in T1-
weighted MRI, short TR and TE are used (Brown and Semelka, 1999). When exposed
to a T1-weighted sequence, fluids generate a very low signal intensity, correspond-
ing to darker regions in the resulting images (Brown and Semelka, 1999). Therefore,
the cerebrospinal fluid appears in dark, gray matter in dark gray, and white matter
in light gray (due to the high lipid fat content of the myelin)°.

T1-weighted MR images clearly depict the anatomy of the brain, and for that
reason have been extensively used to reveal patterns of brain atrophy associated
with several neurodegenerative diseases (Tartaglia et al., 2011). Figure 2.4 displays
axial slices from an FTD patient’s brain, obtained with T1-weighted MRI, where focal
brain atrophy is clearly observed.

FIGURE 2.4: Axial views of T1-weighted MRI from an FTD patient
(reproduced from (Ramirez et al., 2020), CC BY 4.0). The red arrows
highlight the regions with significant brain atrophy.

2.3.2 T1-weighted MRI preprocessing

The quality of MR images is mainly affected by spatial resolution, contrast, and sig-
nal to noise ratio, the latter being mainly determined by scan time and substantially
influenced by the patients” ability to remain still (Symms et al., 2004). Any head
motion during the MRI exam, including the respiratory cycle and eye movements,
can result in motion artifacts that degrade image quality (Symms et al., 2004). Ar-
tifacts may also be caused by the MR scanner itself, from the complex interactions
between the main magnet, RF transmitter and receiver, and computer systems for
image reconstruction (Zhuo and Gullapalli, 2006).

Therefore, preprocessing is an essential step to improve image quality for suc-
cessful downstream analyses. The essential steps for TIw MRI preprocessing in the

3h’ctp: / /fmri.ucsd.edu/Howto/3T/structure.html
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context of brain atrophy associated with neurodegenerative diseases are: (1) inten-
sity non-uniformity correction, (2) intensity rescaling and standardization, (3) skull
stripping, (4) image registration, and (5) feature extraction (Bertrand et al., 2018).
Each of these steps is described below, and can be performed, for example, using
the software packages FreeSurfer* (Fischl, 2012), the FMRIB Software Library (FSL)’
(Jenkinson et al., 2012), or Statistical Parametric Mapping (SPM)° (Ashburner, 2012),
three of the most popular software packages for processing human brain MRI scans.

Intensity non-uniformity correction

MR images can suffer from a phenomenon usually referred to as intensity non-
uniformity, or bias field, characterized by a smooth intensity variation across the
image (Vovk et al., 2007). These artifacts arise from imperfections in the image ac-
quisition process, causing the intensity of the same tissue to vary depending on its
location within the image, and therefore degrading the performance of automatic
segmentation algorithms (Vovk et al., 2007). Several approaches exist to reduce or
eliminate this intensity non-uniformity, among which the popular nonparametric
nonuniform intensity normalization (N3) method (Sled et al., 1998), available in the
FreeSurfer software package, or its variant N4ITK (Tustison et al., 2010), available in
the Insight Toolkit (ITK)” (McCormick et al., 2014).

Intensity rescaling and standardization

There is no canonical scale for MR images intensities (except for quantitative MRI
which are outside of our scope). Even considering images of the same body re-
gion from a particular patient, obtained with the same scanner within the same
MRI protocol, absolute intensity values have no fixed numeric meaning, and only
differences between intensities are relevant (Madabhushi and Udupa, 2005). This
lack of standard for interpreting image intensities may compromise the quality of
post-processing applications, therefore methods like histogram matching (Nyul et
al., 2000) should be applied to transform images so that similar intensities have sim-

ilar tissue meaning.

Skull stripping

MR brain images also contain extra-cranial or non-brain tissues from head scans,
which pose a major obstacle for automatic segmentation algorithms (Kalavathi and
Prasath, 2016). A preprocessing step, usually referred to as skull stripping, consists
in isolating the brain from these non-brain tissues, a task for which several meth-

ods have been proposed (Kalavathi and Prasath, 2016). The approach used in the

4h’t’[ps: / /surfernmr.mgh.harvard.edu/
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FreeSurfer preprocessing pipeline uses three groups of operations: intensity thresh-
olding to obtain a preliminary mask, removal of false connections between brain
and non-brain structures using graph cuts, and post-processing to smooth the final
result (Sadananthan et al., 2010).

Image registration

MR brain image registration is a process that aligns multiple images to guarantee
the spatial correspondence of brain regions across these images (Zhang et al., 2019).
The adequate transformation (linear or non-linear) must be identified to ensure that
corresponding image features are spatially aligned (Despotovi¢ et al., 2015). Lin-
ear registration may be rigid (6-parameter transformation corresponding to rotation
and translation in three dimensions) or affine (12-parameter transformation corre-
sponding to rotation, translation, scaling and skewing in three dimensions), and is
commonly applied for registering images from the same subject (Despotovi¢ et al.,
2015). To register images from different subjects, a non-linear algorithm is usually
required (Despotovi¢ et al., 2015). Several methods have been developed for MRI
registration (Oliveira and Tavares, 2014), among which the FSL tools FLIRT® (Greve
and Fischl, 2009) and FNIRT’ (Andersson et al., 2010), dedicated respectively to lin-
ear and non-linear registration. Frequently, all MR images from a given study are
registered into a standard space such as the Montreal Neurological Institute (MNI
space) (Evans et al., 1993), which enables the comparison of results across different
studies (Despotovi¢ et al., 2015).

Feature extraction

After the preprocessing steps described above, different feature extraction pipelines
may be implemented, according to the study design. For instance, volumetric seg-
mentation pipelines may be applied to T1-weighted MR images to extract voxel-
based anatomical features such as maps of tissue density (gray matter, white matter,
and cerebrospinal fluid), and to compute the volumes of cortical and subcortical gray
matter regions of interest (ROI) (Bertrand et al., 2018; Routier et al., 2021). Alterna-
tively, cortical reconstruction pipelines may be used to obtain surface-based cortical
thickness maps for each image (Popuri et al., 2018; Routier et al., 2021).

2.4 Integrative data analysis in neurodegenerative diseases

Neurodegenerative disorders such as frontotemporal dementia and amyotrophic
lateral sclerosis are extremely complex processes. Data from single sources are un-
able to explain the intricate pathways involved in these diseases, therefore it is cru-

cial to integrate data from different modalities, that provide complementary views,

8https:/ /fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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to obtain more powerful models (Carreiro et al., 2015).

In this section, we begin by describing the strategies of data and model integra-
tion most commonly applied in multimodal data from neurodegenerative diseases
(section 2.4.1). Next, we give an overview about the integration of neuroimaging
and different types of omics data (section 2.4.2). Then, we focus on the emerging
field of imaging transcriptomics, that integrate brain imaging and gene expression
data (section 2.4.3). Finally, we narrow our attention to the few published studies
that jointly analyzed miRNA and neuroimaging data (section 2.4.4).

2.4.1 Categories of data and model integration

Among the categories of data and model integration defined in (Azuaje, 2010), three
are frequently used in multimodal studies dealing with neurodegenerative diseases:
integration at the input level, heterogeneous data and model integration, and serial
integration. These categories are described below, along with examples.

Integration at the input level

Data integration at the input level happens when features from different modalities
are concatenated together into a single input vector, before being processed by the
model (Azuaje, 2010). Synonyms for this method are early integration or feature-
based integration (Behrad and Saniee Abadeh, 2022). This is the most frequently
used data integration strategy, notably to build models using already established
biomarkers (Carreiro et al., 2015). For instance, one study on Alzheimer’s disease
investigated multimodal features including cortical volumes from several brain re-
gions extracted from structural MRI scans, concentrations of certain proteins mea-
sured in the cerebrospinal fluid, and results from cognitive and neuropsychological
assessments (Cui et al., 2011). The authors performed feature selection to identify
the optimal subset of features from each modality that independently achieved a
high performance in classifying individuals with mild cognitive impairment from
those with Alzheimer’s disease. Then, they compared the results of support vector
machine classifiers trained with single modalities (MRI, CSF or tests scores) and a
model trained with input vectors concatenating all modalities. Their conclusion was
that the simple concatenation of multimodal features at the input level was able to

leverage complementary information and outperform all individual modalities.

Heterogeneous data and model integration

In this category, each modality is used to train a specific model, then the outputs of
all models are fused together to give the final prediction (Azuaje, 2010). An ensemble
of models built with data from different sources fits into this category (Carreiro et al.,
2015). This method is also known as decision-level, model-based, or late integration
(Behrad and Saniee Abadeh, 2022). One example of model within this category is
the bi-level multi-source feature learning approach presented in (Xiang et al., 2014),
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applied to features extracted from imaging scans (MRI, PET), CSF and plasma of
Alzheimer’s disease patients, mild cognitive impairment patients, and controls. In
this study, the authors proposed to learn individual models for each data modal-
ity, then learn the appropriate weights for their combination, while extending their
framework to handle missing data without the need for imputation. They explored
the fact that, in medical applications, missing data is frequently block-wise, meaning
that for each patient, a given modality is either available or non existent. They parti-
tioned the dataset into non-disjoint subsets, according to the available data sources,
in order to have complete data within each subset. This approach allowed the use
of the whole dataset, even of samples with just one available data source, and the
classification performance of the final model was greatly improved by including in-
complete samples in the training set.

Serial integration

In a serial integration approach, the output of one model is fed as input to the next
model, and so forth (Azuaje, 2010). This strategy may be used when subgroups of
features or subjects are initially identified and then used by the subsequent models
(Carreiro et al., 2015). For instance, one study on sporadic ALS consisted of a serial
integration approach using first animal models, then human tissue, with the goal of
identifying disease-relevant differentially expressed genes (Kudo et al., 2010). The
authors performed a combination of microarray methods, initially identifying can-
didate genes in spinal cord motor neurons of transgenic mice, then evaluated the
relevance of these genes as clinical biomarkers by testing their expression in the
blood of mouse models, and finally provided a follow-up confirmation in human
postmortem spinal cord tissues. Their serial integration approach to study a highly
complex disease allowed the identification of 13 genes, encouraging their use as clin-
ically useful biomarkers.

2.4.2 Integration of neuroimaging and omics data

The definition of omics imaging, according to (Antonelli et al., 2019), is "an emerging
interdisciplinary field concerned with the integration of data collected from biomed-
ical images and omics analyses". In this context, omics refers mainly to three popular
fields, as illustrated by (Antonelli et al., 2019): genomics addresses the study of DNA
sequences, often in comparison to a reference genome, focusing on the association
between DNA mutations and observed phenotypes; transcriptomics studies the pat-
terns of gene expression, either in the form of messenger RNAs or non-coding RNAs;
and proteomics refers to the study of expressed proteins in different tissues.
Regarding neurological diseases, the vast majority of studies integrating imaging
and omics data leverage data from Single Nucleotide Polymorphisms (SNPs) on the

human genome, and thus fall into the category of radiogenomics (Kuo and Jamshidi,
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2014) or imaging genomics (Thompson et al., 2010). In particular, the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI)'” dataset contains multimodal data from MRI,
PET, CSF biomarkers and SNPs from hundreds of participants, which has motivated
several imaging genomics research initiatives. A comprehensive review of these stud-
ies is provided in (Antonelli et al., 2019).

However, nomenclature describing the landscape of imaging and omics data in-
tegration is not homogeneous. For example, one of the first studies combining neu-
roimaging and large-scale transcriptomic data was also framed in the field of radio-
genomics by the authors, even though they did not examine DNA sequences and
mutations (Zinn et al., 2011). Their research focused on correlating MRI features and
gene expression patterns in patients with glioblastoma, using data obtained from
The Cancer Genome Atlas (TCGA)'!, a publicly available database containing imag-
ing and omics data from patients with several types of cancer.

Eventually, a more appropriate nomenclature for the combination of imaging
and transcriptomic data to better understand disease mechanisms was proposed in
(Katrib et al., 2016): radiotranscriptomics. In this review, the authors illustrate the po-
tential applications of radiotranscriptomics in precision medicine, notably for increas-
ing the knowledge about pathological processes in complex, multifactorial disorders
such as cancer and neurodegeneration (Katrib et al., 2016).

More recently, the narrower field of imaging transcriptomics has emerged to study
the correlation between neuroimaging features and regional variability in gene ex-
pression in brain tissues (Arnatkeviciute et al., 2019; Martins et al., 2021). This disci-
pline is described in the next section.

2.4.3 Imaging transcriptomics

Recent advances in high-throughput sequencing technologies allowed to multiply
the number of large-scale transcriptomic projects, leading to the creation of com-
prehensive datasets of gene expression across brain regions, many of them publicly
available (Keil et al., 2018). For instance, one of the largest brain-wide gene expres-
sion atlases is the Allan Human Brain Atlas (AHBA), which contains expression lev-
els from more than 20,000 genes observed in 3702 tissue samples covering nearly the
entire brain (Arnatkeviciute et al., 2019; Sunkin et al., 2013).

Public databases such as the AHBA have motivated several studies integrating
transcriptomic and neuroimaging data, aiming at understanding the spatial corre-
lations of gene expression levels and neuroimaging-derived phenotypes (Martins
et al., 2021). This emerging field of research, known as imaging transcriptomics, has
already started to reveal how variations of gene expression in different parts of the
brain relate to structural and functional characteristics, and vary during brain dis-
ease (Arnatkeviciute et al., 2019; Martins et al., 2021). Several examples of imaging
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transcriptomics studies are described in (Arnatkeviciute et al., 2019), where the au-
thors propose a standardized data processing pipeline to enable the comparison of
results from different investigations.

It is important to note that the aforementioned studies focus on identifying cor-
relations between transcriptomic and neuroimaging features, not to combine these
features to improve prediction performance.

2.4.4 Integration of microRNA and neuroimaging data

In this section, we present the few published studies jointly analyzing miRNA and
neuroimaging data.

One of the first works that simultaneously investigated miRNA expression and
brain MRI focused on the association between these modalities, to better understand
multiple sclerosis (MS) (Regev et al., 2017). The authors computed the Spearman cor-
relation coefficients between the expression of serum miRNAs and measures of MS
severity extracted from quantitative MRI (lesions and atrophy). Although several
miRNAs were identified as associated with MRI measures, the associations were
not significant after correcting for multiple comparisons using the false discovery
rate (Regev et al.,, 2017). In a follow up work from the same research team, the
authors defined four groups of patients with MS, based on MRI phenotypes char-
acterizing lesion volume and brain atrophy, then identified a signature of 16 serum
miRNAs differentially expressed among these groups. (Hemond et al., 2019).

Another study investigated the Pearson correlation between gray matter vol-
umes (extracted from Tlw MRI) and miRNA expression (measured in blood) in
attention-deficit/hyperactivity disorder (ADHD) patients (Wang et al., 2020). The
authors identified that gray matter volumes in some regions of the cingulate cortex
were negatively correlated with the expressions of three miRNAs found in blood,
and thus concluded that miRNA dysregulation likely participates in the pathophys-
iology of ADHD.

Similarly, the expression of certain miRNAs in serum was found to be signifi-
cantly correlated (Pearson’s correlation test) with brainstem volume in patients with
Wolfram syndrome (Zmyslowska et al., 2020). The findings of this study demon-
strated that a miRNA signature could be used as a non-invasive and easily accessible
indicator of neurodegeneration in subjects suffering from this rare syndrome.

Another example of association study aiming at replacing MRI scans with blood
tests was focused on cerebral malaria, an acute and often fatal neurological compli-
cation caused by severe malaria (Gupta et al., 2021). Since MRI scanners are rarely
accessible in some malaria-endemic countries, the authors investigated if plasma
miRNAs could be used, instead of expensive neuroimaging, to assess the progres-
sion of cerebral malaria. They used Spearman’s correlation test to assess the corre-
lation between MRI features (brain volume and apparent diffusion coefficient) and
miRNA expression in plasma samples from patients with cerebral malaria. This
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study identified miR-3158-3p as a promising biomarker for measuring cerebral malaria
progression.

Recently, PET-derived features and miRNA expression levels in blood were jointly
analyzed in cognitively normal individuals with subjective memory complaints,
who have an increased risk to develop Alzheimer’s disease (Vergallo et al., 2021).
The authors initially selected brain-enriched miRNAs in a pilot study, then investi-
gated their longitudinal association with brain metabolic uptake computed in 12 cor-
tical regions of interest using FDG-PET. To this aim, they fitted linear mixed models,
then tested the interaction effect between miRNA expression and time on metabolic
uptake. The results of this study, which reported significant associations between
miRNA expression levels in plasma and neuroimaging biomarkers, supported the
role of miRNAs as candidate biomarkers of AD.

Remarkably, none of the previously described works leveraged the joint analysis
of miRNA and neuroimaging data to enhance prediction performance: all of them
were based on association studies of these modalities. To the best of our knowledge,
the only published study that integrated miRNA data and MR imaging features to
improve prediction is (Gallivanone et al., 2019), which did not focus on brain imag-
ing, but on breast cancer differential diagnosis. The authors trained support vector
machine classifiers integrating miRNA expression and imaging features at the input
level, with the goal of distinguishing different breast cancer subtypes. They showed
that the combination of miRNA and MRI data resulted in better classification per-
formance than using any of these modalities alone.

2.5 Disease progression modeling and disease progression

scores

To introduce the concepts of disease progression modeling and disease progression
scores (DPS), we will turn to one of the most studied neurodegenerative disorders:
Alzheimer’s disease.

In a seminal work, Jack and colleagues proposed a hypothetical model of the
temporal evolution of AD biomarkers, and their relation to disease staging (Jack et
al., 2010). The authors explained that certain AD biomarkers begin to vary decades
before any visible clinical symptoms, and that dementia is the end result of the accu-
mulation of several pathological changes. Moreover, they showed evidence suggest-
ing that biomarkers become abnormal in an ordered manner, and that understand-
ing this time-dependent order is crucial for estimating disease stage.

Figure 2.5 depicts the hypothetical model presented in (Jack et al., 2010), which
followed two main assumptions: (1) as the disease progresses, more biomarkers
become abnormal, and (2) rates of change vary in a non-linear fashion, hypothesised
to be in a sigmoid shape. Notably, no single biomarker can cover the full spectrum
of AD progression, so a combination of multiple biomarkers is essential to estimate
disease stage for a particular individual (Jack et al., 2010).
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FIGURE 2.5: Model of the pathological cascade of AD biomarkers, for

a single prototypical individual (reproduced from (Jack et al., 2010),
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the level of abnormality of each biomarker. Af: amyloid beta; MCI:
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A few years later, an update on this model supported its main assumptions,
while changing the definition of the horizontal axis (Jack et al., 2013). Indeed, in em-
pirical testing, the authors concluded that it was problematic to index subjects on the
horizontal axis by a continuous measure of cognitive impairment. The main reason
was that measures of cognitive decline are imprecise during the preclinical phase,
which usually corresponds to more than half of the total disease duration. Jack
and colleagues then proposed that the horizontal axis should represent the "distance
traveled along the AD pathophysiological pathway". They explained that, ideally,
this axis should be constructed using a large longitudinal dataset containing all rel-
evant biomarkers, measured for decades at multiple time points, in several subjects.
Since it is very difficult to build a dataset of this magnitude, the authors argued that
the model should instead rely on piece-wise data from several subjects in different
stages of the disease.

In order of increasing power, disease progression models could be built using
purely cross-sectional data, cross-sectional imaging data with longitudinal follow-
up of non-imaging data, or short-term longitudinal data contemplating all modal-
ities (Jack et al., 2013). In particular, Jack and colleagues mentioned that multiple
biomarkers could be non-linearly combined to produce a single horizontal-axis met-
ric: a latent trait to represent the entire disease spectrum.

Although hypothetical, (Jack et al., 2013, 2010) have served as a foundation for
future data-driven models for neurodegenerative diseases progression. Since then,
several disease progression modeling approaches have been proposed, most of them
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depending on large amounts of longitudinal data. Some examples include fitting lo-
gistic functions to biomarker trajectories (Jedynak et al., 2012; Mehdipour Ghazi et
al., 2021), non-linear mixed-effects models (Koval et al., 2021; Schiratti et al., 2015,
2017), recurrent neural networks (Mehdipour Ghazi et al., 2019), and Gaussian pro-
cesses (Lorenzi et al., 2019b). To the best of our knowledge, the only published dis-
ease progression models that work with cross-sectional data are event-based models
(Fonteijn et al., 2012; Venkatraghavan et al., 2019). In the next sections, we briefly de-
scribe all these approaches.

2.5.1 Logistic functions and biomarker trajectories

One of the first studies that proposed a method for estimating a disease progression
score (DPS) combining multiple biomarkers was (Jedynak et al., 2012). The motiva-
tion behind this work was to estimate an accurate measure of Alzheimer’s disease
progression in the early stages of the disease, when symptoms are not yet present
and there is a higher chance of a successful therapeutic intervention. The authors
developed a generic computational approach, and evaluated their models using the
largest freely available longitudinal dataset of biomarkers of a neurodegenerative
disease: the ADNI dataset.

In a nutshell, the main contribution of (Jedynak et al., 2012) is a method to com-
pute a common temporal scale representing the disease’s underlying biological and
cognitive changes, and to assign to each subject, at each time point, a DPS within
this scale. Their method relies on three main assumptions: (1) individuals follow
a common disease progression, possibly with different rates of progression; (2) the
evolution of all biomarkers is sigmoid-shaped; and (3) the rate of disease progres-
sion for a given individual is constant. Within this framework, the DPS of a given
subject i is obtained by linearly transforming age:

DPS; = a; x age + B; (2.1)

where «; and f; are coefficients to be fitted for each subject. Regarding the biomark-
ers, each one of them is considered to be a sigmoidal function of the DPS, with the
same dynamic across the population. The parameters defining each biomarker’s sig-
moid function (four parameters per function) and the parameters defining the linear
transformations for each subject’s DPS are fitted using alternating least squares. De-
tails of the fitting algorithm are available in (Jedynak et al., 2012).

To evaluate their method, Jedynak and colleagues computed the DPS for 687 sub-
jects from the ADNI database, using data collected from seven biomarkers measured
over 3658 visits in total (average of 5.3 visits per subject). Figure 2.6 displays the nor-
malized sigmoid functions for each of the seven biomarkers, plotted as a function of
the DPS, as well as the DPS probability densities conditioned on the clinical status of
each individual. Notably, this figure demonstrates that the DPS correlates with the
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clinical status, since Alzheimer’s patients tend to have a higher DPS than individ-
uals with mild cognitive impairment, who tend to have a higher DPS than healthy
controls. Moreover, these results support the hypothetical plot from (Jack et al., 2010)
depicted in Figure 2.5.

The authors concluded that their data-driven approach, which creates a compos-
ite biomarker, could be used to stage patients and presymptomatic individuals of
other neurodegenerative diseases, as long as enough longitudinal data is available
(Jedynak et al., 2012).
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FIGURE 2.6: (a) Estimated biomarker dynamics of the ADNI popula-
tion as a function of DPS, and conditional probability densities of the
DPS given the clinical status of each individual. (b) Inflection point
for each curve, along with 90% confidence intervals (reproduced from
(Jedynak et al., 2012), with permission from the publisher). ADPS:
Alzheimer’s disease progression score; N: normal subjects; MCI: mild
cognitive impairment; AD: Alzheimer’s disease; RAVLT30: Rey au-
ditory verbal learning test, 30 minute recall; HIPPO: sum of the two
lateral hippocampal volumes; ABETA: Amyloid beta; TAU: tau pro-
tein, CDRSB: Clinical dementia rating sum of boxes score; MMSE:
Mini-mental state examination score; ADAS: Alzheimer’s disease as-
sessment scale-cognitive subscale.

More recently, an extension to the aforementioned approach was proposed, with
the main goal to address outliers and obtain more robust estimations (Mehdipour
Ghazi et al., 2021). Mehdipour and colleagues argued that the use of a new lo-
gistic function (modified Stannard), along with M-estimation to fit the parameters
of the logistic functions to the dynamics of each biomarker, would better fit the
biomarker trajectories and reduce the influence of outliers. Additionally, the authors
presented an end-to-end approach that estimates the trajectory of each biomarker,
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orders events based on inflection points, and classifies the clinical status of each
subject using the computed DPS.

Tests with 16 ADNI biomarkers were conducted, using data from 1518 subjects
collected in a total of 9098 visits (on average, 6 visits per subject) (Mehdipour Ghazi
et al., 2021). The diagnostic performance of the models was assessed by computing
the multiclass area under the receiver operating characteristic curve (ROC-AUC)
when classifying the clinical status of individuals from the test set with a Bayesian
classifier, based exclusively on the DPS. Results showed state-of-the-art performance
(average ROC-AUC of 0.937 on the Alzheimer’s Disease Prediction Of Longitudinal
Evolution (TADPOLE)'? challenge). The authors also showed the generalizability of
their approach by training with ADNI data and testing with an independent test set,
for which a ROC-AUC of 0.929 was obtained.

2.5.2 Non-linear mixed-effects models

A generic Bayesian mixed-effects model to estimate progression of biological phe-
nomena from longitudinal observations was presented in (Schiratti et al., 2015) and
further extended in (Schiratti et al., 2017). Schiratti and colleagues argued that the
temporal evolution of biomarkers could be modeled as spatiotemporal trajectories,
since trajectories vary across individuals for two reasons: (1) intrinsic phenotypic
differences (spatial variability), and (2) different ages of onset and paces of progres-
sion (temporal variability). Here, the term spatial is to be taken in a broad sense, since
it does not refer to physical space within the brain, but to a more general abstract
space of biomarkers. Thus, this framework is generic and has been applied to vari-
ous types of data, from cognitive scores to brain images.

The authors proposed a data-driven approach to estimate the typical trajectory
of biomarker changes within a population, as well as the spatiotemporal variability
across individuals, using longitudinal datasets (Schiratti et al., 2017). They extended
nonlinear mixed-effects models to deal with longitudinal observations lying on Rie-
mannian manifolds, in order to decompose spatial and temporal variability. The fixed
effects captured the typical group-average trajectory, while the random effects ac-
counted for subject-specific variability of the trajectories (Schiratti et al., 2017).

This generic framework was later applied to build a spatiotemporal atlas of
Alzheimer’s disease progression, called AD Course Map (Koval et al., 2021). Koval
and colleagues leveraged longitudinal data from ADNI to build typical progression
curves for each studied biomarker, where the x-axis representing disease stage was
named Alzheimer’s Age (AA). The model’s core idea was to compute three param-
eters per subject, in order to consider individual variability: (1) a time-shift translat-
ing the curves along the x-axis to account for different ages and disease onsets; (2)

12(h’ctps: / /tadpole.grand-challenge.org)
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an acceleration factor scaling the x-axis to reflect different paces of disease progres-
sion; and (3) space-shifts for each biomarker, to change their ordering and account
for different phenotypes (Koval et al., 2021).

AD Course Map was evaluated using data from the TADPOLE challenge, and
was able to predict cognitive decline with a better accuracy than other 56 compet-
ing approaches, while achieving the same prediction error as the best performing
method in the prediction of ventricular volume (Koval et al., 2021).

2.5.3 Recurrent neural networks

A nonparametric approach to disease progression modeling, based on recurrent neu-
ral networks (RNN), was presented in (Mehdipour Ghazi et al., 2019). Mehdipour
Ghazi and colleagues argued that standard RNNs cannot be directly used in most
longitudinal cohorts, because of frequent missing values, so they proposed an al-
ternative formulation of backpropagation to handle incomplete data. In short, to
minimize the influence of missing values, the authors modified the batch gradient
descent algorithm used to train long short-term memory (LSTM) networks, intro-
ducing a weighted update rule depending on the number of available time points
per biomarker.

Contrary to (Jedynak et al., 2012; Mehdipour Ghazi et al., 2021), the goal of this
approach was not to compute disease progression scores, but instead to focus on
predicting future biomarker values (Mehdipour Ghazi et al.,, 2019). The authors
evaluated their end-to-end method by modeling the longitudinal dynamics of six
imaging biomarkers from the ADNI dataset, collected from 742 individuals that had
at least three visits. They computed the mean absolute values between estimated
and actual biomarker values using their proposed approach, two standard LSTM
networks with different data imputation techniques, and the parametric regression-
based model from (Jedynak et al., 2012). Moreover, tests were conducted for dif-
ferent amounts of missing values. Results demonstrated the superiority of the pro-
posed robust RNN to predict biomarker values, in comparison to all other tested
models, up until 74% of the data were missing (Mehdipour Ghazi et al., 2019).

Finally, the authors concluded that using RNNs to model disease progression
imposes fewer assumptions on the data and thus brings more flexibility, for instance
supporting biomarkers with a non-monotonic behaviour (Mehdipour Ghazi et al.,
2019).

2.5.4 Gaussian processes

A different modeling paradigm was proposed in (Lorenzi et al., 2019b), with the
main goal of quantifying uncertainty in the estimation of biomarker trajectories
and diagnostic predictions. The authors reformulated disease progression modeling
within a probabilistic setting, based on Gaussian process regression, and assessed
uncertainty with respect to missing observations, biomarkers, and follow-up visits.
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To evaluate the proposed framework, the authors used longitudinal training data
from 15 biomarkers measured in 200 subjects from ADNI, while the test set con-
tained information from 582 subjects. The estimated AD biomarker progression was
compatible with the hypothetical model from (Jack et al., 2010), and classification
between controls and AD patients achieved an area under the ROC curve of 0.99.

The authors also demonstrated their framework’s ability to quantify the uncer-
tainty of single biomarkers in characterizing disease progression, thus allowing to
compare the usefulness of different biomarkers (Lorenzi et al., 2019a). Finally, their
findings also confirmed the intuition that the greater the amount of longitudinal
information used to train the model, the lower the uncertainty in predicting the di-
agnosis of a given test subject.

2.5.5 Event-based models

Even though analyzing longitudinal data is in principle the best way to assess dis-
ease progression, building disease progression models from longitudinal data can
be challenging. With the exception of common disorders such as AD and Parkin-
son’s disease, large longitudinal datasets of neurodegenerative disorders are rare
(Venkatraghavan et al., 2019). To overcome this limitation, Fonteijn and colleagues
proposed event-based models (EBM), which describe disease progression as a se-
quence of discrete events that can be estimated from cross-sectional data (Fonteijn et
al., 2012). In this context, an event may be defined as the appearance of a symptom
(Fonteijn et al., 2012), or more generally as a biomarker transition from a normal to
an abnormal value (Venkatraghavan et al., 2019).

Figure 2.7 illustrates hypothetical biomarker trajectories throughout a neurode-
generative disease progression, with each biomarker sequentially transitioning from
a normal to an abnormal state. The inspiration from Jack’s hypothetical model (Jack
etal., 2010) is noteworthy. An event-based model aims at computing the sequence of
biomarker transitions that maximizes the likelihood of the data given that sequence
(Fonteijn et al., 2012).

The two main assumptions of an EBM are (1) biomarker values change monoton-
ically throughout disease progression, and (2) all subjects follow the same ordering
of events (Fonteijn et al., 2012). Without these assumptions, it would not be possible
to infer the sequence of events in a particular cohort only from cross-sectional data
(Fonteijn et al., 2012).

To put it formally, EBM consist of a set of N events (Ey, ..., Ey) and a sequence
S = (s(1),...,5(N)), which determines the event ordering (Esn), ..., Es(n)), esti-
mated from the cross-sectional dataset X containing biomarker values X; for each
subject j = (1,...,]) (Fonteijn et al., 2012). The model is fitted by identifying the
sequence that maximizes p(S|X), which can be written using Bayes’ theorem:

plsix) = HEEE) @2)

p(X)
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FIGURE 2.7: Hypothetical biomarker trajectories from a normal to an

abnormal state (reproduced from (Venkatraghavan et al., 2019), CC

BY-NC-ND). The red dots represent events, as defined in the EBM
context.

Since the authors assume that all sequences S are equally likely, the problem of
inferring S is equivalent to the maximum likelihood problem of maximizing p(X|S).
However, Fonteijn and colleagues instead use a Markov Chain Monte Carlo (MCMC)
algorithm to obtain 1,000,000 samples from the posterior p(S|X), and then compute
the average position of events S in the samples (Fonteijn et al., 2012). Uncertainty
in the ordering may be visualized in a positional variance diagram, as illustrated in
Figure 2.8.

Once the event-based model is fitted, the estimated ordering of events can be
used to infer a disease stage for a new subject, by finding the stage that maximizes
the subject’s data likelihood, given the estimated sequence of events (Fonteijn et al.,
2012). Concretely, the estimated disease stage k for subject j is the one that maximizes
p(X;|S, k) (Fonteijn et al., 2012). This approach results in a discrete set of stages, with
N + 1 possible values (corresponding to 0 to N abnormal biomarkers).

Recently, anew EBM framework called discriminative event-based model (DEBM)
was proposed in order to scale the algorithm to a larger number of biomarkers, as
well as to relax the assumption that all subjects in a dataset follow the same sequence
of events (Venkatraghavan et al., 2019). The authors also improved disease staging
by proposing the concept of relative distance between events.

In summary, the DEBM framework has three main steps: (1) Bayesian classifiers
are independently trained for each biomarker to differentiate between normal and
abnormal values; (2) orderings of biomarker abnormalities are estimated initially
for each subject, then a central ordering is computed as the mean of subject-specific
estimates by minimizing the probabilistic Kendall’s Tau distances between the cen-

tral ordering and the individual orderings; and (3) a patient staging algorithm uses
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FIGURE 2.8: Event sequence computed by an EBM using regional at-
rophy values from T1-weighted MRI scans from a familial AD cohort
(reproduced from (Fonteijn et al., 2012), with permission from the
publisher). The regions are ordered according to the average position
of events S. Positional variance is depicted according to the number
of times a region occupies each position over the samples obtained
with MCMC. MCI: mild cognitive impairment; AD: Alzheimer’s dis-
ease.

the central ordering of events and the relative distances between event-centers to
compute continuous patient stages (Venkatraghavan et al., 2019).

To evaluate their framework, Venkatraghavan and colleagues used 88 features
measured in 1737 subjects from the ADNI dataset at baseline, comprising gray mat-
ter volumes of 83 regions of interest, values from three CSF biomarkers, and two
cognitive scores (Venkatraghavan et al., 2019). Since there was no ground-truth data
for the event ordering, the authors relied on the classification performance of con-
trols versus AD patients, using only the computed disease stages, as an indirect
evaluation of the estimated event ordering.

Results demonstrated that DEBM distinguishes controls from patients consis-
tently better than previously published EBM models (Venkatraghavan et al., 2019).
Additionally, the authors were able to better classify MCI converters from non-
converters, illustrating their framework’s ability to identify individuals with a high
risk of developing AD. Finally, experiments with simulated data supported that the
continuous patient staging mechanism was more accurate than the traditional dis-
crete staging approach from (Fonteijn et al., 2012).
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Variations of event-based models have been successfully applied to model the
progression of several neurodegenerative diseases, such as AD (Archetti et al., 2019;
Firth et al., 2020; Fonteijn et al., 2012; Oxtoby et al., 2018; Venkatraghavan et al.,
2019; Young et al., 2014), multiple sclerosis (Dekker et al., 2020; Eshaghi et al., 2018),
Parkinson’s disease (Oxtoby et al., 2021), Huntington’s disease (Wijeratne et al.,
2021), FTD (Ende et al., 2021; Panman et al., 2021), and ALS (Gabel et al., 2020).
These are currently the state-of-the-art approaches to model disease progression
from cross-sectional data.
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Chapter 3

Datasets

In this chapter, we describe the datasets used in each study conducted during this
PhD project. We present the three microRNA datasets in Section 3.1 and the neu-

roimaging dataset in Section 3.2.

3.1 MicroRNA datasets

The first miRNA dataset presented below (section 3.1.1) was used in the miRNA dis-
covery study detailed in Chapter 4, and to assess the estimation of disease progres-
sion scores from multimodal neuroimaging and miRNA expression data in Chapter
6. The other two miRNA datasets (described in section 3.1.2 and section 3.1.3) were
used in the comprehensive validation study in Chapter 5.

3.1.1 C9orf72 carriers from PREV-DEMALS

The Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lat-
eral Sclerosis (PREV-DEMALS)' project is a French multicentric, observational study
focused on C90rf72 expansion carriers and their first-degree relatives, who have a
50% chance to carry the mutation. The main objective of the PREV-DEMALS study
is to identify biomarkers that allow an early diagnosis of C9orf/2-associated disease,
and to follow disease progression.

Subjects from this cohort were recruited and evaluated between 2015 and 2017.
Participants underwent T1-weighted MRI, diffusion MRI, functional MRI, and FDG-
PET scans, as well as blood sampling and neuropsychological tests. Not all subjects
underwent all assessments, and in this thesis we used only features extracted from
T1-weighted MRI and blood plasma miRNA expression.

Blood samples were stored in the Paris Brain Institute DNA and cell bank. Mi-
croRNAs were extracted and sequenced in December 2019. The resulting dataset
consisted of normalized log2 expression levels of 2576 miRNAs (corresponding to
all miRNAs listed in mirBase” version 22) from 110 individuals divided into three

groups:

¢ Control group: 43 non-carriers of the C9orf72 expansion.

Thttps:/ /clinicaltrials.gov /ct2 /show /NCT02590276
Zhttps:/ /www.mirbase.org


https://clinicaltrials.gov/ct2/show/NCT02590276
https://www.mirbase.org

36 Chapter 3. Datasets

* Presymptomatic group: 45 C9orf72 expansion carriers without neurological
symptoms.

¢ Patient group: 22 C9orf/2 expansion carriers with a diagnosis of FTD, ALS, or
both.

3.1.2 CY90rf72 carriers from clinical practice

In addition to the subjects studied in the PREV-DEMALS cohort, C9rf/2 expan-
sion carriers and controls were recruited through the French research network on
FTD/ALS (Inserm RBM02-59) between 2011 and 2021.

These individuals underwent blood sampling, from which plasma miRNAs were
extracted and sequenced in January 2022. The resulting dataset contained normal-
ized log2 expression levels of 2656 miRNAs (corresponding to all miRNAs listed in
mirBase version 22.1) from 77 subjects divided into three groups:

¢ Control group: 31 non-carriers (this group is shared with the GRN cohort from
Predict-PGRN described in section 3.1.3).

¢ Presymptomatic group: 17 C9orf72 expansion carriers without neurological

symptoms.

¢ Patient group: 29 C9orf/2 expansion carriers with a diagnosis of FID, ALS, or
both.

3.1.3 GRN catrriers from Predict-PGRN

The Natural History Characterization in Symptomatic and Asymptomatic Progran-
uline Gene Mutation Carriers (Predict-PGRN)’ study is focused on the GRN muta-
tion. The main goal of the Predict-PGRN study is to investigate whether biomarkers
in presymptomatic GRN mutation carriers may be used for early diagnosis of GRN-
associated FID and to assess disease progression.

Individuals from this cohort were recruited and evaluated between 2011 and
2021, and underwent the same assessments as individuals from the PREV-DEMALS
cohort.

From the Predict-PGRN cohort, we used in this thesis only miRNA expression
data, extracted from blood plasma. Samples were stored in the Paris Brain Insti-
tute DNA and cell bank, and miRNA sequencing was performed in January 2022.
The resulting dataset consisted of normalized log2 expression levels of 2656 miR-
NAs (corresponding to all miRNAs listed in mirBase version 22.1) from 89 subjects

divided into three groups:

¢ Control group: 31 non-carriers (this group is shared with the C90rf72 cohort
from clinical practice described in section 3.1.2).

3https:/ /clinicaltrials.gov/ct2 /show /NCT04014673
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¢ Presymptomatic group: 30 GRN mutation carriers without neurological symp-

toms.

* Patient group: 28 GRN mutation carriers with a diagnosis of FID.

3.2 Neuroimaging dataset

The neuroimaging dataset described below (section 3.2.1) was used to evaluate the
model presented in Chapter 6, which estimates disease progression scores from mul-
timodal neuroimaging and miRNA expression data.

3.2.1 C90rf72 carriers from PREV-DEMALS

Neuroimaging features consisted of gray matter volumes extracted from T1-weighted
MR images, including cortical structures (68 regions of interest), subcortical struc-
tures (18 regions of interest) and the estimated total intracranial volume (TIV), thus
resulting in 87 neuroimaging features. Of the 110 individuals recruited in the PREV-
DEMALS cohort, only 91 underwent T1-weighted MRI scans. The composition of

each group is as follows:

¢ Control group: 37 non-carriers of the C9orf72 expansion.

* Presymptomatic group: 40 C9orf72 expansion carriers without neurological

symptoms.

e Patient group: 14 C9orf72 expansion carriers with a diagnosis of FTD, ALS, or
both.

Neuroimaging features were extracted as described in (Bertrand et al., 2018), no-
tably using the Desikan atlas (Desikan et al., 2006) for the cortical ROlIs and the Aseg
nomenclature (Fischl et al., 2002) for the subcortical ROIs.
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Chapter 4

Plasma microRNA signature in
presymptomatic and symptomatic
subjects with C9orf72-associated
frontotemporal dementia and
amyotrophic lateral sclerosis

This chapter has been published as an original research article in the Journal of Neu-
rology, Neurosurgery & Psychiatry (Kmetzsch et al., 2021):

* Kmetzsch, V., Anquetil, V., Saracino, D., Rinaldi, D., Camuzat, A., Gareau, T.,
Jornea, L., Forlani, S., Couratier, P, Wallon, D., Pasquier, F.,, Robil, N., de la
Grange, P, Moszer, I, Le Ber, I, Colliot, O., Becker, E., PREV-DEMALS study
group, “Plasma microRNA signature in presymptomatic and symptomatic sub-
jects with C9orf72-associated frontotemporal dementia and amyotrophic lat-
eral sclerosis”, Journal of Neurology, Neurosurgery & Psychiatry, 92(5):485-493
(2021). doi: 10.1136/jnnp-2020-324647 — hal-03046771

4.1 Abstract

Obijective. To identify potential biomarkers of preclinical and clinical progression in
CYorf72-associated disease by assessing the expression levels of plasma microRNAs
(miRNAs) in C9orf72 patients and presymptomatic carriers.

Methods. The PREV-DEMALS study is a prospective study including 22 C9orf72
patients, 45 presymptomatic C9orf72 mutation carriers and 43 controls. We assessed
the expression levels of 2576 miRNAs, among which 589 were above noise level,
in plasma samples of all participants using RNA sequencing (RNA-seq). The ex-
pression levels of the differentially expressed miRNAs between patients, presymp-
tomatic carriers and controls were further used to build logistic regression classifiers.


http://dx.doi.org/10.1136/jnnp-2020-324647
https://hal.archives-ouvertes.fr/hal-03046771/
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Results. Four miRNAs were differentially expressed between patients and con-
trols: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p and miR-
10a-3p were underexpressed in patients. MiR-34a-5p was also overexpressed in
presymptomatic carriers compared with healthy controls, suggesting that miR-34a-
5p expression is deregulated in cases with C90rf/2 mutation. Moreover, miR-345-5p
was also overexpressed in patients compared with presymptomatic carriers, which
supports the correlation of miR-345-5p expression with the progression of C9orf72-
associated disease. Together, miR-200c-3p and miR-10a-3p underexpression might
be associated with full-blown disease. Four presymptomatic subjects in transitional
/ prodromal stage, close to the disease conversion, exhibited a stronger similarity
with the expression levels of patients.

Conclusions. We identified a signature of four miRNAs differentially expressed
in plasma between clinical conditions that have potential to represent progression
biomarkers for C9orf72-associated FTD and ALS. This study suggests that dysreg-
ulation of miRNAs is dynamically altered throughout neurodegenerative diseases
progression, and can be detectable even long before clinical onset.

4.2 Introduction

Frontotemporal dementia (FTD) designates neurodegenerative dementias character-
ized by progressive behavioral, executive and language impairments (Rascovsky et
al., 2011). Amyotrophic lateral sclerosis (ALS) is a degenerative disease of motor
neurons that leads to progressive muscle atrophy and motor deficit. FTD and ALS
form a clinical continuum, as these two diseases may be associated in the same pa-
tients (FTD-ALS) or within families. They also share common pathophysiological
mechanisms and genetic causes (Mackenzie et al., 2010). The most frequent genetic
cause of familial FTD and ALS is a hexanucleotide (GGGGCC) repeat expansion in
the chromosome 9 open reading frame 72 (C90rf72) gene (DeJesus Hernandez et al.,
2011; Renton et al., 2011). This autosomal dominant mutation may cause neurode-
generation through C9orf72 loss of function, aggregation of mutant RNA in nuclear
foci and of dipeptide repeats generated by repeat-associated non-AUG (RAN) trans-
lation, ultimately leading to pathological inclusions of TAR-DNA binding protein 43
(TDP-43) (Mackenzie et al., 2014).

There are no effective treatments available in C9o0rf72 disease to date, but several
promising trials including antisense therapies are being developed. Presymptomatic
CYorf72 carriers represent an optimal target population for the development of new
therapeutic interventions for FTD and ALS (Bertrand et al., 2018; Eisen et al., 2014).
Therefore, it is of paramount importance to identify biomarkers of preclinical pro-
gression for FTD and ALS, which could be used to initiate and monitor potential
disease-modifying treatments before any irreversible brain damage has occurred.

There is increasing evidence that microRNA (miRNA) expression in body fluids,
such as plasma/serum (Grasso et al., 2014) or CSF (Schneider et al., 2018), correlates
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with the diagnosis and progression of many neurodegenerative diseases, including
FTD (Denk et al., 2018) and ALS (Freischmidt et al., 2014). MicroRNAs are a class
of small noncoding RNAs that negatively regulate gene expression by promoting
translational repression and messenger RNA degradation (Huntzinger and Izaur-
ralde, 2011). Since TDP-43 promotes miRNA biogenesis (Buratti and Baralle, 2010),
the dysregulation of TDP-43 activity associated with FITD and ALS pathogenesis
could impact miRNA expression levels (Gascon and Gao, 2014). Notably, miRNAs
originating from neurons and glial cells are released through extracellular vesicles,
especially exosomes, and can be measured in different body fluids, including CSF
and plasma (Li and Wang, 2019). Aberrant expression of miRNAs can be thus non-
invasively detected in easily accessible body compartments, such as blood plasma,
and potentially serve as biomarkers (Sohel, 2016).

Previous studies have explored selected plasma miRNAs as biomarkers for FTD
and ALS (Sheinerman et al., 2017) or FID (Grasso et al., 2019; Piscopo et al., 2018)
using quantitative real-time PCR. Two of them have analyzed the expression of a
limited number of candidate miRNAs: nine miRNAs linked with apoptosis (Piscopo
et al., 2018) or 37 brain-enriched miRNAs (Sheinerman et al., 2017). A wider miRNA
profiling study (Grasso et al., 2019) analyzed 752 miRNAs, as a first attempt to per-
form an unbiased assessment of circulating miRNAs in patients with FTD. In addi-
tion, a more recent study (Magen et al., 2020) assessed the expression levels of 2313
miRNAs in a merged cohort of FTD patients with different genetic forms (C9orf72,
MAPT, GRN, TBK1) or with sporadic forms, by next generation RNA sequencing
(RNA-seq). However, results among different studies have been conflicting so far,
probably due to the heterogeneity of cohorts with respect to the underlying pathol-
ogy (genetic or sporadic). Besides, these studies only compared healthy controls
and symptomatic patients, focusing on evaluating potential diagnostic biomarkers.
To date, no studies have evaluated plasma miRNAs as progression biomarkers for
FTD or ALS in presymptomatic individuals.

The present work aims at investigating expression levels of plasma miRNAs in a
large homogeneous genetic cohort of C9orf72 mutation carriers, both in the presymp-
tomatic and in the clinical phases, to identify potential non-invasive biomarkers of
preclinical and clinical progression in C9orf72-associated FTD and ALS. We hypoth-
esize that performing large scale RNA-seq analyses in plasma samples, without a
priori assumptions, will reveal significant differences in miRNA expression levels

between healthy controls, presymptomatic and symptomatic mutation carriers.

4.3 Material and Methods

4.3.1 Participants

PREV-DEMALS (https://clinicaltrials.gov/ Identifier: NCT02590276) is a national
multicentric study focused on C9orf72 mutation carriers. Between 2015 and 2017,


https://clinicaltrials.gov/
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111 individuals were investigated with the same protocol in four French university
hospitals (Paris, Limoges, Lille, Rouen), as previously described (Bertrand et al.,
2018; Montembeault et al., 2020). Written informed consents were obtained from all
participants, after approval obtained from the Comité de Protection des Personnes
CPP Ile-De-France VI (CPP 68-15 and ID RCB 2015-A00856-43).

This cohort included 22 patients (15 FTD, 4 FTD/ALS, 3 ALS) carrying a C9orf72
expansion and 89 asymptomatic first-degree relatives of C9orf72 patients (who have
50%-risk to carry the mutation), out of 64 families. A pathogenic expansion was
detected in 46 of them, denoted as the presymptomatic group. The control group was
formed by the 43 asymptomatic individuals that did not carry an expansion.

At inclusion, each participant’s cognitive and behavioral clinical status was as-
sessed based on standardized interview with relatives, comprehensive neurologi-
cal examination, an extensive neuropsychological battery assessing all cognitive do-
mains (including, notably, MMSE, FAB, MDRS, Ekman faces tests) and behavioral
scales (including Frontal Behavioral Inventory and Apathy Evaluation scale) (Table
4.1). The cognitive and behavioral evaluations and their scores have been described
in more detail elsewhere (Bertrand et al., 2018; Montembeault et al., 2020) and in Ap-
pendix A Method Al. Neuromuscular function was thoroughly evaluated by means
of quantitative motor testing according to Medical Research Council (MRC) mus-
cle scale, assessment of upper and lower motor neuron signs, and administration of
ALS-FRS (ALS functional rating scale), evaluating the degree of functional impair-
ment. All participants underwent a systematic standardized interview to investigate
the presence of cramps, fatigue, muscle pain, muscle weakness, muscle stiffness or
fasciculations. Electromyography was proposed to the participants with even subtle
motor signs or complaints.

One participant was excluded because mild cerebellar syndrome was detected
at a neurological examination, after inclusion. Thus, the present study comprises
110 individuals (22 patients, 45 presymptomatic carriers, 43 healthy controls), all of
which underwent plasma sampling at their inclusion. The demographic and clinical
characteristics of the studied population are shown in Table 4.1.

The participants have then been clinically followed after their inclusion during a
3-year period, from 2017 to 2020. Four out of the 45 C9orf72 presymptomatic carriers
have developed subtle frontal cognitive and/or behavioral changes and/or motor
signs/symptoms during this period, without fitting diagnostic criteria for FTD or
ALS, suggesting they were in the transitional prodromal phase at the moment of or
just after their inclusion visit. These cases are described in Appendix A Method A2.
All analyses in the presymptomatic group were performed with (n=45) and without
(n=41) the four prodromal subjects. We also analyzed these cases separately in an
additional complementary approach.
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TABLE 4.1: Demographic and clinical characteristics of the studied
population. Values are expressed as mean + standard deviation,
or as number (%). Demographic characteristics were compared be-
tween groups using the x? test for gender and Kruskal-Wallis with
Dunn’s test for numerical variables. Statistically significant p-values
are in bold. ALS-FRS: ALS Functional Rating Scale; MMSE: Mini-

Mental State Examination; MDRS: Mattis Dementia Rating Scale;
FAB: Frontal Assessment Battery; FBI: Frontal Behavioral Inventory;
AES: Apathy Evaluation Scale.
Control  Presymptomatic  Patient
(n=43) (n=45) (n=22)
e
p-value
Female gender 23 (53.5%) 28 (62.2%) 10 (45.4%) 408
Kruskal-Wallis . Dunn’s test
Comparison
p-value p-value

Control vs. Presymptomatic 118
Age at inclusion (years) 46.4 +13.5 41.8+118 62.7 +10.5 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic .827

ALS-FRS 395+13 39.5+1.9 334+77 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic 183

MMSE 29+1.2 285+14 17.8 +8.4 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic 431

MDRS 1421+ 1.8 1412+ 3.0 97.3 +36.7 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic .583

FAB 17+12 17.2+0.9 9.7+53 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic .694

Ekman faces test 30.1+26 30.1+23 18+9.1 .001 Control vs. Patient <.001
Presymptomatic vs. Patient .001

Control vs. Presymptomatic .387

FBI 09+1.8 15+27 28.5+15.2 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient <.001

Control vs. Presymptomatic .095

AES 48+39 6.5+3.6 235+13.1 <.001 Control vs. Patient <.001
Presymptomatic vs. Patient .004

4.3.2 Plasma collection and preparation

Blood samples were collected on EDTA using the same standardized collection and

handling procedures for all participants across the centers. The mean disease du-

ration at sampling was 6.2 + 4.0 years in the patients” group. All were in fasted

state. All samples were centralized at the ICM DNA and cell bank, and processed

using the same protocol. Plasma was extracted at room temperature after centrifu-

gation of blood samples at 2500 rpm for 10 minutes. Aliquots of 1 mL were stored

in polypropylene tubes at -80°C.

4.3.3 MiRNA extraction and sequencing

MiRNA extraction was performed with a miRNeasy Serum /Plasma Kit (Qiagen) fol-

lowing the manufacturer’s instructions. We used 200 pL of plasma quickly melted
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and directly added to 1 mL of Qiazol solution. MiRNAs were eluted in 14 L of wa-
ter; 5 uL were used for miRNA sequencing library preparation with QIAseq miRNA
Library Kit (Qiagen) according to the manufacturer’s protocol.

MiRNA sequencing was performed on Illumina NovaSeq 6000 in three indepen-
dent batches, targeting a minimum of 10 million mapped reads per sample. Since
batch effects may have a critical impact in high-throughput experiments, we ran-
domly assigned each individual to one batch, equally distributing clinical status
(control, presymptomatic, patient) and centers (Paris, Limoges, Lille, Rouen), to al-
low adjusting for batch effects during data analysis. Appendix A Table A1 describes

the distribution of subjects across batches.

4.3.4 Raw reads to miRNA counts computation pipeline

Quality control of raw reads was performed with FastQC (Andrews S. 2010)!. UMI-
tools (Smith et al., 2017) and Cutadapt (Martin, 2011) were used respectively to ex-
tract UMIs and suppress adapting sequences as well as polyA tails. The resulting
sequences were aligned with Bowtie (Langmead et al., 2009) and sorted by genomic
location with Samtools sort (Li et al., 2009). PCR bias was corrected with UMI-tools,
its efficacy was assessed per chromosome with Samtools idxstats. After control-
ling for the overlap/ambiguity between miRNAs enrichment and Gencode annota-
tion with FeatureCounts (Liao et al., 2014), miRNAs were counted with miRDeep2
(Friedlander et al., 2012).

4.3.5 Statistical analysis

Statistical analyses were performed using R version 3.6.1 (R Foundation for Statis-
tical Computing, Vienna, Austria). The differential expression of miRNAs between
clinical groups was assessed with the R package EdgeR (Robinson et al., 2010). The
analysis began with a count matrix with 2576 rows (one per miRNA i) and 110
columns (one per individual j). Only miRNAs considered above noise level (mini-
mum count of 50 reads for at least one sample and a minimum total count of 1000)
were retained for statistical analyses, reducing the count matrix to 589 rows. We as-
sumed that miRNA counts followed a negative binomial distribution with mean y;;
and dispersion ¢; and used generalized linear models to fit a log-linear model

log, ij = x] Bi (4.1)

for each miRNA, where x; is the vector of covariates that describes sample j and p;
is the vector of coefficients to be fitted for miRNA i. To control for possible batch,
center, age and gender effects, we added these variables as covariates in the model,

in addition of clinical status. Raw counts were normalized using a trimmed mean

1h’c’cp: / / www.bioinformatics.babraham.ac.uk/projects/fastqc
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of M-values (Robinson and Oshlack, 2010). Once the models were fitted, quasi-
likelihood (QL) F-test was employed to determine the subset of miRNAs differen-
tially expressed between clinical conditions (miRNA signature). Statistical signifi-
cance was set at level « = 0.05 and p-values were adjusted for multiple testing using
the Benjamini-Hochberg method.

4.3.6 Machine learning for binary classification

After the differentially expressed miRNAs were identified, we implemented logistic
regression classifiers with L2 regularization in Python 3.8.0 using scikit-learn (Pe-
dregosa et al., 2011) version 0.22.1. We used the expression levels of the miRNA
signature as features to train binary classification models for each pairwise compar-
ison between clinical status: controls versus presymptomatic individuals, controls
versus patients and presymptomatic individuals versus patients. A stratified nested
cross-validation strategy (Appendix A Figure Al) was chosen to find the optimal
hyperparameter (L2 regularization coefficient) and to assess model performance us-
ing the area under the receiver operating characteristic curve (ROC AUC). We com-
puted 90% confidence intervals (Cls) for the ROC AUC scores from 2000 bootstrap
samples, by taking the 5™ and 95" percentiles of the bootstrap distribution. Strati-
fication with respect to clinical status was performed to preserve the proportion of

healthy controls, presymptomatic subjects and patients in each fold.

4.3.7 Generalization analysis

Since the differentially expressed miRNAs were computed with the entire dataset,
the test folds of the cross-validation were also used in the feature selection for our
classification models, which could inflate prediction performance. To estimate this
possible bias, we then incorporated feature selection in the nested 5-fold cross val-
idation process: differentially expressed miRNAs were computed using only the
outer cross-validation loop training data (four out of five folds) at each iteration.
The nested cross-validation was repeated 100 times with different fold splits to as-

sess the generalization performance of our classifiers.

4.3.8 Analysis of the transitional stage to clinical FTD/ALS disease

Since we hypothesized that the expression levels of differentially expressed miRNAs
might provide information relevant to C9orf72 disease progression, we designed an
experiment to evaluate prediction performance of clinical conversion to FTD/ALS
in presymptomatic carriers. A logistic regression classifier was fitted with the ex-
pression levels of differentially expressed miRNAs from controls and patients. We
used a regular 5-fold cross-validation to determine the optimal hyperparameter (L2
regularization coefficient). Subsequently, this model was tested with the expression

levels from the four known presymptomatic carriers who were in their transitional
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stage to the clinical disease. Scores from 0 to 1 were provided for each subject, in-
dicating proximity with the expression levels of controls (scores near 0) or patients
(scores closer to 1).

4.3.9 Target prediction and pathway analysis

A target-gene based miRNA enrichment analysis was performed, to discover poten-
tial biological functions regulated by the differentially expressed miRNAs. We used
the publicly available tool DIANA-miRPath v.3 (Vlachos et al., 2015), which imple-
ments an in silico miRNA target prediction algorithm (DIANA-microT-CDS) as well
as an experimentally validated miRNA:gene interaction dataset (DIANA-TarBase
v7.0). Both approaches were carried out to identify target genes and the associated
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, using the set of dif-
ferentially expressed miRNAs as input. The enrichment analysis method consisted
of Fisher’s exact test (hypergeometric distribution) with Benjamini-Hochberg ad-
justed p-value threshold of 0.05, giving as output a union set of associated KEGG
pathways.

4.4 Results

4.4.1 Differentially expressed miRNAs computed with the entire dataset

Table 4.2 displays all miRNAs identified as differentially expressed, for each pair-
wise comparison between clinical status, after correction for multiple comparisons.
Four miRNAs were computed as differentially expressed between healthy controls
and patients: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p
and miR-10a-3p were underexpressed in symptomatic mutation carriers. Interest-
ingly, miR-34a-5p was identified as significantly overexpressed also in presymp-
tomatic mutation carriers compared to healthy controls, suggesting that miR-34a-5p
expression is associated with C9orf72 mutation status. Additionally, miR-345-5p was
also significantly overexpressed in patients when compared to presymptomatic car-
riers. When removing the four prodromal subjects from the presymptomatic group,
the same miRNAs were identified as differentially expressed, indicating that the dif-
ferences between the presymptomatic and other groups were not mainly driven by
the four prodromal subjects.

We considered these four miRNAs (miR-34a-5p, miR-345-5p, miR-200c-3p, miR-
10a-3p) as our miRNA signature for further analyses. The complete output from
EdgeR is available in Appendix A Table A2.

Figure 4.1 displays boxplots with the expression levels, for each clinical group,
of the four miRNAs identified as differentially expressed. There is a clear difference
in miR-34a-5p expression levels between controls and C9orf/2 expansion carriers
(presymptomatic and symptomatic). Moreover, the other three identified miRNAs
differentiate the mutation carriers at different stages of the pathology: miR-345-5p
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TABLE 4.2: Differentially expressed miRNAs identified by EdgeR, af-

ter correction for multiple comparisons, for each pairwise comparison

between clinical status: Control (n=43), Presymptomatic (n=45), Pa-
tient (n=22).

miRNA log-fold change p-value adjusted p-value

Control vs. Presymptomatic

miR-34a-5p -1.433 5.251e-16 3.093e-13
Control vs. Patient

miR-34a-5p -1.239 1.650e-8 9.720e-6

miR-345-5p -0.540 1.131e-5 3.330e-3

miR-200c-3p 0.333 3.109e-5 6.104e-3

miR-10a-3p 0.697 7.141e-5 1.051e-2

Presymptomatic vs. Patient
miR-345-5p -0.528 3.610e-5 2.126e-2

showed increased expression in patients, while miR-200c-3p and miR-10a-3p exhib-
ited decreased expression. An expression heatmap of the miRNA signature is dis-
played in Appendix A Figure A2.

4.4.2 MiRNA signature to classify between clinical groups

To assess whether the identified miRNA signature could distinguish between clin-
ical groups, we implemented logistic regression models using as features the ex-
pression levels of the four differentially expressed miRNAs (miR-34a-5p, miR-345-
5p, miR-200c-3p and miR-10a-3p). The area under the ROC curve (ROC AUC) for
the classification of healthy controls and presymptomatic mutation carriers was 0.90
(90% CI 0.83 to 0.95), for controls and patients was 0.90 (90% CI 0.82 to 0.97) and
to distinguish presymptomatic carriers and patients was 0.80 (90% CI 0.67 to 0.90)
(Figure 4.2). The distributions of the bootstrapped ROC AUC scores are displayed
in Appendix A Figure A3.

4.4.3 Generalization analysis

Since we used the entire dataset to identify the miRNA signature, including test
data, classification performance could be inflated. In order to assess the generality of
our classification scores, we then incorporated feature selection in the nested cross-
validation scheme (Appendix A Figure Al), by using only the training data from
the outer cross-validation loop to compute differentially expressed miRNAs. Fig-
ure 4.3 shows the distribution of miRNAs identified as differentially expressed after
performing nested 5-fold cross-validation with 100 different fold splits. Notably,
the most frequent miRNAs (highlighted in blue) correspond to the ones computed
using the entire dataset: miR-34a-5p (500 occurrences) when comparing healthy con-

trols and presymptomatic mutation carriers; miR-34a-5p, miR-345-5p, miR-200c-3p
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FIGURE 4.1: Boxplots depicting the normalised log2 expression lev-

els of the four microRNAs identified as differentially expressed. Box

boundaries represent the first and third quartiles and the median is

indicated by the line dividing the interquartile range (IQR). The up-

per whiskers extend to the values that are within 1.5 x IQR over

the third quartiles. The lower whiskers extend to the values that are
within 1.5 x IQR under the first quartiles.

and miR-10a-3p (respectively 497, 335, 259 and 196 occurrences) for controls and pa-
tients; miR-345-5p (157 occurrences) when analyzing presymptomatic subjects and
patients.

Regarding prediction performance, the average ROC AUC when classifying con-
trols versus presymptomatic subjects was 0.88 (90% CI 0.83 to 0.91), for controls
versus patients was 0.89 (90% CI 0.83 to 0.94) and for presymptomatic individuals
versus patients was 0.67 (90% CI 0.52 to 0.77). The distributions of the ROC AUC
scores computed with 100 different fold splits are displayed in Appendix A Figure
A4.

4.4.4 Analysis of the transitional stage to clinical FTD/ALS disease

We evaluated the performance to predict the transitional stage to FTD/ALS disease
by training a logistic regression classifier with the expression levels from patients
and controls and testing with the expression levels of presymptomatic individuals.

The probability scores computed for the four subjects in their transitional stage were
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FIGURE 4.2: ROC (receiver operating characteristic) curves for each
pairwise classification (control vs presymptomatic, control vs pa-
tient and presymptomatic vs patient) obtained with logistic regres-
sion using as features the expression levels of the microRNAs signa-
ture (miR-34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p). Boot-
strapped 90% Cls are reported in brackets. AUC: area under the ROC

curve.
Control vs. Presymptomatic Control vs. Patient Presymptomatic vs. Patient
4 500 -
500 1501
400 ~ 400 4 125 A
= 300 - 2 3001 » 1007
3 3 3 75
“ 2001 “ 200 s
50
100 - 100 25
0- 0- 0-
0000000000 QO Q0 Q00 Qv o Q Q0 OO0 Q0 Q Q0 QQ®
LD 010D L () LD L LD AR A S Y QD ) ) LD L
TOSTHNOMN SO O~ s oo oMo W YA S om0 R
S 4o NNHOT OO SO0 T mx L HY T XOSTWOWOD OIS
MAMONg R0 MO MOQTEMNEXTINW MENWG gy QT
Tt Emax T cax VYo ETESET L c SeaxTae=3acE
EECELESEEa EELE" & £ E T EELEELE
IS S 1S x € € 1SS € IS € E E " x E
E €& = € 1S 1S € € =
o E MIRNA oo E
miRNA miRNA

FIGURE 4.3: Number of times each miRNA was found differen-
tially expressed, when performing a repeated 5-fold nested cross-
validation for 100 times with different fold splits. In each step of the
outer cross-validation loop, four of the five folds were used to identify
differentially expressed miRNAs. Since one outer loop consists of five
steps, and we performed 100 repetitions, 500 sets of miRNAs were
computed for each pairwise comparison between groups, respec-
tively: control vs presymptomatic, control vs patient and presymp-
tomatic vs patient. MiRNAs from the signature computed with the
entire data set are highlighted. miRNA: microRNA.
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all above 0.50, indicating a stronger similarity with patients: 0.54, 0.75, 0.80 and 0.82.
The distribution of probability scores for all presymptomatic subjects is displayed in
Appendix A Figure A5.

4.4.5 Target prediction and pathway analysis

Using the four differentially expressed miRNAs (miR-34a-5p, miR-345-5p, miR-200c-
3p and miR-10a-3p) as input, we performed target prediction and pathway analysis
with two methods available in DIANA-miRPath v.3. The in silico miRNA target
prediction algorithm (microT-CDS) identified 31 influenced pathways (14 signifi-
cant after Benjamini-Hochberg correction), while the experimentally supported ap-
proach (TarBase) resulted in 54 associated pathways (38 significant after Benjamini-
Hochberg correction). Complete outputs concerning the list of the putative target
genes and their related pathways are given in Appendix A Table A3 and A4. Table
4.3 reports the 13 pathways that were identified by both methods and have signifi-
cant adjusted p-values in at least one of them.
TABLE 4.3: Results from pathway analysis using the four differen-

tially expressed miRNAs as input. Only significant pathways for at
least one approach are shown. Statistically significant p-values are in

bold.
Category KEGG pathway p-value microT-CDS  p-value TarBase
Proteoglycans in cancer 7.941e-4 4.259e-8
MicroRNAs in cancer 1.386e-3 3.356e-8
Cancer Glioma 6.554e-2 1.423e-2
Renal cell carcinoma 1.098e-2 9.254e-2
Small cell lung cancer 3.220e-1 3.341e-2
Hippo signaling pathway 4.556e-2 5.622e-4
TGF-beta signaling pathway 5.008e-2 9.288e-4
Cell signaling/apoptosis ~ Thyroid hormone signaling pathway 2.132e-3 1.502e-2
FoxO signaling pathway 2.368e-1 1.449e-2
Neurotrophin signaling pathway 9.801e-3 3.113e-1
Intermediary metabolism Lysine degradation 1.606e-2 7.882e-4
y Glycosphingolipid biosynthesis - lacto and neolacto series 3.885e-10 4.423e-2
Meiosis Oocyte meiosis 2.487e-1 2.446e-3

Appendix A Figure A6 shows miRNA versus KEGG pathways heatmaps, which
depict the level of enrichment in significant KEGG pathways for the four differen-
tially expressed miRNAs as computed by the two approaches.

4.5 Discussion

The present study aimed to identify fluid biomarkers by analyzing expression lev-
els of plasma miRNAs without a priori knowledge in a large cohort of healthy con-
trols, presymptomatic and symptomatic C9orf72 carriers. We identified four miR-
NAs differentially expressed between clinical conditions: miR-34a-5p, miR-345-5p,
miR-200c-3p and miR-10a-3p. Significantly higher expression of miR-34a-5p was
found in mutation carriers when compared with healthy controls, which suggests
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that miR-34a-5p expression is deregulated in cases with C9orf72 mutation. Addi-
tionally, we observed miR-345-5p expression to be significantly increased in patients
when compared with presymptomatic carriers, which supports the correlation of
miR-345-5p expression with the progression of C9orf72-associated disease. Finally,
our results also suggest that miR-200c-3p and miR-10a-3p underexpression might be
associated with full-blown disease as decreased expression levels were significant
only between patients and healthy controls.

We used the expression levels of the miRNA signature to train logistic regres-
sion classifiers, which were able to differentiate individuals from different clinical
groups with good predictive performance (Figure 4.2). Notably, presymptomatic
and symptomatic C9orf72 carriers were distinguished with ROC AUC of 0.80 (90%
CI 0.67 to 0.90), which suggests the suitability of plasma miRNAs for following pre-
clinical progression and determining disease onset. We believe that this score was
lower in our generalization analysis (0.67, 90% CI 0.52 to 0.77) because the limited
number of patients (22) led to a higher variability in the differentially expressed miR-
NAs in each step of the cross-validation loop (Figure 4.3). Furthermore, we have ob-
tained promising results regarding prediction performance of conversion from the
presymptomatic to the clinical stage of FTD/ALS. The four presymptomatic subjects
in transitional stage exhibited scores above 0.50, denoting a stronger similarity with
the expression levels of patients. Although preliminary, these results suggest that
the expression levels of our miRNA signature might be used as early predictors of
the C9orf72 disease conversion.

Previous studies have shown the potential of miRNAs in serum, plasma or CSF
as diagnostic biomarkers for FTD and ALS (Grasso et al., 2019; Magen et al., 2020;
Piscopo et al., 2018; Schneider et al., 2018; Sheinerman et al., 2017), focusing on com-
paring healthy controls and patients. However, our findings differ from preceding
results: only two miRNAs from our signature (miR-345-5p, miR-200c-3p) were iden-
tified as differentially expressed in one of these studies (Magen et al., 2020), none in
the others (Grasso et al., 2019; Piscopo et al., 2018; Sheinerman et al., 2017). Results
are conflicting probably due to restricted choices for the analyzed miRNAs (Piscopo
etal.,, 2018; Sheinerman et al., 2017) and heterogeneous cohorts, either with sporadic
forms (Grasso et al., 2019; Piscopo et al., 2018) or a mixture of sporadic and familial
forms with different mutations (Magen et al., 2020). To the best of our knowledge,
the present work is the first to compare the expression levels of plasma miRNAs be-
tween presymptomatic and symptomatic carriers focusing on C9orf/2 mutation, in
addition to providing a plasma miRNA signature that may contribute to the assess-
ment of preclinical progression for C9orf72-associated FTD and ALS. Table 4.4 dis-
plays a comparison among studies evaluating miRNAs from blood samples (serum
or plasma) of FTD and/or ALS patients.
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TABLE 4.4: Comparison of studies investigating miRNAs from blood

samples (serum or plasma) of FTD and/or ALS patients. FTD: Fron-

totemporal Dementia; ALS: Amyotrophic Lateral Sclerosis; qRT-PCR:

Quantitative Real-Time Polymerase Chain Reaction; RNA-seq: RNA

Sequencing; *in serum; T in plasma; ¥ sOD1, FUS, CYorf72, PFN1; §
C9orf72, MAPT, GRN, TBK1

Freischmidt Sheinerman Piscopo Grasso Magen This studv
etal, 2014 etal, 2017 etal, 2018" etal, 2019* etal,, 2020* Y
Disease ALS FID, ALS FTD FID FID, ALS FID, ALS
Separate . . . Mixed
Cohort sporadic/genetict Not mentioned Sporadic Sporadic sporadic/ genetict C9orf72
Patients, n= 9/13 genetic 50 FTD 54 10/48 52/117 FTD »
Discovery/replication 14 sporadic 50 ALS 115 ALS
Pres.ymptomatlc 18 B B B B 45
carriers, n=
37 selected 9selected 752 selected Large scale Large scale
Methods of analysis Microarrays miRNAs miRNAs miRNAs sequencing sequencing
(qRT-PCR) (qQRT-PCR)  (qRT-PCR) (RNA-seq) (RNA-seq)
miR-4745-5p miR-9/let-7e
miR-3665 miR-7/miR-451 Panels of 20
miR-1915-3p miR335-5p/let-5e . ! miR-34a-5p
. . miR-663a 147,121 .
Major deregulated miR-4530 (FTD) MiR-127-30  miR-502-3 miRNASs miR-345-5p
miRNAs (validated miR-206/miR-338-3p P s miR-200c-3p
) . miR-206 for each .
from miR-9/miR-129-3p cohort miR-10a-3p
panel of 30 miR-335-5p/miR-338-3p
miRNAs) (ALS)

Overall, our work suggests that miR-34a-5p, miR-345-5p, miR-200c-3p and miR-
10a-3p are likely involved in neuronal degeneration and C9orf72-associated patho-
genesis. Among the KEGG pathways identified in this study, some involved in neu-
rodevelopment (Hippo signaling, FoxO signaling), inflammation (TGF-beta signal-
ing), intracellular transduction (neurotrophin signaling), and apoptosis (TGF-beta,
FoxO signaling) were relevant as previously shown to be involved in C9orf72-disease
(Atkinson et al., 2015; Burberry et al., 2020; Farg et al., 2017). Accordingly, these
four miRNAs have been previously linked with a range of neurodevelopmental pro-
cesses, neuropsychiatric and neurodegenerative conditions (Berg et al., 2020; Chua
and Tang, 2019; Cosin-Tomés et al., 2017; Fu et al., 2019). For instance, miR-200c and
miR-34a family members are implicated in synaptic function, neuronal maturation,
differentiation, and survival (Jauhari et al., 2018; Jin et al., 2012). Aberrant expres-
sion of miR-34a and miR-345 are also associated with neuronal apoptosis (Modi et
al., 2016), whereas members of miR-10a family were found to be differentially ex-
pressed in the muscle tissue of ALS patients (Kovanda et al., 2018).

How these four miRNAs are implicated in C9orf72-associated pathogenesis, and
their relevance in brain pathology are important questions to go further. So far, only
few studies addressing miRNA dysregulation in brain tissues of FTD/ALS patients
have been performed, and are summarized in Appendix A Table A5. They specif-
ically addressed GRN-associated (Chen-Plotkin et al., 2012; Kocerha et al., 2011),
sporadic FTD (Gascon et al., 2014; Hébert et al., 2013), sporadic (Jawaid et al., 2019)
or mixed genetic-sporadic ALS patients (Helferich et al., 2018). Notably, there was
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no miRNA dysregulation in common between the aforementioned studies, nor be-
tween any of those studies on the brain and ours on plasma. Those discrepancies
may stem from the heterogeneity of the previous autoptic cohorts and the differ-
ences in the methods of miRNA expression analysis. Noteworthy, and differently
from our investigation, none of the patient cohorts mentioned in Appendix A Table
A5 were exclusively made up of C9orf72 carriers. Additionally, the observed differ-
ences between brain tissue and plasma miRNA profiles may be due to the tissue-
specific expression of miRNA on the one hand, and to the time-dependent varia-
tions of detectable miRNAs all along the disease course on the other. Due to the
disease process itself and other potential confounding factors, significant changes in
miRNA expression are likely to occur between a relatively early phase of the dis-
ease, in which plasma miRNAs may be used as biomarkers, and the ultimate dis-
ease stage, at the moment of brain sampling. At this point, further miRNA profiling
studies on C9orf/2 brain tissue are needed to better understand whether tissue miR-
NAs correlate with plasma expression profiles and their contribution to the disease
pathogenesis.

Regardless, it is noteworthy that some studies pointed towards a direct relation-
ship between these miRNAs and C9orf72 pathogenesis. C9orf72 stands as a putative
target of miR-34a-5p, likely acting as a negative regulator of C9orf/72 mRNA expres-
sion (Lal et al., 2011). Additionally, miR-200c-3p and miR-345-5p are down- and
up-regulated, respectively, in the extracellular vesicles secreted by induced astro-
cytes obtained from C9orf72 patients (Varcianna et al., 2019). Even if not completely
explained so far, these important results parallel our study showing a comparable
upregulation of miR-34a-5p and miR-345-5p and downregulation of miR-200c-3p in
carriers, and provide converging evidence for a link between our set of miRNAs and
C9orf72-pathogenesis, which will need further investigations.

Previous studies have provided the proof-of-concept that specific sets of miR-
NAs have the potential to serve as biomarkers of the preclinical /premanifest stages
of other neurodegenerative diseases, such as ALS (Freischmidt et al., 2014), Hunt-
ington (Jin et al., 2012), and Prion diseases (Boese et al., 2016). Our study supports
the usefulness of our four miRNAs as biomarkers of disease progression from the
presymptomatic to the symptomatic phase of C9orf72 disease. Nevertheless, some
of them may be dysregulated in a broader range of neurodegenerative conditions.
For instance, miR-345 and miR-200c-3p were also dysregulated during the presymp-
tomatic stage of Prion (Boese et al., 2016) and Huntington’s diseases (Jin et al., 2012),
respectively. This would not prevent, however, their use in longitudinal monitor-
ing of specific genetic neurodegenerative disorders, possibly in combination with
other biomarkers. Together, all these studies and ours suggest that dysregulation of
such miRNAs is dynamically altered throughout neurodegenerative diseases pro-
gression, and can be detectable even long before clinical onset.

The current study has limitations. Firstly, the significant age difference between
patients and the other clinical groups may have introduced a confounding factor,
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which we considered by including age as a covariate. Secondly, the absence of vali-
dation in other tissues or of a replication cohort means that further studies in inde-
pendent cohorts are required to confirm our results, even though our generalization
analysis confirmed the identified miRNA signature. Finally, the limited number of
patients does not allow any conclusions about the correlation of plasma miRNAs
and different disease phenotypes. Future work will explore longitudinal analyses of
plasma miRNAs to assess their use as biomarkers of FTD and ALS progression.

In summary, the current work revealed significant differences in miRNA ex-
pression levels in plasma when comparing healthy controls, presymptomatic and
symptomatic C9orf72 mutation carriers. Specifically, we highlighted the potential of
miR-34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p expression levels in plasma
as biomarkers of preclinical progression for C9orf72-associated FTD and ALS. Our
results encourage the use of plasma miRNAs, possibly in combination with other
markers, to improve the design of clinical trials for these neurodegenerative disor-
ders.
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Chapter 5

Circulating microRNA signatures
as potential biomarkers of genetic
frontotemporal dementia and

amyotrophic lateral sclerosis

This chapter has been submitted as an original research article to Molecular Psychia-

try:

e Kmetzsch, V., Latouche, M., Saracino, D., Rinaldi, D., Camuzat, A., Gareau,
T., the French research network on FTD/ALS, Le Ber, 1., Colliot, O., Becker,
E, “Circulating microRNA signatures as potential biomarkers in genetic fron-
totemporal dementia and amyotrophic lateral sclerosis”. Submitted to Molecu-
lar Psychiatry.

5.1 Abstract

MicroRNAs are promising biomarkers of frontotemporal dementia (FID) and amy-
otrophic lateral sclerosis (ALS), but discrepant results between different studies have
so far hampered their use in clinical trials. We aim to assess all previously identi-
fied circulating microRNA signatures as potential biomarkers of genetic FTD and /or
ALS, using homogeneous, independent validation cohorts of C90rf72 and GRN mu-
tation carriers. Between 2011 and 2021, 104 individuals carrying a C9orf72 or a GRN
mutation, along with 31 controls, were recruited through the French research net-
work on FTD/ALS. All subjects underwent blood sampling, from which circulating
microRNAs were extracted. We measured differences in the expression levels of 65
microRNAs, selected from 15 published studies about FID or ALS, between con-
trols, C9orf72 presymptomatic subjects, and C9orf72 patients. We also assessed dif-
ferences in the expression levels of 30 microRNAs, selected from five studies about
FTD, between controls, GRN presymptomatic subjects, and GRN patients. More
than half (35/65) of the selected microRNAs were differentially expressed in the
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C9orf72 cohort, while only a small proportion (5/30) of microRNAs were differen-
tially expressed in the GRN cohort. In multivariate analyses, only individuals in
the C9orf72 cohort could be adequately classified (ROC AUC up to 0.98 for controls
vs. presymptomatic subjects, 0.94 for controls vs. patients, and 0.77 for presymp-
tomatic subjects vs. patients) with some of the signatures. Our results suggest that
previously identified microRNAs using sporadic or mixed cohorts of FTD and ALS
patients could potentially serve as biomarkers of C9orf72-associated disease, but not
GRN-associated disease.

5.2 Introduction

Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by
brain atrophy in the frontal and temporal lobes, causing severe changes in person-
ality and social behavior (Neary et al., 2005). The most prevalent genetic causes
of FTD are GGGGCC repeat expansions in the C9orf72 gene and mutations in the
GRN gene (DeJesus Hernandez et al., 2011; Renton et al., 2011). FID shares disease
pathways with amyotrophic lateral sclerosis (ALS), a debilitating motor neuron dis-
ease that causes progressive motor deficit and muscle wasting (Pasinelli and Brown,
2006). The C9orf72 hexanucleotide repeat expansion has been identified as the most
common genetic cause of both familial FTD and ALS, as well as of their sporadic
counterparts (DeJesus Hernandez et al., 2011).

There are currently no disease-modifying treatments that can stop the course of
FTD or ALS. New therapeutic trials depend on robust progression biomarkers to
assess treatment outcomes. The study of FTD/ALS genetic forms is particularly
important, since asymptomatic mutation carriers may provide insights about the
early disease stages, before any irreversible neuronal damage (Rohrer et al., 2015).

Among the potential non-invasive biomarkers of neurodegenerative diseases,
circulating microRNAs (miRNAs) constitute a promising approach (Grasso et al.,
2015). MicroRNAs are short noncoding RNAs that negatively regulate gene expres-
sion (Huntzinger and Izaurralde, 2011). There is increasing evidence of a link be-
tween miRNA expression levels and the diagnosis of FTD (Denk et al., 2018; Grasso
et al., 2019; Kmetzsch et al., 2021; Piscopo et al., 2018; Sheinerman et al., 2017) and
ALS (De Felice et al., 2014; Dobrowolny et al., 2021; Freischmidt et al., 2015, 2014;
Kmetzsch et al., 2021; Magen et al., 2021; Raheja et al., 2018; Sheinerman et al., 2017;
Soliman et al., 2021; Takahashi et al., 2015; Tasca et al., 2016; Waller et al., 2017).
However, there are strong inconsistencies between the identified miRINA signatures
in different studies. The examined cohorts are highly heterogeneous, most of them
being sporadic or mixed cohorts of sporadic and genetic forms. Importantly, it is
unclear which miRNAs are specific to a particular genetic mutation or might serve
as biomarkers for several genetic forms. It is also uncertain whether miRNAs found
in sporadic forms are differentially expressed in genetic forms. Furthermore, sev-

eral of the published articles lacked an independent validation cohort, which also
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might have caused disparity between results. This absence of convergence amongst
different studies so far hinders the use of miRNAs in clinical trials.

The present work aims at testing circulating miRNA signatures identified in the
literature, using two independent homogeneous cohorts of patients and presymp-
tomatic carriers: one focused on C9orf72 expansion carriers and another comprising
GRN mutation carriers. For that purpose, we selected all published studies that
identified specific miRNAs isolated from plasma or serum as potential biomarkers
of FTD and/or ALS. With a preregistered study design, we investigated whether
(1) miRNAs revealed in cohorts of sporadic patients (or in mixed cohorts with spo-
radic and genetic forms) may be biomarkers in C90rf/2 and/or GRN genetic forms,
(2) miRNAs identified in a C90rf72 cohort are validated in an independent C9orf72
cohort, and (3) miRNAs discovered in a C90rf72 cohort may be relevant in a GRN
cohort.

We hypothesize that if a miRNA is a potential progression biomarker in a par-
ticular genetic form, it will be differentially expressed (adjusted p-value below 0.05)
between controls and presymptomatic subjects, controls and patients, or presymp-
tomatic subjects and patients in an independent cohort of subjects carrying that mu-
tation. Moreover, we consider that a miRNA signature will constitute a promising
biomarker if a logistic regression model (using these miRNAs as features) classi-
fies subjects between clinical groups with an acceptable area under the ROC curve
(above 0.70).

5.3 Material and Methods

This research was conducted according to the preregistration available in https://
osf.io/4pw8f.

5.3.1 Participants of the validation cohorts

Between 2011 and 2021, 135 individuals were recruited through the French research
network on FTD/ALS (Inserm RBM02-59) and investigated with the same protocol,
as previously described in detail (Le Ber et al., 2006). All participants signed written
informed consents. This study was approved by the Comité de Protection des Per-
sonnes CPP Ile-De-France VI (CPP 36-09 / ID RCB 2008-A01376-49 and CPP 68-15 /
ID RCB 2015-A00856-43).

Two cohorts were studied. One cohort was focused on C9orf72 mutation carri-
ers, including 29 patients (20 FTD, 6 FTD/ALS and 3 ALS) and 17 carriers in the
presymptomatic phase. Another cohort was focused on GRN mutation carriers,
comprising 28 FID patients and 30 presymptomatic carriers. The control group,
shared between the two cohorts, was made up of 31 neurologically healthy individ-
uals that did not carry any of these mutations. Table 5.1 displays the demographic
characteristics of the studied cohorts.
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TABLE 5.1: Demographic characteristics of the studied cohorts.

CIorf72 rescrior{;znatic GRN res I(r;lRi\(:matic Controls
patients presymp patients presymp
carriers carriers
No. 29 17 28 30 31
Female, No. (%) 14 (48.3) 10 (58.8) 10 (35.7) 17 (56.7) 18 (58.1)
Age atinclusion, 0, g o) 51.7 (12.1) 62.9 (11.2) 425 (11) 47.1 (14.6)

mean (SD)

Standardized interviews with family members, full neurological examinations,
quantitative motor testing, and extensive neuropsychological tests measuring all
cognitive domains were used to assess each participant’s cognitive and clinical con-
ditions. All subjects underwent blood tests, and collected samples were stored in the
Paris Brain Institute (ICM) DNA and cell bank.

5.3.2 Plasma preparation, miRNA sequencing and computation pipeline

Blood samples from all participants were collected on EDTA following standardized
collection and handling procedures. The mean disease duration at sampling was
4.9 (SD 3.8) years in the C9orf/2 patients” group and 3.2 (SD 1.4) years in the GRN
patients” group. MiRNA extraction and sequencing were performed as previously
reported (Kmetzsch et al., 2021), with the only differences being that plasma was
slowly melted at 4°C before adding it to the QIAzol solution, and sequencing was
performed in two batches.

Finally, the quantification of miRNAs was carried out according to recommen-
dations by (Potla et al., 2021).

5.3.3 Selected studies

We aimed to find all papers that identified specific miRNAs extracted from human
plasma or serum as potential biomarkers of FTD and/or ALS, excluding reviews
and meta-analyses. We thus conducted the following search in PubMed', on March
10, 2022:

(microRNA[Title] OR microRNAs[Title] OR miR[Title] OR miRNA[Title]) AND
(serum|[Title] OR circulating[Title] OR plasmalTitle]) AND (ALS[Title] OR FTD[Title]
OR amyotrophic[Title] OR frontotemporal[Title] OR (neurodegenerative[Title] AND
(frontotemporal[Title/ Abstract] OR amyotrophic[Title/ Abstract]))) NOT mice [Ti-
tle/ Abstract] NOT mouse[Title/ Abstract] NOT extracellular vesicles[Title] NOT re-
view[PT] NOT meta-analysis[PT] NOT (comment[PT])

This search yielded 19 results. Two papers (Brennan et al., 2019; Grasso et al.,

2015) were excluded because they were review studies, one (Freischmidt et al., 2021)

1h’c’cps: // pubmed.ncbi.nlm.nih.gov/
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was discarded because it was focused on protein levels, and one (Xu et al., 2018) was
excluded because it was focused on one microRNA from serum exosomes.

Our final selection therefore contained 15 articles. Three of these studies identi-
fied miRNA signatures exclusively associated with FTD (Denk et al., 2018; Grasso
et al., 2019; Piscopo et al., 2018), one revealed a single miRNA signature for both
FTD and ALS (Kmetzsch et al., 2021), one detected separate signatures for FTD and
ALS (Sheinerman et al., 2017), and ten of them were entirely focused on ALS (De Fe-
lice et al., 2014; Dobrowolny et al., 2021; Freischmidt et al., 2015, 2014; Magen et al.,
2021; Raheja et al., 2018; Soliman et al., 2021; Takahashi et al., 2015; Tasca et al., 2016;
Waller et al., 2017). The selected papers, their associated microRNAs, diseases, co-
hort types, numbers of patients, and methods of analyses are displayed in Table 5.2.
Since CY90rf72 expansions can cause both FID and ALS, and GRN mutations only
cause FID, there are 16 miRNA signatures (FID and/or ALS) to be tested with our
C9orf72 cohort and five miRNA signatures (FID) to be tested with our GRN cohort.

Some miRNAs were identified by multiple studies, for instance miR-206 (Grasso
et al., 2019; Sheinerman et al., 2017; Soliman et al., 2021; Tasca et al., 2016; Waller
et al., 2017), but most miRNAs were found by a single study. Considering all the
selected articles, the set of miRNAs associated with either FTD or ALS is composed
of 65 miRNAs, and the set of miRNAs associated only with FID is composed of 30
miRNAs.

Most of the selected articles were based on previous versions of the miRBase.
Since we used miRBase version 22.1 in our computation pipeline, the following con-

versions were performed:
¢ miR-320a: miR-320a-5p plus miR-320a-3p
¢ miR-9: miR-9-5p plus miR-9-3p
¢ let-7e: let-7e-5p plus let-7e-3p
¢ miR-1: miR-1-5p plus miR-1-3p
¢ miR-133-a: miR-133-a-5p plus miR-133a-3p
* miR-27a: miR-27a-5p plus miR-27a-3p
* miR-7: miR-7-5p
* miR-451: miR-451a

¢ miR-129-3p: miR-129-1-3p

5.3.4 Differential expression

Differential expression analyses were performed using the R package EdgeR (Robin-
son et al., 2010). After microRNA extraction and sequencing, our dataset contained
the expression levels of 2656 miRNAs (denoted by i) for each of the 135 subjects
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TABLE 5.2: Selected studies investigating circulating microRNA ex-
pression (from serum or plasma) of patients with FTD or ALS.

Patients, Presymto-
rticle isease ohort 0. matic carriers, ethod of analysis sregulated mi s
Articl Di Coh N i i Method of analysi Dysregulated miRNA.
(discovery/replication) No.
miR-663a,
(Grasso et al., . 10/48 split of ~ qRT-PCR of o
2019) FID Sporadic same cohort 752 miRNAs mlR, 502:3p,
miR-206
qRT-PCR of
(Piscopo et al., . 9 miRNAs .
2018) FTD Sporadic 54 - linked with miR-127-3p
apoptosis
let-7b-5p, let-7g-5p,
miR-106a-5p, miR-106b-5p,
qRT-PCR of miR-18b-5p, miR-223-3p,
96 miRNAs miR-26a-5p, miR-26b-5p,
(zgle;k etal, FTD Sporadic 48 - identified in miR-301a-3p, miR-30b-5p,
preliminary miR-146a-5p, miR-15a-5p,
study miR-22-3p, miR-320a,
miR-320b, miR-92a-3p,
miR-1246
RNA- miR-34a-5p,
(Kmetzsch et al., Genetic sequencing miR-345-5p,
2021) FID, ALS ooy = 5 of 2576 miR-200¢-3p,
miRNAs miR-10a-3p
miR-9/let-7e,
miR-7/miR-451,
For each qRT-PCR of miR-335-5p/let-7e
(Sheinerman et al., ” disease, 37 brain- (FTD) and
2017) FID, ALS  Unspecified 25/25 split of ) enriched miR-206/miR-338-3p,
same cohort miRNAs miR-9/miR-129-3p,
miR-335-5p/miR-338-3p
(ALS)
RNA-
. sequencing
Mixed .
(Magen et al., sporadic and 126/122 split (?f 125 miR-181a-5p,
ALS . of same - miRNAs .
2021) genetic . e d s miR-181b-5p
(C90rf72) cohort identified in
longitudinal
study
Mixed qRT-PCR of ,
. sporadic and . miR-206,
(Soliman et al., . 7 miRNAs R
ALS genetic 30 - . . miR-143-3p,
2021) o involved in X
(unspecified miR-142-3p
- ALS
mutation)
Mixed RNA- ,
(Dobrowolny et al sporadic and sequencin miR-151a-5p,
yetalals genetic 13/23 - k 8 miR-199a-5p,
2021) e followed by .
(unspecified miR-423-3p
: qRT-PCR
mutation)
miR-29b-3p, miR-320c,
miR-34a-5p, miR-29¢-3p,
. miR-320a, miR-22-3p,
. Oﬁg‘;dan B qRT-PCR of miR-1, miR-133a-3p,
(Raheja et al., ALS P neti 23 _ 191 miRNAs miR-191-5p, miR-144-5p,
2018) ée%fﬁ; identified on miR-320b, miR-423-3p,
SOD1) ' prior study miR-192-5p, miR-133b,
miR-194-5p, miR-7-1-3p,
miR-19a-3p, miR-425-5p,
miR-145-5p, miR-144-3p
miR-206
(Waller et al., . qRT-PCR of . ¢
ALS Sporadic 27/23 - . miR-143-3p,
2017) 750 miRNAs miR-374b-5p
qRT-PCR of
9 muscle- miR-206,
(Tasca et al., . specific, miR-133a,
2016) ALS Sporadic 14 : inflammatory, miR-133b,
or angiogenic miR-27a
miRNAs
Microarrays,
(Takahashi . 16/48 split of followed by miR-4649-5p,
et al,, 2015) ALS Sporadic same cohort - qRT-PCR of miR-4299
9 miRNAs
Microarrays
of 1733
(Freischmidt et al., . miRNAs, miR-1234-3p,
2015) ALS Sporadic 18/20 ) followed by miR-1825
qRT-PCR of
2 miRNAs
Sy M sy,
(Freischmidt et al., P | 9/13 (genetic), . miR-3665,
2014) ALS genetic 14 (sporadic) 18 miRNAs miR-1915-3
(SOD1, FUS, P and qRT-PCR R0
C90rf72) of 4 miRNAs e
(De Felice et al., . qRT-PCR of .
2014) ALS Sporadic 10 - 1 miRNA miR-338-3p
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(represented by j). First, we created two count matrices: one containing the miRNA
counts from the C9orf72 patients, presymptomatic subjects and controls, and another
containing the miRNA counts from the GRN patients, presymptomatic individu-
als, and controls. Second, for each count matrix, we fit a log-linear model to each

miRNA, following a negative binomial distribution with mean y;; and dispersion ¢;:

log, pij = x/ Bi (5.1)

where x; denotes the covariates describing sample j and f; denotes the coefficients
to be fitted for miRNA i. In addition to the clinical group (control, presymptomatic
or patient), we included batch, center, age and gender as covariates in the model.
A trimmed mean of M-values (Robinson and Oshlack, 2010) was used to normalize
raw counts. Finally, after the log-linear models were fitted, quasi-likelihood (QL)
F-tests were used to identify the differentially expressed miRNAs.

Concretely, we tested each of the 65 miRNAs associated with either FTD or ALS
in the literature, to identify which were differentially expressed between (a) con-
trols vs. C9orf72 presymptomatic subjects, (b) controls vs. C9orf72 patients, and
(c) C9orf72 presymptomatic subjects vs. CY9orf/2 patients. Additionally, we tested
the 30 miRNAs associated with only FTD in the literature, to highlight which were
differentially expressed between (d) controls vs. GRN presymptomatic subjects, (e)
controls vs. GRN patients, and (f) GRN presymptomatic subjects vs. GRN patients.

All p-values were 2-tailed, and the level of statistical significance was set at 0.05,
while p-values between 0.05 and 0.1 were considered as suggestive. The Benjamini-
Hochberg (Benjamini and Hochberg, 1995) procedure was used to adjust p-values
for multiple testing.

5.3.5 Binary classification

To test if the miRNA signatures described in the literature could discriminate be-
tween clinical groups, we trained L2-regularized logistic regression classifiers, us-
ing Python 3.8.5 with scikit-learn (Pedregosa et al., 2011) 0.23.2. We first organized
the miRNA expression data into six datasets, one for each relevant pairwise com-
parison: (a) controls vs. C9orf/2 presymptomatic subjects, (b) controls vs. C9orf72
patients, (c) C9orf72 presymptomatic subjects vs. C9orf72 patients, (d) controls vs.
GRN presymptomatic subjects, (e) controls vs. GRN patients, and (f) GRN presymp-
tomatic subjects vs. GRN patients. A total of 18 classifiers were trained for each of
the comparisons (a), (b) and (c): 16 classifiers used as features each of the miRNA
signatures identified in the literature, and two were trained with meta-signatures
containing the differentially expressed miRNAs identified in the univariate analyses
(a), (b) and (c), respectively with adjusted p-values lower than 0.05 and 0.1. In ad-
dition, seven classifiers were built for each of the comparisons (d), (e) and (f): five
of them used as features each of the miRNA signatures associated with FTD in the
literature, and two were trained with meta-signatures containing the differentially
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expressed miRNAs identified in the univariate analyses (d), (e) and (f), respectively
with adjusted p-values lower than 0.05 and 0.1.

Each logistic regression model was trained with a nested 5-fold cross-validation
strategy, as previously detailed (Kmetzsch et al., 2021). We computed the area under
the ROC curve for each model, as well as 90% empirical confidence intervals from
2000 bootstrap samples. A miRNA signature was considered a promising biomarker
for a given comparison if the corresponding ROC AUC was above 0.70.

5.4 Results

5.4.1 Differential expression in the C90rf72 cohort

The first analysis consisted of testing which miRNAs identified in our literature
search were differentially expressed in the C90rf72 cohort. Of the 65 selected miR-
NAs, 35 were significantly differentially expressed (adjusted p-values smaller than
0.05) in at least one comparison, while nine miRNAs had a p-value between 0.05 and
0.1. All differentially expressed miRNAs, including log-fold changes indicating the
intensity of underexpression or overexpression, as well as computed p-values, are
displayed in Table 5.3. The complete output from the differential expression analy-
ses in the C9orf72 cohort are displayed in Appendix B Supplementary Table 1.

The meta-signature of the C90rf72 cohort containing all differentially expressed
miRNAs with adjusted p-values lower than 0.05 in at least one comparison com-
prises the following 35 miRNAs: miR-34a-5p, miR-338-3p, miR-142-3p, miR-320a,
miR-145-5p, miR-92a-3p, let-7g-5p, miR-199a-5p, miR-206, miR-30b-5p, miR-191-5p,
miR-27a, miR-320b, miR-143-3p, miR-1246, miR-223-3p, miR-144-3p, miR-451, miR-
194-5p, miR-144-5p, miR-29b-3p, miR-29¢-3p, miR-192-5p, miR-19a-3p, miR-502-3p,
miR-15a-5p, miR-374b-5p, miR-7-1-3p, miR-320c, miR-106b-5p, miR-146a-5p, miR-
133b, let-7b-5p, miR-345-5p, and miR-22-3p. The meta-signature consisting of the
miRNAs with adjusted p-values lower than 0.1 has nine more miRNAs: miR-151a-
5p, miR-1234-3p, miR-26a-5p, miR-301a-3p, let-7e, miR-18b-5p, miR-106a-5p, miR-
1915-3p, and miR-9.

5.4.2 Differential expression in the GRN cohort

The second analysis focused on identifying which of the 30 miRNAs linked with
FTD in the literature were differentially expressed in the GRN cohort. In at least
one comparison, five miRNAs were significantly differentially expressed (adjusted
p-values lower than 0.05), whereas four miRNAs had a p-value between 0.05 and
0.1. Table 5.4 lists all differentially expressed miRNAs, including log-fold changes
reflecting the degree of underexpression or overexpression and the calculated p-
values, while Appendix B Supplementary Table 2 summarizes the complete results
of the differential expression experiments in the GRN cohort.
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TABLE 5.3: Differentially expressed miRNAs in the C9orf72 cohort,
for each pairwise comparison between the clinical groups. A positive
log-fold change means that the miRNA is overexpressed in the first
group. Controls (n=31), C9orf72 presymptomatic subjects (n=17), and
C9orf72 patients (n=29). All miRNAs with adjusted p-values lower
than 0.1 are displayed, and adjusted p-values lower than 0.05 are

shown in bold.

miRNA log-fold change p-value adjusted p-value
Controls vs. C9orf72 presymptomatic subjects
miR-34a-5p -1.58 3.72E-10 2.42E-08
miR-338-3p -0.79 3.48E-04 9.53E-03
miR-142-3p -0.82 4.90E-04 9.53E-03
miR-320a 0.74 5.87E-04 9.53E-03
miR-145-5p -0.94 2.29E-03 2.53E-02
miR-92a-3p 0.75 2.63E-03 2.53E-02
let-7g-5p -0.46 2.73E-03 2.53E-02
miR-199a-5p -1.13 3.62E-03 2.62E-02
miR-206 2.04 3.62E-03 2.62E-02
miR-30b-5p -1.17 4.45E-03 2.89E-02
miR-191-5p -0.44 5.34E-03 3.00E-02
miR-27a -0.89 5.53E-03 3.00E-02
miR-320b 0.76 7.88E-03 3.94E-02
miR-143-3p -0.67 9.46E-03 4.22E-02
miR-1246 1.10 9.73E-03 4.22E-02
miR-223-3p -0.70 1.08E-02 4.38E-02
miR-144-3p 0.87 1.17E-02 4.46E-02
let-7b-5p 0.39 1.52E-02 5.50E-02
miR-151a-5p -0.50 1.83E-02 6.25E-02
miR-1234-3p 1.40 2.01E-02 6.52E-02
miR-26a-5p -0.49 2.11E-02 6.52E-02
miR-374b-5p -0.80 2.45E-02 7.01E-02
miR-146a-5p -0.68 2.48E-02 7.01E-02
miR-320c 0.58 3.60E-02 9.37E-02
miR-301a-3p -0.46 3.60E-02 9.37E-02
Controls vs. C90rf72 patients
miR-34a-5p -1.49 7.78E-08 5.06E-06
miR-451 2.20 2.87E-05 6.80E-04
miR-194-5p 1.55 3.21E-05 6.80E-04
miR-144-5p 2.68 4.19E-05 6.80E-04
miR-29b-3p 1.01 2.86E-04 3.72E-03
miR-29¢-3p 0.80 6.61E-04 7.16E-03
miR-192-5p 0.99 9.39E-04 8.72E-03
miR-19a-3p 1.25 1.32E-03 1.08E-02
miR-502-3p 0.80 4.84E-03 3.50E-02
miR-15a-5p 0.62 6.70E-03 4.36E-02
miR-206 -1.81 7.92E-03 4.68E-02
let-7e -0.74 9.91E-03 5.37E-02
miR-133b 1.11 1.45E-02 7.26E-02
miR-18b-5p 0.62 1.59E-02 7.37E-02
miR-106a-5p 0.69 1.88E-02 8.17E-02
miR-1915-3p 1.44 2.04E-02 8.29E-02
CY0rf72 presymptomatic subjects vs. C9orf72 patients
miR-206 -3.85 2.35E-06 9.04E-05
miR-29b-3p 1.42 2.78E-06 9.04E-05
miR-30b-5p 1.90 3.15E-05 6.83E-04
miR-199a-5p 1.70 6.58E-05 8.93E-04
miR-27a 1.41 6.87E-05 8.93E-04
miR-29¢-3p 0.92 1.86E-04 2.01E-03
miR-320a -0.85 2.17E-04 2.02E-03
miR-374b-5p 1.42 2.87E-04 2.33E-03
miR-7-1-3p 1.08 4.35E-04 3.14E-03
miR-19a-3p 1.37 6.33E-04 4.11E-03
miR-338-3p 0.76 1.26E-03 7.43E-03
miR-145-5p 1.04 1.41E-03 7.61E-03
miR-142-3p 0.79 1.57E-03 7.83E-03
miR-320b -0.94 1.86E-03 8.61E-03
miR-320c -0.92 2.09E-03 9.06E-03
miR-106b-5p 0.72 2.97E-03 1.21E-02
miR-146a-5p 0.96 3.36E-03 1.28E-02
miR-133b 1.31 6.20E-03 2.23E-02
miR-223-3p 0.82 6.53E-03 2.23E-02
let-7b-5p -0.46 7.16E-03 2.33E-02
miR-345-5p 0.61 7.69E-03 2.38E-02
miR-194-5p 1.01 8.56E-03 2.53E-02
miR-143-3p 0.68 1.13E-02 3.19E-02
miR-22-3p 0.36 1.77E-02 4.80E-02
miR-301a-3p 0.54 2.24E-02 5.83E-02
miR-144-5p 1.50 2.38E-02 5.91E-02
miR-9 0.46 2.45E-02 5.91E-02
miR-451 1.18 2.76E-02 6.40E-02
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TABLE 5.4: Differentially expressed miRNAs in the GRN cohort, for

each pairwise comparison between the clinical groups. A positive

log-fold change means that the miRNA is overexpressed in the first

group. Controls (n=31), GRN presymptomatic subjects (n=30), GRN

patients (n=28). All miRNAs with adjusted p-values lower than 0.1

are displayed, and adjusted p-values lower than 0.05 are shown in
bold.

miRNA log-fold change p-value adjusted p-value

Controls vs. GRN presymptomatic subjects

(No miRNA was differentially expressed between
controls and GRN presymptomatic subjects)

Controls vs. GRN patients

miR-451 2.23 2.65E-06 7.96E-05
miR-15a-5p 0.77 3.03E-04 4.54E-03
miR-502-3p 0.82 1.73E-03 1.73E-02
miR-7 0.56 4.56E-03 3.42E-02
miR-18b-5p 0.64 7.39E-03 4.44E-02
miR-106a-5p 0.68 1.14E-02 5.72E-02
miR-92a-3p 0.51 1.57E-02 6.72E-02
miR-106b-5p 047 2.67E-02 9.44E-02
let-7b-5p 0.33 2.83E-02 9.44E-02
GRN presymptomatic subjects vs. GRN patients
miR-451 1.45 3.35E-03 6.92E-02
miR-7 0.61 4.61E-03 6.92E-02

The meta-signature of the GRN cohort containing all differentially expressed
miRNAs with adjusted p-values lower than 0.05 is comprised of the following five
miRNAs: miR-451, miR-15a-5p, miR-502-3p, miR-7, and miR-18b-5p. The meta-
signature consisting of the miRNAs with adjusted p-values smaller than 0.1 has four
more miRNAs: miR-106a-5p, miR-92a-3p, miR-106b-5p, and let-7b-5p.

Finally, Table 5.5 allows comparing the differentially expressed miRNAs between
the C9orf72 and the GRN cohorts.

5.4.3 Binary classification in the C90rf72 cohort

The first set of logistic regression classifiers focused on the C9orf/2 cohort. We
trained 18 classifiers for each pairwise comparison, using the 16 miRNA signatures
identified in the literature and two meta-signatures obtained from the differential ex-
pression analyses. The ROC AUC results and the 90% confidence intervals obtained
with 2000 bootstrap samples are displayed in Figure 5.1. The miRNA signatures
with the largest ROC AUC were from (Kmetzsch et al., 2021) (0.98 for controls vs.
presymptomatic subjects), (Raheja et al., 2018) (0.94 for controls vs. patients), and the
meta-signature with p-value < 0.1 (0.77 for presymptomatic subjects vs. patients).
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TABLE 5.5: Differentially expressed miRNAs for at least one pairwise
comparison between clinical groups, considering both cohorts. The
* indicates in which comparisons each miRNA was significantly dif-
ferentially expressed (adjusted p-values below 0.05), while the (+) de-

notes adjusted p-values between 0.05 and 0.1.

Controls vs. C901f72 pre-  Controls vs.

C9or1f72 Controls vs. symptomatic GRN Controls vs. CRN pre-.

miRNA presympto- C9orf72 subjects vs.  presympto- GRN s::;lj)et:::i:'c

maftic patients C9z.1rf72 meftic patients GRN patients

subjects patients subjects

miR-34a-5p * *

miR-338-3p * *

miR-142-3p * *

miR-320a * *

miR-145-5p * *

miR-92a-3p * (+)

let-7g-5p *

miR-199a-5p * *

miR-206 * * *

miR-30b-5p * *

miR-191-5p *

miR-27a * *

miR-320b * *

miR-143-3p * *

miR-1246 *

miR-223-3p * *

miR-144-3p *

miR-451 * +) * )

miR-194-5p * *

miR-144-5p * (+)

miR-29b-3p * *

miR-29¢-3p * *

miR-192-5p *

miR-19a-3p * *

miR-502-3p * *

miR-15a-5p * *

miR-374b-5p +) *

miR-7-1-3p *

miR-320c (+) *

miR-106b-5p * (+)

miR-146a-5p +) *

miR-133b +) *

let-7b-5p (+) * (+)

miR-345-5p *

miR-22-3p *

miR-7 * +)

miR-18b-5p +) *

miR-151a-5p (+)

miR-1234-3p +)

miR-26a-5p (+)

miR-301a-3p (+) (+)

let-7e (+)

miR-106a-5p (+) (+)

miR-1915-3p +)

miR-9 )




66 Chapter 5. Validation of microRNA signatures in genetic FTD and ALS

0.2

Grasso et al., 2019

Piscopo et al., 2018

Denk et al., 2018

Kmetzsch et al., 2021

Sheinerman et al., 2017
(FTD)

Sheinerman et al., 2017
(ALS)

Magen et al., 2021

Soliman et al., 2021

Dobrowolny et al., 2021

Raheja et al., 2018

Waller et al., 2017

Tasca et al., 2016

Takahashi et al., 2015

Freischmidt et al., 2015

Freischmidt et al., 2014

De Felice et al., 2014

Meta-signature p < 0.05

Meta-signature p < 0.1

ROC AUC
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
i
i  —*
1
1
1
1
T
1
1
1
1
1
o i
1
1
1
1
= @ I
* i
1
1
1
[ [ —
1 - \ 4
1
1
1
! &
1 @
T e &
L o
:
i _—
1
1
1
1
o7 = =
. o
1
1
1
1 &
C— — o
1
1
1
1
_—
= ]
i
1
Py
S
e
1
1
1
—_'.—,—
hd T
1
1
1
1
—_—e————— 1 —
. o
1
1
i N —
! N —— 0 ——
Control vs. Presymptomatic o
Control vs. Patient
e
g ——

Presymptomatic vs. Patient

- Random guess

FIGURE 5.1: Area under the ROC curve results when classifying
groups from the C90rf72 cohort. The solid circles indicate the areas
under the ROC curves obtained for each pairwise comparison using
18 different miRNA signatures. The whiskers denote empirical 90%
confidence intervals obtained with 2000 bootstrap samples

5.4.4 Binary classification in the GRN cohort

The second set of classification experiments consisted of training seven logistic re-

gression models for each pairwise comparison in the GRN cohort, using five miRNA

signatures linked with FTD in the literature and two meta-signatures obtained in the
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differential expression analyses. Figure 5.2 shows the ROC AUC results and the cor-
responding 90% confidence intervals computed with 2000 bootstrap samples. The
miRNA signatures with the largest ROC AUC were (Grasso et al., 2019) (0.53 for
controls vs. presymptomatic subjects), and the meta-signature with p-value < 0.1

(0.63 for controls vs. patients, and 0.72 for presymptomatic subjects vs. patients).
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FIGURE 5.2: Area under the ROC curve results when classifying
groups from the GRN cohort. The solid circles indicate the areas
under the ROC curves obtained for each pairwise comparison using
seven different miRNA signatures. The whiskers denote empirical
90% confidence intervals obtained with 2000 bootstrap samples

5.5 Discussion

The goal of this study was to assess all circulating miRNA signatures previously
published in the literature as possible biomarkers of FTD and/or ALS, by testing
them in two separate homogeneous cohorts of C9orf72 and GRN mutation carriers,
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comprising patients and presymptomatic subjects. The results of this work demon-
strate that (1) several miRNAs identified in sporadic or mixed FTD/ALS cohorts
could potentially be used as biomarkers of C9orf/2-associated disease; (2) some miR-
NAs revealed in a C9orf72 cohort are validated in an independent C9orf72 cohort;
and (3) most miRNAs associated with FTD in sporadic or mixed cohorts, or in a
cohort of C9orf/2 mutation carriers, are not relevant biomarkers of GRN-associated
disease.

First, differential expression results (Table 5.3) showed that more than half (35/65)
of the miRNAs linked with FTD and/or ALS in the literature were significantly dif-
ferentially expressed in the C90rf/2 cohort. Remarkably, only four of the 15 selected
studies included C9orf72 mutation carriers (Freischmidt et al., 2014; Kmetzsch et al.,
2021; Magen et al., 2021; Raheja et al., 2018), three of which focused exclusively on
ALS (Freischmidt et al., 2014; Magen et al., 2021; Raheja et al., 2018). Therefore,
these outcomes reveal strong miRNA expression similarities between individuals
with sporadic forms of FTD/ALS and C9orf72-associated disease. Classification re-
sults with the C90rf72 cohort (Figure 5.1) also corroborate these findings, since half
of the examined miRNA signatures (8/16) yielded at least one pairwise comparison
with acceptable performance (ROC AUC above 0.70), and all comparisons employ-
ing the meta-signatures had satisfactory performance.

Next, we observed that a miRNA signature previously identified in a homoge-
neous C9orf/72 cohort (Kmetzsch et al., 2021) and another one revealed in a mixed
cohort of sporadic and familial ALS (Raheja et al., 2018) displayed an outstanding
result (ROC AUC above 0.90) when classifying controls vs. C9orf72 presymptomatic
subjects and controls vs. C9orf72 patients (Figure 5.1). These two signatures have in
common the presence of miR-34a-5p, which has the smallest adjusted p-value in the
differential expression analyses regarding these comparisons (Table 5.3, respectively
p-value = 2.42E-08 and p-value = 5.06E-06). In contrast, the performance of both of
these signatures classifying C9orf72 presymptomatic individuals from patients was
unsatisfactory. Indeed, neither of them contained miR-206, which is the most dif-
ferentially expressed miRNA in this comparison (Table 5.3, p-value = 9.04E-05). The
overexpression of miR-206 in ALS patients had already been evidenced (Toivonen et
al., 2014), and the results of the present work extend this association also to C9orf72-
associated disease. Nevertheless, even using the expression levels of miR-206, the
classification of C9orf/2 presymptomatic subjects vs. patients led to lower perfor-
mances than comparisons involving the control group: the highest ROC AUC was
0.77, using the meta-signature with p-value < 0.1.

Finally, our results with the GRN cohort suggest that previously identified miR-
NAs have a weaker correlation with disease diagnosis and progression in this ge-
netic form. Only a small proportion (5/30) of the miRNAs associated with FTD in
previous studies was significantly differentially expressed in the GRN cohort (Ta-
ble 5.4), and not a single miRNA was differentially expressed between controls and

presymptomatic GRN carriers. Regarding the classification experiments, none of the
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studied miRNA signatures in the GRN cohort exhibited an acceptable performance
(Figure 5.2), and the only ROC AUC slightly above 0.70 was obtained when clas-
sifying GRN presymptomatic carriers and patients using the largest meta-signature
(miRNAs with p-value < 0.1). One should note that none of the previous studies
included GRN participants. Thus, our results demonstrate that miRNAs associated
with sporadic FTD or genetic FTD due to C9orf72 are not relevant for GRN-associated
disease. Further studies are needed to determine if other miRNAs, not analyzed in
the present paper, are useful in GRN-associated disease.

Validation studies using independent datasets, such as this one, are crucial to as-
sess the utility of biomarker candidates, fostering research rigor and reproducibility.
Notably, we carefully defined our research questions and analysis plan before data
analysis, and preregistered our study. Preregistration has the strong benefit of leav-
ing no flexibility for changes in analytical decisions after observing the data, which
has been highlighted as a major source of false discoveries and replication failure
(Nosek et al., 2018).

The main limitation of this work is the size of the studied cohorts, particularly the
small group of C9orf72 presymptomatic carriers (17) in comparison with the other
groups, due to the rarity of genetic FTD. Additionally, due to the low number of
C9orf72 patients with different phenotypes (20 FID, 6 FTD/ALS and 3 ALS), no con-
clusions can be drawn concerning the relationship between miRNAs and different
disease manifestations. Future work will explore the combination of circulating mi-
croRNAs with other biomarkers, such as gray matter volume (Rohrer et al., 2015),
white matter integrity (Bertrand et al., 2018), and neurofilament light chain level
(Saracino et al., 2021). Multimodality will be crucial to accurately assess progres-
sion in GRN-associated FID, and will likely improve the understanding of C9orf72-
associated disease.

In summary, the present work revealed that most miRNAs previously identi-
fied in sporadic or mixed FITD/ALS cohorts are potential biomarkers of C9orf/2-
associated FTD/ALS, but not of GRN-associated FTD. Longitudinal studies are needed
to confirm our findings, before circulating microRNAs can be used to evaluate C9orf/2-

associated disease progression in clinical trials.
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Chapter 6

Disease progression score
estimation from multimodal
imaging and microRNA data using
supervised variational

autoencoders

This chapter is under review as an original research article at the IEEE Journal of
Biomedical and Health Informatics:

e Kmetzsch, V., Becker, E., Saracino, D., Rinaldi, D., Camuzat, A., Le Ber, 1., Col-
liot, O., “Disease progression score estimation from multimodal imaging and
microRNA data using supervised variational autoencoders”. Under review at
the IEEE Journal of Biomedical and Health Informatics.

6.1 Abstract

Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenera-
tive diseases with no effective treatment. The development of biomarkers allowing
an accurate assessment of disease progression is crucial for evaluating new ther-
apies. Concretely, neuroimaging and transcriptomic (microRNA) data have been
shown useful in tracking their progression. However, no single biomarker can accu-
rately measure progression in these complex diseases. Additionally, large samples
are not available for such rare disorders. It is thus essential to develop methods that
can model disease progression by combining multiple biomarkers from small sam-
ples. In this paper, we propose a new framework for computing a disease progres-
sion score (DPS) from cross-sectional multimodal data. Specifically, we introduce a
supervised multimodal variational autoencoder that can infer a meaningful latent
space, where latent representations are placed along a disease trajectory. A score
is computed by orthogonal projections onto this path. We evaluate our framework
with multiple synthetic datasets and with a real dataset containing 14 patients, 40
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presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS
study. There is no ground truth for the DPS in real-world scenarios, therefore we
use the area under the ROC curve (AUC) as a proxy metric. Results with the syn-
thetic datasets support this choice, since the higher the AUC, the more accurate the
predicted simulated DPS. Experiments with the real dataset demonstrate better per-
formance in comparison with a state-of-the-art approach. The proposed framework
thus leverages cross-sectional multimodal datasets with small sample sizes to objec-

tively measure disease progression, with potential application in clinical trials.

6.2 Introduction

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are rare
neurodegenerative disorders that have devastating personal and social consequences.
Progressive cognitive and behavioural changes, emotional instability, and language
impairment are the main symptoms of FID (Rascovsky et al., 2011). ALS is a mo-
tor neuron disease characterized by gradual muscle wasting, ultimately leading to
disability (Pasinelli and Brown, 2006). FTD and ALS may be sporadic (no previous
family history) or genetically inherited. The most common genetic cause of FTD and
ALS is a hexanucleotide repeat expansion in the C90rf72 gene (DeJesus Hernandez
et al., 2011; Renton et al., 2011). These fatal conditions can sometimes coexist in
CY9orf72-mutated individuals, and have no cure or standard treatment to date.

Carriers of the C90rf/2 mutation that do not present clinical symptoms are con-
sidered presymptomatic, since they have a very high probability of manifesting FTD
and/or ALS later in life. Clinical trials for potential therapies are likely to be most
effective at this presymptomatic stage, before any irreversible brain damage has oc-
curred. However, the evaluation of new treatments depends on an accurate measure
of disease progression, which is not evident without observable symptoms. There-
fore, it is crucial to identify biomarkers to assess disease progression in presymp-
tomatic subjects. Indeed, previous work has shown the relevance of neuroimaging
(Bertrand et al., 2018; Rohrer et al., 2015) and transcriptomic (microRNA) (Kmetzsch
et al., 2021) biomarkers for a better understanding of C9orf72-associated disease in
presymptomatic carriers. Nevertheless, when these modalities are analyzed sepa-
rately, they provide only an incomplete picture of these complex neurodegenerative
diseases. It is thus essential to develop methods that leverage the complementary in-
formation available from different modalities to accurately measure disease progres-
sion. As different biomarkers characterise distinct disease stages, various biomark-
ers can be combined to represent the entire disease course with a single measure,
commonly referred in the literature as the disease progression score (DPS).

The idea of computing disease progression scores falls within the larger topic of
modeling disease progression. In the past years, many approaches have been devel-
oped for data-driven modeling of disease progression, such as event-based models
(EBM) (Fonteijn et al., 2012; Venkatraghavan et al., 2019), different algorithms fitting
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logistic functions to biomarker trajectories (Jedynak et al., 2012; Mehdipour Ghazi et
al., 2021), non-linear mixed-effects models (Koval et al., 2021; Schiratti et al., 2017),
a vertex-wise model of brain diseases fitted with expectation-maximisation (Mari-
nescu et al., 2019), Gaussian processes (Lorenzi et al., 2019a), topological profiles
reflecting brain connectivity (Garbarino et al., 2019), Bayesian multi-task learning
(Aksman et al., 2019), and recurrent neural networks (Mehdipour Ghazi et al., 2019).

Most of these approaches require longitudinal data. For instance, the authors of
(Jedynak et al., 2012) assume that the longitudinal dynamic of each biomarker can be
represented as a sigmoidal function of the DPS. They propose a joint optimization al-
gorithm to compute the DPS, fit one sigmoid function per biomarker using alternat-
ing least squares, and apply their work to hundreds of patients with Alzheimer’s dis-
ease (AD). Similarly, a more recent method (Mehdipour Ghazi et al., 2021), also ap-
plied to AD, uses M-estimation to map each subject’s age to a DPS, jointly fitting gen-
eralized logistic functions to the longitudinal dynamics of biomarkers as functions of
the DPS. Schiratti and colleagues (Schiratti et al., 2017) propose a general non-linear
mixed-effects model for longitudinal data based on concepts from Riemannian ge-
ometry. The application of this framework to AD, called AD Course Map (Koval
et al., 2021), allowed to map each subject to their corresponding disease stage. The
authors of (Lorenzi et al., 2019a) propose a probabilistic approach based on Gaussian
process regression from time-series of biomarker measurements. Yet another frame-
work, named Data-driven Inference of Vertexwise Evolution (DIVE) (Marinescu et
al., 2019) consists in identifying clusters of vertex-wise biomarker measurements
in the brain, and estimating representative trajectories for these clusters. Finally,
(Mehdipour Ghazi et al., 2019) uses recurrent neural networks to predict biomarker
values without parametric assumptions about trajectories, with application to AD.
To the best of our knowledge, the only disease modeling approaches that infer a
DPS from cross-sectional data are EBM (Fonteijn et al., 2012; Venkatraghavan et al.,
2019). These models explore the temporal sequence in which biomarkers become
abnormal in the course of a disease. They have been successfully applied to a vari-
ety of diseases including AD (Archetti et al., 2019; Firth et al., 2020; Fonteijn et al.,
2012; Oxtoby et al., 2018; Venkatraghavan et al., 2019; Young et al., 2014), multiple
sclerosis (Dekker et al., 2020; Eshaghi et al., 2018), Parkinson’s disease (Oxtoby et
al., 2021), Huntington’s disease (Wijeratne et al., 2021) as well as FID (Ende et al,,
2021; Panman et al., 2021) and ALS (Gabel et al., 2020). However, in these works,
EBMs were applied to a relatively small number of features (typically 10-50) and it
is unknown if they would perform well in higher dimensions.

Despite the recognized importance of estimating neurodegenerative diseases pro-
gression, research has tended to focus mostly on higher prevalence conditions. Ex-
isting solutions are thus inadequate to model rare diseases with high-dimensional
cross-sectional data, for three main reasons. First, we observe that longitudinal data
is needed for the vast majority of approaches. However, C9orf72-associated FTD and

ALS are slowly progressive conditions in the presymptomatic phase, which hinders
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the collection of meaningful longitudinal data. Second, most published methods
benefit from large samples, which are not available for very low prevalence dis-
orders such as genetic FTD and ALS. Finally, it is unclear if event-based models,
the only methods suitable for cross-sectional data, can be robustly applied to high-
dimensional microRNA expression data, which comprise hundreds of biomarkers.

In this paper, we thus present a novel framework to estimate disease progression
scores for rare neurodegenerative disorders using only cross-sectional data. To that
purpose, we introduce a new supervised multimodal variational autoencoder (VAE)
trained with neuroimaging and microRNA data. Our working hypothesis is that
disease progression scores may be modelled as underlying latent traits. Concretely,
we aim to learn a meaningful latent space, where the relative positions of latent
representations indicate the distance travelled along the disease pathophysiological
pathway.

VAEs are powerful generative models that project data into a low-dimensional
regularized latent space (Kingma and Welling, 2014). These models have been pre-
viously used with multimodal data (Antelmi et al., 2019; Cheng et al., 2022; Xu et al.,
2021), but not for the purpose of inferring a DPS. Usually VAEs are trained in an un-
supervised manner. However, extensions have been proposed for semi-supervised
(Berkhahn et al., 2019; Kingma et al., 2014; N et al., 2017) or supervised (Ji et al., 2021)
tasks. These studies demonstrate that providing supervision to the model imposes
specific semantics on the latent space, resulting in more meaningful and robust rep-
resentations. In our context, explicit labels (control, presymptomatic, patient) are al-
ready available for all subjects. We thus add supervision during training, leveraging
this information to improve the separation of the groups in the latent space. Addi-
tionally, we propose to split high-dimensional (neuroimaging and microRNA data)
and low-dimensional (demographic information) modalities. Our model thus cou-
ples two neural networks with different inputs: (1) an encoder/decoder that learns
a latent space from the high-dimensional features, and (2) a classifier having as in-
put the latent variables concatenated with the low dimensional features, useful for
the classification task. As no ground truth is available for the DPS in real-world sce-
narios, we evaluate our models with a proxy metric: the area under the ROC curve
(AUC) for each pairwise classification between clinical groups, computed using only
the inferred DPS.

A preliminary version of this work has been published at the SPIE Medical Imag-
ing 2022 conference (Kmetzsch et al., 2022). Compared to the conference version, the
present paper introduces the following novelties: (1) a supervised instead of a stan-
dard unsupervised VAE approach, (2) data split between low-dimensional and high-
dimensional modalities, (3) disease trajectory computation in the latent space using
principal curves instead of straight lines, (4) additional experiments with multiple
synthetic datasets, (5) a comparison with event-based models, and (6) an ablation

study.
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FIGURE 6.1: Illustration of the proposed framework for disease
progression scores (DPS) computation. 1) High-dimensional (neu-
roimaging and microRNAs expression data) and low-dimensional
(demographic information) features are extracted; the former are fed
to the encoder, the latter are concatenated with latent codes and fed
to the classifier. 2) Once the model is trained, all training examples
are encoded in the latent space and a principal curve is calculated to
define the disease trajectory. 3) Test examples are encoded in the la-
tent space and the latent representations are orthogonally projected
onto the previously computed curve; the DPS correspond to their co-
ordinates along the curve.

The manuscript is organized as follows. Section 6.3 explains our proposed frame-
work, section 6.4 describes the analyzed datasets, section 6.5 details our experiments
and corresponding outcomes, and finally section 6.6 examines the meaning of our

results and highlights the broader implications of our study.

6.3 Methodology

We consider a dataset (X,Y) = {(x1,¥1), ..., (Xn, yn) }. The i-th subject is character-
ized by a feature vector x; € R” and a label y; € {0,1,2} denoting the clinical
group (control, presymptomatic, patient). Our aim is to estimate a DPS, denoted
as v; € [1,100] (the interval for the scores is arbitrary), where a greater score corre-
sponds to a higher disease severity. To that purpose, we assume that the observa-
tions have corresponding latent variables z; € R’. We will thus aim to estimate a
latent representation and the DPS will be computed from a trajectory in the latent
space.

Our framework is composed of three main steps, as illustrated in Fig. 6.1. First,
we propose a supervised multimodal variational autoencoder to estimate the latent
space. We leverage the fact that participants belong to different groups to introduce
some supervision in order to improve the VAE training. The model aims at simul-

taneously reconstructing the data and classifying the participants. We propose to
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split low-dimensional sociodemographic data (denoted A}4, used only for the classi-
fication) from high-dimensional multimodal neuroimaging and transcriptomic data
(denoted A}y, used both for reconstruction and classification). Second, we build a
curve representing disease trajectory in the latent space. Finally, data from new sub-
jects, not included in the training set, are encoded in the latent space and projected
onto this trajectory, in order to obtain their DPS.

In this section, we first explain the three main steps of our framework, then we

describe implementation details.

6.3.1 Supervised multimodal VAE

A variational autoencoder (VAE) (Kingma and Welling, 2014) is a generative model
that learns the training data distribution p(x) using a latent representation model:

p(x) = /P(XIZ)p(z)dz,

where z is a continuous latent variable living in a lower dimensional space and p(z)
is its prior distribution, commonly a Gaussian with zero mean and identity covari-
ance matrix. The solution of the inference problem to describe the latent space is
given by deriving the posterior p(z|x). However, there is no closed-form solution
for complex real-world datasets. Therefore, VAEs introduce the idea of learning a
variational approximation q4(z|x) of the true posterior, in the form of a neural net-
work referred to as the encoder. The encoder maps data x to a mean vector z,eqs, and
a log-variance vector zjyey,r, that parametrize a Gaussian distribution from which
we obtain the latent representation z. VAEs are also equipped with a generative
function py(x|z), parametrized by a neural network referred to as the decoder. The
decoder transforms the latent representation z back to the original input space.
During training, the vanilla VAE aims at maximizing the variational lower bound
of the marginal log-likelihood, known as the evidence lower bound (ELBO). This is

equivalent to minimizing a loss function with two terms:

L= Lr(x, %) + Lxr(qp(2|x), p(2)).

The first term is the reconstruction error between the input data x and the recon-
structed data £, typically a mean squared error (MSE). The second term is the Kullback-
Leibler divergence between the approximated posterior g4(z|x) and the prior distri-
bution p(z), acting as a regularization term.

We propose to insert a supervised branch in the vanilla VAE architecture in order
to exploit the fact that our samples have different diagnostic labels, even though
their DPS is unknown. Denoting y as the true class label and 7 as the predicted class

label, we define our training objective as:

L=ar-Ly(x,%) +az- Lxr(q9(z]x), p(2)) +as- Lc(y, 1),
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where £, and Lk, correspond to the ELBO in vanilla VAEs and L, is a cross-entropy
term that penalizes the classification error. The hyperparameters «; control the rela-
tive weights between the different loss terms (Zzzl ap =1).

Before training, we split the high-dimensional modalities (miRNA expression
and neuroimaging) from the low-dimensional (demographic information). As it will
be mentioned later in the datasets description, we consider one low-dimensional
feature and m — 1 high-dimensional features, although the same concepts can be
applied to more low-dimensional features. So we use m — 1 features to feed the
encoder and one feature concatenated to the latent code to feed the classifier. Fea-
tures are rescaled from 0 to 1. Our encoder consists of fully-connected layers of sizes
(m—1) — 50 — 2, meaning our latent space is 2-dimensional. The decoder is im-
plemented with fully-connected layers of sizes 2 — 50 — (m — 1). The nonlinear
activation function is the leaky rectified linear unit (ReLU) in all layers except the
decoder’s last layer which uses a sigmoid function to constrain the output between
0 and 1. The classifier network has one fully connected layer of 3 — 3 units, with a
softmax function to normalize the output to probabilities over the predicted classes.
We use the mean squared error as the reconstruction loss £, and the cross-entropy
as the classification loss L..

6.3.2 Trajectory definition

Once the model is trained, the next step is to encode the training data in the latent
space. We then compute the straight line passing through the centroids of the con-
trol and patient clusters. This straight line could be used in downstream analyses as
a rudimentary disease trajectory in the latent space. Instead, we obtain an improved
nonlinear trajectory by using this line as initialization for the principal curve algo-
rithm (Hastie and Stuetzle, 1989). A principal curve is a smooth one-dimensional
curve passing through the middle of given data points. The algorithm detailed in
(Hastie and Stuetzle, 1989) finds a nonparametric curve by iteratively minimizing
the orthogonal distances to the points until convergence.

6.3.3 DPS computation

Once the disease trajectory curve is computed in the latent space, we can encode the
test data. The next step is to orthogonally project the latent codes onto the computed
curve. The DPS v; € [1,100] for each subject is the coordinate of their projection
along this curve, 1 corresponding to the beginning and 100 to the end of the curve.
The pseudo-code from model training to DPS computation is shown in Algorithm 1.

6.3.4 Implementation details

The hyperparameters of the training objective were set as a; = 0.2, a = 0.2, and
a3 = 0.6. The loss function was optimized using Adam (Kingma and Ba, 2017), with
a learning rate of 1073, batches of 32 observations and 250 epochs.
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Algorithm 1 DPS computation from latent representation

Input: features X = {x;}/'; € R", labels Y = {y;}!; € {0,1,2}, training set
indices I;; and test set indices I;, for one data split into training and test set.
Output: DPS {v;};_;, of the subjects in the test set.
/* first step: supervised VAE training */
for epoch in [1,250] do
Sample batches (X}, ;) from (X7, Vi, )
for each batch (&}, );) do
Xg, Xyg < split_high_low_dimension(X})
Zneans Zlogoar — encoder (Xjy)
Draw latent codes Z ~ N ( Zyeqn, eZ1os)
:)7y < classifier(concatenate( X4, Zpean))
Xyq + decoder(Z)
L, < mean_squared_error (X}, XAhd)
Lxr < kl_divergence(N ( Zyean, e ), N'(0,1))
L. < cross_entropy (), ﬁy)
L—ay-Lo+oay Lxp+az-Le
Compute gradients, update network to minimize £
end for
end for
/* second step: trajectory definition */
Z,__ <« encoder(X},)
Ceontrol <— mean({zj Y == 0})
Cpatient < mean({Z; : y; == 2})
pc < principal_curve(ceontrol, Cpatient, degree = 2)
/* third step: DPS computation */
foriin I;, do
Zpc < projection of z; into pc
v; < coordinate of z,. € [0,100]
end for
return {v;}i—p,

We carried out the experiments on a computer equipped with a 2.4 GHz In-
tel Quad-Core Core i5 processor and 16 GB of RAM. Models were implemented
in Python 3.8.5 using PyTorch 1.8.1 and Scikit-learn 0.23.2 (Pedregosa et al., 2011).
For the principal curves computation, we used the implementation provided in the
Python package pcurvepy 0.0.10!, specifying 2 as the degree of the smoothing spline.

6.4 Datasets

6.4.1 Synthetic datasets

Since ground truth disease progression scores are not available in real-world scenar-
ios, we created synthetic datasets to better evaluate the proposed framework. Mul-
tiple datasets were generated, with different noise levels and distinct proportions of

features correlating with the DPS.

Thttps:/ /pypi.org/project/pcurvepy /
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FIGURE 6.2: Synthetic ground truth disease progression scores
{vi}1, €10,100) for n = 111 subjects (37 subjects per group).

Let Y € {0,1,2} indicate the class labels (respectively control, presymptomatic
and patient). We created n = 111 synthetic participants (a number close to that of
our real dataset) with class labels denoted by y; (i =1, ..., 111),

Yi=1,.37 =0
Vi=sg,.74 = 1

Yi=75,.111 = 2.

Next, we modeled the disease progression scores as continuous random vari-
ables following uniform distributions. Let V' € [1,100) represent the DPS values.
We defined the conditional distribution of the DPS given the class labels as follows:

V|Y =0~ UJ[1,34)
VY =1~ U[34,67)
V|Y =2 ~ U[67,100)

We then sampled the corresponding DPS v; from the conditional distributions
defined above. The obtained disease progression scores are displayed in Fig. 6.2.

Once the synthetic ground truth DPS were created, we generated multiple datasets
D € R™™ containing n = 111 participants and m = 160 features. In order to sim-
ulate two modalities, features were initially sampled from two distributions: half
from a negative binomial distribution (typical of miRNA expression data) and half
from a normal distribution (representative of various real-world datasets). We de-
note the columns of D by Cy, ..., C,. The format of the synthetic datasets is illustrated
in Fig. 6.3.

Each created dataset had a distinct proportion of features correlating with the
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FIGURE 6.3: Format of the synthetic datasets D € R"*™ containing

m features from n individuals. Half of the features are initially sam-

pled from a negative binomial distribution and half from a normal
distribution.

DPS and different noise levels. The number of features from each modality to posi-
tively and negatively correlate with the DPS is denoted as f, and the standard devia-
tion of the added zero-mean Gaussian noise as s. We used f = {0, 2,5, 10, 15, 20, 25, 30,
35,40} and s = {0.001,0.2,0.5,0.8,1,5} and thus obtained a total of 60 synthetic
datasets. The set of operations performed for their generation is shown in Appendix
C Algorithm 1.

6.4.2 Real dataset

Participants were recruited through the PREV-DEMALS (https:/ /clinicaltrials.gov,
ID NCT02590276) study, a French multicentric prospective cohort focused on C9orf72
expansion carriers. Written informed consents were obtained from all participants.
The study was approved by the ethics committee (Comité de Protection des Per-
sonnes CPP Ile-De-France VI, CPP 68-15 and ID RCB 2015-A00856-43). A detailed
description of this cohort and its demographic profile can be found in (Kmetzsch
etal., 2021).

We included 110 individuals in our analyses, divided into three groups, accord-
ing to their clinical status:

¢ Patient group: 22 symptomatic (15 FTD, 4 FTD/ALS and 3 ALS) carriers of a
pathogenic C9orf72 expansion;

* Presymptomatic group: 45 asymptomatic carriers;

¢ Control group: 43 asymptomatic non-carriers.


https://clinicaltrials.gov
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The dataset comprised multimodal data including microRNA (miRNA) sequenc-
ing data and neuroimaging data. These two modalities are described below.

MicroRNA data

MicroRNAs are a class of small noncoding RNAs that negatively regulate gene ex-
pression (Huntzinger and Izaurralde, 2011). MicroRNAs expression in blood plasma
has been shown to correlate with the diagnosis and progression of many neurode-
generative diseases (Grasso et al., 2014), including FID and ALS. All individuals in-
cluded in this cohort underwent plasma sampling, from which miRNA sequencing
was performed. Plasma collection and preparation, miRNA extraction and sequenc-
ing, quality control and the computational pipeline to obtain the miRNA counts are
detailed in (Kmetzsch et al., 2021). The initial miRNA dataset contained expression
levels for all miRNAs mapped in the human genome (2576 miRNAs). We retained
the 589 miRNAs with expression profiles above noise level (minimum total count
of 1000 reads and at least 50 reads for one sample). A trimmed mean of M-values
(Robinson and Oshlack, 2010) implemented in the R package EdgeR (Robinson et al.,
2010) was used to normalize the raw counts.

Neuroimaging data

Neuroimaging data consisted of gray matter volumes extracted from T1-weighted
anatomical magnetic resonance imaging (MRI), including the estimated total in-
tracranial volume (TIV), 68 cortical regions of interest (ROIs) using the Desikan at-
las and 18 subcortical ROIs using the Aseg nomenclature, thus resulting in 87 neu-
roimaging features. The TIV was used to normalize the volume of each ROI,

TIVm X VROI

NVgor = TV ,

where Vo is the original volume of the ROI, NVx(; is the corresponding normal-
ized volume and T1V,, is the average TIV computed across all subjects. The MRI
acquisition parameters, quality check and processing pipeline are thoroughly de-
scribed in (Bertrand et al., 2018).

Only 91 subjects (14 patients, 40 presymptomatic carriers and 37 controls) had
MRI scans collected. Hence, we divided our dataset into two subsets: 19 subjects
that only had miRNA data available, and 91 subjects with multimodal neuroimaging
and miRNA data. The former subset was used as a discovery set for miRNA feature
selection: we used these 19 individuals to perform differential expression analysis
(as described in (Kmetzsch et al., 2021)). The 68 miRNAs with the lowest p-values
were selected for all downstream analyses.

Lastly, we also included age as demographic information for all subjects. So the
total dimension of each feature vector was m = 87 + 68 41 = 156.



82 Chapter 6. Disease progression score estimation using a supervised VAE

6.5 Experiments and results

6.5.1 Synthetic datasets

We applied our framework to 60 synthetic datasets (described in Section 6.4.1) with
different noise levels and distinct number of features correlating with the ground
truth DPS. Each synthetic dataset was divided into a training set of 90 subjects (30
per clinical group) and a test set of 21 individuals (7 per group). We trained one
model per dataset, using the same hyperparameters as the experiments with the
real dataset. After training each model, we computed the DPS for the subjects from
the test set. We then calculated the Spearman correlations between the simulated
ground-truth scores and the predicted scores. Finally, we evaluated the ROC AUC
for each pairwise comparison between the three simulated clinical groups.

Fig. 6.4 presents the computed trajectories and the DPS obtained when 50% of
the features are correlated (25% positively and 25% negatively correlated) with the
disease progression, for different noise levels. The correlation matrices illustrate
the strength of the relationships between the simulated features, for all investigated
noise levels.

The results of the Spearman correlation between the estimated DPS and the
ground truth data, as well as the average ROC AUC scores for the three pairwise
comparison between groups, are showed in Fig. 6.5. As expected, we can observe
that the DPS is very well estimated for lower noise levels and higher proportion of
relevant features, while the performances decrease when the noise level becomes
very high and when only few features are correlated with the DPS. Importantly, we
observe that the Spearman correlation of the DPS and the ROC AUC have similar
behaviors, indicating that the ROC AUC of pairwise comparisons is a reasonable
proxy to evaluate the DPS, as will be done with the real dataset.

6.5.2 Real dataset

Experiments with the real dataset (described in Section 6.4.2) were carried out with
a cross-validation of 100 stratified randomized folds, using data from the 91 subjects
that underwent both plasma sampling and MRI scans. For each fold split, we trained
amodel using 73 training subjects, and then computed the DPS for the 18 individuals
in the test set. Fig. 6.6 displays an example of the latent space trajectory computed
with one representative training data split, the corresponding test set projected in
the latent space, and the obtained disease progression scores.

Unlike for the synthetic dataset, there is no ground truth for the DPS in the real
dataset. We thus applied a proxy metric to assess model performance: using only the
inferred DPS, we did pairwise comparisons between the clinical groups and com-
puted the corresponding areas under the ROC curves. Specifically, we present the
following experiments: (1) evaluation of the proposed method, (2) comparison with
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FIGURE 6.4: Results on synthetic data when 50% of the features are

correlated with the disease progression score. The rows indicate dif-

ferent noise levels (zero-mean Gaussian noise with different standard

deviations). Each column displays, respectively: (1) correlation matri-

ces showing the strength of the relationships between the simulated

features, (2) inferred trajectories and test sets projected in the latent
space, and (3) estimated DPS vs. ground truth DPS.
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a state-of-the-art method for modeling disease progression, the discriminative event-
based model, (3) ablation study, and (4) variation of hyperparameters.

Evaluation of the proposed method

First, we used the DPS computed in each fold to build ROC curves for the three pair-
wise comparisons between clinical groups. The average ROC curves are shown in
Fig. 6.7. The ROC AUC for the classification of controls and presymptomatic sub-
jects was 0.74 £ 0.13, for controls and patients was 0.98 £ 0.05 and to distinguish
presymptomatic carriers and patients was 0.96 £ 0.07. These results reveal that it
is harder to differentiate controls from presymptomatic individuals than it is to dis-
tinguish between patients and the other two groups. The histogram displayed in
Fig. 6.8 illustrates the disease progression scores computed over all 100 test folds (18
subjects per test fold, corresponding to 1800 DPS). The distribution shapes highlight
a clear separation between the patient group and the other groups. The distribution
of the DPS for the presymptomatic group is more spread, which was expected as this
group is the most heterogeneous. Some presymptomatic subjects are very far from
onset and the neurodegenerative process has barely begun, they are thus closer to
controls. Other presymptomatic subjects are closer to disease onset and thus their
DPS is closer to that of patients.

Comparison with DEBM

Next, we compared our results to a discriminative event-based model (DEBM) (Venka-
traghavan et al., 2019), a method that also infers a DPS from cross-sectional data.
For that experiment, the same cross-validation strategy of 100 stratified folds was
applied. We built the DEBM models and computed the DPS using the Python pack-
age pyebm? 2.0.3. Table 6.1 displays the corresponding ROC AUC results for each
pairwise comparison. We can observe that our model achieves a substantially better
classification performance for all pairwise comparisons. Additionally, our approach
used less computing time: our framework took 2 seconds per fold for training and
DPS computation, while the DEBM algorithm took on average 180 seconds per fold.

TABLE 6.1: Results on real data: comparison between our approach

and a discriminative event-based model (DEBM) (Venkatraghavan et

al., 2019). ROC AUC (mean =+ standard deviation) over 100 stratified
splits.

Comparison Our model| DEBM
Control vs. Pre [0.74 + 0.13|0.67 £ 0.14
Control vs. Patient | 0.98 = 0.05|0.76 4+ 0.17
Pre vs. Patient | 0.96 + 0.07 |0.65 + 0.17

Zhttps:/ /pypi.org/project/pyebm/
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sion scores (DPS) inferred for 18 test subjects over 100 stratified splits.

The distribution shapes are approximated with kernel density esti-
mates.

Ablation study

Afterwards, to investigate the impact of certain components of our framework, we
conducted an ablation study. We changed some elements of the proposed approach
to obtain three alternative models:

¢ Linear instead of curved trajectory: rather than computing the trajectory in the

latent space using principal curves, we simply used a straight line.

¢ No supervised branch: we removed the classification component of the loss

function, thus performing unsupervised training.

¢ Joint low-dimensional modality: we concatenated the low-dimensional modal-
ity (demographic information) with the high-dimensional modalities (neuroimag-
ing and miRNA expression) in the encoder input, and used only the latent
codes as input for the classifier.

For each alternative model, we conducted the same cross-validation strategy of 100
stratified folds, computing the DPS for the test sets and the corresponding areas
under the ROC curves. The results, displayed in Table 6.2, show that the proposed
model has a better and more stable performance in all comparisons, with the highest
average ROC AUC and lowest standard deviation among the splits.

Variation of hyperparameters

Finally, we checked whether our results were robust to reasonable changes in the
hyperparameters. Notably, we tested different numbers of hidden units in the fully-

connected layers, and different combinations of the relative weights between the
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TABLE 6.2: Results on real data: ablation study. ROC AUC re-
sults (mean =+ standard deviation) for the proposed model and
three alternative models from the ablation study, respectively using
a linear instead of a curved trajectory, removing the classification
branch, and concatenating the low-dimensional modality with the
high-dimensional ones.

Comparison

Proposed model

Linear trajectory

No supervision

Joint low-dim.

Control vs. Pre
Control vs. Patient
Pre vs. Patient

0.74 = 0.13
0.98 + 0.05
0.96 £ 0.07

0.62 £0.15
093 £0.12
093 £0.11

0.67 + 0.15
0.96 + 0.06
0.94 + 0.10

0.72 £ 0.15
0.95 £ 0.17
0.91 +0.18

loss terms. These results are summarized in Table 6.3 and Table 6.4. The slightly
different but overall similar results demonstrate that our hyperparameter choice is
not overfitting the data.

TABLE 6.3: Results on real data. ROC AUC results (mean + standard
deviation) over 100 stratified splits when changing the number of
units of the hidden layers. Original results, with 50 units, are shown

in bold.
Hidden units 50 100 80 25
Control vs. Pre |0.74 +0.13|0.73 = 0.13]0.71 + 0.12]0.71 + 0.13
Control vs. Patient |0.98 + 0.05|0.98 £ 0.04 [ 0.97 £+ 0.05/0.98 £ 0.05
Pre vs. Patient [0.96 £ 0.07 |0.96 £+ 0.06|0.96 + 0.06|0.96 £ 0.06

TABLE 6.4: Results on real data. ROC AUC results (mean + standard
deviation) over 100 stratified splits when changing the weights of the
loss function terms. Original results, with a;=0.2, x,=0.2, x3=0.6, are
shown in bold.

Weights oy 0.2,0.2,0.6/0.1,0.1,0.8|0.1,0.2,0.7|0.3,0.2,0.5
Control vs. Pre |0.74 £ 0.13|0.72 + 0.12|0.73 £ 0.12|0.72 £ 0.14
Control vs. Patient | 0.98 + 0.05|0.97 4+ 0.08 | 0.97 £ 0.06 | 0.98 £ 0.05
Pre vs. Patient |0.96 = 0.07 [0.94 £ 0.10|0.95 £ 0.09 | 0.96 £ 0.07

6.6 Discussion

In this paper, we proposed a new approach for estimating disease progression scores
from cross-sectional neuroimaging and transcriptomic data that is applicable in small
samples, which are typically found in rare diseases. The approach was designed
and evaluated on data from C9orf/2-associated FTD and ALS, but is potentially ap-
plicable to other diseases. Results on synthetic data demonstrated the ability of the
method to accurately estimate the DPS, and experiments on real data, in the absence
of ground truth DPS, showed the separation of different diagnostic classes. The find-
ings of this study supported the usefulness of supervised variational autoencoders
to infer disease trajectories from cross-sectional multimodal data, indicating that a
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single disease progression score may be used to represent progression of neurode-
generative diseases. Remarkably, our results revealed that the DPS may be inferred
using only cross-sectional data from a small sample of subjects.

Experiments with a cohort of C9orf72-mutation carriers demonstrate that subjects
from the same clinical groups (patients, presymptomatic individuals and controls)
are clustered together in the latent space (Fig. 6.6), allowing the inference of a dis-
ease trajectory. After training the model, data from new individuals is encoded in
the latent space and orthogonally projected onto this trajectory to compute the DPS.
Notably, using only the computed DPS, we are able to classify presymptomatic sub-
jects and patients with an average ROC AUC of 0.96 over 100 stratified fold splits
(Fig. 6.7). Of the three possible pairwise comparisons between clinical groups, this is
the most relevant. It illustrates how much the DPS reflects the degree of disease pro-
gression in mutation carriers. Unsurprisingly, it is harder to differentiate between
controls and presymptomatic individuals, as indicated by the average ROC AUC of
0.74 and displayed in Fig. 6.8. This stems from the fact that, during earlier disease
stages, most biomarker levels are closer to normal ranges, so the presymptomatic
class is more heterogeneous.

To the best our of knowledge, event-based models are the only published meth-
ods to compute disease progression scores from cross-sectional data, other approaches
requiring longitudinal data. The comparison summarized in Table 6.1 reveals that
our approach resulted in considerably higher ROC AUC than DEBM for all pair-
wise classifications. This suggests that the proposed approach is more suitable than
event-based models for DPS computation with high-dimensional features, such as
microRNA data. Indeed, published studies using event-based models explored a
substantially lower number of features. For instance, in Alzheimer’s disease, EBM
experiments were carried our with 13 to 50 biomarkers (Archetti et al., 2019; Firth
et al., 2020; Fonteijn et al., 2012; Oxtoby et al., 2018; Venkatraghavan et al., 2019;
Young et al., 2014). Studies focusing on FID analyzed 21 (Panman et al., 2021) or
7 (Ende et al., 2021) biomarkers, while multiple sclerosis was investigated with 25
(Dekker et al., 2020) or 24 (Eshaghi et al., 2018) biomarkers. Other conditions such
as Parkinson’s disease (Oxtoby et al., 2021), ALS (Gabel et al., 2020) and Hunting-
ton’s disease (Wijeratne et al., 2021) were modeled with respectively 42, 19 and 8
biomarkers. Nevertheless, the EBM model presents useful additional features, be-
yond the computation of DPS. In particular, it can provide a temporal ordering of
when the different biomarkers become abnormal, which is useful for understanding
disease progression. Moreover, a balance has to be found between the number of
features and the number of subjects in each dataset. Indeed, we also had to per-
form feature selection to decrease the number of microRNAs in our study. It should
be noted that this feature selection was unbiased, since it was performed using a
completely separate set of participants that was not used in the rest of the study.
The proposed framework was able to achieve a good performance with 156 features
and less than a hundred subjects, thus demonstrating its potential for dealing with
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higher dimensional datasets.

An ablation study evaluated the impact of different components of our approach
(Table 6.2). We observed that each component positively impacted the framework’s
performance. First, it can be seen that a curved trajectory better fits the disease
pathway in the latent space when compared to a straight line. The use of principal
curves has been inspired from their application in a similar task: pseudotime infer-
ence for single-cell transcriptomics, as shown in (Street et al., 2018). In that context,
pseudotime represents an underlying temporal variable driving a smooth transition
between cellular states, and principal curves are used to infer a trajectory in a low-
dimensional space. Second, it is clear that the addition of supervision with a clas-
sifier branch improves the separation between clinical groups in the latent space.
Rather than discrete clusters, our experiments demonstrate that latent representa-
tions are placed along a continuous path. Specifically, supervision adds meaning
to the relative positions between points in the latent space. Finally, results show
the contribution of splitting high and low-dimensional features. When using the
low-dimensional features concatenated with the latent codes as inputs to the clas-
sifier, the model’s performance is enhanced. The same pattern is observed in (Ji et
al., 2021), although in a totally different context (failure detection in robotics). Con-
cretely, a low-dimensional feature can directly contribute to the classifier, without
the need for encoding.

Regarding the experiments with simulated datasets, it is crucial to highlight
the relationship of the average ROC AUC with the Spearman correlation between
ground truth and estimated DPS (Fig. 6.5). The simulation supports that the higher
the ROC AUC, the more accurate the predicted DPS. Therefore, for real-world sce-
narios without ground truth DPS, our choice of the ROC AUC as proxy metric is
corroborated. Furthermore, evidence was found that the models do not overfit the
data, since it is clear that larger noise levels lead to poorer results, eventually equiv-
alent to random chance. The effect of noise is further illustrated in Fig. 6.4. We
observe that lower noise levels induce more evident clusters and more meaningful
trajectories in the latent space. Consequently, the estimated DPS are closer to the
ground truth. These simulations also confirm one intuition behind our model: the
more features correlate with disease progression, the closer the estimated DPS are to
the ground truth.

Our study has the following limitations. First, there is no ground truth for the
progression scores in real datasets. Although the experiments with synthetic data
showed that the ROC AUC is an adequate proxy metric, long-term follow-up of pa-
tients will be necessary to assess the accuracy of the computed DPS. For instance,
we need follow-up data to confirm the hypothesis that a higher DPS implies an ear-
lier disease onset for a presymptomatic subject. Another limitation was the lack of a
replication cohort. This will be necessary to further support the clinical relevance of
our findings. Future work will concentrate on the integration of more data sources,
such as positron emission tomography (PET) scans and neurofilament light chain
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(NfL) levels in blood.

In conclusion, we proposed a new approach to measure disease progression from
multimodal imaging and microRNA data in rare neurodegenerative disorders using
only cross-sectional data. Even though we focused on C9orf72-associated FTD and
ALS, our framework is generic. It has the potential to be useful for a variety of other
diseases, enabling the evaluation of novel treatments even when only cross-sectional

data from small cohorts are available.
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Chapter 7

Conclusion and perspectives

The goals of this interdisciplinary thesis, combining biomedical and machine learn-
ing research, were (1) to assess circulating microRNAs as progression biomarkers
of genetic frontotemporal dementia and amyotrophic lateral sclerosis, and (2) to
propose a method to estimate disease progression using cross-sectional multimodal
data from small samples. Specifically, clinical trials testing novel treatments for FTD
and ALS need non-invasive and robust biomarkers to measure disease progression
in subjects without or with mild clinical symptoms. We thus conducted three stud-
ies. First, we analyzed the expression levels of plasma miRNAs in a cohort of C9orf72
expansion carriers, to investigate whether circulating miRNAs are promising pro-
gression biomarkers of C9orf72-associated FTD and ALS. Second, we used indepen-
dent homogeneous cohorts of C9orf72 and GRN mutation carriers, to perform a com-
prehensive evaluation of all previously identified miRNA signatures associated with
FTD and/or ALS and to determine their usefulness in assessing the progression of
genetic FTD and ALS. Third, we designed, implemented, and tested a new generic
model to estimate a disease progression score (DPS) from cross-sectional multimodal
datasets with small sample sizes, and demonstrated its usefulness with miRNA and
neuroimaging datasets obtained from a cohort of C90rf/2 expansion carriers.

The contributions of this thesis, as well as future directions for our work, are

summarized below.

MicroRNAs are potential preclinical progression biomarkers of C9orf72-associated
FTD and ALS

Before this thesis, several studies had observed circulating miRNAs as potential
biomarkers of FTD and ALS. However, the lack of concordance between results un-
dermined the reliability in miRNAs for assessing disease progression in clinical tri-
als. Previous investigations were performed with heterogeneous cohorts (patients
with sporadic disease forms, or mixed cohorts with sporadic and genetic disease
forms) and prior assumptions about the subset of miRNAs to be analyzed. Our
study presented in Chapter 4 was the first to evaluate the expression levels of plasma
miRNAs in a cohort focused on C90rf72 expansion carriers, without a priori assump-
tions. After performing large scale RNA-sequencing analyses in plasma samples
from 110 individuals (22 patients, 45 presymptomatic subjects, and 43 controls),
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we identified four miRNAs differentially expressed between groups: miR-34a-5p,
miR-345-5p, miR-200c-3p and miR-10a-3p. In the absence of an independent valida-
tion cohort, a generalization analysis demonstrated a satisfactory prediction perfor-
mance when classifying subjects between clinical groups. Additionally, target pre-
diction and pathway analyses identified relevant pathways, previously mentioned
in the literature as involved in C9orf72-associated disease. This first study there-
fore highlighted the potential of circulating miRNAs as progression biomarkers of
C9orf72-associated FTD and ALS.

Remarkably, our comprehensive validation study, described in Chapter 5, rein-
forced the usefulness of circulating miRNAs as biomarkers of C9orf72-associated dis-
ease. In this work, we evaluated all previously identified circulating miRNA signa-
tures associated with FTD or ALS (from 15 papers, including our study from Chapter
4), using a homogeneous, independent validation cohort of C90rf72 expansion car-
riers (29 patients, 17 presymptomatic carriers, and 31 controls). Results indicated
an outstanding prediction performance (average ROC AUC greater than 0.90) when
using the miRNA signature identified in Chapter 4 to classify controls vs. C9orf72
patients and controls vs. C9rf72 presymptomatic subjects. The most challenging
problem was to classify C9orf/2 presymptomatic individuals vs. C9orf72 patients,
task for which the levels of miR-206 were found to be crucial. Interestingly, although
miR-206 was not significantly differentially expressed in our discovery study from
Chapter 4, it was the second most frequent miRNA identified in this comparison
in the generalization analysis (Figure 4.3), with an adjusted p-value close to signif-
icance level (p-value = 0.06, Appendix A Table A2). Indeed, miR-206 illustrates the
idea from (Bzdok et al., 2020), that features relevant for prediction are often not iden-
tified as statistically significant in biomedical datasets.

As a result of both our discovery and our validation studies, we encourage the
use of plasma miRNAs as non-invasive progression biomarkers of C9orf72-associated
FTD and ALS. In particular, the broader meta-signature proposed in Chapter 5 might
be useful for C9orf72-disease progression assessment in clinical trials.

MicroRNA signatures identified in sporadic or mixed cohorts of FTD and ALS
patients are useful as biomarkers of C9orf72 disease, but not GRN disease

The extensive validation study presented in Chapter 5 demonstrated that more than
half of the investigated miRNAs (35/65) were differentially expressed in at least
one pairwise comparison in the C9orf72 cohort. Moreover, when analyzing the pre-
diction performance of the previously published miRNA signatures, half of them
(8/16) resulted in an average ROC AUC above 0.70 for at least one classification task.
Strikingly, the vast majority of the studied miRINA signatures had been identified in
sporadic or mixed cohorts. Therefore, these findings indicated miRNA expression
similarities between subjects with sporadic FTD or sporadic ALS and individuals
carrying the C9orf72 expansion.
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Nevertheless, these miRNA expression similarities were not observed between
previous studies on FID and our validation cohort of GRN mutation carriers. In-
deed, only a small minority (5/30) of miRNAs previously linked to FTD were found
to be differently expressed in the GRN cohort. In addition, none of the five miRNA
signatures investigated in this cohort exhibited an adequate classification perfor-
mance. Therefore, our data suggest that the studied miRNAs are not useful biomark-
ers of GRN-associated FID. Furthermore, our findings corroborate the heterogeneity
of complex disorders such as FTD and ALS, indicating that miRNA expression pro-
files are most likely mutation specific.

This work illustrates the importance of validation studies in independent co-
horts, which could be more encouraged and valued by the research community, par-
ticularly by scientific journals. In addition, it is noteworthy that the preregistration of
our validation study has shown to be highly beneficial for several reasons, as thor-
oughly explained in (Nosek et al., 2018). First, preregistration imposes a detailed
study design beforehand, thus avoiding false discoveries due to a possibly too flexi-
ble statistical analysis. Second, describing the details of the study before conducting
the analyses clearly separates confirmatory and exploratory aspects, improving the
credibility of results. Last, the few additional steps required to preregister a study on
a registry such as The Open Science Framework! add very little burden, and actually

save time afterwards during data analysis.

Disease progression scores can be estimated from cross-sectional neuroimaging

and microRNA data from small samples

Several approaches have been proposed in the literature to model disease progres-
sion in a data-driven fashion, most of them depending on longitudinal data. Rare
neurodegenerative disorders, such as FTD and ALS, could not be modeled with such
approaches, for lack of longitudinal datasets with sufficient sample sizes. We thus
presented (in Chapter 6) a novel framework to estimate disease progression using
cross-sectional datasets from small samples. The main hypothesis of this work was
that disease progression may be modeled as a latent trait: the disease pathophys-
iological pathway was represented by a trajectory in the latent space, and relative
positions in this trajectory indicated disease progression scores. The main challenge
in developing this framework was the absence of ground truth data for the DPS.
Hence, we proposed a proxy metric to evaluate our models: classification perfor-
mance (ROC AUC) was computed using the DPS as the only feature. Experiments
with synthetic data corroborated the choice for the proxy metric, since the ROC AUC
was positively correlated with the accuracy in estimating the simulated DPS. More-
over, analyses with a real multimodal dataset of miRNA and neuroimaging data
demonstrated a good classification performance using only the inferred DPS as a
feature: average ROC AUC of 0.74 for controls vs. presymptomatic subjects, 0.98 for

Thttps:// osf.io
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controls vs. patients, and 0.96 for presymptomatic subjects vs. patients. The only
disease progression models supporting cross-sectional data found in the literature
were event-based models. When compared to our results, a discriminative event-
based model yielded substantially lower performance (Table 6.1).

Although we used data from a cohort focused on C90rf72 mutation carriers, the
framework is generic and could be applied to other cross-sectional datasets. We be-
lieve that the proposed approach might be useful to infer a disease progression score
for other rare disorders, for which longitudinal datasets with appropriate sample
sizes are not available, and previously published methods cannot be applied.

Perspectives

There are several future directions for our work.

First, a straightforward path for future research is to analyze larger cohorts of
C9orf72 expansion carriers. It has been demonstrated that for predictive applica-
tions, such as biomarkers discovery and validation, larger samples lead to better
generalization performance estimation (Varoquaux, 2018). For instance, with a larger
miRNA expression dataset from C90rf/2 carriers, we could more precisely assess the
generalization capabilities of the meta-signatures proposed in Chapter 5, or even
identify other miRNA signatures with better prediction power. Moreover, training
the model presented in Chapter 6 with larger multimodal datasets would improve
DPS estimation on unseen data, an essential step towards deploying the model in a
clinical setting. Furthermore, the investigation of a larger number of patients carry-
ing the C90rf72 expansion could shed a light on the differences in miRINA expression
observed between different phenotypes (FID, FTD/ALS, and ALS), and possibly
improve the stratification of participants in clinical trials.

Since FTD and ALS are rare conditions, it is unlikely that a single entity (univer-
sity, research institution, or hospital) can bring together a cohort with hundreds of
patients and presymptomatic individuals. It is therefore crucial to investigate alter-
native strategies to increase sample size. One solution could be to explore federated
learning, a decentralized machine learning paradigm that allows different institu-
tions to share their medical datasets while preserving data protection and patient
privacy (Rieke et al., 2020). Federated learning has recently received much atten-
tion, due to its potential benefits in machine learning for healthcare applications (Li
et al., 2020; Prayitno et al., 2021). Further research could then be undertaken to de-
ploy our proposed disease progression score model from Chapter 6 in a federated
learning setting, with a considerably larger and more representative dataset, which
would very likely lead to more robust results.

Additionally, as discussed in Chapter 5, the findings of our validation study
showed that most miRNAs identified in the literature as potential FTD biomarkers
are not relevant for measuring the progression of GRN-associated disease. However,
since GRN mutation carriers were not included in any of the prior investigations,
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further work is needed to establish whether other miRNAs may be useful in GRN-
associated FTD. An independent cohort of subjects carrying the GRN mutation is
required, so that one cohort is used to identify miRNAs as biomarker candidates
(such as was performed in Chapter 4 for the C9orf72 mutation), and another cohort
is employed to validate these miRNAs.

Furthermore, adding new modalities to the DPS computation would most likely
improve model performance, since different modalities bring complementary infor-
mation about the disease process (Carreiro et al., 2015). Futures studies could in-
clude blood levels of neurofilaments (Saracino et al., 2021), features extracted from
positron emission tomography (PET) scans (Meeter et al., 2017), diffusion tensor
imaging (DTI) (Bertrand et al., 2018), or neurite orientation dispersion and density
imaging (NODDI) (Wen et al., 2019). A relevant question would be to investigate
which modalities offer the best prediction performance. Multiple DPS models could
be trained with different combinations of modalities, and a proxy metric (ROC AUC)
comparison could indicate which modalities are most strongly correlated with dis-
ease progression.

Lastly, the validation of our proposed framework for DPS computation (Chap-
ter 6) will require longitudinal follow-up over a long period of time, to determine
whether presymptomatic individuals with higher scores will have earlier disease on-
sets. Even though this thesis focused on two rare neurodegenerative disorders, fur-
ther experiments with datasets from more prevalent conditions, such as Alzheimer’s
disease, could be performed to evaluate the accuracy of the estimated DPS. For in-
stance, we could take cross-sectional baseline data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)? dataset to estimate the DPS of individuals with
mild cognitive impairment at baseline. Then, we could analyze longitudinal data
to verify whether a higher DPS at baseline implies an earlier Alzheimer’s disease
onset. Additionally, training our model with baseline data from ADNI would al-
low a comparison with disease progression models that leverage longitudinal data
(Section 2.5). Clearly, it is expected that an approach estimating disease progression
from cross-sectional data will be less accurate than a method using longitudinal data
(Jack et al., 2013). Nevertheless, this comparison would be important to determine
how much less accurate is our DPS model, for different training sample sizes. The
results of this research could further support the clinical relevance of disease pro-
gression models trained with cross-sectional data from small cohorts.

Concluding remarks

In summary, this interdisciplinary thesis has demonstrated that circulating miRNAs
are useful as non-invasive biomarkers of genetic frontotemporal dementia and amy-
otrophic lateral sclerosis associated with the expansion in the C90rf72 gene. More-

over, we have conceived and implemented a methodology for estimating disease

2https:/ /adni.loni.usc.edu/
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progression scores from cross-sectional multimodal data, and tested it with miRNA
and neuroimaging features extracted from a cohort of C9orf72 expansion carriers.
Taken together, the findings of this thesis represent an encouraging step in improv-
ing the design of clinical trials for these rare but devastating neurodegenerative dis-
orders.
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Appendix A

Plasma microRNA signature in
presymptomatic and symptomatic
subjects with C9orf72-associated
frontotemporal dementia and
amyotrophic lateral sclerosis

This appendix is the supplementary material of the Chapter 4, published as a journal
article in the Journal of Neurology, Neurosurgery & Psychiatry (Kmetzsch et al., 2021):

* Kmetzsch, V., Anquetil, V., Saracino, D., Rinaldi, D., Camuzat, A., Gareau, T,
Jornea, L., Forlani, S., Couratier, P, Wallon, D., Pasquier, F.,, Robil, N., de la
Grange, P, Moszer, I, Le Ber, I, Colliot, O., Becker, E., PREV-DEMALS study
group, “Plasma microRNA signature in presymptomatic and symptomatic sub-
jects with C9orf72-associated frontotemporal dementia and amyotrophic lat-
eral sclerosis”, Journal of Neurology, Neurosurgery & Psychiatry, 92(5):485-493
(2021). doi: 10.1136/jnnp-2020-324647 — hal-03046771.


http://dx.doi.org/10.1136/jnnp-2020-324647
https://hal.archives-ouvertes.fr/hal-03046771/

SUPPLEMENTARY MATERIAL

Method A1: Neuropsychological protocol.

Method A2: Description of the four cases at the transitional stage.
Table Al: Clinical status and center proportion in each batch.
Table A2: Complete output from EdgeR.

Table A3: List of the putative target genes.

Table A4: Complete output from DIANA-miRPath v.3.

Table AS: Comparison of studies investigating miRNAs from brain samples.
Figure Al:
Figure A2:
Figure A3:
Figure A4:
Figure AS:
Figure A6:

Stratified nested cross-validation.

Expression heatmap of miRNA signature.

Bootstrapped ROC AUC scores.

ROC AUC scores with 100 different fold splits.
Presymptomatic subjects probability scores.

Heatmap of the level of enrichment in KEGG pathways.

Page 1/45



Method A1. Neuropsychological protocol

The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to
investigate all cognitive domains, and in particular frontal lobe functions. The scores were
provided previously (Bertrand et al., 2018).

Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State
Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions
were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail
Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and
Symbol-Digit Modalities test. Hayling Sentence Completion Test was used to assess cognitive
inhibition. Ekman faces test and Faux-pas test evaluated emotional assessment and social
cognition.

Episodic verbal memory was assessed with the Free and Cued Selective Reminding
Test (FCSRT), whereas visual memory with the Benson figure recall and identification test.
Boston Naming Test (BNT), phonological and semantic fluencies, and Camel & Cactus test
were used to evaluate language skills. Visuospatial abilities were assessed by means of Benson
figure copy and the cube analysis task from the Visual Object and Space Perception (VOSP)

battery. Limb-kinetic and ideo-motor apraxias were evaluated using a French validated scale.



Method A2. Description of the four cases at the transitional stage

Four C9orf72 presymptomatic carriers have developed frontal cognitive and/or
behavioral changes and/or subtle motor signs/symptoms during a 3-year follow-up period,
without fitting diagnostic criteria for FTD or ALS, suggesting they were in the transitional
‘prodromal’ phase at the moment of or just after their baseline visit. They are described below.

The case 1 was a right-handed 42-year-old female with 13 years of schooling.
Neurological examination, behavioral scores (FBI: 0; AES 9/42), and cognitive scores were
normal (MDRS 138/144; FAB 18/18; WCST 20/20; forward/backward digit spans: 7/4), except
for isolated moderate decrease of the faux-pas test score (21/30). Ekman test score was normal
(31/35). At follow-up three years later (45 years), cognitive scores exhibited attentional deficit
(forward/backward digit spans: 5/3), perseverations and social cognition deficit (faux-pas test
21/30). The Ekman score was 28/35. Neurological examination revealed upper and lower limbs
brisk reflexes with propagation of reflexes.

The case 2 was a left-handed 47-year-old male with 15 years of education. When
included in the study, neurological examination and behavior evaluation were normal.
Cognitive scores (MMSE: 30; MDRS 134/144; WCST: 20/20) and behavioral scores (FBI: 4;
AES score: 2) were normal except for mild impairment of social cognition (faux-pas test:
19/30). The frontal adapted version of CDR®+NACC-FTLD scored 0.5 at baseline. At clinical
follow-up evaluation, three years later (50 years), he exhibited inappropriate familiarity and
joviality, without any other behavioral changes. The AES score mildly increased (9/42) and the
CDR®+NACC-FTLD reached a score of 1.0. Cognitive tests revealed attentional deficit
(forward/backward digit spans: 5/3), slow processing of information and decline in several
cognitive scores, among which MDRS (130/144) and faux-pas test (18/30). Motor evaluation
revealed cramps and rare fasciculations.

The case 3 was a right-handed 69-year-old male with 11 years of schooling. At

inclusion, neurological and behavioral evaluations were normal (FBI: 6/42; AES: 13). MDRS



(135/142) and WCST (18/20) were normal but executive dysfunction (FAB: 12/18) and social
cognition deficit (faux-pas test: 18/30, Ekman 29/35) were present. Two years later, he
presented loss of interests and apathy (AES 19, cut-off >13), irritability, familiarity and
disinhibition (FBI: 12), and imitation behavior. Cognitive tests exhibited attentional
(forward/backward digit spans: 3/3) and planning difficulties. The WCST was scored 9/20.
Scores of MDRS, FAB, and faux-pas test were stable. Ekman score was 26/35. Motor
examination was normal.

The case 4 was a right-handed female of high education level (17 years). She was
included in the study at age 64. Neurological examination was normal at inclusion, as well as
behavior. The FBI scored 0 and the AES scored 8. Cognitive scores were within normal ranges
or just above the lower limits according to her age. MDRS scored 138/144, MMSE 26/30 (2
errors in attention subtest) FAB 17/18, WCST 18/20, and TMT was completely normal (0
errors). Reevaluation at age 67, three years after her inclusion in the study, evidenced decline
in several cognitive scores, with the occurrence of executive dysfunction, deficit in mental
flexibility and perseverations. WCST scored 9/20, MMSE 24/30 and FAB 15/18. She made 10
errors at the TMT. She presented global slowness, scoring 12 at the AES apathy scale. Her
relative did not mention any other behavioral disorders (FBI score: 0). At motor evaluation, she
exhibited decreased Achilles tendon reflexes, cramps and rare fasciculations never noticed

before.



Table A1. Clinical status and center proportion in each batch

Table Al. Number of subjects analyzed in each RNA-seq batch, by clinical status (above) and by center

(below).
Clinical status
Batch Control Presymptomatic Patient Total
Batch 1 25 (39.7%) 27 (42.9%) 11 (17.4%) 63 (100%)
Batch 2 9 (37.5%) 10 (41.7%) 5(20.8%) 24 (100%)
Batch 3 9 (39.1%) 8 (34.8%) 6(26.1%) 23 (100%)
Center
Batch Paris Rouen Limoges Lille Total
Batch 1 51 (81.0%) 5(7.9%) 5(7.9%) 2 (3.2%) 63 (100%)
Batch 2 18 (75%) 2 (8.3%) 3 (12.5%) 1 (4.2%) 24 (100%)
Batch 3 15 (65.2%) 3 (13.0%) 4 (17.4%) 1 (4.4%) 23 (100%)




Table A2. Complete output from EdgeR

Table A2. Complete output from EdgeR, for each pairwise comparison between clinical groups (control vs.
presymptomatic, control vs. patient, presymptomatic vs. patient). The columns show the 589 analyzed
miRNAs (above noise level), the log-fold change when comparing the clinical groups, the average log-counts

per million, the unadjusted p-values and finally the adjusted p-values after Benjamini-Hochberg.

log-counts per

miRNA log-fold change million p-value adjusted p-value
Control vs. Presymptomatic
miR-34a-5p -1.433 4.676 5.251e-16 3.093e-13

miR-218-5p 1.475 1.231 0.000 0.081
miR-1250-5p -0.310 0.691 0.001 0.209
miR-625-3p 0.495 8.394 0.002 0.228
miR-548au-5p -0.275 14.473 0.005 0.458
miR-548am-c-0-5p -0.283 14.295 0.005 0.458
miR-30e-5p -0.153 10.655 0.006 0.458
miR-1307-5p -0.241 5.708 0.006 0.458
miR-200c-3p 0.150 5.273 0.007 0.458
miR-5010-3p 0.206 1.408 0.008 0.458
miR-17-3p -0.238 3.215 0.010 0.511
miR-361-5p 0.124 8.171 0.014 0.605
miR-199a-5p -0.260 8.817 0.016 0.605
miR-125b-5p 0.245 8.080 0.017 0.605
miR-23b-5p 0.327 1.691 0.018 0.605
miR-548h-5p -0.669 6.935 0.019 0.605
miR-29b-3p -0.423 9.739 0.022 0.605
miR-10a-5p 0.179 7.108 0.026 0.605
miR-23b-3p 0.140 9.599 0.028 0.605
miR-32-5p -0.280 5.289 0.029 0.605
miR-10a-3p 0.269 1.500 0.030 0.605
let-7g-3p -0.359 0.220 0.031 0.605
miR-509-3p 0.470 2.288 0.032 0.605
miR-942-5p 0.140 4.976 0.033 0.605
miR-197-3p 0.207 6.745 0.033 0.605
miR-142-3p -0.218 13.185 0.033 0.605
miR-21-3p -0.316 3.394 0.034 0.605
miR-301a-3p -0.186 5.377 0.034 0.605
miR-4742-3p 0.235 1.378 0.035 0.605
miR-5584-5p 0.286 0.672 0.037 0.605
miR-625-5p 0.278 6.770 0.038 0.605
miR-375 0.567 2.730 0.038 0.605
miR-330-5p -0.111 3.616 0.041 0.605
miR-100-5p 0.466 2.346 0.041 0.605
miR-19a-3p -0.286 5.810 0.043 0.605
miR-101-3p -0.227 11.459 0.047 0.605
miR-582-5p -0.498 0.885 0.047 0.605
miR-27a-3p -0.306 9.739 0.048 0.605
miR-548y -1.266 -0.318 0.055 0.605
miR-548ag-3p -0.265 9.450 0.056 0.605
miR-153-3p -0.360 0.310 0.056 0.605
miR-377-5p -0.350 -0.095 0.057 0.605
miR-191-5p 0.116 12.565 0.057 0.605
miR-548t-5p -0.407 1.936 0.057 0.605
miR-29a-3p -0.401 9.472 0.059 0.605
let-7¢-5p 0.178 9.528 0.060 0.605
miR-548ay-5p -0.214 13.403 0.060 0.605
miR-215-5p 0.276 2.194 0.060 0.605
miR-874-3p -0.160 1.960 0.061 0.605
miR-548d-5p -0.210 12.885 0.061 0.605
miR-29¢-3p -0.338 8.568 0.061 0.605
miR-136-5p -0.395 2.770 0.061 0.605
miR-19b-3p -0.323 10.256 0.063 0.605
miR-487a-3p -0.442 0.530 0.063 0.605
miR-548ag -0.300 6.333 0.063 0.605
miR-548p -0.785 1.823 0.064 0.605
miR-326 -0.197 6.590 0.064 0.605
miR-369-3p -0.445 4.919 0.065 0.605
miR-551b-3p -0.258 1.815 0.065 0.605
miR-30d-3p -0.213 1.671 0.065 0.605
miR-135a-5p -0.439 1.965 0.066 0.605
miR-33a-5p -0.261 1.653 0.068 0.605
miR-181d-5p 0.171 3.947 0.068 0.605
miR-154-5p -0.410 3.881 0.070 0.605
let-7d-3p 0.116 6.419 0.073 0.605
miR-376b-3p -0.410 3.330 0.074 0.605
miR-548u -0.576 1210 0.074 0.605
miR-142-5p -0.235 10.854 0.074 0.605
miR-6873-3p 0.297 5.014 0.075 0.605
miR-18a-5p -0.137 7212 0.076 0.605
miR-133b -0.493 -0.138 0.079 0.605
miR-1260b 0.191 3.783 0.080 0.605
let-7i-3p -0.231 2370 0.081 0.605
miR-548j-3p -0.355 0.393 0.081 0.605

miR-138-5p -0.316 0.000 0.082 0.605



miR-148b-5p
miR-31-5p
miR-424-3p
miR-6511a-3p
miR-3194-3p
miR-339-5p
miR-106b-5p
miR-181b-3p
miR-125a-3p
miR-1306-3p
miR-598-3p
miR-130b-5p
miR-574-3p
miR-548ah-3p
miR-1249
miR-873-5p
miR-496
miR-590-5p
miR-106b-3p
miR-18b-5p
miR-7110-3p
let-7e-5p
miR-223-5p
miR-337-5p
miR-889-3p
miR-1268a
miR-377-3p
miR-22-3p
miR-205-5p
miR-324-5p
miR-3688-3p
miR-548j-5p
miR-6513-3p
miR-5583-3p
miR-660-5p
miR-219a-5p
miR-222-3p
miR-2277-5p
miR-340-5p
miR-616-3p
miR-339-3p
miR-95-3p
miR-1304-3p
miR-136-3p
miR-144-3p
miR-548al
miR-4286
miR-21-5p
miR-369-5p
miR-378i
miR-651-5p
miR-1285-5p
miR-338-3p
miR-548q
miR-3198
miR-130a-3p
miR-624-5p
miR-7641
miR-30b-5p
miR-664a-3p
miR-362-5p
miR-30a-5p
miR-99a-5p
miR-376a-5p
miR-301a-5p
miR-655-3p
miR-582-3p
miR-301b
miR-320¢
miR-381-3p
miR-548f-3p
miR-320d
miR-3913-5p
miR-15a-5p
miR-193a-5p
miR-497-5p
miR-548ap-5p
miR-221-3p
miR-9-3p
miR-664b-5p
miR-122-5p
miR-556-3p
miR-93-3p
miR-299-3p
miR-3138
miR-487a-5p
let-7b-5p
miR-374b-3p
miR-320b
miR-3605-3p
miR-3928-3p
miR-23¢
miR-133a-3p
miR-6852-5p
miR-18a-3p
miR-9-5p
miR-548e-5p



miR-27b-5p
miR-25-5p
miR-664b-3p
miR-199b-5p
miR-154-3p
miR-125a-5p
let-7f-1-3p
miR-376¢-5p
miR-378¢g
let-7a-5p
miR-145-5p
miR-1273d
miR-29b-1-5p
miR-146b-5p
miR-103a-2-5p
miR-376b-5p
miR-140-5p
miR-411-5p
miR-3620-5p
let-7f-2-3p
miR-10b-5p
miR-941
miR-374a-3p
miR-323b-3p
miR-542-3p
miR-3161
miR-664a-5p
miR-885-5p
miR-92a-3p
miR-6859-5p
miR-1270
miR-378a-3p
miR-539-3p
miR-376¢-3p
miR-1268b
miR-766-5p
miR-3613-5p
miR-92b-5p
miR-132-3p
miR-505-5p
miR-760
miR-4507
miR-3173-5p
miR-548aa
miR-548t-3p
miR-4772-3p
miR-382-5p
miR-5095
miR-545-3p
miR-361-3p
miR-576-5p
miR-186-3p
miR-155-5p
miR-590-3p
miR-382-3p
miR-744-5p
miR-5187-5p
miR-376a-3p
miR-20a-5p
miR-32-3p
miR-545-5p
miR-495-5p
miR-92b-3p
miR-409-5p
miR-27a-5p
miR-671-3p
miR-2355-5p
miR-619-5p
miR-641
miR-98-3p
miR-23a-5p
miR-221-5p
miR-589-5p
miR-6842-3p
miR-628-5p
let-7d-5p
miR-30e-3p
miR-454-5p
miR-548e-3p
miR-99b-3p
miR-29a-5p
miR-627-5p
miR-544a
miR-186-5p
miR-365a-3p
miR-365b-3p
miR-548a-3p
miR-618
miR-1185-2-3p
miR-548h-3p
miR-548z
let-7g-5p
miR-6734-5p
miR-23a-3p
miR-103a-3p
miR-550a-3-5p
miR-548ak



miR-758-3p
miR-181a-5p
miR-4477b
miR-5193
miR-134-5p
miR-374a-5p
miR-1277-3p
miR-501-3p
miR-548an
miR-28-3p
miR-1301-3p
miR-548d-3p
miR-2115-3p
miR-1
miR-423-3p
miR-450b-5p
miR-1306-5p
miR-629-5p
miR-379-5p
miR-7706
miR-20a-3p
miR-320a
miR-126-5p
miR-148b-3p
miR-548k
miR-493-3p
miR-548av-5p
miR-4677-3p
miR-99b-5p
miR-3615
miR-27b-3p
miR-424-5p
miR-199a-3p
miR-199b-3p
let-7a-3p
miR-335-3p
miR-548a-5p
miR-628-3p
miR-141-3p
miR-429
miR-30a-3p
miR-192-5p
miR-3143
miR-1273¢
miR-296-5p
miR-1277-5p
miR-16-2-3p
miR-1303
miR-4446-3p
miR-127-5p
miR-210-3p
miR-574-5p
miR-450a-5p
miR-3200-3p
miR-548f-5p
miR-1307-3p
miR-548az-5p
miR-3120-3p
miR-500a-3p
miR-1294
miR-1226-3p
miR-1185-1-3p
miR-6513-5p
miR-487b-3p
miR-340-3p
miR-7849-3p
miR-191-3p
miR-4659a-3p
miR-5585-3p
miR-548ar-5p
miR-106a-5p
miR-5481
miR-3617-5p
miR-206
miR-26b-5p
miR-4433b-3p
miR-744-3p
miR-548ab
miR-652-5p
let-7b-3p
miR-548x-3p
miR-539-5p
miR-185-5p
miR-183-5p
miR-548g-3p
miR-409-3p
miR-335-5p
miR-1229-3p
miR-1255b-5p
miR-30b-3p
miR-1908-5p
miR-502-3p
miR-548aj-5p
miR-548g-5p
miR-548x-5p
miR-1185-5p
miR-6772-3p



miR-6500-3p
miR-15b-3p
miR-328-3p
miR-1972
miR-425-5p
miR-148a-5p
miR-331-3p
miR-16-5p
miR-181a-3p
miR-654-3p
miR-548n
miR-548ap-3p
miR-378a-5p
miR-379-3p
miR-548av-3p
miR-550a-5p
miR-378¢
miR-6803-3p
miR-665
miR-196a-5p
let-7i-5p
miR-483-5p
miR-4659b-3p
miR-378d
miR-584-3p
miR-145-3p
miR-182-5p
miR-671-5p
miR-548ax
miR-1233-3p
miR-130b-3p
miR-431-3p
miR-25-3p
miR-548ae
miR-6511b-3p
miR-584-5p
miR-20b-5p
miR-548as-5p
miR-224-5p
miR-1290
miR-642a-3p
miR-1179
miR-30d-5p
miR-28-5p
miR-324-3p
miR-139-3p
miR-150-3p
miR-181c-3p
miR-423-5p
miR-452-5p
miR-22-5p
miR-4433b-5p
miR-485-3p
miR-2110
miR-425-3p
miR-126-3p
miR-190a-5p
miR-6741-3p
miR-431-5p
miR-769-3p
miR-30c-1-3p
miR-548w
miR-3158-3p
miR-542-5p
miR-503-5p
miR-2355-3p
miR-195-5p
miR-495-3p
miR-337-3p
miR-29b-2-5p
miR-329-3p
miR-17-5p
miR-363-3p
miR-4448
miR-5189-3p
miR-451a
miR-342-5p
miR-139-5p
miR-548at-5p
miR-374b-5p
miR-4301
miR-30c-5p
miR-4732-3p
miR-493-5p
miR-5480-3p
miR-1273g-3p
miR-190b
miR-421
miR-96-5p
miR-194-5p
miR-485-5p
miR-1302
miR-98-5p
miR-5009-5p
miR-532-5p
miR-26b-3p
miR-3064-5p



miR-5010-5p
miR-203a
miR-6511b-5p
miR-1304-5p
miR-766-3p
miR-494-3p
miR-3180
miR-3180-3p
miR-4732-5p
miR-3187-3p
miR-4435
miR-1273h-5p
miR-483-3p
miR-1285-3p
miR-144-5p
miR-1255a
miR-4785
miR-589-3p
miR-181b-5p
miR-196b-5p
miR-299-5p
miR-223-3p
miR-486-3p
miR-204-5p
miR-181a-2-3p
miR-93-5p
miR-1273h-3p
miR-1299
miR-548am-3p
miR-143-5p
let-7f-5p
miR-514a-3p
miR-491-5p
miR-504-5p
miR-1287-5p
miR-185-3p
miR-1292-5p
miR-1468-5p
miR-1180-3p
miR-152-3p
miR-150-5p
miR-652-3p
miR-330-3p
miR-432-5p
miR-4645-3p
miR-15b-5p
miR-26a-5p
miR-6770-3p
miR-486-5p
miR-6516-5p
miR-342-3p
miR-454-3p
miR-1233-5p
miR-146a-5p
miR-484
miR-877-3p
miR-3179
miR-487b-5p
miR-370-3p
miR-1246
miR-3133
miR-148a-3p
miR-26a-2-3p
miR-433-3p
miR-3679-5p
miR-500b-5p
miR-505-3p
miR-7-5p
miR-24-3p
miR-3960
miR-127-3p
miR-181c-5p
miR-128-3p
miR-550a-3p
miR-151a-5p
miR-378f
miR-3065-5p
miR-146b-3p
miR-151b
miR-200a-3p
miR-151a-3p
miR-548i
miR-4454
miR-19b-1-5p
miR-4685-3p
miR-769-5p
miR-6511a-5p
miR-548ai
miR-570-5p
miR-708-5p
miR-329-5p
miR-146a-3p
miR-548aq-5p
miR-4326
miR-345-5p
miR-4662a-5p
miR-532-3p



miR-143-3p 0.024 9.208 0.887 0.931
miR-6859-3p -0.050 0.719 0.890 0.932
miR-3065-3p -0.018 0.404 0.892 0.932
miR-1271-5p -0.013 1.919 0.893 0.932
miR-5096 -0.072 11.722 0.901 0.939
miR-412-5p -0.039 2.206 0.910 0.947
miR-1271-3p -0.063 -0.768 0.914 0.948
miR-548b-5p -0.016 7.793 0.915 0.948
miR-132-5p 0.010 0.644 0.917 0.948
miR-543 -0.015 3.379 0.919 0.948
miR-3074-5p 0.018 1.854 0.920 0.948
miR-576-3p 0.008 5.501 0.922 0.948
miR-3140-3p 0.011 0.699 0.923 0.948
miR-3180-5p 0.037 -0.295 0.924 0.948
miR-323a-3p -0.014 4.078 0.927 0.949
miR-1289 0.028 -0.148 0.932 0.953
miR-7976 -0.008 1.801 0.940 0.959
miR-877-5p -0.005 2378 0.941 0.959
miR-107 -0.004 10.028 0.947 0.963
miR-7851-3p -0.013 3.495 0.953 0.968
miR-29¢c-5p -0.004 4.579 0.955 0.968
miR-7-1-3p -0.006 2452 0.959 0.971
miR-140-3p -0.002 9.249 0.971 0.981
miR-500a-5p -0.005 3.026 0.975 0.981
miR-200b-3p -0.003 2.188 0.976 0.981
miR-26a-1-3p 0.002 2.985 0.978 0.981
miR-1296-5p -0.002 2.226 0.978 0.981
miR-551a -0.003 -0.321 0.988 0.989
miR-548c-3p 0.000 2.905 1.000 1.000
miRNA log-fold change log-counts per p-value adjusted p-value
million
Control vs. Patient
miR-34a-5p -1.239 4.676 1.650E-08 9.720E-06
miR-345-5p -0.540 4.607 1.131E-05 0.003
miR-200c-3p 0.333 5273 3.109E-05 0.006
miR-10a-3p 0.697 1.500 7.141E-05 0.011
miR-151a-5p 0.411 11.573 0.001 0.096
miR-151b 0.406 11.596 0.001 0.096
miR-551a -1.102 -0.321 0.001 0.096
miR-133a-3p -0.949 7.345 0.002 0.119
miR-206 -1.883 1.104 0.002 0.119
miR-133b -1.200 -0.138 0.002 0.123
miR-542-5p -0.636 1.306 0.003 0.161
miR-296-5p -0.637 1358 0.006 0.262
miR-660-5p -0.378 5.628 0.006 0.262
miR-18a-3p -0.440 2.363 0.007 0.262
miR-223-3p -0.276 14.649 0.007 0.262
miR-205-5p -1.031 2270 0.008 0.262
miR-361-3p -0.251 6.970 0.008 0.262
let-7b-3p -0.407 1.579 0.008 0.262
miR-30a-5p -0.334 6.368 0.009 0.262
miR-93-3p 0315 4.195 0.009 0.262
let-7f-5p 0.246 16.225 0.011 0.296
miR-532-3p -0.480 2.783 0.011 0.296
miR-144-3p -0.677 5.293 0.012 0.296
miR-425-3p 0215 6.606 0.012 0.300
miR-550a-3p -0.641 3.973 0.013 0.300
miR-10a-5p 0.282 7.108 0.013 0.300
miR-17-5p 0.363 8.427 0.014 0314
miR-451a -0.569 11.183 0.016 0.326
miR-7976 -0.396 1.801 0.016 0.326
miR-196b-5p 0212 5.658 0.017 0.326
miR-135a-5p -0.682 1.965 0.017 0.326
miR-106b-3p -0.322 6.995 0.018 0.340
miR-148a-5p -0.354 0.933 0.021 0.375
miR-25-3p -0.248 10.901 0.022 0.377
miR-1289 -1.046 -0.148 0.023 0.385
miR-324-3p 0214 4372 0.024 0.387
miR-5583-3p 0.460 0.528 0.024 0.387
miR-30b-3p 0.295 0.223 0.026 0.391
miR-23b-3p 0.194 9.599 0.028 0.391
miR-326 -0.326 6.590 0.028 0.391
miR-3158-3p -0.743 1.499 0.028 0.391
miR-146a-5p 0.214 12.934 0.029 0.391
miR-532-5p -0.283 5.499 0.029 0.391
miR-1303 -1.127 4458 0.029 0.391
miR-378a-5p -0.396 2.841 0.030 0.391
miR-16-5p -0.218 17.408 0.032 0.403
miR-155-5p 0.215 8.603 0.032 0.403
miR-3615 -0.647 5.538 0.033 0.403
miR-26b-5p 0.235 12.787 0.034 0.403
miR-140-3p -0.168 9.249 0.036 0.418
miR-331-3p 0.268 4398 0.036 0.418
miR-484 -0.463 7.854 0.037 0.418
miR-4785 -0.304 0.526 0.038 0.418
miR-374a-3p 0.435 2.987 0.040 0.432
miR-224-5p -0.584 7.850 0.040 0.432
miR-502-3p -0.265 3.800 0.042 0.440
miR-26b-3p -0.179 3.623 0.043 0.440
miR-769-5p -0.130 4.654 0.044 0.443
miR-412-5p 1.005 2206 0.045 0.443
miR-4286 -0.248 10.665 0.045 0.443
miR-6513-5p 0.252 0.012 0.047 0.443
miR-339-5p -0.233 11.621 0.047 0.443
miR-30e-5p -0.151 10.655 0.048 0.443
miR-28-5p 0.161 6.656 0.049 0.443



miR-183-5p
miR-664a-3p
miR-339-3p
miR-618
miR-363-3p
miR-5584-5p
miR-130a-3p
miR-192-5p
miR-6513-3p
miR-203a
miR-642a-3p
miR-139-5p
miR-148b-3p
miR-340-3p
miR-96-5p
miR-10b-5p
miR-514a-3p
miR-374a-5p
miR-550a-3-5p
miR-196a-5p
miR-1233-5p
miR-26a-5p
miR-1180-3p
miR-627-5p
miR-486-5p
miR-98-5p
miR-3679-5p
miR-4685-3p
miR-629-5p
miR-365a-3p
miR-365b-3p
miR-370-3p
miR-22-3p
miR-154-3p
miR-4732-3p
miR-3120-3p
miR-26a-1-3p
miR-664b-3p
miR-186-3p
miR-146b-3p
miR-500b-5p
miR-941
miR-500a-5p
miR-29b-2-5p
miR-590-3p
miR-7706
miR-150-5p
miR-454-3p
miR-1277-5p
miR-665
miR-548u
miR-93-5p
miR-628-5p
miR-550a-5p
miR-548j-5p
miR-548ap-5p
miR-204-5p
miR-1296-5p
miR-4677-3p
miR-652-5p
miR-199b-5p
miR-103a-3p
miR-425-5p
miR-486-3p
miR-500a-3p
miR-4645-3p
miR-539-5p
miR-589-5p
miR-769-3p
miR-495-3p
miR-1277-3p
miR-548am-c-0-5p
miR-92a-3p
miR-194-5p
miR-21-3p
miR-548au-5p
miR-338-3p
miR-766-5p
miR-335-5p
miR-152-3p
miR-199a-3p
miR-199b-3p
miR-616-3p
miR-26a-2-3p
miR-874-3p
miR-539-3p
miR-150-3p
miR-32-3p
miR-181b-5p
miR-424-5p
miR-491-5p
miR-1292-5p
miR-27a-5p
miR-590-5p
miR-92b-3p
miR-3200-3p
miR-501-3p



miR-1273d
miR-16-2-3p
miR-340-5p
miR-382-3p
let-7f-1-3p
miR-185-3p
let-7i-3p
miR-431-3p
miR-375
miR-3180-5p
miR-545-5p
miR-1273h-3p
miR-548ab
miR-30c-1-3p
miR-92b-5p
miR-1255a
miR-423-5p
miR-576-5p
miR-126-3p
miR-1307-5p
miR-3180
miR-3180-3p
miR-423-3p
miR-766-3p
miR-378d
miR-7-5p
miR-138-5p
miR-548am-3p
miR-106a-5p
miR-548ay-5p
miR-378i
miR-582-3p
miR-30d-5p
miR-25-5p
miR-3928-3p
miR-221-5p
let-7b-5p
miR-5193
miR-3688-3p
miR-223-5p
miR-2115-3p
miR-4732-5p
miR-1908-5p
miR-7641
miR-582-5p
miR-641
miR-5009-5p
miR-190b
miR-3617-5p
miR-9-3p
miR-6511a-3p
miR-4446-3p
miR-1233-3p
miR-29a-3p
miR-1250-5p
let-7e-5p
miR-548d-5p
miR-487a-3p
miR-193a-5p
miR-548d-3p
miR-130b-5p
miR-497-5p
miR-1972
miR-6873-3p
miR-4448
miR-624-5p
miR-374b-3p
miR-20b-5p
miR-495-5p
miR-301b
miR-24-3p
miR-671-5p
miR-548c-3p
miR-429
miR-2110
miR-7849-3p
miR-19b-3p
miR-330-3p
miR-376a-5p
let-7g-3p
miR-3613-5p
miR-545-3p
let-7g-5p
miR-15a-5p
miR-181d-5p
miR-1307-3p
miR-126-5p
miR-574-3p
miR-221-3p
miR-362-5p
miR-130b-3p
miR-1271-5p
miR-548e-5p
miR-3065-3p
miR-29a-5p
miR-95-3p
miR-30e-3p



miR-31-5p
miR-483-5p
miR-144-5p
miR-5010-5p
miR-320a
miR-1285-3p
miR-5096
miR-378a-3p
miR-1246
miR-320b
miR-5585-3p
miR-548a-5p
miR-6516-5p
miR-1468-5p
miR-320c
miR-3143
miR-378¢
miR-18b-5p
miR-191-5p
miR-100-5p
miR-186-5p
miR-432-5p
miR-125b-5p
miR-6852-5p
miR-143-5p
let-7f-2-3p
miR-504-5p
miR-1185-2-3p
miR-1271-3p
miR-671-3p
miR-1255b-5p
miR-125a-3p
miR-1294
miR-376a-3p
miR-548f-5p
miR-320d
miR-548y
miR-548e-3p
miR-760
miR-450b-5p
let-7a-3p
miR-376b-3p
miR-431-5p
miR-136-5p
miR-151a-3p
miR-29b-3p
miR-182-5p
miR-15b-3p
miR-548ax
miR-20a-3p
miR-548as-5p
miR-1290
miR-452-5p
miR-1299
miR-374b-5p
miR-4507
miR-30c-5p
miR-376¢-3p
miR-454-5p
miR-199a-5p
miR-1304-5p
miR-6772-3p
miR-4772-3p
miR-483-3p
miR-20a-5p
miR-369-3p
miR-411-5p
miR-23a-5p
miR-873-5p
miR-4301
let-7¢c-5p
miR-29¢-3p
miR-329-3p
miR-27a-3p
miR-1229-3p
let-7d-3p
miR-3138
miR-181a-5p
miR-17-3p
miR-548g-3p
miR-153-3p
miR-1306-5p
miR-450a-5p
miR-1273g-3p
miR-548aa
miR-548t-3p
miR-548f-3p
miR-503-5p
miR-548ap-3p
miR-142-5p
miR-1260b
miR-181a-2-3p
miR-1268a
miR-4326
miR-154-5p
miR-143-3p
miR-9-5p



miR-342-3p
miR-210-3p
miR-548a-3p
miR-3194-3p
miR-2355-5p
miR-381-3p
miR-548h-3p
miR-548z
miR-1268b
miR-487a-5p
miR-22-5p
miR-191-3p
miR-218-5p
miR-889-3p
miR-1301-3p
miR-619-5p
miR-377-5p
miR-140-5p
miR-3161
miR-99b-3p
miR-5480-3p
miR-548x-3p
miR-299-3p
miR-625-5p
miR-6500-3p
miR-134-5p
miR-29¢-5p
miR-3187-3p
miR-485-5p
miR-6859-5p
miR-215-5p
miR-18a-5p
miR-548aq-3p
miR-548q
miR-185-5p
miR-4477b
miR-1302
miR-99a-5p
miR-3605-3p
miR-5095
miR-328-3p
miR-7851-3p
miR-329-5p
miR-6741-3p
miR-125a-5p
miR-548b-5p
miR-99b-5p
miR-324-5p
miR-3198
miR-424-3p
miR-197-3p
miR-299-5p
miR-598-3p
miR-1285-5p
miR-548j-3p
miR-494-3p
miR-548k
miR-3179
miR-1270
miR-379-3p
miR-548t-5p
miR-379-5p
miR-195-5p
miR-3620-5p
miR-33a-5p
miR-142-3p
miR-21-5p
miR-3064-5p
miR-146a-3p
miR-4435
miR-548n
miR-548av-5p
miR-181b-3p
miR-487b-5p
miR-330-5p
miR-32-5p
miR-2355-3p
miR-107
miR-7-1-3p
miR-744-3p
miR-190a-5p
miR-3173-5p
miR-342-5p
miR-6803-3p
miR-1
miR-3960
miR-628-3p
miR-146b-5p
miR-106b-5p
miR-6842-3p
miR-98-3p
miR-625-3p
miR-132-3p
miR-103a-2-5p
miR-4742-3p
miR-4433b-3p
miR-885-5p



miR-551b-3p
miR-548i
miR-3133
miR-548aj-5p
miR-548g-5p
miR-548x-5p
miR-543
miR-181c-3p
miR-148b-5p
miR-1179
miR-4662a-5p
miR-181a-3p
let-7i-5p
miR-122-5p
miR-548ar-5p
miR-101-3p
miR-145-5p
miR-487b-3p
miR-377-3p
miR-23b-5p
miR-548ah-3p
miR-19b-1-5p
miR-548p
miR-548ai
miR-570-5p
miR-141-3p
miR-222-3p
miR-548aq-5p
let-7a-5p
miR-1185-1-3p
miR-323a-3p
miR-301a-3p
miR-200a-3p
miR-409-3p
miR-27b-5p
miR-181c-5p
miR-496
miR-6511b-3p
miR-1185-5p
miR-421
let-7d-5p
miR-1304-3p
miR-1287-5p
miR-337-5p
miR-200b-3p
miR-29b-1-5p
miR-505-5p
miR-548ag
miR-544a
miR-382-5p
miR-548h-5p
miR-3140-3p
miR-556-3p
miR-4454
miR-574-5p
miR-4659a-3p
miR-4433b-5p
miR-942-5p
miR-509-3p
miR-378f
miR-376b-5p
miR-376¢-5p
miR-19a-3p
miR-128-3p
miR-651-5p
miR-576-3p
miR-139-3p
miR-127-3p
miR-589-3p
miR-3913-5p
miR-542-3p
miR-7110-3p
miR-1226-3p
miR-664a-5p
miR-1306-3p
miR-323b-3p
miR-877-5p
miR-548an
miR-335-3p
miR-23¢
miR-127-5p
miR-548ak
miR-708-5p
miR-132-5p
miR-136-3p
miR-758-3p
miR-664b-5p
miR-485-3p
miR-584-5p
miR-30b-5p
miR-505-3p
miR-548av-3p
miR-654-3p
miR-4659b-3p
miR-23a-3p
miR-145-3p
miR-548ae



miR-493-5p 0.027 5.498 0.905 0.968

miR-378g 0.033 0.027 0.905 0.968
miR-5187-5p 0.024 2.108 0.910 0.969
miR-5189-3p 0.046 0.435 0.911 0.969
miR-6859-3p -0.055 0.719 0.912 0.969
miR-584-3p -0.019 0.426 0.913 0.969
miR-877-3p 0.039 2.150 0.916 0.970
miR-1249 0.032 0.351 0.919 0.970
miR-493-3p -0.023 5.508 0.919 0.970
miR-15b-5p 0.013 9.487 0.928 0.978
miR-369-5p 0.018 5.217 0.932 0.980
miR-548al 0.066 -0.392 0.936 0.983
miR-301a-5p -0.015 1.602 0.940 0.983
miR-5010-3p -0.008 1.408 0.942 0.983
miR-6734-5p -0.016 0.555 0.946 0.983
miR-2277-5p 0.035 0.413 0.947 0.983
miR-655-3p 0.025 -0.112 0.948 0.983
miR-3074-5p -0.017 1.854 0.949 0.983
miR-361-5p -0.004 8.171 0.950 0.983
miR-548az-5p 0.025 5.839 0.951 0.983
miR-28-3p 0.005 10.686 0.954 0.983
miR-744-5p -0.010 7.986 0.956 0.983
miR-219a-5p 0.013 1.164 0.957 0.983
miR-3065-5p -0.008 2.573 0.958 0.983
miR-5481 -0.008 1.877 0.959 0.983
miR-548at-5p 0.013 4.401 0.959 0.983
miR-30d-3p 0.005 1.671 0.974 0.994
miR-337-3p 0.009 2.407 0.975 0.994
miR-30a-3p -0.003 3.079 0.976 0.994
miR-6511a-5p -0.016 1.038 0.980 0.994
miR-1273h-5p -0.004 11.451 0.983 0.994
miR-433-3p -0.005 1.880 0.984 0.994
miR-652-3p -0.002 7.109 0.985 0.994
miR-1273¢ 0.003 1.024 0.986 0.994
miR-148a-3p -0.002 10.002 0.986 0.994
miR-6511b-5p 0.010 1.158 0.987 0.994
miR-409-5p 0.002 3.705 0.990 0.996
miR-6770-3p -0.003 0.142 0.992 0.996

miR-548w 0.003 5.896 0.994 0.996
miR-27b-3p 0.000 10.051 0.998 0.998

miRNA log-fold change log-counts per p-value adjusted p-value

million
Presymptomatic vs. Patient

miR-345-5p -0.528 4.607 3.610E-05 0.021

miR-205-5p -1.421 2.270 0.000 0.065
miR-206 -2.218 1.104 0.000 0.065

miR-18a-3p -0.586 2.363 0.001 0.083

miR-93-3p -0.426 4.195 0.001 0.083
miR-106b-3p -0.477 6.995 0.001 0.083

miR-548am-c-0-5p 0.497 14.295 0.001 0.083
miR-548au-5p 0.480 14.473 0.001 0.083

miR-551a -1.098 -0.321 0.002 0.097
miR-218-5p -1.849 1.231 0.002 0.097
miR-542-5p -0.709 1.306 0.002 0.097

let-7b-3p -0.484 1.579 0.003 0.137
miR-151a-5p 0.394 11.573 0.004 0.150

miR-151b 0.389 11.596 0.004 0.150
miR-223-3p -0.300 14.649 0.005 0.190
miR-374a-3p 0.627 2.987 0.005 0.190
miR-130a-3p 0.399 7.658 0.005 0.190

miR-375 -1.131 2.730 0.006 0.195

miR-1303 -1.405 4.458 0.007 0.224
miR-148a-5p -0.428 0.933 0.009 0.224

miR-548u 1.339 1.210 0.009 0.224
miR-10b-5p -0.741 4.540 0.009 0.224

miR-17-5p 0.416 8.427 0.009 0.224

miR-618 -1.220 -0.303 0.010 0.224

miR-25-3p -0.293 10.901 0.010 0.224

miR-3615 -0.822 5.538 0.010 0.224
miR-625-3p -0.593 8.394 0.010 0.224
miR-154-3p 0.944 0.419 0.011 0.224
miR-26b-5p 0.296 12.787 0.012 0.226
miR-378a-5p -0.478 2.841 0.012 0.226
miR-550a-3p -0.674 3.973 0.012 0.226
miR-590-5p 0.686 0.651 0.013 0.232

miR-941 -0.475 9.475 0.015 0.232
miR-616-3p -0.532 0.543 0.015 0.232
miR-331-3p 0.332 4.398 0.015 0.232

miR-10a-3p 0.428 1.500 0.016 0.232
miR-365a-3p -0.696 4.151 0.016 0.232
miR-365b-3p -0.696 4.151 0.016 0.232
miR-502-3p -0.330 3.800 0.016 0.232
miR-340-5p 0.441 6.743 0.016 0.232
miR-487a-3p 0.824 0.530 0.017 0.232
miR-374a-5p 0.488 7.594 0.017 0.232
miR-224-5p -0.706 7.850 0.017 0.232
miR-148b-3p 0.301 9.436 0.018 0.232

miR-550a-3-5p -0.436 2.398 0.018 0.232
miR-532-3p -0.462 2.783 0.019 0.237
miR-590-3p 0.630 6.770 0.019 0.237
miR-340-3p 0.235 3.655 0.021 0.240
miR-183-5p -0.695 5.546 0.022 0.240

miR-629-5p -0.370 6.404 0.023 0.240



miR-539-3p
miR-7976
miR-1289
miR-642a-3p
miR-628-5p
miR-100-5p
miR-200c-3p
miR-6873-3p
miR-92a-3p
miR-223-5p
miR-203a
miR-146a-5p
miR-28-5p
let-7f-5p
miR-7706
miR-3120-3p
miR-378i
miR-589-5p
miR-484
miR-382-3p
miR-1277-3p
miR-32-3p
miR-1277-5p
miR-376b-3p
miR-133a-3p
miR-4677-3p
miR-9-3p
miR-545-5p
miR-139-5p
miR-92b-5p
miR-369-3p
miR-92b-3p
miR-3928-3p
let-7b-5p
miR-296-5p
miR-514a-3p
miR-25-5p
miR-576-5p
miR-7641
miR-301b
miR-196b-5p
miR-500a-3p
miR-451a
miR-153-3p
miR-652-5p
miR-425-3p
miR-193a-5p
miR-412-5p
miR-374b-3p
miR-539-5p
miR-199a-3p
miR-199b-3p
miR-550a-5p
miR-142-3p
miR-140-3p
miR-425-5p
miR-32-5p
miR-501-3p
miR-125a-3p
miR-362-5p
miR-4732-3p
miR-197-3p
miR-23b-5p
miR-335-5p
miR-1180-3p
miR-26a-5p
miR-641
miR-423-3p
miR-548aq-3p
miR-5010-3p
miR-486-5p
let-7d-3p
miR-495-3p
miR-3679-5p
miR-769-3p
miR-3613-5p
miR-320c
miR-301a-3p
miR-4685-3p
miR-532-5p
miR-2115-3p
miR-320b
miR-769-5p
miR-150-3p
miR-548h-5p
miR-545-3p
miR-18a-5p
miR-33a-5p
miR-548ab
miR-361-3p
miR-324-3p

0.815
-0.387
-1.074
-0.683
0.286
-0.778
0.183
-0.586
-0.495
-0.246
-0.610
0.232
0.196
0.224
-0.588
0.288
-0.285
-0.253
-0.502
0.578
0.473
0.424
0.463
0.671
-0.671
0.374
0.380
0.537
0.454
-0.857
0.685
-0.530
-0.393
-0.395
-0.499
0.933
-0.435
-0.290
-0.638
0.333
0.190
-0.248
-0.491
0.543
0.405
-0.182
-0.874
1.044
0.372
0.706
0.283
0.283
-0.401
0.288
-0.166
-0.210
0.365
-0.470
-0.437
-0.275
-0.921
-0.280
-0.398
0.338
-0.775
0.175
0.209
-0.376
0.374
-0.214
-0.676
-0.182
0.483
-0.380
-0.392
-0.498
-0.521
0.225
-0.560
-0.246
-0.721
-0.524
-0.123
-0.511
0.779
0.383
0.197
0.358
1.175
-0.176
-0.176

1.473
1.801
-0.148
0.484
4.677
2.346
5.273
5.014
13.677
7.682
-0.173
12.934
6.656
16.225
-0.037
2.583
4.394
3.684
7.854
3.232
1.948
0.143
12.138
3.330
7.345
0.746
3.953
1.482
6.068
-0.009
4.919
3.086
0.931
12.514
1.358
0.606
2.573
6.414
5.298
1.088
5.658
4.766
11.183
0.310
1.446
6.606
3.243
2.206
1.235
0.162
15.594
15.594
1.899
13.185
9.249
10.913
5.289
2.746
0.692
2.457
3.928
6.745
1.691
7.461
2.024
15.391
1.385
8.841
9.450
1.408
14.249
6.419
3.399
2.384
0.674
9.506
8.553
5.377
0.669
5.499
0.295
8.897
4.654
1.296
6.935
1.909
7.212
1.653
4.211
6.970
4.372

0.023
0.023
0.023
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.026
0.026
0.026
0.028
0.030
0.030
0.030
0.031
0.031
0.032
0.032
0.033
0.033
0.034
0.034
0.036
0.037
0.037
0.038
0.039
0.039
0.040
0.040
0.040
0.040
0.040
0.041
0.042
0.042
0.043
0.043
0.043
0.044
0.044
0.044
0.045
0.045
0.045
0.046
0.046
0.047
0.047
0.048
0.048
0.050
0.050
0.051
0.051
0.052
0.053
0.053
0.054
0.054
0.055
0.056
0.057
0.058
0.059
0.059
0.060
0.060
0.061
0.064
0.069
0.070
0.070
0.070
0.070
0.072
0.072
0.072
0.073
0.073
0.073
0.074
0.074
0.075
0.075
0.076
0.076
0.077

0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.259
0.264
0.264
0.264
0.264
0.264
0.269
0.269
0.270
0.270
0.270
0.270
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.271
0.274
0.274
0.278
0.278
0.278
0.278
0.279
0.283
0.283
0.284
0.284
0.284
0.287
0.291
0.291
0.293
0.293
0.293
0.293
0.293
0.307
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.318
0.319



miR-889-3p
miR-93-5p
miR-133b
miR-3158-3p
miR-204-5p
miR-6852-5p
miR-106a-5p
miR-486-3p
miR-4785
miR-320d
miR-548d-3p
miR-361-5p
miR-378a-3p
miR-548j-3p
miR-29a-5p
miR-551b-3p
let-7g-5p
miR-30e-3p
miR-942-5p
miR-423-5p
miR-126-3p
miR-26b-3p
miR-370-3p
miR-30b-3p
miR-181b-5p
miR-1908-5p
miR-411-5p
miR-376a-3p
miR-424-3p
miR-660-5p
miR-19a-3p
miR-126-5p
miR-509-3p
miR-26a-1-3p
miR-760
miR-152-3p
miR-1233-3p
miR-1185-2-3p
miR-30a-5p
miR-376¢-3p
miR-30d-5p
miR-106b-5p
miR-16-5p
miR-491-5p
miR-487a-5p
miR-548f-3p
miR-9-5p
miR-299-3p
miR-500a-5p
miR-548p
miR-671-3p
miR-3138
miR-1307-3p
miR-363-3p
miR-377-3p
miR-185-3p
miR-320a
miR-146b-3p
miR-1233-5p
miR-548e-3p
miR-1273h-3p
miR-99a-5p
miR-1296-5p
miR-21-5p
miR-548a-5p
miR-671-5p
miR-548am-3p
miR-20a-5p
miR-500b-5p
miR-3180-5p
miR-190b
miR-496
miR-96-5p
miR-3198
miR-548ah-3p
miR-454-5p
miR-150-5p
miR-23a-5p
miR-98-5p
miR-130b-3p
miR-20a-3p
miR-4732-5p
miR-3605-3p
miR-2110
miR-144-3p
miR-4448
miR-454-3p
miR-222-3p
miR-6859-5p
miR-1268b
miR-7-5p

0.491
-0.132
-0.707
-0.626
0.480
-0.445
0.324
-0.521
-0.266
-0.422
0.731
-0.128
-0.212
0.504
0.275
0.337
0.133
0.260
-0.162
-0.571
0.141
-0.152
-0.494
0.226
-0.234
-0.625
0.408
0.498
-0.315
-0.229
0.330
0.269
-0.548
0.161
-0.534
0.194
1.403
0.452
-0.208
0.501
-0.119
0.368
-0.169
-0.207
0.397
0.497
0.285
0.512
-0.358
0.989
-0.345
-0.395
-0.407
-0.265
0.400
-0.256
-0.378
-0.190
-1.423
0.286
-0.305
-0.266
-0.156
0.252
0.521
-0.294
1.402
0.186
-0.369
-0.890
-0.127
0.423
-0.469
-0.481
1.009
-0.120
-0.416
-0.375
0.141
0.136
0.186
-0.674
-0.338
-0.396
-0.394
-0.343
0.132
-0.152
-0.327
0.974
0.203

3.340
11.309
-0.138

1.499

1.457

2.746

1.761

5.430

0.526

7.345

1.169

8.171

9.082

0.393

0.831

1.815
10.980

7.059

4.976
10.597
14.192

3.623

5.773

0.223

8.044

2.300

5.491

6.560

0.968

5.628

5.810
11.057

2.288

2.985

1.310

7.210
-0.544

0.123

6.368

5.292
11.785

4.658
17.408

3.945

0.384

5.197

5.867

0.096

3.026

1.823

3.284

2.724

7.329

6.300

2.438

4.607
11.779

3.582
-0.221

2.682

7.277

4.162

2.226
12.294

1.849

4.210

2.613

9.087

2.709
-0.295

3.267

1.970

3.856

0.544

2.757

3.780
10.272

1.003

8.594

5.063

1.922

3.999

1.394

3.338

5.293

4.223

8.563

8.603

3.735

0.512
10.227

0.077
0.078
0.078
0.079
0.082
0.083
0.084
0.084
0.084
0.084
0.084
0.085
0.086
0.087
0.091
0.092
0.093
0.094
0.097
0.098
0.100
0.100
0.101
0.101
0.101
0.102
0.102
0.104
0.104
0.104
0.105
0.105
0.106
0.107
0.108
0.109
0.109
0.109
0.110
0.110
0.111
0.112
0.112
0.112
0.113
0.115
0.115
0.116
0.117
0.118
0.118
0.119
0.120
0.122
0.122
0.123
0.125
0.125
0.125
0.125
0.127
0.132
0.132
0.132
0.135
0.139
0.140
0.141
0.142
0.144
0.145
0.145
0.146
0.151
0.152
0.154
0.155
0.155
0.156
0.156
0.159
0.159
0.159
0.161
0.162
0.162
0.168
0.169
0.170
0.170
0.170

0.319
0.319
0.319
0.321
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.328
0.328
0.332
0.345
0.345
0.347
0.348
0.356
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.357
0.359
0.361
0.361
0.361
0.361
0.361
0.361
0.363
0.366
0.367
0.367
0.368
0.368
0.368
0.368
0.368
0.370
0.380
0.380
0.380
0.385
0.395
0.396
0.397
0.398
0.401
0.401
0.401
0.401
0.414
0.414
0.415
0.415
0.415
0.415
0.415
0.418
0.418
0.418
0.420
0.420
0.420
0.432
0.432
0.432
0.432
0.432



miR-1294
miR-1285-5p
miR-483-5p
miR-181a-5p
miR-6513-5p
miR-30d-3p
miR-1255b-5p
miR-548a-3p
miR-5095
miR-146b-5p
miR-4645-3p
miR-1972
miR-155-5p
miR-1270
miR-103a-2-5p
miR-1306-5p
miR-196a-5p
miR-192-5p
miR-134-5p
miR-26a-2-3p
miR-29b-2-5p
miR-651-5p
miR-1301-3p
miR-330-3p
miR-5010-5p
miR-132-3p
miR-4477b
miR-136-3p
miR-548ax
miR-194-5p
miR-122-5p
miR-145-5p
miR-24-3p
miR-556-3p
miR-182-5p
miR-1292-5p
miR-665
miR-3173-5p
miR-548as-5p
miR-379-5p
miR-1304-3p
miR-3913-5p
miR-885-5p
miR-369-5p
miR-376¢-5p
miR-432-5p
miR-6842-3p
miR-1290
miR-17-3p
miR-219a-5p
miR-1250-5p
miR-191-3p
miR-382-5p
miR-29b-1-5p
miR-376b-5p
miR-5583-3p
miR-30b-5p
miR-548k
miR-1468-5p
miR-548av-5p
miR-548g-3p
miR-1246
miR-374b-5p
miR-1255a
miR-6500-3p
miR-548x-3p
miR-185-5p
miR-548al
miR-655-3p
miR-30c-5p
miR-627-5p
miR-101-3p
miR-664b-5p
miR-3180
miR-3180-3p
miR-548c-3p
miR-4742-3p
miR-328-3p
miR-664a-5p
miR-379-3p
miR-548ag
miR-22-5p
miR-503-5p
miR-766-3p
miR-1249
miR-199a-5p
miR-330-5p
miR-1304-5p
miR-548n
miR-1306-3p
miR-431-3p

-0.324
0.731
-0.869
-0.208
0.178
0.218
-0.338
0.272
2.977
0.212
0.185
3.618
0.135
-0.368
0.391
-0.496
-0.436
-0.197
0.349
0.293
0.114
0.255
-0.252
0.107
-0.466
-0.139
0.403
0.450
0.179
-0.230
-0.655
-0.245
-0.088
0.258
-0.243
-0.342
-0.345
-0.371
0.457
0.269
-0.927
0.168
-0.573
0.247
0.470
-0.313
-0.164
-0.501
0.149
0.291
0.155
-0.122
0.282
-0.204
0.464
0.235
0.352
0.150
0.150
0.146
1.256
-0.442
0.214
0.317
0.674
1.500
0.085
0.909
0.417
0.166
-0.113
0.168
-0.242
-0.726
-0.726
-0.556
-0.167
-0.238
-0.176
0.253
0.236
0.146
-0.168
-0.140
-0.314
0.149
0.075
0.967
0.144
-0.175
-0.232

1.946
8.438
1.834
10.817
0.012
1.671
7.593
5.676
8.523
9.310
0.811
5.510
8.603
3.003
-0.340
2.765
2.899
7.507
7.091
-0.153
1.605
1.314
5.720
3.864
0.210
3.504
0.399
3.534
5.062
7.337
11.047
6.318
12.655
1.254
7.556
0.211
0.677
1.011
3.448
7.187
3.254
2.448
0.498
5.217
1.518
7.959
1.371
4.532
3.215
1.164
0.691
3.805
8.383
0.138
1.487
0.528
7.651
1.443
0.552
1.444
1.192
5.861
6.920
4.833
-0.223
2.828
9.811
-0.392
-0.112
11.296
0.873
11.459
1.474
0.868
0.868
2.905
1.378
5.945
5.295
1.468
6.333
3.999
3.907
5.380
0.351
8.817
3.616
0.167
4.212
2.215
0.193

0.171
0.174
0.176
0.179
0.181
0.181
0.187
0.187
0.189
0.194
0.195
0.196
0.196
0.198
0.198
0.199
0.199
0.200
0.203
0.208
0.211
0.214
0.220
0.220
0.224
0.224
0.224
0.225
0.226
0.229
0.231
0.231
0.232
0.232
0.232
0.233
0.233
0.238
0.241
0.241
0.248
0.248
0.249
0.254
0.256
0.257
0.258
0.258
0.258
0.259
0.261
0.261
0.263
0.264
0.266
0.267
0.268
0.268
0.274
0.282
0.286
0.287
0.288
0.288
0.290
0.292
0.292
0.295
0.295
0.298
0.300
0.302
0.304
0.304
0.304
0.304
0.309
0311
0313
0.315
0.320
0.320
0.327
0.327
0.329
0.330
0.337
0.338
0.343
0.343
0.346

0.433
0.438
0.440
0.447
0.449
0.449
0.459
0.459
0.463
0.471
0.471
0.471
0.471
0.472
0.472
0.472
0.472
0.472
0.477
0.486
0.492
0.497
0.507
0.507
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.510
0.519
0.522
0.522
0.533
0.533
0.533
0.540
0.540
0.540
0.540
0.540
0.540
0.541
0.542
0.542
0.544
0.544
0.545
0.545
0.545
0.545
0.555
0.568
0.574
0.574
0.574
0.574
0.574
0.574
0.574
0.577
0.577
0.581
0.581
0.581
0.581
0.581
0.581
0.581
0.589
0.592
0.592
0.595
0.601
0.601
0.609
0.609
0.611
0.611
0.622
0.622
0.628
0.628
0.631



miR-30c-1-3p
miR-483-3p
miR-1271-3p
miR-337-5p
miR-7110-3p
miR-301a-5p
miR-1271-5p
miR-151a-3p
miR-1185-1-3p
miR-664a-3p
miR-5009-5p
miR-4286
miR-181a-2-3p
miR-34a-5p
miR-5480-3p
miR-5096
miR-10a-5p
miR-6803-3p
miR-3065-3p
miR-195-5p
miR-186-3p
miR-181a-3p
miR-409-3p
miR-3200-3p
miR-625-5p
miR-326
miR-342-3p
miR-548an
miR-758-3p
miR-548t-5p
miR-103a-3p
miR-148b-5p
miR-378d
miR-1302
miR-339-3p
miR-190a-5p
miR-135a-5p
miR-29b-3p
miR-3187-3p
miR-744-5p
miR-1185-5p
miR-424-5p
miR-494-3p
miR-377-5p
miR-409-5p
miR-1179
miR-16-2-3p
miR-299-5p
miR-6513-3p
miR-335-3p
miR-215-5p
miR-127-5p
miR-2277-5p
miR-339-5p
miR-664b-3p
miR-574-5p
miR-548ak
miR-378g
miR-4326
miR-23c
miR-125b-5p
miR-181b-3p
miR-4435
miR-6734-5p
miR-6516-5p
miR-144-5p
miR-27a-3p
miR-323b-3p
miR-1285-3p
miR-199b-5p
miR-27a-5p
miR-20b-5p
miR-143-5p
miR-504-5p
miR-5187-5p
miR-598-3p
miR-1307-5p
miR-542-3p
miR-548ap-5p
miR-3617-5p
miR-766-5p
miR-154-5p
miR-27b-3p
miR-654-3p
miR-139-3p
miR-27b-5p
miR-29¢-3p
miR-548b-5p
miR-548az-5p
miR-23b-3p
miR-324-5p

0.093
-0.532
0.730
0.237
-0.303
0.192
-0.127
0.074
0.232
0.108
-0.255
-0.116
0.098
0.194
-0.433
-0.744
0.103
-0.300
-0.161
0.126
-0.123
0.160
0.197
-0.268
-0.164
-0.129
-0.139
0.340
0.222
0.257
0.064
0.077
-0.451
0.901
-0.086
0.144
-0.243
0.211
-0.198
-0.159
0.246
-0.195
0.203
0.198
0.168
-0.107
-0.157
0.181
0.070
-0.137
-0.157
0.187
-0.095
-0.093
0.111
-0.605
0.655
-0.219
-0.312
-0.091
-0.109
0.238
-0.183
-0.182
0.110
-0.214
0.154
0.158
-0.115
-0.212
0.160
-0.094
0.171
0.133
-0.146
0.143
0.080
0.169
0.079
0.136
0.084
0.196
0.088
0.143
-0.182
-0.088
0.155
0.127
0.256
0.054
0.055

2.582
1.205
-0.768
3.963
-0.067
1.602
1.919
12.424
3.358
4.261
0.291
10.665
5.645
4.676
2.775
11.722
7.108
-0.112
0.404
3.376
0.571
4.944
8.698
0.193
6.770
6.590
10.283
1.688
1.734
1.936
15.095
2.775
0.023
2.800
5.037
5.571
1.965
9.739
0.369
7.986
2.420
3.748
5.857
-0.095
3.705
1.832
3.631
2.468
1.835
5.333
2.194
1.654
0.413
11.621
2.162
14.568
2.923
0.027
1.874
0.292
8.080
0.083
1.570
0.555
1.586
7.018
9.739
4.932
8.508
4.252
2.220
5.620
1.979
0.213
2.108
4.565
5.708
2.341
9.773
0.442
2.287
3.881
10.051
7.125
4.524
1.148
8.568
7.793
5.839
9.599
5.454

0.350
0.352
0.353
0.359
0.360
0.361
0.362
0.362
0.364
0.367
0.370
0.370
0.372
0.373
0.374
0.375
0.376
0.379
0.384
0.387
0.395
0.395
0.400
0.400
0.402
0.403
0.404
0.404
0.405
0.406
0.406
0.407
0.410
0.411
0.414
0.415
0.417
0.417
0.418
0.420
0.425
0.425
0.425
0.427
0.431
0.433
0.436
0.437
0.441
0.443
0.444
0.445
0.445
0.446
0.453
0.454
0.456
0.456
0.459
0.469
0.472
0.473
0.475
0.479
0.481
0.489
0.491
0.491
0.494
0.500
0.500
0.504
0.506
0.508
0.514
0.518
0.523
0.531
0.536
0.538
0.539
0.539
0.543
0.547
0.548
0.550
0.550
0.552
0.553
0.557
0.559

0.637
0.637
0.637
0.644
0.644
0.644
0.644
0.644
0.646
0.649
0.651
0.651
0.651
0.651
0.651
0.651
0.651
0.655
0.661
0.665
0.674
0.674
0.675
0.675
0.675
0.675
0.675
0.675
0.675
0.675
0.675
0.675
0.678
0.679
0.679
0.679
0.679
0.679
0.679
0.681
0.684
0.684
0.684
0.685
0.691
0.692
0.694
0.694
0.696
0.696
0.696
0.696
0.696
0.696
0.705
0.705
0.705
0.705
0.708
0.722
0.723
0.723
0.725
0.729
0.731
0.740
0.740
0.740
0.743
0.748
0.748
0.752
0.752
0.754
0.761
0.764
0.770
0.780
0.785
0.785
0.785
0.785
0.788
0.790
0.790
0.790
0.790
0.790
0.790
0.792
0.792



miR-22-3p
miR-3194-3p
miR-4446-3p
miR-142-5p
miR-136-5p
let-7¢c-5p
miR-143-3p
miR-28-3p
miR-4659b-3p
miR-30a-3p
miR-548|
miR-1299
miR-584-5p
miR-23a-3p
miR-493-3p
let-7a-5p
miR-1273c
miR-1260b
miR-5193
miR-29¢-5p
miR-3133
miR-505-5p
miR-485-3p
miR-7849-3p
miR-5585-3p
miR-7851-3p
miR-548ae
miR-7-1-3p
miR-548j-5p
miR-4662a-5p
miR-429
let-7g-3p
miR-338-3p
miR-19b-1-5p
miR-221-5p
miR-544a
miR-543
miR-431-5p
miR-378c
miR-493-5p
miR-5584-5p
let-7f-1-3p
miR-329-5p
miR-146a-3p
let-7d-5p
miR-548q
miR-191-5p
miR-107
miR-4301
miR-873-5p
miR-1268a
miR-337-3p
miR-329-3p
miR-1273g-3p
miR-548w
miR-3620-5p
miR-127-3p
miR-548at-5p
miR-452-5p
miR-381-3p
miR-378f
miR-128-3p
miR-125a-5p
miR-1226-3p
miR-584-3p
miR-548av-3p
miR-3179
miR-548y
miR-548f-5p
miR-98-3p
miR-3143
miR-3140-3p
miR-3960
miR-487b-5p
miR-495-5p
miR-145-3p
miR-15b-3p
miR-548i
miR-485-5p
miR-4659a-3p
miR-140-5p
miR-15b-5p
miR-582-3p
miR-3161
miR-1273h-5p
miR-505-3p
miR-181d-5p
miR-877-3p
miR-323a-3p
miR-6511b-5p
miR-200b-3p

-0.045
0.272
0.125
0.109
0.160
-0.079
0.144
-0.054
0.080
0.058
-0.098
-0.475
-0.085
-0.051
0.126
-0.082
-0.103
-0.086
0.087
-0.049
-0.394
-0.109
0.180
0.085
-0.858
-0.161
0.791
0.084
0.063
0.091
-0.075
0.112
-0.082
0.061
0.044
0.230
0.096
-0.101
-0.065
0.103
0.087
-0.111
-0.118
0.456
-0.054
-0.092
-0.037
-0.037
-0.249
0.149
0.398
0.121
-0.081
-0.663
0.143
-0.312
-0.079
0.101
-0.092
0.081
-0.058
0.031
-0.079
-0.076
0.064
0.152
0.136
0.353
-0.235
0.084
-0.055
-0.055
-0.260
-0.078
-0.079
-0.065
-0.056
-0.182
-0.093
-0.054
0.034
0.043
-0.088
-0.240
-0.060
-0.022
-0.035
0.105
-0.055
-0.173
-0.033

8.495
0.002
3.069
10.854
2.770
9.528
9.208
10.686
0.948
3.079
1.877
4.630
9.252
11.962
5.508
17.835
1.024
3.783
1.173
4.579
-0.564
3.558
5.831
0.247
6.719
3.495
3.953
2.452
9.735
1.907
0.270
0.220
5.028
0.495
5.310
0.669
3.379
7.576
5.108
5.498
0.672
0.491
2.442
2.291
10.427
4.336
12.565
10.028
2.532
1.352
3.542
2.407
5.645
11.153
5.896
3.024
7.007
4.401
2,671
5.537
1.820
10.346
9.141
1.073
0.426
3.903
-0.272
-0.318
0.762
0.779
-0.186
0.699
3.467
0.849
-0.270
1.763
5.648
3.203
3.492
0.124
6.331
9.487
1.716
-0.951
11.451
4.359
3.947
2.150
4.078
1.158
2.188

0.559
0.560
0.563
0.567
0.568
0.568
0.571
0.571
0.573
0.575
0.575
0.577
0.579
0.581
0.581
0.585
0.588
0.589
0.589
0.594
0.596
0.597
0.601
0.609
0.618
0.627
0.627
0.627
0.628
0.632
0.632
0.638
0.641
0.645
0.645
0.646
0.648
0.650
0.655
0.660
0.662
0.663
0.663
0.669
0.672
0.677
0.681
0.682
0.685
0.692
0.698
0.706
0.711
0.712
0.716
0.717
0.717
0.719
0.721
0.725
0.726
0.727
0.727
0.735
0.735
0.736
0.739
0.742
0.742
0.744
0.745
0.746
0.752
0.754
0.755
0.755
0.765
0.776
0.776
0.780
0.782
0.783
0.784
0.786
0.788
0.789
0.792
0.793
0.794
0.798
0.799

0.792
0.792
0.795
0.797
0.797
0.797
0.797
0.797
0.798
0.798
0.798
0.798
0.798
0.798
0.798
0.802
0.802
0.802
0.802
0.806
0.806
0.806
0.810
0.819
0.830
0.835
0.835
0.835
0.835
0.837
0.837
0.842
0.844
0.846
0.846
0.846
0.846
0.847
0.852
0.855
0.855
0.855
0.855
0.860
0.862
0.867
0.870
0.870
0.872
0.878
0.884
0.892
0.896
0.896
0.897
0.897
0.897
0.897
0.897
0.898
0.898
0.898
0.898
0.903
0.903
0.903
0.904
0.904
0.904
0.904
0.904
0.904
0.907
0.907
0.907
0.907
0.918
0.927
0.927
0.929
0.929
0.929
0.929
0.929
0.929
0.929
0.930
0.930
0.930
0.932
0.932



miR-141-3p
miR-708-5p
miR-19b-3p
miR-18b-5p
miR-6772-3p
miR-877-5p
let-7a-3p
miR-31-5p
miR-548aq-5p
miR-5189-3p
miR-548ai
miR-570-5p
miR-450b-5p
miR-487b-3p
miR-548ap-3p
miR-1
miR-1229-3p
miR-6770-3p
miR-3064-5p
miR-186-5p
miR-582-5p
miR-3065-5p
miR-200a-3p
miR-652-3p
miR-181c-5p
miR-548ar-5p
miR-6741-3p
miR-628-3p
miR-548d-5p
miR-4454
miR-576-3p
miR-433-3p
miR-148a-3p
miR-574-3p
miR-29a-3p
miR-4433b-5p
miR-6511a-5p
miR-3074-5p
miR-6511b-3p
miR-497-5p
miR-548aa
miR-548t-3p
let-7i-3p
miR-450a-5p
miR-619-5p
miR-874-3p
miR-342-5p
miR-548aj-5p
miR-548g-5p
miR-548x-5p
miR-624-5p
miR-2355-3p
miR-4433b-3p
miR-2355-5p
miR-210-3p
miR-99b-3p
miR-3688-3p
let-7i-5p
miR-4507
miR-744-3p
miR-548ay-5p
miR-99b-5p
miR-15a-5p
miR-132-5p
miR-1287-5p
miR-221-3p
miR-376a-5p
miR-548e-5p
miR-95-3p
miR-21-3p
miR-589-3p
miR-4772-3p
miR-30e-5p
miR-138-5p
let-7e-5p
miR-548h-3p
miR-548z
miR-1273d
miR-181c-3p
miR-130b-5p
miR-421
miR-6859-3p
miR-6511a-3p
let-7f-2-3p

0.044
0.161
0.060
0.043
0.055
0.024
-0.058
0.085
0.187
-0.093
0.194
0.194
-0.053
0.048
-0.072
0.078
0.048
-0.062
0.024
-0.024
0.068
-0.030
0.023
0.018
0.031
0.098
0.046
-0.019
0.025
0.037
0.017
0.038
0.020
-0.018
0.041
-0.036
-0.091
-0.035
-0.023
-0.022
0.043
0.043
-0.024
-0.040
-0.136
-0.015
0.021
0.066
0.066
0.066
-0.031
-0.012
0.037
0.025
-0.013
-0.021
-0.018
-0.008
-0.108
0.023
0.012
-0.014
-0.011
0.009
0.008
0.006
-0.019
-0.015
0.011
0.009
-0.004
0.013
0.003
-0.007
0.005
0.009
0.009
-0.027
0.002
-0.002
-0.001
-0.005
-0.001
-0.001

3.127
2.615
10.256
2.410
0.690
2.378
4.497
2.641
2.543
0.435
0.527
0.527
2.048
5.402
10.374
8.318
0.765
0.142
0.924
8.853
0.885
2.573
2.514
7.109
3.046
7.739
0.231
5.661
12.885
9.159
5.501
1.880
10.002
5.403
9.472
7.929
1.038
1.854
2.078
1.523
10.786
10.786
2.370
0.853
11.202
1.960
3.944
7.504
7.504
7.504
0.116
3.959
2.351
0.457
2.393
2.773
1.689
13.259
1.601
-0.457
13.403
7.865
9.211
0.644
3.050
11.513
0.104
1.838
2.108
3.394
1.137
1.699
10.655
0.000
9.484
8.937
8.937
4.498
3.538
5.414
5.199
0.719
4.865
0.250

0.802
0.807
0.809
0.812
0.816
0.817
0.823
0.826
0.827
0.831
0.832
0.832
0.834
0.835
0.837
0.838
0.840
0.844
0.846
0.848
0.853
0.854
0.855
0.857
0.866
0.868
0.875
0.877
0.878
0.881
0.882
0.885
0.889
0.890
0.894
0.895
0.895
0.897
0.898
0.900
0.900
0.900
0.901
0.901
0.902
0.903
0.903
0.907
0.907
0.907
0.908
0.913
0.914
0.916
0.918
0.922
0.926
0.930
0.938
0.938
0.942
0.943
0.944
0.945
0.950
0.950
0.955
0.958
0.963
0.967
0.971
0.971
0.974
0.980
0.980
0.983
0.983
0.983
0.987
0.987
0.991
0.992
0.993
0.998

0.933
0.937
0.938
0.940
0.941
0.941
0.946
0.947
0.947
0.947
0.947
0.947
0.947
0.947
0.947
0.947
0.948
0.950
0.951
0.951
0.954
0.954
0.954
0.954
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.962
0.965
0.965
0.965
0.965
0.968
0.971
0.973
0.978
0.978
0.979
0.979
0.979
0.979
0.980
0.980
0.983
0.985
0.988
0.991
0.992
0.992
0.993
0.993
0.993
0.993
0.993
0.993
0.994
0.994
0.995
0.995
0.995
0.998




Table A3. List of the putative target genes

Table A3. List of the putative target genes for each miRNA from our signature (miR-34a-5p, miR-345-5p,

miR-200¢-3p, miR-10a-3p), as indicated by DIANA-miRPath v.3 using TarBase (experimentally supported

approach).
miR-34a-5p
ARHGAPI ~TMEM33  HUWEI  HNRNPU KIAI;AS‘SW( MMP9 SLC36A1 KIAI;AS‘S?%( PCYOXI
BMII POLI MAP4 TAB2 MOCS2 MRPS2 RDRC(hsa) SLC30A3 SCML2
TMSBI0  LRSAMI  ETFDH ANOY RAD2(hsa) PTGER?2 A2RP(hsa) LRRC46 RADI7
KDRF(hsa)  ZNF76 FRS2 FXN ZFPL1 LZTFL1 PRSSI SGPP1 IL6
RGPI SLC37A3  BINI TCF19 MED16 ABCDI STAR HDACS CMPK (hsa)
TGDS REEP6 TRIM7  SAPL(hsa) GDA POLRIB KIF11 FAMI11A PPFIAL
NA MIERED | MTD2 APOO NCEHI AF131216.5 ELMODI1 ATPIAL RNF141
CDC46(hsa) ~ VPS37D  KLHL17 ~ PPPIRI8 TPM4 BCL7B CITED2 KIAA0004( OK/SW-
hsa) cl.29(hsa)
ALR(hsa) HZ‘:E)M“’ AP5ZI CoQY BRCAI DIAPHI NLGN2 H4/K (hsa) TRIBI
GOLPH3L D3S:§E(h SPTf)z(hS Cl70rf99 AGBLS CHST6 KDELRI SNF8 CTSH
VPS4A ETV6  CAPZA2  PNPLAS THEM4 MLSTS NUDT22 ST20 hCGE}figmg
NOTUM  ADCY7  DPYSL4  H4Fi(hsa)  GOLGA7 PTP4A2 NPIPB4 NUCIis(hsa H1F4(hsa)
ZDHHCI8  BCAT2 GOLBGAB GLI4 GPC3 FGD3 P1725(hsa) CNOTSL MAPKI
RTN4 MMGTI  KLFI2 UBE2I LADI COGs SURF4 TACSTD2  ADTB2(hsa)
SEMA3G ~ LIMD2 UTS?2 MAGEDI LYPDS8 PPPIR14C N4BP4(hsa) AS3MT CLTB
Cl7orf85 ~ FGFR3  MRPSI2  SLCI6A4 FAR2 CHERP PSMD9 SNX5 IMP3
ARPCS Hz,zf)cm RADS4B VEPHI GGA3 TK1 MPI EHDI AMERI
ERLINI STXS DMBTI  GXYLTI LPCAT4 ZDHHC4 WIPF3 KNSLi(hsa)  FNDC3A
EPB4IL4A  H2AFX  STXBP5S  Céorfl4l MCM?2 RNASEK ANX4(hsa) FLOT2 SDCBP
RP11-
NEK3 LTNI KIF2A Wiz 452K125- ORMDL2 SKAI SLC2A12 SLAIN2
012(hsa)
copstA T AN1[86C TPCN2 SNX15 EHBPI MECP2 RADI CLSTN1 PLODI
PPPICA ARF5 HZA;G(}‘S EZH2 SMG6 MAPRE3 PPP6R2 SSBP3 PAX9
E2F7 Cloorfé6  TIAFI CDK6 SYNC ZFP36L1 WBSCR20(hsa) USP3 ANO7
TRIB3 LPHN2  LOXL2 HRG POUGFI ARV KIAA1914(hsa) CHKA KANK3
Dlzlg?“' PTPRN2  SPDEF SORBSI NUP214 H3FB(hsa) PUS7 RSBNI LRRC41
H3FI(hsa) SLC525A1 GTF3CI USP30 ANK3 CORIN ST7 KCNK6 SUCLGI
TMSA(hsa) ~ REPSI  BTBDIO RHEB CROT PDGFRL SHARPIN PICH(hsa) RNF168
SLC44A2  Cl6orf58  GDFI5 TFAP2A PSD3 ARIDIA HNGS 1 (hsa) ITPR3 TLN1
SLC2A14  KCNE3 CLS:; l)V“( ACAA2 LARPI UBAI PYGO2 KIAlifg; 31C pRO1777(hsa)
FBXOS5 SCAF4  PLEKHH3  DCAFIO Cl50rf65 PANK2 PLXNBI MPP2 CIQLI
SYNGR4 IP6KI ~ TBCIDI7  SPTANI FH STRAP SLCI2A9 SERFIA RADSIAPI
PENI CRKL LTBP2 VPS37B Hl;ig}’: 1:)20 FAM49B EEFIG TRIM21 HISTIH2AC
SCLTI HISE“'” HzB:)Q(hS SLC25A29 RSRCI ccpes? IGF2BP3 FAMI98A KNSTRN
KIA};:;); 6 prpN23  DRAMI  ZDHHCI9 PRDX4 PRDXI G3(hsa) VWAL DYRKIB
KRT32  ATXN2L  CDCA8  SPI507(hsa)  MLLTI TMEMS6B NFRKB ZNF573 ERCC6L
RNF114 AK4 MCM4 FOXN2 STK17B SLC7A8 ELAVLI H4FG(hsa) RRAGC
Cl2orf73  NATSL ACOSI 31268 FYN AN Rg PUL paMi26a FAMI178B PXTI UACA
RBMI4  Cborfl36 HISEZM TMEMI04  NCAM2 ccpClis PHKAI EMILIN2 TRITI
NSLI HPIBP3  RBM23 NQOI ITFG2 8 ZBTB21 ZERI C220r29
SLC25A44 HN1 SLCf6A1 URE]? lhsa /N Re97 AP2A2 SNCG ALDHOAI  TMPRSS4
NA gpresc KN S)l(hsa KIA}QSW( LYPD6 BEND4 CCDC8SA EFTUDI L3MBTL3
HSPAI3 WHSIC““ SETD3 HACEI RNASEHI  SMARCAI CDC20 CTTI\I"BP 2N NFaTCH
FCHOI ANng N PDIAG DMWD DOK7 EMP2 H4FC(hsa) ~ RNASEH2B
kLaLog  ARHGAP  puascio PUSI0 TRIMS9 MYPOP AP2A1 ApoL2  DKFZp686N2
33 176(hsa)
hCG_17321
NDUFCI ~ UVSSA  ORMDL3  IGF2BPI  GNPi(hsa) KXDI CCDCS0 FGF7

(hsa)



OAZ3
FAMI155B
RNF11

BRAF
FHL2

HGSNAT
POU2F1
SFT2D1

UBASH3B
FASN
CDH26
CDC6
HIST1H1A

ACTB
CTB-
1144G6 .4-
006(hsa)

BLZF1
DCLREIA
EAF1

ACAS2L(hs
a)
TTC7B

SNAP23
DUSP4
PHLPP2

MTO1

PRLR
MPHOSPH
8
FOXJ2
BSCL2
Cl15o0rf13(hs
a)
DDAH2
LIG1
HLN(hsa)

ZSCANSA

SEC16A

MSAP(hsa)
PPPIR37

RAB3GAPI
H3FJ(hsa)

ACKR3

ZEB2
MLK4
UNRIP(hsa)
AFAPIL2
KIAAO0164(
hsa)
STAG3L3
NETO2
TROAP

TCF3

XXbac-
BPG296P20
4-014(hsa)

H4FN(hsa)
CASP8AP2

FAMI95A

HIST1H3B
SNRPD3

DPP3

HIPK?2
TMEMG63B
CNOT6

CNOT4
STK4
ARTN

VTAL1

DNASE1
L1
RP11-
835E18.2
MAP2K2
c-
met(hsa)
SLC25A4
6
RASA2

PPP2R3A
ZNF175
MAP7D3
RBM45

POLDIP2

UFCl1
REXO1
PIGX

FEN1

SNP70(hs
a)
COALl
MORC2
FYCO1
CDC8(hsa
)

BID

CLIC4

BTRC
NPRL3

Clorf74

PRR3
CYR61
CHD1
FAM195
B
HIST1H2
AE
SIRT6
LYRMS

ACER3

TMEM39
A
HIST2H4
(hsa)
RCANI1
ATEl
FAIM3
CCNL2

NTE(hsa)

CCNA2
HIST3H3
CLEC2D
FBP11(hs

a)

SELIL3

RMI1

RSP1(hsa
)
FAMI11
B
HNRNPD
SPC25

NT5C2

CHSTI11
PITPNC1
SH3BP5

AREG
C7orf50
GOT1

LACS2(hs
a)

FAM69A

STK11
PAPOLG
PPP3R1

RDX

IFT122
HIST1H4
C
HERC6

TOB1
ZFP36

INPP5F

ADAT2

SYNJ2BP
CRYAI(h
sa)
XB130(hs
a)
KRTI15

WAC
MIEN1
IQGAP!1

UBTD1
NRBP2
GAN

PSME1
TRIP11
ARHGAP
32
ASXL1
WNK1
MNT

RUFY3

PEX16

NRTN
GSE1

FTSJ1

GPATCH
2

PMF1

CDCsL
VPS29
PBX1
Cl60rf46

EXD2

CRTC1
NBRI1
RPL37

OPA3

SEMA4F

ARID1B

KIAA043
2(hsa)

IRGQ

SRCAP
H4/A(hsa)
CANPLI(

hsa)
SLC17A5
TRPS1
RAF1

MDH2
BCAS4
RSRP1

USP54
SLC35A4

SNAPC2
S100A11
WDR62

TGFB1
SERINC1
LIPT1
ZNF1789
DNAJC9
NDFIP1

MARK3

RPIA
CASP2
GDIL(hsa)

BLOC1S3

CREB3

SHMT?2
GBF1
COX16

ZNF189
ZC3H3
COROIC

RDHS5
MAP3K11

MCM7

HIPIR
FBL
TCP1

APIM1

FKBPIA

CHD4
CXCL2

DENNDIA
SMARCD1

ARHGDIB

Cllorf57
MBD1
SIRPA

TYRO3

ZNF707

PPIA
MTMR12
ZNF304

FOXRED2

ERP44

MSN
ASF1B

PACS2

SNIP1
ITGB5

PIP5K1B

MORF4L2
MAPKI13
TRAM2

H4/N(hsa)
PGM2L1
CCARI

WDHD1
CENPK

MAL2
DDX24
CSRP1

EBF3

GSN

DMD
CRTC2
CSEIL
CNIH1

KANSL1

KIAA0010(
hsa)
RNF145

POP7
USP2

KBTBD4

TSKU
CERS2
ANP32A

MAP3K14
SYNGR2
SLC9A1

SP4
CDH1

PARP6

RABI11FIP2
LHPP
CENPA

PITPNM3

TGFB111

RNF106(hsa
)

ZC4H2

LIME1

FECH
PITPNM2
SMC4
SLC30A8

SFXNI1

MYH14
RAPIGAP
UBL7

PIKFYVE

PPPIR12A

CSorf55
AFAR(hsa)

DPPA4

TH1(hsa)
CMIP

NAV1

FOXL2
RER(hsa)
MB

MYL9
CENPO
CTBS

MTPN
STX17

SOCS5
TFRC
CABLESI1

PFDN1
VIM
DSN1
BMP2K
ABHD4
RNF34

CNRIP1

CXCLI11
MAPKAPK3
TMED10

STIL

FOXA1

CBLC
WDR73
DLL1

HIST1H3C

SNCA
HRIHFB2157(
hsa)
KPNA1
RCN(hsa)

COROIB

SLC25A39
PIM1
TPA1(hsa)

IL17RB

SRPR

ZNF692
KIAA1462

CALMLA4
PRRT1

ARNTL2

ZC3H12C
COLIA1
DNM1
PRKACA

ZNF496

VCP
DNAIC15
MEIl

CACNBI1

HCN3
hCG_2023614
(hsa)
SUPT5H

LGALS3

SYTI
NYMEL3(hsa)

C100rf69(hsa)

PARD3B
IRF3
DUT

RP5-824119__A.1-

002(hsa)
ARSG

DKFZp686L08115(hsa

)
PPPIR12C

PM227(hsa)

CALD1
ADNP
LCLATI1

NF1
PI2(hsa)
JPHI1
TMEM219
NAAI1
IGBP1

ERCC4

SERPINB1
FZD1
KDSR

STK25

MYT1

FAMA45A
CDM(hsa)
MED28

UBAP2
EMR2
ZNF398

TMEM106C
PQLC3

YAF2

RNASEH2C
DTNA
SLCO4A1

ABCC3

PTK6

HIBADH
GTF2IRD2

YY1

KIAA1228(hsa)

DAMA-236L13.16-

003(hsa)
HSD11B2
C100rf88
CDC21(hsa)
KIAA1491(hsa)

ARID5B

B4GALT3
TESK1
DUSP7

VSNLI1

H3FD(hsa)

PIGB
KLHDC8B

PLD2

JAG1
DUSP3

KIAA1846(hsa)

Cllorf54
KPNA3
JADE2

hCG_33495
(hsa)
UBR7

TPP1
ACSM3
ZHX2

Z02(hsa)
RLF
FUTI10

SEC22C
IGSF3
XPO4

ZNRF2
WBSCR20
A(hsa)
SLC29A4

ZNF311

ZNF585A
QDPR
KIAA0922

DHX9

CPLX1

ANKRD28
PCYOXIL
TCEA2

DERL1
LMNA
NDC1

SLC7A2
CANT1

AUH

CCDC74A
TULP4
FN1

ACSL1

ARHGEF9

AMACR
IFFO1

SEPT2
UBN2

H4F2(hsa)

IPO8
GATAD2B
SGTA
ANXAI11

SPTA2(hsa)

SNAI3
EPS15L1
RRP12

RAB22A

RADS54L2

PKN2
AKTIP

SEMA4D

GRAP2
GSTT2B

TNC

C2orf27A
CRIPT
C21lorf59

RFC3
PRO0992(hsa)
TMPPE

SPT5(hsa)
FHIT

RPL27A
AIP
RANBP9

DHCR?7
SYNGRI1
DIAPH2
HIST1H2AB
SERPINE1
HMMR

ZNF33A

NKIRAS2
VPS35
SCARB2

FAM73B

GAS1

KIF4(hsa)
AGTRAP
PLAU

ASB9
SMYD5
CIRBP

A2D(hsa)
CDK16

MTFR2

LPCAT3
CYBRDI1
MGAT4A

CYBS5R3

SCN1B

CCNG2
HELLS

SNX17
ABTB2

GTSE1

BTGI1
C11orf80
PIDD1
SPIRE2

ITSN1

USP22
A2LG(hsa)
SIX2

ZSCAN9

RNF26
hCG_1685949
(hsa)
UGTS8

VATI1

GCFC2
HSPC225(hsa)

MPP3

H3.3B(hsa)
TLDCl1
TSPYL2



TMEDS

SMAP2
HSD17B6
LACS(hsa)

DHRS7B

MPC1
CRTC3
MEN1

SCYL3

RNF44

CTDSP1
MOV10

DSCR4

DHDH
GPR63
SOX4

HID1
H3FC(hsa)
CDIP1

FBXL3

AFAR3(hsa
)

FBXOI11

PYCR1

PKIA
PRO2286(h
sa)
PHKA2
CHSTI12
ESYTI1

OAS3

DTL

SDCCAG16
(hsa)

FARP1
DDAH(hsa)

GMIP

TNK1
NFIX
KEL

RNF183
CDKN2C
CRLF1

SLC48A1

PHF19

SCAMP2
ARG2

MYBLI1

CWFI9L1
RHEBLI1

TRIMI11

TXNLI1
ATG7
H3FM(hsa)

A2LP(hsa)

SIN3B
C18orf21

TBCD

DTYMK

ARLGIPS
HMG20B

NXPH4

LZIC
STXBP6
UCK2
CDC47(h
sa)
APLNR
EROIL
DCTNS
PLCl(hsa
)
MSJ1(hsa

)
SFMBT?2

TCF4
NUP153

MIER2
TLR1
MAP3K3

ZNFX1

SRL300(h
sa)

AP1G2
TSPANIS8
FUT3

SOCS2

XTP3TP
A(hsa)
MICAL1
FACL1(h
sa)
GTF2H1
INHBB
NME4

GNAS
PCLO

IP6K2

CIQTNF
6
KIAA078
4(hsa)

CORO6

GOSRI1
CIB2
MKL1

WARS
SIX3
LAMAS

OBFC1

BRPF3

ZNF10
THAP9

LEKRI1

TMOD2
RGS4

PPMEI

SLC25A3
TAF9B
CRK

SRP54

RED(hsa)
OoTX2
GUCY1A
3
ALDH9(h
sa)
SSH1
GATA3

GPSM1

ADO
WNK2
FNBPIL

CDCA4

PRKRIR
C190rf60
FRK

REM2

MRPL2

MSTIR
FES

ATP7A

GYLTLIB
GINS3
EXOSCI10
MMS19L(
hsa)

KDELR3

PLIC2(hsa
)

TCIRG1
ZNF764
NBN

LIMCH1
TIAM2
RANBP10

CIT
FBXO0O4
B3GALT4

CTorf43

TRIM62

ZNF664
ARFGAP3

GMNN

MAPKSIP
1

ATPAF1
ATG4D
FBRS

PIGM
ECH1
VWCE
SLC25A5
1

BCL11A

NT5(hsa)
ZNF501
CGI-
82(hsa)

TSGA10
CIDEC

NTSE

ERLIN2
ZSCAN22
ZNF507
ANAPCS(
hsa)
ZNF706
LIN9

BCL2

CAT

CPSF6
DAGLB

DNF15S2(h
sa)
ZNF107
ACTA2
EPC1

RHPN1

PAXS
RAB17
RAP6(hsa)
H2AFD(hsa
)

CASKIN2

MTMRI10
PP6R3(hsa)
CDABPO013

1(hsa)
PDS5B
DBF4B
CAPG

UMK (hsa)
FGFBP1
RSPH3

ALKBHS

ZNF337

TMEM256-
PLSCR3

EPASI
LACS(hsa)
NAPIL5

LBR
CKAP5
ADAMI19
hCG_41078
(hsa)

TBC1D30
NREP
KCNE2

SLC35A2
HIST1H2B
D
SH3BGRL3

TFPI

KIAA1612(
hsa)

ERGIC2
IKZF1
C4orf46

DST

HIST1H2B
A
SSX3
ABHD2

EFNAS

KIAAO0101
HES1

PLAGL1

BMP8B
VASN
CENPL

KBTBD6

PPMIM
FAM204A

ZNF746

OSGEPL1

PDS5A
ALDHO6A1

C3orf33

RIF1
SF3B3
CDKNI1C

TYMS

TMED1
ICA1
ANAPC4

KCTD21

AGO1

HCST
NECAPI1

TRERF1

SLN
FBXL6
HOTAIR

GGA2

RP11-
664D7 4

NAV2

CLAPB1(hs
a)
DLG4

PKP4

CYB5M(hsa

)
GBX1

BBIP1

SMG9
RFXAP
H3FA(hsa)

H2BFR(hsa)

HIST2H2A
A4

CLIP1
NOTCH1
GPR143

SELM

RP4-
697E16.3-
004(hsa)
RSUL

CAPNI12

FMNL2
GANAB
PLCG1

FAMS89B

POLR2A

TMEFF1
BTG2

POLR2M

DNALI1
PDLIM1

ZNF395

CIRL
ENOL1
NCOR2

SLC16A14

TSC2
ARLI15

DGKZ

B4GALT1

H3.3A(hsa)
HPS1

C6orf106

CDC42EP4
FNBP3(hsa)
MOGS

LYSMD2

XRCC3
ZMYM2
APLP2

C190rf48

DNAJA3

FAM20B
CD86

NDUFV3

WASF2
PIG4(hsa)
CARF(hsa)

GDE1
TBC1D31
NFKBIA
FBXO10
MYOS5A
NENF

MYCBP
PEREC] (hsa)
BEGAIN

AK3
RNF19A
CENPB

FAHDI1
H3F2(hsa)
NME7
EIF4G1
MIA3

H3FK(hsa)

RBBP5

NIPA2
DAMA-
236L13.16-
004(hsa)
CEMIP
H4/E(hsa)
MED31

CITED1

DENNDGA

KIT
LY6E

FCER1G

HIRA
RBLI1

HIST1H2BG

ACSF2
XYLT2
SCNM1

IMIDIC

VEGFC
PLIN3

HNRNPM

RBM26

ZBED3
KCTD7

C3orf58

MDM4
LARS
SLC2A4RG

RTCA

KIAA0661(hsa)
SEMA4B
OGFRL1

MYO7B

SSR3

DKFZp434G1035(hsa)
CSNKI1G1

ADI1

GOT2
SWS1(hsa)
FNIP1

SLC39A6
SYNI2
BTF3L4
FUTI11
SMIM13
PROSC

PRKCB
KLCI1
CDC73

MRPL24
RBPMS
PPA2
UNQ2441/PRO5003/P
R09924(hsa)

SPRY1
TNRC18
HPRT(hsa)
CDC23

TRPC4AP

MARKI1
MTERFD3
CXorf3(hsa)

SERF2
ECD
PEARI1

ARHGAP29

YBXI1

FYB
STK16

REPS2

PSMC3IP
NMT1

ILF2

NSMCE4A
GGT1
MELK

LAMCI1

FOXF1
RAI14

RAB40C

SFR1

RPS6KA3
FAMI24A

RNF182

AP3S2
EIF4G3
TMEM30A

ASTN2

BAG6
CDKNI1A
NAGPA

SGPP2

BCLAF1

SWT1
MAP2K1

PCIF1

STMN1
UHMK1
DCAF15

RHOF
TYWS
RALB
POFUT1
NAPEPLD
WTAP

PIG30(hsa)
IRAK2
SYNE2

SLC25A19
ATP8B2
C3orf38

ZNF354A

C13orf10(hs
a)
CLSPN

JRK

CHTF8
TNFRSF12
A
C200rf27
DOCK9
AAK1

TNRC6A
BCAN
TRAPPC1

TP53INP2

FBXO18

ULBP2
SLC2A1

HMCES

ARF6
NA

KHDC1

AKR7A2
Clorf109
SAMDS

IRX3

MBNLI1
PRC1

WDR4

Cl4orf182

AZIN2
TMEM201

FKBP1B

HSPB11
NUCB1
CAPNS

PATLI1

ZCCHC17
MRNP41(hsa)
TMUBI1

LRRC40

FACL4(hsa)

FAMI129A
ENTPD4

TRIM32

DNMBP
VPS72
MTCL1

LMF1
ALG3
RTNA4IP1
TAF3
TMEM79
WDR830S

ZNRF3
CRISPLD2
TAXI1BP3

TRIM13
TMUB2
ZNF623
RP11-51112.1-
003(hsa)

H3FT(hsa)
KIAA1279
MYBL2
RUFY1
TMEM143
KIAA0224(hs

a)
ROR2

ARHGEF26

AKNA
SCAMP4
GMEB1

TNPO3

PDK2

ANKRD10
KCNQI

ZBTB25

DKFZp586K2
222(hsa)
SLC4Al11
DADB-
70P7.10-
002(hsa)
DNAJC2
HSPCO075(hsa)
Cl4orf159

NEIL3

ATF7
PCBP4

H2BFH(hsa)

GPR161

HBP(hsa)
STK40



TUBGCP3
FKBP3

PSD4
SPARC
PHF7

UGCG
LPPR2
SARIA

GUCD1
STAT3
TAGLN

HYPJ(hsa)

TRIM68

PDE4B
MAN2A2

E2EPF(hsa)

HPCAL1
NUFIP1
PDGFRA
PTPRK
TSPAN1

EFCAB14

HS1BP3
ARGLU1

DIP2A
PRKCQ
SSX1
FERMT2

ENPP3

TOX4

RNF144A
POMZP3

CSNK2A2

NBL1
CACNAIA
ELL2

MIER1

EEF2K

BAF155(hsa
)

TOB2
CDH2

C3orf80

G3BP1
E2F1

HSPATA

RAB3GAP2
RPS23
PDCD4

ARHGEF5

MASTL

PCDCS5RP(
hsa)
MMS19
ZNF318

TUFT1
COMMD1

TBCIDI13

TRIM37
CFL1

COLI12A1

IQGAP3
FKSG27(
hsa)

ARF3
CC2D1A
POLR3F

TS(hsa)
EMILIN3
RNF123

NDUFAF
6

ZNF114

ARMC8
ARRDC4
ELANH2(

hsa)
SIRT1

HOXBS8
SLC35G1

MED14

THBS1

STOM

TBC1D23
RUNX1
LACS4(h
sa)
IPO9

EIF4A3
ZNF521

EIF3H

HIST3H2
A
KLRC3
USP6NL

MTMR6

PTRF
SPATA33
GTF3C4
TMPK(hs
a)

ANXA3

HDAC7

ZMYND1
1
HIST1H2
AM

LGR4

C2lorf58
PTCHI1
GS3786(h
sa)

ECK(hsa)

AGO3
DBN1

MMP15

CABLES
2

RADS1

PIP5K1C
RAB25
Nblal054
5(hsa)
H1F1(hsa
)

ABCBY9

PDXK
CDI51

UBAS52
LRP11
ARSB

SLC1Al

NRSN2
HIST2H4
B
SPT5H(hs
a)
PTPRM
M7V 1(hsa
)

MAP2K3

HSD17B1
0
PHB
CD40

SLC45A3

MYH9
HBP1
FAM20A
TPBG
RFX1

CD3D

IMMT
BIRC5

TUBB

SLC31A1
KIAA043
0
BCAM

SNX9

MACF1

PTPN21
CCNF

TAF9

H4/G(hsa)
SNTB2
TMTC3

WIPF1

EME1

NUP98

PHACTR4

CDAO03(hs
a)
CEP83

ANKIB1
MAGEB2

SH3GLI

M11S1(hs
a)
NRGN
CHRNB4

C220rf23

DCBLD2

APHIA

PPP6C
NR4A2

UBL3
CCDC14

ATP6V1D

TSH2B(hsa)
ZNF575

ADIPOR?2
PAST(hsa)
FAM60A

CAPRIN1
MTRFIL
SLC3A2

IERS
ARAF
LYPLALL1

EMS1(hsa)

DDX10

MTFRIL
SPIN4

KIAA1109

ZBTB20
CCDC64
MYSM1
DCTN2
ABI2

NFX1

SHISA4
DPM2

KRTAP2-3
IFNAR2
Sp2
CREM

CRAT

GPR183

C12o0rf10
KIF12

PREB

NCL
POCIA
NAPG

NAB1

RPLP1

FAM222B
NOGO(hsa)
MTIF

CMTR2

C7orf49
UNG

RBM38

SPEG

KLF10
SNPH

SLC25A1

SFXN2

RASSF7

MPP5
NT5CP(hsa)

SLC35B3
CCDC85B

TMEM181

PABPCIL
PAQR7

AK6
JUN
MCM3AP

KIAA1521(
hsa)
ZDHHC2

RPS12

FAM3A
GPR19
CRTAP

PPPIR15B

RBMS2

PDLIM2
WDR33
HIST2H2A
A3
IL9R
CDK3
AMZ2
C19orf54
TMEM173

DSCR3

BABAMI1
FAM209B

NCAPD2
FAM208B
TOP2A
CCND1

IMPAD1

MAN2B1

GPCl1
JAK2

GRPEL2

ILF3
ZNF133
TNFAIP2

HIST1H3I

PFN2

TSR2
WBSCR27
SRK(hsa)

SMAD4

SLC16A5
ST6GALI1

SLC35D1

FNDC3B
SEPHSI
C2CDs5

ICMT

RLTPR

CTNNB1

PLA2GI12A
DLGAP3

RHNO1

BAF170(hsa
)
KIAAO0153(
hsa)

KEO04(hsa)
ABHD14A

PDEI12
TTK
AAMP

ERCC1
SAMD14
DIS3L2

SUOX
NCAPG
UBE2Q1

Clorf213

TRIM33

CREBZF
TGOLN2

ILIRN

SLC39A9
CMTM4
CPT2
GTF3A
WDR45B

MAPT

MUCI1
DAG1

RNGTT
ASNA1
SF3A2
HIST1H4H

SMKR1

INTS9

ZNF263
ARLG6IP6

PAFAHIB3

MSANTD2
SAP130
TTLL1

PABPCI1

TBC1D25

MRI1
CDYL
MCMBP

CFL2

ACADVL
RBM47

RPSI18

CDCA7

RBBP4
KLHDC3

ID1

GPR3

APBA2

MRPL10
NOLI11

MCPHI1
PANX1

TERT

FBXW4
NFE2L1

NEDD4
NDUFB2
CNPPD1

FOXIJ3
ZNF414
SFI1

MKI67
TSPANI14
POC5

AMHR2

TAF1A

IGF1
RRP1B

LMANI1

KAT2B
PAXBP1
KLC2
LRRC8E
APEX2

ACD

PRKARIA
PEF1

VMA21
KIAA0109(hsa)
MYADM
PROSER1

SAP30L

PIG28(hsa)

CSNKI1E
SLC39A13
RP11-452K12.5-
010(hsa)
DESII1
SA2(hsa)
CYB561A3

EP300

POM121

MIDN
SUNI1
AMOTL2

BRE

SRM300(hsa)
HDLBP

DDAHI1

SLC10A7

ANKMY1
GAB1

ZNF35

PPARG

TMEM245

ZBTB3
ARLS5B

PRIMA1
KCNAB2

PIGT

NANP
NFIA

KLRDI
NP95(hsa)
SRSF11

HIST2H2A
C
ABHD12

COBLLI1

ATP2B4
OGFOD1
NOL10

ANKHD1-
EIFAEBP3

MAMLDI1

TEAD2
GNG4

PDZK1IP1

BHLHBY9
TNFAIP1
DISP1
ZWILCH
ATGYA
RPMS13(hs
a)
HSD17B12
LINC00337

EIF2S2
ALG13
PRKCH

HHLA3
DADB-
333F214-
002(hsa)

MONI1B

EIFAEBP2
LSM12

INA

MLXIP
HIGD2A
R3HDM4

ZNF524
IFI35

RRM2
VGLL4

CAD
NOH61(hsa
)
SLC35G2
SLC39A10
CKAP2

CG1(hsa)

C2lorf2
TGIF2
XXbac-

BCX40G17.

4-002(hsa)
HIST1H2B
B

RABEPK

LDLR
SLX4

PDAP1
SLC29A3

TMEM25

MBD5
KPNBI1
RBAF600(hsa

)
MYRF

BRWDI1

CBX5
KLF4
STARD4

TTPAL
NLRP11
RAD9A

PODXL

HMGCL

DMKN
MXRA7

TBL1XR1

FANCB
HIST1H3]J
SMOX
NAAG60
DYNCI1I2

ATP6VOA2

ATRN
FABP3

HIST2H3A
DAN26(hsa)
H4FM(hsa)
ASXL2

GPS1

SECISBP2L

LYPLAI1
ESAM

KLHLI18

TGFBR2
SLCI1AS
COLGALTI1

PCBD1

DADB-
70P7.10-
003(hsa)

SLC39A1
PTCD3
FERMT1

RAB14

TFG
MAMLI1

ZNF641

TMEM200A

PON2
ZFAND3

MGAT4B

MED22

PVRLI1

STRADA
RPL15

AMNI1
ATP2C2

PLA2G15



ASB1

PRSS3
FAMI67A
NPDC1
PRR22
RTTN
MORF4L1
CDON

LDHD
CRYAA
ADAMI10
NAT6

CAPN2

CXCL16
EMP1
HIST1H3A
VASH2
FBX032
HIST1H2AJ

ATP5D
UROS
OSGIN1
ZNF222

ST6GALN
AC4

EPHB2
FAMS53B
FBX046

CEP152

NFKB1

SAFB2

IRF4
EXT1

DHPR(hsa)

PCOLCE2
MANEA
PTPRU

S100A16
NTNG2
TOP3A

MET
ATP6VOE1

SLC6A6
UTP14A
FSTL3

TROVE2

SLC10A3
SLC39A8

FGD1
SPRYD4
CBFA2T3

FEZ1

hCG_39482
(hsa)
FANCD2
GTF2E2

H4/C(hsa)
ZNF273

SAC3D1

KIAA152
2

DHCR24
CEP57L1

PRRG4

NINJ1
ZNF681
RP11-
49N14.8-
004(hsa)
IMPDH1
TTLLI12
CLCN3
LENGS8

PRSS8

ATMIN
CDKALL1
AMPD3
RPSA
ATAD2
PWP2

ZNRF1

EIF4E3

TINF2
Cl1orf30

EDEM2

C10orf54
AKIRIN2

TPR
ANKRD5
2

MAP2K7

NSUNS

PVRL2
MOB3A
H4FK (hsa

)
H1F2(hsa

)
TNXB

SPATA2

ELK3

TMEM18
4B

PPP2CA

SPATA31
A7

PITHD1

SLC22A1
8
H4/J(hsa)

XK

INPP5J

SMIM20
H3F3(hsa
)
SCPEP1
GABRG3
FLOT1
SMARCA
4

GTF3C3

KIAA031
2(hsa)
PLCD3
SSX5
GNPDAL1

AAGAB

GYG(hsa)
FAMI27B
FZR1
FAMS6B1
KIFC2
DNAIB6
RAVER2

AGO2
MCM5
LIN28B
IL21R

IMP4

PKLR

AFF4
FBXO6
ANKRD1
7
STAG2

TIMMSA

ATPIF1
NTNG1
FAM203A
STT3A

HNRNPA
0

Clorf86
GRHL2
PLA2G6
DOLPP1

IRF2BP2

KEO4(hsa

)
NA
DGCR2

RASIP1

FBXL2
GCOM1
SLC38A7

HIST2H3
C

MCFD2

FAMI103A
1

MYOIC
PRDM11

TMOSF4

C9orf16
RP11-
265M18.2

BHLHE41

MEF2D
CDKN2B

MTMR9
SRM
INTS8

MOBIB

SLC25A2
0
C200rf193
(hsa)
STAG1
MFAP2
PTPRN

G6PD

RP11-
244N20 4-
002(hsa)
NECAP2
USP12

INSIG1
H2AFP(hsa)
FAMI104A
MARC2

DFFA
TBCIDI10A
CBR3
PAQR4

CBFB

PRADC1
GCH1
SIDT2

TP53

RBPMS2
PLEKHAS
TMEM140
ACS4(hsa)

FGFRL1

PLA2G10

B3GALNT1
TARS2

UBACI1

C10orfl1
AGFG2
MOCS3

Cllorf23(hs
a)
LITAF

KNS(hsa)
PPPIRI11
DDX21

PHF6
FAMI78A
PRRC2C

CLEC4M

MCTS1
CDC42EP1

MTURN
SEMA3F
SEC61A2

ANXAS
C9orf69

DCTN4

ASHIL
MBD3
ADAMTS2

RP4-
657E11.7-
008(hsa)

SLC10A1

THOC6
VTIIB
NTMOD(hs
a)
RAE1
CRY2

MSH6

Céorfl

TUBB3
RNF25
ASNS

SNRPA

RRP8
RHBDF1
NEDDS8
WDR76
RNF208
MAPRE2

CCNE2
DSCCl1
AXIN2

TMEMS56
DAAP-
21F2.8-

002(hsa)
ATP1B3

GFPT1
INPP4A
FASTK

SLC25A13

SMARCC2

CCDC163P
TAPBP

RFTN1

E2F5
TYRP1
SSFA2

ST3GAL2
HECTD3
PIGC
Cl70rf53
SAP30BP

STRBP
LARP(hsa)
SLC8BI

MRPS30

AK9
TIGD6

Clorf85
TSENI15
GIGYF2
KIAA1207(
hsa)

PIGL

MPHOSPH
6
Clorf61
QARS
H3F3AP6

NYAP1

HIST2H2AA(
hsa)

ZNF426
KLHL7

NEOI1

ARMCX3

IPO12(hsa)
QRSLI

AFARI(hsa)
TEADI1
PXK
LRRC8C
hCG_2018597
(hsa)

BAZ2A
CHIC1
SMARCC1
STRN3
HIST1H2AA
SKI

NADK
ANKRD27
NT5M
CSNK2A1

MOB4

CFLAR
KIAA0839(hs
a)
GLUT3(hsa)

IFITS
FKBP8

GGCX

CDKN2AIP
DHX38

AKR7A4(hsa)

WDTC1
TFCP2L1
JAK3

SLC13A3
NAMPT
XAP4(hsa)
RPL5
PRPF38B

MTSS1
PLEKHGS5
CPEB2

CNKSR3

TMCCl1
CAND2

CYSRT1
COMTD1
CDK18

FGF9
PTPN11

POM121C

HGS
TMEM246
MAD2L2

CNTNAP3B

TFCP2
NANOS1
NOTCH3
SLC44A1
CCDC169
DNAIJC21
SAMDI10

NCAPH
TAX1BP1
GNAQ
BCCIP

FAMT73A

PPP2CB
RPUSD3
HIF5(hsa)
CDK17
ZNF780A
TRMT10B

SNF2B(hsa)
SELPLG
CFL(hsa)

TWISTNB

KNSL6(hsa)

DKFZp434N101(hsa)
CHML
PSMD7
CELSR3

RP11-16N10.1-
004(hsa)

GLTSCR1

ABCA7
SEPT3

CLN6

ADTAA(hsa)
POLD(hsa)
ALAD

MREI1A
RHBDF2
IDP2
ARHGAP42
TRPM4

ATF7IP
IGFBP2
BRD3

ACRBP

GPIAPI1(hsa)
C18orf54

KIAA0030(hsa)
TGM2
WDR3

S100A3
TMEM92

GRK6

ANKLE1
GIC1
NLRC5

IL17RC

DONSON
GDPD5
TXNL4B
RPRDIA
PER2
TFE3
MYL6

H2BFF(hsa)
SH2D2A
DCAF4
CHRNA10

NUP155

MOB3C
HK1
PP781(hsa)
ASCT2(hsa)
PARD3
HEATRSA
SPC24

ADARBI1
ZBTB4

TRIM2

FIPIL1

IFI27L1
GORASP2

HMGCS1

PTPN12

H4/D(hsa)
OPNISW

EXOSC6

BARDI
SMPD1
GAREML

LIMAL1
LMF2
SHANK?2

MTAP
WAVE2(hs
a)
PIGF
SGSM2
ZFP41

RP11-
197M22.1-
003(hsa)
EIF5A2

CCNI

TMEM263
PRODH2
HMGN4

HNRNPL
RUFY2

ERGIC1

PPIG
MAPIA
NAV3

PRMT3

PTGES3
ZBTB47
MARCH3
TTC6
ATPSSL
SNRNP70
RAPH1

UBE2C
PTPRH
HSPB4(hsa)
FADS3

GCNT2

XXbac-
BPG296P20 .4
-010(hsa)
BAD
RPI(hsa)

RPA2
PPPIR3E
DEF8

MAFI1
USH2A
BRE1B(hsa)
MTHFSD

ELK1

coQ2
CMPK1
SLC30A6
ARHGAP22

MTDH

GPR137C

LPGATI1
PRRI11

ENO2

ZNF428

TNRC6C
ST6GALNAC
1

N4BP1
ZNF282
FANCI
MCM10
RNF216

WDR96
SYVNI1
RHBG

KIAA1715

ORAI3
MYLK

GTF2F1
VPS54
ACCS

D3F15S2(hsa)
WRN

SUV39H1

BAZIB
MCM3
PID(hsa)



SSH2
UBP1

HFE2
ADCY1
SLC44A5
RRAGD

MYB

CALCOCO
2

IGSF9
TOMI1L2
HNF4A

NDST1

CDT1
RP4-
695020__B
.10
BBS2

ANO6

ZDHHC21
ARMCXS

SDR39U1
CCNB1
TORIA

ATP2C1
TTL

VPS45
PINK1
UCK(hsa)
UMPK(hsa)

RIN1
GDAP1
HOXC9

NUP62

UBR1
SOCS4

MEDI13L
IL18BP
MRPS26

BCL9
TENC1
NOGOC(hs
a)
LPPR4

SRR

FIGF
CYFIP2

RPF1

FGD6
CIC
COMMD9

RP11-
569G9.2-
002(hsa)

C150rf26

PAQR5
GNAI2

PSMD5
HES2

NUMBL
SNRPD2

BCL2L13
FAM218
A

FGFR4

CPEB4

L3HYPD
H

CALB2
SP140L
NOL3

GAPDH
INTS3
HDACI1

UBIADI1
ING3

GALT

NA
MIR1199

AFF1
COPS7B

MCM6
MED21
DCAKD

PLAGL2

TFEB

PMEl(hsa
)
C19orf84
LPXN

MTX3

NF2
ZNF33B
USP1

ACVRIB

KIF15
KIF2C

LRRCSA

TNS4
pl6lnk4a(
hsa)
DDX56
UBQLN1
TMEM16
1A
NR6A1

CDKN3

TGFA
C100rf10

AP2B1

DLG1

SORT1
HIST1H2
BO

PHGDH

DDX38(h
sa)
RSF1
TBCK

RTFDC1
NEURLI1
B

XRCC1
E2F8

URIl
SRGAP2C

GPATCH
2L
PRP16(hsa
)

CDCAS

TIP47(hsa
)

DHX37

DAP

TRMT61
A
CTAG2

CTSD

ARID4A
POLD1

STRIP2

SPHAR
FAMS86A

TIP2
TNFSF15
KIAA033

2(hsa)
FAMS83A

TNFAIP3

KIAA006
1(hsa)

ELPS

DTNB
PLEKHH?2
THRA
CCSER2

PI4KB
RAB21
SIRT5
IMPD]1(hs
a)
LETM2
CDK1

GON4L
AIM1
MLLT3

SFT2D2
GPR158

TBC1D2
LAMP3
TMBIM1

JOSD2
NUP160

SLC37A4

SHCBP1
SPCS2
TEAD3
TMEM10
9
MTFMT

EPN2
MSL2

EIF4EBP1
GSTM1

IFT57
SLC26A6

S100A2
SSX2

MND1
PCSK7
METTL23
HLA-DMA
SRSF1
MYNN

PURB
CSMD2
CCDC97

ACSS2
HUS1B

LRPPRC

EVL
LCP1

CXCL3
ZNF467

ZNF548
SREBF2
ZNF358

ENKD1
FAM188B

ZDHHCI12

TAF12
HIF1AN
XXbac-
BPG254B15
.2-002(hsa)
BTF(hsa)
RHOC
SENP6

IL22RA1

SIRT2
ZMIZ2

ZNF385C
ECM1
HPSE

RECK
CTTN

GABPB1
UBA2
EEFID

OSR2
CCDC150
VICKZ3(hs
a)
ICAM1
NLRX1

RNF40

ZNF207

H4/M(hsa)

ITSN2
HNRNPK
TNRCI15(hs
a)

GRN

SIPAILI
PP2593(hsa)

MRPS25
DDX11

ALAS2
MAOA
Clorf210
CDV3
PIG1(hsa)
INPPSK

KLHL32
HYALS3
FAMO92A1

782214 4-
003(hsa)
ARL3

MXI1

Clorfl131
AXL

WWC3
SAMD4A

KNS2(hsa)

NUFIP2
ADNP1(hsa
)

POGK
RUNX3

TP73
RAPGEF2
UCP2
RABIB

NFATC2IP
MSLI1
H4FH(hsa)

MARCH2

TMEM243
TRAK1

Clorf198

DYNCILI2
ZNF503-
AS1
CISH
FABP5
PRO0750(h
sa)
IFRD2

PTPLA

CNNM3
OMBS5(hsa)

PALM3

HIF1A
PPPIR10
CLN3

TREX1

E2F3

POGZ
ARFRP1

SUSD2

DAMC-
157M7.11-
002(hsa)
CYB5D1
APITD1

GCF2(hsa)
CDC42SE2

C2orf49
KLK1
FARP2

RNF181

XXyac-
R12DG2.2

GPS2

NPNT
PHC2
COX4I1

GAS8
YWHAZ

CDANI1

YKT6
DKFZp781H1
755(hsa)
EIF4ENIF1
ERALI1

FBXL19
CRELD1
Clorf159

PRKX
CLAPA2(hsa)

SLC25A36
CUL7
TIGAR(hsa)
NTPCR

RFX3
ZNF708
CPT1(hsa)

REXO0O2

SPFH2(hsa)
MBD6

GDII
MFSD3
ZNF592

VPS45B(hsa)
CYP51(hsa)

PSMB2
STIM1
MTA2

SEMA4C
TAF4B

FAMSIA

hCG_15646(h
sa)
TRIP5(hsa)

H4/0(hsa)

TMPO

TNK2

SRRM2
RNFT1

CAPNI10
PTPRG

CCDC167
H2AFR(hsa)

RP11-108M9.3
SDHA

SEZ6L2
MAGI1
CNOT1
ZNF281
EFNB1

PTP4A3

RP11-269F19.1-
004(hsa)
ADCK4

UBE2D3

CASP6
FNDC4

DAMA-236L13.16-
002(hsa)

WHSC1
COX15

ZNF319
LOXL1

PHF12
DNAL4
TOM1

EIF4E2
CHMP3

HNRNPH2
TMED6
DMPK
CREB3L2

ATXN7
EPS8R2(hsa)
TSPYLI

TFBIM

DHRS13
CYB561

EPM2AIP1
GINS2
SIXS

CNTNAP3
TCTA

PARP1
GK5
SLCY9A3R2

CTSB
H3F3B

FOXP2

RPL37A
WWOX
HNRPULI(hsa)

SEC24B

SERPINBS

CLPTM1
MPHOSPH9

CAPN1
SLC22A17

F12
STAMBP

CCNIJL
CCNK

HAUS5
ID3
STATI1
HIPK1
ENY2
AHNAK

SEPT6

RIMS3
HIST2H2B
E

TRPM7
LUZP1

PRKDC

TMEM206
RP11-
20123.8
KCTD15
AP1G1

SMAD7
ORC6
PRKAR2B

SURF2

CDC42GAP
(hsa)

CIz1
BVES
CYCS

MEF2C

GLRX5
CEP55
UBE2W

RBP5

C8orf2(hsa)
TMEM127
hCG_41525
(hsa)
MKNK?2

PSRCI

FANCA
SIGIRR

ZIC5
DCLREIB
HERPUD2

PDE7A
PLK1

ZNF367

RP11-6D1.6
TSN
GYS1

ARPC4

ZFP36L2

RWDD2B
SUFU

H4/B(hsa)
VEGFB

Cl6orf13
AURKB

PNISR
TMBIM6

KDM4C
CCNL1
RCH2(hsa)
GINM1
HIFX
NNT

ZNF703
RHOG
ECE1

CCND3
MED8

SYT16

TBRG1
NR2F2

ZMYM3
RRAS

CARHSP1
KIF5B
NCOAl

LIN37
ST3GAL4

ACOT8
SLC27A4
HIST2H2AB
SOBP

GPATCH4
H2AFQ(hsa)
DAXX

HSJ2(hsa)

ABCF1
PDGFRB

PIN4
ARHGEF3
ZNF689

PTPN18
PHLDA1

HOXAI13

WBP11
RP11-
65F13.2.1
C19orf1(hsa)
ARRBI1

C2lorf33

CYB5R2
ADAMI15
CD44

AP2M1

TFAM

PRKACB
ARHGEF28

SERPINA1
MAPIB

CD47
H2AFA(hsa)



NUCB2

EVISL
RP11-
321N4.1-
004(hsa)
SR140(hsa)
TPD52
VPS45A(hs
a)
EIF2AK1

UBE2E3
ZNF621

RFX2
ST3GAL3
AREL1

SH3BGRL

Clorf43

PACS1
NELFD(hsa
)

CD200

ZUBRI(hsa

)
SFN
TOMM40

TRIP(hsa)
CDS2
ANGEL2

NUDTI2

RNF38

KIN

KIAA0060(
hsa)
FERI1L3(hsa
)

MICALLI1
MRS2
RPS28

ZBTB38

ZNF93
CAMKMT
NATI16

RIPK2

MED25
GLIS2

AIMIL
PKN3
Clorf27

PEX19

KSR1
FUS

THEM6

FITM2

KIAA0886(
hsa)

ANXA4
NELFCD
ITGB8

PGR
CADM2
FXYD1

FACL2(h
sa)

CHDS8
NRDE2
USP20
SMIM1
APEH

TIMMDC
1
CYP51A1
DAMC-
157M7.11
-003(hsa)
DBNDDI1
IST1
MBOAT?7

SEPT1

OGT
BTD
C2CD2L

RPSI5A

OAF

ZNF804A
CDC37
HIST1H1
E
PRPF40A

SIAE
ALDRI1(h
sa)
AKR7(hs
a)
ALDH3A
2
TTC38

ARHGAP
24

NAPIL1
BLOCIS1
LTBR

STXIA

GPIP137(
hsa)
PVR

PIK3R2

PLEKHF
1
ARL2BP
SH3RF2
ARHGEF
12
SGPL1

REEP3

SLAMF1

IL2RB
TP53113

FBX042
ALG1
SZRD1

B9D1
TRAF7
LMBRIL

YWHAG
NPW
PORCN

LONRF1
MINK1
LLPH
Cl50rf38

CENPQ
TIFA

MFN2
DDX17

RABI2

RFNG
DCTPP1
DHFR

EGFR

SSR2
AFG3L2
SMTNL2

KIAA039
1

ASPHD2

SLC2A11
DNAJC4
TYMK(hs
a)
PPP3CC

P4HB

RP11-
51112.1-
004(hsa)

KIAA009
7(hsa)

PRAF2

CSTB
RDH13

KPNA2
7YX
IERSL

KLF7

EVI5
TPX2
GGH

FAMI174A

TMOD3
ELOVL3

KRTDAP

TRAPPC4
KIAA157
8(hsa)

RPUSDI1

NACCI1
FAM64A
SERPINH
1

ZNF226
ZNF580

NOTCH2

ZNF519
GABARA
P
CHPT1
HEATR1
CARS

STC1
MIS18BP1
AZIN1
RIMS4
GLTP

RALGPS2

GAPEX5(hs
a)
VAV2

C190rf82

TXNDC16
H2AFV
ZNF317

DCAF7

PP13181(hs
a)
SBF1

ZNF253
RAB43

APOL4

CREB1
GYG1

ETV5

CDHI10
E1BAP5(hs
a)

ZNF436

SORBS3

PKP2

FBRSLI

COL6AL1
KIAA1558(

cl.35(hsa)
MED4

SURF-
4(hsa)
HSPA1A

SEMA4G

FAM76B

HEATR3
FRG1

SZT2
TRIM41
BM28(hsa)

EZH1

FAMI122B
C7orf73

RGMA

APOA1BP

ARHGEF10
L

ATG14
AGPAT2
ZNF576

ASAP1
GOSR2
ZDHHC16

RP11-

176F3.6-

007(hsa)
RGMB

H4FB(hsa)

NRIP3
MCTP2

C2CD2

VPS37A
KRI1
HIURP
TMEM97

GINS1
FUT2

OPHN2(hsa
)

GDAP2

CEP41
HIST1H2A
G

ATRIP

NICN1

MAPKS
ZAP70

MPEG1
TMLHE
MIF4GD

TMEM116

ATL2

RP11-
51701.1-
006(hsa)

RQCDI
ZC3HTB

C8orf37
KTN1
POLR2F

MRJ(hsa)

PKMYTI1
DNAJB9
HERC2

PAG1

CSNKI1A1
CREBRF

CGGBP1
HMEI(hsa)
CEP68

hCG_20400
48(hsa)
CAPN3
NKD2

CYP4F3

RNASEK-
C170rf49

RNF24

MRE11(hsa
)
SLC29A1
YPEL3

RABIF
CHCHD10
LNPEP

TEX261
GEMINS
RPAP1
H4FO(hsa)

KLHLI15
PRIM1

FXRI1
CDCLI1(hsa)

MBLAC2

MTAI1L1(hsa)
TSPAN4
RASA4

CDH24

SENP1
SLC26A2
NXPE1

HIST1H2AL

H3F3A

H1F3(hsa)
LYST

EPHA2
DNMIL
My043(hsa)

CERSS5

LARP4

CUX1

RIMKLB
SEC31A

BACE2
TIGD7
FAM219A

PSMG1

ZC3H14
RAB40A
RNASE4

LDHA

CTNNB(hsa)
LZTS2

GLCE
FAM3C
FBX09

KIAA0642(hs
a)
RGCC
CRYLI

PDRG1
GRINA
TMEMS59L

PIP5SK1A
FAM120C
TNFRSF25

CHRACI1
Cé6orf62
SRC

DLD
SLC5A2
CERS6
TMEM150C

NA
GAPVDI1

DDX39B
G3BP2

RBBP7

SEC22A
C7orf55
SPATA20

FBX027

CYTHI1
PPP2R3B
TRAPPC6B

FAM214B

ANOI10

FAM149B1
MFF

ADTAB (hsa)
TP53111
LRRC23

ZFR

NUTF2

VPS33A

DNAH14
HNRNPH1

PYGB
PELI3
GSTK1

CD22

OAZ2
RABGDIA (hsa)
FANCG

DCP1B

RDR(hsa)
FAM210A

IRGQ1(hsa)
EPHB6
DGATI1

AKAP13

ESYT2
GNAI2

CPA4
IGFBP3
PIK3CA

H2AFI(hsa)
SLMO1
GNB2L1

SLC1A4
KIAA1011(hsa)
NEUI1

ZNF3
UPP1
MBLACI1
USP11

HIST1H1B
TMEMS5

NASP
CMK (hsa)

ADK

KHNYN
NFYC
UBE2S

PLEKHG6

ULK1
MAGTI1
CWCI5

C5orf63

SRSF3

ARHGEF17
FOSL1

FUT8
SNX25
MOAPI1

WIPI2

TRAPPCI13

H3FH(hsa)

AIMP2
ALDOA

FAMG65A
PTHLH
BCAR3

LERK?2(hsa)

NR1D2
SUSD3
LAMP1

NIPSNAPI

HOXC4
NT5B(hsa)

FGFR2
METTL3
UBXN2B

THBD

AK1
HSPA1B

PRR19
STEAP3
TRIMS8

IQSEC2
CDC42SE1
SERF1B

Cllorf68
MGATSB
ATOHS

Cl4orfl154(hsa
)

SWIS5
SOX5
MIER3
VAMP2
ADH5

MPV17L2
CAMTA2

XYLT1

C170rf80
tcag7.648(hsa)
ALDH7(hsa)

ATG4B

FAM134B
SIAH2
DGKH

NUDT19

LHX2

TRIM26
UBR4

NLGN3
NA
SENP5

XPO5

NA

HYPA(hsa)

CDC25A
IRF2BP1

FNIP2
EREG
ENTPD3-AS1

RP3-
467K16.3-
002(hsa)

ICBP90(hsa)

C2orf43
RP11-
1149023.3

TGFB3

TIMP1
TRIM28

MSX2
YY1API
RXRA

WHAMM

ZNF213
SPRY2

RPL7
MEX3C
CACNB3

ZNF581
YTHDC1
SCMH1

USHIC
R3HDM1
H4FA (hsa)



FAM126B
PWWP2A

RHOBTB3
WDR?7
RTN4R
ASIC1
CDK4
PROM2

IMID4

EPB41L2

COG2

GPHN

BSDC1
CXCLS8

RAC2
ZNF879

NUCKS1
BAIAP3
BLM

METAPI1

RDHI11

RAPGEFL1
SCD5
HIST1H1D

TPM1

RP3-
339A18.4-
002(hsa)

KCTDI12

PREX1

ATNI1

UBAC2

NOTCH2N
L

CCDC92
WIPI1

CTNND1
FAR2
LMAN2L

RP11-
51701.1-
002(hsa)

KIAA1324

NXPE3

HSPC130(h
sa)

RAD23B
SH3PXD2A
HIST1H2AI

ADCK2

H4/H(hsa)

ZNF513
hCG_19948
42(hsa)

H4/1(hsa)
C12orf5

PPP1CC
MCL1

PTPN4

KIAA139
8(hsa)

POMT2

TMEM37
SAZD(hs
a)

BBS1

TBL3

METTLI1

NFKBID
PTPRR

FBXL12

MRPL34

H3FL(hsa
)
FAM35A
ZNF639
RP11-
321N4.1-
003(hsa)

TAOK2

ZDHHC8
UHRF2
ACTG1

PCK2
TSPAN3

FOXM1

FOXH1

DISP2
SMARCA
2
ETS2

RR2(hsa)

KIAA032
4(hsa)
RABGAP
1

WDR70

SATB2
HNRNPD
L

PXN

TMOSF3
GSPT2
DBT

RC3H2
SLC2A13
ORC1

EFL3(hsa
)
KIAA132
1(hsa)
NUP210

7773

PTMS
HIST1H3
E

TSPANI2

CHMP2A

TMEMI13
2E

GLS
PLOD3
D4

VCL

DHX40
ARHGAP
26
USP47

MAG
TLE2

IMPDH2
CTSC

AMOT

VAPA
RHOU

HA4FD(hsa
)

PLEKHG4
B
DPAGTI1
C9orf117
GM2A

RPP25
NHLRC2
IKZF4

ACTRS

RP3-
511B24.2-
013(hsa)

ARFGEF2
KCTDS5
XBP1
PPP2R5C

ITM2B

hCG_3960
6(hsa)
NDRG1

HSBP1

SNAI1

B3GALN
T2

SPATS2L
POLRI1D

ZNF768
ATADS
SEC61A1

SPTBN2

FUT1
MGLL
CDKN2A

ZBTB46
RNF10

KIAA1524

MAPKI1IP1
L

GREBIL
EFHD2

EDEM3

cyclinE2(hs
a)
STK32C

CHP1

PPP3CA

ZBEDI1

MLLT4
AKT2
GLUT14(hs
a)

TRIM14

CDA

RANBP3
CD320

AGPAT1

ATP6V1B2
PCGF5
UBQLN2
RBMSA
SLC7A1
FOXP4
D7SR(hsa)

MAWD(hsa
)

MYO1D

ARHGAP35
SLC2A3
FBX034

ASAP3
TTC28

SLCY9A3R1
C8orf58
PTPN13

IDI1

FOXP1

hCG_20316
35(hsa)

ATM

SOGA1
RABGGTB
ZSWIM1

CAPZB

LAMC3
SHKBP1
DUSP10

AFF3
CXorf38

DLC1
TIRAP
POLD3

RABGGTA
CLECI1A
LINC00472

SUPT16H

DAQB-
147D11.2-
002(hsa)

FOXN3

FAMI120A0
N
SNAPCS5
MYC

PPP6R3

ADAR2(hsa
)

DEDD

ZDHHC6
SMU1

MRPLI16

ACAP3
TATDN2
UBE3C
KIF4A
PARVA
CENPF

IKZF5

SON

HCFC1

GFAT(hsa)

HIST1H2A
K

TRIM3
EPLG2(hsa)
KOCl1(hsa)

CD46
NOS3
CTDSPL

MYO18B

FBXL17
FBXO3

CD68

RHOGAPI(
hsa)
B3GNT4

MISP
MARCHS

MKLNI1
SEC14L2
SMIM15

TCOF1
KLHL23

DNER
DUSPS8
STC2
PPAPDCIB
PLAUR
SOX6

ICAM3

CYBB

hCG_29955(h
sa)

ANKFY1

DDOST
CORO2B

ATF1
PTP4A1

SDADI1

PAK4
LRRC28

H3FF(hsa)

FGFR10P2
MESDC2
SHOC2
DNMT3A
TOLLIP
KMT2D

SEPN1

VPS26B

LY6G5C

FSCN1
SNF2L4(hsa)
GPALPP1
KIAA0226
SLC25A22

Clorf56
MPZL2
LDLRAD3

POP1

KDM6A
NMRALI1
EPS8L2

UBE2K
H2AFO(hsa)
CAMKI1

KIAA0462(hs
a)
hCG_1992160
(hsa)
NUP50

THAP2

RALGDS
FASTKDS

RP11-30H12.3-
002(hsa)

ZNF211
LGALS8
ZNF81
FBX044
GRIN2D

LSM2

KIAA0355

LONRF2

SHMT1

TAF1C
KRT222

GPSM2
PLXNC1

C5orf24

VPS39
DDAl

SPINT1

ASS1
IL17RE
NCDN
FAM24B
CYPIB1
SCD

HOMERI1

ACSL4

KLHL9

GRHPR
MVD
SGT1(hsa)
CYB5B
TFIP11

LGALSI1
CHAF1A
Cl4orf28

DNA2

EDC3
TNFRSFIA
KIF18B

SREK1IP1
GUF1
AURKA

ESPN

ZNF644
TATDN3
KIF2(hsa)

SLC27A2
ITGA6

IGDCC4

hCG_20178
14(hsa)

NUA(hsa)

CEP290

TMEM200
B
CLAPAI(hs
a)

NAPA

ZNF618

TANC2

METTL7B

SERINC2
EG5(hsa)

EPHA4
RRBP1

DECR2

DIXDCl1
FAM171A1

PDLIM7

SCNNI1A

ST5
VEGFA
TBX18
DAMA-
236L13.16-
005(hsa)
SYTI5
PTEN

KIAA0660(
hsa)

AP2S1

NUBI1
NFATC3
APBB2
PSDRI1(hsa)
ZC3H4

TTC19
CDPF1
FGFR1

SUPT7L

SCARBI1
DUSP16
MARCH6

PALLD

ARC
RP11-
90D4.2

SIX4

SNED1
SGK3
TEX264

DSP
NPWBP(hsa)

SCRIB
RPL10
RIN3
H2BFN(hsa)
MECR
ZFAT

IL6R

ABRACL

UBOX5

C9orf142

CYB561D2
COA7

KCND3
EFNA1

ELF1

PRR25
ZCCHC3

RBM15B

TXNIP
LUC7L2
HIST1H4]
KMT2B
HIST1H2BO
HIST1H4E

NEFL

GGNBP2

HIST1H4B

ZNF785
SOCS7
F8Al
C20RF15
CT45A1

CYFIP1
ZNF230
ZNF2

CFHR2

NUDT3
C5orf22
HIST1H2BM

S1PR2
HIST1H4K
NR4A1

SNX12

CT45A2
PCGF2
CISD3



FRS3 TUBBI RTKN2  TAGLN2 TCTNI BCORLI ZNF5128B SPTBNI C170rf100
USP25 RNF39 MIEF1 DYXICI TXNRDI MMAB DKFZp666B209(hsa) HNRII\IPUL SERPINA3
ZGRFI ZNF16 KIA?OS ' MmNosi LCN2 HA4FE(hsa) PCDHGA4 CHD6 KLRKI
H2AF] MAPIKAP FAMI75B  RFXANK  BCKDK HA4F)(hsa) LEPREL2 EIF3G GTF2I
ACSST  X104(hsa) PPPéRu TIMMI0 NIPS};IAP 3 PEAILS DNAJBI2 CCDC85C  RASLIOB

TKT ACOX3 RPP30 FURIN PPMIA P05 KDM7A HSPA1(hsa) MYO19
BRD2 TRIM3S H6PD  FLAFi(hsa)  PARPI6  CACNA2D4 THOC2 TMEMS5A CXorf65
USP36 PERP TIP1 ACP6 RAB36 AIFIL GPN2 LATS1 VAMP3
USP38 GMFB LOXL3 TES TOM‘)‘O(hsa RARA NUP43 HOXBI3 TSACC

TMEM189-
PXDCI ~ PMEPAl  KDM2A  HECTD2  ABHDI6A SNAPCI PLEKHAI1 PPPIRIC ks
RNASEL  SLC35E4  PGM3 CECR2 HSPA14 CASP9 D4S234E SLC35F6 SYNRG
ELAVL2 MYOF  CDK5RI  ANKSIA COPS3 28%% | FAMI102A CENPU FCGBP
FEMIA  TCFILI  CIQBP CEBPB PRELIDI SH3RF1 LEFI STYXLI HIST1H4D
M6PR PAS;F)I(hS PLGLB2  PERQ2(hsa) PIGQ CPLX2 OCRL APIBI HIST2H2AA3
HNRNPAI  SMC6 UBE2J1 TICRR hci’ﬁszj)“z’ ETHEI PVTI DMRTI ACACA
DICERI  ARPPI9 UBC STK38L RAD23A RYR3 MRPL28 KIAA1841 NATDI
TMEM205 ~ WDR27  RRP36 IDH3A CRBN STXI8 LIN7A IRAKI TAFI15
FRMD4A  GDFI1 NAAA GNAll PLEKHO2 SESN2 KMT2A Cl70r97 TFDP2
ACOX1 NABPI HzA;E(hS 1S0C1 DOK3 NARF ROGDI UBALD2 TPTE
TMEMI41  SERGEF  ZEBI LLGL2 DEPDCI RTP(hsa) FAM222A IRAK4 NPHP3
ARSE)RI(I’S TESK2 SIOO)L(hsa STRIP1 SFXN5 VPS52 RARG NFIC MLLT6
CAP43(hsa)  NKTR HzAf)N(hs LYPD3  SPFHI(hsa) cDC7 LRRFIPI DAAMI CTDSP2

DRG1 NPTXR T™MCS GTF3C2 SFXN3 RNMTLI KIAA0368 SPSB3 cwe2s
DNM2 FAI‘ﬁm ZNF280C  SOSTDCI  RPGRIPIL  MNEI(hsa) CHCHD6 PLK4 IKBKE

SDCI CMAS TMEMM PNT5(hsa) CNEN RAPIGDSI CDK20 CAPI ORAII

E2F2 ETSI MORN4 ETNKI1 KHK FUK AKRIAI H2AFL(hsa) WBPI
MLF2 RILP NARS PEGI10 USP46 PPDPF HSPC272(hsa) BMP7 ZNF280B

RPI1-
CASP7 BRIPI  PPIPSKI MOB3B  SCAF6(hsa) Céorf89 ALDHd(hsa) 316M21.1-  HISTIH4A
003(hsa)
ATXN7L2  SH3BP2  HEBPI FAH TP53INPI FGFI8 C8orf22 ABCA3 BRD4
TPD52L1  PTPNI4 gl;é(sh\ga) SRRD LRPS HISTIH3H GOLGBI EMCI
RCNI EIF2AK4  HMP(hsa) GHDC ELMSAN1 FAMT76A PPPIR2I LRRC49
RP5-
RBMI2 HS2ST1 TM§§417 CUEDCI  HISTIH3D  824119_A.l- PDESA BBX
011(hsa)

SCAI POLM BRG)I (hsa} coRL MRPS15 8%1112'2 RHBDD2 INF2
ZBTBI0 SYPLI ~ MTMR2  AKTISI ARLI7A CCPG1 UBAP2L BBS4
MAST4 PSME3  GAS2L3 ZNF397 EQTN AUNIP MED19 DCAF16

FAM32A  LRRCSD  OSBPL7  GFPT(hsa)  SLC4A2 KCNC4 ZBTB48 GRHLI
CAMK4 LINS QSERI WSB2 Cl120rf29 TMED4 NAGS TAF5
miR-345-5p
TERF2 CPSE7 ZNF664 LSM>5 SPEN FIGNLI RSBNIL DGKD DVL2
C170rf85 PTRF NTSE DHODH GFPTI SRRM?2 STARDY ZNF106 PSMG4

AK2 CDC25B BCL2 LIMS1 MYLIP METTL21A DMPK NCKAPI ZBTB25
NEK7 DHCR24 RNFI11 TOP2B GCNILI SEC31A G3BP2 PSMA4 RNF139
ZEB2 LENGS BODILI PANK3 CLTA AQR FASTKDS MANIAI EIF1

TMEDS  PRRC2B  ALDHIL2  EEFID  SLCI9A2 SHOC2 RWDD2A ACIN1 MGAT4B
DAZAP2 SRP19 DAP GPR35 RYR2 KMT2D SCD XRCCS AMNI
GUCDI DLGI AIMI MISISBPI  PPPIRIO 1PO4 DNAJBI2 RND3 RBMI5
LARS2  SKIV2L2 IGFIR EDEM3 ARFRPI SESN2 SCAFI TCF7 AUPI
SI100A16 DS FMRI AKT2 F2R TNFRSFI0B NDCI PHIP RTN3
SENP3 NELL2 PPMIE PCGF5 PPP6R3 CYSLTRI CTCF FBXO033 TMBIMS6
ADCY1 HTT GGH SLCTAI SON Cl6orf72 PKN2 ZNF652 ORSIE2
TTC39C CCND2 PTGR2  RABGGTB  STRN4 DYNLL2 CDKNIA TTC19 EIF4G2
DNAJC6  TAOK2 GNBI RPLP2 TIALI NFI UHMK 1 FGFRI AP3M2
ANKHDI-
ATNI MOCOS BMP6 ZBTB37  ZC3HI2C FAIM NN MARCHS6 MIER3
GARS DBT RHOA MLEC ECT2 MALSUI CNEPIRI SPTBNI1 VAMP2
FAM32A  BACHI EIF1AX LARPI PSMD 14 KIAA0100 KIAA0930 MUMI UBR4
MTHFD2  KIAAO3I9L ~ ATP6VIGI  ZC4H2 HICI MED28 DONSON MAPKI INOSOD
STK4 E4F1 GBF1 HDGF ZC3HI3 EIF2S1 VPS28 MTMR3 TXNIP
MMS22L GSEI GSTOl  KLHDCI0  RABIS JADE2 TNPO2 FBXW11 GREMI
KIF1B NFIL3 CHD4 AGOI GSTPI GSK3A BTBD? RPL27A SYS1
UBQLN4  GPSMI  SMARCDI BTG2 PPMIL SLC39A6 CKS2 TET2 MARCKS
ZNFX1 PERMI SLCO3A1 FBN2  EIF4ENIFI LMANI1 MPPED2 SYNGRI1 PCGF2
BRDS NHLRC3  CHMP4B TOP2A NRP1 PRDM2 CNBP SART3 MAGIX
UBRS FBXO4  TMEMI45  LPARI IPMK ZNF35 SASHI RADOYB MYOI8A

miR-200c-3p




TERF2
RTN4
RPRD2
SLC9A2
HSPA13
ANP32E
ADAM9
CCNG1
DUSP4
RAB4A
C220rf46

CASPSAP2
CNOT6
GSKIP
FBXL3

ERBB2IP
TNPO1
UBE2Z

GLG1

POMZP3
ZNF638
PDCD4

UBE2R2

TMA4SF1

OTUD3
SPPL3

PPP2R5E
FEM1B

SMCIA

TROVE2
ZBTBI11
CNOT11
1D2
SLC30A5
PACRGL
RNF2
MEDI13L
WNK3
DDX3Y
NDFIP2
TPD52
MXD3
SSR1
GATM
ZBTB38
KSR1
FUS
SARI1B
NUCKS1
MGST1
PREX1
SMAD2
SH3PXD2A
BNIP3
USP25
CBL
DICER1
TPD52L1
RBM12
PAM
MAST4
AMFR
REPS1
SCAF4
IP6K 1
CRKL
ARHGAP19
CD59
STK4
TET1
TPCN1
RASA2

COPS8
MSMO1
ZNF605
CCNL2

MCMS8

GNS
HNRNPD
VATIL
DENND4B
FBX030
TCF4
TMED7
APC
CRK
FBXW7
DHX29
UHRFIBPIL
SHC1
SIRT1
NLN
RUNX1
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ZNF673 ALG8 ZEBI KLF13 PM20D2 JAZF1 LIMK 1 HPS5
TRIMS52 PTPRD PSAP ASAPI E2F3 EPHA2 GEMIN2 PI4K2B
ELK4 CAMSAP2 COPS2 GREBIL MXD4 ASCC3 DHX9 ERRFII
CLIC4 ZNF121 HIC2 ACVR2B PAIP2 CUXI DERLI ATL3
miR-10a-3p
CCNT2 SMAD2 KATNBLI RABIA CREBI CYB3DI LYST ICK USP3
B2M DICER1 GAB3 QSERI MED4 ATL2 DDX5 PLAGI HOXAI1
KIAA0754 RBMI2 BRIPI TCF19 GREBIL PPAP2B DNMIL PUM2 LSM14B
Cl6orf52 TMEM33 SYPLI1 ZBTB6 EIF5 DNAJCI3 C6orf62 AHR NMEI
PENI POLI BACHI CDK6 TES LNPEP PRKAAI PIAS4 VEGFA
AK2 PDK4 NOD2 KIF23 STK38L STAUL ANKFY1 RSBNIL SPTBNI
RBM 14 DIEXF GLMN DDX3X MOB3B POLD3 ATF1 SPATA6 FOXOl
HOXB7 HP1BP3 PCTP COPBI1 PISD SRPK1 1PO5 FREM3 MRPS36
ADAM9 THUMPD3  CAMSAP2 INIP WSB2 QKI SESNI MZT1 RNF168
SLC38A1 CLIC4 FICD NIDI GART FBXO03 MCURI AKAP5 MAPK6
MED29 HOXB4 FZD6 Cl120rf75 TFDP2 MKLN1 cpC7 ZNF564 FBXW11
EGRI MSMOI1 UBE2E2 PHF10 BRCAI PPMIA EBAGY G3BP2 ABL2
FOS KIFIB TRIP11 ADD3 LARPI SRSF6 TRIO BRPF1 GAS1
MTA3 CCNL2 CHUK CCDCTIL PLCBI C21orfo1 RDHI0 SH3BP5L DNAJC27
DARS2 ZNF83 TMEMé64 HPS3 DOCK 10 PPPIR14C INTS6 ATP6VICI MGAT4A
BRWD3 HNRNPA3 ZNF664 SLCO3Al CNIHI ITPRIPL2 TSC22D2 SCD PARD6B
PKHDILI C5orf42 TNFRSF11A APP DDX18 PLEKHA3 TXLNG SDC2 MRPL49
ARL4A VANGLI FOXK1 MAT2B PMAIPI PCBP1 SSX2IP SREK11P1 TOP1
PAGRI PTCHI HBP1 KIAA2026 ANP32A SLCI6AL CCDC50 ZNF644 BRWDI
ZBEDS DBNI SLC31A1 KIAAO101 KIAA1432 CLPX HMG20A OCRL KLF4
PEAKI FCHSD2 MACFI PLAGLI NFATS5 SKIL RANBP2 MALTI SLAIN1
ENCI HLTF SQLE PDS5A PIKFYVE ATRX HINT3 XPO4 PIAS1
TNPOI ANKRD52  COLI9AI TMEM38B  PPPIRI2A VCP SSR3 ZNRF2 ZNF91
ZNF638 SAMDS GLUDI KIAA1109 AGOl TTC3 OSTMI SLC7A2 IREB2
TGFBRI CYTH2 AFF4 REX7 SNDI IRF3 FN3KRP TMEM45A PTGES3
MACCI SETD7 IBTK FIX1 MAPK9 PSMD14 FNIP1 UHMKI1 TSPANI3
KIAA1731 CEBPZ CSDEI HK2 PCNX GDEI BTF3L4 BIRC3 ARHGAP5
IRF4 HABP4 STAGI AGPATS FMNL2 RNF19A Cl190rf10 HIATI AKAPI11
PDHX ING3 RNF217 LPP BTG2 EIF4G1 AKIRINI TNRC6A MDM2
FEMIB USP31 SETD5 GIGYFI PHC3 RABI8 ZNF451 RNF170 SLC39A14
ARID3A FKTN SFT2D2 RCN2 B4GALTI DENND6A  ARHGAP29 NFIA SLC30A6
MET UBQLNI ZNF280A CMTR2 PNN CSRNP3 GFM1 PAN3 NIPAI
ATP6VOEI ATG2B AGFG1 UNG PPPIR15B FOSL2 NDUFB2 SESN3 HMSD
DENND4A PIDI RABI2 ZNF680 ABHDI7B ELOVL5 LMANI ACTR3B BMPR2
ZNF616 TAF2 PABPC4 INSIG1 FBX028 STAM2 PRKARIA ANKEFI BCL2LI1
PHF20L1 TEFM DSE ZNF354B CCNDI1 HISTIH4H VMA21 ZNF483 KIF5B
ANO6 ARHGEF12 PRAF2 LRIG2 SMAD4 ATIC SUMO3 ZBTBI LMO4
cutc MCLI UGP2 PDE4D CTNNBI PCMTD2 PROSERI PHF13 PLS3
PSMD5 RAPIA TPX2 DDX21 ANXA7 TEADI EP300 RASSF8 DGKH
CHRMS5 CPS1 LY75 ACBD3 WDR44 AEN MIDN AHNAK PPPICB
SSR1 ZDHHC5 PRR5L SREBF2 GFPTI1 Usol PRDM2 YES1 NDELI
CAMKMT  SMARCA2 TARDBP ZXDB ASPM DOCK4 DDAHI PRKDC FIIR
RIPK2 ETS2 TXNDC11 RPS8 PBX3 IPMK SLCI0A7 JADEL
PGAPI HOXA9 RDH14 CTTN AXL SLCIA9 BTG3 TRRAP
LAMBI RC3H2 RHOA RNF149 NUFIP2 DLGAP5 TMEM245 PDZD8
CXCL8 CFDP1 POLRID TRIP12 ABCC9 ADAM22 THTPA U2AFI
cCT2 KAT6B FEMIC ZNF317 TRAKI TFPI2 ARLSB SNX5
KDM5C PDEI0A H6PD DCAF7 PAICS RCHY] MPRIP CLSTNI




Table A4. Complete output from DIANA-miRPath v.3

Table A4. Complete output from DIANA-miRPath v.3 when using the miRNA signature (miR-34a-5p, miR-
345-5p, miR-200c-3p, miR-10a-3p) as input, from both approaches: MicroT-CDS (in silico miRNA target
prediction algorithm) and TarBase (experimentally supported approach). The columns show the influenced
KEGG pathways, p-values after Benjamini-Hochberg correction, number of targeted genes and number of

associated miRNAs from the signature. Significant p-values are highlighted in bold.

KEGG pathway p-value #genes  #miRNAs
MicroT-CDS
Mucin type O-Glycan biosynthesis 1.184275e-12 5 2
Glycosphingolipid biosynthesis - lacto and neolacto series 3.884874e-10 4 2
Biotin metabolism 0.0006064075 1 1
Proteoglycans in cancer 0.0007940732 22 1
ErbB signaling pathway 0.0008384294 16 1
MicroRNAs in cancer 0.00138567 20 1
Thyroid hormone signaling pathway 0.002132528 16 2
Phosphatidylinositol signaling system 0.00647907 12 2
Neurotrophin signaling pathway 0.009801489 22 1
Renal cell carcinoma 0.01097907 13 1
Glycosaminoglycan biosynthesis - heparan sulfate / heparin 0.01113265 4 1
Lysine degradation 0.01605634 5 2
Hippo signaling pathway 0.04556428 9 1
Axon guidance 0.04746173 13 1
TGF-beta signaling pathway 0.05008158 8 1
Glioma 0.06553687 7 1
Circadian rhythm 0.06948476 5 1
Sphingolipid signaling pathway 0.07745415 12 1
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 0.1093001 2 1
Choline metabolism in cancer 0.1191737 12 1
MAPK signaling pathway 0.1518697 28 1
Sphingolipid metabolism 0.1821781 6 1
ECM-receptor interaction 0.2101148 3 1
FoxO signaling pathway 0.236839 17 1
Oocyte meiosis 0.248682 12 1
Glycosphingolipid biosynthesis - globo series 0.2859095 3 1
Small cell lung cancer 0.3219701 12 1
Carbohydrate digestion and absorption 0.3981785 1 1
SNARE interactions in vesicular transport 0.4719691 5 1
Base excision repair 0.5364044 1 1
Inflammatory mediator regulation of TRP channels 0.5608684 9 1
TarBase

Pathways in cancer 7.806205e-09 141 3
MicroRNAs in cancer 3.356072e-08 36 1
Proteoglycans in cancer 4.259346e-08 82 4
Adherens junction 4.849975e-08 41 3
Colorectal cancer 6.624356e-06 37 3
Fatty acid biosynthesis 1.571663e-05 4 1
p53 signaling pathway 8.629925e-05 40 2
Endocytosis 0.000155911 80 2
Cell cycle 0.0001862279 52 1
Chronic myeloid leukemia 0.0003003506 37 2
Hippo signaling pathway 0.0005622035 26 2
Metabolism of xenobiotics by cytochrome P450 0.0007820423 2 1
Lysine degradation 0.0007881832 7 1
TGF-beta signaling pathway 0.0009288388 13 2
Prostate cancer 0.001594596 39 2
Hepatitis B 0.002008518 54 2
Oocyte meiosis 0.002446339 16 1
Bladder cancer 0.002960341 22 1
Thyroid cancer 0.003013095 16 1
Pancreatic cancer 0.003759289 33 1
Transcriptional misregulation in cancer 0.004338518 62 1



Viral carcinogenesis

Bacterial invasion of epithelial cells
Ubiquitin mediated proteolysis

Melanoma

Non-small cell lung cancer

Fatty acid metabolism

Steroid biosynthesis

Other types of O-glycan biosynthesis
Protein processing in endoplasmic reticulum
Regulation of actin cytoskeleton

Glioma

FoxO signaling pathway

Thyroid hormone signaling pathway
Endometrial cancer

Small cell lung cancer

HTLV-I infection

Glycosphingolipid biosynthesis - lacto and neolacto series
Shigellosis

DNA replication

Renal cell carcinoma

Ras signaling pathway

Central carbon metabolism in cancer
PI3K-Akt signaling pathway

MAPK signaling pathway

Huntington's disease

Wnt signaling pathway

Alcoholism

RNA transport

Neurotrophin signaling pathway
Progesterone-mediated oocyte maturation
Epithelial cell signaling in Helicobacter pylori infection
HIF-1 signaling pathway

Adrenergic signaling in cardiomyocytes

0.004834794
0.00518036
0.006448268
0.007508105
0.007831112
0.008055732
0.008281795
0.01126346
0.01302932
0.014233
0.01423311
0.01449044
0.01501771
0.01737389
0.03340758
0.04337413
0.04423077
0.05387291
0.08411226
0.09253995
0.1004746
0.1017866
0.1389146
0.140083
0.1587988
0.1749672
0.2882482
0.2884383
0.3112592
0.4438475
0.4488572
0.5095467
0.52571

74
36
22
30
26
14

13
17
71
26
12
44
22
13
81

29
17
26
24
27
29
76

14
60
16
15
31

35
10
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Table A5. Comparison of studies investigating miRNAs from brain

samples

Table AS5. Comparison of studies investigating miRNAs from brain samples of FTD and/or ALS patients.

Kocerha et al. Chen-Plotkin Hébert et (iztlsaclon Helferich et al.  Jawaid et
2011[1] etal. 2012[2]  al., 2013(3] 2014[4] 2018][5] al. 2019[6]
Disease FTD FTD FTD FTD ALS FTD, ALS
Mixed Mixed Not . Mixed .
Cohort sporadic/genetic ~ sporadic/genetic  mentioned Sporadic sporadic/genetic Sporadic
Patients, n= > Corf72+
Di ’ Ireplicati 32 PGRN+ 5 PGRN+ s/14 5 1 SODI1+ 10 ALS
1scovery/replication 8 PGRN- 7 PGRN- 16 sporadic 9/12 FTD
Deep RT-
Methods of analysis Microarray Microarray sequencing, 4 gRT-PCR qRT-PCR
PCR
qRT-PCR
miR-922
Major deregulated mﬁf{} 56 ; i3p miR-132 miR-132- miR- MiR-1825 miR-
miRNAs miR-548b-5p miR-212 3p 124 183/96/182

miR-548c-5p




Figure A1. Stratified nested cross-validation

-------------------------------------------------------------------

Fold1 | Fod2 | Fod3 | Fold4 | Fold5 | Outer cross-validation loop
. i (model performance estimation)

Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | Innercross-validation loop
(hyperparameter search)

Figure Al. Stratified nested cross-validation scheme, with 5-fold outer and inner cross-validation. The outer
cross-validation loop splits the whole dataset into five folds, using four folds as training data and one as test
data at each of its iterations. Model performance is estimated averaging the ROC AUC using all five folds
as test data. The inner 5-fold cross-validation loop splits the training data into four training folds and one
validation fold at each of its iterations. For every outer loop iteration, one hyperparameter is chosen based

on the highest average ROC AUC over all five validation folds.



Figure A2. Expression heatmap of miRNA signature
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Figure A2. Expression heatmap and hierarchical clustering of the four miRNAs identified as differentially
expressed. Rows represent miRNAs and columns represent individuals ordered by clinical status (control,
presymptomatic and patient from left to right). The log: expression levels of each miRNA are rescaled to
have a mean of 0 and a standard deviation of 1, and z-scores are indicated by color: shades of blue indicate
low-expression values, white indicates mean expression and shades of red indicate high-expression values.

Dendrogram added to the left size clusters the rows according to the miRNA expression means.



Figure A3. Bootstrapped ROC AUC scores

Control vs. Presymptomatic Control vs. Patient Presymptomatic vs. Patient

Count
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Figure A3. Logistic regression bootstrapped ROC AUC scores obtained with 2000 bootstrap samples for
each pairwise comparison, using as features the expression levels of the miRNA signature (miR-34a-5p,
miR-345-5p, miR-200¢-3p and miR-10a-3p). The red dashed lines indicate the 5™ and 95" percentiles
(empirical 90% confidence intervals): [0.83, 0.95] for control vs. presymptomatic, [0.82, 0.97] for control vs.

patient and [0.67, 0.90] for presymptomatic vs. patient.



Figure A4. ROC AUC scores with 100 different fold splits
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Figure A4. Logistic regression ROC AUC scores obtained with 5-fold cross-validation with 100 different
fold splits, using as features the expression levels of differentially expressed miRNAs computed with only
the outer cross-validation loop training data (four out of five folds) at each iteration. The red dashed lines
indicate the 5™ and 95™ percentiles (empirical 90% confidence intervals): [0.83, 0.91] for control vs.

presymptomatic, [0.83, 0.94] for control vs. patient and [0.52, 0.77] for presymptomatic vs. patient.



Figure A5. Presymptomatic subjects probability scores
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Figure AS. Logistic regression probability scores for all presymptomatic subjects (N=45), when model was
trained with the expression levels of differentially expressed miRNAs in controls (N=43) and patients
(N=22). Scores near 0 indicate that the subject has a miRNA profile similar to controls; scores close to 1

mean that the individual has a miRNA profile similar to patients.



Figure A6. Heatmap of the level of enrichment in KEGG pathways
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Figure A6. Heatmaps depicting the level of enrichment in KEGG pathways for the four differentially
expressed miRNAs, as computed by the in silico target prediction algorithm (A) and the experimentally

supported approach (B). Pathways with similar enrichment patterns are clustered together.
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Appendix B

Circulating microRNA signatures
as potential biomarkers in genetic
frontotemporal dementia and
amyotrophic lateral sclerosis

This appendix is the supplementary material of the Chapter 5:

e Kmetzsch, V., Latouche, M., Saracino, D., Rinaldi, D., Camuzat, A., Gareau,
T., the French research network on FTD/ALS, Le Ber, 1., Colliot, O., Becker,
E, “Circulating microRNA signatures as potential biomarkers in genetic fron-
totemporal dementia and amyotrophic lateral sclerosis”. Submitted to Molecu-
lar Psychiatry.



Supplementary Figure 1. Expression heatmaps of differentially expressed microRNAs. Rows represent
microRNAs and columns represent individuals ordered by clinical status (control, presymptomatic, and
patient). The log: expression values of microRNAs are standardized (mean of 0 and standard deviation of
1), and z-scores are indicated by colors (blue indicates underexpression and red indicates overexpression).
A) All 35 differentially expressed microRNAs identified in the C9orf72 cohort. B) Zoom over five of the
most differentially expressed microRNAs identified in the C90rf72 cohort. C) All five differentially
expressed microRNAs identified in the GRN cohort.

Color Key

e m = Control

6 20 2 4 6 Presymptomatic

- :
Row Z-Score Patient
E— |

n hsa-miR-22-3p
| | hsa-miR-27a
hsa-miR-146a-5p
| hsa-miR-15a-5p
| n hsa-miR-29c-3p
hsa-miR-199a-5p
hsa-miR-30b-5p
' hsa-miR-145-5p
hsa-miR-320b
hsa-miR-320c

= I hsa-miR-29b-3p
hsa-miR-106b-5p
hsa-miR-374b-5p

hsa-miR-34a-5p

hsa-miR-345-5p
g hsa-miR-144-3p

Count

hsa-miR-92a-3p
hsa-miR-143-3p
hsa-miR-142-3p
n hsa-miR-223-3p
hsa-miR-451
hsa-miR-194-5p
hsa-miR-192-5p
hsa-miR-7-1-3p
» hsa-miR-502-3p
hsa-miR-338-3p
hsa-miR-19a-3p
hsa-miR-206
" hsa-miR-1246
| hsa-miR-133b
! hsa-miR-144-5p

Color Key
< m = Control
4 2 0 2 4 Presymptomatic

> ;
Row Z-Score Patient
. I

Count

| hsa-miR-29b-3p
hsa-miR-34a-5p

B)

hsa-miR-194-5p

| | hsa-miR-206

| hsa-miR-451
Color Key
§° ﬂ% = Control
4 20 2 4 Pre§ymptomat1c
= Patient
Row Z-Score
— ]

hsa-miR-15a-5p
hsa-miR-7
) hsa-miR-451

hsa-miR-502-3p

hsa-miR-18b-5p




Supplementary Table 1. Complete output from differential expression analyses in the C9orf72 cohort, for
each pairwise comparison between the clinical groups. The columns show the 30 studied miRNAs, the log-
fold change when comparing the clinical groups, the unadjusted P values, and finally the adjusted P values
after Benjamini-Hochberg. For each pairwise comparison, a positive log-fold change means that the
miRNA is overexpressed in the first group. Controls (n=31), C90rf72 presymptomatic subjects (n=17), and

CY90rf72 patients (n=29). Adjusted P values lower than 0.05 are shown in bold.

miRNA | log-fold change P value adjusted P value
Controls vs. C90rf72 presymptomatic subjects

miR-34a-5p -1.58 3.72E-10 2.42E-08
miR-338-3p -0.79 3.48E-04 9.53E-03
miR-142-3p -0.82 4.90E-04 9.53E-03
miR-320a 0.74 5.87E-04 9.53E-03
miR-145-5p -0.94 2.29E-03 2.53E-02
miR-92a-3p 0.75 2.63E-03 2.53E-02
let-7g-5p -0.46 2.73E-03 2.53E-02
miR-199a-5p -1.13 3.62E-03 2.62E-02
miR-206 2.04 3.62E-03 2.62E-02
miR-30b-5p -1.17 4.45E-03 2.89E-02
miR-191-5p -0.44 5.34E-03 3.00E-02
miR-27a -0.89 5.53E-03 3.00E-02
miR-320b 0.76 7.88E-03 3.94E-02
miR-143-3p -0.67 9.46E-03 4.22E-02
miR-1246 1.10 9.73E-03 4.22E-02
miR-223-3p -0.70 1.08E-02 4.38E-02
miR-144-3p 0.87 1.17E-02 4.46E-02
let-7b-5p 0.39 1.52E-02 5.50E-02
miR-151a-5p -0.50 1.83E-02 6.25E-02
miR-1234-3p 1.40 2.01E-02 6.52E-02
miR-26a-5p -0.49 2.11E-02 6.52E-02
miR-374b-5p -0.80 2.45E-02 7.01E-02
miR-146a-5p -0.68 2.48E-02 7.01E-02
miR-320c 0.58 3.60E-02 9.37E-02
miR-301a-3p -0.46 3.60E-02 9.37E-02
miR-144-5p 1.18 4.82E-02 1.20E-01
miR-7-1-3p -0.55 4.99E-02 1.20E-01
miR-425-5p 0.29 5.39E-02 1.23E-01
miR-9 -0.37 5.51E-02 1.23E-01
miR-345-5p -0.40 5.72E-02 1.24E-01
miR-451 1.02 5.90E-02 1.24E-01
miR-423-3p -0.37 7.56E-02 1.53E-01
miR-10a-3p -0.38 1.05E-01 2.08E-01
miR-29b-3p -0.41 1.23E-01 2.34E-01
miR-194-5p 0.55 1.27E-01 2.36E-01
miR-7 -0.28 1.44E-01 2.60E-01
miR-192-5p 0.39 1.67E-01 2.93E-01
miR-200c-3p -0.26 1.79E-01 3.01E-01
let-7e -0.35 1.82E-01 3.01E-01
miR-26b-5p -0.20 1.88E-01 3.01E-01
miR-127-3p -0.37 1.90E-01 3.01E-01
miR-1 -0.57 2.13E-01 3.28E-01




miR-22-3p -0.17 2.17E-01 3.28E-01
miR-106b-5p -0.27 2.34E-01 3.45E-01
miR-4649-5p 0.35 2.52E-01 3.61E-01
miR-502-3p 0.30 2.56E-01 3.61E-01
miR-18b-5p 0.26 2.84E-01 3.93E-01
miR-129-1-3p -0.72 3.13E-01 4.24E-01
miR-181a-5p 0.16 3.58E-01 4.74E-01
miR-15a-5p 0.16 4.72E-01 6.14E-01
miR-106a-5p 0.20 4.87E-01 6.21E-01
miR-181b-5p 0.11 5.06E-01 6.33E-01
miR-133a -0.23 5.36E-01 6.49E-01
miR-133a-3p -0.23 5.39E-01 6.49E-01
miR-29¢-3p -0.13 5.71E-01 6.74E-01
miR-133b -0.20 6.39E-01 7.41E-01
miR-4745-5p -0.28 7.24E-01 8.24E-01
miR-19a-3p -0.12 7.35E-01 8.24E-01
miR-663a -0.10 7.51E-01 8.28E-01
miR-1915-3p 0.85 9.10E-01 9.86E-01
miR-335-5p -0.02 9.29E-01 9.90E-01
miR-4530 0.00 1.00E+00 1.00E+00
miR-1825 0.00 1.00E+00 1.00E+00
miR-4299 0.00 1.00E+00 1.00E+00
miR-3665 0.00 1.00E+00 1.00E+00
Controls vs. C90rf72 patients

miR-34a-5p -1.49 7.78E-08 5.06E-06
miR-451 2.20 2.87E-05 6.80E-04
miR-194-5p 1.55 3.21E-05 6.80E-04
miR-144-5p 2.68 4.19E-05 6.80E-04
miR-29b-3p 1.01 2.86E-04 3.72E-03
miR-29¢-3p 0.80 6.61E-04 7.16E-03
miR-192-5p 0.99 9.39E-04 8.72E-03
miR-19a-3p 1.25 1.32E-03 1.08E-02
miR-502-3p 0.80 4.84E-03 3.50E-02
miR-15a-5p 0.62 6.70E-03 4.36E-02
miR-206 -1.81 7.92E-03 4.68E-02
let-7e -0.74 9.91E-03 5.37E-02
miR-133b 1.11 1.45E-02 7.26E-02
miR-18b-5p 0.62 1.59E-02 7.37E-02
miR-106a-5p 0.69 1.88E-02 8.17E-02
miR-1915-3p 1.44 2.04E-02 8.29E-02
miR-129-1-3p -1.54 3.45E-02 1.32E-01
miR-191-5p -0.33 4.58E-02 1.64E-01
miR-106b-5p 0.46 4.79E-02 1.64E-01
miR-144-3p 0.65 5.17E-02 1.68E-01
miR-7-1-3p 0.53 6.26E-02 1.94E-01
miR-30b-5p 0.73 8.19E-02 2.40E-01
miR-374b-5p 0.62 8.50E-02 2.40E-01
miR-4745-5p -1.23 9.18E-02 2.49E-01
miR-27a 0.51 1.19E-01 3.11E-01
miR-425-5p 0.24 1.27E-01 3.18E-01
miR-199a-5p 0.57 1.45E-01 3.39E-01
miR-200c-3p -0.29 1.51E-01 3.39E-01
let-7g-5p -0.22 1.56E-01 3.39E-01
miR-133a-3p 0.53 1.62E-01 3.39E-01
miR-133a 0.53 1.62E-01 3.39E-01
miR-92a-3p 0.33 1.74E-01 3.53E-01
miR-151a-5p -0.28 1.97E-01 3.71E-01




miR-10a-3p -0.31 1.98E-01 3.71E-01
miR-22-3p 0.19 2.00E-01 3.71E-01
miR-320c -0.33 2.47E-01 4.46E-01
miR-345-5p 0.22 3.25E-01 5.70E-01
miR-4649-5p -0.60 3.47E-01 5.91E-01
miR-146a-5p 0.28 3.55E-01 5.91E-01
miR-335-5p 0.19 3.70E-01 6.02E-01
miR-1 -0.37 3.91E-01 6.20E-01
miR-26b-5p 0.12 4.43E-01 6.86E-01
miR-26a-5p -0.16 4.76E-01 7.20E-01
miR-1246 0.28 4.94E-01 7.30E-01
miR-1234-3p 0.41 5.06E-01 7.32E-01
miR-320b -0.18 5.27E-01 7.45E-01
miR-320a -0.11 6.05E-01 8.36E-01
miR-9 0.09 6.40E-01 8.66E-01
let-7b-5p -0.07 6.76E-01 8.78E-01
miR-181b-5p 0.07 6.77E-01 8.78E-01
miR-223-3p 0.12 6.89E-01 8.78E-01
miR-127-3p -0.11 7.08E-01 8.85E-01
miR-301a-3p 0.08 7.33E-01 8.99E-01
miR-145-5p 0.10 7.48E-01 9.01E-01
miR-423-3p -0.06 7.90E-01 9.33E-01
miR-181a-5p 0.04 8.21E-01 9.53E-01
miR-142-3p -0.03 8.89E-01 9.97E-01
miR-338-3p -0.03 8.90E-01 9.97E-01
miR-7 -0.01 9.42E-01 1.00E+00
miR-663a -0.18 9.51E-01 1.00E+00
miR-143-3p 0.01 9.56E-01 1.00E+00
miR-4530 0.00 1.00E+00 1.00E+00
miR-1825 0.00 1.00E+00 1.00E+00
miR-4299 0.00 1.00E+00 1.00E+00
miR-3665 0.00 1.00E+00 1.00E+00
C9orf72 presymptomatic subjects vs. C9orf72 patients

miR-206 -3.85 2.35E-06 9.04E-05
miR-29b-3p 1.42 2.78E-06 9.04E-05
miR-30b-5p 1.90 3.15E-05 6.83E-04
miR-199a-5p 1.70 6.58E-05 8.93E-04
miR-27a 1.41 6.87E-05 8.93E-04
miR-29¢-3p 0.92 1.86E-04 2.01E-03
miR-320a -0.85 2.17E-04 2.02E-03
miR-374b-5p 1.42 2.87E-04 2.33E-03
miR-7-1-3p 1.08 4.35E-04 3.14E-03
miR-19a-3p 1.37 6.33E-04 4.11E-03
miR-338-3p 0.76 1.26E-03 7.43E-03
miR-145-5p 1.04 1.41E-03 7.61E-03
miR-142-3p 0.79 1.57E-03 7.83E-03
miR-320b -0.94 1.86E-03 8.61E-03
miR-320c -0.92 2.09E-03 9.06E-03
miR-106b-5p 0.72 2.97E-03 1.21E-02
miR-146a-5p 0.96 3.36E-03 1.28E-02
miR-133b 1.31 6.20E-03 2.23E-02
miR-223-3p 0.82 6.53E-03 2.23E-02
let-7b-5p -0.46 7.16E-03 2.33E-02
miR-345-5p 0.61 7.69E-03 2.38E-02
miR-194-5p 1.01 8.56E-03 2.53E-02
miR-143-3p 0.68 1.13E-02 3.19E-02
miR-22-3p 0.36 1.77E-02 4.80E-02
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miR-3665

0.54
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0.46
1.18
0.33
0.46
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0.59
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-0.99
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-0.95
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2.76E-02
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4.75E-02
5.16E-02
5.33E-02
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8.39E-02
8.58E-02
9.76E-02
1.02E-01
1.12E-01
1.38E-01
1.40E-01
1.44E-01
1.58E-01
1.68E-01
1.71E-01
1.72E-01
1.86E-01
3.40E-01
3.41E-01
3.94E-01
5.21E-01
5.22E-01
5.27E-01
6.86E-01
6.95E-01
7.35E-01
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8.34E-01
8.72E-01
9.82E-01
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
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Supplementary Table 2. Complete output from differential expression analyses in the GRN cohort, for each

pairwise comparison between clinical groups. The columns show the 30 studied miRNAs, the log-fold

change when comparing the clinical groups, the unadjusted P values, and finally the adjusted P values after

Benjamini-Hochberg. For each pairwise comparison, a positive log-fold change means that the miRNA is

overexpressed in the first group. Controls (n=31), GRN presymptomatic subjects (n=30), GRN patients

(n=28). Adjusted P values lower than 0.05 are shown in bold.

miRNA log-fold change P value adjusted P value
Controls vs. GRN presymptomatic subjects

miR-502-3p 0.53 1.58E-02 3.71E-01
miR-451 0.78 3.88E-02 3.71E-01
let-7e -0.39 4.87E-02 3.71E-01
miR-206 1.01 4.95E-02 3.71E-01
miR-92a-3p 0.27 1.15E-01 6.04E-01
miR-345-5p 0.26 1.21E-01 6.04E-01
miR-15a-5p 0.22 2.23E-01 7.11E-01
let-7g-5p -0.13 2.40E-01 7.11E-01
miR-320a 0.18 2.55E-01 7.11E-01
miR-30b-5p 0.33 2.65E-01 7.11E-01
miR-22-3p 0.11 2.70E-01 7.11E-01
miR-223-3p 0.21 2.87E-01 7.11E-01
miR-301a-3p -0.17 3.25E-01 7.11E-01
miR-10a-3p -0.19 3.32E-01 7.11E-01
miR-320b 0.20 3.62E-01 7.20E-01
miR-1246 0.32 3.91E-01 7.20E-01
miR-34a-5p -0.13 4.21E-01 7.20E-01
let-7b-5p 0.10 4.32E-01 7.20E-01
miR-200c-3p -0.09 4.60E-01 7.26E-01
miR-146a-5p 0.13 5.84E-01 8.76E-01
miR-26a-5p -0.07 6.22E-01 8.89E-01
miR-335-5p -0.07 6.83E-01 9.31E-01
miR-663a 0.13 7.30E-01 9.31E-01
miR-7 -0.05 7.45E-01 9.31E-01
miR-9 -0.03 8.77E-01 9.79E-01
miR-106b-5p 0.02 8.92E-01 9.79E-01
miR-106a-5p 0.03 9.05E-01 9.79E-01
miR-18b-5p -0.02 9.16E-01 9.79E-01
miR-127-3p 0.01 9.60E-01 9.79E-01
miR-26b-5p 0.00 9.79E-01 9.79E-01
Controls vs. GRN patients

miR-451 2.23 2.65E-06 7.96E-05
miR-15a-5p 0.77 3.03E-04 4.54E-03
miR-502-3p 0.82 1.73E-03 1.73E-02
miR-7 0.56 4.56E-03 3.42E-02
miR-18b-5p 0.64 7.39E-03 4.44E-02
miR-106a-5p 0.68 1.14E-02 5.72E-02
miR-92a-3p 0.51 1.57E-02 6.72E-02
miR-106b-5p 0.47 2.67E-02 9.44E-02
let-7b-5p 0.33 2.83E-02 9.44E-02
miR-223-3p -0.35 1.24E-01 3.72E-01
miR-320a 0.24 2.17E-01 5.93E-01




miR-22-3p 0.14 2.53E-01 6.33E-01
miR-26b-5p 0.15 3.31E-01 7.53E-01
miR-26a-5p -0.17 3.51E-01 7.53E-01
miR-663a -0.60 3.93E-01 7.85E-01
miR-345-5p -0.15 4.43E-01 8.30E-01
miR-1246 0.29 5.11E-01 8.51E-01
miR-200c-3p -0.10 5.11E-01 8.51E-01
miR-335-5p 0.12 5.43E-01 8.58E-01
miR-30b-5p 0.17 6.22E-01 8.65E-01
miR-320b 0.12 6.52E-01 8.65E-01
let-7e -0.11 6.72E-01 8.65E-01
miR-9 -0.07 7.24E-01 8.65E-01
miR-146a-5p 0.09 7.42E-01 8.65E-01
miR-206 -0.20 7.47E-01 8.65E-01
miR-34a-5p -0.06 7.56E-01 8.65E-01
let-7g-5p 0.04 7.98E-01 8.65E-01
miR-301a-3p 0.05 8.08E-01 8.65E-01
miR-127-3p -0.05 8.65E-01 8.88E-01
miR-10a-3p -0.03 8.88E-01 8.88E-01
GRN presymptomatic subjects vs. GRN patients

miR-451 1.45 3.35E-03 6.92E-02
miR-7 0.61 4.61E-03 6.92E-02
miR-18b-5p 0.66 1.31E-02 1.19€-01
miR-15a-5p 0.55 1.59E-02 1.19€-01
miR-106a-5p 0.65 2.52E-02 1.51E-01
miR-223-3p -0.55 3.11E-02 1.56E-01
miR-206 -1.22 4.58E-02 1.96E-01
miR-106b-5p 0.45 5.79E-02 2.00E-01
miR-345-5p -0.41 6.01E-02 2.00E-01
let-7b-5p 0.23 1.44E-01 4.32E-01
let-7g-5p 0.17 2.59E-01 5.96E-01
let-7e 0.29 2.62E-01 5.96E-01
miR-92a-3p 0.24 2.83E-01 5.96E-01
miR-663a -0.74 2.87E-01 5.96E-01
miR-502-3p 0.29 2.98E-01 5.96E-01
miR-301a-3p 0.22 3.28E-01 6.15E-01
miR-26b-5p 0.14 3.72E-01 6.49E-01
miR-335-5p 0.18 3.90E-01 6.49E-01
miR-10a-3p 0.16 5.34E-01 8.44E-01
miR-26a-5p -0.10 6.14E-01 9.20E-01
miR-30b-5p -0.16 6.67E-01 9.41E-01
miR-34a-5p 0.07 7.38E-01 9.41E-01
miR-320b -0.08 7.64E-01 9.41E-01
miR-320a 0.05 7.88E-01 9.41E-01
miR-127-3p -0.06 8.40E-01 9.41E-01
miR-9 -0.04 8.42E-01 9.41E-01
miR-22-3p 0.03 8.47E-01 9.41E-01
miR-146a-5p -0.04 9.07E-01 9.63E-01
miR-1246 -0.03 9.49E-01 9.63E-01
miR-200c-3p -0.01 9.63E-01 9.63E-01
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Appendix C

Disease progression score
estimation from multimodal
imaging and microRNA data using
supervised variational
autoencoders

This appendix is the supplementary material of the Chapter 6:

e Kmetzsch, V., Becker, E., Saracino, D., Rinaldi, D., Camuzat, A., Le Ber, 1., Col-
liot, O., “Disease progression score estimation from multimodal imaging and
microRNA data using supervised variational autoencoders”. Under review at
the IEEE Journal of Biomedical and Health Informatics.



Algorithm 1 Synthetic datasets generation

Input: number of subjects n, number of features m, disease progression

scores values v; (i=1,...,n).

Output: set L containing the datasets D € R™"*™

L=1{}

for f in {0,2,5, 10, 15,20, 25, 30, 35,40} do

for s in {0.001,0.2,0.5,0.8,1,5} do
Ci,..,m « NB(r = 3000, p = 0.75, size = (n, %))
Cmi1,.m + N(p=1000, 0=200, size=(n, %)
/* f features from each modality positively correlate with disease pro-
gression */
for jin {1,...,ftu{% +1,..., % +1+ f} do
Cj —~v0O Cj
end for
/* the next f features are negatively correlated */
for jin {f,...2f}U{Z +1+f,...,F +1+2f} do
Cj — % ®© Cj
end for
/* normalize and add zero-mean Gaussian noise */
for jin {1,...m} do
C;—min(C;)

~—

Ci € manlC)—min(Cy)
end for
D + D+ N(u=0, o=s, size=(n,m))
L=Lu{D}
end for
end for

return L
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