
HAL Id: tel-03892761
https://theses.hal.science/tel-03892761v1
Submitted on 11 Jul 2022 (v1), last revised 10 Dec 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration in Reinforcement Learning: Beyond Finite
State-Spaces

Omar Darwiche Domingues

To cite this version:
Omar Darwiche Domingues. Exploration in Reinforcement Learning: Beyond Finite State-Spaces.
Machine Learning [cs.LG]. Université de Lille, 2022. English. �NNT : �. �tel-03892761v1�

https://theses.hal.science/tel-03892761v1
https://hal.archives-ouvertes.fr

Université de Lille
École Doctorale MADIS

Thèse de Doctorat

Spécialité Informatique

présentée par
Omar Darwiche Domingues

Exploration in Reinforcement Learning:
Beyond Finite State-Spaces

Exploration en apprentissage par renforcement :
au-delà des espaces d’états finis

sous la direction deMichal Valko et de Emilie Kaufmann

Soutenue publiquement le 18 mars 2022 à Villeneuve d’Ascq, devant le jury composé de

Emmanuel Rachelson Professeur, ISAE-SUPAERO Rapporteur & Président
Marcello Restelli Professeur associé, Politecnico di Milano Rapporteur
Aurélien Garivier Professeur, École Normale Supérieure de Lyon Examinateur
Matthieu Geist Professeur, Univ. de Lorraine, Google Research Examinateur
Emilie Kaufmann Chargée de recherche (HDR), CNRS, Univ. de Lille Directrice de thèse
Michal Valko Chargé de recherche (HDR), Inria, DeepMind Directeur de thèse
Christina Lee Yu Professeur assistant, Cornell University Invitée
Ronald Ortner Professeur associé, Montanuniversität Leoben Invité

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe Scool, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

To my mom, whose unconditional support and hard work allowed me to get here. And to my
grandma, who always said to me: “if you can’t make it, then who else can?” and “who studies

too much goes crazy”.1 All I can hope is that I made it and did not go crazy!

1“Se você não conseguir, quem mais consegue?” e “quem estuda demais fica louco!”.

Acknowledgements

There are many people without whom this work would not have been possible. Michal and
Emilie, my advisors and friends, gave me support and freedom to explore ideas, inspired
me with their energy and intelligence, were always there to ask the tough questions that fuel
research, and always there for the social events that keep life bright in a not-always-so-bright
world.2 I am extremely thankful for the opportunities you gave me and the amazing times
we had, but I’d like to highlight two particular moments that show how cool you are. Emilie,
when you welcomed me in Truchtersheim, showed me some cities around, and prepared vegan
tarte flambées, it was incredible! And Michal, always knowing me and my passion for free food
very well, brought me free snacks from DeepMind when I couldn’t be there during my remote
internship, this is unforgettable!

Pierre3 joined the team-family as a postdoc, became my third advisor, an amazing collaborator
and friend, without whom many (many!) results presented in this thesis would not have been
found, and several gatherings at l’Écart4 would not have taken place. Thank you for all the
discussions, debates, beers, Bernsteins, desserts, brainstorms, left or right?, pizza, S2, beers.

Matteo helped me discover that reinforcement learning is painfully fun5, encouraged me
to explore kernel-based ideas that appear quite a lot in this thesis, gave me great teaching
opportunities6, and is one of the few people with whom I can really talk about the best kind of
pop music. Thank you!

I am also immensely thankful to the members of the jury: Emmanuel, Marcello, Aurélien,
Matthieu, Christina, and Ronald. I really admire your work, and it was a great honor to
have you on the jury. Special thanks to Emmanuel and Marcello, the rapporteurs, for their
detailed feedback on the manuscript and the many typos they’ve spotted! I also appreciated
the discussions I had with Emmanuel after the defense about some research topics!

2As we all know, things got more complicated after (and including) 2020.
3Also known as Pedro, the theorem-proving machine, and one of the most brilliant people I have ever met.
4A wonderful bar in Lille, la meilleure ville.
5During my master’s, when he was teaching RL with Alessandro, I can never forget that he replied to an email

that I sent right after Christmas about some weird stuff that people do with policy gradients.
6Ghana! I remember the cool music we listened to while preparing the exercises.

I thank Lucas and Denise, who are amazing people that I consider as my family in Paris, who
were there for the joyful moments and also for the difficult ones, welcomed me uncountable
times into their home, either for simpleweekends among friends or for their delicious Christmas
dinners and joyful New Year’s Eve champagne. Xuedong (Javier Francesco Samuel and I
forgot what the other name is, probably Carlinhos), a friend and thesis-brother, who was
(almost) always there for a walk in Lille, a beyond-meat burger at Holy Moly, a pizza at IT,
a strawberry-milkshake-at-Five-Guys-that-tastes-almost-like-the-missing-Häagen-Dazs-à-la-
fraise, and, most importantly, to help me find the best apartments in Loos while making me
angry about his weird political views and question whether we can know if anything is real.
Thank you for that and for all your very thoughtful words in Spanish! Jean, my full-of-energy
thesis-half-brother and friend, thank you for all your good (and bad) advice, the best (!) parties
in Paris, the times you received me at Facebook-the-office-not-the-social-network (which were
of course for academic reasons and not for free food, but thanks for the free food), the nice
pictures in Vancouver and beyond, the party hats, the easily recognizable tall-man drawings in
skribbl (+Xuedong here too), that one very cool time at Ground Control, and for all the party
lights you take wherever you go (I’m trying a metaphor here, but it’s late and this manuscript
is due tomorrow). Reda (Khobz), another friend and thesis-cousin, thank you for all your
thé-à-la-menthe-flavored good vibes, for taking care of the magic key to the vending machine,
for teaching me very cool words (among which I can pronounce probably two), and for all
the pessimistically optimistic discussions about research! Yannis, a friend who also has the
crème de la crème of vibes, thank you for the great parties and music, for l’Écart et al., and for
the expertise you shared on deep RL and beyond!

I would also like to thank several other friends: Gildo (for all the advice, japanese restaurants,
and phone calls), Vinícius (Marco Luque, who sometimes has a great musical taste, special
thanks for all the caronas Swift), Pedro (Mineiro, whohasmany interesting alternative discussion
topics!), Omar C. (who inspires me to be chic in several aspects of life), Pedro (Capixa, for all
the great times, I remember when you took an Uber instead of the subway so that we could
drink iced-tea-related-beverages), Daniel (Coquinho, thanks for the problem-solving meetings
at Unicamp, and all those weird-in-a-great-sense moments at Centrale), Daniel (Dello, also
for the great adventure times at Centrale), Victor (Creuzinho, for the great times as neighbors
at Centrale and at the Caverna, and the pizzas at the Cantina do Belo), Denis (a great example
of a person who does magic with code), Gabrielle, Lisa, Chloé, Laura, and Nate. I also thank
Diego, Vitor (Bassi), Gabriel, Gustavo (Magrelo, Guga), Milena (who always has incredible
dreams to share), and André, who, despite the distance (and time!), are still close friends.

I would also like to thank all the amazing people that I was lucky to meet at Inria (in the
great SequeL/SCOOL team) or at Inria-adjacent places/situations who were not yet mentioned:
Philippe P. (without whom the team wouldn’t be there!), Rémi M., Alessandro, Debabrota,
Jill-Jênn, Odalric, Olivier, Rémy D., Sadegh, Edouard L. (with whom it was a great pleasure to

vi

collaborate, and who inspired me with the quality of his research, code, and presentations),
Jean-Bastien (whose idea led to a great collaboration), Edouard O. (with whom I got my first
teaching assistant opportunity), Daniele C. (thanks for the amazing pasta and graphs!), David
(thanks for the croustillons hollandais/puff-puffs), Ronan, Florian, Guillaume, Lilian, Mathieu,
Antoine, Achraf, Hassan, Nathan, Dorian, Hippolyte, Johan, Pierre P., Sarah, Geoffrey, Clé-
mence, Andrea, Rianne, Nicolas, Mariana, Mahsa, César, Riccardo, Alena, Matheus, Timothée,
Yoan (Vancouver!), Julien S., Julien T., Marc, Fabien, Patrick, Évrard, and Pierre-Alexandre. I’m
also very thankful to Amélie, Lucile, and Charlotte for all their support in Inria. Additionally,
this work was made possible by the DELTA project, coordinated by Anders, with whom I was
also lucky to collaborate.

During my PhD, I had the chance to do an internship at DeepMind (thanks Michal!), where
I could meet, collaborate, and learn from a lot of incredible people. Special thanks to Rémi,
Corentin, Bilal, Jean-Bastien, Alaa, Florent, Daniel, Bernardo, Mohammad Azar, Florian,
Miruna, Rana, among many other people that made this experience amazing!

Before my PhD, I also had the chance to work on research projects without which I would
probably not have arrived at this thesis. Many thanks to Dalton and Darli (with whom I
worked at Unicamp), and Vincent (with whom I did an internship) for all their support and for
everything I learned from them. Many years ago, before starting my university studies, there
were people who helped me look at the world in a way that still guides me today and, in that
sense, I thank Glória, Fernando, and Hugo. Speaking of university, I am highly thankful to the
University of Campinas, that provided the most amazing intellectual and social environment
for me to grow since my early undergraduate years.

Art! Art is important in life. It brings more colors to the world, it is capable of resonating with
our happiness, and making a few kinds of sadness enjoyable. In that sense, I would like to
thank Taylor Swift, for her amazing work throughout the years, and especially all her released
albums between 2019 and 2021, which brought me a lot of joy while working on this thesis.

There were some especially difficult moments in my life during my PhD. One of those was
around June 2021, so I’d like to give many thanks to the people who were extremely helpful at
the time: Yole and Mozart, Sara, Fátima, Rosa, Jamile, and Carlos (Bifi).

Finally, I conclude these acknowledgements by thanking my family. My mom, Nádia Darwiche,
and my grandma, Maria Conceição Ferreira Domingues, are the most amazing people I have
ever met (and I was lucky to meet them very early in my life!): if I ever manage to do something
useful for the world, it’s hugely thanks to them. My dad, Paulo Sérgio Domingues, who
inspires me with his tranquility and his ability to do many cool things, from playing the guitar
to renovating apartments by himself, and on whose support I know I can always count. I would
also like to thank many other people from my family: Jamile (who came to France and helped
my mom prepare a wonderful pot de thèse!), Ana Maria, Silas (a grand chef, with an unparalleled

vii

https://www.upf.edu/web/delta

humor and great style), Rosa (Rosinha, I hope you’ll stop smoking), João, Samira, Aichi, Sara,
Paulo, Ibraim, Letícia, Xará (my friend), Fátima, Solange, Adilson, Júlia (Jules), Layla, Nasser,
Yasmin, Camila, Bárbara, and all my other cousins!

viii

Abstract

Reinforcement learning (RL) is a powerful machine learning framework to design algorithms
that learn to make decisions and to interact with the world. Algorithms for RL can be classified
as offline or online. In the offline case, the algorithm is given a fixed dataset, based on which
it needs to compute a good decision-making strategy. In the online case, an agent needs to
efficiently collect data by itself, by interacting with the environment: that is the problem of ex-
ploration in reinforcement learning. This thesis presents theoretical and practical contributions
to online RL. We investigate the worst-case performance of online RL algorithms in finite envi-
ronments, that is, those that can be modeled with a finite amount of states, and where the set of
actions that can be taken by an agent is also finite. Such performance degrades as the number
of states increases, whereas in real-world applications the state set can be arbitrarily large or
continuous. To tackle this issue, we propose kernel-based algorithms for exploration that can be
implemented for general state spaces, and for which we provide theoretical results under weak
assumptions on the environment. Those algorithms rely on a kernel function that measures the
similarity between different states, which can be defined on arbitrary state-spaces, including
discrete sets and Euclidean spaces, for instance. Additionally, we show that our kernel-based
algorithms are able to handle non-stationary environments by using time-dependent kernel
functions, and we propose and analyze approximate versions of our methods to reduce their
computational complexity. Finally, we introduce a scalable approximation of our kernel-based
methods, that can be implemented with deep reinforcement learning and integrate different
representation learning methods to define a kernel function.

Résumé

L’apprentissage par renforcement (reinforcement learning, RL) est unparadigmede l’apprentissage
automatique qui nous permet de concevoir des algorithmes qui apprennent à prendre des
décisions et à interagir avec le monde. Les algorithmes de RL peuvent être classés comme hors
ligne ou en ligne. Dans le cas hors ligne, l’algorithme dispose d’un ensemble de données fixe,
avec lequel il doit calculer une bonne stratégie de prise de décision. Dans le cas en ligne, l’agent
doit collecter efficacement des données par lui-même, en interagissant avec l’environnement
: c’est le problème que l’on appelle exploration en apprentissage par renforcement. Cette
thèse présente des contributions théoriques et pratiques sur le RL en ligne. Nous étudions
la performance dans le pire des cas des algorithmes de RL dans des environnements finis,
c’est-à-dire, ceux qui peuvent être modélisés avec un nombre fini d’états, et où l’ensemble
des actions qui peuvent être prises par un agent est aussi fini. Cette performance se dégrade
à mesure que le nombre d’états augmente, alors qu’en pratique, l’espace d’états peut être
arbitrairement grand ou continu. Pour résoudre ce problème, nous proposons des algorithmes
à noyaux qui peuvent être implémentés pour des espaces d’états généraux, et pour lesquels
nous proposons des résultats théoriques sous des hypothèses faibles sur l’environnement. Ces
algorithmes reposent sur une fonction noyau qui mesure la similarité entre différents états,
qui peut être définie sur des espaces d’état arbitraires, y compris des ensembles discrets et des
espaces euclidiens, par exemple. De plus, nous montrons que nos algorithmes à noyaux sont
capables d’apprendre dans des environnements non stationnaires en utilisant des fonctions
noyau dépendantes du temps, et nous proposons et analysons des versions approximatives de
nos méthodes pour réduire leur complexité de calcul. Finalement, nous introduisons une autre
approximation de nos méthodes à noyaux, qui peut être implémentée avec des algorithmes
d’apprentissage par renforcement profond et intégrer de différentes méthodes d’apprentissage
de représentation pour définir un noyau.

x

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Markov Decision Processes . 2
1.3 Sampling Models . 8
1.4 Evaluating Reinforcement Learning Algorithms 9
1.5 Contributions . 10

2 Planning with a Generative Model 13
2.1 Model-Based Q-Value Iteration . 14
2.2 SparseSampling: Planning in Arbitrary State Spaces 16
2.3 SmoothCruiser: Planning in Regularized MDPs 21
2.4 Discussion and Bibliographical Remarks . 27

3 Online Interaction with Finite MDPs 31
3.1 Performance Criteria . 32
3.2 Lower Bounds: Key Ideas & Hard MDP Instances 34
3.3 Lower Bound on the Regret . 38
3.4 Lower Bound on the Sample Complexity . 41
3.5 Lower Bounds: Extensions . 44
3.6 Upper Bound on the Regret of UCBVI . 47
3.7 Discussion and Bibliographical Remarks . 53

4 A Kernel-Based Approach to Exploration in Continuous MDPs 57
4.1 Kernel-Based Reinforcement Learning for Exploration 58
4.2 Regret Analysis of Kernel-UCBVI . 61
4.3 Comparison to Lower Bounds & Related Work 66
4.4 KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs 67
4.5 Regret Analysis of KeRNS . 70
4.6 Reducing the Computational Complexity . 73
4.7 Experiments . 77

Contents

4.8 Discussion and Bibliographical Remarks . 81

5 Exploration without Rewards & Applications to Deep RL 85
5.1 Reward-Free Exploration in Finite MDPs . 86
5.2 Kernel-Based Bonuses for Exploration in Deep RL 90
5.3 Related Work . 94
5.4 Experiments . 96
5.5 Discussion and Bibliographical Remarks . 104

6 Conclusion 107
6.1 Main Contributions & Directions for Future Work 107
6.2 Software for Reinforcement Learning Research 108

A Complements on Chapter 2 111
A.1 Proof of Theorem 2.6: Sample Complexity of SmoothCruiser 111
A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser 115
A.3 Technical Lemmas . 123

B Complements on Chapter 3 125
B.1 Change of Distribution: Proof of Lemma 3.6 . 125
B.2 PAC-MDP Lower Bound: Proof of Corollary 3.10 126
B.3 Technical Lemmas for Lower-Bound Proofs . 127
B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI) 128

C Complements on Chapter 4 133
C.1 Definitions . 133
C.2 Proof of Theorem 4.7 . 134
C.3 Proof Sketch for Theorem 4.12: Regret of KeRNS 147
C.4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP 149
C.5 Detailed Description of RS-KeRNS . 152
C.6 Proof Sketch for Theorem 4.16: Regret of RS-KeRNS 157
C.7 Technical Lemmas . 158

List of Figures 162

List of Algorithms 164

List of Tables 165

References 167

xii

Chapter 1

Introduction

1.1 Overview

As living beings interacting with the world, we are constantly faced with decision-making
problems. Which path to take in order to find food? What is the best strategy to fight a
pandemic? Some of those problems can be modeled as seeking the behavior that maximizes a
utility function, such as the amount of gathered food and the number of saved lives.1

Reinforcement learning (RL) provides a mathematical and algorithmic framework for utility
maximization in which an agent interacts with an environment by taking actions and receiving
rewards. In this framework, the utility is defined as the sum of rewards obtained throughout the
interaction with the environment. Mathematically, the environment is modeled as a Markov
decision process (MDP), and the agent is defined as a decision rule (or policy) that selects
actions based on the history of its previous interactions and its knowledge about the current
state of the environment.

Exploration in reinforcement learning A key challenge in RL is that the agent has little or
no prior knowledge about the consequences of its actions on the environment: all it can do is
collect samples from the environment by taking actions and observing their consequences. The
performance of an RL algorithm is usually measured with respect to how many samples are
required from the environment for it to learn a good policy, or with respect to the intensity of the
“mistakes” it makes during learning. In order to achieve an optimal performance, it must handle
two objectives simultaneously: learn how the environment behaves and learn how to act optimally
while interacting with the environment. The first objective is called exploration and the second
exploitation, and we refer to the task of balancing these objectives as the exploration-exploitation

1Nevertheless, the questions of how to define a utility function and whether we should aim for utility maxi-
mization at all might be subject to societal, political and philosophical considerations.

1

Introduction

dilemma. To gain some intuition about this dilemma, imagine that you are at restaurant with
free food, where you can eat pizza, falafel, or spaghetti all’arrabbiata. Assume that you have
never tasted any of those dishes before. You start by trying the pizza and, unsurprisingly, you
think it tastes good. At that moment, you must either decide to keep eating pizza (that is, to
exploit your current knowledge) or to try other dishes to find out if they are better than pizza
(to explore and gather more knowledge). Since your eating capacity is limited, you need to
optimally balance exploration and exploitation in order to have the best possible experience in
such situation. Reinforcement learning algorithms need to handle a similar dilemma when
trying to maximize rewards in an unknown environment with limited resources.

Beyond finite state-spaces At every time step, the environment with which an agent interacts
is described by a state variable s belonging to a state set (or space) S. The complexity of
exploration is related to the size of the set S , which can be its cardinality (if it is finite) or some
notion of dimension. For instance, if S is finite and no prior information is given about the
environment, an agent is required to visit every reachable state s ∈ S in order to learn a good
policy: otherwise, it might miss a state with very high rewards. This thesis studies theoretical
and practical aspects of exploration in reinforcement learning, when the state space S is very
large, and possibly continuous. With continuous state spaces, it is not possible to visit every
single state s ∈ S in finite time: thus, we need to make assumptions on the regularity of the
MDP. Here, we study regularity through kernel functions that measure the similarity between
states. The intuition is that once the agent visits a given state s, it also gains information about
all other states that are similar to s and avoids the need to visit every state. In the example
above, we might have prior information saying that pizza is similar to spaghetti all’arrabbiata,
which might prevent you from spending time exploring the spaghetti if you already tried pizza
and found out you dislike tomato sauce.

In the next sections, we formalize the concepts of agent and environment and we define the
performance criteria that are used to evaluate RL algorithms. Then, we end this chapter with
an overview of the contributions presented in this thesis.

1.2 Markov Decision Processes

The environment with which an agent interacts is modeled as a Markov decision process [Put94],
to which we refer as MDP. At every time t ∈ N∗, the environment is in a state s ∈ S and
the agent takes an action a ∈ A, where S and A are the sets of possible states and actions,
respectively. As a consequence, the agent receives a (possibly random) rewardwith expectation
rt(s, a), where rt : S ×A → R is a (mean) reward function, and the state of the environment
is changed according to a probability kernel pt(·|s, a). An MDP is thus defined as the tuple

2

1.2 Markov Decision Processes

M := (S,A, µ, (pt, rt)t∈N∗), where µ is the probability measure on the set of states at t = 1,
representing the distribution of initial states.

Assumption 1.1. Unless explicitly stated, we assume in this thesis that the mean reward func-
tions (rt)t∈N∗ are known by the agent, and that there exists a constant rmax > 0 such that
supt,s,a |rt(s, a)| ≤ rmax. In Section 2.1, we see that the main challenge of a reinforcement learning
algorithm is to handle the unknown transitions of the environment, and relaxing the assumption of
known rewards is usually straightforward.

Let bt = (s1, a1, . . . , st−1, at−1, st) be a history of previous states and actions up to time t, where
(si, ai) are the state and action at time i, let Bt be the set of all possible histories bt at time t and
let B :=

⋃
t∈N∗ Bt be the set of all histories. A history-dependent policy, denoted by π, is a mapping

from B to ∆(A), the set of probability distributions over the action set A, and represents a rule
to decide which action to take at time t, given a history bt. A Markov policy π is a mapping
from N∗ × S to ∆(A) and represents a decision rule that does not take the history into account,
besides the current state st and the time t. A Markov policy is deterministic if, instead of giving
a probability distribution over actions, it returns a single action, i.e., it is a mapping from N∗×S
toA. Furthermore, a stationary deterministic Markov policy is defined as a mapping from states
S to actions A. We denote by ΠH, ΠM, ΠMD, and ΠSD the sets of history-dependent, Markov,
deterministic Markov, and stationary deterministic Markov policies, respectively.

1.2.1 Probabilistic Model

Infinite-Horizon

A policy π interacting with an MDPM defines a stochastic process denoted by (St, At)t∈N∗ ,
where St and At are the random variables representing the state and action at time t. As
explained by [LS20], the Ionescu-Tulcea theorem ensures the existence of a probability space
(Ω,F ,P) such that

P [S1 ∈ ·] = µ(·), P [St+1 ∈ ·|Bt, At] = pt (·|St, At) , and P [At ∈ ·|Bt] = π (·|Bt) ,

for any t ∈ N∗, where Bt = (S1, A1, . . . , St−1, At−1, St). Additionally, we define by Ft the
σ-algebra generated by Bt, and denote Ft := σ(Bt). For a history-dependent policy π, we
denote by πt,Bt the restriction of π to the subset of possible histories in B that start with the
sequence Bt. Often, the past state-action pairs Bt will be implicitly defined by the context, and
we denote πt,Bt simply as πt.

Notice that the probability measure P depends on the policy π and on the MDPM. When
necessary, we explicit this dependence by denoting P as Pπ,M. We denote by PBt

π,M the
pushforward measure of Bt under Pπ,M.

3

Introduction

Finite-Horizon

In this thesis, we will also consider trajectories (St, At)t∈N∗ that are split into episodes of length
(or horizon) H ∈ N∗. Consider the bijection m : N∗ × {1, . . . ,H} → N∗ such that m(t, h) =
(t − 1)H + h, and let St

h := Sm(t,h), At
h := Am(t,h), and Bt

h := Bm(t,h). We refer to the sub-
trajectory (St

h, A
t
h)h∈{1,...,H} as the t-th episode generated by the policy π. Also, we denote by

F t
h := σ(Bt

h) the σ-algebra generated by Bt, and by πt
h := πm(h,t) the restriction of the policy π

to the subset of histories starting with Bt
h.

1.2.2 Performance Criteria

In RL, the utility of a policy π in anMDPM is defined as the weighted sum of rewards gathered
by taking the actions prescribed by π inM:

Uπ =
∞∑

t=1
γt−1rt(St, At),

where γ ∈ [0, 1] is a constant controlling the preference of the agent for short-term rewards, and
is called discount factor. We are interested in finding policies that maximize the expected utility
E [Uπ], and, to that end, it is convenient to introduce value functions. The value of π starting
from a state s at time t is defined as

V π
t (s) := Eπ

[∞∑
t′=t

γt′−trt′(St′ , At′)
∣∣∣∣∣St = s

]

and s 7→ V π
t (s) is the value function of π at time t. Similarly, we define the action-value function

(s, a) 7→ Qπ
t (s, a), also known as Q-function, as the value of the policy that selects action a in

state s at time t and follows the policy π thereafter:

Qπ
t (s, a) := Eπ

[∞∑
t′=t

γt′−trt′(St′ , At′)
∣∣∣∣∣S1 = s,At = a

]
.

Since we are dealing with infinite sums, additional conditions are required for V π andQπ to be
well-defined, bothmathematically and in terms ofwhich kind of propertieswewould like for the
policy π that maximizes E [Uπ]. Different conditions will lead to different performance criteria,
and the most common criteria are introduced below. Except for the finite-horizon criterion, we
assume that the rewards and transition probabilities are time-invariant, i.e., rt(s, a) = r(s, a)
pt(·|s, a) = p(·|s, a), where r is a fixed reward function and p is a fixed transition kernel.

Finite Horizon In situations where the agent is evaluated for its performance during a finite
amount of time stepsH ∈ N∗, we set rt = 0 for t > H . The discount factor is often set to γ = 1
in this setting.

4

1.2 Markov Decision Processes

Discounted Reward If the agent has a preference for short-term rewards, but still considers
the long-term impact of its actions, we can take a discount factor γ that is strictly smaller than
1, which defines the discounted-reward criterion.

Average Reward If the agent is evaluated for its performance during a large (possibly infinite)
amount of time and with no preference for short-term rewards, we take γ → 1 and use the
average-reward criterion, where the policy is evaluated by limγ→1(1− γ)V π

1 (s) [Ber11, Chapter
4].

Stochastic Shortest Path This setting considers γ = 1 and applies to MDPs where there exists
an absorbing state sg (i.e., a state such that p(sg|sg, a) = 1 for any action a, also called goal state)
such that r(sg, ·) = 0 and r(s, a) ≤ 0. We can interpret r as a negative cost function. If the cost
in a state s is seen as the average time spent on a transition between s and its possible next
states, a policy that maximizes the sum of rewards must reach the absorbing state sg as quickly
as possible. Hence, we seek the shortest path to the goal state sg.

In this thesis, we focus mostly on the finite-horizon criterion (except for Chapter 2, where we
consider the discounted-reward criterion) for mathematical convenience. Indeed, this criterion
imposes fewer constraints on the reinforcement-learning algorithms, by avoiding infinite sums.
Nevertheless, some of the algorithmic ideas introduced for finite-horizon problems might be
adapted to infinite-horizon discounted-reward problems. This is due to the fact that

∣∣∣∣∣
∞∑

t=1
γt−1r(St, At)−

H∑
t=1

γt−1r(St, At)
∣∣∣∣∣ ≤ γH

1− γ rmax.

Hence, for H ≥ logγ
ε(1−γ)
rmax

, the value of a policy varies at most by ε from the finite-horizon to
the discounted-reward criterion, provided that we use a discounted factor γ < 1 and assume
that the transitions and rewards are time-invariant.

1.2.3 Characterization of Optimal Policies

A history-dependent policy π ∈ ΠH is optimal if V π
1 (s) = V ∗

1 (s) := supπ′∈ΠH V
π′

1 (s) for all s ∈ S ,
where V ∗

1 is the optimal value function. Notice that π is optimal if and only if it maximizes the
expected utility E [Uπ] for any possible initial distribution µ. It can be shown that, for any
π ∈ ΠH and for each s ∈ S, there exists a Markov policy π′ ∈ ΠM such that V π

1 (s) = V π′
1 (s)

[Put94, Theorem 5.5.3]. Hence, if there exists an optimal policy for an MDPM, there exists an
optimal Markov policy forM, since supπ∈ΠH V

π
1 (s) = supπ∈ΠM V π

1 (s).

To characterize optimal policies and optimal value functions, we will use the Bellman operator,
and we consider the finite-horizon and the discounted-reward criteria. Let V be the space
of bounded functions from S to R equipped with the infinity norm ∥·∥∞, such that ∥f∥∞ :=

5

Introduction

supx∈S |f(x)|. The Bellman operator at time t is defined as Tt,γ : V → V such that

[Tt,γV] (s) = sup
a∈A

{
rt(s, a) + γ

∫
S
V (s′)pt(ds′|s, a)

}
. (1.1)

Remark 1.2. In general, additional conditions on the MDP are required for the Bellman operator to be
well-defined: for instance, since Tt,γV involves an integration of V over S with respect to the transition
kernel, we must ensure that we restrict ourselves to the space of measurable functions in V , and that,
after taking the supremum over a ∈ A, the result remains measurable. Such technical considerations are
discussed by [Put94, Section 2.3] and references therein.

The Bellman operator can also be defined for action-value functions. Let Q be the space of
bounded functions from S × A to R, also equipped with the infinity norm ∥·∥∞ such that
∥f∥∞ := supx,a∈S×A |f(x, a)|. We define T t,γ : Q → Q as

[
T t,γQ

]
(s, a) = rt(s, a) + γ

∫
S

sup
a′∈A

Q(s′, a′)pt(ds′|s, a). (1.2)

Finite-Horizon Criterion In this case, since rt > 0 for t > H , the value function of any
policy π satisfies V π

t = 0 for t > H . Hence, the actions taken after t > H are irrelevant and,
for the purposes of utility maximization, we can focus on the set of Markov policies defined
as a mapping from {1, . . . ,H} × S to ∆(A). Let V ∗

t (s) := supπ∈ΠM V π
t (s) and Q∗

t (s, a) :=
supπ∈ΠM Qπ

t (s, a) be the optimal value functions at time t ∈ {1, . . . ,H}. It can be shown that
(V ∗

t)t satisfy the Bellman optimality equations [Put94, Theorem 4.3.2]:

V ∗
H+1(s) = 0, ∀s ∈ S,

V ∗
t (s) =

[
Tt,γ=1V

∗
t+1
]
(s), ∀s ∈ S, ∀t ∈ {1, . . . ,H} .

If the supremum in Equation (1.1) is attained for any state s ∈ S and any time t ∈ {1, . . . ,H},
there exists a deterministic Markov policy π∗ ∈ ΠMD such that

π∗(t, s) ∈ argmax
a∈A

{
rt(s, a) +

∫
S
V ∗

t+1(s′)pt(ds′|s, a)
}

(1.3)

and V ∗
t (s) = V π∗

t (s) for all (s, t). That is, π∗ is an optimal policy.

Furthermore, the Bellman equations can be also be written for action-value functions as follows:

Q∗
H+1(s, a) = 0, ∀(s, a) ∈ S ×A,

Q∗
t (s, a) =

[
T t,γ=1Q

∗
t+1

]
(s, a), ∀(s, a) ∈ S ×A, ∀t ∈ {1, . . . ,H} ,

6

1.2 Markov Decision Processes

where (Q∗
t)t are the optimal action-value functions, and we have V ∗

t (s) = supa∈AQ
∗
t (s, a) for

t ∈ {1, . . . ,H}. If a policy π∗ ∈ ΠMD satisfies π∗(t, s) ∈ argmaxa∈AQ
∗
t (s, a), provided that the

maximum exists, then π∗ is an optimal policy.

Discounted-Reward Criterion In this case, recall that the rewards and transitions are as-
sumed to be time-invariant, which implies that: (i) the Bellman operators Tt,γ and T t,γ are
time-invariant, and we denote them by Tγ and T γ , respectively ; and (ii) the value functions
V ∗

t , Q∗
t , V π

t and Qπ
t for any π are also time-invariant, and are denoted by V ∗, Q∗, V π and Qπ.

If the Bellman operator Tγ admits a fixed point V ∈ V , that is, TγV = V , then V is unique and
is the optimal value function V = V ∗ [Put94, Theorem 6.2.2]. Since V is a Banach space and the
Bellman operator Tγ is a contraction mapping for γ ∈ [0, 1[, a fixed point of Tγ is guaranteed to
exist by Banach’s fixed-point theorem.

Furthermore, if the supremum

sup
a∈A

{
r(s, a) + γ

∫
S
V ∗(s′)p(ds′|s, a)

}

is attained for all s, then a stationary deterministic Markov policy π∗ ∈ ΠSD satisfying

π∗(s) ∈ argmax
a∈A

{
r(s, a) + γ

∫
S
V ∗(s′)p(ds′|s, a)

}

is an optimal policy [Sze10, Theorem 2].

Similar results hold for the Bellman operator T γ for action-value functions: it admits a fixed-
pointQ such thatQ = Q∗. Also, if a policy π∗ ∈ ΠSD satisfies π∗(s) ∈ argmaxa∈AQ

∗(s, a), then
π∗ is an optimal policy.

1.2.4 Value Iteration

In Section 1.2.3, we saw that optimal policies can be derived from optimal value functions,
which can be defined either through recursive applications of the Bellman operator (in the
finite-horizon setting) or as its fixed-point (in the discounted-reward setting).

The Value Iteration algorithm can be used to compute (or approximate) optimal value functions,
and is defined as follows:

(i) set a number of iterations N and define an initial value function QN,N+1 := 0;

(ii) apply the Bellman operator for N steps: QN,n := T n,γQN,n+1 for n ∈ {1, . . . , N}.

7

Introduction

This algorithm is also called Q-Value Iteration (QVI), since it operates on action-value functions.
In the finite-horizon setting, we have QN,n = Q∗

n for n ∈ {1, . . . ,H} by setting N = H , and we
can compute an optimal policy as π∗(t, s) = argmaxa∈AQN,t(s, a) if the maximum exists.

In the discounted-reward setting, it can be shown that

∥QN,1 −Q∗∥∞ ≤ γ
N ∥Q∗∥∞ ≤

γN

1− γ rmax.

For N ≥ logγ
ε(1−γ)
rmax

, the approximation error on the action-value function is bounded by ε
and an approximate policy can be defined using QN,1 as π∗

approx(s) ∈ argmaxa∈AQN,1(s, a)
provided that the maximum exists. It can be shown that π∗

approx satisfies [SY94]

∥V π∗
approx − V ∗∥∞ ≤

2ε
1− γ ·

Consequently, if the MDP is known, i.e., we have access to the reward functions and the
transition kernels, and if we can apply the Bellman operator in a computationally efficient way,
the value iteration algorithm allows us to compute or approximate an optimal policy. If the set
of states and actions are finite, the computational complexity of value iteration is Θ

(
N |S|2 |A|

)
,

where N is the number of iterations. Hence, for very large or continuous state-action sets, we
are in general required to use other approximation methods.

1.3 Sampling Models

In reinforcement learning, we do not have full knowledge of the MDP, i.e., the reward functions
and the transition kernels are not given a priori. The agent has only access to a sampling model
of the environment, which represents its interaction with the world. Thus, a reinforcement
learning algorithm must learn a good policy only by sampling from (a model of) the MDP. The
two most common sampling models are the generative model and the online model, as defined
below.

Generative Model The MDP is assumed to be time-invariant and the agent has access to a
simulator that takes as input an arbitrary state-action pair (s, a) and returns R and S′, where
R is a random variable of mean r(s, a) and S′ is a random variable following the distribution
p(·|s, a). Every output from simulator is independent of all the previous and future outputs.

Online Model At each time t, representing the amount of previous calls to the model, the
model is at a state st. When the model receives an action at as input, it returns R and S′, where
E [R|S1, A1, . . . St−1, At−1, St] = rt(St, At) and S′ ∼ pt(·|St, At).

8

1.4 Evaluating Reinforcement Learning Algorithms

Notation We denote by
R,S′ ← GenerativeModel(s, a)

the act of sampling a reward R and a transition S′ from (s, a) using a generative model, and by

R,S′ ← OnlineModelt(a)

the act of sampling R and S′ by taking action a in an online model at time t. When the reward
functions are assumed to be known (Assumption 1.1), we only need to sample transitions S′

from the models, which we denote by S′ ← GenerativeModel(s, a) and S′ ← OnlineModelt(a).

Notice that the generative model is a stronger assumption since the agent can query any state-
action pair at any time, whereas with an online model, the agent cannot query arbitrary states,
as the state of the model is determined by its previous actions and by the transition dynamics
of the MDP.

1.4 Evaluating Reinforcement Learning Algorithms

Reinforcement learning algorithms interact with the environment, represented by a generative
or by an online model, and they either (i) interact with the model for an indefinite amount of
time; or (ii) stop after a number τ of queries to the model (which is a possibly random stopping
time). In the first case, we define an RL algorithm as a history-dependent policy π used to take
actions in the environment.2 In the second case, the algorithm eventually stops and outputs
a policy, and we define it as a triple (π, τ, π̂τ), where τ is a stopping time with respect to the
filtration (Ft)t∈N∗ and π̂τ is a Markov policy given as the output.

An agent is evaluated either with respect to how may queries to the model are required before
it is guaranteed to provide a good approximation of the optimal value function or the optimal
policy, or with respect to the amount or the value of the “mistakes” it makes during any
fixed number of interactions. These performance criteria are commonly formalized under two
frameworks: the sample complexity framework, and the regret minimization framework. The
precise definitions of such criteria may vary according to the MDP objective (finite-horizon,
discounted reward, average reward, stochastic shortest path), and according to the RL algorithm
(whether it outputs a value function or a policy, or if it runs for an indefinite number of time
steps), and are introduced in the subsequent chapters when we analyze specific algorithms.

2Notice that, with a generative model, the agent can choose from which state the transition will be sampled,
while a policy recommends a distribution over actions. This issue can be easily solved by slightly modifying the
definition of a policy so that it outputs a state to be sampled, in addition to a probability on the action space.

9

Introduction

1.5 Contributions

1.5.1 Outline

Planningwith aGenerativeModel In Chapter 2, we analyze algorithms that use a generative
model of the environment to define policies. In this case, it is possible to obtain algorithms
whose sample complexities do not depend on the size of the state space S , although, in general,
they may have a non-polynomial dependence on 1/ε, where ε is the approximation error of the
output of the algorithm. Our contribution is a novel algorithm showing that, if we consider
regularized MDPs, it is possible to obtain a sample complexity that is polynomial in 1/ε and, at
the same time, independent of S.

Online Interaction with Finite MDPs In Chapter 3, we study worst-case bounds on the
sample complexity and regret of algorithms interacting with an MDP through an online model,
in the particular case where the state-action set is finite. We provide unified, simple and
complete proofs of the lower bounds in different settings. Since these lower bounds depend
on the cardinality of the state-action sets, they show the need of structural assumptions when
dealing with large or continuous MDPs. We also revisit the proof of a near-optimal algorithm
for regret minimization in finite MDPs called UCBVI [AOM17], which we extend to continuous
MDPs in Chapter 4.

A Kernel-Based Approach to Exploration in Continuous MDPs In Chapter 4, we tackle
exploration in continuousMDPs. We assume that we have access to a distance function between
states and actions, and that, if two states are close to each other, their rewards and transitions are
similar. A kernel (or similarity) function is constructed based on this distance: state-action pairs
that are close to each other are more similar than distant pairs. Through a kernel-based model
of the environment, we show that it is possible to explore continuous MDPs by generalizing to
any state the information gathered from previously visited states. We propose an algorithm
called Kernel-UCBVI and prove a regret bound that depends on the covering dimension of the
state-action space. By extending Kernel-UCBVI to use time-dependent kernels, we propose
an algorithm called KeRNS that is able to handle non-stationary environments, where the agent
interacts with a different MDP in each episode.

Exploration without Rewards & Applications to Deep Reinforcement Learning In Chap-
ter 5, we review the RF-UCRL [Kau+21] and RF-Express [Mé+21a] algorithms that allow an
agent to collect relevant data in finite MDPs without rewards and, inspired by those algorithms
and borrowing ideas from Kernel-UCBVI, we propose a deep reinforcement learning method
for reward-free exploration.

10

1.5 Contributions

1.5.2 List of Publications

The list below contains the publications that I co-authored during my PhD.3 Chapter 2 is based
on [Gri+19] about planning in regularized MDPs; Chapter 3 is based on [Dom+21b] about
minimax lower bounds for finite-horizonRL; Chapter 4 is based on [Dom+21d] and [Dom+21c]
about kernel-based exploration in stationary and non-stationary MDPs; and Chapter 5 is based
on [Kau+21] and [Mé+21a] about reward-free exploration in finite MDPs, and on [Dom+21e]
about reward-free exploration in deep RL. I also worked on the development of the rlberry
library in Python [Dom+21a] whose goal is to facilitate empirical research in RL, which I briefly
discuss in Chapter 6.

Publications in international conferences with proceedings

• Jean-Bastien Grill∗, Omar Darwiche Domingues∗, Pierre Ménard, Rémi Munos, Michal
Valko. Planning in entropy-regularized Markov decision processes and games. In
Advances in Neural Information Processing Systems 33 (NeurIPS), 2019 [Gri+19]. Presented
in Chapter 2.

• Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, Michal Valko. Episodic
Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited. In 32nd
International Conference on Algorithmic Learning Theory (ALT), 2021 [Dom+21b]. Presented
in Chapter 3.

• Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, Michal
Valko. Kernel-Based Reinforcement Learning: A Finite-Time Analysis. In 38th Interna-
tional Conference on Machine Learning (ICML), 2021 [Dom+21d]. Presented in Chapter 4.

• Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, Michal
Valko. A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Met-
ric Spaces. In 24th International Conference on Artificial Intelligence and Statistics (AISTATS),
2021 [Dom+21c]. Presented in Chapter 4.

• Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, Michal Valko. Adaptive reward-free exploration. In 32nd International Confer-
ence on Algorithmic Learning Theory (ALT), 2021 [Kau+21]. Discussed in Chapter 5.

• Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, Michal Valko. Fast active learning for pure exploration in reinforcement learn-
ing. In 38th International Conference on Machine Learning (ICML), 2021 [Mé+21a]. Dis-
cussed in Chapter 5.

3Where ∗ means equal contribution.

11

Introduction

Workshop presentations in international conferences

• Omar Darwiche Domingues, Corentin Tallec, RémiMunos, Michal Valko. Density-Based
Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforce-
ment Learning. InWorkshop on Unsupervised Reinforcement Learning at the 38th International
Conference on Machine Learning (ICML), 2021 [Dom+21e]. Presented in Chapter 5.

Software

• Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xue-
dong Shang, Michal Valko. rlberry - A reinforcement learning library for research
and education. GitHub repository, available at https://github.com/rlberry-py/rlberry
[Dom+21a].

Collaborations not presented in this thesis

• Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard
Leurent, Michal Valko. Planning in Markov Decision Processes with Gap-Dependent
Sample Complexity. In Advances in Neural Information Processing Systems 34 (NeurIPS),
2020 [Jon+20].

• Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, Michal Valko. UCBMo-
mentum Q-learning: Correcting the bias without forgetting. In 38th International Con-
ference on Machine Learning (ICML), 2021 [Mé+21b].

• Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal
Valko, Alessandro Lazaric. Adaptive Multi-Goal Exploration. Preprint, 2021 [Tar+21a].

12

https://github.com/rlberry-py/rlberry

Chapter 2

Planning with a Generative Model

In this chapter, we refer to planning as the task of approximating the optimal value function of
an MDP, either for a fixed state s ∈ S, or simultaneously for all states. We study the sample
complexity of planning algorithms relying on a generative model, considering the discounted-
reward criterion. We start from amodel-based approach, whose complexity depends on the size
of the MDP, then we move to sampling-based approaches for which we are able to guarantee
sample complexities that are independent of the number of states in the environment.

The last part of this chapter is based on the paper [Gri+19], which I co-authored, about planning
in regularized MDPs and two-player games.

Contents
2.1 Model-Based Q-Value Iteration . 14

2.2 SparseSampling: Planning in Arbitrary State Spaces 16

2.3 SmoothCruiser: Planning in Regularized MDPs 21

2.4 Discussion and Bibliographical Remarks . 27

13

Planning with a Generative Model

2.1 Model-Based Q-Value Iteration

As explained in Section 1.2.4, if we have a finite MDP for which the transition kernel p and the
reward function r are known, the Q-Value Iteration (QVI) algorithm can be used to approximate
the optimal value function. By runningN =

⌈
logγ

ε(1−γ)
rmax

⌉
iterations, we obtain a value function

VN that is an ε-approximation of the optimal value function V ∗, i.e. such that ∥V ∗ − VN∥∞ ≤ ε.
The total runtime of QVI is of order Θ

(
NS2A

), where S := |S| and A := |A|.

Hence, if we are given a generative model for a finite MDP, an intuitive strategy is to use the
generative model to estimate r and p, and run QVI on the estimated model. Such approach is
called Model-Based QVI, or MBQVI. The sample complexity of MBQVI has been initially studied
by Kearns and Singh [KS99], and Azar et al. [AMK12] present a lower bound and an improved
upper bound.

MBQVI is detailed in Algorithm 2.1. For each state-action pair (s, a), it samples n transitions
from the generative model, and estimates the transition kernel and the reward function. Finally,
it returns Q̂k, a Q-function obtained by applying k times the Bellman operator defined with
the estimated model.

Algorithm 2.1: MBQVI

1 input: GenerativeModel , n ∈ N∗, γ ∈ [0, 1[
2 for (s, a) ∈ S ×A do
3 for i ∈ {1, . . . , n} do
4 ri, s

′
i ← GenerativeModel(s, a)

5 # estimate model
6 p̂(s′|s, a)← 1

n

∑n
i=1 1 {s′

i = s′} for s′ ∈ S
7 r̂(s, a)← 1

n

∑n
i=1 ri

8 # run value iteration
9 Q̂0 ← 0
10 for j ∈ {1, . . . , k} do
11 # apply Bellman operator of the empirical model
12 Q̂j(s, a)← r̂(s, a) + γ

∑
s′ maxa′ Qj−1(s′, a′)p̂(s′|s, a) for (s, a) ∈ S ×A

13 return Q̂k

Theorem 2.1 (Sample complexity of MBQVI). Let S := |S| and A := |A|. If n =⌈
32r2

max
(1−γ)4ε2 log

(
4SA

δ

)⌉
and k =

⌈
log1/γ

(
2rmax
ε(1−γ)

)⌉
, then, with probability at least 1− δ, the output

Q̂k of MBQVI satisfies ∥Q̂k −Q∗∥∞ ≤ ε. That is, with O
(

SAr2
max

(1−γ)4ε2 log
(

4SA
δ

))
calls to the genera-

tive model, MBQVI produces an ε-approximation of the optimal Q-function with high probability.

Theorem 2.1 shows that Õ (SA(1− γ)−4/ε2) calls to the generative model are enough to guar-
antee that MBQVI outputs an ε approximation of the optimal Q-function. Although this scales

14

2.1 Model-Based Q-Value Iteration

with (1− γ)−4, it was shown by Azar et al. [AMK12] that the optimal dependence is (1− γ)−3,
and that it can be achieved by a shaper analysis using Bernstein concentration inequalities and
Bellman-type equations for the variance of the value functions. We provide below the proof of
Theorem 2.1, which is adapted from [KS99] and [AMK12].

Proof. (of Theorem 2.1) Consider the event E := Er ∩ Ep, where

Er :=

∀(s, a) ∈ S ×A, |r̂(s, a)− r(s, a)| ≤
√

2r2
max
n

log
(4SA

δ

) , and

Ep :=

∀(s, a) ∈ S ×A,

∣∣∣∣∣∣
∑
s′∈S

(
p̂(s′|s, a)− p(s′|s, a)

)
V ∗(s′)

∣∣∣∣∣∣ ≤
√

2r2
max

(1− γ)2n
log

(4SA
δ

) .
By Hoeffding’s inequality, we have P [E] ≥ 1− δ. Let Q̂∗ be the optimal Q-function in the MDP
defined by the estimated rewards r̂ and transitions p̂. We decompose the error as

∥Q̂k −Q∗∥∞ ≤ ∥Q̂k − Q̂∗∥∞ + ∥Q̂∗ −Q∗∥∞.

By the contraction property of the Bellman operator, we have ∥Q̂k − Q̂∗∥∞ ≤ γkrmax/(1− γ).
Let ∆ := ∥Q̂∗ −Q∗∥∞. On the event E , we have

∆ ≤max
s,a

|r̂(s, a)− r(s, a)|+ γ

∣∣∣∣∣∣
∑
s′∈S

(
p̂(s′|s, a)− p(s′|s, a)

)
V ∗(s′)

∣∣∣∣∣∣
+ γ∆

≤ 2
√

2r2
max

(1− γ)2n
log

(4SA
δ

)
+ γ∆.

Consequently,

∥Q̂k −Q∗∥∞ ≤
γkrmax
1− γ + 2

1− γ

√
2r2

max
(1− γ)2n

log
(4SA

δ

)
≤ ε ,

for n =
⌈

32r2
max

(1−γ)4ε2 log
(

4SA
δ

)⌉
and k =

⌈
log1/γ

(
2rmax
ε(1−γ)

)⌉
.

In the proof of Theorem 2.1, we see that estimating the quantities related to the transitions p
(see event Ep) requires more samples than estimating the reward function r (see event Er). In
this case, the main “source” of sample complexity is the fact that the transitions are unknown to
the agent. Hence, for simplicity, we assume from now on that the reward functions are known
(Assumption 1.1), and generalizing the results in this thesis to the case of unknown rewards is
straightforward.

15

Planning with a Generative Model

2.2 SparseSampling: Planning in Arbitrary State Spaces

Theorem 2.1 and the lower bound by [AMK12] show that the sample complexity of MBQVI
scales with the number of states S. Consequently, if the state space S is arbitrary and possibly
continuous, MBQVI cannot be used. The SparseSampling algorithm introduced by Kearns et al.
[KMN02], instead of estimating a value function for all states s ∈ S, focuses on estimating
V ∗(s) andQ∗(s, ·) for a fixed state s. This is done purely by sampling from the generative model,
and has a sample complexity that is independent of the size of S . Then, using SparseSampling
as subroutine, it is possible to implement a near-optimal policy (see Lemma 2.3): every time
we need to select an action in a state s, we run SparseSampling to compute an approximation
Q̂∗(s, ·) of Q∗(s, ·) and choose the action a ∈ argmaxa Q̂

∗(s, a).

In this section, we study the sample complexity of SparseSampling (Algorithm 2.2), which is
non-polynomial in 1/ε. In the next section, we propose an algorithm called SmoothCruiser
whose sample complexity is polynomial, provided that we regularize the MDP. For large values
of ε, SmoothCruiser behaves like SparseSampling, hence we will present here a short proof of
the sample complexity of SparseSampling, adapted from Kearns et al. [KMN02].

Algorithm 2.2: SparseSampling

1 global parameters: GenerativeModel, maximum depth H ∈ N∗, width C ∈ N∗, γ ∈ [0, 1[.
2 input: state s ∈ S, depth h ∈ N∗.
3 if h = H then
4 Q̂h(s, a)← 0 for a ∈ A
5 else
6 for a ∈ A do
7 for i ∈ {1, . . . , C} do
8 R

(i)
s,a, Z

(i)
s,a ← GenerativeModel(s, a)

9 Q̂h+1(Z(i)
s,a, ·)← SparseSampling(Z(i)

s,a, h+ 1)
10 V̂h+1(Z(i)

s,a)← maxa′ Q̂i(Z(i)
s,a, a′)

11 Q̂h(s, a)← 1
C

∑C
i=1

(
R

(i)
s,a + γV̂h+1(Z(i)

s,a)
)

12 return: Q̂h(s, ·)

In order to estimate the Q-function in a state s, SparseSampling builds a look-ahead tree
starting from s by sampling from the generative model. At the root of the tree, for each action
a, it samples C rewards and next states, denoted by R(i)

(s,a), Z
(i)
(s,a) for 1 ≤ i ≤ C. Each next state

Z
(i)
(s,a) becomes a child of the root node. Then, it continues to sample starting from each Z(i)

(s,a),
and stops when the tree reaches a depth H . By alternating between average and maximum
operations on the Q functions of each node, it is possible to build an approximation of the
optimal Q-function at the root. This procedure is detailed by Algorithm 2.2. The algorithm
is called SparseSampling because it builds a tree with a finite number of nodes, although the

16

2.2 SparseSampling: Planning in Arbitrary State Spaces

state space S may be infinite: the tree can be interpreted as a sparse version of the MDP, built
through sampling.

Theorem 2.2 shows that SparseSampling builds an ε-approximation of the optimal Q-function
at a fixed s ∈ S with probability at least 1 − δ, i.e., the algorithm is is (ε, δ)-correct. The
number of calls it makes to the generative model is of order Õ

((
ε−1 log δ−1)O(log(1/ε))), which

is non-polynomial in 1/ε. The (ε, δ)-correctness is proven by recursively applying Hoeffding’s
inequality at each level h of the tree, which requires O (ε−1 log δ−1) samples at each h, and a
maximum depth H = O (log(1/ε)). Hence, its total sample complexity is of order

1
ε2 log 1

δ
× · · · × 1

ε2 log 1
δ︸ ︷︷ ︸

H=O(log(1/ε)) times

=
(1
ε

log 1
δ

)O(log(1
ε))

,

which is formally proven below.

Theorem 2.2 (Sample complexity of SparseSampling). Assume that the number of actions is
finite, that is, A := |A| <∞, and that A ≥ 2. For ε > 0 and δ > 0, let

C :=
⌈

8γ2r2
max

(1− γ)4ε2

(
log 2

δ
+ 2H log

(
16AHγ2r2

max
(1− γ)4ε2 log 2

δ

))⌉

and H = 1 +
⌈
log1/γ

(
2rmax
ε(1−γ)

)⌉
. Then, for any fixed state s ∈ S , the output of SparseSampling

at depth h = 1 satisfies

P
[
∀a ∈ A,

∣∣∣Q̂1(s, a)−Q∗(s, a)
∣∣∣ ≤ ε] ≥ 1− δ.

Furthermore, let n(ε, δ) be the number of calls to the generative model made by SparseSampling.
Then,

n(ε, δ) ≤ 2(AC)H−1 = 2
[
c1
ε2

(
log 2

δ
+ c2 log

(
c3
ε

)
log

(
c4
ε

log
(
c5
ε

)
log 2

δ

))]c6 log(c7
ε)

= Õ
((1

ε
log 1

δ

)O(log(1/ε))
)
,

where c1, c2, c3, c4, c5, c6, and c7 are constants depending on rmax, γ, and A.

Proof. We start with some useful definitions, then we recursively bound the error on the
Q-function estimates at each depth hwith high probability.

17

Planning with a Generative Model

Definitions Let

ε′ := ε(1− γ)
2γ and δ′ := 2 exp

(
−Cε

′2(1− γ)2

2r2
max

)
.

Let (εh)H
h=1 and (δh)H

h=1 be two sequences such that εh and δh represent the accuracy and the
confidence of the Q function estimation at depth h. We define

• εH = rmax/(1− γ) and εh = γ(ε′ + εh+1) for 1 ≤ h < H ;

• δH = 0 and δh = Aδ′ +ACδh+1 for 1 ≤ h < H .

We can verify by induction on h that

δh = δ′
H−h∑
i=1

AjCj−1 ≤ δ′(AC)H−1

if A ≥ 2 and C ≥ 2, and that

εh =
H−h∑
i=1

γiε′ + γH−hrmax
1− γ ≤ γε′ + γH−hrmax

1− γ .

Notice that H = 1 +
⌈
log1/γ

(
2rmax
ε(1−γ)

)⌉
and the definition of ε′ imply ε1 ≤ ε.

High-probability events If R(i)
s,a, Z

(i)
s,a ← GenerativeModel(s, a), then R(i)

s,a = r(s, a) ≤ rmax,
by Assumption 1.1. For any state s, action a, and depth h < H , we define the event G(s, a, h) as

G(s, a, h) :=
{∣∣∣Q̂h(s, a)−Q∗(s, a)

∣∣∣ ≤ εh

}⋂{
C⋂

i=1
G(Z(i)

s,a, h+ 1)
}

where, for any state z,

G(z, h) :=
⋂

a∈A
G(z, a, h).

Let Ω be the whole sample space, and we define G(s, a,H) = Ω for any (s, a).

We prove by induction on h that

∀(s, h), P [G(s, h)] ≥ 1− δh. (2.1)

For h = H , we have εH = rmax/(1− γ), δH = 0 and the claim in verified, since

∀(s, a), |Q̂H(s, a)−Q∗(s, a)| = |Q∗(s, a)| ≤ rmax/(1− γ)

18

2.2 SparseSampling: Planning in Arbitrary State Spaces

with probability 1. Assume that (2.1) is true for h+ 1. Since the reward function is known,

∣∣∣Q̂h(s, a)−Q∗(s, a)
∣∣∣ ≤ γ

C

∣∣∣∣∣
C∑

i=1

(
V̂h+1(Z(i)

s,a)− V ∗(Z(i)
s,a)
)∣∣∣∣∣+ γ

C

∣∣∣∣∣
C∑

i=1

(
V ∗(Z(i)

s,a)−E
[
V ∗(Z(i)

s,a)
])∣∣∣∣∣ ,

where we used the facts that Ri = r(s, a) and Q∗(s, a) = r(s, a) + γE [V ∗(Z)] for Z ∼ p(·|s, a),
and the definition of Q̂h(s, a) in Line 11 of Algorithm 2.2.

On the event ⋂C
i=1 G(Z(i)

s,a, h+ 1), we have

γ

C

∣∣∣∣∣
C∑

i=1

(
V̂h+1(Z(i)

s,a)− V ∗(Z(i)
s,a)
)∣∣∣∣∣ ≤ γεh+1.

Consequently,

P [G(s, a, h)] = P
[

C⋂
i=1
G(Z(i)

s,a, h+ 1)
⋂{∣∣∣Q̂h(s, a)−Q∗(s, a)

∣∣∣ ≤ εh

}]

≥ P
[

C⋂
i=1
G(Z(i)

s,a, h+ 1)
⋂{

γ

C

∣∣∣∣∣
C∑

i=1

(
V ∗(Z(i)

s,a)−E
[
V ∗(Z(i)

s,a)
])∣∣∣∣∣ ≤ εh − γεh+1

}]

≥ P
[

C⋂
i=1
G(Z(i)

s,a, h+ 1)
⋂{

1
C

∣∣∣∣∣
C∑

i=1

(
V ∗(Z(i)

s,a)−E
[
V ∗(Z(i)

s,a)
])∣∣∣∣∣ < ε′

}]
.

By Hoeffding’s inequality and the fact that V ∗(s) ∈ [− rmax
1−γ ,

rmax
1−γ] for any s, we have

P
[

1
C

∣∣∣∣∣
C∑

i=1

(
V ∗(Z(i)

s,a)−E
[
V ∗(Z(i)

s,a)
])∣∣∣∣∣ ≥ ε′

]
≤ 2 exp

(
−Cε

′2(1− γ)2

2r2
max

)
= δ′.

Using the induction hypothesis that (2.1) holds for h+ 1, we obtain

P
[
G(s, h)∁

]
≤
∑
a∈A

P
[
G(s, a, h)∁

]
≤
∑
a∈A

(
δ′ +

C∑
i=1

P
[
G(Z(i)

s,a, h+ 1)
])
≤ Aδ′ +ACδh+1 = δh.

which concludes the proof of (2.1) by induction.

At h = 1, we obtain

P
[
∀a ∈ A,

∣∣∣Q̂1(s, a)−Q∗(s, a)
∣∣∣ ≤ ε] ≥ P [G(s, h = 1)] ≥ 1− δ′(AC)H−1,

for any s ∈ S.

19

Planning with a Generative Model

Now, for a fixed δ > 0, we need to find C such that

δ′(AC)H−1 = 2 exp
(
−Cε

′2(1− γ)2

2r2
max

)
(AC)H−1 ≤ δ.

By Lemma A.4, this condition is satisfied by a value C that is bounded as

C ≤ 2r2
max

(1− γ)2ε′2

(
log 2

δ
+H log

(
8Ar2

max
(1− γ)2ε′2 log 2

δ
+ 4A2H2r4

max
(1− γ)4ε′4

))

≤ 2r2
max

(1− γ)2ε′2

(
log 2

δ
+ 2H log

(
4AHr2

max
(1− γ)2ε′2 log 2

δ

))
.

Since ε′ := ε(1−γ)
2γ , we take

C =
⌈

8γ2r2
max

(1− γ)4ε2

(
log 2

δ
+ 2H log

(
16AHγ2r2

max
(1− γ)4ε2 log 2

δ

))⌉
,

which gives us P
[
∀a ∈ A,

∣∣∣Q̂1(s, a)−Q∗(s, a)
∣∣∣ ≤ ε] ≥ 1− δ.

Finally, let nh(ε, δ) be the number of calls made to the generative model by SparseSampling
at depth h. We have nH(ε, δ) = 0 and nh(ε, δ) = AC + ACnh+1(ε, δ) for h < H , which
implies nh(ε, δ) =

∑H−h
i=1 (AC)i. The total sample complexity is equal to n1(ε, δ) and satisfies

n1(ε, δ) ≤ 2(AC)H−1, which concludes the proof.

Although SparseSampling has a sample complexity that is independent of the size of the state
space S , Theorem 2.2 only ensures that we are able to estimate the optimal Q-function at a fixed
state s. The result below, adapted from Kearns et al. [KMN02], shows that it is possible to use
SparseSampling as a subroutine to implement a near-optimal policy.

Lemma 2.3 (adapted from Lemma 5 by Kearns et al. [KMN02]). Consider an algorithm that,
at each state s, executes an action as by following the procedure below:

• Compute Q̂1(s, ·) such that P
[
∀a ∈ A,

∣∣∣Q̂1(s, a)−Q∗(s, a)
∣∣∣ ≤ ε] ≥ 1− δ;

• Choose the action âs ← argmaxa Q̂1(s, a).

Since âs is a random variable, this algorithm implements a stochastic policy, that we denote by π.

Then, for any state s, we have

V ∗(s)− V π(s) ≤ 2ε
1− γ + 2δrmax

(1− γ)2 ·

20

2.3 SmoothCruiser: Planning in Regularized MDPs

Proof. This result is a restatement of Lemma 5 by Kearns et al. [KMN02], which can be applied
immediately by noticing that, with probability at least 1− δ,

V ∗(s)−Q∗(s, âs) ≤ Q∗(s, π∗(s))− Q̂1(s, π∗(s)) + Q̂1(s, âs)−Q∗(s, âs) ≤ 2ε.

Finally, we restate below the theorem by Kearns et al. [KMN02] that provides a lower bound
on the sample complexity of any algorithm that has access to a generative model that does not
make assumptions on the size of the state space. It states that, for any algorithm that is able
to implement an ε-optimal policy, at least Ω

(
(1/ε)1/ log(1/γ)

)
calls to the generative model are

required.

Theorem 2.4 (Theorem 2 from Kearns et al. [KMN02]). Consider an algorithm that is given
access to a generative model for an MDPM and that implements a policy π . If, for any input state
s ∈ S, π satisfies |V π(s)− V ∗(s)| ≤ ε, then there exists an MDPM on which this algorithm
makes at least Ω

(
(1/ε)1/ log(1/γ)

)
calls to the generative model.

2.3 SmoothCruiser: Planning in Regularized MDPs

In the previous section, we saw that the SparseSampling algorithm allows us to provide an
(ε, δ)-correct approximation of the value function in a fixed state for any MDP with finite action
set A. However, its sample complexity is non-polynomial in 1/ε, and there are no known
algorithms with guaranteed polynomial complexity in the worst case. In this section, we
propose an algorithm, called SmoothCruiser, that has a worst-case sample complexity of order
O
(
1/ε4) provided that the MDP is regularized.

2.3.1 Regularized MDPs

Consider an MDPM and let ∆(A) be the set of probability distributions on its action setA. Let
R : ∆(A)→ R+ be a regularization functional and λ > 0 be a regularization factor. We assume
that supµ∈∆(A)R(µ) <∞. We say thatM is regularized if its Bellman operator is defined as
the operator Tγ,λ such that

∀s ∈ S, [Tγ,λV](s) = max
π(·|s)∈∆(A)

E
[
r(s, a) + λR(π(·|s)) + γV (z)

]
, (2.2)

where the expectation is taken over a ∼ π(·|s) and z ∼ p(·|s, a).

Notice that, if λ = 0, Tγ,λ is equal to the Bellman operator Tγ for the discounted-reward criterion.
The operator Tγ,λ is also a contraction, and we denote its fixed point by V . We refer to V as the

21

Planning with a Generative Model

optimal regularized value function, and it satisfies [GSP19]

V (s) ≥ sup
π∈ΠM

Eπ

[∞∑
t=1

γt−1 [r(St, At) + λR(π(·|St))]
∣∣∣∣∣S1 = s

]
,

that is, it can be seen as the optimal value function in an MDP where a policy-dependent
regularization term is added to the reward function.

We define F : RA → R as

F (q) = max
µ∈∆(A)

Ea∼µ [q(a) + λR(µ)] , (2.3)

such that the optimal regularized value function V satisfies

∀s ∈ S , V (s) = F (Qs), where Qs(a) = Ez∼p(·|s,a) [r(s, a) + γV (z)] ,

and we refer to Qs as the optimal regularized Q-function.

Assumptions Without loss of generality, we assume in this section that the reward function
satisfies 0 ≤ r(s, a) ≤ rmax = 1. By defining

M := F (0) = max
µ∈∆(A)

λR(µ),

the optimal regularized value function is bounded by (1 + M)/(1 − γ). Also, we make the
following assumptions on the function F :

Assumption 2.5. Consider the function F : RA → R defined by (2.3). We assume that

1. F is differentiable;

2. (1-Lipschitz) ∀q ∈ RA, 0 < ∥∇F (q)∥1 ≤ 1;

3. (nonnegative gradient) ∀q ∈ RA, ∇F (q) ⪰ 0;

4. (L-smoothness) ∃L ≥ 0 such that, for any q, q′ ∈ RA,

∣∣F (q)− F (q′)− (q − q′)T∇F (q′)
∣∣ ≤ L ∥∥q − q′∥∥2

2 .

These assumptions are verified, for instance, if

R(µ) = −
∑
a∈A

µ(a) logµ(a),

22

2.3 SmoothCruiser: Planning in Regularized MDPs

that is, the entropy of the probability distribution µ ∈ ∆(A). In this case, we have L = 1/λ and

F (q) = λ log
A∑

i=1
exp(qi/λ),

which is a smooth approximation of the max function, defined as max(q) = maxi qi. Indeed,
we have |max(q)− λ log

∑A
i=1 exp(qi/λ)| ≤ λ logA, for any q ∈ RA.

Another example arises by setting R(µ) =
∑

a∈A
√
µ(a), and the proof that it results in a

function F satisfying Assumption 2.5 is given in [Gri+19, Appendix E].

2.3.2 Algorithm

We now describe our proposed algorithm, SmoothCruiser (Algorithm 2.3). Its building blocks
are two procedures, sampleV (Algorithm 2.4) and estimateQ (Algorithm 2.5) that recursively
call each other. The procedure sampleV returns a noisy estimate of V (s) with a bias bounded
by ε. The procedure estimateQ averages the outputs of several calls to sampleV to obtain an
estimate Q̂s that is an approximation of Qs with precision ε with high probability. Finally,
SmoothCruiser calls estimateQ(s, ε) and outputs Q̂s.

Algorithm 2.3: SmoothCruiser

1 input: (s, ε, δ′) ∈ S × R+× R+
2 M ← F (0)
3 κ← (1−√γ)/(AL)
4 set δ′, κ andM as global parameters
5 Q̂s ← estimateQ(s, ε)
6 return: Q̂s

Algorithm 2.4: sampleV

1 input: (s, ε) ∈ S × R+
2 if ε ≥ (1 +M)/(1− γ) then
3 return: 0
4 else if ε ≥ κ then
5 Q̂s ← estimateQ(s, ε)
6 return: F (Q̂s)
7 else if ε < κ then
8 Q̂s ← estimateQ(s,

√
κε)

9 Â← action drawn from∇F (Q̂s)/∥∇F (Q̂s)∥1 ∈ ∆(A)
10 R,Z ← GenerativeModel(s, Â)
11 V̂ ← sampleV(Z, ε/√γ)
12 return: F (Q̂s)− Q̂T

s∇F (Q̂s) + (R+ γV̂)∥∇F (Q̂s)∥1

23

Planning with a Generative Model

Algorithm 2.5: estimateQ

1 input: (s, ε) ∈ S × R+

2 N(ε)←
⌈

18(1+M)2

(1−γ)4(1−√
γ)2

log(2A/δ′)
ε2

⌉
3 for a ∈ A do
4 for i ∈ {1, . . . , N(ε)} do
5 (R,Z)← GenerativeModel(s, a)
6 V̂ ← sampleV(Z, ε/√γ)
7 qi ← R+ γV̂

8 Q̂s(a)←mean (q1, . . . , qN)
9 # clip Q̂s(a) to [0, (1 +M)/(1− γ)]
10 Q̂s(a)← min

(
max

(
Q̂s(a), 0

)
, (1 +M)/(1− γ)

)
11 return: Q̂s ∈ RA

The most important part of the algorithm is the procedure sampleV, that returns a low-bias
estimate of the value function. Having the estimate of the value function, the procedure
estimateQ averages the outputs of sampleV to obtain a good estimate of the Q function with
high probability. The main idea of sampleV is to first compute an estimate of precision O(

√
ε)

of the value of each action {Q̂s(a)}a∈A to linearly approximate the function F around Q̂s. The
local approximation of F around Q̂s is subsequently used to estimate the value of s with a
better precision, of order O(ε), which is possible due to the smoothness of F .

For a target accuracy ε at state s, sampleV distinguishes three cases, based on a reference
threshold κ := (1−√γ)/(AL), which is the maximum value of ε for which we can compute a
good estimate of the value function using linear approximations of F .

• First, if ε ≥ (1 + M)/(1 − γ), then 0 is a valid output, since V (s) is bounded by (1 +
M)/(1 − γ). This case furthermore ensures that our algorithm terminates, since the
recursive calls are made with increasing values of ε.

• Second, if κ ≤ ε < (1 +M)/(1− γ), we run F (estimateQ(s, ε)) in which for each action,
both the generative model and sampleV are called O (1/ε2) times in order to return V̂ (s)
which is with high probability an ε-approximation of V (s).

• Finally, if ε < κ, we take advantage of the smoothness ofF to compute an ε-approximation
of V (s) in a more efficient way than calling sampleV (and the generative model)O (1/ε2)
times. We achieve it by calling estimateQ with a precision √κε instead of ε, which
requires O (1/ε) calls instead.

24

2.3 SmoothCruiser: Planning in Regularized MDPs

2.3.3 Sample Complexity of SmoothCruiser

In Theorem 2.6, we provide a bound on the sample complexity of SmoothCruiser. In Theo-
rem 2.7, we provide a consistency result, stating that the output SmoothCruiser applied to a
state s ∈ S is a good approximation of the optimal regularized value V (s) with high probability.

Theorem 2.6. Let n (ε, δ′) be the number of calls to the generative model before SmoothCruiser
terminates. For any state s ∈ S and ε, δ′ > 0,

n
(
ε, δ′) ≤ c1

ε4 log
(
c2
δ′

)[
c3 log

(
c4
ε

)]log2(c5(log(c2
δ′)))

= Õ
(1
ε4

)
,

where c1, c2, c3, c4, and c5 are constants that depend only on A, L, and γ.

Theorem 2.7. For any s ∈ S , ε > 0, and δ > 0, there exists a δ′ that depends on ε and δ such that
the output Q̂s of SmoothCruiser(s, ε, δ′) satisfies

P
[
∀a ∈ A, |Q̂s(a)−Qs(a)| ≤ ε

]
≥ 1− δ

and such that n (ε, δ′) = O
(
1/ε4+c

)
for any c > 0.

More precisely, in the proof of Theorem 2.7, we establish that

P
[
∀a ∈ A, |Q̂s(a)−Qs(a)| > ε

]
≤ δ′n

(
ε, δ′) .

Therefore, for any parameter δ′ satisfying δ′n (ε, δ′) ≤ δ, SmoothCruiser with parameters ε and
δ′ provides an approximation of Qs which is (ε, δ) correct.

The proofs of Theorem 2.6 and Theorem 2.7 are given in Appendix A.1 and Appendix A.2,
respectively. In the rest of this section, we explain the key ideas that allow us to exploit the
smoothness of the Bellman operator to obtain a better sample complexity.

When ε < κ, the procedure estimateQ is called to obtain an estimate Q̂s such that

∥Q̂s −Qs∥2 = O
(√

ε/L

)
.

The procedure sampleV then continues with computing a linear approximation of F (Qs)
around Q̂s. Using the L-smoothness of F,we guarantee the ε-approximation,∣∣∣F (Qs)−

{
F (Q̂s) + (Qs − Q̂s)T∇F (Q̂s)

}∣∣∣ ≤ L∥Q̂s −Qs∥22 = O (ε) .

25

Planning with a Generative Model

We wish to output this linear approximation, but we need to handle the fact that the vector Qs

(the true Q-function at s) is unknown. Notice that the vector ∇F (Q̂s)/∥∇F (Q̂s)∥1 represents
a probability distribution. The term QT

s∇F (Q̂s) in the linear approximation of F (Qs) above
can be expressed as

QT
s∇F (Q̂s) = E

[
Qs(Â)∥∇F (Q̂s)∥1

∣∣∣Q̂s

]
, with Â ∼ ∇F (Q̂s)/∥∇F (Q̂s)∥1.

Therefore, we can build a low-bias estimate of QT
s∇F (Q̂s) from estimating only Qs(Â):

• sample action Â ∼ ∇F (Q̂s)/∥∇F (Q̂s)∥1;

• sample a reward and a next state R
s,Â
, Z

s,Â
← GenerativeModel(s, Â);

• obtain an O (ε)-approximation of Qs(Â): Q̃(Â) = R
s,Â

+ γsampleV
(
Z

s,Â
, ε/
√
γ
)
.

We show that V̂ (s) is, in expectation, an ε-approximation of the true value function V (s). The
benefit of such approach is that we can call estimateQ with a precisionO (

√
ε) instead ofO (ε),

which thanks to the smoothness of F , reduces the sample complexity. In particular, one call to
sampleV(s, ε) will make O (1/ε) recursive calls to sampleV(s,O (

√
ε)), and the total number of

calls to sampleV behaves as

1
ε
× 1
ε1/2 ×

1
ε1/4 × · · · ≤

1
ε2 ·

Therefore, the total number of calls to the generative model made by sampleV isO (1/ε2), which
implies that the total sample complexity is O(1/ε4), since SmoothCruiser makes O (1/ε2) calls
to sampleV.

Impact of the smoothness L In Theorem 2.6 we did not make the dependence on L explicit
to preserve simplicity. However, we can analyze the sample complexity in the two limits:

strong regularization L→ 0 and F is linear

no regularization L→∞ and F is not smooth

AsL→ 0, the conditionκ = (1−√γ)/(AL) ≤ ε ≤ (1+M)/(1−γ)will bemet less and eventually
the algorithm will sample N = O

(
1/ε2) trajectories, which implies a sample complexity of

order O (1/ε2) . On the other hand, as L goes to∞, the condition ε < κ will be met less and
the algorithm eventually runs a sampling strategy similar to SparseSampling, which results
in a sample complexity of order O

(
(1/ε)O(log(1/ε))

)
, which is non-polynomial in 1/ε. For a

fixed L, SmoothCruiser can be seen as an interpolation of both cases, and results in a sample
complexity of order O (1/ε4) .

26

2.4 Discussion and Bibliographical Remarks

Approximating the optimal value function Let V ∗(s) be the optimal value function without
regularization. We can prove that sups |V (s)− V ∗(s)| ≤ F (0)/(1− γ) = O (λ), where λ is the
regularization factor. Thus, we can interpret the optimal regularized value function V (s) as an
approximate version of V ∗(s), which we can estimate faster.

Comparison to lower bound For non-regularized problems, Theorem 2.4 provides a sample
complexity lower bound of Ω

(
(1/ε)1/ log(1/γ)

)
, which is polynomial in 1/ε, but its exponent

grows as γ approaches 1. For regularized problems, Theorem 2.2 shows that the sample
complexity is polynomial with an exponent that is independent of γ. Hence, when γ is close to 1,
regularization gives us a better asymptotic behavior with respect to 1/ε than the lower bound
for the non-regularized case, although we are not estimating the same value. To the best of our
knowledge, there are still no lower bounds proved for planning in regularized MDPs.

2.4 Discussion and Bibliographical Remarks

In this chapter, we studied three algorithms that allow us to approximate the optimal value
function of an MDP by using a generative model: MBQVI, SparseSampling and SmoothCruiser.
We started with MBQVI, which applies only to finite MDPs, and saw that it requires Õ (SA/ε2)
calls to the generative model to provide an ε-approximation of Q∗, where S and A are the
number of states and actions in the MDP. Intuitively, this dependence on S comes from the fact
that MBQVI outputs aQ-function Q̂ that approximatesQ∗ for all states s ∈ S , i.e., maxs,a |Q̂(s, a)−
Q∗(s, a)| ≤ ε. By requiring an ε-approximation only for a fixed state s, SparseSampling has a
sample complexityO

(
(1/ε)O(log(1/ε))

)
, which does not depend on the size of the state space, but

has a much worse dependence on 1/ε, when compared to MBQVI. Although SparseSampling
focuses on estimatingQ∗ only for a fixed s, we saw in Lemma 2.3 that it can be used to implement
a near-optimal policy that runs SparseSampling from scratch every time we need to choose
an action. Finally, we proposed SmoothCruiser, that focuses on approximating the optimal
regularized value function at a fixed state s, and has a sample complexity of order O (1/ε4), that
is polynomial in 1/ε, contrary to SparseSampling. As the regularization goes to zero, its sample
complexity approaches that of SparseSampling, so that we can interpret SmoothCruiser as an
acceleration of SparseSampling that applies when the MDP is regularized. A disadvantage of
SparseSampling and SmoothCruiser is that both algorithms make a huge amount of recursive
calls and we have no guarantees on their output if they are stopped before termination, which
makes their implementation impractical in most situations. However, they allow us to obtain
sample-complexity bounds that hold forMDPswith arbitrary state spaces, which is valuable from
a theoretical point of view. In particular, regularization has been employed in several commonly
used algorithms for RL, and SmoothCruiser shows how we can exploit the smoothness of the
regularized Bellman operator to improve the sample complexity of planning.

27

Planning with a Generative Model

Regularization in RL Regularization has been shown to be useful in several RL algorithms.
In the context of policy gradient algorithms, a common example is the A3C algorithm [Mni+16]
that penalizes policies with low entropy to improve exploration, and the work of Neu et al.
[NJG17] presents a theoretical framework for entropy regularization using the joint state-action
distribution. Formulations with entropy-augmented rewards have been used to learn multi-
modal policies to improve exploration and robustness [Haa+17; Haa+18] and can also be
related to policy gradient methods [SCA17]. Furthermore, Geist et al. [GSP19] propose a
theory of regularized MDPs, although they do not study the sample complexity of algorithms
in this setting.

Planning from a fixed state s Walsh et al. [WGL10] provide an adaptive action-selection
scheme for SparseSampling, but its sample complexity is still non-polynomial in 1/ε. The UCT
algorithm [KS06b], used for planning in MDPs and games, selects actions based on optimistic
estimates of their values and has good empirical performance in several applications. However,
the sample complexity of UCT can be worse than exponential in 1/ε for some environments,
which is mainly due to exploration issues [CM07]. Algorithms with sample complexities of
orderO

(
1/εd

)
, where d is a problem-dependent quantity, have been proposed for deterministic

dynamics [HM08], and in an open-loop1 setting [BM10; LM19; Bar+19], for bounded number
of next states and a full MDP model is known [BM12], for bounded number of next states
[SKM14], and for general MDPs [GVM16]. In general, when the state space is infinite and the
transitions are stochastic, the problem-dependent quantity d can make the sample complexity
guarantees non-polynomial. For a related setting, when rewards are only obtained in the leaves
of a fixed tree, Kaufmann and Koolen [KK17] and Huang et al. [Hua+17] present algorithms to
identify the optimal action in a game based on best-arm identification tools. In the finite-horizon
setting with bounded number of next states, Feldman and Domshlak [FD14] and Jonsson et al.
[Jon+20] provide planning algorithms (BRUE and MDP-GapE, respectively) that recommend an
action â for any fixed state s, whose sample complexities scale with the sub-optimality gaps
∆a := V ∗(s)−Q∗(s, a). Whereas Feldman and Domshlak [FD14] provide a bound for BRUE
scaling with the inverse of the minimum gap ∆min = mina̸=a∗ ∆a, where a∗ = argmaxaQ

∗(s, a),
the MDP-GapE algorithm by Jonsson et al. [Jon+20] has a sample complexity scaling with∑

a 1/max(∆a,∆min, ε)2 and has a better dependence with respect to the planning horizonH .2

Further reading Agarwal et al. [AKY20] provide a novel analysis of model-based planning
with a generative model for finite MDPs, and show that MBQVI is also minimax optimal for
obtaining an ε-optimal policy, whereas the analysis we provided in this chapter focuses on

1This means that the policy is seen as a function of time, not the states. The open-loop setting is particularly
adapted to environments with deterministic transitions.

2Although the sample complexities of BRUE and MDP-GapE are polynomial with respect to 1/∆min or 1/ε, they
are exponential with respect to H . In the discounted-reward setting, an effective horizon H is defined as a function
of log(1/ε), which, for instance, leads to the non-polynomial bound for SparseSampling.

28

2.4 Discussion and Bibliographical Remarks

obtaining an ε-optimal value function. Tarbouriech et al. [Tar+21b] extend MBQVI to stochastic
shortest path problems. Du et al. [Du+20], Lattimore et al. [LSW20], and Weisz et al. [WAS21]
analyze the sample complexity with a generative model when d-dimensional linear function
approximation is used to represent the Q-functions, and study in which cases it is possible to
obtain sample complexities that are polynomial in the quantities of interest (H, d, and 1/ε),
and in which cases the sample complexities are exponential.

29

Chapter 3

Online Interaction with Finite MDPs

In this chapter, we consider the finite-horizon criterion, and we assume that we have access
to an online model of a finite MDP. We present three of the most common criteria used to
evaluate RL algorithms in the online setting: the regret, the sample complexity of exploration,
and the sample complexity for best-policy identification. Using a unified proof technique, we
prove worst-case lower bounds for each of those criteria. Then, we present a simplified analysis
of the UCBVI algorithm introduced by Azar et al. [AOM17], which is near-optimal for regret
minimization in finite MDPs, and is generalized to continuous MDPs in Chapter 4.

The lower-bound analyses presented in this chapter are published in the paper [Dom+21b].

Contents
3.1 Performance Criteria . 32

3.2 Lower Bounds: Key Ideas & Hard MDP Instances 34

3.3 Lower Bound on the Regret . 38

3.4 Lower Bound on the Sample Complexity . 41

3.5 Lower Bounds: Extensions . 44

3.6 Upper Bound on the Regret of UCBVI . 47

3.7 Discussion and Bibliographical Remarks . 53

31

Online Interaction with Finite MDPs

3.1 Performance Criteria

Consider the finite-horizon criterion and its probabilistic model introduced in Section 1.2,
and assume that the agent has access to an online model of an MDPM. In this setting, the
agent interacts with the model in episodes of length H : in each stage h ∈ {1, . . . ,H} of an
episode t ∈ N∗, it is in a state St

h ∈ S, it takes an action At
h ∈ A then observes the next state

St
h+1 sampled according to the transition kernel ph(·|St

h, A
t
h), and receives a reward rh(St

h, A
t
h).

The quality of an algorithm in the online setting can be measured with different performance
metrics. We introduce below three of the main criteria studied in the literature.

Notation For any n ∈ N∗, we define [n] := {1, . . . , n}. We recall some of the definitions
introduced in Section 1.2.1. We denote by Bt

H := (St′
h , A

t′
h)h∈[H],1≤t′≤t, the transitions collected

by the algorithm up to episode t, and by F t
H = σ(Bt

H) the σ-algebra generated by Bt
H . An RL

algorithm is defined as a history-dependent policy π used to interact with the environment,
and it might be equipped with a stopping time τ with respect to the filtration (F t

H)t∈N and a
policy recommendation π̂τ , such that the algorithm can stop at the end of episode τ and output
π̂τ . We denote by πt−1

H the restriction of π to the subset of histories starting with Bt−1
H . The

number of states and actions in the MDP are denoted by S and A, respectively.

Regret The regret of an algorithm (Definition 3.1) after T episodes is defined as the sum over
all episodes of the difference between the expected total reward gathered by an optimal policy
and that of the algorithm, starting from a state that depends on the episode t. It quantifies
the performance of an agent during the learning period, and how well it balances exploration
and exploitation. That is, in order to minimize the regret, the agent must explore to learn the
dynamics of the MDP, but the policy that it executes in each episode t must be close to the
optimal policy as often as possible.

Definition 3.1 (Regret). The regret of an algorithm π after T episodes is defined as

RT :=
T∑

t=1

(
V ∗

1 (St
1)− V πt−1

H
1 (St

1)
)
,

and its expected regret is RT := Eπ,M [RT]. When not implied by the context, we explicit the
dependence ofRT andRT on π andM by denoting those quantities byRT (π,M) andRT (π,M).

Best-Policy Identification (BPI) The sample complexity for BPI (Definition 3.2) is defined
in a Probably Approximately Correct (PAC) framework, and measures how many episodes τ
are required for the agent to return a policy π̂τ that is near-optimal with high probability. It

32

3.1 Performance Criteria

quantifies the performance after the learning period, hence it is a pure-exploration objective: the
agent does not need to exploit during learning, since it is only evaluated at the end.

Definition 3.2 (PAC for best-policy identification). An algorithm (π, τ, π̂τ) is (ε, δ)-PAC for
best-policy identification in an MDPM if the policy π̂τ returned after τ episodes satisfies

Pπ,M
[
Es∼µ

[
V ∗

1 (s)− V π̂τ
1 (s)

]
≥ ε

]
≤ δ.

where µ is a fixed distribution over the set of states S. The sample complexity is defined as the
number of episodes τ required for stopping.

PAC-MDP The sample complexity of exploration quantifies the number of episodes NPAC in
which the agent executes a policy that is not ε-optimal. In this framework, an algorithm is
said to be PAC for MDPs, PAC for exploration, or PAC-MDP [Kak03], if NPAC is bounded by
a polynomial function with high probability (Definition 3.3). Like the regret, the PAC-MDP
criterion measures the performance of the agent during learning, but the agent is penalized
only by the number of mistakes it makes, and not by the intensity of those mistakes.

Definition 3.3 (PAC for exploration). An algorithm π is (ε, δ)-PAC for exploration in an MDP
M (or PAC-MDP) if there exists a polynomial functionFPAC(H, 1/ε, log(1/δ)), which may depend
on the parameters of the MDP, such that its sample complexity

NPAC :=
∞∑

t=1
1

{
V ∗

1 (St
1)− V πt−1

H
1 (St

1) > ε

}

satisfies Pπ,M
[
NPAC > FPAC(H, 1/ε, log(1/δ))

]
≤ δ.

In the next sections, we prove worst-case lower bounds for the regret, the sample complexity of
BPI, and for the sample complexity of PAC-MDP. These bounds state that, for any algorithm,
there exists an MDP such that its regret is greater than a function of (S,A,H, T) and its sample
complexity is greater than a function of (S,A,H, ε, δ). Lower bounds measure how “difficult”
it is to optimize each criterion and allow us to assess the quality of the upper bounds provided
for an algorithm.

Minimax optimality Worst-case lower bounds are also called minimax lower bounds, since
they consider the best possible algorithm (i.e., the algorithmwith theminimum regret or sample
complexity) in the worst possible environment for that algorithm (i.e., with the maximum
regret or sample complexity). An algorithm is said to be minimax optimal if its regret or sample
complexity is equal to the lower bound, up to constant or logarithmic factors.

33

Online Interaction with Finite MDPs

As discussed in Section 3.7, minimax lower bounds for RL have been analyzed in several
previous works, and ourmain contributions are: (i) we provide unified proofs for lower bounds
in the three criteria that we consider, in the sense that we use a single class of hard MDPs
and the same information-theoretic tools for all our proofs; and (ii) our analyses are detailed,
self-contained, and also consider time-inhomogeneous MDPs, that is, when the transitions ph

and rewards rh may depend on the stage h ∈ [H] within an episode.

3.2 Lower Bounds: Key Ideas & Hard MDP Instances

In this section, we present the two main ingredients for the proof of the minimax lower bounds.
These bounds consider a class C of hardMDPs instances (onwhich the optimal policy is difficult
to identify), that are typically close to each other, but for which the behavior of an algorithm is
expected to be different (because they do not share the same optimal policy). The class C used
to derive all the lower bounds is presented in Section 3.2.1. Then, lower bound proofs use a
change of distribution between twowell-chosenMDPs in C in order to obtain inequalities on the
expected number of visits of certain state-action pairs in one of them. The information-theoretic
tools that we use for these changes of distributions are gathered in Section 3.2.2.

3.2.1 Hard MDP Instances

From a high-level perspective, the family of MDPs that we use for our proofs behave like multi-
armed bandits with Θ(HSA) arms. To gain some intuition about the construction, assume
that S = 4 and consider the MDP in Figure 3.1. The agent starts in a waiting state sw where it
can take an action aw to stay in sw up to a stage H < H , after which it has to leave sw. From
sw, the agent can only transition to s1, from which it can reach two absorbing states, a “good”
state sg and a “bad” state sb. The state sg is the only state where the agent can obtain a reward,
which starts to be 1 at stage H + 2. There is a single action a∗ in state s1 that increases by ε′

the probability of arriving to the good state, and this action must be taken at a specific stage
h∗. The intuition is that, in order to maximize the rewards, the agent must choose the right
moment h ∈

{
1, . . . ,H

}
to leave sw, and then choose the good action a∗ ∈ {1, . . . , A} in s1.

This results in a total of HA possible choices, or “arms”, and the maximal reward is Θ(H). By
analogy with the existing minimax regret bound for multi-armed bandits [Aue+02; LS20], the
regret lower bound should be Ω(H

√
HAT), by taking H = Θ(H).

Inspired by the tree construction of Lattimore and Szepesvári [LS20] for the lower bound in
the average-reward setting, we now generalize these MDPs to S > 4. Consider a family of
MDPs described as follows and illustrated in Figure 3.2. First, we require the assumption below,
which we relax in Section 3.5.1.

34

3.2 Lower Bounds: Key Ideas & Hard MDP Instances

sw

s1

sgsb rh(sg, a) = 1

{
h ≥ H + 2

}
rh(sb, a) = 0

action a ∈ {1, . . . , A}, a ̸= aw

action = aw

1
2 + ε′

1
2

1
2

1
2 − ε

′

11

Figure 3.1 – Illustration of the class of hard MDPs for S = 4.

Assumption 3.4. The number of states and actions satisfy S ≥ 6, A ≥ 2, and there exists an
integer d such that S = 3 + (Ad − 1)/(A− 1), which implies d = Θ(logA S). We further assume
that H ≥ 3d.

As in the previous case, there are three special states: a “waiting” state sw where the agent
starts and can choose to stay up to a stage H , a “good” state sg that is absorbing and is the
only state where the agent obtains rewards, and a “bad” state sb that is absorbing and gives no
reward. The other S − 3 states are arranged in a full A-ary tree of depth d− 1, which can be
done since we assume there exists an integer d such that S − 3 =

∑d−1
i=0 A

i. The root of the tree
is denoted by sroot, which can only be reached from sw, and the states sg and sb can only be
reached from the leaves of the tree.

Let H ≤ H − d be an integer that will be a parameter of the class of MDPs. Letting L =
{s1, s2, . . . , sL} be the set of L leaves of the tree, we define for each

(h∗, ℓ∗, a∗) ∈
{

1 + d, . . . ,H + d
}
× L×A,

an MDPM(h∗,ℓ∗,a∗) as follows. For any state in the tree, the transitions are deterministic: the
a-th action in a node leads to the a-th child of that node. The transitions from sw are given by

ph(sw|sw, a) := 1

{
a = aw, h ≤ H

}
and ph(sroot|sw, a) := 1− ph(sw|sw, a).

35

Online Interaction with Finite MDPs

sw

sroot

s1 s2 s3 s4

action ̸= aw

action = aw

sgsb rh(sg, a) = 1

{
h ≥ H + d+ 1

}
rh(sb, a) = 0

1
2

1
2

1
2 + ε′

1
2 − ε

′

11

Figure 3.2 – Illustration of the class of hard MDPs used in the proofs of Theorems 3.8 and 3.9.

That is, there is an action aw that allows the agent to stay at sw up to a stage H . After stage H ,
the agent has to traverse the tree down to the leaves. The transitions from any leaf si ∈ L are
given by

ph(sg|si, a) := 1
2 + ∆(h∗,ℓ∗,a∗)(h, si, a) and ph(sb|si, a) := 1

2 −∆(h∗,ℓ∗,a∗)(h, si, a), (3.1)

where ∆(h∗,ℓ∗,a∗)(h, si, a) := 1 {(h, si, a) = (h∗, sℓ∗ , a∗)} · ε′, for some ε′ ∈ [0, 1/2] that is the
secondparameter of the class. Thismeans that there is a single leaf ℓ∗ where the agent can choose
an action a∗ at stage h∗ that increases the probability of arriving to the good state sg. Finally, the
states sg and sb are absorbing, that is, for any action a, we have ph(sb|sb, a) := ph(sg|sg, a) := 1.
The reward function depends only on the state and is defined as

∀a ∈ A, rh(s, a) := 1

{
s = sg, h ≥ H + d+ 1

}

36

3.2 Lower Bounds: Key Ideas & Hard MDP Instances

so that the agent does not miss any reward if it chooses to stay at sw until stage H .

We further define a reference MDPM0 which is an MDP of the above type but for which
∆0(h, si, a) := 0 for all (h, si, a). For every ε′ and H , we define the class CH,ε′ to be the set

CH,ε′ := {M0}
⋃{
M(h∗,ℓ∗,a∗)

}
(h∗,ℓ∗,a∗)∈{1+d,...,H+d}×L×A

.

3.2.2 Change of Distribution Tools

Recall from Section 1.2.1 that we denote by PBt
H

M the pushforward measure of Bt
H , the history

of states and actions up to episode t, under PM.

Definition 3.5. The Kullback-Leibler divergence between two distributions P1 and P2 on a measurable
space (Ω,G) is defined as

KL(P1,P2) :=
∫

Ω
log

(dP1
dP2

(ω)
)

dP1(ω),

if P1 ≪ P2 and +∞ otherwise. For Bernoulli distributions, we define ∀(p, q) ∈ [0, 1]2,

kl(p, q) := KL
(
B(p),B(q)

)
= p log

(
p

q

)
+ (1− p) log

(1− p
1− q

)
,

where B(p) denotes the Bernoulli distribution of parameter p.

Lemma 3.6 (proof in Appendix B.1). LetM andM′ be two MDPs that are identical except for their
transition probabilities, denoted by ph and p′

h, respectively. Assume that we have ∀(s, a), ph(·|s, a)≪
p′

h(·|s, a). Then, for any stopping time τ with respect to (F t
H)t≥1 that satisfies PM [τ <∞] = 1,

KL
(
PBτ

H
M ,PBτ

H
M′

)
=
∑
s∈S

∑
a∈A

∑
h∈[H−1]

EM

[
N τ

h,s,a

]
KL

(
ph(·|s, a), p′

h(·|s, a)
)
, (3.2)

where N τ
h,s,a :=

∑τ
t=1 1

{
(St

h, A
t
h) = (s, a)

}
and Bτ

H is the random vector representing the history of
states and actions up to episode τ .

Lemma 3.7 (Lemma 1 by Garivier et al. [GMS19]). Consider a measurable space (Ω,F) equipped
with two distributions P1 and P2. For any F-measurable function Z : Ω→ [0, 1], we have

KL(P1,P2) ≥ kl(E1[Z],E2[Z]),

where E1 and E2 are the expectations under P1 and P2 respectively.

37

Online Interaction with Finite MDPs

3.3 Lower Bound on the Regret

Using change of distributions between MDPs in a class CH,ε, we prove the following result,
which gives a minimax lower bound on the expected regret of any algorithm.

Theorem 3.8. Under Assumption 3.4, for any algorithm π, there exists an MDP whose transitions
depend on the stage h, such that, for T ≥ HSA,

RT ≥
1

48
√

6
√
H3SAT .

Proof. Consider the class of MDPs CH,ε introduced in Section 3.2.1, with H and ε to be chosen
later. This class contains a reference MDPM0 and MDPs of the formM(h∗,ℓ∗,a∗) parameterized
by

(h∗, ℓ∗, a∗) ∈
{

1 + d, . . . ,H + d
}
× L×A

in which
∆(h∗,ℓ∗,a∗)(h, si, a) := 1 {(h, si, a) = (h∗, sℓ∗ , a∗)} ε.

As already mentioned, this family of MDPs behave like bandits, hence our proof follows the
one for minimax lower bound in bandits (see, e.g., [BCB12]).

Regret of π inM(h∗,ℓ∗,a∗). The mean reward gathered by π inM(h∗,ℓ∗,a∗) is given by

E(h∗,ℓ∗,a∗)

[
T∑

t=1

H∑
h=1

rh(St
h, A

t
h)
]

=
T∑

t=1
E(h∗,ℓ∗,a∗)

 H∑
h=H+d+1

1

{
St

h = sg

}
= (H −H − d)

T∑
t=1

P(h∗,ℓ∗,a∗)
[
St

H+d+1 = sg

]
.

For any h ∈
{

1 + d, . . . ,H + d
}
,

P(h∗,ℓ∗,a∗)
[
St

h+1 = sg

]
= P(h∗,ℓ∗,a∗)

[
St

h = sg

]
+ 1

2P(h∗,ℓ∗,a∗)
[
St

h ∈ L
]

+ 1 {h = h∗}P(h∗,ℓ∗,a∗)
[
St

h = sℓ∗ , At
h = a∗

]
ε. (3.3)

Indeed, if St
h+1 = sg, we have either St

h = sg or St
h+1 ∈ L. In the latter case, the agent has 1/2

probability of arriving at sg, plus ε if the stage is h∗, the leaf is sℓ∗ and the action is a∗.

38

3.3 Lower Bound on the Regret

Using the facts that P(h∗,ℓ∗,a∗)
[
St

1+d = sg

]
= 0 because the agent needs first to traverse the

tree and∑H+d
h=1+d P(h∗,ℓ∗,a∗)

[
St

h ∈ L
]

= 1 because the agent traverses the tree only once in one
episode, we obtain from (3.3) that

P(h∗,ℓ∗,a∗)
[
St

H+d+1 = sg

]
=

H+d∑
h=1+d

1
2P(h∗,ℓ∗,a∗)

[
St

h ∈ L
]

+ 1 {h = h∗}P(h∗,ℓ∗,a∗)
[
St

h = sℓ∗ , At
h = a∗

]
ε

= 1
2 + εP(h∗,ℓ∗,a∗)

[
St

h∗ = sℓ∗ , At
h∗ = a∗

]
.

Hence, the optimal value in any of the MDPs is ρ∗ = (H −H − d)(1/2 + ε), which is obtained
by the policy that starts to traverse the tree at step h∗ − d then chooses to go to the leaf sℓ∗ and
performs action a∗. The expected regret of π inM(h∗,ℓ∗,a∗) is then

RT

(
π,M(h∗,ℓ∗,a∗)

)
= T (H −H − d)ε

(
1− 1

T
E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

]) ,

where NT
(h∗,ℓ∗,a∗) =

∑T
t=1 1

{
St

h∗ = sℓ∗ , At
h∗ = a∗}.

Maximum expected regret of π over all possibleM(h∗,ℓ∗,a∗). We first lower bound the max-
imum of the regret by the mean over all instances

max
(h∗,ℓ∗,a∗)

RT

(
π,M(h∗,ℓ∗,a∗)

)
≥ 1
HLA

∑
(h∗,ℓ∗,a∗)

RT

(
π,M(h∗,ℓ∗,a∗)

)

≥ T (H −H − d)ε

1− 1
HLAT

∑
(h∗,ℓ∗,a∗)

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

] , (3.4)

so that, in order to lower bound the regret, we need an upper bound on the sum over all MDP
instances (h∗, ℓ∗, a∗) of E(h∗,ℓ∗,a∗)

[
NT

(h∗,ℓ∗,a∗)

]
. For this purpose, we will relate each expectation

to the expectation of the same quantity under the reference MDPM0.

Upper bound on
∑

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

]
. Since NT

(h∗,ℓ∗,a∗)/T ∈ [0, 1], Lemma 3.7 gives us

kl
(1
T

E0
[
NT

(h∗,ℓ∗,a∗)

]
,

1
T

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

])
≤ KL

(
PBT

H
0 ,PBT

H

(h∗,ℓ∗,a∗)

)
.

By Pinsker’s inequality, (p− q)2 ≤ (1/2) kl(p, q), it implies

1
T

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

]
≤ 1
T

E0
[
NT

(h∗,ℓ∗,a∗)

]
+
√

1
2 KL

(
PBT

H
0 ,PBT

H

(h∗,ℓ∗,a∗)

)

39

Online Interaction with Finite MDPs

and, by Lemma 3.6, we know that

KL
(

PBT
H

0 ,PBT
H

(h∗,ℓ∗,a∗)

)
= E0

[
NT

(h∗,ℓ∗,a∗)

]
kl(1/2, 1/2 + ε)

sinceM0 andM(h∗,ℓ∗,a∗) only differ at stage h∗ when (s, a) = (sℓ∗ , a∗). Assuming that ε ≤ 1/4,
we have kl(1/2, 1/2 + ε) ≤ 4ε2 by Lemma B.1, and, consequently

1
T

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

]
≤ 1
T

E0
[
NT

(h∗,ℓ∗,a∗)

]
+
√

2ε
√

E0
[
NT

(h∗,ℓ∗,a∗)

]
. (3.5)

The sum of NT
(h∗,ℓ∗,a∗) over all instances (h∗, ℓ∗, a∗) ∈

{
1 + d, . . . ,H + d

}
× L×A is

∑
(h∗,ℓ∗,a∗)

NT
(h∗,ℓ∗,a∗) =

T∑
t=1

H+d∑
h∗=1+d

1

{
St

h∗ ∈ L
}

= T (3.6)

since for a single stage h∗ ∈
{

1 + d, . . . ,H + d
}
, we have St

h∗ ∈ L almost surely.

Summing (3.5) over all instances (h∗, ℓ∗, a∗) and using (3.6), we obtain using the Cauchy-
Schwartz inequality that

1
T

∑
(h∗,ℓ∗,a∗)

E(h∗,ℓ∗,a∗)
[
NT

(h∗,ℓ∗,a∗)

]
≤ 1 +

√
2ε

∑
(h∗,ℓ∗,a∗)

√
E0
[
NT

(h∗,ℓ∗,a∗)

]
≤ 1 +

√
2ε
√
HLAT . (3.7)

Optimizing ε and choosing H . Plugging (3.7) in (3.4), we obtain

max
(h∗,ℓ∗,a∗)

RT (π,M(h∗,ℓ∗,a∗)) ≥ T (H −H − d)ε
(

1− 1
HLA

−
√

2ε
√
HLAT

HLA

)
.

The value of ε that maximizes the lower bound is ε = 1
2
√

2

(
1− 1

HLA

)√
HLA

T which yields

max
(h∗,ℓ∗,a∗)

RT (π,M(h∗,ℓ∗,a∗)) ≥
1

4
√

2

(
1− 1

HLA

)
(H −H − d)

√
HLAT. (3.8)

The number of leaves is L = (1− 1/A)(S − 3) + 1/A ≥ S/4, since A ≥ 2 and S ≥ 6. We choose
H = H/3 and use the assumptions that A ≥ 2 and d ≤ H/3 to obtain

max
(h∗,ℓ∗,a∗)

RT (π,M(h∗,ℓ∗,a∗)) ≥
1

48
√

6
H
√
HSAT.

Finally, the assumption that ε ≤ 1/4 is satisfied if T ≥ HSA.

40

3.4 Lower Bound on the Sample Complexity

3.4 Lower Bound on the Sample Complexity

Using again change of distributions between MDPs in a class CH,ε, we prove a minimax lower
bound on the expected sample complexity of best-policy identification. We note that unlike
existing sample complexity lower bounds which also construct “bandit-like” hard instances
[SLL09; LH12; DB15], we do not refer to the bandit lower bound of Mannor and Tsitsiklis
[MT04], but instead use explicit change of distribution arguments based on the tools given in
Section 3.2.2. This allows us to provide BPI lower bounds for algorithms that output randomized
policies and to have a self-contained proof. As a consequence of this result, we then derive a
PAC-MDP lower bound in Corollary 3.10.

Theorem 3.9. Let (π, τ, π̂τ) be an algorithm that is (ε, δ)-PAC for best policy identification in any
finite MDP. Then, under Assumption 3.4, there exists an MDPM and an initial distribution µ
such that for ε ≤ H/24, H ≥ 4 and δ ≤ 1/16,

Eπ,M [τ] ≥ 1
3456

H3SA

ε2 log
(1
δ

)
·

Corollary 3.10. Let π be an algorithm that is (ε, δ)-PAC for exploration and that, in each episode t,
plays a deterministic policy πt. Then, under the assumptions of Theorem 3.9, there exists an MDP
M such that

Pπ,M

[
NPAC

ε >
1

6912
H3SA

ε2 log
(1
δ

)
− 1

]
> δ.

Proof. (of Theorem 3.9) Without loss of generality, we assume that for anyM, the algorithm
satisfies Pπ,M [τ <∞] = 1. Otherwise, there exists an MDP with Eπ,M [τ] = +∞ and the
lower bound is trivial.

We will prove that the lower bound holds for the reference MDPM0 defined in Section 3.2.1,
which has no optimal action. To do so, we will consider changes of distributions with other
MDPs in the class CH,ε̃ forH to be chosen later and ε̃ := 2ε/(H−H−d). As initial distribution µ
on the set of states, we take the one that assigns probability 1 to the waiting state sw: µ(sw) = 1.
These MDPs are of the formM(h∗,ℓ∗,a∗) with (h∗, ℓ∗, a∗) ∈

{
1 + d, . . . ,H + d

}
× L × A, for

which

∆(h∗,ℓ∗,a∗)(h, si, a) = 1 {h = h∗, si = sℓ∗ , a = a∗} ε̃.

41

Online Interaction with Finite MDPs

We recall that d − 1 is the depth of the tree. We denote by P(h∗,ℓ∗,a∗) := Pπ,M(h∗,ℓ∗,a∗) and
E(h∗,ℓ∗,a∗) := Eπ,M(h∗,ℓ∗,a∗) the probability measure and expectation in the MDPM(h∗,ℓ∗,a∗) by
following π and by P0 and E0 the corresponding operators in the MDPM0.

Suboptimality gap of π̂τ . For any (h∗, ℓ∗a∗), let ρπ̂τ

(h∗,ℓ∗,a∗) be the value of the recommended
policy π̂τ when the algorithm is run in the MDPM(h∗,ℓ∗a∗). We can show that the value of the
optimal policy in any of the MDPsM(h∗,ℓ∗a∗) is ρ∗ := (H −H − d)

(
1
2 + ε̃

)
and the value of

the recommended policy π̂τ is

ρπ̂τ

(h∗,ℓ∗,a∗) = (H −H − d)
(1

2 + ε̃Pπ̂τ

(h∗,ℓ∗,a∗) [Sh∗ = sℓ∗ , Ah∗ = a∗]
)
,

where Pπ̂τ

(h∗,ℓ∗,a∗) is the probability distribution over states and actions (Sh, Ah)h∈[H] following
the Markov policy π̂τ in the MDPM(h∗,ℓ∗a∗). Notice that ρπ̂τ

(h∗,ℓ∗,a∗) is a random variable and
Pπ̂τ

(h∗,ℓ∗,a∗) is a random measure that are F τ
H -measurable. Hence,

ρ∗ − ρπ̂τ

(h∗,ℓ∗,a∗) = 2ε
(
1−Pπ̂τ

(h∗,ℓ∗,a∗) [Sh∗ = sℓ∗ , Ah∗ = a∗]
)

and

ρ∗ − ρπ̂τ

(h∗,ℓ∗,a∗) < ε ⇐⇒ Pπ̂τ

(h∗,ℓ∗,a∗) [Sh∗ = sℓ∗ , Ah∗ = a∗] > 1
2 .

Definition of a “good” event Eτ
(h∗,ℓ∗,a∗) forM(h∗,ℓ∗a∗). The transitions of all MDPs are the

same up to the stopping time η = min {h ∈ [H] : Sh ∈ L} when a leaf is reached. Hence, η
depends only on the policy that is followed, and not on the parameters of the MDP, which
allows us to define the random measure Pπ̂τ as

Pπ̂τ [Sh∗ = sℓ∗ , Ah∗ = a∗] := Pπ̂τ

(h∗,ℓ∗,a∗) [Sη = sℓ∗ , Aη = a∗, η = h∗] (3.9)
= Pπ̂τ

(h∗,ℓ∗,a∗) [Sh∗ = sℓ∗ , Ah∗ = a∗]

since the probability distribution of (Sη, Aη, η) on the RHS of (3.9) does not depend on the
parameters of the MDP (h∗, ℓ∗, a∗), given η = h∗. We define the event

Eτ
(h∗,ℓ∗,a∗) :=

{
Pπ̂τ [Sh∗ = sℓ∗ , Ah∗ = a∗] > 1

2

}
,

which is said to be “good” due to the fact that Eτ
(h∗,ℓ∗,a∗) =

{
ρπ̂τ

(h∗,ℓ∗,a∗) > ρ∗ − ε
}
. Since the

algorithm is assumed to be (ε, δ)-PAC for any MDP, we have

P(h∗,ℓ∗,a∗)
[
Eτ

(h∗,ℓ∗,a∗)

]
= P(h∗,ℓ∗,a∗)

[
ρπ̂τ

(h∗,ℓ∗,a∗) > ρ∗ − ε
]
≥ 1− δ.

42

3.4 Lower Bound on the Sample Complexity

Lower bound on the expectation of τ in the reference MDPM0. Recall that

N τ
(h∗,ℓ∗,a∗) =

τ∑
t=1

1

{
St

h∗ = sℓ∗ , At
h∗ = a∗

}
,

such that∑(h∗,ℓ∗,a∗)N
τ
(h∗,ℓ∗,a∗) = τ . For any Fτ

H -measurable random variable Z taking values
in [0, 1], we have

E0
[
N τ

(h∗,ℓ∗,a∗)

] 16ε2

(H −H − d)2 ≥ E0
[
N τ

(h∗,ℓ∗,a∗)

]
kl
(1

2 ,
1
2 + ε̃

)
by Lemma B.1

= KL
(
PBτ

H
0 ,PBτ

H

(h∗,ℓ∗,a∗)

)
by Lemma 3.6

≥ kl
(
E0 [Z] ,E(h∗,ℓ∗,a∗) [Z]

)
by Lemma 3.7

for any (h∗, ℓ∗, a∗), provided that ε̃ ≤ 1/4. Letting Z = 1

{
Eτ

(h∗,ℓ∗,a∗)

}
yields

kl
(
E0 [Z] ,E(h∗,ℓ∗,a∗) [Z]

)
= kl

(
P0
[
Eτ

(h∗,ℓ∗,a∗)

]
,P(h∗,ℓ∗,a∗)

[
Eτ

(h∗,ℓ∗,a∗)

])
≥
(
1−P0

[
Eτ

(h∗,ℓ∗,a∗)

])
log

 1
1−P(h∗,ℓ∗,a∗)

[
Eτ

(h∗,ℓ∗,a∗)

]
− log(2) by Lemma B.2

≥
(
1−P0

[
Eτ

(h∗,ℓ∗,a∗)

])
log

(1
δ

)
− log(2).

Consequently,

E0
[
N τ

(h∗,ℓ∗,a∗)

]
≥ (H −H − d)2

16ε2

[(
1−P0

[
Eτ

(h∗,ℓ∗,a∗)

])
log

(1
δ

)
− log(2)

]
.

Summing over all MDP instances, we obtain

E0 [τ] ≥
∑

(h∗,ℓ∗,a∗)
E0
[
N τ

(h∗,ℓ∗,a∗)

]

≥ (H −H − d)2

16ε2

HLA− ∑
(h∗,ℓ∗,a∗)

P0
[
Eτ

(h∗,ℓ∗,a∗)

] log
(1
δ

)
−HLA log(2)

 . (3.10)

Now, we have

∑
(h∗,ℓ∗,a∗)

P0
[
Eτ

(h∗,ℓ∗,a∗)

]
= E0

 ∑
(h∗,ℓ∗,a∗)

1

{
Pπ̂τ [Sh∗ = sℓ∗ , Ah∗ = a∗] > 1

2

} ≤ 1. (3.11)

Above we used the fact that
∑

(h∗,ℓ∗,a∗)
Pπ̂τ [Sh∗ = sℓ∗ , Ah∗ = a∗] =

∑
h∗

Pπ̂τ [Sh∗ ∈ L] = 1

43

Online Interaction with Finite MDPs

since, at a single stage h∗ ∈
{

1 + d,H + d
}
, a leaf state will be reached almost surely. This

implies that, if there exists (h∗, ℓ∗, a∗) such that Pπ̂τ [Sh∗ = sℓ∗ , Ah∗ = a∗] > 1
2 , then, for any

other (h′, ℓ′, a′) ̸= (h∗, ℓ∗, a∗), we have Pπ̂τ [Sh′ = sℓ′ , Ah′ = a′] < 1
2 , which proves (3.11).

Plugging (3.11) in (3.10) yields

E0 [τ] ≥ (H −H − d)2

16ε2

[(
HLA− 1

)
log

(1
δ

)
−HLA log(2)

]
≥ HLA(H −H − d)2

32ε2 log
(1
δ

)
, (3.12)

where we used the assumption that δ ≤ 1/16. The number of leaves L = (1−1/A)(S−3)+1/A
satisfies L ≥ S/4, since we assume A ≥ 2, S ≥ 6. Taking H = H/3 and with the assumption
d ≤ H/3, we obtain

E0 [τ] ≥ H3SA

3456ε2 log
(1
δ

)
.

Finally, the condition ε ≤ H/24 implies that ε̃ ≤ 1/4, as required above.

3.5 Lower Bounds: Extensions

The lower bounds presented in the previous sections hold under Assumption 3.4, and assume
that the rewards rh and transitions ph depend on the stage h ∈ [H], i.e., that we have time-
inhomogeneous MDPs. In this section, we relax Assumption 3.4 and explain how to generalize
the lower bounds to time-homogeneous MDPs, where rh := r and ph := p are independent of h.

3.5.1 Relaxing Assumption 3.4

In the proofs of Theorem 3.8 and Theorem 3.9, we use Assumption 3.4 stating that

• (i) there exists an integer d such that S = 3 + (Ad − 1)/(A− 1), and

• (ii) H ≥ 3d,

which we discuss below.

Relaxing (i)

Assumption (i) makes the proof simpler by allowing us to consider a full A-ary tree with S − 3
nodes, which implies that all the leaves are at the same level d− 1 in the tree. The proof can be
generalized to any S ≥ 6 by arranging the states in a balanced, but not necessarily full, A-ary
tree. In this case, there might be a subset of the leaves at a level d − 1 and another subset at

44

3.5 Lower Bounds: Extensions

a level d − 2, which creates an asymmetry in the leaf nodes. To handle this, we proceed as
follows:

• First, using (S − 3)/2 states, we build a balanced A-ary tree of depth d− 1;

• For each leaf at depth d− 2, we add another state (taken among the remaining (S − 3)/2
states) as its child.

• Any remaining state that was not added to the tree (and is not sw, sg or sb), can be merged
to the absorbing states sg or sb.

This construction ensures that we have a tree with at least (S − 3)/2 and at most (S − 3) nodes,
where all the leaves are at the same depth d− 1, for

d = ⌈logA ((S − 3)(A− 1) + 1)⌉ ∈ [logA S − 1, logA S + 2] . (3.13)

Lemma B.4 shows that the number of leaves L in this tree satisfies S ≥ L ≥ (S − 3)/8. Hence,
in the proofs of Theorem 3.8 (Eq. 3.8) and, Theorem 3.9 (Eq. 3.12) we take L ≥ (S − 3)/8 and
obtain lower bounds of the same order.

Relaxing (ii)

Equation (3.13) implies that there exists a constant c ∈ [−1, 2] such that d = logA S + c.
Assumption (ii), stating that H ≥ 3d = 3 logA S + 3c ensures that the horizon is large enough
with respect to the size of the MDP for the agent to be able to traverse the tree down to the
rewarding state. If this condition is not satisfied, that is, ifH < 3 logA S+3c, we have S ≥ AH

3 −2.
In this case, we can build a tree using a subset of the state space containing

⌈
A

H
3 −2

⌉
states,

and merge the remaining S −
⌈
A

H
3 −2

⌉
states to the absorbing states sb or sg. In this case, the

resulting bounds will replace S by
⌈
A

H
3 −2

⌉
, and become exponential in the horizon H,

Ω
(√

H3
⌈
A

H
3 −2

⌉
T

)
and Ω

⌈
A

H
3 −2

⌉
AH3

ε2 log
(1
δ

)
for regret and BPI, respectively.

The arguments above give us Theorem 3.11, Theorem 3.12, and Corollary 3.13 below, which
state regret, BPI, and PAC-MDP lower bounds, respectively, without requiring Assumption 3.4.

Theorem 3.11. If S ≥ 11, A ≥ 4 and H ≥ 6, for any algorithm π, there exists an MDPMπ such
that, for T ≥ HSA

RT ≥ c3

√
min

(
S,A

H
3 −2

)√
H3AT ,

where c3 is an absolute constant.

45

Online Interaction with Finite MDPs

Proof. If S ≤ A
H
3 −2, then H ≥ 3d, where d is given in Equation 3.13. In this case, we follow

the proof of Theorem 3.8 up to Equation 3.8, where we take L ≥ (S − 3)/8 according to the
arguments in Section 3.5.1. If S > A

H
3 −2, then H < 3d and we follow the arguments in Section

3.5.1.

Theorem 3.12. Let (π, τ, π̂τ) be an algorithm that is (ε, δ)-PAC for best policy identification in any
finite MDP. Then, if S ≥ 11, A ≥ 4 and H ≥ 6, there exists an MDPM with stage-dependent
transitions such that for ε ≤ H/24 and δ ≤ 1/16,

Eπ,M [τ] ≥ c1 min
(
S,A

H
3 −2

) H3A

ε2 log
(1
δ

)
,

where c1 is an absolute constant.

Proof. If S ≤ A
H
3 −2, then H ≥ 3d, where d is given in Equation 3.13. In this case, we follow

the proof of Theorem 3.9 up to Equation 3.12, where we take L ≥ (S − 3)/8 according to
the arguments in Section 3.5.1. If S > A

H
3 −2, then H < 3d and we follow the arguments in

Section 3.5.1.

Corollary 3.13. Let π be an algorithm that is (ε, δ)-PAC for exploration and that, in each episode t,
plays a deterministic policy πt. Then, under the conditions of Theorem 3.12, there exists an MDPM
such that

Pπ,M

[
NPAC

ε > c2 min
(
S,A

H
3 −2

) H3A

ε2 log
(1
δ

)
− 1

]
> δ.

where c2 is an absolute constant.

Proof. Analogous to the proof of Corollary 3.10, using Theorem 3.12 instead of Theorem 3.9.

3.5.2 Lower Bounds for Time-Homogeneous MDPs

The proofs of Theorem 3.8 and Theorem 3.9 can be adapted to the case where the rewards rh

and transitions ph do not depend on h. To do so, we need to have a set of hard MDPs with
time-homogeneous transitions. For that, we remove the waiting state sw and the agent starts at
sroot, which roughly corresponds to setting H = 1 in the proofs, and we take

∆(h∗,ℓ∗,a∗)(h, si, a) := 1 {(si, a) = (sℓ∗ , a∗)} ε′

to be independent of h. The h-independent rewards are taken as

∀a ∈ A, rh(s, a) = 1 {s = sg} .

46

3.6 Upper Bound on the Regret of UCBVI

Since H = 1 and no longer H/3, the regret bound becomes Ω(
√
H2SAT) and the BPI bound

becomes Ω
(

SAH2

ε2 log
(

1
δ

))
.

3.6 Upper Bound on the Regret of UCBVI

In Section 3.1, we saw that both the regret and the PAC-MDP criteria allow us to measure
how well an agent balances exploration and exploitation, whereas the BPI criterion is a pure-
exploration objective. In this section and in the next chapter, we focus on algorithms for regret
minimization. In Section 3.7 we present references to other works tackling the PAC-MDP and
the BPI criteria.

Azar et al. [AOM17] introduced the UCBVI algorithm, meaning upper confidence bound value
iteration, and proved regret upper bounds that match the lower bound up to logarithmic
factors, provided that the number of episodes T is large enough. In this section, we provide a
simplified analysis of UCBVI-CH, which is a version of UCBVI discussed below, that we generalize
to continuous MDPs in Chapter 4. Our simplification relies on Lemma 3.16, and is discussed in
Section 3.6.2.

Minimax optimality of UCBVI Jaksch et al. [JOA10] introduced the UCRL algorithm for regret
minimization in the average-reward setting, which can be adapted to the finite-horizon setting,
resulting in a regret upper bound of order Õ

(√
H3S2AT

)
for time-homogeneous MDPs.

Recall from Section 3.5.2 that the lower bound in this setting is Ω
(√

H2SAT
)
. Azar et al.

[AOM17] also assume time-homogeneous MDPs, and provide two different versions of UCBVI:
UCBVI-CH, based on Chernoff-Hoeffding’s concentration inequality, and UCBVI-BF, based on
Bernstein-Freedman’s concentration inequalities. For T large enough, the regret of UCBVI-CH is
O
(√

H3SAT
)
and the regret of UCBVI-BF is O

(√
H2SAT

)
. That is, UCBVI-CH improves the

regret of UCRL with respect to S, whereas UCBVI-BF brings an extra improvement with respect
to H and matches the lower bound.

Time-homogeneous versus time-inhomogeneousMDPs In the analysis of UCBVI presented
here, we consider the UCBVI-CH version in the time-inhomogeneous case, where the lower bound
is Ω

(√
H3SAT

)
(Theorem 3.8) and we prove a regret upper bound of order O

(√
H4SAT

)
,

which is suboptimal only by a factor
√
H . Our choice for the time-inhomogeneous case is

motivated by its generality and by mathematical convenience. The extension of our analysis to
the time-homogeneous case is straightforward (e.g., [Dom+21d, Appendix E]).

Notation and Assumptions We consider Assumption 1.1 stating that the reward functions
are known, and we further assume that the rewards are nonnegative and bounded by rmax = 1.

47

Online Interaction with Finite MDPs

For any transition kernel p and any function f : S → R, we denote

pf(s, a) :=
∑
z∈S

p(z|s, a)f(z). (3.14)

In the regret analysis, we omit logarithmic factors using the following notation:

A ≲ B ⇐⇒ A ≤ B × polynomial (log(T), log(1/δ), log(HSA)) . (3.15)

Also for the regret analysis, we denote by F t
h the σ-algebra generated by all the state-action

pairs observed up to time (t, h), that is, the h-th step of the t-th episode.

3.6.1 Description of the UCBVI Algorithm

In each episode t ∈ [T], UCBVI (Algorithm 3.1) computesQ-functionsQt
h for all h ∈ [H] based on

the data observed up to episode t−1, such thatQt
h is an upper confidence bound on the optimal

Q-function Q∗
h. That is, Qt

h ⪰ Q∗
h with high probability, so that we refer to Qt

h as an optimistic
Q-function. Then, UCBVI executes the policy πt, defined as πt(s, h) := argmaxaQ

t
h(s, a).

In order to compute optimistic Q-functions Qt
h, UCBVI builds transition models (p̂t

h)h that ap-
proximate the true transitions (ph)h, and uses exploration bonuses bt

h : S ×A → R+ such that
bt

h(s, a) measures the estimation error of p̂t
h(·|s, a) when compared to ph(·|s, a).

Algorithm 3.1: UCBVI

1 for episode t ∈ {1, . . . , T} do
2 get initial state st

1
3 # compute optimistic Q-functions
4 compute (Qt

h)h∈[H] according to Equation (3.18)
5 for stage h ∈ {1, . . . ,H} do
6 # select action
7 at

h ← argmaxaQ
t
h(st

h, a)
8 # execute action
9 st

h+1 ← OnlineModelt,h(at
h)

10 # update model
11 compute p̂t+1

h using Equation (3.16)

Let nt
h(s, a) be the number of times that the state-action pair (s, a) has been visited at stage h

before episode t, which is initialized to 1 if (s, a) has not been visited:

nt
h(s, a) := 1 ∨

t−1∑
i=1

1

{
(si

h, a
i
h) = (s, a)

}
.

48

3.6 Upper Bound on the Regret of UCBVI

where ∀x, y ∈ R, x ∨ y := max(x, y). The estimated transitions p̂t
h are defined as

p̂t
h(z|s, a) := 1

nt
h(s, a)

t−1∑
i=1

1

{
(si

h, a
i
h) = (s, a)

}
δsi

h+1
(z), (3.16)

where ∀s ∈ S, δs is the Dirac measure at s.

The exploration bonuses bt
h(s, a) are defined as

bt
h(s, a) :=

√√√√ 2H2

nt
h(s, a) log

(
6HSAnt

h(s, a)(nt
h(s, a) + 1)

δ

)
· (3.17)

The optimistic Q-functions Qt
h are computed recursively as follows:

∀h ∈ [H], Qt
h(s, a) := rh(s, a) + p̂t

hV
t

h+1(s, a) + bt
h(s, a), (3.18)

where, for all s ∈ S, V t
H+1(s) := 0 and V t

h(s) := min(H − h+ 1,maxaQ
t
h(s, a)), and where we

used the notation (3.14) for the expectation with respect to p̂t
h.

3.6.2 Regret Analysis

Theorem 3.14 provides a high-probability upper bound on the regret of UCBVI. Its proof
is split into three parts: (i) deriving confidence intervals for the transitions estimators p̂t

h;
(ii) proving that the algorithm is optimistic, i.e., that V t

h(s) ≥ V ∗
h (s) for any (s, t, h) on a

high-probability event G; (iii) proving an upper bound on the regret by using the fact that
RT =

∑
t

(
V ∗

1 (st
1)− V πt

1 (st
1)
)
≤
∑

t

(
V t

1 (st
1)− V πt

1 (st
1)
)
on the event G.

Theorem 3.14. With probability at least 1− δ, the regret of UCBVI satisfies

RT ≲ H2√SAT +H
3
2
√
T +H3S2A,

where ≲ omits constant and logarithmic factors, as defined in (3.15).

According to Theorem 3.14, if T ≥ H2S3A, the regret of UCBVI satisfiesRT ≲
√
H4SAT with

high probability, whereas the lower bound of Theorem 3.8 is of order Ω
(√

H3SAT
)
. As we

will see in the analysis below, the extra factor
√
H in the upper bound comes from the fact

that we use Hoeffding’s inequality to define the exploration bonus bt
h (Equation 3.17). Azar

et al. [AOM17] show that the upper bound can be improved by a factor
√
H by using empirical

Bernstein’s inequality instead, matching the lower bound if T is large enough. Here, we do
not study such improved version of UCBVI, since the dependence on H of Kernel-UCBVI— our

49

Online Interaction with Finite MDPs

generalization of UCBVI beyond finite MDPs (Chapter 4) — comes from the termH3S2A, as
discussed in Section 4.3.

Part 1: Confidence Intervals

Lemma 3.15 gives the confidence intervals used to define UCBVI’s exploration bonuses (3.17).

Lemma 3.16 is used in the analysis to improve the regret by a factor of
√
S when compared

to UCRL. It is the simplification of a similar technique used by [AOM17] and can be gener-
alized to continuous MDPs. This generalization would not be possible if we relied on the
technique used by Azar et al. [AOM17], since they need to distinguish the set of states z where
p̂t

h(z|st
h, a

t
h)nt

h(st
h, a

t
h) ≥ c and the set of states z where p̂t

h(z|st
h, a

t
h)nt

h(st
h, a

t
h) < c for a positive

constant c that depends onH . In continuous or arbitrary MDPs, the number of visits nt
h(st

h, a
t
h)

is not well-defined, and p̂t
h can be a sum of Dirac measures, hence we can only handle integration

with respect to p̂t
h, and cannot treat p̂t

h(z|st
h, a

t
h) as a real number. Consequently, the advantage

of Lemma 3.16 is that it only requires the integration of a function f with respect to p̂t
h, for f in

a given function space V , and in Chapter 4 we propose a method that replaces nt
h(st

h, a
t
h) by a

sum of weights that can be computed for arbitrary MDPs.

Lemma 3.15. Let G1 be the event such that

G1 :=
{
∀t ≥ 1, ∀(s, a, h) ∈ S ×A× [H], |(ph − p̂t

h)V ∗
h+1(s, a)| ≤ bt

h(s, a)
}
.

Then, P [G1] ≥ 1− δ/3.

Proof. The proof is given in Appendix B.4.2, and is based on the Azuma-Hoeffding inequality.

Lemma 3.16. Let V =
{
f ∈ RS : ∥f∥∞ ≤ H, f ⪰ 0

}
. and consider the event G2 defined as

G2 :=
{
∀(t, s, a, h, f), (ph − p̂t

h)f(s, a) ≤ 1
H
phf(s, a) + 55H2S

nt
h(s, a) log

(
HSAnt

h(s, a)
δ

)}

where t ≥ 1 and (s, a, h, f) ∈ S ×A× [H]× V . Then, P [G2] ≥ 1− δ/3.

Proof. The proof is given in Appendix B.4.3, and is based on Bernstein’s inequality and a union
bound over a covering of the space V .

Part 2: Optimism

Lemma 3.17. Consider the event G1 defined in Lemma 3.15. On G1, we have V t
h ⪰ V ∗

h .

50

3.6 Upper Bound on the Regret of UCBVI

Proof. We proceed by induction. For h = H + 1, V t
h = V ∗

h = 0. Assume that the statement is
true for h+ 1. Hence, for any (s, a),

Qt
h(s, a)−Q∗

h(s, a) = p̂t
hV

t
h+1(s, a)− phV

∗
h+1(s, a) + bt

h(s, a)

= p̂t
h(V t

h+1 − V ∗
h+1)(s, a)︸ ︷︷ ︸

≥0 by the induction hypothesis

+ (p̂t
h − ph)V ∗

h+1(s, a) + bt
h(s, a)︸ ︷︷ ︸

≥0 on the event G1

≥ 0,

which implies that V t
h(s) ≥ V ∗

h (s) for any s and concludes the proof.

Part 3: Regret Bound

Consider the events G1 and G2 defined in lemmas 3.15 and 3.16, respectively. Let

δt
h := V t

h(st
h)− V πt

h (st
h).

By Lemma 3.17, on the event G1, we have

RT =
T∑

t=1

(
V ∗

1 (st
1)− V πt

1 (st
1)
)
≤

T∑
t=1

(
V t

1 (st
1)− V πt

1 (st
1)
)

=
T∑

t=1
δt

1.

Since δt
H+1 = 0, we bound δt

h recursively in order to prove Theorem 3.14. At any stage h and
episode t, we have

δt
h = V t

h(st
h)− V πt

h (st
h) ≤ Qt

h(st
h, a

t
h)−Qπt

h (st
h, a

t
h)

≤ (p̂t
h − ph)V ∗

h+1(st
h, a

t
h) + (p̂t

h − ph)(V t
h+1 − V ∗

h+1) + ph(V t
h+1 − V πt

h+1)(st
h, a

t
h) + bt

h(st
h, a

t
h).

On G1, (p̂t
h − ph)V ∗

h+1(st
h, a

t
h) ≤ bt

h(st
h, a

t
h), which implies

δt
h ≤ (p̂t

h − ph)(V t
h+1 − V ∗

h+1)(st
h, a

t
h) + ph(V t

h+1 − V πt

h+1)(st
h, a

t
h) + 2bt

h(st
h, a

t
h)

= δt
h+1 + ξt

h+1 + 2bt
h(st

h, a
t
h) + (p̂t

h − ph)(V t
h+1 − V ∗

h+1)(st
h, a

t
h),

where ξt
h+1 := ph(V t

h+1 − V πt

h+1)(st
h, a

t
h)− δt

h+1. Notice that (ξt
h+1)t,h is a martingale difference

sequence with respect to (F t
h)t,h, that is, E

[
ξt

h+1|F t
h

]
= 0.

Lemma 3.16 allows us to bound the term (p̂t
h − ph)(V t

h+1 − V ∗
h+1)(st

h, a
t
h) and gives us, on the

event G2,

δt
h ≲ δt

h+1 + ξt
h+1 + bt

h(st
h, a

t
h) + 1

H
ph(V t

h+1 − V ∗
h+1)(st

h, a
t
h) + H2S

nt
h(st

h, a
t
h)
,

and recall that the notation ≲ omits constant and logarithmic factors.

51

Online Interaction with Finite MDPs

Introducing ξt
h+1 defined as

ξ
t
h+1 := 1

H
ph(V t

h+1 − V ∗
h+1)(st

h, a
t
h)− 1

H

(
V t

h+1(st
h+1)− V ∗

h+1(st
h+1)

)
,

and using the fact that V t
h+1(st

h+1)− V ∗
h+1(st

h+1) ≤ V t
h+1(st

h+1)− V πt

h+1(st
h+1) = δt

h+1, we obtain

δt
h ≲

(
1 + 1

H

)
δt

h+1 + ξt
h+1 + ξ

t
h+1 + bt

h(st
h, a

t
h) + H2S

nt
h(st

h, a
t
h) ·

Since (1 + 1/H)H−h+1 ≤ exp(1), we can show by induction that

RT ≲
T∑

t=1

H∑
h=1

(ξt
h+1 + ξ

t
h+1

)
+ H√

nt
h(st

h, a
t
h)

+ H2S

nt
h(st

h, a
t
h)

 (3.19)

on the event G1 ∩ G2, where we used the definition of bt
h given by Equation (3.17).

Now, we bound separately the terms in the sum in Equation (3.19).

Bounding the sum of
(
ξt

h+1 + ξ
t
h+1

)
. Let ηt

h+1 := ξt
h+1 + ξ

t
h+1. Since (ηt

h+1)h,t is a martingale
difference sequence with respect to F t

h and |ηt
h+1| ≤ 4H almost surely, the Azuma-Hoeffding

inequality (see Lemma B.5) implies that

T∑
t=1

H∑
h=1

ηt
h+1 ≲ H

√
HT

on an event G3 that satisfies P [G3] ≥ 1− δ/3.

Bounding the sum of 1/
√
nt

h(st
h, a

t
h). In order to bound this term, we relate this sum to an

integral, and we apply the Cauchy–Schwarz inequality. First, we define

τh(s, a) := min
{
t : nt

h(s, a) > 1
}
.

Using the fact that∑s,a n
T +1
h (s, a) = T , we have:

T∑
t=1

H∑
h=1

1√
nt

h(st
h, a

t
h)

=
H∑

h=1

∑
s,a

T∑
t=1

1
{
(st

h, a
t
h) = (s, a)

}√
nt

h(s, a)

≤
H∑

h=1

∑
s,a

1 +
T∑

t=τh(s,a)

nt+1
h (s, a)− nt

h(s, a)√
nt

h(s, a)

≤

H∑
h=1

∑
s,a

T∑
t=τh(s,a)

nt+1
h (s, a)− nt

h(s, a)√
nt+1

h (s, a)− 1
+HSA

52

3.7 Discussion and Bibliographical Remarks

≤
H∑

h=1

∑
s,a

∫ nT +1
h

(s,a)

2

dz√
z − 1

+HSA

≤ 2
H∑

h=1

∑
s,a

√
nT +1

h (s, a) +HSA

≤ 2
H∑

h=1

√
SAT +HSA by the Cauchy–Schwarz inequality

= 2H
√
SAT +HSA.

Bounding the sum of 1/nt
h(st

h, a
t
h). Analogously to the previous case,

T∑
t=1

H∑
h=1

1
nt

h(st
h, a

t
h) ≤

H∑
h=1

∑
s,a

∫ nT +1
h

(s,a)

2

dz
z − 1 +HSA

≤ SA
H∑

h=1

∑
s,a

1
SA

log(nT +1
h (s, a)) +HSA

≤ SA
H∑

h=1
log

(
T

SA

)
+HSA by Jensen’s inequality

= HSA log
(
T

SA

)
+HSA.

Finally, we obtain that

RT ≲ H2√SAT +H
√
T +H2SA+H3S2A

on the event G := G1 ∩ G2 ∩ G3. Since P [G] ≥ 1− δ, this concludes the proof.

3.7 Discussion and Bibliographical Remarks

In this chapter, we presented three of the main criteria used to evaluate reinforcement learning
algorithms in the online setting: the regret, the BPI and the PAC-MDP criteria. In the regret
and PAC-MDP framework, the agent is evaluated for its performance during learning, and,
in the BPI framework, the agent is evaluated only by the policy it recommends at the end.
For each of those criteria, we provided lower bounds, both for time-homogeneous and time-
inhomogeneous MDPs. For the regret criterion in time-inhomogeneous MDPs, we presented
a simplified analysis of the UCBVI algorithm, whose regret upper bound nearly matches the
lower bound. We discuss below related works with respect to upper and lower bounds in
different settings.

53

Online Interaction with Finite MDPs

Sample complexity lower bounds Sample complexity has mostly been studied in the γ-
discounted setting for PAC-MDP algorithms [Kak03]. State-of-the art lower bounds are a
Ω
(

SA
ε2 log

(
S
δ

))
bound by Strehl et al. [SLL09] and a Ω

(
SA

(1−γ)3ε2 log
(

1
δ

))
bound by Lattimore

and Hutter [LH12]. A lower bound of the same order is provided by Azar et al. [AMK12]
for the number of steps algorithms that have access to a generative model need to identify
an ε-optimal value function. PAC-MDP algorithms in the finite-horizon setting with time-
homogeneous MDPs were later studied by Dann and Brunskill [DB15], who also provide a
lower bound. Unlike the previous ones, they do not lower bound the number of ε-mistakes of
the algorithm, but rather state that any algorithm that outputs a deterministic policy π̂ that is
ε-optimal with probability at least 1− δ, there exists an MDP where the expected number of
episodes before π̂ is returned must be at least Ω

(
SAH2

ε2 log
(

1
δ

))
. This lower bound therefore

applies to the sample complexity of best-policy identification. The “hard MDP” instances used
to prove this worse-case bound are inspired by the ones of Strehl et al. [SLL09] and consist
of S multi-armed bandit (MAB) problems played in parallel. Jiang et al. [Jia+17], Dann et al.
[DLB17], and Yin et al. [YBW21] show that the PAC lower bound has an extra factor H for
time-inhomogeneous MDPs, and also rely on a construction of hard instances based on parallel
MAB instances. In this chapter, we presented a lower bound that applies to algorithms that may
output randomized policies after a random stopping time, which is more general than what
has been previously shown. Unlike the prior lower bound constructions with parallel MAB
instances, we designed a class of MDPs where each of them has stage-dependent transitions
and behaves as single bandit instance with Θ(HSA) arms. In Theorem 3.9, we proved that in
this class there exists an MDP for which the expected number of samples needed to identify an
ε-optimal policy with probability 1− δ is at least Ω

(
SAH3

ε2 log
(

1
δ

))
. Our construction avoids

unnecessary assumptions without which prior analyses would not work.

Regret lower bounds In the average-reward setting, Jaksch et al. [JOA10] prove a regret
lower bound of Ω(

√
DSAT) where D is the diameter of the MDP and T is the total number

of actions taken in the environment. In the finite-horizon setting, the total number of actions
taken is HT , where T is now the number of episodes, and H is roughly the equivalent of the
diameter D. 1 Hence, intuitively, the lower bound of Jaksch et al. [JOA10] should be translated
to Ω(

√
H2SAT) for finite-horizon MDPs after T episodes. Yet, to the best of our knowledge, a

precise proof of this claim had not been given previously in the literature. The proof of Jaksch
et al. [JOA10] relies on building a set of hard MDPs with “bad” states (with zero reward) and
“good” states (with reward 1), and can be adapted to finite-horizon MDPs by making the good
states absorbing. However, this construction does not include MDPs whose transitions and
rewards are allowed to change at every stage h, that is, that are time-inhomogeneous. In the

1The diameter D is the minimum average time to go from one state to another. In a finite-horizon MDP, if the
agent can come back to the same initial state s1 after H steps, the average time between any pair of states is bounded
by 2H , if we restrict the state set to the states that are reachable from s1 in H steps.

54

3.7 Discussion and Bibliographical Remarks

case of time-inhomogeneous MDPs, Jin et al. [Jin+18] claim that the lower bound becomes
Ω(
√
H3SAT), by using the construction of Jaksch et al. [JOA10] and a mixing-time argument,

but they do not provide a complete proof. In Theorem 3.8, we provided a detailed proof of
their statement, by relying on the same class of hard MDPs given for our sample complexity
lower bound.

Algorithms matching the lower bounds Table 3.1 shows some of the algorithms whose
upper bounds match the lower bounds2 presented in this chapter for the regret, BPI, and
PAC settings, both for time-homogeneous and time-inhomogeneous MDPs.3,4 The last column
indicates whether the algorithm was analyzed only for time-inhomogeneous MDPs.

Algorithm Setting time-inhomogeneous only
UCBVI [AOM17] Regret No3
Q-Learning+UCB [Jin+18] Regret Yes
BPI-UCBVI [Mé+21a] BPI Yes
ORLC [Dan+19]4 BPI, PAC No3

Table 3.1 – Algorithms matching the lower bounds in different settings.2

Further reading Algorithms relying on optimistic approaches, such as UCBVI, have been
analyzed in different settings, for instance, MBIE by Strehl and Littman [SL08] for PAC-MDP,
UCRL by Jaksch et al. [JOA10] for the regret in the average-reward setting, BPI-UCRL by Kauf-
mann et al. [Kau+21] and BPI-UCBVI by Ménard et al. [Mé+21a] for BPI. Although both the
PAC-MDP and the regret frameworks measure how well an agent balances exploration and
exploitation, Dann et al. [DLB17] show that there is no direct equivalence between the two
criteria. They propose a new framework, called Uniform-PAC, that implies PAC-MDP and
high-probability regret bounds, and introduce a new algorithm called UBEV for which they
prove a Uniform-PAC bound, and also relies on an optimistic construction. Besides optimistic
approaches for regret minimization, there are also algorithms based on Thompson Sampling,
which is based on sampling in each episode an MDP from a posterior distribution, given a
prior distribution, and executing the optimal policy in the sampled MDP [Str00; ORVR13].

2 Up to constants and logarithmic terms, and assuming that either T is large enough (for the regret) or ε is
small enough (for the sample complexity).

3 UCBVI and ORLC have been proposed for MDPs with time-homogeneous transitions, but they can readily be
used for time-inhomogeneous MDPs by viewing them as MDPs with HS states and h-independent transitions.

4 Dann et al. [Dan+19] analyze the ORLC algorithm in a slightly different setting, proving that it outputs
“Individual POlicy Certificates” (IPOC). ORLC can be converted to an (ε, δ)-PAC algorithm for BPI by setting the
stopping rule to be the first time the optimality certificate is smaller than ε. Sample complexity guarantees for both
BPI and PAC-MDP setting can be deduced from their analysis.

55

Chapter 4

A Kernel-Based Approach to
Exploration in Continuous MDPs

In this chapter, we study a kernel-based algorithm for exploration-exploitation in large or
continuous MDPs, called Kernel-UCBVI. A kernel function measures the similarity between
any two state-action pairs, and the key idea of Kernel-UCBVI is that once a state-action pair
(s, a) is visited, we also reduce the uncertainty about all the pairs (s′, a′) that are similar to (s, a),
which allows the agent to explore large state-action spaces efficiently. We prove a regret bound
for Kernel-UCBVI that depends on the covering dimension of the state-action space, instead of
its cardinality. By extending Kernel-UCBVI to use time-dependent kernels, we introduce an
algorithm called KeRNS that is able to handle non-stationary environments, where the agent may
interact with a different MDP in each episode. Finally, we propose approximate versions of
Kernel-UCBVI and KeRNS to reduce their computational complexity and analyze the impact of
such approximations on the regret.

This chapter is based on the papers [Dom+21d; Dom+21c] about regret minimization with
kernel-based reinforcement, both in stationary and non-stationary environments.

Contents
4.1 Kernel-Based Reinforcement Learning for Exploration 58

4.2 Regret Analysis of Kernel-UCBVI . 61

4.3 Comparison to Lower Bounds & Related Work 66

4.4 KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs 67

4.5 Regret Analysis of KeRNS . 70

4.6 Reducing the Computational Complexity . 73

4.7 Experiments . 77

4.8 Discussion and Bibliographical Remarks . 81

57

A Kernel-Based Approach to Exploration in Continuous MDPs

4.1 Kernel-Based Reinforcement Learning for Exploration

Kernel-Based Reinforcement Learning (KBRL) was introduced by Ormoneit and Sen [OS02],
in the setting where a generative model of the MDP is available. KBRL works by sampling
independent transitions from the generative model, and uses a kernel function to build an
approximate model of the transitions and rewards. Then, it computes a policy by running value
iteration with the kernel-based model. Hence, it can be seen as a generalization to continuous
MDPs of the MBQVI algorithm studied in Chapter 2. The main advantages of KBRL, as proposed
by Ormoneit and Sen [OS02], are: (i) its stability, in the sense that it converges to a unique
solution of approximate Bellman equations in the discounted-reward setting; (ii) its statistical
consistency, as its output converges in probability to the optimal value function as the number
of sampled transitions goes to infinity [OS02]; (iii) its flexibility in handling the bias-variance
trade-off in RL, which can be controlled via kernel design. In this section, we propose an
extension of KBRL to the online setting, where exploration is necessary. This extension is
inspired by UCBVI and relies on a generalization of UCBVI’s exploration bonuses to continuous
state-actions, and we name the resulting algorithm Kernel-UCBVI. In the following section,
we analyze the regret of Kernel-UCBVI, assuming that the MDP satisfies certain regularity
conditions and that the kernel function is designed based on a metric on the state-action space.

Notation & Assumptions We denote by (st
h, a

t
h, s

t
h+1, r̃

t
h) the state, the action, the next state

and the reward observed by the algorithm at stage h of episode t. We do not assume that
the reward function is known, but we assume that r̃t

h ∈ [0, 1] almost surely. If µ and p(·|s, a)
are measures for any (s, a) and f is an arbitrary function, we denote µf :=

∫
f(y)dµ(y) and

pf(s, a) :=
∫
f(y)dp(y|s, a).

Algorithm 4.1: Kernel-UCBVI

1 for episode t ∈ {1, . . . , T} do
2 get initial state st

1
3 # compute optimistic Q-functions
4 compute (Qt

h)h∈[H] according to Algorithm 4.2
5 for stage h ∈ {1, . . . ,H} do
6 # select action
7 at

h ← argmaxaQ
t
h(st

h, a)
8 # execute action
9 r̃t

h, s
t
h+1 ← OnlineModelt,h(at

h)
10 # update model
11 compute r̂t+1

h and p̂t+1
h using Equation (4.2)

Kernel-UCBVI (Algorithm 4.1) has the same algorithmic structure as UCBVI, except that it does
not assume that the MDP is finite. We now describe how the Q-functions Qt

h are computed.

58

4.1 Kernel-Based Reinforcement Learning for Exploration

Let Γ : (S × A)2 → [0, 1] be a kernel function, where Γ(u, v) represents the similarity between
two state action pairs u, v ∈ S × A. For any (s, a) ∈ S × A, we define weights wi

h(s, a) and
normalized weights w̃t,i

h (s, a) for any (t, h) and for i ∈ [t− 1] as

wi
h(s, a) := Γ

(
(s, a), (si

h, a
i
h)
)

and w̃t,i
h (s, a) := wi

h(s, a)
Ct

h(s, a)
, (4.1)

where

Ct
h(s, a) := β +

t−1∑
i=1

wi
h(s, a)

and where β > 0 is a regularization parameter.

Before each episode t, Kernel-UCBVI uses those weights to build kernel-based estimators r̂t
h

and p̂t
h of the reward function and of the transitions at time (t, h), respectively:

r̂t
h(s, a) :=

t−1∑
i=1

w̃t,i
h (s, a)r̃i

h, p̂t
h(z|s, a) :=

t−1∑
i=1

w̃t,i
h (s, a)δsi

h+1
(z), (4.2)

where δs is the Dirac measure at s ∈ S.

The weights wt
h(s, a) measure the influence that the transitions and rewards observed at time

(t, h) will have on the estimators for the state-action pair (s, a). Their sum, Ct
h(s, a), is a

generalization of the number of visits to (s, a). Indeed, if the MDP is finite, we can define a
kernel as

Γ
(
(s, a), (s′, a′)

)
= 1

{
(s, a) = (s′, a′)

}
so that Ct

h(s, a) = β + nt
h(s, a), where nt

h(s, a) =
∑t−1

i=1 1
{
(s, a) = (si

h, a
i
h)
}. That is, Ct

h(s, a)
is equal to β plus the number of visits to (s, a) at stage h before episode t. Recall that the
exploration bonuses used by UCBVI are proportional toH/

√
nt

h(s, a), whereH is the horizon,
i.e., the length of each episode. Hence, as a generalization of such bonuses to continuous MDPs,
we propose the following

bt
h(s, a) = κ1H√

Ct
h(s, a)

+ κ2βH

Ct
h(s, a) + κ3, (4.3)

where κ1, κ2, and κ3 are constants to be defined later. The first term in the sum is analogous to
the bonus of UCBVI, and measures the uncertainty in the model estimation. The second term
takes into account the bias introduced by the regularization constant β, and the third term κ3

represents an extra bias term introduced by the kernel. Kernel-UCBVI defines the Q-functions

59

A Kernel-Based Approach to Exploration in Continuous MDPs

Qt
h(s, a) for any (s, a) ∈ S ×A via backward induction and interpolation as follows:

(backward induction) Q̃t
h(s, a) = r̂t

h(s, a) + p̂t
hV

t
h+1(s, a) + bt

h(s, a)

(interpolation) Qt
h(s, a) = Λ

(
s, a,

{
Q̃t

h(si
h, a

i
h)
}

i∈[t−1]

)

where Vh is defined as V t
h(s) = min

(
H − h+ 1,maxaQ

t
h(s, a)

), and Λ is an interpolation
function. In practice, we can skip the interpolation step and define Qt

h(s, a) = Q̃t
h(s, a) for any

(s, a). However, to derive regret bounds, we need to define Λ as a linear interpolation of the
values

{
Q̃t

h(xi
h, a

i
h)
}

i∈[t−1]
to control the complexity of the function class to which Qt

h belongs.

Algorithm 4.2: Kernel Backward Induction
1 input: transitions (si

h, a
i
h, s

i
h+1, r̃

i
h)t−1

i=1 for all h ∈ [H].
2 initialization: V t

h(s)← 0 for all s ∈ S.
3 for h = H, . . . , 1 do
4 for i = 1, . . . , t− 1 do
5 # Using weights in Equation (4.1) and bonuses in Equation (4.3), compute:
6 Q̃t

h(si
h, a

i
h)←

∑t−1
j=1 w̃

t,j
h (si

h, a
i
h)
(
r̃j

h + V t
h+1(sj

h+1)
)

+ bt
h(si

h, a
i
h)

7 # Interpolated Q-function: defined, but not computed, for all (s, a) ∈ S ×A

8 Qt
h(s, a) = Λ

(
s, a,

{
Q̃t

h(si
h, a

i
h)
}

i∈[t−1]

)
9 # Compute V t

h for the observed states
10 for i = 1, . . . , t− 1 do
11 V t

h(si
h) = min(H − h+ 1,maxaQ

t
h(si

h, a))

12 return: (Qt
h)h∈[H]

Although Kernel-UCBVI defines Qt
h(s, a) for any (s, a), backward induction can be run in finite

time, as detailed in Algorithm 4.2. Intuitively, backward induction with a kernel-based model
in a continuous MDP is analogous to that in a finite MDP where the state set is composed
of all previously observed states st′

h′ for h′ ∈ [H] and t′ ∈ [t − 1]. Consequently, one draw-
back of Kernel-UCBVI is that its runtime increases in each episode. In Section 4.6 we discuss
approximation methods to decrease the runtime of the algorithm.

Time-homogeneous MDPs As mentioned in Section 3.6, we consider time-inhomogeneous
MDPs, where the rewards and transitions depend on h, for mathematical convenience. The
algorithm can be easily generalized to time-homogeneous MDPs by estimating the model as

r̂t(s, a) := 1
Ct(s, a)

t−1∑
i=1

H∑
h=1

wi
h(s, a)r̃i

h, p̂t(z|s, a) := 1
Ct(s, a)

t−1∑
i=1

H∑
h=1

wi
h(s, a)δsi

h+1
(z), (4.4)

60

4.2 Regret Analysis of Kernel-UCBVI

where Ct(s, a) := β +
∑t−1

i=1
∑H

h=1w
i
h(s, a), and by defining the bonuses as

bt
h(s, a) = κ1H√

Ct(s, a)
+ κ2βH

Ct(s, a) + κ3· (4.5)

4.2 Regret Analysis of Kernel-UCBVI

In this section, we provide a regret upper bound for Kernel-UCBVI. For that, we first need
regularity assumptions on the MDP and on the kernel function, which are stated below.1
Intuitively, our assumptions require similar state-action pairs to have similar transitions and
rewards, which allow the algorithm to generalize and explore continuous MDPs.

Assumption 4.1. The state-action space S × A is equipped with a metric ρ : (S × A)2 → R+,
which is known. Also, we assume that there exists a metric ρS on S such that, for all (s, s′, a),
ρ [(s, a), (s′, a)] ≤ ρS (s, s′).

Assumption 4.2. The (mean) reward functions are Lr-Lipschitz and the transition kernels are
Lp-Lipschitz with respect to the 1-Wasserstein distance: ∀(s, a, s′, a′) and ∀h ∈ [H],

∣∣rh(s, a)− rh(s′, a′)
∣∣ ≤ Lrρ

[
(s, a), (s′, a′)

]
, and

W1
(
ph(·|s, a), ph(·|s′, a′)

)
≤ Lpρ

[
(s, a), (s′, a′)

]
where, for two measures µ and ν, we have W1 (µ, ν) := supf :Lip(f)≤1

∫
S f(y)(dµ(y) − dν(y))

and where, for any Lipschitz function f : S → R with respect to ρS , Lip(f) denotes its Lips-
chitz constant.

Assumption 4.3. For any h, the optimal Q-function Q∗
h is L-Lipschitz with respect to ρ. Assump-

tions 4.1 and 4.2 imply that L ≤
∑H

h=1 LrLp
H−h (Lemma C.22 in the Appendix).

For the regret analysis, we require the similarity function to be defined through a base kernel
function and the distance ρ. Let σ > 0 be a kernel parameter. We assume that we have access to
a base kernel function Γ : R+ → [0, 1] such, for any u, v ∈ S ×A, the kernel Γ is defined as

Γ(u, v) = Γ
(
ρ [u, v]
σ

)
.

1Regarding Assumption 4.1, if (A, ρA) is also a metric space, we can take ρ [(x, a), (x′, a′)] = ρS (x, x′) +
ρA (a, a′), for instance. See Section 2.3 of [SBY19] for more examples and a discussion.

61

A Kernel-Based Approach to Exploration in Continuous MDPs

Assumption 4.4 (kernel properties). We assume that z 7→ Γ(z) is non-increasing and that
Γ(4) > 0. Additionally, we assume that there exists positive constants C1, C2, such that

(1) Fast decay: ∀z, Γ(z) ≤ C1 exp
(
−z2/2

)
,

(2) Lipschitzness: ∀(y, z),
∣∣∣Γ(y)− Γ(z)

∣∣∣ ≤ C2 |y − z| .

Condition (1) ensures that the bias due to kernel smoothing remains bounded by Õ (σ); and
(2) provides smoothness conditions that are needed to construct concentration inequalities for
the rewards and transitions. The requirement Γ(4) > 0 is mostly technical: it is used to ensure
that Ct

h(s, a) is not too small in a 4σ-neighborhood of (s, a).

Example 4.5. As a simple example of an MDP satisfying assumptions 4.1 and 4.2, consider an MDP
M with finite action set A, a compact state space S ⊂ Rd and deterministic transitions y = f(x, a),
i.e., ph(y|x, a) = δf(x,a)(y). Let ρS be the Euclidean distance on Rd and ρA (a, a′) = 0 if a = a′ and
+∞ otherwise. Then, if for all a ∈ A, x 7→ rh(x, a) and x 7→ f(x, a) are Lipschitz continuous, thenM
satisfies our assumptions.

Example 4.6. As examples of kernels Γ satisfying Assumption 4.4, we have Γ(z) = exp(−zq/2) for
q ≥ 2, Γ(z) = max(0, 1− z/q) for q > 4, among other kernels that are Lipschitz continuous and have
bounded support.

Interpolation For the regret analysis, we consider the following interpolation function:

Qt
h(s, a) = Λ

(
s, a,

{
Q̃t

h(si
h, a

i
h)
}

i∈[t−1]

)
:= min

i∈[t−1]

(
Q̃t

h(si
h, a

i
h) + Lρ

[
(s, a), (si

h, a
i
h)
])
. (4.6)

This ensures that the functions (s, a) 7→ Qt
h(s, a) are L-Lipschitz for all (t, h), and allows us to

prove the concentration inequalities on which the analysis relies.

Covering numbers & covering dimension The regret bounds for Kernel-UCBVI feature the
σ-covering number and the covering dimension of the state-action space, which we now define.
Let (U , ρ) be a metric space. For any u ∈ U , let B(u, σ) = {v ∈ U : ρ(u, v) ≤ σ}. We say that a
set Cσ is a σ-covering of (U , ρ) if U ⊂ ∪u∈CσB(u, σ). The σ-covering number of (U , ρ) is

N (σ,U , ρ) := min {|Cσ| : is a σ-covering of (U , ρ)} .

That is, N (σ,U , ρ) is the minimum number of σ-radius balls required to cover the entire space.
The covering dimension of (U , ρ) is then defined as the smallest number d such that its σ-

62

4.2 Regret Analysis of Kernel-UCBVI

covering number is proportional to σ−d. For instance, the covering number of a ball in Rd

equipped with the Euclidean distance is O(σ−d) and its covering dimension is d.2

We denote by |Cσ| and |C′
σ| the σ-covering numbers of (S ×A, ρ) and (S, ρS), respectively, and

by d1 and d2 their respective covering dimensions, where σ is the kernel parameter. Also, we
define d = max(d1, d2). Theorem 4.7 provides a regret bound for Kernel-UCBVI under the
assumptions above. We use the notation below when omitting constant and logarithmic factors:

A ≲ B ⇐⇒ A ≤ B × polynomial (d1, d2, log(T), log(1/δ), β, 1/β, Lr, Lp, L) .

Theorem 4.7. With probability at least 1− δ, the regret of Kernel-UCBVI satisfies

RT ≲ H2
√
|Cσ|T + LHTσ +H3 |Cσ|

∣∣C′
σ

∣∣ ,
if the constants (κi)3

i=1 defining the bonuses (4.3) are taken according to Definition C.1.

In the special case of finite MDPs, we can use the metric ρ [(s, a), (s′, a′)] = 0 if (s, a) = (s′, a′)
and∞ otherwise. This allows us to take σ = 0 and results in |Cσ| = SA and |C′

σ| = S, where
S = |S| and A = |A|. Hence, the regret of Kernel-UCBVI is equivalent in this case to that of
UCBVI given in Theorem 3.14. Also, notice that d = 0 in finite MDPs. Corollary 4.8 provides a
regret bound featuring the covering dimension d, in the case where d > 0.

Corollary 4.8. Recall that d1 and d2 are the covering dimensions of the state-action and the state
spaces, respectively, and that d = max(d1, d2). Assume that d > 0. By taking σ = T−1/(2d+1), the
regret of Kernel-UCBVI satisfies, with probability at least 1− δ,

RT ≲ H3T
2d

2d+1 .

Proof. The proof is an immediate consequence of Theorem 4.7 by noticing that |Cσ| ≲ σ−d1 ≤
σ−d and |C′

σ| ≲ σ−d2 ≤ σ−d.

Now, we provide a proof sketch of Theorem 4.7. The full proof is given in Appendix C.2.
Similarly to UCBVI, the proof is split into three parts: (i) deriving confidence intervals for the
kernel-based transitions estimators p̂t

h; (ii) proving that the algorithm is optimistic, i.e., that
V t

h(s) ≥ V ∗
h (s) for any (s, t, h) on a high-probability event G; (iii) proving an upper bound on

the regret by using the fact thatRT =
∑

t

(
V ∗

1 (st
1)− V πt

1 (st
1)
)
≤
∑

t

(
V t

1 (st
1)− V πt

1 (st
1)
)
on the

event G.
2For more details about covering numbers and covering dimension, see Section 3 of Kleinberg et al. [KSU19]

and Section 2.2 of Sinclair et al. [SBY19].

63

A Kernel-Based Approach to Exploration in Continuous MDPs

4.2.1 Concentration

We focus on concentration inequalities for the transition kernels, as those for the rewards are
similar. Since p̂t

h(·|s, a) are weighted sums of Dirac measures, we cannot bound the distance
between ph(·|s, a) and p̂t

h(·|s, a) directly. Instead, for V ∗
h+1, the optimal value function at step

h+ 1, we bound the difference:

|(p̂t
h − ph)V ∗

h+1(s, a)| =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)V ∗

h+1(si
h+1)− phV

∗
h+1(s, a)

∣∣∣∣∣
≤
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)V ∗

h+1(si
h+1)− phV

∗
h+1(si

h, a
i
h)
∣∣∣∣∣+ LpL

t−1∑
i=1

w̃t,i
h (s, a)ρ

[
(s, a), (si

h, a
i
h)
]

+ βH

Ct
h(s, a) ·

The first term above is a weighted sum of a martingale difference sequence. To control it, we
use a Hoeffding-type inequality (Lemma C.2) that applies to weighted sums with random
weights. The second term is a bias term that results from the fact that V ∗

h+1 is L-Lipschitz and
that the transition kernel is Lp-Lipschitz, and this term is shown to be proportional to σ under
Assumption 4.4 (Lemma C.20). The third term is the bias introduced by the regularization
parameter β. Hence, for a fixed state-action pair (s, a), we show that, with high probability,

|(p̂t
h − ph)V ∗

h+1(s, a)| ≤ κ1H√
Ct

h(s, a)
+ κ2βH

Ct
h(s, a) + κ3

for an appropriate choice of κ1, κ2, and κ3. Then, we extend this bound to all (s, a) by leveraging
the continuity of all terms involving (s, a) and a covering argument. This continuity is a
consequence of kernel smoothing. Also, we use a Bernstein-type concentration inequality
(Lemma C.3) that allows us to control the deviations of (p̂t

h − ph)f(s, a) uniformly over a
class of bounded Lipschitz functions f . This is similar to Lemma 3.16, which allowed us to
gain a

√
S factor in the regret bound of UCBVI, and here it allows us to gain a√|C′

σ| factor for
Kernel-UCBVI. We define a favorable event G, which has probability at least 1− δ/2, on which
our concentration inequalities hold.

4.2.2 Optimism

To prove that V t
h is an upper bound on V ∗

h , we proceed by induction and use the Q-functions.
When h = H + 1, we have Qt

H+1 = Q∗
H+1 = 0, by definition. Assuming that Qt

h+1(s, a) ≥
Q∗

h+1(s, a) for all (s, a), we have V t
h+1(s) ≥ V ∗

h+1(s) for all s. Then, the bonuses are defined so
that Q̃t

h(s, a) ≥ Q∗
h(s, a) for all (s, a) on the event G.

In particular, Q̃t
h(si

h, a
i
h) ≥ Q∗

h(si
h, a

i
h) for all i ∈ [t− 1], which gives us

Q̃t
h(si

h, a
i
h) + Lρ

[
(s, a), (si

h, a
i
h)
]
≥ Q∗

h(si
h, a

i
h) + Lρ

[
(s, a), (si

h, a
i
h)
]
≥ Q∗

h(s, a)

64

4.2 Regret Analysis of Kernel-UCBVI

for all i ∈ [t − 1], since Q∗
h is L-Lipschitz. It follows from the definition of the interpolation

function in Equation (4.6) that Qt
h(s, a) ≥ Q∗

h(s, a) for all (s, a), which implies that, for all s,
V t

h(s) ≥ V ∗
h (s) on G.

4.2.3 Bounding the Regret

Let πt be the policy executed by Kernel-UCBVI in episode t, and let δt
h := V t

h(st
h)−V πt

h (st
h). On

the event G, we have V t
h ≥ V ∗

h , which implies thatRT ≤
∑T

t=1 δ
t
1. Let (s̃t

h, ã
t
h) be the state-action

pair that is the closest to (st
h, a

t
h) among the transitions observed before episode t , that is

(s̃t
h, ã

t
h) := argmin

(si
h

,ai
h

):i<t

ρ
[
(st

h, a
t
h), (si

h, a
i
h)
]
,

and we define ρt
h := ρ

[
(st

h, a
t
h), (s̃t

h, ã
t
h)
]. We bound δt

h using the following decomposition

δt
h ≤ Qt

h(st
h, a

t
h)−Qπt

h (st
h, a

t
h) ≤ Q̃t

h(s̃t
h, ã

t
h)−Qπt

h (st
h, a

t
h) + Lρt

h

≤ 2 bt
h(s̃t

h, ã
t
h) + (L+ LpL+ Lr)ρt

h

+ (p̂t
h − ph)V ∗

h+1(s̃t
h, ã

t
h)︸ ︷︷ ︸

(A)

+ ph(V t
h+1 − V πt

h+1)(st
h, a

t
h)︸ ︷︷ ︸

(B)

+ (p̂t
h − ph)(V t

h+1 − V ∗
h+1)(s̃t

h, ã
t
h)︸ ︷︷ ︸

(C)

.

The term (A) is shown to be smaller than bt
h(s̃t

h, ã
t
h), by definition of the bonus. The term (B)

can be written as δt
h+1 plus a term ξt

h+1, where (ξt
h+1)t,h is a martingale difference sequence.

Using the fact that V t
h+1−V ∗

h+1 is 2L-Lipschitz and the uniform deviation inequalities that hold
on the event G, we prove that

(C) ≲ 1
H

(δt
h+1 + ξt

h+1) + H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h) + Lρt

h + Lσ.

When ρt
h > 2σ, we bound δt

h by H and we verify that∑H
h=1

∑T
t=1 1

{
ρt

h > 2σ
}
≤ H2 |Cσ| by a

pigeonhole argument. Hence, we can focus on the case where ρt
h ≤ 2σ, and add H2 |Cσ| to the

regret bound to take into account the steps (t, h) where ρt
h > 2σ. The sum∑

t,h ξ
t
h+1 is bounded

by Õ
(
H3/2√T

)
by Hoeffding-Azuma’s inequality on an event G′ of probability larger than

1− δ/2. Now, we focus on the case where ρt
h ≤ 2σ and omit the terms involving ξt

h+1. Using
the definition of the bonus, we obtain

δt
h ≲

(
1 + 1

H

)
δt

h+1 + H√
Ct

h(s̃t
h, ã

t
h)

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h) + Lσ.

Using the fact that (1 + 1/H)H ≤ e, we have, on the event G ∩ G′ of probability at least 1− δ,

RT ≲
H∑

h=1

T∑
t=1

 H√
Ct

h(s̃t
h, ã

t
h)

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h)

+ LHTσ.

65

A Kernel-Based Approach to Exploration in Continuous MDPs

Finally, we show that

H∑
h=1

T∑
t=1

1√
Ct

h(s̃t
h, ã

t
h)

≲ H
√
|Cσ|T and

H∑
h=1

T∑
t=1

1
Ct

h(s̃t
h, ã

t
h) ≲ H |Cσ| log T,

which gives us the final bound on the event G ∩ G′:

RT ≲ H2
√
|Cσ|T + LHTσ +H3 |Cσ|

∣∣C′
σ

∣∣+H2 |Cσ| ,

where the term H2 |Cσ| takes into account the time steps (t, h) such that ρt
h > 2σ.

4.3 Comparison to Lower Bounds & Related Work

To the best of our knowledge, the regret bound we proved for Kernel-UCBVI is the first regret
bound for kernel-based RL using smoothing kernels, and we present below further discussions
on this result, regarding lower bounds and related work.

Comparison to lower bound for Lipschitz MDPs In terms of the number of episodes T and
the dimension d, the lower bound for Lipschitz MDPs is of order T d+1

d+2 , which is a consequence
of the lower bounds for Lipschitz multi-armed bandits [Bub+11; Sli14]. In terms of H , the
optimal dependence can be conjectured to be H 3

2 , which is the case for finite MDPs, as we saw
in Chapter 3 (Theorem 3.8). For d = 1, our bound for Kernel-UCBVI has an optimal dependence
on T , leading to a regret of order Õ

(
H3T

2
3
)
.

Comparison to other upper bounds for Lipschitz MDPs The best available upper bound in
this setting, in terms of T and d, is Õ

(
H

5
2T

d+1
d+2

)
, which is achieved by model-free algorithms

performing either uniform or adaptive discretization of the state-action space [SS19; SBY19;
TTB20].

Relevance of kernel-based algorithms Although our upper bound does not match the lower
bound for Lipschitz MDPs, kernel-based RL (KBRL) can be a very useful tool in practice to
handle the bias-variance trade-off in RL. It allows us to easily provide expert knowledge to the
algorithm through kernel design, which can be seen as introducing more bias to reduce the
variance of the algorithm and, consequently, improve the learning speed. Furthermore, kernels
can be defined on arbitrary types of objects, such as graphs, sets, strings (i.e., sequences of
symbols) etc., which might make KBRL applicable to a wider range of tasks than discretization-
based algorithms. In addition, Badia et al. [Bad+20b] have shown that kernel-based exploration
bonuses similar to the ones derived for Kernel-UCBVI can improve exploration in Atari games.

66

4.4 KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

Model-free versus model-based approaches An interesting observation comes from the
comparison between Kernel-UCBVI and model-free approaches in continuous MDPs [SS19;
SBY19; TTB20]. These algorithms are based on optimistic Q-learning [Jin+18], to which we
refer as OptQL, and achieve a regret of order Õ

(
H

5
2T

d+1
d+2

)
, which has an optimal dependence

on T and d. While we achieve the same Õ
(
T

2
3
)
regret when d = 1, our bound is slightly

worse for d > 1. To understand this gap, it is useful to look at the regret bound for finite
MDPs. Since our algorithm is inspired by UCBVI [AOM17] with Chernoff-Hoeffding bonus, we
compare it to OptQL, which is used by [SS19; SBY19; TTB20], with the same kind of exploration
bonus. Consider a time-inhomogeneous MDP (where the transitions depend on h) with
S states and A actions. UCBVI has a regret bound of Õ

(√
H4SAT +H3S2A

)
while OptQL

has Õ
(√

H5SAT +H2SA
)
. As we can see, OptQL is a

√
H-factor worse than UCBVI when

comparing the first-order term (i.e., the term scaling with
√
T), but it isHS times better in the

second-order term (i.e., the term that does not depend on T). For large values of T , second-
order terms can be neglected in the comparison of the algorithms in finite MDPs, since they do
not depend on T . However, they play an important role in continuous MDPs, where S and
A are replaced by the σ-covering number of the state-action space, which is roughly 1/σd. In
this case, the algorithms define the granularity σ of the representation of the state-action space
based on the number of episodes T , connecting the number of states S with T . For example,
in [SS19] the ε-net used by the algorithm is tuned such that ε = (HT)− 1

d+2 (see also [OR12;
LOR15; Jia+19]). Similarly, for Kernel-UCBVI we have that σ = T− 1

2d+1 (Corollary 4.8). For this
reason, the second-order term in UCBVI becomes the dominant term in our analysis, leading to a
worse dependence on d compared to model-free algorithms. For similar reasons, Kernel-UCBVI
has an additional

√
H factor compared to model-free algorithms based on OptQL. However, as

observed in Section 4.7, model-based algorithms seem to enjoy a better empirical performance.

4.4 KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

4.4.1 Non-Stationary Environments and Dynamic Regret

During the online interaction of an agent with an environment, it is possible that the behavior
of the environment changes from one episode to another. For instance, imagine that the goal
of the agent is to control the heating system of a building, in order to keep its temperature at
a fixed value and minimize the total cost of electricity that is consumed. The optimal control
strategy might depend on several external factors, such as the number of people currently
inside the building, the weather outside, the time of the year, and the price of electricity. Some
of those factors are unknown to the agent, and thus cannot be included as a part of the state
variables s ∈ S . Consequently, from the agent’s perspective, the dynamics of the environment

67

A Kernel-Based Approach to Exploration in Continuous MDPs

are non-stationary: taking an action a at a state s in an episode tmight have a different outcome
than if a is taken at s in another episode t′.

Typically, reinforcement learning algorithms build their policy πt to be executed in episode
t based on the transitions observed up to episode t− 1. For instance, the model (r̂t

h, p̂
t
h)h∈[H]

estimated by Kernel-UCBVI to compute its policy πt is built with (st′
h , a

t′
h , s

t′
h+1, r̃

t′
h)h∈[H], for

t′ ≤ t − 1. Hence, if the transitions of the MDP change from one episode to another, those
estimators are biased due to non-stationarity. If nothing is done to handle such bias, algorithms
will suffer a linear regret [OGA19]. To deal with this issue, different approaches have been
proposed for finite MDPs: Gajane et al. [GOA18] and Cheung et al. [CSLZ20] use sliding
windows to compute estimators that use only the most recently observed transitions, whereas
Ortner et al. [OGA19] restart the algorithm periodically and, after each restart, new estimators
are build and past data are discarded. In themulti-armed bandit literature, in addition to sliding
windows, exponential discounting has also been used as a mean to give more importance to
recent data [KS06a; GM11; RVC19]. In this section, we show that Kernel-UCBVI can be adapted
to handle the bias due to non-stationarity by using time-dependent kernels, which generalize the
approaches based on sliding windows and exponential discounting.

Non-stationary MDPs We model the environment as a finite-horizon non-stationary MDP,
where {rt

h

}
t,h and {pt

h

}
t,h are the sets of reward functions and transition kernels, respectively.

More precisely, when taking action a in state s at time (t, h), the agent observes a random
reward r̃t

h ∈ [0, 1] with mean rt
h(s, a) and makes a transition to the next state according to the

probability measure pt
h(·|s, a). In this case, the value functions also depend on the episode t.

For a deterministic Markov policy π : [H]× S → A, its Q-function is defined as

Qπ
t,h(s, a) := E

[
H∑

h′=h

rt
h′(sh′ , ah′)

∣∣∣∣∣sh = s, ah = a

]

where sh′+1 ∼ pt
h′(·|sh′ , ah′), ah′ = π(h′, s), and its value function is defined by V π

t,h(s) =
Qπ

t,h(s, π(h, s)). The optimal value functions in episode t, V ∗
t,h(s) := supπ V

π
t,h(s) satisfy the

Bellman equations [Put94],

V ∗
t,h(s) = max

a∈A
Q∗

t,h(s, a), where Q∗
t,h(s, a) := rt

h(s, a) + pt
hV

∗
t,h+1(s, a),

where V ∗
t,H+1 = 0 by definition.

Dynamic regret In non-stationary environments, we measure the performance of an agent
by its dynamic regret Rdyn

T after T episodes, as defined below. When compared to the usual
regret definition, the difference is that, in each episode t, the dynamic regret compares the
performance of the agent to V ∗

t,1, the optimal value function in episode t, whereas the regret

68

4.4 KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

compares the agent to a fixed optimal value function V ∗
1 . The dynamic regret is defined as

Rdyn
T :=

T∑
t=1

(
V ∗

t,1(st
1)− V πt

t,1 (st
1)
)
,

where st
1 is the starting state in each episode.

4.4.2 Algorithm

To handle non-stationarity, we propose a modification of the Kernel-UCBVI introduced in
Section 4.1, that we call KeRNS.3 It has exactly the same structure as Kernel-UCBVI, as described
in Algorithm 4.1, except that the weights are computed using a time-dependent kernel. Let
Γ : N × (S × A)2 → [0, 1] be a non-stationary kernel function, where Γ(n, u, v) represents the
similarity between two state action pairs u, v in S ×A separated by a time interval n. KeRNS is
defined by a modification of the weights and normalized weights in Equation (4.1), which are
now defined as

wt,i
h (s, a) := Γ

(
t− i− 1, (s, a), (si

h, a
i
h)
)

and w̃t,i
h (s, a) := wt,i

h (s, a)
Ct

h(s, a) (4.7)

where Ct
h(s, a) := β +

∑t−1
i=1 w

t,i
h (s, a).

That is, the difference with respect to Kernel-UCBVI is that the weights wt,i
h (s, a) also depend

on the episode t: the definition of the model estimator (4.2), exploration bonuses (4.3) and
algorithmic structure (Algorithm 4.1) remain the same.

The weights wt,i
h (s, a) measure the influence that the transitions and rewards observed at time

(i, h) will have on the estimators for the state-action pair (s, a) at time (t, h). Intuitively, the
kernel function Γ must be designed so that wt,i

h (s, a) is small when t − i − 1 is large, which
means that the sample (si

h, a
i
h) was collected too far in the past and should have a small impact

on the estimators at time t: this allows the agent to control the bias due to non-stationarity.

For the theoretical analysis of KeRNS, we need the assumptions below on the kernel function Γ:

Assumption 4.9 (non-stationary kernel properties). Let σ > 0, λ ∈]0, 1[andW ∈ N be the
kernel parameters. For each set of parameters, we assume that we have access to a base kernel function
Γ(λ,W) : N× R+ → [0, 1] and we define, for any n, u, v ∈ N∗ × S ×A,

Γ(n, u, v) = Γ(λ,W) (n, ρ [u, v] /σ) .

3meaning Kernel-based Reinforcement Learning in Non-Stationary environments.

69

A Kernel-Based Approach to Exploration in Continuous MDPs

We assume that z 7→ Γ(λ,W)(n, z) is non-increasing for any n ∈ N. Additionally, we assume that
there exists positive constants C1, C2, a constant C3 ≥ 0 and an arbitrary function G : R→ R≥0

that satisfies G(4) > 0 such that

(1) Fast decay: ∀(n, z), Γ(n, z) ≤ C1 exp
(
−z2/2

)
,

(2) Lipschitzness: ∀(n, y, z),
∣∣∣Γ(n, y)− Γ(n, z)

∣∣∣ ≤ C2 |y − z| ,

(3) Forget old data: ∀z, Γ(λ,W)(n, z) ≤ C3λ
n, for all n ≥W,

(4) Remember recent data: ∀z, Γ(λ,W)(n, z) ≥ G(z)λn, for all n < W.

We now provide some justification for these conditions. (1) and (2) are the same as required by
Assumption 4.4 for Kernel-UCBVI, and ensure smoothness conditions to construct confidence
intervals and to control the bias introduced by σ. (3) and (4) allow us to control the bias and
the variance due to non-stationarity, respectively. Intuitively, (3) says the algorithm should
forget data further thanW episodes in the past (to reduce the bias), and (4) says that recent
data in theW most recent episodes must have a minimum weight (to reduce the variance). In
the next section, we analyze regret bounds for KeRNS, and we see that an appropriate choice of
the kernel parameters (λ,W) allows us to balance this bias-variance trade-off.

The kernels in the example below satisfy our conditions, and show that they indeed generalize
sliding-window and exponential discounting approaches.

Example 4.10 (sliding-window and exponential discount). Let q ≥ 2. The kernels

Γ(λ,W)(n, z) = 1 {n < W} exp(−zq/2) (sliding-window)

Γ(λ,W)(n, z) = λn exp(−zq/2) (exponential discount)

satisfy Assumption 4.9.

The conditions in Assumption 4.9 are needed to prove regret bounds for KeRNS. However, if one
has further knowledge about the MDP and its changes, this information can also be integrated
to the kernel function Γ. For example, if the MDP only changes in a certain region of the
state-action space, the kernel can be designed to forget past data only in that region.

4.5 Regret Analysis of KeRNS

To provide dynamic regret bounds for KeRNS, we rely on Assumption 4.9 and we also consider
that assumptions 4.1, 4.2, and 4.3 hold for the rewards (rt

h)h, the transitions (pt
h)h, and the value

functions (Q∗
t,h)h, in all episodes t. That is, we assume that the metric ρ does not depend on t,

70

4.5 Regret Analysis of KeRNS

and that the rewards, transitions and value functions are Lipschitz continuous with respect to
ρ, and that their Lipschitz constants do not depend on t.

The dynamic regret bound that we provide for KeRNS depends on a quantity ∆, which is the
total variation of the MDP in T episodes:

Definition 4.11 (MDP variation). We define ∆ = ∆r + L∆p, where

∆r :=
T∑

i=1

H∑
h=1

sup
s,a

∣∣∣ri
h(s, a)− ri+1

h (s, a)
∣∣∣ , and ∆p :=

T∑
i=1

H∑
h=1

sup
s,a

W1
(
pi

h(·|s, a), pi+1
h (·|s, a)

)
.

A similar notion has been introduced, for instance, by Ortner et al. [OGA19] and Li and Li
[LL19] for MDPs and by Besbes et al. [BGZ14] for multi-armed bandits. Here, the difference is
that we use the Wasserstein distance to define the variation of the transitions, instead of the
total variation (TV) distance ∥pi

h(·|s, a)− pi+1
h (·|s, a)∥1. This choice was made in order to take

into account the metric ρ when measuring changes in the environment, and the results would
be analogous if we had chosen the TV distance.

We provide two regret bounds for KeRNS, which are given in the theorem below.

Theorem 4.12. Let (σ, λ,W) be the kernel parameters and

R1
T := H2T

√
log 1

λ

√
|C′

σ| |Cσ|+H2 |Cσ|T log 1
λ

;

R2
T := H2T

√
log 1

λ

√
|Cσ|+H3 |Cσ|

∣∣C′
σ

∣∣T log 1
λ

; and

bias(σ, λ,W,∆, T) := W∆H + λW

1− λH
3T + LHTσ.

Then, with probability at least 1− δ, the dynamic regret of KeRNS satisfies

Rdyn
T ≲ min

(
R1

T ,R2
T

)
+ bias(σ, λ,W,∆, T).

Proof The proof of Theorem 4.12 is detailed in our paper [Dom+21c]. It is based on the
regret analysis of Kernel-UCBVI and borrows techniques used to prove regret bounds for non-
stationarity MDPs with finite state-action sets [OGA19] and for non-stationarity multi-armed
bandits [GM11; RVC19]. In Appendix C.3, we provide a proof sketch.

Before discussing the regret bounds for KeRNS, we present the corollary below, which gives the
bounds resulting from optimizing the kernel parameters (σ, λ,W), that is, from optimizing the
bias-variance trade-off in the regret bound.

71

A Kernel-Based Approach to Exploration in Continuous MDPs

Corollary 4.13. Recall that d1 and d2 are the covering dimensions of the state-action and the state
spaces, respectively, and that d = max(d1, d2). By optimizing the kernel parameters, we obtain the
regret bounds in Table 4.1, which also presents the conditions on the variation ∆ that are required
for a sub-linear regret bound.

Proof. Since |Cσ| and |C′
σ| are O

(
1/σd

)
, the bounds follow from Theorem 4.12.

Table 4.1 – Regret bound for KeRNS with optimized kernel parameters, forW = logλ
(1−λ)

T .
σ log

(
1
λ

)
condition bound regret

d = 0 0 ∆
2
3T− 2

3 ∆ < T R1
T H2S

√
A∆

1
3T

2
3

0 ∆
2
3T− 2

3 ∆ < T R2
T H2√SA∆

1
3T

2
3 +H3S2A∆

2
3T

1
3

d > 0
(

1
T

) 1
2d+3 ∆

2
3T− 2d+2

2d+3 ∆ < T
3

2d+3 R1
T H2∆

1
3T

2d+2
2d+3(

1
T

) 1
2d+2 ∆

1
2

H T− 2d+1
2d+2 ∆ < T

1
d+1 R2

T H2∆
1
2T

2d+1
2d+2 +H

3
2 ∆

1
4T

3
4

We see that, after optimizing the kernel parameters (Table 4.1), the bound R1
T has a worse

dependence on T , and a better dependence on ∆. On the other hand,R2
T is better with respect

to T , but worse in ∆. The difference comes from how we handle the concentration inequalities
for the transition probabilities in the analysis. To obtainR1

T , we use concentration inequalities
on the term |(p̂t

h − pt
h)f | for all functions f that are bounded and Lipschitz continuous. To

obtainR2, the concentration is done only for f = V ∗
t,h+1, but this results in a worse dependence

on |Cσ| |C′
σ| in the regret bound (Theorem 4.12).

We now discuss the regret bounds according to the covering dimension d. We consider two
cases: the finite MDP case, where d = 0, and the continuous case, where d > 0.

Finite case Let S = |S| and A = |A|. By taking σ = 0, we have |C′
σ| = S and |Cσ| = SA. As

shown in Table 4.1, the R1
T bound states that the regret of KeRNS is Õ

(
H2S

√
A∆

1
3T

2
3
)
. This

bound matches the one proved by Ortner et al. [OGA19] for the average-reward setting using
restarts, up to a factor ofH 2

3 coming from our finite-horizon setting, where the transitions pt
h de-

pend on h. TheR2
T bound states that the regret of KeRNS can be improved to Õ

(
H2√SA∆

1
3T

2
3
)
,

up to second-order terms (i.e., the terms scaling with T 1/3). In the multi-armed bandit case
(H = 1), these bounds are optimal in terms of T and ∆, according to the lower bound by Besbes
et al. [BGZ14].

Continuous case For d > 0, we proved the first dynamic regret bounds in our setting, which
are of order H2∆

1
3T

2d+2
2d+3 (better in ∆) or H2∆

1
2T

2d+1
2d+2 (better in T) for two different tunings of

72

4.6 Reducing the Computational Complexity

the kernel. Deriving a lower bound in the non-stationary case for d > 0 is an open problem,
even for multi-armed bandits. As a sanity-check, we note that in stationary MDPs, for which
∆ = 0, we recover the regret bound of Kernel-UCBVI4 of H3T

2d
2d+1 from the bound R2 with

log(1/λ) = 1/K,W →∞ and σ = T− 1
2d+1 , which is optimal for d = 1 in the (stationary) bandit

case, according to the lower bound by Bubeck et al. [Bub+11].

Knowledge of ∆ To optimally choose the kernel parameters, KeRNS requires an upper bound
on the variation ∆. Other works have started to tackle this issue in bandit algorithms [Che+19;
AGO19], and finite MDPs using sliding windows [CSLZ20]. For instance, [CSLZ20] use a
multi-armed bandit algorithm to adaptively tune the size of the sliding window, and avoid the
need of knowing ∆. A similar technique could be combined with KeRNS to adaptively choose
the parameters (λ,W) in each episode.

4.6 Reducing the Computational Complexity

In order to analyze the computational complexity of Kernel-UCBVI and KeRNS, we first assume
that the action set is finite and has cardinality A := |A|. This is due to the fact that both algo-
rithms require computations of argmaxaQ

t
h(s, a), which is usually not trivial for infinite action

sets. Since Kernel-UCBVI and KeRNS use non-parametric kernel estimators, their computational
complexity scales with the number of observed transitions. Their total space complexity is
O (HT) and their time complexity per episode t is O (Ht2 +HAt

), resulting in a total runtime
of O (HT 3 +HAT 2) for T episodes. This runtime is very prohibitive in practice, especially in
non-stationary environments, where we might need to run the algorithm for a very long time.
In this section, we study two methods to reduce their computational complexity: real-time
dynamic programming [BBS95; Efr+19] that reduces the complexity of backward induction,
and the use of representative states [KT12; BPP16], that reduces the number of states on which
backward induction is executed.

4.6.1 Real-Time Dynamic Programming

Algorithm 4.3 describes the Kernel-UCBVI algorithm using real-time dynamic programming
(RTDP). At time (t, h) Kernel-UCBVI+RTDP computes Q̃t

h(s, a) for all actions a, but only for the
current state s = st

h, whereas Kernel-UCBVI computes it for s ∈ {s1
h, . . . , s

t−1
h }: that is why it is

called a real-time algorithm.

Then, Kernel-UCBVI+RTDP executes the greedy action at
h = argmaxa∈A Q̃

t
h(st

h, a). As a next
step, it computes Ṽ t

h(st
h) = Q̃t

h(st
h, a

t
h) and refines the previous L-Lipschitz upper confidence

4Another choice of λ might allow us to avoid the dependence on H3 of Kernel-UCBVI and get H2 instead.

73

A Kernel-Based Approach to Exploration in Continuous MDPs

Algorithm 4.3: Kernel-UCBVI+RTDP

1 initialization: V 1
h (s)← H − h+ 1 for all s ∈ S and all h ∈ [H].

2 for episode t ∈ {1, . . . , T} do
3 get initial state st

1
4 # compute optimistic Q-functions
5 for stage h ∈ {1, . . . ,H} do
6 for a ∈ A do
7 Q̃t

h(st
h, a)←

∑t−1
i=1 w̃

t,i
h (st

h, a)
(
r̃i

h + V t
h+1(si

h+1)
)

+ bt
h(st

h, a)

8 # select action
9 at

h ← argmaxa Q̃
t
h(st

h, a)
10 # execute action
11 r̃t

h, s
t
h+1 ← OnlineModelt,h(at

h)
12 Ṽ t

h(st
h)← min

(
H − h+ 1,maxa Q̃

t
h(st

h, a)
)

13 # interpolate
14 for i = 1, . . . , t do
15 s← si

h

16 V t+1
h (s)← min

(
V t

h(s), Ṽ t
h(st

h) + LρS
(
s, st

h

))

bound on the value function, by defining

∀s, V t+1
h (s) = min

(
V t

h(s), Ṽ t
h(st

h) + LρS
(
s, st

h

))
. (4.8)

Notice that, although V t+1
h is defined for all s, the algorithm only needs to compute it for the

previously observed states. Since Q̃t
h(s, a) is only computed for s = st

h, the runtime of Kernel-
UCBVI+RTDP isO (HAt) per episode t, that is,O (t) times faster than Kernel-UCBVI. Also, notice
that Kernel-UCBVI+RTDP also requires a metric ρS on the state space for the interpolation step
(although the interpolation can be skipped in practical implementations, as mentioned in
Section 4.1).

Theorem 4.14 shows that the regret bound of Kernel-UCBVI+RTDP is of the same order as the one
of Kernel-UCBVI. Its proof follows the analysis of RTDP as proposed by Efroni et al. [Efr+19]
for finite MDPs.

Theorem 4.14. With probability at least 1− δ, the regret of Kernel-UCBVI+RTDP satisfies

RT ≲ RKernel-UCBVI
T +H2 ∣∣C′

σ

∣∣ ,
whereRKernel-UCBVI

T is the regret bound for Kernel-UCBVI from Theorem 4.7.

74

4.6 Reducing the Computational Complexity

Proof. The proof is given in Appendix C.4, and the key properties for proving this regret bound
are (i) V t

h ≥ V ∗
h with high probability, and (ii) the fact that V t+1

h ≤ V t
h ; where V t

h is defined in
Equation (4.8).

4.6.2 Representative States and Actions

The RTDP technique used to speed up Kernel-UCBVI cannot be applied to KeRNS. This is due
to the fact that Kernel-UCBVI+RTDP builds upper bounds V t

h that are point-wise non-increasing
with respect to t, whereas the value functions V t

h computed by KeRNS increases for states that
were not visited recently. This property of KeRNS is necessary to promote extra exploration
and adapt to possible changes in the environment. Additionally, even with the RTDP-based
acceleration, Kernel-UCBVI+RTDP still has a time complexity that increases with the time t,
which can be a considerable limitation in non-stationary environments where the algorithm
needs to be run for a long time. In this section, we propose an alternative to run KeRNS in
constant time per episode, while controlling the impact of this speed-up on the regret.

As proposed by [KT12] and [BPP16], we take an approach based on using representative states
to construct an algorithm called RS-KeRNS (for KeRNS on Representative States). In each episode
t, RS-KeRNS keeps and updates sets of representative states S̄t

h, actions Āt
h and next-states Ȳt

h,
for each h, whose cardinalities are denoted by S̄t

h, Ā
t
h and Ȳ t

h, respectively. Every time a new
transition

{
st

h, a
t
h, s

t
h+1, r̃

t
h

}
is observed, the representative sets are updated usingAlgorithm 4.4,

which ensures that any two representative state-action pairs are at a distance greater than ε
from each other. Similarly, it ensures that any pair of representative next-states are at a distance
greater than εX from each other. Then, (st

h, a
t
h) and st

h+1 are mapped to their nearest neighbors
in S̄h × Āh and Ȳh, respectively, and the estimators of the rewards and transitions are updated.
Consequently, we build a finite MDP, denoted by (

Mt, with S̄t
h states, Āt

h actions and Ȳ t
h next-

states, per stage h. The rewards and transitions of (

Mt can be stored in arrays of size S̄t
hĀ

t
h and

S̄t
hĀ

t
hȲ

t
h, for each h.

Remark 4.15. The technique of using representative states also applies to Kernel-UCBVI, since it is
equivalent to KeRNS when using stationary kernels. In that case, we name the resulting algorithm
RS-Kernel-UCBVI.

Algorithm 4.4: Update Representative Sets
1 input: Input: t, h, S̄t

h, Āt
h, Ȳt

h,
{
st

h, a
t
h, s

t
h+1

}
, ε, εX .

2 if min(s,a)∈S̄h×Āh
ρ
[
(s, a), (st

h, a
t
h)
]
> ε then

3 S̄t+1
h ← S̄t

h ∪
{
st

h

}, Āt+1
h ← Āt

h ∪
{
at

h

}
4 if miny∈Ȳh

ρS
(
s, st

h+1

)
> εX then

5 Ȳt+1
h ← Ȳh ∪

{
st

h+1

}

75

A Kernel-Based Approach to Exploration in Continuous MDPs

RS-KeRNS is described precisely in Appendix C.5 (Algorithm C.1). It computes a Q-function
for all (s, a) ∈ ∪hS̄t

h × Āt
h by running backward induction in (

Mt, which is then extended to
any (s, a) ∈ S ×A by performing an interpolation step, as in KeRNS. In Appendix C.5, we also
explain how the rewards and transitions estimators of (

Mk can be updated online. Below, we
provide regret and runtime guarantees for this efficient implementation.

Theorem 4.16. Let χ : N→ [0, 1], u, v ∈ S ×A, and assume that we use the kernel

Γ(n, u, v) = χ(n) exp
(
−ρ [u, v]2 /(2σ2)

)
assumed to satisfy Assumption 4.9. In this case, the dynamic regret of RS-KeRNS satisfies

Rdyn
T ≲ RKeRNS

T + L(ε+ εX)H2T + ε

σ
H3T

with probability at least 1− δ, whereRKeRNS
T is regret bound of KeRNS given in Theorem 4.12.

Proof. A detailed proof is given in our paper [Dom+21c] (Theorem 2). A proof sketch is given
in Appendix C.6.

Theorem 4.16 shows that RS-KeRNS enjoys the same regret bounds as KeRNS plus a bias term
that can be controlled by ε and εX , as long as we use a kernel Γ that is the product between a
temporal kernel χ(n) and a Gaussian kernel exp

(
−ρ [u, v]2 /(2σ2)

)
.

The lemma below shows that the per-episode runtime of RS-KeRNS is bounded by a constant.

Lemma 4.17 (runtime of RS-KeRNS). Consider the kernel defined in Theorem 4.16, and let
λ ∈]0, 1]. If we take χ(n) = λn, the runtime of RS-KeRNS in each episode t is bounded by

O
(
H min

(
t2, |Cε||C′

εX |
)

+H min
(
t, |C′

εX |
)
A
)
,

where |Cε| is the ε-covering number of (S ×A, ρ), |C′
εX | is the εX -covering number of (S, ρ).

Lemma 4.17 bounds the runtime of RS-KeRNS for a temporal kernel χ(n) satisfying a specific
structure: χ(n) = λn. In particular, we can take λ < 1, which gives an exponential-discount
strategy for handling non-stationarity, or set λ = 1 if the environment is stationary.

Consequently, the constants ε and εX provide a trade-off between regret and computational
complexity. Since |Cε| = O

(
ε−d1

)
and |C′

εX | = O
(
εX

−d2
)
, increasing (ε, εX) may reduce

exponentially the runtime of RS-KeRNS, while having only a linear increase in its regret.

76

4.7 Experiments

Related work on representative states for accelerating KBRL Kveton and Theocharous
[KT12] and Barreto et al. [BPP16] propose the use of representative states to accelerate KBRL,
and we provided the first regret bounds in this setting. More precisely, our result complements
previous work in the following aspects: (i) [KT12] and [BPP16] do not tackle exploration and
do not have finite-time analyses: they provide approximate versions of the KBRL algorithm
of [OS02] which has asymptotic guarantees assuming that transitions are generated from
independent samples; (ii) the error bounds of [KT12] scale with exp(1/σ2). In our online setting,
σ can be chosen as a function of the number of episodes T , and their bound could result in an
error that scales exponentially with T , instead of linearly. Our result comes from an improved
analysis of the smoothness of kernel estimators, that leverages the regularization constant β;
(iii) [BPP16] propose an algorithm that also builds a set of representative states in an online
manner. However, their theoretical guarantees only hold when this set is fixed, i.e. cannot be
updated during exploration, whereas our bounds hold in this case.

4.7 Experiments

In this section, we illustrate the empirical behavior of Kernel-UCBVI and KeRNS on simple
environments, compared to baselines. For the implementation of both algorithms, we used
representative states to decrease their runtime. We refer to RS-Kernel-UCBVI+RTDP as the version
of Kernel-UCBVI using both real-time dynamic programming (RTDP) and representative states.
The environments we considered are such that S ⊂ R2, thus we used the Euclidean distance
on R2 to define the metric,

ρ
[
(s, a), (s′, a′)

]
=
∥∥s− s′∥∥2

2 if a = a′, and +∞ otherwise,

which was combined with the Gaussian kernel exp(−z2/2) to compute the weights. We set
σ = 0.025, ε = εX = 0.05, and β = 0.01 for all experiments. Some baselines require a uniform
discretization of the state space, in which case we chose the granularity of the discretization to
match the value of ε used to define representative states for Kernel-UCBVI.

Also, we consider environments such that the rewards and transition probabilities do not
depend on h (however, for non-stationary environments, they depend on t). Hence, for the
variants of Kernel-UCBVI and KeRNS, the model estimators were built based on Equation (4.4),
and we used the following simplified exploration bonuses

bt
h(s, a) = 1√

Ct(s, a)
+ H − h+ 1

Ct(s, a) · (4.9)

That is, we used bonuses and models for h-independent MDPs, and considered simplified
constants κ1, κ2 and κ3 for the bonuses.

77

A Kernel-Based Approach to Exploration in Continuous MDPs

4.7.1 Stationary Environment

To illustrate experimentally the properties of Kernel-UCBVI, we consider a Grid-World environ-
ment with continuous states. This Grid-World has a state space S ⊂ [0, 2]× [0, 1] ⊂ R2, and is
composed of two rooms separated by a wall of width 0.1, as illustrated by Figure 4.1. There
are four actions: left, right, up, and down, each one resulting to a displacement of 0.1 in the
corresponding direction. A two-dimensional Gaussian noise is added to the transitions, and,
in each room, there is a single region with non-zero reward. The agent has 0.5 probability of
starting in each of the rooms, and the starting position is at the room’s bottom left corner.

We compare RS-Kernel-UCBVI and RS-Kernel-UCBVI+RTDP to the following algorithms:

• UCBVI [AOM17] using a uniform discretization of the state-space with 20 bins in each
coordinate;

• OptQL [Jin+18], also on a uniform discretization;

• AdaptiveQL [SBY19] that uses an adaptive discretization of the state space.

Figure 4.1 – Continuous Grid-World with two rooms separated by a wall. The circles represent the
regions with non-zero rewards.

The baselines require a discretization of the state space, and we denote by I(st
h) the index of

the discrete state corresponding to the continuous state st
h. For the baselines, we used the same

simplified bonuses as for Kernel-UCBVI (4.9), except that Ct(s, a) is replaced by

Nt
h(I(s), a) = max

(
1,

t−1∑
i=1

1

{
I(si

h) = I(s), ai
h = a

})
,

for OptQL and AdaptiveQL (since those algorithms require h-dependent bonuses even if the
MDP is time-homogeneous) and, for UCBVI, we used

Nt(I(s), a) = max
(

1,
H∑

h=1

t−1∑
i=1

1

{
I(si

h) = I(s), ai
h = a

})
.

78

4.7 Experiments

We also implemented a version of RS-Kernel-UCBVI using a prior domain knowledge that the
two rooms are equivalent under translation, by using a metric that is invariant with respect to
the change of rooms. More precisely, before computing the Euclidean distance between two
states s and s′, both states are mapped to their corresponding positions in the left room.

0.0 0.2 0.4 0.6 0.8 1.0
episode ×105

0.0

0.5

1.0

1.5

2.0

2.5

re
gr

et

×105 Regret

name

AdaptiveQL

OptQL

UCBVI

RS-Kernel-UCBVI+prior knowledge

RS-Kernel-UCBVI+RTDP

RS-Kernel-UCBVI

Figure 4.2 – Regret of different versions of Kernel-UCBVI compared to baselines (smaller is better). To
estimate the optimal value function for the regret computation, we used the best policy among all agents
at the final episode. Average over 16 independent runs.

We ran the algorithms for 105 episodes with H = 20, and Figure 4.2 shows the regret incurred
by each of them. We see that, at the beginning, Kernel-UCBVI has a smaller regret than the
baselines, and that the use of expert knowledge in the kernel design can increase the learning
speed. Also, we see that model-based algorithms (Kernel-UCBVI and UCBVI) learn faster than
the model-free baselines (OptQL and AdaptiveQL), despite the fact that those baselines have a
better regret with respect to the dimension d [SS19; SBY19], as discussed in Section 4.3. As the
number of episodes T increases, the extra bias introduced by the kernel might make Kernel-
UCBVI converge to a worse policy when compared, for instance, to UCBVI using a uniform
discretization. The kernel bandwidth and the discretization width are comparable, but the
Gaussian kernel introduces more bias by assigning a non-zero similarity between states that
may be in disjunct discretization bins.5 On the other hand, we see that introducing more bias
can improve the learning speed at the beginning, especially when domain knowledge is used
for kernel design. This flexibility in handling the bias-variance trade-off is one of the strengths
of kernel-based approaches: for the baselines used in this experiment, the use of arbitrary

5Notice that the bias can be controlled by changing the bandwidth σ, or by using kernels with faster decay or
bounded support.

79

A Kernel-Based Approach to Exploration in Continuous MDPs

0.0 0.2 0.4 0.6 0.8 1.0
episode ×105

0

1

2

3

4

5

6
ru

nt
im

e
(s

ec
on

ds
)

×103 Total Runtime

name

AdaptiveQL

OptQL

UCBVI

RS-Kernel-UCBVI+prior knowledge

RS-Kernel-UCBVI+RTDP

RS-Kernel-UCBVI

Figure 4.3 – Total runtime of different algorithms in a continuous Grid-World versus the number of
episodes (smaller is better). Average over 16 runs.

custom metrics on the state space is not straightforward. Nonetheless, kernel-based algorithms
might be sensitive to kernel design.

Another important point to consider is the runtime of the algorithms. Figure 4.3 shows the total
runtime of each algorithm as function of the number of episodes. When comparing RS-Kernel-
UCBVI to RS-Kernel-UCBVI+RTDP, we observe that using real-time dynamic programming results
in a considerable speed-up. When combined with prior knowledge, RS-Kernel-UCBVI has a
smaller number of representative states in the Grid-World environment, which explains why it
is faster than its version without such knowledge. Also, we see that the model-free algorithms
have a much smaller runtime than the model-based ones.

4.7.2 Non-Stationary Environment

To illustrate the behavior of RS-KeRNS, we consider another continuous Grid-World whose
state-space is S = [0, 1]2 with four actions, representing a move to the right, left, up or down.
The agent starts at (0.5, 0.5). Let ct

p ∈ {0, 0.1, 0.2, 0.5, 1}. We consider the following mean
reward function which depends on the episode t:

rt
h(s, a) =

∑
p∈{0.1,0.9}2

ct
p exp

(
−∥s− p∥

2
2

2× 0.12

)
,

80

4.8 Discussion and Bibliographical Remarks

where the vectors p ∈ {(0.1, 0.1), (0.1, 0.9), (0.9, 0.1), (0.9, 0.9)} represent the positions where
the rewards are centered. Every 2.5× 104 episodes, the coefficients ct

p are changed according
to Table 4.2, which impact the optimal policy.

We used the kernel defined in Theorem 4.16 with χ(n) = λn for λ = 0.9999 and ran the
algorithm for 105 episodes. RS-KeRNS was compared to two baselines: (i) RS-Kernel-UCBVI,
which does not adapt to non-stationarity and corresponds to RS-KeRNS when we set λ = 1; (ii) a
restart-based algorithm, called RestartBaseline which is implemented as RS-Kernel-UCBVI,
but it uses information about when the environment changes, and, at every change, it restarts its
reward estimator and bonuses, forcing the agent to re-explore the environment and discover
possible changes. Notice that RS-KeRNS does not require such information.

Table 4.2 – Value of ct
p for each to p in episode t.

episode / p (0.9, 0.9) (9.0, 0.1) (0.1, 0.1) (0.1, 0.9)

t ∈ [1, 25× 103] 0.1 0.0 0.0 0.0
t ∈]25× 103, 50× 103] 0.1 0.2 0.0 0.0
t ∈]50× 103, 75× 103] 0.1 0.2 0.5 0.0
t ∈]75× 103, 100× 103] 0.1 0.2 0.5 1.0

In Figure 4.4, we can see that, as expected, RS-KeRNS gathers more rewards than RS-Kernel-
UCBVI, which was not designed for non-stationary environments, and that RS-KeRNS is able to
track the behavior of RestartBaseline.

4.8 Discussion and Bibliographical Remarks

In this chapter, we introduced and analyzed Kernel-UCBVI and KeRNS, which are kernel-based
algorithms for RL that learn by interacting online with an MDP. Algorithmically, they only
require a similarity function on the state-action space S ×A to be implemented. Hence, they
can be applied to very general MDPs, whose states can be, for instance, real vectors, graphs,
sets, strings etc. Under certain regularity assumptions, we proved regret bounds that depend
on the covering numbers or the covering dimension d of S × A. Furthermore, we proposed
approximate versions of both algorithms that can be run in constant time per episode, and we
analyzed their regret. Nonetheless, the generality of Kernel-UCBVI and KeRNS comes at a cost:
they suffer from the curse of dimensionality, meaning that their regret becomes close to linear
as the dimension d increases, which is a direct consequence of the fact that we only make weak
assumptions on the MDP.

Approaches such as linear or low-rank MDPs [Jin+20b] and RKHS approximations [Yan+20;
CO20; CG19] avoid the curse of dimensionality and achieve regret bounds scaling with

√
T ,

but they either require much stronger assumptions on the MDP, such as the closedness of the

81

A Kernel-Based Approach to Exploration in Continuous MDPs

0.0 0.2 0.4 0.6 0.8 1.0
episode ×105

0.0

0.5

1.0

1.5

2.0

2.5

cu
m

ul
at

iv
e

re
w

ar
ds

×105 Cumulative Rewards

name

RS-KeRNS

RestartBaseline

RS-Kernel-UCBVI

Figure 4.4 – Cumulative rewards of RS-KeRNS versus RS-Kernel-UCBVI and RestartBaseline in a non-
stationary environment (larger is better). The environment changes every 2.5× 104 episodes. Average
over 16 independent runs.

Bellman operator in the function class used to represent optimistic Q-functions, or might be
computationally intractable. Ren et al. [Ren+21] show that, under a noise assumption on the
transition probabilities, the MDP is linear (see [Jin+20b]) in an infinite-dimensional feature
space, and provide algorithms with regret bounds in this setting. However, since their results
rely on noisy transitions, they do not apply to deterministic MDPs. Interestingly, Barreto et al.
[BPP16] show how KBRL can be approximated by low-rank MDPs.

Further reading on continuous MDPs For MDPs with continuous state-action space, the
sample complexity [KKL03; KS02; LHS+13; PP13] or regret have been studied under structural
assumptions. Regarding regret minimization, a standard assumption is that rewards and
transitions are Lipschitz continuous. Ortner and Ryabko [OR12] studied this problem in the
average-reward setting. They combined the ideas of UCRL2 [JOA10] and uniform discretization,
proving a regret bound of Õ

(
T

2d+1
2d+2

)
for a learning horizon T in d-dimensional state spaces.

This work was later extended by Lakshmanan et al. [LOR15] to use a kernel density estimator
instead of a frequency estimator for each region of the fixed discretization. For each discrete
region I(s), the density p(·|I(s), a) of the transition kernel is computed through kernel density
estimation. The granularity of the discretization is selected in advance based on the properties
of the MDP and the learning horizon T . As a result, they improve upon the bound of Ortner
and Ryabko [OR12], but require the transition kernels to have densities that are κ times

82

4.8 Discussion and Bibliographical Remarks

differentiable.6 However, these two algorithms rely on an intractable optimization problem
for finding an optimistic MDP. Jian et al. [Jia+19] solve this issue by providing an algorithm
that uses exploration bonuses, but they still rely on a uniform discretization of the state space.
Ok et al. [OPT18] studied the asymptotic regret in Lipschitz MDPs with finite state and action
spaces, providing a nearly asymptotically optimal algorithm. Their algorithm leverages ideas
from asymptotic optimal algorithms in structured bandits [CMP17] and tabular RL [BK97], but
does not scale to continuous state-action spaces. Regarding exploration for finite-horizon MDP
with continuous state-action space, Ni et al. [NYW19] present an algorithm for deterministic
MDPs with Lipschitz transitions. Assuming that the Q-function is Lipschitz continuous, Song
and Sun [SS19] provided amodel-free algorithm by combining the ideas of tabular optimisticQ-
learning [Jin+18] with uniform discretization, showing a regret bound of O

(
H

5
2T

d+1
d+2

)
where

d is the covering dimension of the state-action space. This approach was extended by Sinclair
et al. [SBY19] and Touati et al. [TTB20] to use adaptive partitioning of the state-action space,
achieving the same regret bound. Osband and Van Roy [OVR14] prove a Bayesian regret bound
in terms of the eluder and Kolmogorov dimension, assuming access to an approximate MDP
planner. Sinclair et al. [Sin+20] provide a model-based algorithm for continuous MDPs relying
on adaptive discretization, with a regret bound that has a better dependence onH and d than
Kernel-UCBVI, but requires extra assumptions on the metric space to construct packings and
coverings. Cao and Krishnamurthy [CK20] prove a regret bound for the AdaptiveQL algorithm
of [SBY19] that scales with the zooming dimension, which is a problem-dependent quantity
that may be smaller than the covering dimension.

Further reading on non-stationary MDPs In this chapter, we considered dynamic regret
bounds for non-stationary RL. In finite MDPs, this type of bound has been been studied by
Gajane et al. [GOA18], Ortner et al. [OGA19], Cheung et al. [CSLZ20], andMao et al. [Mao+21],
whereas Touati and Vincent [TV20] propose an algorithm using linear function approximation.
A related approach consists in comparing the performance of the learner to the best stationary
policy in hindsight, e.g. [EDKM09; YM09; Neu+13; DGS14], which is less suited to non-
stationary environments, since the performance of any fixed policy might not be satisfactory.
Non-stationary RL has also been studied outside the regret minimization framework, without,
however, tackling the issue of exploration. For instance, Choi et al. [CYZ00] propose a model
where the MDP varies according to a sequence of tasks whose changes form a Markov chain.
Szita et al. [STL02] and Csáji and Monostori [CM08] study the convergence of Q-learning
when the environment changes but remain close to a fixed MDP. Assuming full knowledge of
the MDP at each time step, but with unknown evolution, Lecarpentier and Rachelson [LR19]
introduce a risk-averse approach to planning in slowly changing environments. In a related

6For instance, when d = 1 and κ → ∞, their bound approaches T
2
3 , improving the previous bound of T

3
4 .

83

A Kernel-Based Approach to Exploration in Continuous MDPs

setting, Lykouris et al. [Lyk+19] study episodic RL problems where the MDP can be corrupted
by an adversary and provide regret bounds in this case.

84

Chapter 5

Exploration without Rewards &
Applications to Deep RL

In the previous chapters, we studied algorithms for regret minimization in finite or continuous
MDPs and we saw that adding exploration bonuses to the rewards is an effective method to
balance exploration and exploitation. In some environments, the reward function is sparse:
for most states s ∈ S, we have r(s, ·) = 0, so that the agent must be able to explore even
in the absence of rewards from the environment. Additionally, it might be useful for some
applications to design exploratory agents whose goal goes beyond reward maximization.
Hence, we investigate in this chapter algorithms for reward-free exploration. We start from finite
MDPs, and review the RF-UCRL [Kau+21] and the RF-Express [Mé+21a] algorithms showing
that bonuses that decay as the number of visits nt

h(s, a) grows — similar to those used by
UCBVI— also allow an agent to explore efficiently in the reward-free case. Then, we propose a
deep reinforcement learning approach to reward-free exploration, based on a learned kernel
combined with an approximate version of the exploration bonuses used by Kernel-UCBVI.

This chapter is based on the papers [Kau+21; Mé+21a] about reward-free exploration in finite
MDPs, in which I participated as a collaborator, and on the workshop paper [Dom+21e] about
reward-free exploration for deep reinforcement learning.

Contents
5.1 Reward-Free Exploration in Finite MDPs . 86

5.2 Kernel-Based Bonuses for Exploration in Deep RL 90

5.3 Related Work . 94

5.4 Experiments . 96

5.5 Discussion and Bibliographical Remarks . 104

85

Exploration without Rewards & Applications to Deep RL

5.1 Reward-Free Exploration in Finite MDPs

In several situations, a reinforcement learning agent needs to explore the environment in the
absence of rewards. For instance, in sparse-reward environments, where the reward function
is such that r(s, ·) = 0 for most states s ∈ S, the agent might spend most of its time exploring
without any reward feedback from the environment. Another example is when there is not a
single reward function that is specified before the interaction with the environment, so that the
agent is required to learn a transition model of the MDP, which can be latter used by planning
algorithms to find near-optimal policies for any possible reward function.

Without a reward feedback, a key question is to decide what the agent’s objective should be.
Here, we consider the finite-horizon reward-free exploration (RFE) problem as proposed by
Jin et al. [Jin+20a]. An algorithm for RFE should be able to generate a dataset Dτ containing τ
reward-free trajectories of horizon H ,

Dτ :=
{

(st
h, a

t
h, s

t
h+1)τ

t=1, for h ∈ {1, . . . ,H}
}
,

with τ being as small as possible, such that the empirical transition model p̂τ built with the
trajectories Dτ can be used to compute near-optimal policies for any reward function with high
probability. Intuitively, this requires the agent to explore the environment aiming to collect
data that is as diverse as possible, covering all reachable states and enabling it to estimate an
accurate transition model everywhere. More precisely, let π̂τ,r be the optimal policy in the MDP
with transitions p̂τ and reward function r. Without loss of generality, assume that the initial
state in each episode is fixed, i.e., st

1 = s1 ∈ S.1 An algorithm is said to be (ε, δ)-PAC for RFE
[Jin+20a; Kau+21] if

P
[
for all reward function r,

∣∣∣∣V ∗
1 (s1, r)− V

π̂τ,r

1 (s1; r)
∣∣∣∣ ≤ ε] ≥ 1− δ,

where V π
1 (·; r) is the value function of a policy π with the reward r, and V ∗

1 (·; r) is the optimal
value function with respect to the reward function r.

Recall that proving regret bounds for the UCBVI algorithm (Section 3.6) does not require any
assumption regarding the sparsity of the reward function. Hence, UCBVI is able to explore even
in environments with sparse rewards, and can only start exploiting once states with non-zero
rewards are encountered. UCBVI’s ability to explore comes from its exploration bonuses: thus,
we might wonder if the same kind of bonuses can be used for reward-free exploration. This
is indeed the case: Kaufmann et al. [Kau+21] introduce RF-UCRL, an algorithm similar to
UCRL [JOA10] and UCBVI [AOM17] —relying on value iteration with exploration bonuses of
the form 1/

√
n— and show that it is (ε, δ)-PAC for RFE.

1As observed by Fiechter [Fie94], this is easily generalized to any initial state distribution s1 ∼ µ by considering
a fixed initial state s0 with a single action a0 such that the reward at (s0, a0) is zero and p0(·|s0, a0) = µ.

86

5.1 Reward-Free Exploration in Finite MDPs

RF-UCRL is described in Algorithm 5.1 and is based on upper bounds Et
h(s, a) on the estimation

error of the value of any policy for any reward function, which we now define. For any policy
π, reward function r and time (t, h), let

et,π
h (s, a; r) :=

∣∣∣Q̂t,π
h (s, a; r)−Qπ

h(s, a; r)
∣∣∣ ,

where Qπ
h(s, a; r) is the Q-function of a policy π in the MDP with the reward function r and

the true transitions ph, and where Q̂π
h(s, a; r) is the Q-function of π in the MDP with reward r

and the estimated transitions p̂t
h:

p̂t
h(z|s, a) = nt

h(s, a, z)
nt

h(s, a) , if nt
h(s, a) > 0, and p̂t

h(z|s, a) = 1
S

otherwise,

where nt
h(s, a, z) =

∑t−1
i=1 1

{
(s, a, z) = (si

h, a
i
h, s

i
h+1)

}
and nt

h(s, a) =
∑

z∈S n
t
h(s, a, z).

We define Et
h(s, a) for any (s, a, h, t) as

Et
h(s, a) = min

(
H, bt

h(s, a) +
∑

z

p̂t
h(z|s, a) max

b
Et

h+1(z, b)
)
, (5.1)

where Et
H+1 := 0 and bt

h is an exploration bonus given by

bt
h(s, a) :=

√
2H2β

(
nt

h(s, a), δ
)

nt
h(s, a)

for a threshold function β(n, δ) which is given as input to the algorithm.

Algorithm 5.1: RF-UCRL

1 initialize dataset D ← ∅, t← 1
2 while true do
3 get initial state st

1
4 # compute upper bounds on the error
5 compute (Et

h)h∈[H] according to Equation (5.1)
6 # check stopping time
7 if maxaE

t
1(st

1, a) ≤ ε/2 then
8 τ ← t, Dτ ← D,
9 return: dataset Dτ

10 for stage h ∈ {1, . . . ,H} do
11 # select and execute action
12 at

h ← argmaxaE
t
h(st

h, a) , st
h+1 ← OnlineModelt,h(at

h)
13 # store data
14 D ← D ∪ (st

h, a
t
h, s

t
h+1)

15 t← t+ 1

87

Exploration without Rewards & Applications to Deep RL

It can be shown that supr,π e
t,π
h (s, a; r) ≤ Et

h(s, a) for any (t, h, s, a) with probability at least 1− δ
[Kau+21, Lemma 3]. That is, Et

h provides an upper bound on the estimation error on the
value function of any policy for any reward function. Then, at any state s at time (t, h), RF-UCRL
chooses the action at

h with the highest estimation error upper bound: at
h ∈ argmaxaE

t
h(st

h, a).
Intuitively, this action-selection strategy allows the algorithm to uniformly reduce the estimation
of all policies for any possible reward function. Then, the algorithm stops when this estimation
error at step h = 1 is smaller than ε/2. Theorem 5.1, proved in [Kau+21], shows that RF-UCRL
is (ε, δ)-PAC for reward-free exploration and provides a high-probability bound on the number
of episodes τ executed by the algorithm before it stops.

Theorem 5.1 (Theorem 5 by [Kau+21]). RF-UCRL using the threshold function

β(n, δ) = log
(2HSA

δ

)
+ (S − 1) log

(
e

(
1 + n

S − 1

))
is (ε, δ)-PAC for reward-free exploration. Moreover, with probability 1− δ, the number τ of episodes
before the algorithm stops satisfies

τ ≲

(
H4SA

ε2

)(
S + log

(1
δ

))
,

where ≲ omits factors depending on log(1/ε) and log log(1/δ).

Jin et al. [Jin+20a] show that the lower bound on the number of episodes τ required for an
algorithm to be (ε, δ)-PAC for RFE is Ω

(
H2S2A/ε2), considering time-homogeneous MDPs.

Kaufmann et al. [Kau+21] show that the upper bound on τ given in Theorem 5.1 can be
improved by a factor of H if the transitions are time-homogeneous, matching the lower bound
of [Jin+20a] up to a factor H .

For time-inhomogeneousMDPs,Ménard et al. [Mé+21a] propose another algorithm for reward-
free exploration, called RF-Express, which is similar to RF-UCRL, but uses exploration bonuses
of the form 1/n (instead of 1/

√
n) and a different stopping time τ . By providing a novel

empirical Bernstein inequality, Ménard et al. [Mé+21a] prove that RF-Express improves the
upper bound of RF-UCRL by a factor of H . A similar technique had been previously used to
improve the regret of UCBVI [AOM17] using a Bellman-type equation for the variances of
value functions (which depend on r), but extending such technique to RFE is considerably
more challenging, since the agent does not receive rewards and, consequently, cannot compute
empirical variances.

88

5.1 Reward-Free Exploration in Finite MDPs

Algorithmically, RF-Express proceeds as RF-UCRL, but replaces the error upper bound Et
h by

another quantityW t
h that can be used to bound the estimation errors, defined as

W t
h(s, a) = min

(
H, bt

h(s, a) +
(

1 + 1
H

)∑
z

p̂t
h(z|s, a) max

b
Et

h+1(z, b)
)
,

where the bonus is given by

bt
h(s, a) := 15H2β

(
nt

h(s, a), δ
)

nt
h(s, a) ·

At every time (t, h), RF-Express chooses the action at
h ∈ argmaxaW

t
h(st

h, a), and stops at
the episode t if the condition 3 exp(1)

√
maxaW t

1(s1, a) + maxaW
t
1(s1, a) ≤ ε/2 is met. Such

stopping condition is justified by the fact that the estimation error et,π
h is bounded as

sup
r,π

et,π
h (s1, π1(s1); r) ≤ 3 exp(1)

√
max

a
W t

1(s1, a) + max
a

W t
1(s1, a)

with high probability, as proved in [Mé+21a, Lemma 1]. For completeness, we restate below
the theorem by Ménard et al. [Mé+21a] showing that RF-Express is (ε, δ)-PAC for RFE, and
that it improves the sample complexity of RF-UCRL by a factor ofH for time-inhomogeneous
MDPs.

Theorem 5.2 (Theorem 1 by [Mé+21a]). RF-Express using the threshold function

β(n, δ) = log
(2HSA

δ

)
+ S log (8e(n+ 1))

is (ε, δ)-PAC for reward-free exploration. Moreover, with probability 1− δ, the number τ of episodes
before the algorithm stops satisfies

τ ≲

(
H3SA

ε2

)(
S + log

(1
δ

))
,

where ≲ omits factors depending on log(1/ε) and log log(1/δ).

At first, the 1/n bonuses used by RF-Express might be surprising, when compared to the 1/
√
n

bonuses used by UCBVI and RF-UCRL, for instance. Indeed, in order to estimate the mean µ
of a random variable X by an estimator µ̂n computed with n i.i.d. samples fom X , the error
|µ− µ̂n| scales with 1/

√
n by Hoeffding’s inequality, which explains the bonuses used by other

algorithms. However, the analysis of RF-Express is based on concentration inequalities for the
Kullback-Leibler divergence, and bound the term (µ− µ̂n)2, which scales with 1/n.

89

Exploration without Rewards & Applications to Deep RL

5.2 Kernel-Based Bonuses for Exploration in Deep RL

In the previous section, we saw that using exploration bonuses depending on nt(s, a) allows
an agent to explore finite MDPs even in a reward-free situation, where nt(s, a) is the number
of visits to (s, a) up to time t. In Chapter 4, we proposed the Kernel-UCBVI algorithm that
generalizes the counts nt(s, a) to continuous MDPs by using a kernel function, and analyzed
its regret bound. Hence, it is reasonable to expect that, at least empirically, Kernel-UCBVI
is also able to explore continuous MDPs in a reward-free situation. Indeed, in finite MDPs
with an appropriate choice of the kernel function, Kernel-UCBVI becomes identical to UCBVI,
which is similar to RF-UCRL in the sense that it is based on value iteration combined with 1/

√
n

exploration bonuses.

Thus, in principle, Kernel-UCBVI is a very general algorithm for exploration: it makes very
weak assumptions on the MDP and can be implemented as long as we have an online model
of the MDP and a kernel function. Nevertheless, it has two main practical limitations: (i) its
computational complexity that either increases with the time t in its exact version, or scales
with the covering number of the state space in its approximate version with representative
states, and (ii) the fact that it requires a well-designed kernel function.

In this section, in order to tackle those limitations of Kernel-UCBVI, we propose a method
that we call AKBX, meaning Approximate Kernel-Based eXploration. AKBX is a method that
(i) replaces Kernel-UCBVI’s backward induction by an off-policy RL algorithm using function
approximation; (ii) learns a representation that is used to define a kernel; and (iii) based on the
learned representation, computes an approximation of Kernel-UCBVI’s exploration bonuses.
We remark that there are several works aiming to generalize 1/

√
n bonuses to deep RL, some

of which are discussed and compared to AKBX in Section 5.3.

Algorithm 5.2: Simplified structure of RL algorithms based on exploration bonuses
1 initialize data buffer D ← ∅
2 get initial state s1
3 for t = 1, . . . , T do
4 Define exploration bonuses bt(s, a) based on data D
5 Using bt and past data D, compute a policy πt

6 Execute the action at ∼ πt(st)
7 Observe next state st+1 and reward rt (if reward-free, rt = 0)
8 Update data D ← D ∪ (st, at, st+1, rt)

Consider Algorithm 5.2, which describes in a simplified manner the structure of the RL algo-
rithms based on exploration bonuses that we have studied so far. AKBX follows this structure,
and we assume that the computation of the policy πt, given the past data and the bonuses that
are added to the rewards, is done by any off-policy RL algorithm with function approximation,

90

5.2 Kernel-Based Bonuses for Exploration in Deep RL

such as Fitted Q-Learning [EGW05; Rie05; MS08] and Deep Q-Learning [Mni+13]. In fact,
any offline RL algorithm could be used, see Levine et al. [Lev+20] for a survey on offline RL.
Thus, we are left with the problem of defining a kernel and approximating the bonuses of
Kernel-UCBVI.

Kernel design through representation learning In cases where we do not have enough
domain knowledge to design a good kernel function, we can use representation learning
methods that, for each (s, a), learn a representation function f that maps (s, a) to a real-valued
vector f(s, a) ∈ Rd. Different representation learning algorithms have been proposed for RL,
designed to encourage certain properties in the function f , such as learning representations
that ignore uncontrollable features of the environment, that are useful to build transition
models, or that allow generalization across tasks [Pat+17; Aza+19; Guo+20; Bad+20b]. Given
a learned representation function f , we can use the Euclidean distance in the representation
space to define a metric ρ on S × A as ρ [(s, a), (s′, a′)] = ∥f(s, a)− f(s′, a′)∥2 , and define a
kernel function Γf ((s, a), (s′, a′)) as

Γf ((s, a), (s′, a′)) = ψ
(∥∥f(s, a)− f(s′, a′)

∥∥
2
) (5.2)

where ψ : R+ → R+ is a non-increasing function. For instance, a Gaussian kernel is obtained
by taking ψ(x) = exp(−x2/2).

Approximation of exploration bonuses Given the kernel Γ, our goal now is to approximate
the kernel-based bonuses introduced in Section 4.1. We start with the following simplification
of those bonuses:

bt+1(s, a) =
(

1
β +

∑t
i=1 Γf ((s, a), (si, ai))

)α

, α ∈
{1

2 , 1
}
, (5.3)

where β is a regularization constant, and α can be either 1/2, as in the Kernel-UCBVI bonuses
in Section 4.1, or α = 1, which generalizes the 1/n bonuses of RF-Express. It is necessary
to approximate bt+1(s, a) because its computation requires O (t) time, and we would like an
algorithm whose time complexity does not grow with the number of transitions t. We propose
an approximation of the function bt+1 by a function gθ that is updated at every time t by taking
gradient steps to minimize a loss function. In order to do so, we first rewrite bt+1 as:

bt+1(s, a) = 1
tα

 1
β/t+ EB

[
1

|B|
∑

i∈B Γf ((s, a), (si, ai))
]
α

,

whereB is a batch of indices sampled uniformly at random (with replacement) from {1, . . . , t}.

91

Exploration without Rewards & Applications to Deep RL

Now, we consider the following loss function:

ℓt(s, a, f, B, θ) :=

gθ(s, a)−

 1
εt + 1

|B|
∑

i∈B Γf ((s, a), (si, ai))

α2

, (5.4)

where εt is a regularization parameter, and define the expected loss over a distribution νt on
S ×A and the batch B:

ℓt(θ) := E(s,a)∼νt
[EB [ℓt(s, a, f, B, θ)]] . (5.5)

In practice, we take the distribution νt such that (s, a) is sampled uniformly at random from
(si, ai)t

i=1, the data available at time t. The parameters θ defining the function gθ are then
updated at time t by taking stochastic gradient descent steps to minimize the loss ℓt(θ).

The intuition behind the loss in Equation (5.4) is the following: it is a regression problem
where gθ(s, a) is optimized to predict the expected value of

(
εt + 1

|B|
∑

i∈B Γf ((s, a), (si, ai))
)−α,

which satisfies, by Jensen’s inequality:

EB

 1
εt + 1

|B|
∑

i∈B Γf ((s, a), (si, ai))

α
≥

 1
εt + EB

[
1

|B|
∑

i∈B Γf ((s, a), (si, ai))
]
α

= tαbt+1(s, a), (5.6)

if we take εt := β/t. Hence, gθ(s, a) is trained to predict a term that is proportional to an upper
bound on the true bonuses bt+1(s, a).

Finally, we propose the following approximate bonuses for AKBX, which we explain next:

b̃t+1
θ (s, a) = λ1,t gθ(s, a) + λ2,t

√
ℓt(s, a, f, Bt, θ), (5.7)

where ℓt is the loss defined in Equation (5.4), Bt is a batch of indices sampled uniformly at
random from {1, . . . , t}, and (λ1,t, λ2,t) are positive factors that may depend on t.

Algorithm 5.3 summarizes the AKBX method, which trains a representation function f , con-
structs a kernel based on f , defines approximate kernel-based bonuses as in Equation (5.7),
and trains a policy πt using an off-policy RL algorithm in order to maximize the sum of bonuses
and rewards (which are 0 in the reward-free case). Below, we provide further explanation
regarding the bonuses that we propose in Equation (5.7).

First term of approximate bonuses (5.7) The term λ1,t gθ(s, a) comes from the fact that
gθ(s, a) is trained to predict a term that is proportional to an upper bound on the true bonuses

92

5.2 Kernel-Based Bonuses for Exploration in Deep RL

Algorithm 5.3: AKBX: Approximate Kernel-Based Exploration
1 initialize data buffer D ← ∅
2 get initial state s1
3 for t = 1, . . . , T do
4 Sample two batches Bt−1 and B′

t−1 from {1, . . . , t− 1}
5 Update the representation function f using the batch (si, ai, si+1)i∈Bt

6 Update the bonus parameters θ using∇θℓt(θ), where

ℓt(θ) := 1∣∣B′
t−1
∣∣ ∑

j∈B′
t−1

ℓt(sj , aj , f, Bt−1, θ)

7 Define exploration bonuses b̃t
θ as in Equation (5.7)

8 Using b̃t
θ and past data D, compute a policy πt that optimizes bonuses + rewards

9 Execute the action at ∼ πt(st)
10 Observe next state st+1 and reward rt (if reward-free, rt = 0)
11 Update data D ← D ∪ (st, at, st+1, rt)

(5.6). The time-dependent value λ1,t can be chosen in order to control how quickly the bonuses
decay to 0. For instance, the choice λ1,t = 1/tα will make the term λ1,t gθ(s, a) approximate an
upper bound on the exact bonuses from Equation (5.3). However, the off-policy RL algorithm
used to compute the policy πt (which aims to maximize the sum of bonuses and rewards) is
usually trained by taking gradient steps: consequently, if the bonuses decay too quickly, the
policy might not have been updated enough in order to be able to visit states where the bonuses
were high. Choosing a λ1,t that decays slower than 1/tα can be useful to adjust the time scales
between bonus computation and policy optimization. In some cases, we can even choose λ1,t

to be constant (that is, independent of t): this is especially relevant in reward-free situations,
where the scale of the bonuses is not important, as long as the bonuses are high in the least
visited states. Notice that, if we ignore the clipping to H in Equation (5.1), which defines the
error upper bounds Et

h(s, a) used to define RF-UCRL’s policy, we can replace bt
h by λ1,tbt

h for
any λ1,t, and the policy πt

h(s) = argmaxaE
t
h(s, a) remains unchanged. Additionally, ignoring

such clipping in RF-UCRL has been observed to improve its empirical performance [Kau+21].

Second term of approximate bonuses (5.7) We add to the bonuses the following term, which
is proportional to the absolute error between the targets

(
εt + 1

|B|
∑

i∈B Γf ((s, a), (si, ai))
)−α

and the prediction gθ(s, a):
λ2,t

√
ℓt(s, a, f, Bt, θ),

where ℓt is defined in Equation (5.4). This is motivated by the fact that, if the loss ℓt is high, the
approximation made by gθ might not be good enough to encourage the agent to explore. Hence,
we add to the bonuses a term proportional to the loss, so that the agent is able to explore even
before gθ has converged to a meaningful function: that is, a function whose values are large

93

Exploration without Rewards & Applications to Deep RL

for the least visited state-action pairs. Notice that the loss√ℓt(s, a, f, Bt, θ) should be higher if
states similar to (s, a) have not been visited before. Also, since the parameters θ are trained
to minimize the expectation of ℓt(s, a, f, Bt, θ), the loss should decrease in expectation as gθ is
trained, and the first term of the bonus (λ1,t gθ(s, a)) becomes the dominant term.

Using nearest neighbors to improve bonus approximation In practice, we observed that
replacing the targets 1

εt + 1
|B|
∑

i∈B Γf ((s, a), (si, ai))

α

in the loss (5.4) by (
1

εt + 1
k

∑
(s′,a′)∈NNk(s,a,B) Γf ((s, a), (s′, a′))

)α

where NNk(s, a,B) is the subset of (si, ai)i∈B containing the k-nearest neighbors of (s, a) with
respect to the distance ρ [(s, a), (s′, a′)] = ∥f(s, a)− f(s′, a′)∥2, results in a more robust algo-
rithm with respect to the hyperparameters. This is inspired by the kernel-based bonuses used
by the Never-Give-Up algorithm by Badia et al. [Bad+20b], which we discuss in Section 5.3.
One possible explanation for such improvement is that using k-nearest neighbors might reduce
the impact of outliers, which is important since the representation f is being learned at the
same time as the approximate bonuses.

5.3 Related Work

Several techniques for exploration in deep reinforcement learning take inspiration from the
1/
√
n-bonuses used by near-optimal algorithms in finite MDPs. For instance, Bellemare et al.

[Bel+16] propose a method to compute pseudo-counts approximating nt(s, a) using density
estimation on images, and Tang et al. [Tan+17] use locality-sensitive hashing tomap continuous
states to discrete representations, where explicit counts are computed. A common property
across these techniques is that the more a state-action pair (s, a) is visited, the smaller the bonus
at (s, a). Such property is also satisfied by algorithms such as Random Network Distillation
(RND) by Burda et al. [Bur+19] and Never-Give-Up by Badia et al. [Bad+20b]. Never-Give-
Up relies on kernel-based exploration bonuses and, among the related work, we believe it is
the closest to AKBX. Since Never-Give-Up also uses RND, we briefly explain below how both
algorithms construct their exploration bonuses.

Random Network Distillation The exploration bonuses used by RND are based on functions
uθ and uθ′ , implemented by two neural networks with identical architecture, that take as input
a state s ∈ S and output a real-valued vector. The network parameters θ, θ′ are initialized
randomly and, whereas θ′ is kept fixed, θ is slowly updated with gradient steps that minimize

94

5.3 Related Work

the loss

ℓRND(θ) := Es∼νt

[
∥uθ(s)− uθ′(s)∥22

]
, (5.8)

where νt is taken as a uniform distribution on the previously visited states (si)t
i=1. Then, the

bonuses used by RND are

bt+1
RND,θ(s) := ∥uθ(s)− uθ′(s)∥22 . (5.9)

Intuitively, the RND loss will be higher for the least visited states, and the bonus will thus
encourage the agent to visit new states. As we will see in the experiments of Section 5.4, a
disadvantage of RND in reward-free exploration is that, at some point, its bonuses tend to zero2,
which makes the agent stop exploring. Never-Give-Up, which we explain below, avoids this
issue by using non-vanishing kernel-based bonuses.

Never-Give-Up The Never-Give-Up algorithm also relies on a kernel function defined on
top of a learned representation function f . Let clip[a,b] (x) := min(b,max(a, x)), and c and L
be positive constants. For a state st visited at time t, the Never-Give-Up exploration bonus is
defined as

bt+1
NGU (st) := clip[1,L]

(
1 + bt+1

RND,θ(st)
)
× 1√∑

s′∈NNepisodic
k

(st,B) Γf (st, s′) + c
,

where NNepisodic
k (st, B) is the set of k-nearest neighbors of st among the states (si)t−1

i=1 that are
in the same episode as st, and Γf : S × S → R+ is a kernel function on the state-space, computed
using the distance ∥f(s)− f(s′)∥2 based on a state-representation function f .

The first factor in the Never-Give-Up bonus is based on RND, and encourages the agent to visit
new states. However, as the RND bonus tend to zero, the first factor becomes approximately 1,
and the agent is left with the kernel-based bonus in the second factor, which gives high bonuses
to the agent if it visits different states in each single episode. Since the kernel-based factor does
not tend to zero, an agent using the Never-Give-Up bonuses can keep exploring even after the
RND bonuses vanish, which was shown by Badia et al. [Bad+20b] to greatly improve an agent’s
performance in Atari games that are difficult in terms of exploration.

Relation to AKBX We see that the kernel-based bonus of AKBX in Equation (5.7), which is an
approximate version of Kernel-UCBVI’s bonus, is similar in principle to Never-Give-Up, in the
sense that it encourages the agent to visit novel states with respect to a learned representation.
However, the kernel-based factor in the Never-Give-Up bonus is computed using data only from
a single episode and, algorithmically, it requires us to keep a buffer containing data from the

2The minimum loss is indeed zero, since both RND networks have the same architecture.

95

Exploration without Rewards & Applications to Deep RL

current episode. AKBX is simpler to implement, since it relies only on sampling batches (and
does not need to keep track of all data generated in the current episode), and can be directly
related to Kernel-UCBVI, a theoretically-grounded algorithm. A possible advantage of the
intra-episode bonuses of Never-Give-Up is that they might be more adapted to environments
with very long episodes, which is the case of some Atari games, where explicitly requiring
diversity in the states visited in a single episodemight be beneficial for exploration. Futhermore,
the loss term added to the AKBX bonuses has a similar interpretation to RND, since the loss at
the least visited states is higher, and the agent receives high bonuses for visiting those states.

5.4 Experiments

In this section, we provide experiments that serve as a proof of concept of AKBX. The AKBX
approach involves the interaction between three learning procedures: (i) learning a repre-
sentation function f ; (ii) learning approximate exploration bonuses by minimizing the loss
(5.5); and (iii) training a reinforcement learning algorithm to maximize the sum of reward and
exploration bonuses (or only the bonuses in a reward-free case). Each procedure depends on
the others: in order to learn a good representation, the agent needs to explore well the MDP;
and, to explore, the agent needs a good representation and a reinforcement learning algorithm
that is able to optimize the sum of exploration bonuses, which are non-stationary (since the
bonuses are being constantly updated). Hence, we designed experiments that verify that AKBX
is able to explore even in a scenario with such complex learning interactions.

Figure 5.1 – Grid-World with 9 rooms. The number of states is S = 233 (not counting the walls), and
the agent’s observations are one-hot encodings of the discrete states.

We consider the Grid-World environment illustrated in Figure 5.1. The state space is discrete,
but AKBX’s assumes continuous observations, as it observes one-hot encodings of the discrete

96

5.4 Experiments

states. That is, for a state s ∈ S := {1, . . . , S}, the AKBX agent observes a vector sobs ∈ RS such
that sobs(i) = 1 {i = s}, where sobs(i) denotes the i-th component of the vector sobs. There are
four actions available, corresponding to movements in the four possible directions (up, down,
left, right). The agent starts at the top-left room and when choosing an action, the agent moves
in the corresponding direction with probability 0.95, and moves in a random direction with
probability 0.05. In a reward-free situation, the goal of the agent is to constantly explore all the
states. When rewards from the environment are enabled, the agent receives a reward equal to 1
in the state in the bottom-right corner.

Before illustrating AKBX’s performance in a reward-free situation (Section 5.4.3) and with
rewards (Section 5.4.4), we present in Section 5.4.1 a simple representation learning method
inspired by manifold learning, and show in Section 5.4.2 that the approximate bonuses used by
AKBX (5.7) are able to mimic the 1/

√
n and 1/n bonuses in tabular MDPs.

State-dependent representation and bonuses As usually done in related work on explo-
ration for deep RL (e.g., [Bel+16; Bad+20b]), we consider that the representation function f is
a function of states only (instead of state-action pairs) and, similarly, the kernel function Γf

depends only on pairs of states, that is

Γf ((s, a), (s′, a′)) = Γf (s, s′) = ψ
(∥∥f(s)− f(s′)

∥∥
2
)
.

The intuition is that the agent is encouraged to visit novel states (instead of novel state-action
pairs), and the exploration among the possible actions is done by introducing randomness in
the exploration policy: for instance, by ε-greedy exploration (in Q-learning algorithms) or by
entropy regularization (in actor-critic algorithms).

Notation Throughout this section, we denote by νt the distribution on S such that s ∼ νt is
sampled uniformly at random (with replacement) from (si)t

i=1, the data available at time t.

5.4.1 Representation Learning

Since the agent receives one-hot encodings of discrete states, its inputs are vectors of dimension
S = 233 without any structure (that is, the Euclidean distance between any pair of observations
is the same). In order to learn a meaningful representation function f , we minimize the
following loss:

ℓrepr
t (f) :=Esi∼νt [ℓHuber(f(si)− f(si+1))]

+ c1Es∼νt [f(s)] + c2Es∼νt

[
∥f(s)∥22

]
− c3Es,s′∼νt

[
ℓHuber(f(s)− f(s′))

] (5.10)

97

Exploration without Rewards & Applications to Deep RL

where c1, c2 and c3 are positive constants, and ℓHuber is a pseudo-Huber loss with parameters
δ > 0 and q > 0 defined as

ℓHuber(x) := (δq + ∥x∥q2)1/q
. (5.11)

The first term in the loss ℓrepr
t (f) forces the distance between consecutive states st and st+1

to be small in the representation space. The term proportional to c1 means that f should be
orthogonal to a constant function, and avoids constant solutions, whereas the term proportional
to c2 penalizes functions f with large norm. These first three terms are analogous to the
Laplacian Eigenmaps method for manifold learning [VMS16; BN03] given an adjacency graph.
The analogy in our case is that the graph adjacency matrix is defined by connecting consecutive
states st and st+1. The last term, proportional to c3, is a constrastive loss that forces a separation
in the embedding space between states s and s′ that are sampled randomly. Besides its relation
to Laplacian Eigenmaps, the loss ℓrepr

t (f) and the use of the pseudo-Huber loss (5.11) is inspired
by the adjacency regularization loss proposed by Guo et al. [Guo+21].

Table 5.1 – Parameters used for representation learning
Parameter Value
Representation function class MLP (128, 64)
Pseudo-Huber loss parameters q = 4, δ = 1.0
Representation loss parameters c1 = c2 = 10−9, c3 = 10−4

Optimizer (Adam) learning rate 10−4

Batch dimensions (8, 32)

To train a representation f , we parameterized f using a multilayer perceptron (MLP) with a
hidden layer of size 128 and an output layer of size 64, meaning that the state embeddings
are 64-dimensional vectors. We used batches of dimension (8, 32), meaning that each batch
has 8 sub-trajectories containing 32 time steps, and minimized the loss (5.10) using the Adam
optimizer [KB14] and the PyTorch library [Pas+19]. Other parameters for the loss computation
are given in Table 5.1.

In order to validate the representation learningmethodused here, we sampled 5×104 transitions
from the Grid-World environment (Figure 5.1), corresponding to 5× 102 trajectories of horizon
H = 100. In order to remove exploration issues and validate only the representation learning
method, the starting state of each trajectory was sampled uniformly at random among the centers
of each room. Figure 5.2 shows the ground truth positions of each state in the Grid-World from
Figure 5.1, and the 2-dimensional projection of the 64-dimensional embeddings f(s) before
and after minimizing the representation loss (5.10). The 2D projections were computed using
the t-SNE algorithm [MH08] implemented in the scikit-learn library [Ped+11]. We can see
that the representation learning method used here is able to capture the adjacency structure of
the states of the Grid-World.

98

5.4 Experiments

True positions Embeddings before training Embeddings after training

Figure 5.2 – Left: true positions of each state in the Grid-World with 9 rooms, each state is associated to
a unique color. Middle: 2-dimensional projection of the 64-dimensional embeddings before minimizing
the loss (5.10). Right: 2-dimensional projection of the embeddings after 15× 103 optimization steps to
minimize the representation loss (5.10).

5.4.2 Bonus Computation

Now that we have validated our representation learning method, we study AKBX’s exploration
bonuses, which are trained at the same time as the representation function f . We approximate
the function gθ, used to define the bonus (5.7), by an MLP with a hidden layer of size 128. The
other parameters used to defined the bonuses are given in Table 5.2.

Table 5.2 – Parameters used to compute AKBX’s bonuses
Parameter Value
Function class for gθ (5.7) MLP (128, 1)
Base kernel function (5.2) ψ(x) = 1/(1 + x2)
Regularization constant β = 0
Bonus parameters (5.7) λ1,t = λ2,t = 1
Optimizer (Adam) learning rate 10−4

Batch dimensions (8, 32)

Figure 5.3 compares the number of state visits to the bonuses (5.7) learned by minimizing
the loss in Equation (5.5) for α = 1/2 and α = 1, based on 5 × 102 trajectories of horizon
H = 100 collected by playing a random policy starting from the top-left room. We ran 15× 103

optimization steps to learn the representation f and 15× 103 optimization steps to minimize
the bonus loss Equation (5.5). Both the representation and the bonuses where trained together:
after each block of 500 optimization steps for the representation, we ran 500 optimization steps
for the bonuses. We observe that AKBX is able to estimate bonuses that behave either as 1/

√
n

(for α = 1/2) or 1/n (for α = 1), even if bonuses and representation are trained simultaneously.

99

Exploration without Rewards & Applications to Deep RL

Number of visits (log scale) AKBX bonuses (log scale)

0 500 1000 1500 2000
number of visits

0

10

20

30

40

50

b
on

us

AKBX bonuses versus 1/
√
n

AKBX bonuses

O(1/
√
n)

Number of visits (log scale) AKBX bonuses (log scale)

0 500 1000 1500 2000
number of visits

0

200

400

600

800

1000

b
on

us

Approximate bonuses versus 1/n

AKBX bonuses

O(1/n)

Figure 5.3 – Visualization of AKBX’s bonuses for α = 1/2 (top) and α = 1 (bottom). Left: Visualization
of number of visits of each state in the GridWorld, when random trajectories are sampled starting from
the center of the top-left room. Higher values are shown in magenta and smaller values are shown in
blue. Middle: Bonuses (5.7) estimated by AKBX based on the learned representation function f . Right:
Comparison between AKBX’s bonuses and 1/nα, where n is the number of state visits.

5.4.3 Reward-Free Exploration

In this section, we evaluate the performance of AKBX in a problem of reward-free exploration,
and we compare it to RF-UCRL, RF-Express and RND. We use the Grid-World environment from
Figure 5.1 and evaluate the algorithms by

(i) the number of visited states, which shows how quickly they are able to explore the
environment; and

(ii) the entropy of the empirical state-visit distribution3, which illustrates the diversity of the
states visited by the exploration policy.

3That is, the entropy of the distribution nt(s)/t, where nt(s) is the number of visits to the state s up to time t.

100

5.4 Experiments

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time t ×106

0.0

0.5

1.0

1.5

2.0

2.5

vi
si

te
d

st
at

es

×102 Number of visited states

name

RND

AKBX (α = 1)

AKBX (α = 1/2)

RF-Express

RF-UCRL

(a) Number of visited states.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time t ×106

0

1

2

3

4

5

6

7

8

en
tr

op
y

Entropy of visited states

name

RND

AKBX (α = 1)

AKBX (α = 1/2)

RF-Express

RF-UCRL

(b) Entropy of the empirical state-visit distribution.

Figure 5.4 – Evaluation of reward-free exploration: number of visits and entropy of state-visit distribution
in the 9-room Grid-World for AKBX, RND, RF-UCRL and RF-Express. Average over 4 independent runs.

As off-policy RL algorithm, used both by AKBX and RND, we implemented an actor-critic method
called Advantage-Weighted Regression (AWR), introduced by Peng et al. [Pen+19]. We chose
AWR due to its higher stability when compared to algorithms based on Q-learning. Table 5.3
shows the hyperparameters used in our AWR implementation. For RND, we used an MLP with
two hidden layers of size 256 to implement the functions uθ and uθ′ used to define its bonus
(5.9), and the loss (5.8) was minimized with the Adam optimizer and a learning rate of 10−5.

For AKBX and RND, the representation, the bonuses and AWR are trained in the following manner:
every Tupdate time steps in the environment, we perform:

• Nrepr optimization steps of representation learning;

• Nbonus optimization steps of minimization of the bonus loss function;

• Ncritic optimization steps of AWR’s value function updates; and

• Nactor optimization steps of AWR’s policy updates.

In our implementation, we chose the values Tupdate = 2048, Ncritic = 200, Nactor = 1000, as
suggested for AWR by [Pen+19], and Nrepr = Nbonus = 500.

Figure 5.4 shows the number of state visits and the entropy of state-visit distribution for AKBX,
RND, RF-UCRL and RF-Express. We can see that RF-UCRL and RF-Express quickly discover all
the states and maintain a high state-visit entropy. Also, both AKBX and RND are able to discover
all the states and, apparently, maintain a reasonable level exploration if we look at their state-
visit entropy. However, only looking at the entropy might be misleading, since it does not
allow us to evaluate whether the agents keep consistently exploring all the rooms. Figure 5.5
shows for each algorithm the number of visits per state and for different time intervals. At

101

Exploration without Rewards & Applications to Deep RL

Table 5.3 – Parameters used in AWR implementation
Parameter Value
Function class for policy (actor) MLP (128, 64, |A|)
Function class for value function (critic) MLP (128, 64, 1)
Policy optimizer (Adam) learning rate 10−4

Value optimizer (Adam) learning rate 10−2

TD(λ) parameter λ = 0.95
Replay buffer size (number of transitions) 3× 105

Advantage weight parameter βadv = 0.5
Maximum advantage weight 40.0
Batch size Full trajectory of length H

the beginning, we see that RND is able to explore all the rooms but, as the time t increases, its
exploration bonuses become close to zero and the RND agent stops exploring the last rooms
at the bottom. By setting λ1,t = 1 in Equation (5.7), AKBX’s bonuses do not tend to 0, and the
agent is able to keep exploring all the rooms in the Grid-World.

RN
D

t [0, 3]×105 [3, 6]×105 [6, 9]×105 [9, 12]×105 [12, 15]×105

AK
BX

RF
-U

CR
L

Figure 5.5 – Number of state visits (in logarithmic scale) for RND (top), AKBX for α = 1/2 (middle)
and RF-UCRL (bottom) in different time intervals. Each column corresponds to the number of visits
in a given time interval. For instance, the first column shows state visits for between time t = 0 and
t = 3× 105, whereas the last column shows the visits between t = 12× 105 and t = 15× 105. The colors
are normalized per column, higher values are shown in magenta and smaller values are shown in blue.
Results for RF-Express and AKBX with α = 1 were omitted from this plot since they are very similar to
those of RF-UCRL and AKBX with α = 1/2, respectively.

102

5.4 Experiments

5.4.4 Exploration with Rewards

To conclude this experimental section, we now evaluate AKBX in the same Grid-World environ-
ment (Figure 5.1) in the case where the agent receives a reward when it reaches a state in the
bottom-right room. We consider α = 1/2, since this is no longer a reward-free situation. In
order to reach the rewarding state, the agent has to traverse the 9 rooms, that is, it needs to
explore. Figure 5.6 compares the values of the policies πt learned by AKBX and RND at time t
to the value of an optimal policy. The values correspond to the expected sum of rewards in
a horizon H = 100, starting from the central state in the top-left room, and are estimated by
Monte-Carlo policy evaluation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time t ×106

−1

0

1

2

3

4

5

es
ti

m
at

ed
va

lu
e

×101 Estimated Value

name

optimal agent

RND

AKBX

Figure 5.6 – Comparison between the values of the policies πt learned by AKBX with α = 1/2 and RND
at time t to the value of an optimal agent. The values correspond to the expected sum of rewards in a
horizon H = 100, starting from the top-left room of the Grid-World, and are estimated by Monte-Carlo
policy evaluation. The optimal policy was computed using value iteration. Average over 4 runs.

We see that both AKBX and RND are able to compute near optimal policies after an initial period
of exploration. When rewards are available, though, using a time-independent λ1,t for AKBX’s
bonus (5.7), such that the bonuses do not decay to zero, might prevent the agent from exploiting.
Indeed, in order to exploit, the bonuses must decay so that the agent is able to maximize its
rewards. In our example, setting λ1,t = 1 did not prevent exploitation, since, in our Grid-World
and given the scale of the bonuses, the policy that maximizes the sum of bonuses and rewards
should be the same as the policy that maximizes rewards only. However, this is not the case
in general, and a well-chosen schedule for decaying λ1,t with t may be crucial to obtain a
good policy at the end. Notice that the Never-Give-Up agent mentioned in Section 5.3 also
has non-vanishing bonuses and, consequently, might have issues with exploitation in some

103

Exploration without Rewards & Applications to Deep RL

environments. Never-Give-Up was later extended by Badia et al. [Bad+20a] who introduced
Agent57, an agent that adaptively chooses an exploration-exploitation parameter at each time t
—analogous to λ1,t— based on a non-stationary multi-armed bandit algorithm. Thus, a similar
technique could be applied when using AKBX’s bonuses.

5.5 Discussion and Bibliographical Remarks

In this chapter, we saw that algorithms based on 1/
√
n exploration bonuses are also able to

explore an MDP even without rewards, by collecting diverse data that cover all reachable
states. Based on the Kernel-UCBVI algorithm introduced in Chapter 4, that generalizes 1/

√
n

bonuses to continuous MDPs, we proposed a method called AKBX, which can be seen as a
scalable version of Kernel-UCBVI with a learned metric, that defines a distance and a kernel
based on learned representations and explores with approximate kernel-based bonuses. The
relevance of collecting diverse data from an MDP is that they can be used, for instance, to learn
a transition model, that can be latter used in offline planning for any reward function, or simply
to simulate the environment, among other applications, such as learning state representations
that can be used for multiple tasks. We related AKBX to Never-Give-Up [Bad+20b], a deep RL
algorithm that has been successful at solving hard-exploration Atari games, and we believe that
the link between AKBX and Kernel-UCBVI might help us understand why and when approaches
like Never-Give-Up work. For instance, as we have seen in Chapter 4, Kernel-UCBVI suffers
from the curse of dimensionality: consequently, we might expect algorithms such as AKBX and
Never-Give-Up to work only when it is possible to learn a state representation function f such
that the covering dimension of the state space with respect to the metric induced by f is small.

Further reading on reward-free exploration In this chapter, we focused on the reward-free
exploration (RFE) problem as proposed by Jin et al. [Jin+20a] where the goal is to collect
a diverse dataset of transitions. Zhang et al. [ZMS20] study a related setting, called Task-
Agnostic Exploration, where an agent has an initial reward-free exploration phase, after which
it needs to be able to compute near-optimal policies for N arbitrary tasks. Another common
approach to RFE is to frame exploration as a problem of searching for a policy that induces a
state-visitation distribution that has maximum entropy, as proposed by Hazan et al. [Haz+19]
for finite MDPs. Guo et al. [Guo+21] extend this approach to continuous MDPs by using a
geometry-aware Shannon entropy that relies on a kernel function that can also be learned. A
fundamental difference between entropy maximization and the dataset approach discussed
in this chapter is that a maximum-entropy policy may fail to cover some regions of the state
space, whereas increasing the diversity of a dataset usually requires the agent to constantly
update its exploration policy in order to visit the least visited states in the previous episodes.
Other reward-free goals include the autonomous exploration task of learning policies that are
able to visit any state that is reachable in a given radius of a fixed initial state [LA12; Tar+20a;

104

5.5 Discussion and Bibliographical Remarks

Tar+21a]. Beyond the finite-horizon criterion, reward-free exploration has also been studied
for stochastic shortest path problems [Tar+20b], and in the context of active model estimation
[Tar+20c].

Further reading on exploration for deep reinforcement learning Different kinds of explo-
ration bonuses, intrinsic motivation or curiosity methods have been proposed to enhance
exploration of RL agents. A non-exhaustive list includes [Sch91; SP12; MJR15; Osb+16; Bel+16;
Pat+17; Tan+17; FCRL17; Ost+17; Bur+19; FCL18; OAC18; MBB20], which mostly involve
algorithms based on uncertainty quantification, such as 1/

√
n-inspired bonuses, prediction

errors, density estimation, and bootstrapping. Flet-Berliac et al. [FB+21] propose an actor-critic
algorithm for exploration based on constraining the policy at time t to be different from the
policy of an adversary trained to predict the actions from previous policies.

105

Chapter 6

Conclusion

6.1 Main Contributions & Directions for Future Work

Reinforcement learning (RL) is a powerful framework to design algorithms that learn to make
decisions and to interact with the world. It allows us to model problems ranging from music
recommendation [LSS15] to scheduling viral tests to control an epidemic [Mei+21], from
robotics [KBP13] to the design of clinical trials [ZKZ09; Yu+21].

Algorithms for RL can be classified as offline or online. In the offline case, the agent is given
a fixed dataset of transitions, based on which it needs to compute a good policy. Learning
policies from offline data is challenging, mostly due to the fact that the algorithm is required to
learn a near-optimal policy from data that is often collected by sub-optimal policies. In this
thesis, we focused on the online case, where the agent needs to collect its own data in order to
learn a good policy. In other words, it needs to efficiently explore the environment. I believe that
studying online reinforcement is extremely relevant, since it provides a framework in which
an agent can learn through real-time interactions, adapt to changes in the world, and actively
gather new data in order to improve its learning process. Furthermore, progress in online RL
can allow us to design agents that are able to quickly build datasets with sufficient coverage
of the environment so that they can be used later for offline RL: indeed, this is the goal of the
reward-free exploration framework proposed by [Jin+20a] that we studied in Chapter 5.

This thesis presented theoretical and practical contributions to online reinforcement learning.
In Chapter 3, we provided unified proofs for worst-case lower bounds in finite MDPs for three
common performance criteria: the regret, the sample complexity of best-policy identification
(BPI), and the sample complexity of exploration (PAC-MDP). We expect this contribution to be
useful to understand the links between the different criteria, and to help the derivation of lower
bounds for other settings. Since the lower bounds in finite MDPs scale with the number of
states S, we need regularity conditions in order to efficiently explore large or continuous MDPs.

107

Conclusion

In Chapter 4, we studied exploration under weak regularity conditions, and proposed two
kernel-based RL algorithms: Kernel-UCBVI and KeRNS, for which we proved regret bounds
in stationary and non-stationary MDPs, and for which we provided approximations with
improved runtime. The two main advantages of kernel-based approaches for exploration are
(i) they can be applied to general state spaces, since kernels can be defined for several kinds of
sets (discrete sets, Euclidean spaces, sets of graphs, etc.); and (ii) they allow us to include prior
knowledge about the environment (e.g., symmetries in the state space) through kernel design,
which can accelerate exploration. Finally, in Chapter 5 we studied algorithms for reward-free
exploration, where an agent can collect data efficiently even without reward feedback, and
we introduced AKBX, an approximation of Kernel-UCBVI that can be used in deep RL, and is
based on a kernel function that is learned in real time by any representation learning method.
Furthermore, we saw how AKBX is related to other approaches for exploration in deep RL
[Bad+20b; Bad+20a].

Establishing connections between algorithms with theoretical guarantees, such as Kernel-
UCBVI, and empirically successful methods for deep RL, such as Never-Give-Up [Bad+20b], is
important both to better understand current deep RL algorithms and to find possible directions
for future research. For instance, since the regret of Kernel-UCBVI suffers from the curse of
dimensionality, and the exploration of Never-Give-Up relies on similar exploration bonuses, we
might expect algorithms such as AKBX and Never-Give-Up to work only for environments where
it is possible to learn low-dimensional state representations. Consequently, a key question for
future research to improve large-scale exploration might be how to use stronger regularity
assumptions in deep RL, which are necessary to improve the regret bounds in theory, as in
[Jin+20b; Yan+20; CO20] for instance.

In addition, we saw that several algorithms for regret minimization rely on dynamic program-
ming (DP) combined with exploration bonuses, which are non-stationary and added to the
rewards. Hence, besides finding effective ways to compute bonuses in deep RL, an important
research direction is the improvement and development of approximate DP algorithms that
are able to use off-policy data and that are robust to non-stationary rewards.

An active area of research in online RL is exploration under safety constraints [MA12; Sui+15;
TBK16; Ber+17;Wac+18; Din+21]. Although it was not studied in this thesis, safety is extremely
important in applications related to robotics and medicine, for instance, and is a crucial point
to be considered in future work.

6.2 Software for Reinforcement Learning Research

Another challenging aspect of reinforcement learning research is how to properly organize
experiments and compare agents. This is due to the facts that:

108

6.2 Software for Reinforcement Learning Research

• There are several performance criteria used to design agents, which may lead to different
implementations. Nevertheless, in a practical application, we might wish to compare
agents that were designed for different criteria. For instance, consider the finite-horizon
and the infinite-horizon with discounted rewards criteria. In the finite-horizon case, the
optimal policy depends on the step h ∈ [H] within an episode, whereas in the infinite-
horizon case the optimal policy depends only on the state. However, a finite-horizon
agent can be run in infinite-horizon problems by always playing the policy for h = 1, or
by seeing an infinite horizon problem as a sequence of finite-horizon ones, for example.

• Different kinds of agents are implemented differently, which can make it more difficult to
compare them. For instance, a deep RL algorithmmight have its implementation centered
around collecting batches of transitions and minimizing a loss function, whereas this is
not the case for algorithms such as UCBVI.

• To debug algorithms for online RL, it might be useful to compare them to algorithms
relying on a generative model, since using such type of model removes the problem of
exploration and might provide us a strong baseline policy or a “ground truth”. However,
it might not be trivial to code and compare algorithms both for online RL and for RL with
a generative model using a single interface or codebase.

This diversity in code implementations makes it difficult to compare agents developed in
different cases and written by different people. This comparison may be essential for research:
consider, for instance, the task of comparing RF-Express, an algorithm for finite-horizon reward-
free exploration in tabular MDPs, to AKBX, an algorithm for reward-free exploration in deep
RL. Their code implementations are considerably distinct, but their comparison is important to
evaluate how AKBX explores when compared to a theoretically-grounded algorithm.

To facilitate empirical research in RL, we developed the rlberry library in Python1 [Dom+21a].
It allows us to compare and debug different agents, create and visualize custom environments,
organize experiments, optimize hyperparameters, run agents on remote servers, among other
features. The library is based on the principle that the interface used to define an agent must be
simple enough to include any RL algorithm, such as value iteration, algorithms for finite MDPs,
deep RL, MCTS, etc. For that, rlberry only requires an agent to implement two methods:
a fit() method that runs the agent for a certain amount of time, given a computational or
sample complexity budget, and an eval() method that evaluates the performance of the agent
in the environment. Once the agent implements this interface, we can use all the functionalities
of the library, which also allows us to train several instances of the algorithms in parallel and
handles automatically all the seeds for the random number generators, which is important
for reproducibility. The rlberry library is compatible with other libraries, such as Stable-
Baselines3 [Raf+21] that implements several deep RL agents. All the experiments in this

1Available at https://github.com/rlberry-py/rlberry.

109

https://github.com/rlberry-py/rlberry

Conclusion

thesis were run using the rlberry library. In particular, in the experiments of Chapter 5,
rlberry was used to compare RF-UCRL and RF-Express, two algorithms for exploration in
finite MDPs, to RND and AKBX, two deep RL algorithms, and allowed us to easily generate plots
as in Figure 5.4. It was also used in the experiments of some of the papers that I co-authored,
such as [Dom+21d; Mé+21a; Mé+21b; Tar+21a].

We expect that the development of rlberry will be continued, and that it will be useful to
develop, debug, and compare RL algorithms created by different research groups. More
generally, we hope it will facilitate code sharing and reproducibility in RL.

110

Appendix A

Complements on Chapter 2

A.1 Proof of Theorem 2.6: Sample Complexity of SmoothCruiser

To bound the sample complexity of SmoothCruiser, we take the following steps:

• In LemmaA.1, we bound the number of recursive calls of sampleV in the uniform sampling
phase (ε ≥ κ), which is similar to the proof of the sample complexity of SparseSampling.

• In Lemma A.2, we bound the number of recursive calls of sampleV when ε < κ.

• By noticing that the number of recursive calls of sampleV is equal to the number of oracle
calls, we bound the sample complexity of SmoothCruiser, we conclude the proof.

Let nsampleV(s, ε, δ′) be the total number of recursive calls to sampleV after an initial call with
parameters (s, ε), and including the initial call. Since this number does not depend on the state
s, we denote it by nsampleV(ε, δ′).

Lemma A.1. Let ε ≥ κ. For all h ∈ N and ∀ε such that (1+M)√γh

1−γ ≤ ε ≤ 1+M
1−γ , we have

nsampleV(ε, δ′) ≤ γ
1
2 H(ε)(H(ε)−1)

(2α(δ′)
ε2

)H(ε)
≤ γ

1
2 H(κ)(H(κ)−1)

(2α(δ′)
κ2

)H(κ)

where

H(ε) =
⌈
2 logγ

(
ε(1− γ)
1 +M

)⌉
and α(δ′) = 18(1 +M)2A

(1− γ)4(1−√γ)2 log
(2A
δ′

)
·

Proof. We want to prove that nsampleV(ε, δ′) ≤ G(ε), where

G(ε) = γ
1
2 H(ε)(H(ε)−1)

(2α(δ′)
ε2

)H(ε)

111

Complements on Chapter 2

We proceed by induction on h.

Base case Let h = 0. We have ε = 1+M
1−γ , which implies nsampleV(ε, δ′) = 1 and G(ε) = 1 (since

H(ε) = 0). Hence, the claim is true for h = 0.

Induction step Assume that the result holds for h. Let ε ≥ (1+M)√γh+1

1−γ · Since ε√
γ ≥

(1+M)√γh

1−γ
,

we use the induction hypothesis to obtain

nsampleV(ε, δ′) = 1︸︷︷︸
current call

+AN(ε)nsampleV

(
ε
√
γ
, δ′
)

︸ ︷︷ ︸
calls in estimateQ

≤ 2α(δ′)
ε2 nsampleV

(
ε
√
γ
, δ′
)

≤ 2α(δ′)
ε2 γ

1
2 (H(ε)−1)(H(ε)−2)

(
γ2α(δ′)
ε2

)H(ε)−1
, since H

(
ε
√
γ

)
= H(ε)− 1

= γ
1
2 H(ε)(H(ε)−1)

(2α(δ′)
ε2

)H(ε)
,

which completes the proof.

Lemma A.2. Let ε ≤ κ. For all h ∈ N, ∀ε ≥ κ√γh, we have

nsampleV(ε, δ′) ≤ η1

[
log 1

γ

(
κ/γ

ε

)]η2(δ′) 1
ε2

where

κ =
1−√γ
AL

η1 = κ2nsampleV(κ, δ′)

η2(δ′) = log2

(
γ

1− γ
2β(δ′)
κ

)
β(δ′) = 18(1 +M)2A2L

(1− γ)4(1−√γ)3 log
(2A
δ′

)

under the condition that

log2

(
γ

1− γ
2β(δ′)
κ

)
≥ 0, i.e., β(δ′) ≥

(1− γ)(1−√γ)
2γAL (A.1)

which is satisfied by choosing δ′ small enough.

112

A.1 Proof of Theorem 2.6: Sample Complexity of SmoothCruiser

Proof. First, let us define some auxiliary quantities,

B1(ε) :=
[
log 1

γ

(
κ/γ

ε

)]η2(δ′)
, (A.2)

B2(ε) := η1
ε2 , and (A.3)

B(ε) := B1(ε)B2(ε) (A.4)

We want to prove that nsampleV(ε, δ′) ≤ B(ε) and we proceed by induction on h.

Base case For h = 0, we have ε ≥ κ and, by assumption, ε ≤ κ. Therefore, ε = κ. It can be
easily verified that B(κ) = nsampleV(κ, δ′), hence the lemma is true for h = 0.

Induction hypothesis Assume that the lemma is true for h.

Induction step Let ε ≥ κ√γh+1. We have that

nsampleV(ε, δ′) = 1︸︷︷︸
current call

+ nsampleV

(
ε
√
γ
, δ′
)

︸ ︷︷ ︸
call in line 11 of sampleV

+AN(
√
κε)nsampleV

(√
κε

γ
, δ′
)

︸ ︷︷ ︸
calls in estimateQ

= 1 + nsampleV

(
ε
√
γ
, δ′
)

+ β(δ′)
ε

nsampleV

(√
κε

γ
, δ′
)

≤ nsampleV

(
ε
√
γ
, δ′
)

+ 2β(δ′)
ε

nsampleV

(√
κε

γ
, δ′
)

Since ε ≥ κ√γh+1 and ε ≤ κ, we have
√

κε
γ ≥

ε√
γ ≥ κ

√
γh. This allows us to use our induction

hypothesis to get

nsampleV(ε, δ′) ≤ B
(

ε
√
γ

)
+ 2β(δ′)

ε
B

(√
κε

γ

)
·

Below, we will use the fact that:

log

 κ√
κε
γ γ

 = 1
2 log

(
κ/γ

ε

)
(A.5)

113

Complements on Chapter 2

We have that

B
(

ε√
γ

)
B(ε) =

B1
(

ε√
γ

)
B1(ε)

B2
(

ε√
γ

)
B2(ε) = γ

 log
(

κ/γ
ε

)
− 1

2 log 1
γ

log
(

κ/γ
ε

)

︸ ︷︷ ︸
<1

η2(δ′)

≤ γ,

where we used the assumption that η2(δ′) ≥ 0.

Also,

B

(√
κε
γ

)
B(ε) = εγ

κ

B1

(√
κε
γ

)
B1(ε) = εγ

κ

 log 1
γ

(
κ√
κε
γ

γ

)
log 1

γ

(
κ/γ

ε

)

η2(δ′)

= εγ

κ

 1
2 log 1

γ

(
κ/γ

ε

)
log 1

γ

(
κ/γ

ε

)

η2(δ′)

= εγ

κ

(1
2

)η2(δ′)
= εγ

κ

(1− γ)
γ

κ

2β(δ′) = (1− γ)ε
2β(δ′) ·

Finally, we obtain

nsampleV(ε, δ′) ≤ B
(

ε
√
γ

)
+ 2β(δ′)

ε
B

(√
κε

γ

)
≤ γB(ε) + 2β(δ′)

ε

(1− γ)ε
2β(δ′) B(ε) = B(ε),

which proves the lemma.

Now, we can conclude the proof of Theorem 2.6. Notice that the number of calls to the generative
model is smaller than the total number of calls to sampleV. SmoothCruiser makes one call to
estimateQ, which makes N(ε) calls to sampleV. If ε ≥ κ, Lemma A.1 shows that the sample
complexity is bounded by a constant. Lemma A.2 bounds the sample complexity for ε ≤ κ,
and we use it to bound n (ε, δ′):

n
(
ε, δ′) = N(ε)nsampleV(ε, δ′) ≤ N(ε)η1

[
log 1

γ

(
κ/γ

ε

)]η2(δ′) 1
ε2

≤ c1
ε4 log

(
c2
δ′

)[
c3 log

(
c4
ε

)]log2(c5(log(c2
δ′)))

= Õ
(1
ε4

)
by using the definition of N(ε) for ε ≤ κ and the definition of η2(δ′) in Lemma A.2. The
constants are given by:

c1 =
18(1 +M)2nsampleV(κ, δ′)

A2L2(1− γ)4 ; c2 = 2A; c3 = [log (1/γ)]−1;

c4 = (1−√γ)/(γAL); c5 = 36(1 +M)2γA3L2

(1− γ)5(1−√γ)4 .

114

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

To prove that SmoothCruiser outputs a good estimate of the optimal regularized value function
with high probability, we proceed as follows:

• In Lemma A.3, we prove that the output of sampleV, conditioned on an event G, is a
low-bias estimate of the true value function, and that G happens with high probability;

• Given Lemma A.3, the proof of Theorem 2.7 is straightforward.

Throughout the proof, we will make distinctions between two cases:

• Case 1: κ ≤ ε < 1+M
1−γ ;

• Case 2: ε < κ.

Useful definitions We define the function ζ(ε) as

ζ(ε) =

ε, if κ ≤ ε < 1+M

1−γ ,
√
κε, if ε < κ,

∞, otherwise.

We define params(s, ε) as the (random) set of parameters used to call sampleV after a call to
sampleV(s, ε), that is

params(s, ε) =
{(

Z(k)
s,a ,

ζ(ε)
√
γ

)
for k = 1, . . . , N(ε); a ∈ A

}
(A.6)

in case 1 and

params(s, ε) =
{(

Z(k)
s,a ,

ζ(ε)
√
γ

)
for k = 1, . . . , N(ε); a ∈ A

}⋃{(
Z

s,Â
,
ε
√
γ

)}
(A.7)

in case 2, whereZ(k)
s,a are the next states sampled in estimateQ andZ

s,Â
is the next state sampled

in sampleV(s, ε).

A call to sampleV(s, ε) makes one call to estimateQ. Denote the output of this call to estimateQ
by Q̂ε

s. We define the event G(s, ε) as follows:

G(s, ε) =

{
∥Q̂ε

s −Qs∥∞ ≤ ζ(ε)
}⋂
B(s, ε), if 0 < ε < 1+M

1−γ ,

Ω, if ε ≥ 1+M
1−γ .

115

Complements on Chapter 2

where Ω is the whole sample space and

B(s, ε) =
⋂

(z,e)∈params(s,ε)
G(z, e).

Finally, we define Cγ as:

Cγ = 3(1 +M)
(1− γ)2

Lemma A.3. Let V̂ε(s) = sampleV(s, ε). For all h ∈ N, s ∈ S, ε ≥ (1+M)√γh

1−γ
,, we have:

(i) |E
[
V̂ε(s)

∣∣∣G(s, ε)
]
− V (s) | ≤ ε,

(ii) P
[
|V̂ε(s)| ≤ Cγ

∣∣∣G(s, ε)
]

= 1, and

(iii) P [G(s, ε)] ≥ 1− δ′nsampleV(ε, δ′).

where

nsampleV(ε, δ′) = 1 +
∑

(z,e)∈params(s,ε)
nsampleV(e, δ′)

is the total number of recursive calls to sampleV after an initial call with parameters (s, ε).

Proof. We proceed by induction on h.

(1) Base case If h = 0, ε ≥ 1+M
1−γ and G(s, ε) = Ω. The output is then V̂ε(s) = 0. Point (i) is

verified by using the fact that |V (s)| ≤ 1+M
1−γ ≤ ε; points (ii) and (iii) are trivially verified.

(2) Induction hypothesis Assume that (i), (ii) and (iii) are true for h.

(3) Induction step Let ε ≥ (1+M)√γh+1

1−γ . This implies that ε/√γ and ζ(ε)/√γ are both greater
than (1+M)√γh

1−γ , which will allow us to use the induction hypothesis.

We start by proving (iii), that is, that the event G(s, ε) has high probability.

Let Q̂ε
s = estimateQ(s, ζ(ε)). Let the reward R

(k)
s,a and state Z(k)

s,a be the random variables
associated to the k-th call to the generative model used to compute Q̂s in estimateQ, for
k ∈ {1, · · · , N(ε)}. Let

qk
s (a) := R(k)

s,a + γsampleV
(
Z(k)

s,a , ζ(ε)/
√
γ
)

116

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

and let

Q
ε
s(a) = 1

N(ε)

N(ε)∑
k=1

qk
s (a) (A.8)

so that:

Q̂ε
s = clip(1+M)(1−γ)−1

(
Q

ε
s(a)

)
where, for any c ≥ 0 and x ∈ RA, clipc (x) = min(max(x, 0), c).

we have:∣∣∣Q̂ε
s(a)−Qs(a)

∣∣∣ ≤ ∣∣∣Qε
s(a)−Qs(a)

∣∣∣
≤
∣∣∣Qε

s(a)−E
[
Q

ε
s(a)|B(s, ε)

]∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣E [Qε

s(a)|B(s, ε)
]
−Qs(a)

∣∣∣︸ ︷︷ ︸
(II)

.

We’d like to use Hoeffding’s inequality to bound (I)with high probability. For that, we need
to verify that the random variables {qk

s (a)}N(ε)
k=1 are bounded and independent conditionally on

B(s, ε).

Boundedness. By the induction hypothesis (ii), in the event B(s, ε), the random variables

sampleV
(
Z(k)

s,a , ζ(ε)/
√
γ
)
,

for all k, are bounded by Cγ . Using the fact that the rewards are in [0, 1], we obtain that qk
s (a) is

also bounded by Cγ .

Independence. Let Ek = G
(
Zk

s,a, ζ(ε)/
√
γ
)
. For any t ∈ RN(ε), the characteristic function of

the random vector {qk
s (a)}N(ε)

k=1 conditionally on B(s, ε) is given by

E
[
exp

(
i
∑

k

tkq
k
s (a)

)∣∣∣∣∣B(s, ε)
]

(a)= E
[
exp

(
i
∑

k

tkq
k
s (a)

)∣∣∣∣∣⋂
k

Ek

]
=

E
[
exp

(
i
∑

k tkq
k
s (a)

)∏
k 1 {Ek}

]
E [
∏

k 1 {Ek}]

=
E
[∏

k exp
(
itkqk

s (a)
)
1 {Ek}

]
E [
∏

k 1 {Ek}]
(b)=

∏
k E

[
exp

(
itkqk

s (a)
)
1 {Ek}

]
∏

k E [1 {Ek}]

=
∏
k

E
[
exp

(
itkqk

s (a)
)∣∣∣Ek

] (c)=
∏
k

E
[
exp

(
itkqk

s (a)
)∣∣∣B(s, ε)

]

which is justified by

117

Complements on Chapter 2

• (a) Definition of B(s, ε) and the fact that {qk
s (a)}N(ε)

k=1 are independent of G
(
Z

s,Â
, ε√

γ

)
;

• (b) The random variables {qk
s (a)}N(ε)

k=1 are independent and the events {Ek}
N(ε)
i=1 are also

independent;

• (c) The random variable qk
s (a) is independent of every Ej for j ̸= k.

Since the characteristic function of {qk
s (a)}N(ε)

k=1 is the product of their characteristic functions,
these random variables are independent given B(s, ε).

Now we can use Hoeffding’s inequality:

P
[∣∣∣Qε

s(a)−E
[
Q

ε
s(a)

∣∣∣B(s, ε)
]∣∣∣ ≥ (1−√γ)ζ(ε)

∣∣∣B(s, ε)
]

= P

∣∣∣∣∣∣ 1
N(ε)

N(ε)∑
k=1

qk
s (a)−E

[
qk

s (a)
∣∣∣B(s, ε)

]∣∣∣∣∣∣ ≥ (1−√γ)ζ(ε)
∣∣∣B(s, ε)

≤ 2 exp

(
−
N(ε)(1−√γ)2ζ(ε)2

2C2
γ

)

≤ δ′

A

And (II) is bounded by using the induction hypothesis (i):∣∣∣E [qk
s (a)

∣∣∣B(s, ε)
]
−Qs(a)

∣∣∣
(a)= γ

∣∣∣∣∣E
[
sampleV

(
Z(k)

s,a ,
ζ(ε)
√
γ

) ∣∣∣B(s, ε)
]
−E

[
V (Z(k)

s,a)
∣∣∣B(s, ε)

]∣∣∣∣∣
(b)= γ

∣∣∣∣∣E
[
sampleV

(
Z(k)

s,a ,
ζ(ε)
√
γ

) ∣∣∣G (Z(k)
s,a ,

ζ(ε)
√
γ

)]
−E

[
V (Z(k)

s,a)
∣∣∣G (Z(k)

s,a ,
ζ(ε)
√
γ

)]∣∣∣∣∣
(c)= γ

∣∣∣∣∣E
[
E
[
sampleV

(
Z(k)

s,a ,
ζ(ε)
√
γ

) ∣∣∣Z(k)
s,a ,G

(
Z(k)

s,a ,
ζ(ε)
√
γ

)]
− V (Z(k)

s,a)
∣∣∣G (Z(k)

s,a ,
ζ(ε)
√
γ

)]∣∣∣∣∣
(d)
≤ γ

ζ(ε)
√
γ

= √γζ(ε)

which is justified by the following:

• (a) E
[
R

(k)
s,a

∣∣∣B(s, ε)
]

= E
[
R

(k)
s,a

]
, since the reward depends only on s, a;

• (b) The term
(
Z

(k)
s,a ,

ζ(ε)√
γ

)
depends on B(s, ε) only through G

(
Z

(k)
s,a ,

ζ(ε)√
γ

)
;

• (c) Law of total expectation;

• (d) Consequence of induction hypothesis (i).

Putting together the bounds for (I) and (II) and doing an union bound over all actions, we
obtain:

118

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

P
[
∥Q̂ε

s −Qs∥∞ ≥ ζ(ε)
∣∣∣B(s, ε)

]
≤ δ′.

We can now give a lower bound to the probability of the event G(s, ε). Let

E =
{
∥Q̂ε

s −Qs∥∞ < ζ(ε)
}

We have:

P [G(s, ε)] ≥ P [E ∩ B(s, ε)] = P
[
E
∣∣∣B(s, ε)

]
P [B(s, ε)]

=
(
1−P

[
E∁
∣∣∣B(s, ε)

])
P [B(s, ε)] ≥ P [B(s, ε)]− δ′ ≥ 1− δ′nsampleV(ε, δ′)

since

P [B(s, ε)] = 1−P
[
B(s, ε)∁

]
= 1−P

 ⋃
(z,e)∈params(s,ε)

G(z, e)∁

≥ 1−
∑

(z,e)∈params(s,ε)
P
[
G(z, e)∁

]
≥ 1− δ′ ∑

(z,e)∈params(s,ε)
nsampleV(e, δ′) by induction hypothesis (iii)

= 1− δ′(nsampleV(ε, δ′)− 1)

This proves the point (iii) of Lemma A.3.

Now, let’s prove (i), which bounds the bias of the output of sampleV. For any event E , we write

EE [·] := E [·|E] .

Case 1 We start with case 1, κ ≤ ε < 1+M
1−γ , where ζ(ε) = ε and V̂ε(s) = F (Q̂ε

s). We have:
∣∣∣EG(s,ε)

[
V̂ε(s)

]
− V (s)

∣∣∣ =
∣∣∣EG(s,ε)

[
F (Q̂ε

s)− F (Qs)
]∣∣∣

≤ EG(s,ε)
[
|F (Q̂ε

s)− F (Qs)|
]
≤ EG(s,ε)

[
∥Q̂ε

s(a)−Qs(a)∥∞
]
≤ ζ(ε) = ε

which proves (i) in case 1.

Case 2 Consider now the case 2, ε < κ, where ζ(ε) =
√
κε. Let Â be the action following the

distribution ∇F
(

Q̂ε
s

)∥∥∇F
(

Q̂ε
s

)∥∥
1

, and let the rewardR
s,Â

and the state Z
s,Â

be the random variables asso-

ciated to the call to the generativemodel with parameters (s, Â). Let V̂ = sampleV
(
Z

s,Â
, ε/
√
γ
)
.

119

Complements on Chapter 2

The output in this case is given by

V̂ε(s) = F
(
Q̂ε

s

)
− (Q̂ε

s)T∇F
(
Q̂ε

s

)
+ (R+ γV̂)

∥∥∥∇F (Q̂ε
s

)∥∥∥
1

Let

Qs(Â) = EG(s,ε)
[
R

s,Â
+ γV (Z

s,Â
)|Â, Q̂ε

s

]
= EG(s,ε)

[
R

s,Â
+ γV (Z

s,Â
)|Â
]

and let

Ṽ (s) = EG(s,ε)
[
F
(
Q̂ε

s

)
− (Q̂ε

s)T∇F
(
Q̂ε

s

)
+Qs(Â)

∥∥∥∇F (Q̂ε
s

)∥∥∥
1

]
.

We have∣∣∣EG(s,ε)
[
V̂ε(s)

]
− Ṽ (s)

∣∣∣
(a)= γ

∣∣∣∣∣EG(s,ε)

[
EG(s,ε)

[
sampleV

(
Z

s,Â
,
ε
√
γ

)
− V (Z

s,Â
)
∣∣∣Â, Q̂ε

s, Zs,Â

] ∥∥∥∇F (Q̂ε
s

)∥∥∥
1

]∣∣∣∣∣
(b)= γ

∣∣∣∣∣EG(s,ε)

[(
EG(s,ε)

[
sampleV

(
Z

s,Â
,
ε
√
γ

) ∣∣∣Â, Q̂ε
s, Zs,Â

]
− V (Z

s,Â
)
)]∥∥∥∇F (Q̂ε

s

)∥∥∥
1

∣∣∣∣∣
(c)
≤ γEG(s,ε)

[∣∣∣∣∣EG(s,ε)

[
sampleV

(
Z

s,Â
,
ε
√
γ

) ∣∣∣Â, Q̂ε
s, Zs,Â

]
− V (Z

s,Â
)
∣∣∣∣∣
]

(d)= γEG(s,ε)

[∣∣∣∣∣EG(Z
s,Â

,ε/
√

γ)

[
sampleV

(
Z

s,Â
,
ε
√
γ

) ∣∣∣Z
s,Â

]
− V (Z

s,Â
)
∣∣∣∣∣
]

(e)
≤ γ

ε
√
γ

= √γε.

which is justified by the following points:

• (a) The reward depends only on s, a and law of total expectation;

• (b) V (Z
s,Â

) is a function of Z
s,Â

and no other random variable;

• (c) Jensen’s inequality and the fact that ∥∇F
(
Q̂ε

s

)
∥1 ≤ 1;

• (d)GivenZ
s,Â

, the term sampleV
(
Z

s,Â
, ε√

γ

)
depends onG(s, ε) only throughG(Z

s,Â
, ε√

γ);

• (e) Induction hypothesis (i).

Now, EG(s,ε)
[
Qs(Â)∥∇F (Q̂ε

s)∥1
]
can be written as

EG(s,ε)
[
Qs(Â)∥∇F (Q̂ε

s)∥1
]

= EG(s,ε)
[
EG(s,ε)

[
Qs(Â)

∣∣∣Q̂ε
s

]
∥∇F (Q̂ε

s)∥1
]

= EG(s,ε)
[
QT

s∇F (Q̂ε
s)
]

120

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

so that Ṽ (s) is given by

Ṽ (s) = EG(s,ε)
[
F (Q̂ε

s) + (Qs − Q̂ε
s)T∇F (Q̂ε

s)
]
.

Finally, we bound the difference between Ṽ (s) and V (s):

|Ṽ (s)− V (s)| ≤ EG(s,ε)
[∣∣∣F (Q̂ε

s

)
+ (Qs − Q̂ε

s)T∇F
(
Q̂ε

s

)
− V (s)

∣∣∣]
≤ LEG(s,ε)

[
∥Qs − Q̂ε

s∥22
] (a)
≤ ALEG(s,ε)

[
∥Qs − Q̂ε

s∥2∞
]
≤ ALζ(ε)2

= ALκε = (1−√γ)ε

by using the fact that we are on G(s, ε) and (a) uses the fact that for all x ∈ RA, ∥x∥22 ≤ A ∥x∥2∞.

We now conclude the proof of (i) for case 2:∣∣∣EG(s,ε)
[
V̂ε(s)

]
− V (s)

∣∣∣ ≤ ∣∣∣EG(s,ε)
[
V̂ε(s)

]
− Ṽ (s)

∣∣∣+ ∣∣∣Ṽ (s)− V (s)
∣∣∣

≤ √γε+ (1−√γ)ε = ε.

Finally, let’s prove (ii), stating that V̂ε(s) is bounded by Cγ on the event G(s, ε).

Case 1 In this case, V̂ε(s) = FQ̂ε
s)with ∥Q̂ε

s∥∞ ≤ (1+M)/(1−γ), since each component of Q̂ε
s is

clipped and lie in the interval
[
0, 1+M

1−γ

]
. The assumptions on F imply that

∣∣∣V̂ε(s)
∣∣∣ ≤ 1+M

1−γ ≤ Cγ .

Case 2. In this case, we have:

|V̂ε(s)| ≤
∣∣∣F (Q̂ε

s)− (Q̂ε
s)T∇F (Q̂ε

s)
∣∣∣+ |R+ γV̂ |∥∇F (Q̂ε

s)∥1

≤ 2∥Q̂ε
s∥∞ +M + 1 + γCγ ≤

2(1 +M)
1− γ +M + 1 + γCγ ≤ Cγ ,

since |V̂ | ≤ Cγ by induction hypothesis (ii).

This proves (ii) for case 2:

P
[
|V̂ (s)| ≤ Cγ

∣∣∣G(s, ε)
]

= 1

and concludes the proof of Lemma A.3.

Proof of Theorem 2.7 Now, we can prove Theorem 2.7 using Lemma A.3.

121

Complements on Chapter 2

Let Q̂s = estimateQ(s, ε). We have V̂ (s) = Fs(Q̂s). As in the proof of Lemma A.3, let the
reward R(k)

s,a and state Z(k)
s,a be the random variables associated to the k-th call to the generative

model used to compute Q̂s(a) in estimateQ, for k ∈ {1, · · · , N(ε)}.

We have:

Q̂s(a) = 1
N(ε)

N(ε)∑
k=1

R(k)
s,a + γsampleV

(
Z(k)

s,a , ε/
√
γ
)
.

Consider the event E defined as

E :=
N(ε)⋂
k=1
G
(
Z(k)

s,a ,
ε
√
γ

)
.

By the same arguments as in the proof of Lemma A.3,

• In E , we have ∥Q̂s −Qs∥∞ ≤ ε;

• P [E] ≥ 1− δ′N(ε)nsampleV(ε, δ′) = 1− δ′n (ε, δ′).

Hence,

P
[
∀a ∈ A, |Q̂s(a)−Qs(a)| > ε

]
≤ δ′n

(
ε, δ′) .

To conclude the proof, for every ε > 0 and every δ > 0, we need to be able to find a value of δ′

such that δ′n (ε, δ′) ≤ δ. That is, given ε and δ, we need to find δ′ such that

δ′ c1
ε4 log

(
c2
δ′

)[
c3 log

(
c4
ε

)]log2(c5(log(c2
δ′)))

≤ δ.

Such value exists, since the term on the LHS tends to 0 as δ′ → 0, and it depends on ε. We will
show that this dependence is polynomial when ε→ 0.

Let δ′ = ε5. There exists a value ε̃ that depends on δ such that

∀ε ≤ ε̃, ε5 c1
ε4 log

(
c2
ε5

)[
c3 log

(
c4
ε

)]log2
(

c5
(

log
(

c2
ε5
)))
≤ δ.

since the term on the LHS tends to 0 as ε→ 0, as a consequence of Lemma A.5.

Putting it all together, we can choose δ′ as follows:

δ′ =

δ̃ such that δ̃ c1
ε4 log

(
c2
δ̃

) [
c3 log

(c4
ε

)]log2

(
c5

(
log
(

c2
δ̃

)))
≤ δ, if ε > ε̃,

ε5, if ε ≤ ε̃

122

A.3 Technical Lemmas

which is δ′ = O
(
ε5).

Lemma A.6 implies that, for this choice of δ′, the sample complexity is of order O (1/ε4+c
) for

any c > 0.

A.3 Technical Lemmas

Lemma A.4. Let a, b, c be constants in [1,+∞[and δ be a constant in]0, 1]. Let

x∗ = min {x ≥ 1 : exp(−ax)(bx)c ≤ δ} .

Then,

x∗ ≤ 1
a

(
log 1

δ
+ c log

(
4b
a

log 1
δ

+ b2c2

a2

))
.

Proof. Let x̄ := 4
a log 1

δ + bc2

a2 . For any x ≥ 4
a log 1

δ + bc2

a2 , we have

ax ≥ log 1
δ

+ c
√
bx ≥ log 1

δ
+ c log(bx) = log

((bx)c

δ

)
and exp(−ax)(bx)c ≤ δ. This implies that exp(−ax̄)(bx̄)c ≤ δ and x∗ ≤ x̄.

Now, let

x′ := 1
a

(
log 1

δ
+ c log(bx̄)

)
= 1
a

(
log 1

δ
+ c log

(
4b
a

log 1
δ

+ b2c2

a2

))

such that exp(−ax′)(bx̄)c ≤ δ.

Now, we claim that x∗ ≤ x′. If x′ > x̄, then we have immediately x∗ ≤ x̄ < x′. Otherwise, if
x′ ≤ x̄:

exp(−ax′)(bx′)c ≤ exp(−ax′)(bx̄)c ≤ δ

which implies that x∗ ≤ x′ by the definition of x∗.

Lemma A.5. ∀a, b, c > 0 limx→∞
1
xc exp

(
a[log log(xb)]2

)
= 0.

Proof. We have

1
xc

exp
(
a[log log(xb)]2

)
= exp

(
a[log log(xb)]2 − c log x

)
= exp

(
a[log u]2 − c

b
u

)
, by setting u = log(xb)

123

Complements on Chapter 2

And, for any k > 0, we have limu→∞ log2 u− ku = −∞, which allows us to conclude.

For the following results, we denote by n (ε, δ′) the number of calls to the generative model
before SmoothCruiser terminates, when called with parameters (ε, δ′).

Lemma A.6. If we set δ′ = δ′(ε) = ε5, we have:

n(ε, δ′(ε)) = O
(1
ε4+c

)
, ∀c > 0

Proof. We have, from Lemma A.2,

nsampleV(ε, δ′(ε)) ≤ η1

[
log 1

γ

(
ε̄/γ

ε

)]η2(ε5) 1
ε2 =

[
log 1

γ

(
ε̄/γ

ε

)]log2
(

k log
(

2A
ε5
))

︸ ︷︷ ︸
(A)

1
ε2

where k is a constant that does not depend on ε. The term (A) can be rewritten as:

[
log 1

γ

(
ε̄/γ

ε

)]log2
(

k log
(

2A
ε5
))

=
[
c1 log

(
c2
ε

)]c3 log
[
k log

(
c4
ε3
)]

= exp
{
c3 log

[
k log

(
c4
ε5

)]
log

(
c1 log

(
c2
ε

))}

which can be shown to be O
(

1
εc

)
for any c > 0 by applying Lemma A.5 after some algebraic

manipulations.

Hence,

nsampleV(ε, δ′(ε)) = 1
ε2O

(1
εc

)
= O

(1
ε2+c

)
, ∀c > 0.

The fact that n (ε, δ′) = N(ε)nsampleV(ε, δ′), where N(ε) = Õ
(
1/ε2), concludes the proof.

Corollary A.7. If we set δ′ = δ′(ε) = ε5, we have:

lim
ε→0

δ′(ε)n(ε, δ′(ε)) = 0

Proof. It is an immediate consequence of Lemma A.6 by taking c ∈]0, 1[.

124

Appendix B

Complements on Chapter 3

B.1 Change of Distribution: Proof of Lemma 3.6

Let
bt

h := (s1
1, a

1
1, . . . , s

1
H , . . . , s

t
1, a

t
1, . . . , s

t
h)

be a sequence of state actions up to stage h of episode t. The pushforward measure of PM

under Bτ
H is given by

∀T, ∀bT
H , PBτ

H
M

[
bT

H

]
= PBT

H
M

[
τ = T, bT

H

]
= PM

[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M

[
bT

H

]
.

If PM′

[
τ = T

∣∣∣BT
H = bT

H

]
> 0 and PBT

H
M′

[
bT

H

]
> 0, we have

PBτ
H

M

[
bT

H

]
PBτ

H
M′
[
bT

H

] =
PM

[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M

[
bT

H

]
PM′

[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M′
[
bT

H

] =
PBT

H
M

[
bT

H

]
PBT

H
M′
[
bT

H

]
where we use the fact that PM

[
τ = T

∣∣∣BT
H = bT

H

]
= PM′

[
τ = T

∣∣∣BT
H = bT

H

]
since the event

{τ = T} depends only on BT
H . This implies that

PBτ
H

M

[
bT

H

]
log

PBτ
H

M

[
bT

H

]
PBτ

H
M′
[
bT

H

]
 = PM

[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M

[
bT

H

]
log

PBT
H

M

[
bT

H

]
PBT

H
M′
[
bT

H

]

under the convention that 0 log(0/0) = 0. Hence,

KL
(
PBτ

H
M ,PBτ

H
M′

)
=

∞∑
T =1

∑
bT

H

PBτ
H

M

[
bT

H

]
log

PBτ
H

M

[
bT

H

]
PBτ

H
M′
[
bT

H

]

125

Complements on Chapter 3

=
∞∑

T =1

∑
bT

H

PM
[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M

[
bT

H

]
log

PBT
H

M

[
bT

H

]
PBT

H
M′
[
bT

H

]

=
∞∑

T =1

∑
bT

H

PM
[
τ = T

∣∣∣BT
H = bT

H

]
PBT

H
M

[
bT

H

] T∑
t=1

H−1∑
h=1

log
(
ph(st

h+1|st
h, a

t
h)

p′
h(st

h+1|st
h, a

t
h)

)

=
∞∑

T =1
EM

[
1 {τ = T}

T∑
t=1

H−1∑
h=1

log
(
ph(St

h+1|St
h, A

t
h)

p′
h(St

h+1|St
h, A

t
h)

)]

= EM

[
τ∑

t=1

H−1∑
h=1

log
(
ph(St

h+1|St
h, A

t
h)

p′
h(St

h+1|St
h, A

t
h)

)]
.

Now, we apply Lemma B.3 by takingXt =
∑H−1

h=1 log
(

ph(St
h+1|St

h,At
h)

p′
h

(St
h+1|St

h
,At

h
)

)
andFt = F t

H . Notice that
Xt is bounded almost surely, since when ph(St

h+1|St
h, A

t
h) = p′

h(St
h+1|St

h, A
t
h) = 0, the trajectory

containing (St
h, A

t
h, S

t
h+1) has zero probability. Lemma B.3 and the Markov property give us

KL
(
PBτ

H
M ,PBτ

H
M′

)
= EM

[
τ∑

t=1

H−1∑
h=1

EM

[
log

(
ph(St

h+1|St
h, A

t
h)

p′
h(St

h+1|St
h, A

t
h)

) ∣∣∣St
h, A

t
h

]]

= EM

[
τ∑

t=1

H−1∑
h=1

KL
(
ph(·|St

h, A
t
h), p′

h(·|St
h, A

t
h)
)]

=
∑
s,a,h

EM

[
N τ

h,s,a

]
KL

(
ph(·|s, a), p′

h(·|s, a)
)
.

B.2 PAC-MDP Lower Bound: Proof of Corollary 3.10

Recall that NPAC
ε =

∑∞
t=1 1 {ρ∗ − ρπt > ε} and let

T (ε, δ) := 1
6912

H3SA

ε2 log
(1
δ

)
− 1.

We proceed by contradiction and assume that the claim in Corollary 3.10 is false. Then we have

for all MDPM, Pπ,M
[
NPAC

ε ≤ T (ε, δ)
]
≥ 1− δ, (B.1)

that is, the algorithm satisfies Definition 3.3 with FPAC(S,A,H, 1/ε, log(1/δ)) = T (ε, δ). In
particular, (B.1) holds for any MDP in the class CH,ε̃ used to prove Theorem 3.9, for which
H = H/3 and ε̃ = 2ε/(H −H − d).

This allows us to build from π a best-policy identification algorithm that outputs an ε-optimal
policy with probability larger than 1− δ for every MDP in CH/3,ε̃. We proceed as follows: the
sampling rule is that of the algorithm π while the stopping rule is deterministic and set to
τ := 2T (ε, δ) + 1. LettingNt(π) be the number of times that the algorithm plays a deterministic
policy π up to episode t, we let the recommendation rule be π̂τ = argmaxπ Nτ (π).

126

B.3 Technical Lemmas for Lower-Bound Proofs

For everyM ∈ CH/3,ε̃, the event
{
NPAC

ε ≤ T (ε, δ)
}
implies π̂τ = π∗. This is trivial forM0,

where any policy is optimal, and this holds for any otherM(h∗,ℓ∗a∗) ∈ CH/3,ε̃ since there is
a unique optimal policy π∗ and it satisfies (ρπ∗ − ρπ) = 2ε > ε inM(h∗,ℓ∗a∗) for any other
deterministic policy π. Hence, if π̂τ ̸= π∗, the number of mistakes NPAC

ε would be larger than
T (ε, δ). Thus we proved that the BPI algorithm that we defined satisfies

∀M ∈ CH/3,ε̃, Pπ,M [π̂τ = π∗] ≥ Pπ,M
[
NPAC

ε ≤ T (ε, δ)
]
≥ 1− δ.

Under these conditions, we established in the proof of Theorem 3.9 that, forM0 ∈ CH/3,ε̃,

τ = EM0 [τ] ≥ 1
3456

H3SA

ε2 log
(1
δ

)
which yields

2T (ε, δ) + 1 ≥ 1
3456

H3SA

ε2 log
(1
δ

)
and contradicts the definition of T (ε, δ).

B.3 Technical Lemmas for Lower-Bound Proofs

Lemma B.1. If ε ∈ [0, 1/4], then kl(1/2, 1/2 + ε) ≤ 4ε2.

Proof. Using the inequality − log(1− x) ≤ 1/(1− x)− 1 for any 0 < x < 1, we obtain

kl(1/2, 1/2 + ε) = −1
2 log(1− 4ε2) ≤ 1

2

(1
1− 4ε2 − 1

)
= 2ε2

1− 4ε2 .

If ε ≤ 1/4, then 1− 4ε2 ≥ 3/4 > 1/2, which implies the result.

Lemma B.2. For any p, q ∈ [0, 1],

kl(p, q) ≥ (1− p) log
(1

1− q

)
− log(2).

Proof. If follows from the definition of kl(p, q) and the fact that the entropyH(p) := p log(1/p)+
(1− p) log(1/(1− p)) satisfies H(p) ≤ log(2):

kl(p, q) = p log
(
p

q

)
+ (1− p) log

(1− p
1− q

)
= (1− p) log

(1
1− q

)
+ (1− p) log

(1
1− q

)
+ p log

(1
q

)
−H(p)

≥ (1− p) log
(1

1− q

)
− log(2).

127

Complements on Chapter 3

Lemma B.3. Let (Xt)t≥1 be a stochastic process adapted to the filtration (Ft)t≥1. Let τ be a stopping
time with respect to (Ft)t≥1 such that τ <∞ with probability 1. If there exists a constant c such that
supt |Xt| ≤ c almost surely, then

E
[

τ∑
t=1

Xt

]
= E

[
τ∑

t=1
E [Xt|Ft−1]

]
.

Proof. LetMn :=
∑n

t=1 (Xt −E [Xt|Ft−1]). Then,Mn is a martingale and, by Doob’s optional
stopping theorem, E [Mτ] = E [M0] = 0.

Lemma B.4. Let L be the number of leaves in a balanced A-ary tree with S nodes and A ≥ 2. Then,
L ≥ S/4.

Proof. Let d be the depth of the tree. There exists an integer R such that 0 < R ≤ Ad such that

S = Ad − 1
A− 1 +R.

The number of leaves is given by L = R+Ad−1−
⌈

R
A

⌉
. We consider two cases: either Ad−1

A−1 ≤
S
2

or Ad−1
A−1 > S

2 . If Ad−1
A−1 ≤

S
2 , we have R ≥ S/2 which implies L ≥ S/2 > S/4. If Ad−1

A−1 > S
2 , we

have L ≥ Ad−1 > 1
A + S

2

(
1− 1

A

)
≥ S/4.

B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI)

B.4.1 Concentration Inequalities

Lemma B.5. Let (Xt)t be a stochastic process adapted to the filtration (Ft)t for t ∈ N such that, for a
given σ > 0, we have E [exp(λXt)|Ft−1] ≤ exp(λ2σ2/2) almost surely for all λ ∈ R. Then,

P

∃n : 1
n

n∑
t=1

Xt ≥

√
2σ2

n
log

(
n(n+ 1)

δ

) ≤ δ
Proof. For a fixed n, we have

P

 1
n

n∑
t=1

Xt ≥

√
2σ2

n
log

(
n(n+ 1)

δ

) ≤ δ

n(n+ 1)

by theAzuma-Hoeffding inequality. Aunion bound overn and the fact that∑∞
n=1 1/(n(n+1)) =

1 gives the result.

128

B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI)

Lemma B.6 (Lemma 3 by [Dom+21d]). Let (Yt)t∈N∗ and (wt)t∈N∗ be two sequences of random
variables adapted to a filtration (Ft)t∈N. Assume that (i) wt ∈ [0, 1]; (ii) wt is Ft−1-measurable;
(iii) |Yt| ≤ b almost surely; and (iv) E [Yt|Ft−1] = 0. Let

St :=
t∑

i=1
wiYi, Vt :=

t∑
i=1

w2
i ·E

[
Y 2

i |Fi−1
]
, and Wt :=

t∑
i=1

wi

and let g(x) := (x+ 1) log(x+ 1)− x. For all δ > 0, we have

P

∃t ≥ 1, |St| ≤

√
2Vt log

(4e(2t+ 1)
δ

)
+ 3b log

(4e(2t+ 1)
δ

) ≥ 1− δ.

B.4.2 Proof of Lemma 3.15

To simplify the notations, let f := V ∗
h+1. Since the rewards are in [0, 1], V ∗

h+1(s) ∈ [0, H] for any
s. We have

(ph − p̂t
h)V ∗

h+1(s, a) = 1
nt

h(s, a)

t−1∑
i=1

1

{
(si

h, a
i
h) = (s, a)

}(
phf(s, a)− f(si

h+1)
)
.

Consider the stopping times (τ j
h(s, a))j defined as

τ1
h(s, a) := min

{
k : (s, a) = (sk

h, a
k
h)
}
,

τ j
h(s, a) := min

{
k > τ j−1

h (s, a) : (s, a) = (sk
h, a

k
h)
}
, for j > 1, (B.2)

such that τ j
h(s, a) represents the episode where (s, a) was visited for the j-th time at stage h.

Let
W i

h(s, a, f) := 1

{
(si

h, a
i
h) = (s, a)

}(
phf(s, a)− f(si

h+1)
)
,

that satisfies |W i
h(s, a, f)| ≤ H almost surely and E

[
W i

h(s, a, f)|F i
h

]
= 0. Now, let

W
j
h(s, a, f) = W

τ j
h

h (s, a, f) and F j
h = Fτ j

h
h for j ≥ 1. (B.3)

By Lemma B.7, we have E
[
W

j
h(s, a, f)|F j

h

]
= 0. Notice that

(ph − p̂t
h)V ∗

h+1(s, a) = 1
nt

h(s, a)

nt
h(s,a)∑
j=1

W
j
h(s, a, f),

129

Complements on Chapter 3

which implies, by Lemma B.5, that

P

∃t ≥ 1, (ph − p̂t
h)V ∗

h+1(s, a) ≥

√√√√ 2H2

nt
h(s, a) log

(
6HSAnt

h(s, a)(nt
h(s, a) + 1)

δ

) ≤ δ

3HSA ·

The definition of the bonus bt
h(s, a) in Equation (3.17) and a union bound over (h, s, a) ∈

[H]× S ×A concludes the proof.

B.4.3 Proof of Lemma 3.16

Consider the sequence of random variables (W j
h(s, a, f))j and the filtration (F j

h)j defined
in Equation (B.3) in the proof of Lemma 3.15. We have |W i

h(s, a, f)| ≤ H almost surely,
E
[
W

i
h(s, a, f)|F i

h

]
= 0, and

(ph − p̂t
h)f(s, a) = 1

nt
h(s, a)

nt
h(s,a)∑
j=1

W
j
h(s, a, f).

Let τ = τ j
h(s, a), as defined in Equation (B.2), representing the episode where (s, a) was visited

for the j-time at stage h. The conditional variance ofW j
h(s, a, f) givenF i

h is bounded as follows:

E
[
W

j
h(s, a, f)2|F j

h

]
= E

[(
phf(s, a)− f(sτ

h+1)
)2 |F j

h

]
≤ E

[
f(sτ

h+1)2|F j
h

]
≤ ∥f∥∞E

[
f(xτ

h+1)|F j
h

]
≤ Hphf(s, a).

For fixed (t, s, a, h, f), Lemma B.6 implies

P

1
t

t∑
j=1

W
j
h(s, a, f) ≥

√
2Hphf(s, a)β(t, δ)

t
+ 3Hβ(t, δ)

t

 ≤ δ

t(t+ 1) .

where β(t, δ) := log
(
66t2(t+ 1)/δ

), which implies

P

1
t

t∑
j=1

W
j
h(s, a, f) ≥ 1

H
phf(s, a) + (H2/2 + 3H)β(t, δ)

t

 ≤ δ

t(t+ 1) . (B.4)

since 2√xy ≤ (x+ y) for any x, y ≥ 0.

Now, we extend the inequality above so that it holds for any f ∈ V and any t ≥ 1. In order to
do so, let C1/t :=

{
f1, . . . , f|C1/t|

}
be a 1/t-covering of (V, ∥ · ∥∞) such that |C1/t| = (Ht)S and,

for any f ∈ V , there exists a fi ∈ C1/t satisfying ∥f − fi∥∞ ≤ 1/t. Let

β̃(t, δ) := β

(
t,

δ

3HSA(Ht)S

)
·

130

B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI)

We have

P

∃t ≥ 1, ∃f ∈ V, 1
t

t∑
j=1

W
j
h(s, a, f) ≥ 1

H
phf(s, a) + (H2/2 + 3H)β̃(t, δ)

t
+ 3
t

≤ P

∃t ≥ 1,∃f ∈ C1/t,
1
t

t∑
j=1

W
j
h(s, a, f) ≥ 1

H
phf(s, a) + (H2/2 + 3H)β̃(t, δ)

t

≤

∞∑
t=1

∑
f∈C1/t

P

1
t

t∑
j=1

W
j
h(s, a, f) ≥ 1

H
phf(s, a) + (H2/2 + 3H)β̃(t, δ)

t

≤

∞∑
t=1

∑
f∈C1/t

δ

3HSA|C1/t|t(t+ 1) = δ

3HSA, using Equation (B.4).

A union bound over (h, s, a) ∈ [H]× S ×A concludes the proof.

B.4.4 Technical Lemmas

Lemma B.7. Let (Xt)t be a stochastic process adapted to the filtration (Ft)t such that E [Xt|Ft] = 0
almost surely for all t. Let τ be a stopping time. Then, if Xt is bounded almost surely for all t and if
Xτ1 {τ =∞} = 0, we have E [Xτ |Fτ] = 0 almost surely.

Proof. Let A ∈ Fτ . Then,

E [1AXτ] = E [1AE [Xτ |Fτ]] = E
[
1A

∞∑
t=1

Xt1 {τ = t}
]

=
∞∑

t=1
E [1AXt1 {τ = t}] by the dominated convergence theorem

=
∞∑

t=1
E
[
1A∩{τ=t}E [Xt|Ft]

]
since A ∩ {τ = t} ∈ Ft

= 0.

Notice that, since Xt ≤M for all t for someM > 0, we have

E
[

n∑
t=1

1A∩{τ=t}Xt

]
≤MP [A ∩ {τ ≤ n}] ≤M,

which justifies the use of the dominated convergence theorem.

131

Appendix C

Complements on Chapter 4

C.1 Definitions

Definition C.1 (exploration bonuses). The exploration bonus at (s, a) at time (t, h) is defined as

bt
h(s, a) := rbt

h(s, a) + pbt
h(s, a), where

rbt
h(s, a) :=

√
2ϑr

1(T, δ/6)
Ct

h(s, a) + β

Ct
h(s, a) + br(T, δ/6)σ, and

pbt
h(s, a) :=

√
2H2ϑp

1(T, δ/6)
Ct

h(s, a) + βH

Ct
h(s, a) + bp(T, δ/6)σ

where

ϑr
1(t, δ) = Õ (d1) = log

(
N
(
σ2/T,S ×A, ρ

)√
1 + t/β

δ

)

br(t, δ) = Õ
(
L+

√
d1
)

=
(

C2
2β3/2

√
2ϑr

1(t, δ) + 4C2
β

)
+ 2LrL

(
1 +

√
log+(C1t/β)

)
ϑp

1(t, δ) = Õ (d1) = log
(
HN

(
σ2/HT,S ×A, ρ

)√
1 + t/β

δ

)

bp(t, δ) = Õ
(
L+

√
d1
)

=
(

C2
2β3/2

√
2ϑp

1(t, δ) + 4C2
β

)
+ 2LpL

(
1 +

√
log+(C1t/β)

)
.

and where d1 is the covering dimension of (S ×A, ρ) and, for any z ∈ R, log+(z) = log(z + e).

That is, we define the constants κ1, κ2, and κ3 in Equation (4.3) as:

κ1 :=
√

2ϑr
1(T, δ/8)/H +

√
ϑp

1(T, δ/6); κ2 := 1 + 1
β

; κ3 := (br(T, δ/6) + bp(T, δ/6))σ.

133

Complements on Chapter 4

C.2 Proof of Theorem 4.7

Notation We denote by F t
h the σ-algebra generated by all the state-action pairs observed up

to time (t, h), that is, the h-th step of the t-th episode. For a metric space U , ρ, we denote by
N (σ,U , ρ) is σ-covering number. We define log+(z) := log(z + e) for any z ≥ 0.

C.2.1 Concentration

In this section, we provide the confidence intervals that will be used to prove the regret bound
of Kernel-UCBVI. The main concentration results are presented in Lemma C.7, which defines
an event G where all the confidence intervals hold, and we show that P [G] ≥ 1− δ/2.

Concentration inequalities for weighted sums

We reproduce below the concentration inequalities for weighted sums that we proved in
[Dom+21d].

Lemma C.2 (Hoeffding-type inequality [Dom+21d]). Consider the sequences of random variables
(wt)t∈N∗ and (Yt)t∈N∗ adapted to a filtration (Ft)t∈N. Assume that, for all t ≥ 1, wt is Ft−1 measurable
and E [exp(λYt)|Ft−1] ≤ exp(λ2c2/2) for all λ > 0. Let St :=

∑t
s=1wsYs and Vt :=

∑t
s=1w

2
s , and

assume ws ≤ 1 almost surely for all s. Then,for any β > 0, with probability at least 1− δ, for all t ≥ 1,

|St|∑t
s=1ws + β

≤

√√√√2c2 log
(√

1 + t/β

δ

)
1∑t

s=1ws + β
.

Proof. See Lemma 2 of [Dom+21d].

Lemma C.3 (Bernstein-type inequality [Dom+21d]). Consider the sequences of random variables
(wt)t∈N∗ and (Yt)t∈N∗ adapted to a filtration (Ft)t∈N. Let

St :=
t∑

s=1
wsYs, Vt :=

t∑
s=1

w2
sE
[
Y 2

s

∣∣∣Fs−1
]

and Wt :=
t∑

s=1
ws ,

Assume that, for all t ≥ 1, (i) wt is Ft−1 measurable, (ii) E [Yt|Ft−1] = 0, (iii) wt ∈ [0, 1] almost
surely, (iv) there exists b > 0 such that |Yt| ≤ b almost surely. Then, for all β > 0, with probability at
least 1− δ, for all t ≥ 1,

|St|
β +

∑t
s=1ws

≤

√√√√√2 log
(
4e(2t+ 1)/δ

) Vt + b2(
β +

∑t
s=1ws

)2 + 2b
3

log
(
4e(2t+ 1)/δ

)
β +

∑t
s=1ws

.

Proof. See Lemma 3 of [Dom+21d].

134

C.2 Proof of Theorem 4.7

Hoeffding-type concentration inequalities

Lemma C.4. With probability at least 1− δ, for all (s, a, t, h) ∈ S ×A× [T]× [H], we have

∣∣∣(p̂t
h − ph)V ∗

h+1(s, a)
∣∣∣ ≤ √2H2ϑp

1(t, δ)
Ct

h(s, a) + βH

Ct
h(s, a) + bp(t, δ)σ

where

ϑp
1(t, δ) = Õ (d1) = log

(
HTN

(
σ2/(HT),S ×A, ρ

)√
1 + t/β

δ

)

bp(t, δ) = Õ
(
L+

√
d1
)

=
(

C2
2β3/2

√
2ϑp

1(k, δ) + 4C2
β

)
+ 2LpL

(
1 +

√
log(C1t/β)

)

and where d1 is the covering dimension of (S ×A, ρ).

Proof. Let V = V ∗
h+1. For fixed (s, a, h), we have

|(p̂t
h − ph)V ∗

h+1(s, a)|

=
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(
V (si

h+1)−
∫

S
V (y)dph(y|s, a)

)
− β

Ct
h(s, a)

∫
S
V (y)dph(y|s, a)

∣∣∣∣∣
≤
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(
V (si

h+1)−
∫

S
V (y)dph(y|si

h, a
i
h)
)∣∣∣∣∣︸ ︷︷ ︸

➀

+
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(∫
S
V (y)dph(y|si

h, a
i
h)−

∫
S
V (y)dph(y|s, a)

)∣∣∣∣∣︸ ︷︷ ︸
➁

+ βH

Ct
h(s, a) ·

Bounding ➀ (martingale term) Let Yi = V (si
h+1)− phV (si

h, a
i
h). Since (Yi)i is a martingale

difference sequence with respect to (F i
h)i, we obtain from Lemma C.2 that, for a fixed tuple

(s, a, t, h),

➀ =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)Yi

∣∣∣∣∣ ≤
√√√√2H2 log

(√
1 + t/β

δ

)
1

Ct
h(s, a)

with probability at least 1− δ.

By Lemma C.21, the functions (s, a) 7→
√

1/Ct
h(s, a) and (s, a) 7→

∑t−1
i=1 w̃

t,i
h (s, a)Yi are

Lipschitz continuous, with Lipschitz constants bounded by C2t/(2σβ3/2) and 4HC2t/(βσ),
respectively. Let CS×A

(
σ2/HT

) be a (σ2/HT)-covering of S×A. Using the Lipschitz continuity
of the functions above and a union bound over CS×A

(
σ2/(HT)

) and over (t, h) ∈ [T]× [H], we

135

Complements on Chapter 4

have

➀ =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)Yi

∣∣∣∣∣ ≤
√√√√2H2 log

(√
1 + t/β

δ

)
1

Ct
h(s, a)

+

 C2t

2σβ3/2

√√√√2H2 log
(√

1 + t/β

δ

)
+ 4HC2t

βσ

 σ2

HT

for all (s, a, t, h) with probability at least 1− δHTN
(
σ2/(HT),S ×A, ρ

).
Bounding ➁ (spatial bias term) We have

➁ =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(∫
S
V (y)dph(y|si

h, a
i
h)−

∫
S
V (y)dph(y|s, a)

)∣∣∣∣∣
≤ L

t−1∑
i=1

w̃t,i
h (s, a)W1

(
ph(·|si

h, a
i
h), ph(·|s, a)

)
by the definition ofW1 (·, ·)

≤ LpL
t−1∑
i=1

w̃t,i
h (s, a)ρ

[
(si

h, a
i
h), (s, a)

]
by Assumption 4.2

≤ 2σLpL

(
1 +

√
log+(C1t/β)

)
by Lemma C.20.

Putting together the bounds for ➀ and ➁ concludes the proof.

Lemma C.5. With probability at least 1− δ, for all (s, a, t, h) ∈ S ×A× [T]× [H], we have

|r̂t
h(s, a)− rt

h(s, a)| ≤
√

2ϑr
1(t, δ)

Ct
h(s, a) + β

Ct
h(s, a) + br(t, δ)σ

where

ϑr
1(t, δ) = Õ (d1) = log

(
N
(
σ2/T,S ×A, ρ

)√
1 + t/β

δ

)

br(t, δ) = Õ
(
L+

√
d1
)

=
(

C2
2β3/2

√
2ϑr

1(t, δ) + 4C2
β

)
+ 2LrL

(
1 +

√
log

(
C1t

β

))

Proof. Almost identical to the proof of Lemma C.4, except for the fact that the rewards are
bounded by 1 instead of H .

136

C.2 Proof of Theorem 4.7

C.2.2 Bernstein-type concentration inequality

Lemma C.6. Let L (2L, 2H) be the class of 2L-Lipschitz functions from S to R bounded by 2H .
With probability at least 1− δ, for all (s, a, t, h) ∈ S ×A× [T]× [H] and for all f ∈ L (2L, 2H),
we have

∣∣∣(p̂t
h − ph)f(s, a)

∣∣∣ ≤ 1
H
ph |f | (s, a) + 14H2C2ϑ2(t, δ) + 2βH

Ct
h(s, a)

+ θ1
b(t, δ)σ1+d2 + θ2

b(t, δ)σ

where d1 is the covering dimension of (S ×A, ρ), d2 is the covering dimension of (S, ρS) and

ϑ2(t, δ) = Õ
(∣∣C′

σ

∣∣+ d1d2
)

= log
(

4e(2t+1)
δ HTN

(
σ2+d2

H2T
,S ×A, ρ

)(2H
Lσ

)N (σ,S,ρS)
)

θ1
b(t, δ) = Õ

(∣∣C′
σ

∣∣+ d1d2 + Lσ
)

= 2LpLσ

H2T
+ 4C2
Hβ

+ 14ϑ2(t, δ)C2
β2

θ2
b(t, δ) = Õ (L) = 32L+ 6LpL

(
1 +

√
log+(C1t/β)

)

where |C′
σ| = O

(
1/σd2

)
is the σ-covering number of (S, ρS).

Proof. We have∣∣∣(p̂t
h − ph)f(s, a)

∣∣∣
=
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(
f(si

h+1)− phf(s, a)
)
− βphf(s, a)

Ct
h(s, a)

∣∣∣∣∣
≤
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(
f(si

h+1)−
∫

S
f(y)dPh(y|si

h, a
i
h)
)∣∣∣∣∣︸ ︷︷ ︸

➀

+
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(∫
S
f(y)dph(y|si

h, a
i
h)−

∫
S
f(y)dph(y|s, a)

)∣∣∣∣∣︸ ︷︷ ︸
➁

+ 2βH
Ct

h(s, a) ·

Bounding ➁ (spatial bias term) As in the proof of Lemma C.4, we can show that

➁ =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)

(∫
S
f(y)dph(y|si

h, a
i
h)−

∫
S
f(y)dph(y|s, a)

)∣∣∣∣∣
≤ 4σLpL

(
1 +

√
log+(C1t/β)

)
·

137

Complements on Chapter 4

Bounding the martingale term (➀) with a Bernstein-type inequality Notice that (s, a) 7→∫
S f(y)dph(y|s, a) is bounded by 2H and

E
[
f(si

h+1)|F i
h

]
=
∫

S
f(y)dph(y|si

h, a
i
h).

The conditional variance of f(si
h+1) is bounded as follows

V
[
f(si

h+1)|F i
h

]
= E

[
f(si

h+1)2|F i
h

]
−
(∫

S
f(y)dph(y|si

h, a
i
h)
)2

≤ 2HE
[∣∣∣f(si

h+1)
∣∣∣ |F i

h

]
= 2H

∫
S
|f(y)|dph(y|si

h, a
i
h)

which we use to bound its weighted average

1
Ct

h(s, a)

t−1∑
i=1

wt,i
h (s, a)2V

[
f(si

h+1)|F i
h

]

≤ 1
Ct

h(s, a)

t−1∑
i=1

wt,i
h (s, a)V

[
f(si

h+1)|F i
h

]

≤ 2H
Ct

h(s, a)

t−1∑
i=1

wt,i
h (s, a)

∫
S
|f(y)| dph(y|si

h, a
i
h)

= 2H
Ct

h(s, a)

t−1∑
i=1

wt,i
h (s, a)ph |f | (s, a) + 2H

Ct
h(s, a)

t−1∑
i=1

wt,i
h (s, a)

(
ph |f | (si

h, a
i
h)− ph |f | (s, a)

)

≤ 2H
(
ph |f | (s, a)− βph |f | (s, a)

Ct
h(s, a)

)
+ 4HLpL

Ct
h(s, a)

t−1∑
i=1

wt,i
h (s, a)ρ

[
(si

h, a
i
h), (s, a)

]
≤ 2Hph |f | (s, a) + 8HLpLσ

(
1 +

√
log+(C1t/β)

)
where, in the last inequality, we used Lemma C.20.

Let△(t, δ) = log (4e(2t+ 1)/δ). Let Yi(f) = f(si
h+1)− phf(si

h, a
i
h). By Lemma C.3, we have

➀ =
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)Yi(f)

∣∣∣∣∣ ≤
√√√√2△(t, δ)

∑t−1
i=1 w

t,i
h (s, a)2V

[
f(si

h+1)|F i
h

]
Ct

h(s, a)2 + 10H△(t, δ)
Ct

h(s, a)

with probability at least 1− δ, since, for a fixed f , (Yi(f))i is a martingale difference sequence
with respect to (F i

h)i. Using the fact that√uv ≤ (u+ v)/2 for all u, v > 0,
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)Yi(f)

∣∣∣∣∣ ≤ 4H2△(t, δ)
Ct

h(s, a) + 1
4H2

∑t−1
i=1 w

t,i
h (s, a)2V

[
f(si

h+1)|F i
h

]
Ct

h(s, a) + 10H△(t, δ)
Ct

h(s, a)

138

C.2 Proof of Theorem 4.7

≤ 1
H

∫
S
|f(y)| dph(y|s, a) + (4H2 + 10H)△(t, δ)

Ct
h(s, a) + 2LpLσ

H

(
1 +

√
log+(C1t/β)

)

with probability 1− δ.

Covering of S ×A As a consequence of Assumption 4.2, the function

(s, a) 7→ 1
H
ph |f(y)| (s, a)

is 2LpL-Lipschitz . Also, the functions

(s, a) 7→
∣∣∣∣∣
t−1∑
i=1

w̃t,i
h (s, a)Yi(f)

∣∣∣∣∣ and (s, a) 7→ 1
Ct

h(s, a)

are 4HC2t/(βσ)-Lipschitz and C2t/(β2σ), respectively, by Lemma C.21. Consequently, a union
bound over a (σ2+d2/(H2T))-covering of (S ×A, ρ) and over (t, h) ∈ [T]× [H] gives us∣∣∣∣∣

t−1∑
i=1

w̃t,i
h (s, a)Yi(f)

∣∣∣∣∣ ≤ 1
H
ph |f(y)| (s, a) + (4H2 + 10H)△(t, δ)

Ct
h(s, a)

+ 2LpLσ

H

(
1 +

√
log+(C1t/β)

)
+
(

2LpL+ 4HC2t

βσ
+ (4H2 + 10H)△(t, δ)C2t

β2σ

)
σ2+d2

H2T

for all (s, a, t, h) with probability at least 1− δHTN
(

σ2+d2
H2T

,S ×A, ρ
)
.

Covering of L (2L, 2H) The bounds for ➀ and ➁ give us
∣∣∣(p̂t

h − ph)f(s, a)
∣∣∣ ≤ 1

H
ph |f(y)| (s, a) + (4H2 + 10H)△(t, δ)

Ct
h(s, a)

+
(

2LpL+ 4HC2t

βσ
+ (4H2 + 10H)△(t, δ)C2t

β2σ

)
σ2+d2

H2T

+ 6σLpL

(
1 +

√
log+(C1t/β)

)
+ 2βH

Ct
h(s, a) .

The 8Lσ-covering number of L (2L, 2H) with respect to the infinity norm is bounded by
(2H/(Lσ))N (σ,S,ρS), by Lemma 5 of [Dom+21d]. The functions f 7→ ∣∣(ph − p̂t

h)f(s, a)
∣∣ and

f 7→ 1
H

∫
S |f(y)| dph(y|s, a) are 2-Lipschitz with respect to ∥·∥∞. Consequently, with probability

at least
1− δHTN

(
σ2+d2

H2T
,S ×A, ρ

)(2H
Lσ

)N (σ,S,ρS)
,

139

Complements on Chapter 4

for all L (2L, 2H) and for all (s, a, t, h), we have
∣∣∣(p̂t

h − ph)f(s, a)
∣∣∣ ≤ 1

H
ph |f(y)| (s, a) + (4H2 + 10H)△(t, δ)

Ct
h(s, a)

+
(

2LpL+ 4HC2t

βσ
+ (4H2 + 10H)△(t, δ)C2t

β2σ

)
σ2+d2

H2T

+ 6σLpL

(
1 +

√
log+(C1t/β)

)
+ 2βH

Ct
h(s, a) + 32Lσ

which concludes the proof.

Lemma C.7. Let G = G1 ∩ G2 ∩ G3, where

G1 :=
{
∀(s, a, t, h),

∣∣∣r̂t
h(s, a)− rh(s, a)

∣∣∣ ≤ √2ϑr
1(t, δ/6)

Ct
h(s, a) + β

Ct
h(s, a) + br(t, δ/6)σ

}

G2 :=
{
∀(s, a, t, h),

∣∣∣(p̂t
h − ph)V ∗

h+1(s, a)
∣∣∣ ≤ √2H2ϑp

1(t, δ/6)
Ct

h(s, a) + βH

Ct
h(s, a) + bp(t, δ/6)σ

}

G3 :=
{
∀(s, a, t, h, f),

∣∣∣(p̂t
h − ph)f(s, a)

∣∣∣ ≤ 1
H
ph |f(y)| (s, a) + 14H2C2ϑ2(t, δ/6) + 2βH

Ct
h(s, a)

+ θ1
b(t, δ/6)σ1+d2 + θ2

b(t, δ/6)σ
}

for (s, a, t, h) ∈ S ×A× [T]× [H] and f ∈ L (2L, 2H), and where

ϑp
1(t, δ) = Õ (d1) , bp(t, δ) = Õ

(
L+

√
d1
)
, ϑr

1(t, δ) = Õ (d1) , br(t, δ) = Õ
(
L+

√
d1
)

ϑ2(t, δ) = Õ
(∣∣C′

σ

∣∣+ d1d2
)
, θ1

b(t, δ) = Õ
(∣∣C′

σ

∣∣+ d1d2 + Lσ
)
, θ2

b(t, δ) = Õ (L)

are defined in Lemmas C.4, C.5, and C.6, respectively. Then,

P [G] ≥ 1− δ/2.

Proof. Immediate consequence of lemmas C.4, C.5, and C.6.

140

C.2 Proof of Theorem 4.7

C.2.3 Regret bound in terms of the sum of exploration bonuses

Lemma C.8 (Optimism). On the event G, we have

∀(s, a, t, h), Qt
h(s, a) ≥ Q∗

h(s, a).

Proof. We proceed by induction. When h = H + 1, we have Qt
H+1 = Q∗

H+1 = 0, by definition.
Assuming that Qt

h+1(s, a) ≥ Q∗
h+1(s, a) for all (s, a), we have V t

h+1(s) ≥ V ∗
h+1(s) for all s. Then,

by the definition of the bonuses and the event G, we have for all (s, a)

Q̃t
h(s, a)−Q∗

h(s, a) = r̂t
h(s, a)− rh(s, a) + (p̂t

h − ph)V ∗
h+1(s, a) + bt

h(s, a)︸ ︷︷ ︸
≥0 on G

+ p̂h(V t
h+1 − V ∗

h+1)︸ ︷︷ ︸
≥0 by induction hypothesis

≥ 0.

In particular, Q̃t
h(si

h, a
i
h) ≥ Q∗

h(si
h, a

i
h) for all i ∈ [t− 1], which gives us

Q̃t
h(si

h, a
i
h) + Lρ

[
(s, a), (si

h, a
i
h)
]
≥ Q∗

h(si
h, a

i
h) + Lρ

[
(s, a), (si

h, a
i
h)
]
≥ Q∗

h(s, a)

for all i ∈ [t − 1], since Q∗
h is L-Lipschitz. It follows from the definition of the interpolation

function in Equation (4.6) that Qt
h(s, a) ≥ Q∗

h(s, a) for all (s, a), which implies that, for all s,
V t

h(s) ≥ V ∗
h (s) on G.

Corollary C.9. Let δt
h := V t

h(st
h) − V πt

h (st
h). Then, the regret of Kernel-UCBVI satisfies RT ≤∑T

t=1 δ
t
1 on the event G.

Proof. As a consequence of Lemma C.8, we have

RT =
T∑

t=1

(
V ∗

1 (st
1)− V πt

1 (st
1)
)

=
T∑

t=1

(
max

a
Q∗

1(st
1, a)− V πt

1 (st
1)
)

≤
T∑

t=1

(
min

[
H − h+ 1,max

a
Qt

1(st
1, a)

]
− V πt

1 (st
1)
)

=
T∑

t=1

(
V t

1 (st
1, a)− V πt

1 (st
1)
)
.

Definition C.10. For any (t, h), let (s̃t
h, ã

t
h) be the state-action pair that is the closest to (st

h, a
t
h) among

the transitions observed before episode t , that is

(s̃t
h, ã

t
h) := argmin

(si
h

,ai
h

):i<t

ρ
[
(st

h, a
t
h), (si

h, a
i
h)
]
.

141

Complements on Chapter 4

Furthermore, we define ρt
h := ρ

[
(st

h, a
t
h), (s̃t

h, ã
t
h)
]
.

Lemma C.11. On the event G, the regret of Kernel-UCBVI is bounded by

RT ≲
T∑

t=1

H∑
h=1

 H√
Ct

h(s̃t
h, ã

t
h)

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h)

1

{
ρt

h ≤ 2σ
}

+H2 |Cσ|

+
T∑

t=1

H∑
h=1

(
1 + 1

H

)h

ξ̃t
h+1 + LHTσ

where |Cσ| is the σ-covering number of (S × A, ρ), |C′
σ| is the σ-covering number of (S, ρS) and

(ξ̃t
h+1)t,h is a martingale difference sequence with respect to (F t

h)t,h bounded by 4H .

Proof. Regret decomposition On G, we upper bound δt
h using the following decomposition:

δt
h = V t

h(st
h)− V πt

h (st
h)

≤ Qt
h(st

h, a
t
h)−Qπt

h (st
h, a

t
h)

≤ Qt
h(s̃t

h, ã
t
h)−Qπt

h (st
h, a

t
h) + Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
, since Qt

h is L-Lipschitz
≤ Q̃t

h(s̃t
h, ã

t
h)−Qπt

h (st
h, a

t
h) + Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
, since Qt

h(s̃t
h, ã

t
h) ≤ Q̃t

h(s̃t
h, ã

t
h)

= r̂t
h(s̃t

h, ã
t
h)− rh(st

h, a
t
h) + p̂t

hV
t

h+1(s̃t
h, ã

t
h)− phV

πt

h+1(st
h, a

t
h) + bt

h(s̃t
h, ã

t
h) + Lρt

h

= r̂t
h(s̃t

h, ã
t
h)− rh(st

h, a
t
h)︸ ︷︷ ︸

(A)

+
[
p̂t

h − ph

]
V ∗

h+1(s̃t
h, ã

t
h)︸ ︷︷ ︸

(B)

+
[
p̂t

h − ph

] (
V t

h+1 − V ∗
h+1

)
(s̃t

h, ã
t
h)︸ ︷︷ ︸

(C)

+ phV
t

h+1(s̃t
h, ã

t
h)− phV

πt

h+1(st
h, a

t
h)︸ ︷︷ ︸

(D)

+bt
h(s̃t

h, ã
t
h) + 2Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
.

Now, we bound each term (A)-(D) separately, using the definition of G (Lemma C.7).

Term (A):

(A) = r̂t
h(s̃t

h, ã
t
h)− rh(s̃t

h, ã
t
h) + rh(s̃t

h, ã
t
h)− rh(st

h, a
t
h)

≤ r̂t
h(s̃t

h, ã
t
h)− rh(s̃t

h, ã
t
h) + Lrρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

≤ rbt
h(s̃t

h, ã
t
h) + Lrρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
.

Term (B):

(B) =
[
p̂t

h − ph

]
V ∗

h+1(s̃t
h, ã

t
h) ≤ pbt

h(s̃t
h, ã

t
h).

142

C.2 Proof of Theorem 4.7

Term (C): Since V t
h+1 ≥ V ∗

h+1 on G and V ∗
h+1 ≥ V π

h+1:

(C) =
[
p̂t

h − ph

] (
V t

h+1 − V ∗
h+1

)
(s̃t

h, ã
t
h)

≲
1
H
ph

(
V t

h+1 − V ∗
h+1

)
(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h) + Lσ

≤ 1
H
ph

(
V t

h+1 − V ∗
h+1

)
(st

h, a
t
h) + 2LpLρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h) + Lσ

≲
1
H
ph

(
V t

h+1 − V πt

h+1

)
(st

h, a
t
h) + Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h) + Lσ

= 1
H

(
δt

h+1 + ξt
h+1

)
+ Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h) + Lσ

where

ξt
h+1 = ph

(
V t

h+1 − V πt

h+1

)
(st

h, a
t
h)− δt

h+1

is a martingale difference sequence with respect to (F t
h)t,h bounded by 4H .

Term (D): We have

(D) = phV
t

h+1(s̃t
h, ã

t
h)− phV

πt

h+1(st
h, a

t
h)

≤ LpLρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+ phV
t

h+1(st
h, a

t
h)− phV

πt

h+1(st
h, a

t
h)

= δt
h+1 + ξt

h+1 + LpLρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
.

Putting together the bounds above, we obtain

δt
h ≲

(
1 + 1

H

)(
δt

h+1 + ξt
h+1

)
+ Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+
√

H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h) + Lσ ,

where the constant in front of δt
h+1 is exact (not hidden by ≲).

Now, consider the eventEt
h :=

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

} and letEt
h be its complement. Using

the fact that δt
h+1 ≥ 0 on G, the inequality above implies

1

{
Et

h

}
δt

h

≲ 1

{
Et

h

}(
1 + 1

H

)(
δt

h+1 + ξt
h+1

)
+ Lσ + 1

{
Et

h

}(√ H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h)

)

≲
(

1 + 1
H

)(
δt

h+1 + 1

{
Et

h

}
ξt

h+1

)
+ Lσ + 1

{
Et

h

}(√ H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h)

)
(C.1)

143

Complements on Chapter 4

Now, using the fact that δt
h ≤ H , we obtain

δt
h = 1

{
Et

h

}
δt

h + 1

{
E

t
h

}
δt

h (C.2)
≤ 1

{
Et

h

}
δt

h +H1
{
E

t
h

}
≲ H1

{
E

t
h

}
+
(

1 + 1
H

)(
δt

h+1 + 1

{
Et

h

}
ξt

h+1

)
+ Lσ

+ 1

{
Et

h

}(√ H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h)

)
.

This yields

δt
1 ≲

H∑
h=1

1

{
Et

h

}(√ H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h)

)

+
H∑

h=1

(
1 + 1

H

)h

1

{
Et

h

}
ξt

h+1 + LHσ +H
H∑

h=1
1

{
E

t
h

}
.

Let ξ̃t
h+1 := 1

{
Et

h

}
ξt

h+1. We can verify that ξ̃t
h+1 is a martingale difference sequence with

respect to (F t
h)t,h bounded by 4H .

Applying Corollary C.9, we obtain:

RT ≤
T∑

t=1
δt

1 ≲
T∑

t=1

H∑
h=1

1

{
Et

h

}(√ H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h)

)

+
T∑

t=1

H∑
h=1

(
1 + 1

H

)h

ξ̃t
h+1 + LHTσ +H

T∑
t=1

H∑
h=1

1

{
E

t
h

}
.

Finally, we bound the sum

H
T∑

t=1

H∑
h=1

1

{
E

t
h

}
= H

H∑
h=1

T∑
t=1

1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
> 2σ

}
≤ H2 |Cσ|

since, for each h, the number of episodes where the event {ρ [(s̃t
h, ã

t
h), (st

h, a
t
h)
]
> 2σ

} occurs is
bounded by |Cσ|. Recalling the definition Et

h :=
{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}, this concludes the
proof.

144

C.2 Proof of Theorem 4.7

C.2.4 Bounding the sum of exploration bonuses

Lemma C.12. We have

T∑
t=1

H∑
h=1

1√
Ct

h(s̃t
h, ã

t
h)
1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
≲ H |Cσ|+H

√
|Cσ|T

and

T∑
t=1

H∑
h=1

1
Ct

h(s̃t
h, ã

t
h)1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
≲ H |Cσ| .

Proof. First, we will need some definitions. Let Cσ = {(sj , aj) ∈ S ×A, j = 1, . . . , |Cσ|} be a
σ-covering of (S ×A, ρ). We define a partition {Bj}|Cσ |

j=1 of S ×A as follows:

Bj =
{

(s, a) ∈ S ×A : (sj , aj) = argmin
(si,ai)∈Cσ

ρ [(s, a), (si, ai)]
}

where ties in the argmin are broken arbitrarily.

We define the number of visits to each set Bj as Nt
h(Bj) :=

∑t−1
i=1 1

{
(si

h, a
i
h) ∈ Bj

}
.

Now, assume that (st
h, a

t
h) ∈ Bj . If, in addition, ρ [(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ, we obtain

Ct
h(s̃t

h, ã
t
h) = β +

t−1∑
i=1

Γ((s̃t
h, ã

t
h), (si

h, a
i
h)) = β +

t−1∑
i=1

Γ
(
ρ
[
(s̃t

h, ã
t
h), (si

h, a
i
h)
]

σ

)

≥ β +
t−1∑
i=1

Γ
(
ρ
[
(s̃t

h, ã
t
h), (si

h, a
i
h)
]

σ

)
1

{
(si

h, a
i
h) ∈ Bj

}

≥ β + Γ(4)
t−1∑
i=1

1

{
(si

h, a
i
h) ∈ Bj

}
= β

(
1 + Γ(4)β−1Nt

h(Bj)
)

since, if (si
h, a

i
h) ∈ Bj , we have ρ [(s̃t

h, ã
t
h), (si

h, a
i
h)
]
≤ 4σ and we use the fact that Γ is non-

increasing by assumption.

We are now ready to bound the sums involving 1/Ct
h(s̃t

h, ã
t
h). We will use the fact that Γ(4) > 0

by Assumption 4.4.

Bounding the sum of 1/
√

Ct
h(s̃t

h, ã
t
h)

T∑
t=1

H∑
h=1

√
1

Ct
h(s̃t

h, ã
t
h)1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}

145

Complements on Chapter 4

=
T∑

t=1

H∑
h=1

|Cσ |∑
j=1

√
1

Ct
h(s̃t

h, ã
t
h)1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
1

{
(st

h, a
t
h) ∈ Bj

}

≤ β−1/2
T∑

t=1

H∑
h=1

|Cσ |∑
j=1

1√
1 + Γ(4)β−1Nt

h(Bj)
1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
1

{
(st

h, a
t
h) ∈ Bj

}

≤ β−1/2
H∑

h=1

|Cσ |∑
j=1

T∑
t=1

1
{
(st

h, a
t
h) ∈ Bj

}√
1 + Γ(4)β−1Nt

h(Bj)

≤ β−1/2
H∑

h=1

|Cσ |∑
j=1

1 +
∫ NT +1

h
(Bj)

0

dz√
1 + Γ(4)β−1z

 by Lemma C.19

≤ β−1/2H |Cσ|+
2β1/2

Γ(4)

H∑
h=1

|Cσ |∑
j=1

√
1 + Γ(4)β−1NT +1

h (Bj)

≤ β−1/2H |Cσ|+
2β1/2

Γ(4)

H∑
h=1

√
|Cσ|

√
|Cσ|+ Γ(4)β−1T by Cauchy-Schwarz inequality

≤ H
(
β−1/2 + 2β1/2

Γ(4)

)
|Cσ|+

2H
Γ(4)

√
Γ(4) |Cσ|T ≲ H |Cσ|+H

√
|Cσ|T .

Bounding the sum of 1/Ct
h(s̃t

h, ã
t
h)

T∑
t=1

H∑
h=1

1
Ct

h(s̃t
h, ã

t
h)1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}

=
T∑

t=1

H∑
h=1

|Cσ |∑
j=1

1
Ct

h(s̃t
h, ã

t
h)1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
1

{
(st

h, a
t
h) ∈ Bj

}

≤ β−1
T∑

t=1

H∑
h=1

|Cσ |∑
j=1

1
1 + Γ(4)β−1Nt

h(Bj)
1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}
1

{
(st

h, a
t
h) ∈ Bj

}

≤ β−1
H∑

h=1

|Cσ |∑
j=1

T∑
t=1

1
{
(st

h, a
t
h) ∈ Bj

}
1 + Γ(4)β−1Nt

h(Bj)

≤ β−1
H∑

h=1

|Cσ |∑
j=1

(
1 +

∫ NT +1
h

(Bj)

0

dz
1 + Γ(4)β−1z

)
by Lemma C.19

≤ β−1H |Cσ|+
1

Γ(4)

H∑
h=1

|Cσ |∑
j=1

log
(
1 + Γ(4)β−1Nt+1

h (Bj)
)

≤ β−1H |Cσ|+
1

Γ(4)

H∑
h=1
|Cσ| log

∑|Cσ |
j=1

(
1 + Γ(4)β−1NT +1

h (Bj)
)

|Cσ|

 by Jensen’s inequality

≤ β−1H |Cσ|+
1

Γ(4)
H |Cσ| log

(
1 + 1 + Γ(4)β−1T

|Cσ|

)
≲ H |Cσ| .

146

C.3 Proof Sketch for Theorem 4.12: Regret of KeRNS

C.2.5 Final regret bound

We are now ready to conclude the proof of Theorem 4.7. By Hoeffding-Azuma’s inequality, the
sum∑T

t=1
∑H

h=1(1 + 1/H)H ξ̃t
h+1 is bounded by

(√
8e2H2 log(2/δ)

)√
HT on an event G′ such

that P [G′] ≥ 1− δ/2.

Hence, by lemmas C.11 and C.12, we obtain

RT ≲H2
√
|Cσ|T +H3 |Cσ|

∣∣C′
σ

∣∣+H3/2√T + LHTσ +H2 |Cσ| ,

on the event G ∩ G′, that satisfies P [G ∩ G′] ≥ 1− δ.

C.3 Proof Sketch for Theorem 4.12: Regret of KeRNS

We now outline the proof of Theorem 4.12 assuming, for simplicity, that the rewards are known.
The full proof is given in our paper [Dom+21c].

Bias due to non-stationarity To bound the bias, we introduce an average MDP with transi-
tions pt

h:

pt
h(y|s, a) :=

t−1∑
i=1

w̃t,i
h (s, a)pi

h(y|s, a) + β pt
h(y|s, a)

Ct
h(s, a) ,

where (pi
h)i,h are the true transitions at time (i, h). We prove that, for any L-Lipschitz function

f bounded by H : ∣∣∣(pt
h − pt

h

)
f(s, a)

∣∣∣ ≤ biasp(t, h),

where the term biasp(t, h) is defined as

biasp(t, h) := L
t−1∑

i=1∨(t−W)
sup
s,a

W1
(
pi

h(·|s, a), pi+1
h (·|s, a)

)
+ 2C3H

β

λW

1− λ ·

Concentration Using concentration inequalities for weighted sums, we prove that p̂t
h is close

to the average transition pt
h using Hoeffding- and Bernstein-type inequalities, and define an

event G where our confidence sets hold, such that P [G] ≥ 1− δ/2. For instance, as for Kernel-
UCBVI, we have

∣∣∣(p̂t
h − pt

h)V ∗
t,h+1(s, a)

∣∣∣ ≲ √
H2

Ct
h(s, a) + βH

Ct
h(s, a) + Lσ ,

147

Complements on Chapter 4

which explains the form of the exploration bonuses.

Upper bound on the true value function On the event G, we show that:

Qt
h(s, a) +

H∑
h′=h

bias(t, h) ≥ Q∗
t,h(s, a)

where the term bias(t, h) is the sum of biasp(t, h) defined above, and a similar term repre-
senting the bias in the reward estimation.

Regret bounds Let (s̃t
h, ã

t
h) be the state-action pair among the previously visited ones that is

the closest to (st
h, a

t
h):

(s̃t
h, ã

t
h) := argmin

(si
h

,ai
h

):i<t

ρ
[
(st

h, a
t
h), (si

h, a
i
h)
]
.

We show that:

H
T∑

t=1

H∑
h=1

1

{
ρ
[
(st

h, a
t
h), (s̃t

h, ã
t
h)
]
> 2σ

}
≤ H2 |Cσ| .

Thus, to simplify the outline, for all (t, h), we assume that ρ [(st
h, a

t
h), (s̃t

h, ã
t
h)
]
≤ 2σ and add

H2 |Cσ| to the final regret bound. On the event G, we prove that the regret of KeRNS is bounded
by:

Rdyn
T ≲

T∑
t=1

H∑
h=1

 H√
Ct

h(s̃t
h, ã

t
h)

+ βH

Ct
h(s̃t

h, ã
t
h)

+
T∑

t=1

H∑
h=1

bias(t, h) + LHTσ +H2 |Cσ|

where we omitted factors involving |Cσ| and |C′
σ| (which depend on the type of bound consid-

ered,R1
T orR2

T), and martingale terms (which are bounded by ≈ H3/2√T with probability at
least 1− δ/2).

Using the properties of the kernel Γ (Assumption 4.9), we prove that:

T∑
t=1

H∑
h=1

1√
Ct

h(s̃t
h, ã

t
h)

≲ HT log 1
λ

(
|Cσ|+

√
|Cσ|

log(1/λ)

)
T∑

t=1

H∑
h=1

1
Ct

h(s̃t
h, ã

t
h) ≲ H |Cσ|T log 1

λ

148

C.4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP

Finally, we bound the sum of biases as

T∑
t=1

H∑
h=1

bias(t, h) ≤ 2W (∆r + L∆p) + 2C3(H + 1)HT
β

λW

1− λ ·

Putting these bounds together, we conclude the proof of Theorem 4.12.

C.4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP

In this Appendix, following Efroni et al. [Efr+19], we show that, by modifying Kernel-UCBVI
so that we apply the optimistic Bellman operator (C.3) only once instead of doing a complete
value iteration, we obtain almost the same guaranties as for Kernel-UCBVI, but with a large
improvement in computational complexity: the time complexity of each episode t is reduced
from O (t2) to O (t). We begin by recalling how Kernel-UCBVI+RTDP (Algorithm 4.3) proceeds.

Assume we are at episode t at step h at state st
h. To compute the next action we will apply the

optimistic Bellman operator to the previous value function. That is, for all a ∈ Awe compute
the upper bounds on the Q-value based on a kernel estimator:

Q̃t
h(st

h, a) = r̂t
h(s, a) + p̂t

hV
t

h+1(s, a) + bt
h(s, a). (C.3)

The action at
h is then computed as

at
h = argmax

a∈A
Q̃t

h(st
h, a) ,

and we define an optimistic value Ṽ t
h(st

h) = min
(
H−h+1, Q̃t

h(st
h, a

t
h)
) for the value function at

the state st
h. Then, we build an optimistic function V t+1

h by interpolating the previous optimistic
value function V t

h and the value Ṽ t
h(st

h):

∀s, V t+1
h (s) = min

(
V t

h(s), Ṽ t
h(st

h) + LρS
(
s, st

h

))
.

Lemma C.13 (Optimism). On the event G, whose probability is at least 1− δ, we have

∀(s, t, h), V t
h(s) ≥ V ∗

h (s) and V t
h(s) ≥ V t+1

h (s) .

Proof. The fact that V t
h(s) ≥ V t+1

h (s) is immediate by the definition of V t
h :

∀s, V t+1
h (s) := min

(
V t

h(s), Ṽ t
h(st

h) + LρS
(
s, st

h

))
≤ V t

h(s).

149

Complements on Chapter 4

To show that V t
h(s) ≥ V ∗

h (s), we proceed by induction on t. For t = 1, V t
h(s) = H − h ≥ V ∗

h (s)
for all (s, h).

Now, consider t > 1 and assume that V t−1
h ≥ V ∗

h for all h. As in the proof of Lemma C.8, we
prove that V t

h ≥ V ∗
h for all h by induction on h. For h = H+ 1, V t

h(s) = V ∗
h (s) = 0 for all s. Now,

assume that V t
h+1(s) ≥ V ∗

h+1(s) for all s. We have, for all (s, a),

Q̃t
h(s, a) = r̂t

h(s, a) + p̂t
hV

t
h+1(s, a) + bt

h(s, a)

≥ r̂t
h(s, a) + p̂t

hV
∗

h+1(s, a) + bt
h(s, a) by induction hypothesis on h

≥ rh(s, a) + phV
∗

h+1(s, a) = Q∗
h(s, a) on G

which implies that Ṽ t
h(st

h) ≥ V ∗
h (st

h) and, consequently,

Ṽ t
h(st

h) + LρS
(
s, st

h

)
≥ V ∗

h (st
h) + LρS

(
s, st

h

)
≥ V ∗

h (s)

=⇒ V t
h(s) = min

(
V t−1

h (s), Ṽ t
h(st

h) + LρS
(
s, st

h

))
≥ V ∗

h (x) by induction hypothesis on t,

where we used the fact that V ∗
h is L-Lipschitz.

Now, we prove that, with probability at least 1− δ, the regret of Kernel-UCBVI+RTDP satisfies

RT ≲H2
√
|Cσ|T +H3 |Cσ|

∣∣C′
σ

∣∣+H3/2√T + LHTσ +H2 |Cσ|+H2 ∣∣C′
σ

∣∣ ,
which implies Theorem 4.14.

On G, we have

δ̃t
h := V t+1

h (st
h)− V πt

h (st
h) ≤ V t

h(st
h)− V πt

h (st
h)

≤ Ṽ t
h(st

h)− V πt

h (st
h) ≤ Q̃t

h(st
h, a

t
h)−Qπt

h (st
h, a

t
h).

Recall that δt
h := V t

h(st
h) − V πt

h (st
h). From this point, we follow the proof of Lemma C.11 to

obtain a bound on δ̃t
h:

δ̃t
h ≲

(
1 + 1

H

)(
δt

h+1 + ξt
h+1

)
+ Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+
√

H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h) + Lσ

≲
(

1 + 1
H

)(
δ̃t

h+1 +
(
V t

h+1 − V t+1
h+1

)
(st

h+1) + ξt
h+1

)
+ Lρ

[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]

+
√

H2

Ct
h(s̃t

h, ã
t
h) + H2 |C′

σ|
Ct

h(s̃t
h, ã

t
h) + Lσ.

150

C.4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP

On G, using that V ∗
h ≤ V t+1

h and the same arguments as in equations (C.1) and (C.2) in
Lemma C.11 (which can be used since V t

h+1 ≥ V
t+1

h+1), we obtain

RT ≤
T∑

t=1
δ̃t

1

≲ H2 |Cσ|+ LHTσ +
T∑

t=1

H∑
h=1

(
1 + 1

H

)h

ξt
h+1

+
T∑

t=1

H∑
h=1

 H√
Ct

h(s̃t
h, ã

t
h)

+ H2 |C′
σ|

Ct
h(s̃t

h, ã
t
h)

1

{
ρ
[
(s̃t

h, ã
t
h), (st

h, a
t
h)
]
≤ 2σ

}

+
T∑

t=1

H∑
h=1

(
1 + 1

H

)h (
V t

h+1 − V t+1
h+1

)
(st

h+1) (C.4)

This bound differs only by the additive term (C.4) from the bound given in Lemma C.11. Thus
we just need to handle this sum and rely on the previous analysis to upper bound the other
terms. We consider the following partition of the state space:

Definition C.14. Let C′
σ be a σ-covering of S. We write C′

σ := {sj , j ∈ [|C′
σ|]}. For each sj ∈ C′

σ, we
define the set Bj ⊂ S as the set of points in S whose nearest neighbor in C′

σ is sj , with ties broken
arbitrarily, such that {Bj}j∈[|C′

σ |] form a partition of S .

Using the fact that the V t
h are point-wise non-increasing we can write the sum (C.4) as a

telescopic sum:

T∑
t=1

H∑
h=1

(
V t

h+1 − V t+1
h+1

)
(st

h+1) ≤
T∑

t=1

H∑
h=1

(
V t

h+1 − V t+1
h+1

)
(st

h+1)

≤
|C′

σ |∑
j=1

T∑
t=1

H∑
h=1

(
V t

h+1 − V t+1
h+1

)
(st

h+1)1
{
st

h+1 ∈ Bj

}

≤
|C′

σ |∑
j=1

T∑
t=1

H∑
h=1

(
V t

h+1 − V t+1
h+1

)
(sj)1

{
st

h+1 ∈ Bj

}
+ 2LρS

(
sj , s

t
h+1

)
1

{
st

h+1 ∈ Bj

}

≤
|C′

σ |∑
j=1

H∑
h=1

T∑
t=1

(
V t

h+1 − V t+1
h+1

)
(sj) + T

H∑
h=1

2Lσ

≤ H2 ∣∣C′
σ

∣∣+ 2σLHT ,

where in the third inequality, we used the fact that the function V t
h+1 − V

t+1
h+1 is 2L-Lipschitz.

Combining the previous inequalities and the proof of Theorem 4.7, as explained above, allows
us to conclude.

151

Complements on Chapter 4

C.5 Detailed Description of RS-KeRNS

RS-KeRNS is described in Algorithm C.1, which uses a backward induction on representative
states (Algorithm C.2) and updates the model online (algorithms 4.4 and C.3). In this section,
we introduce the main definitions used by RS-KeRNS, and we analyze its runtime.

C.5.1 Definitions

In each episode t and for each h, RS-KeRNS keeps and updates sets of representative states S̄t
h,

actions Āt
h, and next-states Ȳt

h, with cardinalities S̄t
h, Ā

t
h and Ȳ t

h, respectively.

These sets are built using the data observed up to episode t − 1. We define the following
projections:

ζt+1
h (s, a) := argmin

(s,a)∈S̄t
h

×Āt
h

ρ [(s, a), (s, a)] , ζt+1
h (y) := argmin

y∈Ȳt
h

ρS (y, y) .

where we also assume to have access to the metric ρS . The definitions below introduce the
kernel function and the estimated MDP used by RS-KeRNS.

Definition C.15 (kernel function for RS-KeRNS). Let λ ∈]0, 1]. RS-KeRNS uses a kernel of the form
Γ(n, u, v) = χ(n)ϕ (u, v), where

χ(n) := λn, and ϕ (u, v) := exp
(
−ρ [u, v]2 /(2σ2)

)
.

Definition C.16 (empirical MDP for RS-KeRNS). Let

(

W t+1
h (s, a) =

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
.

In episode t+ 1, RS-KeRNS uses the following estimate of the reward function

(rt+1
h (s, a) = 1

β +

(

W t+1
h (s, a)

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
r̃i

h

and the follow estimate of the transitions

(pt+1
h (y|s, a) = 1

β +

(

W t+1
h (s, a)

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
δζi+1

h
(si

h+1)(y).

152

C.5 Detailed Description of RS-KeRNS

Also, its exploration bonuses are computed as

(
bt+1

h (s, a) := Õ

 H√
β +

(

W t+1
h (s, a)

+ βH

β +

(

W t+1
h (s, a)

+ Lσ

where the factors hidden by Õ (·) are given in Definition C.1.

RS-KeRNS needs to store the quantities in Definition C.16 only for the representatives (s, a) in
S̄t+1

h × Āt+1
h and y ∈ Ȳt+1

h . We will show that, using the auxiliary quantities defined below, the
values of (

W t
h, (rt

h and (pt
h can be updated online in O

(∑
h S̄

t
hĀ

t
hȲ

t
h

)
time per episode t.

Definition C.17 (auxiliary quantities for online updates). For any (h, s, a, y), we define

(

N t+1
h (s, a, y) :=

t∑
i=1

χ(t− i)1
{
ζi+1

h (si
h, a

i
h) = (s, a)

}
δζi+1

h
(si

h+1)(y)

(

N t+1
h (s, a) :=

t∑
i=1

χ(t− i)1
{
ζi+1

h (si
h, a

i
h) = (s, a)

}

(

St+1
h (s, a) :=

t∑
i=1

χ(t− i)1
{
ζi+1

h (si
h, a

i
h) = (s, a)

}
r̃i

h.

Notice that, if (s, a) /∈ S̄t+1
h × Āt+1

h , the quantities above are equal to zero.

The following lemma will be necessary in order to derive online updates.

Lemma C.18. The empirical MDP used by RS-KeRNS can be computed as

(rt+1
h (s, a) =

∑
(s,a) ϕ

(
ζt+1

h (s, a), (s, a)
) (

St+1
h (s, a)

β +
∑

(s,a) ϕ
(
ζt+1

h (s, a), (s, a)
) (

N t+1
h (s, a)

(C.5)

(pt+1
h (y|s, a) =

∑
(s,a) ϕ

(
ζt+1

h (s, a), (s, a)
) (

N t+1
h (s, a, y)

β +
∑

(s,a) ϕ
(
ζt+1

h (s, a), (s, a)
) (

N t+1
h (s, a)

(C.6)

(

W t+1
h (s, a) =

∑
(s,a)

ϕ
(
ζt+1

h (s, a), (s, a)
) (

N t+1
h (s, a) (C.7)

where the sums are over (s, a) ∈ S̄t+1
h × Āt+1

h .

Proof. It is an immediate consequence of the definitions. For instance,

(

W t+1
h (s, a) =

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)

=
t∑

i=1
χ(t− i)ϕ

(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
) ∑

(s,a)∈S̄t+1
h

×Āt+1
h

1

{
ζi+1

h (si
h, a

i
h) = (s, a)

}

153

Complements on Chapter 4

=
∑
(s,a)

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), (s, a)
)
1

{
ζi+1

h (si
h, a

i
h) = (s, a)

}

=
∑
(s,a)

ϕ
(
ζt+1

h (s, a), (s, a)
) t∑

i=1
χ(t− i)1

{
ζi+1

h (si
h, a

i
h) = (s, a)

}
=
∑
(s,a)

ϕ
(
ζt+1

h (s, a), (s, a)
) (

N t+1
h (s, a).

Algorithm C.1: RS-KeRNS

1 initialization: S̄h = ∅, Āh ← ∅, Ȳh ← ∅, for h ∈ [H].
2 for episode t = 1, . . . , T do
3 get initial state st

1

4 compute (

(

Qt
h)h using Algorithm C.2

5 for h = 1, . . . ,H do
6 # select action
7 at

h ← argmaxa

(

Qt
h(st

h, a)
8 # execute action
9 r̃t

h, s
t
h+1 ← OnlineModelt,h(at

h)
10 update S̄h, Āh, Ȳh using

{
st

h, a
t
h, s

t
h+1

}
with Algorithm 4.4

11 update model using st
h, a

t
h, s

t
h+1, r̃

t
h with Algorithm C.3

Algorithm C.2: Kernel Backward Induction on Representative States
1 input: (rt

h(s, a), (pt
h(y|s, a), (

bt
h(s, a) for all (s, a, y) ∈ S̄t

h × Āt
h × Ȳt

h and all h ∈ [H].
2 initialization:

(

V H+1(s)← 0 for all s ∈ S
3 for h = H, . . . , 1 do
4 for (s, a) ∈ S̄t

h × Āt
h do

5 Q̃t
h,ζ(s, a)← (rt

h(s, a) + (pt
h

(

V h+1(s, a) + (

bt
h(s, a)

6 # Interpolated Q-function. Defined, but not computed for all (s, a)
7

(

Qt
h(s, a) = min

(s,a)∈S̄t
h

×Āt
h

(
Q̃t

h,ζ(s, a) + Lρ [(s, a), (s, a)]
)

8 if h > 1 then
9 # Compute value function at the next states for the stage h− 1
10 for y ∈ Ȳt

h−1 do
11

(

V t
h(y) = min

(
H − h+ 1,maxa

(

Qt
h(y, a)

)
12 return: (

(

Qt
h)h∈[H]

154

C.5 Detailed Description of RS-KeRNS

Algorithm C.3: Online Update of RS-KeRNS Model
1 input: t, h, st

h, a
t
h, s

t
h+1, r̃

t
h.

2 # Map to representatives
3 Map (s̃, ã) = ζt+1

h (st
h, a

t
h) and ỹ = ζt+1

h (st
h+1)

4 # Update auxiliary quantities
5

(

N t+1
h (s̃, ã, ỹ) = 1 + λ

(
N t

h(s̃, ã, ỹ)
6

(

N t+1
h (s̃, ã) = 1 + λ

(

N t
h(s̃, ã)

7

(

St+1
h (s̃, ã) = r̃t

h + λ

(

St
h(s̃, ã)

8 # Update empirical MDP
9 for (s, a) ∈ S̄t+1

h × Āt+1
h do

10 if (s, a) ∈ S̄t
h × Āt

h then
11 # (s, a) was added before episode t
12

(

W t+1
h (s, a) = ϕ ((s, a), (s̃, ã)) + λ

(

W t
h(s, a)

13 (rt+1
h (s, a) = ϕ((s,a),(s̃,̃a))

β+

(

W t+1
h

(s,a)
r̃t

h + λ

(
β+

(

W t
h(s,a)

β+

(

W t+1
h

(s,a)

)
(rt

h(s, a)

14 for y ∈ Ȳt+1
h do

15 (pt+1
h (y|s, a) = ϕ((s,a),(s̃,̃a))

β+

(

W t+1
h

(s,a)
δỹ(y) + λ

(
β+

(

W t
h(s,a)

β+

(

W t+1
h

(s,a)

)
(pt

h(y|s, a)

16 else
17 # (s, a) was added in episode k
18 Initialize (rt+1

h (s, a), (pt+1
h (·|s, a),

(

W t+1
h (s, a) using equations (C.5), (C.6) and (C.7)

19 return:

C.5.2 Online updates & runtime

Assume thatwe observed a transition
{
st

h, a
t
h, s

t
h+1, r̃

t
h

}
at time (t, h), updated the representative

sets, and mapped the transition to the representatives (s̃, ã, ỹ) ∈ S̄t+1
h × Āt+1

h × Ȳt+1
h . We wish

to update the estimated MDP given in Definition C.16, which, at step h, are only stored for
(s, a) in S̄t+1

h × Āt+1
h and y ∈ Ȳt+1

h .

The auxiliary quantities (Definition C.17) are updated as:

(

N t+1
h (s̃, ã, ỹ) = 1 + λ

(

N t
h(s̃, ã, ỹ)

(

N t+1
h (s̃, ã) = 1 + λ

(

N t
h(s̃, ã)

(

St+1
h (s̃, ã) = r̃t

h + λ

(

St
h(s̃, ã).

We need to update (

W t
h, (rt

h and (pt
h for all (s, a, y) ∈ S̄t+1

h × Āt+1
h × Ȳt+1

h . The update rule will
depend on whether the (s, a) is a new representative state-action pair (included in episode t)
or it was visited before episode t. These two cases are studied below.

155

Complements on Chapter 4

Case 1: (s, a) ∈ S̄t+1
h × Āt+1

h and (s, a) /∈ S̄t
h × Āt

h This means that the representative state-
action pair (s, a) was added at time (t, h). In this case, for all y ∈ Ȳt+1

h , the quantities (rt+1
h (s, a),

(pt+1
h (y|s, a) and (

W t+1
h (s, a) can be initialized using equations (C.5), (C.6) and (C.7). This is

done in O
(
S̄t+1

h Āt+1
h Ȳ t+1

h

)
time and can happen, at most, for one pair (s, a): the one that

was newly added. Therefore, we have a total per-episode runtime of O
(∑H

h=1 S̄
t+1
h Āt+1

h Ȳ t+1
h

)
taking this case into account.

Case 2: (s, a) ∈ S̄t
h× Āt

h This means that the representative state-action pair (s, a) was added
before episode t, which implies that ζt+1

h (s, a) = ζt
h(s, a) = (s, a). Hence,

(

W t+1
h (s, a) =

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)

= ϕ
(
ζt+1

h (s, a), ζt+1
h (st

h, a
t
h)
)

+
t−1∑
i=1

λt−iϕ
(
ζt

h(s, a), ζi+1
h (si

h, a
i
h)
)

= ϕ
(
(s, a), ζt+1

h (st
h, a

t
h)
)

+ λ
t−1∑
i=1

λt−i−1ϕ
(
ζt

h(s, a), ζi+1
h (si

h, a
i
h)
)

= ϕ
(
(s, a), ζt+1

h (st
h, a

t
h)
)

+ λ

(

W t
h(s, a),

This implies that, for a fixed (s, a), the quantity (

W t+1
h (s, a) can be updated inO (1) time, assum-

ing that the mapping ζt+1
h (st

h, a
t
h) was previously computed (this mapping is only computed

once for all the updates, and takes O
(
S̄t+1

h × Āt+1
h

)
time).

Now, notice that

(rt+1
h (s, a) =

∑t
i=1 χ(t− i)ϕ

(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
r̃i

h

β +

(

W t+1
h (s, a)

=
ϕ
(
(s, a), ζt+1

h (st
h, a

t
h)
)

β +

(

W t+1
h (s, a)

r̃t
h + λ

(
β +

(

W t
h(s, a)

β +

(

W t+1
h (s, a)

)

(rt
h(s, a)

where we used again the fact that, in this case, ζt+1
h (s, a) = ζt

h(s, a). Hence, similarly to

(

W t+1
h (s, a), the quantity (rt+1

h (s, a) can be updated in O (1) time. A similar reasoning shows
that (pt+1

h (y, s, a) can be updated, for all y ∈ Ȳt+1
h , in O

(
Ȳ t+1

h

)
time:

(pt+1
h (y|s, a) =

ϕ
(
(s, a), ζt+1

h (st
h, a

t
h)
)

β +

(

W t+1
h (s, a)

δζt+1
h

(st
h+1)(y) + λ

(
β +

(

W t
h(s, a)

β +

(

W t+1
h (s, a)

)

(pt
h(y|s, a).

Summary Every time a new transition is observed at time (t, h), the estimators for all (s, a, y) ∈
S̄t+1

h ×Āt+1
h ×Ȳt+1

h must be updated. For a given representative (s, a), the updates can be done

156

C.6 Proof Sketch for Theorem 4.16: Regret of RS-KeRNS

inO
(
Ȳ t+1

h

)
time if it has been observed before episode t (case 2). This results in a total runtime,

per episode, of O
(∑

h S̄
t+1
h Āt+1

h Ȳ t+1
h

)
for all the representatives observed before episode t. If

the representative (s, a) has not been observed before episode t (case 1), the updates require
O
(
S̄t+1

h Āt+1
h Ȳ t+1

h

)
time, and this can happen, at most, for one state-action pair at each time

(t, h). Hence, the total runtime required for the updates is O
(∑

h S̄
t+1
h Āt+1

h Ȳ t+1
h

)
per episode.

C.6 Proof Sketch for Theorem 4.16: Regret of RS-KeRNS

To prove the regret bound in Theorem 4.16 for RS-KeRNS, we consider the kernel:

Γ(n, u, v) = χ(n)ϕ (u, v) , where ϕ (u, v) := exp
(
−ρ [u, v]2 /(2σ2)

)
,

for a given function χ : N → [0, 1]. In each episode t, RS-KeRNS has build representative sets
of states S̄t

h, actions Āt
h and next states Ȳt

h, for each h ∈ [H]. We recall the definition of the
projections

ζt
h(s, a) := argmin

(s,a)∈S̄t
h

×Āt
h

ρ [(s, a), (s, a)] , ζt
h(y) := argmin

y∈Ȳt
h

ρS (y, y) .

from any (s, a, y) to their representatives.

Let (

W t+1
h (s, a) =

∑t
i=1 χ(t− i)ϕ

(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
. In episode t+ 1, RS-KeRNS computes

the following estimate of the rewards

(rt+1
h (s, a) = 1

β +

(

W t+1
h (s, a)

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
r̃i

h

and the following estimate of the transitions

(pt+1
h (y|s, a) = 1

β +

(

W t+1
h (s, a)

t∑
i=1

χ(t− i)ϕ
(
ζt+1

h (s, a), ζi+1
h (si

h, a
i
h)
)
δζi+1

h
(si

h+1)(y).

which are similar to the estimates that would be computed by KeRNS, but using the projections
ζ and ζ to the representative states and actions. The values of (rt+1

h (s, a) and (pt+1
h (y|s, a) are

defined for all (s, a, y) ∈ S ×A×S , but they only need to be stored for (s, a, y) ∈ S̄t
h×Āt

h×Ȳt
h,

which corresponds to storing a finite representation of the MDP. The exploration bonuses of
RS-KeRNS are defined similarly:

(

bt+1
h (s, a) := Õ

 H√
β +

(

W t+1
h (s, a)

+ βH

β +

(

W t+1
h (s, a)

+ Lσ

157

Complements on Chapter 4

We prove that the estimates used by RS-KeRNS are close to the ones used by KeRNS up to bias
terms. Then, this result is used to prove that the regret bound of RS-KeRNS is the same as KeRNS,
but adding a bias term multiplied by the number of episodes T . For any (si

h, a
i
h) with i < t and

h ∈ [H], we show that: ∣∣∣(p̂t
h −

(pt
h

)
V (si

h, a
i
h)
∣∣∣ ≲LεX + 8H ε

σ

and similar bounds are obtained for the rewards (rt
h(s, a) and the exploration bonuses (

bt
h. This

allows us to prove that the dynamic regret of RS-KeRNS is bounded as

RRS−KeRNS
T ≲ RKeRNS

T + L(ε+ εX)H2T + ε

σ
H3T.

C.7 Technical Lemmas

Lemma C.19. Consider a sequence {an}n≥1 of non-negative numbers such that am ≤ c for some
constant c > 0. Let At =

∑t−1
n=1 an. Then, for any b > 0 and any p > 0,

T∑
t=1

at

(1 + bAt)p
≤ c+

∫ AT +1−c

0

dz
(1 + bz)p

·

Proof. Let n := max {t : a1 + . . .+ at−1 ≤ c}. We have

n−1∑
t=1

at

(1 + bAt)p
≤

n−1∑
t=1

at ≤ c

and, consequently,

T∑
t=1

at

(1 + bAt)p
≤ c+

T∑
t=n

at

(1 + bAt)p
= c+

T∑
t=n

At+1 −At

(1 + bAt)p

= c+
T∑

t=n

At+1 −At

(1 + bAt+1 − bat)p
≤ c+

T∑
t=n

At+1 −At

(1 + b(At+1 − c))p

= c+
T∑

t=n

∫ At+1

At

1
(1 + b(At+1 − c))p

dz ≤ c+
T∑

t=n

∫ At+1

At

1
(1 + b(z − c))p

dz

= c+
∫ AT +1

An

1
(1 + b(z − c))p

dz ≤ c+
∫ AT +1

c

1
(1 + b(z − c))p

dz .

158

C.7 Technical Lemmas

Lemma C.20. Consider a sequence of non-negative real numbers {zs}ts=1 and let Γ : R+ → [0, 1]
satisfy Assumption 4.4. Let

ws := Γ
(
zs

σ

)
and w̃s := ws

β +
∑t

s′=1ws′

for β > 0. Then, we have

t∑
s=1

w̃szs ≤ 2σ
(

1 +
√

log(C1t/β + e)
)
.

Proof. We split the sum into two terms:

t∑
s=1

w̃szs =
∑

s:zs<c

w̃szs +
∑

s:zs≥c

w̃szs ≤ c+
∑

s:zs≥c

w̃s .

FromAssumption 4.4, we have ws ≤ C1 exp
(
−z2

s/(2σ2)
). Hence, w̃s ≤ (C1/β) exp

(
−z2

s/(2σ2)
),

since β +
∑t

s′=1ws′ ≥ β.

We want to find c such that:

zs ≥ c =⇒ C1
β

exp
(
− z2

s

2σ2

)
≤ 1
t

2σ2

z2
s

which implies, for zs ≥ c, that w̃s ≤ 1
t

2σ2

z2
s
.

Let x = z2
s/2σ2. Reformulating, we want to find a value c′ such that C1 exp(−x) ≤ β/(xt) for

all x ≥ c′. Let c′ = 2 log(C1t/β + e). If x ≥ c′, we have:

x

2 ≥ log
(
C1t

β
+ e

)
=⇒ x ≥ x

2 + log
(
C1t

β
+ e

)
=⇒ x ≥ log x+ log(C1t/β + e)

=⇒ (C1/β) exp(−x) ≤ 1/(xt)

as we wanted.

Now, x ≥ c′ is equivalent to zs ≥
√

2σ2c′ = 2σ
√

log(C1t/β + e). Therefore, we take c =
2σ
√

log(C1t/β + e), which gives us

∑
s:zs≥c

w̃szs ≤
∑

s:zs≥c

1
t

2σ2

z2
s

zs ≤
2σ2

t

∑
s:zs≥c

1
zs
≤ 2σ2

c

|{s : zs ≥ c}|
t

≤ 2σ2

c
.

Finally, we obtain:

t∑
s=1

w̃szs ≤ c+
∑

s:zs≥c

w̃szs ≤ c+ 2σ2

c

159

Complements on Chapter 4

= 2σ
√

log(C1t/β + e) + σ√
log(C1t/β + e)

≤ 2σ
(

1 +
√

log(C1t/β)
)
.

Lemma C.21. Let Γ : R+ → [0, 1] be a kernel that satisfies Assumption 4.4. Let a ∈ Rt
+ and f1, f2, f3

be functions from Rt
+ to R defined as

f1(z) =
∑t

s=1 Γ (zs/σ) as

β +
∑t

s=1 Γ (zs/σ)
,

f2(z) =
√

1
β +

∑t
s=1 Γ (zs/σ)

,

f3(z) = 1
β +

∑t
s=1 Γ (zs/σ)

Then, for any y, z ∈ R+, we have

|f1(z)− f1(y)| ≤ 2C2 ∥a∥∞ t

βσ
∥z − y∥∞

|f2(z)− f2(y)| ≤ C2t

2β3/2σ
∥z − y∥∞

|f3(z)− f3(y)| ≤ C2t

β2σ
∥z − y∥∞

Proof. From Assumption 4.4, the function z 7→ Γ(z) is C2-Lipschitz , which yields

|f1(z)− f1(y)|

≤

∣∣∣∣∣∣
∑t

s=1

(
Γ (zs/σ)− Γ (ys/σ)

)
as

β +
∑t

s=1 Γ (zs/σ)

∣∣∣∣∣∣
+
∣∣∣∣∣

∑t
s=1 Γ (ys/σ) as

β +
∑t

s=1 Γ(λ,W) (t− s− 1, ys/σ)

∣∣∣∣∣
∣∣∣∣∣∣
∑t

s=1

(
Γ (zs/σ)− Γ (ys/σ)

)
β +

∑t
s=1 Γ (zs/σ)

∣∣∣∣∣∣
≤ C2

∑t
s=1(1/σ) |zs − ys| as

β +
∑t

s=1 Γ (zs/σ)
+ ∥a∥∞

C2
∑t

s=1(1/σ) |zs − ys|
β +

∑t
s=1 Γ (zs/σ)

≤ 2C2 ∥a∥∞ t

βσ
∥z − y∥∞ .

The proofs for f2 and f3 are analogous. For f2, we also use the fact that the function x 7→
(1/
√
β + x) is 1/(2β3/2)-Lipschitz .

Lemma C.22 (value functions are Lipschitz continuous). Under Assumptions 4.1 and 4.2, for all
(t, h), the functions V ∗

t,h and Q∗
t,h are Lh-Lipschitz , where Lh :=

∑H
h′=h LrLp

H−h′ .

160

C.7 Technical Lemmas

Proof. This fact is proved in Lemma 4 of [Dom+21d] and also in Proposition 2.5 of [SBY19].
For completeness, we also present a proof here.

We proceed by induction. For h = H , Q∗
H(s, a) = rH(s, a) which is Lr-Lipschitz by Assump-

tion 4.2. Also,

V ∗
H(x)− V ∗

H(y) = max
a

Q∗
H(x, a)−max

a
Q∗

H(y, a) ≤ max
a

(Q∗
H(x, a)−Q∗

H(y, a)) (C.8)

≤ max
a

LHρ [(x, a), (y, a)] ≤ LHρS (x, y) , by Assumption 4.1 (C.9)

which verifies the induction hypothesis for h = H , since we can invert the roles of x and y to
obtain |V ∗

H(x)− V ∗
H(y)| ≤ LHρS (x, y).

Now, assume that the hypothesis is true for h+ 1, i.e., that V ∗
h+1 and Q∗

h+1 are Lh+1-Lipschitz .
We have

Q∗
h(x, a)−Q∗

h(x′, a′) ≤ Lrρ
[
(x, a), (x′, a′)

]
+
∫

S
V ∗

h+1(y)(Ph(dy|x, a)− Ph(dy|x′, a′))

≤ Lrρ
[
(x, a), (x′, a′)

]
+ Lh+1

∫
S

V ∗
h+1(y)
Lh+1

(Ph(dy|x, a)− Ph(dy|x′, a′))

≤

Lr + Lp

H∑
h′=h+1

LrLp
H−h′

 ρ [(x, a), (x′, a′)
]

=
H∑

h′=h

LrLp
H−h′

ρ
[
(x, a), (x′, a′)

]
where, in last inequality, we use fact that V ∗

h+1/Lh+1 is 1-Lipschitz, the definition of the 1-
Wasserstein distance and Assumption 4.2. The same argument used in Equation (C.8) shows
that |V ∗

h (x)− V ∗
h (y)| ≤ LhρS (x, y), which concludes the proof.

161

List of Figures

3.1 Illustration of the class of hard MDPs for S = 4. 35
3.2 Illustration of the class of hard MDPs used in the proofs of Theorems 3.8 and 3.9. 36

4.1 Continuous Grid-World with two rooms separated by a wall. The circles repre-
sent the regions with non-zero rewards. 78

4.2 Regret of different versions of Kernel-UCBVI compared to baselines (smaller
is better). To estimate the optimal value function for the regret computation,
we used the best policy among all agents at the final episode. Average over 16
independent runs. 79

4.3 Total runtime of different algorithms in a continuous Grid-World versus the
number of episodes (smaller is better). Average over 16 runs. 80

4.4 Cumulative rewards of RS-KeRNS versus RS-Kernel-UCBVI and RestartBaseline
in a non-stationary environment (larger is better). The environment changes
every 2.5× 104 episodes. Average over 16 independent runs. 82

5.1 Grid-World with 9 rooms. The number of states is S = 233 (not counting the
walls), and the agent’s observations are one-hot encodings of the discrete states. 96

5.2 Left: true positions of each state in the Grid-World with 9 rooms, each state
is associated to a unique color. Middle: 2-dimensional projection of the 64-
dimensional embeddings beforeminimizing the loss (5.10). Right: 2-dimensional
projection of the embeddings after 15× 103 optimization steps to minimize the
representation loss (5.10). 99

5.3 Visualization of AKBX’s bonuses for α = 1/2 (top) and α = 1 (bottom). Left:
Visualization of number of visits of each state in the GridWorld, when random
trajectories are sampled starting from the center of the top-left room. Higher
values are shown in magenta and smaller values are shown in blue. Middle:
Bonuses (5.7) estimated by AKBX based on the learned representation function f .
Right: Comparison between AKBX’s bonuses and 1/nα, where n is the number
of state visits. 100

162

List of Figures

5.4 Evaluation of reward-free exploration: number of visits and entropy of state-visit
distribution in the 9-room Grid-World for AKBX, RND, RF-UCRL and RF-Express.
Average over 4 independent runs. 101

5.5 Number of state visits (in logarithmic scale) for RND (top), AKBX for α = 1/2
(middle) and RF-UCRL (bottom) in different time intervals. Each column corre-
sponds to the number of visits in a given time interval. For instance, the first
column shows state visits for between time t = 0 and t = 3× 105, whereas the
last column shows the visits between t = 12× 105 and t = 15× 105. The colors
are normalized per column, higher values are shown in magenta and smaller
values are shown in blue. Results for RF-Express and AKBX with α = 1 were
omitted from this plot since they are very similar to those of RF-UCRL and AKBX
with α = 1/2, respectively. 102

5.6 Comparison between the values of the policies πt learned by AKBX with α = 1/2
and RND at time t to the value of an optimal agent. The values correspond to the
expected sum of rewards in a horizon H = 100, starting from the top-left room
of the Grid-World, and are estimated by Monte-Carlo policy evaluation. The
optimal policy was computed using value iteration. Average over 4 runs. 103

163

List of Algorithms

2.1 MBQVI . 14
2.2 SparseSampling . 16
2.3 SmoothCruiser . 23
2.4 sampleV . 23
2.5 estimateQ . 24

3.1 UCBVI . 48

4.1 Kernel-UCBVI . 58
4.2 Kernel Backward Induction . 60
4.3 Kernel-UCBVI+RTDP . 74
4.4 Update Representative Sets . 75

5.1 RF-UCRL . 87
5.2 Simplified structure of RL algorithms based on exploration bonuses 90
5.3 AKBX: Approximate Kernel-Based Exploration . 93

C.1 RS-KeRNS . 154
C.2 Kernel Backward Induction on Representative States 154
C.3 Online Update of RS-KeRNS Model . 155

164

List of Tables

3.1 Algorithms matching the lower bounds in different settings. 55

4.1 Regret bound for KeRNS with optimized kernel parameters, forW = logλ
(1−λ)

T . 72
4.2 Value of ct

p for each to p in episode t. 81

5.1 Parameters used for representation learning . 98
5.2 Parameters used to compute AKBX’s bonuses . 99
5.3 Parameters used in AWR implementation . 102

165

References

[AKY20] Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement
learning with a generative model is minimax optimal. In Conference on Learning
Theory. 2020.

[Aue+02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The
nonstochastic multiarmed bandit problem. SIAM journal on computing (2002).

[AGO19] Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best
bandit arm with an unknown number of distribution changes. In Conference on
Learning Theory. 2019.

[AMK12] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. On the
Sample Complexity of Reinforcement Learning with a Generative Model. In
2012.

[AOM17] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret
bounds for reinforcement learning. In International Conference onMachine Learning.
2017.

[Aza+19] Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo Avila Pires, Jean-Bastien
Grill, Florent Altché, and Rémi Munos. World discovery models. arXiv preprint
arXiv:1902.07685 (2019).

[Bad+20a] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Zhaohan Daniel Guo, et al. Agent57: Outperforming the atari
human benchmark. In International Conference on Machine Learning. 2020.

[Bad+20b] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bi-
lal Piot, Steven Kapturowski, et al. Never GiveUp: LearningDirected Exploration
Strategies. In International Conference on Learning Representations. 2020.

[BPP16] André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based
reinforcement learning. The Journal of Machine Learning Research 17.1 (2016),
pp. 2372–2441.

[Bar+19] Peter L Bartlett, Victor Gabillon, Jennifer Healey, and Michal Valko. Scale-free
adaptive planning for deterministic dynamics & discounted rewards. In Interna-
tional Conference on Machine Learning. 2019.

[BBS95] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using
real-time dynamic programming. Artificial intelligence 72.1-2 (1995), pp. 81–138.

167

References

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15.6 (2003), pp. 1373–
1396.

[Bel+16] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Remi Munos. Unifying count-based exploration and intrinsic motivation.
Advances in Neural Information Processing Systems (2016).

[Ber+17] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause.
Safe Model-Based Reinforcement Learning with Stability Guarantees. In Ad-
vances in Neural Information Processing Systems. 2017.

[Ber11] Dimitri P Bertsekas. Dynamic programming and optimal control 3rd edition,
volume II. Belmont, MA: Athena Scientific (2011).

[BGZ14] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit
problemwith non-stationary rewards. InAdvances inNeural Information Processing
Systems. 2014.

[Bub+11] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed
bandits. Journal of Machine Learning Research 12 (2011), pp. 1587–1627.

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in Machine
Learning (2012).

[BM10] Sébastien Bubeck and RémiMunos. Open-loop optimistic planning. InConference
on Learning Theory. 2010.

[Bur+19] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. In International Conference on Learning Representa-
tions. 2019.

[BK97] Apostolos N Burnetas and Michaël N Katehakis. Optimal adaptive policies for
Markov decision processes.Mathematics of Operations Research (1997).

[BM12] Lucian Buşoniu and Rémi Munos. Optimistic planning for Markov decision
processes. In International Conference on Artificial Intelligence and Statistics. 2012.

[CK20] Tongyi Cao and Akshay Krishnamurthy. Provably adaptive reinforcement learn-
ing in metric spaces. In Advances in Neural Information Processing Systems. 2020.

[Che+19] Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-YuWei. A new algorithm
for non-stationary contextual bandits: Efficient, optimal and parameter-free. In
Conference on Learning Theory. 2019.

[CSLZ20] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement Learn-
ing for Non-Stationary Markov Decision Processes: The Blessing of (More)
Optimism. In International Conference on Machine Learning. 2020.

[CYZ00] Samuel PM Choi, Dit-Yan Yeung, and Nevin L Zhang. Hidden-mode markov
decision processes for nonstationary sequential decision making. In Sequence
Learning. Springer, 2000, pp. 264–287.

[CG19] Sayak Ray Chowdhury and Aditya Gopalan. Online Learning in Kernelized
Markov Decision Processes. In International Conference on Artificial Intelligence
and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. 2019.

168

References

[CO20] Sayak Ray Chowdhury and Rafael Oliveira. No-Regret Reinforcement Learning
with Value Function Approximation: a Kernel Embedding Approach. arXiv
preprint arXiv:2011.07881 (2020).

[CMP17] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal explo-
ration in structured stochastic bandits. InAdvances inNeural Information Processing
Systems. 2017.

[CM07] Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search. In
Uncertainty in Artificial Intelligence. 2007.

[CM08] Balázs Csanád Csáji and László Monostori. Value function based reinforcement
learning in changing Markovian environments. Journal of Machine Learning Re-
search 9.Aug (2008), pp. 1679–1709.

[DB15] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-
horizon reinforcement learning. In Advances in Neural Information Processing
Systems. 2015.

[DLB17] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret:
Uniform PAC bounds for episodic reinforcement learning. In Advances in Neural
Information Processing Systems. 2017.

[Dan+19] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy Certificates:
Towards Accountable Reinforcement Learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning. 2019.

[DGS14] Travis Dick, Andras Gyorgy, and Csaba Szepesvari. Online learning in markov
decision processes with changing cost sequences. In International Conference on
Machine Learning. PMLR. 2014, pp. 512–520.

[Din+21] Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jo-
vanovic. Provably Efficient Safe Exploration via Primal-Dual Policy Optimization.
In International Conference on Artificial Intelligence and Statistics. 2021.

[Dom+21a] Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Mé-
nard, Xuedong Shang, andMichal Valko. rlberry - A Reinforcement Learning Library
for Research and Education. 2021.

[Dom+21b] Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal
Valko. Episodic Reinforcement Learning in FiniteMDPs:Minimax Lower Bounds
Revisited. In International Conference on Algorithmic Learning Theory. 2021.

[Dom+21c] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann,
and Michal Valko. A Kernel-Based Approach to Non-Stationary Reinforcement
Learning in Metric Spaces. In International Conference on Artificial Intelligence and
Statistics. 2021.

[Dom+21d] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann,
andMichal Valko. Kernel-BasedReinforcement Learning: A Finite-TimeAnalysis.
In International Conference on Machine Learning. 2021.

[Dom+21e] Omar Darwiche Domingues, Corentin Tallec, Rémi Munos, and Michal Valko.
Density-Based Bonuses on Learned Representations for Reward-Free Explo-
ration in Deep Reinforcement Learning. In ICML 2021 Workshop on Unsupervised
Reinforcement Learning. 2021.

169

References

[Du+20] Simon S. Du, ShamM. Kakade, RuosongWang, and Lin F. Yang. Is a Good Repre-
sentation Sufficient for Sample Efficient Reinforcement Learning? In International
Conference on Learning Representations. 2020.

[Efr+19] Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Man-
nor. Tight regret bounds for model-based reinforcement learning with greedy
policies. In Advances in Neural Information Processing Systems. 2019.

[EGW05] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine Learning Research (2005).

[EDKM09] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online Markov decision
processes.Mathematics of Operations Research 34.3 (2009), pp. 726–736.

[FD14] Zohar Feldman and Carmel Domshlak. Simple regret optimization in online
planning for Markov decision processes. Journal of Artificial Intelligence Research
(2014).

[Fie94] Claude-Nicolas Fiechter. Efficient Reinforcement Learning. In Conference on
Computational Learning Theory. 1994.

[FB+21] Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu
Geist. Adversarially Guided Actor-Critic. In International Conference on Learning
Representations. 2021.

[FCL18] Lior Fox, Leshem Choshen, and Yonatan Loewenstein. DORA The Explorer:
Directed Outreaching Reinforcement Action-Selection. In International Conference
on Learning Representations. 2018.

[FCRL17] Justin Fu, John Co-Reyes, and Sergey Levine. EX2: Exploration with Exemplar
Models for Deep Reinforcement Learning. In Advances in Neural Information
Processing Systems. 2017.

[GOA18] Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for
markov decision processes with arbitrarily changing rewards and transitions.
arXiv preprint arXiv:1805.10066 (2018).

[GM11] A. Garivier and E.Moulines. OnUpper-Confidence Bound Policies For Switching
Bandit Problems. In International Conference on Algorithmic Learning Theory. 2011.

[GMS19] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next:
The true shape of regret in bandit problems.Mathematics of Operations Research
(2019).

[GSP19] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized
markov decision processes. In International Conference on Machine Learning. 2019.

[Gri+19] Jean-Bastien Grill, Omar Darwiche Domingues, Pierre Ménard, Rémi Munos,
and Michal Valko. Planning in entropy-regularized Markov decision processes
and games. In Neural Information Processing Systems. 2019.

[GVM16] Jean-Bastien Grill, Michal Valko, and Rémi Munos. Blazing the trails before
beating the path: Sample-efficient Monte-Carlo planning. In Neural Information
Processing Systems. 2016.

170

References

[Guo+21] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Alaa Saade, Shantanu
Thakoor, Bilal Piot, Bernardo Avila Pires, et al. Geometric entropic exploration.
arXiv preprint arXiv:2101.02055 (2021).

[Guo+20] Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Flo-
rent Altché, Rémi Munos, et al. Bootstrap latent-predictive representations for
multitask reinforcement learning. In International Conference on Machine Learning.
2020.

[Haa+17] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforce-
ment learning with deep energy-based policies. In International Conference on
Machine Learning. 2017.

[Haa+18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochas-
tic actor. In International Conference on Machine Learning. 2018.

[Haz+19] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient
maximum entropy exploration. In International Conference on Machine Learning.
PMLR. 2019, pp. 2681–2691.

[HM08] Jean-Francois Hren and Rémi Munos. Optimistic planning of deterministic sys-
tems. In European Workshop on Reinforcement Learning. 2008.

[Hua+17] Ruitong Huang, Mohammad M. Ajallooeian, Csaba Szepesvári, and Martin
Müller. Structured best-arm identification with fixed confidence. In Algorithmic
Learning Theory. 2017.

[JOA10] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for
reinforcement learning. Journal of Machine Learning Research (2010).

[Jia+19] Qian Jian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration
Bonus for Regret Minimization in Discrete and Continuous Average Reward
MDPs. In Advances in Neural Information Processing Systems. 2019.

[Jia+17] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert
E. Schapire. Contextual Decision Processes with low Bellman rank are PAC-
Learnable. In International Conference on Machine Learning. 2017.

[Jin+18] Chi Jin, ZeyuanAllen-Zhu, Sebastien Bubeck, andMichael I Jordan. IsQ-Learning
Provably Efficient? In Advances in Neural Information Processing Systems. 2018.

[Jin+20a] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-
Free Exploration for Reinforcement Learning. In International Conference on Ma-
chine Learning. 2020.

[Jin+20b] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient
reinforcement learning with linear function approximation. In Conference on
Learning Theory. 2020.

[Jon+20] Anders Jonsson, Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues,
Edouard Leurent, and Michal Valko. Planning in Markov Decision Processes
with Gap-Dependent Sample Complexity. In Advances in Neural Information
Processing Systems. 2020.

171

References

[Kak03] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis. University College London, 2003.

[KKL03] Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state
spaces. In International Conference on Machine Learning. 2003.

[KK17] Emilie Kaufmann and Wouter M Koolen. Monte-carlo tree search by best-arm
identification. In Neural Information Processing Systems. 2017.

[Kau+21] Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson,
Edouard Leurent, and Michal Valko. Adaptive Reward-Free Exploration. In
International Conference on Algorithmic Learning Theory. 2021.

[KMN02] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algo-
rithm for near-optimal planning in large Markov decision processes. Machine
learning 49.2 (2002), pp. 193–208.

[KS99] Michael Kearns and Satinder Singh. Finite-Sample Convergence Rates for Q-
Learning and Indirect Algorithms. In Advances in Neural Information Processing
Systems. 1999.

[KS02] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in
polynomial time.Machine learning 49.2-3 (2002), pp. 209–232.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[KSU19] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Bandits and experts in
metric spaces. Journal of the ACM (JACM) 66.4 (2019), pp. 1–77.

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research (2013).

[KS06a] L. Kocsis and C. Szepesvári. Discounted UCB. In 2nd PASCAL Challenges Work-
shop. 2006.

[KS06b] Levente Kocsis and Csaba Szepesvári. Bandit-based Monte-Carlo planning. In
European Conference on Machine Learning. 2006.

[KT12] Branislav Kveton and Georgios Theocharous. Kernel-based reinforcement learn-
ing on representative states. In Twenty-Sixth AAAI Conference on Artificial Intelli-
gence. 2012.

[LOR15] Kailasam Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret
bounds for undiscounted continuous reinforcement learning. In International
Conference on Machine Learning. 2015.

[LH12] Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In Interna-
tional Conference on Algorithmic Learning Theory. 2012.

[LHS+13] Tor Lattimore, Marcus Hutter, Peter Sunehag, et al. The sample-complexity of
general reinforcement learning. In Proceedings of the 30th International Conference
on Machine Learning. Journal of Machine Learning Research. 2013.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University
Press, 2020.

172

References

[LSW20] Tor Lattimore, Csaba Szepesvári, and Gellert Weisz. Learning with good feature
representations in bandits and in rl with a generative model. In International
Conference on Machine Learning. 2020.

[LR19] Erwan Lecarpentier and Emmanuel Rachelson. Non-StationaryMarkovDecision
Processes, a Worst-Case Approach using Model-Based Reinforcement Learning.
In Advances in Neural Information Processing Systems. 2019.

[LM19] Edouard Leurent and Odalric-AmbrymMaillard. Practical open-loop pptimistic
planning. In European Conference on Machine Learning. 2019.

[Lev+20] Sergey Levine,Aviral Kumar, George Tucker, and Justin Fu.Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643 (2020).

[LL19] Yingying Li and Na Li. Online Learning for Markov Decision Processes in Non-
stationary Environments: A Dynamic Regret Analysis. In 2019 American Control
Conference (ACC). IEEE. 2019, pp. 1232–1237.

[LSS15] EladLiebman,Maytal Saar-Tsechansky, andPeter Stone.DJ-MC:AReinforcement-
Learning Agent for Music Playlist Recommendation. In International Conference
on Autonomous Agents and Multiagent Systems. 2015.

[LA12] Shiau Hong Lim and Peter Auer. Autonomous Exploration For Navigating In
MDPs. In Conference on Learning Theory. 2012.

[Lyk+19] Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, and Wen Sun. Cor-
ruption robust exploration in episodic reinforcement learning. arXiv preprint
arXiv:1911.08689 (2019).

[MH08] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research 9.11 (2008).

[MBB20] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-Based
Explorationwith the Successor Representation. Proceedings of the AAAI Conference
on Artificial Intelligence (2020).

[MT04] Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the
multi-armed bandit problem. Journal of Machine Learning Research (2004).

[Mao+21] WeichaoMao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar.
Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic
MDPs. In International Conference on Machine Learning. 2021.

[Mei+21] Eli Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Controlling Graph
Dynamics with Reinforcement Learning and Graph Neural Networks. In Inter-
national Conference on Machine Learning. 2021.

[Mni+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, et al. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning. 2016.

[Mni+13] VolodymyrMnih, KorayKavukcuoglu,David Silver, AlexGraves, IoannisAntonoglou,
Daan Wierstra, et al. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 (2013).

173

References

[MJR15] Shakir Mohamed and Danilo Jimenez Rezende. Variational Information Maximi-
sation for Intrinsically Motivated Reinforcement Learning. In Advances in Neural
Information Processing Systems. 2015.

[MA12] Teodor Mihai Moldovan and Pieter Abbeel. Safe Exploration in Markov Decision
Processes. In International Coference on International Conference onMachine Learning.
2012.

[MS08] RémiMunos andCsaba Szepesvári. Finite-Time Bounds for Fitted Value Iteration.
Journal of Machine Learning Research 9.5 (2008).

[Mé+21a] Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann,
Edouard Leurent, and Michal Valko. Fast active learning for pure exploration in
reinforcement learning. In International Conference on Machine Learning. 2021.

[Mé+21b] Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko.
UCB Momentum Q-learning: Correcting the bias without forgetting. In Interna-
tional Conference on Machine Learning. 2021.

[Neu+13] Gergely Neu, András György, Csaba Szepesvari, and Andras Antos. Online
markov decision processes under bandit feedback. IEEE Transactions on Automatic
Control 59.3 (2013), pp. 676–691.

[NJG17] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-
regularized markov decision processes. arXiv preprint arXiv:1705.07798 (2017).

[NYW19] Chengzhuo Ni, Lin F Yang, and Mengdi Wang. Learning to Control in Metric
Space with Optimal Regret. In 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton). IEEE. 2019, pp. 726–733.

[OPT18] Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in struc-
tured reinforcement learning. InAdvances in Neural Information Processing Systems.
2018.

[OS02] Dirk Ormoneit and Śaunak Sen. Kernel-Based Reinforcement Learning. Machine
Learning (2002).

[OGA19] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational Regret Bounds for
Reinforcement Learning. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence. 2019.

[OR12] Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted con-
tinuous reinforcement learning. In Advances in Neural Information Processing
Systems. 2012, pp. 1763–1771.

[OAC18] Ian Osband, John Aslanides, and Albin Cassirer. Randomized Prior Functions
for Deep Reinforcement Learning. In Advances in Neural Information Processing
Systems. 2018.

[Osb+16] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
Exploration via Bootstrapped DQN. In Advances in Neural Information Processing
Systems. 2016.

[ORVR13] IanOsband, Daniel Russo, and BenjaminVanRoy. (More) efficient reinforcement
learning via posterior sampling. In Advances in Neural Information Processing
Systems. 2013.

174

References

[OVR14] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and
the eluder dimension. In Advances in Neural Information Processing Systems. 2014.

[Ost+17] GeorgOstrovski,Marc G Bellemare, AäronOord, and RémiMunos. Count-based
exploration with neural density models. In International Conference on Machine
Learning. 2017.

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, et al. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems. 2019.

[Pat+17] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International Conference on
Machine Learning. 2017.

[PP13] Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space
Markov decision processes. In AAAI Conference on Artificial Intelligence. 2013.

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[Pen+19] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-
weighted regression: Simple and scalable off-policy reinforcement learning.
arXiv preprint arXiv:1910.00177 (2019).

[Put94] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 1994.

[Raf+21] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research (2021).

[Ren+21] Tongzheng Ren, Tianjun Zhang, Csaba Szepesvári, and Bo Dai. A Free Lunch
from the Noise: Provable and Practical Exploration for Representation Learning.
arXiv e-prints (2021).

[Rie05] Martin Riedmiller. Neural fitted Q iteration–first experiences with a data effi-
cient neural reinforcement learning method. In European Conference on Machine
Learning. 2005.

[RVC19] Yoan Russac, Claire Vernade, and Olivier Cappé. Weighted Linear Bandits for
Non-Stationary Environments. In Advances in Neural Information Processing Sys-
tems. 2019.

[Sch91] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom
in model-building neural controllers. In Proc. of the international conference on
simulation of adaptive behavior: From animals to animats. 1991, pp. 222–227.

[SCA17] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradi-
ents and soft Q-learning. In arXiv:1704.06440. 2017.

[Sin+20] Sean Sinclair, Tianyu Wang, Gauri Jain, Siddhartha Banerjee, and Christina Yu.
Adaptive Discretization for Model-Based Reinforcement Learning. In Advances
in Neural Information Processing Systems. 2020.

175

References

[SBY19] Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive Discretiza-
tion for Episodic Reinforcement Learning in Metric Spaces. Proceedings of the
ACM on Measurement and Analysis of Computing Systems (2019).

[SY94] Satinder P Singh and Richard C Yee. An upper bound on the loss from approxi-
mate optimal-value functions.Machine Learning 16.3 (1994), pp. 227–233.

[Sli14] Aleksandrs Slivkins. Contextual bandits with similarity information. Journal of
Machine Learning Research 15.1 (2014), pp. 2533–2568.

[SS19] Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric
spaces. arXiv preprint arXiv:1905.00475 (2019).

[SP12] Susanne Still and Doina Precup. An information-theoretic approach to curiosity-
driven reinforcement learning. Theory in Biosciences 131.3 (2012), pp. 139–148.

[SLL09] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement Learning
in Finite MDPs: PAC Analysis. Journal of Machine Learning Research (2009).

[SL08] Alexander L. Strehl andMichael L. Littman. An analysis of model-based interval
estimation for Markov decision processes. Journal of Computer and System Sciences
(2008).

[Str00] Malcolm Strens. A Bayesian framework for reinforcement learning. In Interna-
tional Conference on Machine Learning. 2000.

[Sui+15] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe Exploration
for Optimization with Gaussian Processes. In International Conference on Machine
Learning. 2015.

[Sze10] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on
artificial intelligence and machine learning 4.1 (2010), pp. 1–103.

[STL02] István Szita, Bálint Takács, and András Lörincz. ε-MDPs: Learning in varying
environments. Journal of Machine Learning Research 3.Aug (2002), pp. 145–174.

[SKM14] Balázs Szörényi, Gunnar Kedenburg, and Rémi Munos. Optimistic planning
in Markov decision processes using a generative model. In Neural Information
Processing Systems. 2014.

[Tan+17] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,
et al. # Exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in Neural Information Processing Systems. 2017.

[Tar+21a] Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta,
Michal Valko, and Alessandro Lazaric. Adaptive Multi-Goal Exploration. arXiv
preprint arXiv:2111.12045 (2021).

[Tar+20a] Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Im-
proved Sample Complexity for Incremental Autonomous Exploration in MDPs.
In Advances in Neural Information Processing Systems. 2020.

[Tar+20b] Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Reward-
free exploration beyond finite-horizon. In ICML 2020 Workshop on Theoretical
Foundations of Reinforcement Learning. 2020.

176

References

[Tar+21b] Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Sample
Complexity Bounds for Stochastic Shortest Path with a Generative Model. In
International Conference on Algorithmic Learning Theory. 2021.

[Tar+20c] JeanTarbouriech, Shubhanshu Shekhar,Matteo Pirotta,MohammadGhavamzadeh,
and Alessandro Lazaric. Active Model Estimation in Markov Decision Processes.
In Conference on Uncertainty in Artificial Intelligence (UAI). 2020.

[TTB20] Ahmed Touati, Adrien Ali Taiga, and Marc G. Bellemare. Zooming for Efficient
Model-Free Reinforcement Learning in Metric Spaces. arXiv e-prints (2020).

[TV20] Ahmed Touati and Pascal Vincent. Efficient learning in non-stationary linear
Markov decision processes. arXiv preprint arXiv:2010.12870 (2020).

[TBK16] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in
finite markov decision processes with gaussian processes. Advances in Neural
Information Processing Systems (2016).

[VMS16] René Vidal, Yi Ma, and S Shankar Sastry. Generalized principal component analysis.
Vol. 5. Springer, 2016.

[Wac+18] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and
optimization of constrained mdps using gaussian processes. In AAAI Conference
on Artificial Intelligence. 2018.

[WGL10] Thomas J Walsh, Sergiu Goschin, and Michael L Littman. Integrating sample-
based planning and model-based reinforcement learning. AAAI Conference on
Artificial Intelligence (2010).

[WAS21] Gellert Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds
for planning in mdps with linearly-realizable optimal action-value functions. In
Algorithmic Learning Theory. 2021.

[Yan+20] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael Jordan.
Provably Efficient Reinforcement Learning with Kernel and Neural Function
Approximations. Advances in Neural Information Processing Systems (2020).

[YBW21] Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-Optimal Provable Uniform Conver-
gence in Offline Policy Evaluation for Reinforcement Learning. In International
Conference on Artificial Intelligence and Statistics. 2021.

[Yu+21] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys (CSUR) (2021).

[YM09] Jia Yuan Yu and Shie Mannor. Online learning in Markov decision processes
with arbitrarily changing rewards and transitions. In International conference on
game theory for networks. IEEE. 2009.

[ZMS20] Xuezhou Zhang, Yuzhe Ma, and Adish Singla. Task-agnostic Exploration in
Reinforcement Learning. In Advances in Neural Information Processing Systems.
2020.

[ZKZ09] Yufan Zhao, Michael R Kosorok, and Donglin Zeng. Reinforcement learning
design for cancer clinical trials. Statistics in medicine (2009).

177

References

180

	Contents
	1 Introduction
	1.1 Overview
	1.2 Markov Decision Processes
	1.3 Sampling Models
	1.4 Evaluating Reinforcement Learning Algorithms
	1.5 Contributions

	2 Planning with a Generative Model
	2.1 Model-Based Q-Value Iteration
	2.2 SparseSampling: Planning in Arbitrary State Spaces
	2.3 SmoothCruiser: Planning in Regularized MDPs
	2.4 Discussion and Bibliographical Remarks

	3 Online Interaction with Finite MDPs
	3.1 Performance Criteria
	3.2 Lower Bounds: Key Ideas & Hard MDP Instances
	3.3 Lower Bound on the Regret
	3.4 Lower Bound on the Sample Complexity
	3.5 Lower Bounds: Extensions
	3.6 Upper Bound on the Regret of UCBVI
	3.7 Discussion and Bibliographical Remarks

	4 A Kernel-Based Approach to Exploration in Continuous MDPs
	4.1 Kernel-Based Reinforcement Learning for Exploration
	4.2 Regret Analysis of BlueKernel-UCBVI
	4.3 Comparison to Lower Bounds & Related Work
	4.4 VioletKeRNS: An Extension of BlueKernel-UCBVI to Non-Stationary MDPs
	4.5 Regret Analysis of VioletKeRNS
	4.6 Reducing the Computational Complexity
	4.7 Experiments
	4.8 Discussion and Bibliographical Remarks

	5 Exploration without Rewards & Applications to Deep RL
	5.1 Reward-Free Exploration in Finite MDPs
	5.2 Kernel-Based Bonuses for Exploration in Deep RL
	5.3 Related Work
	5.4 Experiments
	5.5 Discussion and Bibliographical Remarks

	6 Conclusion
	6.1 Main Contributions & Directions for Future Work
	6.2 Software for Reinforcement Learning Research

	A Complements on chapter:2
	A.1 Proof of theorem:smoothcruiser-sample-complexity: Sample Complexity of OrangeSmoothCruiser
	A.2 Proof of theorem:smoothcruiser-pac: Consistency of OrangeSmoothCruiser
	A.3 Technical Lemmas

	B Complements on chapter:3
	B.1 Change of Distribution: Proof of lemma:kl-between-mdps-with-stopping-time
	B.2 PAC-MDP Lower Bound: Proof of corollary:pac-mdp-lower-bound
	B.3 Technical Lemmas for Lower-Bound Proofs
	B.4 Complements on the proof of theorem:ucbvi-regret-upper-bound (Regret of UCBVI)

	C Complements on chapter:4
	C.1 Definitions
	C.2 Proof of theorem:regret-bound-kernel-ucbvi
	C.3 Proof Sketch for theorem:kerns-regret-bound: Regret of VioletKeRNS
	C.4 Proof of theorem:regret-kernel-ucbvi-rtdp: Regret of BlueKernel-UCBVI+RTDP
	C.5 Detailed Description of VioletRS-VioletKeRNS
	C.6 Proof Sketch for theorem:rs-kerns-regret: Regret of VioletRS-VioletKeRNS
	C.7 Technical Lemmas

	List of Figures
	List of Algorithms
	List of Tables
	References

