Alessandro Debabrota

Florian Ronan

Guillaume

Lilian

Achraf Antoine Mathieu

Nathan Hassan

Dorian

Johan Hippolyte

Sarah Geoffrey

Andrea Rianne

Rémi

Corentin

Jean-Bastien Bilal

Florent Alaa Daniel

Mohammad Azar

Florian

Rana Miruna

My Mom

Nádia Darwiche

Maria Conceição

Ferreira Domingues

Ana Maria

I Rosinha

João Hope You'll

Samira

Aichi

Paulo, Ibraim, Letícia Xará Sara

Fátima

Solange

Júlia Adilson

Jean-Bastien Grill

Omar Darwiche Domingues

2 As we all know, things got more complicated after (and including) 2020.

3 Also known as Pedro, the theorem-proving machine, and one of the most brilliant people I have ever met. 4 A wonderful bar in Lille, la meilleure ville. 5 During my master's, when he was teaching RL with Alessandro, I can never forget that he replied to an email that I sent right after Christmas about some weird stuff that people do with policy gradients.

6 Ghana! I remember the cool music we listened to while preparing the exercises.

To my mom, whose unconditional support and hard work allowed me to get here. And to my grandma, who always said to me: "if you can't make it, then who else can?" and "who studies too much goes crazy". 1 All I can hope is that I made it and did not go crazy! There are many people without whom this work would not have been possible. Michal and Emilie, my advisors and friends, gave me support and freedom to explore ideas, inspired me with their energy and intelligence, were always there to ask the tough questions that fuel research, and always there for the social events that keep life bright in a not-always-so-bright world. 2 I am extremely thankful for the opportunities you gave me and the amazing times we had, but I'd like to highlight two particular moments that show how cool you are. Emilie, when you welcomed me in Truchtersheim, showed me some cities around, and prepared vegan tarte flambées, it was incredible! And Michal, always knowing me and my passion for free food very well, brought me free snacks from DeepMind when I couldn't be there during my remote internship, this is unforgettable! Pierre 3 joined the team-family as a postdoc, became my third advisor, an amazing collaborator and friend, without whom many (many!) results presented in this thesis would not have been found, and several gatherings at l'Écart 4 would not have taken place. Thank you for all the discussions, debates, beers, Bernsteins, desserts, brainstorms, left or right?, pizza, S 2 , beers.

Matteo helped me discover that reinforcement learning is painfully fun 5 , encouraged me to explore kernel-based ideas that appear quite a lot in this thesis, gave me great teaching opportunities 6 , and is one of the few people with whom I can really talk about the best kind of pop music. Thank you! I am also immensely thankful to the members of the jury: Emmanuel, Marcello, Aurélien, Matthieu, Christina, and Ronald. I really admire your work, and it was a great honor to have you on the jury. Special thanks to Emmanuel and Marcello, the rapporteurs, for their detailed feedback on the manuscript and the many typos they've spotted! I also appreciated the discussions I had with Emmanuel after the defense about some research topics! I thank Lucas and Denise, who are amazing people that I consider as my family in Paris, who were there for the joyful moments and also for the difficult ones, welcomed me uncountable times into their home, either for simple weekends among friends or for their delicious Christmas dinners and joyful New Year's Eve champagne. Xuedong (Javier Francesco Samuel and I forgot what the other name is, probably Carlinhos), a friend and thesis-brother, who was (almost) always there for a walk in Lille, a beyond-meat burger at Holy Moly, a pizza at IT, a strawberry-milkshake-at-Five-Guys-that-tastes-almost-like-the-missing-Häagen-Dazs-à-lafraise, and, most importantly, to help me find the best apartments in Loos while making me angry about his weird political views and question whether we can know if anything is real. Thank you for that and for all your very thoughtful words in Spanish! Jean, my full-of-energy thesis-half-brother and friend, thank you for all your good (and bad) advice, the best (!) parties in Paris, the times you received me at Facebook-the-office-not-the-social-network (which were of course for academic reasons and not for free food, but thanks for the free food), the nice pictures in Vancouver and beyond, the party hats, the easily recognizable tall-man drawings in skribbl (+Xuedong here too), that one very cool time at Ground Control, and for all the party lights you take wherever you go (I'm trying a metaphor here, but it's late and this manuscript is due tomorrow). Reda (Khobz), another friend and thesis-cousin, thank you for all your thé-à-la-menthe-flavored good vibes, for taking care of the magic key to the vending machine, for teaching me very cool words (among which I can pronounce probably two), and for all the pessimistically optimistic discussions about research! Yannis, a friend who also has the crème de la crème of vibes, thank you for the great parties and music, for l'Écart et al., and for the expertise you shared on deep RL and beyond! I would also like to thank several other friends: Gildo (for all the advice, japanese restaurants, and phone calls), Vinícius (Marco Luque, who sometimes has a great musical taste, special thanks for all the caronas Swift), Pedro (Mineiro, who has many interesting alternative discussion topics!), Omar C. (who inspires me to be chic in several aspects of life), Pedro (Capixa, for all the great times, I remember when you took an Uber instead of the subway so that we could drink iced-tea-related-beverages), Daniel (Coquinho, thanks for the problem-solving meetings at Unicamp, and all those weird-in-a-great-sense moments at Centrale), Daniel (Dello, also for the great adventure times at Centrale), Victor (Creuzinho, for the great times as neighbors at Centrale and at the Caverna, and the pizzas at the Cantina do Belo), Denis (a great example of a person who does magic with code), Gabrielle, Lisa, Chloé, Laura, and Nate. I also thank Diego, Vitor (Bassi), Gabriel, Gustavo (Magrelo, Guga), Milena (who always has incredible dreams to share), and André, who, despite the distance (and time!), are still close friends.

Résumé

L'apprentissage par renforcement (reinforcement learning, RL) est un paradigme de l'apprentissage automatique qui nous permet de concevoir des algorithmes qui apprennent à prendre des décisions et à interagir avec le monde. Les algorithmes de RL peuvent être classés comme hors ligne ou en ligne. Dans le cas hors ligne, l'algorithme dispose d'un ensemble de données fixe, avec lequel il doit calculer une bonne stratégie de prise de décision. Dans le cas en ligne, l'agent doit collecter efficacement des données par lui-même, en interagissant avec l'environnement : c'est le problème que l'on appelle exploration en apprentissage par renforcement. Cette thèse présente des contributions théoriques et pratiques sur le RL en ligne. Nous étudions la performance dans le pire des cas des algorithmes de RL dans des environnements finis, c'est-à-dire, ceux qui peuvent être modélisés avec un nombre fini d'états, et où l'ensemble des actions qui peuvent être prises par un agent est aussi fini. Cette performance se dégrade à mesure que le nombre d'états augmente, alors qu'en pratique, l'espace d'états peut être arbitrairement grand ou continu. Pour résoudre ce problème, nous proposons des algorithmes à noyaux qui peuvent être implémentés pour des espaces d'états généraux, et pour lesquels nous proposons des résultats théoriques sous des hypothèses faibles sur l'environnement. Ces algorithmes reposent sur une fonction noyau qui mesure la similarité entre différents états, qui peut être définie sur des espaces d'état arbitraires, y compris des ensembles discrets et des espaces euclidiens, par exemple. De plus, nous montrons que nos algorithmes à noyaux sont capables d'apprendre dans des environnements non stationnaires en utilisant des fonctions noyau dépendantes du temps, et nous proposons et analysons des versions approximatives de nos méthodes pour réduire leur complexité de calcul. Finalement, nous introduisons une autre approximation de nos méthodes à noyaux, qui peut être implémentée avec des algorithmes d'apprentissage par renforcement profond et intégrer de différentes méthodes d'apprentissage de représentation pour définir un noyau.

x Chapter 1

Introduction 1.1 Overview

As living beings interacting with the world, we are constantly faced with decision-making problems. Which path to take in order to find food? What is the best strategy to fight a pandemic? Some of those problems can be modeled as seeking the behavior that maximizes a utility function, such as the amount of gathered food and the number of saved lives. 1Reinforcement learning (RL) provides a mathematical and algorithmic framework for utility maximization in which an agent interacts with an environment by taking actions and receiving rewards. In this framework, the utility is defined as the sum of rewards obtained throughout the interaction with the environment. Mathematically, the environment is modeled as a Markov decision process (MDP), and the agent is defined as a decision rule (or policy) that selects actions based on the history of its previous interactions and its knowledge about the current state of the environment.

Introduction

dilemma. To gain some intuition about this dilemma, imagine that you are at restaurant with free food, where you can eat pizza, falafel, or spaghetti all'arrabbiata. Assume that you have never tasted any of those dishes before. You start by trying the pizza and, unsurprisingly, you think it tastes good. At that moment, you must either decide to keep eating pizza (that is, to exploit your current knowledge) or to try other dishes to find out if they are better than pizza (to explore and gather more knowledge). Since your eating capacity is limited, you need to optimally balance exploration and exploitation in order to have the best possible experience in such situation. Reinforcement learning algorithms need to handle a similar dilemma when trying to maximize rewards in an unknown environment with limited resources.

Beyond finite state-spaces At every time step, the environment with which an agent interacts is described by a state variable s belonging to a state set (or space) S. The complexity of exploration is related to the size of the set S, which can be its cardinality (if it is finite) or some notion of dimension. For instance, if S is finite and no prior information is given about the environment, an agent is required to visit every reachable state s ∈ S in order to learn a good policy: otherwise, it might miss a state with very high rewards. This thesis studies theoretical and practical aspects of exploration in reinforcement learning, when the state space S is very large, and possibly continuous. With continuous state spaces, it is not possible to visit every single state s ∈ S in finite time: thus, we need to make assumptions on the regularity of the MDP. Here, we study regularity through kernel functions that measure the similarity between states. The intuition is that once the agent visits a given state s, it also gains information about all other states that are similar to s and avoids the need to visit every state. In the example above, we might have prior information saying that pizza is similar to spaghetti all'arrabbiata, which might prevent you from spending time exploring the spaghetti if you already tried pizza and found out you dislike tomato sauce.

In the next sections, we formalize the concepts of agent and environment and we define the performance criteria that are used to evaluate RL algorithms. Then, we end this chapter with an overview of the contributions presented in this thesis.

Markov Decision Processes

The environment with which an agent interacts is modeled as a Markov decision process [START_REF] Martin L Puterman | Markov decision processes: discrete stochastic dynamic programming[END_REF], to which we refer as MDP. At every time t ∈ N * , the environment is in a state s ∈ S and the agent takes an action a ∈ A, where S and A are the sets of possible states and actions, respectively. As a consequence, the agent receives a (possibly random) reward with expectation r t (s, a), where r t : S × A → R is a (mean) reward function, and the state of the environment is changed according to a probability kernel p t (•|s, a). An MDP is thus defined as the tuple

Introduction

Finite-Horizon

In this thesis, we will also consider trajectories (S t , A t) t∈N * that are split into episodes of length (or horizon) H ∈ N * . Consider the bijection m : N * × {1, . . . , H} → N * such that m(t, h) = (t -1)H + h, and let S t h := S m(t,h) , A t h := A m(t,h) , and B t h := B m(t,h) . We refer to the subtrajectory (S t h , A t h) h∈{1,...,H} as the t-th episode generated by the policy π. Also, we denote by F t h := σ(B t h) the σ-algebra generated by B t , and by π t h := π m(h,t) the restriction of the policy π to the subset of histories starting with B t h .

Performance Criteria

In RL, the utility of a policy π in an MDP M is defined as the weighted sum of rewards gathered by taking the actions prescribed by π in M:

U π = ∞ t=1 γ t-1 r t (S t , A t),
where γ ∈ [0, 1] is a constant controlling the preference of the agent for short-term rewards, and is called discount factor. We are interested in finding policies that maximize the expected utility

E [U π],
and, to that end, it is convenient to introduce value functions. The value of π starting from a state s at time t is defined as

V π t (s) := E π ∞ t ′ =t γ t ′ -t r t ′ (S t ′ , A t ′) S t = s
and s → V π t (s) is the value function of π at time t. Similarly, we define the action-value function (s, a) → Q π t (s, a), also known as Q-function, as the value of the policy that selects action a in state s at time t and follows the policy π thereafter:

Q π t (s, a) := E π ∞ t ′ =t γ t ′ -t r t ′ (S t ′ , A t ′) S 1 = s, A t = a .
Since we are dealing with infinite sums, additional conditions are required for V π and Q π to be well-defined, both mathematically and in terms of which kind of properties we would like for the policy π that maximizes E [U π]. Different conditions will lead to different performance criteria, and the most common criteria are introduced below. Except for the finite-horizon criterion, we assume that the rewards and transition probabilities are time-invariant, i.e., r t (s, a) = r(s, a) p t (•|s, a) = p(•|s, a), where r is a fixed reward function and p is a fixed transition kernel.

Finite Horizon

In situations where the agent is evaluated for its performance during a finite amount of time steps H ∈ N * , we set r t = 0 for t > H. The discount factor is often set to γ = 1 in this setting.

Markov Decision Processes

Discounted Reward If the agent has a preference for short-term rewards, but still considers the long-term impact of its actions, we can take a discount factor γ that is strictly smaller than 1, which defines the discounted-reward criterion.

Average Reward If the agent is evaluated for its performance during a large (possibly infinite) amount of time and with no preference for short-term rewards, we take γ → 1 and use the average-reward criterion, where the policy is evaluated by lim γ→1 (1 -γ)V π 1 (s) [Ber11, Chapter 4].

Stochastic Shortest Path This setting considers γ = 1 and applies to MDPs where there exists an absorbing state s g (i.e., a state such that p(s g |s g , a) = 1 for any action a, also called goal state) such that r(s g , •) = 0 and r(s, a) ≤ 0. We can interpret r as a negative cost function. If the cost in a state s is seen as the average time spent on a transition between s and its possible next states, a policy that maximizes the sum of rewards must reach the absorbing state s g as quickly as possible. Hence, we seek the shortest path to the goal state s g .

In this thesis, we focus mostly on the finite-horizon criterion (except for Chapter 2, where we consider the discounted-reward criterion) for mathematical convenience. Indeed, this criterion imposes fewer constraints on the reinforcement-learning algorithms, by avoiding infinite sums. Nevertheless, some of the algorithmic ideas introduced for finite-horizon problems might be adapted to infinite-horizon discounted-reward problems. This is due to the fact that

∞ t=1 γ t-1 r(S t , A t) - H t=1 γ t-1 r(S t , A t) ≤ γ H 1 -γ r max .
Hence, for H ≥ log γ ε(1-γ) rmax , the value of a policy varies at most by ε from the finite-horizon to the discounted-reward criterion, provided that we use a discounted factor γ < 1 and assume that the transitions and rewards are time-invariant.

Characterization of Optimal Policies

A history-dependent policy π ∈ Π H is optimal if V π 1 (s) = V * 1 (s) := sup π ′ ∈Π H V π ′ 1 (s) for all s ∈ S, where V * 1 is the optimal value function. Notice that π is optimal if and only if it maximizes the expected utility E [U π] for any possible initial distribution µ. It can be shown that, for any π ∈ Π H and for each s ∈ S, there exists a Markov policy π ′ ∈ Π M such that V π 1 (s) = V π ′ 1 (s) [Put94, Theorem 5.5.3]. Hence, if there exists an optimal policy for an MDP M, there exists an optimal Markov policy for M, since sup π∈Π H V π 1 (s) = sup π∈Π M V π 1 (s).

Introduction

sup x∈S |f (x)|. The Bellman operator at time t is defined as T t,γ : V → V such that [T t,γ V] (s) = sup a∈A r t (s, a) + γ S V (s ′)p t (ds ′ |s, a) .

(1.1) Remark 1.2. In general, additional conditions on the MDP are required for the Bellman operator to be well-defined: for instance, since T t,γ V involves an integration of V over S with respect to the transition kernel, we must ensure that we restrict ourselves to the space of measurable functions in V, and that, after taking the supremum over a ∈ A, the result remains measurable. Such technical considerations are discussed by [START_REF] Martin L Puterman | Markov decision processes: discrete stochastic dynamic programming[END_REF]Section 2.3] and references therein.

The Bellman operator can also be defined for action-value functions. Let Q be the space of bounded functions from S × A to R, also equipped with the infinity norm ∥•∥ ∞ such that ∥f ∥ ∞ := sup x,a∈S×A |f (x, a)|. We define T t,γ : Q → Q as

T t,γ Q (s, a) = r t (s, a) + γ S sup a ′ ∈A Q(s ′ , a ′)p t (ds ′ |s, a). (1.2)
Finite-Horizon Criterion In this case, since r t > 0 for t > H, the value function of any policy π satisfies V π t = 0 for t > H. Hence, the actions taken after t > H are irrelevant and, for the purposes of utility maximization, we can focus on the set of Markov policies defined as a mapping from {1, . . . , H} × S to ∆(A). Let V * t (s) := sup π∈Π M V π t (s) and Q * t (s, a) := sup π∈Π M Q π t (s, a) be the optimal value functions at time t ∈ {1, . . . , H}. It can be shown that (V * t) t satisfy the Bellman optimality equations [Put94, Theorem 4.3.2]:

V * H+1 (s) = 0, ∀s ∈ S, V * t (s) = T t,γ=1 V * t+1 (s), ∀s ∈ S, ∀t ∈ {1, . . . , H} .

If the supremum in Equation (1.1) is attained for any state s ∈ S and any time t ∈ {1, . . . , H}, there exists a deterministic Markov policy π * ∈ Π MD such that π * (t, s) ∈ argmax a∈A r t (s, a)

+ S V * t+1 (s ′)p t (ds ′ |s, a) (1.3)
and V * t (s) = V π * t (s) for all (s, t). That is, π * is an optimal policy.

Furthermore, the Bellman equations can be also be written for action-value functions as follows:

Q * H+1 (s, a) = 0, ∀(s, a) ∈ S × A, Q * t (s, a) = T t,γ=1 Q * t+1 (s, a), ∀(s, a) ∈ S × A, ∀t ∈ {1, . . . , H} ,

Markov Decision Processes

where (Q * t) t are the optimal action-value functions, and we have V * t (s) = sup a∈A Q * t (s, a) for t ∈ {1, . . . , H}. If a policy π * ∈ Π MD satisfies π * (t, s) ∈ argmax a∈A Q * t (s, a), provided that the maximum exists, then π * is an optimal policy. Discounted-Reward Criterion In this case, recall that the rewards and transitions are assumed to be time-invariant, which implies that: (i) the Bellman operators T t,γ and T t,γ are time-invariant, and we denote them by T γ and T γ , respectively ; and (ii) the value functions

V * t , Q * t ,
V π t and Q π t for any π are also time-invariant, and are denoted by V * , Q * , V π and Q π .

If the Bellman operator T γ admits a fixed point V ∈ V, that is, T γ V = V , then V is unique and is the optimal value function V = V * [Put94, Theorem 6.2.2]. Since V is a Banach space and the Bellman operator T γ is a contraction mapping for γ ∈ [0, 1[, a fixed point of T γ is guaranteed to exist by Banach's fixed-point theorem. is an optimal policy [Sze10, Theorem 2].

Similar results hold for the Bellman operator T γ for action-value functions: it admits a fixedpoint Q such that Q = Q * . Also, if a policy π * ∈ Π SD satisfies π * (s) ∈ argmax a∈A Q * (s, a), then π * is an optimal policy.

Value Iteration

In Section 1.2.3, we saw that optimal policies can be derived from optimal value functions, which can be defined either through recursive applications of the Bellman operator (in the finite-horizon setting) or as its fixed-point (in the discounted-reward setting).

The Value Iteration algorithm can be used to compute (or approximate) optimal value functions, and is defined as follows:

(i) set a number of iterations N and define an initial value function Q N,N +1 := 0;

(ii) apply the Bellman operator for N steps: Q N,n := T n,γ Q N,n+1 for n ∈ {1, . . . , N }.

Introduction

This algorithm is also called Q-Value Iteration (QVI), since it operates on action-value functions.

In the finite-horizon setting, we have Q N,n = Q * n for n ∈ {1, . . . , H} by setting N = H, and we can compute an optimal policy as π * (t, s) = argmax a∈A Q N,t (s, a) if the maximum exists.

In the discounted-reward setting, it can be shown that

∥Q N,1 -Q * ∥ ∞ ≤ γ N ∥Q * ∥ ∞ ≤ γ N 1 -γ r max .
For N ≥ log γ ε(1-γ) rmax , the approximation error on the action-value function is bounded by ε and an approximate policy can be defined using Q N,1 as π * approx (s) ∈ argmax a∈A Q N,1 (s, a) provided that the maximum exists. It can be shown that π * approx satisfies [SY94]

∥V π * approx -V * ∥ ∞ ≤ 2ε 1 -γ •
Consequently, if the MDP is known, i.e., we have access to the reward functions and the transition kernels, and if we can apply the Bellman operator in a computationally efficient way, the value iteration algorithm allows us to compute or approximate an optimal policy. If the set of states and actions are finite, the computational complexity of value iteration is Θ N |S| 2 |A| , where N is the number of iterations. Hence, for very large or continuous state-action sets, we are in general required to use other approximation methods.

Sampling Models

In reinforcement learning, we do not have full knowledge of the MDP, i.e., the reward functions and the transition kernels are not given a priori. The agent has only access to a sampling model of the environment, which represents its interaction with the world. Thus, a reinforcement learning algorithm must learn a good policy only by sampling from (a model of) the MDP. The two most common sampling models are the generative model and the online model, as defined below.

Generative Model

The MDP is assumed to be time-invariant and the agent has access to a simulator that takes as input an arbitrary state-action pair (s, a) and returns R and S ′ , where R is a random variable of mean r(s, a) and S ′ is a random variable following the distribution p(•|s, a). Every output from simulator is independent of all the previous and future outputs.

Online Model At each time t, representing the amount of previous calls to the model, the model is at a state s t . When the model receives an action a t as input, it returns R and S ′ , where E [R|S 1 , A 1 , . . . S t-1 , A t-1 , S t] = r t (S t , A t) and S ′ ∼ p t (•|S t , A t).

Evaluating Reinforcement Learning Algorithms

Notation We denote by R, S ′ ← GenerativeModel(s, a)

the act of sampling a reward R and a transition S ′ from (s, a) using a generative model, and by R, S ′ ← OnlineModel t (a)

the act of sampling R and S ′ by taking action a in an online model at time t. When the reward functions are assumed to be known (Assumption 1.1), we only need to sample transitions S ′ from the models, which we denote by S ′ ← GenerativeModel(s, a) and S ′ ← OnlineModel t (a).

Notice that the generative model is a stronger assumption since the agent can query any stateaction pair at any time, whereas with an online model, the agent cannot query arbitrary states, as the state of the model is determined by its previous actions and by the transition dynamics of the MDP.

Evaluating Reinforcement Learning Algorithms

Reinforcement learning algorithms interact with the environment, represented by a generative or by an online model, and they either (i) interact with the model for an indefinite amount of time; or (ii) stop after a number τ of queries to the model (which is a possibly random stopping time). In the first case, we define an RL algorithm as a history-dependent policy π used to take actions in the environment. 2 In the second case, the algorithm eventually stops and outputs a policy, and we define it as a triple (π, τ, π τ), where τ is a stopping time with respect to the filtration (F t) t∈N * and π τ is a Markov policy given as the output.

An agent is evaluated either with respect to how may queries to the model are required before it is guaranteed to provide a good approximation of the optimal value function or the optimal policy, or with respect to the amount or the value of the "mistakes" it makes during any fixed number of interactions. These performance criteria are commonly formalized under two frameworks: the sample complexity framework, and the regret minimization framework. The precise definitions of such criteria may vary according to the MDP objective (finite-horizon, discounted reward, average reward, stochastic shortest path), and according to the RL algorithm (whether it outputs a value function or a policy, or if it runs for an indefinite number of time steps), and are introduced in the subsequent chapters when we analyze specific algorithms.

Introduction

Contributions

Outline

Planning with a Generative Model In Chapter 2, we analyze algorithms that use a generative model of the environment to define policies. In this case, it is possible to obtain algorithms whose sample complexities do not depend on the size of the state space S, although, in general, they may have a non-polynomial dependence on 1/ε, where ε is the approximation error of the output of the algorithm. Our contribution is a novel algorithm showing that, if we consider regularized MDPs, it is possible to obtain a sample complexity that is polynomial in 1/ε and, at the same time, independent of S.

Online Interaction with Finite MDPs

In Chapter 3, we study worst-case bounds on the sample complexity and regret of algorithms interacting with an MDP through an online model, in the particular case where the state-action set is finite. We provide unified, simple and complete proofs of the lower bounds in different settings. Since these lower bounds depend on the cardinality of the state-action sets, they show the need of structural assumptions when dealing with large or continuous MDPs. We also revisit the proof of a near-optimal algorithm for regret minimization in finite MDPs called UCBVI [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF], which we extend to continuous MDPs in Chapter 4.

A Kernel-Based Approach to Exploration in Continuous MDPs

In Chapter 4, we tackle exploration in continuous MDPs. We assume that we have access to a distance function between states and actions, and that, if two states are close to each other, their rewards and transitions are similar. A kernel (or similarity) function is constructed based on this distance: state-action pairs that are close to each other are more similar than distant pairs. Through a kernel-based model of the environment, we show that it is possible to explore continuous MDPs by generalizing to any state the information gathered from previously visited states. We propose an algorithm called Kernel-UCBVI and prove a regret bound that depends on the covering dimension of the state-action space. By extending Kernel-UCBVI to use time-dependent kernels, we propose an algorithm called KeRNS that is able to handle non-stationary environments, where the agent interacts with a different MDP in each episode.

Exploration without Rewards & Applications to Deep Reinforcement Learning

In Chapter 5, we review the RF-UCRL [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF] and RF-Express [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] algorithms that allow an agent to collect relevant data in finite MDPs without rewards and, inspired by those algorithms and borrowing ideas from Kernel-UCBVI, we propose a deep reinforcement learning method for reward-free exploration. Chapter 2

Introduction

Workshop presentations in international conferences

Planning with a Generative Model

In this chapter, we refer to planning as the task of approximating the optimal value function of an MDP, either for a fixed state s ∈ S, or simultaneously for all states. We study the sample complexity of planning algorithms relying on a generative model, considering the discountedreward criterion. We start from a model-based approach, whose complexity depends on the size of the MDP, then we move to sampling-based approaches for which we are able to guarantee sample complexities that are independent of the number of states in the environment.

The last part of this chapter is based on the paper [START_REF] Grill | Planning in entropy-regularized Markov decision processes and games[END_REF], which I co-authored, about planning in regularized MDPs and two-player games. Planning with a Generative Model

Model-Based Q-Value Iteration

As explained in Section 1.2.4, if we have a finite MDP for which the transition kernel p and the reward function r are known, the Q-Value Iteration (QVI) algorithm can be used to approximate the optimal value function. By running

N = log γ ε(1-γ) rmax
iterations, we obtain a value function

V N that is an ε-approximation of the optimal value function V * , i.e. such that ∥V * -V N ∥ ∞ ≤ ε.
The total runtime of QVI is of order Θ N S

MBQVI input: GenerativeModel , n ∈ N * , γ ∈ [0, 1[for (s, a) ∈ S × A do for i ∈ {1, . . . , n} do r i , s ′ i ← GenerativeModel(s, a) # estimate model p(s ′ |s, a) ← 1 n n i=1 1 {s ′ i = s ′ } for s ′ ∈ S r(s, a) ← 1 n n i=1 r i # run value iteration Q 0 ← 0 for j ∈ {1, . . . , k} do
apply Bellman operator of the empirical model

Q j (s, a) ← r(s, a) + γ s ′ max a ′ Q j-1 (s ′ , a ′) p(s ′ |s, a) for (s, a) ∈ S × A return Q k Theorem 2.1 (Sample complexity of MBQVI). Let S := |S| and A := |A|. If n = 32r 2 max (1-γ) 4 ε 2 log 4SA δ and k = log 1/γ 2rmax ε(1-γ)
, then, with probability at least 1 -δ, the output

Q k of MBQVI satisfies ∥ Q k -Q * ∥ ∞ ≤ ε. That is, with O SAr 2 max (1-γ) 4 ε 2 log 4SA
δ calls to the generative model, MBQVI produces an ε-approximation of the optimal Q-function with high probability.

Theorem 2.1 shows that O SA(1 -γ) -4 /ε 2 calls to the generative model are enough to guarantee that MBQVI outputs an ε approximation of the optimal Q-function. Although this scales

Model-Based Q-Value Iteration

with (1 -γ) -4 , it was shown by Azar et al. [START_REF] Gheshlaghi Azar | On the Sample Complexity of Reinforcement Learning with a Generative Model[END_REF] that the optimal dependence is (1 -γ) -3 , and that it can be achieved by a shaper analysis using Bernstein concentration inequalities and Bellman-type equations for the variance of the value functions. We provide below the proof of Theorem 2.1, which is adapted from [START_REF] Kearns | Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms[END_REF] and [START_REF] Gheshlaghi Azar | On the Sample Complexity of Reinforcement Learning with a Generative Model[END_REF].

Proof. (of Theorem 2.1) Consider the event E := E r ∩ E p , where

E r :=    ∀(s, a) ∈ S × A, | r(s, a) -r(s, a)| ≤ 2r 2 max n log 4SA δ   
, and

E p :=    ∀(s, a) ∈ S × A, s ′ ∈S p(s ′ |s, a) -p(s ′ |s, a) V * (s ′) ≤ 2r 2 max (1 -γ) 2 n log 4SA δ    .
By Hoeffding's inequality, we have P [E] ≥ 1 -δ. Let Q * be the optimal Q-function in the MDP defined by the estimated rewards r and transitions p. We decompose the error as

∥ Q k -Q * ∥ ∞ ≤ ∥ Q k -Q * ∥ ∞ + ∥ Q * -Q * ∥ ∞ .
By the contraction property of the Bellman operator, we have

∥ Q k -Q * ∥ ∞ ≤ γ k r max /(1 -γ). Let ∆ := ∥ Q * -Q * ∥ ∞ .
On the event E, we have

∆ ≤ max s,a   | r(s, a) -r(s, a)| + γ s ′ ∈S p(s ′ |s, a) -p(s ′ |s, a) V * (s ′)   + γ∆ ≤ 2 2r 2 max (1 -γ) 2 n log 4SA δ + γ∆.
Consequently,

∥ Q k -Q * ∥ ∞ ≤ γ k r max 1 -γ + 2 1 -γ 2r 2 max (1 -γ) 2 n log 4SA δ ≤ ε , for n = 32r 2 max (1-γ) 4 ε 2 log 4SA δ and k = log 1/γ 2rmax ε(1-γ)
.

In the proof of Theorem 2.1, we see that estimating the quantities related to the transitions p (see event E p) requires more samples than estimating the reward function r (see event E r). In this case, the main "source" of sample complexity is the fact that the transitions are unknown to the agent. Hence, for simplicity, we assume from now on that the reward functions are known (Assumption 1.1), and generalizing the results in this thesis to the case of unknown rewards is straightforward.

Planning with a Generative Model

SparseSampling: Planning in Arbitrary State Spaces

Theorem 2.1 and the lower bound by [START_REF] Gheshlaghi Azar | On the Sample Complexity of Reinforcement Learning with a Generative Model[END_REF] show that the sample complexity of MBQVI scales with the number of states S. Consequently, if the state space S is arbitrary and possibly continuous, MBQVI cannot be used. The SparseSampling algorithm introduced by Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF], instead of estimating a value function for all states s ∈ S, focuses on estimating V * (s) and Q * (s, •) for a fixed state s. This is done purely by sampling from the generative model, and has a sample complexity that is independent of the size of S. Then, using SparseSampling as subroutine, it is possible to implement a near-optimal policy (see Lemma 2.3): every time we need to select an action in a state s, we run SparseSampling to compute an approximation

Q * (s, •) of Q * (s, •) and choose the action a ∈ argmax a Q * (s, a).
In this section, we study the sample complexity of SparseSampling (Algorithm 2.2), which is non-polynomial in 1/ε. In the next section, we propose an algorithm called SmoothCruiser whose sample complexity is polynomial, provided that we regularize the MDP. For large values of ε, SmoothCruiser behaves like SparseSampling, hence we will present here a short proof of the sample complexity of SparseSampling, adapted from Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF].

Algorithm 2.2:

SparseSampling

global parameters: GenerativeModel, maximum depth H ∈ N * , width C ∈ N * , γ ∈ [0, 1[. input: state s ∈ S, depth h ∈ N * . if h = H then Q h (s, a) ← 0 for a ∈ A else for a ∈ A do for i ∈ {1, . . . , C} do 8 R (i) s,a , Z (i) s,a ← GenerativeModel(s, a) 9 Q h+1 (Z (i) s,a , •) ← SparseSampling(Z (i) s,a , h + 1) 10 V h+1 (Z (i) s,a) ← max a ′ Q i (Z (i) s,a , a ′) Q h (s, a) ← 1 C C i=1 R (i) s,a + γ V h+1 (Z (i) s,a) return: Q h (s, •)
In order to estimate the Q-function in a state s, SparseSampling builds a look-ahead tree starting from s by sampling from the generative model. At the root of the tree, for each action a, it samples C rewards and next states, denoted by

R (i) (s,a) , Z (i) (s,a) for 1 ≤ i ≤ C. Each next state Z (i)
(s,a) becomes a child of the root node. Then, it continues to sample starting from each Z (i) (s,a) , and stops when the tree reaches a depth H. By alternating between average and maximum operations on the Q functions of each node, it is possible to build an approximation of the optimal Q-function at the root. This procedure is detailed by Algorithm 2.2. The algorithm is called SparseSampling because it builds a tree with a finite number of nodes, although the

SparseSampling: Planning in Arbitrary State Spaces

state space S may be infinite: the tree can be interpreted as a sparse version of the MDP, built through sampling. Theorem 2.2 shows that SparseSampling builds an ε-approximation of the optimal Q-function at a fixed s ∈ S with probability at least 1 -δ, i.e., the algorithm is is (ε, δ)-correct. The number of calls it makes to the generative model is of order O ε -1 log δ -1 O(log(1/ε)) , which is non-polynomial in 1/ε. The (ε, δ)-correctness is proven by recursively applying Hoeffding's inequality at each level h of the tree, which requires O ε -1 log δ -1 samples at each h, and a maximum depth H = O (log(1/ε)). Hence, its total sample complexity is of order

1 ε 2 log 1 δ × • • • × 1 ε 2 log 1 δ H=O(log(1/ε)) times = 1 ε log 1 δ O(log(1 ε)) ,
which is formally proven below.

Theorem 2.2 (Sample complexity of SparseSampling).

Assume that the number of actions is finite, that is, A := |A| < ∞, and that A ≥ 2. For ε > 0 and δ > 0, let

C := 8γ 2 r 2 max (1 -γ) 4 ε 2 log 2 δ + 2H log 16AHγ 2 r 2 max (1 -γ) 4 ε 2 log 2 δ and H = 1 + log 1/γ 2rmax ε(1-γ)
. Then, for any fixed state s ∈ S, the output of SparseSampling at depth h = 1 satisfies

P ∀a ∈ A, Q 1 (s, a) -Q * (s, a) ≤ ε ≥ 1 -δ.
Furthermore, let n(ε, δ) be the number of calls to the generative model made by SparseSampling. Then,

n(ε, δ) ≤ 2(AC) H-1 = 2 c 1 ε 2 log 2 δ + c 2 log c 3 ε log c 4 ε log c 5 ε log 2 δ c 6 log(c 7 ε) = O 1 ε log 1 δ O(log(1/ε))
, where c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , and c 7 are constants depending on r max , γ, and A.

Proof. We start with some useful definitions, then we recursively bound the error on the Q-function estimates at each depth h with high probability.

Planning with a Generative Model

Definitions Let

ε ′ := ε(1 -γ) 2γ and δ ′ := 2 exp - Cε ′2 (1 -γ) 2 2r 2 max .
Let (ε h) H h=1 and (δ h) H h=1 be two sequences such that ε h and δ h represent the accuracy and the confidence of the Q function estimation at depth h. We define

• ε H = r max /(1 -γ) and ε h = γ(ε ′ + ε h+1) for 1 ≤ h < H; • δ H = 0 and δ h = Aδ ′ + ACδ h+1 for 1 ≤ h < H.

We can verify by induction on h that

δ h = δ ′ H-h i=1 A j C j-1 ≤ δ ′ (AC) H-1 if A ≥ 2 and C ≥ 2,

and that

ε h = H-h i=1 γ i ε ′ + γ H-h r max 1 -γ ≤ γε ′ + γ H-h r max 1 -γ .
Notice that

H = 1 + log 1/γ 2rmax ε(1-γ)
and the definition of ε ′ imply ε 1 ≤ ε.

High-probability events

If R (i) s,a , Z (i) s,a ← GenerativeModel(s, a), then R (i)
s,a = r(s, a) ≤ r max , by Assumption 1.1. For any state s, action a, and depth h < H, we define the event G(s, a, h) as

G(s, a, h) := Q h (s, a) -Q * (s, a) ≤ ε h C i=1 G(Z (i) s,a , h + 1)
where, for any state z,

G(z, h) := a∈A G(z, a, h).
Let Ω be the whole sample space, and we define G(s, a, H) = Ω for any (s, a).

We prove by induction on h that

∀(s, h), P [G(s, h)] ≥ 1 -δ h . (2

.1)

For h = H, we have ε H = r max /(1 -γ), δ H = 0 and the claim in verified, since

∀(s, a), | Q H (s, a) -Q * (s, a)| = |Q * (s, a)| ≤ r max /(1 -γ)
Q h (s, a) -Q * (s, a) ≤ γ C C i=1 V h+1 (Z (i) s,a) -V * (Z (i) s,a) + γ C C i=1 V * (Z (i) s,a) -E V * (Z (i) s,a) ,
where we used the facts that R i = r(s, a) and

Q * (s, a) = r(s, a) + γE [V * (Z)] for Z ∼ p(•|s, a),
and the definition of Q h (s, a) in Line 11 of Algorithm 2.2.

On the event C i=1 G(Z

(i) s,a , h + 1), we have γ C C i=1 V h+1 (Z (i) s,a) -V * (Z (i) s,a) ≤ γε h+1 .
Consequently,

P [G(s, a, h)] = P C i=1 G(Z (i) s,a , h + 1) Q h (s, a) -Q * (s, a) ≤ ε h ≥ P C i=1 G(Z (i) s,a , h + 1) γ C C i=1 V * (Z (i) s,a) -E V * (Z (i) s,a) ≤ ε h -γε h+1 ≥ P C i=1 G(Z (i) s,a , h + 1) 1 C C i=1 V * (Z (i) s,a) -E V * (Z (i) s,a) < ε ′ .
By Hoeffding's inequality and the fact that V * (s) ∈ [-rmax 1-γ , rmax 1-γ] for any s, we have

P 1 C C i=1 V * (Z (i) s,a) -E V * (Z (i) s,a) ≥ ε ′ ≤ 2 exp - Cε ′2 (1 -γ) 2 2r 2 max = δ ′ .
Using the induction hypothesis that (2.1) holds for h + 1, we obtain

P G(s, h) ∁ ≤ a∈A P G(s, a, h) ∁ ≤ a∈A δ ′ + C i=1 P G(Z (i) s,a , h + 1) ≤ Aδ ′ + ACδ h+1 = δ h .
which concludes the proof of (2.1) by induction.

At h = 1, we obtain

P ∀a ∈ A, Q 1 (s, a) -Q * (s, a) ≤ ε ≥ P [G(s, h = 1)] ≥ 1 -δ ′ (AC) H-1 ,
for any s ∈ S.

Planning with a Generative Model

Now, for a fixed δ > 0, we need to find C such that

δ ′ (AC) H-1 = 2 exp - Cε ′2 (1 -γ) 2 2r 2 max (AC) H-1 ≤ δ.
By Lemma A.4, this condition is satisfied by a value C that is bounded as

C ≤ 2r 2 max (1 -γ) 2 ε ′2 log 2 δ + H log 8Ar 2 max (1 -γ) 2 ε ′2 log 2 δ + 4A 2 H 2 r 4 max (1 -γ) 4 ε ′4 ≤ 2r 2 max (1 -γ) 2 ε ′2 log 2 δ + 2H log 4AHr 2 max (1 -γ) 2 ε ′2 log 2 δ . Since ε ′ := ε(1-γ) 2γ , we take C = 8γ 2 r 2 max (1 -γ) 4 ε 2 log 2 δ + 2H log 16AHγ 2 r 2 max (1 -γ) 4 ε 2 log 2 δ , which gives us P ∀a ∈ A, Q 1 (s, a) -Q * (s, a) ≤ ε ≥ 1 -δ.
Finally, let n h (ε, δ) be the number of calls made to the generative model by SparseSampling

at depth h. We have n H (ε, δ) = 0 and n h (ε, δ) = AC + ACn h+1 (ε, δ) for h < H, which implies n h (ε, δ) = H-h i=1 (AC) i .
The total sample complexity is equal to n 1 (ε, δ) and satisfies n 1 (ε, δ) ≤ 2(AC) H-1 , which concludes the proof.

Although SparseSampling has a sample complexity that is independent of the size of the state space S, Theorem 2.2 only ensures that we are able to estimate the optimal Q-function at a fixed state s. The result below, adapted from Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF], shows that it is possible to use SparseSampling as a subroutine to implement a near-optimal policy. Lemma 2.3 (adapted from Lemma 5 by Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF]). Consider an algorithm that, at each state s, executes an action a s by following the procedure below:

• Compute Q 1 (s, •) such that P ∀a ∈ A, Q 1 (s, a) -Q * (s, a) ≤ ε ≥ 1 -δ; • Choose the action a s ← argmax a Q 1 (s, a).
Since a s is a random variable, this algorithm implements a stochastic policy, that we denote by π.

Then, for any state s, we have

V * (s) -V π (s) ≤ 2ε 1 -γ + 2δr max (1 -γ) 2 •

SmoothCruiser: Planning in Regularized MDPs

Proof. This result is a restatement of Lemma 5 by Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF], which can be applied immediately by noticing that, with probability at least 1 -δ,

V * (s) -Q * (s, a s) ≤ Q * (s, π * (s)) -Q 1 (s, π * (s)) + Q 1 (s, a s) -Q * (s, a s) ≤ 2ε.
Finally, we restate below the theorem by Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF] that provides a lower bound on the sample complexity of any algorithm that has access to a generative model that does not make assumptions on the size of the state space. It states that, for any algorithm that is able to implement an ε-optimal policy, at least Ω (1/ε) 1/ log(1/γ) calls to the generative model are required.

Theorem 2.4 (Theorem 2 from Kearns et al. [START_REF] Kearns | A sparse sampling algorithm for near-optimal planning in large Markov decision processes[END_REF]). Consider an algorithm that is given access to a generative model for an MDP M and that implements a policy π . If, for any input state s ∈ S, π satisfies |V π (s) -V * (s)| ≤ ε, then there exists an MDP M on which this algorithm makes at least Ω (1/ε) 1/ log(1/γ) calls to the generative model.

SmoothCruiser: Planning in Regularized MDPs

In the previous section, we saw that the SparseSampling algorithm allows us to provide an (ε, δ)-correct approximation of the value function in a fixed state for any MDP with finite action set A. However, its sample complexity is non-polynomial in 1/ε, and there are no known algorithms with guaranteed polynomial complexity in the worst case. In this section, we propose an algorithm, called SmoothCruiser, that has a worst-case sample complexity of order O 1/ε 4 provided that the MDP is regularized.

Regularized MDPs

Consider an MDP M and let ∆(A) be the set of probability distributions on its action set A. Let R : ∆(A) → R + be a regularization functional and λ > 0 be a regularization factor. We assume that sup µ∈∆(A) R(µ) < ∞. We say that M is regularized if its Bellman operator is defined as the operator T γ,λ such that

∀s ∈ S, [T γ,λ V](s) = max π(•|s)∈∆(A) E r(s, a) + λR(π(•|s)) + γV (z) , (2.2)
where the expectation is taken over a ∼ π(•|s) and z ∼ p(•|s, a).

Notice that, if λ = 0, T γ,λ is equal to the Bellman operator T γ for the discounted-reward criterion. The operator T γ,λ is also a contraction, and we denote its fixed point by V . We refer to V as the

Planning with a Generative Model

optimal regularized value function, and it satisfies [GSP19]

V (s) ≥ sup π∈Π M E π ∞ t=1 γ t-1 [r(S t , A t) + λR(π(•|S t))] S 1 = s ,
that is, it can be seen as the optimal value function in an MDP where a policy-dependent regularization term is added to the reward function.

We define F : R A → R as

F (q) = max µ∈∆(A) E a∼µ [q(a) + λR(µ)] , (2.3)
such that the optimal regularized value function V satisfies

∀s ∈ S , V (s) = F (Q s), where Q s (a) = E z∼p(•|s,a) [r(s, a) + γV (z)] ,
and we refer to Q s as the optimal regularized Q-function.

Assumptions Without loss of generality, we assume in this section that the reward function satisfies 0 ≤ r(s, a) ≤ r max = 1. By defining

M := F (0) = max µ∈∆(A) λR(µ),
the optimal regularized value function is bounded by (1 + M)/(1 -γ). Also, we make the following assumptions on the function F : Assumption 2.5. Consider the function F : R A → R defined by (2.3). We assume that

1. F is differentiable; 2. (1-Lipschitz) ∀q ∈ R A , 0 < ∥∇F (q)∥ 1 ≤ 1; 3. (nonnegative gradient) ∀q ∈ R A , ∇F (q) ⪰ 0; 4. (L-smoothness) ∃L ≥ 0 such that, for any q, q ′ ∈ R A , F (q) -F (q ′) -(q -q ′) T ∇F (q ′) ≤ L q -q ′ 2 2 .
These assumptions are verified, for instance, if

R(µ) = - a∈A µ(a) log µ(a),

SmoothCruiser: Planning in Regularized MDPs

that is, the entropy of the probability distribution µ ∈ ∆(A). In this case, we have L = 1/λ and

F (q) = λ log A i=1 exp(q i /λ),
which is a smooth approximation of the max function, defined as max(q) = max i q i . Indeed, we have | max(q) -λ log A i=1 exp(q i /λ)| ≤ λ log A, for any q ∈ R A .

Another example arises by setting R(µ) = a∈A µ(a), and the proof that it results in a function F satisfying Assumption 2.5 is given in [Gri+19, Appendix E].

Algorithm

We now describe our proposed algorithm, SmoothCruiser (Algorithm 2.3). Its building blocks are two procedures, sampleV (Algorithm 2.4) and estimateQ (Algorithm 2.5) that recursively call each other. The procedure sampleV returns a noisy estimate of V (s) with a bias bounded by ε. The procedure estimateQ averages the outputs of several calls to sampleV to obtain an estimate Q s that is an approximation of Q s with precision ε with high probability. Finally, SmoothCruiser calls estimateQ(s, ε) and outputs Q s .

Algorithm 2.3:

SmoothCruiser input: (s, ε, δ ′) ∈ S × R + × R + M ← F (0) κ ← (1 - √ γ)/(AL)
set δ ′ , κ and M as global parameters

Q s ← estimateQ(s, ε) return: Q s Algorithm 2.4: sampleV input: (s, ε) ∈ S × R + if ε ≥ (1 + M)/(1 -γ) then return: 0 else if ε ≥ κ then Q s ← estimateQ(s, ε) return: F (Q s) else if ε < κ then Q s ← estimateQ(s, √ κε) A ← action drawn from ∇F (Q s)/∥∇F (Q s)∥ 1 ∈ ∆(A) R, Z ← GenerativeModel(s, A) V ← sampleV(Z, ε/ √ γ) return: F (Q s) -Q T s ∇F (Q s) + (R + γ V)∥∇F (Q s)∥ 1
Planning with a Generative Model Algorithm 2.5:

estimateQ input: (s, ε) ∈ S × R + N (ε) ← 18(1+M) 2 (1-γ) 4 (1- √ γ) 2 log(2A/δ ′) ε 2 for a ∈ A do for i ∈ {1, . . . , N (ε)} do (R, Z) ← GenerativeModel(s, a) V ← sampleV(Z, ε/ √ γ) q i ← R + γ V Q s (a) ← mean (q 1 , . . . , q N) # clip Q s (a) to [0, (1 + M)/(1 -γ)] Q s (a) ← min max Q s (a), 0 , (1 + M)/(1 -γ) return: Q s ∈ R A
The most important part of the algorithm is the procedure sampleV, that returns a low-bias estimate of the value function. Having the estimate of the value function, the procedure estimateQ averages the outputs of sampleV to obtain a good estimate of the Q function with high probability. The main idea of sampleV is to first compute an estimate of precision O(√ ε) of the value of each action { Q s (a)} a∈A to linearly approximate the function F around Q s . The local approximation of F around Q s is subsequently used to estimate the value of s with a better precision, of order O(ε), which is possible due to the smoothness of F . For a target accuracy ε at state s, sampleV distinguishes three cases, based on a reference threshold κ := (1 -√ γ)/(AL), which is the maximum value of ε for which we can compute a good estimate of the value function using linear approximations of F .

• First, if ε ≥ (1 + M)/(1 -γ), then 0 is a valid output, since V (s) is bounded by (1 + M)/(1 -γ). This case furthermore ensures that our algorithm terminates, since the recursive calls are made with increasing values of ε.

• Second, if κ ≤ ε < (1 + M)/(1 -γ), we run F (estimateQ(s, ε)) in which for each action, both the generative model and sampleV are called O 1/ε 2 times in order to return V (s) which is with high probability an ε-approximation of V (s).

• Finally, if ε < κ, we take advantage of the smoothness of F to compute an ε-approximation of V (s) in a more efficient way than calling sampleV (and the generative model) O 1/ε 2 times. We achieve it by calling estimateQ with a precision √ κε instead of ε, which requires O (1/ε) calls instead.

SmoothCruiser: Planning in Regularized MDPs

Sample Complexity of SmoothCruiser

In Theorem 2.6, we provide a bound on the sample complexity of SmoothCruiser. In Theorem 2.7, we provide a consistency result, stating that the output SmoothCruiser applied to a state s ∈ S is a good approximation of the optimal regularized value V (s) with high probability.

Theorem 2.6. Let n (ε, δ ′) be the number of calls to the generative model before SmoothCruiser terminates. For any state s ∈ S and ε, δ ′ > 0,

n ε, δ ′ ≤ c 1 ε 4 log c 2 δ ′ c 3 log c 4 ε log 2 (c5(log(c 2 δ ′))) = O 1 ε 4 ,
where c 1 , c 2 , c 3 , c 4 , and c 5 are constants that depend only on A, L, and γ.

Theorem 2.7. For any s ∈ S, ε > 0, and δ > 0, there exists a δ ′ that depends on ε and δ such that the output Q s of SmoothCruiser(s, ε, δ ′) satisfies

P ∀a ∈ A, | Q s (a) -Q s (a)| ≤ ε ≥ 1 -δ and such that n (ε, δ ′) = O 1/ε 4+c for any c > 0.
More precisely, in the proof of Theorem 2.7, we establish that

P ∀a ∈ A, | Q s (a) -Q s (a)| > ε ≤ δ ′ n ε, δ ′ .
Therefore, for any parameter δ ′ satisfying δ ′ n (ε, δ ′) ≤ δ, SmoothCruiser with parameters ε and

δ ′ provides an approximation of Q s which is (ε, δ) correct.
The proofs of Theorem 2.6 and Theorem 2.7 are given in Appendix A.1 and Appendix A.2, respectively. In the rest of this section, we explain the key ideas that allow us to exploit the smoothness of the Bellman operator to obtain a better sample complexity.

When ε < κ, the procedure estimateQ is called to obtain an estimate Q s such that

∥ Q s -Q s ∥ 2 = O ε/L .
The procedure sampleV then continues with computing a linear approximation of F (Q s) around Q s . Using the L-smoothness of F, we guarantee the ε-approximation,

F (Q s) -F (Q s) + (Q s -Q s) T ∇F (Q s) ≤ L∥ Q s -Q s ∥ 2 2 = O (ε) .

Planning with a Generative Model

We wish to output this linear approximation, but we need to handle the fact that the vector Q s (the true Q-function at s) is unknown. Notice that the vector ∇F (Q s)/∥∇F (Q s)∥ 1 represents a probability distribution. The term Q T s ∇F (Q s) in the linear approximation of F (Q s) above can be expressed as

Q T s ∇F (Q s) = E Q s (A)∥∇F (Q s)∥ 1 Q s , with A ∼ ∇F (Q s)/∥∇F (Q s)∥ 1 .
Therefore, we can build a low-bias estimate of Q T s ∇F (Q s) from estimating only Q s (A):

• sample action A ∼ ∇F (Q s)/∥∇F (Q s)∥ 1 ;
• sample a reward and a next state R s, A , Z s, A ← GenerativeModel(s, A);

• obtain an O (ε)-approximation of Q s (A): Q(A) = R s, A + γsampleV Z s, A , ε/ √ γ .
We show that V (s) is, in expectation, an ε-approximation of the true value function V (s). The benefit of such approach is that we can call estimateQ with a precision O (√ ε) instead of O (ε), which thanks to the smoothness of F , reduces the sample complexity. In particular, one call to sampleV(s, ε) will make O (1/ε) recursive calls to sampleV(s, O (√ ε)), and the total number of calls to sampleV behaves as

1 ε × 1 ε 1/2 × 1 ε 1/4 × • • • ≤ 1 ε 2 •
Therefore, the total number of calls to the generative model made by sampleV is O 1/ε 2 , which implies that the total sample complexity is O(1/ε 4), since SmoothCruiser makes O 1/ε 2 calls to sampleV.

Impact of the smoothness L In Theorem 2.6 we did not make the dependence on L explicit to preserve simplicity. However, we can analyze the sample complexity in the two limits:

strong regularization L → 0 and F is linear no regularization L → ∞ and F is not smooth As L → 0, the condition κ = (1- √ γ)/(AL) ≤ ε ≤ (1+M)/
(1-γ) will be met less and eventually the algorithm will sample N = O 1/ε 2 trajectories, which implies a sample complexity of order O 1/ε 2 . On the other hand, as L goes to ∞, the condition ε < κ will be met less and the algorithm eventually runs a sampling strategy similar to SparseSampling, which results in a sample complexity of order O (1/ε) O(log(1/ε)) , which is non-polynomial in 1/ε. For a fixed L, SmoothCruiser can be seen as an interpolation of both cases, and results in a sample complexity of order O 1/ε 4 .

Discussion and Bibliographical Remarks

Approximating the optimal value function Let V * (s) be the optimal value function without regularization. We can prove that sup s |V (s)

-V * (s)| ≤ F (0)/(1 -γ) = O (λ)
, where λ is the regularization factor. Thus, we can interpret the optimal regularized value function V (s) as an approximate version of V * (s), which we can estimate faster.

Comparison to lower bound For non-regularized problems, Theorem 2.4 provides a sample complexity lower bound of Ω (1/ε) 1/ log(1/γ) , which is polynomial in 1/ε, but its exponent grows as γ approaches 1. For regularized problems, Theorem 2.2 shows that the sample complexity is polynomial with an exponent that is independent of γ. Hence, when γ is close to 1, regularization gives us a better asymptotic behavior with respect to 1/ε than the lower bound for the non-regularized case, although we are not estimating the same value. To the best of our knowledge, there are still no lower bounds proved for planning in regularized MDPs.

Discussion and Bibliographical Remarks

In this chapter, we studied three algorithms that allow us to approximate the optimal value function of an MDP by using a generative model: MBQVI, SparseSampling and SmoothCruiser. We started with MBQVI, which applies only to finite MDPs, and saw that it requires O SA/ε 2 calls to the generative model to provide an ε-approximation of Q * , where S and A are the number of states and actions in the MDP. Intuitively, this dependence on S comes from the fact that MBQVI outputs a Q-function Q that approximates Q * for all states s ∈ S, i.e., max s,a | Q(s, a)-

Q * (s, a)| ≤ ε.
By requiring an ε-approximation only for a fixed state s, SparseSampling has a sample complexity O (1/ε) O(log(1/ε)) , which does not depend on the size of the state space, but has a much worse dependence on 1/ε, when compared to MBQVI. Although SparseSampling focuses on estimating Q * only for a fixed s, we saw in Lemma 2.3 that it can be used to implement a near-optimal policy that runs SparseSampling from scratch every time we need to choose an action. Finally, we proposed SmoothCruiser, that focuses on approximating the optimal regularized value function at a fixed state s, and has a sample complexity of order O 1/ε 4 , that is polynomial in 1/ε, contrary to SparseSampling. As the regularization goes to zero, its sample complexity approaches that of SparseSampling, so that we can interpret SmoothCruiser as an acceleration of SparseSampling that applies when the MDP is regularized. A disadvantage of SparseSampling and SmoothCruiser is that both algorithms make a huge amount of recursive calls and we have no guarantees on their output if they are stopped before termination, which makes their implementation impractical in most situations. However, they allow us to obtain sample-complexity bounds that hold for MDPs with arbitrary state spaces, which is valuable from a theoretical point of view. In particular, regularization has been employed in several commonly used algorithms for RL, and SmoothCruiser shows how we can exploit the smoothness of the regularized Bellman operator to improve the sample complexity of planning.

Planning with a Generative Model

Regularization in RL Regularization has been shown to be useful in several RL algorithms.

In the context of policy gradient algorithms, a common example is the A3C algorithm [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF] that penalizes policies with low entropy to improve exploration, and the work of Neu et al.

[NJG17] presents a theoretical framework for entropy regularization using the joint state-action distribution. Formulations with entropy-augmented rewards have been used to learn multimodal policies to improve exploration and robustness [START_REF] Haarnoja | Reinforcement learning with deep energy-based policies[END_REF][START_REF] Haarnoja | Soft actorcritic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF] and can also be related to policy gradient methods [START_REF] Schulman | Equivalence between policy gradients and soft Q-learning[END_REF]. Furthermore, Chapter 3

Online Interaction with Finite MDPs

In this chapter, we consider the finite-horizon criterion, and we assume that we have access to an online model of a finite MDP. We present three of the most common criteria used to evaluate RL algorithms in the online setting: the regret, the sample complexity of exploration, and the sample complexity for best-policy identification. Using a unified proof technique, we prove worst-case lower bounds for each of those criteria. Then, we present a simplified analysis of the UCBVI algorithm introduced by Azar et al. [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF], which is near-optimal for regret minimization in finite MDPs, and is generalized to continuous MDPs in Chapter 4.

The lower-bound analyses presented in this chapter are published in the paper [START_REF] Darwiche Domingues | Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited[END_REF]. An RL algorithm is defined as a history-dependent policy π used to interact with the environment, and it might be equipped with a stopping time τ with respect to the filtration (F t H) t∈N and a policy recommendation π τ , such that the algorithm can stop at the end of episode τ and output π τ . We denote by π t-1 H the restriction of π to the subset of histories starting with B t-1 H . The number of states and actions in the MDP are denoted by S and A, respectively.

Contents

Regret The regret of an algorithm (Definition 3.1) after T episodes is defined as the sum over all episodes of the difference between the expected total reward gathered by an optimal policy and that of the algorithm, starting from a state that depends on the episode t. It quantifies the performance of an agent during the learning period, and how well it balances exploration and exploitation. That is, in order to minimize the regret, the agent must explore to learn the dynamics of the MDP, but the policy that it executes in each episode t must be close to the optimal policy as often as possible. Definition 3.1 (Regret). The regret of an algorithm π after T episodes is defined as

R T := T t=1 V * 1 (S t 1) -V π t-1 H 1 (S t 1) ,
and its expected regret is

R T := E π,M [R T].
When not implied by the context, we explicit the dependence of R T and R T on π and M by denoting those quantities by R T (π, M) and R T (π, M).

Best-Policy Identification (BPI)

The sample complexity for BPI (Definition 3.2) is defined in a Probably Approximately Correct (PAC) framework, and measures how many episodes τ are required for the agent to return a policy π τ that is near-optimal with high probability. It

Performance Criteria

quantifies the performance after the learning period, hence it is a pure-exploration objective: the agent does not need to exploit during learning, since it is only evaluated at the end.

Definition 3.2 (PAC for best-policy identification). An algorithm (π, τ, π τ) is (ε, δ)-PAC for best-policy identification in an MDP M if the policy π τ returned after τ episodes satisfies

P π,M E s∼µ V * 1 (s) -V πτ 1 (s) ≥ ε ≤ δ.
where µ is a fixed distribution over the set of states S. The sample complexity is defined as the number of episodes τ required for stopping.

PAC-MDP

The sample complexity of exploration quantifies the number of episodes N PAC in which the agent executes a policy that is not ε-optimal. In this framework, an algorithm is said to be PAC for MDPs, PAC for exploration, or PAC-MDP [START_REF] Kakade | On the Sample Complexity of Reinforcement Learning[END_REF], if N PAC is bounded by a polynomial function with high probability (Definition 3.3). Like the regret, the PAC-MDP criterion measures the performance of the agent during learning, but the agent is penalized only by the number of mistakes it makes, and not by the intensity of those mistakes.

Definition 3.3 (PAC for exploration

). An algorithm π is (ε, δ)-PAC for exploration in an MDP M (or PAC-MDP) if there exists a polynomial function F PAC (H, 1/ε, log(1/δ)), which may depend on the parameters of the MDP, such that its sample complexity

N PAC := ∞ t=1 1 V * 1 (S t 1) -V π t-1 H 1 (S t 1) > ε satisfies P π,M N PAC > F PAC (H, 1/ε, log(1/δ)) ≤ δ.
In the next sections, we prove worst-case lower bounds for the regret, the sample complexity of BPI, and for the sample complexity of PAC-MDP. These bounds state that, for any algorithm, there exists an MDP such that its regret is greater than a function of (S, A, H, T) and its sample complexity is greater than a function of (S, A, H, ε, δ). Lower bounds measure how "difficult" it is to optimize each criterion and allow us to assess the quality of the upper bounds provided for an algorithm.

Minimax optimality Worst-case lower bounds are also called minimax lower bounds, since they consider the best possible algorithm (i.e., the algorithm with the minimum regret or sample complexity) in the worst possible environment for that algorithm (i.e., with the maximum regret or sample complexity). An algorithm is said to be minimax optimal if its regret or sample complexity is equal to the lower bound, up to constant or logarithmic factors.

Online Interaction with Finite MDPs

As discussed in Section 3.7, minimax lower bounds for RL have been analyzed in several previous works, and our main contributions are: (i) we provide unified proofs for lower bounds in the three criteria that we consider, in the sense that we use a single class of hard MDPs and the same information-theoretic tools for all our proofs; and (ii) our analyses are detailed, self-contained, and also consider time-inhomogeneous MDPs, that is, when the transitions p h and rewards r h may depend on the stage h ∈ [H] within an episode.

Lower Bounds: Key Ideas & Hard MDP Instances

In this section, we present the two main ingredients for the proof of the minimax lower bounds. These bounds consider a class C of hard MDPs instances (on which the optimal policy is difficult to identify), that are typically close to each other, but for which the behavior of an algorithm is expected to be different (because they do not share the same optimal policy). The class C used to derive all the lower bounds is presented in Section 3.2.1. Then, lower bound proofs use a change of distribution between two well-chosen MDPs in C in order to obtain inequalities on the expected number of visits of certain state-action pairs in one of them. The information-theoretic tools that we use for these changes of distributions are gathered in Section 3.2.2.

Hard MDP Instances

From a high-level perspective, the family of MDPs that we use for our proofs behave like multiarmed bandits with Θ(HSA) arms. To gain some intuition about the construction, assume that S = 4 and consider the MDP in Figure 3.1. The agent starts in a waiting state s w where it can take an action a w to stay in s w up to a stage H < H, after which it has to leave s w . From s w , the agent can only transition to s 1 , from which it can reach two absorbing states, a "good" state s g and a "bad" state s b . The state s g is the only state where the agent can obtain a reward, which starts to be 1 at stage H + 2. There is a single action a * in state s 1 that increases by ε ′ the probability of arriving to the good state, and this action must be taken at a specific stage h * . The intuition is that, in order to maximize the rewards, the agent must choose the right moment h ∈ 1, . . . , H to leave s w , and then choose the good action a * ∈ {1, . . . , A} in s 1 . This results in a total of HA possible choices, or "arms", and the maximal reward is Θ(H). By analogy with the existing minimax regret bound for multi-armed bandits [Aue+02; LS20], the regret lower bound should be Ω(H √ HAT), by taking H = Θ(H).

Inspired by the tree construction of Lattimore and Szepesvári [START_REF] Lattimore | Bandit algorithms[END_REF] for the lower bound in the average-reward setting, we now generalize these MDPs to S > 4. Consider a family of MDPs described as follows and illustrated in Figure 3.2. First, we require the assumption below, which we relax in Section 3.5.1. Assumption 3.4. The number of states and actions satisfy S ≥ 6, A ≥ 2, and there exists an integer d such that S = 3 + (A d -1)/(A -1), which implies d = Θ(log A S). We further assume that H ≥ 3d.

Lower Bounds: Key Ideas & Hard MDP Instances

s w s 1 s g s b r h (s g , a) = 1 h ≥ H + 2 r h (s b , a) = 0 action a ∈ {1, . . . , A}, a ̸ = a w action = a w 1 2 + ε ′ 1 2 1 2 1 2 -ε ′ 1 1
As in the previous case, there are three special states: a "waiting" state s w where the agent starts and can choose to stay up to a stage H, a "good" state s g that is absorbing and is the only state where the agent obtains rewards, and a "bad" state s b that is absorbing and gives no reward. The other S -3 states are arranged in a full A-ary tree of depth d -1, which can be done since we assume there exists an integer d such that S -3 = d-1 i=0 A i . The root of the tree is denoted by s root , which can only be reached from s w , and the states s g and s b can only be reached from the leaves of the tree.

Let H ≤ H -d be an integer that will be a parameter of the class of MDPs. Letting L = {s 1 , s 2 , . . . , s L } be the set of L leaves of the tree, we define for each

(h * , ℓ * , a *) ∈ 1 + d, . . . , H + d × L × A,
an MDP M (h * ,ℓ * ,a *) as follows. For any state in the tree, the transitions are deterministic: the a-th action in a node leads to the a-th child of that node. The transitions from s w are given by p h (s w |s w , a) := 1 a = a w , h ≤ H and p h (s root |s w , a) := 1 -p h (s w |s w , a). That is, there is an action a w that allows the agent to stay at s w up to a stage H. After stage H, the agent has to traverse the tree down to the leaves. The transitions from any leaf s i ∈ L are given by

Online Interaction with Finite MDPs

s w s root s 1 s 2 s 3 s 4 action ̸ = a w action = a w s g s b r h (s g , a) = 1 h ≥ H + d + 1 r h (s b , a) = 0 1 2 1 2 1 2 + ε ′ 1 2 -ε ′ 1 1
p h (s g |s i , a) := 1 2 + ∆ (h * ,ℓ * ,a *) (h, s i , a) and p h (s b |s i , a) := 1 2 -∆ (h * ,ℓ * ,a *) (h, s i , a), (3.1)
where We further define a reference MDP M 0 which is an MDP of the above type but for which ∆ 0 (h, s i , a) := 0 for all (h, s i , a). For every ε ′ and H, we define the class C H,ε ′ to be the set

∆ (h * ,ℓ * ,a *) (h, s i , a) := 1 {(h, s i , a) = (h * , s ℓ * , a *)} • ε ′ , for some ε ′ ∈ [0, 1/2] that
C H,ε ′ := {M 0 } M (h * ,ℓ * ,a *) (h * ,ℓ * ,a *)∈{1+d,.
..,H+d}×L×A .

Change of Distribution Tools

Recall from Section 1.

M [τ < ∞] = 1, KL P B τ H M , P B τ H M ′ = s∈S a∈A h∈[H-1] E M N τ h,s,a KL p h (•|s, a), p ′ h (•|s, a) , (3.2)
where N τ h,s,a := τ t=1 1 (S t h , A t h) = (s, a) and B τ H is the random vector representing the history of states and actions up to episode τ .

Lemma 3.7 (Lemma 1 by Garivier et al. [GMS19]

). Consider a measurable space (Ω, F) equipped with two distributions P 1 and P 2 . For any F-measurable function Z : Ω → [0, 1], we have

KL(P 1 , P 2) ≥ kl(E 1 [Z], E 2 [Z]),
where E 1 and E 2 are the expectations under P 1 and P 2 respectively.

Online Interaction with Finite MDPs

Lower Bound on the Regret

Using change of distributions between MDPs in a class C H,ε , we prove the following result, which gives a minimax lower bound on the expected regret of any algorithm. Theorem 3.8. Under Assumption 3.4, for any algorithm π, there exists an MDP whose transitions depend on the stage h, such that, for T ≥ HSA,

R T ≥ 1 48 √ 6 √ H 3 SAT .
Proof. Consider the class of MDPs C H,ε introduced in Section 3.2.1, with H and ε to be chosen later. This class contains a reference MDP M 0 and MDPs of the form M (h * ,ℓ * ,a *) parameterized by

(h * , ℓ * , a *) ∈ 1 + d, . . . , H + d × L × A in which ∆ (h * ,ℓ * ,a *) (h, s i , a) := 1 {(h, s i , a) = (h * , s ℓ * , a *)} ε.
As already mentioned, this family of MDPs behave like bandits, hence our proof follows the one for minimax lower bound in bandits (see, e.g., [START_REF] Bubeck | Regret analysis of stochastic and nonstochastic multi-armed bandit problems[END_REF]).

Regret of π in

M (h * ,ℓ * ,a *) .
The mean reward gathered by π in M (h * ,ℓ * ,a *) is given by

E (h * ,ℓ * ,a *) T t=1 H h=1 r h (S t h , A t h) = T t=1 E (h * ,ℓ * ,a *)   H h=H+d+1 1 S t h = s g   = (H -H -d) T t=1 P (h * ,ℓ * ,a *) S t H+d+1 = s g . For any h ∈ 1 + d, . . . , H + d , P (h * ,ℓ * ,a *) S t h+1 = s g = P (h * ,ℓ * ,a *) S t h = s g + 1 2 P (h * ,ℓ * ,a *) S t h ∈ L + 1 {h = h * } P (h * ,ℓ * ,a *) S t h = s ℓ * , A t h = a * ε. (3.3)
Indeed, if S t h+1 = s g , we have either S t h = s g or S t h+1 ∈ L. In the latter case, the agent has 1/2 probability of arriving at s g , plus ε if the stage is h * , the leaf is s ℓ * and the action is a * .

Lower Bound on the Regret

Using the facts that P (h * ,ℓ * ,a *) S t 1+d = s g = 0 because the agent needs first to traverse the tree and H+d h=1+d P (h * ,ℓ * ,a *) S t h ∈ L = 1 because the agent traverses the tree only once in one episode, we obtain from (3.3) that

P (h * ,ℓ * ,a *) S t H+d+1 = s g = H+d h=1+d 1 2 P (h * ,ℓ * ,a *) S t h ∈ L + 1 {h = h * } P (h * ,ℓ * ,a *) S t h = s ℓ * , A t h = a * ε = 1 2 + εP (h * ,ℓ * ,a *) S t h * = s ℓ * , A t h * = a * .
Hence, the optimal value in any of the MDPs is

ρ * = (H -H -d)(1/2 + ε)
, which is obtained by the policy that starts to traverse the tree at step h * -d then chooses to go to the leaf s ℓ * and performs action a * . The expected regret of π in

M (h * ,ℓ * ,a *) is then R T π, M (h * ,ℓ * ,a *) = T (H -H -d)ε 1 - 1 T E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *)
,

where

N T (h * ,ℓ * ,a *) = T t=1 1 S t h * = s ℓ * , A t h * = a * .
Maximum expected regret of π over all possible M (h * ,ℓ * ,a *) . We first lower bound the maximum of the regret by the mean over all instances

max (h * ,ℓ * ,a *) R T π, M (h * ,ℓ * ,a *) ≥ 1 HLA (h * ,ℓ * ,a *) R T π, M (h * ,ℓ * ,a *) ≥ T (H -H -d)ε   1 - 1 HLAT (h * ,ℓ * ,a *) E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *)   , (3.4)
so that, in order to lower bound the regret, we need an upper bound on the sum over all MDP instances (h

* , ℓ * , a *) of E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) .
For this purpose, we will relate each expectation to the expectation of the same quantity under the reference MDP M 0 .

Upper bound on E

(h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) . Since N T (h * ,ℓ * ,a *) /T ∈ [0, 1], Lemma 3.7 gives us kl 1 T E 0 N T (h * ,ℓ * ,a *) , 1 T E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) ≤ KL P B T H 0 , P B T H (h * ,ℓ * ,a *) .
By Pinsker's inequality, (p -q) 2 ≤ (1/2) kl(p, q), it implies

1 T E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) ≤ 1 T E 0 N T (h * ,ℓ * ,a *) + 1 2 KL P B T H 0 , P B T H (h * ,ℓ * ,a *)
Online Interaction with Finite MDPs and, by Lemma 3.6, we know that

KL P B T H 0 , P B T H (h * ,ℓ * ,a *) = E 0 N T (h * ,ℓ * ,a *) kl(1/2, 1/2 + ε)
since M 0 and M (h * ,ℓ * ,a *) only differ at stage h * when (s, a) = (s ℓ * , a *). Assuming that ε ≤ 1/4, we have kl(1/2, 1/2 + ε) ≤ 4ε 2 by Lemma B.1, and, consequently

1 T E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) ≤ 1 T E 0 N T (h * ,ℓ * ,a *) + √ 2ε E 0 N T (h * ,ℓ * ,a *) . (3.5)
The sum of

N T (h * ,ℓ * ,a *) over all instances (h * , ℓ * , a *) ∈ 1 + d, . . . , H + d × L × A is (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) = T t=1 H+d h * =1+d 1 S t h * ∈ L = T (3.6) since for a single stage h * ∈ 1 + d, . . . , H + d , we have S t h * ∈ L almost surely.
Summing (3.5) over all instances (h * , ℓ * , a *) and using (3.6), we obtain using the Cauchy-Schwartz inequality that

1 T (h * ,ℓ * ,a *) E (h * ,ℓ * ,a *) N T (h * ,ℓ * ,a *) ≤ 1 + √ 2ε (h * ,ℓ * ,a *) E 0 N T (h * ,ℓ * ,a *) ≤ 1 + √ 2ε HLAT . (3.7)
Optimizing ε and choosing H. Plugging (3.7) in (3.4), we obtain

max (h * ,ℓ * ,a *) R T (π, M (h * ,ℓ * ,a *)) ≥ T (H -H -d)ε 1 - 1 HLA - √ 2ε √ HLAT HLA .
The value of ε that maximizes the lower bound is ε

= 1 2 √ 2 1 -1 HLA HLA T which yields max (h * ,ℓ * ,a *) R T (π, M (h * ,ℓ * ,a *)) ≥ 1 4 √ 2 1 - 1 HLA (H -H -d) HLAT . (3.8)
The number of leaves is L = (1 -1/A)(S -3) + 1/A ≥ S/4, since A ≥ 2 and S ≥ 6. We choose H = H/3 and use the assumptions that A ≥ 2 and d ≤ H/3 to obtain

max (h * ,ℓ * ,a *) R T (π, M (h * ,ℓ * ,a *)) ≥ 1 48 √ 6 H √ HSAT .
Finally, the assumption that ε ≤ 1/4 is satisfied if T ≥ HSA.

Lower Bound on the Sample Complexity

Lower Bound on the Sample Complexity

Using again change of distributions between MDPs in a class C H,ε , we prove a minimax lower bound on the expected sample complexity of best-policy identification. We note that unlike existing sample complexity lower bounds which also construct "bandit-like" hard instances [SLL09; LH12; DB15], we do not refer to the bandit lower bound of Mannor and Tsitsiklis [START_REF] Mannor | The sample complexity of exploration in the multi-armed bandit problem[END_REF], but instead use explicit change of distribution arguments based on the tools given in Section 3.2.2. This allows us to provide BPI lower bounds for algorithms that output randomized policies and to have a self-contained proof. As a consequence of this result, we then derive a PAC-MDP lower bound in Corollary 3.10.

Theorem 3.9. Let (π, τ, π τ) be an algorithm that is (ε, δ)-PAC for best policy identification in any finite MDP. Then, under Assumption 3.4, there exists an MDP M and an initial distribution µ such that for ε ≤ H/24, H ≥ 4 and δ ≤ 1/16,

E π,M [τ] ≥ 1 3456 H 3 SA ε 2 log 1 δ • Corollary 3.10.
Let π be an algorithm that is (ε, δ)-PAC for exploration and that, in each episode t, plays a deterministic policy π t . Then, under the assumptions of Theorem 3.9, there exists an MDP M such that

P π,M N PAC ε > 1 6912 H 3 SA ε 2 log 1 δ -1 > δ.
Proof. (of Theorem 3.9) Without loss of generality, we assume that for any M, the algorithm satisfies P π,M [τ < ∞] = 1. Otherwise, there exists an MDP with E π,M [τ] = +∞ and the lower bound is trivial.

We will prove that the lower bound holds for the reference MDP M 0 defined in Section 3.2.1, which has no optimal action. To do so, we will consider changes of distributions with other MDPs in the class C H, ε for H to be chosen later and ε := 2ε/(H -H -d). As initial distribution µ on the set of states, we take the one that assigns probability 1 to the waiting state s w : µ(s w) = 1. These MDPs are of the form

M (h * ,ℓ * ,a *) with (h * , ℓ * , a *) ∈ 1 + d, . . . , H + d × L × A, for which
∆ (h * ,ℓ * ,a *) (h, s i , a) = 1 {h = h * , s i = s ℓ * , a = a * } ε.

Online Interaction with Finite MDPs

We recall that d -1 is the depth of the tree. We denote by P (h * ,ℓ * ,a *) := P π,M (h * ,ℓ * ,a *) and

E (h * ,ℓ * ,a *) := E π,M (h * ,ℓ * ,a *)
the probability measure and expectation in the MDP M (h * ,ℓ * ,a *) by following π and by P 0 and E 0 the corresponding operators in the MDP M 0 .

Suboptimality gap of π τ . For any (h * , ℓ * a *), let ρ πτ (h * ,ℓ * ,a *) be the value of the recommended policy π τ when the algorithm is run in the MDP M (h * ,ℓ * a *) . We can show that the value of the optimal policy in any of the MDPs 1 2 + ε and the value of the recommended policy π τ is

M (h * ,ℓ * a *) is ρ * := (H -H -d)
ρ πτ (h * ,ℓ * ,a *) = (H -H -d) 1 2 + ε P πτ (h * ,ℓ * ,a *) [S h * = s ℓ * , A h * = a *] ,
where P πτ (h * ,ℓ * ,a *) is the probability distribution over states and actions

(S h , A h) h∈[H] following the Markov policy π τ in the MDP M (h * ,ℓ * a *) . Notice that ρ πτ (h * ,ℓ * ,a *) is a random variable and P πτ (h * ,ℓ * ,a *) is a random measure that are F τ H -measurable. Hence, ρ * -ρ πτ (h * ,ℓ * ,a *) = 2ε 1 -P πτ (h * ,ℓ * ,a *) [S h * = s ℓ * , A h * = a *] and ρ * -ρ πτ (h * ,ℓ * ,a *) < ε ⇐⇒ P πτ (h * ,ℓ * ,a *) [S h * = s ℓ * , A h * = a *] > 1 2 .

Definition of a "good" event E

τ (h * ,ℓ * ,a *) for M (h * ,ℓ * a *) .
The transitions of all MDPs are the same up to the stopping time η = min {h ∈ [H] : S h ∈ L} when a leaf is reached. Hence, η depends only on the policy that is followed, and not on the parameters of the MDP, which allows us to define the random measure P πτ as

P πτ [S h * = s ℓ * , A h * = a *] := P πτ (h * ,ℓ * ,a *) [S η = s ℓ * , A η = a * , η = h *] (3.9) = P πτ (h * ,ℓ * ,a *) [S h * = s ℓ * , A h * = a *]
since the probability distribution of (S η , A η , η) on the RHS of (3.9) does not depend on the parameters of the MDP (h * , ℓ * , a *), given η = h * . We define the event

E τ (h * ,ℓ * ,a *) := P πτ [S h * = s ℓ * , A h * = a *] > 1 2 ,
which is said to be "good" due to the fact that

E τ (h * ,ℓ * ,a *) = ρ πτ (h * ,ℓ * ,a *) > ρ * -ε .
Since the algorithm is assumed to be (ε, δ)-PAC for any MDP, we have

P (h * ,ℓ * ,a *) E τ (h * ,ℓ * ,a *) = P (h * ,ℓ * ,a *) ρ πτ (h * ,ℓ * ,a *) > ρ * -ε ≥ 1 -δ.

Lower Bound on the Sample Complexity

Lower bound on the expectation of τ in the reference MDP M 0 . Recall that

N τ (h * ,ℓ * ,a *) = τ t=1 1 S t h * = s ℓ * , A t h * = a * , such that (h * ,ℓ * ,a *) N τ (h * ,ℓ * ,a *) = τ . For any F τ H -measurable random variable Z taking values in [0, 1], we have E 0 N τ (h * ,ℓ * ,a *) 16ε 2 (H -H -d) 2 ≥ E 0 N τ (h * ,ℓ * ,a *) kl 1 2 , 1 2 + ε by Lemma B.1 = KL P B τ H 0 , P B τ H (h * ,ℓ * ,a *)
by Lemma 3.6

≥ kl E 0 [Z] , E (h * ,ℓ * ,a *) [Z] by Lemma 3.7 for any (h * , ℓ * , a *), provided that ε ≤ 1/4. Letting Z = 1 E τ (h * ,ℓ * ,a *) yields kl E 0 [Z] , E (h * ,ℓ * ,a *) [Z] = kl P 0 E τ (h * ,ℓ * ,a *) , P (h * ,ℓ * ,a *) E τ (h * ,ℓ * ,a *) ≥ 1 -P 0 E τ (h * ,ℓ * ,a *) log   1 1 -P (h * ,ℓ * ,a *) E τ (h * ,ℓ * ,a *)   -log(2) by Lemma B.2 ≥ 1 -P 0 E τ (h * ,ℓ * ,a *) log 1 δ -log(2).
Consequently,

E 0 N τ (h * ,ℓ * ,a *) ≥ (H -H -d) 2 16ε 2 1 -P 0 E τ (h * ,ℓ * ,a *) log 1 δ -log(2) .
Summing over all MDP instances, we obtain

E 0 [τ] ≥ (h * ,ℓ * ,a *) E 0 N τ (h * ,ℓ * ,a *) ≥ (H -H -d) 2 16ε 2     HLA - (h * ,ℓ * ,a *) P 0 E τ (h * ,ℓ * ,a *)   log 1 δ -HLA log(2)   . (3.10)
Now, we have

(h * ,ℓ * ,a *) P 0 E τ (h * ,ℓ * ,a *) = E 0   (h * ,ℓ * ,a *) 1 P πτ [S h * = s ℓ * , A h * = a *] > 1 2   ≤ 1. (3.11)
Above we used the fact that

(h * ,ℓ * ,a *) P πτ [S h * = s ℓ * , A h * = a *] = h * P πτ [S h * ∈ L] = 1
Online Interaction with Finite MDPs since, at a single stage h * ∈ 1 + d, H + d , a leaf state will be reached almost surely. This implies that, if there exists

(h * , ℓ * , a *) such that P πτ [S h * = s ℓ * , A h * = a *] > 1 2 , then, for any other (h ′ , ℓ ′ , a ′) ̸ = (h * , ℓ * , a *), we have P πτ [S h ′ = s ℓ ′ , A h ′ = a ′] < 1
2 , which proves (3.11).

Plugging (3.11) in (3.10) yields

E 0 [τ] ≥ (H -H -d) 2 16ε 2 HLA -1 log 1 δ -HLA log(2) ≥ HLA (H -H -d) 2 32ε 2 log 1 δ , (3.12)
where we used the assumption that δ ≤ 1/16. The number of leaves L = (1 -1/A)(S -3) + 1/A satisfies L ≥ S/4, since we assume A ≥ 2, S ≥ 6. Taking H = H/3 and with the assumption

d ≤ H/3, we obtain E 0 [τ] ≥ H 3 SA 3456ε 2 log 1 δ .
Finally, the condition ε ≤ H/24 implies that ε ≤ 1/4, as required above.

Lower Bounds: Extensions

The lower bounds presented in the previous sections hold under Assumption 3.4, and assume that the rewards r h and transitions p h depend on the stage h ∈ [H], i.e., that we have timeinhomogeneous MDPs. In this section, we relax Assumption 3.4 and explain how to generalize the lower bounds to time-homogeneous MDPs, where r h := r and p h := p are independent of h.

Relaxing Assumption 3.4

In the proofs of Theorem 3.8 and Theorem 3.9, we use Assumption 3.4 stating that • (i) there exists an integer d such that S = 3 + (A d -1)/(A -1), and

• (ii) H ≥ 3d,
which we discuss below.

Relaxing (i)

Assumption (i) makes the proof simpler by allowing us to consider a full A-ary tree with S -3 nodes, which implies that all the leaves are at the same level d -1 in the tree. The proof can be generalized to any S ≥ 6 by arranging the states in a balanced, but not necessarily full, A-ary tree. In this case, there might be a subset of the leaves at a level d -1 and another subset at

Lower Bounds: Extensions

a level d -2, which creates an asymmetry in the leaf nodes. To handle this, we proceed as follows:

• First, using (S -3)/2 states, we build a balanced A-ary tree of depth d -1;

• For each leaf at depth d -2, we add another state (taken among the remaining (S -3)/2 states) as its child.

• Any remaining state that was not added to the tree (and is not s w , s g or s b), can be merged to the absorbing states s g or s b .

This construction ensures that we have a tree with at least (S -3)/2 and at most (S -3) nodes, where all the leaves are at the same depth d -1, for

d = ⌈log A ((S -3)(A -1) + 1)⌉ ∈ [log A S -1, log A S + 2] . (3.13) Lemma B.4
shows that the number of leaves L in this tree satisfies S ≥ L ≥ (S -3)/8. Hence, in the proofs of Theorem 3.8 (Eq. 3.8) and, Theorem 3.9 (Eq. 3.12) we take L ≥ (S -3)/8 and obtain lower bounds of the same order.

Relaxing (ii)

Equation (3.13) implies that there exists a constant c ∈ [-1, 2] such that d = log A S + c. Assumption (ii), stating that H ≥ 3d = 3 log A S + 3c ensures that the horizon is large enough with respect to the size of the MDP for the agent to be able to traverse the tree down to the rewarding state. If this condition is not satisfied, that is, if

H < 3 log A S +3c, we have S ≥ A H 3 -2 .
In this case, we can build a tree using a subset of the state space containing A H 3 -2 states, and merge the remaining S -A H 3 -2 states to the absorbing states s b or s g . In this case, the resulting bounds will replace S by A H 3 -2 , and become exponential in the horizon H,

Ω H 3 A H 3 -2 T and Ω   A H 3 -2 AH 3 ε 2 log 1 δ  
for regret and BPI, respectively.

The arguments above give us Theorem 3.11, Theorem 3.12, and Corollary 3.13 below, which state regret, BPI, and PAC-MDP lower bounds, respectively, without requiring Assumption 3.4.

Theorem 3.11. If S ≥ 11, A ≥ 4 and H ≥ 6, for any algorithm π, there exists an MDP M π such that, for T ≥ HSA

R T ≥ c 3 min S, A H 3 -2 √ H 3 AT ,
where c 3 is an absolute constant.

Online Interaction with Finite MDPs

Proof.

If S ≤ A H 3 -2 , then H ≥ 3d
, where d is given in Equation 3.13. In this case, we follow the proof of Theorem 3.8 up to Equation 3.8, where we take L ≥ (S -3)/8 according to the arguments in Section 3.5.1. If S > A H 3 -2 , then H < 3d and we follow the arguments in Section 3.5.1. Theorem 3.12. Let (π, τ, π τ) be an algorithm that is (ε, δ)-PAC for best policy identification in any finite MDP. Then, if S ≥ 11, A ≥ 4 and H ≥ 6, there exists an MDP M with stage-dependent transitions such that for ε ≤ H/24 and δ ≤ 1/16,

E π,M [τ] ≥ c 1 min S, A H 3 -2 H 3 A ε 2 log 1 δ ,
where c 1 is an absolute constant.

Proof.

If S ≤ A H 3 -2 , then H ≥ 3d
, where d is given in Equation 3.13. In this case, we follow the proof of Theorem 3.9 up to Equation 3.12, where we take L ≥ (S -3)/8 according to the arguments in Section 3.5.1. If S > A H 3 -2 , then H < 3d and we follow the arguments in Section 3.5.1. Corollary 3.13. Let π be an algorithm that is (ε, δ)-PAC for exploration and that, in each episode t, plays a deterministic policy π t . Then, under the conditions of Theorem 3.12, there exists an MDP M such that

P π,M N PAC ε > c 2 min S, A H 3 -2 H 3 A ε 2 log 1 δ -1 > δ.
where c 2 is an absolute constant.

Proof. Analogous to the proof of Corollary 3.10, using Theorem 3.12 instead of Theorem 3.9.

Lower Bounds for Time-Homogeneous MDPs

The proofs of Theorem 3.8 and Theorem 3.9 can be adapted to the case where the rewards r h and transitions p h do not depend on h. To do so, we need to have a set of hard MDPs with time-homogeneous transitions. For that, we remove the waiting state s w and the agent starts at s root , which roughly corresponds to setting H = 1 in the proofs, and we take

∆ (h * ,ℓ * ,a *) (h, s i , a) := 1 {(s i , a) = (s ℓ * , a *)} ε ′
to be independent of h. The h-independent rewards are taken as ∀a ∈ A, r h (s, a) = 1 {s = s g } .

Upper Bound on the Regret of UCBVI

Since H = 1 and no longer H/3, the regret bound becomes Ω(√ H 2 SAT) and the BPI bound becomes Ω SAH 2 ε 2 log 1 δ .

Upper Bound on the Regret of UCBVI

In Section 3.1, we saw that both the regret and the PAC-MDP criteria allow us to measure how well an agent balances exploration and exploitation, whereas the BPI criterion is a pureexploration objective. In this section and in the next chapter, we focus on algorithms for regret minimization. In Section 3.7 we present references to other works tackling the PAC-MDP and the BPI criteria.

Azar et al. [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] introduced the UCBVI algorithm, meaning upper confidence bound value iteration, and proved regret upper bounds that match the lower bound up to logarithmic factors, provided that the number of episodes T is large enough. In this section, we provide a simplified analysis of UCBVI-CH, which is a version of UCBVI discussed below, that we generalize to continuous MDPs in Chapter 4. Our simplification relies on Lemma 3.16, and is discussed in Section 3.6.2.

Minimax optimality of UCBVI

Time-homogeneous versus time-inhomogeneous MDPs

In the analysis of UCBVI presented here, we consider the UCBVI-CH version in the time-inhomogeneous case, where the lower bound is Ω √ H 3 SAT (Theorem 3.8) and we prove a regret upper bound of order O √ H 4 SAT , which is suboptimal only by a factor √ H. Our choice for the time-inhomogeneous case is motivated by its generality and by mathematical convenience. The extension of our analysis to the time-homogeneous case is straightforward (e.g., [Dom+21d, Appendix E]).

Notation and Assumptions

We consider Assumption 1.1 stating that the reward functions are known, and we further assume that the rewards are nonnegative and bounded by r max = 1.

Online Interaction with Finite MDPs

For any transition kernel p and any function f : S → R, we denote pf (s, a) := z∈S p(z|s, a)f (z).

(3.14)

In the regret analysis, we omit logarithmic factors using the following notation:

A ≲ B ⇐⇒ A ≤ B × polynomial (log(T), log(1/δ), log(HSA)) . (3.15)
Also for the regret analysis, we denote by F t h the σ-algebra generated by all the state-action pairs observed up to time (t, h), that is, the h-th step of the t-th episode.

Description of the UCBVI Algorithm

In each episode t ∈ [T], UCBVI (Algorithm 3.1) computes Q-functions Q t h for all h ∈ [H] based on the data observed up to episode t -1, such that Q t h is an upper confidence bound on the optimal Q-function Q * h . That is, Q t h ⪰ Q * h
with high probability, so that we refer to Q t h as an optimistic Q-function. Then, UCBVI executes the policy π t , defined as

π t (s, h) := argmax a Q t h (s, a).
In order to compute optimistic Q-functions Q

a t h ← argmax a Q t h (s t h , a) # execute action s t h+1 ← OnlineModel t,h (a t h) # update model compute p t+1 h using Equation (3.16)
Let n t h (s, a) be the number of times that the state-action pair (s, a) has been visited at stage h before episode t, which is initialized to 1 if (s, a) has not been visited:

n t h (s, a) := 1 ∨ t-1 i=1 1 (s i h , a i h) = (s, a) .
where ∀x, y ∈ R, x ∨ y := max(x, y). The estimated transitions p t h are defined as

p t h (z|s, a) := 1 n t h (s, a) t-1 i=1 1 (s i h , a i h) = (s, a) δ s i h+1 (z), (3.16)
where ∀s ∈ S, δ s is the Dirac measure at s.

The exploration bonuses b t h (s, a) are defined as

b t h (s, a) := 2H 2 n t h (s, a) log 6HSAn t h (s, a)(n t h (s, a) + 1) δ • (3.17)
The optimistic Q-functions Q t h are computed recursively as follows:

∀h ∈ [H], Q t h (s, a) := r h (s, a) + p t h V t h+1 (s, a) + b t h (s, a), (3.18)
where, for all s ∈ S, V t H+1 (s) := 0 and

V t h (s) := min(H -h + 1, max a Q t h (s, a))
, and where we used the notation (3.14) for the expectation with respect to p t h .

Regret Analysis

Theorem 3.14 provides a high-probability upper bound on the regret of UCBVI. Its proof is split into three parts: (i) deriving confidence intervals for the transitions estimators p t h ; (ii) proving that the algorithm is optimistic, i.e., that V t h (s) ≥ V * h (s) for any (s, t, h) on a high-probability event G; (iii) proving an upper bound on the regret by using the fact that

R T = t V * 1 (s t 1) -V π t 1 (s t 1) ≤ t V t 1 (s t 1) -V π t 1 (s t 1)
on the event G.

Theorem 3.14. With probability at least 1 -δ, the regret of UCBVI satisfies

R T ≲ H 2 √ SAT + H 3 2 √ T + H 3 S 2 A,
where ≲ omits constant and logarithmic factors, as defined in (3.15).

According to Theorem 3.14, if T ≥ H 2 S 3 A, the regret of UCBVI satisfies R T ≲ √ H 4 SAT
G 1 := ∀t ≥ 1, ∀(s, a, h) ∈ S × A × [H], |(p h -p t h)V * h+1 (s, a)| ≤ b t h (s, a)
.

Then, P [G 1] ≥ 1 -δ/3.
Proof. The proof is given in Appendix B.4.2, and is based on the Azuma-Hoeffding inequality.

Lemma 3.16. Let V = f ∈ R S : ∥f ∥ ∞ ≤ H, f ⪰ 0 . and consider the event G 2 defined as G 2 := ∀(t, s, a, h, f), (p h -p t h)f (s, a) ≤ 1 H p h f (s, a) + 55H 2 S n t h (s, a) log HSAn t h (s, a) δ where t ≥ 1 and (s, a, h, f) ∈ S × A × [H] × V. Then, P [G 2] ≥ 1 -δ/3.
Proof. The proof is given in Appendix B.4.3, and is based on Bernstein's inequality and a union bound over a covering of the space V.

Part 2: Optimism Lemma 3.17. Consider the event G 1 defined in Lemma 3.15. On G 1 , we have V t h ⪰ V * h .

Upper Bound on the Regret of UCBVI

Proof. We proceed by induction. For h = H + 1, V t h = V * h = 0. Assume that the statement is true for h + 1. Hence, for any (s, a),

Q t h (s, a) -Q * h (s, a) = p t h V t h+1 (s, a) -p h V * h+1 (s, a) + b t h (s, a) = p t h (V t h+1 -V * h+1)(s, a)
≥0 by the induction hypothesis

+ (p t h -p h)V * h+1 (s, a) + b t h (s, a) ≥0 on the event G 1 ≥ 0, which implies that V t h (s) ≥ V * h (s)
for any s and concludes the proof.

Part 3: Regret Bound

Consider the events G 1 and G 2 defined in lemmas 3.15 and 3.16, respectively. Let

δ t h := V t h (s t h) -V π t h (s t h).
By Lemma 3.17, on the event G 1 , we have

R T = T t=1 V * 1 (s t 1) -V π t 1 (s t 1) ≤ T t=1 V t 1 (s t 1) -V π t 1 (s t 1) = T t=1 δ t 1 .
Since δ t H+1 = 0, we bound δ t h recursively in order to prove Theorem 3.14. At any stage h and episode t, we have

δ t h = V t h (s t h) -V π t h (s t h) ≤ Q t h (s t h , a t h) -Q π t h (s t h , a t h) ≤ (p t h -p h)V * h+1 (s t h , a t h) + (p t h -p h)(V t h+1 -V * h+1) + p h (V t h+1 -V π t h+1)(s t h , a t h) + b t h (s t h , a t h). On G 1 , (p t h -p h)V * h+1 (s t h , a t h) ≤ b t h (s t h , a t h), which implies δ t h ≤ (p t h -p h)(V t h+1 -V * h+1)(s t h , a t h) + p h (V t h+1 -V π t h+1)(s t h , a t h) + 2b t h (s t h , a t h) = δ t h+1 + ξ t h+1 + 2b t h (s t h , a t h) + (p t h -p h)(V t h+1 -V * h+1)(s t h , a t h),
where

ξ t h+1 := p h (V t h+1 -V π t h+1)(s t h , a t h) -δ t h+1 . Notice that (ξ t h+1) t,h is a martingale difference sequence with respect to (F t h) t,h , that is, E ξ t h+1 |F t h = 0.
Lemma 3.16 allows us to bound the term

(p t h -p h)(V t h+1 -V * h+1)(s t h , a t h
) and gives us, on the event G 2 ,

δ t h ≲ δ t h+1 + ξ t h+1 + b t h (s t h , a t h) + 1 H p h (V t h+1 -V * h+1)(s t h , a t h) + H 2 S n t h (s t h , a t h)
, and recall that the notation ≲ omits constant and logarithmic factors.

Online Interaction with Finite MDPs

Introducing ξ t h+1 defined as

ξ t h+1 := 1 H p h (V t h+1 -V * h+1)(s t h , a t h) - 1 H V t h+1 (s t h+1) -V * h+1 (s t h+1) ,
and using the fact that

V t h+1 (s t h+1) -V * h+1 (s t h+1) ≤ V t h+1 (s t h+1) -V π t h+1 (s t h+1) = δ t h+1
, we obtain Bounding the sum of 1/ n t h (s t h , a t h). In order to bound this term, we relate this sum to an integral, and we apply the Cauchy-Schwarz inequality. First, we define

δ t h ≲ 1 + 1 H δ t h+1 + ξ t h+1 + ξ t h+1 + b t h (s t h , a t h) + H 2 S n t h (s t h , a t h) • Since (1 + 1/H) H-h+1 ≤ exp(
τ h (s, a) := min t : n t h (s, a) > 1 .
Using the fact that s,a n T +1 h (s, a) = T , we have:

T t=1 H h=1 1 n t h (s t h , a t h) = H h=1 s,a T t=1 1 (s t h , a t h) = (s, a) n t h (s, a) ≤ H h=1 s,a   1 + T t=τ h (s,a) n t+1 h (s, a) -n t h (s, a) n t h (s, a)   ≤ H h=1 s,a T t=τ h (s,a) n t+1 h (s, a) -n t h (s, a) n t+1 h (s, a) -1 + HSA

Discussion and Bibliographical Remarks

≤ H h=1 s,a n T +1 h (s,a) 2 dz √ z -1 + HSA ≤ 2 H h=1 s,a n T +1 h (s, a) + HSA ≤ 2 H h=1 √ SAT + HSA by the Cauchy-Schwarz inequality = 2H √ SAT + HSA.
Bounding the sum of 1/n t h (s t h , a t h). Analogously to the previous case,

T t=1 H h=1 1 n t h (s t h , a t h) ≤ H h=1 s,a n T +1 h (s,a) 2 dz z -1 + HSA ≤ SA H h=1 s,a 1 SA log(n T +1 h (s, a)) + HSA ≤ SA H h=1 log T SA + HSA by Jensen's inequality = HSA log T SA + HSA.
Finally, we obtain that

R T ≲ H 2 √ SAT + H √ T + H 2 SA + H 3 S 2 A on the event G := G 1 ∩ G 2 ∩ G 3 . Since P [G] ≥ 1 -δ, this concludes the proof.

Discussion and Bibliographical Remarks

In this chapter, we presented three of the main criteria used to evaluate reinforcement learning algorithms in the online setting: the regret, the BPI and the PAC-MDP criteria. In the regret and PAC-MDP framework, the agent is evaluated for its performance during learning, and, in the BPI framework, the agent is evaluated only by the policy it recommends at the end.

For each of those criteria, we provided lower bounds, both for time-homogeneous and timeinhomogeneous MDPs. For the regret criterion in time-inhomogeneous MDPs, we presented a simplified analysis of the UCBVI algorithm, whose regret upper bound nearly matches the lower bound. We discuss below related works with respect to upper and lower bounds in different settings.

Online Interaction with Finite MDPs

Sample complexity lower bounds Sample complexity has mostly been studied in the γdiscounted setting for PAC-MDP algorithms [START_REF] Kakade | On the Sample Complexity of Reinforcement Learning[END_REF]. State-of-the art lower bounds are a

Ω SA ε 2 log S δ bound by Strehl et al. [SLL09] and a Ω SA (1-γ) 3 ε 2 log 1 δ
bound by Lattimore and Hutter [START_REF] Lattimore | PAC bounds for discounted MDPs[END_REF]. A lower bound of the same order is provided by Azar et al. [START_REF] Gheshlaghi Azar | On the Sample Complexity of Reinforcement Learning with a Generative Model[END_REF] for the number of steps algorithms that have access to a generative model need to identify an ε-optimal value function. PAC-MDP algorithms in the finite-horizon setting with timehomogeneous MDPs were later studied by Dann and Brunskill [START_REF] Dann | Sample complexity of episodic fixedhorizon reinforcement learning[END_REF], who also provide a lower bound. Unlike the previous ones, they do not lower bound the number of ε-mistakes of the algorithm, but rather state that any algorithm that outputs a deterministic policy π that is ε-optimal with probability at least 1 -δ, there exists an MDP where the expected number of episodes before π is returned must be at least

Ω SAH 2 ε 2 log 1 δ
. This lower bound therefore applies to the sample complexity of best-policy identification. The "hard MDP" instances used to prove this worse-case bound are inspired by the ones of Strehl et al. [START_REF] Strehl | Reinforcement Learning in Finite MDPs: PAC Analysis[END_REF] and consist of S multi-armed bandit (MAB) problems played in parallel. Jiang et al. [START_REF] Jiang | Contextual Decision Processes with low Bellman rank are PAC-Learnable[END_REF], Dann et al. [START_REF] Dann | Unifying PAC and regret: Uniform PAC bounds for episodic reinforcement learning[END_REF], and Yin et al. [START_REF] Yin | Near-Optimal Provable Uniform Convergence in Offline Policy Evaluation for Reinforcement Learning[END_REF] show that the PAC lower bound has an extra factor H for time-inhomogeneous MDPs, and also rely on a construction of hard instances based on parallel MAB instances. In this chapter, we presented a lower bound that applies to algorithms that may output randomized policies after a random stopping time, which is more general than what has been previously shown. Unlike the prior lower bound constructions with parallel MAB instances, we designed a class of MDPs where each of them has stage-dependent transitions and behaves as single bandit instance with Θ(HSA) arms. In Theorem 3.9, we proved that in this class there exists an MDP for which the expected number of samples needed to identify an ε-optimal policy with probability 1 -δ is at least Ω SAH 3 ε 2 log1 δ . Our construction avoids unnecessary assumptions without which prior analyses would not work.

Regret lower bounds

In the average-reward setting, Jaksch et al. [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] prove a regret lower bound of Ω(√ DSAT) where D is the diameter of the MDP and T is the total number of actions taken in the environment. In the finite-horizon setting, the total number of actions taken is HT , where T is now the number of episodes, and H is roughly the equivalent of the diameter D. 1 Hence, intuitively, the lower bound of Jaksch et al. [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] should be translated to Ω(√ H 2 SAT) for finite-horizon MDPs after T episodes. Yet, to the best of our knowledge, a precise proof of this claim had not been given previously in the literature. The proof of Jaksch et al. [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] relies on building a set of hard MDPs with "bad" states (with zero reward) and "good" states (with reward 1), and can be adapted to finite-horizon MDPs by making the good states absorbing. However, this construction does not include MDPs whose transitions and rewards are allowed to change at every stage h, that is, that are time-inhomogeneous. In the

Discussion and Bibliographical Remarks

case of time-inhomogeneous MDPs, Jin et al. [START_REF] Jin | Is Q-Learning Provably Efficient?[END_REF] claim that the lower bound becomes Ω(√ H3 SAT), by using the construction of Jaksch et al. [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] and a mixing-time argument, but they do not provide a complete proof. In Theorem 3.8, we provided a detailed proof of their statement, by relying on the same class of hard MDPs given for our sample complexity lower bound.

Algorithms matching the lower bounds Table 3.1 shows some of the algorithms whose upper bounds match the lower bounds2 presented in this chapter for the regret, BPI, and PAC settings, both for time-homogeneous and time-inhomogeneous MDPs. 3,4 The last column indicates whether the algorithm was analyzed only for time-inhomogeneous MDPs.

Algorithm

Setting time-inhomogeneous only Kernel-UCBVI (Algorithm 4.1) has the same algorithmic structure as UCBVI, except that it does not assume that the MDP is finite. We now describe how the Q-functions Q t h are computed.

UCBVI [AOM17] Regret No 3 Q-Learning+UCB [Jin+18] Regret Yes BPI-UCBVI [Mé+21a] BPI Yes ORLC [Dan+19] 4 BPI, PAC No 3

Kernel-Based Reinforcement Learning for Exploration

Let Γ : (S × A) 2 → [0, 1] be a kernel function, where Γ(u, v) represents the similarity between two state action pairs u, v ∈ S × A. For any (s, a) ∈ S × A, we define weights w i h (s, a) and normalized weights w t,i h (s, a) for any (t, h) and for i ∈ [t -1] as

w i h (s, a) := Γ (s, a), (s i h , a i h) and w t,i h (s, a) := w i h (s, a) C t h (s, a) , (4.1)
where

C t h (s, a) := β + t-1 i=1 w i h (s, a)
and where β > 0 is a regularization parameter.

Before each episode t, Kernel-UCBVI uses those weights to build kernel-based estimators r t h and p t h of the reward function and of the transitions at time (t, h), respectively:

r t h (s, a) := t-1 i=1 w t,i h (s, a) r i h , p t h (z|s, a) := t-1 i=1 w t,i h (s, a)δ s i h+1 (z), (4.2)
where δ s is the Dirac measure at s ∈ S.

The weights w t h (s, a) measure the influence that the transitions and rewards observed at time (t, h) will have on the estimators for the state-action pair (s, a). Their sum, C t h (s, a), is a generalization of the number of visits to (s, a). Indeed, if the MDP is finite, we can define a kernel as a) is equal to β plus the number of visits to (s, a) at stage h before episode t. Recall that the exploration bonuses used by UCBVI are proportional to H/ n t h (s, a), where H is the horizon, i.e., the length of each episode. Hence, as a generalization of such bonuses to continuous MDPs, we propose the following

Γ (s, a), (s ′ , a ′) = 1 (s, a) = (s ′ , a ′) so that C t h (s, a) = β + n t h (s, a), where n t h (s, a) = t-1 i=1 1 (s, a) = (s i h , a i h) . That is, C t h (s,
b t h (s, a) = κ 1 H C t h (s, a) + κ 2 βH C t h (s, a) + κ 3 , (4.3)
where κ 1 , κ 2 , and κ 3 are constants to be defined later. The first term in the sum is analogous to the bonus of UCBVI, and measures the uncertainty in the model estimation. The second term takes into account the bias introduced by the regularization constant β, and the third term κ 3 represents an extra bias term introduced by the kernel. Kernel-UCBVI defines the Q-functions

A Kernel-Based Approach to Exploration in Continuous MDPs

Q t h (s, a) for any (s, a) ∈ S × A via backward induction and interpolation as follows:

(backward induction) Q t h (s, a) = r t h (s, a) + p t h V t h+1 (s, a) + b t h (s, a) (interpolation) Q t h (s, a) = Λ s, a, Q t h (s i h , a i h) i∈[t-1]
where V h is defined as

V t h (s) = min H -h + 1, max a Q t h (s, a)
, and Λ is an interpolation function. In practice, we can skip the interpolation step and define Q t h (s, a) = Q t h (s, a) for any (s, a). However, to derive regret bounds, we need to define Λ as a linear interpolation of the values

Q t h (x i h , a i h) i∈[t-1]
to control the complexity of the function class to which Q t h belongs.

Q t h (s i h , a i h) ← t-1 j=1 w t,j h (s i h , a i h) r j h + V t h+1 (s j h+1) + b t h (s i h , a i h) # Interpolated Q-function: defined, but not computed, for all (s, a) ∈ S × A Q t h (s, a) = Λ s, a, Q t h (s i h , a i h) i∈[t-1]
Compute V t h for the observed states

for i = 1, . . . , t -1 do V t h (s i h) = min(H -h + 1, max a Q t h (s i h , a)) return: (Q t h) h∈[H]
Although Kernel-UCBVI defines Q t h (s, a) for any (s, a), backward induction can be run in finite time, as detailed in Algorithm 4.2. Intuitively, backward induction with a kernel-based model in a continuous MDP is analogous to that in a finite MDP where the state set is composed of all previously observed states s

t ′ h ′ for h ′ ∈ [H] and t ′ ∈ [t -1].
Consequently, one drawback of Kernel-UCBVI is that its runtime increases in each episode. In Section 4.6 we discuss approximation methods to decrease the runtime of the algorithm.

Time-homogeneous MDPs

As mentioned in Section 3.6, we consider time-inhomogeneous MDPs, where the rewards and transitions depend on h, for mathematical convenience. The algorithm can be easily generalized to time-homogeneous MDPs by estimating the model as

r t (s, a) := 1 C t (s, a) t-1 i=1 H h=1 w i h (s, a) r i h , p t (z|s, a) := 1 C t (s, a) t-1 i=1 H h=1 w i h (s, a)δ s i h+1 (z), (4.4)

Regret Analysis of Kernel-UCBVI

where C t (s, a) := β + t-1 i=1 H h=1 w i h (s, a), and by defining the bonuses as

b t h (s, a) = κ 1 H C t (s, a) + κ 2 βH C t (s, a) + κ 3 • (4.5)

Regret Analysis of Kernel-UCBVI

In this section, we provide a regret upper bound for Kernel-UCBVI. For that, we first need regularity assumptions on the MDP and on the kernel function, which are stated below. 1 Intuitively, our assumptions require similar state-action pairs to have similar transitions and rewards, which allow the algorithm to generalize and explore continuous MDPs.

r h (s, a) -r h (s ′ , a ′) ≤ L r ρ (s, a), (s ′ , a ′) ,
and

W 1 p h (•|s, a), p h (•|s ′ , a ′) ≤ L p ρ (s, a), (s ′ , a ′)
where, for two measures µ and ν, we have W 1 (µ, ν) := sup f :Lip(f)≤1 S f (y)(dµ(y) -dν(y)) and where, for any Lipschitz function f : S → R with respect to ρ S , Lip(f) denotes its Lipschitz constant.

Assumption 4.3. For any h, the optimal

Q-function Q * h is L-Lipschitz with respect to ρ. Assump- tions 4.1 and 4.2 imply that L ≤ H h=1 L r L p H-h (Lemma C.22 in the Appendix).
For the regret analysis, we require the similarity function to be defined through a base kernel function and the distance ρ. Let σ > 0 be a kernel parameter. We assume that we have access to a base kernel function Γ : R + → [0, 1] such, for any u, v ∈ S × A, the kernel Γ is defined as

Γ(u, v) = Γ ρ [u, v] σ .

A Kernel-Based Approach to Exploration in Continuous MDPs

Assumption 4.4 (kernel properties). We assume that z → Γ(z) is non-increasing and that Γ(4) > 0. Additionally, we assume that there exists positive constants C 1 , C 2 , such that

(1) Fast decay: ∀z, Γ(z) ≤ C 1 exp -z 2 /2 , (2
) Lipschitzness: ∀(y, z), Γ(y) -Γ(z) ≤ C 2 |y -z| .
Condition (1) ensures that the bias due to kernel smoothing remains bounded by O (σ); and

(2) provides smoothness conditions that are needed to construct concentration inequalities for the rewards and transitions. The requirement Γ(4) > 0 is mostly technical: it is used to ensure that C t h (s, a) is not too small in a 4 σ-neighborhood of (s, a). As examples of kernels Γ satisfying Assumption 4.4, we have Γ(z) = exp(-z q /2) for q ≥ 2, Γ(z) = max(0, 1 -z/q) for q > 4, among other kernels that are Lipschitz continuous and have bounded support.

Interpolation For the regret analysis, we consider the following interpolation function:

Q t h (s, a) = Λ s, a, Q t h (s i h , a i h) i∈[t-1] := min i∈[t-1] Q t h (s i h , a i h) + Lρ (s, a), (s i h , a i h) . (4.6)
This ensures that the functions (s, a) → Q t h (s, a) are L-Lipschitz for all (t, h), and allows us to prove the concentration inequalities on which the analysis relies.

Covering numbers & covering dimension

The regret bounds for Kernel-UCBVI feature the σ-covering number and the covering dimension of the state-action space, which we now define. Let (U, ρ) be a metric space. For any

u ∈ U, let B(u, σ) = {v ∈ U : ρ(u, v) ≤ σ}. We say that a set C σ is a σ-covering of (U, ρ) if U ⊂ ∪ u∈Cσ B(u, σ). The σ-covering number of (U, ρ) is N (σ, U, ρ) := min {|C σ | : is a σ-covering of (U, ρ)} .
That is, N (σ, U, ρ) is the minimum number of σ-radius balls required to cover the entire space. The covering dimension of (U, ρ) is then defined as the smallest number d such that its σ-

Regret Analysis of Kernel-UCBVI

covering number is proportional to σ -d . For instance, the covering number of a ball in R d equipped with the Euclidean distance is O(σ -d) and its covering dimension is d. 2We denote by |C σ | and |C ′ σ | the σ-covering numbers of (S × A, ρ) and (S, ρ S), respectively, and by d 1 and d 2 their respective covering dimensions, where σ is the kernel parameter. Also, we define d = max(d 1 , d 2). Theorem 4.7 provides a regret bound for Kernel-UCBVI under the assumptions above. We use the notation below when omitting constant and logarithmic factors:

A ≲ B ⇐⇒ A ≤ B × polynomial (d 1 , d 2 , log(T), log(1/δ), β, 1/β, L r , L p , L) .
Theorem 4.7. With probability at least 1 -δ, the regret of Kernel-UCBVI satisfies

R T ≲ H 2 |C σ | T + LHT σ + H 3 |C σ | C ′ σ , if the constants (κ i) 3
R T ≲ H 3 T 2d 2d+1 .
Proof. The proof is an immediate consequence of Theorem 4.7 by noticing that

|C σ | ≲ σ -d 1 ≤ σ -d and |C ′ σ | ≲ σ -d 2 ≤ σ -d .
Now, we provide a proof sketch of Theorem 4.7. The full proof is given in Appendix C.2.

Similarly to UCBVI, the proof is split into three parts: (i) deriving confidence intervals for the kernel-based transitions estimators p t h ; (ii) proving that the algorithm is optimistic, i.e., that V t h (s) ≥ V * h (s) for any (s, t, h) on a high-probability event G; (iii) proving an upper bound on the regret by using the fact that

R T = t V * 1 (s t 1) -V π t 1 (s t 1) ≤ t V t 1 (s t 1) -V π t 1 (s t 1)
on the event G.

Concentration

We focus on concentration inequalities for the transition kernels, as those for the rewards are similar. Since p t h (•|s, a) are weighted sums of Dirac measures, we cannot bound the distance between p h (•|s, a) and p t h (•|s, a) directly. Instead, for V * h+1 , the optimal value function at step h + 1, we bound the difference:

|(p t h -p h)V * h+1 (s, a)| = t-1 i=1 w t,i h (s, a)V * h+1 (s i h+1) -p h V * h+1 (s, a) ≤ t-1 i=1 w t,i h (s, a)V * h+1 (s i h+1) -p h V * h+1 (s i h , a i h) + L p L t-1 i=1 w t,i h (s, a)ρ (s, a), (s i h , a i h) + βH C t h (s, a)
• The first term above is a weighted sum of a martingale difference sequence. To control it, we use a Hoeffding-type inequality (Lemma C.2) that applies to weighted sums with random weights. The second term is a bias term that results from the fact that V * h+1 is L-Lipschitz and that the transition kernel is L p -Lipschitz, and this term is shown to be proportional to σ under Assumption 4.4 (Lemma C.20). The third term is the bias introduced by the regularization parameter β. Hence, for a fixed state-action pair (s, a), we show that, with high probability,

|(p t h -p h)V * h+1 (s, a)| ≤ κ 1 H C t h (s, a) + κ 2 βH C t h (s, a) + κ 3
for an appropriate choice of κ 1 , κ 2 , and κ 3 . Then, we extend this bound to all (s, a) by leveraging the continuity of all terms involving (s, a) and a covering argument. This continuity is a consequence of kernel smoothing. Also, we use a Bernstein-type concentration inequality (Lemma C.3) that allows us to control the deviations of (p t h -p h)f (s, a) uniformly over a class of bounded Lipschitz functions f . This is similar to Lemma 3.16, which allowed us to gain a √ S factor in the regret bound of UCBVI, and here it allows us to gain a |C ′ σ | factor for Kernel-UCBVI. We define a favorable event G, which has probability at least 1 -δ/2, on which our concentration inequalities hold.

Optimism

To prove that V t h is an upper bound on V * h , we proceed by induction and use the Q-functions.

When h = H + 1, we have Q t H+1 = Q * H+1 = 0, by definition. Assuming that Q t h+1 (s, a) ≥ Q * h+1 (s, a
) for all (s, a), we have V t h+1 (s) ≥ V * h+1 (s) for all s. Then, the bonuses are defined so that Q t h (s, a) ≥ Q * h (s, a) for all (s, a) on the event G.

In particular,

Q t h (s i h , a i h) ≥ Q * h (s i h , a i h) for all i ∈ [t -1], which gives us Q t h (s i h , a i h) + Lρ (s, a), (s i h , a i h) ≥ Q * h (s i h , a i h) + Lρ (s, a), (s i h , a i h) ≥ Q * h (s, a)

Regret Analysis of Kernel-UCBVI

for all i ∈ [t -1], since Q * h is L-Lipschitz. It

Bounding the Regret

Let π t be the policy executed by Kernel-UCBVI in episode t, and let

δ t h := V t h (s t h) -V π t h (s t h). On the event G, we have V t h ≥ V * h , which implies that R T ≤ T t=1 δ t 1 . Let (s t h , a t h
) be the state-action pair that is the closest to (s t h , a t h) among the transitions observed before episode t , that is

(s t h , a t h) := argmin (s i h ,a i h):i<t ρ (s t h , a t h), (s i h , a i h) ,
and we define ρ t h := ρ (s t h , a t h), (s t h , a t h) . We bound δ t h using the following decomposition

δ t h ≤ Q t h (s t h , a t h) -Q π t h (s t h , a t h) ≤ Q t h (s t h , a t h) -Q π t h (s t h , a t h) + Lρ t h ≤ 2 b t h (s t h , a t h) + (L + L p L + L r)ρ t h + (p t h -p h)V * h+1 (s t h , a t h) (A) + p h (V t h+1 -V π t h+1)(s t h , a t h) (B) + (p t h -p h)(V t h+1 -V * h+1)(s t h , a t h) (C)
.

The term (A) is shown to be smaller than b t h (s t h , a t h), by definition of the bonus. The term (B) can be written as δ t h+1 plus a term ξ t h+1 , where (ξ t h+1) t,h is a martingale difference sequence. Using the fact that V t h+1 -V * h+1 is 2L-Lipschitz and the uniform deviation inequalities that hold on the event G, we prove that T by Hoeffding-Azuma's inequality on an event G ′ of probability larger than 1 -δ/2. Now, we focus on the case where ρ t h ≤ 2σ and omit the terms involving ξ t h+1 . Using the definition of the bonus, we obtain

(C) ≲ 1 H (δ t h+1 + ξ t h+1) + H 2 |C ′ σ | C t h (s t
δ t h ≲ 1 + 1 H δ t h+1 + H C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ.
Using the fact that (1 + 1/H) H ≤ e, we have, on the event G ∩ G ′ of probability at least 1 -δ,

R T ≲ H h=1 T t=1   H C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h)   + LHT σ.

A Kernel-Based Approach to Exploration in Continuous MDPs

Finally, we show that

H h=1 T t=1 1 C t h (s t h , a t h) ≲ H |C σ | T and H h=1 T t=1 1 C t h (s t h , a t h) ≲ H |C σ | log T,
which gives us the final bound on the event G ∩ G ′ :

R T ≲ H 2 |C σ | T + LHT σ + H 3 |C σ | C ′ σ + H 2 |C σ | ,
where the term H 2 |C σ | takes into account the time steps (t, h) such that ρ t h > 2σ.

Comparison to Lower Bounds & Related Work

To the best of our knowledge, the regret bound we proved for Kernel-UCBVI is the first regret bound for kernel-based RL using smoothing kernels, and we present below further discussions on this result, regarding lower bounds and related work.

Comparison to lower bound for Lipschitz MDPs

In terms of the number of episodes T and the dimension d, the lower bound for Lipschitz MDPs is of order T d+1 d+2 , which is a consequence of the lower bounds for Lipschitz multi-armed bandits [START_REF] Bubeck | X-armed bandits[END_REF][START_REF] Slivkins | Contextual bandits with similarity information[END_REF]. In terms of H, the optimal dependence can be conjectured to be H 3 2 , which is the case for finite MDPs, as we saw in Chapter 3 (Theorem 3.8). For d = 1, our bound for Kernel-UCBVI has an optimal dependence on T , leading to a regret of order O H 3 T 2 3 .

Comparison to other upper bounds for Lipschitz MDPs

The best available upper bound in this setting, in terms of T and d, is O H

5 2 T d+1 d+2
, which is achieved by model-free algorithms performing either uniform or adaptive discretization of the state-action space [SS19; SBY19; TTB20].

Relevance of kernel-based algorithms

Although our upper bound does not match the lower bound for Lipschitz MDPs, kernel-based RL (KBRL) can be a very useful tool in practice to handle the bias-variance trade-off in RL. It allows us to easily provide expert knowledge to the algorithm through kernel design, which can be seen as introducing more bias to reduce the variance of the algorithm and, consequently, improve the learning speed. Furthermore, kernels can be defined on arbitrary types of objects, such as graphs, sets, strings (i.e., sequences of symbols) etc., which might make KBRL applicable to a wider range of tasks than discretizationbased algorithms. In addition, Badia et al. [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF] have shown that kernel-based exploration bonuses similar to the ones derived for Kernel-UCBVI can improve exploration in Atari games.

KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

Model-free versus model-based approaches An interesting observation comes from the comparison between Kernel-UCBVI and model-free approaches in continuous MDPs [SS19; SBY19; TTB20]. These algorithms are based on optimistic Q-learning [START_REF] Jin | Is Q-Learning Provably Efficient?[END_REF], to which we refer as OptQL, and achieve a regret of order O H regret when d = 1, our bound is slightly worse for d > 1. To understand this gap, it is useful to look at the regret bound for finite MDPs. Since our algorithm is inspired by UCBVI [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] comparing the first-order term (i.e., the term scaling with √ T), but it is HS times better in the second-order term (i.e., the term that does not depend on T). For large values of T , secondorder terms can be neglected in the comparison of the algorithms in finite MDPs, since they do not depend on T . However, they play an important role in continuous MDPs, where S and A are replaced by the σ-covering number of the state-action space, which is roughly 1/σ d . In this case, the algorithms define the granularity σ of the representation of the state-action space based on the number of episodes T , connecting the number of states S with T . For example, in [START_REF] Song | Efficient model-free reinforcement learning in metric spaces[END_REF] the ε-net used by the algorithm is tuned such that ε = (HT) -1 d+2 (see also [OR12; LOR15; Jia+19]). Similarly, for Kernel-UCBVI we have that σ = T -1 2d+1 (Corollary 4.8). For this reason, the second-order term in UCBVI becomes the dominant term in our analysis, leading to a worse dependence on d compared to model-free algorithms. For similar reasons, Kernel-UCBVI has an additional √ H factor compared to model-free algorithms based on OptQL. However, as observed in Section 4.7, model-based algorithms seem to enjoy a better empirical performance.

KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

Non-Stationary Environments and Dynamic Regret

During the online interaction of an agent with an environment, it is possible that the behavior of the environment changes from one episode to another. For instance, imagine that the goal of the agent is to control the heating system of a building, in order to keep its temperature at a fixed value and minimize the total cost of electricity that is consumed. The optimal control strategy might depend on several external factors, such as the number of people currently inside the building, the weather outside, the time of the year, and the price of electricity. Some of those factors are unknown to the agent, and thus cannot be included as a part of the state variables s ∈ S. Consequently, from the agent's perspective, the dynamics of the environment

A Kernel-Based Approach to Exploration in Continuous MDPs

are non-stationary: taking an action a at a state s in an episode t might have a different outcome than if a is taken at s in another episode t ′ . Typically, reinforcement learning algorithms build their policy π t to be executed in episode t based on the transitions observed up to episode t -1. For instance, the model (r t h , p t h) h∈[H] estimated by Kernel-UCBVI to compute its policy π t is built with

(s t ′ h , a t ′ h , s t ′ h+1 , r t ′ h) h∈[H]
, for t ′ ≤ t -1. Hence, if the transitions of the MDP change from one episode to another, those estimators are biased due to non-stationarity. If nothing is done to handle such bias, algorithms will suffer a linear regret [START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF]. To deal with this issue, different approaches have been proposed for finite MDPs: Gajane et al. [START_REF] Gajane | A sliding-window algorithm for markov decision processes with arbitrarily changing rewards and transitions[END_REF] and Cheung et al. [START_REF] Wang | Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism[END_REF] use sliding windows to compute estimators that use only the most recently observed transitions, whereas Ortner et al. [START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF] restart the algorithm periodically and, after each restart, new estimators are build and past data are discarded. In the multi-armed bandit literature, in addition to sliding windows, exponential discounting has also been used as a mean to give more importance to recent data [KS06a; GM11; RVC19]. In this section, we show that Kernel-UCBVI can be adapted to handle the bias due to non-stationarity by using time-dependent kernels, which generalize the approaches based on sliding windows and exponential discounting.

Non-stationary MDPs

We model the environment as a finite-horizon non-stationary MDP, where r t h t,h and p t h t,h are the sets of reward functions and transition kernels, respectively. More precisely, when taking action a in state s at time (t, h), the agent observes a random reward r t h ∈ [0, 1] with mean r t h (s, a) and makes a transition to the next state according to the probability measure p t h (•|s, a). In this case, the value functions also depend on the episode t. For a deterministic Markov policy π : [H] × S → A, its Q-function is defined as

Q π t,h (s, a) := E H h ′ =h r t h ′ (s h ′ , a h ′) s h = s, a h = a where s h ′ +1 ∼ p t h ′ (•|s h ′ , a h ′), a h ′ = π(h ′ , s
), and its value function is defined by

V π t,h (s) = Q π t,h (s, π(h, s)).
The optimal value functions in episode t, V * t,h (s) := sup π V π t,h (s) satisfy the Bellman equations [START_REF] Martin L Puterman | Markov decision processes: discrete stochastic dynamic programming[END_REF],

V * t,h (s) = max a∈A Q * t,h (s, a), where Q * t,h (s, a) := r t h (s, a) + p t h V * t,h+1 (s, a),
where V * t,H+1 = 0 by definition.

Dynamic regret

In non-stationary environments, we measure the performance of an agent by its dynamic regret R dyn T after T episodes, as defined below. When compared to the usual regret definition, the difference is that, in each episode t, the dynamic regret compares the performance of the agent to V * t,1 , the optimal value function in episode t, whereas the regret

KeRNS: An Extension of Kernel-UCBVI to Non-Stationary MDPs

compares the agent to a fixed optimal value function V * 1 . The dynamic regret is defined as

R dyn T := T t=1 V * t,1 (s t 1) -V π t t,1 (s t 1) ,
where s t 1 is the starting state in each episode.

Algorithm

To handle non-stationarity, we propose a modification of the Kernel-UCBVI introduced in Section 4.1, that we call KeRNS. 3 It has exactly the same structure as Kernel-UCBVI, as described in Algorithm 4.1, except that the weights are computed using a time-dependent kernel. Let

Γ : N × (S × A) 2 → [0,
w t,i h (s, a) := Γ t -i -1, (s, a), (s i h , a i h) and w t,i h (s, a) := w t,i h (s, a) C t h (s, a) (4.7)
where

C t h (s, a) := β + t-1 i=1 w t,i h (s, a).
That is, the difference with respect to Kernel-UCBVI is that the weights w t,i h (s, a) also depend on the episode t: the definition of the model estimator (4.2), exploration bonuses (4.3) and algorithmic structure (Algorithm 4.1) remain the same.

The weights w t,i

h (s, a) measure the influence that the transitions and rewards observed at time (i, h) will have on the estimators for the state-action pair (s, a) at time (t, h). Intuitively, the kernel function Γ must be designed so that w t,i h (s, a) is small when t -i -1 is large, which means that the sample (s i h , a i h) was collected too far in the past and should have a small impact on the estimators at time t: this allows the agent to control the bias due to non-stationarity.

For the theoretical analysis of KeRNS, we need the assumptions below on the kernel function Γ: Assumption 4.9 (non-stationary kernel properties). Let σ > 0, λ ∈]0, 1[and W ∈ N be the kernel parameters. For each set of parameters, we assume that we have access to a base kernel function

Γ (λ,W) : N × R + → [0, 1] and we define, for any n, u, v ∈ N * × S × A, Γ(n, u, v) = Γ (λ,W) (n, ρ [u, v] /σ) .

A Kernel-Based Approach to Exploration in Continuous MDPs

We assume that z → Γ (λ,W) (n, z) is non-increasing for any n ∈ N. Additionally, we assume that there exists positive constants C 1 , C 2 , a constant C 3 ≥ 0 and an arbitrary function G : R → R ≥0 that satisfies G(4) > 0 such that (1) Fast decay:

∀(n, z), Γ(n, z) ≤ C 1 exp -z 2 /2 , (2) Lipschitzness: ∀(n, y, z), Γ(n, y) -Γ(n, z) ≤ C 2 |y -z| , (3) Forget old data: ∀z, Γ (λ,W) (n, z) ≤ C 3 λ n , for all n ≥ W , (4) Remember recent data: ∀z, Γ (λ,W) (n, z) ≥ G(z)λ n , for all n < W .
We now provide some justification for these conditions. (1) and (2) are the same as required by Assumption 4.4 for Kernel-UCBVI, and ensure smoothness conditions to construct confidence intervals and to control the bias introduced by σ. (3) and (4) allow us to control the bias and the variance due to non-stationarity, respectively. Intuitively, (3) says the algorithm should forget data further than W episodes in the past (to reduce the bias), and (4) says that recent data in the W most recent episodes must have a minimum weight (to reduce the variance). In the next section, we analyze regret bounds for KeRNS, and we see that an appropriate choice of the kernel parameters (λ, W) allows us to balance this bias-variance trade-off. The kernels in the example below satisfy our conditions, and show that they indeed generalize sliding-window and exponential discounting approaches.

Example 4.10 (sliding-window and exponential discount). Let q ≥ 2. The kernels

Γ (λ,W) (n, z) = 1 {n < W } exp(-z q /2) (sliding-window) Γ (λ,W) (n, z) = λ n exp(-z q /2) (exponential discount)
satisfy Assumption 4.9.

The conditions in Assumption 4.9 are needed to prove regret bounds for KeRNS. However, if one has further knowledge about the MDP and its changes, this information can also be integrated to the kernel function Γ. For example, if the MDP only changes in a certain region of the state-action space, the kernel can be designed to forget past data only in that region.

Regret Analysis of KeRNS

To provide dynamic regret bounds for KeRNS, we rely on Assumption 4.9 and we also consider that assumptions 4.1, 4.2, and 4.3 hold for the rewards (r t h) h , the transitions (p t h) h , and the value functions (Q * t,h) h , in all episodes t. That is, we assume that the metric ρ does not depend on t,

Regret Analysis of KeRNS

and that the rewards, transitions and value functions are Lipschitz continuous with respect to ρ, and that their Lipschitz constants do not depend on t.

The dynamic regret bound that we provide for KeRNS depends on a quantity ∆, which is the total variation of the MDP in T episodes: A similar notion has been introduced, for instance, by Ortner et al. [START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF] and Li and Li [START_REF] Li | Online Learning for Markov Decision Processes in Nonstationary Environments: A Dynamic Regret Analysis[END_REF] for MDPs and by Besbes et al. [START_REF] Besbes | Stochastic multi-armed-bandit problem with non-stationary rewards[END_REF] for multi-armed bandits. Here, the difference is that we use the Wasserstein distance to define the variation of the transitions, instead of the total variation (TV) distance ∥p i h (•|s, a) -p i+1 h (•|s, a)∥ 1 . This choice was made in order to take into account the metric ρ when measuring changes in the environment, and the results would be analogous if we had chosen the TV distance.

We provide two regret bounds for KeRNS, which are given in the theorem below. Theorem 4.12. Let (σ, λ, W) be the kernel parameters and

R 1 T := H 2 T log 1 λ |C ′ σ | |C σ | + H 2 |C σ | T log 1 λ ; R 2 T := H 2 T log 1 λ |C σ | + H 3 |C σ | C ′ σ T log 1 λ ; and bias(σ, λ, W , ∆, T) := W ∆H + λ W 1 -λ H 3 T + LHT σ.
Then, with probability at least 1 -δ, the dynamic regret of KeRNS satisfies

R dyn T ≲ min R 1 T , R 2 T + bias(σ, λ, W , ∆, T).
Proof The proof of Theorem 4.12 is detailed in our paper [START_REF] Darwiche Domingues | A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces[END_REF].

d = 0 0 ∆ 2 3 T -2 3 ∆ < T R 1 T H 2 S √ A∆ 1 3 T 2 3 0 ∆ 2 3 T -2 3 ∆ < T R 2 T H 2 √ SA∆ 1 3 T 2 3 + H 3 S 2 A∆ 2 3 T 1 3 d > 0 1 T 1 2d+3 ∆ 2 3 T -2d+2 2d+3 ∆ < T 3 2d+3 R 1 T H 2 ∆ 1 3 T 2d+2 2d+3 1 T 1 2d+2 ∆ 1 2 H T -2d+1 2d+2 ∆ < T 1 d+1 R 2 T H 2 ∆ 1 2 T 2d+1 2d+2 + H 3 2 ∆ 1 4 T 3 4
We see that, after optimizing the kernel parameters (Table 4.1), the bound R 1

T has a worse dependence on T , and a better dependence on ∆. On the other hand, R 2

T is better with respect to T , but worse in ∆. The difference comes from how we handle the concentration inequalities for the transition probabilities in the analysis. To obtain R 1 T , we use concentration inequalities on the term |(p t h -p t h)f | for all functions f that are bounded and Lipschitz continuous. To obtain R 2 , the concentration is done only for f = V * t,h+1 , but this results in a worse dependence on |C σ | |C ′ σ | in the regret bound (Theorem 4.12).

We now discuss the regret bounds according to the covering dimension d. We consider two cases: the finite MDP case, where d = 0, and the continuous case, where d > 0.

Finite case Let S = |S| and A = |A|. By taking σ = 0, we have

|C ′ σ | = S and |C σ | = SA. As shown in Table 4.1, the R 1 T bound states that the regret of KeRNS is O H 2 S √ A∆ 1 3 T 2 3
. This bound matches the one proved by Ortner et al. [START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF] for the average-reward setting using restarts, up to a factor of H 2 3 coming from our finite-horizon setting, where the transitions p t h depend on h. The R 2 T bound states that the regret of KeRNS can be improved to

O H 2 √ SA∆ 1 3 T 2 3
, up to second-order terms (i.e., the terms scaling with T 1/3). In the multi-armed bandit case (H = 1), these bounds are optimal in terms of T and ∆, according to the lower bound by Besbes et al. [START_REF] Besbes | Stochastic multi-armed-bandit problem with non-stationary rewards[END_REF]. , which is optimal for d = 1 in the (stationary) bandit case, according to the lower bound by Bubeck et al. [START_REF] Bubeck | X-armed bandits[END_REF].

Continuous case

Knowledge of ∆ To optimally choose the kernel parameters, KeRNS requires an upper bound on the variation ∆. Other works have started to tackle this issue in bandit algorithms [Che+19; AGO19], and finite MDPs using sliding windows [START_REF] Wang | Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism[END_REF]. For instance, [CSLZ20] use a multi-armed bandit algorithm to adaptively tune the size of the sliding window, and avoid the need of knowing ∆. A similar technique could be combined with KeRNS to adaptively choose the parameters (λ, W) in each episode.

Reducing the Computational Complexity

In order to analyze the computational complexity of Kernel-UCBVI and KeRNS, we first assume that the action set is finite and has cardinality A := |A|. This is due to the fact that both algorithms require computations of argmax a Q t h (s, a), which is usually not trivial for infinite action sets. Since Kernel-UCBVI and KeRNS use non-parametric kernel estimators, their computational complexity scales with the number of observed transitions. Their total space complexity is O (HT) and their time complexity per episode t is O Ht 2 + HAt , resulting in a total runtime of O HT 3 + HAT 2 for T episodes. This runtime is very prohibitive in practice, especially in non-stationary environments, where we might need to run the algorithm for a very long time.

In this section, we study two methods to reduce their computational complexity: real-time dynamic programming [BBS95; Efr+19] that reduces the complexity of backward induction, and the use of representative states [KT12; BPP16], that reduces the number of states on which backward induction is executed.

Real-Time Dynamic Programming

Q t h (s t h , a) ← t-1 i=1 w t,i h (s t h , a) r i h + V t h+1 (s i h+1) + b t h (s t h , a)
select action

a t h ← argmax a Q t h (s t h , a)
execute action

r t h , s t h+1 ← OnlineModel t,h (a t h) V t h (s t h) ← min H -h + 1, max a Q t h (s t h , a)
interpolate is defined for all s, the algorithm only needs to compute it for the previously observed states. Since Q t h (s, a) is only computed for s = s t h , the runtime of Kernel-UCBVI+RTDP is O (HAt) per episode t, that is, O (t) times faster than Kernel-UCBVI. Also, notice that Kernel-UCBVI+RTDP also requires a metric ρ S on the state space for the interpolation step (although the interpolation can be skipped in practical implementations, as mentioned in Section 4.1). Theorem 4.14 shows that the regret bound of Kernel-UCBVI+RTDP is of the same order as the one of Kernel-UCBVI. Its proof follows the analysis of RTDP as proposed by Efroni et al. [START_REF] Efroni | Tight regret bounds for model-based reinforcement learning with greedy policies[END_REF] for finite MDPs. Theorem 4.14. With probability at least 1 -δ, the regret of Kernel-UCBVI+RTDP satisfies

for i = 1, . . . , t do 15 s ← s i h 16 V t+1 h (s) ← min V t h (s), V t h (s t h) + Lρ S s
R T ≲ R Kernel-UCBVI T + H 2 C ′ σ ,
where R Kernel-UCBVI T is the regret bound for Kernel-UCBVI from Theorem 4.7.

Reducing the Computational Complexity

Proof. The proof is given in Appendix C.4, and the key properties for proving this regret bound are (i) V t h ≥ V * h with high probability, and (ii) the fact that V t+1 h ≤ V t h ; where V t h is defined in Equation (4.8).

Representative States and Actions

The RTDP technique used to speed up Kernel-UCBVI cannot be applied to KeRNS. This is due to the fact that Kernel-UCBVI+RTDP builds upper bounds V t h that are point-wise non-increasing with respect to t, whereas the value functions V t h computed by KeRNS increases for states that were not visited recently. This property of KeRNS is necessary to promote extra exploration and adapt to possible changes in the environment. Additionally, even with the RTDP-based acceleration, Kernel-UCBVI+RTDP still has a time complexity that increases with the time t, which can be a considerable limitation in non-stationary environments where the algorithm needs to be run for a long time. In this section, we propose an alternative to run KeRNS in constant time per episode, while controlling the impact of this speed-up on the regret.

As proposed by [START_REF] Kveton | Kernel-based reinforcement learning on representative states[END_REF] and [START_REF] André | Practical kernel-based reinforcement learning[END_REF], we take an approach based on using representative states to construct an algorithm called RS-KeRNS (for KeRNS on Representative States). In each episode M t , which is then extended to any (s, a) ∈ S × A by performing an interpolation step, as in KeRNS. In Appendix C.5, we also explain how the rewards and transitions estimators of (M k can be updated online. Below, we provide regret and runtime guarantees for this efficient implementation. Theorem 4.16. Let χ : N → [0, 1], u, v ∈ S × A, and assume that we use the kernel

Γ(n, u, v) = χ(n) exp -ρ [u, v] 2 /(2σ 2)
assumed to satisfy Assumption 4.9. In this case, the dynamic regret of RS-KeRNS satisfies

R dyn T ≲ R KeRNS T + L(ε + ε X)H 2 T + ε σ H 3 T
with probability at least 1 -δ, where R KeRNS T is regret bound of KeRNS given in Theorem 4.12.

Proof. A detailed proof is given in our paper [Dom+21c] (Theorem 2). A proof sketch is given in Appendix C.6.

Theorem 4.16 shows that RS-KeRNS enjoys the same regret bounds as KeRNS plus a bias term that can be controlled by ε and ε X , as long as we use a kernel Γ that is the product between a temporal kernel χ(n) and a Gaussian kernel exp -ρ [u, v] 2 /(2σ 2) .

The lemma below shows that the per-episode runtime of RS-KeRNS is bounded by a constant.

Lemma 4.17 (runtime of RS-KeRNS). Consider the kernel defined in Theorem 4.16, and let λ ∈]0, 1]. If we take χ(n) = λ n , the runtime of RS-KeRNS in each episode t is bounded by

O H min t 2 , |C ε ||C ′ ε X | + H min t, |C ′ ε X | A ,
where

|C ε | is the ε-covering number of (S × A, ρ), |C ′ ε X | is the ε X -covering number of (S, ρ).
Lemma 4.17 bounds the runtime of RS-KeRNS for a temporal kernel χ(n) satisfying a specific structure: χ(n) = λ n . In particular, we can take λ < 1, which gives an exponential-discount strategy for handling non-stationarity, or set λ = 1 if the environment is stationary.

Consequently, the constants ε and ε X provide a trade-off between regret and computational complexity. Since

|C ε | = O ε -d 1 and |C ′ ε X | = O ε X -d 2 , increasing (ε, ε X) may reduce
exponentially the runtime of RS-KeRNS, while having only a linear increase in its regret.

Experiments

Related work on representative states for accelerating KBRL Kveton and Theocharous [START_REF] Kveton | Kernel-based reinforcement learning on representative states[END_REF] and Barreto et al. [START_REF] André | Practical kernel-based reinforcement learning[END_REF] propose the use of representative states to accelerate KBRL, and we provided the first regret bounds in this setting. More precisely, our result complements previous work in the following aspects: (i) [START_REF] Kveton | Kernel-based reinforcement learning on representative states[END_REF] and [START_REF] André | Practical kernel-based reinforcement learning[END_REF] do not tackle exploration and do not have finite-time analyses: they provide approximate versions of the KBRL algorithm of [START_REF] Ormoneit | Kernel-Based Reinforcement Learning[END_REF] which has asymptotic guarantees assuming that transitions are generated from independent samples; (ii) the error bounds of [START_REF] Kveton | Kernel-based reinforcement learning on representative states[END_REF] scale with exp(1/σ 2). In our online setting, σ can be chosen as a function of the number of episodes T , and their bound could result in an error that scales exponentially with T , instead of linearly. Our result comes from an improved analysis of the smoothness of kernel estimators, that leverages the regularization constant β;

(iii) [START_REF] André | Practical kernel-based reinforcement learning[END_REF] propose an algorithm that also builds a set of representative states in an online manner. However, their theoretical guarantees only hold when this set is fixed, i.e. cannot be updated during exploration, whereas our bounds hold in this case.

Experiments

In this section, we illustrate the empirical behavior of Kernel-UCBVI and KeRNS on simple environments, compared to baselines. For the implementation of both algorithms, we used representative states to decrease their runtime. We refer to RS-Kernel-UCBVI+RTDP as the version of Kernel-UCBVI using both real-time dynamic programming (RTDP) and representative states. The environments we considered are such that S ⊂ R 2 , thus we used the Euclidean distance on R 2 to define the metric, ρ (s, a), (s ′ , a ′) = s -s ′ 2 2 if a = a ′ , and + ∞ otherwise, which was combined with the Gaussian kernel exp(-z 2 /2) to compute the weights. We set σ = 0.025, ε = ε X = 0.05, and β = 0.01 for all experiments. Some baselines require a uniform discretization of the state space, in which case we chose the granularity of the discretization to match the value of ε used to define representative states for Kernel-UCBVI.

Also, we consider environments such that the rewards and transition probabilities do not depend on h (however, for non-stationary environments, they depend on t). Hence, for the variants of Kernel-UCBVI and KeRNS, the model estimators were built based on Equation (4.4), and we used the following simplified exploration bonuses

b t h (s, a) = 1 C t (s, a) + H -h + 1 C t (s, a) • (4.9)
That is, we used bonuses and models for h-independent MDPs, and considered simplified constants κ 1 , κ 2 and κ 3 for the bonuses.

Stationary Environment

To illustrate experimentally the properties of Kernel-UCBVI, we consider a Grid-World environment with continuous states. This Grid-World has a state space S ⊂ [0, 2] × [0, 1] ⊂ R 2 , and is composed of two rooms separated by a wall of width 0.1, as illustrated by Figure 4.1. There are four actions: left, right, up, and down, each one resulting to a displacement of 0.1 in the corresponding direction. A two-dimensional Gaussian noise is added to the transitions, and, in each room, there is a single region with non-zero reward. The agent has 0.5 probability of starting in each of the rooms, and the starting position is at the room's bottom left corner.

We compare RS-Kernel-UCBVI and RS-Kernel-UCBVI+RTDP to the following algorithms:

• UCBVI [AOM17] using a uniform discretization of the state-space with 20 bins in each coordinate;

• OptQL [Jin+18], also on a uniform discretization;

• AdaptiveQL [SBY19] that uses an adaptive discretization of the state space. The baselines require a discretization of the state space, and we denote by I(s t h) the index of the discrete state corresponding to the continuous state s t h . For the baselines, we used the same simplified bonuses as for Kernel-UCBVI (4.9), except that C t (s, a) is replaced by

N t h (I(s), a) = max 1, t-1 i=1 1 I(s i h) = I(s), a i h = a ,
for OptQL and AdaptiveQL (since those algorithms require h-dependent bonuses even if the MDP is time-homogeneous) and, for UCBVI, we used

N t (I(s), a) = max 1, H h=1 t-1 i=1 1 I(s i h) = I(s), a i h = a .

Experiments

We also implemented a version of RS-Kernel-UCBVI using a prior domain knowledge that the two rooms are equivalent under translation, by using a metric that is invariant with respect to the change of rooms. More precisely, before computing the Euclidean distance between two states s and s ′ , both states are mapped to their corresponding positions in the left room. To estimate the optimal value function for the regret computation, we used the best policy among all agents at the final episode. Average over 16 independent runs. We ran the algorithms for 105 episodes with H = 20, and Figure 4.2 shows the regret incurred by each of them. We see that, at the beginning, Kernel-UCBVI has a smaller regret than the baselines, and that the use of expert knowledge in the kernel design can increase the learning speed. Also, we see that model-based algorithms (Kernel-UCBVI and UCBVI) learn faster than the model-free baselines (OptQL and AdaptiveQL), despite the fact that those baselines have a better regret with respect to the dimension d [SS19; SBY19], as discussed in Section 4.3. As the number of episodes T increases, the extra bias introduced by the kernel might make Kernel-UCBVI converge to a worse policy when compared, for instance, to UCBVI using a uniform discretization. The kernel bandwidth and the discretization width are comparable, but the Gaussian kernel introduces more bias by assigning a non-zero similarity between states that may be in disjunct discretization bins. 5 On the other hand, we see that introducing more bias can improve the learning speed at the beginning, especially when domain knowledge is used for kernel design. This flexibility in handling the bias-variance trade-off is one of the strengths of kernel-based approaches: for the baselines used in this experiment, the use of arbitrary custom metrics on the state space is not straightforward. Nonetheless, kernel-based algorithms might be sensitive to kernel design.

Another important point to consider is the runtime of the algorithms. Figure 4.3 shows the total runtime of each algorithm as function of the number of episodes. When comparing RS-Kernel-UCBVI to RS-Kernel-UCBVI+RTDP, we observe that using real-time dynamic programming results in a considerable speed-up. When combined with prior knowledge, RS-Kernel-UCBVI has a smaller number of representative states in the Grid-World environment, which explains why it is faster than its version without such knowledge. Also, we see that the model-free algorithms have a much smaller runtime than the model-based ones.

Non-Stationary Environment

To illustrate the behavior of RS-KeRNS, we consider another continuous Grid-World whose state-space is S = [0, 1] 2 with four actions, representing a move to the right, left, up or down. The agent starts at (0.5, 0.5). Let c t p ∈ {0, 0.1, 0.2, 0.5, 1}. We consider the following mean reward function which depends on the episode t:

r t h (s, a) = p∈{0.1,0.9} 2 c t p exp - ∥s -p∥ 2 2 2 × 0.1 2 ,
where the vectors p ∈ {(0.1, 0.1), (0.1, 0.9), (0.9, 0.1), (0.9, 0.9)} represent the positions where the rewards are centered. Every 2.5 × 10 4 episodes, the coefficients c t p are changed according to Table 4.2, which impact the optimal policy. We used the kernel defined in Theorem 4.16 with χ(n) = λ n for λ = 0.9999 and ran the algorithm for 10 5 episodes. RS-KeRNS was compared to two baselines: (i) RS-Kernel-UCBVI, which does not adapt to non-stationarity and corresponds to RS-KeRNS when we set λ = 1; (ii) a restart-based algorithm, called RestartBaseline which is implemented as RS-Kernel-UCBVI, but it uses information about when the environment changes, and, at every change, it restarts its reward estimator and bonuses, forcing the agent to re-explore the environment and discover possible changes. Notice that RS-KeRNS does not require such information. episode / p (0.9, 0.9) (9.0, 0.1) (0.1, 0.1) (0.1, 0.9)

t ∈ [1, 25 × 10 3] 0.1 0.0 0.0 0.0 t ∈]25 × 10 3 , 50 × 10 3] 0.1 0.2 0.0 0.0 t ∈]50 × 10 3 , 75 × 10 3] 0.1 0.2 0.5 0.0 t ∈]75 × 10 3 , 100 × 10 3] 0.1 0.2 0.5 1.0
In Figure 4.4, we can see that, as expected, RS-KeRNS gathers more rewards than RS-Kernel-UCBVI, which was not designed for non-stationary environments, and that RS-KeRNS is able to track the behavior of RestartBaseline.

Discussion and Bibliographical Remarks

In this chapter, we introduced and analyzed Kernel-UCBVI and KeRNS, which are kernel-based algorithms for RL that learn by interacting online with an MDP. Algorithmically, they only require a similarity function on the state-action space S × A to be implemented. Hence, they can be applied to very general MDPs, whose states can be, for instance, real vectors, graphs, sets, strings etc. Under certain regularity assumptions, we proved regret bounds that depend on the covering numbers or the covering dimension d of S × A. Furthermore, we proposed approximate versions of both algorithms that can be run in constant time per episode, and we analyzed their regret. Nonetheless, the generality of Kernel-UCBVI and KeRNS comes at a cost: they suffer from the curse of dimensionality, meaning that their regret becomes close to linear as the dimension d increases, which is a direct consequence of the fact that we only make weak assumptions on the MDP.

Approaches such as linear or low-rank MDPs [START_REF] Jin | Provably efficient reinforcement learning with linear function approximation[END_REF] and RKHS approximations [Yan+20; CO20; CG19] avoid the curse of dimensionality and achieve regret bounds scaling with √ T , but they either require much stronger assumptions on the MDP, such as the closedness of the Bellman operator in the function class used to represent optimistic Q-functions, or might be computationally intractable. Ren et al. [START_REF] Ren | A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning[END_REF] show that, under a noise assumption on the transition probabilities, the MDP is linear (see [START_REF] Jin | Provably efficient reinforcement learning with linear function approximation[END_REF]) in an infinite-dimensional feature space, and provide algorithms with regret bounds in this setting. However, since their results rely on noisy transitions, they do not apply to deterministic MDPs. Interestingly, Barreto et al. [START_REF] André | Practical kernel-based reinforcement learning[END_REF] show how KBRL can be approximated by low-rank MDPs. This work was later extended by Lakshmanan et al. [START_REF] Lakshmanan | Improved regret bounds for undiscounted continuous reinforcement learning[END_REF] to use a kernel density estimator instead of a frequency estimator for each region of the fixed discretization. For each discrete region I(s), the density p(•|I(s), a) of the transition kernel is computed through kernel density estimation. The granularity of the discretization is selected in advance based on the properties of the MDP and the learning horizon T . As a result, they improve upon the bound of Ortner and Ryabko [START_REF] Ortner | Online regret bounds for undiscounted continuous reinforcement learning[END_REF], but require the transition kernels to have densities that are κ times 4.8 Discussion and Bibliographical Remarks differentiable. 6 However, these two algorithms rely on an intractable optimization problem for finding an optimistic MDP. Jian et al. [START_REF] Jian | Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs[END_REF] solve this issue by providing an algorithm that uses exploration bonuses, but they still rely on a uniform discretization of the state space. Ok et al. [START_REF] Ok | Exploration in structured reinforcement learning[END_REF] studied the asymptotic regret in Lipschitz MDPs with finite state and action spaces, providing a nearly asymptotically optimal algorithm. Their algorithm leverages ideas from asymptotic optimal algorithms in structured bandits [START_REF] Combes | Minimal exploration in structured stochastic bandits[END_REF] where d is the covering dimension of the state-action space. This approach was extended by Sinclair et al. [START_REF] Sinclair | Adaptive Discretization for Episodic Reinforcement Learning in Metric Spaces[END_REF] and Touati et al. [START_REF] Touati | Zooming for Efficient Model-Free Reinforcement Learning in Metric Spaces[END_REF] to use adaptive partitioning of the state-action space, achieving the same regret bound. Osband and Van Roy [START_REF] Osband | Model-based reinforcement learning and the eluder dimension[END_REF] prove a Bayesian regret bound in terms of the eluder and Kolmogorov dimension, assuming access to an approximate MDP planner. Sinclair et al. [START_REF] Sinclair | Adaptive Discretization for Model-Based Reinforcement Learning[END_REF] provide a model-based algorithm for continuous MDPs relying on adaptive discretization, with a regret bound that has a better dependence on H and d than Kernel-UCBVI, but requires extra assumptions on the metric space to construct packings and coverings. Cao and Krishnamurthy [START_REF] Cao | Provably adaptive reinforcement learning in metric spaces[END_REF] prove a regret bound for the AdaptiveQL algorithm of [SBY19] that scales with the zooming dimension, which is a problem-dependent quantity that may be smaller than the covering dimension.

Further reading on continuous MDPs

Further reading on non-stationary MDPs

In this chapter, we considered dynamic regret bounds for non-stationary RL. In finite MDPs, this type of bound has been been studied by Gajane et al. [START_REF] Gajane | A sliding-window algorithm for markov decision processes with arbitrarily changing rewards and transitions[END_REF], Ortner et al. [START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF], Cheung et al. [START_REF] Wang | Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism[END_REF], and Mao et al. [START_REF] Mao | Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs[END_REF], whereas Touati and Vincent [START_REF] Touati | Efficient learning in non-stationary linear Markov decision processes[END_REF] propose an algorithm using linear function approximation. A related approach consists in comparing the performance of the learner to the best stationary policy in hindsight, e.g. [EDKM09; YM09; Neu+13; DGS14], which is less suited to nonstationary environments, since the performance of any fixed policy might not be satisfactory. Non-stationary RL has also been studied outside the regret minimization framework, without, however, tackling the issue of exploration. For instance, Choi et al. [START_REF] Samuel Pm Choi | Hidden-mode markov decision processes for nonstationary sequential decision making[END_REF] propose a model where the MDP varies according to a sequence of tasks whose changes form a Markov chain. Szita et al. [START_REF] Szita | ε-MDPs: Learning in varying environments[END_REF] and Csáji and Monostori [START_REF] Balázs | Value function based reinforcement learning in changing Markovian environments[END_REF] study the convergence of Q-learning when the environment changes but remain close to a fixed MDP. Assuming full knowledge of the MDP at each time step, but with unknown evolution, Lecarpentier and Rachelson [START_REF] Lecarpentier | Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning[END_REF] introduce a risk-averse approach to planning in slowly changing environments. In a related 6 For instance, when d = 1 and κ → ∞, their bound approaches T 2 3 , improving the previous bound of T

Chapter 5

Exploration without Rewards & Applications to Deep RL

In the previous chapters, we studied algorithms for regret minimization in finite or continuous MDPs and we saw that adding exploration bonuses to the rewards is an effective method to balance exploration and exploitation. In some environments, the reward function is sparse: for most states s ∈ S, we have r(s, •) = 0, so that the agent must be able to explore even in the absence of rewards from the environment. Additionally, it might be useful for some applications to design exploratory agents whose goal goes beyond reward maximization. Hence, we investigate in this chapter algorithms for reward-free exploration. We start from finite MDPs, and review the RF-UCRL [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF] and the RF-Express [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] algorithms showing that bonuses that decay as the number of visits n t h (s, a) grows -similar to those used by UCBVI-also allow an agent to explore efficiently in the reward-free case. Then, we propose a deep reinforcement learning approach to reward-free exploration, based on a learned kernel combined with an approximate version of the exploration bonuses used by Kernel-UCBVI.

This chapter is based on the papers [Kau+21; Mé+21a] about reward-free exploration in finite MDPs, in which I participated as a collaborator, and on the workshop paper [Dom+21e] about reward-free exploration for deep reinforcement learning.

Exploration without Rewards & Applications to Deep RL

Reward-Free Exploration in Finite MDPs

In several situations, a reinforcement learning agent needs to explore the environment in the absence of rewards. For instance, in sparse-reward environments, where the reward function is such that r(s, •) = 0 for most states s ∈ S, the agent might spend most of its time exploring without any reward feedback from the environment. Another example is when there is not a single reward function that is specified before the interaction with the environment, so that the agent is required to learn a transition model of the MDP, which can be latter used by planning algorithms to find near-optimal policies for any possible reward function.

Without a reward feedback, a key question is to decide what the agent's objective should be. Here, we consider the finite-horizon reward-free exploration (RFE) problem as proposed by Jin et al. [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF]. An algorithm for RFE should be able to generate a dataset D τ containing τ reward-free trajectories of horizon H,

D τ := (s t h , a t h , s t h+1) τ t=1 , for h ∈ {1, . . . , H} ,
with τ being as small as possible, such that the empirical transition model p τ built with the trajectories D τ can be used to compute near-optimal policies for any reward function with high probability. Intuitively, this requires the agent to explore the environment aiming to collect data that is as diverse as possible, covering all reachable states and enabling it to estimate an accurate transition model everywhere. More precisely, let π τ,r be the optimal policy in the MDP with transitions p τ and reward function r. Without loss of generality, assume that the initial state in each episode is fixed, i.e., s t 1 = s 1 ∈ S.1 An algorithm is said to be (ε, δ)-PAC for RFE [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF][START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF] if

P for all reward function r, V * 1 (s 1 , r) -V πτ,r 1 (s 1 ; r) ≤ ε ≥ 1 -δ,
where V π 1 (•; r) is the value function of a policy π with the reward r, and V * 1 (•; r) is the optimal value function with respect to the reward function r.

Recall that proving regret bounds for the UCBVI algorithm (Section 3.6) does not require any assumption regarding the sparsity of the reward function. Hence, UCBVI is able to explore even in environments with sparse rewards, and can only start exploiting once states with non-zero rewards are encountered. UCBVI's ability to explore comes from its exploration bonuses: thus, we might wonder if the same kind of bonuses can be used for reward-free exploration. This is indeed the case: Kaufmann et al. [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF] introduce RF-UCRL, an algorithm similar to UCRL [JOA10] and UCBVI [AOM17] -relying on value iteration with exploration bonuses of the form 1/ √ n-and show that it is (ε, δ)-PAC for RFE.

Reward-Free Exploration in Finite MDPs

RF-UCRL is described in Algorithm 5.1 and is based on upper bounds E t h (s, a) on the estimation error of the value of any policy for any reward function, which we now define. For any policy π, reward function r and time (t, h), let e t,π h (s, a; r)

:= Q t,π h (s, a; r) -Q π h (s, a; r) ,
where Q π h (s, a; r) is the Q-function of a policy π in the MDP with the reward function r and the true transitions p h , and where Q π h (s, a; r) is the Q-function of π in the MDP with reward r and the estimated transitions p t h :

p t h (z|s, a) = n t h (s, a, z) n t h (s, a)
, if n t h (s, a) > 0, and

p t h (z|s, a) = 1 S otherwise,
where

n t h (s, a, z) = t-1 i=1 1 (s, a, z) = (s i h , a i h , s i h+1) and n t h (s, a) = z∈S n t h (s, a, z).
We define E t h (s, a) for any (s, a, h, t) as ,a). Intuitively, this action-selection strategy allows the algorithm to uniformly reduce the estimation of all policies for any possible reward function. Then, the algorithm stops when this estimation error at step h = 1 is smaller than ε/2. Theorem 5.1, proved in [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF], shows that RF-UCRL is (ε, δ)-PAC for reward-free exploration and provides a high-probability bound on the number of episodes τ executed by the algorithm before it stops.

E t h (s, a) = min H, b t h (s, a) + z p t h (z|s, a) max b E t h+1 (z, b) , (5
Theorem 5.1 (Theorem 5 by [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF]). RF-UCRL using the threshold function

β(n, δ) = log 2HSA δ + (S -1) log e 1 + n S -1 is (ε, δ)-PAC
for reward-free exploration. Moreover, with probability 1 -δ, the number τ of episodes before the algorithm stops satisfies

τ ≲ H 4 SA ε 2 S + log 1 δ ,
where ≲ omits factors depending on log(1/ε) and log log(1/δ).

Jin et al. [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF] show that the lower bound on the number of episodes τ required for an algorithm to be (ε, δ)-PAC for RFE is Ω H 2 S 2 A/ε 2 , considering time-homogeneous MDPs. Kaufmann et al. [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF] show that the upper bound on τ given in Theorem 5.1 can be improved by a factor of H if the transitions are time-homogeneous, matching the lower bound of [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF] up to a factor H.

For time-inhomogeneous MDPs, Ménard et al. [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] propose another algorithm for rewardfree exploration, called RF-Express, which is similar to RF-UCRL, but uses exploration bonuses of the form 1/n (instead of 1/ √ n) and a different stopping time τ . By providing a novel empirical Bernstein inequality, Ménard et al. [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] prove that RF-Express improves the upper bound of RF-UCRL by a factor of H. A similar technique had been previously used to improve the regret of UCBVI [AOM17] using a Bellman-type equation for the variances of value functions (which depend on r), but extending such technique to RFE is considerably more challenging, since the agent does not receive rewards and, consequently, cannot compute empirical variances.

Reward-Free Exploration in Finite MDPs

Algorithmically, RF-Express proceeds as RF-UCRL, but replaces the error upper bound E t h by another quantity W t h that can be used to bound the estimation errors, defined as

W t h (s, a) = min H, b t h (s, a) + 1 + 1 H z p t h (z|s, a) max b E t h+1 (z, b) ,
where the bonus is given by

b t h (s, a) := 15H 2 β n t h (s,
e t,π h (s 1 , π 1 (s 1); r) ≤ 3 exp(1) max a W t 1 (s 1 , a) + max a W t 1 (s 1 , a)
with high probability, as proved in [Mé+21a, Lemma 1]. For completeness, we restate below the theorem by Ménard et al. [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] showing that RF-Express is (ε, δ)-PAC for RFE, and that it improves the sample complexity of RF-UCRL by a factor of H for time-inhomogeneous MDPs.

Theorem 5.2 (Theorem 1 by [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF]). RF-Express using the threshold function

β(n, δ) = log 2HSA δ + S log (8e(n + 1))
is (ε, δ)-PAC for reward-free exploration. Moreover, with probability 1 -δ, the number τ of episodes before the algorithm stops satisfies

τ ≲ H 3 SA ε 2 S + log 1 δ ,
where ≲ omits factors depending on log(1/ε) and log log(1/δ).

At first, the 1/n bonuses used by RF-Express might be surprising, when compared to the 1/ √ n bonuses used by UCBVI and RF-UCRL, for instance. Indeed, in order to estimate the mean µ of a random variable X by an estimator µ n computed with n i.i.d. samples fom X, the error |µ -µ n | scales with 1/ √ n by Hoeffding's inequality, which explains the bonuses used by other algorithms. However, the analysis of RF-Express is based on concentration inequalities for the Kullback-Leibler divergence, and bound the term (µ -µ n) 2 , which scales with 1/n.

Kernel-Based Bonuses for Exploration in Deep RL

such as Fitted Q-Learning [EGW05; Rie05; MS08] and Deep Q-Learning [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]. In fact, any offline RL algorithm could be used, see Levine et al. [Lev+20] for a survey on offline RL. Thus, we are left with the problem of defining a kernel and approximating the bonuses of Kernel-UCBVI.

Kernel design through representation learning

In cases where we do not have enough domain knowledge to design a good kernel function, we can use representation learning methods that, for each (s, a), learn a representation function f that maps (s, a) to a real-valued vector f (s, a) ∈ R d . Different representation learning algorithms have been proposed for RL, designed to encourage certain properties in the function f , such as learning representations that ignore uncontrollable features of the environment, that are useful to build transition models, or that allow generalization across tasks [Pat+17; Aza+19; Guo+20; Bad+20b]. Given a learned representation function f , we can use the Euclidean distance in the representation space to define a metric ρ on S × A as ρ [(s, a), (s ′ , a ′)] = ∥f (s, a) -f (s ′ , a ′)∥ 2 , and define a kernel function Γ f ((s, a), (s ′ , a ′)) as

Γ f ((s, a), (s ′ , a ′)) = ψ f (s, a) -f (s ′ , a ′) 2 (5.2)
where ψ : R + → R + is a non-increasing function. For instance, a Gaussian kernel is obtained by taking ψ(x) = exp(-x 2 /2).

Approximation of exploration bonuses

Given the kernel Γ, our goal now is to approximate the kernel-based bonuses introduced in Section 4.1. We start with the following simplification of those bonuses:

b t+1 (s, a) = 1 β + t i=1 Γ f ((s, a), (s i , a i)) α , α ∈ 1 2 , 1 , (5.3)
where β is a regularization constant, and α can be either 1/2, as in the Kernel-UCBVI bonuses in Section 4.1, or α = 1, which generalizes the 1/n bonuses of RF-Express. It is necessary to approximate b t+1 (s, a) because its computation requires O (t) time, and we would like an algorithm whose time complexity does not grow with the number of transitions t. We propose an approximation of the function b t+1 by a function g θ that is updated at every time t by taking gradient steps to minimize a loss function. In order to do so, we first rewrite b t+1 as:

b t+1 (s, a) = 1 t α   1 β/t + E B 1 |B| i∈B Γ f ((s, a), (s i , a i))   α ,
where B is a batch of indices sampled uniformly at random (with replacement) from {1, . . . , t}.

Exploration without Rewards & Applications to Deep RL

Now, we consider the following loss function:

ℓ t (s, a, f, B, θ) :=   g θ (s, a) -   1 ε t + 1 |B| i∈B Γ f ((s, a), (s i , a i))   α   2 , (5.4)
where ε t is a regularization parameter, and define the expected loss over a distribution ν t on S × A and the batch B:

ℓ t (θ) := E (s,a)∼νt [E B [ℓ t (s, a, f, B, θ)]] .
(5.5)

In practice, we take the distribution ν t such that (s, a) is sampled uniformly at random from (s i , a i) t i=1 , the data available at time t. The parameters θ defining the function g θ are then updated at time t by taking stochastic gradient descent steps to minimize the loss ℓ t (θ).

The intuition behind the loss in Equation (5.4) is the following: it is a regression problem where g θ (s, a) is optimized to predict the expected value of

ε t + 1 |B| i∈B Γ f ((s, a), (s i , a i)) -α
, which satisfies, by Jensen's inequality:

E B     1 ε t + 1 |B| i∈B Γ f ((s, a), (s i , a i))   α   ≥   1 ε t + E B 1 |B| i∈B Γ f ((s, a), (s i , a i))   α = t α b t+1 (s, a),
(5.6) if we take ε t := β/t. Hence, g θ (s, a) is trained to predict a term that is proportional to an upper bound on the true bonuses b t+1 (s, a).

Finally, we propose the following approximate bonuses for AKBX, which we explain next:

b t+1 θ (s, a) = λ 1,t g θ (s, a) + λ 2,t ℓ t (s, a, f, B t , θ), (5.7)
where ℓ t is the loss defined in Equation (5.4), B t is a batch of indices sampled uniformly at random from {1, . . . , t}, and (λ 1,t , λ 2,t) are positive factors that may depend on t.

Algorithm 5.3 summarizes the AKBX method, which trains a representation function f , constructs a kernel based on f , defines approximate kernel-based bonuses as in Equation (5.7), and trains a policy π t using an off-policy RL algorithm in order to maximize the sum of bonuses and rewards (which are 0 in the reward-free case). Below, we provide further explanation regarding the bonuses that we propose in Equation (5.7).

First term of approximate bonuses (5.7) The term λ 1,t g θ (s, a) comes from the fact that g θ (s, a) is trained to predict a term that is proportional to an upper bound on the true bonuses Update the bonus parameters θ using ∇ θ ℓ t (θ), where (5.6). The time-dependent value λ 1,t can be chosen in order to control how quickly the bonuses decay to 0. For instance, the choice λ 1,t = 1/t α will make the term λ 1,t g θ (s, a) approximate an upper bound on the exact bonuses from Equation (5.3). However, the off-policy RL algorithm used to compute the policy π t (which aims to maximize the sum of bonuses and rewards) is usually trained by taking gradient steps: consequently, if the bonuses decay too quickly, the policy might not have been updated enough in order to be able to visit states where the bonuses were high. Choosing a λ 1,t that decays slower than 1/t α can be useful to adjust the time scales between bonus computation and policy optimization. In some cases, we can even choose λ 1,t to be constant (that is, independent of t): this is especially relevant in reward-free situations, where the scale of the bonuses is not important, as long as the bonuses are high in the least visited states. Notice that, if we ignore the clipping to H in Equation (5.1), which defines the error upper bounds E t h (s, a) used to define RF-UCRL's policy, we can replace b t h by λ 1,t b t h for any λ 1,t , and the policy π t h (s) = argmax a E t h (s, a) remains unchanged. Additionally, ignoring such clipping in RF-UCRL has been observed to improve its empirical performance [START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF].

ℓ t (θ) := 1 B ′ t-1 j∈B ′ t-1 ℓ t (s j , a j , f, B t-1 , θ)
Second term of approximate bonuses (5.7) We add to the bonuses the following term, which is proportional to the absolute error between the targets

ε t + 1 |B| i∈B Γ f ((s, a), (s i , a i)) -α
and the prediction g θ (s, a):

λ 2,t ℓ t (s, a, f, B t , θ),
where ℓ t is defined in Equation (5.4). This is motivated by the fact that, if the loss ℓ t is high, the approximation made by g θ might not be good enough to encourage the agent to explore. Hence, we add to the bonuses a term proportional to the loss, so that the agent is able to explore even before g θ has converged to a meaningful function: that is, a function whose values are large

Exploration without Rewards & Applications to Deep RL

for the least visited state-action pairs. Notice that the loss ℓ t (s, a, f, B t , θ) should be higher if states similar to (s, a) have not been visited before. Also, since the parameters θ are trained to minimize the expectation of ℓ t (s, a, f, B t , θ), the loss should decrease in expectation as g θ is trained, and the first term of the bonus (λ 1,t g θ (s, a)) becomes the dominant term.

Using nearest neighbors to improve bonus approximation In practice, we observed that replacing the targets

  1 ε t + 1 |B| i∈B Γ f ((s, a), (s i , a i))   α in the loss (5.4) by 1 ε t + 1 k (s ′ ,a ′)∈NN k (s,a,B) Γ f ((s, a), (s ′ , a ′)) α
where NN k (s, a, B) is the subset of (s i , a i) i∈B containing the k-nearest neighbors of (s, a) with respect to the distance ρ [(s, a), (s ′ , a ′)] = ∥f (s, a) -f (s ′ , a ′)∥ 2 , results in a more robust algorithm with respect to the hyperparameters. This is inspired by the kernel-based bonuses used by the Never-Give-Up algorithm by Badia et al. [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF], which we discuss in Section 5.3. One possible explanation for such improvement is that using k-nearest neighbors might reduce the impact of outliers, which is important since the representation f is being learned at the same time as the approximate bonuses.

Related Work

Several techniques for exploration in deep reinforcement learning take inspiration from the 1/ √ n-bonuses used by near-optimal algorithms in finite MDPs. For instance, Bellemare et al. [START_REF] Bellemare | Unifying count-based exploration and intrinsic motivation[END_REF] propose a method to compute pseudo-counts approximating n t (s, a) using density estimation on images, and Tang et al. [START_REF] Tang | # Exploration: A study of count-based exploration for deep reinforcement learning[END_REF] use locality-sensitive hashing to map continuous states to discrete representations, where explicit counts are computed. A common property across these techniques is that the more a state-action pair (s, a) is visited, the smaller the bonus at (s, a). Such property is also satisfied by algorithms such as Random Network Distillation (RND) by Burda et al. [START_REF] Burda | Exploration by random network distillation[END_REF] and Never-Give-Up by Badia et al. [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF]. Never-Give-Up relies on kernel-based exploration bonuses and, among the related work, we believe it is the closest to AKBX. Since Never-Give-Up also uses RND, we briefly explain below how both algorithms construct their exploration bonuses.

Random Network Distillation

The exploration bonuses used by RND are based on functions u θ and u θ ′ , implemented by two neural networks with identical architecture, that take as input a state s ∈ S and output a real-valued vector. The network parameters θ, θ ′ are initialized randomly and, whereas θ ′ is kept fixed, θ is slowly updated with gradient steps that minimize

Related Work

the loss

ℓ RND (θ) := E s∼νt ∥u θ (s) -u θ ′ (s)∥ 2 2 , (5.8)
where ν t is taken as a uniform distribution on the previously visited states (s i) t i=1 . Then, the bonuses used by RND are

b t+1 RND,θ (s) := ∥u θ (s) -u θ ′ (s)∥ 2 2 .
(5.9)

Intuitively, the RND loss will be higher for the least visited states, and the bonus will thus encourage the agent to visit new states. As we will see in the experiments of Section 5.4, a disadvantage of RND in reward-free exploration is that, at some point, its bonuses tend to zero2 , which makes the agent stop exploring. Never-Give-Up, which we explain below, avoids this issue by using non-vanishing kernel-based bonuses.

Never-Give-Up

The Never-Give-Up algorithm also relies on a kernel function defined on top of a learned representation function f . Let clip [a,b] (x) := min(b, max(a, x)), and c and L be positive constants. For a state s t visited at time t, the Never-Give-Up exploration bonus is defined as

b t+1 NGU (s t) := clip [1,L] 1 + b t+1 RND,θ (s t) × 1 s ′ ∈NN episodic k (st,B) Γ f (s t , s ′) + c
, where NN episodic k (s t , B) is the set of k-nearest neighbors of s t among the states (s i) t-1 i=1 that are in the same episode as s t , and Γ f : S × S → R + is a kernel function on the state-space, computed using the distance ∥f (s) -f (s ′)∥ 2 based on a state-representation function f . The first factor in the Never-Give-Up bonus is based on RND, and encourages the agent to visit new states. However, as the RND bonus tend to zero, the first factor becomes approximately 1, and the agent is left with the kernel-based bonus in the second factor, which gives high bonuses to the agent if it visits different states in each single episode. Since the kernel-based factor does not tend to zero, an agent using the Never-Give-Up bonuses can keep exploring even after the RND bonuses vanish, which was shown by Badia et al. [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF] to greatly improve an agent's performance in Atari games that are difficult in terms of exploration.

Relation to AKBX

We see that the kernel-based bonus of AKBX in Equation (5.7), which is an approximate version of Kernel-UCBVI's bonus, is similar in principle to Never-Give-Up, in the sense that it encourages the agent to visit novel states with respect to a learned representation. However, the kernel-based factor in the Never-Give-Up bonus is computed using data only from a single episode and, algorithmically, it requires us to keep a buffer containing data from the

Exploration without Rewards & Applications to Deep RL

current episode. AKBX is simpler to implement, since it relies only on sampling batches (and does not need to keep track of all data generated in the current episode), and can be directly related to Kernel-UCBVI, a theoretically-grounded algorithm. A possible advantage of the intra-episode bonuses of Never-Give-Up is that they might be more adapted to environments with very long episodes, which is the case of some Atari games, where explicitly requiring diversity in the states visited in a single episode might be beneficial for exploration. Futhermore, the loss term added to the AKBX bonuses has a similar interpretation to RND, since the loss at the least visited states is higher, and the agent receives high bonuses for visiting those states.

Experiments

In this section, we provide experiments that serve as a proof of concept of AKBX. The AKBX approach involves the interaction between three learning procedures: (i) learning a representation function f ; (ii) learning approximate exploration bonuses by minimizing the loss (5.5); and (iii) training a reinforcement learning algorithm to maximize the sum of reward and exploration bonuses (or only the bonuses in a reward-free case). Each procedure depends on the others: in order to learn a good representation, the agent needs to explore well the MDP; and, to explore, the agent needs a good representation and a reinforcement learning algorithm that is able to optimize the sum of exploration bonuses, which are non-stationary (since the bonuses are being constantly updated). Hence, we designed experiments that verify that AKBX is able to explore even in a scenario with such complex learning interactions. We consider the Grid-World environment illustrated in Figure 5.1. The state space is discrete, but AKBX's assumes continuous observations, as it observes one-hot encodings of the discrete

Experiments

states. That is, for a state s ∈ S := {1, . . . , S}, the AKBX agent observes a vector s obs ∈ R S such that s obs (i) = 1 {i = s}, where s obs (i) denotes the i-th component of the vector s obs . There are four actions available, corresponding to movements in the four possible directions (up, down, left, right). The agent starts at the top-left room and when choosing an action, the agent moves in the corresponding direction with probability 0.95, and moves in a random direction with probability 0.05. In a reward-free situation, the goal of the agent is to constantly explore all the states. When rewards from the environment are enabled, the agent receives a reward equal to 1 in the state in the bottom-right corner.

Before illustrating AKBX's performance in a reward-free situation (Section 5.4.3) and with rewards (Section 5.4.4), we present in Section 5.4.1 a simple representation learning method inspired by manifold learning, and show in Section 5.4.2 that the approximate bonuses used by AKBX (5.7) are able to mimic the 1/ √ n and 1/n bonuses in tabular MDPs.

State-dependent representation and bonuses

As usually done in related work on exploration for deep RL (e.g., [Bel+16; Bad+20b]), we consider that the representation function f is a function of states only (instead of state-action pairs) and, similarly, the kernel function Γ f depends only on pairs of states, that is

Γ f ((s, a), (s ′ , a ′)) = Γ f (s, s ′) = ψ f (s) -f (s ′) 2 .
The intuition is that the agent is encouraged to visit novel states (instead of novel state-action pairs), and the exploration among the possible actions is done by introducing randomness in the exploration policy: for instance, by ε-greedy exploration (in Q-learning algorithms) or by entropy regularization (in actor-critic algorithms).

Notation Throughout this section, we denote by ν t the distribution on S such that s ∼ ν t is sampled uniformly at random (with replacement) from (s i) t i=1 , the data available at time t.

Representation Learning

Since the agent receives one-hot encodings of discrete states, its inputs are vectors of dimension S = 233 without any structure (that is, the Euclidean distance between any pair of observations is the same). In order to learn a meaningful representation function f , we minimize the following loss:

ℓ repr t (f) :=E s i ∼νt [ℓ Huber (f (s i) -f (s i+1))] + c 1 E s∼νt [f (s)] + c 2 E s∼νt ∥f (s)∥ 2 2 -c 3 E s,s ′ ∼νt ℓ Huber (f (s) -f (s ′)) (5.10)
where c 1 , c 2 and c 3 are positive constants, and ℓ Huber is a pseudo-Huber loss with parameters δ > 0 and q > 0 defined as ℓ Huber (x) := (δ q + ∥x∥ q 2) 1/q .

(5.11)

The first term in the loss ℓ repr t (f) forces the distance between consecutive states s t and s t+1 to be small in the representation space. The term proportional to c 1 means that f should be orthogonal to a constant function, and avoids constant solutions, whereas the term proportional to c 2 penalizes functions f with large norm. These first three terms are analogous to the Laplacian Eigenmaps method for manifold learning [START_REF] Vidal | Generalized principal component analysis[END_REF][START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF] given an adjacency graph. The analogy in our case is that the graph adjacency matrix is defined by connecting consecutive states s t and s t+1 . The last term, proportional to c 3 , is a constrastive loss that forces a separation in the embedding space between states s and s ′ that are sampled randomly. Besides its relation to Laplacian Eigenmaps, the loss ℓ repr t (f) and the use of the pseudo-Huber loss (5.11) is inspired by the adjacency regularization loss proposed by Guo et al. [START_REF] Daniel Guo | Geometric entropic exploration[END_REF]. To train a representation f , we parameterized f using a multilayer perceptron (MLP) with a hidden layer of size 128 and an output layer of size 64, meaning that the state embeddings are 64-dimensional vectors. We used batches of dimension (8, 32), meaning that each batch has 8 sub-trajectories containing 32 time steps, and minimized the loss (5.10) using the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] and the PyTorch library [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF]. Other parameters for the loss computation are given in Table 5.1.

In order to validate the representation learning method used here, we sampled 5×10 4 transitions from the Grid-World environment (Figure 5.1), corresponding to 5 × 10 2 trajectories of horizon H = 100. In order to remove exploration issues and validate only the representation learning method, the starting state of each trajectory was sampled uniformly at random among the centers of each room. Figure 5.2 shows the ground truth positions of each state in the Grid-World from Figure 5.1, and the 2-dimensional projection of the 64-dimensional embeddings f (s) before and after minimizing the representation loss (5.10). The 2D projections were computed using the t-SNE algorithm [START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF] implemented in the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. We can see that the representation learning method used here is able to capture the adjacency structure of the states of the Grid-World.

Experiments

True positions Embeddings before training Embeddings after training

Bonus Computation

Now that we have validated our representation learning method, we study AKBX's exploration bonuses, which are trained at the same time as the representation function f . We approximate the function g θ , used to define the bonus (5.7), by an MLP with a hidden layer of size 128. The other parameters used to defined the bonuses are given in Table 5.2.

ψ(x) = 1/(1 + x 2) Regularization constant β = 0 Bonus parameters (5.7)
λ 1,t = λ 2,t = 1 Optimizer (Adam) learning rate 10 -4 Batch dimensions (8, 32)

Figure 5.3 compares the number of state visits to the bonuses (5.7) learned by minimizing the loss in Equation (5.5) for α = 1/2 and α = 1, based on 5 × 10 2 trajectories of horizon H = 100 collected by playing a random policy starting from the top-left room. We ran 15 × 10 3 optimization steps to learn the representation f and 15 × 10 3 optimization steps to minimize the bonus loss Equation (5.5). Both the representation and the bonuses where trained together: after each block of 500 optimization steps for the representation, we ran 500 optimization steps for the bonuses. We observe that AKBX is able to estimate bonuses that behave either as 1/ √ n (for α = 1/2) or 1/n (for α = 1), even if bonuses and representation are trained simultaneously. Comparison between AKBX's bonuses and 1/n α , where n is the number of state visits.

Reward-Free Exploration

In this section, we evaluate the performance of AKBX in a problem of reward-free exploration, and we compare it to RF-UCRL, RF-Express and RND. We use the Grid-World environment from Figure 5.1 and evaluate the algorithms by (i) the number of visited states, which shows how quickly they are able to explore the environment; and

(ii) the entropy of the empirical state-visit distribution 3 , which illustrates the diversity of the states visited by the exploration policy. As off-policy RL algorithm, used both by AKBX and RND, we implemented an actor-critic method called Advantage-Weighted Regression (AWR), introduced by Peng et al. [START_REF] Peng | Advantageweighted regression: Simple and scalable off-policy reinforcement learning[END_REF]. We chose AWR due to its higher stability when compared to algorithms based on Q-learning. Table 5.3 shows the hyperparameters used in our AWR implementation. For RND, we used an MLP with two hidden layers of size 256 to implement the functions u θ and u θ ′ used to define its bonus (5.9), and the loss (5.8) was minimized with the Adam optimizer and a learning rate of 10 -5 .

Experiments

For AKBX and RND, the representation, the bonuses and AWR are trained in the following manner: every T update time steps in the environment, we perform:

• N repr optimization steps of representation learning;

• N bonus optimization steps of minimization of the bonus loss function;

• N critic optimization steps of AWR's value function updates; and

• N actor optimization steps of AWR's policy updates.

In our implementation, we chose the values T update = 2048, N critic = 200, N actor = 1000, as suggested for AWR by [START_REF] Peng | Advantageweighted regression: Simple and scalable off-policy reinforcement learning[END_REF], and N repr = N bonus = 500.

Figure 5.4 shows the number of state visits and the entropy of state-visit distribution for AKBX, RND, RF-UCRL and RF-Express. We can see that RF-UCRL and RF-Express quickly discover all the states and maintain a high state-visit entropy. Also, both AKBX and RND are able to discover all the states and, apparently, maintain a reasonable level exploration if we look at their statevisit entropy. However, only looking at the entropy might be misleading, since it does not allow us to evaluate whether the agents keep consistently exploring all the rooms. Figure 5.5 shows for each algorithm the number of visits per state and for different time intervals. At

Experiments

Exploration with Rewards

To conclude this experimental section, we now evaluate AKBX in the same Grid-World environment (Figure 5.1) in the case where the agent receives a reward when it reaches a state in the bottom-right room. We consider α = 1/2, since this is no longer a reward-free situation. In order to reach the rewarding state, the agent has to traverse the 9 rooms, that is, it needs to explore. Figure 5.6 compares the values of the policies π t learned by AKBX and RND at time t to the value of an optimal policy. The values correspond to the expected sum of rewards in a horizon H = 100, starting from the central state in the top-left room, and are estimated by Monte-Carlo policy evaluation. We see that both AKBX and RND are able to compute near optimal policies after an initial period of exploration. When rewards are available, though, using a time-independent λ 1,t for AKBX's bonus (5.7), such that the bonuses do not decay to zero, might prevent the agent from exploiting. Indeed, in order to exploit, the bonuses must decay so that the agent is able to maximize its rewards. In our example, setting λ 1,t = 1 did not prevent exploitation, since, in our Grid-World and given the scale of the bonuses, the policy that maximizes the sum of bonuses and rewards should be the same as the policy that maximizes rewards only. However, this is not the case in general, and a well-chosen schedule for decaying λ 1,t with t may be crucial to obtain a good policy at the end. Notice that the Never-Give-Up agent mentioned in Section 5.3 also has non-vanishing bonuses and, consequently, might have issues with exploitation in some

Exploration without Rewards & Applications to Deep RL

environments. Never-Give-Up was later extended by Badia et al. [START_REF] Puigdomènech Badia | Agent57: Outperforming the atari human benchmark[END_REF] who introduced Agent57, an agent that adaptively chooses an exploration-exploitation parameter at each time t -analogous to λ 1,t -based on a non-stationary multi-armed bandit algorithm. Thus, a similar technique could be applied when using AKBX's bonuses.

Discussion and Bibliographical Remarks

In this chapter, we saw that algorithms based on 1/ √ n exploration bonuses are also able to explore an MDP even without rewards, by collecting diverse data that cover all reachable states. Based on the Kernel-UCBVI algorithm introduced in Chapter 4, that generalizes 1/ √ n bonuses to continuous MDPs, we proposed a method called AKBX, which can be seen as a scalable version of Kernel-UCBVI with a learned metric, that defines a distance and a kernel based on learned representations and explores with approximate kernel-based bonuses. The relevance of collecting diverse data from an MDP is that they can be used, for instance, to learn a transition model, that can be latter used in offline planning for any reward function, or simply to simulate the environment, among other applications, such as learning state representations that can be used for multiple tasks. We related AKBX to Never-Give-Up [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF], a deep RL algorithm that has been successful at solving hard-exploration Atari games, and we believe that the link between AKBX and Kernel-UCBVI might help us understand why and when approaches like Never-Give-Up work. For instance, as we have seen in Chapter 4, Kernel-UCBVI suffers from the curse of dimensionality: consequently, we might expect algorithms such as AKBX and Never-Give-Up to work only when it is possible to learn a state representation function f such that the covering dimension of the state space with respect to the metric induced by f is small.

Further reading on reward-free exploration

In this chapter, we focused on the reward-free exploration (RFE) problem as proposed by Jin et al. [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF] where the goal is to collect a diverse dataset of transitions. Zhang et al. [START_REF] Zhang | Task-agnostic Exploration in Reinforcement Learning[END_REF] study a related setting, called Task-Agnostic Exploration, where an agent has an initial reward-free exploration phase, after which it needs to be able to compute near-optimal policies for N arbitrary tasks. Another common approach to RFE is to frame exploration as a problem of searching for a policy that induces a state-visitation distribution that has maximum entropy, as proposed by Hazan et al. [START_REF] Hazan | Provably efficient maximum entropy exploration[END_REF] for finite MDPs. Guo et al. [START_REF] Daniel Guo | Geometric entropic exploration[END_REF] extend this approach to continuous MDPs by using a geometry-aware Shannon entropy that relies on a kernel function that can also be learned. A fundamental difference between entropy maximization and the dataset approach discussed in this chapter is that a maximum-entropy policy may fail to cover some regions of the state space, whereas increasing the diversity of a dataset usually requires the agent to constantly update its exploration policy in order to visit the least visited states in the previous episodes. Other reward-free goals include the autonomous exploration task of learning policies that are able to visit any state that is reachable in a given radius of a fixed initial state [LA12; Tar+20a;

Discussion and Bibliographical Remarks

Tar+21a]. Beyond the finite-horizon criterion, reward-free exploration has also been studied for stochastic shortest path problems [START_REF] Tarbouriech | Rewardfree exploration beyond finite-horizon[END_REF], and in the context of active model estimation [START_REF] Tarbouriech | Active Model Estimation in Markov Decision Processes[END_REF].

Further reading on exploration for deep reinforcement learning Different kinds of exploration bonuses, intrinsic motivation or curiosity methods have been proposed to enhance exploration of RL agents. A non-exhaustive list includes [Sch91; SP12; MJR15; Osb+16; Bel+16; Pat+17; Tan+17; FCRL17; Ost+17; Bur+19; FCL18; OAC18; MBB20], which mostly involve algorithms based on uncertainty quantification, such as 1/ √ n-inspired bonuses, prediction errors, density estimation, and bootstrapping. Flet-Berliac et al. [START_REF] Flet-Berliac | Adversarially Guided Actor-Critic[END_REF] propose an actor-critic algorithm for exploration based on constraining the policy at time t to be different from the policy of an adversary trained to predict the actions from previous policies.

Chapter 6 Conclusion 6.1 Main Contributions & Directions for Future Work

Reinforcement learning (RL) is a powerful framework to design algorithms that learn to make decisions and to interact with the world. It allows us to model problems ranging from music recommendation [START_REF] Liebman | DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation[END_REF] to scheduling viral tests to control an epidemic [START_REF] Meirom | Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks[END_REF], from robotics [START_REF] Kober | Reinforcement learning in robotics: A survey[END_REF] to the design of clinical trials [ZKZ09; Yu+21].

Algorithms for RL can be classified as offline or online. In the offline case, the agent is given a fixed dataset of transitions, based on which it needs to compute a good policy. Learning policies from offline data is challenging, mostly due to the fact that the algorithm is required to learn a near-optimal policy from data that is often collected by sub-optimal policies. In this thesis, we focused on the online case, where the agent needs to collect its own data in order to learn a good policy. In other words, it needs to efficiently explore the environment. I believe that studying online reinforcement is extremely relevant, since it provides a framework in which an agent can learn through real-time interactions, adapt to changes in the world, and actively gather new data in order to improve its learning process. Furthermore, progress in online RL can allow us to design agents that are able to quickly build datasets with sufficient coverage of the environment so that they can be used later for offline RL: indeed, this is the goal of the reward-free exploration framework proposed by [START_REF] Jin | Reward-Free Exploration for Reinforcement Learning[END_REF] that we studied in Chapter 5. This thesis presented theoretical and practical contributions to online reinforcement learning. In Chapter 3, we provided unified proofs for worst-case lower bounds in finite MDPs for three common performance criteria: the regret, the sample complexity of best-policy identification (BPI), and the sample complexity of exploration (PAC-MDP). We expect this contribution to be useful to understand the links between the different criteria, and to help the derivation of lower bounds for other settings. Since the lower bounds in finite MDPs scale with the number of states S, we need regularity conditions in order to efficiently explore large or continuous MDPs.

Conclusion

In Chapter 4, we studied exploration under weak regularity conditions, and proposed two kernel-based RL algorithms: Kernel-UCBVI and KeRNS, for which we proved regret bounds in stationary and non-stationary MDPs, and for which we provided approximations with improved runtime. The two main advantages of kernel-based approaches for exploration are (i) they can be applied to general state spaces, since kernels can be defined for several kinds of sets (discrete sets, Euclidean spaces, sets of graphs, etc.); and (ii) they allow us to include prior knowledge about the environment (e.g., symmetries in the state space) through kernel design, which can accelerate exploration. Finally, in Chapter 5 we studied algorithms for reward-free exploration, where an agent can collect data efficiently even without reward feedback, and we introduced AKBX, an approximation of Kernel-UCBVI that can be used in deep RL, and is based on a kernel function that is learned in real time by any representation learning method. Furthermore, we saw how AKBX is related to other approaches for exploration in deep RL [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF][START_REF] Puigdomènech Badia | Agent57: Outperforming the atari human benchmark[END_REF].

Establishing connections between algorithms with theoretical guarantees, such as Kernel-UCBVI, and empirically successful methods for deep RL, such as Never-Give-Up [START_REF] Puigdomènech Badia | Never Give Up: Learning Directed Exploration Strategies[END_REF], is important both to better understand current deep RL algorithms and to find possible directions for future research. For instance, since the regret of Kernel-UCBVI suffers from the curse of dimensionality, and the exploration of Never-Give-Up relies on similar exploration bonuses, we might expect algorithms such as AKBX and Never-Give-Up to work only for environments where it is possible to learn low-dimensional state representations. Consequently, a key question for future research to improve large-scale exploration might be how to use stronger regularity assumptions in deep RL, which are necessary to improve the regret bounds in theory, as in [Jin+20b; Yan+20; CO20] for instance.

In addition, we saw that several algorithms for regret minimization rely on dynamic programming (DP) combined with exploration bonuses, which are non-stationary and added to the rewards. Hence, besides finding effective ways to compute bonuses in deep RL, an important research direction is the improvement and development of approximate DP algorithms that are able to use off-policy data and that are robust to non-stationary rewards.

An active area of research in online RL is exploration under safety constraints [MA12; Sui+15; TBK16; Ber+17; Wac+18; Din+21]. Although it was not studied in this thesis, safety is extremely important in applications related to robotics and medicine, for instance, and is a crucial point to be considered in future work.

Software for Reinforcement Learning Research

Another challenging aspect of reinforcement learning research is how to properly organize experiments and compare agents. This is due to the facts that:

Software for Reinforcement Learning Research

• There are several performance criteria used to design agents, which may lead to different implementations. Nevertheless, in a practical application, we might wish to compare agents that were designed for different criteria. For instance, consider the finite-horizon and the infinite-horizon with discounted rewards criteria. In the finite-horizon case, the optimal policy depends on the step h ∈ [H] within an episode, whereas in the infinitehorizon case the optimal policy depends only on the state. However, a finite-horizon agent can be run in infinite-horizon problems by always playing the policy for h = 1, or by seeing an infinite horizon problem as a sequence of finite-horizon ones, for example.

• Different kinds of agents are implemented differently, which can make it more difficult to compare them. For instance, a deep RL algorithm might have its implementation centered around collecting batches of transitions and minimizing a loss function, whereas this is not the case for algorithms such as UCBVI.

• To debug algorithms for online RL, it might be useful to compare them to algorithms relying on a generative model, since using such type of model removes the problem of exploration and might provide us a strong baseline policy or a "ground truth". However, it might not be trivial to code and compare algorithms both for online RL and for RL with a generative model using a single interface or codebase.

This diversity in code implementations makes it difficult to compare agents developed in different cases and written by different people. This comparison may be essential for research: consider, for instance, the task of comparing RF-Express, an algorithm for finite-horizon rewardfree exploration in tabular MDPs, to AKBX, an algorithm for reward-free exploration in deep RL. Their code implementations are considerably distinct, but their comparison is important to evaluate how AKBX explores when compared to a theoretically-grounded algorithm.

To facilitate empirical research in RL, we developed the rlberry library in Python1 [START_REF] Darwiche Domingues | rlberry -A Reinforcement Learning Library for Research and Education[END_REF]. It allows us to compare and debug different agents, create and visualize custom environments, organize experiments, optimize hyperparameters, run agents on remote servers, among other features. The library is based on the principle that the interface used to define an agent must be simple enough to include any RL algorithm, such as value iteration, algorithms for finite MDPs, deep RL, MCTS, etc. For that, rlberry only requires an agent to implement two methods: a fit() method that runs the agent for a certain amount of time, given a computational or sample complexity budget, and an eval() method that evaluates the performance of the agent in the environment. Once the agent implements this interface, we can use all the functionalities of the library, which also allows us to train several instances of the algorithms in parallel and handles automatically all the seeds for the random number generators, which is important for reproducibility. We expect that the development of rlberry will be continued, and that it will be useful to develop, debug, and compare RL algorithms created by different research groups. More generally, we hope it will facilitate code sharing and reproducibility in RL.

Complements on Chapter 2

We proceed by induction on h.

Base case Let h = 0. We have ε = 1+M 1-γ , which implies n sampleV (ε, δ ′) = 1 and G(ε) = 1 (since H(ε) = 0). Hence, the claim is true for h = 0.

Induction step Assume that the result holds for

h. Let ε ≥ (1+M) √ γ h+1 1-γ • Since ε √ γ ≥ (1+M) √ γ h 1-γ ,
we use the induction hypothesis to obtain

n sampleV (ε, δ ′) = 1 current call + AN (ε)n sampleV ε √ γ , δ ′ calls in estimateQ ≤ 2α(δ ′) ε 2 n sampleV ε √ γ , δ ′ ≤ 2α(δ ′) ε 2 γ 1 2 (H(ε)-1)(H(ε)-2) γ2α(δ ′) ε 2 H(ε)-1 , since H ε √ γ = H(ε) -1 = γ 1 2 H(ε)(H(ε)-1) 2α(δ ′) ε 2 H(ε)
, which completes the proof.

Lemma A.2. Let ε ≤ κ. For all h ∈ N, ∀ε ≥ κ √ γ h , we have

n sampleV (ε, δ ′) ≤ η 1 log 1 γ κ/γ ε η 2 (δ ′) 1 ε 2 where κ = 1 - √ γ AL η 1 = κ 2 n sampleV (κ, δ ′) η 2 (δ ′) = log 2 γ 1 -γ 2β(δ ′) κ β(δ ′) = 18(1 + M) 2 A 2 L (1 -γ) 4 (1 - √ γ) 3 log 2A δ ′
under the condition that

log 2 γ 1 -γ 2β(δ ′) κ ≥ 0, i.e., β(δ ′) ≥ (1 -γ)(1 - √ γ) 2γAL (A.1)
which is satisfied by choosing δ ′ small enough.

A.1 Proof of Theorem 2.6: Sample Complexity of SmoothCruiser

Proof. First, let us define some auxiliary quantities,

B 1 (ε) := log 1 γ κ/γ ε η 2 (δ ′) , (A.2) B 2 (ε) := η 1 ε 2 , and (A.3) B(ε) := B 1 (ε)B 2 (ε) (A.4)
We want to prove that n sampleV (ε, δ ′) ≤ B(ε) and we proceed by induction on h.

Base case For h = 0, we have ε ≥ κ and, by assumption, ε ≤ κ. Therefore, ε = κ. It can be easily verified that B(κ) = n sampleV (κ, δ ′), hence the lemma is true for h = 0.

Induction hypothesis Assume that the lemma is true for h.

Induction step Let ε ≥ κ √ γ h+1 . We have that n sampleV (ε, δ ′) = 1 current call + n sampleV ε √ γ , δ ′ call in line 11 of sampleV + AN (√ κε)n sampleV κε γ , δ ′ calls in estimateQ = 1 + n sampleV ε √ γ , δ ′ + β(δ ′) ε n sampleV κε γ , δ ′ ≤ n sampleV ε √ γ , δ ′ + 2β(δ ′) ε n sampleV κε γ , δ ′ Since ε ≥ κ √ γ h+1 and ε ≤ κ, we have κε γ ≥ ε √ γ ≥ κ √ γ h
. This allows us to use our induction hypothesis to get

n sampleV (ε, δ ′) ≤ B ε √ γ + 2β(δ ′) ε B κε γ •
Below, we will use the fact that:

log   κ κε γ γ   = 1 2 log κ/γ ε (A.5)

Complements on Chapter 2

We have that

B ε √ γ B(ε) = B 1 ε √ γ B 1 (ε) B 2 ε √ γ B 2 (ε) = γ   log κ/γ ε -1 2 log 1 γ log κ/γ ε   <1 η 2 (δ ′) ≤ γ,
where we used the assumption that η 2 (δ ′) ≥ 0.

Also,

B κε γ B(ε) = εγ κ B 1 κε γ B 1 (ε) = εγ κ     log 1 γ κ κε γ γ log 1 γ κ/γ ε     η 2 (δ ′) = εγ κ    1 2 log 1 γ κ/γ ε log 1 γ κ/γ ε    η 2 (δ ′) = εγ κ 1 2 η 2 (δ ′) = εγ κ (1 -γ) γ κ 2β(δ ′) = (1 -γ)ε 2β(δ ′) •
Finally, we obtain

n sampleV (ε, δ ′) ≤ B ε √ γ + 2β(δ ′) ε B κε γ ≤ γB(ε) + 2β(δ ′) ε (1 -γ)ε 2β(δ ′) B(ε) = B(ε),
which proves the lemma. Now, we can conclude the proof of Theorem 2.6. Notice that the number of calls to the generative model is smaller than the total number of calls to sampleV. SmoothCruiser makes one call to estimateQ, which makes N (ε) calls to sampleV. If ε ≥ κ, Lemma A.1 shows that the sample complexity is bounded by a constant. Lemma A.2 bounds the sample complexity for ε ≤ κ, and we use it to bound n (ε, δ ′):

n ε, δ ′ = N (ε)n sampleV (ε, δ ′) ≤ N (ε)η 1 log 1 γ κ/γ ε η 2 (δ ′) 1 ε 2 ≤ c 1 ε 4 log c 2 δ ′ c 3 log c 4 ε log 2 (c5(log(c 2 δ ′))) = O 1 ε 4
by using the definition of N (ε) for ε ≤ κ and the definition of η 2 (δ ′) in Lemma A.2. The constants are given by:

c 1 = 18(1 + M) 2 n sampleV (κ, δ ′) A 2 L 2 (1 -γ) 4 ; c 2 = 2A; c 3 = [log (1/γ)] -1 ; c 4 = (1 - √ γ)/(γAL); c 5 = 36(1 + M) 2 γA 3 L 2
(1 -γ) 5 (1 -√ γ) 4 .

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

To prove that SmoothCruiser outputs a good estimate of the optimal regularized value function with high probability, we proceed as follows:

• In Lemma A.3, we prove that the output of sampleV, conditioned on an event G, is a low-bias estimate of the true value function, and that G happens with high probability;

• Given Lemma A.3, the proof of Theorem 2.7 is straightforward.

Throughout the proof, we will make distinctions between two cases:

• Case 1: κ ≤ ε < 1+M 1-γ ;

• Case 2: ε < κ.

Useful definitions

We define the function ζ(ε) as

ζ(ε) =          ε, if κ ≤ ε < 1+M 1-γ , √ κε, if ε < κ, ∞, otherwise.
We define params(s, ε) as the (random) set of parameters used to call sampleV after a call to sampleV(s, ε), that is

params(s, ε) = Z (k) s,a , ζ(ε) √ γ for k = 1, . . . , N (ε); a ∈ A (A.6)
in case 1 and

params(s, ε) = Z (k) s,a , ζ(ε) √ γ for k = 1, . . . , N (ε); a ∈ A Z s, A , ε √ γ (A.7) in case 2, where Z (k)
s,a are the next states sampled in estimateQ and Z s, A is the next state sampled in sampleV(s, ε).

A call to sampleV(s, ε) makes one call to estimateQ. Denote the output of this call to estimateQ by Q ε s . We define the event G(s, ε) as follows:

G(s, ε) =    ∥ Q ε s -Q s ∥ ∞ ≤ ζ(ε) B(s, ε), if 0 < ε < 1+M 1-γ , Ω, if ε ≥ 1+M 1-γ .

Complements on Chapter 2

where Ω is the whole sample space and

B(s, ε) = (z,e)∈params(s,ε) G(z, e).
Finally, we define C γ as:

C γ = 3(1 + M) (1 -γ) 2 Lemma A.3. Let V ε (s) = sampleV(s, ε). For all h ∈ N, s ∈ S, ε ≥ (1+M) √ γ h 1-γ
, , we have:

(i) |E V ε (s) G(s, ε) -V (s) | ≤ ε, (ii) P | V ε (s)| ≤ C γ G(s, ε) = 1, and
(iii) P [G(s, ε)] ≥ 1 -δ ′ n sampleV (ε, δ ′).
where

n sampleV (ε, δ ′) = 1 + (z,e)∈params(s,ε) n sampleV (e, δ ′)
is the total number of recursive calls to sampleV after an initial call with parameters (s, ε).

Proof. We proceed by induction on h.

(1) Base case If h = 0, ε ≥ 1+M 1-γ and G(s, ε) = Ω. The output is then V ε (s) = 0. Point (i) is verified by using the fact that |V (s)| ≤ 1+M 1-γ ≤ ε; points (ii) and (iii) are trivially verified.

(2) Induction hypothesis Assume that (i), (ii) and (iii) are true for h.

(

) Induction step Let ε ≥ (1+M) √ γ h+1 1-γ 3
. This implies that ε/ √ γ and ζ(ε)/ √ γ are both greater than

(1+M) √ γ h 1-γ
, which will allow us to use the induction hypothesis.

We start by proving (iii), that is, that the event G(s, ε) has high probability.

Let Q ε s = estimateQ(s, ζ(ε)). Let the reward R (k)
s,a and state Z (k) s,a be the random variables associated to the k-th call to the generative model used to compute Q s in estimateQ, for

k ∈ {1, • • • , N (ε)}. Let q k s (a) := R (k) s,a + γsampleV Z (k) s,a , ζ(ε)/ √ γ A.
Q ε s (a) = 1 N (ε) N (ε) k=1 q k s (a) (A.8)
so that:

Q ε s = clip (1+M)(1-γ) -1 Q ε s (a)
where, for any c ≥ 0 and x ∈ R A , clip c (x) = min(max(x, 0), c).

we have:

Q ε s (a) -Q s (a) ≤ Q ε s (a) -Q s (a) ≤ Q ε s (a) -E Q ε s (a)|B(s, ε) (I) + E Q ε s (a)|B(s, ε) -Q s (a) (II)
.

We'd like to use Hoeffding's inequality to bound (I) with high probability. For that, we need to verify that the random variables {q k s (a)}

N (ε)
k=1 are bounded and independent conditionally on B(s, ε).

Boundedness. By the induction hypothesis (ii), in the event B(s, ε), the random variables sampleV Z (k) s,a , ζ(ε)/ √ γ , for all k, are bounded by C γ . Using the fact that the rewards are in [0, 1], we obtain that q k s (a) is also bounded by C γ .

Independence. Let E

k = G Z k s,a , ζ(ε)/ √ γ . For any t ∈ R N (ε)
, the characteristic function of the random vector {q k s (a)}

N (ε)
k=1 conditionally on B(s, ε) is given by

E exp i k t k q k s (a) B(s, ε) (a) = E exp i k t k q k s (a) k E k = E exp i k t k q k s (a) k 1 {E k } E [k 1 {E k }] = E k exp it k q k s (a) 1 {E k } E [k 1 {E k }] (b) = k E exp it k q k s (a) 1 {E k } k E [1 {E k }] = k E exp it k q k s (a) E k (c) = k E exp it k q k s (a) B(s, ε)
which is justified by • (c) The random variable q k s (a) is independent of every E j for j ̸ = k.

Since the characteristic function of {q k s (a)}

N (ε)
k=1 is the product of their characteristic functions, these random variables are independent given B(s, ε). Now we can use Hoeffding's inequality:

P Q ε s (a) -E Q ε s (a) B(s, ε) ≥ (1 - √ γ)ζ(ε) B(s, ε) = P   1 N (ε) N (ε) k=1 q k s (a) -E q k s (a) B(s, ε) ≥ (1 - √ γ)ζ(ε) B(s, ε)   ≤ 2 exp - N (ε)(1 - √ γ) 2 ζ(ε) 2 2C 2 γ ≤ δ ′ A
And (II) is bounded by using the induction hypothesis (i):

E q k s (a) B(s, ε) -Q s (a) (a) = γ E sampleV Z (k) s,a , ζ(ε) √ γ B(s, ε) -E V (Z (k) s,a) B(s, ε) (b) = γ E sampleV Z (k) s,a , ζ(ε) √ γ G Z (k) s,a , ζ(ε) √ γ -E V (Z (k) s,a) G Z (k) s,a , ζ(ε) √ γ (c) = γ E E sampleV Z (k) s,a , ζ(ε) √ γ Z (k) s,a , G Z (k) s,a , ζ(ε) √ γ -V (Z (k) s,a) G Z (k) s,a , ζ(ε) √ γ (d) ≤ γ ζ(ε) √ γ = √ γζ(ε)
which is justified by the following:

• (a) E R (k) s,a B(s, ε) = E R (k)
s,a , since the reward depends only on s, a;

• (b) The term Z (k) s,a , ζ(ε) √ γ depends on B(s, ε) only through G Z (k) s,a , ζ(ε) √ γ ;
• (c) Law of total expectation;

• (d) Consequence of induction hypothesis (i).

Putting together the bounds for (I) and (II) and doing an union bound over all actions, we obtain:

A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser

P ∥ Q ε s -Q s ∥ ∞ ≥ ζ(ε) B(s, ε) ≤ δ ′ .
We can now give a lower bound to the probability of the event G(s, ε). Let

E = ∥ Q ε s -Q s ∥ ∞ < ζ(ε)
We have:

P [G(s, ε)] ≥ P [E ∩ B(s, ε)] = P E B(s, ε) P [B(s, ε)] = 1 -P E ∁ B(s, ε) P [B(s, ε)] ≥ P [B(s, ε)] -δ ′ ≥ 1 -δ ′ n sampleV (ε, δ ′) since P [B(s, ε)] = 1 -P B(s, ε) ∁ = 1 -P   (z,e)∈params(s,ε) G(z, e) ∁   ≥ 1 - (z,e)∈params(s,ε) P G(z, e) ∁ ≥ 1 -δ ′ (z,e)∈params(s,ε)
n sampleV (e, δ ′) by induction hypothesis (iii)

= 1 -δ ′ (n sampleV (ε, δ ′) -1)
This proves the point (iii) of Lemma A.3. Now, let's prove (i), which bounds the bias of the output of sampleV. For any event E, we write

E E [•] := E [•|E] . Case 1 We start with case 1, κ ≤ ε < 1+M 1-γ , where ζ(ε) = ε and V ε (s) = F (Q ε s).
We have:

E G(s,ε) V ε (s) -V (s) = E G(s,ε) F (Q ε s) -F (Q s) ≤ E G(s,ε) |F (Q ε s) -F (Q s)| ≤ E G(s,ε) ∥ Q ε s (a) -Q s (a)∥ ∞ ≤ ζ(ε) = ε which proves (i) in case 1.
Case 2 Consider now the case 2, ε < κ, where ζ(ε) = √ κε. Let A be the action following the distribution

∇F Q ε s ∇F Q ε s 1
, and let the reward R s, A and the state Z s, A be the random variables associated to the call to the generative model with parameters (s, A). Let V = sampleV Z s, A , ε/ √ γ .

Complements on Chapter 2

The output in this case is given by

V ε (s) = F Q ε s -(Q ε s) T ∇F Q ε s + (R + γ V) ∇F Q ε s 1 Let Q s (A) = E G(s,ε) R s, A + γV (Z s, A)| A, Q ε s = E G(s,ε) R s, A + γV (Z s, A)| A
and let

V (s) = E G(s,ε) F Q ε s -(Q ε s) T ∇F Q ε s + Q s (A) ∇F Q ε s 1
.

We have

E G(s,ε) V ε (s) -V (s) (a) = γ E G(s,ε) E G(s,ε) sampleV Z s, A , ε √ γ -V (Z s, A) A, Q ε s , Z s, A ∇F Q ε s 1 (b) = γ E G(s,ε) E G(s,ε) sampleV Z s, A , ε √ γ A, Q ε s , Z s, A -V (Z s, A) ∇F Q ε s 1 (c) ≤ γE G(s,ε) E G(s,ε) sampleV Z s, A , ε √ γ A, Q ε s , Z s, A -V (Z s, A) (d) = γE G(s,ε) E G(Z s, A ,ε/ √ γ) sampleV Z s, A , ε √ γ Z s, A -V (Z s, A) (e) ≤ γ ε √ γ = √ γε.
which is justified by the following points:

• (a) The reward depends only on s, a and law of total expectation;

• (b) V (Z s, A
) is a function of Z s, A and no other random variable;

• (c) Jensen's inequality and the fact that ∥∇F Q ε s ∥ 1 ≤ 1;

• (d) Given Z s, A , the term sampleV Z s, A , ε √ γ depends on G(s, ε) only through G(Z s, A , ε √ γ);
• (e) Induction hypothesis (i).

Now, E G(s,ε) Q s (A)∥∇F (Q ε s)∥ 1 can be written as E G(s,ε) Q s (A)∥∇F (Q ε s)∥ 1 = E G(s,ε) E G(s,ε) Q s (A) Q ε s ∥∇F (Q ε s)∥ 1 = E G(s,ε) Q T s ∇F (Q ε s)
A.2 Proof of Theorem 2.7: Consistency of SmoothCruiser so that V (s) is given by

V (s) = E G(s,ε) F (Q ε s) + (Q s -Q ε s) T ∇F (Q ε s) .
Finally, we bound the difference between V (s) and V (s):

| V (s) -V (s)| ≤ E G(s,ε) F Q ε s + (Q s -Q ε s) T ∇F Q ε s -V (s) ≤ LE G(s,ε) ∥Q s -Q ε s ∥ 2 2 (a) ≤ ALE G(s,ε) ∥Q s -Q ε s ∥ 2 ∞ ≤ ALζ(ε) 2 = ALκε = (1 - √ γ)ε
by using the fact that we are on G(s, ε) and (a) uses the fact that for all x ∈ R A , ∥x∥ 2 2 ≤ A ∥x∥ 2 ∞ .

We now conclude the proof of (i) for case 2:

E G(s,ε) V ε (s) -V (s) ≤ E G(s,ε) V ε (s) -V (s) + V (s) -V (s) ≤ √ γε + (1 - √ γ)ε = ε.
Finally, let's prove (ii), stating that V ε (s) is bounded by C γ on the event G(s, ε).

Case 1 In this case, V ε (s) = F Q ε s) with ∥ Q ε s ∥ ∞ ≤ (1+M)/(1-γ), since each component of Q ε s is clipped and lie in the interval 0, 1+M 1-γ . The assumptions on F imply that V ε (s) ≤ 1+M 1-γ ≤ C γ .
Case 2. In this case, we have:

| V ε (s)| ≤ F (Q ε s) -(Q ε s) T ∇F (Q ε s) + |R + γ V |∥∇F (Q ε s)∥ 1 ≤ 2∥ Q ε s ∥ ∞ + M + 1 + γC γ ≤ 2(1 + M) 1 -γ + M + 1 + γC γ ≤ C γ , since | V | ≤ C γ by induction hypothesis (ii).
This proves (ii) for case 2:

P | V (s)| ≤ C γ G(s, ε) = 1
and concludes the proof of Lemma A.3.

Proof of Theorem 2.7 Now, we can prove Theorem 2.7 using Lemma A.3.

Complements on Chapter 2

Let Q s = estimateQ(s, ε). We have V (s) = F s(Q s). As in the proof of Lemma A.

(a) in estimateQ, for k ∈ {1, • • • , N (ε)}.
We have:

Q s (a) = 1 N (ε) N (ε) k=1 R (k) s,a + γsampleV Z (k) s,a , ε/ √ γ .
Consider the event E defined as

E := N (ε) k=1 G Z (k) s,a , ε √ γ .
By the same arguments as in the proof of Lemma A.3,

• In E, we have

∥ Q s -Q s ∥ ∞ ≤ ε; • P [E] ≥ 1 -δ ′ N (ε)n sampleV (ε, δ ′) = 1 -δ ′ n (ε, δ ′).
Hence,

P ∀a ∈ A, | Q s (a) -Q s (a)| > ε ≤ δ ′ n ε, δ ′ .
To conclude the proof, for every ε > 0 and every δ > 0, we need to be able to find a value of δ ′ such that δ ′ n (ε, δ ′) ≤ δ. That is, given ε and δ, we need to find δ ′ such that

δ ′ c 1 ε 4 log c 2 δ ′ c 3 log c 4 ε log 2 (c5(log(c 2 δ ′))) ≤ δ.
Such value exists, since the term on the LHS tends to 0 as δ ′ → 0, and it depends on ε. We will show that this dependence is polynomial when ε → 0.

Let δ ′ = ε 5 . There exists a value ε that depends on δ such that

∀ε ≤ ε, ε 5 c 1 ε 4 log c 2 ε 5 c 3 log c 4 ε log 2 c 5 log c 2 ε 5 ≤ δ.
since the term on the LHS tends to 0 as ε → 0, as a consequence of Lemma A.5.

Putting it all together, we can choose δ ′ as follows:

δ ′ =      δ such that δ c 1 ε 4 log c 2 δ c 3 log c 4 ε log 2 c 5 log c 2 δ ≤ δ, if ε > ε, ε 5 , if ε ≤ ε A.3 Technical Lemmas which is δ ′ = O ε 5 .
Lemma A.6 implies that, for this choice of δ ′ , the sample complexity is of order O 1/ε 4+c for any c > 0. Then,

A.3 Technical Lemmas

x * ≤ 1 a log 1 δ + c log 4b a log 1 δ + b 2 c 2 a 2 .
Proof. Let x := 4 a log 1 δ + bc 2 a 2 . For any x ≥ 4 a log 1 δ + bc 2 a 2 , we have

ax ≥ log 1 δ + c √ bx ≥ log 1 δ + c log(bx) = log (bx) c δ
and exp(-ax)(bx) c ≤ δ. This implies that exp(-ax)(bx) c ≤ δ and x * ≤ x.

Now, let

x

′ := 1 a log 1 δ + c log(bx) = 1 a log 1 δ + c log 4b a log 1 δ + b 2 c 2 a 2
such that exp(-ax ′)(bx) c ≤ δ. Now, we claim that x * ≤ x ′ . If x ′ > x, then we have immediately x * ≤ x < x ′ . Otherwise, if Proof. We have

x ′ ≤ x: exp(-ax ′)(bx ′) c ≤ exp(-ax ′)(bx) c ≤ δ which implies that x * ≤ x ′
1 x c exp a[log log(x b)] 2 = exp a[log log(x b)] 2 -c log x = exp a[log u] 2 - c b u , by setting u = log(x b)

Complements on Chapter 2

And, for any k > 0, we have lim u→∞ log 2 u -ku = -∞, which allows us to conclude.

For the following results, we denote by n (ε, δ ′) the number of calls to the generative model before SmoothCruiser terminates, when called with parameters (ε, δ ′).

Lemma A.6. If we set δ ′ = δ ′ (ε) = ε 5 , we have:

n(ε, δ ′ (ε)) = O 1 ε 4+c , ∀c > 0 Proof. We have, from Lemma A.2, n sampleV (ε, δ ′ (ε)) ≤ η 1 log 1 γ ε/γ ε η 2 (ε 5) 1 ε 2 = log 1 γ ε/γ ε log 2 k log 2A ε 5 (A) 1 ε 2
where k is a constant that does not depend on ε. The term (A) can be rewritten as:

log 1 γ ε/γ ε log 2 k log 2A ε 5 = c 1 log c 2 ε c 3 log k log c 4 ε 3 = exp c 3 log k log c 4 ε 5 log c 1 log c 2 ε
which can be shown to be O 1 ε c for any c > 0 by applying Lemma A.5 after some algebraic manipulations.

Hence,

n sampleV (ε, δ ′ (ε)) = 1 ε 2 O 1 ε c = O 1 ε 2+c , ∀c > 0.
The fact that n (ε, δ ′) = N (ε)n sampleV (ε, δ ′), where N (ε) = O 1/ε 2 , concludes the proof.

Corollary A.7. If we set δ ′ = δ ′ (ε) = ε 5 , we have:

lim ε→0 δ ′ (ε)n(ε, δ ′ (ε)) = 0
Proof. It is an immediate consequence of Lemma A.6 by taking c ∈]0, 1[.

If P M ′ τ = T B T H = b T H > 0 and P B T H M ′ b T H > 0, we have P B τ H M b T H P B τ H M ′ b T H = P M τ = T B T H = b T H P B T H M b T H P M ′ τ = T B T H = b T H P B T H M ′ b T H = P B T H M b T H P B T H M ′ b T H
where we use the fact that

P M τ = T B T H = b T H = P M ′ τ = T B T H = b T H since the event {τ = T } depends only on B T H . This implies that P B τ H M b T H log   P B τ H M b T H P B τ H M ′ b T H   = P M τ = T B T H = b T H P B T H M b T H log    P B T H M b T H P B T H M ′ b T H   
under the convention that 0 log(0/0) = 0. Hence,

KL P B τ H M , P B τ H M ′ = ∞ T =1 b T H P B τ H M b T H log   P B τ H M b T H P B τ H M ′ b T H   Complements on Chapter 3 = ∞ T =1 b T H P M τ = T B T H = b T H P B T H M b T H log    P B T H M b T H P B T H M ′ b T H    = ∞ T =1 b T H P M τ = T B T H = b T H P B T H M b T H T t=1 H-1 h=1 log p h (s t h+1 |s t h , a t h) p ′ h (s t h+1 |s t h , a t h) = ∞ T =1 E M 1 {τ = T } T t=1 H-1 h=1 log p h (S t h+1 |S t h , A t h) p ′ h (S t h+1 |S t h , A t h) = E M τ t=1 H-1 h=1 log p h (S t h+1 |S t h , A t h) p ′ h (S t h+1 |S t h , A t h)
.

Now
M ′ = E M τ t=1 H-1 h=1 E M log p h (S t h+1 |S t h , A t h) p ′ h (S t h+1 |S t h , A t h) S t h , A t h = E M τ t=1 H-1 h=1 KL p h (•|S t h , A t h), p ′ h (•|S t h , A t h) = s,a,h E M N τ h,s,a KL p h (•|s, a), p ′ h (•|s, a) .

B.2 PAC-MDP Lower Bound: Proof of Corollary 3.10

Recall that N PAC ε = ∞ t=1 1 {ρ * -ρ πt > ε} and let

T (ε, δ) := 1 6912 H 3 SA ε 2 log 1 δ -1.
We proceed by contradiction and assume that the claim in Corollary 3.10 is false. Then we have

for all MDP M, P π,M N PAC ε ≤ T (ε, δ) ≥ 1 -δ, (B.1)
that is, the algorithm satisfies Definition 3.3 with F PAC (S, A, H, 1/ε, log(1/δ)) = T (ε, δ). In particular, (B.1) holds for any MDP in the class C H, ε used to prove Theorem 3.9, for which

H = H/3 and ε = 2ε/(H -H -d).
This allows us to build from π a best-policy identification algorithm that outputs an ε-optimal policy with probability larger than 1 -δ for every MDP in C H/3, ε . We proceed as follows: the sampling rule is that of the algorithm π while the stopping rule is deterministic and set to τ := 2T (ε, δ) + 1. Letting N t (π) be the number of times that the algorithm plays a deterministic policy π up to episode t, we let the recommendation rule be π τ = argmax π N τ (π).

B.3 Technical Lemmas for Lower-Bound Proofs

For every M ∈ C H/3, ε , the event N PAC ε ≤ T (ε, δ) implies π τ = π * . This is trivial for M 0 , where any policy is optimal, and this holds for any other M (h * ,ℓ * a *) ∈ C H/3, ε since there is a unique optimal policy π * and it satisfies (ρ π * -ρ π) = 2ε > ε in M (h * ,ℓ * a *) for any other deterministic policy π. Hence, if π τ ̸ = π * , the number of mistakes N PAC ε would be larger than T (ε, δ). Thus we proved that the BPI algorithm that we defined satisfies

∀M ∈ C H/3, ε , P π,M [π τ = π *] ≥ P π,M N PAC ε ≤ T (ε, δ) ≥ 1 -δ.
Under these conditions, we established in the proof of Theorem 3.9 that, for

M 0 ∈ C H/3, ε , τ = E M 0 [τ] ≥ 1 3456 H 3 SA ε 2 log 1 δ which yields 2T (ε, δ) + 1 ≥ 1 3456 H 3 SA ε 2 log 1 δ
and contradicts the definition of T (ε, δ).

B.3 Technical Lemmas for Lower-Bound Proofs

Lemma B.1. If ε ∈ [0, 1/4], then kl(1/2, 1/2 + ε) ≤ 4ε 2 .
Proof. Using the inequalitylog(1 -x) ≤ 1/(1 -x) -1 for any 0 < x < 1, we obtain

kl(1/2, 1/2 + ε) = - 1 2 log(1 -4ε 2) ≤ 1 2 1 1 -4ε 2 -1 = 2ε 2 1 -4ε 2 .
If ε ≤ 1/4, then 1 -4ε 2 ≥ 3/4 > 1/2, which implies the result.

Lemma B.2. For any

p, q ∈ [0, 1], kl(p, q) ≥ (1 -p) log 1 1 -q -log(2).
Proof. If follows from the definition of kl(p, q) and the fact that the entropy H(p) Proof. Let d be the depth of the tree. There exists an integer R such that 0 < R ≤ A d such that

:= p log(1/p) + (1 -p) log(1/(1 -p)) satisfies H(p) ≤ log(2): kl(p, q) = p log p q + (1 -p) log 1 -p 1 -q = (1 -p) log 1 1 -q + (1 -p) log 1 1 -q + p log 1 q -H(p) ≥ (1 -p) log 1 1 -q -log(2
X t = E τ t=1 E [X t |F t-1] . Proof. Let M n := n t=1 (X t -E [X t |F t-1]).
S = A d -1 A -1 + R.
The number of leaves is given by

L = R + A d-1 -R A .
We consider two cases: either

A d -1 A-1 ≤ S 2 or A d -1 A-1 > S 2 . If A d -1 A-1 ≤ S 2 , we have R ≥ S/2 which implies L ≥ S/2 > S/4. If A d -1 A-1 > S 2 , we have L ≥ A d-1 > 1 A + S 2 1 -1 A ≥ S/
P   ∃n : 1 n n t=1 X t ≥ 2σ 2 n log n(n + 1) δ   ≤ δ
Proof. For a fixed n, we have

P   1 n n t=1 X t ≥ 2σ 2 n log n(n + 1) δ   ≤ δ n(n + 1)
by the Azuma-Hoeffding inequality. A union bound over n and the fact that ∞ n=1 1/(n(n+1)) = 1 gives the result.

B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI)

Lemma B.6 (Lemma 3 by [START_REF] Darwiche Domingues | Kernel-Based Reinforcement Learning: A Finite-Time Analysis[END_REF]). Let (Y t) t∈N * and (w t) t∈N * be two sequences of random variables adapted to a filtration (F t) t∈N . Assume that (i)

w t ∈ [0, 1]; (ii) w t is F t-1 -measurable; (iii) |Y t | ≤ b almost surely; and (iv) E [Y t |F t-1] = 0. Let S t := t i=1 w i Y i , V t := t i=1 w 2 i • E Y 2 i |F i-1 , and W t := t i=1 w i
and let g(x) := (x + 1) log(x + 1) -x. For all δ > 0, we have

P   ∃t ≥ 1, |S t | ≤ 2V t log 4e(2t + 1) δ + 3b log 4e(2t + 1) δ   ≥ 1 -δ.

B.4.2 Proof of Lemma 3.15

To simplify the notations, let f := V * h+1 . Since the rewards are in [0, 1], V * h+1 (s) ∈ [0, H] for any s. We have

(p h -p t h)V * h+1 (s, a) = 1 n t h (s, a) t-1 i=1 1 (s i h , a i h) = (s, a) p h f (s, a) -f (s i h+1) .
Consider the stopping times (τ j h (s, a)) j defined as

τ 1 h (s, a) := min k : (s, a) = (s k h , a k h) , τ j h (s, a) := min k > τ j-1 h (s, a) : (s, a) = (s k h , a k h) , for j > 1, (B.2)
such that τ j h (s, a) represents the episode where (s, a) was visited for the j-th time at stage h. Let

W i h (s, a, f) := 1 (s i h , a i h) = (s, a) p h f (s, a) -f (s i h+1) , that satisfies |W i h (s, a, f)| ≤ H almost surely and E W i h (s, a, f)|F i h = 0. Now, let W j h (s, a, f) = W τ j h h (s, a, f) and F j h = F τ j h h for j ≥ 1. (B.3) By Lemma B.7, we have E W j h (s, a, f)|F j h = 0. Notice that (p h -p t h)V * h+1 (s, a) = 1 n t h (s, a) n t h (s,a) j=1 W j h (s, a, f),

Complements on Chapter 3

which implies, by Lemma B.5, that

P   ∃t ≥ 1, (p h -p t h)V * h+1 (s, a) ≥ 2H 2 n t h (s, a) log 6HSAn t h (s, a)(n t h (s, a) + 1) δ   ≤ δ 3HSA •
The definition of the bonus b t h (s, a) in Equation (3.17) and a union bound over (h, s, a) ∈ [H] × S × A concludes the proof.

B.4.3 Proof of Lemma 3.16

Consider the sequence of random variables (W j h (s, a, f)) j and the filtration (F j h) j defined in Equation (B.3) in the proof of Lemma 3.15. We have

|W i h (s, a, f)| ≤ H almost surely, E W i h (s, a, f)|F i h = 0, and
(p h -p t h)f (s, a) = 1 n t h (s, a) n t h (s,a) j=1 W j h (s, a, f).
Let τ = τ j h (s, a), as defined in Equation (B.2), representing the episode where (s, a) was visited for the j-time at stage h. The conditional variance of W j h (s, a, f) given F i h is bounded as follows:

E W j h (s, a, f) 2 |F j h = E p h f (s, a) -f (s τ h+1) 2 |F j h ≤ E f (s τ h+1) 2 |F j h ≤ ∥f ∥ ∞ E f (x τ h+1)|F j h ≤ Hp h f (s, a).
For fixed (t, s, a, h, f), Lemma B.6 implies

P   1 t t j=1 W j h (s, a, f) ≥ 2Hp h f (s, a) β(t, δ) t + 3H β(t, δ) t   ≤ δ t(t + 1)
.

where β(t, δ) := log 66t 2 (t + 1)/δ , which implies

P   1 t t j=1 W j h (s, a, f) ≥ 1 H p h f (s, a) + (H 2 /2 + 3H)β(t, δ) t   ≤ δ t(t + 1) . (B.4) since 2
√ xy ≤ (x + y) for any x, y ≥ 0. Now, we extend the inequality above so that it holds for any f ∈ V and any t ≥ 1. In order to do so, let C 1/t := f 1 , . . . , f |C 1/t | be a 1/t-covering of (V, ∥ • ∥ ∞) such that |C 1/t | = (Ht) S and, for any f ∈ V, there exists a

f i ∈ C 1/t satisfying ∥f -f i ∥ ∞ ≤ 1/t. Let β(t, δ) := β t, δ 3HSA(Ht) S •

B.4 Complements on the proof of Theorem 3.14 (Regret of UCBVI)

We have

P   ∃t ≥ 1, ∃f ∈ V, 1 t t j=1 W j h (s, a, f) ≥ 1 H p h f (s, a) + (H 2 /2 + 3H) β(t, δ) t + 3 t   ≤ P   ∃t ≥ 1, ∃f ∈ C 1/t , 1 t t j=1 W j h (s, a, f) ≥ 1 H p h f (s, a) + (H 2 /2 + 3H) β(t, δ) t   ≤ ∞ t=1 f ∈C 1/t P   1 t t j=1 W j h (s, a, f) ≥ 1 H p h f (s, a) + (H 2 /2 + 3H) β(t, δ) t   ≤ ∞ t=1 f ∈C 1/t δ 3HSA|C 1/t |t(t + 1) = δ 3HSA
, using Equation (B.4).

A union bound over (h, s, a) ∈ [H] × S × A concludes the proof.

B.4.4 Technical Lemmas

Lemma B.7. Let (X t) t be a stochastic process adapted to the filtration (F t) t such that E [X t |F t] = 0 almost surely for all t. Let τ be a stopping time. Then, if X t is bounded almost surely for all t and if

X τ 1 {τ = ∞} = 0, we have E [X τ |F τ] = 0 almost surely. Proof. Let A ∈ F τ . Then, E [1 A X τ] = E [1 A E [X τ |F τ]] = E 1 A ∞ t=1 X t 1 {τ = t} = ∞ t=1 E [1 A X t 1 {τ = t}] by the dominated convergence theorem = ∞ t=1 E 1 A∩{τ =t} E [X t |F t] since A ∩ {τ = t} ∈ F t = 0.
Notice that, since X t ≤ M for all t for some M > 0, we have

E n t=1 1 A∩{τ =t} X t ≤ M P [A ∩ {τ ≤ n}] ≤ M,
which justifies the use of the dominated convergence theorem.

C.2 Proof of

(p t h -p h)V * h+1 (s, a) ≤ 2H 2 ϑ p 1 (t, δ) C t h (s, a) + βH C t h (s, a) + b p (t, δ)σ where ϑ p 1 (t, δ) = O (d 1) = log HT N σ 2 /(HT), S × A, ρ 1 + t/β δ b p (t, δ) = O L + d 1 = C 2 2β 3/2 2ϑ p 1 (k, δ) + 4C 2 β + 2L p L 1 + log(C 1 t/β)
and where d 1 is the covering dimension of (S × A, ρ).

Proof. Let V = V * h+1 . For fixed (s, a, h), we have

|(p t h -p h)V * h+1 (s, a)| = t-1 i=1 w t,i h (s, a) V (s i h+1) - S V (y)dp h (y|s, a) - β C t h (s, a) S V (y)dp h (y|s, a) ≤ t-1 i=1 w t,i h (s, a) V (s i h+1) - S V (y)dp h (y|s i h , a i h) ➀ + t-1 i=1 w t,i h (s, a) S V (y)dp h (y|s i h , a i h) - S V (y)dp h (y|s, a) ➁ + βH C t h (s, a) • Bounding ➀ (martingale term) Let Y i = V (s i h+1) -p h V (s i h , a i h)
. Since (Y i) i is a martingale difference sequence with respect to (F i h) i , we obtain from Lemma C.2 that, for a fixed tuple (s, a, t, h),

➀ = t-1 i=1 w t,i h (s, a)Y i ≤ 2H 2 log 1 + t/β δ 1 C t h (s, a)
with probability at least 1 -δ.

➀ = t-1 i=1 w t,i h (s, a)Y i ≤ 2H 2 log 1 + t/β δ 1 C t h (s, a) +   C 2 t 2σβ 3/2 2H 2 log 1 + t/β δ + 4HC 2 t βσ   σ 2 HT
for all (s, a, t, h) with probability at least 1 -δHT N σ 2 /(HT), S × A, ρ .

Bounding ➁ (spatial bias term) We have

➁ = t-1 i=1 w t,i h (s, a) S V (y)dp h (y|s i h , a i h) - S V (y)dp h (y|s, a) ≤ L t-1 i=1 w t,i h (s, a)W 1 p h (•|s i h , a i h), p h (•|s, a) by the definition of W 1 (•, •) ≤ L p L t-1 i=1 w t,i h (s, a)ρ (s i h , a i h), (s, a) by Assumption 4.2 ≤ 2σL p L 1 + log + (C 1 t/β) by Lemma C.20.
Putting together the bounds for ➀ and ➁ concludes the proof.

Lemma C.5. With probability at least 1 -δ, for all (s, a, t, h)

∈ S × A × [T] × [H], we have | r t h (s, a) -r t h (s, a)| ≤ 2ϑ r 1 (t, δ) C t h (s, a) + β C t h (s, a) + b r (t, δ)σ where ϑ r 1 (t, δ) = O (d 1) = log N σ 2 /T, S × A, ρ 1 + t/β δ b r (t, δ) = O L + d 1 = C 2 2β 3/2 2ϑ r 1 (t, δ) + 4C 2 β + 2L r L 1 + log C 1 t β Proof. Almost identical
(p t h -p h)f (s, a) ≤ 1 H p h |f | (s, a) + 14H 2 C 2 ϑ 2 (t, δ) + 2βH C t h (s, a) + θ 1 b (t, δ)σ 1+d 2 + θ 2 b (t, δ)σ
where d 1 is the covering dimension of (S × A, ρ), d 2 is the covering dimension of (S, ρ S) and

ϑ 2 (t, δ) = O C ′ σ + d 1 d 2 = log 4e(2t+1) δ HT N σ 2+d 2 H 2 T , S × A, ρ 2H Lσ N (σ,S,ρ S) θ 1 b (t, δ) = O C ′ σ + d 1 d 2 + Lσ = 2L p Lσ H 2 T + 4C 2 Hβ + 14ϑ 2 (t, δ)C 2 β 2 θ 2 b (t, δ) = O (L) = 32L + 6L p L 1 + log + (C 1 t/β) where |C ′ σ | = O 1/σ d 2 is the σ-covering number of (S, ρ S).
Proof. We have

(p t h -p h)f (s, a) = t-1 i=1 w t,i h (s, a) f (s i h+1) -p h f (s, a) - βp h f (s, a) C t h (s, a) ≤ t-1 i=1 w t,i h (s, a) f (s i h+1) - S f (y)dP h (y|s i h , a i h) ➀ + t-1 i=1 w t,i h (s, a) S f (y)dp h (y|s i h , a i h) - S f (y)dp h (y|s, a) ➁ + 2βH C t h (s, a)
• Bounding ➁ (spatial bias term) As in the proof of Lemma C.4, we can show that

➁ = t-1 i=1 w t,i h (s, a) S f (y)dp h (y|s i h , a i h) - S f (y)dp h (y|s, a) ≤ 4σL p L 1 + log + (C 1 t/β) •

Complements on Chapter 4

Bounding the martingale term (➀) with a Bernstein-type inequality Notice that (s, a) → S f (y)dp h (y|s, a) is bounded by 2H and

E f (s i h+1)|F i h = S f (y)dp h (y|s i h , a i h).
The conditional variance of f (s i h+1) is bounded as follows

V f (s i h+1)|F i h = E f (s i h+1) 2 |F i h - S f (y)dp h (y|s i h , a i h) 2 ≤ 2HE f (s i h+1) |F i h = 2H S |f (y)| dp h (y|s i h , a i h)
which we use to bound its weighted average

1 C t h (s, a) t-1 i=1 w t,i h (s, a) 2 V f (s i h+1)|F i h ≤ 1 C t h (s, a) t-1 i=1 w t,i h (s, a)V f (s i h+1)|F i h ≤ 2H C t h (s, a) t-1 i=1 w t,i h (s, a) S |f (y)| dp h (y|s i h , a i h) = 2H C t h (s, a) t-1 i=1 w t,i h (s, a)p h |f | (s, a) + 2H C t h (s, a) t-1 i=1 w t,i h (s, a) p h |f | (s i h , a i h) -p h |f | (s, a) ≤ 2H p h |f | (s, a) - βp h |f | (s, a) C t h (s, a) + 4HL p L C t h (s, a) t-1 i=1 w t,i h (s, a)ρ (s i h , a i h), (s, a) ≤ 2Hp h |f | (s, a) + 8HL p Lσ 1 + log + (C 1 t/β)
where, in the last inequality, we used Lemma C.20.

Let △(t, δ) = log (4e(2t + 1)/δ). Let Y i (f) = f (s i h+1) -p h f (s i h , a i h). By Lemma C.3, we have ➀ = t-1 i=1 w t,i h (s, a)Y i (f) ≤ 2△(t, δ) t-1 i=1 w t,i h (s, a) 2 V f (s i h+1)|F i h C t h (s, a) 2 + 10H△(t, δ) C t h (s, a)
with probability at least 1 -δ, since, for a fixed f , (Y i (f)) i is a martingale difference sequence with respect to (F i h) i . Using the fact that

√ uv ≤ (u + v)/2 for all u, v > 0, t-1 i=1 w t,i h (s, a)Y i (f) ≤ 4H 2 △(t, δ) C t h (s, a) + 1 4H 2 t-1 i=1 w t,i h (s, a) 2 V f (s i h+1)|F i h C t h (s, a) + 10H△(t, δ) C t h (s,
w t,i h (s, a)Y i (f) ≤ 1 H p h |f (y)| (s, a) + (4H 2 + 10H)△(t, δ) C t h (s, a) + 2L p Lσ H 1 + log + (C 1 t/β) + 2L p L + 4HC 2 t βσ + (4H 2 + 10H)△(t, δ)C 2 t β 2 σ σ 2+d 2 H 2 T
for all (s, a, t, h) with probability at least 1 -δHT N σ 2+d 2 H 2 T , S × A, ρ .

Covering of L (2L, 2H)

The bounds for ➀ and ➁ give us

(p t h -p h)f (s, a) ≤ 1 H p h |f (y)| (s, a) + (4H 2 + 10H)△(t, δ) C t h (s, a) + 2L p L + 4HC 2 t βσ + (4H 2 + 10H)△(t, δ)C 2 t β 2 σ σ 2+d 2 H 2 T + 6σL p L 1 + log + (C 1 t/β) + 2βH C t h (s, a)
.

The 8Lσ-covering number of L (2L, 2H) with respect to the infinity norm is bounded by

(2H/(Lσ)) N (σ,S,ρ S) , by Lemma 5 of [Dom+21d]. The functions f → (p h -p t h)f (s, a) and f → 1 H S |f (y)| dp h (y|s, a) are 2-Lipschitz with respect to ∥•∥ ∞ . Consequently, with probability at least 1 -δHT N σ 2+d 2 H 2 T , S × A, ρ 2H Lσ N (σ,S,ρ S)
,

Complements on Chapter 4

for all L (2L, 2H) and for all (s, a, t, h), we have

(p t h -p h)f (s, a) ≤ 1 H p h |f (y)| (s, a) + (4H 2 + 10H)△(t, δ) C t h (s, a) + 2L p L + 4HC 2 t βσ + (4H 2 + 10H)△(t, δ)C 2 t β 2 σ σ 2+d 2 H 2 T + 6σL p L 1 + log + (C 1 t/β) + 2βH C t h (s, a) + 32Lσ
which concludes the proof.

Lemma C.7. Let G = G 1 ∩ G 2 ∩ G 3 ,
where

G 1 := ∀(s, a, t, h), r t h (s, a) -r h (s, a) ≤ 2ϑ r 1 (t, δ/6) C t h (s, a) + β C t h (s, a) + b r (t, δ/6)σ G 2 := ∀(s, a, t, h), (p t h -p h)V * h+1 (s, a) ≤ 2H 2 ϑ p 1 (t, δ/6) C t h (s, a) + βH C t h (s, a) + b p (t, δ/6)σ G 3 := ∀(s, a, t, h, f), (p t h -p h)f (s, a) ≤ 1 H p h |f (y)| (s, a) + 14H 2 C 2 ϑ 2 (t, δ/6) + 2βH C t h (s, a) + θ 1 b (t, δ/6)σ 1+d 2 + θ 2 b (t, δ/6)σ for (s, a, t, h) ∈ S × A × [T] × [H] and f ∈ L (2L, 2H
), and where

ϑ p 1 (t, δ) = O (d 1) , b p (t, δ) = O L + d 1 , ϑ r 1 (t, δ) = O (d 1) , b r (t, δ) = O L + d 1 ϑ 2 (t, δ) = O C ′ σ + d 1 d 2 , θ 1 b (t, δ) = O C ′ σ + d 1 d 2 + Lσ , θ 2 b (t, δ) = O (L)
are defined in Lemmas C.4, C.5, and C.6, respectively. Then,

P [G] ≥ 1 -δ/2.
Proof

∀(s, a, t, h), Q t h (s, a) ≥ Q * h (s, a).
Proof. We proceed by induction. When h = H + 1, we have Q t H+1 = Q * H+1 = 0, by definition. Assuming that Q t h+1 (s, a) ≥ Q * h+1 (s, a) for all (s, a), we have V t h+1 (s) ≥ V * h+1 (s) for all s. Then, by the definition of the bonuses and the event G, we have for all (s, a)

Q t h (s, a) -Q * h (s, a) = r t h (s, a) -r h (s, a) + (p t h -p h)V * h+1 (s, a) + b t h (s, a) ≥0 on G + p h (V t h+1 -V * h+1)
≥0 by induction hypothesis ≥ 0.

In particular, Proof. As a consequence of Lemma C.8, we have

Q t h (s i h , a i h) ≥ Q * h (s i h , a i h) for all i ∈ [t -1], which gives us Q t h (s i h , a i h) + Lρ (s, a), (s i h , a i h) ≥ Q * h (s i h , a i h) + Lρ (s, a), (s i h , a i h) ≥ Q * h (s, a) for all i ∈ [t -1], since Q * h is L-Lipschitz. It
R T = T t=1 V * 1 (s t 1) -V π t 1 (s t 1) = T t=1 max a Q * 1 (s t 1 , a) -V π t 1 (s t 1) ≤ T t=1 min H -h + 1, max a Q t 1 (s t 1 , a) -V π t 1 (s t 1) = T t=1 V t 1 (s t 1 , a) -V π t 1 (s t
R T ≲ T t=1 H h=1   H C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h)   1 ρ t h ≤ 2σ + H 2 |C σ | + T t=1 H h=1 1 + 1 H h ξ t h+1 + LHT σ
where |C σ | is the σ-covering number of (S × A, ρ), |C ′ σ | is the σ-covering number of (S, ρ S) and (ξ t h+1) t,h is a martingale difference sequence with respect to (F t h) t,h bounded by 4H.

Proof. Regret decomposition On G, we upper bound δ t h using the following decomposition:

δ t h = V t h (s t h) -V π t h (s t h) ≤ Q t h (s t h , a t h) -Q π t h (s t h , a t h) ≤ Q t h (s t h , a t h) -Q π t h (s t h , a t h) + Lρ (s t h , a t h), (s t h , a t h) , since Q t h is L-Lipschitz ≤ Q t h (s t h , a t h) -Q πt h (s t h , a t h) + Lρ (s t h , a t h), (s t h , a t h) , since Q t h (s t h , a t h) ≤ Q t h (s t h , a t h) = r t h (s t h , a t h) -r h (s t h , a t h) + p t h V t h+1 (s t h , a t h) -p h V π t h+1 (s t h , a t h) + b t h (s t h , a t h) + Lρ t h = r t h (s t h , a t h) -r h (s t h , a t h) (A) + p t h -p h V * h+1 (s t h , a t h) (B) + p t h -p h V t h+1 -V * h+1 (s t h , a t h) (C) + p h V t h+1 (s t h , a t h) -p h V π t h+1 (s t h , a t h) (D) +b t h (s t h , a t h) + 2Lρ (s t h , a t h), (s t h , a t h) .
Now, we bound each term (A)-(D) separately, using the definition of G (Lemma C.7).

Term (A):

(A) = r t h (s t h , a t h) -r h (s t h , a t h) + r h (s t h , a t h) -r h (s t h , a t h) ≤ r t h (s t h , a t h) -r h (s t h , a t h) + L r ρ (s t h , a t h), (s t h , a t h) ≤ r b t h (s t h , a t h) + L r ρ (s t h , a t h), (s t h , a t h) .
Term (B):

(B) = p t h -p h V * h+1 (s t h , a t h) ≤ p b t h (s t h , a t h).

C.2 Proof of Theorem 4.7

Term (C):

Since V t h+1 ≥ V * h+1 on G and V * h+1 ≥ V π h+1 : (C) = p t h -p h V t h+1 -V * h+1 (s t h , a t h) ≲ 1 H p h V t h+1 -V * h+1 (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ ≤ 1 H p h V t h+1 -V * h+1 (s t h , a t h) + 2L p Lρ (s t h , a t h), (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ ≲ 1 H p h V t h+1 -V π t h+1 (s t h , a t h) + Lρ (s t h , a t h), (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ = 1 H δ t h+1 + ξ t h+1 + Lρ (s t h , a t h), (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ where ξ t h+1 = p h V t h+1 -V π t h+1 (s t h , a t h) -δ t h+1
is a martingale difference sequence with respect to (F t h) t,h bounded by 4H.

Term (D):

We have

(D) = p h V t h+1 (s t h , a t h) -p h V π t h+1 (s t h , a t h) ≤ L p Lρ (s t h , a t h), (s t h , a t h) + p h V t h+1 (s t h , a t h) -p h V π t h+1 (s t h , a t h) = δ t h+1 + ξ t h+1 + L p Lρ (s t h , a t h), (s t h , a t h) .
Putting together the bounds above, we obtain

δ t h ≲ 1 + 1 H δ t h+1 + ξ t h+1 + Lρ (s t h , a t h), (s t h , a t h) + H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + Lσ ,
where the constant in front of δ t h+1 is exact (not hidden by ≲).

Now, consider the event E t h := ρ (s t h , a t h), (s t h , a t h) ≤ 2σ and let E t h be its complement. Using the fact that δ t h+1 ≥ 0 on G, the inequality above implies

1 E t h δ t h ≲ 1 E t h 1 + 1 H δ t h+1 + ξ t h+1 + Lσ + 1 E t h H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) ≲ 1 + 1 H δ t h+1 + 1 E t h ξ t h+1 + Lσ + 1 E t h H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) (C.1)

Complements on Chapter 4

Now, using the fact that δ t h ≤ H, we obtain

δ t h = 1 E t h δ t h + 1 E t h δ t h (C.2) ≤ 1 E t h δ t h + H1 E t h ≲ H1 E t h + 1 + 1 H δ t h+1 + 1 E t h ξ t h+1 + Lσ + 1 E t h H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h)
. This yields

δ t 1 ≲ H h=1 1 E t h H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + H h=1 1 + 1 H h 1 E t h ξ t h+1 + LHσ + H H h=1 1 E t h . Let ξ t h+1 := 1 E t h ξ t h+1 .
We can verify that ξ t h+1 is a martingale difference sequence with respect to (F t h) t,h bounded by 4H.

Applying Corollary C.9, we obtain:

R T ≤ T t=1 δ t 1 ≲ T t=1 H h=1 1 E t h H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) + T t=1 H h=1 1 + 1 H h ξ t h+1 + LHT σ + H T t=1 H h=1 1 E t h .
Finally, we bound the sum

H T t=1 H h=1 1 E t h = H H h=1 T t=1 1 ρ (s t h , a t h), (s t h , a t h) > 2σ ≤ H 2 |C σ | since,

C.2.4 Bounding the sum of exploration bonuses

Lemma C.12. We have

T t=1 H h=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ ≲ H |C σ | + H |C σ | T and T t=1 H h=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ ≲ H |C σ | .
Proof. First, we will need some definitions. Let C σ = {(s j , a j) ∈ S × A, j = 1, . . . , |C σ |} be a σ-covering of (S × A, ρ). We define a partition {B j } |Cσ| j=1 of S × A as follows:

B j = (s, a) ∈ S × A : (s j , a j) = argmin (s i ,a i)∈Cσ ρ [(s, a), (s i , a i)]
where ties in the argmin are broken arbitrarily.

We define the number of visits to each set B j as

N t h (B j) := t-1 i=1 1 (s i h , a i h) ∈ B j .
Now, assume that (s t h , a t h) ∈ B j . If, in addition, ρ (s t h , a t h), (s t h , a t h) ≤ 2σ, we obtain

C t h (s t h , a t h) = β + t-1 i=1 Γ((s t h , a t h), (s i h , a i h)) = β + t-1 i=1 Γ ρ (s t h , a t h), (s i h , a i h) σ ≥ β + t-1 i=1 Γ ρ (s t h , a t h), (s i h , a i h) σ 1 (s i h , a i h) ∈ B j ≥ β + Γ(4) t-1 i=1 1 (s i h , a i h) ∈ B j = β 1 + Γ(4)β -1 N t h (B j) since, if (s i h , a i h) ∈ B j , we have ρ (s t h , a t h), (s i h , a i h) ≤ 4σ
and we use the fact that Γ is nonincreasing by assumption.

We are now ready to bound the sums involving 1/C t h (s t h , a t h). We will use the fact that Γ(4) > 0 by Assumption 4.4.

Bounding the sum of

1/ C t h (s t h , a t h) T t=1 H h=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ
Complements on Chapter 4

= T t=1 H h=1 |Cσ| j=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ 1 (s t h , a t h) ∈ B j ≤ β -1/2 T t=1 H h=1 |Cσ| j=1 1 1 + Γ(4)β -1 N t h (B j) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ 1 (s t h , a t h) ∈ B j ≤ β -1/2 H h=1 |Cσ| j=1 T t=1 1 (s t h , a t h) ∈ B j 1 + Γ(4)β -1 N t h (B j) ≤ β -1/2 H h=1 |Cσ| j=1   1 + N T +1 h (B j) 0 dz 1 + Γ(4)β -1 z   by Lemma C.19 ≤ β -1/2 H |C σ | + 2β 1/2 Γ(4) H h=1 |Cσ| j=1 1 + Γ(4)β -1 N T +1 h (B j) ≤ β -1/2 H |C σ | + 2β 1/2 Γ(4) H h=1 |C σ | |C σ | + Γ(4)β -1 T by Cauchy-Schwarz inequality ≤ H β -1/2 + 2β 1/2 Γ(4) |C σ | + 2H Γ(4) Γ(4) |C σ | T ≲ H |C σ | + H |C σ | T . Bounding the sum of 1/C t h (s t h , a t h) T t=1 H h=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ = T t=1 H h=1 |Cσ| j=1 1 C t h (s t h , a t h) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ 1 (s t h , a t h) ∈ B j ≤ β -1 T t=1 H h=1 |Cσ| j=1 1 1 + Γ(4)β -1 N t h (B j) 1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ 1 (s t h , a t h) ∈ B j ≤ β -1 H h=1 |Cσ| j=1 T t=1 1 (s t h , a t h) ∈ B j 1 + Γ(4)β -1 N t h (B j) ≤ β -1 H h=1 |Cσ| j=1 1 + N T +1 h (B j) 0 dz 1 + Γ(4)β -1 z by Lemma C.19 ≤ β -1 H |C σ | + 1 Γ(4) H h=1 |Cσ| j=1 log 1 + Γ(4)β -1 N t+1 h (B j) ≤ β -1 H |C σ | + 1 Γ(4) H h=1 |C σ | log   |Cσ| j=1 1 + Γ(4)β -1 N T +1 h (B j) |C σ |   by Jensen's inequality ≤ β -1 H |C σ | + 1 Γ(4) H |C σ | log 1 + 1 + Γ(4)β -1 T |C σ | ≲ H |C σ | .
C.3 Proof Sketch for Theorem 4.12: Regret of KeRNS

C.2.5 Final regret bound

We are now ready to conclude the proof of Theorem 4.7. By Hoeffding-Azuma's inequality, the sum

T t=1 H h=1 (1 + 1/H) H ξ t h+1 is bounded by 8e 2 H 2 log(2/δ) √ HT on an event G ′ such that P [G ′] ≥ 1 -δ/2.
Hence, by lemmas C.11 and C.12, we obtain

R T ≲H 2 |C σ | T + H 3 |C σ | C ′ σ + H 3/2 √ T + LHT σ + H 2 |C σ | , on the event G ∩ G ′ , that satisfies P [G ∩ G ′] ≥ 1 -δ.

C.3 Proof Sketch for Theorem 4.12: Regret of KeRNS

We now outline the proof of Theorem 4.12 assuming, for simplicity, that the rewards are known. The full proof is given in our paper [START_REF] Darwiche Domingues | A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces[END_REF]. Assume we are at episode t at step h at state s t h . To compute the next action we will apply the optimistic Bellman operator to the previous value function. That is, for all a ∈ A we compute the upper bounds on the Q-value based on a kernel estimator:

Bias due to non-stationarity

Q t h (s t h , a) =

Complements on Chapter 4

To show that V t h (s) ≥ V * h (s), we proceed by induction on t. For t = 1, V t h (s) = H -h ≥ V * h (s) for all (s, h). Now, consider t > 1 and assume that V t-1 h ≥ V * h for all h. As in the proof of Lemma C.8, we prove that V t h ≥ V * h for all h by induction on h. For h = H + 1, V t h (s) = V * h (s) = 0 for all s. Now, assume that V t h+1 (s) ≥ V * h+1 (s) for all s. We have, for all (s, a), where we used the fact that V * h is L-Lipschitz. Now, we prove that, with probability at least 1 -δ, the regret of Kernel-UCBVI+RTDP satisfies

Q t h (s, a) =
R T ≲H 2 |C σ | T + H 3 |C σ | C ′ σ + H 3/2 √ T + LHT σ + H 2 |C σ | + H 2 C ′ σ ,
which implies Theorem 4.14.

On G, we have

δ t h := V t+1 h (s t h) -V π t h (s t h) ≤ V t h (s t h) -V π t h (s t h) ≤ V t h (s t h) -V π t h (s t h) ≤ Q t h (
V t h+1 -V t+1 h+1 (s j) + T H h=1 2Lσ ≤ H 2 C ′ σ + 2σLHT ,
where in the third inequality, we used the fact that the function V t h+1 -V t+1 h+1 is 2L-Lipschitz. Combining the previous inequalities and the proof of Theorem 4.7, as explained above, allows us to conclude. These sets are built using the data observed up to episode t -1. We define the following projections:

Complements on

C.5.1 Definitions

ζ t+1 h (

C.5 Detailed Description of RS-KeRNS

Also, its exploration bonuses are computed as The following lemma will be necessary in order to derive online updates.

RS-KeRNS

Lemma C.18. The empirical MDP used by RS-KeRNS can be computed as

C.6 Proof Sketch for Theorem 4.16: Regret of RS-KeRNS

To prove the regret bound in Theorem 4.16 for RS-KeRNS, we consider the kernel: which are similar to the estimates that would be computed by KeRNS, but using the projections We prove that the estimates used by RS-KeRNS are close to the ones used by KeRNS up to bias terms. Then, this result is used to prove that the regret bound of RS-KeRNS is the same as KeRNS, but adding a bias term multiplied by the number of episodes T . For any (s i h , a i h) with i < t and h ∈ [H], we show that: We want to find c such that:

Γ(n, u, v) = χ(n)ϕ (u, v) ,
p t h - (p t h V (s i h , a i h) ≲Lε X + 8H

C.7 Technical

z s ≥ c =⇒ C 1 β exp - z 2 s 2σ

C.7 Technical Lemmas

Proof. This fact is proved in Lemma 4 of [START_REF] Darwiche Domingues | Kernel-Based Reinforcement Learning: A Finite-Time Analysis[END_REF] and also in Proposition 2.5 of [START_REF] Sinclair | Adaptive Discretization for Episodic Reinforcement Learning in Metric Spaces[END_REF].

For completeness, we also present a proof here.

We proceed by induction. For h = H, Q * H (s, a) = r H (s, a) which is L r -Lipschitz by Assumption 4.2. Also, Now, assume that the hypothesis is true for h + 1, i.e., that V * h+1 and Q * h+1 are L h+1 -Lipschitz . We have

V * H (x) -V * H (y) = max
Q * h (x, a) -Q * h (x ′ , a ′) ≤ L r ρ (x,

Furthermore, if the

 supremum sup a∈A r(s, a) + γ S V * (s ′)p(ds ′ |s, a) is attained for all s, then a stationary deterministic Markov policy π * ∈ Π SD satisfying π * (s) ∈ argmax a∈A r(s, a) + γ S V * (s ′)p(ds ′ |s, a)

Contents 2 . 1 2 . 2 2 . 3 2 . 4

 21222324 Model-Based Q-Value Iteration . 14 SparseSampling: Planning in Arbitrary State Spaces 16 SmoothCruiser: Planning in Regularized MDPs 21 Discussion and Bibliographical Remarks . 27

Figure 3 .

 3 Figure 3.1 -Illustration of the class of hard MDPs for S = 4.

Figure 3 . 2 -

 32 Figure 3.2 -Illustration of the class of hard MDPs used in the proofs of Theorems 3.8 and 3.9.

 Jaksch et al. [JOA10] introduced the UCRL algorithm for regret minimization in the average-reward setting, which can be adapted to the finite-horizon setting, resulting in a regret upper bound of order O √ H 3 S 2 AT for time-homogeneous MDPs. Recall from Section 3.5.2 that the lower bound in this setting is Ω √ H 2 SAT . Azar et al. [AOM17] also assume time-homogeneous MDPs, and provide two different versions of UCBVI: UCBVI-CH, based on Chernoff-Hoeffding's concentration inequality, and UCBVI-BF, based on Bernstein-Freedman's concentration inequalities. For T large enough, the regret of UCBVI-CH is O √ H 3 SAT and the regret of UCBVI-BF is O √ H 2 SAT . That is, UCBVI-CH improves the regret of UCRL with respect to S, whereas UCBVI-BF brings an extra improvement with respect to H and matches the lower bound.

 an event G 3 that satisfies P [G 3] ≥ 1 -δ/3.

Example 4 . 5 .

 45 As a simple example of an MDP satisfying assumptions 4.1 and 4.2, consider an MDP M with finite action set A, a compact state space S ⊂ R d and deterministic transitions y = f (x, a), i.e., p h (y|x, a) = δ f (x,a) (y). Let ρ S be the Euclidean distance on R d and ρ A (a, a ′) = 0 if a = a ′ and +∞ otherwise. Then, if for all a ∈ A, x → r h (x, a) and x → f (x, a) are Lipschitz continuous, then M satisfies our assumptions. Example 4.6.

 i=1 defining the bonuses (4.3) are taken according to Definition C.1. In the special case of finite MDPs, we can use the metric ρ [(s, a), (s ′ , a ′)] = 0 if (s, a) = (s ′ , a ′) and ∞ otherwise. This allows us to take σ = 0 and results in |C σ | = SA and |C ′ σ | = S, where S = |S| and A = |A|. Hence, the regret of Kernel-UCBVI is equivalent in this case to that of UCBVI given in Theorem 3.14. Also, notice that d = 0 in finite MDPs. Corollary 4.8 provides a regret bound featuring the covering dimension d, in the case where d > 0. Corollary 4.8. Recall that d 1 and d 2 are the covering dimensions of the state-action and the state spaces, respectively, and that d = max(d 1 , d 2). Assume that d > 0. By taking σ = T -1/(2d+1) , the regret of Kernel-UCBVI satisfies, with probability at least 1 -δ,

,

 which has an optimal dependence on T and d. While we achieve the same O T 2 3

Definition 4 .W

 4 11 (MDP variation). We define ∆ = ∆ r + L∆ p , where ∆ r := , a) -r i+1 h (s, a) , and ∆ p := 1 p i h (•|s, a), p i+1 h (•|s, a) .

 For d > 0, we proved the first dynamic regret bounds in our setting, which are of order H 2 ∆ 1 3 T 2d+2 2d+3 (better in ∆) or H 2 ∆ 1 2 T 2d+1 2d+2 (better in T) for two different tunings of 4.6 Reducing the Computational Complexity the kernel. Deriving a lower bound in the non-stationary case for d > 0 is an open problem, even for multi-armed bandits. As a sanity-check, we note that in stationary MDPs, for which ∆ = 0, we recover the regret bound of Kernel-UCBVI 4 of H 3 T 2d 2d+1 from the bound R 2 with log(1/λ) = 1/K, W → ∞ and σ = T -1 2d+1

Figure 4 .

 4 Figure 4.1 -Continuous Grid-World with two rooms separated by a wall. The circles represent the regions with non-zero rewards.

Figure 4 . 2 -

 42 Figure 4.2 -Regret of different versions of Kernel-UCBVI compared to baselines (smaller is better).To estimate the optimal value function for the regret computation, we used the best policy among all agents at the final episode. Average over 16 independent runs.

Figure 4 . 3 -

 43 Figure 4.3 -Total runtime of different algorithms in a continuous Grid-World versus the number of episodes (smaller is better). Average over 16 runs.

Figure 4 . 4 -

 44 Figure 4.4 -Cumulative rewards of RS-KeRNS versus RS-Kernel-UCBVI and RestartBaseline in a nonstationary environment (larger is better). The environment changes every 2.5 × 10 4 episodes. Average over 16 independent runs.

 For MDPs with continuous state-action space, the sample complexity [KKL03; KS02; LHS+13; PP13] or regret have been studied under structural assumptions. Regarding regret minimization, a standard assumption is that rewards and transitions are Lipschitz continuous. Ortner and Ryabko [OR12] studied this problem in the average-reward setting. They combined the ideas of UCRL2 [JOA10] and uniform discretization, proving a regret bound of O T 2d+1 2d+2 for a learning horizon T in d-dimensional state spaces.

Figure 5 .

 5 Figure 5.1 -Grid-World with 9 rooms. The number of states is S = 233 (not counting the walls), and the agent's observations are one-hot encodings of the discrete states.

Table 5 . 1 -

 51 Parameters used for representation learning Parameter Value Representation function class MLP (128, 64) Pseudo-Huber loss parameters q = 4, δ = 1.0 Representation loss parameters c 1 = c 2 = 10 -9 , c 3 = 10 -4 Optimizer (Adam) learning rate 10 -4 Batch dimensions (8, 32)

Figure 5 . 2 -

 52 Figure 5.2 -Left: true positions of each state in the Grid-World with 9 rooms, each state is associated to a unique color. Middle: 2-dimensional projection of the 64-dimensional embeddings before minimizing the loss (5.10). Right: 2-dimensional projection of the embeddings after 15 × 10 3 optimization steps to minimize the representation loss (5.10).

Figure 5 . 3 -

 53 Figure 5.3 -Visualization of AKBX's bonuses for α = 1/2 (top) and α = 1 (bottom). Left: Visualization of number of visits of each state in the GridWorld, when random trajectories are sampled starting from the center of the top-left room. Higher values are shown in magenta and smaller values are shown in blue. Middle: Bonuses (5.7) estimated by AKBX based on the learned representation function f . Right: Comparison between AKBX's bonuses and 1/n α , where n is the number of state visits.

 Entropy of the empirical state-visit distribution.

Figure 5 . 4 -

 54 Figure 5.4 -Evaluation of reward-free exploration: number of visits and entropy of state-visit distribution in the 9-room Grid-World for AKBX, RND, RF-UCRL and RF-Express. Average over 4 independent runs.

Figure 5 . 6 -

 56 Figure5.6 -Comparison between the values of the policies π t learned by AKBX with α = 1/2 and RND at time t to the value of an optimal agent. The values correspond to the expected sum of rewards in a horizon H = 100, starting from the top-left room of the Grid-World, and are estimated by Monte-Carlo policy evaluation. The optimal policy was computed using value iteration. Average over 4 runs.

Complements on Chapter 2 •

 2 (a) Definition of B(s, ε) and the fact that {q k s (a)}N (ε) k=1 are independent of G Z s, A , ε √ γ ; • (b) The random variables {q k s (a)} N (ε)k=1 are independent and the events {E k } N (ε) i=1 are also independent;

Lemma A. 4 .

 4 Let a, b, c be constants in [1, +∞[and δ be a constant in]0, 1]. Let x * = min {x ≥ 1 : exp(-ax)(bx) c ≤ δ} .

 by the definition of x * . Lemma A.5. ∀a, b, c > 0 lim x→∞ 1 x c exp a[log log(x b)] 2 = 0.

 Then, M n is a martingale and, by Doob's optional stopping theorem, E [M τ] = E [M 0] = 0. Lemma B.4. Let L be the number of leaves in a balanced A-ary tree with S nodes and A ≥ 2. Then, L ≥ S/4.

Chapter 4 C. 5

 45 Detailed Description of RS-KeRNSRS-KeRNS is described in Algorithm C.1, which uses a backward induction on representative states (Algorithm C.2) and updates the model online (algorithms 4.4 and C.3). In this section, we introduce the main definitions used by RS-KeRNS, and we analyze its runtime.

 s, a) := argmin (s,a)∈ St h × Āt h ρ [(s, a), (s, a)] , ζ t+1 h (y) := argmin y∈ Ȳt h ρ S (y, y) . where we also assume to have access to the metric ρ S . The definitions below introduce the kernel function and the estimated MDP used by RS-KeRNS. Definition C.15 (kernel function for RS-KeRNS). Let λ ∈]0, 1]. RS-KeRNS uses a kernel of the form Γ(n, u, v) = χ(n)ϕ (u, v), where χ(n) := λ n , and ϕ (u, v) := exp -ρ [u, v]

 hidden by O (•) are given in Definition C.1.

 , a) = (s,a) ϕ ζ t+1 h (s, a), (s, a) (S t+1 h (s, a) β + (s,a) ϕ ζ t+1 h (s, a), (s, a) , a) = (s,a) ϕ ζ t+1 h (s, a), (s, a) (N t+1 h (s, a, y) β + (s,a) ϕ ζ t+1 h (s, a), (s, a)where the sums are over (s, a)∈ St+1 h × Āt+1 h .Proof. It is an immediate consequence of the definitions. For instance,

ζ

 and ζ to the representative states and actions. The values of (r t+1 h (s, a) and (p t+1 h (y|s, a) are defined for all (s, a, y) ∈ S × A × S, but they only need to be stored for (s, a, y) ∈ St h × Āt h × Ȳt h , which corresponds to storing a finite representation of the MDP. The exploration bonuses of RS-KeRNS are defined similarly:

 allows us to prove that the dynamic regret of RS-KeRNS is bounded asR RS-KeRNS T ≲ R KeRNS T + L(ε + ε X)H 2 T + ε σ H 3 T.C.7 Technical LemmasLemma C.19. Consider a sequence {a n } n≥1 of non-negative numbers such that a m ≤ c for some constant c > 0. Let A t = t-1 n=1 a n . Then, for any b > 0 and any p > 0, bA t) p ≤ c +A T +1 -c 0 dz (1 + bz) p • Proof. Let n := max {t : a 1 + . . . + a t-1 ≤ c}. We have bA t) p ≤ c + T t=n a t (1 + bA t) p = c + T t=n A t+1 -A t (1 + bA t) p = c + T t=n A t+1 -A t (1 + bA t+1 -ba t) p ≤ c + T t=n A t+1 -A t (1 + b(A t+1 -c)) p b(A t+1 -c)) p dz ≤ c + b(z -c)) p dz ≤ c + A T +1 c 1 (1 + b(z -c)) p dz .

L

 H ρ [(x, a), (y, a)] ≤ L H ρ S (x, y) , by Assumption 4.1 (C.9) which verifies the induction hypothesis for h = H, since we can invert the roles of x and y to obtain |V * H (x) -V * H (y)| ≤ L H ρ S (x, y).

 a), (x ′ , a ′) + S V * h+1 (y)(P h (dy|x, a) -P h (dy|x ′ , a ′)) ≤ L r ρ (x, a), (x ′ , a ′) + L h+1 S V * h+1 (y) L h+1 (P h (dy|x, a) -P h (dy|x ′ , a ′)) x, a), (x ′ , a ′) = H h ′ =h L r L p H-h ′ ρ (x, a), (x ′ , a ′)where, in last inequality, we use fact that V * h+1 /L h+1 is 1-Lipschitz, the definition of the 1-Wasserstein distance and Assumption 4.2. The same argument used in Equation (C.8) shows that |V * h (x) -V * h (y)| ≤ L h ρ S (x, y), which concludes the proof.

Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforce- ment Learning.

 • Omar Darwiche Domingues, Corentin Tallec, Rémi Munos, Michal Valko. In Workshop on Unsupervised Reinforcement Learning at the 38th International Conference on Machine Learning (ICML), 2021 [Dom+21e]. Presented in Chapter 5.

	Software
	• Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xue-
	dong Shang, Michal Valko. rlberry -A reinforcement learning library for research
	and education. GitHub repository, available at https://github.com/rlberry-py/rlberry
	[Dom+21a].

Collaborations not presented in this thesis

• Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent, Michal Valko. Planning in Markov Decision Processes with Gap-Dependent Sample Complexity. In Advances in Neural Information Processing Systems 34 (NeurIPS), 2020 [Jon+20]. • Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, Michal Valko. UCB Momentum Q-learning: Correcting the bias without forgetting. In 38th International Conference on Machine Learning (ICML), 2021 [Mé+21b]. • Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko, Alessandro Lazaric. Adaptive Multi-Goal Exploration. Preprint, 2021 [Tar+21a].

 Hence, if we are given a generative model for a finite MDP, an intuitive strategy is to use the generative model to estimate r and p, and run QVI on the estimated model. Such approach is called Model-Based QVI, or MBQVI. The sample complexity of MBQVI has been initially studied by Kearns and Singh[START_REF] Kearns | Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms[END_REF], and Azar et al.[START_REF] Gheshlaghi Azar | On the Sample Complexity of Reinforcement Learning with a Generative Model[END_REF] present a lower bound and an improved upper bound.

2

A , where S := |S| and A := |A|.

MBQVI is detailed in Algorithm 2.1. For each state-action pair (s, a), it samples n transitions from the generative model, and estimates the transition kernel and the reward function. Finally, it returns Q k , a Q-function obtained by applying k times the Bellman operator defined with the estimated model.

Algorithm 2.1:

2.2 SparseSampling: Planning in Arbitrary State Spaces with

probability 1. Assume that (2.1) is true for h + 1. Since the reward function is known,

 Whereas Feldman and Domshlak[START_REF] Feldman | Simple regret optimization in online planning for Markov decision processes[END_REF] provide a bound for BRUE scaling with the inverse of the minimum gap ∆ min = min a̸ =a * ∆ a , where a * = argmax a Q * (s, a), the MDP-GapE algorithm by Jonsson et al.[START_REF] Jonsson | Planning in Markov Decision Processes with Gap-Dependent Sample Complexity[END_REF] has a sample complexity scaling with a 1/ max(∆ a , ∆ min , ε)2 and has a better dependence with respect to the planning horizon H.2

	2.4 Discussion and Bibliographical Remarks
	obtaining an ε-optimal value function. Tarbouriech et al. [Tar+21b] extend MBQVI to stochastic
	shortest path problems. Du et al. [Du+20], Lattimore et al. [LSW20], and Weisz et al. [WAS21]
	analyze the sample complexity with a generative model when d-dimensional linear function
	approximation is used to represent the Q-functions, and study in which cases it is possible to
	obtain sample complexities that are polynomial in the quantities of interest (H, d, and 1/ε),
	and in which cases the sample complexities are exponential.
	Geist et al. [GSP19] propose a
	theory of regularized MDPs, although they do not study the sample complexity of algorithms
	in this setting.
	Planning from a fixed state s Walsh et al. [WGL10] provide an adaptive action-selection
	scheme for SparseSampling, but its sample complexity is still non-polynomial in 1/ε. The UCT
	algorithm [KS06b], used for planning in MDPs and games, selects actions based on optimistic
	estimates of their values and has good empirical performance in several applications. However,
	the sample complexity of UCT can be worse than exponential in 1/ε for some environments,
	which is mainly due to exploration issues [CM07]. Algorithms with sample complexities of
	order O 1/ε d , where d is a problem-dependent quantity, have been proposed for deterministic
	dynamics [HM08], and in an open-loop 1 setting [BM10; LM19; Bar+19], for bounded number
	of next states and a full MDP model is known [BM12], for bounded number of next states
	[SKM14], and for general MDPs [GVM16]. In general, when the state space is infinite and the
	transitions are stochastic, the problem-dependent quantity d can make the sample complexity
	guarantees non-polynomial. For a related setting, when rewards are only obtained in the leaves
	of a fixed tree, Kaufmann and Koolen [KK17] and Huang et al. [Hua+17] present algorithms to
	identify the optimal action in a game based on best-arm identification tools. In the finite-horizon
	setting with bounded number of next states, Feldman and Domshlak [FD14] and Jonsson et al.
	[Jon+20] provide planning algorithms (BRUE and MDP-GapE, respectively) that recommend an
	action a for any fixed state s, whose sample complexities scale with the sub-optimality gaps
	∆ Further reading Agarwal et al. [AKY20] provide a novel analysis of model-based planning
	with a generative model for finite MDPs, and show that MBQVI is also minimax optimal for
	obtaining an ε-optimal policy, whereas the analysis we provided in this chapter focuses on

a := V * (s) -Q * (s, a).

3.1 Performance Criteria . 32 3.2 Lower Bounds: Key Ideas & Hard MDP Instances 34 3.3 Lower Bound on the Regret . 38 3.4 Lower Bound on the Sample Complexity . 41 3.5 Lower Bounds: Extensions . 44 3.6 Upper Bound on the Regret of UCBVI . 47 3.7 Discussion and Bibliographical Remarks . 53 Online Interaction with Finite MDPs 3.1 Performance Criteria

 The quality of an algorithm in the online setting can be measured with different performance metrics. We introduce below three of the main criteria studied in the literature.

	Consider the finite-horizon criterion and its probabilistic model introduced in Section 1.2,
	and assume that the agent has access to an online model of an MDP M. In this setting, the
	agent interacts with the model in episodes of length H: in each stage h ∈ {1, . . . , H} of an
	episode t ∈ N * , it is in a state S t h ∈ S, it takes an action A t h ∈ A then observes the next state
	S t h+1 sampled according to the transition kernel p h (•|S t h , A t h), and receives a reward r h (S t h , A t h).
	Notation For any n ∈ N * , we define [n] := {1, . . . , n}. We recall some of the definitions
	introduced in Section 1.2.1. We denote by B t H := (S t ′ h , A t ′ h) h∈[H],1≤t ′ ≤t , the transitions collected
	by the algorithm up to episode t, and by F t H = σ(B t H) the σ-algebra generated by B t H .

3.2 Lower Bounds: Key Ideas & Hard MDP Instances so

 is the second parameter of the class. This means that there is a single leaf ℓ * where the agent can choose an action a * at stage h * that increases the probability of arriving to the good state s g . Finally, the states s g and s b are absorbing, that is, for any action a, we have p h (s b |s b , a) := p h (s g |s g , a) := 1. that the agent does not miss any reward if it chooses to stay at s w until stage H.

	The reward function depends only on the state and is defined as
	∀a ∈ A, r

h (s, a) := 1 s = s g , h ≥ H + d + 1

Online Interaction with Finite MDPs generalization

 with high probability, whereas the lower bound of Theorem 3.8 is of order Ω √ H 3 SAT . As we will see in the analysis below, the extra factor √ H in the upper bound comes from the fact that we use Hoeffding's inequality to define the exploration bonus b t h (Equation 3.17). Azar et al.[START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] show that the upper bound can be improved by a factor √ H by using empirical Bernstein's inequality instead, matching the lower bound if T is large enough. Here, we do not study such improved version of UCBVI, since the dependence on H of Kernel-UCBVI-our of UCBVI beyond finite MDPs (Chapter 4) -comes from the term H 3 S 2 A, as discussed in Section 4.3. It is the simplification of a similar technique used by[START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] and can be generalized to continuous MDPs. This generalization would not be possible if we relied on the technique used by Azar et al.[START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF], since they need to distinguish the set of states z where) as a real number. Consequently, the advantage of Lemma 3.16 is that it only requires the integration of a function f with respect to p t h , for f in a given function space V, and in Chapter 4 we propose a method that replaces n t

	Part 1: Confidence Intervals		
	Lemma 3.15 gives the confidence intervals used to define UCBVI's exploration bonuses (3.17).
	Lemma 3.16 is used in the analysis to improve the regret by a factor of	√	S when compared
	to UCRL. p t h (z|s t h , a t h)n t h (s t h , a t h) ≥ c and the set of states z where p t h (z|s t h , a t h)n t h (s t h , a t h) < c for a positive
	constant c that depends on H. In continuous or arbitrary MDPs, the number of visits n t h (s t h , a t h)
	is not well-defined, and p t h can be a sum of Dirac measures, hence we can only handle integration
	with respect to p t h , and cannot treat p t h (z|s t h , a t h		

h (s t h , a t h) by a sum of weights that can be computed for arbitrary MDPs. Lemma 3.15. Let G 1 be the event such that

 1), we can show by induction that

	R T ≲	T t=1	H h=1	  ξ t h+1 + ξ	t h+1 +	H h (s t n t h , a t h)	+	H 2 S h (s t n t h , a t h)

  (3.19) on the event G 1 ∩ G 2 , where we used the definition of b t h given by Equation (3.17). Now, we bound separately the terms in the sum in Equation (3.19). Bounding the sum of ξ t h+1 + ξ t h+1 . Let η t h+1 := ξ t h+1 + ξ t h+1 . Since (η t h+1) h,t is a martingale difference sequence with respect to F t h and |η t h+1 | ≤ 4H almost surely, the Azuma-Hoeffding inequality (see Lemma B.5) implies that

Table 3 .

 3

1 -Algorithms matching the lower bounds in different settings.

2

Further reading Algorithms relying on optimistic approaches, such as UCBVI, have been analyzed in different settings, for instance, MBIE by Strehl and Littman

[START_REF] Strehl | An analysis of model-based interval estimation for Markov decision processes[END_REF]

for PAC-MDP, UCRL by Jaksch et al.

[START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF]

for the regret in the average-reward setting, BPI-UCRL by Kaufmann et al.

[START_REF] Kaufmann | Adaptive Reward-Free Exploration[END_REF]

and BPI-UCBVI by Ménard et al.

[START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF]

for BPI. Although both the PAC-MDP and the regret frameworks measure how well an agent balances exploration and exploitation, Dann et al.

[START_REF] Dann | Unifying PAC and regret: Uniform PAC bounds for episodic reinforcement learning[END_REF]

show that there is no direct equivalence between the two criteria. They propose a new framework, called Uniform-PAC, that implies PAC-MDP and high-probability regret bounds, and introduce a new algorithm called UBEV for which they prove a Uniform-PAC bound, and also relies on an optimistic construction. Besides optimistic approaches for regret minimization, there are also algorithms based on Thompson Sampling, which is based on sampling in each episode an MDP from a posterior distribution, given a prior distribution, and executing the optimal policy in the sampled MDP

[START_REF] Strens | A Bayesian framework for reinforcement learning[END_REF][START_REF] Osband | More) efficient reinforcement learning via posterior sampling[END_REF]

.

A Kernel-

Based Approach to Exploration in Continuous MDPs 4.1 Kernel-Based Reinforcement Learning for Exploration Kernel

 -Based Reinforcement Learning (KBRL) was introduced by Ormoneit and Sen[START_REF] Ormoneit | Kernel-Based Reinforcement Learning[END_REF], in the setting where a generative model of the MDP is available. KBRL works by sampling independent transitions from the generative model, and uses a kernel function to build an approximate model of the transitions and rewards. Then, it computes a policy by running value iteration with the kernel-based model. Hence, it can be seen as a generalization to continuous MDPs of the MBQVI algorithm studied in Chapter 2. The main advantages of KBRL, as proposed by Ormoneit and Sen[START_REF] Ormoneit | Kernel-Based Reinforcement Learning[END_REF], are: (i) its stability, in the sense that it converges to a unique solution of approximate Bellman equations in the discounted-reward setting; (ii) its statistical consistency, as its output converges in probability to the optimal value function as the number

	Algorithm 4.1: Kernel-UCBVI	
	for episode t ∈ {1, . . . , T } do	
	get initial state s t 1		
	# compute optimistic Q-functions
	compute (Q t h) h∈[H] according to Algorithm 4.2
	for stage h ∈ {1, . . . , H} do	
	# select action		
	a t h ← argmax a Q t h (s t h , a)
	# execute action	
	r t h , s t h+1 ← OnlineModel t,h (a t h)
	# update model	
	compute r t+1 h	and p t+1 h	using Equation (4.2)

of sampled transitions goes to infinity

[START_REF] Ormoneit | Kernel-Based Reinforcement Learning[END_REF]

; (iii) its flexibility in handling the bias-variance trade-off in RL, which can be controlled via kernel design. In this section, we propose an extension of KBRL to the online setting, where exploration is necessary. This extension is inspired by UCBVI and relies on a generalization of UCBVI's exploration bonuses to continuous state-actions, and we name the resulting algorithm Kernel-UCBVI. In the following section, we analyze the regret of Kernel-UCBVI, assuming that the MDP satisfies certain regularity conditions and that the kernel function is designed based on a metric on the state-action space.

Notation & Assumptions

We denote by (s t h , a t h , s t h+1 , r t h) the state, the action, the next state and the reward observed by the algorithm at stage h of episode t. We do not assume that the reward function is known, but we assume that r t h ∈ [0, 1] almost surely. If µ and p(•|s, a) are measures for any (s, a) and f is an arbitrary function, we denote µf := f (y)dµ(y) and pf (s, a) := f (y)dp(y|s, a).

 follows from the definition of the interpolation function in Equation (4.6) that Q t h (s, a) ≥ Q * h (s, a) for all (s, a), which implies that, for all s, V t

h (s) ≥ V * h (s) on G.

 |C σ | by a pigeonhole argument. Hence, we can focus on the case where ρ t h ≤ 2σ, and add H 2 |C σ | to the regret bound to take into account the steps (t, h) where ρ t h > 2σ. The sum t,h ξ t h+1 is bounded by O H 3/2 √

	h , a t h)	+ Lρ t h + Lσ.
	When ρ t h > 2σ, we bound δ t h by H and we verify that H h=1	T t=1 1 ρ t

h > 2σ ≤ H 2

 with Chernoff-Hoeffding bonus, we compare it to OptQL, which is used by [SS19; SBY19; TTB20], with the same kind of exploration bonus. Consider a time-inhomogeneous MDP (where the transitions depend on h) with S states and A actions. UCBVI has a regret bound of O √ H 4 SAT + H 3 S 2 A while OptQL

	has O	√	H

5

SAT + H 2 SA . As we can see, OptQL is a √ H-factor worse than UCBVI when

Based Approach to Exploration in Continuous MDPs Corollary 4.13.

 It is based on the regret analysis of Kernel-UCBVI and borrows techniques used to prove regret bounds for nonstationarity MDPs with finite state-action sets[START_REF] Ortner | Variational Regret Bounds for Reinforcement Learning[END_REF] and for non-stationarity multi-armed bandits[START_REF] Garivier | On Upper-Confidence Bound Policies For Switching Bandit Problems[END_REF][START_REF] Russac | Weighted Linear Bandits for Non-Stationary Environments[END_REF]. In Appendix C.3, we provide a proof sketch.Before discussing the regret bounds for KeRNS, we present the corollary below, which gives the bounds resulting from optimizing the kernel parameters (σ, λ, W), that is, from optimizing the bias-variance trade-off in the regret bound. Recall that d 1 and d 2 are the covering dimensions of the state-action and the state spaces, respectively, and that d = max(d 1 , d 2). By optimizing the kernel parameters, we obtain the regret bounds in Table4.1, which also presents the conditions on the variation ∆ that are required for a sub-linear regret bound.Proof. Since |C σ | and |C ′ σ | are O 1/σ d , the bounds follow from Theorem 4.12.

	A Kernel-

Table 4 .

 4 1 -Regret bound for KeRNS with optimized kernel parameters, for W = log λ

	(1-λ) T .

 Āh and Ȳh , respectively, and the estimators of the rewards and transitions are updated. Consequently, we build a finite MDP, denoted by (M

	A Kernel-Based Approach to Exploration in Continuous MDPs
	RS-KeRNS is described precisely in Appendix C.5 (Algorithm C.1). It computes a Q-function
	for all (s, a) ∈ ∪ h	St h × Āt h by running backward induction in	(
				new
	transition s t h , a t h , s t h+1 , r t h is observed, the representative sets are updated using Algorithm 4.4,
	which ensures that any two representative state-action pairs are at a distance greater than ε
	from each other. Similarly, it ensures that any pair of representative next-states are at a distance
	greater than ε X from each other. Then, (s t h , a t h) and s t h+1 are mapped to their nearest neighbors
	in Sh × Algorithm 4.4: Update Representative Sets
	input: Input: t, h, St h , Āt h , Ȳt h , s t h , a t h , s t h+1 , ε, ε X .
	if min (s,a)∈ Sh × Āh ρ (s, a), (s t h , a t h) > ε then St+1 h ← St h ∪ s t h , Āt+1 h ← Āt h ∪ a t h
	if min y∈ Ȳh ρ S s, s t h+1 > ε X then
	Ȳt+1 h	← Ȳh ∪ s t h+1

t, RS-KeRNS keeps and updates sets of representative states St h , actions Āt h and next-states Ȳt h , for each h, whose cardinalities are denoted by St h , Āt h and Ȳ t h , respectively. Every time a t , with St h states, Āt h actions and Ȳ t h nextstates, per stage h. The rewards and transitions of (M t can be stored in arrays of size St h Āt h and St h Āt h Ȳ t h , for each h. Remark 4.15. The technique of using representative states also applies to Kernel-UCBVI, since it is equivalent to KeRNS when using stationary kernels. In that case, we name the resulting algorithm RS-Kernel-UCBVI.

Table 4 . 2

 42

-Value of c t p for each to p in episode t.

 and tabular RL[START_REF] Burnetas | Optimal adaptive policies for Markov decision processes[END_REF], but does not scale to continuous state-action spaces. Regarding exploration for finite-horizon MDP with continuous state-action space, Ni et al.[START_REF] Ni | Learning to Control in Metric Space with Optimal Regret[END_REF] present an algorithm for deterministic MDPs with Lipschitz transitions. Assuming that the Q-function is Lipschitz continuous, Song and Sun[START_REF] Song | Efficient model-free reinforcement learning in metric spaces[END_REF] provided a model-free algorithm by combining the ideas of tabular optimistic Q-

	learning [Jin+18] with uniform discretization, showing a regret bound of O H	5 2 T	d+1 d+2

 It can be shown that sup r,π e t,π h (s, a; r) ≤ E t h (s, a) for any (t, h, s, a) with probability at least 1 -δ [Kau+21, Lemma 3]. That is, E t h provides an upper bound on the estimation error on the value function of any policy for any reward function. Then, at any state s at time (t, h), RF-UCRL chooses the action a t h with the highest estimation error upper bound: a t h ∈ argmax a E t h (s t h

	Exploration without Rewards & Applications to Deep RL
		.1)
	where E t H+1 := 0 and b t h is an exploration bonus given by
	b t h (s, a) :=	2H 2 β n t h (s, a), δ n t h (s, a)
	for a threshold function β(n, δ) which is given as input to the algorithm.
	Algorithm 5.1: RF-UCRL	
	initialize dataset D ← ∅, t ← 1	
	while true do	
	get initial state s t 1	
	# compute upper bounds on the error	
	compute (E t h) h∈[H] according to Equation (5.1)
	# check stopping time	
	if max a E t 1 (s t 1 , a) ≤ ε/2 then	
	τ ← t, D τ ← D,	
	return: dataset D τ	
	for stage h ∈ {1, . . . , H} do	
	# select and execute action	
	a t h ← argmax a E t h (s t h , a) , s t h+1 ← OnlineModel t,h (a t h)
	# store data	
	D ← D ∪ (s t h , a t h , s t h+1)	
	t ← t + 1	

5.2 Kernel-Based Bonuses for Exploration in Deep RL

 Update the representation function f using the batch (s i , a i , s i+1) i∈Bt

	Algorithm 5.3: AKBX: Approximate Kernel-Based Exploration
	initialize data buffer D ← ∅
	get initial state s 1
	for t = 1, . . . , T do
	Sample two batches B t-1 and B ′ t-1 from {1, . . . , t -1}

Table 5 .

 5

	2 -Parameters used to compute AKBX's bonuses
	Parameter	Value
	Function class for g θ (5.7)	MLP (128, 1)
	Base kernel function (5.2)	

 The rlberry library is compatible with other libraries, such as Stable-Baselines3 [Raf+21] that implements several deep RL agents. All the experiments in this Conclusion thesis were run using the rlberry library. In particular, in the experiments of Chapter 5, rlberry was used to compare RF-UCRL and RF-Express, two algorithms for exploration in finite MDPs, to RND and AKBX, two deep RL algorithms, and allowed us to easily generate plots as in Figure 5.4. It was also used in the experiments of some of the papers that I co-authored, such as [Dom+21d; Mé+21a; Mé+21b; Tar+21a].

2 Proof of Theorem 2.7: Consistency of SmoothCruiser and let

 be the random variables associated to the k-th call to the generative model used to compute Q s

		3, let the
	reward R s,a and state Z (k)	(k) s,a

 , we apply Lemma B.3 by taking X t = H-1 h=1 log

		p h (S t h+1 |S t h ,A t h) p ′ h (S t h+1 |S t h ,A t h) and F t = F t H . Notice that
	X t is bounded almost surely, since when p h (S t h+1 |S t h , A t h) = p ′ h (S t h+1 |S t h , A t h) = 0, the trajectory
	containing (S t h , A t h , S t h+1) has zero probability. Lemma B.3 and the Markov property give us
	KL P	B τ H M , P B τ H

). Let (X t) t≥1 be a stochastic process adapted to the filtration (F t) t≥1 . Let τ be a stopping time with respect to (F t) t≥1 such that τ < ∞ with probability 1. If there exists a constant c such that sup t |X t | ≤ c almost surely, then

	Complements on Chapter 3	
	Lemma B.3. E	τ
		t=1

4 Complements on the proof of Theorem 3.14 (Regret of UCBVI) B.4.1 Concentration Inequalities Lemma B.5. Let

 4. (X t) t be a stochastic process adapted to the filtration (F t) t for t ∈ N such that, for a given σ > 0, we have E [exp(λX t)|F t-1] ≤ exp(λ 2 σ 2 /2) almost surely for all λ ∈ R. Then,

B.

Theorem 4.7 Hoeffding-type concentration inequalities Lemma

C.4. With probability at least 1 -δ, for all (s, a, t, h) ∈ S × A × [T] × [H], we have

Complements on Chapter 4 have

 Lipschitz constants bounded by C 2 t/(2σβ 3/2) and 4HC 2 t/(βσ), respectively. Let C S×A σ 2 /HT be a (σ 2 /HT)-covering of S ×A. Using the Lipschitz continuity of the functions above and a union bound over C S×A σ 2 /(HT) and over (t, h) ∈ [T] × [H], we

	By Lemma C.21, the functions (s, a) → 1/C t h (s, a) and (s, a) → t-1 i=1 w t,i h (s, a)Y i are
	Lipschitz continuous, with

2 Proof of Theorem 4.7 C.2.2 Bernstein-type concentration inequality Lemma C.6.

 to the proof of Lemma C.4, except for the fact that the rewards are bounded by 1 instead of H. Let L (2L, 2H) be the class of 2L-Lipschitz functions from S to R bounded by 2H.

	With probability at least 1 -δ, for all (s, a, t, h) ∈ S × A × [T] × [H] and for all f ∈ L (2L, 2H),
	we have

C.

2 Proof of Theorem 4.7 C.2.3 Regret bound in terms of the sum of exploration bonuses Lemma

 . Immediate consequence of lemmas C.4, C.5, and C.6.

C.C.8 (Optimism). On the event G, we have

 follows from the definition of the interpolation function in Equation (4.6) that Q t

	Corollary C.9. Let δ t h := V t h (s t h) -V π t h (s t

h (s, a) ≥ Q * h (s, a) for all (s, a), which implies that, for all s, V t h (s) ≥ V * h (s) on G. h). Then, the regret of Kernel-UCBVI satisfies R T ≤ T t=1 δ t 1 on the event G.

 1) . On the event G, the regret of Kernel-UCBVI is bounded by

	Complements on Chapter 4	
	Furthermore, we define ρ t h := ρ (s t h , a t h), (s t h , a t h) .
	Lemma C.11.	
	Definition C.10. For any (t, h), let (s t h , a t h) be the state-action pair that is the closest to (s t h , a t h) among
	the transitions observed before episode t , that is	
	(s t h , a t h) := argmin (s i h):i<t h ,a i	ρ (s t h , a t h), (s i h , a i h) .

Proof of Theorem 4.7

 for each h, the number of episodes where the event ρ (s t

	C.2
	h , a t h), (s t h , a t h) > 2σ occurs is
	bounded by |C σ |. Recalling the definition E t h := ρ (s t h , a t h), (s t h , a t h) ≤ 2σ , this concludes the
	proof.

Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP Finally

 To bound the bias, we introduce an average MDP with transi-Concentration Using concentration inequalities for weighted sums, we prove that p t h is close to the average transition p t h using Hoeffding-and Bernstein-type inequalities, and define an event G where our confidence sets hold, such that P [G] ≥ 1 -δ/2. For instance, as for Kernel-which explains the form of the exploration bonuses.Upper bound on the true value function On the event G, we show that:where the term bias(t, h) is the sum of bias p (t, h) defined above, and a similar term representing the bias in the reward estimation.Thus, to simplify the outline, for all (t, h), we assume that ρ (s t h , a t h), (s t h , a t h) ≤ 2σ and add H 2 |C σ | to the final regret bound. On the event G, we prove that the regret of KeRNS is bounded by:+ LHT σ + H 2 |C σ |where we omitted factors involving |C σ | and |C ′ σ | (which depend on the type of bound considered, R 1 T or R 2 T), and martingale terms (which are bounded by ≈ H 3/2 √ T with probability at least 1 -δ/2). the properties of the kernel Γ (Assumption 4.9), we prove that: , we bound the sum of biases as Putting these bounds together, we conclude the proof of Theorem 4.12.

	Complements on Chapter 4 C.4 T t=1 H h=1 bias(t, h) ≤ 2W (∆ r + L∆ p) + H	2C 3 (H + 1)HT β	λ W 1 -λ	•
				Q t h (s, a) +	bias(t, h) ≥ Q * t,h (s, a)
						h ′ =h
	Regret bounds Let (s t h , a t h) be the state-action pair among the previously visited ones that is
	the closest to (s t h , a t h):				
			(s t h , a t h) := argmin (s i h):i<t h ,a i	ρ (s t h , a t h), (s i h , a i h) .
	We show that:					
			T	H		
		H	1 ρ (s t
			t=1	h=1		
	tions p t h :					
		p t h (y|s, a) :=	t-1 i=1	w t,i h (s, a)p i h (y|s, a) +	β p t h (y|s, a) C t h (s, a)	,
	where (p i R dyn T bias(t, h) Using T t-1 i=1∨(t-W) sup s,a W 1 p i h (•|s, a), p i+1 h (•|s, a) + ≲ T t=1 H h=1   H C t h (s t h , a t h) +  T H βH C t h (s t h , a t h)  + t=1 h=1 t=1 H h=1 1 C t h (s t h , a t h) ≲ HT log 1 λ |C σ | |C σ | + log(1/λ) 2C 3 H β	λ W 1 -λ	•
	UCBVI, we have	T t=1	H h=1	1 h (s t C t h , a t h)	≲ H |C σ | T log	1 λ
		(p t h -p t h)V * t,h+1 (s, a) ≲	H 2 C t h (s, a)	+	βH C t h (s, a)	+ Lσ ,

h) i,h are the true transitions at time (i, h). We prove that, for any L-Lipschitz function f bounded by H:

p t h -p t h f (s, a) ≤ bias p (t, h),

where the term bias p (t, h) is defined as

bias p (t, h) := L h , a t h), (s t h , a t h) > 2σ ≤ H 2 |C σ | .

C.

4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP In

 this Appendix, following Efroni et al.[START_REF] Efroni | Tight regret bounds for model-based reinforcement learning with greedy policies[END_REF], we show that, by modifying Kernel-UCBVI so that we apply the optimistic Bellman operator (C.3) only once instead of doing a complete value iteration, we obtain almost the same guaranties as for Kernel-UCBVI, but with a large improvement in computational complexity: the time complexity of each episode t is reduced from O t 2 to O (t). We begin by recalling how Kernel-UCBVI+RTDP (Algorithm 4.3) proceeds.

 On the event G, whose probability is at least 1 -δ, we have

			(C.3)
	The action a t h is then computed as	
	a t h = argmax a∈A	Q t h (s t h , a) ,
	and we define an optimistic value V t h (s t h) = min H -h + 1, Q t h (s t h , a t h) for the value function at
	the state s t h . Then, we build an optimistic function V t+1 h	by interpolating the previous optimistic
	value function V t h and the value V t h (s t h):	
	∀s, V t+1 h (s) = min V t h (s), V t h (s t h) + Lρ S s, s t
	∀(s, t, h), V t h (s) ≥ V * h (s) and V t h (s) ≥ V t+1 h (s) .
	Proof. The fact that V t h (s) ≥ V t+1 h (s) is immediate by the definition of V t h :
	∀s, V t+1 h (s) := min V t h (s), V t h (s t h) + Lρ S s, s t h	≤ V t h (s).

r t h (s, a) + p t h V t h+1 (s, a) + b t h (s, a). h .

Lemma C.13 (Optimism).

 r t h (s, a) + p t h V t h+1 (s, a) + b t h (s, a) ≥ r t h (s, a) + p t h V * h+1 (s, a) + b t h (s, a) by induction hypothesis on h ≥ r h (s, a) + p h V * h+1 (s, a) = Q * h (s, a) on G

	which implies that V t h (s t h) ≥ V * h (s t h) and, consequently,
	V t h (s t h) + Lρ S s, s t h ≥ V * h (s t h) + Lρ S s, s t h ≥ V * h (s)
	=⇒ V t h (s) = min V t-1 h (s), V t h (s t h) + Lρ S s, s t

h ≥ V * h (x) by induction hypothesis on t,

4 Proof of Theorem 4.14: Regret of Kernel-UCBVI+RTDP On

 From this point, we follow the proof of Lemma C.11 to obtain a bound on δ t h : G, using that V * h ≤ V t+1 h and the same arguments as in equations (C.1) and (C.2) in Lemma C.11 (which can be used since V t h+1 ≥ V t+1 h+1), we obtain This bound differs only by the additive term (C.4) from the bound given in Lemma C.11. Thus we just need to handle this sum and rely on the previous analysis to upper bound the other terms. We consider the following partition of the state space: For each s j ∈ C ′ σ , we define the set B j ⊂ S as the set of points in S whose nearest neighbor in C ′ σ is s j , with ties broken arbitrarily, such that {B j } j∈[|C ′ σ |] form a partition of S. Using the fact that the V t h are point-wise non-increasing we can write the sum (C.4) as a telescopic sum:

					T			
			R T ≤			δ t 1	
					t=1			
				≲ H 2 |C σ | + LHT σ +	T t=1	H h=1	1 +	1 H	h	ξ t h+1
				+	T t=1	H h=1	 	H h (s t C t h , a t h)	+	H 2 |C ′ σ | C t h (s t h , a t h)	  1 ρ (s t h , a t h), (s t h , a t h) ≤ 2σ
				+	T t=1	H h=1	1 +	1 H	h	V t h+1 -V t+1 h+1 (s t h+1)	(C.4)
	T		H						T	H
				V t h+1 -V t+1 h+1 (s t h+1) ≤	V t h+1 -V t+1 h+1 (s t h+1)
	t=1	h=1					t=1	h=1
		|C ′ σ |	T	H			
	≤	j=1	t=1	h=1	s t h , a t h) -Q π t h (s t h , a t h). h+1 ∈ B j h+1)1 s t h+1 (s t h+1 -V t+1 V t
	Recall that δ t h := V t h (s t h) -V π t h (s t ≤ |C ′ σ | j=1 T t=1 H h=1 V t h+1 -V t+1 h+1 (s j)1 s t h+1 ∈ B j + 2Lρ S s j , s t h+1 1 s t h+1 ∈ B j |C ′ σ | H T h). δ t h ≲ 1 + 1 H δ t h+1 + ξ t h+1 + Lρ (s t h , a t h), (s t h , a t h) + H 2 C t h (s t h , a t h) + H 2 |C ′ σ | C t h (s t h , a t h) ≤ j=1 h=1 t=1	+ Lσ
	≲ 1 +	1 H	δ t h+1 + V t h+1 -V t+1 h+1 (s t h+1) + ξ t h+1 + Lρ (s t h , a t h), (s t h , a t h)
			+	H 2 h (s t C t h , a t h)	+	H 2 |C ′ σ | C t h (s t h , a t h)	+ Lσ.

C.

Definition C.14. Let C ′ σ be a σ-covering of S. We write

C ′ σ := {s j , j ∈ [|C ′ σ |]}.

 In each episode t and for each h, RS-KeRNS keeps and updates sets of representative states St h , actions Āt h , and next-states Ȳt h , with cardinalities St h , Āt h and Ȳ t h , respectively.

 2 /(2σ 2) .In episode t + 1, RS-KeRNS uses the following estimate of the reward function

	Definition C.16 (empirical MDP for RS-KeRNS). Let
		(W t+1 h (s, a) =	t	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) .
				i=1
	(r t+1 h (s, a) =	β +	1 W t+1 (h (s, a)	t i=1	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) r i h
	and the follow estimate of the transitions
	(p t+1 h (y|s, a) =	β +	1 W t+1 (h (s, a)	t i=1	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) δ ζ i+1 h (s i h+1) (y).

 needs to store the quantities in Definition C.16 only for the representatives (s, a) in St+1 Ȳt+1h . We will show that, using the auxiliary quantities defined below, the values of Definition C.17 (auxiliary quantities for online updates). For any (h, s, a, y), we define

	(W t h ,	(r t h and	(p t h can be updated online in O	h	St h	Āt h	Ȳ t h time per episode t.
		(N t+1 h (s, a, y) :=	t i=1	χ(t -i)1 ζ i+1 h (s i h , a i h) = (s, a) δ ζ i+1 h (s i h+1) (y)
		(N t+1 h (s, a) :=	t	χ(t -i)1 ζ i+1 h (s i h , a i h) = (s, a)
				i=1		

h × Āt+1 h and y ∈ (S t+1 h (s, a) := t i=1 χ(t -i)1 ζ i+1 h (s i h , a i h) = (s, a) r i h .

Notice that, if (s, a) / ∈ St+1 h × Āt+1 h , the quantities above are equal to zero.

6 Proof Sketch for Theorem 4.16: Regret of RS-KeRNS in

 Sh = ∅, Āh ← ∅, Ȳh ← ∅, for h ∈ [H]. Defined, but not computed for all (s, a) Assume that we observed a transition s t h , a t h , s t h+1 , r t h at time (t, h), updated the representative sets, and mapped the transition to the representatives (s, a, y) ∈ St+1 . We wish to update the estimated MDP given in Definition C.16, which, at step h, are only stored for (s, a) in St+1 . The update rule will depend on whether the (s, a) is a new representative state-action pair (included in episode t) or it was visited before episode t. These two cases are studied below. This means that the representative stateaction pair (s, a) was added at time (t, h). In this case, for all y ∈ Ȳt+1 h , the quantities time and can happen, at most, for one pair (s, a): the one that was newly added. Therefore, we have a total per-episode runtime of O Case 2: (s, a) ∈ St h × Āt h This means that the representative state-action pair (s, a) was added before episode t, which implies that ζ t+1 h (s, a) = ζ t h (s, a) = (s, a). Hence, time, assuming that the mapping ζ t+1 h (s t h , a t h) was previously computed (this mapping is only computed once for all the updates, and takes O St+1 Summary Every time a new transition is observed at time (t, h), the estimators for all (s, a, y) ∈ St+1 O Ȳ t+1 h time if it has been observed before episode t (case 2). This results in a total runtime, per episode, of Ofor all the representatives observed before episode t. If the representative (s, a) has not been observed before episode t (case 1), the updates require time, and this can happen, at most, for one state-action pair at each time (t, h). Hence, the total runtime required for the updates is O

		Complements on Chapter 4 Complements on Chapter 4	C.5 Detailed Description of RS-KeRNS
		= Algorithm C.3: Online Update of RS-KeRNS Model (s,a) t i=1 χ(t -i)ϕ ζ t+1 h (s, a), (s, a) 1 ζ i+1 h (s i h , a i Case 1: (s, a) ∈ St+1 h) = (s, a) = (s,a) ϕ ζ t+1 h (s, a), (s, a) t i=1 χ(t -i)1 ζ i+1 h (s i input: t, h, s t h , a t h , s t h+1 , r t h . # Map to representatives (p t+1 h (y|s, a) and (W t+1 h St+1 h Āt+1 h Ȳ t+1 h h (s, a) can be initialized using equations (C.5), (C.6) and (C.7). This is (r t+1 h (s, a), h , a i h) = (s, a) = (s,a) ϕ ζ t+1 h (s, a), (s, a) (N t+1 h (s, a). Map (s, a) = ζ t+1 h (s t h , a t h) and y = ζ t+1 h (s t h+1) done in O St+1 h Āt+1 h Ȳ t+1 h O St+1 h Āt+1 h Ȳ t+1 h # Update auxiliary quantities (N t+1 h (s, a, y) = 1 + λ (N t h (s, a, y) (N t+1 h (s, a) = 1 + λ (h (s, a) N t H h=1 St+1 h Āt+1 h Ȳ t+1 h taking this case into account. h St+1 h Āt+1 h Ȳ t+1 h per episode.
		(S t+1 h (s, a) = r t h + λ S t (h (s, a)
		# Update empirical MDP
	15	Algorithm C.1: RS-KeRNS initialization: # select action a t h ← argmax a (Q t h (s t h , a) for (s, a) ∈ St+1 h × Āt+1 do h if (s, a) ∈ St h × Āt h then # (s, a) was added before episode t (W t+1 t (W t+1 h (s, a) = χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) (W t i=1 h (s, a) (r t+1 h (s, a) = ϕ((s,a),(s, a)) β+ (W t+1 h (s,a) r t h + λ β+ (W t t-1 h (s,a) β+ (W t+1 (r t h (s, a) = ϕ ζ t+1 h (s, a), ζ t+1 h (s t h , a t h) + λ t-i ϕ ζ t h (s, a), ζ i+1 h (s i h , a i h) h (s,a) i=1 for y ∈ Ȳt+1 h do (p t+1 h (y|s, a) = ϕ((s,a),(s, a)) β+ (W t+1 h (s,a) δ y (y) + λ β+ t-1 (W t h (s,a) β+ (W t+1 i=1 h (s,a) = ϕ (s, a), ζ t+1 h (s t h , a t h) + λ λ t-i-1 ϕ ζ t h (s, a), ζ i+1 h (s i h , a i h)
				# execute action r t h , s t h+1 ← OnlineModel t,h (a t h) = ϕ (s, a), ζ t+1 h (s t h , a t h) + λ	(W t
				update Sh , Āh , Ȳh using s t h , a t h , s t h+1 with Algorithm 4.4
				update model using s t h , a t h , s t h+1 , r t h with Algorithm C.3
		Algorithm C.2: Kernel Backward Induction on Representative States Now, notice that
		input:	(r t h (s, a), (r t+1 h (s, a) =	t i=1 χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) r i h β + (W t+1 h (s, a)
		The auxiliary quantities (Definition C.17) are updated as: = ϕ (s, a), ζ t+1 h (s t h , a t h) β + (W t+1 h (s, a) r t h + λ β + β + ((W t h (s, a) W t+1 h (s, a)	(r t h (s, a)
		(Q t h (s, a) = where we used again the fact that, in this case, ζ t+1 min (s,a)∈ St (N t+1 h (s, a, y) = 1 + λ (N t h (s, a, y) h (s, a) = ζ t h (s, a). Hence, similarly to (W t+1 h (s, a), the quantity (r t+1 h (s, a) can be updated in O (1) time. A similar reasoning shows
		that	(N t+1 h (s, a) = 1 + λ N t (h (s, a) h (y, s, a) can be updated, for all y ∈ Ȳt+1 (p t+1 h , in O Ȳ t+1 h	time:
	11	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) h (y) = min H -h + 1, max a for y ∈ Ȳt h-1 do (V t (Q t h (y, a) return: ((Q t h) h∈[H] (S t+1 h (s, a) = r t h + λ (S t h (s, a). We need to update (W t h , (r t h and (p t h for all (s, a, y) ∈ St+1 h × Āt+1 (p t+1 h (y|s, a) = ϕ (s, a), ζ t+1 h (s t h , a t h) β + (W t+1 h (s, a) δ ζ t+1 h (s t h+1) (y) + λ β + β + ((W t h (s, a) W t+1 h (s, a)	(p t h (y|s, a).
				t
				=	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h)
				i=1

(s,a)∈ St+1 h × Āt+1 h 1 ζ i+1 h (s i h , a i h) = (s, a) for episode t = 1, . . . , T do get initial state s t 1 compute ((Q t h) h using Algorithm C.2 for h = 1, . . . , H do (p t h (y|s, a), (b t h (s, a) for all (s, a, y) ∈ St h × Āt h × Ȳt h and all h ∈ [H]. initialization:

(V H+1 (s) ← 0 for all s ∈ S for h = H, . . . , 1 do for (s, a) ∈ St h × Āt h do Q t h,ζ (s, a) ← (r t h (s, a) + (p t h (V h+1 (s, a) + (b t h (s, a) # Interpolated Q-function. h × Āt h Q t h,ζ (s, a) + Lρ [(s,

a), (s, a)] if h > 1 then # Compute value function at the next states for the stage h -1 h (s, a) = ϕ ((s, a), (s, a)) + λ (p t h (y|s, a) else # (s, a) was added in episode k Initialize (r t+1 h (s, a), (p t+1 h (•|s, a), (W t+1 h (s, a) using equations (C.5), (C.6) and (C.7) return:

C.5.2 Online updates & runtime

h × Āt+1 h × Ȳt+1 h h × Āt+1 h and y ∈ Ȳt+1 h . h × Ȳt+1 h h × Āt+1 h and (s, a) / ∈ St h × Āt h h (s, a),

This implies that, for a fixed (s, a), the quantity (

W t+1 h (s, a) can be updated in O (1) h × Āt+1 h time). h × Āt+1 h × Ȳt+1

h must be updated. For a given representative (s, a), the updates can be done C.

 where ϕ (u, v) := exp -ρ [u, v] 2 /(2σ 2) , for a given function χ : N → [0, 1]. In each episode t, RS-KeRNS has build representative sets of states St

	Let	(W t+1 h (s, a) = t i=1 χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) . In episode t + 1, RS-KeRNS computes
	the following estimate of the rewards
		(r t+1 h (s, a) =	β +	1 W t+1 (h (s, a)	t i=1	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) r i h
	and the following estimate of the transitions
		(p t+1 h (y|s, a) =	β +	1 W t+1 (h (s, a)	t i=1	χ(t -i)ϕ ζ t+1 h (s, a), ζ i+1 h (s i h , a i h) δ ζ i+1 h (s i

h , actions Āt h and next states Ȳt h , for each h ∈ [H]. We recall the definition of the projections ζ t h (s, a) := argmin (s,a)∈ St h × Āt h ρ [(s, a), (s, a)] , ζ t h (y) := argmin y∈ Ȳt h ρ S (y, y) . from any (s, a, y) to their representatives. h+1) (y).

Lemmas Lemma C.20.

 Consider a sequence of non-negative real numbers {z s } t s=1 and let Γ :R + → [0, 1] satisfy Assumption 4.4. Let z s ≤ 2σ 1 + log(C 1 t/β + e) .Proof. We split the sum into two terms: From Assumption 4.4, we havew s ≤ C 1 exp -z 2 s /(2σ 2) . Hence, w s ≤ (C 1 /β) exp -z 2 s /(2σ 2) , since β + t s ′ =1 w s ′ ≥ β.

	w s := Γ	z s σ	and w s :=	w s β + t s ′ =1 w s ′
	for β > 0. Then, we have			
	t			
	w			
	s=1			

s t s=1 w s z s = s:zs<c w s z s + s:zs≥c w s z s ≤ c + s:zs≥c w s .

 /2σ2 . Reformulating, we want to find a value c ′ such that C 1 exp(-x) ≤ β/(xt) for all x ≥ c ′ . Let c ′ = 2 log(C 1 t/β + e). If x ≥ c ′ , we have:Now, x ≥ c ′ is equivalent to z s ≥ √ 2σ 2 c ′ = 2σ log(C 1 t/β + e). Therefore, we take c = 2σ log(C 1 t/β + e), which gives us= 2σ log(C 1 t/β + e) + σ log(C 1 t/β + e)≤ 2σ 1 + log(C 1 t/β) . Let Γ : R + → [0, 1] be a kernel that satisfies Assumption 4.4. Let a ∈ R t + and f 1 , f 2 , f 3 be functions from R t + to R defined asThe proofs for f 2 and f 3 are analogous. For f 2 , we also use the fact that the function x →

	Lemma C.21. f 1 (z) =	t s=1 Γ (z s /σ) a s β + t s=1 Γ (z s /σ)	,
					f 2 (z) =		1 s=1 Γ (z s /σ) β + t	,
	2 ≤ s=1 Γ (z ≤ t 2σ 2 z 2 s . ≥ log Let x = z 2 s x 2 C 1 t β + e =⇒ x ≥ x 2 + log C 1 t 1 f 3 (z) = β + t C 2 t s=1 (1/σ) |z s -y s | a s β + t s=1 Γ (z s /σ) C 2 t s=1 (1/σ) |z s -y s | 1 t 2σ 2 z 2 + ∥a∥ ∞ β + t s=1 Γ (z s /σ)
			≤	2C 2 ∥a∥ ∞ t βσ	∥z -y∥ ∞ .						
	(1/	√	s:zs≥c β + x) is 1/(2β 3/2)-Lipschitz . w s z s ≤ s:zs≥c 1 t 2σ 2 z 2 s	z s ≤	2σ 2 t s:zs≥c	1 z s	≤	2σ 2 c	|{s : z s ≥ c}| t	≤	2σ 2 c	.
	Finally, we obtain: Lemma C.22 (value functions are Lipschitz continuous). Under Assumptions 4.1 and 4.2, for all

s which implies, for z s ≥ c, that w s ≤ 1 β + e =⇒ x ≥ log x + log(C 1 t/β + e) =⇒ (C 1 /β) exp(-x) ≤ 1/(xt)

as we wanted.

t s=1 w s z s ≤ c + s:zs≥c w s z s ≤ c + 2σ 2 c

Complements on Chapter 4 s /σ)

Then, for any y, z ∈ R + , we have

|f 1 (z) -f 1 (y)| ≤ 2C 2 ∥a∥ ∞ t βσ ∥z -y∥ ∞ |f 2 (z) -f 2 (y)| ≤ C 2 t 2β 3/2 σ ∥z -y∥ ∞ |f 3 (z) -f 3 (y)| ≤ C 2 t β 2 σ ∥z -y∥ ∞ Proof. From Assumption 4.4, the function z → Γ(z) is C 2 -Lipschitz , which yields |f 1 (z) -f 1 (y)| ≤ t s=1 Γ (z s /σ) -Γ (y s /σ) a s β + t s=1 Γ (z s /σ) + t s=1 Γ (y s /σ) a s β + t s=1 Γ (λ,W) (t -s -1, y s /σ) t s=1 Γ (z s /σ) -Γ (y s /σ) β + t s=1 Γ (z s /σ) (t,

h), the functions V * t,h and Q * t,h are L h -Lipschitz , where L h := H h ′ =h L r L p H-h ′ .

"Se você não conseguir, quem mais consegue?" e "quem estuda demais fica louco!".

Nevertheless, the questions of how to define a utility function and whether we should aim for utility maximization at all might be subject to societal, political and philosophical considerations.

Notice that, with a generative model, the agent can choose from which state the transition will be sampled, while a policy recommends a distribution over actions. This issue can be easily solved by slightly modifying the definition of a policy so that it outputs a state to be sampled, in addition to a probability on the action space.

Where * means equal contribution.

This means that the policy is seen as a function of time, not the states. The open-loop setting is particularly adapted to environments with deterministic transitions.

Although the sample complexities of BRUE and MDP-GapE are polynomial with respect to 1/∆min or 1/ε, they are exponential with respect to H. In the discounted-reward setting, an effective horizon H is defined as a function of log(1/ε), which, for instance, leads to the non-polynomial bound for SparseSampling.

The diameter D is the minimum average time to go from one state to another. In a finite-horizon MDP, if the agent can come back to the same initial state s1 after H steps, the average time between any pair of states is bounded by

2H, if we restrict the state set to the states that are reachable from s1 in H steps.

Up to constants and logarithmic terms, and assuming that either T is large enough (for the regret) or ε is small enough (for the sample complexity).

UCBVI and ORLC have been proposed for MDPs with time-homogeneous transitions, but they can readily be used for time-inhomogeneous MDPs by viewing them as MDPs with HS states and h-independent transitions.

Dann et al.[START_REF] Dann | Policy Certificates: Towards Accountable Reinforcement Learning[END_REF] analyze the ORLC algorithm in a slightly different setting, proving that it outputs "Individual POlicy Certificates" (IPOC). ORLC can be converted to an (ε, δ)-PAC algorithm for BPI by setting the stopping rule to be the first time the optimality certificate is smaller than ε. Sample complexity guarantees for both BPI and PAC-MDP setting can be deduced from their analysis.

Regarding Assumption 4.1, if (A, ρA) is also a metric space, we can take ρ [(x, a), (x ′ , a ′)] = ρS (x, x ′) + ρA (a, a ′), for instance. See Section

2.3 of [SBY19]for more examples and a discussion.

For more details about covering numbers and covering dimension, see Section

of Kleinberg et al. [KSU19] and Section 2.2 of Sinclair et al. [SBY19].

meaning Kernel-based Reinforcement Learning in Non-Stationary environments.

Another choice of λ might allow us to avoid the dependence on H 3 of Kernel-UCBVI and get H 2 instead.

Notice that the bias can be controlled by changing the bandwidth σ, or by using kernels with faster decay or bounded support.

As observed by Fiechter[START_REF] Fiechter | Efficient Reinforcement Learning[END_REF], this is easily generalized to any initial state distribution s1 ∼ µ by considering a fixed initial state s0 with a single action a0 such that the reward at (s0, a0) is zero and p0(•|s0, a0) = µ.

The minimum loss is indeed zero, since both RND networks have the same architecture.

That is, the entropy of the distribution nt(s)/t, where nt(s) is the number of visits to the state s up to time t.

Available at https://github.com/rlberry-py/rlberry.

Acknowledgements

Chapter 4 A Kernel-Based Approach to Exploration in Continuous MDPs

In this chapter, we study a kernel-based algorithm for exploration-exploitation in large or continuous MDPs, called Kernel-UCBVI. A kernel function measures the similarity between any two state-action pairs, and the key idea of Kernel-UCBVI is that once a state-action pair (s, a) is visited, we also reduce the uncertainty about all the pairs (s ′ , a ′) that are similar to (s, a), which allows the agent to explore large state-action spaces efficiently. We prove a regret bound for Kernel-UCBVI that depends on the covering dimension of the state-action space, instead of its cardinality. By extending Kernel-UCBVI to use time-dependent kernels, we introduce an algorithm called KeRNS that is able to handle non-stationary environments, where the agent may interact with a different MDP in each episode. Finally, we propose approximate versions of Kernel-UCBVI and KeRNS to reduce their computational complexity and analyze the impact of such approximations on the regret. This chapter is based on the papers [Dom+21d; Dom+21c] about regret minimization with kernel-based reinforcement, both in stationary and non-stationary environments.

A Kernel-Based Approach to Exploration in Continuous MDPs

setting, Lykouris et al. [START_REF] Lykouris | Corruption robust exploration in episodic reinforcement learning[END_REF] study episodic RL problems where the MDP can be corrupted by an adversary and provide regret bounds in this case.

Exploration without Rewards & Applications to Deep RL

Kernel-Based Bonuses for Exploration in Deep RL

In the previous section, we saw that using exploration bonuses depending on n t (s, a) allows an agent to explore finite MDPs even in a reward-free situation, where n t (s, a) is the number of visits to (s, a) up to time t. In Chapter 4, we proposed the Kernel-UCBVI algorithm that generalizes the counts n t (s, a) to continuous MDPs by using a kernel function, and analyzed its regret bound. Hence, it is reasonable to expect that, at least empirically, Kernel-UCBVI is also able to explore continuous MDPs in a reward-free situation. Indeed, in finite MDPs with an appropriate choice of the kernel function, Kernel-UCBVI becomes identical to UCBVI, which is similar to RF-UCRL in the sense that it is based on value iteration combined with 1/ √ n exploration bonuses. Thus, in principle, Kernel-UCBVI is a very general algorithm for exploration: it makes very weak assumptions on the MDP and can be implemented as long as we have an online model of the MDP and a kernel function. Nevertheless, it has two main practical limitations: (i) its computational complexity that either increases with the time t in its exact version, or scales with the covering number of the state space in its approximate version with representative states, and (ii) the fact that it requires a well-designed kernel function.

In this section, in order to tackle those limitations of Kernel-UCBVI, we propose a method that we call AKBX, meaning Approximate Kernel-Based eXploration. AKBX is a method that (i) replaces Kernel-UCBVI's backward induction by an off-policy RL algorithm using function approximation; (ii) learns a representation that is used to define a kernel; and (iii) based on the learned representation, computes an approximation of Kernel-UCBVI's exploration bonuses. We remark that there are several works aiming to generalize 1/ √ n bonuses to deep RL, some of which are discussed and compared to AKBX in Section 5.3.

Execute the action a

Consider Algorithm 5.2, which describes in a simplified manner the structure of the RL algorithms based on exploration bonuses that we have studied so far. AKBX follows this structure, and we assume that the computation of the policy π t , given the past data and the bonuses that are added to the rewards, is done by any off-policy RL algorithm with function approximation, the beginning, we see that RND is able to explore all the rooms but, as the time t increases, its exploration bonuses become close to zero and the RND agent stops exploring the last rooms at the bottom. By setting λ 1,t = 1 in Equation (5.7), AKBX's bonuses do not tend to 0, and the agent is able to keep exploring all the rooms in the Grid-World. Appendix A

Exploration without Rewards & Applications to Deep RL

Complements on Chapter 2 A.1 Proof of Theorem 2.6: Sample Complexity of SmoothCruiser

To bound the sample complexity of SmoothCruiser, we take the following steps:

• In Lemma A.1, we bound the number of recursive calls of sampleV in the uniform sampling phase (ε ≥ κ), which is similar to the proof of the sample complexity of SparseSampling.

• In Lemma A.2, we bound the number of recursive calls of sampleV when ε < κ.

• By noticing that the number of recursive calls of sampleV is equal to the number of oracle calls, we bound the sample complexity of SmoothCruiser, we conclude the proof.

Let n sampleV (s, ε, δ ′) be the total number of recursive calls to sampleV after an initial call with parameters (s, ε), and including the initial call. Since this number does not depend on the state s, we denote it by n sampleV (ε, δ ′).

Lemma A.1. Let ε ≥ κ. For all h ∈ N and ∀ε such that

where

where

Complements on Chapter 3

and where d 1 is the covering dimension of (S × A, ρ) and, for any z ∈ R, log + (z) = log(z + e).

That is, we define the constants κ 1 , κ 2 , and κ 3 in Equation (4.3) as:

Complements on Chapter 4 C.2 Proof of Theorem 4.7

Notation We denote by F t h the σ-algebra generated by all the state-action pairs observed up to time (t, h), that is, the h-th step of the t-th episode. For a metric space U, ρ, we denote by N (σ, U, ρ) is σ-covering number. We define log + (z) := log(z + e) for any z ≥ 0.

C.2.1 Concentration

In this section, we provide the confidence intervals that will be used to prove the regret bound of Kernel-UCBVI. The main concentration results are presented in Lemma C.7, which defines an event G where all the confidence intervals hold, and we show that

Concentration inequalities for weighted sums

We reproduce below the concentration inequalities for weighted sums that we proved in [START_REF] Darwiche Domingues | Kernel-Based Reinforcement Learning: A Finite-Time Analysis[END_REF].

Lemma C.2 (Hoeffding-type inequality [Dom+21d]). Consider the sequences of random variables

Then, for all β > 0, with probability at least 1 -δ, for all t ≥ 1,

List of Figures