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Résumé étendu de la Thèse en français 

Contexte de l'étude  

Les travaux de cette Thèse portent sur le guidage par l’image d’un traitement de la fibrillation 

cardiaque, et plus particulièrement la fibrillation ventriculaire, par Ultrasons Focalisés Haute 

Intensité (HIFU) par voie trans-œsophagienne. 

En deux mots, la fibrillation ventriculaire est une arythmie du cœur provenant d’un 

dysfonctionnement de la voie de conduction électrique dans le tissu cardiaque. La fibrillation 

ventriculaire se produit lorsque les signaux électriques qui indiquent au muscle cardiaque de 

pomper imposent aux ventricules de se contracter à très haute fréquence et de façon désordonnée 

(fibrillation). La fibrillation fait en sorte que le sang n'est pas pompé vers le corps. De plus, la 

fibrillation ventriculaire prolongée peut entraîner un arrêt cardiaque et la mort. 

Pour les patients souffrant d’arythmies chroniques, des médicaments destinés à régulariser le 

rythme cardiaque ou pour rétablir un rythme normal sont généralement prescrits. Éventuellement, 

un stimulateur ou un défibrillateur automatique sont posés chirurgicalement. En cas de fibrillations 

réfractaires aux traitements, une ablation cathétérisée peut être envisagée. Actuellement, c’est 

l'ablation par radiofréquence (RF) qui est le traitement de référence. L'ablation consiste à éliminer 

par nécrose les tissus responsables des arythmies. Pour cela, un cathéter est inséré par voie fémorale 

ou sous clavière et est monté sous guidage fluoroscopique vers la cible. L’antenne RF est mise en 

contact de la cible et l’émission des ondes radiofréquences échauffent et nécrosent les tissus 

cardiaques sous-jacents. Cette thérapie a plusieurs inconvénients : 1) le geste est tout de même 

assez invasif, 2) le guidage vers la paroi cible sous fluoroscopie est assez compliquée, 3) du fait 

des mouvements cardiaques la pointe l’émetteur peut ne pas être en contact avec la paroi et donc 

une lésion transmurale n’est pas assurée entraînant un échec de la thérapie, 4) le fait de délivrer de 

l’énergie en direction de l’extérieur du cœur peut entraîner des lésions graves sur les organes 

environnants (œsophage, …). Une technique d’ablation alternative par Ultrasons Haute Intensité 

Focalisés (HIF) par voie trans-oesophagienne a été proposée pour compenser les limitations 

évoquées précédemment. En effet, chez les humains, l’œsophage est placé juste derrière le cœur et 

offre donc une très bonne fenêtre acoustique pour les ultrasons (l’échographie cardiaque trans-

oesophagienne exploite cette fenêtre). De surcroît, le traitement vers l’intérieur du cœur ne présente 

aucun risque pour les organes environnants. 
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Figure 1 –Traitement par HIFU de la fibrillation ventriculaire par voie trans-oesophagienne. 

Un premier projet ANR (ANR CardioUSgHIFU) a permis de réaliser et de valider une première 

sonde trans-oesophagienne pour le traitement des fibrillations auriculaires (Figure 1) [1]. 

 La sonde de thérapie comportait en son milieu une sonde d’imagerie qui fournissait une image 

échographique perpendiculaire à l’axe de l’œsophage. Une première solution de guidage par 

l’image a d’ailleurs été proposée lors de ce projet [Thèse Sandoval et PMB18]. Ce premier projet 

a permis de réaliser une preuve de concept de cette thérapie potentielle. 

Les travaux développés lors de ce travail de ma Thèse ont été effectués dans le cadre du projet 

ANR CHORUS (ANR 17-CE19-0017) qui faisait suite au projet cardioUSgHIFU. Les objectifs de 

ce projet ont été justement de proposer l'instrumentation et de réaliser une validation préliminaire 

des approches d'ablation par HIFU pour le traitement de la fibrillation ventriculaire par voie trans-

oesophagienne. 

Le projet était décomposé en différentes parties : 

1) Le développement d’une nouvelle sonde dual-mode permettant a) l’ablation de la paroi 

ventriculaire par focalisation géométrique et électronique et d’imager l’anatomie sur deux 

coupes perpendiculaires (Figure 2). 
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Figure 2 – Représentation schématique de la sonde avec 32 anneaux de thérapie deux barrettes d'éléments dual mode 

permettant d'acquérir deux plans de vue perpendiculaires en échographie. 

2) La validation de la thérapie sur modèle animal ou modèle cœur isolé battant (Langendorff). 

3) La faisabilité du guidage de la thérapie par l’image. Mon travail de Thèse a porté sur ce 

dernier point. 

 

Objectif de l’étude et organisation du travail de Thèse 

Comme évoqué précédemment, l’objectif de cette thèse est de proposer des techniques de mise en 

correspondance entre l’imagerie préopératoire (volume scanner X) utilisée pour établir la 

planification de l'intervention et l’imagerie per-opératoire fournie par la sonde (images 2D 

échographique perpendiculaire à l’axe de la sonde). Ceci en utilisant la seule information fournie 

par les images sans solutions de tracking extérieur. Dans ce cas, le recalage consiste à estimer la 

pose 3D (position et orientation) de l'image ultrasonore (donc de la sonde) dans le volume CT 3D 

préopératoire. 

L’étude menée lors d’une thèse précédente [Sandoval]a été basée sur certaines hypothèses très 

fortes : 1) Malgré le fait que le cœur soit un organe mobile une hypothèse de recalage rigide pouvait 

être retenue, car nous avions un ciné-scan (20 volumes acquis dans 20 phases du cycle cardiaque) 

et les images échographiques était synchronisée sur l’ECG. Ceci permet d’associer dans une même 

phase l’image échographique et le volume correspondant. De plus, vues de l’œsophage, les 

mouvements respiratoires subis par le cœur sont très faibles. Un recalage rigide pouvait être 

envisagé. 2) L’œsophage a une position contrainte par les organes et tissus qui l'entourent, tels que 

la colonne vertébrale, la trachée, la vascularisation carotido-jugulaire, l'arc aortique, l'artère 

pulmonaire droite, la bronche principale gauche, l'oreillette gauche et le diaphragme. L’hypothèse 

est alors que c’est l’œsophage qui contraint la trajectoire de la sonde HIFU et donc, dans le cas où 

la sonde d’imagerie produit une image perpendiculaire à l’axe de la sonde, que les images 

échographiques 2D sont perpendiculaires à l’axe de l’œsophage. 

Ces deux hypothèses ont permis de proposer une solution de mise en correspondance (recalage) de 

l’échographie 2D et du Scanner X 3D basée sur (Figure 3) : 1) la segmentation de l’œsophage sur 

les données Scanner X préopératoires, 2) l’extraction des coupes scanner X perpendiculaires à l’axe 

de l’œsophage (de même orientation que l’échographie 2D) ; 3) le recalage 2D/2D entre 

échographie 2D et coupes 2D extraites du scanner X et, 4) le choix du couple échographie/coupe 
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scanner le plus ressemblant permettait d’estimer le recalage 2D/3D final et donc de reporter 

l’information contenue dans le scanner X (cible) sur l’échographie 2D. 

 
Figure 3 –  Principe du recalage échographie 2D/scanner X 3D développé dans le cadre du projet CardioUSgHIFU [2]. 

Cette méthodologie a permis l’estimation de la pose de la sonde dans le volume scanner avec 

erreurs médianes de recalage de cible (Target Registration Error) de l’ordre de 5 mm. 

Mon travail de Thèse consiste alors à intégrer une nouvelle configuration d’imageries liée au 

nouveau projet, à relâcher certaines contraintes liées aux hypothèses un peu trop fortes et à 

accélérer le temps de calcul du recalage pour pouvoir envisager une utilisation en routine clinique. 

Plus particulièrement : 

• Nous avons amélioré la solution itérative précédente sur deux aspects (chapitre 2 de la 

thèse) : 

o J’ai intégré la nouvelle configuration d’imagerie, à savoir 2 plans images 

perpendiculaires (cf. Figure 2) dans la solution de recalage développée précédemment 

(chapitre 2 de la thèse). 

o En considérant que la technique classique précédente donne une première estimée de la 

pose, nous avons relâché la contrainte anatomique qui imposait une image 

échographique perpendiculaire à l’axe de l’œsophage en recherchant la pose de l’image 

dans l’environnement 3D autours de la première estimée. En d’autres mots nous avons 

fait un recalage spatial direct entre la paire d’échographies 2D/ et le scanner 3D sans 

passé par des coupes intermédiaires. 
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• La solution précédente de recalage itératif est basée sur une série de recalage échographies 

2D/ coupes scanner 2D (étape 3 de la méthodologie décrite précédemment). Ce recalage 

était effectué en utilisant une méthode classique itérative qui prenait 6 s par paire d’images. 

L’idée est alors d’utiliser des méthodes de recalage par apprentissage profond qui ont la 

particularité d’accélérer grandement les temps de calcul tout en préservant (ou en 

améliorant) la précision du recalage. Nous avons donc proposé une méthode de recalage 

rigide échographie 2D/coupe scanner X 2D par apprentissage profond avec apprentissage 

supervisé (chapitre 3 de la thèse). Ce modèle a été ensuite étendu pour réaliser un recalage 

rigide échographie 2D/volume scanner X 3D par apprentissage profond avec apprentissage 

supervisé (chapitre 3 de la thèse). 

 

• Nous avons voulu ensuite relâcher la contrainte de recalage rigide. Si nous supposons que 

nous avons une très bonne estimée de la pose de sonde, un recalage élastique peut alors être 

considéré. Nous avons donc proposé méthode de recalage élastique entre échographie 

2D/coupe scanner X 2D par apprentissage profond avec apprentissage non-supervisé. 

 

Avant de présenter ces méthodes je voudrai faire un point sur l’évaluation et, le cas échéant, 

l’apprentissage des méthodes. En imagerie biomédicale, il est extrêmement difficile d’obtenir des 

vérités terrains sur les transformations subies entre images à recaler, particulièrement si les 

modalités sont différentes et/ou si les transformations ne sont pas rigides (d’où la popularité des 

méthodes avec apprentissage non supervisé). Dans notre cas nous avions un second souci, car la 

sonde dual mode avec deux plans images échographiques perpendiculaires n’était pas encore 

développée au moment de la Thèse. Nous avons donc décidé d’utiliser un simulateur qui pouvait 

générer des images échographiques à partir de données scanner X, des caractéristiques acoustiques 

des tissus (impédance acoustique et distributions spatiales de réflecteurs générant le speckle) et des 

caractéristiques de la sonde (nombre d’éléments, fréquence d’émission, bande passante, forme du 

champ ultrasonore) [3]. Ce simulateur permettait de créer des vérités terrains utilisés soit pour 

l’apprentissage des méthodes de deep learning, soit pour l’évaluation de ces méthodes. Ce 

simulateur a été appliqué sur de nombreux volumes scanner X et avec différents paramètres de 

simulation. 

 

Estimation de la pose de deux plans échographiques perpendiculaires dans le scanner X 

préopératoire par une technique itérative. 

 

La nouvelle sonde qui va développer dans le cadre du projet Chorus permet d’obtenir deux plans 

perpendiculaires d’images échographiques (Figure 2). Le guidage de la thérapie nécessite d’estimer 

la pose de ces images échographiques dans le scanner X préopératoire. À partir d’une première 

estimée de la pose de la sonde obtenue par exemple en utilisant les travaux de Sandoval [2], l’idée 

est d’une part de faire une recherche de la transformée 3D autours de cette pose (cela permet de 

relâcher la contrainte anatomique de perpendicularités par rapport à l’œsophage) et d’apporter une 
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information spatiale supplémentaire en ajoutant un second plan d’image échographique 

perpendiculaire au premier. 

 

 
Figure 4 – Schéma de principe du recalage de 2 plans échographiques perpendiculaires et un volume scanner X 3D. 

Le schéma de principe du recalage entre 2 plans échographiques perpendiculaires et un volume 

scanner X reprend le processus itératif classique : 1) à partir d’une pose estimée, on extrait deux 

plans de coupes perpendiculaires dans le volume scanne X, 2) une mesure de similarité est 

appliquée pour comparer la ressemblance entre les deux coupes scanner X extraites et les deux 

images échographiques et 3) un optimiseur essaye de modifier itérativement les paramètres de la 

pose afin de maximiser la ressemblance entre coupes scanner et images échographiques. 

Dans notre cas précis, la transformation géométrique entre images est une transformation rigide, la 

mesure de similarité choisie est l’Information Mutuelle (cette méthode a été choisie à la suite d’une 

étude prospective précédente [4] et l’optimiseur choisi est la descente de gradient stochastique. 

Une évaluation a été menée pour estimer l’apport de la coupe perpendiculaire dans la précision de 

l’estimation de la pose. Les images utilisées par notre évaluation ont été d’une part un volume 

scanner X clinique et d’autres part des paires d’images échographiques obtenues par simulations 

et dont les poses dans le scanner X étaient connues. Concernant l’estimation des paramètres de la 

transformation le fait d’utiliser deux coupes perpendiculaires au lieu d’une permettait de diminuer 

l’erreur médiane de l’estimée de la translation 3D de 1,5 mm à 0,7 mm et l’estimée de l’angle de 

rotation 3D de 3° à 2,1°. Nous avons également mesuré des erreurs en distance de recalage (Target 

Registration Errors) sur certains points fiduciels 3D connus. Là encore l’erreur médiane a diminuée 

de 2,54 à 1,7 mm en ajoutant un second plan image échographique. 
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Méthode de recalage rigide échographie 2D/coupe scanner X 2D par apprentissage profond 

avec apprentissage supervisé. 

 

L’idée de ce travail est de replacer la procédure itérative de recalage rigide entre échographies 2D 

et coupes 2D extraites du scanner X (Figure 3) par une procédure plus rapide de recalage basé sur 

de l’apprentissage profond. Les résultats attendus sont une accélération du temps de calcul pour la 

rendre utilisable en routine clinique tout en préservant ou améliorant la précision du recalage. 

Comme énoncé précédemment, nous sommes capables de générer par simulation des images 

échographiques à partir des coupes scanner X. Nous pouvons donc générer des paires d’images 

avec des transformations connues. Un apprentissage supervisé peut alors être envisagé. Comme 

l’information entre les deux modalités est très différente (différence d’impédances acoustiques et 

speckle pour l’échographie et coefficient d’atténuations aux rayons X pour le scanner) nous avons 

envisagé une procédure de recalage avec différents actions (Figure 5) : 

1) Un réseau siamois est appliqué sur les images à recaler. Ce réseau est composé deux sous-

réseaux identiques, appelés réseaux jumeaux, d’architecture et de poids identiques Ils 

travaillent en parallèle et sont chargés de créer des représentations vectorielles pour les 

entrées. Ils aident à produire de meilleures représentations vectorielles en mesurant les 

similitudes entre les vecteurs. En sortie, nous avons deux cartes de caractéristiques (une par 

image d’entrée), et qui sont analogues à des descripteurs locaux denses. Dans notre cas, les 

réseaux jumeaux sont basés sur le modèle ResNet18 réputé pour sa bonne performance en 

extraction de caractéristiques d’images. Nous avons utilisé le modèle ResNet pré-entrainé 

sur ImageNet. 

2) La concaténation des deux cartes de caractéristiques pour pouvoir servir d’entrée à : 

3) Un réseau consultatif de recalage qui estime directement l'ensemble des paramètres de la 

transformation rigide (deux translations, une rotation). Dans notre cas, notre réseau est 

composé de trois blocs de couches convolutionnelles utilisant un noyau de taille 5, chacune 

suivie de couches de normalisation par lots, et d'une unité linéaire rectifiée (ReLU). La 

dernière couche est une couche entièrement connectée permettant d'estimer les paramètres 

de recalage rigide. 

 

Figure 5 – Procédure de recalage rigide échographie 2D (𝐼𝐹) coupes scanner X (𝐼𝑀). Un réseau siamois extrait des 

caractéristiques des images et un réseau de recalage estime directement les paramètres géométriques de la 

transformation rigide (T). 
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Le fait de connaître les images et la transformation géométrique entre-elles, nous a permis un 

apprentissage de bout en bout. La fonction de perte est la norme L2 entre les paramètres de recalage 

estimés et les paramètres recalage de la vérité terrain. 

Les données utilisées pour l’apprentissage et l’évaluation sont issus de 20 volumes de scanner X 

cardiaques [5], [6]. 18 volumes sont utilisés pour l’apprentissage et 2 pour l’évaluation. Pour 

chaque volume, nous choisissons au hasard 200 positions initiales le long des axes de l'œsophage 

et extrayons les coupes obliques perpendiculaires à l’œsophage. Pour chaque position initiale nous 

plaçons aléatoirement la pose de notre échographe dans une plage de 10 mm en translation et 15 

degrés en rotation et nous simulons l'image échographique. Nous avons donc 3600 paires d’images 

avec vérité terrain pour l’apprentissage et 400 pour l’évaluation. 

Sur les 400 paires, nous avons comparé les performances de notre méthode par rapport à 

l’algorithme itératif classique (celui implémenté dans SimpleITK en utilisant l’information 

mutuelle en mesure de similarité) en termes de précision de recalage (erreur d’estimation des 

paramètres et erreurs de recalage de points fiduciaires -TRE) et en temps de calcul. Les médianes 

des erreurs d’estimation des paramètres étaient du même ordre de grandeur (voire un peu meilleures 

mais statistiquement non démontrées) avec notre méthode comparée à l’algorithme itératif (1,1 mm 

vs. 1,2 mm pour la translation et 2,1° vs. 2,4°). Cette tendance est vérifiée sur les TREs mesurés 

sur 8 points fiduciels par image (médianes des TREs de 2,2 mm vs. 2,7 mm). Par contre, le gain en 

temps de calcul répond bien à nos attentes : 3 ms par paire d’images comparé à 6 s pour la méthode 

itérative. 

Dans la section suivante, nous intégrerons l'approche d'apprentissage des caractéristiques à une 

procédure HIFU non invasive pour améliorer la planification et l'orientation de la thérapie. Nous 

appliquerons notre approche sur un recalage basé sur l'apprentissage 2D/3D pour affiner 

l'estimation du placement de la pose de la sonde trans-œsophagienne dans le volume préopératoire 

3D. 

 

Méthode de recalage rigide échographie 2D/Volume scanner X 3D par apprentissage profond 

avec apprentissage supervisé. 

La méthode précédente a permis de montrer que le recalage itératif classique 2D/2D pouvait être 

remplacé par une méthode par apprentissage profond, même avec des images de natures 

extrêmement différentes comme le scanner X et l’échographie. Cette méthode de recalage peut 

alors être intégrée dans le schéma d’estimation de la pose 3D de la sonde échographique proposé 

par précédemment dans notre laboratoire par Sandoval [7]. Par contre une des limites de la méthode 

de Sandoval est la contrainte forte que les images échographiques doivent être strictement 

perpendiculaires à l’axe de l’œsophage. Afin de relâcher cette contrainte, et suite à notre montée 

en compétences dans le domaine de l’apprentissage profond, nous avons élaboré une première 

preuve de concept pour résoudre directement le problème complexe de l’estimation de la pose 3D 

d’une coupe échographique dans le volume (ou un sous-volume) 3D. 
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Paramètres de la transformation rigide (3 translations, 3 rotations) de la pose de l’image 

échographique dans le sous-volume scanner X. 

Comme pour le cas 2D/2D, nous avons décidé de séparer le schéma global en deux sous-problèmes 

(Figure 6). 

1) L'extraction des caractéristiques des données d’entrée. Le principal défi était de concevoir les 

réseaux parallèles d'extraction de caractéristiques pour des données de dimensions différentes. 

Comme le recalage est 3D, les caractéristiques doivent être décrites dans un volume 3D. Nous 

avons conçu un réseau pour traiter la coupe échographique d’abord en 2D suivi d’une extension 

vers des couches 3D. Le sous-volume scanner est lui traité par un réseau 3D directement. Les 

données 3D issues de ces deux réseaux parallèles sont ensuite concaténées. 

 

2) Un réseau de neurones qui va estimer directement les 6 paramètres de la transformation) partir 

des caractéristiques 3D extraites lors de l’étape précédente. Comme pour le cas 2D/2D, nous 

avons utilisé un modèle Resnet comme réseau de recalage pour estimer les paramètres. 

 
 

Figure 6 – Procédure de recalage rigide échographie (𝐼𝑈𝑆) / volume scanner X (𝑉𝑀). Un réseau parallèle extrait des 

caractéristiques 3D des images/volumes d’entrée et un réseau de recalage estime directement les paramètres 

géométriques de la transformation rigide (T). 

Dans les conditions réelles de la thérapie, nous avons une idée approximative de la position de la 

pointe de l'endoscope (longueur insérée, analyse visuelle de la séquence d'images pendant la 

navigation, fluoroscopie, etc.). Ceci nous permet de définir une zone candidate le long de l'axe de 

l'œsophage dans laquelle le capteur d'images échographiques peut être situé. La taille de cette zone 

est d'environ 10 mm le long de l'œsophage. Nous sommes ainsi capables d'extraire un sous-volume 

de taille 512×512×32 voxels dans lequel se trouvera l'image US 2D. Ce sous-volume servira de 

volume d’entrée à notre réseau. Le fait d'estimer les paramètres dans un sous-volume a plusieurs 

avantages : il permet de réduire l'espace de recherche du réseau pour trouver la transformation 

optimale. Il réduit également la charge de la mémoire pendant la phase de formation et une stratégie 

d'augmentation des données. 

 Comme nous ne disposions pas de vérité terrain, nous avons décidé d’apprendre et d’évaluer notre 

réseau sur des volumes CT 3D réels et des images US 2D simulées. 

Les volumes scanner sont issus de la base de données MMWHS2017 [5], [6], qui contient 60 

volumes CT 3D. 70 % de l'ensemble de données est sélectionné au hasard de manière aléatoire 
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pour l’entraînement et les 30 % restants sont utilisés pour les tests. Pour chaque volume, nous avons 

extrait de manière aléatoire 3 sous-volumes de taille 512×512×32 voxels. Pour chaque sous-volume 

nous avons défini une position centrale (le centre de l’œsophage dans la coupe centrale du sous-

volume) autour de laquelle nous avons défini de manière aléatoire la pose de l’image 

échographique en appliquant une transformation aléatoire dans une plage de ± 10 mm en translation 

et ± 5° en rotation autour de chaque axe de coordonnées. Le plan de coupe oblique défini par cette 

pose dans le sous-volume scanner X servira alors pour la simulation de l’image échographique. Au 

final, nous disposions de 126 paires d’images US/sous-volumes CT pour l’apprentissage et 54 pour 

le test. 

Très peu d'articles ont utilisé une approche basée sur l'apprentissage pour le recalage de la coupe 

au volume, et plus précisément, nous n'avons trouvé aucun travail effectué récemment pour notre 

application spécifique. Nous avons donc décidé de comparer nos résultats à la méthode itérative 

classique (avec MI comme métrique de similarité) utilisant la bibliothèque simpleITK. Nous avons 

comparé les résultats de notre méthode à la méthode itérative classique en termes de précision de 

recalage (la distance moyenne entre le plan estimé et le plan réel -DistErr-, et les erreurs sur chaque 

paramètre) et de temps de calcul (Nous constatons bien une accélération du temps de calcul 0,07 

seconde pour notre méthode (presque 140 fois moins que la méthode classique). Cette accélération 

n'a pas été obtenue au détriment de la précision du recalage car avec notre méthode, cette précision 

est du même ordre de grandeur voire légèrement meilleure que pour la méthode classique. 

Table 1) 

Nous constatons bien une accélération du temps de calcul 0,07 seconde pour notre méthode 

(presque 140 fois moins que la méthode classique). Cette accélération n'a pas été obtenue au 

détriment de la précision du recalage car avec notre méthode, cette précision est du même ordre de 

grandeur voire légèrement meilleure que pour la méthode classique. 

Table 1: Performances de notre méthode (CNN) comparées à la méthode classique (SimpleITK). 

Méthode DisErr 

(mm) 

Erreur moyenne de l’estimation des paramètres de 

transformation en mm pour les translations et en ° 

pour les rotations. 

Temps 

(Sec) 

 𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜗𝑥 𝜗𝑦 𝜗𝑧 

Méthode itérative 

(Simple ITK) 

1.89 Mean 1.618 1.8289 1.875 0.794 0.893 0.922 9.65 

SD 1.102 1.234 1.319 0.393 0.581 0.648 

Notre méthode 

(CNN) 

1.67 Mean 1.556 1.695 1.739 0.684 0.706 0.776 0.07 

SD 1.099 1.202 1.106 0.423 0.414 0.416 
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Méthode de recalage élastique entre échographie 2D/coupe scanner X 2D par apprentissage 

profond avec apprentissage non-supervisé 

Cette étude vise à réaliser le recalage non rigide entre les échographies 2D et le scanner X afin de 

prendre en compte, à une certaine phase du cycle cardiaque, de légères déformations du cœur qui 

résultent de la respiration du patient ou à l’insertion de la sonde. Dans ce cas (et dans un le cas plus 

général de l’imagerie médicale), l'acquisition d'une vérité terrain fiable est difficile, d’où 

l’exploration d’approches non supervisées pour le recalage d'images. 

L’approche d’apprentissage non-supervisé que nous proposons est la suivante (Figure 7) : 

1) Un réseau est utilisé pour estimer le champ vectoriel de déplacement entre une image 

échographique et une section issue du scanner X. Dans notre cas, l'architecture du réseau 

que nous utilisons est similaire à celle de U-Net composé d’une section de codage suivi 

d’une section de décodage avec des connexions entre elles à chaque niveau. Les étapes de 

codages capturent les caractéristiques hiérarchiques de la paire d'images d'entrée qui sont 

utilisées pour estimer le champ vectoriel de déplacement dans l'étape de décodage. 

2) Le champ vectoriel de déplacement estimé est utilisé pour déformer l’image scanner X 

donnée en entrée. 

3) L’image CT déformée est alors comparée à l’image échographique à l’aide d’une mesure 

de similarité (Information Mutuelle pour les raisons mentionnées dans les études 

précédentes). 

4) Le réseau est entraîné en optimisant la métrique de similarité d'image (c'est-à-dire par 

rétropropagation de la dissimilarité) en utilisant l'optimiseur Adam. Après l'entraînement, 

le réseau peut être appliqué pour le recalage de paires d'images non vues. 

 

 
Figure 7 – Schéma de l’proche pour l’apprentissage de notre modèle. 

 

L’apprentissage et l’évaluation ont été menés sur des paires d’images Scanner X et images 

échographiques simulées. Dans un premier temps, nous avons extrait arbitrairement 250 coupes du 
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volume CT dans une gamme de ± 5 mm en translation et ± 5° en rotation autour d'une pose initiale 

située dans la ligne centrale de l'œsophage au milieu du volume. Pour chacune de ces coupes nous 

avons créé l’image échographiques correspondante en appliquant quelques déformations 

artificielles sur la coupe CT (déplacement aléatoire des points d’une grille éparse et interpolation 

spline) avant de simuler l’échographie. L’image CT déformée sert aussi de vérité terrain pour 

l’évaluation. 

À partir de cet ensemble de données, le réseau a été entraîné en sélectionnant de manière aléatoire 

175 paires d’images. Les 75 paires restantes ont été utilisées pour la validation. 

Pour la validation, nous avons comparé les résultats de recalage obtenus par notre à ceux obtenus 

par un recalage itératif non-rigide par champ de déformation de forme libre B-Spline implémenté 

dans la bibliothèque SimpleElastix. Nous avons utilisé la même mesure de similarité (Information 

Mutuelle) dans les deux méthodes. Pour une paire d’images, chacune des deux méthodes donnait 

une estimée du champ de déformation. Nous avons appliqué les champs de déformations estimées 

à la coupe CT. Ceci nous permet de comparer ces images déformées à la vérité terrain. Pour cela, 

nous avons segmenté l’oreillette gauche dans les 3 images (vérité terrain et images obtenue par les 

méthodes). Ceci nous permet de mesurer le score de Dice et le distance Hausdorff entre l’image 

issue des méthodes et la vérité terrain. La Table 1 donne la moyenne (et l’écart type) du score de 

Dice, de la distance de Hausdorff et du temps de calcul pour la méthode classique (SimpleElastix) 

et notre méthode (CNN (U-Net)). 

Table 2 : Performances de notre méthode (CNN (U-Net)) comparées à la méthode classique (SimpleElastix). 

Method 

 

Dice 

sim. Coef. 

Hausdorff 

distance (mm) 

Comp. 

time (sec) 

SimpleElastix 0.7 (0.01) 1.7 (0.02) 65 (0.1) 

CNN (U-Net) 0.8 (0.02) 1.2 (0.05) 0.7 (0.02) 

 

Conclusion 

En conclusion, lors de ce travail de thèse nous avons apportés 3 contributions pour le guidage d’une 

thérapie trans-œsophagienne de la fibrillation cardiaque par Ultrasons Haute Intensité Focalisés. 

Dans les 3 contributions, l’objectif était de trouver la pose de la sonde de thérapie par dans le 

volume scanner préopératoire afin de faire le lien entre le point focal de la thérapie et la trajectoire 

de l’ablation planifiée dans le volume scanner, ceci en se servant de la seule information image 

(coupes échographiques) fournie par la sonde. Dans un premier temps, nous avons intégré un plan 

image supplémentaire fourni par la nouvelle dans la procédure itérative classique et nous avons 

relâché certaines contraintes anatomiques afin de réaliser un recalage échographie 2D/volume 

scanner X 3D. Dans un second temps et afin d’accélérer le temps de calcul de la méthode itérative 

classique nous avons proposé une solution de recalage rigide échographie 2D/ coupe scanner X 2D 

par apprentissage profond supervisé. Cette solution permettait de diminuer le temps d’un recalage 
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2D/2D à 3 ms (à comparer à 6 s pour la technique itérative classique) tout en préservant, voire 

améliorant, la précision du recalage. 

Nous avons ensuite étendu cette première étude de recalage 2D/2D pour proposer un recalage 

2D/3D basé sur l'apprentissage afin d'affiner l'estimation de la pose transoesophagienne de la sonde 

dans le volume préopératoire 3D. Le cadre proposé consistait en deux réseaux pour extraire les 

cartes de caractéristiques de chaque paire d'image US fixe et de sous-volume mobile CT, suivi 

d'une couche de concaténation, et enfin le réseau de recalage Ressent a été utilisé pour estimer les 

six paramètres de transformation rigide. 

Comme nous l'avons montré, par rapport à une méthode itérative classique, la qualité des résultats 

était préservée (et améliorée dans certains cas) tandis que le temps de calcul était fortement réduit. 

Chaque cas d'enregistrement a pris environ 0,07 seconde (presque 140 fois moins que la méthode 

itérative classique). 

Finalement, afin de compenser certaines déformations locales dues au mouvement respiratoire ou 

à la variabilité de forme entre deux phases du cycle cardiaque, nous avons proposé une solution de 

recalage élastique échographie 2D/coupe scanner X 2D par apprentissage profond non-supervisé. 

Là encore, notre solution proposait un recalage en 0,7 s (à comparer à 67 s pour la procédure de 

recalage élastique itérative proposée dans la librairie SimpleElastix). 

Les résultats expérimentaux démontrent que les performances en termes de précision de recalage 

sont tout aussi bonnes, voire un peu meilleures, avec nos méthodes basées sur l’apprentissage 

profond qu’avec la méthode itérative classique ceci avec une vitesse de calcul beaucoup plus élevée 

ce qui nous permet une intégration future en routine clinique. 
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Introduction  

Cardiovascular diseases are the first cause of death in Europe, representing nearly 35% 

of deaths [8]. Although the morbidity related to these diseases has been decreasing since 

2013 in developed countries, thanks to the development of new therapies, thus the 

number of hospitalizations has been increased  [8]. In the European Union, the cost of 

these pathologies is estimated at nearly 210 billion euros in 2015, they are representing 

almost 20% of total health expenditure. In general, the organization World Health 

Organization (WHO) estimates that cardiovascular diseases are the first leading cause 

of mortality in the world, with nearly 17.5 million victims in 2012, and a forecast of 

23.6 million in 2030. The main identified causes of these diseases are hypertension, 

obesity and alcoholism [8], [9].  

Heart failure (HF) is a condition in which the heart is no longer able to provide blood 

flow to meet the needs of the different body systems. Approximately 6.2 million people 

in the United States suffered from HF in 2016, and they are increasing [9]. HF can be 

caused by many cardiac pathologies, mainly arrhythmias, contraction asynchrony, and 

post-infarction scarring. The most common type of arrhythmia is atrial fibrillation, 

which affects around 5.3 million people in United States, and was responsible for 

450,000 hospitalizations in 2014 [9]. 

Cardiac electrophysiology is the branch of cardiology that deals with disorders of the 

heart’s electricity. The two main disorders are arrhythmias, when the heart no longer 

has a regular beat or normal rhythm, and contraction asynchrony, which is a delay in 

contraction between an atrium and a ventricle, between the two ventricles, or between 

several segments of a ventricle. All of these disorders ultimately lead to HF, or to the 

death of the patient in the case of ventricular fibrillation VF.  

For diagnosed patients, the first steps are to improve their lifestyle, by reducing alcohol 

consumption, tobacco, and changing their diet. If the problems persist, drug treatment 

is recommended. However, this treatment may not be sufficient and other therapies 

involving surgical procedures may be required. The gold standard surgical technique 

for treating fibrillation is currently catheterized ablation and more precisely 

radiofrequency ablation  [10]. 

However, the efficiency of catheter ablation is limited, estimated at just over 60% for 

patients with paroxysmal atrial fibrillation AF. It decreases to less than 30% for those 

with persistent AF. This technique is invasive. In addition, some complications related 

to the radiofrequency energy delivery have been reported, such as phrenic nerve injury, 

left atrial/ventricle-esophageal fistula and blood clots formation [10]. 

An alternative procedure has been proposed to avoid the problems associated to catheter 

ablation approaches: the myocardial ablation using HIFU delivered from the esophagus 

[11], [12]. This is a promising procedure for the minimally-invasive treatment of 

atria/ventricle fibrillation. This transesophageal technique allows ablation to be 

performed using an epicardial approach, without the need for surgery. HIFU technology 
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can be used to create thermal lesions in deep tissues, without damaging intervening 

tissues. It is a mini-invasive treatment that places the HIFU transducer close to the 

ablation zone, navigating via the esophagus. The ultrasound probe is placed close 

enough to the ablation area to obtain a satisfactory acoustic window. HIFU waves are 

delivered from the esophagus to the atrial/ventricle wall minimizing the risk of damage 

to the esophagus and neighboring organs. 

This work of this thesis was part of a project funded by the ANR: the CHORUS project 

(ANR 17-CE190017). This project is a collaboration between academic laboratories 

with expertise in ultrasound technologies for imaging and therapy (LabTAU, Lyon), 

cardiology/real-time MRI technology (Liryc, Bordeaux) and image processing for 

treatment planning (LTSI, Rennes), while the company Vermon is a world leader in the 

design of ultrasound probes. Our objectives inside the CHORUS project were: 1) to 

process the anatomical information provided by preoperative imaging (MRI or CT) to 

undertake the planning of the intervention and 2) to process the intraoperative 

ultrasound (US) images to guide the therapy according to the planned strategy. 

During therapy, the practitioner will use the 2D US images, acquired by the imaging 

transducer inserted in the center of the therapy probe for optimal positioning of the 

HIFU transducer along the esophagus with respect to aera of the ventricle/atrial wall 

aera to be treated and to verify the absence of obstacles in the firing line. Intraoperative 

ultrasound imaging has many advantages, it is non-ionizing, portable, low cost and fast 

enough to capture tissue deformation. However, the information contained in the image 

is relatively low and its field of view is relatively limited (to a 2D sector) and is user 

dependent. The registration of the preoperative high-resolution information with the 

intraoperative US images is a key factor in image-guided interventions. Moreover, it 

allows the transfer of planning information provided by the clinician to the US-guided 

intervention and thus reduces the user’s dependence on the interpretation of 

intraoperative US images. 

This Thesis will provide various solutions concerning the planning and guidance of 

transesophageal HIFU ventricle fibrillation therapy. In order to describe our 

contributions, we have divided this manuscript into four chapters, as follows: 

Chapter 1 introduces the clinical context and the objectives of this work. This chapter 

begins with the description of the functioning of the cardiovascular system, and the 

different cardiac disorders. We focused on the VF monitoring of the different existing 

therapies and their limitations, leading to the promising procedure of minimally 

invasive transesophageal HIFU ablation. Then the different imagining modality used 

for this technology are described. We emphasize the properties of the images used for 

treatment planning and t guidance. We also present a more detailed summary of the 

ANR CHORUS project and its objectives, and we focused into the new transesophageal 

(TEE) probe design with two perpendicular image planes instead of one as previously. 

Finally, we describe the scientific objectives of this thesis, namely, to propose different 

solutions for the registration between the 2D ultrasound images (US), and the 3D 

computed tomography volume (CT) used to establish the intervention planning. More 

specifically, we try to estimate the pose (position and orientation) of the ultrasound 
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images in the 3D CT volume. These solutions will be evaluated in terms of both 

accuracy and computational efficiency. 

Chapter 2 first presents the methodological background of the classical iterative 

intensity-based image registration methods. It also reviews the previous work  carried 

out in the laboratory on this subject [7], and shows their limitations. Then the overall 

workflow of the registration framework is presented. 

This chapter then describes our first scientific contribution: the two planes 2D US/3D 

CT rigid image registration, as well as the clinical data collected for its validation. The 

results of this study have been presented in the following international and national 

conferences: 

Dahman B., Dillenseger, J.-L.,“High-Intensity Focused Ultrasound (HIFU) Therapy 

Guidance System by Image-Based Registration for Patients With Cardiac Fibrillation”, 

Computing in Cardiology, 46, Singapore, 2019, doi:10.22489/CinC.2019.315. 

Dahman B., Dillenseger, J.-L., “Transesophogeal HIFU cardiac fibrilation therapy 

guidance by 2 two perpendicular US images", Surgetica 2019, Rennes, 2019 

Dahman B., Dillenseger, J.-L., “Ultrasound guidance of a transesophageal HIFU 

therapy “, RITS 2019, Tours. 

Chapter 3 presents the exploitation of supervised deep learning-based registration 

methods in the medical image domain. Indeed, it has been proved that these deep 

learning-based approaches have outperformed the classical image and iterative 

optimization-based registration approaches in terms of both accuracy and computation 

time efficiency. 

This chapter is divided into three parts, first we   summarize the latest development in 

deep learning based medical image registration, and we mainly focus on rigid 

registration which is the most suitable approach for slice-to-volume image registration. 

Second, we present our second contribution: an Ultrasound to CT 2D Rigid Image 

Registration framework using CNN. The preliminary results of this study were 

presented in an international conference: 

Batoul Dahman, F. Bessier, Jean-Louis Dillenseger, "Ultrasound to CT rigid image 

registration using CNN for the HIFU treatment of heart arrhythmias," Proc. SPIE 

12034, Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and 

Modeling, 1203414 (4 April 2022). 

Finally, we present an extension of this work to a 2D US/3D CT image registration 

framework. We believe that this study is able to fill the research gap in real-time 2D-

US and 3D-CT fusion for Ventricular Fibrillation ablation therapy guidance. 

Chapter 4 focuses on unsupervised learning-based approaches for multimodal image 

registration. The motivation for this chapter stems from the desire to address the 

challenging nature of achieving reliable ground truth acquisition in real data, also to 

take into account all the real conditions in the real time operation, like the heart 

movement and the patient’s respiration and movement. 
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We decided to propose a framework for an unsupervised deformable image registration 

approach. We start this by a literature review of using unsupervised deep learning 

approach in medical image registration domain and their applications. 

We present then, our third contribution: a deformable US/CT unsupervised deep 

learning-based registration approach. The results of this study were presented in an 

international conference: 

Dahman B., Dillenseger, J.-L., “Deformable US/CT Image Registration with a 

Convolutional Neural Network for Cardiac Arrhythmia Therapy”, IEEE-EMBS, 

Montreal, 2020. 
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Chapitre 1  

 

Clinical context   

The heart is a complex system. An electrical network brings the heart chambers to 

contract in synchrony, allowing proper circulation of blood throughout the body. When 

this system is broken, the heartbeat becomes irregular, and the contractions out of sync, 

putting the rest of the functions at risk. Cardiac electrophysiology is the field of 

cardiology studying these disorders and their remedies. In this chapter, we first deal 

with the functioning of the cardiovascular system, and more particularly the anatomy 

and the functions of the heart (section 1.1). Different heart disorders are then mentioned 

in section 1.2 followed by a description of existing therapies to treat them and of their 

limitations (section 1.3), and the context of the work: Hight Intensity Focus Ultrasound 

(HIFU) for cardiac surgery in section 1.4. Then, the imaging modalities and descriptors 

considered in this work are presented in section 1.5. The work of this thesis is part of 

ANR project and follows some previous work that will be presented in section 1.6, and 

we also present in this section the objectives set out in these works. Finally, the 

conclusion of this chapter (section 1.7). 

1.1. The heart  

The function of the cardiovascular system is to deliver oxygen (𝑂2) and nutrients to all 

systems of the human body using blood as a transport vector. It is made up of two main 

elements, the circulatory system, the network used to connect the systems, and the heart, 

the pump allowing to circulate blood in this network. 

The heart is an important component of the cardiovascular system that helps circulate 

blood to the organs, tissues, and cells of the body. Blood travels through blood vessels 

and is circulated along pulmonary and systemic circuits [13]. The human heart is 

located in the thoracic cage, in a space called the mediastinum, which is located 

between the two lungs [14], between the upper thoracic opening and the diaphragm, 

and between the sternum and vertebral bodies as shown in Figure 1.1. It is a hollow 

muscular organ that is somewhat pyramid shaped made up of two independent parts, 

working in synchrony to set the blood in motion in the circulatory system.  

The circulatory system is made up of two parallel circuits: the general circulation, 

connecting the heart and the various 𝑂2 consuming systems (muscles, brain, etc.), and 

the pulmonary circulation, connecting the lungs and the heart. For each of these circuits, 

the blood is put into movement by a specific half of the heart, the right and left 

chambers. These circuits are made up of blood vessels called an artery if they leave the 

heart towards a system, and vein if they leave a system towards of the heart. 
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Figure 1.1– Position of the Heart in the thorax. 

1.1.1. Anatomy of the heart: 

The human heart is divided into two halves. Each half consists of a larger pumping 

chamber (ventricle) and a smaller filling chamber (atrium). The atrium and the ventricle 

are separated by cardiac tissue, the atrioventricular septum, each of these halves is 

supplied with blood through a vein (vena and pulmonary for right and left heart 

respectively) and expels blood through an artery (pulmonary and aorta for right and left 

heart respectively). The blood is admitted through the atrium and expelled through the 

ventricle. These cavities are surrounded by contractile tissue, the myocardium, which 

expels the blood they contain. In order to avoid any backflow and maximize the 

efficiency of the pump function performed by the heart, non-return valves are placed at 

the entrance and exit of the ventricle: the heart valves. All the elements presented in 

this section can be seen in Figure 1.2. 

The atriums: The atriums are the cavities that receive blood from the veins, and whose 

contraction allows the transfer of blood to the ventricles. The right atrium (RA) and the 

left atrium (LA) have similar pseudo-spherical shapes. They are separated by the 

interatrial septum [15]. 

The ventricles: The ventricles are the chambers that receive blood from the atria, 

allowing by their contraction the transfer of blood to the pulmonary and aortic arteries 

for the ventricle right (RV) and left ventricle (LV) respectively. The RV and the LV 

have conical shapes. They are separated by the interventricular septum [16]. 
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Figure 1.2 – Presentation of the heart anatomy. 

The myocardium: The myocardium is the muscle covering each of the cavities, and 

whose contraction allows blood to be expelled from them. The myocardium is very thin 

around the atria, thicker around the ventricles. An important difference exists between 

the thickness of the myocardium of the RV and of the LV, for the benefit of the LV. 

This is explained by the fact that the route of general circulation is much longer than 

that of the pulmonary circulation. The myocardium is made up of muscle cells called 

cardiomyocytes. These are cells specific muscles of the heart that are distinguished by 

different electrical and mechanical properties. They are: 

• Intetanisables After contraction, cells cannot be re-excited immediately. They 

are therefore incapable of prolonged contractions. 

• Conductive The cells transmit to the neighboring cells the excitement that made 

them contract. 

Heart valves at the entrance and exit of each ventricle, there is a valve allowing the 

direction of blood flow from the atria to the ventricles (valves atrioventricular), and 

from the ventricles to the arteries (sigmoid valves). The four valves are: 

1. The tricuspid valve, separating the RA from the RV. 

2. The pulmonary valve, separating the RV from the pulmonary artery. 

3. The mitral valve, separating the LA from the LV. 

4. The aortic valve, separating the LV and the aorta. 

The mitral and tricuspid valves (atrioventricular valves) are supported by the 

attachment of fibrous cords (chordae tendineae) to the free edges of the valve cusps. 

The chordae tendineae are, in turn, attached to papillary muscles, located on the interior 

surface of the ventricles these muscles contract during ventricular systole to prevent 

prolapse of the valve leaflets into the atria. There are five papillary muscles in total. 
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Three are located in the right ventricle and support the tricuspid valve. The remaining 

two are located within the left ventricle, and act on the mitral valve. 

Blood irrigation Being a muscle, the myocardium needs to be supplied with blood in 

order to be supplied, among other things, with 𝑂2. Arteries from the aorta circulate on 

the surface of the myocardium and supply it with oxygenated blood. Symmetrically, 

veins emerge from the myocardium, and meet in a vein called the coronary sinus, which 

directly joins the RA. We name these vessels are called the coronary vessels, as they 

form a crown around the heart [17]. A diagram of these vessels is visible in Figure 1.3. 

 
Figure 1.3– Presentation of the veins (blue) and coronary (red) arteries. 

If the part of the myocardium is no longer supplied by a coronary artery, the muscle 

becomes necrotic. It is a myocardial infarction. Tissues are then replaced by tissue scar 

made up of collagen fibers, called fibrosis. 

1.1.2. The electrical system of the heart  

The contraction of the myocardium is controlled by an electrical impulse generated by 

specific tissues of the myocardium. This impulse is then transmitted by electrical 

conduction in the rest of the heart. The frequency of these impulses is regulated by the 

nervous system. 

Nodal tissue: In the previous paragraph, we talked about muscle cells that make up the 

myocardium: cardiomyocytes. There are several categories, depending on their 

function. In particularly, some are self-excitable, allowing them to periodically generate 

and autonomously an electrical impulse of a few millivolts. These cardiomyocytes 

make up the nodal tissue, consisting of two nodes and a branched filament [18]. 

1. The sinus node: located at the junction between the right atrium and the 

superior vena cava. 

2. The atrioventricular node: located between the ostium of the coronary sinus 

and the tricuspid valve. 

3. The bundle of His: located in the prolongation of the atrioventricular node, 

descends along the interatrial septum, then into the interventricular septum. 

The two nodes are connected by three thin bundles, called internodal bundles. All these 

elements are visible in Figure 1.4. 
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1.1.2.1. Electrical stimulation of the whole heart 

 In normal cases, electrical impulses stimulating the myocardium are generated by 

cardiomyocytes of the sinus node. We then speak of normal sinus rhythm. The natural 

frequency of sinus node depolarization is 60 to 80 beats per minute. It should be noted 

that the heart has safety devices, allowing at the atrioventricular node to take over the 

function of the sinus node in the event of dysfunction, by generating the impulses itself. 

However, it is not as effective, and does produces only 40 to 50 beats per minute. It is 

the same for the bundle of His, with an independent activity of about 30 beats per 

minute. 

The impulse propagates through the two atria via the three internodal bundles, and 

through the cardiomyocytes step by step. Around the atrioventricular valves (mitral and 

tricuspid valves) are two fibrous rings (mitral and tricuspid) that block the flow of 

electricity. The activation front therefore has only one exit point: the atrioventricular 

node. Connected to the atrioventricular node, the bundle of His transmits the impulse 

to the two ventricles. It is composed of two branches, left and right, corresponding to 

the two ventricles. Each branch leads the pulse through the interventricular septum to 

the apex ventricle associated with it, before moving up along its side wall. At the end 

of branches, the Purkinje fibers finish propagating the stimulation. The conduction 

speeds are variable along the nodal tissue. In the atrioventricular node, conduction is 

slow to give the atria sufficient time to contract completely, in order to fill the ventricles 

as much as possible. Conversely, conduction is extremely fast in the His bundle and the 

Purkinje lattice in order to synchronize the contraction of both ventricles and maximize 

their pumping function. 

1.1.2.2. Heart rate regulation 

 The heart rate is regulated by two nervous systems. The parasympathetic system helps 

to reduce the natural frequency of the sinus node through the Vagus nerve, secreting 

acetylcholine. Conversely, the Sympathetic system helps increase this frequency by 

releasing adrenaline and norepinephrine. These two nerve impulses make it possible to 

modulate the autonomic activity of the sinus node, and to adapt the heart rate to the 

physiological need of the rest of the body [19]. 
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Figure 1.4 – Schematic of the electrocardiogram and cardiac conduction system. The pink color 

represents the electrical system, orange the activation of the atria, and green the activation of the 

ventricles. 

1.1.2.3. Surface electrocardiogram 

 Cardiomyocytes produce an electric field as they contract. The surface 

electrocardiogram (ECG) surface is a clinical routine examination, consisting in 

measuring these fields using electrodes placed on the surface of the patient's skin, at a 

sampling frequency of approximately 15 kHz [20]. The electrical signal detected is in 

the order of a millivolt. It is a quick, painless and non-invasive examination, which 

highlights various abnormalities cardiac conditions (Cardiac pathologies). The ECG is 

acquired by 10 electrodes, from which 12 curves, called leads are calculated. Four 

electrodes are placed at the ends of the four limbs (ankles and wrists), and six on the 

patient's chest. They are separated into two groups of 6 derivations: the peripheral (or 

frontal) leads, and precordial leads. 

Correspondence between ECG and electrical activity: A normal ECG is shown 

schematically in Figure 1.4. Depending on the derivations, this profile varies. We 

distinguish here different morphologies that correspond to particular electrical activities 

of the heart during the cardiac cycle [21]. These morphologies are: 

1. P wave: Corresponds to the depolarization of the atria. 

2. QRS wave: Also called QRS complex, corresponds to the depolarization of the 

ventricles. 

3. T wave: Corresponds to the relaxation of the ventricles. The “atrial” T wave is 

masked by the QRS complex. 

The PR interval (onset of the P wave at the onset of the QRS complex) corresponds to 

the time of transmission of the impulse from the sinus node to the bundle of His via the 

atrioventricular node. The PR segment (end of the P wave at the start of the QRS 
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complex) is included in the PR interval and corresponds to the transmission time of the 

electrical impulse in the atrioventricular node. Likewise, the QT interval (start of Q 

wave to end of T wave) corresponds to the set polarization / repolarization of the 

ventricles, i.e., the full contraction time of the ventricles. In the remainder of this 

manuscript, a cardiac cycle is considered the RR cycle, i.e., the interval between two 

peaks R. 

1.1.3.  Mechanical operation of the heart 

The two heart pumps operate in synchronicity in a cyclical fashion. Fibers cardiac 

organs form oriented bundles, determining the movements of the myocardium during 

its contraction [22]. 

The cardiac cycle: In the previous paragraphs, we have seen the different elements 

allowing blood to circulate (cavities and myocardium), to direct blood flow (valves), 

and to trigger a heartbeat (nodal tissue). Every beat breaks down into four phases, which 

form the cardiac cycle. 

The phases of contraction of the myocardium are called systole contraction. The 

relaxation phases of the myocardium are called diastole expansion. The four moments 

of the cycle are: 

1. Ventricular filling (diastole) As a result of the electrical impulse generated by 

the sinus node, the atria contract, causing the ventricles to fill. The flow of blood 

moving to the ventricles decreases as the difference in pressure between atrium 

and ventricle decreases. 

2. Isovolumetric contraction (systole) Once the depolarization front has reached 

the bundle of His, the ventricles contract. The pressure there increases, until 

exceed atrial pressure, causing the atrioventricular valves to close, and further 

increases until the blood pressure exceeds, causing to open of the sigmoid 

valves. This isovolumetric contraction is noted because the volume of blood 

contained in the ventricles remains constant. 

3. Isotonic contraction (systole) Muscle contraction continues, driving out the 

volume of blood contained in the ventricles. As with ventricular filling, the flow 

of expelled blood decreases as the pressure difference between the ventricles 

and the arteries shrink. The pressure in the ventricles decreases until it becomes 

less than blood pressure, causing the sigmoid valves to close. This contraction 

is known as isotonic because the myocardial tension is constant throughout this 

phase. 

4. Isovolumetric relaxation (diastole) During this very short phase, the 

myocardium becomes release causing the pressure in the ventricles to decrease, 

until the pressure becomes lower than the pressure in the atria. Therefore, the 

atrioventricular valves open, and a new ventricular filling occurs. 

We define different volumes of the heart: 

• End-diastolic volume (EDV): the volume of blood contained in the ventricle 

when it is fully released (maximum volume). 
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• End-systolic volume (ESV): the volume of blood contained in the ventricle 

when it is fully contracted (minimum volume). 

• Stroke volume (SV): given by the difference between the volume end-diastolic 

and end-systolic, which is the volume of ejected blood. 

1.2. Cardiac pathologies: cardiac arrhythmias 

Rhythm disturbances, or arrhythmias, correspond to disturbances in the frequency and 

heartbeat, they are related to a dysfunction of the electrical conduction pathway in the 

cardiac tissue [11]. Some of these arrhythmias are mild or chronic, and are caused by 

temporary factors (stress, fatigue...). Others, on the contrary, can be disabling in the 

everyday life, leading for example to a heart failure (HF) for example, or even leading 

to the death of the patient. They demand the diagnosis and treatment by a specialist.  

    
(a) (b) (c) (d) 

Figure 1.5 – Comparison of healthy and pathological ECGs. (a) Normal rhythm. (b) Ventricular 

tachycardia (VT). (c) ventricular extrasystole (VES). (d) Ventricular Fibrillations (VF). 

Ventricular tachycardia (VT): Tachycardia is a regular very high frequency 

heartbeat, greater than 180 beats per minute, without the making any special efforts 

from the patient. This high rate leads to HF because of the blood cannot no longer being 

pumped out of the heart. An ECG of a patient with ventricular tachycardia is visible 

Figure 1.5b. We can see on this ECG that the QRS complexes succeed each other until 

they touch each other. 

In most cases, tachycardia is due to what we call a reentry on scar. “Reentry” refers to 

the reentry of the depolarization front contracting the cardiomyocytes. 

In section 1.1.3, it was said that cardiomyocytes are untabulatable, due to the fact that 

they have a period of unexcitablility after contraction. The scar areas contain regions 

fibrosis, unexcitable, blocking electrical conduction. Around of these, areas of 

surviving myocardium have speeds of very weak conduction and can form channels 

between cicatricial areas (isthmuses). The propagation of the depolarization front can 

be so slow in this channel, that the cardiomyocytes located at the end of it can be 

excitable again when the depolarization front reaches them. So, an echo of the initial 
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forehead is spread, creating a spontaneous contraction of the ventricle, before re-

entering the isthmus which caused it, repeating this cycle. 

Ventricular extrasystole (VES): A premature ventricular systole (VES) is a 

supplemental systole which happened in the cardiac cycle. It is observed on an ECG by 

the appearance of an additional QRS complex additional. It can be compared to a hiccup 

of the heart. 

An ECG from a patient with VES can be seen in Figure 1.5c, with a cycle polluted by 

two VESs. VSE can occur in healthy patients, and can be facilitated by factors such as 

stress, anxiety, or taking a stimulating substance such as alcohol or coffee. In patients 

who have had a myocardial infarction, repeated VSEs may be increased risk of sudden 

death, such as triggering ventricular fibrillation. In the case where scar tissue is present, 

the mechanism causing VES is identical to that of tachycardia except that the excitation 

loop is not maintained. This is because the propagation of the depolarization front in 

the isthmus in the input-output direction is blocked by the propagation of the 

depolarization front in the output-input direction. 

Fibrillations: Fibrillation is caused by an “electrical storm” that brings the cavities to 

contract at a very high frequency and in a disorderly manner. We distinguish here the 

atrial fibrillation and ventricular fibrillation, pertaining to the atria and ventricles, 

respectively. Atrial fibrillation is the most common type of arrhythmia. It causes 

degradation function of the atria, leading to heart failure (HF), and stroke risk. 

Arrhythmia in the ventricles may lead to ventricular tachycardia and ventricular 

fibrillation that result in sudden cardiac death.  Ventricular fibrillation on the other hand 

is hemodynamically inefficient and leads to death of the patient. Therefore, it is 

necessary to use a defibrillator as soon as possible, to shock the heart and stop the 

arrhythmia attack. 

1.2.1. Ventricular fibrillation: Definition 

Ventricular fibrillation (V-fib) is one of the most dangerous types of arrhythmias, or 

irregular heartbeat, it is the most common arrhythmia underlying sudden cardiac death 

that affects the heart’s ventricles. 

The V-fib occurs when the electrical signals that tell the heart muscle to pump cause 

the ventricles to quiver (fibrillate) instead. The quivering means that the blood is not 

pumping blood out to the body. For some people, V-fib may happen several times a 

day. This is called an “electrical storm.” Because sustained V-fib can lead to cardiac 

arrest and death, it requires immediate medical attention. 

The ECG of ventricular fibrillation caused by following an extrasystole can be seen in 

Figure 1.5d. It can be seen that QRS complexes have completely disappeared compared 

with the normal heart rhythm (Figure 1.5a) and were replaced by a completely anarchic 

electrical activity. 

The cause of ventricular fibrillation is not always known but it can occur during certain 

medical conditions. V-fib most commonly occurs during an acute heart attack or shortly 

thereafter. When heart muscle does not get enough blood flow, it can become 

electrically unstable and cause dangerous heart rhythms. A heart that has been damaged 
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by a heart attack or other heart muscle damage is vulnerable to V-fib. Other causes 

include electrolyte abnormalities such as low potassium, certain medicines, and certain 

genetic diseases that affect the heart's ion channels or electrical conduction. 

The most common risk factors are: 

• A weakened heart muscle (cardiomyopathy). 

• An acute or prior heart attack. 

• Genetic disease such as long or short QT syndrome, brugada disease, or 

hypertrophic cardiomyopathy. 

• Certain medicine that effect heart function. 

• Electrolyte abnormalities. 

The symptoms of ventricular fibrillation: 

• Near fainting or transient dizziness. 

• Fainting. 

• Acute shortness of breath. 

• Cardiac arrest. 

To diagnose ventricle fibrillation several healthcare providers should be 

considered: 

• Vital signs, such as the blood pressure and pulse. 

• Tests of heart function, such as an electrocardiogram. 

• The overall health and medical history. 

• A description of symptoms that the family, or a bystander provides. 

• A physical exam. 

1.2.2. Epidemiologic  

The rate of sudden cardiac deaths (SCD) per year in Europe is ranged from 200 000 to 

350 000, it can be estimated that 50–70% of the deaths are due to tachy-arrhythmic 

mechanisms [23]. Ventricular fibrillation (VF) precipitated by ventricular tachycardia 

(VT) is a common mechanism of cardiac arrest leading to SCD [24]. Despite 

revolutionary progress in the last three decades in the treatment of ventricular 

tachyarrhythmia with the use of implantable cardioverter defibrillator (ICD) therapy, it 

remains a major public health burden [25]. Catheter ablation (CA) is an efficient option 

in patients with ICD and structural heart disease, for reducing VT recurrence, and ICD 

shocks [26]. It is also indicated in patients without apparent structural heart disease, for 

treating several forms of VT. Success rate of CA varies from 35% to 75%, depending 

on the underlying cardiomyopathy. 

1.3. Treatments for ventricle fibrillation 

Ventricular fibrillation requires emergency medical treatment to prevent sudden cardiac 

death. The goal of emergency treatment is to restore blood flow as quickly as possible 

to prevent organ and brain damage. Treatments for ventricular fibrillation includes: 

defibrillation, medication, implantable cardioverters and ablation. 
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1.3.1. Defibrillation 

This treatment is also called cardioversion. An automated external defibrillator (AED) 

delivers shocks through the chest wall to the heart. It can help restore a normal heart 

rhythm.  

Successful defibrillation largely depends on two key factors: the duration of the VF and 

the metabolic condition of the myocardium. The VF waveform usually begins with a 

relatively high amplitude and frequency; it then degenerates to a smaller and smaller 

amplitude until, after approximately 15 minutes, asystole is reached, possibly because 

of depletion of the heart's energy reserves. Unfortunately, VF waveform measures do 

not appear to be useful for differentiating ischemic from nonischemic cardiac arrest 

etiology [27]. 

 
Figure 1.6 – Position of the paddle electrodes during defibrillation/cardioversion, position of the heart, 

and flow of intrathoracic energy during delivery of the electric shock. 

Defibrillation success rates decrease about 5%-10% for each minute after the onset of 

VF. In strictly monitored settings where defibrillation was performed most promptly, 

success rates of 85% have been reported. 

The goal is to use the minimum amount of energy required to overcome the threshold 

of defibrillation. Excessive energy can cause myocardial injury and arrhythmias. 

Larger paddles result in lower impedance, which allows the use of lower-energy shocks. 

Approximate optimal sizes are 8-12.5 cm (3.15-4.92 inches) for an adult, 8-10 cm 

(3.15-3.94 inches) for a child, and 4.5-5 cm (1.77-1.97) inches for a baby. One paddle 

is positioned below the outer half of the right clavicle and the other one over the cardiac 

apex (V4 -V5) (see Figure 1.6). 

1.3.2. Medicines 

In acute ventricular fibrillation (VF), drugs (e.g., vasopressin, epinephrine, 

amiodarone) are used to control the heart rhythm after those three defibrillation 

attempts are performed to restore normal rhythm. Amiodarone can also be used on a 

long-term basis in patients who refuse placement of an implantable cardioverter-

defibrillator (ICD) or who are not candidates for an ICD. However, amiodarone has not 
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been shown to be of value for primary prevention of VF in patients with a depressed 

left ventricular (LV) ejection fraction (LVEF). 

In an analysis of the association between rearrest and intraresuscitation antiarrhythmic 

drugs in relation to the Resuscitation Outcomes Consortium (ROC) amiodarone, 

lidocaine, and placebo (ALPS) trial, investigators did not find a difference in rearrest 

rates between those who received amiodarone or lidocaine and those who received 

placebo. [28] However, the electrocardiographic waveform characteristics were 

associated with the treatment group and rearrest and rearrest was associated with poor 

survival and neurologic outcomes. 

1.3.3. Implantable cardioverter defibrillator (ICD) 

An implantable cardioverter-defibrillator (ICD) is a small battery-powered device 

implanted near the left collarbone during a minor surgery. One or more flexible, 

insulated wires (leads) from the ICD run through veins to your heart to monitor the 

heart rhythm and detect irregular heartbeats. as shown in Figure 1.7. An ICD can deliver 

electric shocks via one or more wires connected to the heart to fix an abnormal heart 

rhythm. 

ICD is a specialized device designed to directly treat many dysrhythmias, and it is 

specifically designed to address ventricular arrhythmias. ICDs have revolutionized the 

treatment of patients at risk for sudden cardiac death due to ventricular arrhythmias. A 

permanent pacemaker is an implanted device that provides electrical stimuli, thereby 

causing cardiac contraction when intrinsic myocardial electrical activity is 

inappropriately slow or absent. 

Acute surgical complications include pain, bleeding, pneumothorax, hemothorax 

cardiac perforation with or without pericardial effusion and tamponade, Pulseless 

electrical activity following intraoperative defibrillation threshold testing. Also, 

Subacute ICD complications include Infection pocket hematoma, wound dehiscence, 

lead dislodgment, deep venous thrombosis, upper extremity edema, degradation of lead 

function. 

 

 
Figure 1.7– Implantable cardioverter-defibrillator. 
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1.3.4. Catheter ablation 

Radiofrequency ablation (RFA) is a therapy based on the removal of tissue responsible 

for arrhythmias recommended for the treatment of drug-resistant arrhythmias [29]. In 

addition, because drug solutions (amiodarone, propafenone) have serious side effects 

for the patient, studies question the benefit of increasing the dosage of these treatments 

before resorting to ablation [30]. 

This therapy has recognized positive effects but is a procedure particularly long and 

therefore expensive.  

The RF energy is a form of alternating electrical current that generates a lesion in the 

heart by electrical heating of the myocardium. A common form of RF ablation found 

in the medical environment is the electrocautery, which is used for tissue cutting and 

coagulation during surgical procedures. The goal of catheter ablation with RF energy 

is to transform electromagnetic energy into thermal energy in the tissue effectively and 

to destroy the arrhythmogenic tissues by heating them to a lethal temperature.  

The mode of tissue heating by RF energy is resistive (electrical) heating. As electrical 

current passes through a resistive medium, the voltage drops, and heat is produced 

(similar to the heat that is created in an incandescent light bulb). The RF electrical 

current is typically delivered in a unipolar fashion with completion of the circuit 

through an indifferent electrode placed on the skin. Typically, an oscillation frequency 

of 500 to 750 kHz is selected. Lower frequencies are more likely to stimulate cardiac 

muscle and nerves, resulting in arrhythmias and pain sensation. Higher frequencies will 

result in tissue heating; however, in the megahertz range, the mode of energy transfer 

changes from electrical (resistive) heating to dielectric heating (as observed with 

microwave energy). With very high frequencies, conventional electrode catheters 

become less effective at transferring the electromagnetic energy to the tissue, and 

therefore complex and expensive catheter antenna designs must be used. Resistive heat 

production within the tissue is proportional to the RF power density, and that, in turn, 

is proportional to the square of the current density. When RF energy is delivered in a 

unipolar fashion, the current distributes radially from the source. 

The current density decreases in proportion to the square of the distance from the RF 

electrode source. Thus, direct resistive heating of the tissue decreases proportionally 

with the distance from the electrode to the fourth power.  

As a result, only the narrow rim of tissue in close contact with the catheter electrode 

(2–3 mm) is heated directly. All heating of deeper tissue layers occurs passively through 

heat conduction. If higher power levels are used, both the depth of direct resistive 

heating and the volume and radius of the virtual heat source will increase. 

Although being widely accepted as a reference clinical treatment, catheter-based 

radiofrequency ablation mainly relies on energy deposition from the contact point 

between and electrode located at the catheter tip and the myocardium. However, this 

contact is difficult to maintain in the presence of cardiac contraction. 

As a result, effective energy deposition at the target remains insufficient to ablate the 

pathologic tissue. Consecutive point-by-point radiofrequency procedures are often 
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performed to isolate the abnormal electrical pathway, which requires contiguous 

individual ablations that can be challenging in presence of motion. Moreover, when 

tissue thickness is important (e.g., typical values in the ventricle thickness are in the 

range of 10-15 mm), diffusion of the thermal energy from this contact point cannot 

guarantee achievement of a transmural lesion, which is mandatory to achieve a 

complete treatment.  

Current procedures are mainly performed under X-Ray monitoring that provides poor 

information of soft tissue and mainly serves as guidance of the device to the desired 

cardiac chamber before 3D contact electrical mapping is performed to precisely locate 

the tissue to ablate However, there is a clear lack of real-time visualization of lesion 

formation during the ablation, although completion of the treatment is currently 

assessed through variation of electrical local potentials (drop of impedance, reduction 

of electrical signal amplitudes). 3D navigation systems estimate the presence of a lesion 

using algorithms based on dosimetric studies; the area is considered destroyed when 

energy is applied for a sufficient period of time, with good stability and contact of the 

catheter to theoretically allow a proper diffusion of energy (CARTO VisiTag™ 

Module) [31]. Even if catheter ablation can have “acute” successful outcome, 

recurrence may occur after a recovery period, when the inflammatory processes 

surrounding the thermal lesion disappear, allowing restoration of abnormal electrical 

pathways and requiring expensive redo procedures.    

Ways to improve the effectiveness of the procedure and reduce the risks for the patient 

are now proposed (e.g., heart ablation using a transesophageal HIFU probe). 

1.4. Heart ablation using a transesophageal HIFU probe 

Hight intensity focused ultrasound (HIFU) allows the creation of a thermal lesion in a 

tissue by focusing ultrasonic energy. The principle is as following: ultrasound beams 

are focused on the target tissue, and due to the significant energy deposit at the focus, 

the temperature within the tissue can rise to values between 65 ◦C to 85 ◦C, destroying 

tissues by coagulation necrosis. This modality is perfectly suited to treat deep tissues 

and could be designed to reach the arrhythmogenic substrate throughout the thickness 

of the myocardial wall. 

The use of HIFU for the treatment of cardiac arrhythmia has been studied since the mid-

1990s. Different approaches have been proposed: extracorporeal, extracardiac, 

intracardiac and transesophageal. 

The extracorporeal and extracardiac approaches of [32] and [33] respectively, proved 

that the therapy is made difficult by the limited acoustic window due to the presence of 

ribs and lungs. 

In contrast, intracardiac approaches place the HIFU transducer in the cavities of the 

heart, close to ablation zone, thus improving the acoustic window [34], [35]. HIFU 

catheters have been developed for pulmonary vein isolation. Steerable HIFU balloon 

catheters performs circumferential lesions around pulmonary veins [36]. After the first 

clinical trials, the success rate in patients with paroxysmal AF was similar to those 

obtained using RF ablation. Nevertheless, the complication rate was greater [37]. 
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Among these complications, we can mention esophageal lesions (one causing a mortal 

atrio-esophageal fistula) and persistent paralysis of the phrenic nerves. These 

complications caused clinical trials to be stopped. 

Another approach, called the Epicor Cardiac Ablation System, is an epicardial 

treatment using a probe designed to make ablation lines without needing to be 

repositioned [38]. Nevertheless, it is a complex and invasive technique, requiring 

epicardial surgery. 

In contrast, a transesophageal technique as proposed by [12]. allows the ablation to be 

carried out using an epicardial approach without the needing for surgery [12]. It is a 

mini-invasive treatment that places the HIFU transducer close to the ablation zone by 

navigating inside the esophagus. The energy is thus controlled from a location close 

enough to the ablation zone to obtain a satisfactory acoustic window. 

1.4.1. The transesophageal approach  

Because HIFU enables the generation of precise thermal ablations in deep-seated 

tissues while preserving adjacent and intervening tissues, it has the potential to be used 

as an ablation technique for the heart. HIFU energy has already been used to create 

thermal lesions in cardiac tissues. 

The feasibility of a transesophageal method using HIFU energy has been considered 

more recently [39], [12]. In humans, the esophagus is located just behind the heart and 

offers an excellent acoustic window for transesophageal echocardiography as shown in 

Figure 1.8. Some targeted areas are located just in contact with the anterior face of the 

esophagus (left atrium) or are easily accessible with a left rotation or a trans-gastric 

positioning (left ventricle). During the same endoscopic procedure, dynamic focusing 

of the HIFU beam from the esophagus could allow for targeting both the heart regions 

that are usually accessible with epicardial approaches and those that are usually treated 

with endocardial approaches. Moreover, the mid-myocardium of the ventricles could 

also be targeted. 

An endoesophageal HIFU device allows for focusing the ultrasound beam from the 

esophagus in such a way that the potential energy remaining after the focal point would 

be dissipated by the blood flow inside the heart cavities. Just as during transrectal HIFU 

procedures for treating prostate cancers and during the propagation of ultrasound 

through the rectal wall [11], cooling the endoesophageal probe protects the esophagus 

from thermal damage. The risk of deleterious effects is reduced compared to the HIFU 

balloon catheter that delivers energy from the heart outward.  

The transesophageal technique consists of generating thermal ablation using a HIFU 

transducer placed in the esophagus. The transducer is set on a transesophageal probe 

that navigates inside the esophagus in order to reach the region that lies just below the 

posterior wall of the heart as shown in Figure 1.8. The therapy is then generated and 

controlled from this location. 
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Figure 1.8 –Trans esophageal image-guided HIFU for minimally invasive thermal ablation in the heart. 

The probe navigation and transducer positioning are carried out using images provided 

by an US imaging probe embedded at the tip of the therapy probe. These images are 

very similar as this provided by a Transesophageal Echocardiography (TEE) probe. The 

transesophageal technique is advantageous because: 

- The esophageal approach results in a good cardiac acoustic window, 

particularly for the left atrium/ventricle, which is the ablation zone in the 

therapy. 

- It is less invasive than the intracardiac approach. 

- An epicardial-like therapy is obtained. 

- TEE probes are routinely used in cardiac interventions. 

- The blood flow helps to cool the cardiac cavities. In contrast, intracardiac 

approaches cannot exploit this advantage and the adjacent organs can be 

damaged. 

- A cooling balloon can be added at the head of the HIFU probe, which cools both 

transducer and the surrounding tissue, thus avoiding the risk of thermal lesions 

of the esophagus. 

1.5. imaging modalities for VF therapy 

In clinical routine, various conventional imaging examinations may be performed. Each 

of them makes it possible to observe a very precise anatomical, mechanical or electrical 

characteristic of the heart tissue. In this section, we present very briefly the different 

examinations considered in this work, as well as the descriptors studied for each. 

1.5.1. Cardiac computed tomography (CT) 

Computed tomography (CT) is a modality based on the measurement of absorption of 

x-rays by tissues. In the rest of the manuscript. This is the clinical all body volume 
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imaging modality with the highest spatial resolution, less than a millimetre in all three 

axes, making it a reference method for defining the patient's anatomy. 

Digital geometry processing is used to generate a three-dimensional image of the inside 

of an object from a large series of two-dimensional radiographic images captured 

around a single axis of rotation [40]. 

The first commercial CT was invented by Sir Godfrey Hounsfield, who gave his name 

to the unit of absorption coefficients or a Hounsfield (H). For instance, absorption 

coefficients for air, water (similar to blood) and bones are −1000H, 0H and 1000H, 

respectively. Thus, the differences in X-ray absorption between tissues allow for 

different organs in the body to be distinguished. Spiral CT is the dominant type of CT 

scanner technology. In this type of machines, the patient is placed on a motorized table 

and moved during CT acquisition while the pair of X-ray emitter-detectors rotates 

around it, as shown in Figure 1.9. The number of X-ray projections (angular resolution) 

and the size of the field of view (spatial extent of the object to be imaged), are important 

parameters defining the CT image resolution. 

The synchronization with an ECG allows the acquisition of the heart volume at a 

specific phase. To reconstruct a volume at a specific phase, we can either acquire only 

images corresponding to this phase by synchronizing the acquisition ECG (prospective 

reconstruction), or acquire images continuously, and sort the phases a posteriori for 

reconstruction (retrospective reconstruction). 

 
 

(a) (b) 
Figure 1.9 – Computed tomography. (a) Spiral computed tomography system: the table moves during 

acquisition while the pair of emitter-detectors rotate around it. (b) X-ray projections used in computer 

reconstruction. 

1.5.2. Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) is based on the principle of nuclear magnetic 

resonance (NMR): Hydrogen protons pointing in the same direction produce a signal. 

The principle is to immerse the patient in a powerful magnetic field, which is disturbed 

by weaker fields. These disturbances change the orientation of hydrogen atoms. When 
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the disturbances stop, the hydrogen proton returns to the orientation induced by stable 

magnetic field, by emitting a measurable NMR signal. The signal is measured after a 

given time after the disturbances have ceased, and is broken down as follows two 

directions, one collinear with the magnetic field in which the patient is immersed, the 

other orthogonal. These components are called respectively T1 relaxations 

(longitudinal) and T2 relaxations (transverse). The different tissues are then 

distinguished by the different concentrations of hydrogen protons that constitute them. 

The radiation used for MRI is approximately nine orders of magnitude smaller than in 

X- or γ-rays (used for radioisotope examinations) and is considered biologically safe. 

1.5.3.  Echocardiography (US) 

Ultrasound is an imaging technique using ultrasound to detect borders between 

environments with different acoustic impedances. Echocardiography is the ultrasound 

protocol for observing the heart. 

Ultrasound transducers can be integrated into different types of probes and surgical 

instruments to produce an echocardiography. This enables to image the heart from 

multiple points of view. The most commonly used US cardiac systems are: 

– Transthoracic Echocardiography (TTE): the US probe is placed on the thorax; thus, 

the US images of the heart are acquired through the chest. This is a non-invasive system. 

– Intravascular Ultrasound (IVUS): The US probe is attached on the top of a thin 

catheter. This system is often used to image the arteries, i.e., (for navigation purposes 

in a stent placement procedure). 

– Intracardiac Echocardiography (ICE): The US probe is placed inside a catheter. The 

insertion of the catheter usually begins in the femoral vein, the right internal jugular 

vein, or the left subclavian vein. The catheter is then guided through the vena cava into 

the heart cavities. 

 – Transesophageal Echocardiography (TEE): US transducers are placed in the head of 

a probe designed to be inserted into the esophagus (Figure 1.8). Compared to 

transthoracic echo, TEE provides a unique access to some cardiac structures including 

the aorta, the heart valves and the atria [41]. Moreover, TEE images are of higher 

quality because the transducer is located close to the heart, thus avoiding interferences 

from fat, lungs, and ribs. 

Beside this anatomical imaging capabilities, new ultrasound-based imaging techniques 

offer striking perspectives. Active (Project CardioUSgHIFU ANR 2011) or passive 

elastography [42] permits to see the development of the thermal lesion within the 

myocardium. More impressively, elastographic data can be used to follow the 

electromechanical activation of the heart and eventually provide feedback on the 

treatment of arrhythmia [43]. 
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1.6. CHORUS project  

The work presented in this document has been developed as part of the ANR CHORUS 

project (ANR 17-CE19-0017). 

The objective of this project is to provide ventricular fibrillation therapy by ablation 

using a guided High Intensity Focus Ultrasound (HIFU) via the transesophageal route. 

the CHORUS project aims at developing a transesophageal ultrasonic probe for image-

guided thermal ablation. 

CHORUS gathers a very complementary consortium. Academic laboratories have 

expertise in ultrasound technologies for imaging and therapy (LabTAU), 

cardiology/real-time MRI technology (Liryc) and image processing for treatment 

planning (LTSI) while the company Vermon is a world leader in ultrasound probes 

provider. 

1.6.1. Objectives: 

Combination of a more effective and a less invasive ablation technique that would offer 

a real-time image-based quantitative monitoring of lesion formation could therefore 

improve the Effectiveness of arrhythmias ablation procedures by:  

1. Developing a transesophageal ultrasound probe for image-guided thermal 

ablation. 

2. Improving image guidance for real-time injury assessment prediction. 

3. Linking intraoperative 2D US images to high resolution preoperative 

anatomical 3D imaging through registration.  

The work of my thesis concerns this third aspect. The preoperative anatomical 3D 

volume is provided by a classical cardio cine CT. The US images will be provided by 

the prototype of a transesophageal HIFU dual-mode probe. 

1.6.2. Prototype of the transesophageal HIFU probe 

Constanciel et al [31] proposed the design of a transesophageal probe that integrates 

both therapy and imaging function for AF treatment using the mini-maze procedure 

[31]. The geometrical specifications of the probe and the evaluation of its viability to 

perform the mini-maze HIFU procedure were made using digital simulations. The first 

prototype of the transducer was a spherical truncated shape cut into several isosurface 

concentric rings, as shown in Figure 1.10 . This probe was used to perform cardiac 

ablation from the esophagus in an ex-vivo experiment on pigs. 

The probes use a transducer that can be moved, which enables the focus of the 

ultrasound 

beam to be changed and for different depths to be reached. 
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Figure 1.10 –The prototype: (a) schematic view of the prototype; (b) photography of the probe head; (c) 

geometrical characteristics of the HIFU transducer. All the rings are the equal area. (Ø𝐻𝐼𝐹𝑈: diameter of 

the HIFU transducer; THIFU: truncation; Øℎ𝑜𝑙𝑒: diameter of the hole for the imaging probe) [4]. 

As part of the CHORUS project, the partners are developing a new transesophageal 

probe to treat cardiac arrhythmias by HIFU. The objective of this probe is to perform 

HIFU lesions on pathogenic areas of the heart, primarily targeting the ventricular walls. 

The lesions should be capable of being made at a depth of 11 cm and should be 

transmural (that is, treat the entire thickness of the wall) without damaging the 

intervening tissues. It is also planned to include in the probe two perpendicular 2D US 

imagining arrays, one is perpendicular to the probe axis and the other is along the axis 

as shown in Figure 1.11. 

This probe integrates both therapy and imaging mode. The transducer is a spherical 

truncated shape cut into several is surface concentric rings which used only for therapy 

function (the focalization of ultrasound could be realized electronically thanks to the 

increase of the number of rings), and two imaging arrays are placed perpendicularly to 

each other in the center of the global probe. These imaging arrays could be a dual-mode 

for the imaging and therapy functions. The implementation of a 3D imaging to visualize 

more accurately lesions created by the HIFU module could be a good improvement 

compared to the CardioUSgHIFU probe. 

The active length of the probe should be 50 mm in order to increase the pressure gain, 

and imaging strips should be used in therapy to maximize the emitting area (and 

minimize secondary lesions on the skin as much as possible). The frequency of the 

imaging strips and therapy rings has been set at 3 MHz (Figure 1.11).  
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Figure 1.11 – Schematic representation of the probe configuration (here with 32 rings) with the 

designation of the reference axes. The cross-shaped elements in the middle of the probe are the dual-

mode imaging/therapeutic elements. 

1.6.3. therapy guidance through US/CT registration 

The work of my thesis concerns the planning and guidance of therapy from ultrasound 

images acquired by a TEE imaging device placed in the transesophageal probe. More 

specifically, we are interested in registration solutions between the 2D ultrasound 

images (US), and the 3D computed tomography volume (CT) used to establish the 

intervention planning. More particularly, we try to estimate the pose (position and 

orientation) of the ultrasound image in the 3D CT volume as shown in Figure 1.12. And 

this uses only the US image information without any external localization system. 

 
 

Figure 1.12 – 3D visualization of the position of the US slices estimated by our method inside the 

preoperative CT acquisition. 

1.7. Conclusion 

In this chapter, we have presented the clinical context of this work. First, we recalled 

some basics of the functioning of the cardiovascular system, and more particularly of 

the heart.  

Various pathologies were then mentioned, in particular ventricular fibrillation FV, as 

well as the therapies implemented to treat them. General treatment options include 
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medicines, medical procedures, and lifestyle changes. If medication does not offer a 

solution, intracardiac catheterized Radio-frequency ablation is advised. Significant 

complications can be caused by this relative mini-invasive procedure: it remains still 

invasive, it presents some location and power control difficulties with a risk of non-

transmural ablation, and also, they exist some risks of injury to external organs (i.e., 

esophagus) [44], For these reasons, a transesophageal HIFU ablation therapy has been 

proposed.  

Minimally invasive procedure using a US guided transesophageal HIFU probe is a 

promising approach to obtain transmural lesions, reducing the risk of damage of near 

organs. The ultrasound images acquired to guide the therapy enables the heart to be 

viewed in real time from the posterior zone, particularly the region of interest in VF 

ablation. 

In order to enhance the guidance of the transesophageal HIFU cardiac ablation, the 

therapist needs to link the intraoperative 2D US images to the high-resolution 

anatomical preoperative 3D imaging (CT/MRI), in which the ablation path has been 

defined. It will therefore be a question of probe pose localization. This can be done by 

image registration that would help the therapist to adjust the HIFU focal point to the 

planed ablation path by providing them with the relevant geometric information directly 

to locate his instruments This approach is described in the next chapters. 
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Chapitre 2  

 

Iterative-based Image registration: 

classical approach  

2.1. Introduction  

With the advent of different medical imaging modalities, clinicians can now perform 

diagnosis and therapy in a minimally-invasive manner. The fusion of the information 

brought by these complementary modalities is a key point in such therapies. This can 

be done by image registration. 

The work presented in this document has been developed as part of the ANR CHORUS 

(ANR 17-CE19-0017) project, mentioned before. This project aimed to propose 

instrumentation and to carry out preliminary validation of HIFU-based ablation 

approaches for the ventricle fibrillation treatment. In this context, the registration of 

preoperative CT/MR with two perpendicular intraoperative US has been studied for 

image-guided interventions. This approach enables: (1) the transfer of diagnostic 

information and the intervention planning provided by the clinician to a US-guided 

intervention; (2) the reduction of user dependency on the interpretation of intraoperative 

US images. 

This stage aims to guide HIFU VF therapy by integrating high resolution anatomical 

preoperative information inside 2D intraoperative US cardiac images. This requires the 

registration of the 2D-US images with the preoperative CT volume. This is a 

challenging task, because the images to be registered do not have the same spatial 

dimensions: the preoperative is a CT volume while the intraoperative image is a slice. 

We have to perform a 2D-3D registration. In our specific case, the 2D-3D registration 

consists of finding the pose of the TEE probe inside the 3D CT volume, in which the 

ablation path was defined. To do this, we have to search the best alignment between the 

US image slice with the corresponding sampled plane inside the 3D CT volume. Here 

it is necessary to define: (1) the kind of alignment (rigid or elastic transform), (2) the 

constraints of the search (parameters of the transformation) and (3) the measure of the 

alignment (metric).  

Two hypotheses will be considered in the next sections: 

Hypothesis 1: The alignment can be global (preserving the shape of the imaged 

objects), or elastic (modifying the shape according to local deformations). The choice 

of the kind of alignment is driven by the study of the movements and deformations 

introduced by the cardiac and respiration cycles [45]. The cardiac cycle introduces a 

periodic deformation of the heart. The heart can be imaged in one or several phases of 

the cardiac cycle using ECG-gated acquisitions. If both images to register correspond 
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to the same cardiac phase, the movement or deformation due to the cardiac cycle does 

not affect the registration, because the form of the heart is the same. In this case a rigid 

transform is sufficient. As the diaphragm is close to the heart, respiration introduces 

some deformation and movement during the respiration cycle. The effect of this 

respiration is very complex; indeed, it has not yet been modeled and shows high inter-

subject variability [46]. A coarse approximation could be given as: (a) a displacement 

of the heart inside the human body due to respiration and (b) a deformation of the 

cardiac structures themselves due to the pressure or the interaction with other structures. 

The motion of the heart is predominantly in the cranial-caudal direction, with small 

displacements in the two other orthogonal planes and a rotation, especially at the apex 

of the heart [46]. In our specific imaging case, we can make the assumption that (i) the 

deformations caused by respiration are small in the region of interest of the therapy, (ii) 

either the US probe undergoes the same translational movement as the heart, or this 

translation can be compensated by a translation of the probe along the esophagus. Given 

these assumptions, we can therefore consider that a rigid transform is sufficient to 

describe the type of relationship between the 2D-US and 3D preoperative images. 

Another reason could be that we do not have enough information to obtain a confident 

elastic alignment because the deformation introduced by the respiration is volumetric 

and the US image just shows the deformation in 2D. 

Hypothesis 2: The nature of the image information according to the modality is a 

special issue. For CT the value of the voxel intensity is related to the Hounsfield scale 

which gives relatively global and homogeneous information about each tissue. In 

contrast in US imaging, the information is mainly the signal reflected by the boundaries 

between tissues but also the speckle which is the result of the distribution of 

inhomogeneities within each tissue. 

There are two ways to compare image information in the process of alignment: feature-

based or intensity-based. Feature-based comparison needs an additional segmentation 

step of the objects of interest in both image modalities. This process is usually time or 

computational expensive and the segmentation errors are also propagated to the 

posterior registration and can have a direct impact on the final accuracy. For these 

reasons we chose rather to use an intensity-based approach which extracts the objects 

information directly from the gray levels without any additional process. The question 

is then, can the US image heterogeneous speckle information be used in an intensity-

based approach? In cardiac imaging, such a US-CT intensity-based multimodal 

registration has been first reported by Huang [47]. The authors used Mutual Information 

(MI) to directly (or after a simple thresholding) compare CT and US cardiac images. 

In this chapter we investigate the use of slice to volume registration in the context of 

transesophageal image guided intervention. We start with a comprehensive literature 

review about slice to volume registration of biomedical images, then we introduce the 

proposed framework, which aims to find the position of two perpendicular 

intraoperative US images into the preoperative 3D CT volume. Finally, our results were 

evaluated on simulated and real data in the context of two perpendicular 2D US and 3D 

CT registration. 
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2.2. Background 

Image registration is the process of aligning and combining data coming from more 

than one image source into a unique coordinate system. Medical image registration 

seeks to find an optimal spatial transformation that best aligns the underlying 

anatomical structures. This problem has become one of the pillars of computer vision 

and medical imaging.  

Let’s start with a typical registration framework where its components and their 

interconnections are shown in Figure 2.1. The basic input data to the registration 

process are two images or volumes: one is defined as the fixed image  𝐼𝐹(𝑥) and the 

other as the moving image 𝐼𝑚(𝑥), where 𝑥 represents a position in N-dimensional space. 

The transform component 𝜇 represents the spatial mapping of points from the fixed 

image space to points in the moving image space. The interpolator is used to evaluate 

moving image intensities at non-grid positions. The metric component M(𝐼𝐹 , 𝐼𝑚◦T )  

provides a measure of how well the fixed image is matched by the transformed moving 

image. This measure forms a quantitative criterion to be optimized by the optimizer 

over the search space defined by the parameters of the transform [48]. 

 
Figure 2.1 – The basic components of a typical registration framework: two input images, a transform, 

a metric, an interpolator, and an optimizer. 

Slice-to-volume registration, a particular case of image registration problem, has 

received further attention in the medical imaging community during the last decade. In 

this case, instead of registering images with same dimension, we seek to determine the 

slice (corresponding to an arbitrary plane) from a given 3D volume that corresponds to 

an input 2D image. 

2.3. Slice to volume image registration 

Slice-to-volume registration could be considered as an extreme case of 3D-3D 

registration, where one of the 3D images contains only one slice, even if theoretically 

true 3D-3D registration methods cannot be extrapolated in a straightforward way to the 

slice-to-volume scenario. This holds particularly for registration methods based on 

image information, since the descriptors used to quantify similarities between images, 

normally assume that the amount of information available from both images is 

balanced. The fact that a single slice (or even a few sparse slices) provides less 

information than an entire volume, should be explicitly considered in the problem 

formulation. Moreover, specific geometrical constraints like planarity and in-plane 
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deformation restrictions, arise in the case of slice-to-volume registration, which are not 

applicable in the setting of dimensional correspondence. 

We will start by giving a formal definition of the slice-to-volume registration. Given a 

2D image 𝐼𝐹(𝑥) and a 3D volume 𝐼𝑚(𝑥), we seek a mapping function  𝜇′ that optimally 

aligns the tomographic slice 𝐼𝐹 with the volumetric image 𝐼𝑚, through the minimization 

of the following objective function: 

 

 𝜇′ = arg max
𝜇

 𝑀(𝐼𝐹, 𝐼𝑚; 𝑇𝜇) + 𝑅(𝜇) 2.1 

 

where 𝑀 represents the image similarity term (matching criterion) and R the 

regularization term. Note that this mapping may be rigid or non-rigid, depending on 

whether we allow image 𝐼𝐹 (or its corresponding reformatted slice from 𝐼𝑚) to be 

deformed or not. If we estimate only a rigid mapping (i.e., we calculate a 6 degrees of 

freedom rigid transformation or even a more restrictive one), we name the problem 

rigid slice-to-volume registration. In some cases, we can also infer some sort of 

deformation model, or we consider more expressive linear transformations (such as 

affine transformations). We call it non-rigid registration. 

The matching criterion 𝑀 measures the similarity between the 2D image and its 

corresponding mapping (slice) to the 3D volume. Usually, it is defined using intensity 

information or salient structures from 𝐼𝐹  and  𝐼𝑚. A complete discussion about 

matching criteria in the context of slice-to-volume registration will be presented in next 

section. The regularization term R imposes constraints on the solution that can be used 

to render the problem well posed. It also may encode geometric properties on the 

extended transformation model (plane selection or plane deformation in case of non-

rigid registration). The choice of a regularizer depends on the transformation model. 

While models like rigid body transformations can be explicitly estimated even without 

regularizer, the term R becomes crucial in more complex non-rigid scenarios to ensure 

realistic results.  

In the context of slice-to-volume registration, the regularizer can be used to impose 

planarity constraints to the solution (when out-of-plane deformations are not allowed) 

or to limit the out-of plane deformation magnitude guaranteeing realistic and plausible 

transformations. When available, prior knowledge about tissue elasticity can also be 

encoded through the regularizer. We aim at optimizing the energy defined in equation 

2.1, by choosing the best 𝜇′ that aligns the 2D and 3D images.  

In our context, of the registration of preoperative CT with intraoperative US, we have 

considered rigid registration, as mentioned in the introduction of this chapter 

(hypothese1: If both images to register correspond to the same cardiac phase, the 

movement deformation due to the cardiac cycle does not affect the registration, because 

the form of the heart is the same. In this case a rigid transform is sufficient). 

Registration methods can be classified as intensity-based (the use of voxel intensities 

to quantify similarity), feature-based (the use of some features that could be easily 

detected in both images), geometric (the use of a sparse set of salient image locations 
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to guide the registration) or hybrid methods (which combine both intensity–based and 

geometric strategies). We have mentioned in our second hypotheses, that in our 

application the nature of the image information is a specific issue (US/CT) that has 

already been the subject of attempts to use intensity-based methods. We will therefore 

focus on this class of registration. 

2.3.1. intensity-based image registration methods 

Intensity-based registration methods are based on measurements computed directly 

from pixel/voxel intensities without the need of landmark identification nor 

segmentation. 

Image registration can be monomodal when the slice and the volume are captured with 

the same type of image technology or multimodal when slice and volume refer to 

different modalities, e.g., US slice and MRI or CT volume. In the first case, the task of 

measuring the similarity between the images is simpler, since pixel/voxel intensity 

values corresponding to the same anatomical structure are highly correlated, or even 

identical in both images. 

In case of multimodality, where the relation between pixel intensities is not obvious, 

there are two major alternatives: to continue to use an image based matching criterion 

but we need then to define more complex similarity measures or to adopt a geometric 

or sensor-based strategy. 

2.3.1.1. Matching criterion  

The matching criterion (also known as (dis)similarity measure, merit function or 

distance function) quantifies the level of alignment between the images, and it is 

typically used to guide the optimization process of the transformation model [49]. This 

criterion depends on the nature of information exploited in the matching process. 

Image registration can be monomodal or multimodal. 

In the monomodal case, metrics based on direct comparison of gray levels like Mean 

squares or Normalized correlation can be used: 

Mean squares which are the mean square difference over all pixels/voxels, defined as: 

 

 
𝑀𝑆(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀) =

1

𝑁
∑(𝐼𝐹(𝜒𝑖)

𝑁

𝑖

− 𝜓(𝐼𝑀(𝑇𝜇(𝜒𝑖))))
2 

2.2 

 

With 𝜒𝑖 a given in 𝐼𝐹 , N its number of voxels and 𝜓 (·) a given interpolator. The mean 

square metric has an ideal value of zero. 

Normalized correlation which computes the pixel-wise cross-correlation between the 

intensities of the images to be registered, normalized by the square root of the 

autocorrelation of each image. When the two images are identical, the measure equals 
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one. Normalized correlation may perform better than means squares since the main 

tissues are clearly associated to each others. 

 𝑁𝐶(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀)

=
∑ 𝐼𝐹(𝜒𝑖). 𝜓(𝐼𝑀(𝑇𝜇(𝜒𝑖)))

𝑁
𝑖

√∑ 𝐼𝐹
2(𝜒𝑖). ∑ 𝜓2(𝐼𝑀(𝑇𝜇(𝜒𝑖)))

𝑁
𝑖

𝑁
𝑖

 2.3 

 

In case of multimodality, where the relation between pixel intensities is not obvious, 

some of the most challenging cases of image registration arise when images of different 

modalities are involved. In such cases, metrics based on the direct comparison of gray 

levels are no longer applicable. It has been extensively shown that metrics based on 

concepts derived from Information Theory, like Mutual information, Normalized 

Mutual information, Entropy correlation coefficient, Joint entropy, point similarity 

measure based on Mutual information, Energy of the histogram, Correlation ratio, 

Woods criterion are more efficient than others.  In a previous work of our team [4], they 

evaluate the use of different intensity-based measures in our specific US/CT registration 

application in order to select the most adapted similarity measure from a set of metrics 

reported in the literature. They found that Mutual information and Woods criterion gave 

the best results. 

Mutual Information (MI) are well suited for overcoming the difficulties of multi-

modality registration. The concept of Mutual information is derived from Information 

Theory, which measures the statistical dependence or information redundancy between 

the image intensities of corresponding distributions in both images, that is assumed to 

be maximal if the images are geometrically aligned [50]. It requires an estimation of 

the joint and marginal probability density functions (PDFs) of the intensities in every 

image. MI is defined as:  

 𝑀𝐼(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀) = 𝐻(𝐼𝐹) + 𝐻 (𝑇𝜇(𝐼𝑀))

− 𝐻(𝐼𝐹, 𝑇𝜇(𝐼𝑀)) 

2.4 

 

with   

the marginal 
PDF 

𝐻(𝐼) = −∫𝑝𝐼(𝑖). log(𝑝𝐼(𝑖)) . 𝑑𝑖 2.5 

   

the joint PDF 𝐻(𝐼𝐹, 𝐼𝑀)

= −∫𝑝(𝑖𝐹, 𝑖𝑀). log(𝑝(𝑖𝐹, 𝑖𝑀)) . 𝑑𝑖𝐹 . 𝑑𝑖𝑀 
2.6 

 

Compared to the volume-to-volume scenario, the information used for the slice-to-

volume registration is sparse in nature. The estimation of these marginal and joint PDFs 

for every slice -especially in slices of low image resolution/number of samples- is a 

hard task and may redound to poor MI-based registration results. One of the main 

drawbacks of MI, is that it varies when the overlapping area between the images 

changes, i.e. it is not invariant to changes in the overlap region throughout registration. 

It could happen that while estimating the transformation model, some potential 
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solutions lie out of the volume. In such cases, an overlap invariant function would be 

of choice. To this end, a modified version of MI, Normalized Mutual Information has 

been proposed. 

Normalized Mutual Information (NMI),  is simply the ratio of the sum of the marginal 

entropies and the joint entropy [51]. Another advantage of NMI with respect to MI is 

its range: it conveniently takes values between 0 and 1. NMI has already been used for 

slice-to-volume registration [52], [53]. 

 
𝑁𝑀𝐼(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀) =

𝐻(𝐼𝐹) + 𝐻(𝑇𝜇(𝐼𝑀))

𝐻(𝐼𝐹 , 𝑇𝜇(𝐼𝑀))
 2.7 

 

Woods criterion: it is defined as 

 

 
𝑊𝐶(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀) =

1

𝐿
∑ 𝐿𝑖𝐹

𝜎𝑖𝑀

𝑚𝑖𝑀
𝑖𝑀∈𝑇𝜇(𝐼𝑀)

 
2.8 

Where: 

 
𝜎𝑖𝑀 = √

1

𝐿𝑖𝑀
∑ 𝐼𝐹

2(𝑥)

𝑥∈Ω𝑖𝑀

− 𝑚𝑖𝑀
2  2.9 

 

where 𝑚𝑖𝑀 is the average intensity in the fixed image IF inside the subregions ∈  Ω𝑖𝑀 ⊂

𝑇𝜇(Ω𝑀), i.e., subregions where the image intensities in image 𝐼𝑀 are 𝑖𝑀. 𝐿𝑖𝑀 is the 

number of voxels in subregion Ω𝑖𝑀 . The original WC is multiplied by −1 to make the 

optimum a maximum instead of a minimum. 

2.3.1.2. Geometric transformation 

The registration process consists in finding a spatial transformation T that maps points 

in the fixed image  𝐼𝑓 to homologous points in the moving image  𝐼𝑚. 

Geometric registration finds correspondences between meaningful anatomical 

locations or salient landmarks. Transformation models explain the relation between the 

slice and the volume being registered and are the outcome of the registration process. 

One way to classify spatial transforms is to consider linear and non-linear transforms. 

Linear transforms are defined by a global transformation matrix, often defined by using 

homogeneous coordinates, and which are applied to the whole image. Non-linear 

transforms (also called elastic or nonrigid transformations) are defined by a set of local 

transforms linked together by a regularization process (e.g., using splines for the free-

form deformation method or smoothing for Demon’s algorithm). 

They are often classified according to their degrees of freedom to Rigid, Affine, 

Homography and deformation (B-splines or thin-plate splines) transformation. 
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Rigid transformations deal with global rotations and translations. Rigid image 

transformation model accounts for rotation and translation parameters. It is usually 

expressed as a 6 degrees of freedom (6-DOF) transformation or composed by 3 rotation 

and 3 translation parameters. 

A rigid registration of a point x in a 3D space(𝓍 ∈ ℝ3), denoted as 𝑇𝜇𝑅(𝓍) = 𝑅. 𝓍 + 𝑇, 

three parameters defining the translation 𝑇 ∈ ℝ3 and three parameters for the angles of 

rotation (𝜃 ∈ ℝ3) around the axis of the coordinates system defining the rotation matrix 

𝑅: 𝜇𝑅 = (𝑇, 𝜃), with 𝜇𝑅 ∈ ℝ6. Rigid transform is also called isometric transform 

because it preserves distances, angles and orientation. 

Such a basic model is the most common choice in literature for slice-to-volume 

registration. Rigid transformations are expressive enough to explain simple slice-to-

volume relations. They can deal with in-plane and out-of-plane translations and 

rotations. 

Clinical scenarios that do not inherit image distortion -like simple inter-slice motion 

correction or basic nature image guided surgeries [54]–[56] can be modelled with rigid 

transformations. When out-of-plane motion is avoided, even simpler models can be 

used. [57] proposed to recover in-plane slice rotations in cardiac MR series, using the 

stack alignment transform. In-plane translation along X and Y axes and rotation around 

a user-supplied center of rotation for the individual slices were parameterized 

independently. 

Restricted rigid body transformations can be a convenient initialization component of 

a complete slice-to-volume registration pipeline 6-DOF rigid body transformations are 

part of nearly all slice-to-volume registration algorithms. Literature seeking deformable 

registration, often initially employs rigid alignment to account for big range 

displacements. The standard way to estimate 6-DOF rigid transformations, consists in 

minimizing an energy functional (based on an intensity based or geometric matching 

criterion) often with a continuous optimization algorithm (see section 2.3.1.3) where 

the search space is part of the Euclidean group of rigid transformations. 

Affine transformation: An affine transformation is a linear transformation capable of 

modeling translation, rotation, non-isotropic scaling, and shear. 3D affine transform 

can be parametrized by a 12-dimensional vector: 

 𝜃𝐴𝑓𝑓 = [𝑎11, 𝑎12, 𝑎13, 𝑎21, 𝑎22, 𝑎23, 𝑎31, 𝑎32, 𝑎33, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧] 
 

(2.10) 

Such hat points 𝑝𝐵 = [𝑥𝐵 ,   𝑦𝐵 ,   𝑧𝐵 ] are mapped to points 𝑝𝐴 = [𝑥𝐴 ,   𝑦𝐴 ,   𝑧𝐴 ] 
according to: 

 
𝑝𝐴 = [

𝑎11 𝑎12  𝑎13

𝑎21  𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 𝑝𝐵 + [

𝑡𝑥
 𝑡𝑦
𝑡𝑧

]  

 

(2.11) 

 

Homography transformation: A homography transformation deforms a given 

quadrilateral 𝒬𝐵 = {𝒬𝐵1, … . , 𝒬𝐵1} into any other given quadrilateral 𝒬𝐴 =
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{𝒬𝐴1, … . , 𝒬𝐴4}  while keeping collinearity. It is more flexible than affine 

transformation, as it can handle perspective since parallel lines need not remain parallel. 

Homography is the model relating 2-D images (pinhole projections) of a 3-D plane. 

Deformable models like B-splines can produce local in-plane and out-of-plane 

deformations. The richness of the deformation model is proportional to the number of 

parameters we need to specify. Therefore, a trade-off between the model complexity 

and power of the expression has to be found. 

The B-spline deformable transform is designed to be used for solving deformable 

registration problems. This transform is equivalent to generating a deformation field 

where a deformation vector is assigned to every point in space. For this, the deformation 

vectors are estimated from the data on some control points located on a coarse grid, that 

is usually referred to as the B-spline grid. The deformation vectors on the other points 

of the field are then computed using B-spline interpolation from the deformations on 

the control points. 

This transform does not provide functionalities for mapping vectors nor covariant 

vectors, only points can be mapped. The reason is that the variations of a vector under 

a deformable transform depend on the location of the vector in space. In other words, a 

vector only make sense as the relative position between two points. The B-spline 

deformable transform has a very large number of parameters and therefore is well suited 

for the numerical optimizer. 

2.3.1.3. Optimization methods 

 Registration is treated as an optimization problem with the goal of finding the spatial 

mapping that will bring the moving image into alignment with the fixed image. 

Optimization methods aim to determine the instance of the transformation model that 

minimizes or maximizes a function based on the matching criterion (see section 

2.3.1.1). Depending on the nature of the variables being involved, those methods can 

be classified as continuous (deterministic) or discrete (stochastic). The continuous 

approaches exploit the entire space of parameters, while the discrete ones a 

discretized/quantized version of the admissible solutions. Both approaches can be 

combined.  

Numerous problems in computer vision and medical imaging are inherently discrete 

(like semantic segmentation). However, this is not the case of slice-to-volume image 

registration. Most of the published methods about slice-to-volume registration adopt a 

continuous formulation. 

Continuous optimization algorithms are generally iterative methods. They infer the best 

value for a set of parameters by iteratively updating them. A common gradient-based 

formulation for this strategy is given by: 

 𝜃𝑡+1 = 𝜃𝑡 + 𝜔𝑑𝑡, 𝑡 = 1,2,3…. 2.12) 
 

where 𝜃 is the vector of parameters, 𝑑𝑡 is the search direction at iteration t and ω is the 

step size or gain factor.  
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These methods can therefore be classified according to the derivative order they use to 

study the optimized function: (i) no derivative (e.g., downhill-simplex method or 

Amoeba); (ii) 

first order derivative (e.g., gradient descent, regular step gradient descent, conjugate 

gradient; or (iii) second-order derivative (e.g., Broyden-Fletcher-Goldfarb-Shanno 

method). The use of higher order derivatives generally improves the searching 

direction; however, their computational cost has to be carefully considered. The 

strength of gradient optimization methods is that, if the initialization is quite close to 

the optimum, they converge rapidly and with high precision. Their weakness is that 

they can converge to a local minimum if the initialization is far from the optimum. Also, 

their requirement of analytical derivation or numerical estimation of the energy function 

derivatives, reduce their applicability since it is usually complicated to estimate them. 

Gradient descent is the simplest strategy in this category, where the search direction  𝑑𝑡 

is given by the negative gradient of the energy function. It refers to the standard 

continuous optimization method, and it has been widely applied to the problem of slice-

to-volume registration [53], [58]. Conjugate gradient methods use conjugate directions 

instead of the local gradient to estimate 𝑑𝑡. Energy function with the shape of a long 

and narrow valley, can be optimized using fewer steps than standard gradient descent 

approach, resulting in faster convergence. [59], [60] have applied this strategy to 

estimate rigid and non-rigid slice-to-volume mapping functions, respectively. 

On the other hand, stochastic optimization methods rely on randomness and re-trials to 

better sample the parameter space in searching for an optimum solution. The three most 

commonly used stochastic methods are Monte Carlo, simulated annealing, and genetic 

algorithm. As an example, at each iteration of the simulated annealing method, a 

random value is generated in order to accept or reject the new guess, even if this solution 

is degraded compared to the previous one. These methods may avoid being trapped in 

local optima, but their computational cost is generally higher than that of deterministic 

methods. 

2.3.2. Related work on slice-to-volume registration 

 Fast and accurate 2D/3D registration plays an important role in many clinical 

applications. The term of 2D/3D registration is due to the dimension of the images 

involved in the registration process. However, this term is ambiguous since it describes 

two different problems depending on the technology set to capture the 2D data: it may 

be a projective (e.g., X-ray) or a sliced/tomographic (e.g., US) image. Even if both 

problems share similarities in terms of image dimensionality, every formulation 

requires a different strategy to estimate the solution. 

Projective 2D/3D image registration 

In this case, the 2D data is the projection of some 3D information on a projection plane. 

Fluoroscopic images are an example of this kind of data. There is so lack of perspective 

and different image geometry [61] inherent to both modalities. Moreover, a pixel in any 

2D projective image does not correspond to only one voxel from the volume, but to a 

projection of a set of them in certain perspective. But the similarity measure needs a 

common geometry to perform. This dimensional correspondence can be obtained by 
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different methods like projection, back-projection or reconstruction [62], In other 

words, the information of the 3D volume is projected on a 2D image, and the 

registration consists of finding the projection parameters that maximize the similarity 

between the projected 2D image and the 2D data. The reader can refer to a 

comprehensive overview about projective 2D to 3D image registration in [62]. 

Slice-to-volume registration 

In this case the dimensional support of the 2D data is a specific plane of the 3D volume. 

This is the case of some 2D US image recorded on the patient or a 2D MRI temperature 

map recorder on a patient to control the heating in a close loop manner [63]. In this 

case, pixels from the 2D data can be directly compared with the voxels from the 3D 

volume and classical similarity metrics can be directly used. The problem is now to find 

the right oblique plane in the 3D volume which maximizes the similarity criterion with 

the 2D data. So, the registration consists of finding the pose (3D location and 

orientation) of the 2D data that maximizes the similarity between the voxels in the 

oblique plane and the 2D data. 

In this state of the art, we will focus on the latter case, which is how to find the pose of 

a 2D slice in a 3D volume. 

2.3.2.1. Image fusion and image guided interventions  

Several medical procedures such as image guided surgeries and therapies [64], biopsies 

[58], radio frequency ablation [65], tracking of particular organs [55] and minimally-

invasive procedures [66], [67], [7], serve an important role in the care of patients. In 

this context, slice-to-volume registration brings high resolution annotated data into the 

operating room. 

Generally, pre-operative 3D images such as computed tomography (CT) or magnetic 

resonance images (MRI) are acquired for diagnosis and can also be used to prepare the 

intervention planning. So, the 3D volumes are generally manually annotated by expert 

physicians (target, critical organs, margins…). 

During the surgical procedure, intra-operative 2D real time images are generated using 

different technologies (e.g., fluoroCT, US or interventional MRI slices) to help the 

physicist during his gesture. 

The alignment of intra-operative images with pre-operative volumes augments the 

information that physicians have access to and allows them to navigate the volumetric 

annotation while performing the operation. 

As an example, Figure 2.2 shows the volume and images available on our problematic. 

In this figure we can see: (a)  slices of the preoperative 3D CT volume of the chest with 

heart and also the US image recorded in transesophageal manner; and in (b) the 2D US 

and the corresponding slice from 3D CT after slice-to-volume registration [7].  Even if 

intra-operative images have lower resolution and quality than the pre-operative one, the 

fact to see them side-by-side provides complementary information. 

. 
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(a) (b) 
Figure 2.2 – Example of one of the main applications requiring slice-to-volume registration. (a) Pre-

operative 3D CT and intra-operative US image, (b) After slice-to-volume registration, the 2D US and the 

corresponding slice from 3D CT [7]. 

A statistically significant improvement in alignment has been demonstrated when 

comparing automatic methods to manual (human) results, showing the importance of 

automatic slice-to-volume registration algorithms in the context of image fusion in 

image guided interventions [68]. Fei et al. [69] presented in a pioneer work an iconic 

slice-to-volume registration to the problem of image fusion in the context of image 

guided surgeries. The motivation was that low-resolution Single Photon Emission 

Computed Tomography (SPECT) can be brought to the operating room by pre-

registering it with a high-resolution MRI volume, which could be subsequently fused 

with live time iMRI. That is how, by registering the high-resolution MR image with 

live-time iMRI acquisitions, Fei and coworkers could map the functional data and high-

resolution anatomic information to live-time iMRI images for improved tumor targeting 

during thermal ablation. In [70] Birkfelner et al used slice-to-volume registration to 

fuse 2D fluoroCT with volumetric CT, which is a well-known tool for image-guided 

biopsies in interventional radiology. In this case, the pre-interventional diagnostic high-

resolution CT with contrast agent is used to localize a lesion in the liver. However, 

during the intervention, the lesion is no longer visible. Thus, localizing the slice of the 

CT that corresponds to the intra-operative fluoroCT allows doctors to find the lesions 

during the biopsy. This approach only considers rigid transformations. However, 

interventional procedures like radio frequency ablation (RFA) or image-guided 

biopsies, which use fluoroCT as image guiding technology, are performed while the 

patient is breathing continuously. Therefore, deformations should also be taken into 

account when registering with the pre-operative static CT image. The influence of such 

deformations and the reliability of performing non-rigid registration in such scenario 

was discussed in  [71]. It was claimed that a 2D-3D nonrigid registration solution -

based on the single low quality fluoroCT- cannot be as precise as required to perform 

medical procedures. This is mainly due to the poor support in term of liver anatomical 

features provided by the fluoroCT slices. They proposed to overcome this limitation by 

providing an adaptive visualization [71] of the volume area surrounding the minimum 

estimated pose. This approach addresses the uncertainty in deformation estimation and 

provides more information than a single registered slice. Their method performs rigid 

slice-to-volume registration and includes views of the CT-Volume determined along 

flat directions of the out-of-plane motion parameters next to the minimum pose. 
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In [72] an intensity-based similarity measure is used to register interventional 2D CT-

fluoroscopy to high-resolution contrast-enhanced preoperative CT image data for a 

radio-frequency liver ablation procedure. In [73] an intensity-based similarity metric is 

employed within a small region to register intra-operative 2D CT-fluoroscopy images 

to a preoperative CT volume to track the motion of pulmonary lesions for a robotic 

assisted lung biopsy. Similarly, in [74], intensity-based similarity measures are 

employed to register intraprocedural 2D MR images with pre-procedural 3D MR 

images during an MRI-guided intervention. 

• Applications using intraoperative US image registration 

Ultrasounds (US) images have been used on humans since the late 1950s or early 1960s. 

sound waves which is a non-ionizing radiation. Ultrasounds are particularly effective 

for imaging soft tissues and structures, as well as motion. In contrast, X-rays are 

particularly effective for imaging hard tissues or structures and air-filled parts. X-rays 

and ultrasounds may be used together on the same section of the body as 

complementary information or may be chosen one over the other depending on the 

gesture circumstance. 

Some advantages of US against the other imaging modalities as X-ray, CT and MR are 

they are using non-ionizing energy, the sensor miniaturization, and the portability led 

them to be straightforward integrated in surgery, they are relatively low cost and 

provide rea-time response in imaging tissue deformation. But low image resolution 

quality and constraints on its field of view make US to be a modality with high user 

dependency. Consequently, the success of interventional US imaging procedures is 

highly dependent on the level of experience of the practitioner. 

In this context, the registration of preoperative CT/MR with intraoperative US has been 

studied for image-guided interventions. This approach enables: (1) the transfer of 

diagnostic information and the intervention planning provided by the clinician to a US-

guided intervention; (2) the reduction of user dependency on the interpretation of 

intraoperative US images. 

Laparoscopic and endoscopic interventional procedures also exploit slice-to-volume 

registration. The authors of  [54] proposed a method to register endoscopic and 

laparoscopic US images with pre-operative computed tomography volumes in real 

time. It is based on a new phase correlation technique called LEPART accounting for 

rigid registration. 

An intensity-based cardiac 2D US to cardiac CT image rigid registration method has 

been described in [75] The 2D slice is one slice imaged from a 3D object with a 

randomly pose and is equivalent to a slice extracted from a 3D volume of the object, 

their goal was to reduce the long computation time which is not suitable for real time 

surgeries. 

The registration of preoperative CT and 2D-US was performed using a intensity-based 

measure in [47]. A US volume was reconstructed using acquired 2D images and 

electromagnetic tracking information. The preoperative CT was aligned with the US 

volume using tracking information. This preliminary registration is used to start an 

automatic intensity-based registration. MI was the metric used to obtain the parameters 
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of a rigid transformation. This approach was tested in an in-vivo porcine model. The 

registration was performed offline after all data acquisition, and the intraoperative 

registration time was approximately 122 s. 

The approach presented [41] is a surgical navigation method using TEE. However, the 

registration is made with an intraoperative image. This method does not require any 

tracking system; thus, it can be incorporated straightforward into the operating room. 

The authors proposed to register and visualize 3D TEE and X-Ray fluoroscopy to guide 

cardiac interventions. Their method is based on the localization of the tip of the TEE 

probe in the fluoroscopic images. A preoperative CT image of the head of the probe 

with high resolution is acquired. The registration procedure iteratively repositions the 

CT to get different projection of the TEE probe tip, also called digitally reconstructed 

radiography (DRR). These images are then compared with one or multiple X-ray 

fluoroscopic images. The best alignment between the images results in acquiring 

information pertaining to the position of the TEE because the spatial transformation 

used to generate the projection is known. The algorithm was evaluated using a phantom 

and five clinical datasets. The experimental results proved that this method is viable 

because it is fast, reliable, and accurate. 

In a previous work in our team [7], Sandoval et al  have proposed to perform a 2D-3D 

(slice-volume) registration of the intraoperative 2D US and the preoperative CT/MRI 

without any external tracking system. More precisely the 2D-3D registration consists 

of finding the 3D pose (location and orientation) of the US image slice inside the 

preoperative 3D volume using only image-based information. They have found a way 

to reduce the number of degrees of freedom by using some anatomical constraints. In 

fact, the trajectory of the probe is constrained by the esophagus which is attached to its 

surrounding organs or tissues such as the vertebral column, trachea, etc. In this case, 

the parameters of the pose of the US probe can be simplified to i) the depth d of the US 

probe along the esophagus and ii) its orientation θ around the centerline of the 

esophagus. The constraint which imposes the rotation around the centerline can be 

released by allowing a slight translation of the TEE tip position from the centerline. 

This choice will drive the global framework into two stages (Figure 2.3): 1) the 

reformatting of the preoperative CT dataset according to the esophagus topology. The 

main idea is to provide CT 2D slices which potentially have the same spatial location 

(and so the same information) as the future TEE US 2D images; 2) an intraoperative 

intensity-based registration between the US image and the reformatted CT 2D slices 

obtained in the previous stage. For this, they have proposed to find the pose of the 2D 

US image slice inside the preoperative 3D volume, exploiting the specific geometrical 

restrictions involved in this HIFU therapy with a transesophageal approach. 
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Figure 2.3 – The general framework of the 2D UD/3D CT [7]. During the preoperative stage, CT datasets 

are reformatted following the esophagus topology. During the intraoperative stage, an intensity-based 

registration centered on the esophagus axis is performed between the US image and reformatted CT 

images obtained in the previous stage. 

The main drawback of this work is that we are not sure that the slice is really 

perpendicular to the esophagus axis. On other hand US image seems not to be sufficient 

to provide information for a precise pose estimation. For these reasons we propose to 

use the two perpendicular 2D US images that will be provided by the new sensor 

developing in the ANR CHORUS project (see section 1.4.1). 
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2.4. Two 2D US-3D CT image-based Registration: our proposal framework 

In this section we present one of our contributions which consists in performing the 

registration of a pair of 2 perpendicular intraoperative 2D US images and a preoperative 

3D CT volume using only pixel/voxel intensities information without any external 

tracking system (two 2D US-3D CT). 

As input data, we have a pair of 2 perpendicular simulated US images  similar to the 

real US images that will be simultaneously recorded by the dual therapy/imaging HIFU 

probe presented in section 1.4.3, which is still under development. As shown in Figure 

1.10, in the middle of the therapy elements they are 2 perpendicular imaging strips, one 

perpendicular to the to the probe axis composed of 64 elements and the second along 

the axis composed of 2x32 elements. These elements work at an US frequency of 3 

MHz. 

As input, we have also a preoperative CT volume, usually a CyneCT composed of 20 

volumes acquired at each 5% of the cardiac cycle. 

We propose to make the registration of these 2 intraoperative spatially connected US 

images with the 3D preoperative CT volume. More precisely the 2D-3D registration 

consists of finding the 3D pose (3D location and orientation) of the geometrical linked 

US image slices inside the preoperative 3D volume using only image- based 

information. 

As we mentioned before the US imaging tool is ECG-gated, we consider only the US 

images at the same cardiac phase as the CT and so only a 3D rigid transform with 6 

DOF has to be estimated: 3 translations and 3 rotations represented by Euler angles. 

Our assumption is that we have also an initial rough estimation of the pose of the probe 

inside the 3D CT (e.g., estimated roughly by the method developed in [7] or the method 

described in chapter 4). From this initial pose, we will perform the proposed two 2D-

3D image-based registration approaches to refine the estimation of the transesophageal 

probe pose. 

The general framework of our registration approach is presented in the Figure 2.4. This 

approach is characterized by: (1) slices extraction; (2) metric; (3) optimizer. 

The spatial related US images will be considered as fixed images. From a candidate 3D 

pose (a 3D transform) the role of the slice extraction component is to extract two-2D 

perpendicular CT images slices corresponding to this pose according to the geometry 

of the US probe. These 2D perpendicular CT images slices are considered as moving 

images. 

The metric component provides a measure of how well the fixed images are matched 

by the transformed moving images. This measure forms a quantitative criterion to be 

optimized by the optimizer at each iteration over the search space defined by the 6 

parameters of the transform 𝜇. 
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Figure 2.4 – General framework of the two 2D US/3D CT registration process. 

2.4.1. Slice extraction 

For a specific probe pose, the 3D transform allows us to define the US imaging 

referential system (𝑂𝑖
⃗⃗  ⃗, 𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗  , 𝑧𝑖⃗⃗  ), in which the two perpendicular planes (𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗  ) and 

(𝑦𝑖⃗⃗⃗  , 𝑧𝑖⃗⃗  ) represent the spatial support of the US perpendicular slices. The CT volume is 

then sampled along these two planes using a resampler for each plane to provide the 

information in the same spatial context (same size, spatial location and orientation and 

sampling) as the US images.  

 Interpolator is required since the mapping from one space to the other will often require 

an evaluation of the intensity of the image at non-grid positions of the 3D volume. We 

have used a tri-linear interpolator, which returned value is a weighted average of the 

surrounding voxels, with the distance to each voxel taken as weight. Linear 

interpolation gives a good trade-off between reconstruction accuracy and computation 

complexity. 

As results of the slice extraction module, we have 2 corresponding pairs of 

fixed/moving image, one per plane. 

2.4.2. Similarity metric  

The similarity between the corresponding pairs of fixed/moving images can now be 

estimated by a metric. The choice of a metric adapted to the specificity of our data is 

one of the most critical components of our framework. In a previous work in our team 

[4], the authors made an analysis the behavior of different similarity measures near of 

the gold standard using the framework proposed by Skerl [76]. They found that for the 

similarity estimation between US and CT data in the chest, the Woods Criterion and 

the Mutual Information have globally the best performances and should be used in the 

future 2D-US to 3D-CT registration. Therefore, we used Mutual Information to 

compare the information of the US images and the corresponding information extracted 

from the CT data. The global similarity will be the sum of the similarity measures 

obtained on the two sets of slices. 
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2.4.3. Optimization  

At each iteration, the metric component S provides a measure of how well the fixed 

images are matched by the transformed moving images. This measure forms a 

quantitative criterion to be optimized over the search space defined by the parameters 

of the transform. We used stochastic gradient descent to estimate the pose which 

maximizes the global similarity. 

Starting from an initial set of parameters, the optimization procedure iteratively 

searches for the optimal solution by evaluating the similarity at different positions 

inside the parameter search space [33]. 

The algorithm was implemented in C++ using the ITK library [77] for the similarity 

and optimization part, and the visualization was performed using ITKSNAP and Slicer 

[78]. 

2.4.4. Datasets  

We evaluate our approach on preoperative 3D-CT of a patient suffering from ventricle 

fibrillation pathology. This CT was acquired in a clinical environment with currently 

available acquisition device technologies and imaging protocols. This evaluation will 

show the performance of our approach under real clinical conditions. 

For several reasons (new probe not available, difficulties to provide an accurate ground 

truth transformation in real data…), we decided to work on simulated US images. 

2.4.4.1. Preoperative CT dataset  

This study has been conducted on a CT dataset, obtained from Louis Pradel University 

Hospital in Lyon, France from a patient with ventricle fibrillation. An ECG-gated 

cardiac multislice CT image was acquired after injection of contrast agent with a Philips 

64-slice scanner (Brilliance CT, Philips Healtcare) at 75% of cardiac cycle (R-R 

interval). The dimensions of the reconstructed volume are 512 × 512 × 323 voxels with 

an image spacing of 0.546875 × 0.546875 × 0.55031 mm3. 

 

 

Figure 2.5 – CT of thorax from the superior vena cava to the stomach. Axial (a), Sagittal (b) and 

Coronal (c) views of the CT dataset 
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2.4.4.2. Ultrasound dataset – US image simulation 

Because the HIFU probe with the two perpendicular US imaging planes is still under 

development, we validate our method on simulated US data). First, we defined an initial 

pose (the ground truth-GT) inside the CT volume. From this pose we extracted two 

perpendicular slices from the CT (see Figure 2.6 a and b) and simulated the 

corresponding US slices with the method described in [3]. (See Figure 2.6 c and d). 

  
(a) (b) 

 

 

 

 
(c) (d) 

Figure 2.6 – An example of the extracted CT slice and the corresponding simulated US images. (a) axial 

CT slice, (b) sagittal CT slice, (c) (𝑥𝑖⃗⃗⃗  , 𝑦𝑖⃗⃗  ) simulated US image, (d) (𝑦𝑖⃗⃗  , 𝑧𝑖⃗⃗  ) simulated US image. 

In this simulator, each tissue is characterized by its acoustical impedance (see Table 

2.1) and a specific spatial distribution of speckle. In this speckle model, the inter-

scatterer distances are independent and randomly distributed from a gamma distribution 

tuned by two parameters: d which represents the mean inter-scatterer distances and so 

the speckle density, and α a regularity parameter (see Error! Reference source not f

ound.) This speckle model is able, by adjusting the speckle density and the regularity 

parameters, to generate the scatterers distributions analyzed in the literature like 

Rayleigh, Rician or K distributions. 

As input of this simulator, we have also some probe parameters (see Error! Reference s

ource not found.) as the US frequency, the number of elements, the curvature of the 

probe, the angular field of view, the depth which allows to determine the Point Spread 

Function (PSF) of the probe which is used when a US wave pulse interact with a 

scatterer. 

The US radiofrequency (RF) image is obtained by the convolution of the PSF with the 

scatterers map. The final US image is the envelope detection of the RF image. 

Using this simulator, we were able to produce 2 perpendicular US slices with a known 

transformation (see Figure 2.6 c and d). 
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Table 2.1 – Values of parameters used in the simulation of US images. λ is the acoustic wavelength. 

 Acoustical 

Impedance 

(kg.m-2.s-1) 

Speckle 

density 

(md) 

Regularity 

(𝛼) 

Houndsfield 

value 

Air 4 × 10−4 2 × 10−3 .λ 0.1 -1000 

Water 1 2 × 10−3. λ 0.1 0 

Blood 

(contrast) 

1.63 4 × 10−3. λ 0.4 400 

Muscle 1.65 0.03. λ 0.4 -20 

Fat 1.35 0.1. λ 20 -80 

Bone 7.8 × 106 0.02. λ 20 30 

     

Table 2.2 – Values of some input probe parameters . 

US frequency number of elements depth angle curvature of the 

probe 

7 MHz 128 150 90 3 

     

2.4.5. Evaluation: Experiments and results 

We arbitrarily produced 55 initial poses in a range of ± 5 mm on translation and ± 5° in 

rotation around the GT pose and performed the registration. The accuracy of the 

registration using two 2D US planes has been estimated and compared to this of the 

previous work with only one US plane. 

For the initialization, we used some information about the endoscope (inserted length, 

visual analysis of the image sequence during navigation, fluoroscopy, etc.) to define a 

candidate zone along the esophagus centerline in which the image transducer center can 

be. The size of this zone corresponds broadly to 10 mm along the esophagus, which 

globally corresponds to the depth sampling step along the esophagus. We evaluate the 

influence of using two planes Vs to using a single one. The accuracy of the registration 

using two 2D US planes has been estimated and compared to that obtained with only 

one US plane using three complementary metrics. 

2.4.5.1. Transformation estimation error 

Given a single (or multiple) slices and a volume, if the transformation 𝑇𝐺𝑇,𝑖 that maps 

both images is known, we can estimate the distance between 𝑇𝐺𝑇,𝑖 and the estimated 

transformation 𝑇𝐸𝑠𝑡,𝑖. This approach is mostly used to validate global linear 

transformations (see for example [63], [79] where the number of parameters to estimate 

is small and distances per parameter can be reported). 

We can separate this transformation estimation error into 2 subsets of errors: 

The translation estimation error. We chose to express it by the absolute error along each 

direction x, y, and z. 
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 |𝑇𝐺𝑇,𝑖 − 𝑇𝐸𝑠𝑡,𝑖|𝑥,𝑦,𝑧
 (𝑚𝑚) (2.13) 

 

and the rotation estimation error. This error is trickier to estimate since several 

combinations of Euler angles can describe the same 3D rotation. But any 3D rotation 

can also be described as a single rotation Θ around a specific rotation axes A(𝐴𝑥 , 𝐴𝑦, 𝐴𝑧) 

(Rodrigez-Euler formula). Quaternion is another way to describe this rotation as a 

single number as: 

   𝑞•,𝑖 = cos(𝜃/2) + 𝑖 𝐴𝑥sin(𝜃/2) + 𝑗 𝐴𝑥sin(𝜃/2)

+ 𝑘 𝐴𝑥sin(𝜃/2) 
(2.14) 

 

(See appendix 1). So, the rotation estimation error between the GT rotation quaternion 

and the estimated one can be defined as: 

 2 𝑐𝑜𝑠−1 (𝑟𝑒𝑎𝑙(𝑞𝐺𝑇,𝑖 ∗ 𝑞𝐸𝑠𝑡,𝑖
∗ )) (degree) (2.15) 

 

Figure 2.7 shows the boxplots of the translation errors along x, y, z of the 55 trials using 

one or 2 planes. We can see that the median translation error is reduced from 1.5 to 0.7 

mm when using 2 planes.  Figure 2.11 shows the rotation errors which are reduced from 

3° to 2.1° when we used two perpendicular slices. 

For both errors we obtained some parameters estimation accuracy improvements by 

adding the second plane. This improvement has been proven to be significant since we 

got a p-value < 0.032 between all the pairs using the pairwise nonparametric Wilcoxon 

test [80]. 

 

 
Figure 2.7 – Boxplots of the translation error between the estimated parameters and GT along each axis. 

In blue the errors using 2 planes and in green the errors using only one plane. 



Chapter 2 – Iterative-based Image registration: classical approach 

 

50 

  

 
Figure 2.8 – Boxplots of the angular errors between the estimated rotations and GT. In blue the errors 

using 2 planes and in green the errors using only one. 

2.4.5.2. Target Registration Error (TRE)s 

Another common evaluation strategy frequently used in literature is based on the 

impacts of the parameter estimation error on some landmarks fitting. The idea is to 

annotate automatically or by an expert some points of interest which are visible in both 

the slices and the volume images, so that we can measure the distance between the 

corresponding points after registration. The distance between the ground truth and the 

registered anatomical landmarks is commonly referred as Target Registration Error 

(TRE) 

In our specific application we defined eight specific feature points (or landmarks) 𝑃𝑈𝑆,𝑗 

in the two 2D-US fixed images, four located in the intersection of the slices (F1, F3, 

F7, F8), and the others  located in different places in the slices (F2, F6, F4, F5) as shown 

in Figure 2.9. These 8 points were then reprojected on the 3D CT volume using the 

ground truth transformation 𝑇𝐺𝑇: 𝑃𝐸𝑠𝑡,𝑗 = 𝑇𝐺𝑇𝑃𝑈𝑆,𝑗 and reprojected using the estimated 

transform 𝑇𝐸𝑠𝑡: 𝑃𝐸𝑠𝑡,𝑗 = 𝑇𝐸𝑠𝑡𝑃𝑈𝑆,𝑗. The TRE is then defined as: 

 𝑇𝐸𝑅, j = 𝑑(𝑃𝐺𝑇,𝑗 , 𝑃𝐸𝑠𝑡,𝑗) (2.16) 
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Figure 2.9 – result of the registration between the 2 perpendicular US planes (top right) and the 3D CT 

(top left – the 2 cut planes of the 3D correponding to the same location as the US images). On the bottom 

the corresponding registered CT cut planes and 2D US images. The fiducial points used to estimate the 

TRE are highlighted on test slices.  

Where d() denotes the Euclidian distance. The mean of the 8 TREs (mTRE) for one 

registration can also be considered as a global accuracy index for this registration. 

On the boxplots of the 55 mTREs, Figure 2.10, we can observe that the distribution of 

the errors is smaller when using two perpendicular planes than just using one (p < 

0.029). As a consequence, the median error of all the mTRE was reduced from 2.54 to 

1.7 mm  using the two planes . 

Regarding the registration accuracy, the global median target registration error (mTRE) 

of 1.7 mm is of the same order of magnitude as those reported in the literature: less than 

5 mm for [81], 1.5 − 4.2 mm for [41] and 5.6 mm for [7].  

 
Figure 2.10 – Box plots of the mean Target Registration Error (mTRE). 

2.4.5.3. Visual validation   

Figure 2.11 shows the two perpendicular simulated US images (a and c). The estimated 

corresponding reformatted CT slice with the US images superimposed on them are on 

(b and d). The visual examination of these two figures shows a good alignment with an 

initial point around the ground truth (GT), Some higher accuracy could probably be 

gained by considering the estimated pose as a starting point closer to the ground truth. 

  
(a) (b) 
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(c) (d) 

Figure 2.11 – Visual validation On (a) and (c), the 2 perpendicular simulated US images to be registered. 

On (b) and (d) the corresponding CT planes estimated by the registration. The US images are 

superimposed on these CT slices. 

2.5. Discussion 

From the above quantitative results, we can conclude that, on the one hand, the 

registration accuracy obtained   using two perpendicular US images gave us a better 

result in terms of TRE compared to one US image (median TRE decreasing from 2.54 

to 1.7 mm). The global median target registration error (TRE) of 1.7 mm is also on the 

same range of magnitude as those reported in the literature. 

These results were obtained from simulated US images. We are fully aware that there 

are differences between simulated and real US images (signal attenuation 

compensation, acoustic shadowing, post processing of real US images...).  However, 

we found in  the case of the study conducted before our study [7], that a method 

developed on simulated data performed also well on real data e are therefore confident 

that our method will also work on real data. 

This study demonstrates the interest of using two perpendicular US planes, in terms of 

a more accurate pose localization within the CT. This will allow the radiologist to have 

more precise control of the therapy. 

The registration was performed offline after all the US data had been acquired (or 

simulated). The mean intraoperative registration time was approximately 6 seconds 

using just one US image and 7.5 seconds using the two perpendicular US images. This 

computation time is not suitable for a real-time application, for this reason, we are going 

to present in the next chapters some convolutional neural networks (CNNs) registration 

framework for transesophageal ultrasound/computed tomography image registration to 

solve the problem of high computation time of the classical iterative methods. 

2.6. Conclusion  

In this chapter, the state-of-the-art for slice to volume registration using the classical 

iterative methods and their applications in medical failed has been presented. In this 

context, image processing methods have been proposed to improve the planning and 

the guidance of the therapy. We proposed a two perpendicular 2D CT/3D CT 

registration approach adapted to the guidance of the transesophageal HIFU therapy. We 

performed rigid registration of two 2D planar echocardiography images within a cardiac 

3D CT volume. The results indicated a promising accuracy of the proposed technique. 
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Chapitre 3  

 

Learning-Based Registration: supervised 

Transformation Estimation  

3.1. Introduction 

Image guided interventions are one of the most important applications for image 

registration, which helps doctors to save many patients’ lives. On the other hand, this 

problem is considered as one of the most complex and complicated issues to tackle in 

medical image processing since it needs accuracy and speed at the same time. 

As we already described in chapter 2, image registration is fundamental to the image-

guided intervention e.g., telesurgery, image-guided radiotherapy, HIFU image 

guidance therapy, …  because most of them cannot be operational without using image 

registration techniques [82]. For example, in an image guidance therapy the treatment 

planning is established on diagnostic or pre-interventional images (typically high-

quality 3D image), on which the treatment planning is conducted, needs to be registered 

on an intra-operational image ( 2D,  low-quality and noisy in the case of ultrasound) so 

that the procedure can be performed with maximum precision and minimum risk of 

irradiation of adjacent healthy organs in image-guided radiotherapy, as well as to 

preserve the surrounding tissue in a minimally-invasive ablation. In this type of 

procedure there are different challenges when trying to merge the different types of 

information: the modalities can carry totally different information (2D/3D, X-ray 

attenuation coefficient/echogeneity, ...), the intra-operative modalities are generally of 

poor quality and/or noisy, the morphology of the organs can change between the two 

modalities (deformations due to the gesture, to the respiration, to the cardiac beats, ...). 

These problems can largely compromise the quality of the image guidance. In practice, 

these different problems must be taken into account and other image processing 

techniques must be associated with the registration, which makes the problem very 

difficult and complicated [83]. 

In addition to these problems that can impact the feasibility and quality of registration, 

the calculation time is also one of the big issues in interventional image-based guidance. 

Iterative registration methods as described in chapter 2 are very time consuming, which 

is not suitable for real time image registration. Recently, huge advances in the field of 

machine learning and deep learning have enabled the implementation of deep neural 

networks in medical applications, where image registration has been the focus of new 

work that has accelerated and increased the performance of registration over traditional 

iterative intensity-based techniques. 
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Based on the literature a taxonomy of deep-learning-based registration methods into 

two categories can be proposed: deep similarity metrics and deep learning for 

transformation estimation.  

These two categories   of approaches can further be divided into supervised, weakly-

supervised and unsupervised approaches, based on the learning paradigm used to train 

the networks. The nature of the transformation to be estimated may affect directly the 

level of supervision of the methods. The ground truth is much easier to synthesize for 

a rigid/affine registration than for an elastic registration. Indeed, in the case of 

rigid/affine registration, the training data can be generated by random combinations of 

operations such as rotation, translation and scaling. Furthermore, unlike non-rigid 

transformations, the parameters of rigid transformations are global and can be set 

manually.  

In conclusion, rigid registration is generally easier to perform than elastic registration. 

There are less parameters to estimate and learning is generally easier because the data 

is easier to find. Indeed, it is easier to acquire physical data to which a simple rigid 

transformation has been applied. Similarly, numerical phantoms are also easier to 

realize because they require less parameters. 

Paradoxically, most of the work on deep learning registration deals with elastic 

registration. However, in this chapter we will more focus on supervised rigid image 

registration using convolutional neural network. We will start by summarizing the latest 

development in deep learning based medical image registration, followed by the 

contributions and finally our proposed framework, evaluation and results. 

3.2. Background  

The fundamental components of image registration are identical in both traditional and 

deep learning DL-based approaches, namely a similarity metric, transformation model 

and an optimiser. Neural networks have been integrated into this framework to 

replace/enhance the role played by one or more of these components. We can classify 

deep learning image registration methods into three main classes, namely approaches 

that (a) use neural networks as the similarity metric (often referred to as deep 

similarity); (b) parameterize the transformation model using neural networks; and (c) 

use neural networks to facilitate other operations (such as feature extraction or learning 

new image representations) which improve registration quality. 

In our work we propose the following process: we first run the moving and fixed input  

image pairs through a Siamese architecture composed of convolutional layers, thereby  

extracting the features from the  moving and fixed maps analogous to dense local 

descriptors (use neural networks to facilitate other operations), then match the feature 

maps, and finally run these joint feature maps through a registration network, which 

directly outputs the set of the rigid registration parameters set  (parameterize the 

transformation model using neural networks). So, in this chapter we will focus on using 

networks to assess the rigid transformation parameters. 

Based on the literature, five kinds of deep neural networks have already been applied 

to medical image registration, namely convolutional neural network CNN, Staked 
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Auto-Encoders (SAEs), Recurrent Neural Network (RNN), Deep Reinforcement 

Learning (DRL) and Generative Adversarial Network (GAN). 

3.2.1. Convolutional neural network 

CNNs should be considered as the bases of deep learning techniques, in which the 

whole given image (or some extracted patches) is fed directly to the network. Contrary 

to classical neural network-based image processing approaches whose goal is to extract 

only certain features from the image, the CNN-based registration approach tries to 

detect pairs of structural features on both fixed and moving images and attempt to align 

them. The detection and selection of these structural features are fully automated using 

CNN. 

As shown in Figure 3.1 a typical CNN has some interleaving kernel and pooling layers 

and is ended by a typical two- or three-layer fully connected network. The kernels are 

trained to extract the most significant features by convolution with the input, while the 

pooling layers decrease the course of dimensionality, and make the results invariant to 

the different geometrical transformations. The output of each layer, so-called a feature-

map, is passed to the next layer. When the number layers are high, a hierarchical feature 

set can be obtained, and the network can be considered as a deep CNN. The feature-

maps from the last layers are concatenated and vectorized to feed a fully connected two 

or three-layer network for the final result. 

 
Figure 3.1 – Example of Convolutional Neural Network (CNN) architecture. 

Several CNN architectures have been proposed in recent years, each with specific 

architectural modifications to address the issue of vanishing/exploding gradients 

common to deep networks, such as AlexNet [84], VGG [85], ResNet [86], and 

DenseNet [87]. Among these,  in the field of medical image segmentation and 

registration, the most widely used architecture is the U-Net [88], which we will discuss 

in more detail in the next chapter. 

3.2.2. Autoencoder 

 An autoencoder (AE) is a kind of neural network that learns to copy its input to its 

output without supervision [89]. An AE typically consists of an encoder that encodes 

the input into a low-dimensional latent state space and a decoder that restores the 

original input from the low-dimensional latent space. To prevent an AE from learning 

an identity function, regularized AEs have been invented.  Examples of regularized AEs 

include the sparse AE, the denoising AE and the contractive AE [90]. Recently, 
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convolutional AE (CAE) has been proposed to combine CNN with traditional AEs [53]. 

CAE replaces the fully connected layer in the traditional AE by convolutional and 

transpose convolutional layers. CAE has been used in many  medical image processing 

tasks such as lesion detection, segmentation, image restoration [91]. In contrast to the 

above mentioned AEs, variational AE (VAE) is a generative model that learns the latent 

representation using a variational approach [92]. VAE has been used for anomaly 

detection [93] and image generation [94]. 

3.2.3. Recurrent neural network 

A recurrent neural network (RNN) is a kind of neural network that is used to model 

dynamic temporal behavior [95]. RNN is widely used for natural language processing 

[96]. Unlike feedforward networks such as CNN, RNN is suitable for processing 

temporal signals. The internal state of RNN is used to model and ‘memorize’ previously 

processed information. Therefore, the output of RNN depends not only on its immediate 

input but also on its input history. Long short-term memory (LSTM) is a specific type 

of RNN that is used in image processing tasks. Recently, Cho et al proposed a simplified 

version of LSTM, called gated recurrent unit [97]. 

3.2.4. Reinforcement learning 

Reinforcement learning (RL) is a type of machine learning that focuses on predicting 

the best actions to take based on the current state in an environment [93]. RL is usually 

modelled as a Markov decision process using a set of environmental states and actions. 

An artificial agent is trained to maximize its cumulative expected rewards. The training 

process often involves an exploration-exploitation trade-off. Exploration involves 

exploring the whole space to gather more information while exploitation involves 

exploring the promising areas given the current information. Q-learning is a model-free 

RL algorithm, which aims to learn a Q function that models the action-reward 

relationship. The Bellman equation is often used in Qlearning for reward calculation. 

The Bellman equation calculates the maximum future reward as the immediate reward 

the agent gets from entering the current state plus a weighted maximum future reward 

for the next state. For image processing, the Q function is often modelled as a CNN, 

which could encode the input images as states and learn the Q function via supervised 

training [98], [99]. 

3.2.5. Generative adversarial network GAN 

The Generative Adversarial Network (GAN) has been proposed by Goodfellow et al. 

In 2014 [100]. It is composed of two competing subnetworks, the generator, and the 

discriminator. The generator is trained on a ground-truth dataset to synthesize fake 

samples, while the discriminator should discriminate between fake (synthesized) data 

and the real one and give its result as a binary output. Based on the survival competition 

between the generator and the discriminator, just like the game theory, the network can 

be trained on a small set of data so that the generated samples cannot be discriminated 

anymore, and the network goes towards equilibrium. The network gets the name GAN 

because the generator is trained in an adversarial manner based on the feedback from 

the discriminator. While the original GAN was applied to noise suppression in images, 
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it has gained increasing popularity in recent years, and has been applied to almost all 

medical imaging problems. In the context of image registration, the generator takes the 

fixed and moving images as input and tries to produce the transformation parameters 

such that the transformed moving image, called warped image, is indistinguishable 

from the ground-truth image by the discriminators. In this context Lu et al [101],  

proposed a method, to reduce the deformation between two 2D images,  as shown in   

Figure 3.2., They introduced the Cycle Generative Adversarial Network (CycleGAN) 

into their method simulating TEE-like images from CT images to reduce their 

appearance discrepancy. Then, they perform gridless registration to align TEE-like 

images to the real TEE ones. Experimental results on CT and EEG images of children 

and adults show that the proposed method outperforms other compared methods.   

 

 
Figure 3.2 – GAN network example in image registration [102]. 

Also, in medical imaging, GAN has already been used to perform inter- or intra-modal 

image synthesis, such as MR to synthetic CT [103], CT to synthetic MR [103], [104], 

CBCT to synthetic CT and so on. 

GAN is typically used to provide additional regularization or to convert a multimodal 

registration to a unimodal one. Besides medical imaging, GAN has been widely used 

in many other fields including science, art, games and so on. 

3.3. Related work in learning based rigid medical image registration 

In this section we will present the related work that has used CNN first, as a similarity 

metric, second to estimate rigid transformation parameters. Finally, we will present the 

latest papers on slice-to-volume learning-based registration approaches (supervised and 

unsupervised). 

3.3.1. Deep Similarity based Registration 

Cheng et al  [105] propose a deep similarity learning network to train a binary classifier. 

The network is trained to learn the correspondence of two image patches from a pair of 

CT-MR images. The continuous probabilistic value is used as the similarity score. 

Similarly, a similarity metric based on a regression CNN was proposed by Haskins et 

al [106] to register Magnetic Resonance Imaging (MRI) and Transrectal Ultrasound 
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(TRUS) images, which demonstrated promising performance compared with MI, and 

several other conventional similarity metrics.  

In addition, Sedghi et al. [107] perform the rigid registration of 3D US/MR (modalities 

with  even greater difference in  appearance  than MR/CT abdominal scans)  using a 5-

layer neural network to learn a similarity metric that is then optimized by Powells’ 

method. This approach performs better than registration based on MI optimization. 

3.3.2. Supervised transformation estimation 

The motivation of transformation estimation using deep learning approach is to develop 

a network that could estimate the transformation that corresponds to the optimal 

similarity in one step. 

A few approaches have focused on rigid registration of multimodal images, e.g., Chee 

et al. [108] use a CNN to predict the transformation parameters between 3D brain MRI 

volumes. In their framework called Affine Image Registration network (AIRNet), the 

Mean Square Error (MSE) between the predicted and ground truth affine transforms is 

used to train the network. 

In addition, Yao et al [109] use a regression CNN for a coarse 3D/3D rigid registration, 

,which then serves as an initialization of a conventional intensity-based registration 

method for fine-grained registration. This approach combines so CNNs with 

conventional methods to align 3D CT and CBCT images. 

Several papers have also explored the registration of MRI and TRUS images on prostate 

images. Some of the works are based on the use of two publicly available datasets  

RESECT [103] and BITE for this registration task. However, most of the studies on 

MRI and TRUS images registration are learned on private datasets. Guo et al [110] 

propose a supervised network to tackle rigid MRI-TRUS registration on prostate 

images. They propose a new strategy to generate augmented datasets and design a 

coarse-to-fine multistage network, which significantly reduces the registration error 

compared to previous methods. 

3.3.3. 2D/3D image registration using CNN  

In most of the multi-modal registration applications discussed so far, the dimension of 

the fixed and moving images are identical. Publicly available datasets provide 3D image 

volumes, which can also be employed for slice-wise 2D/2D registration. Therefore, the 

proposed studies so far have mainly focused on 2D/2D or 3D/3D image registration. 

However, 2D/3D image registration is still of essential interest for a variety of clinical 

applications. Thus, in contrast to the classical registration research, multimodal 2D/3D 

registration by DL should also be an object of study. However, this task is even more 

challenging, due to the difference in dimensionality and the overlapping tissues and low 

contrast issues common to 2D medical images such as x-rays radiographs.  

Until now, studies on 2D–3D registration are mainly focused on registering to a specific 

3D modality image either a protectional images (e.g., fluoroscopy/MRI) or a cross 

section slice (e.g., US/MRI). 
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3.3.3.1. Protectional images to volume image registration using 

CNN 

Miao et al. [53] were the first to use deep learning to predict rigid transformation 

parameters. They used a CNN to predict the transformation matrix associated with the 

rigid registration of 2D/3D X-ray attenuation maps and 2D X-ray images. Hierarchical 

regression is proposed in which the 6 transformation parameters are partitioned into 3 

groups. Ground truth data was synthesized in this approach by transforming aligned 

data. This is the case for the next three approaches that are described as well. This 

approach outperformed the classical image and optimization-based registration 

approaches in terms of both accuracy and computational efficiency. The improved 

computational efficiency is due to the use of a forward pass through a neural network 

instead of an optimization algorithm to perform the registration. 

 Liao et al [111] proposed a novel learning-based Multiview  2D–3D rigid registration 

method that directly measured the 3D misalignment using a Point-Of-Interest Network 

for Tracking (POINT) and found the point-to-point correspondence between two 

images. 

3.3.3.2. Cross section slice to volume image registration using CNN 

The slice to volume registration is more challenging because the 2D image contains 

less information of the volume (only a cross section of the volume) than in the previous 

case (projection of the volume on a plane). So very few papers deal with slice-to-

volume registration. Among them, Salehi et al. [112] propose an 18-layer residual CNN 

regression model for 3D pose estimation, and rigidly register reconstructed fetal brain 

MRI images to a standard space (atlas). Then, based on images generated by the four 

transformations (i.e., scaling, horizontal or vertical shift and rotation), they validate the 

effectiveness of their geodesic loss term and show the superiority of their method over 

the NCC-optimization-based registration. 

Recently, Guo et al. [113], propose an end-to-end unsupervised frame-to-volume 

registration network called  FVR-Net. This network is trained to register intra-operative 

2D transrectal ultrasound (TRUS) with pre-operative 3D magnetic resonance (MR) 

volume to guide the prostate biopsy, this without requiring hardware tracking. Their 

results demonstrate superior efficiency of the proposed method for real-time 

interventional guidance with a run time of approximately 0.7ms and with a very 

competitive registration accuracy (the distance error being 2.73mm). 

Finally, Fu et al. [114],  performed the registration of 3D MRI to 2D MRI slice that was 

extracted from the 3D MRI after random rotation and translation. they propose an 

intentional overfitting deep learning-based network (ION) to perform volume-to-slice 

registration for MRI abdominal images.  
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3.4. Ultrasound to CT 2D Rigid Image Registration using CNN 

Before presenting the registration method that we have proposed, we will remind you 

of the different hypotheses that allowed us to consider the registration as rigid. The 

heart is a moving organ. However, some characteristics of cardiac motion allowed us 

to consider a rigid registration scheme. First, we had at our disposal a Cine CT from a 

patient’s thorax composed of 20 volumes at each 5% phase of the RR interval. Second, 

we were interested in ventricular fibrillation. During its diastolic phase, the ventricle is 

relatively stationary. The HIFU treatment will be fired in this phase to have a fixed 

focal point with respect to the organ and thus avoid a dispersion of heat prejudicial to 

the necrosis of the tissues. Thus, a quasi-static ventricle pose can be considered. 

Moreover, on our US system, the acquisition is synchronized with the ECG. Thus, it is 

relatively easy to create pairs of US/CT images at the same phase and so to consider 

rigid registration. 

 

3.4.1. Materials and method  

In this section, we will introduce our proposed framework for estimating the 

transformation parameters of a rigid image registration between a preoperative CT slice 

and an intraoperative US image. In our case and following the approach described in 

[115], only a 2D rigid transform with three Degrees of Freedom (DOF) – one rotation 

and 2 translations- was to be estimated. 

 The main idea is to estimate the registration that best aligns some common 

characteristics or features of the images. The information contained in the two images 

is very different in nature (gray levels proportional to the X-ray absorption coefficient 

of the tissues for CT and information formed by the reflection of ultrasonic waves on 

surfaces and speckle for US). It is therefore necessary to extract from both imaging 

modalities some common information (in our case the shapes of the organs) before 

performing the registration. We therefore proposed the following registration 

framework (Figure 3.3): 

 

(i) Descriptors are initially extracted from both the moving 𝐼𝑀  and the fixed 𝐼𝐹 images 

using Deep Learning. For this, 𝐼𝑀  and 𝐼𝐹 are passed through a Siamese CNN 

architecture consisting of some convolutional layers, thus extracting two feature 

maps𝑓𝐹, and 𝑓𝑀 which are analogous to dense local descriptors. 

(ii) These feature maps are then combined together in a concatenating layer. 

 (iii) This image of the corresponding concatenated feature maps is fed as an input into 

a convolutional registration network which directly outputs the rigid registration 

parameters set T (two translations, one rotation) of the rigid registration. 

This framework should be trainable end-to-end for the rigid registration task. 
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Figure 3.3 – The overall of the proposed framework. 

3.4.1.1. Feature extraction 

The first step of the framework is feature extraction. Features extraction is a classical 

tool in deep learning. One common feature extraction technique is to feed the image to 

a conventional pre-trained neural network and use the representation for that particular 

image in the intermediate layers of the neural network. We used the ResNet18, which 

is one of the most efficient standard feature extraction models that can be used in many 

medical application [116]. The advantage of this model is that it handles the vanishing 

or exploding gradient problem when the CNN goes deeper. 

Resnet18 can be found implemented in PyTorch. This implementation offers a version 

with the weights pre-trained for feature extraction on ImageNet, the large benchmark 

database.  

In our case, each of our input modalities has its own image characteristics. Thus, we 

passed each of the two images to be registered in its own network but in a Siamese 

manner. In a Siamese network, both models are instances of the same model (same 

weights and structure). The Siamese network allows to integrate the classification 

problem and the similarity problem. The network is trained to minimize the distance 

between samples of the same class and to increase the distance between classes. There 

are several types of similarity functions through which the Siamese network can be 

trained. In our case we used the L2 loss function. 

3.4.1.2. Matching 

These two feature maps needs be combined across images as a single tensor to feed it 

into the rigid transformation parameters estimation network. To achieve this, a 

concatenation of descriptors along the channel dimensions is performed in a 

concatenation layer. 

3.4.1.3. Registration network 

We will present the registration network architecture which consists of three blocks of 

convolutional layers using a kernel size of 5, each followed by batch normalization 

layers, and a rectified linear unit (ReLU). The last layer is a fully connected layer for 

estimating the rigid registration parameters as shown in Figure 3.4. The network receives 

as input the concatenated map of the extracted features from moving and fixed images, 

and directly estimates the parameters (𝑡𝑥, 𝑡𝑦,and 𝜗) of the rigid transformation that links 

these feature maps. The idea behind this architecture is that the estimation is performed 

in a bottom-up manner where the early convolutional layers vote for candidate 

transformations, and these are then processed by the later layers to aggregate the votes. 
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The first convolutional layers can also enforce local neighborhood consensus by 

learning filters that only fire if nearby descriptors in image 𝐼𝑀 are matched to nearby 

descriptors in image 𝐼𝐹. 

 

Figure 3.4 – Architecture of the regression network. 

3.4.1.4. Training 

We considered a supervised learning scheme. We had at our disposal a learning dataset 

composed of corresponding pairs of US and scanner images whose geometric 

transformation was known (the ground truth GT). This allowed us to simply formulate 

the learning loss function as the L2 norm of the error between the GT (𝑇𝐺𝑇) and the 

predicted transformation parameter ( 𝑇𝐸𝑠𝑡). 

𝐿 = 𝛼‖𝑡𝐺𝑇 − 𝑡𝐸𝑠𝑡‖
2 +  𝛽‖𝜗𝐺𝑇 − 𝜗𝐸𝑠𝑡‖

2  (3.1) 

With 𝑡𝐺𝑇  and 𝑡𝐸𝑠𝑇 are the translation vector of respectively the ground truth 

transformation and the estimated one expressed in mm: 𝜗𝐺𝑇 and 𝜗𝐸𝑠𝑇 degree; and α and 

β are weights controlling the balance between the translation and the rotation losses. 

The choice to use mm for translation and degrees for rotation allowed to ensure a certain 

coherence and normalization between the translation and rotation parameters. Indeed, 

an error of 1 degree in rotation leads to a displacement of 1 mm at 60 mm from the 

center of rotation, i.e., half the depth of the ultrasound beam. Because of this relative 

coherence between parameters, α and β could be fixed at 1 

For training the network, we computed the gradient of the loss function with respect to 

the estimated rigid parameters (𝑡𝑥, 𝑡𝑦, and 𝜗)).  This gradient is then used to minimize 

the loss function by using backpropagation and Stochastic Gradient Descent. 

After training, the network can be applied for registration of unseen image pairs. We 

implemented the network using PyTorch and we trained it on a NVIDIA TitanX GPU 

with 10000 iterations, and batch size of 16, which took approximately 12 hours. 

3.4.2. Datasets 

Training data is one of the key points of any learning-based method. Medical image 

registration problems are usually quite complicated to learn because the transformation 

(the Ground Truth, GT) between images to be registered is rarely known on real images. 

This hinders supervised learning methods. 

To compensate for this lack of ground truth, we decided to simulate US images from 

CT data to which a formally known transformation can be applied. In conclusion, our 

study has been conducted using real CT datasets and corresponding simulated US 

images. 
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3.4.2.1. CT datasets 

Our study has been conducted on MM-WHS 2017, a public available dataset for multi-

modality whole heart segmentation [5], [6]. Figure 3.5, Figure 3.6 show examples from 

some CT volumes of the datasets. 

All the data were obtained from two state-of-the-art 64-slice CT scanners (Philips 

Medical Systems, Netherlands) using a standard coronary CT angiography protocol at 

two sites affiliated with Shanghai Shuguang Hospital. The volumes were acquired in 

the axial view, covering the whole heart from the upper abdomen to the aortic arch. The 

in-plane resolution was about 0.44 × 0.44 mm, and the average slice thickness was 0.60 

mm. In these volumes, the esophagus was manually coarsely segmented. 

 
Figure 3.5 – Volumes from MMWHS2017 datasets. 

 

   

   

(a) (b) (c) 

 

Figure 3.6 – Thorax from the superior vena cava to the stomach. Axial (a), Sagittal (b) and Coronal (c) 

views extracted from two CT volumes. 
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3.4.3. US datasets 

From the MMW- HS2017 dataset CT volumes, we create a set of corresponding pairs 

of CT and US images with known transformation (Figure 3.7) 

1) Extraction of the CT 2D slices. 

First, we extracted randomly 4000 2D CT oblique cut planes from the 20 CT 

volumes (200 image per volume). For this we choose randomly 4000 initial poses 

along the esophagus axes within the 20 CT volumes. For each pose, we create a 

new referential by setting some randomly transformation near these initial poses 

with some translations within ±10 mm and rotations within ±15 degree around each 

coordinate axis. The x-y plane of this referential will serves as the fixed 2D CT 

image 𝐼𝑐𝑡 (Figure 3.8.a). The origin of the x-y plane served also as origin of 𝐼𝑐𝑡. 

2) Definition of the ground truth transformation. 

For each 2D CT slice, we randomly define the pose of the simulated US probe origin 

by setting some randomly defined 2D translation within a range of ±10 mm and one 

rotation in a range of ±15 degree from the origin of 𝐼𝑐𝑡 (Figure 3.8.a). These two 

translations and one rotation define the ground truth rigid 2D transformation 𝑇𝐺𝑇 

between the 2D CT slice and the US image.  

3) Simulation of the 2D US image.  

Once we have defined the pose of the simulated US probe origin, we simulated the 

corresponding US image with the method described in [3] that predict the 

appearance and properties of a B-scan ultrasound image from a probe origin pose, 

the point spread function of the US device, the acoustical impedance of the tissues 

and some tissue-adapted distribution of point scatterers which gave the speckle 

(Figure 3.8.b). In our case we mimicked a 128 elements TEE probe working at a 

frequency of 7 MHz, with a beam angle of 90 degree and a depth of 150 mm. 

4) After the simulation, every CT and US image pair is resampled to the same spatial 

resolution in mm according to the spacing information. Finally, the gray intensities 

of both images were scaled between [0,1]. At the end, for each of the 4000 ICT we 

get an US image IUS and a transformation ground truth 𝑇𝐺𝑇 

 
Figure 3.7 – Dataset’s creation workflow. 
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(a) (b) 

Figure 3.8 – Simulation of a CT/US image pair: a) 2D CT slice extracted from a volume with the pose 

and field of view (yellow) of the US probe; b) the simulated US image. 

From this dataset, the network was trained by selecting the 3600 pairs of corresponding 
𝐼𝑐𝑡and 𝐼𝑢𝑠 slices from 18 of the 20 cardiac CT scans. For validation, we used 400 image 

pairs from the 2 remaining volumes. 

Figure 3.9, and Figure 3.10 show some examples of the extracted CT slices and the 

corresponding simulated US images slices. 

 

  
(a) (b) 

Figure 3.9 – An example of the extracted CT slices and the corresponding simulated US images in the 

3D CT volume. 
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Figure 3.10 – Three examples of the extracted CT slices and the corresponding simulated US images 

slices. 

3.4.4. Evaluation  

We compared the registration results obtained by the proposed methods to those 

obtained by the classical iterative rigid registration method implemented in the 

SimpleITK Library [77]. As a reminder, the iterative method estimates by optimizing 

the parameters of rigid transformations that tries to maximize a similarity measure 

between the moving and the fixed image. In our study, we used Normalized Mutual 

Information (NMI) as a similarity measure for the iterative method. Indeed, during a 

comparative study between similarity metrics, this measure proved to be one of the 

most suitable for our CT/US registration problem [4]. The result of this iterative method 

is also the set of the 3 transformation parameters (2 translations and one rotation angle). 

3.4.4.1. Computation time 

For our deep learning-based method, the average registration computation time for all 

the 400 image pairs is now less than 3 ms for each image pair. This low computation 

time allows us to consider a real-time application.  

For comparison, the classical iterative method takes about 6 seconds to register a pair 

of images. 

3.4.4.2. Transformation estimation error 

We compared the parameters of the transformation obtained by our proposed methods 

with those of the ground truth (GT). A transformation is composed by a translation 

vector t (𝑡𝑥, 𝑡𝑦) and a rotation (𝜗𝑧). We separately evaluate the translation errors and 

the rotation errors between the estimated pose of each of the 400 validation image pairs 

and their associated GT.   

The translation error is measured by equation (3.2), where  𝑡𝐺𝑇,𝑖 and  𝑡𝐸𝑠𝑡,𝑖 are the 

translation vectors of respectively the GT and the estimated one. 

The rotation error is given by the angle difference in degrees between the GT pose 

orientation angle and the estimated rotation angle (equation (3.3)), where 𝜗𝐺𝑇,𝑖 and 

𝜗𝐸𝑆𝑇,𝑖 are the angles that encode the orientation parameter of the pose of respectively 

the GT and the estimated rotation. 

𝑡𝐸𝑟𝑟𝑜𝑟 = ‖𝑡𝐺𝑇,𝑖 − 𝑡𝐸𝑠𝑇,𝑖‖
2

 (3.2) 𝜗𝐸𝑟𝑟𝑜𝑟 = ‖𝜗𝐺𝑇,𝑖 − 𝜗𝐸𝑠𝑇,𝑖‖
2
 (3.3) 
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Figure 3.11.a shows the boxplots of the 400 translation errors from our CNN-based 

registration and the classical iterative one. The median translation errors are 1.1 mm 

using CNN and 1.2 mm using the classical approach. 

The boxplots of the 400 rotation errors in Figure 3.11.b show that the median rotation 

errors are 2.1 degree using CNN and 2.4 degree when using the iterative classical 

method.  

The Wilcoxon statistical test estimated by transformation estimation pair of the classical 

and CNN approaches was applied to show that the groups are significantly different.  

As expected, that the results of the estimated translation parameters of the classical and 

CNN approaches are not significantly different (p > 0.43). 

We note that the results of the estimated rotation parameters of the classical and CNN 

approaches are not significantly different (p > 0.29). 

 

  

(a) (b) 

Figure 3.11 – Box plots of a) the Translation Estimation Errors, b) the Rotation Estimation Errors. 

3.4.4.3. Target Registration Error (TRE) 

Evaluation of registration accuracy can also be done by estimating the registration 

errors on some fiducial markers. To quantify the error, we defined eight specific feature 

points (or landmarks) Pj in the US fixed images as presented in Figure 3.12. 

  
(a) (b) 

Figure 3.12 – the position of the fiducial points marked in pink. 
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Then we used the two transformations matrices, the estimated  𝑇𝐸𝑠𝑡 and the GT 𝑇𝐺𝑇 

one, to project these points into the corresponding CT images: 𝑃𝐸𝑠𝑡,𝑗 = 𝑇𝐸𝑠𝑡𝑃𝑗 and : 
𝑃𝐺𝑇,𝑗 = 𝑇𝐺𝑇𝑃𝑗. The Euclidean distance between the corresponding projected points gives 

the TRE: 

 𝑇𝐸𝑅 = ‖𝑃𝐺𝑇,𝑗 − 𝑃𝐸𝑠𝑡,𝑗‖ (3.4) 

 

Figure 3.13 the boxplot of the TREs for all the 8 fiducial points of all the 400 test 

images. The quantitative results show a median TRE of 2.2 mm for all the fiducial 

points of all the 400 test images using CNN, and 2.7 mm using the classical method. 

We also found that the results of the estimated TRE of the classical and CNN 

approaches are not significantly different (p > 0.28). 

 

 
Figure 3.13 – Box plots of the Target Registration Errors. 

3.4.4.4. Visual validation 

Figure 3.14 shows a visual comparison between a) the moving CT image and b) the 

simulated fixed US image pair. It shows the overlap between the moving CT image and 

the fixed US image: c) before registration d) after registration with the proposed 

method. Visually, the results obtained by the proposed method seem to provide a good 

alignment, this can be seen for example at the probe center, and at the bottom of the 

image on the thoracic chest. 
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(a) (b) 

  

(c) (d) 

Figure 3.14 – An example of the registration of an image pair a) CT image, b) US image before 

registration.  The overlap between the moving CT image and the fixed US image (yellow image) c) 

before registration, and d) after registration with the proposed method. 

 

3.4.5. Discussion 

In this work, we presented a deep feature learning-based approach for the registration 

of transesophageal US/CT cardiac images. The results showed a strong improvement 

in terms of computation time without degradation and even a slight improvement in 

terms of registration accuracy.  

From the previous quantitative results, we can conclude that on the one hand, the 

registration accuracy obtained by CNN is of the same order as that obtained by the 

classical iterative method. The results obtained by CNN are even slightly better, even 

if statistically this improvement is not significant. Compared to other methods of the 

literature, the global target registration error (TRE) of 2.2 mm is on the same range of 

magnitude as those reported in [115]. On the other hand, the CNN greatly accelerate 

the processing time. The registration between two images takes only 3 ms (instead of 6 

s for the classical iterative method). This gain in computation time allows us to consider 

implementing the 3D CT/2D US registration technique proposed by [115] in clinical 

practice. 

These results were obtained from simulated US images. We are fully aware that there 

are differences between simulated and real US images (signal attenuation 

compensation, acoustic shadowing, post processing of real US images...).  However, 
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we found in a previous study that a method developed on simulated data gave good 

result on real data [115] . We are therefore confident that our method will also work on 

real data. 

In the next section, we will integrate the features learning approach to a minimally-

invasive HIFU procedure to improve the therapy planning and guidance. We will apply 

our approach on a 2D/3D learning-based registration to refine the estimation of the 

transesophageal probe pose placement in the 3D preoperative volume.  
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3.5. Deep learning-based for slice-to-volume image registration   

In this section, we will present a first attempt of an end-to-end framework to address 

the challenging problem slice-to-volume registration for image guidance therapy 

purposes. This study will be a preliminary study to bridge the gap of real time of 2D 

US/3D CT fusion for cardiac arrhythmia therapy. 

The main goal of this study is to estimate the 3D pose of the 2D image plane in the 3D 

volume, therefore, to find the 3D transformation matrix that will define the pose of the 

transformed moving image with six dof (three translation and three rotations along x, 

y, z axis respectively). So, in our specific case the 2D-3D registration consists of finding 

the pose of the intraoperative TEE imaging plane (TEE probe position) inside the 

preoperative 3D CT volume, in which the ablation path has been defined. 

The framework takes a 2D (H×W) image plane, and 3D (H×W×D) volume as input. 

We also have at our disposal a broad estimation of an initial pose located in the central 

line of the esophagus. The goal is to estimate the transformation parameters T that best 

align these two images. From the literature we found that rigid registration with 6 

degrees of freedom is suitable for 2D/3D image registration applications. Thus, the 

outputs 𝜃 contains 6 degrees of freedom, i.e., 𝜃 = 𝑡𝑥 ; 𝑡𝑦;  𝑡𝑧 ;  𝜗𝑥; 𝜗𝑦; 𝜗𝑧, including the 

translations and rotations along the three axes x, y, z respectively. In our case, the 

transformation refers to the 3D translation (in mm) and the 3D rotation (in degrees) 

with respect to the first initial pose  

As for the 2D/2D case, we decided to separate the global framework into two sub-

problems: The extraction of input image features followed by the estimation by a neural 

network of the parameters that best align these features after concatenation. As for the 

2D/2D case we used a Resnet model as registration network to estimate the parameters.  

The main challenge was to devise parallel feature extraction networks. Indeed, contrary 

to the 2D/2D case, now the input images do not have the same dimension, and the 

features must be described in a space of the same dimension in order to be concatenated 

and delivered to the registration network. Once this problem is solved, the framework 

consists again of two branches of networks to extract the features from each input, a 

concatenation layer to combine both images” features”, and finally the registration 

network that’s will directly estimate the 6 transformation parameters as shown in Figure 

3.15. 

 
 

Figure 3.15 – Our proposal framework. 
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3.5.1. Feature extraction 

The different dimensionality between the 2D image slice and the 3D volume is the 

principal challenge for the registration network performance, actually we can’t directly 

or early concatenate the 3D moving, and the 2D fixed images, the network will totally 

ignore the 2D image content comparing to the volumetric information.  

The features must be described in a 3D volume. For the ultrasound image the 

transition from 2D to 3D is done as follows:  

We chose to use a two-branch feature extraction network to match the information 

between the two inputs, making the model sensitive to both the slice and volume 

information, the features must be described in a 3D volume. For the ultrasound image 

the transition from 2D to 3D is done as follows: The network is designed to process the 

2D slice via a first 2D pathway which consists of two 2D convolutional layers to extract 

the low-level features from the input image plane, to extend the channel number to 3D 

which can then be followed  by three 3D convolutional block, so that the size of the 

feature map matches the size of the  input volume, so balancing the data information. 

The 3D CT volume is processed via a separate 3D pathway which consists of three 3D 

convolutional blocks. Each 3D convolutional block consists of a 3D convolutional 

layer, followed by batch normalization, a rectified linear unit (ReLU) and a max pooling 

layer. 

We use the same hyper-parameters for each branch to maintain an end-to-end identical 

feature map size throughout the 2D image to the 3D volume registration framework. 

3.5.2. Concatenation and registration network  

The extracted feature maps from the 2D and 3D pathways were concatenated along the 

depth dimension and processed by the registration network to predict the six DOF 

parameters. 

For the 3D plane pose estimation, we used a 50-layer residual CNN, and two fully 

connected layers, the last fully connected layer has size of six, which correspond to the 

translation and rotation parameters to estimate the slice pose in the 3D volume.  

3.5.3. Datasets and implementation details  

The proposed framework is evaluated on real 3D CT volumes, and simulated US 

images. 

Our framework using the volumes of the MMWHS2017 datasets[5], [6], This dataset 

contains 60 3D CT volumes. 70% of the dataset is randomly selected for training and 

the rest 30% used for testing. All volumes are processed to be isotropic with mean 

dimensions of 512×512×D voxels. 

In real- time surgery we will have some information about the endoscope tip location 

(inserted length, visual analysis of the image sequence during navigation, fluoroscopy, 

etc.) to define a candidate aera along the esophagus centerline in which the image 

transducer center can be located. The size of this aera is roughly 10 mm along the 

esophagus, so we are able to extract a sub-volume (three sub-volume per volume) of 



Chapter 3 – Learning-Based Registration: supervised Transformation Estimation 

 

74 

  

size 512×512×32 in which the 2D US image will be. The fact to estimate the parameters 

in a sub-volume has several benefits: it allows to reduce the search space of the network 

to find the optimal transformation. It also reduces the memory load during the training 

phase and a strategy for data augmentation. 

We used this fact to produce some Ground-Truth 2D US/3D CT sub-volumes pairs for 

training and evaluation. For each volume, we perform some depth sampling along the 

esophagus. For each of this sampled position we extract a CT sub-volume 𝑉𝑚 we choose 

an initial transform 𝑇𝑖𝑛𝑖𝑡, starting from initial translation (position) in the middle of  𝑉𝑚 

of size 512×512×32. For each sub-volume 𝑉𝑚 we define an initial transform 𝑡𝑖𝑛𝑖𝑡 =

(𝑡𝑥𝑖𝑛𝑖𝑡
, 𝑡𝑦𝑖𝑛𝑖𝑡

, 𝑡𝑧𝑖𝑛𝑖𝑡
), and initial rotation 𝑅𝑖𝑛𝑖𝑡 = (𝑅𝑥𝑖𝑛𝑖𝑡

= 0, 𝑅𝑦𝑖𝑛𝑖𝑡
= 0,  𝑅𝑧𝑖𝑛𝑖𝑡

= 0).  

The US image is then created by simulation: 1) we define an oblique cut plane by 

applying a random transform 𝑇𝐺𝑇 to 𝑇𝑖𝑛𝑖𝑡 in a range of ± 10 mm on translation and ± 5° 

in rotation around each coordinate axis. We deliberately limited the ranges to 10 mm in 

translation and 5° in rotation for several reasons. these values are quite realistic 

compared to the possible positions of the endoscope tip, and also this avoids sampling 

planes at the edges of the volume where there is no informative image data because it 

is outside the CT imaging cone, Then we simulate the US images from this oblique cut-

plane to have the fixed image 𝐼𝑓 f using the simulation  method of [3] described in 

section (2.4.4.2). 

 Finally, the training sample is represented by (𝑉𝑚; 𝐼𝑓; 𝑇𝐺𝑇). And the intensities of these 

two volumes/images are scaled between [0, 1]. 

At the end we had 126 samples for training and 54 samples for testing. During the 

training the predicted transformation parameters will be relative to the initial transform.  

And the final estimated transform will be calculated through matrix manipulation. 

𝑇𝐹𝑖𝑛 = 𝑇𝑖𝑛𝑖𝑡 ⊕ 𝑇𝐸𝑠𝑡 (3.5) 

Since the networks use voxels (and not mm), the translation parameters are expressed 

in voxels. At the end the estimated translation components can be simply scaled to their 

original size in mm. The rotational components remain unchanged. 

 

The method is implemented using Pytorch. Optimization is carried out for 10,000 

iterations using the Adam algorithm with learning rate=0.001, and batch size of 16, 

which took approximately 18houres. 

3.5.4. Network training  

During training, the registration network estimates the 6 dof of the transformation 

parameters, the loss function will be the L2 norm error between the estimated transform 

𝑇𝐸𝑠𝑡  and the GT transform 𝑇𝐺𝑇. 

𝐿 = ‖𝑇𝐺𝑇 − 𝑇𝐸𝑠𝑇‖
2 (3.6) 

we also used an unsupervised image similarity loss, after estimating the transformation 

parameters, an arbitrary image plane is randomly sampled from the 3D sub-volume by 
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applying the estimated transformation  𝑇𝐸𝑠𝑇 to the 3D sub-volume, using the rigid grid 

generator and the resampler. The rigid grid generator takes the estimated parameters 

𝑇𝐸𝑠𝑡 as input and generates a transformed resampling grid which has the same size 

height and width as the moving image 𝑉𝑚 (H×W).  By applying bilinear interpolation 

at each point location defined by the sampling grid, the resampler can get the intensity 

at a particular pixel in the wrapped image, this loss can significantly reduce the 

registration error.  

The final training loss function can be formulated as sum of three losses: 1) the L2 norm 

of the error between the 𝑇𝐺𝑇 and predicted transformation parameters 𝑇𝐸𝑠𝑡; 2) an image 

similarity loss is the Mutual Information (MI) between the fixed US image and the 

estimated transformed CT image plane; and 3) we added also a third term for our loss 

function which is MSE between the extracted CT image plane 𝐼𝐺𝑇, and the transformed 

moving CT image which is improved the accuracy. The final loss function will be the 

weighted sum of three terms: 

  𝐿 = 𝛼‖𝑇𝐺𝑇 − 𝑇𝐸𝑠𝑇‖
2 +  𝛽 𝑀𝐼(𝐼𝑓 , 𝐼𝐸𝑠𝑡) + 𝛾 𝑀𝑆𝐸(𝐼𝐺𝑇 , 𝐼𝐸𝑠𝑡) (3.7) 

Depending on the values of the wights gives to each term of the losses 𝛼, 𝛽, 𝛾,  the 

optimal prediction of  𝑇𝐸𝑠𝑡 was for  𝛼 = 0.4, 𝛽 = 0.2, 𝛾 = 0.4  .  

3.5.5. Experiments and results 

Very few papers have used a learning-based approach for slice-to-volume registration, 

and more specifically we couldn’t find any work done previously for our specific 

application. We therefore decided to compare our results to the classical iterative 

method using the simpleITK library. We compared the results of our framework to the 

classical one in terms of registration accuracy and computation time. 

for SimpleITK, we used MI as the similarity metric because of our multimodal case, 

and adaptive gradient descent as the optimizer.     

Three comprehensive criteria were used for evaluation: the transformation estimation 

errors, the plane distance error and the registration computation time. 

3.5.5.1. Transformation estimation errors 

We compared the parameters of the transformation obtained by the two methods (our 

network-based method and the classical iterative method) with that of the GT. A 

transformation is composed by a translation vector 𝑡 (𝑡𝑥, 𝑡𝑦𝑡𝑧) and a rotation 𝑅 

described by its Euler angles (𝜗𝑥, 𝜗𝑦, 𝜗𝑧). We evaluate separately the translation errors 

and the rotation errors between the estimated pose of each of the 54 (18×3)-validation 

image/sub-volume pairs and their associated GT (see section 3.4.4.2). 

Figure 3.16 compares our results in a quantitative way with those obtained by the 

classical iterative method. 

Using the iterative method presented in [77], we obtained mean errors of (0.794, 0.893, 

0.922) degree for rotation, and translation parameters error (1.618, 1.8289, 1.875) mm, 

and standard deviation equal to (0.393, 0.581, 0.648) degree and (1.102, 1.234, 1.319) 

mm for the rotation and translation parameters respectively. Results are presented in 
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Table 3-1. The median error was (0.71,0.62,0.82) degree for the rotation, and (1.41, 

1.72, 1.81) for the translation parameters as shown in Figure 3.16. 

With our network-based method, we measure the error between the estimated 

transformation parameters 𝑇𝐸𝑠𝑡 and the ground truth 𝑇𝐺𝑇. The median error was (0.63, 

0.56, 0.78) degree for the rotation, and (1.29, 1.42, 1.71) for translation parameters as 

shown in Figure 3.16. 

The mean error was (0.684, 0.706, 0.776) degree for the rotation, and (1.556, 1.695, 

1.739) mm for the translation parameters, with a standard deviation of (0.423, 0.414, 

0.416) degree, and (1.099, 1.202, 1.106) mm respectively as presented in Table 3-1. 

  

(a) (b) 

  

(c) (d) 

Figure 3.16 – Comparison of the error estimation for estimated rigid parameters (Rx, Ry, Rz), and (Tx, 

Ty , Tz) for our proposed method (Figures (a) and (c)) and the classical iterative  approach presented by 

[77]. (Figures (b) and (d)).  

3.5.5.2. Distance errors (DisErr) 

The distance error denotes the average distance in millimeters between the oblique cut 

plane which is support of the ground truth 𝐼𝐺𝑇 (the ground truth image that we used to 

simulate the fixed US image), and oblique cut plane predicted by the parameter 

estimated by our method or the iterative one. The smaller the distance, the more 

accurate the estimation is.  Table 3-1 shows a somewhat better performance (1.67 mm) 

has been achieved with our method compared to the iterative registration (1.89 mm). 

3.5.5.3. Registration computation time 

The average running time was around 0.070 second with our method compared to the 

classic iterative methods which takes around 28 seconds for one image/sub-volume 

pair. The results are presented in Table 3-1. 
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In fact, for classical methods, there are multiple factors that affect the computation time, 

(i.e., the number of pyramid resolution, the number of iterations, the number of grey 

level bins in each resolution level, the size of the optimization step ...). For example, 

using one resolution with 250 iterations takes around 9.75 seconds, compared to 4 

multiresolution levels that takes around 67 seconds with the same number of iterations. 

In our case, were there is no large deformation, a single resolution is sufficient. The 

maximum number of iterations was 250 iterations, we used adaptive step size with 

maximal size of 0.1, and the number of histogram bins is 32 for the MI.  

Table 3-1 – Performance comparison of our proposed framework and the classical iterative method. 

Method DisErr 

(mm) 

Transformation Estimation Error Time 

(Sec)  𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜗𝑥 𝜗𝑦 𝜗𝑧 

Iterative 

method 

1.89 Mean 1.618 1.8289 1.875 0.794 0.893 0.922 9.65 

SD 1.102 1.234 1.319 0.393 0.581 0.648 

Our 

framework 

1.67 Mean 1.556 1.695 1.739 0.684 0.706 0.776 0.07 

SD 1.099 1.202 1.106 0.423 0.414 0.416 

 

3.5.5.4. Visual validation 

Figure 3.17 shows the overlap between the source image and the corresponding target 

plane, after registration using the classical iterative method, and our proposed learning-

based method. 

As we can qualitatively observe, the overlap increases after registration with better 

alignment when using the proposed method. 
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Figure 3.17 – examples of the registration results. 

3.5.6. Discussion 

In this section we present a supervised learning-based registration approach to perform 

slice-to- volume learning-based registration for cardiac arrhythmia guidance therapy, 

by using CNN to assess non iteratively the rigid transformation parameters between an 

US slice and the CT volume. 

Every registration case took around 0.07 seconds (almost 140 times less than the 

classical method). This acceleration was not obtained at the expense of the registration 

accuracy because with our method, this accuracy is of the same order of magnitude or 

even slightly better. 

The experimental results demonstrate the equally good registration performance of our 

work and especially a much higher computation speed compared to the conventional 

iterative registration method. 
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3.6. Conclusion  

In this chapter, we first discussed the evolution of medical image registration methods 

to deep learning-based approaches. We presented then the existing methods and some 

potential directions for future research like GAN. We gave a comprehensive summary 

of published papers focused on supervised deep learning-based medical image 

registration algorithms for both mono and multimodal imaging. We also highlighted 

one of the most challenging problems in medical image registration: the Slice-To-

Volume registration for both projective and extracted slices using learning registration 

approaches. 

Then, we presented our framework for the registration of US CT image pairs.  We 

propose the following process: we first ran the input moving and fixed image pairs 

through a siamese architecture composed of convolutional layers which was able to 

extract features of the moving and fixed images analogous to dense local descriptors, 

then we matched the two feature maps, and finally we ran this corresponding feature 

maps into a registration network, which directly gave as output the registration 

parameters set of the rigid registration. The accuracy of the registration has been 

quantified based on the Target Registration Error (TRE) for specific anatomical 

landmarks. Results of the registration process showed a median TRE of 2.2 mm for all 

the fiducial points, and the registration computation time was around 3 ms comparing 

to the classic iterative methods which took around 6 seconds for one image pair.  

And finally, we extended our work to tackle the most challenging problem of 2D US to 

3D volume image registration in order to refine the estimation of the transesophageal 

probe pose in the 3D preoperative volume, which is essential for real time image 

guidance therapy. The proposed framework consists of two branches of CNN to extract 

the feature maps of the fixed US image and the moving CT volume, then we combined 

the two feature maps into a concatenation layer, and finally we passed these features 

into ResNet 50 to assess the six rigid transformation parameters.  

The evaluation showed the proposed method is able to achieve state of the art results in 

terms of accuracy, while decreasing the computation time compared to the classical 

iterative methods method. In this multimodal case we were able to reduce the 

computation time from around 9.65 sec to 0.07 sec. This new method will allow us to 

find the pose of the TEE US image in the CT volume in a more precise way and 

especially with a computation time compatible with the clinical routine. 

For this work, because of the imaging probe is still under development, we couldn’t 

have real US images, also we didn’t have enough contact with doctors to provide us 

numeric phantom, or real images because of COVID19 conditions that’s covered the 

most duration of the work. 
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Chapitre 4  

 

Learning-Based Registration: 

unsupervised Transformation Estimation  

1.1. Introduction  

Despite the success of the supervised methods, the difficult nature of the acquisition of 

reliable ground truth remains a significant obstacle in real data [117]. This has 

motivated a number of different groups to explore unsupervised approaches for image 

registration. 

Currently, unsupervised methods are the hot topic in medical image registration, as they 

can predict the deformation fields and warped moving images in a single pass, and do 

not require ground-truth transformations for training. Similar to supervised method. 

The study presented in this chapter aims at quantifying the nonrigid US/CT registration. 

Thus, the deformations of the heart that result from the patient's breathing and the 

movement of the heart will be taken into account during the interoperable procedure. 

The first part of this chapter, we present a review of the literature on the use of 

unsupervised deep learning approach in the medical domain and their applications, then 

we present our proposed framework, and finally our results obtained on real and 

simulated datasets. 

4.1. Background  

As  demonstrated in the previous chapter, several CNN architectures have been 

proposed in recent years, such as AlexNet [84], VGG [85] , ResNet [86], and DenseNet 

[87]. Among these, in the area of medical image segmentation and registration, the most 

widely used architecture is the U-Net [88]— an encoder–decoder style network with 

skip connections between the encoding and decoding paths  (as depicted in Figure 4.1). 

The encoder contains several convolutional layers and pooling layers, which 

downsample the input image to a low resolution. While the decoder is made up of 

deconvolution layers with a matching number of layers to the encoder. Through the 

decoder, the feature maps are reconstructed to the original size of the input images. 

 The U-Net utilizes multiple down- and up-sampling layers to learn features at different 

resolutions, with limited expense of computational resources. It has been widely 

applied in various medical imaging applications (e.g., segmentation), and due to its 

flexibility, most state-of-the-art Deep Learning-based medical Image Registration 

methods use it, as well as in some component of the overall framework, where the final 

fully-connected layer can be dropped out, so that a direct end-to-end registration field 

can be achieved. 
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Figure 4.1 – An example of the U-Net architecture. 

Currently, unsupervised non rigid image registration methods can predict the 

deformation fields and warped moving images in a single pass, and do not require 

ground-truth transformations for training. 

Since no ground-truth data is available or used, the first problem to tackle in training 

unsupervised registration networks, is to formulate a loss function that can be optimized 

to train the network. Using a spatial transformer, deep learning networks can generate 

some deformation fields to warp the moving image. The dissimilarity between the 

warped moving image(s) and fixed image(s) can then be used to calculate the loss 

function for back-propagation. This measure of dissimilarity (or similarity) is typically 

estimated using an image similarity metric such as Mean Square Error (MSE) and 

Mutual Information (MI). 

 Convolutional neural networks (CNNs)form the basis for most deep learning-based 

image registration networks. In 2017, De Vos et al [118] were the first to propose an 

unsupervised end-to-end network, based on CNN, to register 2D cardiac cine MRI 

images. They demonstrated that the registration accuracy of their approach was 

comparable to SimpleElastix. Similarly, Jun et al  [119] proposed a ‘CNN’ network for 

the registration of 2D abdomen MRI, which was the first CNN-based registration 

method for abdominal images. 

4.2. CNN in deformable medical image registration: Related work 

As discussed in section 3.3 the fundamental blocks for image registration remain the 

same in either deep learning or iterative based approaches, and the role of deep learning 

part is to enhance or replace one of the components of the registration framework 

(metric, transformation model) or to facilitate other operations such as features 

extraction. In our case we will use CNN to directly estimate the transformation 

parameters from the input image pair. 

In the rest of this bibliographic section, we will focus on the use of learning-based 

approaches in deformable (non-rigid) medical image registration. 
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4.2.1. Deep Similarity based Registration 

In this section, we review some methods that use deep learning to learn a similarity 

metric. This similarity metric is then inserted into a classical intensity-based registration 

framework with a defined interpolation strategy, transformation model, and 

optimization algorithm. In this scenario deep neural network acts as an approximator 

of the similarity between the input images.   This complete and no faulty similarity 

metric can then be inserted into the registration process. 

Related works: Simonovsky et al proposed a 3D similarity network using a few aligned 

image pairs [120]. The network was trained to classify whether an image pair is aligned 

or not. They observed that the hinge loss performed better than the cross-entropy loss. 

The learned deep similarity metric was then used to replace MI in the traditional 

deformable image registration (DIR) for brain T1-T2 registration. It is important to 

ensure the regularity of the first order derivative in order to adapt the deep similarity 

metrics to the traditional deep image registration frameworks. The gradient of the deep 

similarity metric with respect to transformation was calculated using chain rule. They 

found that high overlap of neighboring patches led to smoother and more stable 

derivatives. They trained the network using the IXI brain dataset and tested it using a 

completely independent dataset called ALBERTs to show the good generality of the 

learned metric. They showed that the learned deep similarity metric outperforms MI by 

a significant margin. Compared with CT-MR and T1-T2 image registration, MR-US 

image registration is more challenging due to the fundamental imaging differences in 

image acquisition principles between MR and US. 

4.2.2. Unsupervised Transformation Estimation 

The underlying philosophy behind these approaches is that the deep neural network 

acts as a regressor to directly estimate the transformation parameters in a single run. 

 Instead of using a huge ground truth set, we can use data augmentation techniques on 

a small numbers of input samples as a traditional similarity measure (or combination 

thereof) can then be used as a loss function to guide the learning process, to maximize 

speed of execution. This last point is critical in a real-time application such as 

transesophageal HIFU image guidance therapy. 

Related works:  Uzunova et al. [117] generated ground truth data using statistical 

appearance models (SAMs). They used CNN (an adaptation of FlowNet to estimate the 

deformation field for the registration of 2D brain MRs and 2D cardiac MRs. They 

demonstrated that training FlowNet with ground truth data generated by SAMs yielded 

superior performance to CNNs trained with randomly generated ground. 

One of the important components of most of the unsupervised deep learning image 

registration approaches is the spatial transformer network (STN), proposed in 2015 

[121], STN learns to spatially transform feature maps in a way that is beneficial to the 

task of interest. Although not explicitly designed for image registration, but rather to 

imbue networks with the means to learn features in a way that is invariant to rigid and 

deformable transformations, they have become the basis for most unsupervised 

registration methods. The STN consists of three components: a localization network, a 



Chapter 4 – Learning-Based Registration: unsupervised Transformation Estimation 

 

84 

  

grid generator and a sampler. The localization network is a CNN, which takes feature 

maps as input and outputs the parameters of a suitable/user-specified spatial 

transformation. The transformation parameters are then used to generate a resampling 

grid by the grid generator. Finally, a differentiable image sampling is performed by a 

linear sampler using the grid generated of the previous step. 

Balakrishnan et al proposed an unsupervised deep image registration method for MR 

brain atlas-based registration [122]. Their approach was based on a ‘U-Net+STN’ 

framework with different traditional similarity metrics (MSE and CC) for 3D brain MRI 

image registration. They used a U-Net like architecture and named it ‘VoxelMorph’. 

During training, the network penalized the differences in image appearances with the 

help of the spatial transformer network. A smoothing constraint was used to penalize 

local spatial variations in the predicted transformation. They achieved comparable 

performance to the ANT [123] ] registration method in terms of Dice Score Coefficients 

(DSC) of multiple anatomical structures. Subsequently, they extended their method to 

exploit auxiliary segmentations available in the training data. A DSC loss function was 

added to the original loss functions in the training phase. Segmentation labels were not 

required during testing. They investigated unsupervised brain registration, with and 

without DSC loss on the segmentation label. Their results showed that the segmentation 

loss contributed to improv the DSC scores. The performance is comparable to ANT and 

NiftyReg [124], while being x150 faster than ANTs and x40 faster than NiftyReg. 

 Similar to Balakrishnan et al [122], Qin et al also used segmentation as complementary 

information for cardiac MR image registration [125]. They found that the features 

learned by CNN registration could also be used in segmentation. The predicted 

Deformation vector fields (DVF) were used to warp the masks of the moving image to 

generate the masks of the fixed image. They trained a joint segmentation and 

registration model for cardiac cine image registration and proved that the joint model 

could generate better results than the two separate models alone in both segmentation 

and registration tasks. 

Later, Zhang  proposed a network with trans-convolutional layers for an end-to-end  

prediction of the DVF in MR brain DIR [126]. They focused on the diffeomorphic 

mapping of the transformation. To encourage smoothness and avoid folding of the 

predicted transformation, they proposed an inverse-consistent regularization term to 

penalize the difference between two transformations from the respective inverse 

mappings. The loss function consists of an image similarity loss, a transformation 

smoothness loss, an inverse consistent loss and an anti-folding loss. Their method  

outperformed the Demons and  symmetric normalization metrics, in terms of DSC 

score, sensitivity, positive predictive value, average surface distance and Hausdorff 

distance [127].  

A similar idea was proposed by Kim et al who used cycle consistent loss to enforce the 

regularization of the DVF [128]. They also used identity loss where the output DVF 

should be zero if the moving and fixed image are the same. 

 Rohe et al. [129] also used a network inspired by U-net [88] to estimate the deformation 

field used to register 3D cardiac MR volumes. Mesh segmentations are used to compute 

the reference transformation for a given image pair and the SSD between the prediction 
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and the ground truth is used as loss function. This method outperformed LCC Demons 

based registration [130].  

In another work, Vos et al. [118] used NCC to train an FCN to perform the deformable 

registration of 4D cardiac cine MR volumes. A DVF is used in this method to deform 

the moving volume. Their method outperforms registration that is performed using the 

Elastix toolbox [131]. Indeed, this work should be considered as the most 

comprehensive deep learning framework based on the CNN to directly estimate the 

deformable transformation parameters in a single shot. In addition to estimate the 

transformation parameters, their multi-stage multi-resolution approach was able to 

learn a predefined similarity measure so that the need to use a synthesized and labeled 

dataset is avoided, which is a great advancement in the application of CNNs to the field 

of medical image analysis where we are faced with small-sized annotated datasets. 

Sun et al. [132] proposed an unsupervised method for 3D MR/US brain registration that 

uses a 3D CNN consisting of a feature extractor and a deformation field generator. This 

network is trained using a similarity metric that incorporates both pixel intensity and 

gradient information. In addition, both image intensity and gradient information are 

used as inputs to the CNN. 

 Finally, for 3D-CT  image registration, Hering et al [133] combined three 2D networks 

to construct a 2.5D registration approach, for cardiac MRI-CT registration. They 

demonstrated that their approach achieved a higher Dice score than previous state-of-

the-art unsupervised registration methods. 
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4.3. Deformable US/CT registration with a convolutional neural network 

In this section, we present our proposed approach, a Convolutional Neural Network 

(CNN) framework for deformable transesophageal US/CT image registration which 

will be used for cardiac arrhythmias and guidance therapy purposes. This framework 

consists of  three main parts (Figure 4.2): a) a CNN, b) a spatial transformer and c) a 

Resampler. CNN receives concatenated pairs of moving and fixed images as input and 

estimates the parameters of the spatial transformer as output. The spatial transformer 

generates the displacement vector field allowing the resampler to wrap the moving 

image in the fixed image. 

In our approach, we train the model to maximize standard image matching objective 

functions that are based on image intensities. The network can be applied to perform 

non-rigid registration of a pair of CT/US images directly in a single pass, thus avoiding 

the time-consuming computation load of the classical iterative method. 

In this work, we focus on the registration of a 2D CT slice to a transesophageal 2D US 

image with an unsupervised learning approach. The network can be applied to perform 

the registration on unknown image pairs in single pass, thus in a non-iterative manner 

to avoid time consuming issues. This approach should also allow elastic registration 

which is generally more suited to handling cardiac images. 

 
Figure 4.2 – The general framework of the proposal approach. 

4.3.1. CNN model 

The network architecture is similar to that of the U-Net [88], which consists of encoding 

and decoding sections with skip connections. The convolutional layers of the encoder 

capture hierarchical features of the input image pair that are then used to estimate the 

DVF in the decoding stage. The CNN receives concatenated pairs of moving and fixed 

images as input and applies two alternating layers of 2×2 convolutions in both the 

encoder and decoder stages using a kernel size of 3, each of which is followed by a 

rectified linear unit (ReLU) and a 2x2 max pooling operator with a stride of 2 down-

sampling layers in the encoder path to reduce the number of the CNN parameters. Each 

decoding step consists of an up-sampling, convolutions (“up-convolution”) that halve 
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the number of feature channels, The skip connections propagate the features learned 

during the encoding stages directly to the layers generating the registration. This 

enables the alignment of the image pairs. 

The network is trained by optimizing an image similarity metric (i.e. by dissimilarity  

backpropagation ) between pairs of moving and fixed images of  a training set using 

the ADAM optimizer [134]. After training, the network can be applied for unseen 

images registration. 

We implemented the network using Tensorflow and trained it on a NVIDIA TitanX 

GPU with 1000 iterations which took approximately 6 hours. After training, the 

network can be applied for registration of unseen images. 

4.3.2. Spatial transform 

The spatial transformer generates the DFV that enables the resampler to wrap the 

moving image in the fixed image. The spatial transform is based on the spatial 

transformer network [122]. It computes for each pixel p, the new location in the warped 

moving image by adding the displacement vector (dx, dy) to that pixel. 

Since mapping from one space to the other will often require an estimation of the 

intensity of the image at non-grid positions, an interpolator is required. 

4.3.3. Loss function 

We use mutual information (MI) as our loss function. In a previous case-based test we 

found that MI was one of the best-fitting  similarity measure for our US/CT data [4]. 

MI compares the information of the US images and the corresponding information 

extracted from the CT slices. 

𝐿(𝐴, 𝐵) = ∑𝑝(𝑎, 𝑏) 𝑙𝑜𝑔
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
𝑎, 𝑏

  ; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵  (8) 

Where A is the reference image (US), B represents the warped moving image 

(transformed CT slice), p (a), p (b) are the marginal distributions of A and B, and p (a, 

b) their joint distribution, we also added a regularization term to energy to make the 

deformation smooth or more realistic. 

4.4. Experiments and results 

In order to produce enough data for the training and testing of our framework and also 

to enhance the robustness of the method, we arbitrary produced 250 poses in a range of 

± 5 mm on translation and ± 5° in rotation around an initial pose located in the centerline 

of the esophagus in the middle of the volume, and we extract all the 2D CT slices using 

the framework described in [135]. We then simulated the corresponding US images 

with the method described in [3] (see section 2.1.4.2). 

Every CT and US image pair is resampled to the same resolution according to the 

spacing information and overlap the moving and fixed image with each other by 

applying an initial transform. 
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transform to from this dataset, the network was trained by randomly selecting 175 pairs 

of fixed (simulated US images) and moving (cardiac CT plane) image slices. The 75 

remaining pairs were used for validation. 

The pairs of fixed and moving images were anatomically corresponding slices, but we 

added some artificial deformations when we simulated the 2D US images. To deform 

the images, we used the Elastocdeform python library. The idea was to generate a 

coarse displacement grid with a random displacement for each knot of this grid. The 

image is then deformed using these displacement vectors and a spline interpolation. 

4.4.1. Dataset 

This study has been conducted on a patient with cardiac fibrillation CT dataset, obtained 

from Louis Pradel University Hospital in Lyon, France, and simulated US images. The 

dimensions of the reconstructed CT volume are 512 × 512 × 323 voxels with an image 

spacing of 0.546875 × 0.546875 × 0.55031 mm3. 

4.4.2. Experimental protocol 

We compared the registration results obtained by the proposed methods to those 

obtained by an iterative B-Spline free form deformation field non-rigid registration 

method implemented in the SimpleElastix Library [136]. We used the same similarity 

measure MI in both methods. 

4.4.3. Qualitative visual evaluation 

Figure 4.3 shows an example of the registration of an image pair: a) The slice extracted 

from the CT volume; b) The simulated US image; c) The overlap between the moving 

CT image and the fixed US image using the classical method from SimpleElastix and 

d) our CNN one. 

Visually, the results obtained by the proposed method seem to provide a better 

alignment than the classical free-form deformation field method. This can be seen for 

example at the bottom of the image on the chest. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.3 – (a) 2D CT slices, (b) simulated 2D US slices with superimposed boundaries of the left atrium 

(yellow). The deformed moving images obtained by (c) the free-form deformation field method of 

SimpleElastix and (d) the proposed approach. 

4.4.4. Quantitative evaluation 

The comparison of the accuracy of the registration was performed according to two 

complementary metrics: the Dice similarity coefficient and the Hausdorff distance. 

4.4.4.1.  Dice similarity coefficient (Dsc)  

Obtaining some dense ground truth registration for this kind of data is not easy because 

many registration fields can produce similar-looking warped images.  For this reason, 

we evaluated our method using volume overlap of anatomical segmentations. 

As a first step, we selected anatomical structures that have a volume of at least 100 

voxels for all tested subjects. The ideal candidate structure in our case was the left 

atrium. We then manually segmented all test image pairs (400 images) using ITKsnap. 

The Dice similarity score is a widely used non-parametric measure to quantify the 

amount of overlapping regions between  the input fixed image and the warped moving 

images, It computes the number of pixels that overlap between two surfaces and 

normalizes it by the half of the sum of the number of non-zero pixels in the two surfaces 

[137]: 

 
𝛼 =

2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (9) 

Where A is the ground truth standard surface which, in our case, refers to the 

segmentation of the left atrium in the US fixed image (see Figure 4.3), and B the 

segmentation extracted from the warped registered CT image. 

 = 1 indicates that the anatomy matches perfectly after registration, and  =0 indicates 

that there is no overlap. If a registration correctly estimates the precise anatomical 

correspondence between the two images, we expect that the regions in the fixed and in 

the moving image that correspond to the same anatomical structure will overlap well. 
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4.4.4.2.  Hausdorff distance 

The Hausdorff distance [127] is a metric based on spatial distance. It is defined as the 

maximum of the nearest distance between two objects where the nearest distance is 

computed for each point or vertex of the contour of the two objects. A smaller Hausdorff 

distance indicates a closer topology between the two objects. These two metrics were 

measured on the boundaries of the surface of the segmented left atrium (see Figure 4.3).  

Error! Reference source not found. compares the measurement indices obtained on t

he 400 test images, namely: the average Dice similarity coefficient, the average 

Hausdorff distance and the average computation time.   These indices were obtained by 

using the iterative method of SimpleElastix and by our CNN (U-Net) based method. As 

a reminder, the Dice measurement and the Housdorf distance were conducted on the 

segmented left atrium. In each case we report the mean and standard deviation of the 

measured scores on the validation data set. 

As expected, we can see in Table 4-1 that the computation time is greatly improved 

using CNN (under a second) than using the classical iterative method (around one 

minute). More surprising, we can also notice in Table 4-1 that both spatial comparison 

metrics are improved using CNN compared to the classical approach. 

Table 4-1– Average Dice similarity coefficient, Hausdorff distance and computation time results for 

SimpleElastix and CNN (U-Net) across the segmented left atrium in the US fixed image, and the 

segmentation mapped from the warped registered CT (see Figure 4.3). 

Method 

 

Dice 

sim. Coef. 

Hausdorff 

distance (mm) 

Comp. 

time (sec) 

SimpleElastix 0.7 (0.01) 1.7 (0.02) 65 (0.1) 

CNN (U-Net) 0.8 (0.02) 1.2 (0.05) 0.7 (0.02) 

 

These results were obtained from simulated US images. We are well aware that there 

are differences between simulated US images and real US images. However, we have 

found in a previous study that a method tuned on simulated data allowed to have also 

good results on real data [7]. So, we are hopeful that our method works on real data. 

4.5. Conclusion  

In this chapter, first we presented a review of unsupervised deformable image 

registration in the medical domain and their applications. 

Then, we present our proposed unsupervised learning-based-approach for 

transesophageal US/CT cardiac image registration. The obtained results indicate a 

strong improvement in terms of computation time without any loss (even with some 

improvements) in terms of registration accuracy. 

 In our future work, we will integrate the unsupervised learning approach as a second 

step after the 2D US/3D CT image rigid registration method proposed in Chapter 3 for 
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probe navigation inside the esophagus during the non-invasive cardiac arrythmia 

ablation performed by real time HIFU. 
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General conclusion and perspective  

Minimally-invasive transesophageal HIFU ablation technique for cardiac arrhythmia 

therapy is a very promising treatment that could be the future direction for cardiac 

arrhythmia medicine. This therapy will improve the ablation procedure because it can 

go deeper in the tissues without damaging the intervening tissues, unlike the 

radiofrequency catheter ablation. This technique will also reduce the cost for treating 

cardiac arrhythmia. 

One of the most challenging issues for this technology is to find image processing 

solutions that can accurately define the position of the TEE imaging probe inside the 

patient’s body during the real-time treatment. These solutions should be both accurate 

and fast for real time guidance therapy. 

The main objective of the presented work is to propose multimodal image registration 

solutions for image guidance therapy, to navigate the transesophageal HIFU probe with 

an embedded TEEE imaging device inside the esophagus toward the arrhythmic area 

to treat it. For this we need to combine the information from the preoperative high 

resolution (CT/MRI) volume, and the intraoperative low resolution 2D US images to 

give physicians the best guidance information to define the lesion position. For this 

purpose, we have proposed and developed three solutions to register 2D ultrasound/3D 

CT volume based on classical and deep learning methods. Three main contributions can 

be highlighted in this work: 

1. The first contribution we proposed was based on a classical iterative intensity-

based registration of the two perpendicular 2D US to preoperative 3D CT. As a 

proof of concept we developed the following evaluation framework on a digital 

phantom: 1) as the probe is under development we defined a ground truth (GT) 

initial pose inside a CT volume and simulated two perpendicular US images 

from the CT data; 2) we ran the registration framework from 55 randomly 

defined initial pose  around the initial GT pose; and 3) we estimated the 

accuracy of the registration by (a) the errors on the estimated transformation 

parameters  (translation error and quaternion distance for rotation) and (b) 

Target Registration Error (TRE) on 8 features. The accuracy of the registration 

using two 2D US planes has been compared to the previous work using only a 

single US plane. An improvement was observed when using two 2D US planes 

compared to the previous single US plane. The median translation errors were 

reduced from 1,5 to 0,7 mm, the median rotation error from 3,2° to 2,1° and the 

median TRE from 2,5 mm to 1,76 mm.  

 

2. In the second contribution, we presented a convolutional neural networks 

(CNNs) framework for transesophageal ultrasound/computed tomography 

image registration. The use of CNNs could potentially solve the problem of high 

computation time of the classical iterative methods, which are not suitable for a 

real-time application. We proposed the following process: we first ran the input 
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moving (CT) and fixed image pairs through a siamese architecture composed of 

convolutional layers, to extract features from the moving and fixed maps 

analogous to dense local descriptors; then we matched the feature maps; and 

finally ran this correspondence feature map through a registration network, 

which directly outputs the registration parameters set of the rigid registration. 

Accuracy of the registration is quantified based on the Target Registration Error 

(TRE) for soft specific anatomical landmarks. The results of the registration 

process showed a median TRE of 2.2 mm for all the fiducial points, and the 

registration computation time was around 3 ms compared to the classic iterative 

methods which took around 6 seconds for one image pair. This contribution 

confirmed that the network could detect common features between the CT and 

US image pairs. 

We then extended this first 2D/2D registration study to propose a learning-based 

2D/3D registration to refine the estimation of the transesophageal probe pose in 

the 3D preoperative volume. The proposed framework consisted of two 

networks to extract the feature maps of each pair of fixed US image and CT sub-

moving volume, followed by a concatenation layer, and finally the registration 

network ResNet 50 was used to estimate the six rigid transformation parameters.  

As we have shown, compared to a classical iterative method, the quality of the 

results was preserved (and improved in some cases) while the computational 

time was highly reduced. Every registration case took around 0.07 seconds 

(almost 140 times less than the classical iterative method). 

3. Finally, in our third contribution, we presented a Convolutional Neural Network 

(CNN) framework for deformable transesophageal 2D US/2D CT image 

registration, for the cardiac arrhythmias therapy guidance. The framework 

consisted of a CNN, a spatial transformer, and a resampler. CNN received 

concatenated pairs of moving and fixed images as input and estimated the 

parameters for the spatial transformer as output. The spatial transformer 

generated then a displacement vector field that allowed the resampler to wrap 

the moving image in the fixed image. In our proposed method, we trained the 

model to maximize some standard image matching objective functions that are 

based on the image intensities. The network can be applied to perform non-rigid 

registration of a pair of CT/US images directly in a single pass, avoiding the 

time-consuming computation of the classical iterative method. The results 

compared the two approaches in terms of computation time and accuracy. The 

computation time was highly improved using CNN (under a second) compared 

to the classical iterative method (around one minute). We could also notice that 

both spatial comparison metrics are improved when using CNN compared to 

the traditional approach. 
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Perspectives: 

Throughout the proposed work, we faced a variety of scientific challenges and in 

particular the difficulty of obtaining a real database or even physical phantom datasets 

for validation. Also, in the context linked to the COVID-19 pandemic we didn’t have 

enough contact with the doctors to provide us even physical phantom data. So, we 

decided to validate our frameworks with simulated US images. 

But many of these difficulties were overcome with dedicated methods. At the end of 

this work, several perspectives can be identified: 

1) To combine the two algorithms of rigid and deformable image registration into 

a single algorithm with two steps: first to define the 3D pose of the probe in 3D 

volume, second to have an accurate description of the ablation area by applying 

the deformable transform between the 2D US fixed image, and the resulted 

transformed moving 3D CT slice (the first step result).  

2) to apply some generative learning approach like GAN to generate more ground 

truth data. 

3) To validate the results on physical phantom or/and real patients’ data. We hope 

that a network tuned on simulated data will work on real data. 
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Annexe I.  

Quaternion: 

Definition. The quaternion are the extension of complex numbers. Sir William R. 

Hamilton (1843) try to find a set of numbers that shared in 3-D space properties similar 

to those of complex numbers in the plane. We will show the application of quaternion 

to deal with 3-D rotations [de Casteljau, 1987, Horn, 1987, Simo et al., 1988, Reyes-

Avila, 1990, Reyes-Avila, 1991].  

The set ℍ (equals ℝ4) is a four-dimensional normed division algebra over the real 

numbers. Its canonical basis is (1, 𝑖, 𝑗, 𝑘). A quaternion is a number 𝜆 = 𝑎 + 𝑖𝑏 + 𝑗𝑐 +
𝑘𝑑. 

The addition of two quaternions 𝜆1 = 𝑎1 + 𝑖𝑏1 + 𝑗𝑐1 + 𝑘𝑑1  and 𝜆2 = 𝑎2 + 𝑖𝑏2 +

𝑗𝑐2 + 𝑘𝑑2  is 𝜆1 + 𝜆2 = (𝑎1 + 𝑎2) + 𝑖(𝑏1 + 𝑏2) + 𝑗(𝑐1 + 𝑐2) + 𝑘(𝑑1 + 𝑑2). (ℍ, +) is 

an additive commutative group. 

The multiplication of the basis elements are:  

1.1 = 1; 1. 𝑖 = 𝑖; 1. 𝑗 = 𝑗; 1. 𝑘 = 𝑘; 

𝑖2 = 𝑗2 = 𝑘2 = −1; 

𝑖. 𝑗 = −𝑗. 𝑖 = 𝑘; 𝑗. 𝑘 = −𝑘. 𝑗 = 𝑖; 𝑘. 𝑖 = −𝑖. 𝑘 = 𝑗; 

The product * of two quaternions 𝜆1 = 𝑎1 + 𝑖𝑏1 + 𝑗𝑐1 + 𝑘𝑑1  and 𝜆2 = 𝑎2 + 𝑖𝑏2 +

𝑗𝑐2 + 𝑘𝑑2  is: 𝜆1 ∗ 𝜆2 = (𝑎1 + 𝑖𝑏1 + 𝑗𝑐1 + 𝑘𝑑1)(𝑎2 + 𝑖𝑏2 + 𝑗𝑐2 + 𝑘𝑑2) = 𝑎1𝑎2 −

𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2 + (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2)𝑖 + (𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 +

𝑑1𝑏2)𝑗 + (𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2)𝑘. (ℍ,∗) is a non commutative multiplicative 

group. 

Vector subspaces. The set ℍ  can be written as a set of quadruples: ℍ =
{(𝑎, 𝑏, 𝑐, 𝑑)|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}. We can define 2 vector subspaces of ℍ: 

• ℍ𝑅 = {(𝑎, 0,0,0)|𝑎 ∈ ℝ} ⊂ ℍ . It corresponds to the real number. ℍ𝑅  is an 

isomorphism to ℝ. 

• ℍ𝑉 = {(0, 𝑏, 𝑐, 𝑑)|𝑏, 𝑐, 𝑑 ∈ ℝ} ⊂ ℍ . It corresponds to the pure imaginary 

number. ℍ𝑉 isomorphism to ℝ3. 

Any quaternion 𝜆 = 𝑎 + 𝑖𝑏 + 𝑗𝑐 + 𝑘𝑑 can be decomposed into 𝑎 (scalar part of 𝜆) and 

𝑖𝑏 + 𝑗𝑐 + 𝑘𝑑 (vectorial part of 𝜆). 

So 𝜆 = (𝑟, 𝐩) with 𝑟 ∈  ℝ the real and 𝐩 ∈ ℝ3 the imaginary part. Any vector 𝐩 ∈ ℝ3 

can be associated with a pure imaginary number 𝜆 = (0, 𝐩). 

The product of two quaternions 𝜆1 = (𝑟1, 𝐩1)  and 𝜆2 = (𝑟2, 𝑝2)  is 𝜆1 ∗ 𝜆2 =
(𝑟1, 𝐩1)(𝑟2, 𝐩2) = (𝑟1𝑟2 − 𝐩1. 𝐩2, 𝐩1 × 𝐩2 + 𝑟1𝐩2 + 𝑟2𝐩1)  with .  and ×  respectively 

the dot product and the cross product in ℝ3. 



Annexe 1 

110 

  

• Conjugate: 𝜆 = (𝑟, 𝐩) ⟶ �̅� = (𝑟,−𝐩) 

• Norm: ‖𝜆‖2 = 𝜆 ∗ �̅� = �̅� ∗ 𝜆 = 𝑎2 + ‖𝐩‖2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 

• Inverse 𝜆−1 =
�̅�

‖𝜆‖2
 

• Unitary quaternion. It is defined by ‖𝜆‖2 = 1. It can be deduced that unitary 

quaternion 𝜆−1 = �̅�. The group of unitary quaternions forms a sphere 𝑆3  of 

dimension 3. 

Parametric rotation representation. Let define the following linear transformation 𝑅 

of a fixed 𝑝:  

𝑅(𝑝, ):ℍ × ℍ ⟶ ℍ 

𝑅(𝑝, 𝑞) = 𝑝 ∗ 𝑞 ∗ 𝑝−1 =
1

‖𝑝‖2
(𝑝 ∗ 𝑞 ∗ �̅�) 

R is a linear and orthonormal transformation. If 𝑞 ∈ ℍ𝑉 then 𝑅(𝑝, 𝑞) ∈ ℍ𝑉. 

For 𝜆 an unitary quaternion and 𝑞 ∈ ℍ𝑉: 

𝑅(𝜆, ): 𝑆3 × ℍ𝑉 ⟶ ℍ𝑉 

𝑅(𝜆, 𝑞) = 𝜆 ∗ 𝑞 ∗ 𝜆−1 = 𝜆 ∗ 𝑞 ∗ �̅� 

This restriction of R in ℝ3  is a rotation R in ℝ3  in which all the geometric 

characteristics (rotation axis n and rotation angle 𝜃) are represented by: 

𝜆 = (cos (𝜃 2),⁄  𝐧 sin(𝜃 2⁄ )) 

Quaternion and rotation matrix. The transformation between a quaternion 

representative of a rotation and a rotation matrix are: 

• Quaternion to rotation matrix. For 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3) 

𝑅 =

[
 
 
 
𝜆0

2 + 𝜆1
2 − 𝜆2

2 − 𝜆3
2 2(𝜆1𝜆2 − 𝜆0𝜆3) 2(𝜆1𝜆3 + 𝜆0𝜆2)     0

2(𝜆1𝜆2 + 𝜆0𝜆3) 𝜆0
2 + 𝜆2

2 − 𝜆1
2 − 𝜆3

2 2(𝜆2𝜆3 − 𝜆0𝜆1)     0

2(𝜆1𝜆3 − 𝜆0𝜆2)
0

2(𝜆2𝜆3 + 𝜆0𝜆1)
0

𝜆0
2 + 𝜆3

2 − 𝜆1
2 − 𝜆3

2

0

0
1]
 
 
 

 

• Rotation matrix to quaternion. 𝑅 a 3 × 3 rotation matrix (unitary and positive).  
𝑡𝑟(𝑅) = 1 + 2𝑐𝑜𝑠𝜃 (tr: trace) 
1

2
(𝑅 − 𝑅𝑇) = 𝑠𝑖𝑛𝜃. 𝐧 

𝜆0 =
1

2
√1 + 𝑡𝑟(𝑅) 

𝜆1 =
1

4𝜆0
(𝑅32 − 𝑅23) 

𝜆2 =
1

4𝜆0
(𝑅13 − 𝑅31) 

𝜆3 =
1

4𝜆0
(𝑅21 − 𝑅12) 



 

 

 

 

 



 

 

 

 

 

Titer:   Guidage par l'image d'une sonde HIFU transoesophagienne pour le traitement des arythmies cardiaques 

Mots clés :  guidage de thérapies par l’image, recalage multimodal d'images, ablation par ultrasons focalisés de 

haute intensité, arythmie cardiaque. 

Résumé :  Les ultrasons focalisés de haute intensité 

(HIFU) par voie transoesophagienne peuvent être utilisés 

pour traiter l'arythmie cardiaque de manière efficace et 

non invasive. L'œsophage étant situé juste aux abords du 

cœur, il offre une fenêtre acoustique parfaite pour que les 

HIFU puissent être dirigés vers le cœur afin de mener 

l’ablation nécessaire au traitement de l’arythmie. 

Cependant, afin de guider l'ablation, le thérapeute doit 

faire le lien, par recalage, entre les images per-

opératoires (images échographiques fournies par la 

sonde HIFU dual-mode) et l'imagerie anatomique 

préopératoire à haute résolution, dans laquelle la ligne 

d'ablation a été définie (volume scanner X ou IRM). Dans 

ce travail de thèse, nous avons proposé plusieurs 

solutions pour améliorer ce recalage pendant la chirurgie 

si possible en temps réel. Premièrement, nous avons 

intégré un second plan image perpendiculaire au premier   

dans la solution classique itérative de recalage. 

Ensuite, nous nous sommes concentrés sur le recalage 

rigide d’une image échographique 2D dans un volume 

scanner X 3D à l’aide d’une approche par 

apprentissage profond supervisé afin d'estimer la 

position en temps réel de la sonde d'imagerie/thérapie 

pendant la chirurgie. L’utilisation d’un réseau a permis 

d’effectuer le recalage sur des paires d'images 

inconnues de manière non itérative réduisant ainsi 

drastiquement le temps de calcul de la méthode 

classique. En dernier, nous avons abordé une 

approche d'apprentissage non supervisée. Cette étude 

visait à effectuer un recalage non rigide entre l’image 

échographique et une coupe du scanner X afin de 

prendre en compte, pour une certaine phase du cycle 

cardiaque, les légères déformations du cœur résultant 

de la respiration du patient ou de l'insertion de la sonde. 

 

Title:   Image-based guidance of a transesophageal HIFU probe for the treatment of cardiac arrhythmias 

Keywords:  Image-guidance therapy, multimodal image registration, hight intensity focused ultrasound ablation, 

cardiac arrhythmia. 

Abstract: Transesophageal high intensity focused 

ultrasound (HIFU) can be used to treat cardiac arrhythmias 

efficiently and non-invasively. Since the esophagus is 

located right next to the heart, it provides a perfect acoustic 

window for HIFU to be directed toward the heart to perform 

the ablation necessary to treat the arrhythmia. However, in 

order to guide the ablation, the therapist has to make the 

link, by registration, between the intraoperative images 

(ultrasound – US – images provided by the dual-mode 

HIFU probe) and the preoperative high-resolution 

anatomical imaging, in which the ablation line has been 

defined (CT or MRI volumes). In this thesis work, we 

proposed several solutions to improve the image guidance 

during the real time surgery. First, we present an iterative 

framework to estimate the positioning of a new dual probe 

in the preoperative 3D CT scan. Second, we focussed 

on rigid registration of a 2D ultrasound image in a 3D 

X-ray volume using a supervised deep learning 

approach to estimate the real-time position of the 

imaging/therapy probe during the surgery. The use of 

a network allowed us to perform the registration on 

unknown image pairs in a non-iterative way thus 

drastically reducing the computational time compared 

to the classical method. And finally, we developed an 

unsupervised learning approach. This study aimed at 

performing a non-rigid registration between 2D US 

and 2D CT images in order to take into account, for a 

certain phase of the cardiac cycle, the slight 

deformations of the heart resulting from the breathing 

of the patient or the insertion of the probe. 
 


