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Apprentissage automatique spatiotemporel sur l’imagerie du potentiel de surface
corporelle sans scanner aidé par la modélisation multi-échelle pour la personnalisation

du traitement de la fibrillation auriculaire

Résumé: La fibrillation auriculaire (FA) est une activation rapide et irrégulière des oreillettes. Elle
est l’arythmie clinique la plus courante. Le premier traitement préconisé est l’ablation par cathéter.
Cette procédure est la plus efficace et améliore la qualité de vie. Néanmoins les protocoles standards
utilisés démontrent un succès à long terme sous-optimal, justifiant la nécessité de mettre en place une
ablation personnalisée. Les cartographies des potentiels à la surface corporelle (CPSC) sont des signaux
électriques enregistrés sur le torse par un réseau d’électrodes, fournissant ainsi une vue panoramique
non-invasive des oreillettes. Il est cependant difficile d’interpréter les CPSC pour le traitement de la FA.
Cette thèse vise à développer de nouveaux algorithmes d’apprentissage automatique pour interpréter
les CPSC afin de proposer un traitement personnalisé de la FA, sans faire appel à la résolution du
problème inverse. À l’aide d’une modélisation multi-échelle un ensemble de données synthétiques a été
généré. Il est composé d’environ 3000 épisodes de FA détaillés, ainsi que les CPSC à 252 dérivations
et les électrocardiogrammes (ECG) à 12 dérivations, représentatifs des patients atteints de FA. Cet
ensemble constitue notre base de données d’entraînement pour le développement des algorithmes et
il permet d’expliquer les bases biophysiques de la prédiction des résultats pour l’ablation focale. Les
algorithmes suivants ont été développés :

1) En combinant des sources périodiques auriculaires (SPA) équivalentes extraites de CPSC ou
d’ECG avec un classificateur de forêt aléatoire, nous avons pu distinguer une source focale (SF) d’un
rotor. Ceci nous permet de déduire si une SF peut initier une FA durable, ainsi que de déterminer
la chambre auriculaire de la SF, avec une robuste de l’algorithme à la variabilité inter-patients sur
l’ensemble de données synthétiques. L’analyse rétrospective des CPSC préopératoires a montré que les
patients atteints de FA paroxystique, avec des épisodes de FA classés comme étant entraînés par une
SF provenant d’une seule chambre auriculaire par notre algorithme, présentaient une récidive de FA
inférieure jusqu’à 3 ans après ablation par cathéter au CHU de Bordeaux.

2) Le spectre des SPA, une fonction de la valeur maximale d’autocorrélation du SPA sur la
durée du cycle, a été ensuite développé via des processus gaussiens pour représenter l’état de FA des
patients. L’analyse des CPSC préopératoires de patients souffrant d’une FA persistante a révélé qu’une
autocorrélation maximale plus élevée sur des durées de cycle de 220 à 230 ms était associée à une
récidive de FA plus élevée jusqu’à 4 ans après ablation par cathéter au CHU de Bordeaux.

3) Un réseau de neurones récurrents convolutifs de graphe a également été développé afin de détecter
le début de l’activation centrifuge (ATC) à partir des CPSC. Les ATC incluent non seulement des
ATC actifs provenant d’une SF, mais également des ATC passifs provenant de la chambre auriculaire
opposée par connexions inter-auriculaires (faisceau de Bachmann, foramen ovale et sinus coronaire). La
détection par ATC a amélioré la détermination non-invasive des mécanismes de FA, incluant les SF et
les autres sources de FA provenant d’une chambre unique, et, pour la première fois, les macro-réentrées
circulant via les connexions inter-auriculaires.

Ces trois algorithmes permettent de déduire les mécanismes de la FA à partir des CPSC sans faire
appel à l’imagerie cardiaque. Ces méthodes suggèrent des cibles d’ablation afin d’améliorer les résultats
du traitement et élargissent le champ actuel des méthodes de cartographie non-invasive, permettant de
faire progresser le diagnostic préopératoire non-invasif pour la personnalisation du traitement de la FA.

Mots-clés: fibrillation auriculaire, cartographie du potentiel de surface corporelle, ablation par
cathéter, apprentissage profond géométrique, apprentissage automatique, jumeau numérique



Spatiotemporal machine learning on scanner-free body surface potential imaging aided
by multiscale modeling for personalized atrial fibrillation treatment

Abstract: Atrial fibrillation (AF), the rapid and irregular activation of the atria, is the most common
clinical arrhythmia. Catheter ablation therapy is the most effective treatment and improves the
quality of life, but standard protocols show sub-optimal long-term success, substantiating the need
for personalized ablation. Body surface potential maps (BSPMs) are electrical signals recorded on
the torso by an array of electrodes, which non-invasively provide a panoramic view of atria, but it is
challenging to interpret BSPMs for AF treatment. This thesis sought to develop novel machine learning
algorithms to analyze BSPMs to inform personalized AF treatment, without solving the inverse problem.
Using multiscale modeling, a synthetic dataset of nearly 3000 detailed AF episodes along with 252-lead
BSPMs and 12-lead electrocardiograms (ECGs), representative of AF patients, was generated. This
provided training data for algorithm development, and elucidated the biophysical bases of outcome
prediction for focal ablation. The following algorithms were developed:

1) Combining equivalent atrial periodic sources (APSs) extracted from BSPMs or ECGs with
a random forest classifier, we were able to discriminate between a focal source (FS) and a rotor,
infer whether an FS can initiate sustained AF, and determine the chamber of FS, with robustness
to inter-patient variability on the synthetic dataset. Retrospective analysis of pre-operative BSPMs
showed paroxysmal AF patients with AF episodes classified as driven by an FS from a single atrial
chamber by our algorithm had lower AF recurrence up to 3 years following catheter ablation from the
CHU Bordeaux.

2) The APS spectrum, a function of the maximal autocorrelation value of APS over cycle length,
was subsequently developed with Gaussian processes to represent the AF condition of patients. Analysis
of pre-operative BSPMs of persistent AF patients revealed that a higher maximal autocorrelation over
cycle lengths from 220 to 230 ms was associated with a higher AF recurrence up to 4 years following
catheter ablation from the CHU Bordeaux.

3) A graph convolutional recurrent neural network was also developed to detect the onset of
centrifugal activation (CAT) from BSPMs. The CATs include not only active CATs originating from an
FS, but also passive CATs originating from the opposite atrial chamber through discrete inter-atrial
connections (Bachmann’s bundle, fossa ovalis, and the coronary sinus). CAT detection improved the
non-invasive determination of AF mechanisms, including FS and other single-chamber drivers, and, for
the first time, macro-reentries circulating through inter-atrial connections.

All three algorithms inferred AF mechanisms from BSPMs without cardiac imaging. The methods
suggest ablation targets for better treatment outcomes, and broaden the scope of current non-invasive
mapping methods, which together advance preoperative non-invasive diagnosis for personalized AF
treatment.

Keywords: atrial fibrillation, body surface potential map, catheter ablation, geometric deep learning,
machine learning, digital twin
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Substantial résumé en français

Apprentissage automatique spatiotemporel sur l’imagerie du potentiel de surface
corporelle sans scanner aidé par la modélisation multi-échelle pour la

personnalisation du traitement de la fibrillation auriculaire

La fibrillation atriale (FA) est l’arythmie soutenue la plus fréquente., Elle consiste
en une activation rapide et irrégulière des oreillettes. L’ablation par radiofréquence
constitue le traitement gold-standard de la FA. Elle se base sur l’isolement des veines
pulmonaires (IVP) plus ou moins associées à l’ablation de substrat. Cependant, ces dif-
férents protocoles restent encore insuffisants pour prévenir les récurrences de la FA à
long terme. C’est pourquoi il est nécessaire d’adapter un protocole d’ablation person-
nalisée pour chaque patient.

Les techniques de cartographie non invasives constituent un outil de planification
préopératoire essentiel pour une ablation personnalisée. Les électrocardiogrammes
(ECG), utilisés pour diagnostiquer les anomalies cardiaques depuis 1908, constituent
l’outil de cartographie non invasif le plus important pour la FA. Les cartes de potentiel
de surface corporelle (CSSP) enregistrées sur le torse par un maillage d’électrodes sont
des signaux ECG de haute résolution qui fournissent en outre une vue panoramique
des oreillettes de manière non invasive. L’imagerie ECG reconstruit l’activité auricu-
laire à l’aide de CSSP et de géométries du torse et du cœur spécifiques au patient en
résolvant un problème inverse. Cependant, la reconstruction par imagerie ECG des
modèles d’ondes d’activation complexes généralement observée chez les patients at-
teints de la FA n’a pas encore été validée. D’autres approches existent comme l’analyse
spectrale et l’organisation des activités auriculaires, mais elles n’ont pas pu révéler les
mécanismes spécifiques de la FA.

Par conséquent, nous avons cherché à développer des techniques avancées pour ex-
traire les valeurs pronostiques sous-jacentes à partir des CSSP et des ECG des patients.
Nous avons envisagé d’utiliser des techniques d’apprentissage automatique, car elles
apprennent automatiquement la transformation des données en entrées en résultats de
sortie. Cependant, la création d’une solution de bout en bout présente plusieurs défis.
Le processus de collecte des données, comprenant à la fois la procédure d’ablation et
la gestion des suivis post-ablation, est long et coûteux. Il en résulte une sensibilité à
l’erreur importante dans la gestion des données cliniques. De plus, il n’existe actuelle-
ment pas de classification des activités auriculaires, car ce n’est pas une routine clinique
d’enregistrer simultanément les signaux intracardiaques et les CSSP. Ensemble, ceux-
ci ont limité le nombre de données de référence (telles que les résultats de l’ablation
et les activités auriculaires) dans notre ensemble de données. De plus, le résultat du
traitement d’un patient ne correspond plus à chaque signal collecté, il n’est donc plus
approprié d’utiliser le signal et le résultat au niveau du patient comme paire d’entrées-
sorties pour entraîner le modèle d’apprentissage automatique, connu sous le nom de



problème « classification multi-instance ».

Modélisation informatique du patient FA pour le développement d’outils
de diagnostic

Pour résoudre ces problèmes d’application de l’apprentissage automatique aux CSSP et
aux ECG, nous avons eu recours à une modélisation multi-échelle, qui fournit un en-
semble de données synthétiques représentatif des patients atteints de FA. L’ensemble
de données se compose de 2977 épisodes de FA enregistrées à l’aide de CSSP 252 elec-
trodes et d’ECG 12 dérivations. Ces enregistrements obtenus à partir des épisodes de
FA simulées ont permis d’obtenir des données de référence qui ont été utilisées pour la
formation de modèles d’apprentissage automatique.

L’ensemble de données synthétiques a été construit à partir de cinq maillages au-
riculaires spécifiques aux patients, obtenus à partir d’imageries par résonance magné-
tique améliorées au gadolinium tardif, avec en moyenne 489 000 nœuds et 1,18 M
d’éléments, qui ont fourni des géométries réalistes pour la simulation de l’activité au-
riculaire. Le comportement électrique de chaque nœud a été mis en œuvre par des
modèles ioniques non linéaires avec des paramètres électriques spécifiques à la région,
et la propagation des ondes a été modélisée dans une équation monodomaine, résolue
à l’aide d’une méthode d’éléments finis sur le logiciel CARPentry. Les CSSP et les ECG
ont été générés par modélisation prospective. Les épisodes de FA ont été simulés en
introduisant des foyers ectopiques et/ou des rotors. Différent paramètres ont été mod-
ulées : la localisation des des foyers ectopiques et des « cores » des rotors, les fréquences
des sources focales (SF), la taille des noyaux de rentrée et l’hétérogénéité électrique des
oreillettes.

En plus de fournir des données d’entraînement pour les algorithmes d’apprentissage
automatique, l’ensemble de données synthétiques a également élucidé les bases bio-
physiques de la prédiction de l’effet de l’ablation focale. Cela a été fait en simulant
l’ablation localisée des épisodes induits par des SF. En fonction de l’inductibilité de la
FA soutenue, nous avons classé la SF en deux types, « SF de type driver », où l’activation
continue de la SF est essentielle pour conduire l’épisode de FA ; ainsi que les « SF
de type initiateur », qui initie une FA auto-entretenue sans qu’il soit nécessaire d’être
présent tout au long d’un épisode de FA. En comparant le comportement électrique en-
tre ces deux types de SF, les rotors soutenus présents pendant les tirs d’ablation de SF
sont plus susceptibles d’entraîner un épisode de FA soutenu après l’ablation localisée.
La fréquence et la localisation de la source focale, ainsi que la présence de substrat,
ont également été montrés comme des facteurs importants qui ont un impact sur la
terminaison de la FA après la suppression des SF.

Sur le jeu de données synthétique et le jeu de données patient, nous avons ensuite



développé trois algorithmes. La mise en œuvre de chaque algorithme a été conçue pour
s’adapter à son objectif d’apprentissage et à la disponibilité des données d’entraînement.

Algorithme 1. Détection non invasive de la source focale et du sub-
strat arythmogène

Le premier algorithme a été conçu pour extraire la présence et la localisation de la SF,
ainsi que pour prédire la terminaison de la FA après ablation localisé. . Comme les don-
nées CSSP FA de référence n’étaient disponibles que dans l’ensemble de données syn-
thétiques, nous avons créé un modèle pour prédire le mécanisme à l’aide de l’ensemble
de données synthétiques et appliqué le modèle à l’ensemble de données cliniques.

Nous avons d’abord extrait plusieurs sources périodiques auriculaires équivalentes
(SPA) à partir de CSSP ou d’ECG, en utilisant la technique de séparation aveugle de
source. Cet algorithme suppose que les signaux enregistrés ont été générés à partir d’un
mélange de plusieurs sources périodiques. Nous avons ensuite extrait la durée de cycle
et la périodicité de chaque SPA, ainsi que la contribution de la source périodique la
mieux classée à tous les signaux de CSSP (s1-to-lead contribution) de ces SPA équiva-
lents, afin qu’ils agissent comme des caractéristiques des potentiels de surface du corps.
Ensuite, nous avons construits des classificateurs de forêts aléatoires pour mapper ces
caractéristiques aux cibles de prédiction souhaitables.

Le résultat a démontré une grande précision sur différents maillages de patients sur
l’ensemble de données synthétiques. En particulier, la caractéristique de la contribution
s1-to-lead a démontré un modèle spatial cohérent pour les FS provenant de localisations
similaires sur les oreillettes, à travers différents maillages de patients, et divers degrés
d’hétérogénéité électrique dans les oreillettes. Cela a été fait sans fournir d’informations
spatiales, telles que les localisations des électrodes CSSP. L’identification de la présence
de SF et la prédiction de la durabilité de la FA étaient également robustes à une variation
extrême de l’emplacement du gilet (jusqu’à 10 cm) et de la rotation (jusqu’à 20 degrés).

Sur l’ensemble de données des patients du CHU de Bordeaux, l’analyse rétrospec-
tive des CSSP préopératoires a démontré que les patients atteints de FA paroxystique
avec des épisodes de FA classés comme entraînés par une SF d’une seule chambre au-
riculaire par notre algorithme présentaient une récidive de FA inférieure jusqu’à 3 ans
après l’ablation par cathéter.



Algorithme 2. Spectre de source périodique auriculaire non invasif
pour la représentation des conditions de la FA

Notre deuxième algorithme était destiné à prédire le résultat de l’ablation à long terme,
directement à partir des ECG ou des CSSP du patient. Par conséquent, notre modèle a
été conçu pour être simple et interprétable.

Un spectre SPA non invasif (SSPA), qui est fonction de la valeur d’autocorrélation
maximale de l’SPA sur la durée du cycle, a ensuite été développé à l’aide d’un modèle
de régression de processus gaussien. L’SSPA non invasif était un modèle de substitu-
tion pour représenter la condition de FA, et peut être agrégé entre différents signaux
d’un patient. Pour identifier la caractéristique la plus prédictive de l’SSPA non invasive,
le spectre a été sous-échantillonné pour produire des covariables pour un modèle de
régression. Les covariables ont été utilisées pour prédire la probabilité de survie des
suivis post-ablation à l’aide d’un modèle de risque proportionnel de Cox, qui a égale-
ment sélectionné une limite de décision pour séparer deux groupes de patients avec
probabilités distinctes de récidive à long terme de la FA.

La validité de l’SSPA non invasive a été testée en la comparant à l’SSPA invasive
sur l’ensemble de données synthétiques. Pour cela, nous avons montré que l’SSPA non
invasif produisait une couverture élevée et une petite erreur absolue par rapport à l’SSPA
invasif, ainsi qu’une correspondance étroite sur la durée estimée du cycle dominant.
Des modèles peuvent également être observés dans l’SSPA estimé à partir de différents
signaux du même patient.

À l’aide d’une validation croisée d’un facteur 10, l’analyse rétrospective des CSSP
préopératoires de patients atteints de la FA persistante a révélé qu’une autocorrélation
maximale plus élevée sur des durées de cycle de 220 à 230 ms était associée à une
récidive de FA plus élevée jusqu’à 4 ans après l’ablation par cathéter.

Algorithme 3. Détection non invasive de l’activation centrifuge active
et passive avec apprentissage en profondeur

Le troisième projet a utilisé l’apprentissage profond « deep learning » géométrique pour
détecter le début de l’activation centrifuge (ATC) à partir des CSSP, ce qui a aidé à
l’extraction de plusieurs mécanismes de FA qui étaient auparavant inaccessibles par
l’imagerie ECG. Les ATC incluent non seulement les ATC actifs provenant d’une SF, mais
également les ATC passifs provenant de la chambre auriculaire opposée par des connex-
ions inter-auriculaires discrètes (faisceau de Bachmann, fosse ovale et sinus coronaire).

Lorsque nous avons estimé la probabilité de l’ATC pour chaque milliseconde, les
données d’apprentissage ont été augmentées de la longueur (en millisecondes) de la



série chronologique. Cela nous a permis d’utiliser des modèles d’apprentissage automa-
tique plus flexibles tels que des modèles de deep learning. Un réseau de neurones
récurrents à convolution graphique a été développé pour détecter le début de l’ATC à
partir des CSSP. Le modèle comprend : (1) une couche EdgeConv en tant qu’encodeur
spatio-temporel de CSSP, qui contient un modèle de perceptron multicouche simple qui
apprend une représentation temporelle condensée du signal de chaque nœud (c’est-
à-dire électrode) à travers un message passant entre les voisins ; (2) un réseau neu-
ronal récurrent bidirectionnel en tant qu’encodeur temporel, qui se compose de cel-
lules de mémoire à long terme ; et enfin, (3) une couche de suréchantillonnage et une
couche sigmoïde, qui ont suréchantillonné la sortie de l’encodeur temporel à sa résolu-
tion d’origine, et ont produit quatre séries temporelles probabilistes en tant que sorties,
représentant la probabilité de l’ATC actifs et passifs sur deux chambres auriculaires à
chaque temps.

Notre modèle est le premier algorithme à détecter le timing de l’événement à partir
des CSSP. Comparé à un réseau de neurones récurrent convolutif traditionnel, le module
EdgeConv a amélioré la précision de l’estimation de l’ATC ainsi que le mécanisme de la
FA. La détection des ATC actifs a donné une grande précision et une aire sous la courbe
de ROC élevée à une fenêtre temporelle étroite de 20 ms, ce qui a permis d’améliorer
la localisation SF par le premier algorithme. La détection des ATC passifs a donné une
précision supérieure à 80% et près de 90% sous la courbe de ROC à une fenêtre de
temps de 250 ms. La détection ATC a permis la détermination non invasive de plusieurs
mécanismes de FA, y compris le FS et d’autres « drivers » à chambre unique, et, pour la
première fois, des macro-réentrées circulant via des connexions inter-auriculaires.

Conclusion

Cette thèse visait à développer de nouveaux algorithmes d’apprentissage automatique
pour analyser les CSSP, afin d’informer le traitement personnalisé de la FA.

La contribution la plus importante que nous ayons apportée a été le développement
d’algorithmes d’apprentissage automatique spatio-temporel sur les CSSP, sans qu’il soit
nécessaire de fournir des informations de localisation spécifiques comme données en
entrée. Nous avons montré que l’extraction de la structure spatio-temporelle peut être
effectuée en exploitant les statistiques communes de second ordre parmi les signaux
de différents canaux, ou en intégrant la structure commune des électrodes voisines.
Cela simplifie grandement les procédures cliniques, car les patients ne sont plus soumis
au processus d’imagerie cardiaque. De plus, cela évite d’avoir à résoudre le problème
inverse mal posé de l’imagerie ECG.

Les résultats des méthodes suggèrent des cibles d’ablation pour les patients, ce qui
entraînera probablement de meilleurs résultats de traitement. Les mécanismes suggérés



par nos méthodes élargissent le champ des méthodes de cartographie non invasives
actuelles. Ensemble, ces deux points forts de notre modèle font progresser le diagnos-
tic préopératoire non invasif qui conduit à un traitement personnalisé de la FA plus
accessible.
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Chapter 1

Introduction

Atrial fibrillation (AF), a heart condition in which the atria activate rapidly and irreg-
ularly, is the most common arrhythmia seen clinically, affecting up to 9% of the popu-
lation over the age of 65 [1]. The prevalence of AF is growing, likely due to increased
longevity, as well as increased risks in the general population for related cardiovascu-
lar diseases, such as stroke, hypertension and obesity, as well as higher accessibility to
screening [2, 1].

AF is a multifaceted and progressive disease [2], with variability between patients,
as well as within the same patient over different disease stages. Catheter ablation ther-
apy, which isolates or destroys parts of the cardiac tissue, is the most effective treat-
ment for AF, improving quality of life and maintaining sinus rhythm longer than anti-
arrhythmic drugs [3]. It is however challenging to select the optimal ablation strategy
for a patient.

Pulmonary vein (PV) isolation [4], which electrically isolates the PVs, is the most
adopted ablation strategy, especially for the first procedure [5]. However, AF recurrence
rates for PV isolation are about 40–50% within one year worldwide; typical long-term
AF-free rates (after 3 to 5 years) are 54.1% paroxysmal AF and 41.8% non-paroxysmal
AF according to a meta-analysis study [6]. In another multicenter study involving 589
patients, AF recurrence rates range between 40% to 60% one-year post-ablation, and
further substrate or linear ablation did not significantly improve results [7]. Although
reconnection across ablation lines in the PVs is likely a cause for late AF recurrence
within the first year after the procedure [5], the association between the lower risk of
AF recurrence post-ablation and durable PV isolation was found to be only modest [8].
There was also no significant difference between different standardized ablation ap-
proaches, i.e. PV isolation, PV isolation with linear ablation and PV isolation with
complex fractionated atrial electrogram ablation [7]. These findings suggest that the
AF treatment can potentially be improved by personalized ablation strategies.
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Accurate non-invasive mapping technologies of AF patients for mechanism-directed
ablation are still lacking [9]. Non-invasive electrophysiological signals, such as electro-
cardiograms (ECGs), have been used since 1908 [10] to diagnose cardiac abnormalities,
including the diagnosis of AF in which f-waves are present as rapid wavelets with irreg-
ular length. Body surface potential maps (BSPMs), which acquire electrical potentials
from the whole torso surface using a large array of electrodes, is thus far, the only tech-
nique providing a panoramic view of both atria, a significant advantage over intracar-
diac signals acquired sequentially, using a mapping catheter. However, these recordings
are the surface projection of mixtures of intracardiac signals, where the potentials from
the intracardiac sources diminish as the distance to epicardium increases, which makes
the non-invasive interpretation of the complex activation patterns during AF episodes
especially challenging.

The state-of-the-art non-invasive mapping techniques can be categorized into ECG
imaging (ECGi), spectral analysis and organization measures. ECGi reconstructs atrial
activity using BSPM signals, and patient-specific geometries of the torso and the heart,
by solving an inverse problem. However, reconstruction of complex wave patterns by
ECGi typically observed in AF patients, such as multiple breakthroughs, has not yet
been validated [11]. A representative work of spectral analysis comes from Guillem et
al. [12], which showed that the sites with dominant frequency on the BSPM are spa-
tially correlated with dominant frequency sites mapped invasively. However, dominant
frequency analyses are agnostic to the type of AF drivers. Measures on the organization
of atrial activities have also been frequently used, including organization index [13],
f-wave amplitude [14], and non-dipolar index [15], but none of these measures reveals
the underlying AF mechanisms.

Machine learning algorithms automatically approximate an unknown mapping func-
tion from the input to the target output by being presented with many examples [16]. In
recent years, deep learning algorithms have also successfully extracted spatiotemporal
features in a wide range of applications, such as computer vision, language processing,
and medical image analysis [17]. We sought to unveil the relationship between the
treatment outcomes and the patient pre-operative signals via machine learning tech-
niques. However, there exist several major challenges. The process to collect AF treat-
ment outcomes is time-consuming and expensive, resulting in a limited number of AF
patients enrolled. The treatment outcomes also do not necessarily correspond to each
signal collected. For example, for a signal collected from an AF patient during sinus
rhythm, it is inappropriate to categorize it as an AF episode. The many-to-one mapping
between the input and the output is known as a problem of “multi-instance classifica-
tion” [18], which complicates the training of machine learning models. Furthermore,
we do not know the ground-truth atrial activity corresponding to the obtained BSPMs,
as it is not a standard clinical routine to simultaneously record the intracardiac signals
and BSPMs.
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Chapter 1. Introduction

To solve these challenges, we resorted to multiscale atrial models of AF patients.
They are computer models built on detailed atrial geometries made from patient meshes,
with realistic electrophysiological parameters and computational rules, which are made
to mimic the electrical behaviour of patient atria during AF episodes. When used prop-
erly, the simulations can act as “digital twins” of the AF patients, which not only yield
mechanistic insights into the pathology for deductive reasoning, but also provide syn-
thetic data and augment patient data to aid the development of machine learning mod-
els for inductive reasoning [19].

With computer models, a virtual cohort of an AF sub-type, with detailed views
of both atrial activities and the body surface potentials, could be obtained at a much
lower cost. On the other hand, the prediction targets of patient treatment outcomes,
are only available from clinical followups. Therefore, the aim of this thesis is to develop
novel machine learning techniques on BSPMs with interpretability and robustness, by
exploiting the advantages of both synthetic data from multiscale modeling and patient
data from clinical studies, in order to improve BSPM for personalized AF treatment. The
prediction targets indicate AF mechanisms which can guide AF catheter ablation. As a
proof-of-concept, the usefulness is demonstrated in prediction of long-term ablation
outcomes from pre-operative patient signals. A brief overview of the organization of
the chapters is included below.

• Chapter 2 - The background of the work, including the cardiac electrophysiology,
AF mechanisms and treatment, multiscale atrial models, machine learning tech-
niques, and related works.

• Chapter 3 - Methods and results for the generation of the synthetic dataset via
multiscale modeling for Chapter 4, 5 and 6, with important insights that inspired
the development of a machine learning algorithm presented in Chapter 4.

• Chapter 4 - Development of a machine learning algorithm for predicting AF mech-
anisms to separate reentrant from focal sources, and different types of focal sources,
with an application of predicting late AF recurrence of paroxysmal AF patients
post-ablation.

• Chapter 5 - Development of another algorithm to extract a patient cycle length
spectrum metric, which acts as a surrogate model for the atrial state for AF pa-
tients, with application to predicting late AF recurrence of persistent AF patients
post-ablation.

• Chapter 6 - Development of a novel deep-learning method to annotate active and
passive centrifugal activations, which can indicate AF mechanisms including FS,
single-atrial driver, and interatrial macroreentries that are inaccessible to ECGi.

• Chapter 7 - Discussion on the findings, impact, and future work.
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Chapter 2

Background

Since the focus of our studies is on novel non-invasive mapping techniques for AF
catheter ablation treatment, we first overview cardiac electrophysiology with a quan-
titative view. We then introduce the pathoelectrophysiology of AF mechanisms, the
non-invasive mapping tools, ECGs and BSPMs, as well as the ablation therapy. In or-
der to quantitatively analyze the non-invasive mapping signals, we introduce related
machine learning and deep learning techniques, and then progress to the multiscale
modeling which could aid such analysis. Finally, we present the related works for ana-
lyzing AF BSPMs, where we identified the need for developing robust machine learning
methods for analyzing BSPMs to personalize AF treatment.

2.1 Basics of cardiac electrophysiology

The heart is an organ with a group of highly specialized muscle cells that contract and
relax spontaneously throughout our life. Unlike other muscle cells, their excitation is
only modulated by neurological stimulation. It is therefore vital to maintain a regu-
lar rhythm of contraction and relaxation, which ensures the transmission of oxygen,
nutrients, metabolin and other substances to different organs of the body.

2.1.1 Action potential (AP)

The excitation of the cell is via the generation of an action potential (AP). The AP is
a transient pulse of electrical charges across the cell membrane, where the transmem-
brane voltage Vm abruptly changes. The initiation of APs in the heart relies on a group
of specialized cardiac cells, known as the “pacemaker cells”, of the sinus-atrial node
located on the top of the right atrium. The AP, once initiated, propagates to adjacent
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Chapter 2. Background

cells. The process for AP propagating from sinoatrial node to the rest of the heart is
shown in Fig. 2.1.

Fig. 2.1. The geometry of the heart, and the temporal relationship of activation as
well as the morphologies of their APs in different parts of the heart. Figure reused with
permission from Kusumoto et al. [20]

An AP is generated across the membrane of an excitable cell. The lipid bilayer of
the membrane separates the interior from the outside of the cell. The movement of ions
across the membrane via ion channels constitutes an electrical current.

The ions move from high to low concentration, which is known as diffusion. This
process continues until the electrochemical equilibrium for that kind of ion is reached.
The membrane electrical potential at that equilibrium is called “equilibrium potential”
or “Nernst potential” (Eion) [21]. Any deviation of the membrane voltage from the Eion
results in ion movement that restores towards Eion, and in this sense, the membrane
acts like a battery. The transmembrane voltage at the resting state, Em, is the total sum
of Eion of all ions and is relatively constant, about -70 mV.

The thin lipid bilayer has a capacitance Cm [22]. On a patch of a membrane
(Fig. 2.2), the transmembrane voltage, Vm, the ionic current is Iion, the net membrane
current is Im, and they are related by

Im = Iion + Cm
dVm
dt

(2.1)

To explain the abrupt change of transmembrane current during an AP, two phys-
iologists, Hodgkin and Huxley, hypothesized in 1950s that the ionic currents are in-
dependent, and Na+ and K+ channels, while remaining closed normally, briefly open
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Cm gK gNa gL

Extracellular

Intracellular

Vm

EK ENa EL

ILINaIK

Im

Fig. 2.2. A transmembrane patch modeled as parallel capacitive current and ionic
currents in the Hodgkin-Huxley model. Vm: transmembrane voltage. gK , gNa and gL:
ionic conductance, with gK and gNa varying at transthreshold stage and static at resting
stage of the AP. IK , INa and IL: potassium and sodium ionic currents and leak current. Cm:
membrane capacitance.

during depolarization, which produces a greater depolarization [23]. They described
the transmembrane current as Fig. 2.2, and provided the following equation

Iion = gK(Vm − EK) + gNa(Vm − ENa) + gL(Vm − EL) (2.2)

where gK , gNa and gL are ionic conductance that change over time in a nonlinear man-
ner. It can also be seen that the ionic currents depend on the voltage, which reflects the
voltage-gating properties of the ion channels.

2.1.2 AP of atrial cells

The Hodgkin-Huxley model serves as an important foundation for quantitative electro-
physiology, as we shall see next in cardiac AP models. The AP of a cardiac myocyte cell
consists of rapid depolarization (phase 0), early repolarization (phase 1) plateau (phase
2), repolarization (phase 3) and resting (phase 4) phases. The electrical stimulus must
exceed a threshold in order to initiate the AP. A stimulus with amplitude as a double of
this threshold stimulus amplitude would not make a significant difference on the AP, al-
though the latency between the stimulus and the depolarization is reduced [22]. When
an AP is excited by a stimulus, the fast sodium channel opens, allowing a large amount
of Na+ influx, and triggers a sequence of concerted activities where ions, mainly Ca2+,
Na+ and K+, flow through the channels (Fig. 2.3).

The acetylcholine-activated potassium current IK(ACh) is activated by acetylcholine
(ACh) released from the endings of vagal nerve. ACh release shortens action potential
duration in the atrial myocytes, and increases the spatial heterogeneity of refractoriness
in the atria, which further facilitates the reentry [25].
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Chapter 2. Background

Fig. 2.3. Schematic representation of AP of a sinoatrial node, an atrial myocyte cell
and a ventricular myocyte cell, with red showing inward currents and blue marking
outward currents. INa: Na+ current. ICaL and ICaT : L-type and T-type Ca2+ currents.
Ito,f and Ito,s : fast and slow transient outward K+ currents. IKs, IKr, and IKur: slow,
rapid and ultra-rapid components of the delayed rectifier K+ current. IK1: inward rectifier
K+ current. IKATP : adenosine diphosphate-activated K+ current. IKACh: acetylcholine-
activated K+ current. If : “funny” current. INCX : Na+/Ca2+ exchange current. Figure
reused from Len et al. [24] under CC-BY license.

Several ionic models to describe the ionic current, Iion, for atrial cells have been
developed for the human atria, such as those by Nygren et al. [26], by Courtemache,
Ramirez and Nattel (CRN) [27], by Maleckar et al. [28], by Grandi et al. [29] and by
Koivumäki et al. [30]. These models emphasize different aspects of atrial arrhythmia,
and so should be chosen according to specific applications [31]. Among these models,
the CRN model was the only model to consistently reproduce beat-to-beat alternan [31],
which is an important cellular electrical basis for the initiation of arrhythmia. The
CRN model is also the most commonly used in tissue-scale AF modeling in the recent
years [32].

2.1.3 Excitability of cell

During an AP, there is a period where the cell is non-excitable, which allows the relax-
ation of the cardiac myocytes, and serves as a protective mechanism against premature
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atrial contraction and against multiple sequential stimuli. The effective refractory pe-
riod (ERP), refers to the period when the cell cannot respond to a stimulus to depolarise.
The AP duration (APD), the duration of the AP above a certain threshold, is often used
as a surrogate for refractoriness. The value of this threshold is usually specified on a
case-by-case basis.

2.1.4 Conduction velocity of depolarizing wave

Intracellular electrical excitation depends on the speed of the ions moving across the
membrane, which is related to the driving force of the ions from the difference be-
tween Eion and Vm, as shown in Eq. (2.2). Intercellular conduction is via the gap junc-
tional channels. Gap junctions are low-resistance pathways, connecting the cytoplasm
of two cells, both electrically and mechanically [33]. The intercellular conduction is
anisotropic, where the conduction is faster along the longitudinal direction of the fiber,
but slower in the transverse direction. High heterogeneity in the atria was also observed
for the AP as well as the fiber orientation cross atrial regions [34, 35].

2.2 Atrial fibrillation (AF)

AF is a heart condition in which the atria activate very rapidly and irregularly. The
exact mechanisms of AF are still not completely understood, and multiple hypotheses
have been proposed. AF is also known to be a progressive disease, with both electrical
and structural changes, rendering the atrial substrate more susceptible to longer AF
episodes. Therefore, a variety of AF mechanisms have been found in patients, resulting
in multiple ablation strategies targeting different mechanisms. The variety in the AF
mechanisms has also posed challenges for the development of non-invasive mapping
technologies.

2.2.1 AF mechanisms

Generally speaking, an AF episode requires an initiation mechanism and a perpetuation
mechanism. An illustration of the basic AF mechanisms is summarized in Fig. 2.4, and
the explanation is found in the main text followed.
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Chapter 2. Background

Fig. 2.4. An illustration of the basic AF mechanisms. A: Single focal trigger. B: Mul-
tiple wavelets that form and terminate, giving rise to daughter wavelets. C: Multiple
reentries. D: Combination of focal triggers and reentries. Figure reused under license
from Cheniti et al. [36].

AF initiation

An atrial ectopic beat is an electrical activation arising from a site other than the sinoa-
trial node. A focal source, referring to a repetitively firing ectopic beat, can itself be
regular, but can initiate fibrillatory activity with varied rates [37]. Reentry is initiated
by an ectopic beat when the depolarizing wavefront encounters heterogeneously recov-
ered tissue, causing the formation of a unidirectional conduction block [38]. The PV/LA
junction with an APD gradient can act as a significant substrate for AF initiation. Spatial
APD heterogeneity may also be attributed to the varied extent of parasympathetic ac-
tivity across the atria, which triggers the ACh-activated potassium current IK(ACh) that
shortens APD [25].

Triggers locations Ectopic beats are distributed primarily on the PVs, but are also
common in non-PV regions. Haissaguerre et al. first reported the role of ectopic activity
originating from PVs, which was found in 94% of the 45 AF patients with frequent AF
episodes [4] (Fig. 2.4 A and D). The reported prevalence of non-PV ectopic beats in
AF patients has been up to 60% [39]. Locations of non-PV foci include the LA and RA
myocardium, LA appendage, inter-atrial septa, the vein of Marchall, the superior vena
cava, and the coronary sinus [40, 41, 42, 43].
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AF perpetuation

Multiple wavelets hypothesis The multiple wavelet hypothesis [44], developed by
Moe in 1964, has been acknowledged as the main perpetuation mechanism for decades.
In this hypothesis, the AF is believed to be sustained by multiple randomly meandering
wavelets, which constantly break up and give birth to new independent wavelets [44]
(Fig. 2.4 B). The clinical evidence for this hypothesis is the success of Cox-Maze pro-
cedure [45], which explains fibrillatory wavelets spontaneously terminating when they
reach the unexcitable ablation lesions.

Localized source hypothesis However, the multiple wavelet hypothesis conflicts with
the observation of dominant frequency (DF) sites clustering near sites such as the poste-
rior LA near a PV ostium [46]. Using high-resolution optical mapping on sheep atria, it
was also found that the phase singularity (PS) points were transient with a nonrandom
spatial distribution, which likely resulted from the breakups of high-frequency orga-
nized waves [47]. These results together suggest that the wavelets are passive, and
AF could be perpetuated from localized drivers. The “driver” term refers to the role of
these localized mechanisms, which is akin to an “engine” driving the continuation of the
AF episode. Multiple wavelets can appear at areas far away from these drivers, where
wavebreaks lead to multiple wavefronts, so that identification of the underlying driver
type is obscured.

The localized drivers consist of focal and/or reentrant activity (Fig. 2.4 D). The
focal driver refers to a persistence focal source that perpetuates the AF episode, while
reentry, refers to the cardiac tissue being excited by circulation of the activation wave-
front, around an anatomical or functional conduction obstacle [48] (Fig. 2.4 C).

Anatomical reentries rotate around scars or physical obstacles (such as the ring
of triscupid valve in atrial flutter [49], or via the coronary sinus ostium AF [50]). For
these reentries, the wavelength, the product of ERP and the average conduction velocity,
should not exceed the circumference of the circuit in order to allow an excitable gap for
the conduction front to advance. Micro-anatomical reentries (or intra-mural micro-
reentries), as a kind of anatomical reentry, anchoring on intramural atrial bundles or
highly fibrotic tissue, were observed using simultaneous optical mapping of endocardial
and epicardial wall [51].

Functional reentry refers to spiral wave reentries, or rotors, where the core of
a rotor remains unexcited, and the curvature of the depolarization wavefront modu-
lates the conduction velocity [36]. Rotors have been observed in patients using basket
catheters [52, 53].
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Continuous spectrum The debate of these two hypotheses is still ongoing. For pa-
tients with self-terminating AF within 7 days, classified as “paroxysmal” AF patients,
their AF episodes are believed to be mainly caused by trigger mechanisms. For both
“persistent” AF patients, periods of AF lasting more than 7 days which can be termi-
nated with cardioversion, and “permanent” AF patients, periods of AF longer than 7
days which cannot be terminated by treatment. As the disease progresses, the atria
are found to go through a remodeling process which makes them more susceptible for
AF perpetuation. Nonetheless, overlaps between the trigger and perpetuation mech-
anisms exist [38]. For example, persistent AF patients with minimal structural heart
disease had one-year outcomes after PV isolation comparable to paroxysmal AF pa-
tients [54]. The current consensus is that the AF condition is described by a continuous
spectrum, which, as the AF progresses, shifts from localized drivers to more diffuse
complex wavelets perpetuated by an arrhythmogenic substrate [9].

2.2.2 Atrial remodeling

The progression of AF is accompanied by the process of atrial remodeling. The effects
of atrial remodeling promoting AF perpetuation include shortening of APD, abnormal
restitution, conduction slowing, and reduced automaticity or prolonged conduction of
sino-atrial node [37, 55]. Contractile and structural remodeling include dilation in both
atria [56], impaired atrial contractility, myocyte hypertrophy, myocyte death, and tissue
fibrosis [38].

2.2.3 Standard ablation strategies of AF

Elimination of triggers

Since PV triggers are known to be the most common initiation mechanisms in AF pa-
tients, isolation of focal triggers by durable lesions is standardized clinical practice [5].
The isolation of triggers in the PVs, developed by Haïssaguerre et al. [4], is the standard
procedure for the initial procedure of AF patients [5]. In order to reduce PV stenosis
and prevent newly developed triggers from other PVs, an improved technique was de-
veloped which adds large circumferential ablation lesions on the LA to enclose all four
PVs. This reduced operation time since there is no need for mapping before PV isolation.
Non-PV ectopic beats were also found to be responsible for AF recurrence post-ablation,
in both paroxysmal and persistent AF ablation [57], substantiating the need to map
and ablate these triggers during procedures. Therefore, ablation of non-PV foci has also
been taken into clinical practice [43].
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Modification of substrate

Linear ablation The Cox-Maze procedure [45], creates a set of transmural lesions
separating both atria into small compartments, with demonstrated success of AF-free
maintenance for persistent AF patients. Variations of the procedure used a smaller lesion
set, which led to linear atrial ablation strategies [38]. The linear ablation was usually
performed in combination with other strategies such as PV isolation or circumferential
LA ablation. The typical lines of ablation include the LA roof, LA posterior wall, the
lateral mitral isthmus, and cavotricuspid isthmus [38]. However, as the lesions can lead
to the development of LA flutter, the linear ablation strategy is not recommended for
the initial ablation of paroxysmal AF patients [5].

Rotor core ablation Reentrant and focal drivers have been mapped and ablated with
a 64-lead basket catheter. The initial studies [58] showed rotors are present in a large
proportion of patients, but subsequent studies did not reproduce the same efficacy as
the initial studies. ECGi-guided rotor core ablation was performed to eliminate high
PS sites, which achieved shorter duration of radiofrequency delivery to AF termina-
tion compared to a step-wise ablation [59, 60], but a similar AF-free maintenance in
12-month followups [61]. With a similar goal, the ablation of high DF regions was
performed prior to the PV isolation [62] in 50 AF patients to eliminate high DF sites.
The ablation of high DF sites was found to be associated with a higher post-ablation
AF maintenance compared to PV isolation. However, another prospective ablation trial
with 232 AF patients enrolled reported no such improvement [63].

Ablation of complex fractionated atrial electrograms (CFAEs) CFAEs refer to elec-
trograms that are short CL, fractionated, and/or of low voltages over several cycles [64].
Regions with CFAE were believed to reflect sites of wave collision and slow conduction,
and the anchor points of stationary reentries. Thus, ablation strategies targeting CFAEs
were developed [65]. Mapping results by multi-polar catheters suggested the most com-
mon areas of CFAE are distributed on PV and their antra, coronary sinus, as well as LA
roof and posterior wall [66], which are similar to where focal and reentrant drivers are
distributed. However, as the strategy of PV isolation and CFAE ablation showed con-
flicting results in the follow-up studies between different centers, CFAE was considered
as a passive phenomenon rather than an active driver for AF maintenance [67].

Voltage-guided and CMR-guided fibrosis ablation Myocardial fibrosis indicates an
arrhythmogenic substrate, as it is responsible for wavebreaks, slow conduction, hetero-
geneity of APD and ERP. Areas with low voltage in the electrograms were shown to
be related to myocardial fibrosis. Delayed enhancement magnetic resonance imaging
(MRI) also provided possibilities in mapping fibrosis non-invasively. However, there was
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no clear standard for the cut-off threshold in voltage mapping or pixel intensity in MRI
images for localizing the fibrosis tissue [68]. An expert consensus recommended map-
ping and subsequently ablating low voltage areas only for non-paroxysmal AF patients
undergoing repeated ablation [5].

2.2.4 Non-invasive AF mapping tools

The 12-lead electrocardiography (ECG) is the most commonly used clinical tool to di-
agnose the presence and mechanism of arrhythmia. As shown in Fig. 2.5, a 12-lead
ECG system consists of three limb leads and six precordial leads, with all leads using
Wilson’s Center Terminal as a reference. These 12 leads then form the sagittal, frontal
and transverse plane projections, and the morphologies of the ECG in these 12 leads
can inform on electrical propagation in the heart. The potentials on leads of I, II, III
aVR, aVL and aVF in the 12-lead ECGs are obtained as follows:

I = VL − VR (2.3)

II = VR − VF (2.4)

III = VL − VF (2.5)

aVR = VR − (VL + VF )/2 (2.6)

aVL = VL − (VR + VF )/2 (2.7)

aVF = VF − (VR + VL)/2 (2.8)

The body surface potential maps (BSPMs) are similar to 12-lead ECGs, except with
a larger number of electrodes, eg. 252 leads by the CardioInsight (Medtronic, NL)
system in Fig. 2.6. BSPM provides a larger coverage of the potentials on the torso.

Electrocardiography imaging (ECGi) infers the epicardial maps of electrical poten-
tial by solving an inverse problem given the BSPMs and the geometries of the mesh and
the torso acquired by computer tomography (CT) imaging. However, in order to cope
with the ill-posed property of the inverse problem, ECGi uses regularization with prior
assumptions. Successful demonstration of ECGi involves simple AF cases driven by a
single focal or reentrant driver [41, 40]. However, so far, there is little validation using
clinical data, especially for AF with multiple drivers [11]. Apart from this, ECGi also
suffers from a generally low resolution, and can not distinguish between breakthroughs,
spontaneous focal sources, as well as micro-reentries [70].

Other algorithms for non-invasive AF mapping using ECG and BSPMs were devel-
oped without the need for cardiac imaging. We introduced them as related works in
Sec. 2.5.
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(a) (b)

(c)

Fig. 2.5. (a) Lead placement of three limb leads (VL, VR, VF )and Wilson center terminal
(CT). (b) Lead placement of the six precordial leads in a 12-lead ECG system. (c)
Interpretation of 12-lead ECG. Figure adapted from [69].
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Fig. 2.6. Lead placement of BSPM in the CardioInsight system.

2.3 Basics of machine learning

Machine learning refers to computer algorithms that automatically identify patterns
within data to accomplish tasks such as inference or prediction [16]. The ability for a
machine-learning algorithm to correctly make predictions from the unseen data is called
generalization which is valuable because the ultimate goal for machine learning is to
make correct predictions on data from real-world applications.

If a model performs too well on the training dataset, but poorly on the unseen data,
it is likely that there is an overfitting. The opposite of overfitting is underfitting, which
means the model was unable to capture the relationship between the input and the
output. In order to minimize the chances of overfitting and underfitting, when training
a machine learning algorithm, a training dataset and a held-out test dataset are usually
required. The training set is used to train the model while the test dataset remains
invisible until evaluation. Sometimes the training set is further split into a training
subset and a validation subset in order to select the hyperparameters of the model,
where the model is trained on the training subset, and the evaluation on the validation
dataset is used to select the best model.

Supervised machine learning refers to a class of data-driven methods with pre-
diction targets available in the training/validation dataset, where the computer auto-
matically extracts the statistical relationship between the inputs and the outputs. In a
supervised classification problem, the outputs are discrete values denoting their classes,
and they are available to the algorithm during the training phase. In our problem, the
labels could be the cardiac arrhythmic conditions or mechanisms, or the outcome of
a treatment. In this work, Gaussian processes and the classification models belong to
supervised learning. Unsupervised machine learning refers to the problem where the
training/validation dataset does not contain the prediction targets. In this work, prin-
cipal component analysis, blind source separation problem, and clustering belong to
unsupervised learning.
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2.3.1 Gaussian Processes

A Gaussian process (GP) is a generalization of the Gaussian probability distribution
over functions [71]. A GP is uniquely determined by its mean and covariance, which
is also called the kernel function. The function f drawn from the GP is denoted as
f(x) ∼ N (m(x), k(x,x′)) where

m(x) = E{f(x)} (2.9)

k(x,x′) = E{(f(x)−m(x))T (f(x′)−m(x′))} (2.10)

where E{·} denotes the expected value of the random variable enclosed. A GP models
the function f as a Bayesian linear model with “kernel tricks". By mapping the input to
the feature space by a function φ(x), the GP is able to model a variety of functions using
a linear regression, as the mapping function can be nonlinear, and the feature space
can be of any finite number of dimensions. To see why this is the case, consider the
following regression model, where the mapping between the feature and the output is
linear, with a noise term w

f(x) = φ(x)Tw, where w ∼ N (0,Σp) (2.11)

Following Eq. (2.9) and (2.10), the mean m(f(x)) and the covariance k(f(x), f(x′)) of
the function f(x) ∼ N (m(x), k(f(x), f(x′))) are

m(f(x)) = E{φ(x)w} = φ(x)E{w} = 0 (2.12)

k(f(x), f(x′)) = φ(x)TE{wwT}φ(x′) (2.13)

= φ(x)TΣpφ(x′) (2.14)

where Σp = E(wwT ). It can be seen that the output of the kernel function k(f(x), f(x′))

is an inner product of the features, φ(x)TΣ
1/2
p and Σ

1/2
p φ(x).

GP prior and posterior Similar to other Bayesian updates, before seeing any obser-
vations, the GP models the prior distribution of the target function. When new observa-
tions are added, the posterior distribution of the target function can be obtained, which
is what we are interested in.

Consider the observations y on the inputs x mixed with white noise ε, y = f(x) +

ε, where ε ∼ N (0, σ2
n). We used (X,y) = {(xi, yi)} to denote n pairs of training input

vectors x and scalar ouputs (training targets) y, X is the training input matrix which
aggregates x into n rows, and y is a vector of all scalar outputs. We also denoted a
testing input matrix X∗ for the test inputs.

Following Eq. (2.12) and (2.14), the prior distribution of the prediction on the test
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inputs f(X∗) = X∗, f∗ is given by

f∗ ∼ N (0, κ(X∗,X∗)) (2.15)

where K(·, ·) is the covariance matrix, which contains the mapping function φ(x) im-
plicitly, as shown in Eq. (2.14). The samples drawn from the posterior distribution are
shown in Fig 2.7 (a). The joint distribution of the observations f∗ and the prediction of
the target function y are given as follows:[

y

f∗

]
∼ N

(
0,

[
κ(X,X) + σ2

nI, κ(X,X∗)

κ(X∗,X), κ(X∗,X∗)

])
(2.16)

where I is an identify matrix. After seeing a number of observations, the distribution of
the predicted function f∗, which is the posterior distribution, is given by

f∗|X∗, f ,X ∼ N (m(f∗), cov(f∗)) (2.17)

where m(f∗) = κ(X∗,X)(κ(X,X) + σ2
nI)−1y (2.18)

cov(f∗) = κ(X∗,X∗)− κ(X∗,X)(κ(X,X) + σ2
nI)−1κ(X,X∗) (2.19)

The samples drawn from the posterior distribution are shown in Fig 2.7 (b). When
there are observations taken nearby, the standard deviation of the posterior distribution
is smaller and the estimated mean is closer to the true function.
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(a) Prior distribution
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Sampled function #4

Sampled function #5
Sampled function #6

Mean
Truth
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Fig. 2.7. The sample functions drawn from (a) prior distribution and (b) posterior
distribution of GP functions, with their mean and covariance, over 10 noise-free ob-
servations of the true function y = 2 sin(5x). The kernel function is a radial-basis function
with one hyperparameter of characteristic length-scale l bounded to 0.1 ≤ l ≤ 10. In (b), l
was optimized by maximization of marginal likelihood, and the mean of the posterior dis-
tribution approximates the truth function. A better performance can also be observed at
locations where the uncertainty bound (±1 standard deviation (std. dev.)) is smaller as
observations are taken nearby.
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Optimization of GP kernel As can be seen in Eq. (2.19), it is essential to select a
suitable kernel in order to estimate the target function. For example, in many covariance
functions, there is usually a hyperparameter specifying the characteristic length-scale,
which, loosely speaking, means how far apart two data points in the input space can be
before no longer considered correlated. A very large value of characteristic length-scale
gives rise to smoother GP estimated functions akin to “underfitting”, whereas using a
length-scale value that is too small may lead to “overfitting”.

Two common methods for selecting kernel functions and their hyperparameters in-
clude maximization of marginal likelihood, and cross validation. For the former method,
the marginal likelihood contains a data fit term, a complexity penalty and a constant
term, which can be optimized by following the gradient of the marginal likelihood with
respect to the hyperparameters θ. The marginal likelihood is given by marginalizing the
prediction term f from the joint distribution in

p(y|X) =

∫
p(y|f ,X)p(f |X)df (2.20)

The marginal likelihood is therefore

log p(y|X, θ) = −1

2
yT (κ+ σ2

nI
−1)y − 1

2
log |κ+ σ2

nI| −
n

2
log 2π (2.21)

where κ = κ(X,X).

Notice that in Eq. (2.21), we explicitly write the hyperparameter variable θ as we
can then take the derivative of p(y|X, θ) with respect to θ and perform gradient descent.
As with other gradient descent methods to find the optima, starting from several differ-
ent locations increases the likelihood of finding the global maximum of the marginal
likelihood. For the cross-validation method, closed forms of the partial derivative of the
cross-validation predictive mean and variances with respect to the hyperparameters are
also derivable, which are used to update the hyperparameters. The formulations for
these two updates can be found by Rasmussen and Williams [71].

GP for regression (GPR) GPR has been frequently applied in modeling unknown
functions that can only be evaluated by a limited set of observations. Advantages of the
Bayesian framework for performing regression tasks include the available uncertainty
estimation, and the flexible description of the underlying data structure via the adoption
of a kernel.

The GPR was previously used to represent the estimation and uncertainty of ven-
tricular voltage maps from a finite set of CARTO measurements for patients of con-
genital heart diseases [72], which was used to guide the mapping process. A Gaussian
Markov Random Field, a Bayesian regression method using a kernel similar to GPR, was
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also used to estimate the local activation map of AF from CARTO measurements [73].
In addition, GPR was used to model data in the spectral domain containing periodic
components, which entailed using periodic covariance functions and then fitting the pa-
rameter [74, 75], as well as a pure non-parametric model with application in estimating
heart rate variability [76].

2.3.2 Blind Source Separation

Physiological measurements are usually collected by multiple sensors to record the ac-
tivity of organs, such as the electrocardiogram and the magnetocardiogram for heart
activities, and the magnetoencephalogram and the electroencephalogram for brain ac-
tivities. These measurements are spatiotemporally correlated far-field signals. When a
clinician inspects the signals, they look for spatiotemporal patterns in distinct activities,
with a mental process equivalent to source separation [77].

The problem of estimating these sources without knowing the specifics of the trans-
mission system is termed Blind Source Separation (BSS). It is surely not possible to
estimate the sources, without having a priori knowledge of the source characteristics. It
turns out however that one can estimate the sources up to certain indeterminacies, in-
cluding arbitrary scaling, permutation and the delay of estimated source signals, while
still preserving the temporal structure of the source waveforms [78].

BSS methods infer the sources of measurements based on a priori knowledge about
the sources, without knowing the construction of transmission systems. This is different
from the inverse problem of ECGi, which infers the sources by explicitly utilizing the
geometries of the heart and torso, as well as the transformation matrix for forward
modeling as inputs. BSS operates on signals after the preprocessing steps of centering,
whitening, and band-pass filtering, as well as dimension reduction techniques such as
the Principal Component Analysis, as introduced below.

Suppose signals are collected using N sensors X = [x1,x2, . . . ,xN ]T , and there are
M real sources S = [s1, s2, . . . , sM ]T . The mixing function f in X = f(S) project the S

to the signals X. If the transform f is linear, we can estimate a mixing matrix consisting
of K orthogonal vectors U = [u1,u2, . . . ,uK ]. The unmixing matrix is the transpose of
the mixing matrix, which projects the signal X to K sources, given by

X = US

S = UTX
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Centering and Whitening

The centering transform, given by X − X̄, and the whitening transform, are important
preprocessing steps for BSS in order to remove the correlation between channels of
signals, and for the sources to have unit variance. For the signal matrix after whitening
operation Xw, we have

E{XwXT
w} = I (2.22)

The whitening transformation also relies on the eigenvalue decomposition of the co-
variance

E{XXT} = UwDwUT
w (2.23)

where Uw is an orthogonal matrix of N eigenvectors u1,u2, . . . ,uN , and Dw is a diag-
onal matrix with eigenvalues on the diagonal. The whitened signals are given by the
following equation which satisfies Eq. (2.22).

Xw = D−1/2
w UT

wX (2.24)

Principal Component Analysis

Data in real-world applications is usually complex and of high dimension, but usually
lies close on a low-dimensional non-linear manifold spanned by latent variables [16].
The simplest continuous linear latent model is Principal Component Analysis (PCA) [16].
PCA is a widely used technique for dimension reduction, feature extraction and data
visualization in various applications. It decomposes data into a set of orthogonal com-
ponents by maximizing the variance of the data points on the orthogonal axes, which
is equivalent to maximizing uncorrelatedness between the sources [77]. The mean and
the variance of the sources are

E{s1} = E{u1x} = u1x̄ =
1

N

N∑
i=1

u1xi (2.25)

V ar{s1} = V ar{u1x} =
1

N

N∑
i=1

(u1
Txi − u1

T x̄)2 = u1
TSu1 (2.26)

where S = 1
N

∑N
i=1 (xi − x̄)(xi − x̄)T . The transform vector u1, which maps x to the

first component, can be obtained by maximizing the variance V ar{s1} subject to the
constraint of u1

Tu1 = 1 using a Lagrange multiplier [16]:

L = u1
TSu1 + λ1(1− u1

Tu1) (2.27)
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Setting ∂L
∂u1

= 0, it follows that

Su1 = λ1u1 (2.28)

λ1 = u1
TSu1 = V ar(x) (2.29)

The maximal variance is then given by the maximal value of λ1. All PCA pro-
jected components can be estimated in a similar manner, where all N projected compo-
nents can be incrementally retrieved by using the eigenvalues of subsequent amplitudes
λ1, λ2, . . . , λN . In this manner, the percentage of usingK PCA components to reconstruct
the signals could be calculated as∑K

i=1 ui
TSui∑N

j=1 uj
TSuj

=

∑K
i=1 λi∑N
j=1 λj

(2.30)

Second-Order Blind Source Separation (SO-BSS)

A set of BSS algorithms are based on second-order statistics, known as SO-BSS meth-
ods. These algorithms maximize the source periodicity through calculating the “average
eigen-strcture” of the covariance matrices [79]. In these methods, a time-delayed co-
variance matrix with a time lag of τ is defined as

Cx(τ) = Xτ+1:TXT
1:T−τ (2.31)

where the subscripts of Xi:j denoting the times from i to j are included, and the sub-
scripted T represents the length of the signal.

In SO-BSS, the transform f is assumed to be linear and stationary, and the trans-
formation matrix U is estimated via eigenvalue decomposition, or singular value de-
composition, which reveals the joint structures shared among the covariance matrices.
This idea was initially proposed in the AMUSE algorithm [80] to deal with two such
covariance matrices, one of which has zero time lag τ = 0, so that a general eigenvalue
decomposition can be used to diagonalize the two covariance matrices, Cx(0) and Cx(τ).
As the decomposition is sensitive to the choice of τ , the algorithm was later developed
into a joint diagonalization process on a large set of covariance matrices corresponding
to multiple time lags as presented in the SOBI algorithm [81]. The joint diagonaliza-
tion provides the eigenvectors shared amongst different covariance matrices, where the
eigenvalue matrices D̃0, D̃1, . . . , D̃K may be different but the eigenvectors in the matri-
ces Ũ are shared.

ŨD̃iŨ
T = Cx(τi), i = 1, 2, . . . , K
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Combined with the whitening process in Eq. (2.24), the sources are given by

S̃ = ŨTXw

One of the biggest advantages of the SO-BSS is that since they extract sources accord-
ing to the eigenvalues from the set of covariance matrices, these algorithms produce
estimated sources in a unique and consistent ordering [79]. In many applications, the
number of sources is unknown, such as the number of rotors in an AF episode. SO-BSS
exempted the need to estimate the source number, which is usually required in other
types of BSS problems.

Independent component analysis (ICA)

ICA is a special form of BSS problem, which infers the sources by maximizing the inde-
pendence or decorrelatedness between sources. A class of approaches is to maximize
the non-Gaussianity measure between the estimated components. The first iteration of
a well-known ICA algorithm, the FastICA algorithm [82], maximizes the fourth moment
of the sample data, i.e. the kurtosis measure, in order to minimize the non-Gaussianity.
It was later improved by an approximation of negentropy [83] to overcome the sensi-
tivity to outliers for estimation of non-Gaussianity by the kurtosis, which is equivalent
to minimizing the mutual information between the sources.

Another commonly deployed ICA method, InfoMax [84], maximizes the entropy of
the components via a neural network. It was proved later that the InfoMax approach is
equivalent to maximum likelihood estimation of the sources, and given that the density
of the sources is accurate, InfoMax is equivalent to minimizing the mutual informa-
tion [85]. These methods can estimate a non-linear transform function f , but there is
no ordering between the sources, so prior knowledge about the number of sources is
required.

2.3.3 Random Forest Classifier

One of the most widely used nonlinear classifiers is the random forest model [86],
which is an ensemble method based on decision trees. The decision tree builds decision
rules in a tree-like structure. To train a decision tree, in each node, an attribute (as
well as a binary cut-off threshold if the variable is a continuous variable) is selected to
split the data arriving at the current node into positive and negative examples for the
following nodes. The attribute is determined by the one with the maximal information
gain of the dataset S the node sees, measured by the entropy as follows

Entropy(S) = −p+ log2 p+ − p− log2 p− (2.32)
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where p+ and p− denote the proportion of the positive and negative examples for us-
ing selected attribute and threshold to split S, respectively. The decision tree greedily
optimizes such measures until a certain depth, usually specified by the user, or until all
attributes are exhausted.

A random forest is an ensemble of decisions trees, which uses bootstrapping meth-
ods to sample subsets of data with placement. A decision tree is built for each subset,
and the final classification result uses the majority vote of the trees, thereby reducing
the usual overfitting compared to using one decision tree [86].

2.3.4 Deep Learning

With the maturity of deep learning methods, the interpretation of ECG signals has been
diverted to deep learning methods. Here, we describe the mathematical background
for common deep learning practices. Deep learning is a special kind of machine learn-
ing technique, which uses multiple connected layers of neurons to approximate the
mapping between the input and the target output data. Similar to other optimization
problems, a loss function that measures the distance between the output and the target
is optimized, usually by updating the weights of a neural network by a backpropaga-
tion process [87]. During the backpropagation, the network parameters are updated
according to the partial derivative between the loss with respect to each parameter of
each layer backwards (i.e. from the last to the first layer), calculated using the chain
rule. A stochastic gradient descent method is usually used for optimization, which
performs the gradient descent on small batches of data, to improve performance and
reduce memory consumption compared to gradient descent on the whole dataset.

Basic architecture deep neural network

A basic deep learning architecture is a feedforward neural network with multiple layers,
which is also called a deep feedforward neural network or a multilayer perception
(MLP).

Output layer The last layer of the neural network is called the output layer. For clas-
sification tasks, the output layer is often chosen to be a sigmoid layer, which transforms
the inputs of the layer h into probalistic outputs p ∈ [0, 1].

ŷ = σ(wTh + b) (2.33)

where w is the weight, and b is the bias.
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A binary cross-entropy loss between the probabilistic output vector pi and the bi-
nary ground-truth vector yi for the i-th class, over NC classes, is often used as an opti-
mization goal for classification. A basic form of the loss is defined as

L = −
NC∑
i=1

[yi · log pi + (1− yi) · log(1− pi)]

where the · denotes the dot product of two vectors.

Hidden layers The layers between the input layer, the first layer, and output layer are
called hidden layers. While hidden layers can be any function, such as a fully connected
function,

g(z) = wTh + b (2.34)

in order learn more complex features, a non-linear transformation function is needed. A
popular choice for the non-linear activation function in modern deep learning networks
is to use rectified linear unit (ReLU) [88], defined as

g(z) = max(0, z)

Furthermore, different distributions of input data faced in each layer may cause
an “internal covariate shift” problem where each layer has to be adapted to the differ-
ent distribution. This could result in a significant shift due to the cascading effect of
the backpropagation in a deep neural network. To solve this, a batch normalization
transform [89] to normalize the input data of each layer is usually added to the neural
network as hidden layers.

Convolutional neural network (CNN)

Generally speaking, increasing the number of layers and the number of parameters in
each layer will increase the flexibility of the model. However, increasing network layers
introduces the problem of “vanishing gradients” with an inefficient weight update. The
increased number of parameters is also likely to cause overfitting, just as with other
machine learning models with too many parameters. To solve this problem, CNN and
recurrent neural network have been developed, which can learn local features efficiently
via parameter sharing.

CNNs have been successfully applied to learning invariant features in many ap-
plications with a regular grid structure, including regularly-sampled time series as 1D
grids of values, and image and video data as 2D and 3D grids of pixels [17]. A CNN is
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a deep neural network that uses a convolution operation in at least one of the layers,
which is often combined with pooling layers.

Convolution layer The convolution layer performs a standard feature extraction oper-
ation, with parameters w updated during the training. The formulas for 2D convolution
operation are represented as

S(i, j) = (I ∗K)(i, j) =
∑
i

I(i−m, j − n)K(m,n)

or S(i, j) = (I ∗K)(i, j) =
∑
i

I(i+m, j + n)K(m,n)

Advantages of convolution are summarized as sparse interactions, parameter shar-
ing and equivariance to representation [17]. The sparse interaction is realized by
using kernels much smaller than the input layer, which is typically between two fully
connected layers. The same parameters are shared between different locations, which
improves the generalization. The equivariant representation includes shift-invariance,
meaning that the translation in the input space would produce the same change in
the output space, which means, shifting the pixels in space does not impede object
detection. It also enables learning long-range global features via multiple levels of com-
position through stacking multiple CNN layers.

Pooling layer The pooling operation is another important operation in a CNN. It takes
the output of a pooling function from a rectangular region, to guarantee that the feature
is invariant to small changes in the space. Max Pooling [90] is a standard choice, which
selects a maximum value from a rectangular neighborhood. The pooling makes the
representation in the next layer approximately invariant to small shifts in the last layer
in regards to the presence of a feature [17].

Recurrent neural network (RNN)

RNNs were designed to learn long time-series. A time series of T samples

X = {x1,x2, . . . ,xT}

is fed as input through a basic RNN with the cells as shown in Fig. 2.8 (a-b). A cell at
time t in the RNN architecture takes two inputs, the output from the previous cell at−1,
as well as the input data xt. These two vectors are multiplied by learn-able parameters
and summed together, and transformed by a non-linear function, g1, to produce the
cell output at. In the simplest case, g1 can be the tanh function. The cell output can
also be transformed by another activation function, g2, such as a softmax function for

25



2.3. Basics of machine learning

classification tasks. The training labels can be supplied either as a sequential data,
y = {ŷ1, ŷ2, . . . , ŷT}, or a single entry as y = ŷT .

 

(a) An RNN 

...

(c) An RNN cell with gating (b) An RNN cell

Fig. 2.8. The basic architecture of (a) an RNN, (b) an example RNN cell and (c) an
example RNN cell with gating functions (in red).

The update rules of RNN cells can be described as:

a0 = 0 (2.35)

at = g1(Wa (at−1,xt) + ba) (2.36)

ŷt = g2(Wy at + by) (2.37)

where a0 denotes the input to the first layer has entries being all 0. The variables ba,
by, Wa and Wy are the biases and weight matrices in the linear layer before applying
the functions g1 and g2, and (at−1,xt) denotes concatenation of the at−1 and xt.

However, training such an RNN on long sequences of time series still suffers from
vanishing or exploding gradients. This problem is mitigated by adding gating vari-
ables to the cell, to improve its ability in processing long sequences. Two classical cell
architectures are the Gated Recurrent Unit [91], and the Long Short Term Memory
(LSTM) [92]. A basic RNN cell with gating function (Fig. 2.8 (c)) can be made by re-
placing the activation output at above by a memory-enabled output ct. An update gate
variable, Γu, decides whether the output of a time step t, ct is updated by a candidate c̃t
or the previous input. Mathematically, the update equations in Eq. (2.36) are replaced
by following equations:

c̃t = g1(Wc (ct−1,xt) + bc) (2.38)

Γu = σ(Wu (ct−1,xt) + bu) (2.39)
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ct = Γu c̃t + (1− Γu) ct−1 (2.40)

where bc, bu, Wc and Wu are the biases and weight matrices in the linear layer before
applying the function g1 and the sigma function σ, and (ct−1,xt) denotes concatenation
of the ct−1 and xt.

The candidate c̃t is the output of a sigmoid function σ over a linear function of ct−1

and xt. When the update gate variable Γu is equal to 0, the previous input ct−1 is taken
as ct = ct−1, thereby, being preserved to the next time. On the contrary, when the Γu is
equal to 1, the candidate c̃t is adopted to be the next output, ct = c̃t.

To further enhance the capability of RNNs, they can be trained in two directions,
forwards and backwards, so that the information can flow from an earlier time to a
later time, as well as vice versa. Stacking more than one RNN cells for each time step
encodes richer latent information for each time step, which can be suitable to learn data
with more complex structures [17].

Graph neural network (GNN)

A point cloud is a common data representation, especially for many applications in
computer vision such as shape classification, object detection, point cloud segmenta-
tion. The point cloud representation is also suitable for describing sensor placement for
physiological measurements, as the sensors are rarely placed as a regular grid. Deep
learning on point cloud data has been studied for decades. Albeit powerful, the CNN
and RNN described above are only suitable for regular grid-like data. Earlier attempts to
deal with the point cloud used convolution operations, by representing the point cloud
as sparse volumetric data so that 3D convolution could be applied [93]. As point clouds
usually arise from computer vision applications where cameras were used, multi-view
approaches were also popular [93]. A point-wise MLP method, PointNet [94], was also
proposed to learn the 3D classification by explicitly extracting the point-wise features
of 3D points through multi-layer MLPs [93]. However, PointNet was unable to capture
local structures essential in the extraction of global features [95].

The high demand across different applications has given rise to considerable re-
search attention into deep learning techniques on non-Euclidean data, such as a deep
neural network operating on a graph, which forms the field of geometric deep learn-
ing [96]. A simple and elegant idea to mimic the convolution operation on a regular
grid to irregularly placed graph nodes is via message passing between nodes [97]. The
message passing employs the following operations to pass updates from neighbouring
nodes xj of each node xi, to the node xi [98]

xi = γ(xi, �
j∈N (i)

φ(xi,xj, ej,i)) (2.41)
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where φ denotes a differentiable function, such as MLP, that operates on both nodes
and the edge ej,i which propagates the message from xj to xi. The � denotes a differ-
entiable, permutation-invariant function, such as sum, mean or max, for assembling all
the messages from every neighbour of i, N (i). Another differentiable function γ then
processes this propagation message and assembles it with the xi. This update method
can be accelerated on Graphical Processing Units [98], and can act as a template for
many state-of-the-art GNN architectures such as an edge convolution operation [99].

2.4 Multiscale modeling for AF

2.4.1 Construction of computer models

Multiscale modeling integrates multiple scales of models, such as cell, tissue, organ and
body. We provide a brief summary of the milestones in building multi-scale models for
AF. In 1964, Moe et al. [44] developed a first tissue-level AF model using a cellular
automata model, on which they demonstrated the multiple wavelets as the AF mecha-
nism. The first three-dimensional (3D) AF model was developed by Harrild and Hen-
riquez [100], which used a cellular model of Nygren et al. [26] with a realistic human
atrial geometry and fiber, and inter-atrial connection structures including fossa ovalis,
coronary sinus and Bachmann’s bundle. They were able to reproduce the conduction
pattern from several pacing sites of the atria observed in experiments. Vigmond et al.
developed a morphologically realistic 3D atrial model, with the addition of discrete in-
teratrial communication, anisotropic conduction, and muscular structures, to study the
spatial distribution of reentries due to regional difference of electrical properties [34],
which was later augmented by ACh regulation to increase APD heterogeneity [101].

Advancements in imaging technologies have enabled the construction of patient-
specific 3D atria models with atrial geometry being represented by the following: (1)
a 3D surface representation, containing a single manifold of atria, with geometries ob-
tained from CT [102], or from invasively acquired electroanatomical maps [103]; (2)
a 3D volumetric representation where geometries are represented as six-sided cubes
or tetrahedra, with geometries acquired from MRI [104] or CT [105]; and (3) a 3D
bi-layer representation, developed by Labarthe et al. [106, 107].

Due to the complexity in the atrial fiber structures, early modeling works [100, 34]
assigned fiber structures manually with references to histology data or based on rules,
which were improved by more detailed fiber structures obtained from histology [35].
In order to assign more realistic fibre structures obtained from detailed imaging data
of ex-vivo hearts to patient-specific meshes, semi-automated rule-based methods and
atlas-based methods [108] were developed. Recent works on atrial fibre structures
have focused on fully automated methods to map fibres from one atrial mesh to others,
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using predefined landmarks [105], or via a Universal Coordinate System shared across
different atrial meshes [109].

The fibrotic structures alter wave propagation in the atria [110], constituting an
important arrhythmogenic substrate. Atrial fibrosis is detected from LGE-MRI by means
of reduced gadolinium clearance, and has been included in patient-specific AF mod-
els [108, 111]. Different modeling techniques of fibrosis including lower conductivity,
edge splitting, and percolation were investigated by Roney et al. [112], and found that
percolation was closest to the clinical values of the phase singularities extracted by
ECGi. Nonetheless, further validation for the modeling methodologies of atrial fibrosis
using clinical data is still needed [110].

2.4.2 Computer models aided mechanistic understanding

There has been a long history of using 3D atria models incorporating multi-scale elec-
trophysiological properties to understand the mechanisms that induce or sustain AF.
For example, Jacquemet et al. [113] used a monolayer model to validate that the value
of wavelength, which is the product of ERP and conduction velocity, should be under
a certain threshold for sustained reentries, and a shortening of wavelength leads to an
increase of AF vulnerability. The same type of monolayer model was later used to show
an inverse relationship between AF CL and AF vulnerability in Hassaiguerre et al. [114].
On the 3D volumetric model of Harrild and Henriquez [100], Gong et al. [115] studied
the repolarization dispersion as the mechanism underlying repetitive ectopic beats in
paroxysmal AF. On three bilayer atrial meshes built from patient MRI images, Roney et
al. studied the effects of PV in initiating reentries from PV triggers include APD short-
ening and conductivity slowing [107], and on the same meshes, Saha and Roney et al.
studied how the presence of fibrosis affects the locations of phase singularities [116].

2.4.3 Computer models optimized AF ablation strategies

Ablation strategies have been optimized by inducing AF and performing virtual ablation
on the 3D atria model. On a general bilayer biatrial model with atrial fibrosis, Bayer et
al. [117] investigated several different ablation strategies, including PV isolation, PS ab-
lation, and a line ablation streamlining the wave propagation to resemble sinus rhythm
with multiple lines, and concluded that the last line ablation strategy achieved the high-
est efficacy. On a prospective study of catheter ablation for 10 persistent AF patients
with fibrosis in the atria, Boyle et al. [118] built personalized 3D atria models to predict
the optimal ablation sites for persistent AF, which resulted in 90% patients remaining
AF-free in an average of 309 post-ablation days. Loewe et al. [119] simulated depolar-
ization wave propagation on MRI-derived 3D atria models, and extracted all conduction
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pathways as vulnerability paths to be avoided, in order to reduce the development of
atrial flutter following an AF ablation therapy. They demonstrated retrospectively the
presence of such atrial flutter vulnerability paths from a patient developing an atrial
flutter after an AF ablation. Shade et al. [120] used features derived from LGE-MRI im-
ages and AF simulations by fast-pacing on 30 sites uniformly on the LA. Using machine
learning extracted from simulated episodes, including the number of rotors and macro-
reentries, they predicted the AF recurrence post-PV isolation, which achieved validation
sensitivity and specificity scores of 82% and 89% with ten-fold nested cross-validation
on 32 patients.

2.5 Related work on analysis of BSPM/ECG signals for
AF treatment

In the last section of the chapter, we review state-of-the-art methods for interpreting
BSPM/ECG signals for AF prediction and treatment. We summarize the related works
in Table. 2.1, which are divided into time-domain, frequency-domain and equivalent
source-domain methods. As can be seen, the interpretation of ECG/BSPM for AF map-
ping has also been aided with forward modeling of ECG/BSPMs by multiscale modeling.
Further comments on the papers are below.

2.5.1 Time-domain analysis

Atrial activity organization

Complexity is a physiological property arising from information theory, which measures
the randomness of a process. For example, the process of tossing a fair dice contains the
maximal entropy, as it is sufficiently hard to guess which face it shows. A widely used
complexity measure for ECG signals is the sample entropy [144], which was shown to
be increased within the first minutes after AF onset and decreased before AF termination
in AF patients [121]. It was also used to separate sinus rhythm with AF episodes [122].
Entropy measures extracted from recurrence quantification analysis of the first three
PCA components of 12-lead ECGs were also developed, along with other features of
spectral analysis, to distinguish between PV and non-PV drivers in ECGs of AF in order
to predict acute PV isolation success [124].

Another complexity measure is related to the orthogonal bases of the signals from
PCA analysis (Section 2.3.2). This includes “non-dipole index” measure, which takes the
value of the total ratios of the unexplained variance of the first three PCA components
(Eq. (2.30)) which was used to predict the immediate success of catheter ablation on
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Table 2.1. Summary of related works. PersAF: Persistent AF. ParoxAF: Paroxysmal
AF. AT: Atrial tachycardia. AFlut: Atrial flutter. VCG: Vectorcardiogrammes. Termination:
acute termination following catheter ablation. Outcome: late AF recurrence after catheter
ablation. MRAT: Macro-reentrant atrial tachycardia. BB: Bachmann’s bundle. FO: fossa
ovalis. CS: coronary sinus. PCA: Principal Component Analysis. AV: atrial-ventricular.

Domain Category Method Reference(s) AF pathophysiology AF treatment Data used

Time

Temporal

Sample Entropy [121, 122] Measure organization Predict AF onset
in ParoxAF pa-
tients [121]; Pre-
dict AF outcome at
discharge [122]

45 ParoxAF pa-
tients [121]; 30 AF
patients [122]

PCA explained variance [123, 15] Measure organization Predict AF termination
after PersAF ablation

28 [123] and 97 [15]
PersAF patients

Recurrence quantifica-
tion analysis

[124] Discriminate PV and
non-PV driver

Predict AF termination
after ParoxAF ablation

Simulation on 16
atrial-torso geome-
tries with 46 ParoxAF
patients

Maximal or average
amplitude of f-wave

[14, 122] Measure organization Predict 1-year recur-
rence after PersAF ab-
lation [14]; Predict AF
termination after abla-
tion [122]

90 PersAF pa-
tients [14]; 30 AF
patients [122]

Variance of of P-wave [125] Measure organization Predict AF presence
from Sinus Rhythm

73 PersAF patients and
20 control subjects

Searching BSPM clustering [126, 127, 128] Localize local site Pre-operative planning Simulation on single
heart-torso geometry

Spatiotemporal

Diopole trajectory
[129] Measure organization Pre-operative planning Simulation on one

heart-torso geometry
[130, 131] Localize focal site, dis-

tinguish rotor and FS
Pre-operative planning Simulation on one

heart-torso geometry
[132] Measure organization Pre-operative planning 10 control and 10

ParoxAF patients

VCG trajectory [133] Measure organization Pre-operative planning 22 AF patients subject
to AV junction ablation

[134] Identify MRAT sub-
types

Pre-operative planning Geometry-free simula-
tions and 30 MRAT pa-
tients data

Convolution neural
network

[135] Localize (undefined)
driver

Pre-operative planning Simulation on one
heart-torso geometry

Frequency

Temporal Organization index [13, 136, 124] Measure organization;
distinguish PV and
non-PV driver

Optimize timing of AF
defibrillation; Predict
AF termination after
ParoxAF ablation [124]

Experimental data
[13]; Simulation on
16 atrial-torso geome-
tries with 46 ParoxAF
patients [124]

Spectral entropy [137, 124] Distinguish PV and
non-PV driver

Predict AF termina-
tion after ParoxAF
ablation [124]

Simulation on 16
atrial-torso geome-
tries with 46 ParoxAF
patients [124]

Spatiotemporal
Highest DF [12, 122] Estimate highest DF

sites [12]; Estimate
dominant DF [122]

Pre-operative plan-
ning [12]; Predict
AF outcome at dis-
charge [122]

14 [12] and 30 [122]
ParoxAF and PersAF
patients

PS trajectory [138] Localize AFlut loop Pre-operative planning 9 AFlut patients
[139] Distinguish AT, AFlut

and AF
Pre-operative planning;
Predict AFlut termina-
tion

Simulation on one
heart-torso geometry

Source Spatiotemporal BSS and/or ICA [140, 141, 142, 143] N/A N/A Various numbers of pa-
tient data
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persistent AF [123, 15]. The separation of sources was also used in source-domain
analysis discussed later (Section 2.5.3).

A higher amplitude in the lead V1 and the lead II in f-waves was also found to
be related to younger patients with a shorter history of AF, and better treatment out-
come for two-year follow-ups for in persistent AF patients [14]. Hernandez et al. also
showed that the amplitude of P-waves can distinguish between sinus rhythm and an AF
patient [122]. Therefore, we classified this feature into atrial activity organization. As
a similar metric, higher variability of P-waves during sinus rhythm was observed in AF
patients compared to control patients [125].

Spatiotemporal analysis using dipole trajectories

BSPM signals can be modeled by a fixed dipole model [69], where the electrical field is
represented by a vector with three variables on a fixed position. The tip of the vector
is represented in a 3D Cartesian or cylindrical coordinate system, and this gives rise to
vectorelectrocardiogram (VCG). The mapping from BSPM to any 3D coordinate system
is not unique, and entails information loss. Nonetheless, this mapping reduces the
dimensions and is easier to process and provide diagnostic values.

Jacquemet [129] showed that the dipole trajectory extracted from simulated BSPMs
showed an increasing complexity from sinus rhythm, to atrial flutter to AF. Giacopelli et
al. [132] also showed that the dipole trajectory extracted from real BSPMs can separate
healthy subjects and paroxysmal AF patients. Using simulated data, the dipole trajecto-
ries were further used to determine the focal sites on a set of patient geometries [130,
131]. Ng et al. [133] showed that the VCG has preferential routes from 22 AF patients,
and the routes were correlated with atrial activity organization. Ruiperez-Campillo
showed that the most common macroreentrant types, including the right (peritricus-
pid) and left (perimitral) macroreentrant circuits, can be inferred by the VCG [134].

The body surface Laplacian mapping was also computed from P-waves of healthy
subjects, but was not applied on AF patients [145, 146]. As they reflected the source
and the sink of the electrical field on the torso, they could potentially contribute to the
diagnosis of AF mechanisms.

Searching by similarity

Computer models were also used to generate synthetic sets of BSPMs. The algorithm
matched the nearest neighbour from the previously generated BSPMs, and so, no fea-
ture was explicitly defined for the signals. Several in-silico studies showed that this
could be used for focal site prediction, including Potyagaylo et al. [126] and Ferrer-
Albero et al. [127]. Godoy et al. [128] showed that this method would suffer from an
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increased level of atrial fibrosis. However, these methods were trained and tested on
the same set of atrial-torso geometry, which made any search-based solution trivial.

Deep learning

Deep learning techniques have also been applied to the analysis, but most of the meth-
ods were trained to separate AF from sinus rhythm, thanks to the abundance of ECG
data from AF patients and control subjects. For AF treatment purpose, a recent pub-
lished work [135] estimated drivers from BSPMs based on simulated data using a CNN
(Section 2.3.4). Unfortunately, the definition of AF driver, which was an important con-
cept of AF mechanism, was not clear to us from the manuscript. Furthermore, the study
only used a single set of atrial-torso geometry.

2.5.2 Frequency-domain analysis

Spectral analysis using the Fast Fourier Transform transforms a time series from the
time domain into the frequency domain. It was frequently used to analyze the cardiac
signals including ECGs, in order to estimate the activation cycle length (CL) robustly.

Atrial activity organization

The organization index [13], which measures the content of the dominant frequency
(DF) and its harmonics with respect to all frequency content, was a metric to mea-
sure atrial activity organization in the spectral domain. The organization index was
used to optimize the timing of atrial defibrillation in animal studies [148]. The spec-
tral entropy [137] was another measure of organization in the frequency domain, and
although not directly developed for analyzing ECG initially, it was used as one of the
candidate features to predict PV/non-PV driver [124].

Dominant frequency (DF) and phase singularity (PS)

The dominant frequency (DF) of a signal represents the frequency component with the
highest energy. Guillem et al. [12] established that the highest DF region on the BSPMs
corresponds well with the highest DF site in the nearest atrium, from 67-lead BSPM
signals of 14 AF patients. The localization of high DF areas could help to narrow down
the search scope for the highest DF during ablation. A limitation in the DF analysis
is that it is agnostic to FS and reentrant sources. For complex AF mythologies, the
frequency power spectrum is diffuse, making it hard to extract DF automatically.
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The PS extracted in the phase map of the BSPMs is another important feature in
spectral analysis. Using simulated data, Rodrigo et al. showed that the sustained PSs
on the BSPM indicated the presence of rotors after high-pass filtering [149]. Liberos
et al. [138] predicted the location and the chirality of atrial flutter by tracking the
trajectory of PS. Marques et al. [139] demonstrated a potential use of PS trajectory in
separating atrial tachycardia, atrial flutter and AF on 19 simulated BSPMs of one set
of geometry. For PS analysis, attention should be paid to the fact that the PS was not
a unique feature for reentrant sources [149]. There is also a higher systematic error
between DF extracted on torso and in the heart for less regular atrial activities [136].
Therefore, it is unclear whether PS trajectory remains meaningful for rotor detection
in complex AF episodes with multiple simultaneous wavelets. This is not surprising for
far-field signals, and could be a theoretical limitation for how much we can utilize them
for analyzing AF mechanisms.

2.5.3 Equivalent source-domain analysis

The BSPM is the result of mixing several atrial activities. To identify these atrial ac-
tivities, methods to extract equivalent source separation were investigated, such as
BSS methods described in Section 2.3.2. Using SO-BSS and/or ICA techniques, atrial
content, opposed to the ventricular content, were extracted from BSPMs of AF pa-
tients [140, 141, 142, 143]. These methods were mainly used as a preprocessing step
of signals for downstream tasks such as DF analysis.

2.5.4 Remarks on related works

From the previous works, it is evident that the patient follow-up data are the most direct
indicator of therapeutic outcomes. Simultaneous mapping data of the atrium and the
torso is also of great value to confirm AF mechanisms. However, it takes a long time and
a good practice of data management to collect these types of data, so it is not always
possible to obtain enough patient data that can be split into training, validation and
testing sets. A robust validation further requires diagnostic cohort design, multi-center
data collection and prospective deployment of the algorithm [150].

Computational modeling provides another data source for training and testing
models, through the generation of synthetic data representative of AF patients. How-
ever, there are two observed problems from most of the previous methods on analyzing
AF BSPMs that are trained on the simulated data. The first problem is that the cur-
rent simulated methods oversimplified the AF episodes as driven by only one focal or
reentrant driver [151]. For example, the prediction of the focal site was only based on
the BSPMs of AF episodes where FS induced 1:1 activities to the rest of the atria [130,
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131], which was rarely the case for FS in sustained AF episodes for AF patients. Non-
invasive analysis of AF with a mixture of drivers is considerably harder. An example is
that the prediction of focal site was hindered by a higher degree of fibrosis with altered
conduction pathways, and subsequently, affecting the analysis of the BSPMs [128].

Another major problem is that many works (see data in Table 2.1) performed cross-
validation testing on only one patient atrial mesh with one electrode set of BSPMs. Such
designs ignored the fact that patients have different atrial and torso geometries. Using
computer modeling, we learned that the morphologies of ECGs are impacted by the
site of activation, including the sino-atrial node [152] as well as geometry, especially
changes such as LA dilation [153], suggesting the importance of considering different
sets of atria-torso geometries. Although methods trained only on one set of heart-torso
geometries are usually proof-of-concept, it should go through additional validation be-
fore being applied to patient data. For a new patient, the only way to apply methods
that have been trained and tested using the same geometry is to generate computer sim-
ulations using personalized geometries, and to retrain machine learning models on the
patient-specific simulations. Such operations, however, are rather expensive to deploy
in clinical practice.

We conclude that there is still a high demand to develop machine learning algo-
rithms using a large and diverse set of training data containing realistic BSPMs gen-
erated from computer simulations, to develop the generality for the diverse patient
population. It should be tested by external patient datasets when possible.
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Chapter 3

Computer modeling of patient AF for
development of diagnostic tools

3.1 Introduction

As introduced in the previous chapter, non-invasive detection of AF mechanisms enable
pre-operative screening and planning, making it the key to personalized treatment. Both
ECGs and BSPMs acquire electric potential signals from multiple leads over the torso,
and are important non-invasive mapping tools. The algorithms which measured the
degree of organization in the atrial activity, had limited capacity in revealing underlying
mechanisms, whereas for ECGi, while it was able to compute epicardial phase maps to
identify AF driver [41], the accuracy for reconstructing epicardial activation patterns
during AF episodes has not been validated [11].

In this chapter1, we show how detailed AF models were built to assist the develop-
ment of non-invasive diagnostic tools in two ways. For machine learning, first, we ex-
ploit the deductive nature of biophysical modeling, which provides mechanistic insights
to show the reasoning for making predictions of ablation outcome using pre-ablation
signals. Second, we use the models as digital twins of human atria to generate a large
amount of synthetic data under various conditions for the development of diagnostic
tools using machine learning. Specifically, we simulated AF based on several different
underlying mechanisms.

Given that 1000 ms is a typical duration of f-waves during BSPM acquisition when
using diltiazem to block the atrioventricular node and reduce ventricular interference,
we designed computer models which incorporated several important AF mechanisms

1This chapter includes a part of the manuscript “Detection of focal source and arrhythmogenic sub-
strate from body surface potentials to guide atrial fibrillation ablation” submitted to PLOS Computational
Biology.
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in a time scale of 1000 ms, as outlined in Fig. 3.1. We first considered if the AF was
driven by a localized driver, defined as a fast and repetitive activity that causes fibrilla-
tory conduction in the rest of the atria [154]. The determination of localized drivers is
important, as it directly impacts the ablation strategies, whether to isolate local drivers
or to extensively destroy the substrate. The localized driver is also commonly believed
to be the main mechanism for early-stage AF patients [5]. Focal drivers contain stable
focal sources (FS) with a dominant periodic rhythm [155], whereas reentrant sources,
although spatially stationary, have higher heterogeneity in the cycle length (CL). For
non-stationary drivers, multiple short-lived wavelets constantly evolve and collide in
the atria. This spectrum, from the organized end to the disorganized end, shows the
progressive nature of AF [156], which matches the AF electrophenotype spectrum in
the recent review [9] that describes AF progression that shifts from FS-dominant to
more substrate-susceptible. Because treatment of paroxysmal AF patients has been stan-
dardized, with PV isolation being the recommended treatment [5], we chose to model
paroxysmal AF, and generated BSPMs and ECGs, driven primarily with FS and reentrant
sources.

Rotors, local reentries,
macro-reentries ...

Focal driver?

No additional driver?

Initiator-type
focal sources

Driver-type 
focal sources

Localized driver?

Focal sources

Stationary
reentrant sources

NoYes

NoYes

Multiple wavelets,
short-lived rotors...

Disorganized

NoYes

Non-stationary
mechanisms

C
om

po
si

tio
n

Organized

Fig. 3.1. Classification of AF mechanisms from organized to disorganized. The expla-
nation of “Driver-type FS” and “Initiator-type FS” can be found in Section 3.2.3.

For development of non-invasive algorithms, we were especially interested in mod-
eling FS, as they are an important trigger and initiator for AF. Because of this, electrical
isolation or destruction of the FS, both PV and non-PV foci [157, 4], has been widely ac-
cepted as a standard AF treatment, especially for paroxysmal AF patients [5]. However,
an arrhythmogenic substrate, which is not usually targeted by focal ablation proce-
dures, can still render the atria susceptible to AF. Technologies that enable non-invasive
identification of FS and the substrate can be valuable for personalized treatment.
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Another reason to model FS was that, although high counts of atrial ectopic beats
measured by 24-hour or longer Holter ECGs in asymptomatic subjects have been associ-
ated with a higher risk of AF incidents [160, 161, 162], ectopic beats are also markers of
other cardiac conditions associated with AF, such as stroke, the causality from frequent
ectopic beats to AF incidents could not be established [163], indicating a need for other
markers which enable mechanism-based prediction. The identification of malignant
ectopic beats with likely AF progression potentially informs early intervention, which
admits higher treatment success rates [164], as chronic AF results in tissue remodeling
and fibrosis [37] which stabilize AF.

3.2 Bilayer atrial model

We represented the patient atrial mesh using a bilayer model [106], which captures
the different fiber orientation and electrical properties of the epicardial and endocardial
surfaces of the atria, with an intermediate computational complexity between that of a
surface mesh and that of a volumetric mesh.

3.2.1 Geometry

Patient bi-atrial meshes were made from late-gadolinium enhanced magnetic resonance
imaging scans of five AF patients from the CHU Bordeaux [165, 107]. The surface of
the intra-atrial blood pools was used as the endocardial surface and the epicardium
was projected 100 µm in the normal direction. Meshes were composed of on average
489k nodes, and 1.18M elements, primarily triangular elements between nodes, and
line elements between endocardial and epicardial nodes, such as between the pectinate
muscle and RA epicardium. The average edge length was 318 µm (Table 3.1). Inter-
atrial structures were added to the meshes on two atrial chambers, such as between
fossa ovalis nodes on the LA and on the RA using a standardized atrial coordinate.
In the LA, the endocardial and epicardial surfaces were made 100 µm apart in the
surface normal direction, and the RA endocardium only includes pulmonary muscle
and crista terminalis [106]. Their orientations were aligned, and their centers of mass
had standard deviations of 1.3, 1.8 and 1.0 cm in the x, y, z directions, respectively.

The atrial regions are shown in Fig. 3.2. The fiber orientation (in Fig. 3.3) was
transferred from Labarthe et al. [106] based on findings from histological study by Ho
et al. [166, 167] to the five meshes using UAC [165, 107].

To obtain the locations of BSPM leads, the meshes made from computerized to-
mography imaging of the atria and 252-lead vest (CardioInsight, Medtronic, MN) from
a sixth patient were also exported. The atrial mesh of the first patient was registered
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Table 3.1. Statistics of patient atrial meshes for simulations.

Number of elements Number of nodes Edge length (µm)
Mesh 1 1191111 492799 320
Mesh 2 1445899 595997 318
Mesh 3 963281 402343 318
Mesh 4 1270575 528589 319
Mesh 5 1040902 427664 319
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Fig. 3.2. Atrial regions in the model on posterior (left) and anterior (middle) views,
with inter-atrial structures (right) containing CS, BB, FO. SAN: Sino-atrial node, LA:
left atrium. RA: Right atrium. CS: coronary sinus. BB: Bachmann’s bundle. FO: fossa
ovalis, Right Superior Pulmonary Vein: right superior pulmonary vein. RIPV: right inferior
pulmonary vein. Left Superior Pulmonary Vein: left superior pulmonary vein. LIPV: left
inferior pulmonary vein. PM: pectinate muscle. CT: cristi terminal. LAA: left atrial ap-
pendage. RAA: right atrial appendage. SVC: superior vena carva. IVC: inferior vena carva.
TV: tricuspid valve. MV: mitral valve.
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Fig. 3.3. The fiber orientation of the atria, with regions shown in different colors. CS:
coronary sinus. BB: Bachmann’s bundle.

with that of the sixth patient by matching the centers of mass of the two atria by linear
translation, i.e. rotation by 90 degrees and translation of the three Euclidean axes. All
five virtual patients then shared the same vest leads in Fig 3.4.

Universal Atrial Coordinates (UAC)

To refer to locations in different patient meshes in an automatic and uniform way, all
nodes in the mesh were assigned two coordinates (αside, βside), where side ∈ {LA,RA},
αside ∈ [0, 1], and βside ∈ [0, 1], from UAC [109], with the effects in Fig. 3.5. The UAC
system assigns coordinates of each node according to the relative locations to important
anatomical structures, by computing Laplace-Dirichlet solution between defined bound-
aries in the atria. It is done by setting one boundary as 0 as set another boundary as 1,
so that a linear transition of the values between two boundaries can be obtained. The
boundaries include important atrial structures such as superior PVs, fossa ovalis and
mitral valve on the LA, and tricuspid valve, superior vena cava, inferior vena cava and
fossa ovalis on the RA, and geodesic lines between these structures.

The Laplace-Dirichlet solution is also needed to separate anterior from posterior
areas on the LA, and between septal and lateral areas for RA. This can be done by
first separating the two areas with an enclosed boundary line, and setting all nodes
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Index of BSPM lead

1 252

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

x
z

x

y

Fig. 3.4. Meshes of five patient atria, and locations of 252 vest leads to compute
BSPMs. Each column shows the data for one patient. The top row shows the front view and
the bottom row shows the top view. Inter-patient variations of atrial shapes and positions
are visible.

on this boundary line as 0, and setting another point inside the boundary to 1. From
the Laplace-Dirichlet solution, the nodes with positive values are inside the boundary,
whereas the nodes with value 0 are outside the boundary.

3.2.2 Electrophysiology

Electrical activity was described in the bilayer model by the monodomain equation. The
monodomain formulation describes the cardiac tissue as a single conduction domain, by
assuming the anisotropy ratios in the intra- and extra-cellular conductivities are related
by a scalar λ by σe = λσi. The monodomain equation has been found to well approx-
imate electrograms computed by the full bidomain equations [168]. It is described by
the following reaction-diffusion equation [169]:

∇ · (σm∇Vm) = βCm
∂Vm
∂t

+ βIion − βIstim (3.1)

On the left hand side of Eq. (3.1), there are the transmembrane voltage Vm (unit:
mV ) and the equivalent monodomain conductivity σm (unit: mS/µm), which is the
harmonic mean of the extracellular and intracellular conductivity tensors:

σm =
λ

1 + λ
σi (3.2)
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αLA or αRA βLA or βRA
0 1 0 1

αLA βLA

anterior posterior anterior posterior
αRA βRA

lateral septal lateral septal

Fig. 3.5. Example UAC system coordinates (including αLA, βLA, αRA and βRA) on the
mesh of the Patient 5, computed based on the positions of important atrial structures
such as PVs, tricuspid valve and mitral valve. The computation result was obtained
from Roney et al. [109].

The intracellular (or the extracellular) conductivity per unit length σi (or σe) (unit:
mS/µm) measures the ability of the intracellular (or the extracellular) domain to con-
duct electric currents. The tensors are anisotropic with distinct longitudinal (gil), and
transverse conductivities (git).

The right hand side of Eq. (3.1) contains three currents [22]. The first type of cur-
rent refers to the capacitive current, Icm, due to the membrane acting as a capacitance
that separates the opposing charges inside and outside the cell. Given the membrane
capacitance per unit surface, Cm (unit: µF/cm2), it follows

Icm = Cm
∂V

∂t

The second type is the ionic current Iion (unit: µA/cm2) which is the net membrane
current produced by the ionic model chosen to represent cellular behaviour. We used
the Bayer et al. [170] modifications of the CRN model [27] with included addition of
ACh currents, where the ionic current has the following form:

Iion = INa + IK1 + Ito + IKur + IKr

+ IKs + ICa,L + Ip,Ca + INaK + INaCa

+ Ib,Na + Ib,Ca + IK(ACh) (3.3)

where each term is a non-linear function of Vm resulting from an ion species traversing
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the corresponding ion channel. In addition, Eq. (3.1) takes an external stimulus current
density Istim (unit: µA/cm2) into consideration, with the negative sign signifying an
inward current. All of the current densities need to be multiplied by the surface-to-
volume ratio β (unit: µm−1) of the cell to match the unit of the left hand side.

Forward computation of BSPM and ECG

Extracellular potentials were computed using a classical φe-recovery method [22] at the
field potentials of the vest leads, which constitutes the most straight-forward way to
compute far-field extracellular potentials Φe at the BSPM lead,

Φe =
1

4πσb

∫
Ω

Im
r
dΩ (3.4)

where σb is the bath conductivity, the scalar r denotes the distance between the source
and the electrode position, and Im is the current density derived from the transmem-
brane potential Vm obtained from the monodomain solution, using Im = ∇·(σi∇Vm) [171],
integrated over the full tissue domain Ω.

To recreate clinical recordings, potentials were referenced to the Wilson Central
Terminal. 12-lead ECG potentials were calculated from a subset of the BSPM potentials.
Specifically, the potentials of the three limb leads (VL, VR and VF ) and the six precordial
leads (V1, V2, . . . , and V6) were taken directly from the vest leads that best fit the
locations of the corresponding ECG electrodes. The resultant 12-lead ECGs consisted of
the potentials of the six precordial leads, and six augmented leads (I, II, III, aVR, aVL
and aVF ), which were calculated using Eqs. (2.3)–(2.8).

The heterogeneity in conductivity between the heart and the torso mostly impacts
the amplitude and, to a much smaller extent, the morphology of body surface poten-
tials calculated by forward computation [172]. In an ECGi study, the pattern of the
reconstructed epicardial potentials obtained from ECGi using a homogeneous torso was
comparable to using a heterogeneous torso [173]. Both studies suggest that a homo-
geneous torso can be used to generate body surface potentials, as long as errors of
potential amplitude are considered during interpretation. Therefore, for computational
efficiency, heterogeneous conductivities of different organs were not included in the
forward computation of BSPMs and ECGs, so we did not have to construct a torso finite
element model.

Simulator

The monodomain solution and the forward computation were solved by the finite-
element method [106] using the CARP software [169], with a time resolution of 20
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µs. The CARP software runs in parallel on top of PETSc [174, 175, 176] with Open MPI
software [177] (https://www.open-mpi.org/). We tested the run time of a 1000 ms
long simulation of about 500,000 vertices. On an Intel® Xeon® Gold 6140 processor,
it took on average 70 min to finish the simulation when running with 16 processes. In
the supercomputer, when the program was assigned 448 cores, it took on average 3.5
min to finish the simulation.

Electrical heterogeneity

Ionic models were adopted from previous work by Roney et al. [165, 107], which
followed Bayer et al. [117] for ionic models of non-PV structures. Essentially, in the
LA, the maximal conductance of the transient outward K+ current gto, the ultrara-
pid delayed rectifier K+ current gKur and the L-type inward Ca2+ current gCa,L were
decreased by 50%, 50% and 70%, respectively from the Courtemache-Ramirez-Nattel
(CRN) model [27], which matched the APD morphology, APD restitution curves as well
as the activation latency in AF patients, according to Krummen et al. [178]. The maxi-
mal conductance of the fast inward Na+ current gNa from the CRN model was doubled
by Labarthe et al. [106] to be kept within a physiologically realistic range on the cyto-
plasm for the atrial tissue. The maximal conductance of the inward rectifier K+ current
gK1 was downgraded by 20% to obtain a physiologically realistic baseline APD as Krum-
men et al. [178]. For other structures, regional heterogeneity was added by references
to Seemann et al. [179] and Aslanidi et al. [180]. For the appendage structures, the
maximal conductance for the rapid delayed rectifier K+ current gKr was also adjusted
to 1.6 times higher in the LA appendage compared to the RA appendage as Bayer et
al. [117] which preserved the relative values of ionic current conductivities between
LA, LA appendage and RA appendage regions in Dorn et al. [181]. PV parameters were
added from CRN based on the experimental data of Krueger et al. [182]. The elec-
trical properties of the sino-atrial node were added according to Fedorov et al. [183].
Finally, in order to enable ACh regulation, for the LA and its appendage, a human non-
fibrotic ACh-regulated AF ionic model by Bayer et al. [170] was used, which adjusted
the ACh-activated potassium current IK(ACh) in the Kneller’s model [184] to match the
electrophysiology of LA and LA appendage in human, while leaving the other parame-
ters in the CRN model unchanged.

The regional conductivities in the bilayer model (Table 3.3) were obtained from
Labarthe et al. [106], which minimized the error with respect to the activation times re-
ported in Lemery et al. [185] Table 3. Because the ionic models from the previous work
had the same conduction velocity with the non-AF atrial cells, in order to match the
conduction velocity slowing of the LA and LA appendage for AF patients for the ACh-
regulated AF ionic model [170], we scaled the conduction velocity of the crista termina,
pectinate muscle, Bachmann’s bundle and coronary sinus and the RA myocardium at
both longitudinal and transverse directions by a factor of 0.336, which is the geometric
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Table 3.2. The maximal conductance (unit: pS/pF) for the modified CRN model in
each region. SAN: Sino-atrial node, LA: left atrium. RA: Right atrium. CS: coronary sinus.
BB: Bachmann’s bundle. PV: pulmonary veins. PM: pectinate muscle. CT: cristi terminal.
LAA: left atrial appendage. RAA: right atrial appendage.

Anatomical region gNa gto gKr gCa,L gK1 gKur Source
Default 15600 82.6 29.4 37.1 72.0 ×0.5 [178, 106]

LA 15600 82.6 47.1 37.1 72.0 ×0.5 [179, 180, 106, 170]
sino-atrial node 15600 165.2 29.4 123.8 72.0 ×0.9 [179, 180, 106]

BB, CT 15600 105.8 29.4 62.0 72.0 ×0.5 [179, 180, 106]
LAA 15600 56.2 47.1 39.3 72.0 ×0.5 [181, 106, 117, 170]
RAA 15600 56.2 29.4 39.3 72.0 ×0.5 [181, 106, 117]
PVs 15600 102.3 20.6 27.8 60.3 ×0.5 [182, 106]

Original CRN 7800 165.2 29.4 123.8 90.0 ×1 [27]

mean of conductivity scaling in the longitudinal and transmural directions when scaling
from non-fibrotic non-AF to non-fibrotic AF models in Bayer et al. [170]. The conduc-
tion velocities of four unidirectional connections with the RA tissue were assigned a
very high conduction velocity to mimic the activity of the sino-atrial node suggested
by Fedorov et al. [183]. For the line of block and inferior vena cava which remained
inactivated during a sinus rhythm, we assigned a small conductivity of 0.001 S/m.

Table 3.3. The longitudinal and transverse conductivities (gl and gt, unit: S/m) in each
region. SAN: sino-atrial node, LA: left atrium. RA: Right atrium. CS: coronary sinus. BB:
Bachmann’s bundle. PM: pectinate muscle. IVC: inferior vena carva. PV: pulmonary veins.
CT: cristi terminal. LAA: left atrial appendage. RAA: right atrial appendage.

Type of elements Anatomical region gl gt

Triangular elements

All myocardium 0.107 0.045
CT 0.165 0.025
BB 0.236 0.061
PM 0.234 0.010

sino-atrial node 0.392
CS 0.134

Line of block, IVC 0.001

Linear bilayer connections

CT-RA 1.054
LA endo-epi 0.326
RA-BB-RA 3.000

PM-RA 1.054
SAN-RA 3000
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3.2. Bilayer atrial model

3.2.3 Simulations of AF mechanisms

To generate synthetic AF episodes resembling those in paroxysmal AF patients, we mod-
eled AF driven by FSs and reentrant drivers, and applied focal ablation to further clas-
sify the FS episodes according to the AF sustainability after the ablation. We marked
those with sustained AF after focal ablation as Initiator-type FS (IFS), and Driver-type
FS (DFS) otherwise. IFS induced AF episodes were marked as FS-induced AF (FAF),
and AF episodes initiated by localized reentrant sources were marked as Reentrant AF
(RAF). In Fig. 3.1, DFS corresponds to the organized end, and IFS corresponds to the
mid-point of the spectrum. RAF and FAF include both stationary reentrant sources at the
mid point, and non-stationary mechanisms at the disorganized end. The composition of
simulations is shown in Fig. 3.6.

Driver-type FS

Initiator-type FS

AF termination

FS-induced AF

Focal
Ablation 

Focal
Ablation 

Reentrant AF

Focal
driver

Reentrant
driver

AF
drivers

FS presence

AF sustainability (arrhythmogenic substrate)

Fig. 3.6. The composition of simulations, included Driver-type FS, Initiator-type FS, FS-
induced AF and Reentrant AF, with the classification of “FS presence” (shaded in blue),
and “AF sustainability” (shaded in red). We modeled FS and reentrant sources (Reen-
trant AF), and removed the FS to test if its removal terminated AF, in order to decide if it
was a Driver-type FS or an Initiator-type FS. “FS presence” includes all FS driven episodes,
whereas “AF sustainability”, hinting at the presence of an arrhythmogenic substrate, in-
cluded episodes where AF did not terminate by focal ablation. Note that the Initiator-type
FS is in both boxes of “FS presence” and “AF sustainability”.

Focal drivers

To produce a steady electrical state before the FS were induced, the atria was first left
resting for 1000 ms, and the sino-atrial node was paced five times with an CL of 700
ms, where the strength of the stimulus current was 44 mA/µA3 for 2 ms. Starting at
3500 ms, single-site repetitive pacing at specified locations was performed with CLs of
120, 150, . . . , 270 ms, the clinically observed range of FS CLs [4], over a period of 3000
ms to reach a stable state for the FS. The strength of the pacing current stimulus was 200
mA/µA3. FS sites were located on the myocardial sleeves of the four PVs as well as at 32
locations of the LA and the RA at combinations of (α, β) with αX , βX ∈ {0.2, 0.4, 0.6, 0.8}
and X ∈ {RA,LA}. Each FS was identified by its focal site, CL, as well as [ACh].
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Chapter 3. Computer modeling of patient AF for development of diagnostic tools

Focal ablation to test additional drivers in the presence of a focal source

We tested whether each FS induced self-sustained AF, defined as lasting for 1000 ms
after stopping the FS, like in focal ablation which destroys or isolates the FS. If AF
stopped after focal ablation, the FS was the driver and denoted as a DFS. Otherwise,
the FS induced AF, and was denoted as an IFS. The 1000 ms AF segment after the
pacing stopped for an Initiator-type was labelled as a FAF. The last 1000 ms segments
of constant FS pacing, as well as the 1000 ms segments of FAF after pacing stopped,
were added to our synthetic dataset.

Initiating Reentrant drivers

In clinical and experimental settings, fast or decremental pacing at one location can be
used to induce a reentrant driver [38]. However, there is no control on where the re-
entrant circuits form. Therefore, we used a phase distribution method [186] to locate
the rotor at specified locations. In our experience, it is easier to control the spatial loca-
tion of the rotors using the phase distribution than the cross-field stimulation method,
as the cross-field stimulation method requires a carefully timed delay between S1 stim-
ulus and S2 stimuli to have a unidirectional conduction block and the rotor core at
intended location [187]. In a three-dimensional atrial model with spatial heterogeneity
in electrical properties, a time-consuming trial-and-error method must be used to find
the exact S2 delivery.

To use the phase distribution method for initiating reentrant sources, we added a
non-excitable core region by setting the resting potential to -81 mV within the region,
and effectively zero conductivity, with the radius of the region being 0 cm, 0.5 cm or 1
cm and located at the same 32 sites as the focal sites. The atrial surface was divided
into 48 equal sectors around the core to determine the initial conditions for each sector.
The states for the sectors were taken from 48 time instances equally sampled from a
single-cell action potential during a full depolarization cycle, with a 2 ms transmem-
brane current stimulus of 80 µA/cm2, matching the parameters of the atrial site. An
illustration of the process is shown in Fig. 3.7.

Only those simulations with sustained activity for more than 3000 ms were kept
for further investigation, and the last 1000 ms segment of the resultant AF was marked
as an RAF, and added to our synthetic dataset. This interval of 3000 ms was adopted so
that their dynamics were regular, and comparable to FS. Additionally, a rotor lasting for
more than 3000 ms was also likely to be sustained for a long time, say, 80 seconds [188].
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3.2. Bilayer atrial model
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Fig. 3.7. An example setup to initiate a reentrant source around an LA site (αLA =
0.2, βLA = 0.2) on the mesh of Patient 2. The areas initialized to rest are marked in gray.
To initiate a rotor on the LA, the LA body was split into 48 sectors, marked by 48 different
colors in (b), around a non-excitable core. In this case, the non-excitable core had a radius
of 0. The initial states were generated from an action potential, with selected states shown
in (a).
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Chapter 3. Computer modeling of patient AF for development of diagnostic tools

Acetylcholine (ACh) distribution

To add APD heterogeneity to the model, we also simulated islands of ACh release ([ACh]
= 0.1µM) on the LA surface and the LA appendage [170], where 60, 80 and 100 2mm-
radius ACh islands were randomly distributed at areas of αLA of 0−0.33, 0.33−0.67 and
0.67− 1 and βLA of 0− 1, respectively. The ionic model and the conduction velocity for
the ACh islands are the same as those of LA, but an ACh sensitive potassium channel
was added to the model. An example ACh distribution is shown in Fig. 3.8. Both FS
and RAF sources were applied in conditions with ([ACh]=0.1µM) and without ACh.

(a)

(b)

Fig. 3.8. An example ACh distribution with (a) two-dimensional mapping, and (b)
three-dimensional representation on the atrial mesh of Patient 2. The other areas with-
out ACh islands are marked in gray. As mentioned in the text, fixed numbers of 60, 80,
and 100 2mm-radius ACh islands (in yellow) were randomly distributed at areas of αLA of
0 − 0.33, 0.33 − 0.67 and 0.67 − 1 and βLA of 0 − 1, respectively. Note that in (a), only the
positions but not the sizes of ACh islands were indicated.

3.3 Data analysis

In total, there were 5 (patients) × 36 (LA, RA and PV foci) × 6 (CLs) × 2 ([ACh])
= 2160 FS cases, and a small number (60) of them were not launched as their UAC
coordinates of foci referenced locations outside of the atrial tissue. This left 2100 FS
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3.3. Data analysis

simulations, with 900 LA, 960 RA and 240 PV FSs. The odds of inducing self-sustained
AF for at least 1000 ms from FS under a specific condition, measured as the proportion
of IFS, was termed AF inducibility. The AF inducibility test identified 1772 DFSs, and
328 IFSs, which entailed another 1772 discarded simulations and 328 FAF simulations.
We initiated 5 (patients) × 32 (LA and RA core sites) × 3 (core radii) × 2 ([ACh])
= 960 RAF simulations, with 549 sustaining for more than 3000 ms being preserved.
These 1772 (DFS) + 328 (IFS) + 328 (FAF) + 549 (RAF) = 2977 segments were used
as study data in the following steps.

3.3.1 Calculation of rotor duration

In order to track rotors in these simulations, we calculated phase singularity (PS) points,
i.e., the cores of the rotors. We first filtered the transmembrane voltage with a fourth-
order 15 Hz low-pass Butterworth filter, removed the DC component with a 0 Hz notch
filter, computed phase by applying the Hilbert transform, and then implemented the
Iyer-Gray method [189] which identifies PS points as those around which a contour
integral of the phase equals ±2π. This contour was defined by the three nodes of a
triangular element, and all the elements can be processed simultaneously. To calculate
all rotors and sustained rotors, we kept rotors lasting for at least 10 ms and at least 100
ms, respectively, assuming the PS point moves less than 2 mm within 1 ms. The total
duration with at least one such rotor was also computed for analysis.

3.3.2 Calculation of local activation and repolarization time

Local activation and repolarization times were marked by the upward-sloped intersec-
tion of -30 mV and the downward-sloped intersection of -70 mV of the transmembrane
voltage since the time of a focal discharge, respectively. The fixed cut-off value helped
to process the transmembrane voltage in a vector form. We then calculated the APD by
subtracting the repolarization time from the local activation time.

3.3.3 Approximation of effective refractory period (ERP)

ERP was estimated as the maximal FS CL whereby the FS encountered a complete
conduction block at tissue surrounding the focus. Searched on the set of prescribed FS
CLs, ERP was estimated between the maximal CL and the minimal CL where a complete
conduction block did or did not occur near the pacing site.
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Chapter 3. Computer modeling of patient AF for development of diagnostic tools

3.4 Arrhythmia induced

3.4.1 Simulation effects

Although we initialized simulations with one FS or one reentrant source, our induced
AF episodes may include one or many simultaneous sustained (> 100 ms) rotors, as
shown in Fig. 3.9.
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Fig. 3.9. A histogram of the number of simultaneous sustained (> 100 ms) atrial rotors
for simulations of DFS, IFS, FAF and RAF.

For visualization, selected frames of an IFS and a DFS are shown in Fig 3.10, where
a sustained rotor lasting for 547 ms in total can be seen during the IFS episode in (a),
but there was no sustained rotor in the DFS episode in (b). The effects of focal ablation
on these FS are shown in Fig. 3.11, where the activation continued on the IFS as a form
of macro-reentry between the LA and the RA via the coronary sinus ostium in (a), but
not on the DFS. The RAF, including a rotor in (a) and a reentry around an inexcitable
core of radius 1 cm in (b), are shown in Fig. 3.12. The results of adding ACh regulation
are shown in Fig. 3.13 where small wavelets (shown in red arrows) were located in
areas near LA appendage with ACh islands densely distributed.

For forward modeling, the examples of ECGs of an IFS, a DFS and an RAF is shown
in Fig. 3.14, where the amplitude was normalized to show the organization. Visually,
the DFS had the most organized morphology, followed by the IFS, and the RAF was the
most disorganized.

51



3.4. Arrhythmia induced
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(b)

Fig. 3.10. Simulations on the atrial mesh of Patient 2 of (a) an IFS with a CL of 180 ms
at a LA focal site (αLA = 0.2, βLA = 0.2, red star), and (b) a DFS with a CL of 210 ms at
the same site (red star). The white spheres in (a) show PS points, and the red arrows show
the wavefront movement of rotors. The time since the first firing of the FS was indicated
above each frame. A sustained rotor of a total duration of 547 ms was presented in (a), but
no rotor was detected in (b).
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Transmembrane voltage (mV)
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Fig. 3.11. Effects of removing the FS for (a) the IFS with a CL of 180 ms in Fig 3(a),
where the AF continued after pacing stopped, and for (b), the DFS with a CL of 210 ms
in Fig 3(b), where AF died out from 2400 ms, on the atrial mesh of Patient 2. The red
stars mark the locations of the FS activated right before 2000 ms (at 1980 ms for (a) and at
1890 ms for (b)). The red arrows showed the movement of rotor wavefronts. The time was
counted from the first pacing of the FS. A macro-reentry going through the coronary sinus
can be seen from 2300 – 2700 ms on (a).
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Transmembrane voltage (mV)
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(b)

Fig. 3.12. Simulations of RAF, including (a) rotor, and (b) reentry with a conduction
block of radius 1 cm on the atrial mesh of Patient 2. The red arrows indicated the
directions of wavefront propagation, and the rotational sources can be clearly seen. The
time was counted from the initiation of the AF.
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Transmembrane voltage (mV)

-80 30

2000ms 2100ms 2200ms 2300ms

2400ms 2500ms 2600ms 2700ms

Fig. 3.13. Simulation of the effect of ACh, on the atrial mesh of Patient 2. The red
arrows indicated the directions of wavefront propagation. The red arrows indicate the
directions of wavefront propagation. The time was counted from the initiation of AF. A
local rotor appeared close to the base of the posterior left atrial wall where ACh islands
were distributed. The potentials were also more heterogeneous with the introduction of
ACh.

3.4.2 Distributions of AF inducibility from FS

We systematically changed the CL and the location of FS, and the concentration of ACh
([ACh]), across five patient atria, and calculated the AF inducibility and the sustained
rotor and all rotor duration for each case of CL, focal site and [ACh] on each patient.
The means and 95% confidence intervals across five patients are shown in Fig. 3.15, and
the increase of AF inducibility from FS by adding ACh regulation is shown in Table 3.4.

AF inducibility was the highest from the PV FS, followed by the LA FS. The highest
AF inducibility was observed from FS with a CL of 180 ms from the PVs and from the LA,
with means 0.95 and 0.88, respectively, and with a CL of 210 ms from the right atrium
(RA), with mean 0.24. The CL range with non-zero AF inducibility was also larger for
FSs from the PVs and the LA than in the RA. ACh regulation increased AF inducibility
from FSs with CLs of 150 – 210 ms on the LA, and from FS with a CL of 150 ms on the
PVs, but not for FS from the RA. Over five patient meshes, FSs at a CL of 210 ms showed
a low average AF inducibility of 26.0% with a moderately high inter-patient variability
(standard deviation ±18.5%), likely due to the differences in the geometry between five
atria.

The average AF inducibility for each FS over different atrial focal sites across five
virtual patients is shown in Fig. 3.16. At the LA appendage and left PVs, where the ACh
is densely distributed, the AF inducibility increased with ACh regulation in the CLs of
150 to 210 ms.
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Fig. 3.14. Simulated ECG signals of (a) an IFS, (b) a DFS and (c) an RAF, corresponding
to Fig.3.10(a), Fig.3.10(b), and Fig.3.12(a), respectively, after channel-wise normalization.
a.u.: arbitrary unit.
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Fig. 3.15. Total duration (“Rotor dur.” given by the bars) and AF inducibility (“AF
ind.”, given by the line plot) of (a) all rotors (PS duration > 10 ms) and (b) sustained
rotors (PS duration > 100 ms), as functions of FS CL on LA, RA and PVs, with (“+”) or
without (“−”) ACh. Vertical bars of the line plots show the 95% confidence interval of the
mean of all patient meshes. CL groups accounting for less than 5% of FS in each panel were
excluded from analysis and the bar charts. n.u.: normalized unit.
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3.4. Arrhythmia induced

Table 3.4. The increase in AF inducibility from FS by adding ACh regulation, tested
by a one-sided proportion z-test and grouped by FS CL and location. +ACh and −ACh
denote with and without ACh, respectively.

FS CL FS AF inducibility p-value
(ms) location (+ACh, −ACh) (+ACh > −ACh)

PV 0.05, 0 > 0.05
LA 0.03, 0.01 > 0.05120
RA 0, 0 > 0.05
PV 0.70, 0.30 < 0.01
LA 0.40, 0 < 0.0001150
RA 0, 0 > 0.05
PV 0.95, 0.95 > 0.05
LA 0.95, 0.81 < 0.01180
RA 0.01, 0.01 > 0.05
PV 0.35, 0.25 > 0.05
LA 0.36, 0.17 < 0.01210
RA 0.23, 0.26 > 0.05
PV 0, 0 N/A
LA 0, 0 N/A240
RA 0.05, 0.09 > 0.05
PV 0, 0 N/A
LA 0, 0 N/A270
RA 0, 0 N/A
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Fig. 3.16. AF inducibility for FS CLs ranging from 120 to 270ms across five patients,
on the anterior and posterior view of a patient atria. The row shows the FS CL. Blue
spherical markers are the locations of ACh islands. Markers of other colors represent focal
size, where the color represents AF inducibility. Notation of “+” or “−” ACh means columns
with and without ACh, respectively.
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3.4. Arrhythmia induced

3.4.3 Distribution of rotor duration

Fig. 3.15 also shows that rotor duration was closely related to AF inducibility from
FSs. For FSs with CLs of 150 – 180 ms from the LA and PVs, all cases where IFS had
a longer duration of rotors or sustained rotors than DFS, were also associated with a
high AF inducibility. The AF episodes induced by these IFS also had a similarly long
rotor duration. On the contrary, short-lived rotors were common in CL of 210 ms, with
a slightly higher average duration of all rotors presenting during DFS episodes than
during IFS and FAF episodes, for all six conditions in Fig. 3.15(a).
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Fig. 3.17. Distribution of rotor duration for DFS and IFS using (a) all rotors (PS du-
ration > 10 ms) and (b) sustained rotors (PS duration > 100 ms). In (a), the presence
of a rotor in IFS (99.1%) is more frequent than in DFS (52.7%), with a p-value < 0.0001
by one-sided proportional z-tests. In (b), the presence of a sustained rotor in IFS (65.8%)
is more frequent than in DFS (2.6%), with a p-value < 0.0001 by one-sided proportional
z-tests.

For FSs with the presence of rotors, AF was more likely to be sustained than with-
out. During FS-driven episodes, longer rotor duration was associated with higher AF
inducibility, with an Area Under the Receiver Operating Characteristic Curve (AUROC)
of 0.94 using the duration of all rotors (PS duration > 10 ms) and an AUROC of 0.82
using the duration of sustained rotors (PS duration > 100 ms) to separate between IFS
and DFS.

To further explore this relationship, we calculated the distribution of rotor duration
for DFS and IFS in Fig. 3.17 for both sustained rotors and all rotors. Most DFS were
accompanied by short-lived rotors, and IFS were driven by macro-reentries, short-lived
or sustained rotors, with a rotor duration of 0 – 100 ms for both all rotors and sustained
rotors in Fig. 3.17. Rotors and sustained rotors appear more frequently in IFS than in
DFS with a p-value< 0.0001 by a one-sided proportional z-test. The remaining 34.2% of
IFS without sustained rotor were mainly driven by short-lived rotors or macro-reentries,
both of them were mostly induced with a FS CL of 210 ms, regardless of the focal site
and [ACh] (Fig. 3.15(b)).
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3.4.4 ERP reduction and APD heterogeneity

As can be seen from Fig 3.15, the AF-susceptible CL range varied between focal sites
and [ACh]. To study the causes, the ERP was estimated by searching from long to short
CL for the boundary CL where the 1:1 atrial response with the FS disappeared. As an
example, a complete conduction block was formed around the FS with CL = 150 ms
(Fig 3.18(b)) but not with CL = 180 ms (Fig 3.18(a)), the ERP for this focus was, thus,
estimated between 150 and 180 ms.

For the majority of cases without ACh, the ERP was estimated as 150 – 180 ms for
the LA FS, and 180 – 210 ms for the RA FS, longer than the LA FS. The AF-susceptible
FS CLs were shorter in the LA than in the RA (in Fig 3.15), which was correlated with a
shorter ERP in the LA than in the RA.

Likewise, the AF-susceptible FS CLs were shorter in the LA with ACh than without
ACh, correlated with the shorter average tissue ERP for LA with ACh than without
ACh. As an example, after adding ACh islands surrounding the LA focus in Fig 3.18(b),
the unidirectional conduction blocks were seen around the focus, and a reentry was
initiated (Fig 3.18(c)), which is equivalent to ERP shortening.

Furthermore, ACh regulation increased the spatial APD heterogeneity of the atrial
tissue, which provided a substrate for reentry formation and maintenance. A higher
variability in the APD on the LA tissue was also observed in the case with ACh in
Fig 3.18(f), compared to without ACh in Fig 3.18(d,e).

3.5 Discussion

3.5.1 Rotor development during FS-driven episodes suggests an ar-
rhythmogenic substrate

An important observation we made was that the AF sustainability was correlated with
the presence of sustained rotors when the FS was active. This is based on the observa-
tion that IFS were predominantly associated with the presence of rotors. There was also
a high AUROC score of 0.94 (all rotor duration) and 0.82 (sustained rotor duration) to
predict the AF inducibility from FS. This observation provides a mechanistic basis for
predicting the AF inducibility after the focal ablation using pre-ablation signals, where
the computer model serves a deductive purpose.
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Local activation time (ms)

0 370

(a) 180ms, −ACh (b) 150ms, −ACh (c) 150ms, +ACh
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Action potential duration (ms)

60 180 or more
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Fig. 3.18. Local activation time maps (a–c) and action potential duration maps (d–f)
following the discharge of a FS (red stars) from the same site on the LA posterior wall
(αLA = 0.4, βLA = 0.2), on the atrial mesh of Patient 1, under focal cycle lengths of 150
ms and 180 ms, with (“+”) and without (“−”) ACh. The directions of propagation from
the FS were shown by the black arrows. A gray color indicates tissue that was not excited.
Isochrone lines are drawn at an interval of 10 ms. The focal activation propagated in (a)
and (c) but was blocked at (b). (f) shows the highest spatial heterogeneity in the action
potential duration.
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3.5.2 Factors that impact AF inducibility

According to the leading circle theory [190], the functional reentry was maintained in
the form of the shortest circuit that has a length equal to the wavelength, defined as the
product of average conduction velocity and average ERP. A shortening of wavelength
due to ERP shortening and conduction slowing requires a shorter FS CL in order to
initiate a reentry by FS. The AF inducibility from FS varied under different pacing and
substrate conditions. The critical FS CL range associated with a large AF inducibility
existed for all regions with ERP, as can be seen in Fig 3.15.

The difference of the critical CL range under varied regions and [ACh] was cor-
related with ERP shortening and spatial APD heterogeneity. For LA and PV foci, APD
heterogeneity and the conduction slowing were found at the LA/PV junction [165], an
important substrate for AF formation. For the RA FSs, APD heterogeneity existed trans-
murally between pectinate muscle and the RA epicardium [51], but they only produced
short-lived rotors in our observations (Fig 3.15). ACh regulation further contributed to
the spatial APD heterogeneity (Fig 3.18), consistent with other modeling studies [169,
170]. An increase in AF inducibility was observed at the area where the ACh islands
were densely distributed (Fig. 3.16). Little difference in AF inducibility on the RA foci
was found by adding ACh on the LA, which shows that it is the proximity to APD het-
erogeneous region that promotes AF inducibility.

Moreover, under the same atrial area, the maintenance of sustained AF requires
reentries with a short wavelength [113], which impacts the AF inducibility in different
regions and [ACh]. As the PV has the smallest ERP followed by LA, AF inducibility was
also the highest for FS on the PVs, with the LA being the second highest in our results,
which also agrees with non-invasive mapping results of Haïssaguerre and Rudy [41, 42,
40] and intracardiac rotor mapping results [191]. The ACh on the LA also increased the
AF inducibility in LA and PVs.

3.5.3 Related studies

A tissue-level in-silico study of AF inducibility from FSs [115] showed that both focal
timings and locations were essential to AF inducibility from FSs, with the spatial disper-
sion of APD as an underlying mechanism. We removed one of the timing factors, the
coupling interval conduction between the sinus nodal stimulus and FS, by excluding the
sinus rhythm from the experiments. This was based on the assumption that the low-
frequency sinus rhythm plays a limited role in affecting the higher-frequency FS [183].
The consistency with previous findings suggested that our generated episodes repre-
sented patient AF faithfully. The smaller search space also reduced the required number
of simulations needed for training robust prediction models. Moreover, we added ACh
regulation in the experiments which further diversified our synthetic dataset in studying
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factors that impact AF inducibility from FSs.

3.5.4 Computer models to enable supervised machine learning on
BSPMs

As the ground truth of AF mechanisms is hard to obtain clinically, computer models
which represented human atria with AF conditions were used as digital twins, to assist
the development of diagnostic tools. For the purpose of improving the interpretation
of BSPM for diagnosis, we focus on representing AF mechanisms on the organ level in
order to simulate BSPMs. Meanwhile, a certain degree of realism is still required for
modeling electrical propagation, including realistic conductivity and tissue heterogene-
ity. That is why we considered detailed atrial modeling with high-resolution patient-
specific geometries. We showed that we were able to model functional and anatomical
reentries, macro-reentries, and ACh effects. The critical FS CL range for high AF in-
ducibility existed in all regions of LA, PVs and RA. In particular, from our model, the FS
CL of 180 ms was associated with the highest AF inducibility, which is also very close
to the average FS CL of 175 ms observed in AF patients[4], suggesting that our models
were a good representative of the AF patient population.

It is known that the accuracy of the machine learning model increases with more
data [192]. Therefore, we generated a total number of 2977 detailed AF simulations,
amounting to more than 6 terabytes of storage, covering mechanisms ranging from or-
ganized to disorganized, including episodes driven by FS only, reentrant sources only,
a mixture of reentrant and FS, as well as short-lived rotors (Fig. 3.9), with initial con-
ditions of various locations and CLs over five atria with differences in anatomy and
locations.

Another important purpose for building the computer model was to show the sta-
tistical correlation between the signals and prediction targets, required by a machine
learning model. We showed two biophysical bases of using pre-operative signals to
predict the effect of focal ablation: (1) a high AUROC of 0.94 between the rotor du-
ration and AF inducibility from FS, and (2) CL of the FS is an important indicator of
AF inducibility of FS. Both implied a causal relationship, stronger than a correlation
relationship, between the pre-operative signals and the outcomes for the focal ablation.
Both mechanistic insights also inspired us to look for methods to extract information of
FS CL and rotors from the BSPMs, in order to infer the AF mechanisms non-invasively,
the topic of the next chapter.
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Chapter 3. Computer modeling of patient AF for development of diagnostic tools

3.5.5 Limitation

The same model parameters were used across different meshes. They could have been
varied to reflect a more diverse setting. We assumed our targeted paroxysmal AF pa-
tients were screened at an early stage of AF, so we did not add scar or fibrosis to our
model, although this issue was mitigated by the introduction of ACh. Adding fibrosis
could further enrich our dataset to represent a wider AF population. We simulated focal
ablation by stopping focal discharges, without introducing ablation lesions, and allowed
only 1000 ms to assess the AF sustainability after the ablation of the foci, which could be
extended to a longer duration. We approximated BSPMs and ECGs with extra-cellular
potentials on the vest electrodes, without inscribing the conductivity properties from
the heart to the torso surface, which could still introduce small error. These limitations
could be relaxed in future work.
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Chapter 4

Non-invasive detection of focal source
and arrhythmogenic substrate

4.1 Introduction

In the last chapter, we introduced the construction of a synthetic dataset by com-
puter modeling. In this chapter1, we present a method to classify AF source type,
based on BSPM recordings of f-waves, using machine learning with second-order blind
source separation (SO-BSS) to exploit common periodic structures among different sig-
nal channels.

The outline of this chapter is shown in Fig. 4.1. Recall that we denoted an FS
as an Initiator-type FS (IFS) if AF was sustained after the focal ablation, and as a
Driver-type FS (DFS) otherwise. AF after focal ablation for IFS was denoted as an FS-
induced AF (FAF). A reentry driven AF episode was denoted as a Reentrant AF (RAF).
AF sustainability after removing the FS indicated AF inducibility from the FS on the
atria. We identified the classification of FS presence, FS location and AF sustainability
as targets of AF ablation, as shown in the motivation box of Fig 4.1. The presence of FS
requires its hindrance or removal for treatment, such as a focal ablation procedure. The
localization of foci could speed up their mapping. An arrhythmogenic substrate suggests
that the atria tissue can support sustained AF, implying a need for area ablation, such
as modifying the substrate [65] by disrupting the pathway of reentrant drivers [41],
and/or limiting the available area for rotor movement [193].

To extract FSs from body surface potentials, we exploit their characteristics of high
periodicity with a short CL [194]. However, high periodicity is not a unique charac-

1This chapter includes a part of the manuscript “Detection of focal source and arrhythmogenic sub-
strate from body surface potentials to guide atrial fibrillation ablation” submitted to PLOS Computational
Biology.
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Motivation: To improve AF ablation targeting
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Fig. 4.1. An overview of our method. Steps 1 to 3 describe the training process of our
classifiers on synthetic data, and Step 4 illustrates the application of the trained classifiers on
patient signals to non-invasively detect their AF mechanisms. In Step 1 (the implementation
was presented in Chapter 3), white spheres show phase singularity (PS) points, the red
arrows show the wavefront movement of rotors, and the red stars mark the focal sites.
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teristic in itself as, in theory, it is also exhibited by stationary rotors or reentries. It is
therefore essential to perform multi-source analysis for all periodic sources.

SO-BSS is a class of well-established methods to extract periodic sources from sig-
nals by maximizing the periodicity of sources. It does not require a priori knowledge
of the numbers of sources, which is usually a drawback for using blind source separa-
tion techniques in practice, such as FastICA [83]. The sources can be ranked accord-
ing to their periodicity. Previously, SO-BSS methods have been used to extract atrial
components from AF patient ECGs [143], to separate fetal and maternal contributions
from maternal ECGs [195], as well as to extract FSs from AF patient intracardiac elec-
trograms [155]. Furthermore, compared to traditional methods of analyzing periodic
sources, such as the Fast Fourier Transform (FFT), the SO-BSS methods can extract pe-
riodic sources in relatively short signals with high resolution in the period or frequency
estimated, which is more suitable for AF analysis.

We then adopted a nonlinear statistical model for high-dimensional features, a ran-
dom forest classifier [86], to classify from multiple extracted sources. A random forest
classifier is an ensemble of decision trees, where each node maximizes the information
gain by splitting the parameter space of a feature. It then assembles these decision trees
using bootstrap sampling, to reduce the risk of overfitting.

Given the hypothesis that sustained rotors during FS-driven episodes suggest an
arrhythmogenic substrate that can be detected non-invasively with SO-BSS, the objec-
tive of this study was to non-invasively detect the presence of FSs and AF-susceptible
substrates, as well as the location of any focal sites, in order to suggest appropriate ab-
lation targets. We did so using computer simulations of realistic AF episodes driven by
FS and/or reentrant sources, and by modeling focal ablation by removing FSs, to form
digital twins in training the classifiers [19]. AF inducibility was ascertained by looking
at AF sustainability after the FS was removed. From potentials computed on the torso,
we sought to determine the prediction targets by extracting features using SO-BSS, and
feeding these into a random forest classifier. This offers a novel algorithm to select ap-
propriate ablation targets for AF patients, and detect the presence of malignant ectopic
beats in the general population.

4.2 Methods

4.2.1 Equivalent atrial source extraction with SO-BSS

We first extractedK equivalent periodic atrial sources (s1, s2, . . . , sK) and their CLs (CL1,
CL2, . . . , CLK) from the body surface potentials, ranked by periodicity, using an SO-BSS
method adapted from SOBI [81].
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SO-BSS

Here we present atrial source extraction using an SO-BSS technique based on the algo-
rithm SOBI [81]. TheN -channel T -length body surface potentials, X = [x1,x2, . . . ,xN ]T

of shape N × T , were assumed to have arisen from a linear mixture of K equivalent
atrial sources S = [s1, s2, . . . , sK ]T of shapeK×T , and a linear relationship was assumed
between the source and the signal. The signals are assumed to be a mixture of signals,
with the following relationship,

X = US

where U is the unknown mixing matrix. The extraction of the source requires an esti-
mation of its inverse matrix, W.

The signals were first normalized channel-wise to allow a similar signal ampli-
tude between different channels. Afterwards, K channels with the K largest eigenval-
ues through singular value decomposition on X were preserved, to reduce the com-
putational burden in the following steps. The signal was then whitened to Xw =

[x̂1, x̂2, . . . , x̂K ]T to remove correlation between channels, where K rows correspond-
ing to the largest eigenvalues in Eq. (2.23) were preserved. The whitened signal was
obtained by

X̂ = D−1/2
w UT

wX (4.1)

where Uw is an orthogonal matrix of N eigenvectors u1,u2, . . . ,uN , and Dw is a diago-
nal matrix with eigenvalues on the diagonal. This whitening process is also introduced
in Section 2.3.2.

To estimate the second-order statistics of the signals, a whitened autocovariance
matrix Cx(τ) with time-lag τ was defined.

Cx(τ) = X̂τ+1:T X̂T
1:T−τ (4.2)

where the subscripts of X̂i:j denotes that the times from i to j are included, and the
subscripted T represents the length of the signal.

An iterative algorithm to perform joint diagonalization [81] was applied to calcu-
late K joint eigenvectors {w̃} of length K over all {Cx(τ)|τ ∈ TFS}, which constitute
the rows of an estimated unmixing matrix W̃ which approximate W. The above process
is also described in Section 2.3.2.

We ranked the sources from high to low according to the eigenvalue for each
source, λ̃i. The i-th predicted source s̃i and its corresponding eigenvalue λ̃i obtained
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from the joint diagonalization can be estimated as:

s̃i = w̃T
i X̂

λ̃i = max
τ∈TFS

w̃T
i Cx(τ)w̃i

where TFS is a set of time delays.

Furthermore, the contribution of the i-th source si to i-th channel signal is given by

ci = UwD1/2
w w̃i (4.3)

Extraction of machine learning features and dominant CL

The extracted source of SO-BSS may also be its own harmonics. To best estimate the
true dominant CL, we set TFS = {140, 141, . . . , 370} ms as the searched bound of source
CLs. The upper bound of TFS was set to cover all possible 2:1 conduction block con-
ditions from FS with CL up to 185 ms, as the effective CLs of these FS on the surface
signals were double the value of the focal CL. The lower bound marked the presumed
minimal focal CL where the activation of FS could trigger 1:1 atrial responses.

The periodicity of the extracted source over a time lag τ was measured by an unbi-
ased version of auto-correlation function (ACF), an empirical periodicity measurement
for time series s(t) as a function of a time-lag τ [196]:

ACF(τ) =
T − 1

T − τ − 1

∑T−τ
t=1 (s(t)− s̄)(s(t+ τ)− s̄)∑T

t=1(s(t)− s̄)2

with s̄ being the expected value of s(t).

We denote ACFi(τ) as the ACF function of the source si of time-lag τ . The esti-
mated CL of each source si was adopted from the time-lag within a set of time lags TFS
resulting in the maximal auto-correlation score of the source si,

CLi = argmax
τ

ACFi(τ), τ ∈ TFS (4.4)

MaxACi = ACFi(CLi) (4.5)

To approximate the dominant rhythm in the atria, a dominant CL was taken by the
first CLk from k = 1, 2, . . . , K that satisfied ACFk(CLk) > CIk(CLk), where CIk(τ) denotes
the range of 95% confidence interval for estimating ACFk(τ).

On a Intel® Xeon® Gold 6140 processor with 36 cores, the time to extract SO-BSS
features on a 1000ms ECG signal sampled at 1 kHz was around 0.2 second with K = 1,
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around 0.3 second with K = 10, and around 2.4 seconds with K = 20.

4.2.2 Classification

Three binary classifiers were formed: (1) FS presence, comprised of the union of IFS
and DFS as the positive class, and the rest being negative; (2) AF sustainability, to
predict if there is an arrhythmogenic substrate where AF can be sustained in the atria
without focal discharges from the FS, where the positive class consists of the union of
FS-induced AF, RAF and IFS, and the negative class is DFS; (3) FS location, trained
and evaluated on the FS-driven episodes, to determine if the focal site is located on
the RA (positive class), or from the LA or PVs (negative class). We also evaluated AF
sustainability (with FS), which used the trained classifier from AF sustainability to
distinguish between IFS (positive class) and DFS (negative class).

An illustration of features for each classifier is shown in Fig 4.1 Step 2. The classifi-
cation of FS presence and AF sustainability requires a combination of multiple periodic
sources to effectively represent AF. To encode the sources in a vector representation,
we used two characteristics, CLs and MaxACs, given by Eq. (4.4) and Eq. (4.5), to rep-
resent each source, as the ACF of most extracted sources, especially those with a high
periodicity, resembled sine waves with different periods. For K extracted atrial sources,
2×K-dimensional characteristic features were used as input features for classification.

The features of the FS location classifier were the s1-to-lead contributions, forming
an N -dimension vector specifying the contributions to each lead of the normalized sig-
nal from the reconstructed highest-ranked periodic source s1, given by Eq. (4.3). This
encoded the spatial information of the first periodic source. As the SO-BSS sources are
sign-agnostic, the signs of coefficients were fixed to one where a majority of coefficients
were positive. The coefficients of all lead-to-s1 vectors were re-scaled to have the same
maximum and minimum.

The imbalanced sample sizes of each class may result in a classifier biased towards
the majority class. To overcome this problem, we applied an oversampling algorithm
SMOTE [197] to make sure that all classes had the same number of training examples.
This was then followed by a random forest classifier [86], which fits a non-linear bound-
ary between the two classes, as shown in Fig 4.1 Step 3. It achieves this by splitting
the parameter space of each feature in a way that maximizes the information gain. We
fixed the number of decision trees in the random forest model at 200.

To train and evaluate a model on the five simulated patient datasets, we adopted
a nested leave-one-patient-out cross-validation method, which reduced bias in estimat-
ing the true error of the classifier on small datasets [198]. There were two nested
cross-validation loops, where the outer loop split the training/validation set and the
one-patient test set. In the inner loop, the classifier was trained on the training set,
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and selected the best hyperparameter resulting from the highest classification accuracy
on the one-patient validation set. A model was then retrained with the best hyper-
parameter on the entire training/validation set, and evaluated on the test set as the
performance of the classifier. The hyperparameter to select was the number of SO-BSS
sources, K.

The SO-BSS algorithm was implemented in Python (version 3.6). SMOTE was
implemented by imbalanced-learn Python package (version 0.6.2) [199]. The decision
tree was implemented by the scikit-learn Python package (version 0.22.1) [200].

4.2.3 Application of trained classifiers on paroxysmal AF patients

To apply our trained classifier to predict patient AF mechanisms (Fig. 4.1 Step 4), data
of 54 paroxysmal AF patients, including pre-operative BSPM signals from a 252-lead
vest (Medtronic, MN, United States), as well as their clinical follow-up records, were
exported from the Bordeaux Cardiology Hospital. The mapping protocol was approved
by the institutional review board, and written consent was previously obtained from all
patients. All anti-arrhythmic medications were stopped 48 hours prior to the catheter
ablation, and diltiazem was given to patients before the procedure to slow the atrioven-
tricular conduction. During the procedure, AF was first induced with burst pacing, and
PV isolation was performed. After the isolation, if the sinus rhythm or atrial tachycar-
dia was not restored, sites of AF drivers (foci and/or stable rotor cores) mapped by the
catheter and the ECGi solution by CardioInsight, were ablated. For all patients, AF was
terminated at the end of all procedures.

BSPM signals were acquired at a sampling rate of 1 kHz. QRS complexes were
extracted by the Pan-Tompkins algorithm [201]. T-wave were extracted automatically
by identifying the segment with a large variance over the signals of all channels on the
segment between two QRS complexes. Only f-wave segments longer than 800 ms were
included for analysis. We excluded three patients under 30 years old, as well as one
patient who had only one f-wave segment recorded. 13±4 segments were analyzed for
each patient. All signals were first filtered by a standard 2 – 30 Hz second-order But-
terworth filter to remove high-frequency noise and baseline wandering, and then were
normalized channel-wise. We computed the signal-level mechanism for each signal as in
Table 4.1. The patient-level mechanisms were obtained by aggregating all signal-level
mechanisms of each patient.
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Table 4.1. Computation of signal-level mechanisms from the positive (“+”) or negative
(“−”) prediction outputs of our classifiers. Note that the FS location classifier outputs
whether the FS is on RA.

Mechanism
Classifier outputs

FS presence AF sustainability FS location
IFS from LA/PVs + + −

IFS from RA + + +
DFS from LA/PVs + − −

DFS from RA + − +
Sustained AF without FS − + +/−

4.3 Results

4.3.1 Atrial source extraction with SO-BSS

To illustrate the advantages of SO-BSS, we show examples of sources decomposed from
BSPMs of Patient 2 with SO-BSS, in IFS (Fig. 4.2), DFS (Fig. 4.3), and RAF (Fig. 4.4),
with ECGs shown in Fig. 3.14. The ECG morphological differences are indistinguishable
to the human eye between IFS (Fig. 3.14(a)) and RAF (Fig. 3.14(c)). FFT analysis also
had a limited frequency resolution (1 Hz) on a 1000 ms 1 kHz signal, where IFS and
RAF all showed the same DF of 4 Hz on the V1 lead. Their V1 signals also showed
similar maximal values of ACF (0.68 and 0.67).

However, through extracting multi-source CLs, different degrees of CL alignment
between SO-BSS sources were shown across different mechanisms. As the DFS con-
tained only one type of periodic source, CLs of extracted sources were the most uniform
in the DFS in nine out of ten sources. The sources of an IFS were less synchronized,
with six (s1, s2, s4, s6, s7 and s10) that were synchronized (less than ±10 ms). The RAF,
however, had only three synchronized sources (s1, s3 and s6) with CLs similar to the
dominant CL of 191 ms and its harmonics. This showed the necessity of combining
multi-lead features to classify different AF mechanisms.

4.3.2 Spatiotemporal feature extracted by SO-BSS

To illustrate the usage of SO-BSS in extracting the latent spatiotemporal structure of the
signals, we show the waveforms of the signals and estimated sources for the first 300
ms in Fig. 4.5, Fig. 4.6 for the three cases of DFS, IFS and RAF analysed above, where
the signal length of 300 ms was chosen to cover at least one cycle of the signals and
the reconstructed sources. Here, the contributions were continuous in adjacent leads
in the Euclidean space, estimated from the covariance of signals, without any explicitly
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Fig. 4.2. V1-lead ECG signal and SO-BSS sources extracted from the BSPM of an IFS.
Signals are shown for an IFS in patient 2 with a CL of 180 ms (the same as Fig 3.10(a))
at an LA focal site (αLA = 0.2, βLA = 0.2) using K = 10. The first 10 rows show the top
10 sources, si, ranked by their eigenvalues, respectively, with the bottom row showing the
V1-lead ECG signal. The first column shows the signal amplitude over time. The second
column shows the value of ACF(si) over time-lags up to 500 ms with shading showing the
95% confidence interval. The red bars indicate CLi. Labels denote CLi (MaxACi) for the top
10 rows, and CLV 1 (MaxACV 1). The third column shows the FFT power spectral density of
the signal in the first column with the DF indicated by a red bar. a.u.: arbitrary unit.
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Fig. 4.3. V1-lead ECG signal and SO-BSS sources extracted from the BSPM of a DFS.
Signals are shown for a DFS with a CL of 210 ms at an LA focal site (αLA = 0.2, βLA = 0.2)
with K = 10 for Patient 2 (the same as the case of Fig 3.10(b)). The legend is the same as
Fig. 4.2.
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Fig. 4.4. V1-lead ECG signal and SO-BSS sources extracted from the BSPM of an RAF.
Signals are shown for an RAF around the LA site at (αLA = 0.2, βLA = 0.2), without a central
inexcitable region, were extracted from the BSPM with K = 10 on the mesh of Patient 2,
the same as the case of Fig. 3.12(a). The legend is the same as Fig. 4.2.

76



Chapter 4. Non-invasive detection of focal source and arrhythmogenic substrate

encoded spatial information of the lead position. The two figures together show that
the source extraction does not only cope with the simple case of DFS, but can also cope
with multiple types of atrial activities. One can also verify that the signals of the BSPMs
were contributed by the estimated sources shown at the right bottom, for all three types
of simulations.
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Fig. 4.5. BSPM signals and estimated sources extracted by SO-BSS (K = 10) after
channel-wise normalization of the IFS in Fig. 4.2, up to 300 ms. The BSPM signals are
colored by the rescaled value of s1-to-lead contribution. The signals were plotted on
electrode positions, where the unshown x-axis and y-axis are the rotational angle and the
height respectively, in the same way as the vest electrodes shown in Fig. 4.1 Step 2. The
s1-to-lead contribution was linearly rescaled to a value between -1 and 1.

We also compared the spatial distributions of s1-to-source contribution for FS with
different CLs from the same UAC coordinate in Fig. 4.7, and spatial patterns are con-
sistent across different FS CLs. Comparing the distributions between before and after
the introduction of ACh on the same patient atria in Fig. 4.7 (a-b), the spatial patterns
are similar, demonstrating a robustness against spatial heiterogenity in the atria. The
spatial pattern is also insensitive to different patients (Fig. 4.7 (a) and Fig. 4.8(a)).
However, it is sensitive to the change of focal site (Fig. 4.7 (a) and Fig. 4.8(b)). On
the other hand, the IFS cases in these two figures altered the spatial patterns in each
condition, because of the presence of reentrant sources.

4.3.3 Evaluation of classifiers

We evaluated the classification results of our features derived by SO-BSS with the fol-
lowing AF-complexity metrics in Table 4.2. The first metric was the ratio of FFT power
spectrum density of 0–2×DF over 0–50Hz of the V1 lead, called AFFTr2DF , which was
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(a) The DFS in Fig. 4.3
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(b) The RAF in Fig. 4.4

Fig. 4.6. BSPM signals and estimated sources extracted by SO-BSS (K = 10) after
channel-wise normalization of (a) the DFS in Fig. 4.3, and (b) the RAF in Fig. 4.4, up to
300 ms. The BSPM signals are colored by the rescaled value of s1-to-lead contribution.
The legend is the same as Fig. 4.5.
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(a) FS from a focal site on the mesh of Patient 1, without ACh
120 ms 150 ms 180 ms (IFS)

210 ms 240 ms 270 ms

(a) The same patient and the same focal site, but with ACh
120 ms 150 ms (IFS) 180 ms (IFS)

210 ms 240 ms 270 ms

s1-to-lead contribution (n.u.)
-1 1

Fig. 4.7. Spatial patterns of s1-to-lead contribution extracted by SO-BSS (K = 1) on an
FS with CLs of 120 – 270 ms from a focal site of (αLA = 0.2, βLA = 0.2), which show
insensitivity against different FS CLs, to the perturbation of ACh regulation (a,b). IFS
may bring some perturbation to the patterns due to the additional reentrant sources
in IFS. The electrode positions are plotted in the same way as the vest electrodes shown in
Fig. 4.1 Step 2. All entries are DFS except for those which are marked as IFS.
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(a) Different patient and the same focal site, without ACh
120 ms 150 ms 180 ms (IFS)

210 ms 240 ms 270 ms

(b) The same patient and different focal site, without ACh
120 ms 150 ms 180 ms (IFS)

210 ms 240 ms 270 ms

s1-to-lead contribution (n.u.)
-1 1

Fig. 4.8. Spatial patterns of s1-to-source contribution extracted by SO-BSS (K = 1) on
FS with CLs of 120 – 270 ms (a) from the same location of a different patient mesh
with Fig. 4.7, and (b) from a different site (αLA = 0.2, βLA = 0.8) of the same patient.
Compared with Fig. 4.7(a), this figure shows the spatial pattern remains relatively
consistent to inter-patient variability (a), but sensitive to the change for FS originating
from a different location (b). All entries are DFS except for those which are marked as
IFS.
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developed to distinguish between FS and reentrant sources [131]. The second metric
was the nondipolar component index (NDI), which was used to predict the acute abla-
tion outcome in persistent AF patients from BSPMs [15], measured as the proportion of
the residuals outside of the three principal axes. We replaced the SO-BSS features with
these metrics, and reused the same classification pipeline for training and testing, i.e.,
SMOTE and a random forest classifier.

Table 4.2. Testing scores using nested leave-one-patient-out cross-validation on all
classification tasks over five patients, using features of SO-BSS, AFFTr2DF and NDI.
Bold fonts mark the highest scores and the corresponding features.

Task
Feature Accuracy Precision Recall
(with signal used) (mean±s.d.%) (mean±s.d.%) (mean±s.d.%)

FS presence

SO-BSS (BSPM) 90.7±1.2 96.8±1.0 89.9±0.8
SO-BSS (ECG) 90.7±0.7 97.5±0.5 89.2±0.8
AFFTr2DF (V1) 57.8 ±1.3 73.8±0.8 62.3±2.4
NDI (BSPM) 59.7±1.5 74.8±2.2 64.8±4.1

AF sustainability

SO-BSS (BSPM) 92.8±1.5 90.0±3.0 92.7±3.6
SO-BSS (ECG) 93.7±1.2 91.5±3.0 93.0±3.3
AFFTr2DF (V1) 58.3±2.3 48.3±3.6 53.1±3.5
NDI (BSPM) 61.7±3.0 52.4±5.7 57.0±6.0

AF sustainability
(evaluated on FS-driven episodes)

SO-BSS (BSPM) 90.6±2.8 68.1±7.6 80.3±15.0
SO-BSS (ECG) 91.8±1.9 72.2±7.3 81.1±14.3
AFFTr2DF (V1) 60.7±3.5 20.9±2.3 55.7±3.8
NDI (BSPM) 63.6±4.2 23.3 ±4.9 57.1±5.8

FS location
SO-BSS (BSPM) 80.0±6.6 81.2±9.0 75.0±8.4
SO-BSS (ECG) 61.0±5.2 59.3±6.8 53.6±8.4

On FS presence and AF sustainability, our method achieved high scores of accuracy,
precision and recall, all close to or above 90% with variance < 4%, significantly outper-
forming AFFTr2DF and NDI, showing the efficacy of our algorithm, as well as robustness
to inter-patient variability in atrial geometries. When the AF sustainability classifier
was evaluated on FS-driven episodes, the accuracy was still high, but the precision and
recall scores slightly decreased. These scores were mainly impacted by FS with a CL of
210 ms, as shown in Table 4.3, which was expected given that the IFS had a different
mechanism at CL of 210 ms as discussed in the previous section, and AF inducibility at
this CL also presented a considerably larger inter-patient variation (12.5%) compared
to other CLs (≤ 3.2%). Although we did not apply any specific location information of
the atria nor the torso leads, the estimation of the focal site region achieved moderately
high accuracy of 80.0% and 61.0% from BSPMs and ECGs.

To understand how different mapping systems and numbers of sources K affect
the classification performance, we calculated the mean and standard deviation of the
accuracy score across all five outer-validation sets in Fig 4.9. Both FS presence and AF
sustainability classifiers presented similar trends, where the accuracy increased up to a
certain K (K = 6 for FS presence and K = 4 for AF sustainability) with little change
afterwards, likely due to the inherently small number of sources with distinctive CLs.
For the FS location classifier, with a larger K, the accuracy dropped for BSPMs but
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increased for ECGs.

Table 4.3. Atrial fibrillation (AF) inducibility (mean±s.d.%), and testing accuracy
scores for different methods (mean±s.d.%). Results are shown for different CLs (ms).
Leave-one-out cross validation was used on the AF sustainability prediction incorporating
all FS episodes, grouped by focal CL (ms). Bold fonts mark the highest scores. Signals used
are given in parentheses. SO-BSS took K = 10 sources as an input parameter.

CL AF inducibility
SO-BSS AFFT2DF NDI
(BSPM) (V1 ECG) (BSPM)

120 1.9±0.8 98.8±1.2 61.1±8.1 66.2±8.6
150 14.3±2.1 88.3±3.1 71.4±4.7 64.9±9.1
180 49.1±2.2 96.9±3.2 64.3±6.1 70.8±3.5
210 26.0±18.5 64.8±12.5 50.0±6.2 52.5±17.2
240 5.2±3.0 98.3±1.9 62.0±7.4 66.8±5.9
270 0 98.9±2.6 55.1±5.3 60.2±6.0
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Fig. 4.9. Classifier performance as a function of K. Means (points) and standard devia-
tions (shaded areas) of the test accuracy scores using leave-one-patient-out cross validation
are shown for changing K and lead systems (ECGs or BSPMs), on the classification tasks,
with the best K for the highest accuracy (ECGbest or BSPMbest) in each setting shown by
vertical bars.
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4.3. Results

To test the sensitivity to different vest placements, we varied the vest positions
by 10 and 20 degrees around the z-axis pointing from the centre of mass of the vest
electrodes, and 5 and 10 cm in the x, y, and z directions using the same coordinate
system as in Fig. 3.4, on the dataset of Patient 2, with K = 10 sources for SO-BSS with
BSPMs as shown in Fig 4.10. These variations are considered extreme cases for intra-
patient variations, only designed to test the robustness of our algorithm. The results of
the sensitivity tests for the FS presence, AF sustainability classifiers and the dominant CL
estimation are shown in Table 4.4. The absolute differences of dominant CLs between
all vest variations and the original vest placement were small, with a mean ≤ 4.78 ms
and standard deviation ≤ 24.8 ms. All vest placements received similar classification
scores with respect to each other, with the maximal absolute difference being 4.1%.

Translate	+5	cm
in	x	direction

Rotate	+10	degree
on	the	x-y	plane

Original	lead	positions

After	transformation

Translate	+5	cm
in	y	direction

Translate	+5	cm
in	z	direction

Rotate	+20	degree
on	the	x-y	plane

Fig. 4.10. Examples showing the electrode placement after translation (5 cm) and
rotation (10, 20 degrees) of vest leads, using the same coordinate system as in Fig. 3.4.

4.3.4 Feature interpretation of classification

MaxAC values, as part of the feature vector, encoded information about multi-source
periodicity as signatures of atrial events. The MaxAC values of sources extracted by SO-
BSS withK = 10 from BSPMs were visualized by being projected on to two-dimensional
orthogonal bases using acPCA [16], colored by their ground-truth mechanisms or CLs,
as shown in Fig 4.11 (a) and (b), respectively. The PCA captured variances 93.2±0.7%

and 93.2±0.5% in the reduced dimensions. On all five patients, the DFS could be easily
separated from the other mechanisms, but there was a more complex decision boundary
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Chapter 4. Non-invasive detection of focal source and arrhythmogenic substrate

between IFS and DFS. CL clusters could also be seen in the feature space, such as CL
clusters of 150 ms and 180 ms, both of which were AF-susceptible CLs, were adjacent
to each other in all patients.

SO-BSS was able to capture the FS in most cases. This can be seen in Fig. 4.12
that the estimated dominant CL, extracted by SO-BSS with K = 10 from BSPMs, well
approximated the ground-truth focal CL of the FS or its harmonics. The misalignment
between the dominant CL and focal CL was mostly caused by reentrant activity during
IFS. For some DFS with a CL of 150 ms, the dominant CL was estimated to be around
225 ms, which is the average of the focal CLs of 150 ms and 300 ms, the latter resulting
from 2:1 conduction blocks. For 98.1% FS, their focal CL was estimated as source CL
or its harmonic, with an absolute error ≤ 5 ms. Focal ablation increased the dominant
CL of IFS (means of 196 ms (before) and 202 ms (after), p-value < 0.001, pairwise
one-sided t-test).

4.3.5 Applying trained classifiers to predict patient’s AF mecha-
nisms

Having seen good classification results on our simulated data, the next step was to apply
our trained classifiers on the clinical data set of 50 paroxysmal AF patients, in order to
test if they bring in any predictive value for the outcome of ablation treatment. We used
the classifiers trained on the BSPMs of the virtual cohort, with K = 10 for FS presence
and AF sustainability and withK = 1 for FS location, to predict signal-level mechanisms
from patient BSPMs. We then obtained the patient-level mechanisms by aggregating all
signal-level mechanisms of the patient. The number of patients with each patient-level
AF mechanism is shown in Table 4.5. All patients had an arrhythmogenic substrate. IFS
were found in almost 80% of patients, and IFS from the LA or the PVs were found more
often than from the RA.

The SO-BSS decomposition and the spatial pattern of an example patient test case
are shown in Fig. 4.13 and Fig. 4.14. In Fig. 4.13, it can be seen that the first three
extracted sources still had relatively high MaxAC which are above 0.85. The CL with
the maximal ACF extracted from the V1-lead ECG signal, 188 ms, is similar to the
CL with the maximal ACF in the first row, 191 ms, but the first source had a higher
periodicity. The contribution of this first periodic source to the surface is also visible in
Fig. 4.14, where the contribution from s1 to the signal is also clearly seen. This serves
as a quantitative validation of using our algorithm on patient signals.

The simplest AF mechanism was driven by an FS from a single atrium, which was
also the most straightforward driver to map and ablate during a catheter ablation pro-
cedure. Therefore, we divided the patient cohort according to whether each patient
contained an IFS originating from a single atrium.
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Fig. 4.11. Two-dimensional PCA representation of MaxAC values. MaxAC values were
obtained by SO-BSS with K = 10 over simulated BSPMs, on each patient and all pooled, for
different colour-coded groupings: (a) all categories over all episodes, and (b) focal CLs over
all FS episodes. Clustering based on categories and focal CLs can be seen for each patient.
a.u.: arbitrary unit.
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Fig. 4.12. A beeswarm plot of the estimated dominant CL and the ground-truth focal
CL. Data points are coloured by FS type. CL was computed using K = 10 for SO-BSS from
BSPM signals. Some samples were collapsed where possible for better visualization.

Table 4.5. Classification of patient data. Groupings and counts of patient-level mech-
anisms (by row), as well as the assignment of the patient group for survival analysis in
Fig. 4.15, based on whether a patient contains IFS coming from a single atrium. This table
omits the results of patients with DFS for clarity.

Grouping
IFS Sustained AF

Count
from LA/PVs from RA without FS

Group 1
(Single-atrial IFS)

3 3 18 (36%)
3 3 9 (18%)

Group 2 3 3 3 12 (24%)
(Other mechanisms) 3 11 (22%)

Count 30 (60%) 20 (40%) 50 (100%) 50 (100%)
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4.3. Results

Fig. 4.13. V1-lead ECG signal and SO-BSS sources of estimated from a f-wave segment
of a paroxysmal AF patient. The relatively high MaxAC of the first three sources showed
that the periodic components were extractible from the patient signals. The legend is the
same as Fig. 4.2.
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Fig. 4.14. Signals and estimated sources after channel-wise normalization of a BSPM
signal of a paroxysmal AF patient, up to 300 ms. The legend is the same as Fig. 4.5.
The similarity of the s1 with surface signals with a large contribution from s1 (in dark
red) showed that it was reasonable to apply SO-BSS on BSPMs to extract common periodic
source for patient signals.

To analyse how the AF recurrence likelihood can be predicted by covariates, the
AF recurrence event was marked as a death event for survival likelihood regression.
An entry in the data for survival analysis constitutes the time (number of months since
the ablation) and event (whether the patient had experienced AF recurrence by that
time). The patients were tracked until their last reported AF-free or the first reported
AF recurrence event. Since AF recurrence might still happen after the last reported AF-
free events but not reported, we only know the lower-bound of the AF recurrence, and
the follow-up data is “right-censored”, which is typical in clinical follow-up studies.

We calculated 36-month Kaplan–Meier curves as an estimation for AF-free likeli-
hood on the right-censored data [202], and logrank tests on the difference of the two
Kaplan–Meier curves, up to one-year, two-year and three-year follow-ups, using the
lifelines Python package (version 0.26.0) [203], as shown in Fig 4.15. A higher post-
ablation AF-free likelihood was observed for the patient subgroup with IFS originating
from a single atrium than the other group, with p-values < 0.05 for all one-year, two-
year and three-year follow-ups. This demonstrates that by classifying patient AF mech-
anisms using their pre-operative BSPMs, we successfully predicted a patient subgroup
effectively targeted by the current standard procedure.
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Fig. 4.15. Kaplan–Meier curves of two paroxysmal AF patient groups. Curves show
the post-ablation AF-free likelihoods up to three years. The grouping was according to
whether AF episodes in the patient were predicted as being driven by IFS originating from a
single atrium. Shading shows the 95% confidence interval of the Kaplan–Meier curves. The
group of single-atrial IFS had better one-year (p-value=0.017) , two-year (p-value=0.014)
and three-year (p-value=0.025) AF-free outcomes than the other group, with p-values of
logrank tests all < 0.05. n.u.: normalized unit. At a particular time shown vertically above,
“At risk” and “Events” show the count of patients without and with AF recurrence up to
that time, respectively, and “Censored” shows the number of patients who did not have AF
recurrence up to that time, but no event was recorded afterwards.
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4.4 Discussion

4.4.1 Mechanism-inspired classifiers

The results above suggested our simulations were reasonably representative of AF ob-
served in patients, and thus, were ready to be used as the training data for non-invasive
classifiers. They also showed that AF sustainability could be predicted from FS-driven
episodes by two main features, focal CL and the presence of sustained rotors. These
features are, however, usually extracted from invasively-acquired intra-cardiac electro-
grams. To translate these findings to non-invasive measurements, in order to detect
the FS and the arrhythmogenic substrate, we approximated them with atrial sources
extracted by SO-BSS from body surface potentials. As a result, the FS and the reentrant
sources can be separated even when these two types of sources co-exist, such as in the
case of IFS, which demonstrated usefulness in AF ablation targeting.

The focal CL was well approximated by the dominant CL, extracted by SO-BSS for
the DFS and most of the IFS (Fig. 4.12). It was more advantageous to use the multi-lead
SO-BSS than ACF or FFT analysis on the V1 lead, as SO-BSS extracts a spectrum of CLs.
In addition, on one-second 1 kHz body surface signals, the resolution of FFT-extracted
DF was 1 Hz, much lower than the resolution of 1 ms in our method. For the IFS which
contained both FS and reentrant sources, their dominant CL increased after the removal
of FS. This was consistent with the inverse relationship between the CL of AF waves and
the number of AF drivers [114]. Such an observation strengthens faith in our model,
and shows that our predictor could distinguish FS in spite of the presence of re-entrant
sources.

The presence of sustained rotors was represented by MaxAC features. On a PCA-
reduced space of all MaxAC features, a clear boundary can be seen between DFS and the
other types, showing a distinctive difference between MaxAC features with and without
an arrhythmogenic substrate, respectively (Fig 4.11(a)). The CL clusters in the MaxAC
feature space (Fig 4.11(b)) also show that the MaxAC features encoded information
about the focal CL, via their representation of atrial states, i.e. reentrant sources, FS, or
both.

By using the contribution of each lead to the first periodic source (s1-to-lead contri-
bution) during FS-driven episodes, we were able to predict whether the FS originated
from the LA or the RA. We showed that this feature was robust to the changes of CLs,
spatial heterogeneity, patient atrial meshes, but was sensitive of change of focal site,
which made it a suitable feature to encode the spatial information. This feature was
again inspired by the periodic nature of FS. An advantage of using BSPMs in inferring
spatial information, compared to ECGs, was also proven by higher classification scores
with BSPMs.
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Our random forest classifier automatically combined the aforementioned heteroge-
neous features without additional re-scaling for classification. By doing so, a complex
decision boundary between classification target classes was formed, whilst reducing
overfitting by ensembling the results between multiple decision trees.

4.4.2 Robustness of classifiers

Our methods achieved high accuracy, precision and recall scores in Table 4.2, outper-
forming the AFFTr2DF [131] and NDI [15] features. We highlight that our non-invasive
classifiers were robust to intra-patient variability, given a large variation of the atrial
positions and shapes (Fig 3.4) and the changes in the vest positions and orientations
(Fig. 4.10) In particular, the classification of FS presence and AF sustainability, as well as
the estimation of the dominant CL, were robust to large changes to vest placement (up
to 10 cm in translation and 20 degrees in orientation that were not represented in the
training dataset. The heart-torso variability was not captured by the reconstructed pe-
riodic sources, and was “digested” by the transformation matrices during source recon-
struction of SO-BSS. Neither the features of these two classifiers nor the dominant CL
relied upon the transformation matrix. For other technologies however, such as ECGi,
inferred atrial potentials from BSPMs could be quite sensitive to the relative positioning
and orientation of the heart within the torso [204, 11]. As the joint diagonalization is
robust to white noise, and there is no common structure of second-order statistics in
it, our algorithm is resilient to recordings with white noise, as shown in our previous
work [187].

It is worth noting that the ±5 cm and ±10 cm translation in the y-direction resulted
in the hearts of five patients falling out of the boundary of the vest. This resulted in
an inaccurate calculation of the BSPM using φe-recovery method. However, we still
presented the result here to show the robustness of the method.

Our FS presence and AF sustainability classifiers were insensitive to the number
of sources for SO-BSS when K was larger than a certain number, which was about
6 (Fig 4.9). The robustness of changing K means that prior knowledge about atrial
sources is not required, and a smaller number of sources (< 6) can be selected for
faster computation with moderate accuracy. To detect FS and AF sustainability, K =

10 sources are recommended with either ECGs or BSPMs, and K = 1 with BSPMs is
recommended for predicting the focal site region. Furthermore, our method does not
require imaging the heart or the torso, which accelerates the mapping process, and
makes the tools accessible for both clinical and personal usage.
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4.4.3 Related studies on AF inducibility from FS

Given the same pacing duration, only some FS with certain CLs and tissue conditions
managed to induce self-sustained AF, suggesting that using the ectopic beat counts to
predict for AF incidents in the previous works [160, 161, 162] could be improved by
including a prediction of AF sustainability by our work.

The AFFTr2DF feature was also developed on simulated episodes, but was only
tested on FSs of 3 Hz and 5 Hz. This rarely induced complex patterns such as rotors
or 2:1 atrial responses that were commonly observed in patients, confirmed by the
morphology of FS in their results. In addition, their calculated power density spectrum,
calculated from 500 ms of 500 Hz sampled signals, had a resolution of 0.01 Hz, much
higher than the theoretical frequency resolution of FFT, which we were not able to
reproduce. In comparison, our work not only considered a wide range of focal CL in
FS, some of which co-existed with reentrant sources, but also added ACh regulation
to further increase the spatial APD heterogeneity of the LA. Therefore, our classifiers,
being trained and evaluated on more realistic simulations of FS and reentrant sources,
were more robust.

The NDI feature, as an AF complexity metric already applied on AF patient signals,
did not perform well on our tasks either, with a performance similar to the AFFTr2DF

feature. This may be due to the fact that their defined organized sources, captured by
the three principal axes of PCA, could still include some organized reentrant sources.

Another simulation study [205] presented a classifier to detect PV versus non-PV
drivers with the 12-lead ECG, which successfully predicted the acute success of PV iso-
lation in 46 AF patients. Our AF sustainability classifier does not restrict the target
procedure to PV isolation, and more importantly, detects an arrhythmogenic substrate
that indicates AF susceptibility in the face of new AF triggers. This is more appropriate
for predicting mid-term and long-term outcomes of a given treatment.

4.4.4 Limitations

The other type of IFS initiated reentry, anatomical macro-reentry, occurred much less
frequently than DFS. The similar AF inducibility from an FS with a CL of 210 ms across
all focal site regions, alongside a large inter-patient variability in the AF inducibility
on this focal CL, suggests that global geometrical factors, shared by both atrial cham-
bers, may need to be considered for predicting AF inducibility from FS. The follow-up
records for paroxysmal AF patients contained missing entries and were retrospectively
interpreted.

The ambiguity of the sign of the source is an intrinsic problem of the signal. In ACF
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analysis, we do not need to care about the sign, but it may be vital to some applica-
tions, such as our second application, using the s1-to-lead contribution to estimate the
focal site. We used an empirical method to refer to the sign of the maximal or mean
value of the signal-to-source transformation matrix as the positive direction, but this
unavoidably still adds ambiguity to the prediction of the focal site.
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Chapter 5

Non-invasive atrial periodic source
spectrum for AF condition
representation

5.1 Introduction

In this chapter, we sought to extract features from pre-operative BSPM of 147 persistent
AF patients, which can predict the ablation outcomes. Previously, we discussed the clas-
sification of FS and re-entrant sources using random forest classifiers with CL-MaxAC
pairs, which were obtained from the body surface potentials with SO-BSS. The classi-
fiers of “FS presence”, “AF sustainability” and “FS location” were trained and tested us-
ing leave-one-out cross-validation on 2,977 simulated episodes. We showed that those
classifiers were able to predict two cohorts with distinctive treatment effects on a parox-
ysmal patient dataset.

However, the mechanisms of persistent AF are more diverse and elusive, posing
challenges in building realistic simulations that are representative of persistent AF pa-
tients. As the resultant machine learning models trained from the synthetic data heavily
depend on whether the simulated signals are realistic, we explored machine learning
models that could be trained directly on patient data, with an emphasis on simplicity
and interpretability. To cope with the limited number of patients in clinical studies, it
is preferable to use a simple model with fewer parameters, so that the machine learning
models can be generalizable to patient data. Simple models are also much easier to
interpret in terms of physiological importance, and thus, it is easier to apply or adapt
the methodology to data obtained from different sources. It is with these considerations
that we replaced the random forest classifier model used in the last chapter with a lin-
ear classifier on a single variable, the simplest machine learning model, to predict the
post-ablation outcomes for persistent AF patients.
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The periodic content is electrophysiologically important, as it is associated with
different phenomena such as FSs and rotors. For FSs and rotors, their frequency, or the
periodic cycle length (CL), is likely drawn from a similar range, and the coexistence of
several periodic components with different periodic CLs are informative to a mixture of
different AF dynamics. In persistent AF patients, the highest dominant frequency (DF)
content is spatially stable in corresponding atrial regions with varied frequencies [206,
207]. The non-invasive extraction of atrial periodic content motivated the development
of an atrial periodic source spectrum (APSS), which is a function of maximal periodicity
of the atrial sources over a prescribed range of CLs, and is more comprehensive than the
highest DF. Moreover, APSS has a time resolution the same as the sampling frequency
(such as 1 kHz in our case) regardless of the length of the signals. It is much higher than
the 1 Hz precision achieved by the FFT on the f-wave segment of a single beat (typically
one second or less) with the sampling frequency of 1 kHz. Similar to FFT, our metric
of APSS can either be inferred from the BSPMs, or computed directly on intracardiac
signals.

This chapter presents the development, validation and application of APSS ex-
tracted non-invasively from pre-operative ECG or BSPM, to enable machine learning
to predict labels/events such as post-ablation AF recurrence, directly on patient data.
We called APSS inferred non-invasively as non-invasive APSS, and extracted directly as
true APSS. We show that the non-invasive APSS approximates the true APSS, which can
be used to predict two subgroups with different long-term post-ablation AF recurrence
amongst our dataset of persistent AF patients.

5.2 Methods

The estimation, validation and application of non-invasive APSS are shown in Fig. 5.1,
and their details are described in the subsections as follows. In summary, the estima-
tion of non-invasive APSS is obtained via CL-MaxAC pairs from a f-wave segment of
body surface potentials, either BSPMs or ECGs. A patient-level APSS was obtained by
aggregating all segment-level APSSs of a patient. The patient-level APSS was downsam-
pled afterwards for the survival analysis on 147 persistent AF patients, going through
ECGi-guided ablation as presented in Haïssaguerre et al. [41], where focal and reen-
trant drivers were first mapped by ECGi using the same (or very similar) set of surface
recordings, and they were subsequently ablated until the slowing of local atrial activ-
ity. If AF was not terminated, linear ablation with LA roof and mitral isthmus was
performed.
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Fig. 5.1. Flowchart of the study of non-invasive APSS, the validation on a synthetic
dataset, as well as an application of the APSS to predict two groups with distinctive
long-term AF-free probability on a persistent AF dataset.

5.2.1 Estimation of non-invasive APSS

SO-BSS

First, as described in the previous chapter, SO-BSS was applied to extract a user-
specified number of equivalent periodic sources from body surface potentials (either
ECG or BSPM) to obtain CL-MaxAC pairs. As in the last chapter, we chose to extract
K = 10 CL-MaxAC pairs to achieve a good balance between source estimation accuracy
and time efficiency.

Estimation of APSS with a Gaussian process for regression (GPR)

In order to estimate MaxAC over a range of CLs, we used GPR over these K CL-MaxAC
pairs to represent the MaxAC (target/output domain) over a continuous range of CL
(input domain). The mean and the variance of the GPR prediction are taken as the
estimation and uncertainty of the non-invasive APSS. This is based on the assumption
that MaxAC is continuous in the CL domain, and the MaxAC decreasing on the query
that CL is moving away from the true CL from a periodic source. A zero-mean GPR
function was adopted as we assumed there is no periodic content (MaxAC equals to 0)
on CLs far from all estimated CL-MaxAC pairs.

GPR [71] (section 2.3.1) was used to estimate an infinite unknown function yi =

f(x) + ε, ε ∼ N (0, σ2
n) with white noise represented by ε. The GP posterior

f∗|X∗,X, f ∼ N (m(f∗), cov(f∗)) (5.1)
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were computed to represent the APSS from observations, (X,y) = {(xi, yi)|i = 1, 2, . . . , K},
which were the K CL-MaxAC pairs obtained from SO-BSS. X is an K × 1 training input
matrix, and y is a vector of all scalar outputs. X∗ denotes the |T | × 1 test input matrix,
where we used T = {100, 101, . . . , 400}ms. The mean m(f∗) and variance cov(f∗) of the
unknown function, the APSS, can be computed using the following formulae (see also
Eq. (2.18) and (2.19)):

m(f∗) = κ(X∗,X)(κ(X,X) + σ2
nI)−1y (5.2)

cov(f∗) = κ(X∗,X∗)− κ(X∗,X)(κ(X,X) + σ2
nI)−1κ(X,X∗) (5.3)

The covariance function κ(·, ·) is crucial for GPR estimation. We chose a Matérn
kernel [71] with ν = 3/2 for the covariance function, a commonly used isotropic kernel
that is a product of an exponential and a polynomial of one degree. The kernel value
κ(·, ·) only depends on the distance between input pairs κ(x, x′) = κ′(r = |x− x′|), and
has the form of

κ′(r; l) = (1 +

√
3r

l
) exp(−

√
3r

l
) (5.4)
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Fig. 5.2. The kernel value κ′(r; l) based on input distance r, with different hyperpa-
rameter l. A larger l entails slower descend on the covariance function.

A visualization of the kernel is seen in Fig. 5.2, which shows that the larger l is, the
slower the kernel value descends when the input distance r increases, and therefore,
the smoother the GPR estimation would be. This can be further seen from Fig. 5.3,
with the estimation of the GPR mean (Eq. (5.2)) for an isolated input point, as well
as paired points of different distances. For an isolated input point in Fig. 5.3(a), the
curve resembles that of the covariance function κ′(r) in Fig. 5.2. For r = 5 in Fig. 5.3
(b), for l = 10 and 20, there is an arc connecting the two input points, but for smaller
l = 1 and 5, the two points are connected with a declining curve. Increasing the distance
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Chapter 5. Non-invasive atrial periodic source spectrum for AF condition representation

r between the two inputs, a larger l is needed to have an upward curve connecting them
(Fig. 5.3 (b-d)).

As all hyperparameters of the covariance function are updated during the optimiza-
tion process of maximizing the marginal likelihood log p(y|X, θ) (Eq. (2.21)), a bound
of the characteristic length-scale l which was set to reflect our belief for modeling the
true APSS. We assumed periodic sources with similar CLs should be considered as hav-
ing the same periodic content, and, for CLs with high MaxAC, the MaxAC diminishes as
moving away from these CLs. We then set the length scale l to be bounded by 1 ≤ l ≤ L

with L = 5, 10, 20 and 30 as candidates. Further consideration of choosing the boundary
is presented in the result section (5.3.2 and 5.3.3).
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(a) An isolated input point.
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(b) Input pairs with distance r = 10.
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(c) Input pairs with distance r = 20.
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(d) Input pairs with distance r = 40.

Fig. 5.3. Estimations of the GPR using different hyperparameter l. The distance r =
10, 20, and 40 for (b-f), and the distance l = 1, 5, 10 and 20 are typical points of the specified
bound for l.

In addition, the standard deviation σn of the white noise ε ∼ N (0, σ2
n) as specified

in Eq. (5.2) and (5.3) was set to be bounded by 0.001 ≤ σn ≤ 0.05 in estimating MaxAC
by the SO-BSS step.

We used the scikit-learn [200] Python package (version 0.22.1) to implement the
GPR.
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Moving-max filtering on CL-MaxAC pairs

We observed that among the CL-MaxAC pairs from a f-wave, there are still entries with
similar CLs but varied degrees of MaxAC (see the left panels of Fig. 5.4). Therefore,
before applying GPR with CL-MaxAC pairs as input, we used a moving max filter to
keep only the pairs with MaxAC being the maximum over the adjacent CL within a
radius of 10 ms. A demonstration of this step and the difference between before and
after this filtering step are shown in Fig. 5.4.

5.2.2 Validation of non-invasive APSS

Mean shapes

In order to demonstrate that non-invasive APSS estimated by GPR is able to represent
the true APSS, we calculated the distribution of MaxAC over CL from the atria for com-
parison. For a time series of transmembrane voltage on an atrial mesh of N nodes, the
computation of ACF with time lags of 1, 2, . . . T ms has a complexity of

O(N × (12 + 22 + · · ·+ T 2)) = O(N × T (T + 1)(2× T + 1)

6
) = O(N × T 3)

which is too expensive to evaluate in its exact form. Therefore, we measured the func-
tion of MaxAC over CL by first clustering transmembrane voltages of all atrial nodes
with similar morphologies using a minibatch K-means algorithm [208] to perform K-
means clustering [209] on a large scale. K-means is an unsupervised learning technique
to aggregate data points, with similar patterns by iteratively updating the means of each
cluster of the data points.

True APSS

We then evaluated CL-MaxAC pairs of the mean morphology of each cluster. This re-
duced N in the complexity term to a much smaller M . We set M = 10 for extracting
CL-MaxAC pairs from the LA and from the RA, respectively. The M = 10 was chosen to
be the same as the number of non-invasive CL-MaxAC pairs, which provided a similar
degree of averaging effect to the transmembrane voltages in each atrium. In addition,
this choice helped save computational time. We then concatenated these 20 pairs to
constitute the true CL-MaxAC pairs of the atria, ordered by their CL. Similar to how we
dealt with the CL-MaxAC pairs extracted from the BSPM, we applied a moving max filter
to keep the maximum of CL-MaxAC pairs at a vicinity of 10 ms (Fig. 5.4). We denoted
the final CL-MaxAC as yatria, which are datapoints sampled from the true APSS.
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Fig. 5.4. Examples of non-invasive APSS (black curve) with uncertainty bound (gray
shaded area) as prediction for the atrial APSS (crosses), before and after applying
filters to both non-invasive CL-MaxAC pairs (dots) and the atrial CL-MaxAC pairs
(crosses), within 1 ≤ l ≤ 10, on (a) driver-type FS, (b) initiator-type FS, (c) FS-induced
AF, and (d) re-entrant AF. The un-predicted and predicted truth pairs refer to those that
are included or not predicted by APSS reconstructed from the BSPM (Eq. (5.12)). The gray
shaded area shows the uncertainty boundary of APSS in Eq. (5.3). a.u.: arbitrary unit.
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5.2.3 Application of non-invasive APSS

Aggregation for patient-level non-invasive APSS

To represent the state of a patient, we utilized a patient-level APSS, obtained by aggre-
gating the maximal MaxAC for each CL interval across all APSSs of a patient, as shown
in Fig. 5.5.

Downsampling patient-level non-invasive APSS

For survival regression, we down-sampled the APSS by taking the maximum of the
MaxAC for every 10 ms of CL, as features (covariates). For CL ranges from 100 to 400
ms that we adopted in the study, this amounts to 30 features in total. Each feature rep-
resents the maximal MaxAC at an interval, and we named each feature by the smallest
CL of the interval they represented. This process is illustrated in Fig. 5.5.
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Fig. 5.5. Method of building the patient-level non-invasive APSS after applying GPR by
aggregation across all non-invasive APSS of the patient, and downsampling to build
features. The top plot shows the original non-invasive APSS estimation (lines), and the
bottom plot shows the max aggregation of non-invasive APSS (black), and the covariates by
mean MaxAC of every 10 ms (orange). a.u.: arbitrary unit.

Survival likelihood regression

The same as the last chapter (Section 4.3.5), the AF follow-up data is right-censored.
The survival likelihood function S(t) = P (T > t) is a non-increasing function over time
variable t which defines the probability of survival on a random time T > t. The hazard
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function h(t) at time t denotes the probability of the death event occurring at time t,
which has the following relationship with the survival likelihood function,

h(t) = −S
′(t)

S(t)
(5.5)

where S ′(t) is the derivative.

We used the downsampled patient-level non-invasive APSS features as covariates
for survival function regression. The n covariates were represented as {zi|i = 1, 2, . . . , n},
where each zi is a vector aggregating the scalar values of all patients for covariate i,
and zij shows the value of this covariate i for patient j. We used an n×NPatient matrix
Z = [z1, z2, . . . , zn]T to show the values of all covariates, where NPatient is the number
of patients. We also used Zj to denote all n covariates of patient j.

Some of the most common survival regression models, such as the Cox’s propor-
tional hazard model [210], represent the hazard rate h(t|Z) as a function of t and some
covariate variable Z. The Cox’s model assumes the hazard ratios of all n covariates Z

are time-invariant, and represents the total hazard rate as

h(t|Z) = bo(t) · exp(
n∑
i=1

bi(zi − z̄i)) (5.6)

where b0 is the baseline hazard function that is the same for all covariates, the partial
hazard function bi denotes the hazard function for a covariate i, and exp is the expo-
nential function.

In survival analysis, the event of AF recurrence for a patient j at a time t is defined
as t = Xj. The patient set R(t) = {j|Xj ≥ t} is called the risk set at time t, which
denotes the set of patients “at risk” of AF recurrence at that time. The probability of
someone (such as patient j) from the risk set R(t = Xj) reporting AF recurrence at a
particular time Xj is represented as a conditional probability as

LLj(β,Z) =
h(Xj|Zj)∑

l∈R(Xj) h(Xj|Zl)
(5.7)

where β denotes the hazard functions of all covariates.

Using the Cox proportional hazard model in Eq. (5.6) to the above equation, we
obtained the log partial likelihood LL(β,Z) as a product of LLj(β,Z) for all Nr patients
with observed AF recurrence events, which is

LL(β,Z) = ΠNr
j=1LLj(β,Z) (5.8)

= ΠNr
j=1

b0(Xj) exp(
∑n

i=1 bi(zij − z̄ij))∑
l∈R(Xj) b0(Xj) exp(

∑n
i=1 bi(zil − z̄il))

(5.9)

103



5.3. Results

= ΠNr
j=1

exp(
∑n

i=1 bi(zij − z̄ij))∑
l∈R(Xj) exp(

∑n
i=1 bi(zil − z̄il))

(5.10)

where z̄il is the estimated value of zil, and the baseline hazard ratio b0(Xj) is eliminated
in Eq. (5.10).

We also added an L1 penalty term with a coefficient of λ = 0.01, in order to shrink
coefficients of less importance to the regression target. This gives the final form of the
optimization target LL∗(β,Z) for all n covariates.

LL∗(β,Z) = LL(β,Z)− λ||β||1 (5.11)

Survival estimation using the selected feature For survival likelihood estimation [202],
when it is estimated using multiple features, cross-validation has proved to reduce bias
in accuracy estimation [211]. Therefore, we used 10-fold cross-validation to train and
test the performance. In each fold, about 90% of patients were used to select the most
relevant feature with the largest hazard ratio, as well as a cut-off MaxAC threshold θ

from the training dataset. The feature and the threshold was used to divide the test
patients into the lower (MaxAC ≤ θ) and higher (MaxAC > θ) groups. The lower and
higher groups of all folds were then concatenated to form the total lower and higher
groups, and Kaplan-Meier curves [202] were plotted for the final total lower and higher
groups.

We used the lifelines Python toolbox (version 0.26.0) [203, 212] for the optimiza-
tion and plotting of the Cox proportional hazard model and the Kaplan-Meier curves.

5.3 Results

5.3.1 Comparison between with and without SO-BSS

As periodic content is usually extracted by FFT, we demonstrated the role of SO-BSS
in our dataset. We evaluated the non-invasive APSS extracted from BSPM with SO-
BSS and GPR, and the following two candidates: (1) MaxAC of BSPM, which directly
computes MaxAC of CL on each lead of the BSPM, and aggregated the highest MaxAC
of each CL across all channels; and (2) MaxFFT of BSPM, using the amplitude of the
FFT over CL (=1000 / frequency, unit: ms), and aggregated the maximum computed
across all channels. The ACF of the BSPM underestimated the MaxAC at CLs around
200 ms (Fig. 5.6(a)), as some periodic sources were blurred when projected to the
torso. The more irregular and complex the atrial electrical waves are, the more that
SO-BSS is needed in revealing the periodic sources. FFT (red dash line) missed the
spike of MaxAC at the CL of 300 ms (Fig. 5.6(b)), due to a limited precision using FFT
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for one-second signal at a sampling frequency of 1 kHz. However, SO-BSS extracted the
periodic structure among multi-channel signals.

(a) Comparison with MaxAC (b) Comparison with MaxFFT
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Fig. 5.6. Comparison between non-invasive APSS extracted from BSPM with SO-BSS
and GPR (black curve), versus directly from BSPM without SO-BSS, using (a) MaxAC
(green curve) or (b) MaxFFT (red dash curve). The SO-BSS points and the truth were
both filtered by the moving max filter. The prediction shows the non-invasive APSS esti-
mated with a hyperparameter bound 1 ≤ l ≤ 10. MaxAC and MaxFFT of BSPM represents
the maximum of the MaxAC value, or the normalized FFT amplitude over each channel of
BSPM. (a) shows the comparison on a simulated signal of FS-induced AF with a pacing CL
of 150 ms, where the ACF of the BSPM (green curve) underestimated the MaxAC at CLs
around 200 ms. (b) shows the comparison on a simulated signal of driver-type FS, where
FFT (marking CLs calculated from 1000 / frequency, unit: ms) missed the spike of MaxAC
at the CL of 300 ms. a.u.: arbitrary unit. n.u.: normalized unit.

The distributions of the highest MaxAC values for the three methods in Fig. 5.7
further demonstrate the necessity of SO-BSS in extracting periodic sources from the
body surface potentials. For complex cases (those except for driver-type FS), the SO-
BSS recalled the highly periodic components better. The significant improvement in
extracting periodic sources is the most prominent for FS-induced AF, which had the
most mixed local and global wave dynamics, as each episode recording the shift from
FS-dominant to self-perpetuated. As the dispersion between the two distributions in
persistent AF datasets in Fig. 5.8 is similar to the degree of dispersion in Fig. 5.7 (d), the
SO-BSS is expected to better extract the periodic content of the persistent AF dataset.

5.3.2 Comparison between non-invasive and true APSS

We used {(x∗i , y∗i )} = {(CLatriai ,MaxACatriai )|i = 1, 2, . . . } to denote the true APSS pairs
extracted from the atria derived from transmembrane voltages. To compare the non-
invasive APSS with the true CL-MaxAC pairs, we calculated the overlap between the
uncertainty bounds (±1 standard deviation) of the non-invasive APSS m(x) and the true
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(c) Re-entrant AF
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Fig. 5.7. The highest MaxAC value of all sources estimated from BSPM with SO-BSS
and GPR (orange), and extracted directly from BSPM without SO-BSS (blue), and those
computed directly from transmembrane potentials (green) for different simulation
categories (a-d) of the synthetic dataset. a.u.: arbitrary unit.
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Fig. 5.8. The highest MaxAC estimated with SO-BSS and GPR (orange), and extracted
directly without SO-BSS (blue) from BSPM of persistent AF patients. a.u.: arbitrary
unit.
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APSS. This is denoted by

Coverage =
|{(x∗j , y∗j ) : ||y∗j −m(x∗j)|| ≤ cov(x∗j)}|

|{(x∗i , y∗i )}|
(5.12)

where || · || denotes the absolute value and the | · | denotes the cardinality. We also eval-
uated the prediction accuracy by the mean absolute error (MAE) between the estimated
APSS and the true APSS at x∗,

MAE =
∑
i

||y∗i −m(x∗i )|| (5.13)

The visualization of comparison between non-invasive APSS and the true atrial
periodic sources are shown in Fig. 5.4. Non-invasive APSS curves are represented by
atrial periodic sources after applying the moving max filters. For example, in Fig. 5.4
(d) before filtering, there were a few CL-MaxAC data points that are vertically scattered
around CL of 195 ms, causing the prediction curve to be dipping at that location. How-
ever, this was corrected by a moving max filter, which preserved only the CL-MaxAC
datapoint with the highest MaxAC, resulting in a peak at 195 ms.

The moving max filter improved both MAE and coverage significantly, as show in
the Fig 5.9. The APSS for DFS simulations were all precisely predicted by the non-
invasive APSS, with a MAE of 0.05 and the coverage of GPR almost 100%. For simula-
tions of other AF mechanism categories, after filtering, the prediction of APSS achieved
a fair accuracy with MAE below 0.2. The coverage also increased from around 60% to
around 80%, with 1 ≤ l ≤ 10 receiving the maximal coverage. Although the magni-
tude of the MaxAC was still somewhat compromised, our non-invasive APSS is a good
approximation for the true APSS.

We also compared the dominant CL extracted from the non-invasive CL-MaxAC
pairs and true CL-MaxAC pairs using the CL receiving the maximal value of MaxAC.
The comparison is shown in Fig. 5.10. Compared to the grey dashed curve showing the
ideal CL estimation, there was little systematic bias between the dominant CL estimated
from the torso, which was a good advantage over DF analysis. The largest error was
due to that some CLs were estimated as their harmonious components, as they also had
a similarly large MaxAC amplitude. Therefore, we also evaluated dominant CL with
estimation and ground truth both ≤ 300 ms, to exclude the effect of the harmonious
components. All categories had similarly small estimation errors, with the total mean
absolute error as 3.5 ± 9.7 ms.
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Fig. 5.9. The evaluation of (a) mean absolute error (MAE) and (b) coverage of ground
truth (Eq. (5.12)) of non-invasive APSS extracted from BSPM with SO-BSS and GPR for
estimation of true APSS, on the synthetic dataset before and after applying a moving-
max filter on both prediction and truth. Filtering improves the estimation by reducing
error and improving coverage. (a) The more relaxed the upper boundary is, the smaller the
error is. (b) non-invasive APSS estimated with 1 ≤ l ≤ 10 received the maximal coverage.
DFS: driver-type FS. IFS: initiator-type FS. FAF: FS-induced AF. RAF: re-entrant AF. a.u.:
arbitrary unit. n.u.: normalized unit.
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(b) Initiator-type FS
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(c) Re-entrant AF
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(d) FS-induced AF

Fig. 5.10. Comparison of the dominant CLs extracted from non-invasive CL-MaxAC
pairs and atrial CL-MaxAC pairs, over four categories. The total mean absolute error
of the CL is 13.8 ± 42.1 ms. When evaluated only for estimated and ground-truth
dominant CLs both ≤ 300 ms, the total mean absolute error is 3.5 ± 9.7 ms. The mean
absolute error for estimating the CL for each categories are (a) DFS: 3.6 ± 20.1 ms. (b) IFS:
38.0 ± 66.9 ms, (c) RAF: 20.2 ± 45.6 ms, and (d) FAF: 35.0 ± 65.0 ms. We also evaluated
dominant CL with estimation and ground truth both ≤ 300 ms, the mean absolute error are
(a) DFS: 1.4 ± 6.1 ms (b) IFS: 6.8 ± 16.5 ms, (c) RAF: 7.3 ± 11.5 ms, and (d) FAF: 4.8 ±
10.1 ms.
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5.3. Results

5.3.3 Additional considerations in selecting the GPR kernel hyper-
parameters

We present some additional consideration on selecting the GPR kernel hyperparameters,
by cross-referencing APSS extracted from multiple f-waves of the same patient. As
shown in Fig. 5.11, patient-specific patterns of APSS can be extracted through averaging
APSS from different signals, where the left column shows a patient with a peak between
CLs of 100 – 200 ms, and the platform-shaped pattern between CLs of 220 – 270 ms,
resulted from at least two periodic sources with similar CLs, are shown in the second
patient in the right column. The consistent intra-patient patterns from different AF
episodes of the same patient suggest the presence of underlying patient-level features.

For AF patients with more complex AF episodes, where AF dynamics varied be-
tween different recordings, we used K-means clustering [209] using the Euclidean dis-
tance as distance metrics. Here, the number of clusters was selected by the silhouette
analysis [213], commonly used for evaluating the assignment of clustering labels by
how close a data point is to the other data points of the same cluster, compared to
the data points of different clusters. An example of such way to find several patterns
from a patient is demonstrated in Fig. 5.12, where clustering into 6 clusters had the
highest silhouette score in Fig. 5.12(a). The APSS curves of different clusters (b-g)
demonstrate the high similarity with other curves within the same cluster. The curves
in Fig. 5.12(c)(e) exhibit peaks of different CLs, and are distinctive with other clusters.

The effect of choosing different upper bounds for the time-scale l is also visible
via plots of pair-wise correlation between the downsampled patient-level APSS features
in Fig. 5.13. With a higher upper bound for l, the correlation plot has a less distinc-
tive boundary with adjacent features. As this upper bound of l goes up, the correlation
plot is increasingly closer to the correlation without SO-BSS in Fig. 5.13 (d). However, a
negative correlation between 130 – 150 ms with 200 – 230 ms are more prominent with
a higher upper bound. Based on evaluation on the simulation set, as well as the consid-
eration to reveal local and common intra-patient patterns and feature correlations, we
thereby have chosen 1 ≤ l ≤ 10 as the hyperparameter bound.

5.3.4 Post-ablation AF recurrence prediction using APSS

We used features derived from downsampled patient-level APSS to present the AF con-
dition of each patient. Each feature is the highest MaxAC value corresponding to a CL
interval of 10 ms, and were used as features for the Cox proportional hazard model,
which predicts the hazard ratios associated with each feature, as shown in Fig. 5.14 for
non-invasive APSS estimated with SO-BSS and GPR (1 ≤ l ≤ 10) from BSPM. We found
that the feature corresponding to CLs of 220 – 230 ms had the highest hazard ratio on
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(a) Patient 1 (1 ≤ l ≤ 5)
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(b) Patient 2 (1 ≤ l ≤ 5)
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(c) Patient 1 (1 ≤ l ≤ 10)
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(d) Patient 2 (1 ≤ l ≤ 10)
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(e) Patient 1 (1 ≤ l ≤ 20)
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(f) Patient 2 (1 ≤ l ≤ 20)

Fig. 5.11. Examples of non-invasive APSS from BSPMs of Patient 1 (a,c,e) with a peak-
shape pattern, and Patient 2 (b,d,f) with a platform-shape pattern, estimated from
BSPM with GPR (with 1 ≤ l ≤ 10). In each panel, the top plot shows the non-invasive
APSS curves derived from an f-wave of the patient, and the bottom plot shows the mean
(black plot) and standard deviation (gray shade) of the APSS curves at the top plot. a.u.:
arbitrary unit.
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(d) Cluster 3
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(g) Cluster 6

Fig. 5.12. The non-invasive APSS curves of a patient, estimated from BSPM with GPR
(with 1 ≤ l ≤ 10). (a) The silhouette score on different number of clusters, which
picked 6 clusters for the K-means clustering method. (b-g) The non-invasive APSS
curves of each cluster, where the thick curve in each plot shows the mean shape of the
curves. a.u.: arbitrary unit.
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(a) Non-invasive APSS (1 ≤ l ≤ 5)
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(b) Non-invasive APSS (1 ≤ l ≤ 10)
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(c) Non-invasive APSS (1 ≤ l ≤ 20)

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

CL (ms)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

CL
 (m

s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n

(d) MaxAC without SO-BSS

Fig. 5.13. The correlation between features on the persistent AF dataset, for (a-c) non-
invasive APSS estimated from BSPM with SO-BSS and GPR, and (d) MaxAC directly on
BSPM without SO-BSS.
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5.4. Discussion

all training datasets of 10-fold cross-validation splits. The evaluation on the final as-
sembled test set also showed that the high-value group was significantly better than the
low-value group with a p-value of 0.006 in the AF-free rate under a logrank test [214],
as shown in Fig. 5.15. Examples of patient non-invasive APSS estimated with SO-BSS
and GPR (1 ≤ l ≤ 10) from BSPM, of high and low MaxAC values at CLs of 220 – 230
ms, are shown in Fig. 5.16, with different morphologies of APSS curves.

1 0 1 2 3
log(HR) (95% CI)

240300290330390120130200170320340150210160230140310270370110280190380350260250100180360220

CL
 (m

s)

Fig. 5.14. Log hazard ratios with 95% confidence interval (x-axis) of all features de-
rived from the non-invasive APSS from BSPM (estimated with 1 ≤ l ≤ 10), estimated
by Cox proportional hazard model with L1 regulation. A hazard ratio >1 means a higher
value of the factor results in a decrease in the AF-free likelihood (survival rate), compared to
baseline AF-free likelihood. The feature “220 ms” representing the patient MaxAC content
on CLs of 220–230ms has a hazard ratio > 1 with 95% confidence.

We also tested this on the non-invasive APSS calculated from BSPM and ECG, with-
out and with SO-BSS, and show their p-values in Table 5.1. Except for non-invasive
APSS calculated from ECG without SO-BSS, non-invasive APSSs were able to predict
two patient groups with different outcomes. The smaller bound is associated with a
better prediction performance, with smaller p-values in the logrank test for 1 ≤ l ≤ 5

and 1 ≤ l ≤ 10. Features of 370 – 400 ms and 210 – 240 ms produced high hazard
ratios.

5.4 Discussion

In this study, we presented non-invasive APSS from either BSPM or ECG, a novel rep-
resentation of patient AF condition based on the atrial periodic sources over a wide
range of CLs. Although the APSS is similar to spectral analysis, it has a finer time res-
olution, the same with the sampling frequency, much higher than the FFT analysis on
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Fig. 5.15. 10-fold cross-validation Kaplan-Meier plots for feature selection of APSS
estimated from BSPM with SO-BSS and GPR (1 ≤ l ≤ 10), with a Cox’s proportional
hazard LASSO model, on the persistent AF datasets. (a) Train set in each of the 10
folds. (b) Evaluation on the final assembled test set, with p = 0.006 in the logrank
test. In each fold, a single feature with the highest hazard ratio and the decision boundary
is selected from the training fold. In the legend of (b), at a particular time shown vertically
above, “At risk” and “events” show the count of patients without and with AF recurrence up
to that time, respectively, and “censored” shows the number of patients who did not have
AF recurrence up to that time, but no event was recorded afterwards.
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Fig. 5.16. Example patterns of non-invasive APSS estimated from BSPM with SO-BSS
and GPR (1 ≤ l ≤ 10), with (a) high and (b) low MaxACs at CLs of 220 – 230 ms. The
legend is the same as Fig. 5.11. Patient of (a) experienced AF recurrence at 9 months after
ablation, and patient of (b) experienced no recurrence up to 37 months post-ablation. a.u.:
arbitrary unit.

Table 5.1. P-values for logrank tests with the null hypothesis that the two predicted
patient groups have the same survival likelihood, using features from non-invasive
APSS extracted from different sources (BSPM and ECG), and by different methods
(estimated with SO-BSS and GPR or computed directly). For the entries with 1, features
of 370–380 ms, 380–390 ms or 390–400 ms were found to be the highest hazard; other
entries identified features of 210–220 ms, 220–230 ms or 230–240 ms with the highest
hazard ratio. The bold font with two stars highlights entries with p-values < 0.01, and with
one star show entries with p-values < 0.05. l is the time-scale of the Matérn kernel in the
GPR.

Estimated with SO-BSS and GPR
Computed directly

1 ≤ l ≤ 5 1 ≤ l ≤ 10 1 ≤ l ≤ 20 1 ≤ l ≤ 30
From BSPM 0.004** 0.006** 0.07 0.04* 0.01*1

From ECG 0.003**1 0.03*1 0.081 0.151 0.61
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Chapter 5. Non-invasive atrial periodic source spectrum for AF condition representation

short signals. As a multi-lead analysis, our prediction of dominant CL is also less likely
to result in an underestimation of the DF presented in FFT analysis [136]. They reveal
patient-specific atrial periodic wave patterns, and were able to predict patient groups
with an improved long-term outcome. The APSS can also be derived from the intra-
cardiac recordings. This provides a way to validate our non-invasive APSS, and also
shows its usefulness for a variety of applications, ranging from intra-operative to home
use.

5.4.1 Technical considerations of non-invasive APSS

We showed the importance of SO-BSS in estimating APSS non-invasively. Usually,
frequency-domain analysis such as the FFT is used for extraction of periodic compo-
nents. However, the length of the signal should be short enough for analyzing AF from
a f-wave of a single beat, rendering a low time precision of the periodic components
by the FFT (Fig. 5.6(b)). Using MaxAC as an empirical measurement of the periodic
content is another choice, but directly applying SO-BSS to BSPM loses some periodic
content, as presented in Fig. 5.6(a) and Fig. 5.7(d-e). For estimating the APSS, SO-BSS
is especially helpful for ECG analysis, as ECG has fewer leads, which was likely the rea-
son that using ECG only without SO-BSS failed to predict patient groups with distinctive
outcomes in Table 5.1.

The non-invasive APSS is based on the CL-MaxAC pairs and modeled by an addi-
tional Bayesian model GPR. We presented the technical consideration for choosing the
hyperparameter l for the Matérn covariance function of GPR, and found that 1 ≤ l ≤ 10

achieved a good balance of revealing patient-specific APSS patterns (Fig. 5.9), and was
useful for the survival prediction for both BSPM and ECG (Table 5.1). The patient-
specific pattern(s) between non-invasive APSS from different episodes of persistent AF
patients showed evidence that common patient-specific patterns of APSS can be ex-
tracted from AF signals of high complexity for various patients, and also validated our
hypothesis that the periodic components can represent the AF condition of a patient.

Our non-invasive APSS approximated the true APSS with a small MAE and a high
coverage, although some error was still unavoidable due to the intrinsic volume-conductor
nature of far-field signals, reducing the amplitude of the MaxAC. Besides, we used
a computationally tractable way to calculate the samples drawn from the true APSS,
by extracting the mean shapes of similar transmembrane voltages with unsupervised
learning, which could result in an underestimation of the MaxAC of true APSS. Valida-
tion to compare between the intracardiac electrograms and torso potentials is needed.
The CL estimated by our method also did not have a systematic bias (under- or over-
estimation), as shown in Fig. 5.10, but further validation on complex AF episodes,
where the atrial activities are less organized, is needed.
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5.4. Discussion

Although one may consider using dimension reduction techniques such as Principal
Component Analysis [16], to reduce the number of features with a strong correlation,
we deliberately kept the simplest classification model and a uni-variate feature for pre-
dicting patient groups with different outcomes, for the clarity of its physiological mean-
ing. We also chose to focus on markers extracted solely from body surface potential
signals, to explore the potential predictive values of such signals, but combining other
bio-markers of the patients would likely improve the survival prediction.

5.4.2 Mechanistic insights from survival analysis with non-invasive
APSS

Using the Cox proportional hazard model with L1 regularization, MaxAC on the CL
intervals of 210 – 230 ms and 360 – 400 ms were identified as two simple uni-variate
predictive metrics on our cohort of persistent AF patients. According to the correlation
plot in Fig. 5.13(c), we relaxed these CL ranges to their adjacent CL that are moderately
correlated (with a Pearson coefficient around 0.5), which gave the two frequency bands
of 4 – 5 Hz (200 – 250 ms) and 2.5 – 2.9 Hz (350 – 400 ms) that indicated high hazards
for post-ablation AF recurrence in our datasets.

In particular, periodic sources of 4 – 5 Hz and 2.5 – 2.9 Hz are likely to be slow
reentries with large conduction blocks, or macro-reentries (Fig. 6.1), as the frequency of
rotors was typically ≥ 5 Hz in human AF [12]. There are several possible explanations.
Reentries with anatomical conduction blocks or macro-reentries, are less straightfor-
ward to map by a catheter, and therefore, could be missed by traditional strategies
such as PV isolation and rotor ablation. As a long AF CL of 190 ms already indicates
a higher degree of organization in the atria [114], periodic sources with CL above 200
ms may be mistaken as satisfactory immediate outcomes for termination. Furthermore,
as the frequency and the amplitude of the highest DFs are usually adopted for analyz-
ing AF, coexisting periodic sources which are not the highest DF could be missed. All
these considerations are conjectures from literature, and so require verification using
intra-cardiac signals of AF patients in prospective studies.

5.4.3 Limitation

We constructed APSS using isotropic and stationary kernels. The isotropic kernel as-
sumes that the diminishing speeds of the MaxAC by increasing and decreasing CL are
the same, whereas the stationary kernel assumes that the diminishing speeds are the
same for all CLs. This is likely an over-simplification, and a fine-tuning of the kernel
functions should be considered with validation using experimental or patient data.
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Chapter 6

Non-invasive detection of active and
passive centrifugal activation with
deep learning

6.1 Introduction

Centrifugal activation (CAT), which refers to a focal activation starting at a central site
and propagating radially to the surrounding tissue, is an electrophysiologically impor-
tant wave propagation pattern. It presents at the activation of pacemaker cells, the initi-
ation of ectopic beats, and when electrical propagation travels through inter-atrial con-
nections as passive CATs, including the interatrial septa (fossa ovalis and Bachmann’s
bundle) and the coronary sinus ostium, all confirmed by high-resolution mapping on
35 AF patients in a recent multi-center study led by the the Haut-Lévèque Cardiology
Hospital of Bordeaux [215]. They concluded that the differentiation between active
and passive CATs helps to identify the true arrhythmic mechanism[215].

We further hypothesized that a passive CAT, when regularly presenting on a single
atrial chamber, is a consequence of stationary driver(s) on the opposite atrial chamber,
as the whole atria is entrained by the dominant rhythm of the driver. Non-invasive
mapping of spatially stationary drivers can help narrow down the mapping scope for
invasive mapping.

Furthermore, the occurrence of passive CATs on two atrial chambers alternatively
and regularly may indicate an inter-atrial macro-reentrant circuit (Fig. 6.1), as they are
uni-directional and regular. Non-invasive identification of inter-atrial macro-reentrant
circuits further suggests ablation sites, such as coronary sinus ostium, which was found
to be an important isthmus for an inter-atrial macro-reentrant circuit [216]. An in-
silico study [165] also suggested the ablation of inter-atrial connections could be useful
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for some persistent AF patients, depending on the geometry of the AF. However, it is
also particularly challenging to detect the macro-reentry accurately without entrain-
ment mapping used by the clinicians, with only about 50% accuracy using a directed
graph approach from invasive high-density activation mapping [217].

BB

FO FO
CS

BB

CS

Fig. 6.1. Illustration of inter-atrial macro-reentrant circuits via the inter-atrial connec-
tions of BB, CS and FO, with the macro-reentrant circuit paths shown in orange. The
passive CAT can occur at the junctions. BB: Bachmann’s bundle. CS: coronary sinus. FO:
fossa ovalis. Note that this does not correspond to the travelling direction of the activation
wavefronts.
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Fig. 6.2. An example of an intra-cardiac macro-reentry circulating via the coronary
sinus connection with the LA, and the fossa ovalis with the RA, with a CL of 370 ms.

ECGi has sometimes been used to identify macro-reentries involving both atria.
Cuculich et al. [40] identified a slow bi-atrial macro-reentry with a rotor core from a
reconstructed phase map by ECGi, on a low-resolution bi-atrial mesh without any inter-
atrial connection structure. This may miss intra-atrial macro-reentries without a rotor
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core. Such case includes an inter-atrial macro-reentry circulating between the coronary
sinus and the fossa ovalis as in Fig. 6.2, and an inter-atrial macro-reentry circulating
between the Bachmann’s bundle and the fossa ovalis septa as in Fig. 6.3, which has a
shorter macro-reentrant pathway, and thereby, a comparatively faster speed than going
through coronary sinus. Detection of macro-reentry via spectral analysis is also not
feasible. As mentioned in Chapter 4, using SO-BSS with a random forest classifier,
macro-reentries could also be detected as FS falsely, as the extracted periodic sources of
macro-reentries are also highly periodic and synchronized.
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Fig. 6.3. An example of an inter-cardiac macro-reentry circulating via Bachmann’s
bundle on LA and fossa ovalis on RA with a cycle length of 223 ms.

Supervised machine learning can learn the correspondence between input data and
prediction target via training examples. For some inputs, especially high dimensional,
an additional step of feature extraction is required. However, it can be more effective
to use deep learning to recognize the morphology of electrophysiological signals rather
than using hand-crafted features [218]. The non-invasive extraction of timing and lo-
cation relies on exploiting the spatial-temporal structure of BSPM, which can be viewed
as a time series of 252-lead potentials, similar to a video consisting of a series of images,
where the locations of the image pixels are irregular. We first considered representing
BSPM as a convolutional recurrent neural network (CRNN) architecture, which applies
convolutional filters such as convolution, pooling, and batch normalization to encode
each frame in a flattened vector, and learns the temporal relationship of this encoded
representation through a recurrent neural network (RNN). In particular, the weights in
the cells of RNN were shared, so that common features could be learned from different
parts of a f-wave, making the RNN suitable to encode the cyclic structures in the repet-
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itive focal firings and reentrant waves during AF. CRNN has been extensively applied
to encode spatial-temporal data such as videos [219]. In cardiology, it has also been
adopted successfully for end-to-end event detection in medical imaging, such as end-
diastole detection from ultrasound [220], and the diagnosis of cardiac abnormalities
from ECG, such as [221].

However, the irregular arrangement of the BSPM electrodes poses difficulty in ap-
plying the traditional convolutional operations, which are used on regular pixels or
grids. To solve this, we propose that using a graph to represent BSPM leads, and a
generalized convolution operation for non-euclidean graphical neural network (GNN)
models may be more appropriate, as the BSPM leads can be represented as a graph
of nodes where the neighbouring nodes share similar information from the same car-
diac sources. We proposed a Graph Convolutional Recurrent Neural Network (GCRNN),
combining an RNN with a GNN, where the GNN replaces the 2D convolution component
in the CRNN with an edge convolution operator (EdgeConv) [99] to perform convolu-
tion operations from the nearest neighbours of each electrode.

The goal of this study was to develop a suitable deep learning model for non-
invasive detection of 1) active CATs, 2) the origins of FS drivers, 3) passive CATs, and
4) the atrial chamber which the passive CATs land on, from BSPM recordings. We
attempted to use a GCRNN model, combining a GNN and a RNN. Its performance was
compared to a baseline CRNN, consisting of a standard CNN and a RNN.

6.2 Methods

6.2.1 Graph Convolutional Recurrent Neural Network

The architecture of the GCRNN and an example output of our method are shown in
Fig.6.4, on a 252-channel T -length BSPM signal. On the left, there are two alternative
convolution layers to transform input BSPM data into a condensed spatiotemporal ten-
sor of size 252 × Tc, where Tc is the time length of the compact temporal vector with a
reduced time length and Tc < T . This constitutes two alternative approaches, a tradi-
tional 2D convolution (2D Conv) layer, and an Edge Convolutional layer (EdgeConv),
corresponding to the CRNN and GCRNN, respectively. In the middle, an RNN learns
the temporal dependency of the condensed representation from a series of the compact
BSPM embedding. The output is a function over time which indicates the probability of
CAT as classified by the site (FSLA, FSLA, ConnLA, and ConnRA). With a cut-off thresh-
old obtained by cross-validation, the probabilistic output function can be transformed
into an output function with only binary values.
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Fig. 6.4. (a) Architectures of CRNN and GCRNN, which output (b) the time-dependent
probabilistic functions of CAT (t) for FSLA, FSRA, ConnLA, and ConnRA. The descrip-
tion of the architecture is presented in the main text. The example output is from an FS
on the LA of 120 ms. The probabilistic prediction (prob. pred.) is represented as the
half-transparent shaded area. The cut-off threshold is shown by the dash lines. The bi-
nary prediction (bin. pred.) is represented as the vertical bars with zero opacity. The
network prediction targets are marked by black stars. In (a), for the input of the CRNN, a
252-channel T -length BSPM signal was represented as 4×252×T tensor of value (V), and
three-dimensional coordinates of the vest leads (X, Y, and Z), whereas for the input of a
GCRNN, the 252-channel BSPM was represented as a network of 252 nodes, with signal of
the electrode being the feature of that node.

GNN as a spatiotemporal encoder for BSPM We represented the 252 lead positions
as network nodes, and their signals of length T as features of the node. The EdgeConv
operator updates the features of each network node by learning another feature, to
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compact the T -length features into a feature of length Tc = 100, by passing update
messages through neighbour nodes. The compacted signals of each node make the
training of the RNN easier. Specifically, the EdgeConv operator sums up the information
propagated from the neighbouring nodes, where the information is learned by a simple
multi-layer perceptron (MLP) network. Formally, the operation of EdgeConv is defined
by the following equation:

xi =
∑
j∈N (i)

MLP (xi||xj − xi)

where the neighbours N (i) are defined by the Nneighbour nearest neighbours of each
BSPM node given the three-dimensional locations of the leads in the Euclidean space.
We chose Nneighbour = 6, and used || to denote the concatenation of two tensors by
expanding the number of features, as the BSPM leads were designed as clusters of six
nodes surrounding one node (Fig. 2.6). The MLP network consists of a fully connected
layer that maps the concatenation of the vector and the difference with its neighbouring
node (xi||xj−xi), to a Tc-length tensor, where Tc is the length of the signal. Afterwards,
a ReLU layer maps this Tc-length tensor with 252 input features to another tensor of the
same shape using a fully connected layer.

RNN as a temporal encoder An RNN with was then used to extract the temporal
structure from the compacted representation learned from the GNN or CNN. An RNN
learns the common patterns of adjacent time steps from the entire time series. It consists
of a chain of cells, and the representation of each time step of a time series was taken
as the input of each cell. A learned representation coming out from each cell is fed back
to the cell recurrently, with additional input from a (t + 1)-th input. We considered an
LSTM cell [92], which can learn a temporal encoding over a long sequence through
gating functions on variables in the cell. To enable the learning of the pattern in both
the forward and backward directions, we used a bidirectional LSTM. This means that
the information can flow in both directions of the times series. The output of each cell
is then an embedding of the input time series, the length of which is the same as the
input time series. Readers interested in RNN and LSTM are referred to Chapter 2 for
their formulae. A LSTM cell had an input size of 252.

Upsampling layer The output of the RNN is then transformed by a dynamic upsam-
pling layer to the original time length. The upsampling operation is a transpose of the
convolution operation, which upsamples each entry of a vector to its multiple. The
parameters of this layer are dynamically updated during the training phase of the net-
work [222]. Similar to the weight sharing of a convolutional layer, the weights of the
upsampling layer are also shared across different patches of the whole time series.
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Output layer The network then goes through a sigmoid function to map the output
between 0 and 1. The final output vector is a long probability vector of the same number
of classes as the time length, 800 classes in our case, similar to the network output in
our previous work [218] annotating the repolarization time on filter-distorted unipolar
electrograms. This output vector then goes through a moving average filter of size 20
ms, to smooth out any spurious spikes.

Prediction target The prediction target is a vector of the same length as the time
series, where each entry of the vector corresponds to the likelihood of the onset of
the CAT of a time instance. To detect the onset of the CAT, we marked entries of the
prediction output vector corresponding to the first 20 ms since the onset of the CAT as
1, and marked the other entries as 0.

Neural network training

Similar to Chapter 4, we used a leave-one-patient-out cross-validation method to per-
form the validation and evaluation process. We arranged the five patient simulations
by taking three patients for training, one patient for the validation set, and the trained
model was evaluated on the remaining holdout patient. We varied the holdout set to be
all five different patients.

To augment the training dataset for building more robust networks, we started with
an 800 ms segment and took five subsets of 750 ms with 0, 10, . . . 50 ms as the start-
ing point during training. During the evaluation, these six subsets were aggregated by
averaging to form one 800-ms segment. To train the model, an Adam optimizer [223]
was used with a learning rate of 0.0001. A binary cross entropy loss was used to evalu-
ate the probabilistic outputs of both training and validation sets. The total binary cross
entropy loss was defined as the average of sample binary cross entropy loss. The sample
binary cross entropy loss l of the i-th sample for the c-th class, pi,c ∈ [0, 1], evaluated on
its binary ground truth, yi,c ∈ {0, 1}, was defined as

l = − [yi,c · log pi,c + (1− yi,c) · log(1− pi,c)] (6.1)

The network was updated by going through the whole training dataset using mini-
batch gradient descent with a batch size of 32. Each pass going through the whole
training dataset was marked as an epoch, where the binary cross-entropy loss of the
validation was computed at each epoch. The training stopped after seeing the validation
loss continuously increasing for 20 epochs. The network at the “best” epoch, i.e. when
the validation loss was smallest, was adopted as the final prediction model.

The validation set was used to select the best epoch and a cut-off threshold to
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obtain a binary output from the probabilistic output from the trained model. The cut-
off threshold of a validation set was obtained from the threshold resulting in the highest
Area under Receiver-Operator curve (AUROC) of the probabilistic outputs on predicting
the presence of a CAT over the validation set. The final prediction for CAT function
used the maximum of predicted CAT function of each time step predicted over all the
train-validation splits, and the final cut-off threshold was the largest cut-off threshold
across the validation sets.

To further minimize the impact of spurious outputs on the extraction of the binary
outputs, we extracted peaks of the CAT functions exceeding the cut-off threshold, while
ensuring the distance between two detected peaks to be > 100 ms by preserving only
the highest peaks. Intervals starting from 10 ms before until 10 ms after the time of CAT
peak were marked as the timing of CAT onset, where the length of 20 ms was set to be
the same as the prediction target.

The network was trained using PyTorch version 1.4, torch-geometric version 1.6.3,
CUDA version 10.2 on a Quadro RTX 8000 Graphic Processing Unit. It was faster to
train the GCRNN than the CRNN, as it took 20 – 30 minutes to train 27 – 41 epochs
for the GCRNN, while it took 40 – 60 minutes on 23 – 25 epochs for the CRNN, when
training the networks on a three-patient training dataset and a one-patient validation
dataset (Patient 5).

6.2.2 Preparation of prediction inputs and targets

This project used the synthetic dataset built in Chapter 3. In summary, the dataset
contains 1772 (driver-type FS) + 328 (initiator-type FS) + 328 (FS-induced AF) + 549
(reentrant AF) = 2977 f-wave segments.

Computation of CAT

On the atria, we computed the timing of the active CAT as the origin of the FS, de-
noted as FSLA or FSRA, as well as the passive CATs, which arrive at the opposite atrial
chamber through inter-atrial connections, denoted as ConnLA or ConnRA. The local
activation time of the surrounding tissue was calculated as the duration between the
activation in the node since the first activation at the center of CAT. We considered local
activation time only within 10 – 200 ms from the activation of the candidate focal site.
To avoid inaccuracy, we only labeled and predicted CATs up to 1000 − 200 = 800 ms
in our signals. We then labeled the presence of CAT using the criterion that the dis-
tances from the centroid were linearly correlated with their activation times since the
activation of the centroid, measured by a correlation coefficient of > 0.8 by a Pearson
correlation test. The process is illustrated in the Fig. 6.5.
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Fig. 6.5. Detection method for the CAT. Local Activation Time: Local activation time.
The strong linear correlation is tested by the Pearson correlation test with a correlation
coefficient > 0.8.

From our experience, a CAT is only detectable from the BSPM when the radius
of CAT is large enough, although this boundary was unclear to us. For example, for
those fast FS which induce a 2:1 activation to the surrounding tissue, only a half of the
CATs were detectable. Instead of labelling the presence of focal sources by prescribed
labels, we only included those CATs propagating through a detecting radius, without
blocks, as the detection targets. The annotation of CAT considers those radial activations
emanating for at least 50, 100, and 150 triangular edges from the centrifugal centers,
which correspond to approximately 2 cm, 4 cm and 6 cm away from the activation
centers. These radii were loosely selected, and could be optimized in future projects. To
demonstrate the radial activations emanating for at least 50 triangular edges from the
centrifugal centers, we showed the area with ≤ 50 triangular edges from the centroid
in Fig. 6.6. Compared to using the Euclidean distance in the three-dimensional space to
find such regions, this method of extraction by the number of connected edges did not
include sites on the opposite chamber (Fig. 6.6 (c, d)) or on the coronary sinus (Fig. 6.6
(e)).

AF mechanism prediction with CAT

The CAT occurrences of FSLA, FSRA, ConnLA and ConnRA over 800 ms were used to
infer the AF mechanisms. We detected FS on LA and on RA, which were represented by
≥ 3 occurrence of FSLA for LA FS, and ≥ 2 occurrence of FSRA for RA FS.

From ConnLA and ConnRA, the presence of inter-atrial macro-reentrant circuit can
be extracted by if there are repetitive CATs on both ConnLA and ConnRA. Here, an
alternating occurrence of the ConnLA and ConnRA would be more accurate, as activity
follows a biatrial conduction pathway via two inter-atrial connections. However, this
requires high accuracy in estimating the timings of ConnLA and ConnRA, and therefore,
we relaxed the criterion of alternation, but only counted the occurrences of ConnLA and
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(a) An FS site on the LA (b) Left inferior PV

(c) Fossa ovalis on the LA (d) Bachmann’s bundle on the LA (e) Coronary sinus on the LA

Fig. 6.6. Illustration of the minimal area (in white) for labelling CAT targets, with ≤
50 triangular edges from (a) an LA site at (αLA = 0.2, αRA = 0.2) (b) left inferior PV,
and (c-e) inter-atrial connections on the LA.

ConnRA to be ≥ 2 times each as the criterion of inter-atrial macro-reentries.

If there was no macro-reentrant circuit, the entries with ≥ 3 repetitive ConnRA
and ≤ 1 ConnLA were tagged as “driver on LA”. These drivers emitted repetitive atrial
propagation in one direction from the LA to the RA, causing a repetitive activation at
the inter-atrial connection with the RA, and hence, ConnRA was repetitively activated.
Meanwhile, wave breaks at RA caused only occasional activation of ConnLA. Likewise,
we tagged entries with ≥ 2 repetitive ConnLA and ≤ 1 ConnRA as “driver on RA”, which
promotes repetitive CAT arriving at the other atrial chamber through inter-atrial con-
nections. The required number for ConnLA decreased for the reason that RA conduction
is slower [34].

6.3 Results

We first discussed the validation of using CAT as prediction targets to infer AF mecha-
nisms. Afterwards, we evaluated our network performance by the CAT timing as well as
the AF mechanism, comparing with a vanilla CRNN, the architectural details of which
can be found in Appendix B.

We evaluated the prediction of AF mechanisms in the form of a multi-class matrix
Aij, where the subscripts ij shows the number of a targeted class i (in a row) was
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predicted as class j (in a column). When the matrix is normalized by the number of
targets in each class, the entries on the diagonal show the recall scores of the true
classes, and when normalized by the number of predictions in each class, the diagonal
shows the precision scores of the true classes.

6.3.1 Validity of using CAT as a prediction target to infer AF mech-
anisms

We assessed the suitability of using CAT as prediction targets to infer AF mechanisms
by comparing with ground-truth AF mechanisms that were computed using other pro-
cessing methods. Ground-truth FS on LA and RA were prescribed by the simulation
protocol. Ground-truth drivers on LA or RA were defined as both FS as well as reen-
trant sources, containing episodes with phase singularity points with a total duration of
>640 ms (80%) out of 800 ms signal duration (Chapter 3). The ground-truth macro-
reentry was selected as those with differences on dominant CLs between LA and RA less
than 20 ms, with no driver on LA or RA.

In Fig 6.7, we show a comparison between the ground truth and the network pre-
diction targets. Using the targeted CAT to tag the network prediction targets, all three
classes of FS, as well as LA drivers, were correctly identified with high precision and
recall, which validated the proposed approach of using passive CAT to detect LA drivers
in our dataset. A majority of ground-truth macro-reentries were predicted as macro-
reentries. However, in AF sustained by RA drivers and other mechanisms, an inter-atrial
macro-reentrant circuit could also occur.

6.3.2 Evaluation of CAT prediction

We considered the evaluation method to assess the timing of each CAT function CAT (t).
As shown in Fig. 6.4(b), there could be multiple CAT events in a signal, so calculating
the time difference between the CAT events was not an option. Although to evaluate the
data type of an event occurrence, a timing error cost function based on dynamic time
warping [224] sounds reasonable. It only provides an evaluation on the full signal, but
poses difficulty in evaluating the average time error for each CAT event.

Instead, we segmented the predicted CAT (t) into windows of specified lengths
20, 30, . . . , 800 ms, and calculated the numbers of true positive, true negative, false neg-
ative and false positive instances, which is a generic evaluation method for machine
learning classifiers. For a window containing a labeled CAT, if it also contains a pre-
dicted CAT, the window was marked as true positive, and otherwise, this window was
marked as a false negative. Likewise, for the window not labeled as CAT, it was marked
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Fig. 6.7. Multi-class confusion matrices comparing the ground-truth mechanisms and
the network targets that we tagged by using CATs. The scores were calculated on the
concatenation of five patient test sets. FS and LA driver had high precision and recall. A high
recall but low precision was associated with macro-reentry, suggesting that the alternative
passive CATs also occur for AF with RA drivers. The numbers in bracket show the number
of signals in each class.

as true negative if it does not contain a predicted CAT, and otherwise, a false posi-
tive. This evaluation method allowed us to inspect the model performance at different
time resolutions. The probabilistic output was evaluated by the AUROC score to the
probabilistic output, whereas the binary output was evaluated by accuracy, recall and
precision. The evaluation on all five test datasets is shown in Fig. 6.8.

In both networks, the AUROC and accuracy scores were almost constant, irrespec-
tive of the window size, with GCRNN higher than CRNN for FSLA (accuracy: 0.88 vs
0.84, AUROC: 0.94 vs 0.92), FSRA (accuracy: 0.92 vs 0.86, AUROC: 0.97 vs 0.94) on a
window size of 250 ms. The GCRNN also produced a smaller variation on the scores be-
tween the test patients. However, the recall and precision scores increased with larger
window size, and reached their maximum value on a window size of around 250 ms,
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but some of them slightly declined afterwards. The recall and precision scores were also
higher in GCRNN than in CRNN, on FSLA (recall: 0.85 vs 0.84, precision: 0.81 vs 0.74)
and on FSRA (recall: 0.92 vs 0.86, precision: 0.84 vs 0.74), evaluated on a window
size of 250 ms.

For ConnLA and ConnRA, the recall of ConnLA in GCRNN was about 5% higher
than in CRNN. Little difference between these two networks was found, with AUROC
and accuracy scores being about 5–10% lower than those of FSLA and FSRA on the
window size of ≤250 ms. The lower AUROC also shows a 5–10% decline in the recall
and precision scores in ConnRA on the window size of ≤250 ms. The reason why
ConnRA appeared to be the worst is likely due to the drivers on LA usually having
shorter CLs, which created more complex fibrillatory waves that reach the RA, and
therefore, the ground-truth labels for ConnRA were the least organized, rending the
prediction of ConnRA the most difficult.

6.3.3 Regular single-chamber passive CAT indicates single-chamber
drivers

The passive CAT indicated the presence of active CATs that result from FSs, as shown
in Fig. 6.9. In the four cases, the predicted CAT likelihoods for the FS were all small,
but the presence of FSs was ascertained by the presence of regular passive CATs on the
opposite atria. The four subplots show that this applies for FSs on both atria, regardless
of the CL of the FS.

In Fig. 6.10 (a-b), single-chamber drivers on LA and RA were characterized by
repetitive passive CATs on the opposite chamber, with CAT likelihood above the detec-
tion threshold, but no repetitive passive CAT was detected on the same chamber. We
also showed two cases which successful identified macro-reentries in Fig. 6.10 (c-d),
corresponds to Fig. 6.2 and Fig. 6.3, respectively, by using repetitive passive CATs in
both atria.

6.3.4 Evaluation of AF mechanism prediction via CAT detection

In Fig 6.11 and Table 6.1, the presence and location of FS on both atrial walls were
correctly identified by our GCRNN, with high mean scores of accuracy (89.3 – 93.3%),
precision (83.9 – 88.5%) and recall (82.7 – 91.8 %) for all three classes of “FS on LA”,
“FS on RA” and “No FS”, which are higher than CRNN.

In Fig 6.12 and Table 6.1, both networks had a similar performance. The presence
and locations of drivers for both atrial chambers were correctly identified. Moderate
high mean accuracy, precision and recall scores were seen for the two classes of “Driver
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Fig. 6.8. The AUROC, accuracy, precision and recall scores on the CAT prediction out-
puts of (a) FSLA, (b) FSRA, (c) ConnLA, and (d) ConnRA by GCRNN and by CRNN, on
all the test sets of five patients. The shading shows the inter-patient standard deviation
of the metric with the same colour as the shading. The two numerical values in the legend
show the mean score of the five test patients, evaluated on windows of 20 ms, 250 ms and
800 ms, respectively.
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(b) Fast FS on RA (CL = 120 ms)
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(c) Slow FS on LA (CL = 240 ms)
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(d) Slow FS on RA (CL = 210 ms)
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Fig. 6.9. The targeted and predicted CAT likelihoods of four FSs with (a-b) short and
(c-d) long CLs by GCRNN, where the detection of passive CAT aids the detection of
active CAT. The probabilistic prediction (prob. pred.) is represented as the half-transparent
shaded area. The cut-off threshold is shown by the dash lines. The binary prediction (bin.
pred.) is represented as the vertical bars with zero opacity. The network prediction targets
are marked by black stars.

on LA” and “Driver on RA” around 70–85%. The macro-reentry received around 82%
accuracy, but lower mean recall and precision scores, around 50–65%.

6.4 Discussion

We presented a deep learning model which detects not only the presence and the loca-
tion, but also the onset timing of the active CAT of FS, as well as the passive CAT coming
from the opposite chambers through the inter-atrial connections. The prediction output
is a probabilistic function CAT(t) detailing the likelihood of CAT of each time step t.

The BSPM, as a far-field signal, is difficult to utilize for high-resolution inverse
computation. The most impressive result for our method is the ability to detect the
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(c) Macro-reentry of Fig. 6.2

0

1

FS
LA

0

1

FS
RA

0

1
Co

nn
LA

0 100 200 300 400 500 600 700 800
Time (ms)

0

1

Co
nn

RA

Threshold
Prob. pred.
Bin. pred.
Target

Threshold
Prob. pred.
Bin. pred.
Target

Threshold
Prob. pred.
Bin. pred.
Target

Threshold
Prob. pred.
Bin. pred.
Target

(d) Macro-reentry of Fig. 6.3
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Fig. 6.10. The targeted and predicted CAT likelihoods by GCRNN of four AF episodes
driven by (a) rotors on LA and (b) rotors on RA, and (c-d) macro-reentries. The rotors
can be detected by repetitive CAT on the opposite chamber. The legend is the same as
Fig. 6.9.

Table 6.1. Accuracy, precision and recall scores (mean±standard deviation over five
patient test datasets, unit:%) of FS prediction based on the active CATs of FSLA and
FSRA as well as driver prediction based on the passive CATs of ConnLA and ConnRA
by GCRNN and CRNN. The bold entries received a higher (more than 2%) mean score than
the other network architecture.

GCRNN CRNN
Accuracy Precision Recall Accuracy Precision Recall

FS on LA 90.8±1.9 88.5±3.3 82.7±4.4 87.6±2.4 83.6±3.2 77.4±6.0
FS on RA 93.3±1.7 88.4±5.7 91.8±3.3 86.4±1.8 76.2±5.8 85.9±11.4

No FS 89.3±2.0 83.9±2.6 85.9±3.4 77.5±3.0 70.9±7.5 64.4±9.5
Driver on LA 81.5±1.7 80.6±7.9 73.6±6.0 81.8±2.2 79.5±6.4 75.3±5.0
Driver on RA 84.6±2.5 71.3±10.1 75.5±5.5 82.8±2.4 71.6±10.4 68.6±9.8

Inter-atrial macro-reentries 82.2±3.4 49.7±5.2 64.5±7.8 81.4±3.4 49.6±13.5 59.9±7.8
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Fig. 6.11. Multi-class confusion matrices showing the performance for FS prediction
based on the active CATs of FSLA and FSRA by GCRNN and CRNN. The scores were
calculated on concatenation of five patient test sets. The numbers in bracket show the
number of signals in each class.
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Fig. 6.12. Multi-class confusion matrices showing the performance for driver predic-
tion based on the passive CATs of ConnLA and ConnRA by GCRNN and CRNN. The
scores were calculated on concatenation of five patient test sets. The numbers in bracket
show the number of signals in each class.
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passive CAT of about 2 cm radius in the euclidean distance, with above 80% accuracy
and almost 90% AUROC evaluated at a time window of 250 ms, which was inaccessible
using ECGi. The detection of the passive CAT should be credited to the advancement
in research of both geometric deep learning and high-resolution computer modeling
for AF, which includes the intra-atrial connection structures into forward modeling of
BSPMs.

6.4.1 Non-invasive mapping of AF mechanisms via CAT prediction

We explicitly modeled the active and passive CATs on both chambers, with four time
functions predicted by our GCRNN. This way, the ectopic focal firing can be differen-
tiated from the passive focus-like activation, with their left or right atrial location also
being predicted. Combined with FS detection, the mapping time to localize these focal
and reentrant drivers could be reduced. The drivers we mapped are not restricted to
focal or reentrant types, and can be one or multiple drivers, but an ensemble of them
on one chamber creates a repetitive dominant rhythm that passes to the other chamber
via the inter-atrial connections. Moreover, not only the CL for the dominating driver
can be assessed, but also its impact on the rhythm of the other atrial chambers.

We showed the validity of using passive CATs to detect single-chamber drivers,
including FSs, single-chamber reentries, and macro-reentries (Fig. 6.7). All types re-
ceived high precision and recall, except for macro-reentrant circuits. They can be found
not only in AF with inter-atrial macro-reentry as the main driver, but also in other
mechanisms such as RA drivers (Fig. 6.7 (d)). Even though we did not achieve high
precision and recall for the detection of macro-reentry, our detection algorithm of the
macro-reentrant circuit is of great value. The inter-atrial macro-reentry was common in
FS-induced AF episodes given appropriate CL and atrial size, such as the case presented
in Fig 6.3, which was induced by FS with CL of 210 ms. As there is no sustained (> 100

ms) rotor presented on the atria, it could be hard to detect such macro-reentry, since
the atrial activity is regular, and as described in the introduction, ECGi did not provide
enough spatial resolution to represent them.

Based on our method, the involved inter-atrial connections of the macro-reentrant
circuit can also be easily inferred by extracting CLs from the predicted time-value func-
tions of ConnLA and ConnRA, as the macro-reentry travelling through the coronary
sinus ostium has a longer CL than those without. An alternative method is to predict
the CAT of each of the inter-atrial connections separately.

Our GCRNN can be adapted to using ECG signals as inputs with minimal changes,
although the performance needs to be further tested. The distance between the ECG
channel can be based on the Euclidean distance of the ECG electrodes, or by the distance
in the signal space.
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6.4.2 Performance of prediction of CAT timing

Evaluated by cross-validation methods, the presence and location of FSs were accurately
predicted with around 90% accuracy, 80–95% recall and precision (Fig. 6.11 and Ta-
ble 6.1), a significant improvement compared to using the SO-BSS method in Chapter 4.
The use of EdgeConv filters in the GCRNN also significantly improved the performance
for FS predictions, compared to the traditional convolutional filters in CRNN, suggest-
ing these filters are more appropriate filters to extract the spatiotemporal information
for BSPMs.

Using the ConnLA and ConnRA, AF drivers dominating in a single chamber (i.e.
driver on LA and driver on RA) were also successfully predicted, approaching 85%
accuracy, and, 70–85% recall and precision scores (Fig. 6.12 and Table 6.1), with similar
performance between GCRNN and CRNN.

We only targeted those with alternative passive CAT on both atrial chambers, which
did not include other types of macro-reentries such as those circulating the tricuspid
valve during an atrial flutter episode. Although we achieved only about 65% recall and
49% recall scores, we still managed to extract the inter-atrial macro-reentry circuits in
some cases (Fig. 6.10), including those using Bachmann’s bundle and coronary sinus
as the macro-reentrant circuit (Fig. 6.2) and those using Bachmann’s bundle and fossa
ovalis as the macro-reentrant circuit (Fig. 6.3), which is totally inaccessible to a low-
resolution mesh used by ECGi.

We also noticed that the onsets of some predicted CATs had some delays compared
to the onsets of the targeted CAT, which can induce some errors when evaluating the
model performance using a small time window (Fig. 6.8). This is expected as the CAT
produces little change in the body surface potentials until its radius reaches a threshold,
and therefore, the propagation time from the onset to this detectable stage appeared as
a time lag. Nonetheless, this does not affect the prediction of AF mechanisms assessed
by the number of occurrences, the CL, and the atrium that the predicted CAT functions
indicate.

Similar to ECGi, some rotors were also mistaken by the neural network as the
origins of an FS. This problem, however, may be solved by incorporating the amplitudes
and timings of the probabilistic prediction of FSLA and FSRA, as well as those of passive
CATs, into the mechanism prediction method. As a rotor is likely composed of different
frequencies from sites on different radii, the detection of FS may be further improved
by combining the prediction results with SO-BSS method introduced in Chapter 4.
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6.4.3 Limitation

The way we automatically tagged CAT can introduce inaccuracy to the network labels.
For example, the anisotropy in the conduction velocity due to fibre orientation was also
omitted which miss some CATs. Other forms of non-centrifugal activation, such as focal
breakthroughs where conduction blocks are seen in the targeted area, can also occur,
both at the inter-atrial septa, and as the origins of atrial tachycardia. The detection
threshold for tagging CAT could be optimized. More accurate detection of passive acti-
vation through the septum and coronary sinus could be included in future work.

The inter-patient variability of the atrial meshes in terms of location and geometry
could also account for the prediction error. For further development, we could train
a deep neural network from signals obtained from a larger number of atrial meshes,
with smooth changes in the shapes and positions, where the impacts of geometrical and
positioning on the network performance could be quantified.

Lastly, we could proceed by applying our deep learning predictor on early-stage AF
patient signals. As the deep learning approach is based purely on the morphologies on
the BSPM signals, it is anticipated that it could be sensitive to noise. Therefore, noises
typically seen during the recording of the BSPM signal should be added to the synthetic
dataset for training, to obtain a model robust to the real clinical setting.
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Chapter 7

Discussion

This thesis presented three novel spatiotemporal machine learning algorithms using
BSPM data with various prediction targets to improve AF treatment, without the need
for patient cardiac imaging, as summarized in Fig.7.1. We specifically tackled the chal-
lenges of training and validating machine learning models on clinical datasets by lever-
aging synthetic AF signals generated using detailed patient atrial geometries with real-
istic electrophysiological properties. Furthermore, we used the synthetic datasets not
only to generate training examples, but also as a deductive reasoning toolbox, to show
the causal relationship for predicting the outcome of focal ablation from patient pre-
operative BSPMs.

GCRNN	Classifier

Targets:
• Detect	active	and	passive	

centrifugal	activations	(location	
and	timing)

• Detect	FS (location	and	timing)
• Detect	single-atrial	drivers	

(presence	and	location)
• Detect	inter-atrial	macro-

reentry

Training	and	test	data:
• Cross-validation	on	~2.4	

million centrifugal	activation	
labels	from ~3000 AF	
simulations

Random	Forest	Classifier

Targets:
• Detect	FS (presence	and	

location)
• Predict	AF	sustainability	after	

removal	of	FS
• Predict	long-term outcome	for	

paroxysmal	AF	ablation	

Training	and	test	data:
• Cross-validation on ~3000 AF	

simulations
• Tested	on 50 paroxysmal	AF	

patients	going	through	catheter	
ablation

Linear	Classifier

Target:	
• Predict	long-term outcome	for	

persistent	AF	ablation	

Training	and	test	data:	
• Cross-validation	

on 147 persistent	AF	patients	
going	through	catheter	ablation

Model complexity	and	training data	size	increase

Fig. 7.1. Summary of our classifiers on BSPMs, with various degree of model complex-
ity, and different training and testing datasets. AF: atrial fibrillation. FS: focal source.
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7.1 Summary of scientific findings

We described the development of computational models of AF episodes and BSPMs in
Chapter 3. This provided a total number of 2977 detailed AF simulations, covering
mechanisms ranging from organized to disorganized, including episodes driven by fo-
cal source only, by reentrant sources only, by a mixture of reentrant and focal sources,
as well as by multiple short-lived rotors, over five atria with differences in anatomy
and location. We also showed the statistical correlation required by a machine learning
model, by demonstrating the causal relationship between the pre-operative signals and
prediction targets, i.e. focal ablation outcomes. We showed that 1) the rotor devel-
opment suggests an arrhythmogenic substrate, represented as AF inducibility when the
focal source is removed, and 2) CL of the focal source is an important indicator of its AF
inducibility, with the AF-susceptible CL range differing between different focal source
sites.

In Chapter 4, we used a random forest classifier, which included features of CL,
MaxAC and s1-to-signal contribution, extracted from BSPMs and ECGs using SO-BSS.
We were able to determine focal and/or reentrant sources with high accuracy (above
90%), as well as the focal site with high accuracy of 80%, and demonstrate robustness
to interpatient variability on the synthetic dataset in Chapter 3. Predicted from preop-
erative BSPMs, patients with single-atrial focal sources were associated with lower AF
recurrence up to three years (p-value <0.05, logrank test) for paroxysmal AF patients
following AF ablation from the Haut-Lévèque Cardiology Hospital of Bordeaux. The
SO-BSS methods can be used to separate other types of signals, as well as other types
of arrhythmia.

In Chapter 5, we presented a linear classifier to predict long-term AF recurrence
directly using preoperative BSPMs of persistent AF patients. We developed the APSS
measure as a surrogate model, which was computed from BSPMs of length ≥ 800
ms. APSS was developed using SO-BSS and GPR. Survival analysis was applied to
select the most relevant feature from the APSS to predict the procedural outcomes. We
showed that higher MaxACs, over CLs from 220–230 ms as extracted from pre-operative
BSPMs, were associated with higher AF recurrence up to four years post-ablation (p-
value <0.01, logrank test) for persistent AF patients from the Haut-Lévèque Hospital.

In Chapter 6, on the synthetic dataset, a deep learning model specifically designed
for irregularly positioned electrodes of the mapping vest for BSPMs, GCRNN, was devel-
oped to annotate the onset timing of centrifugal activation from BSPMs. The centrifugal
activations included both active activations from focal sources and passive activations
through interatrial connections. The prediction output was a probabilistic function de-
tailing the likelihood of centrifugal activation at each time step. The classifiers achieved
a high accuracy (87–95%) over a time window of 20 ms. The focal source, as well
as single-atrial drivers on both atria, were also predicted with high accuracy (82–94%,
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respectively). Furthermore, for the first time, it was possible to non-invasively detect
macro-reentries circulating through interatrial connections including Bachmann’s bun-
dle, the muscular sheath of the coronary sinus, and/or the fossa ovalis.

7.2 Impacts

7.2.1 Spatiotemporal machine learning on scanner-free imaging of
body surface potentials

The most important contribution we made was the development of spatiotemporal ma-
chine learning algorithms on BSPM signals without the need for cardiac imaging. The
two words “spatiotemporal” and “scanner-free” seem conflicting, but we showed that
extraction of spatiotemporal structure can be done by exploiting the common structure
from second-order statistics amongst the signals, or the neighbourhood information of
the electrodes. This greatly simplifies the clinical procedures, as patients are no longer
subject to any cardiac imaging. Additionally, it avoids the need to solve the ill-posed
inversion problem of ECGi.

A surprising result in Chapter 4, was that using SO-BSS, we managed to extract
spatiotemporal structure from the signals without any information of the heart-torso ge-
ometries, which can be seen in the s1-to-lead contributions from figures such as Fig. 4.5
and Fig. 4.7. SO-BSS was also robust to the various geometries of the heart and the
torso. This suggests that BSPM signals already contain the spatiotemporal structure
statistically, and thereby exempt the need to use imaging data.

The deep learning method in Chapter 6 was also spatiotemporal, as it used an
EdgeConv operation which performs convolution, followed by a temporal RNN. The
EdgeConv operation was based on the information of nearest electrodes, and as the
relative positions of electrodes can be fixed by using a vest such as CardioInsightTM

Mapping Vest, the algorithm is also free of imaging. The electrode placement may also
be mapped with a general-purpose camera at a much lower cost.

7.2.2 Machine learning aided by multiscale modeling for personal-
ized AF treatment

Another major contribution we made was the development of a paradigm in the devel-
opment of machine learning algorithms on AF, which enabled both inductive reasoning
of machine learning methods and deductive reasoning of multiscale modeling methods.
This is especially important since the AF is a complex disease, where multiscale model-
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ing was essential for personalized AF modeling. We considered the following two key
elements for training prediction models using synthetic data on patients for personal-
ized AF treatment.

First, the model should be complex enough to represent the statistical relationship
between the data and the label. Meanwhile, the model complexity should also match
the available data size, so that the model can be trained while avoiding overfitting.
We specifically designed machine learning models that tailored the size of the training
set, as shown in Fig. 7.1. From the simplest to the most complex classification models,
the required number of examples also increased. The simplest model we trained and
tested was a linear classifier with the covariate chosen by a Cox proportional hazard
model, directly on the signals and outcomes of about 150 persistent AF patients in
Chapter 5. The classifier with medium-level complexity is a nonlinear random forest
classifier. It was designed to predict the different types of focal source and AF episodes
seen in paroxysmal AF patients. As we only had 50 patients, we generated a synthetic
data set containing nearly 3k AF episodes, and applied the classifiers on the outcome
prediction for paroxysmal AF patients. The most complex model was the GCRNN model
in Chapter 6. We set the timing of active and passive centrifugal activations as the
prediction targets, so that each second could be used as a training example for binary
prediction, so the data size was multiplied by a factor of the time length, 800 time
samples in our case, which amounted to about 2.4 million examples.

Driver-type	
focal	source

Initiator-type
focal	source

Single	
reentrant	
source

Paroxysmal	AF	patient	dataset

AF	progression

Multiple	wavelets
Multiple	
reentrant	
sources

Persistent	AF	patient	dataset

Synthetic	dataset

Focal	source

Reentrant	source

Nonstationary	drivers

AF
mechanisms

Fig. 7.2. Our synthetic datasets covered the whole spectrum of AF mechanisms listed.
As we did not know the distribution of atrial activities in the paroxysmal AF and per-
sistent AF patient datasets, we marked them at positions in the spectrum of AF pro-
gression based on our prior belief.

Second, the synthetic training data should be representative of real data, as much
as possible. We specifically tackled the generality by the generation of a large number
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of AF episodes with variations of the AF mechanisms, as well as atrial geometries and
vest placements (Fig. 4.10). The composition of synthetic data and patient data in
relation to AF progression is given in Fig. 7.2. In the synthetic data, we modeled focal
sources including driver-type focal sources which drove AF through periodic ectopic
activations, and initiator-type focal sources which initiated reentries where AF was self-
sustained without the focal source. In addition, we also modeled reentrant sources
including those containing single reentry and multiple simultaneous reentries. As the
synthetic data reflects our prior belief in the distribution of paroxysmal AF patients,
we trained classifiers on the synthetic data, and transferred them to the patient data.
On the contrary, we directly trained and tested prediction models on the persistent AF
patient data.

Finally, to enable accurate labeling of the training examples, we developed several
automatic processing tools for production, as well as post-processing, of the simulations.
For producing uniformly consistent locations of the focal source sites and reentrant
cores, we utilized Universal Atrial Coordinate [109] to tag the focal sites and the acetyl-
choline sites, and phase distribution methods [186] to initiate reentries (Chapter 3).
The large number of simulations also necessitated the development of fast automatic
post-processing tools to quantify important dynamic properties of AF, such as the track-
ing of rotor activities (Chapter 3), and the extraction of passive centrifugal activation
and the inter-atrial macro-reentry mechanisms (Chapter 6) from transmembrane volt-
age. The detection of phase singularity points and centrifugal activation are both based
on tensor operations, which can be further accelerated using graphical processing units.

7.2.3 Personalized AF treatment and early AF detection

Our algorithms were tailored for personalized treatment using BSPMs and ECGs as non-
invasive screening tools. For example, by predicting the focal sources and the arrhyth-
mogenic substrate for AF maintenance from patient signals, our methods suggested per-
sonalized strategies for the foci and/or the arrhythmogenic substrate, such as disrupting
the pathway of reentrant drivers, and/or limiting the available area for rotor movement
(Chapter 4). We also successfully identified the presence of inter-atrial macro-reentry
which suggests ablation strategies for disrupting the macro-reentrant circuit, and such
suggestions were inaccessible via other non-invasive mapping methods including ECGi
(Chapter 6).

Personal suggestion for mechanism-directed treatment based on pre-operative BSPMs
could also be aided by APSS in Chapter 5, which is a surrogate model for describing
epicardial activation dynamics of a patient on a short recording of one cardiac beat. In-
ference from short signals is particularly useful for describing AF, given its beat-to-beat
variation. In addition, this surrogate model can be applied to other complex cardiac
conditions such as ventricular arrhythmias, of which the perpetuation mechanism is

144



Chapter 7. Discussion

also described by a spectrum ranging from localized drivers to multiple wavelets [225].

For health management of the general population, we provided a novel mechanism-
inspired method to detect the malignant ectopic beats leading to sustained AF (Chap-
ter 4). The early detection of AF is especially valuable, as AF is the most common type
of arrhythmia [1], with a declined treatment outcome with AF progression [5]. This
method could also be adapted to analyze other forms of multi-lead far-field signals,
such as those from a wearable device, which further increases the accessibility of our
technologies.

7.3 Future work

Model validation using external datasets, and the interpretability of the model, are
important steps towards clinical validation studies. Therefore, further experimental
studies and retrospective data from other centers are needed. This could help to explain
the electrophysiological significance of the findings, such as whether there is any specific
mechanism associated with highly periodic components with CLs of 220-230 ms.

To further leverage multiscale modeling, our atrial models could be improved to
include more atrial remodeling indicators, such as AF fibrosis, for a closer match of
AF patients. Also, the synthetic dataset can be made to reflect the distribution in a
population, by using ionic model parameters and conductivity values not as fixed values,
but rather, samples from a distribution. The atrial geometries can also be interpolated
using shape analysis techniques such as the one presented by Nagel et al. [226].

More sophisticated data processing tools on large meshes to enable accurate label-
ing of prediction targets, such as the presence of an inter-atrial macro-reentry, may also
yield improvement in the machine learning models. The patient outcome prediction
methods from BSPMs could be further combined with data from multiple modalities,
including the non-invasive ultrasound imaging data, and patient characteristics like age
and gender. Comparison between the distributions of synthetic and patient signals is
also required, to improve the generality of the synthetic data. Generative models of ECG
and BSPM signals of AF are also likely to achieve better prediction performance via data
augmentation. Moreover, the generative model also provides privacy-preserving data
sharing, which facilitates multi-center studies.
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Scientific publications

Peer-review journal papers

• P Langfield, Y Feng (joint-first author), et al., A novel method to correct repolar-
ization time estimation from unipolar electrograms distorted by standard filtering,
Medical Image Analysis (2021).

• J Corral-Acero, F Margara, M Marciniak, C Rodero, F Loncaric, Y Feng, et al., The
‘Digital Twin’ to enable the vision of prescision cardiology, European Heart Journal
(2020)

Peer-review journal paper in review

• Y Feng, C Roney, J Bayer, S Niederer, M Hocini, & E Vigmond, Detection of focal
source and arrhythmogenic substrate from body surface potentials to guide atrial
fibrillation ablation. (Submitted in July 2021 to PLOS Comp Biol).

Peer-review proceeding papers

• Y Feng, C Roney, M Hocini, S Niederer, & E Vigmond, Robust Atrial Ectopic Beat
Classification From Surface ECG Using Second-Order Blind Source Separation,
Proceeding of Computing in Cardiology (2020, Rimini).

• Y Feng & E Vigmond, Deep Multi-Label Multi-Instance Classification on 12-Lead
ECG, Proceeding of Computing in Cardiology (2020, Rimini).
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• Y Feng, M Saha, M Hocini, & E Vigmond, Noninvasive One-Year Ablation Out-
come Prediction for Paroxysmal Atrial Fibrillation Using Trajectories of Activation
From Body Surface Potential Maps, Proceeding of Computing in Cardiology (2019,
Singapore).

Peer-review abstract and poster

• Y Feng, M Hocini, & E Vigmond, Strong Correlation between Temporal Peaks
and Spatial Peaks in Body Surface Potential Maps of Paroxysmal Atrial Fibrillation
Patients, Atrial Signals Conference (2019, Bordeaux).

Open software

• Y Feng, Source code of Deep Multi-Label Multi-Instance Classification on 12-Lead
ECG, Zenodo, Proceeding of Computing in Cardiology (2020).
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Neural network architecture for the
ablation analysis

We replaced the graphical convolution with a 3D convolution. The input of the CNN is
four-channel potential-position vector, which combines the potential in the first channel,
and the three-dimensional coordinates of all the vest leads in the other three channels.
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Fig. B.1. Architecture of the CNN component.

Table B.1. Hyper-parameters of the CNN component.

Component Block Hyper-parameters

ConvReLU (4,64)
Conv2D In: 4, Out: 64: Kernel: (8,8), Stride: (8,8),

Padding: (26,26)
MaxPool2D Kernel: (6,3), Stride: (6,2), Padding: (0,0)

ConvReLU (64,128) Conv2D In: 64, Out: 252, Kernel: (4,1), Stride: (4,1),
Padding: (0,0)

The architecture and its hyperparameter are shown in Fig. B.1 and Table B.1. The
CNN mainy contain Conv2D, BatchNorm2D, ReLU and MaxPool2D operations. Conv2D
applies two-dimensional convolutional operation on the image of shape NLead × NT ime

with a fixed-size kernel (see the “Kernel” in the Table B.1), whereas the values of this
kernel are trained from the data. The BatchNorm2D applies normalization over a batch
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so that the entries of the batch has a normal distribution of mean 0 and standard devia-
tion of 1, rather than the whole training set, which reduces the computational cost, and
empirically it was found to be a necessary component in a CNN. The ReLU function is a
simple non-linear activation function

ReLU(x) = max(0, x)

widely used in deep learning architectures, adding non-linearity to the network and has
been found to improve classification results empirically [227]. The MaxPool2D module
selects the maximum entry from a fixed-size region. Eventually, this CNN compressed a
four-channel 252-lead 750-ms BSPM (Fig. 6.4), to a tensor of length Tc = 100 and input
size of 252, the same output dimension as the GNN module. This tensor is then fed to
the RNN module.
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[57] Yalçin Gökoǧlan et al. “Pulmonary Vein Antrum Isolation in Patients With Parox-
ysmal Atrial Fibrillation: More Than a Decade of Follow-Up”. In: Circulation:
Arrhythmia and Electrophysiology 9.5 (May 2016).

[58] SANJIV M. NARAYAN, DAVID E. KRUMMEN, and WOUTER-JAN RAPPEL. “Clin-
ical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources
for Human Atrial Fibrillation”. In: Journal of Cardiovascular Electrophysiology
23.5 (May 2012), pp. 447–454.

[59] Michel Haïssaguerre et al. “Catheter ablation of long-lasting persistent atrial
fibrillation: clinical outcome and mechanisms of subsequent arrhythmias.” In:
Journal of cardiovascular electrophysiology 16.11 (Nov. 2005), pp. 1138–47.

[60] Michel Haïssaguerre et al. “Catheter ablation of long-lasting persistent atrial fib-
rillation: critical structures for termination.” In: Journal of cardiovascular elec-
trophysiology 16.11 (Nov. 2005), pp. 1125–37.

[61] Michel Haïssaguerre et al. “Changes in Atrial Fibrillation Cycle Length and In-
ducibility During Catheter Ablation and Their Relation to Outcome”. In: Circu-
lation 109.24 (June 2004), pp. 3007–3013.

[62] Felipe Atienza et al. “Real-time dominant frequency mapping and ablation of
dominant frequency sites in atrial fibrillation with left-to-right frequency gra-
dients predicts long-term maintenance of sinus rhythm”. In: Heart Rhythm 6.1
(2009), pp. 33–40.

155



Bibliography

[63] Felipe Atienza et al. “Comparison of radiofrequency catheter ablation of drivers
and circumferential pulmonary vein isolation in atrial fibrillation: A noninfe-
riority randomized multicenter RADAR-AF trial”. In: Journal of the American
College of Cardiology 64.23 (2014), pp. 2455–2467.

[64] Sébastien Knecht et al. “Left atrial linear lesions are required for successful treat-
ment of persistent atrial fibrillation”. In: European Heart Journal 29.19 (Oct.
2008), pp. 2359–2366.

[65] Koonlawee Nademanee et al. “A new approach for catheter ablation of atrial fib-
rillation: Mapping of the electrophysiologic substrate”. In: Journal of the Amer-
ican College of Cardiology 43.11 (June 2004), pp. 2044–2053.

[66] Atul Verma et al. “Selective complex fractionated atrial electrograms targeting
for atrial fibrillation study (SELECT AF): a multicenter, randomized trial”. In:
Circulation. Arrhythmia and electrophysiology 7.1 (Feb. 2014), pp. 55–62.

[67] Manav Sohal et al. “Is Mapping of Complex Fractionated Electrograms Obso-
lete?” In: Arrhythmia & Electrophysiology Review 2.2 (2015), pp. 109–15.

[68] Iain Sim et al. “Left atrial voltage mapping: defining and targeting the atrial fib-
rillation substrate”. In: Journal of Interventional Cardiac Electrophysiology 56.3
(Dec. 2019), pp. 213–227.

[69] Jaakko Malmivuo and Robert Plonsey. “Bioelectromagnetism Principles and Ap-
plications of Bioelectric”. In: Oxford University Press (1995), p. 512.

[70] Jorge G. Quintanilla et al. “Mechanistic approaches to detect, target, and ablate
the drivers of atrial fibrillation”. In: Circulation: Arrhythmia and Electrophysiol-
ogy 9.1 (2016), pp. 1–11.

[71] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. Cambridge, MA, USA: MIT Press,
Jan. 2006, p. 248.

[72] Yingjing Feng et al. “An efficient cardiac mapping strategy for radiofrequency
catheter ablation with active learning”. In: International Journal of Computer
Assisted Radiology and Surgery 12.7 (July 2017), pp. 1199–1207.

[73] Sam Coveney et al. “Probabilistic Interpolation of Uncertain Local Activation
Times on Human Atrial Manifolds”. In: IEEE Transactions on Biomedical Engi-
neering (2019), pp. 1–1.

[74] Yuyang Wang, Roni Khardon, and Pavlos Protopapas. “Nonparametric Bayesian
estimation of periodic light curves”. In: Astrophysical Journal 756.1 (2012).

[75] Nicolas Durrande et al. “Detecting periodicities with gaussian processes”. In:
PeerJ Computer Science 2016.4 (2016), pp. 1–18.

[76] Felipe Tobar. “Bayesian nonparametric spectral estimation”. In: Advances in Neu-
ral Information Processing Systems 2018-Decem.NeurIPS (2018), pp. 10127–
10137.

156



Bibliography

[77] Christopher J James and Christian W Hesse. Independent component analysis for
biomedical signals. 2005.

[78] Lang Tong et al. “Indeterminacy and identifiability of blind identification”. In:
IEEE transactions on circuits and systems 38.5 (1991), pp. 499–509.

[79] Seungjin Choi et al. “Blind source separation and independent component anal-
ysis: A review”. In: Neural Information Processing-Letters and Reviews 6.1 (2005),
pp. 1–57.

[80] L. Tong et al. “AMUSE: A new blind identification algorithm”. In: Proceedings -
IEEE International Symposium on Circuits and Systems 3 (1990), pp. 1784–1787.

[81] Adel Belouchrani et al. “A blind source separation technique using second-order
statistics”. In: IEEE Transactions on Signal Processing 45.2 (1997), pp. 434–444.

[82] Aapo Hyvärinen and Erkki Oja. “A Fast Fixed-Point Algorithm for Independent
Component Analysis”. In: Neural Computation 9.7 (1997), pp. 1483–1492.

[83] Aapo Hyvärinen. “Fast and robust fixed-point algorithms for independent com-
ponent analysis”. In: IEEE Transactions on Neural Networks 10.3 (1999), pp. 626–
634.

[84] A. J. Bell and T. J. Sejnowski. “An information-maximization approach to blind
separation and blind deconvolution.” In: Neural computation 7.6 (1995), pp. 1129–
1159.

[85] A. Hyvärinen and E. Oja. “Independent component analysis: algorithms and
applications”. In: Neural Networks 13.4-5 (June 2000), pp. 411–430.

[86] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[87] David E Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986),
pp. 533–536.

[88] Kevin Jarrett et al. “What is the best multi-stage architecture for object recog-
nition?” In: Proceedings of the IEEE International Conference on Computer Vision
(2009), pp. 2146–2153.

[89] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: 32nd International
Conference on Machine Learning, ICML 2015. Vol. 1. 2015, pp. 448–456.

[90] Zhou and Chellappa. “Computation of optical flow using a neural network”. In:
IEEE International Conference on Neural Networks. 86. IEEE, 1988, pp. 71–78.

[91] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation”. In: EMNLP 2014 - 2014 Conference
on Empirical Methods in Natural Language Processing, Proceedings of the Confer-
ence (2014), pp. 1724–1734.

157



Bibliography

[92] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neu-
ral Computation 9.8 (Nov. 1997), pp. 1735–1780.

[93] Yulan Guo et al. “Deep Learning for 3D Point Clouds: A Survey”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2020), pp. 1–1.

[94] Charles R. Qi et al. “PointNet: Deep learning on point sets for 3D classification
and segmentation”. In: Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017 2017-Janua (2017), pp. 77–85.

[95] Yongcheng Liu et al. “Relation-shape convolutional neural network for point
cloud analysis”. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition 2019-June (2019), pp. 8887–8896.

[96] Jonathan Masci et al. “Geometric deep learning”. In: SIGGRAPH ASIA 2016
Courses. July. New York, NY, USA: ACM, Nov. 2016, pp. 1–50.

[97] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: 34th
International Conference on Machine Learning, ICML 2017 3 (2017), pp. 2053–
2070.

[98] Matthias Fey and Jan Eric Lenssen. “Fast Graph Representation Learning with
PyTorch Geometric”. In: 1 (2019), pp. 1–9.

[99] Yue Wang et al. “Dynamic graph CNN for learning on point clouds”. In: arXiv
1.1 (2018).

[100] D. Harrild and C. Henriquez. “A computer model of normal conduction in the
human atria.” In: Circulation research 87.7 (2000).

[101] Edward J. Vigmond et al. “The effect of vagally induced dispersion of action
potential duration on atrial arrhythmogenesis”. In: Heart Rhythm 1.3 (2004),
pp. 334–344.

[102] Vincent Jacquemet et al. “Study of Unipolar Electrogram Morphology in a Com-
puter Model of Atrial Fibrillation”. In: Journal of Cardiovascular Electrophysiol-
ogy 14.10 SUPPL. (2003), pp. 172–179.

[103] Cesare Corrado et al. “A work flow to build and validate patient specific left
atrium electrophysiology models from catheter measurements”. In: Medical Im-
age Analysis 47 (2018), pp. 153–163.

[104] Martin W. Krueger et al. “Personalization of atrial anatomy and electrophysiol-
ogy as a basis for clinical modeling of radio-frequency ablation of atrial fibrilla-
tion”. In: IEEE Transactions on Medical Imaging 32.1 (2013), pp. 73–84.

[105] Thomas E. Fastl et al. “Personalized computational modeling of left atrial ge-
ometry and transmural myofiber architecture”. In: Medical Image Analysis 47
(2018), pp. 180–190.

[106] Simon Labarthe et al. “A bilayermodel of human atria:mathematical background,
construction, and assessment”. In: Europace 16.May (2014), pp. iv21–iv29.

158



Bibliography

[107] Caroline H Roney et al. “Variability in pulmonary vein electrophysiology and
fibrosis determines arrhythmia susceptibility and dynamics”. In: PLOS Compu-
tational Biology 14.5 (May 2018). Ed. by Alison L Marsden, e1006166.

[108] Kathleen S. McDowell et al. “Virtual electrophysiological study of atrial fibrilla-
tion in fibrotic remodeling”. In: PLoS ONE 10.2 (2015), pp. 1–16.

[109] Caroline H. Roney et al. “Universal atrial coordinates applied to visualisation,
registration and construction of patient specific meshes”. In: Medical Image
Analysis 55 (July 2019), pp. 65–75.

[110] Konstantinos N. Aronis, Rheeda Ali, and Natalia A. Trayanova. “The role of per-
sonalized atrial modeling in understanding atrial fibrillation mechanisms and
improving treatment”. In: International Journal of Cardiology 287 (July 2019),
pp. 139–147.

[111] Sohail Zahid et al. “Patient-derived models link re-entrant driver localization in
atrial fibrillation to fibrosis spatial pattern”. In: Cardiovascular Research 110.3
(2016), pp. 443–454.

[112] Caroline H Roney et al. “Modelling methodology of atrial fibrosis affects rotor
dynamics and electrograms”. In: EP Europace 18.suppl_4 (Dec. 2016), pp. iv146–
iv155.

[113] Vincent Jacquemet, Nathalie Virag, and Lukas Kappenberger. “Wavelength and
vulnerability to atrial fibrillation: Insights from a computer model of human
atria”. In: Europace 7.SUPPL. 2 (2005).

[114] Michel Haissaguerre et al. “Atrial fibrillatory cycle length: computer simulation
and potential clinical importance.” In: Europace : European pacing, arrhythmias,
and cardiac electrophysiology : journal of the working groups on cardiac pacing,
arrhythmias, and cardiac cellular electrophysiology of the European Society of Car-
diology 9 Suppl 6 (2007), pp. 64–70.

[115] Yunfan Gong et al. “Mechanism underlying initiation of paroxysmal atrial flut-
ter/atrial fibrillation by ectopic foci: A simulation study”. In: Circulation 115.16
(2007), pp. 2094–2102.

[116] Mirabeau Saha et al. “Wavelength and fibrosis affect phase singularity locations
during atrial fibrillation”. In: Frontiers in Physiology 9.SEP (2018), pp. 1–12.

[117] Jason D. Bayer et al. “Novel radiofrequency ablation strategies for terminating
atrial fibrillation in the left atrium: A simulation study”. In: Frontiers in Physiol-
ogy 7.APR (2016), pp. 1–13.

[118] Patrick M. Boyle et al. “Computationally guided personalized targeted ablation
of persistent atrial fibrillation”. In: Nature Biomedical Engineering 3.11 (2019),
pp. 870–879.

159



Bibliography

[119] Axel Loewe et al. “Patient-specific identification of atrial flutter vulnerability-
a computational approach to reveal latent reentry pathways”. In: Frontiers in
Physiology 10.JAN (2019), pp. 1–15.

[120] Julie K. Shade et al. “Preprocedure Application of Machine Learning and Mech-
anistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recur-
rence following Pulmonary Vein Isolation”. In: Circulation: Arrhythmia and Elec-
trophysiology 13.7 (2020), pp. 617–627.

[121] Raúl Alcaraz and José Joaquín Rieta. “Non-invasive organization variation as-
sessment in the onset and termination of paroxysmal atrial fibrillation”. In: Com-
puter Methods and Programs in Biomedicine 93.2 (2009), pp. 148–154.

[122] Antonio Hernández et al. “Preoperative study of the surface ECG for the prog-
nosis of atrial fibrillation maze surgery outcome at discharge”. In: Physiological
Measurement 35.7 (2014), pp. 1409–1423.

[123] Marianna Meo et al. “Spatial variability of the 12-lead surface ECG as a tool
for noninvasive prediction of catheter ablation outcome in persistent atrial fib-
rillation”. In: IEEE Transactions on Biomedical Engineering 60.1 (2013), pp. 20–
27.

[124] Giorgio Luongo et al. “Non-Invasive Characterization of Atrial Flutter Mecha-
nisms Using Recurrence Quantification Analysis on the ECG: A Computational
Study”. In: IEEE Transactions on Biomedical Engineering 68.3 (2021), pp. 914–
925.

[125] Federica Censi et al. “P-wave Variability and Atrial Fibrillation”. In: Scientific
Reports 6 (2016), pp. 1–7.

[126] Danila Potyagaylo et al. “ECG imaging of focal atrial excitation: Evaluation in
a realistic simulation setup”. In: Computing in Cardiology 43 (2016), pp. 113–
116.

[127] Ana Ferrer-Albero et al. “Non-invasive localization of atrial ectopic beats by
using simulated body surface P-wave integral maps”. In: PLoS ONE 12.7 (2017).

[128] Eduardo Jorge Godoy et al. “Atrial fibrosis hampers non-invasive localization
of atrial ectopic foci from multi-electrode signals: A 3D Simulation Study”. In:
Frontiers in Physiology 9.MAY (2018), p. 404.

[129] Vincent Jacquemet et al. “The equivalent dipole used to characterize atrial fib-
rillation”. In: Computers in Cardiology. Vol. 33. 2006, pp. 149–152.

[130] Erick A. Perez Alday et al. “A New Algorithm to Diagnose Atrial Ectopic Ori-
gin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and
Torso”. In: PLOS Computational Biology 11.1 (Jan. 2015). Ed. by Alexander V.
Panfilov, e1004026.

160



Bibliography

[131] Erick A. Perez Alday et al. “Novel non-invasive algorithm to identify the origins
of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational
study”. In: PLOS Computational Biology 13.3 (Mar. 2017). Ed. by Alexander V
Panfilov, e1005270.

[132] Daniele Giacopelli et al. “Spatial pattern of P waves in paroxysmal atrial fib-
rillation patients in sinus rhythm and controls”. In: PACE - Pacing and Clinical
Electrophysiology 35.7 (2012), pp. 819–826.

[133] Jason Ng et al. “Surface ECG vector characteristics of organized and disorga-
nized atrial activity during atrial fibrillation”. In: Journal of Electrocardiology
37.SUPPL. (2004), pp. 91–97.

[134] Samuel Ruipérez-Campillo et al. “Non-invasive characterisation of macroreen-
trant atrial tachycardia types from a vectorcardiographic approach with the
slow conduction region as a cornerstone”. In: Computer Methods and Programs
in Biomedicine 200 (2021).

[135] Miguel Ángel Cámara-Vázquez et al. “Non-invasive Estimation of Atrial Fibril-
lation Driver Position With Convolutional Neural Networks and Body Surface
Potentials”. In: Frontiers in Physiology 12.October (2021), pp. 1–11.

[136] Frederique J Vanheusden et al. “Systematic differences of non-invasive domi-
nant frequency estimation compared to invasive dominant frequency estima-
tion in atrial fibrillation”. In: Computers in Biology and Medicine 104 (2019),
pp. 299–309.

[137] Anne Vakkuri et al. “Time-frequency balanced spectral entropy as a measure of
anesthetic drug effect in central nervous system during sevoflurane, propofol,
and thiopental anesthesia”. In: Acta Anaesthesiologica Scandinavica 48.2 (2004),
pp. 145–153.

[138] A Liberos et al. “Phase singularity point tracking for the identification of typical
and atypical flutter patients: A clinical-computational study”. In: Computers in
Biology and Medicine 104 (2019), pp. 319–328.

[139] Victor Gonçalves Marques et al. “Characterization of atrial arrhythmias in body
surface potential mapping: A computational study”. In: Computers in Biology
and Medicine 127 (2020), p. 103904.

[140] J.J. Rieta et al. “Atrial Activity Extraction for Atrial Fibrillation Analysis Using
Blind Source Separation”. In: IEEE Transactions on Biomedical Engineering 51.7
(July 2004), pp. 1176–1186.

[141] F. Castells et al. “Spatiotemporal Blind Source Separation Approach to Atrial Ac-
tivity Estimation in Atrial Tachyarrhythmias”. In: IEEE Transactions on Biomedi-
cal Engineering 52.2 (Feb. 2005), pp. 258–267.

[142] Raul Llinares et al. “Independent component analysis of body surface potential
mapping recordings with atrial fibrillation”. In: IEEE International Conference on
Neural Networks - Conference Proceedings (2006), pp. 2287–2294.

161



Bibliography

[143] Raul Llinares and Jorge Igual. “Exploiting periodicity to extract the atrial activ-
ity in atrial arrhythmias”. In: Eurasip Journal on Advances in Signal Processing
2011.1 (2011).

[144] Joshua S. Richman and J. Randall Moorman. “Physiological time-series anal-
ysis using approximate entropy and sample entropy”. In: American Journal of
Physiology-Heart and Circulatory Physiology 278.6 (2000), H2039–H2049.

[145] Bin He and Richard J. Cohen. “Body Surface Laplacian ECG Mapping”. In: IEEE
Transactions on Biomedical Engineering 39.11 (1992), pp. 1179–1191.

[146] J. Lian et al. “Body surface Laplacian mapping of atrial depolarization in healthy
human subjects”. In: Medical and Biological Engineering and Computing 40.6
(2002), pp. 650–659.

[147] Zachi I. Attia et al. “An artificial intelligence-enabled ECG algorithm for the
identification of patients with atrial fibrillation during sinus rhythm: a retro-
spective analysis of outcome prediction”. In: The Lancet 394.10201 (2019),
pp. 861–867.

[148] Thomas H. Everett IV et al. “Assessment of global atrial fibrillation organiza-
tion to optimize timing of atrial defibrillation”. In: Circulation 103.23 (2001),
pp. 2857–2861.

[149] Miguel Rodrigo et al. “Technical considerations on phase mapping for identifi-
cation of atrial reentrant activity in direct-And inverse-computed electrograms”.
In: Circulation: Arrhythmia and Electrophysiology 10.9 (2017).

[150] Dong Wook Kim et al. “Design characteristics of studies reporting the perfor-
mance of artificial intelligence algorithms for diagnostic analysis of medical im-
ages: Results from recently published papers”. In: Korean Journal of Radiology
20.3 (2019), pp. 405–410.

[151] Olaf Dössel et al. “Computer Modeling of the Heart for ECG Interpretation—A
Review”. In: Hearts 2.3 (2021), pp. 350–368.

[152] Axel Loewe et al. “Influence of the earliest right atrial activation site and its
proximity to interatrial connections on P-wave morphology”. In: Europace : Eu-
ropean pacing, arrhythmias, and cardiac electrophysiology : journal of the working
groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of
the European Society of Cardiology 18 (2016), pp. iv35–iv43.

[153] Robin Andlauer et al. “Influence of left atrial size on P-wave morphology: Dif-
ferential effects of dilation and hypertrophy”. In: Europace 20 (2018), pp. III36–
III44.

[154] Brian J. Hansen et al. “Maintenance of Atrial Fibrillation: Are Reentrant Drivers
with Spatial Stability the Key?” In: Circulation: Arrhythmia and Electrophysiology
9.10 (Oct. 2016).

162



Bibliography

[155] Sigfus Gizurarson et al. “Hierarchical Schema for Identifying Focal Electrical
Sources During Human Atrial Fibrillation: Implications for Catheter-Based Atrial
Substrate Ablation”. In: JACC: Clinical Electrophysiology 2.6 (2016), pp. 656–
666.

[156] Isabelle C. Van Gelder and Martin E.W. Hemels. “The progressive nature of atrial
fibrillation: A rationale for early restoration and maintenance of sinus rhythm”.
In: Europace 8.11 (2006), pp. 943–949.

[157] C F Tsai et al. “Initiation of atrial fibrillation by ectopic beats originating from
the superior vena cava: electrophysiological characteristics and results of ra-
diofrequency ablation.” In: Circulation 102.1 (July 2000), pp. 67–74.

[158] V A Folarin, P J Fitzsimmons, and W B Kruyer. “Holter monitor findings in
asymptomatic male military aviators without structural heart disease.” In: Avi-
ation, space, and environmental medicine 72.9 (Sept. 2001), pp. 836–8.

[159] Nobuyuki Murakoshi et al. “Prognostic impact of supraventricular premature
complexes in community-based health checkups: The Ibaraki Prefectural Health
Study”. In: European Heart Journal 36.3 (2015), pp. 170–178.

[160] Zeynep Binici et al. “Excessive supraventricular ectopic activity and increased
risk of atrial fibrillation and stroke”. In: Circulation 121.17 (May 2010), pp. 1904–
1911.

[161] Shinya Suzuki et al. “Usefulness of frequent supraventricular extrasystoles and
a high CHADS 2 score to predict first-time appearance of atrial fibrillation”. In:
American Journal of Cardiology 111.11 (2013), pp. 1602–1607.

[162] Thomas A. Dewland et al. “Atrial Ectopy as a Predictor of Incident Atrial Fibril-
lation”. In: Annals of Internal Medicine 159.11 (Dec. 2013), p. 721.

[163] Roy M. John and William G. Stevenson. “Predicting atrial fibrillation: can we
shape the future?” In: European Heart Journal 36.3 (Jan. 2015), pp. 145–147.

[164] Hakan Oral et al. “Pulmonary vein isolation for paroxysmal and persistent atrial
fibrillation”. In: Circulation 105.9 (Mar. 2002), pp. 1077–1081.

[165] Caroline H. Roney et al. “Patient-specific simulations predict efficacy of ablation
of interatrial connections for treatment of persistent atrial fibrillation”. In: EP
Europace 20.suppl_3 (Nov. 2018), pp. iii55–iii68.

[166] Siew Yen Ho et al. “Anatomy of the left atrium: Implications for radiofrequency
ablation of atrial fibrillation”. In: Journal of Cardiovascular Electrophysiology
10.11 (1999), pp. 1525–1533.

[167] S Y Ho. “Architecture of the pulmonary veins: relevance to radiofrequency abla-
tion”. In: Heart 86.3 (Sept. 2001), pp. 265–270.

[168] Mark Potse et al. “A comparison of monodomain and bidomain reaction-diffusion
models for action potential propagation in the human heart”. In: IEEE Transac-
tions on Biomedical Engineering 53.12 (2006), pp. 2425–2435.

163



Bibliography

[169] Edward J Vigmond et al. “Computational tools for modeling electrical activity in
cardiac tissue”. In: Journal of Electrocardiology 36.SUPPL. (Dec. 2003), pp. 69–
74.

[170] Jason D. Bayer et al. “Acetylcholine Delays Atrial Activation to Facilitate Atrial
Fibrillation”. In: Frontiers in Physiology 10 (Sept. 2019), p. 1105.

[171] Martin J Bishop and Gernot Plank. “Bidomain ECG Simulations Using an Aug-
mented Monodomain Model for the Cardiac Source”. In: IEEE TRANSACTIONS
ON BIOMEDICAL ENGINEERING 58.8 (2011).

[172] Frank M. Weber et al. “Predicting tissue conductivity influences on body surface
potentials-An efficient approach based on principal component analysis”. In:
IEEE Transactions on Biomedical Engineering 58.2 (2011), pp. 265–273.

[173] Charulatha Ramanathan and Yoram Rudy. “Electrocardiographic imaging: II.
Effect of torso inhomogeneities on noninvasive reconstruction of epicardial po-
tentials, electrograms, and isochrones”. In: Journal of Cardiovascular Electro-
physiology 12.2 (2001), pp. 241–252.

[174] Satish Balay et al. “Efficient Management of Parallelism in Object Oriented Nu-
merical Software Libraries”. In: Modern Software Tools in Scientific Computing.
Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen. Birkhauser Press, 1997,
pp. 163–202.

[175] Satish Balay et al. PETSc/TAO Users Manual. Tech. rep. ANL-21/39 - Revision
3.16. Argonne National Laboratory, 2021.

[176] Satish Balay et al. PETSc Web page. https://petsc.org/. 2021.

[177] Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. “Open MPI:
A Flexible High Performance MPI”. In: Parallel Processing and Applied Mathe-
matics. Ed. by Roman Wyrzykowski et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 228–239.

[178] David E. Krummen et al. “Mechanisms of human atrial fibrillation initiation clin-
ical and computational studies of repolarization restitution and activation la-
tency”. In: Circulation: Arrhythmia and Electrophysiology 5.6 (2012), pp. 1149–
1159.

[179] Gunnar Seemann et al. “Heterogeneous three-dimensional anatomical and elec-
trophysiological model of human atria”. In: Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 364.1843 (2006),
pp. 1465–1481.

[180] Oleg V. Aslanidi et al. “3D virtual human atria: A computational platform for
studying clinical atrial fibrillation”. In: Progress in Biophysics and Molecular Bi-
ology 107.1 (2011), pp. 156–168.

[181] A. Dorn et al. “Modelling of heterogeneous human atrial electrophysiology”. In:
Biomedizinische Technik 57.SUPPL. 1 TRACK-O (2012), pp. 350–353.

164



Bibliography

[182] Martin W. Krueger et al. “In-silico modeling of atrial repolarization in normal
and atrial fibrillation remodeled state”. In: Medical and Biological Engineering
and Computing 51.10 (2013), pp. 1105–1119.

[183] Vadim V. Fedorov et al. “Complex interactions between the sinoatrial node and
atrium during reentrant arrhythmias in the canine heart”. In: Circulation 122.8
(Aug. 2010), pp. 782–789.

[184] James Kneller et al. “Cholinergic atrial fibrillation in a computer model of a
two-dimensional sheet of canine atrial cells with realistic ionic properties.” In:
Circulation research 90.9 (2002).

[185] Robert Lemery et al. “Normal atrial activation and voltage during sinus rhythm
in the human heart: An endocardial and epicardial mapping study in patients
with a history of atrial fibrillation”. In: Journal of Cardiovascular Electrophysiol-
ogy 18.4 (2007), pp. 402–408.

[186] Michael A. Colman et al. “In silico assessment of genetic variation in KCNA5
reveals multiple mechanisms of human atrial arrhythmogenesis”. In: PLoS Com-
putational Biology 13.6 (June 2017). Ed. by Alexander V Panfilov, e1005587.

[187] Yingjing Feng et al. “Robust Atrial Ectopic Beat Classification From Surface ECG
Using Second-Order Blind Source Separation”. In: 2020 Computing in Cardiol-
ogy. 2020, pp. 1–4.

[188] Cesare Corrado et al. “Using machine learning to identify local cellular proper-
ties that support re-entrant activation in patient-specific models of atrial fibril-
lation”. In: Europace 23.Supplement_1 (Mar. 2021), pp. I12–I20.

[189] Anand N. Iyer and Richard A. Gray. “Experimentalist’s approach to accurate
localization of phase singularities during reentry”. In: Annals of Biomedical En-
gineering 29.1 (2001), pp. 47–59.

[190] Maurits A Allessie, F. I.M. Bonke, and F. J.G. Schopman. “Circus movement in
rabbit atrial muscle as a mechanism of tachycardia. III. The ’leading circle’ con-
cept: a new model of circus movement in cardiac tissue without the involvement
of an anatomical obstacle”. In: Circulation Research 41.1 (1977), pp. 9–18.

[191] Nicholas Child et al. “Unraveling the Underlying Arrhythmia Mechanism in Per-
sistent Atrial Fibrillation: Results from the STARLIGHT Study”. In: Circulation:
Arrhythmia and Electrophysiology 11.6 (2018).

[192] Andrew Ng. “Machine learning yearning”. In: URL: http://www. mlyearning.
org/(96) 139 (2017).

[193] Koichiro Kumagai et al. “A new approach for complete isolation of the poste-
rior left atrium including pulmonary veins for atrial fibrillation”. In: Journal of
Cardiovascular Electrophysiology 18.10 (2007), pp. 1047–1052.

165



Bibliography

[194] Jayakumar Sahadevan et al. “Epicardial mapping of chronic atrial fibrillation in
patients: Preliminary observations”. In: Circulation 110.21 (2004), pp. 3293–
3299.

[195] R. Sameni, C. Jutten, and M.B. Shamsollahi. “Multichannel Electrocardiogram
Decomposition Using Periodic Component Analysis”. In: IEEE Transactions on
Biomedical Engineering 55.8 (Aug. 2008), pp. 1935–1940.

[196] Emanuel Parzen. “On spectral analysis with missing observations and ampli-
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