
HAL Id: tel-03892821
https://theses.hal.science/tel-03892821v1

Submitted on 10 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-Aware Scheduling at Higher scale
Nicolas Vidal

To cite this version:
Nicolas Vidal. Data-Aware Scheduling at Higher scale. Data Structures and Algorithms [cs.DS].
Université de Bordeaux, 2022. English. �NNT : 2022BORD0026�. �tel-03892821�

https://theses.hal.science/tel-03892821v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

par Nicolas Vidal

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Dash - Data-Aware Scheduling at Higher Scale

Date de soutenance : Janvier 2022

Devant la commission d’examen composée de :

M. Emmanuel JEANNOT Directeur de recherche, Inria / LaBRI . Directeur
M. Jay LOFSTEAD Principal Member of Technical Staff, Sandia National Laboratories Rapporteur
Mme. Alix MUNIER Professeur, Sorbonne Université / LIP6 . Rapporteuse
Mme. Sadaf ALAM Chief Technology officer, CSCS / ETH Zurich . Examinatrice
M. Yves DENNELIN Professeur, Inria / Grenoble INP . Examinateur
M. Guillaume PALLEZ . Chargé de recherche, Inria / LaBRI . Examinateur

2022

Résumé

Mots-clés Calcul haute performance, applications à forte intensité en données, algo-
rithmes d’ordonnancement, partitionnement de ressources, stratégies de réservations,
profiling d’applications

Laboratoire d’accueil / Hosting Laboratory Inria Bordeaux Sud-Ouest, 200 Avenue
de la Vieille Tour, 33400 Talence

Data scheduling at higher Scale iii

Title Dash - Data-Aware scheduling at higher scale

Abstract

Keywords High Performance Computing, scheduling algorithms, resource partition-
ing

Laboratoire d’accueil / Hosting Laboratory Inria Bordeaux Sud-Ouest, 200 Avenue
de la Vieille Tour, 33400 Talence

iv Nicolas Vidal

Contents

I Introduction 9
I.A Introduction . 9

I.A.1 A quick presentation of HPC . 9
I.A.2 Evolution . 9
I.A.3 The IO bottleneck . 11
I.A.4 Motivational example . 11

I.B Context . 13
I.B.1 Existing solutions . 13

I.B.1.a Data transformation . 14
I.B.1.b Software to deal with I/O movement 14

Batch scheduler . 15
I.B.1.c Hardware solutions . 15
I.B.1.d Related theoretical problems 16

I.B.2 Monitoring . 16
I.B.3 Application modeling . 17

I.B.3.a Periodic behavior . 17
I.B.3.b I/O prediction . 17

I.C Positioning . 18
I.C.1 Simulating HPC workloads . 19

I.C.1.a Scientific context . 19
I.C.1.b Implementation of the simulator 19

Generating applications . 19
Resolve schedules . 20

I.C.2 Contributions . 20

II Scheduling bandwidth accesses 23
II.A Bi-colored chains model . 24

II.A.1 Machine model . 24
II.A.2 Job Model . 24

Remark and motivational example 25
II.A.3 Optimization problem . 25

II.B Complexity of the MS-HPC-IO problem . 26
II.B.1 Intractability . 26

v

CONTENTS

II.B.2 Polynomial algorithms . 26
Case when ∀i, ni = 1 . 26
Uniform jobs . 27

II.C Approximation algorithms for MS-HPC-IO 33
II.C.1 List Scheduling algorithms . 33
II.C.2 Periodic algorithms . 34

Periodic algorithms for MS-HPC-IO 34
II.D Experimental evaluation . 35

II.D.1 Heuristics . 35
List scheduling . 36
Periodic . 36
Best effort . 36

II.D.2 Scenarios/Use-case and instantiation 36
II.D.3 Results . 37

Uncertainty and noise . 38
Machine Learning Use-Case 38

II.E Summary and perspectives . 40

III Mapping with pack scheduling - Resource control 43
III.A Architecture overview . 44
III.B Formal definition . 45

III.B.1 Machine Model . 45
III.B.2 Applications . 46
III.B.3 Optimization problem . 47

III.C Pack scheduling to solve HPC-IO . 48
III.C.1 Policies for IO-SCHED with a single pack. 48
III.C.2 Algorithms for the mapping problem 50

III.D Evaluation . 50
III.D.1 Impact of list-scheduling policies on IO-SCHED on a real machine . 51

III.D.1.a Experimental setup . 51
III.D.1.b Result analysis and discussion 51

III.D.2 Analysis of solutions for HPC-IO with emulation 54
III.D.2.a Machine emulation . 54

Simulator validation . 55
III.D.2.b Synthetic workload generation 56
III.D.2.c Evaluation with a single I/O node 57
III.D.2.d Multiple I/O nodes . 61

III.E Conclusion and prospects . 63

IV Comparison with List-Scheduling - Strict constraint vs on average 65
IV.A Simulation . 66

IV.A.1 Constraint implementation . 66
IV.A.2 List-scheduling (LS) . 66

vi Nicolas Vidal

CONTENTS

IV.A.3 Pack-Scheduling . 66
Variants . 66

IV.A.4 Backfilling . 67
IV.B Evaluation Methodology . 67

IV.B.1 Machine model for the simulator . 68
IV.B.2 Applications . 69
IV.B.3 Mira-based generation protocol . 70

IV.B.3.a Processor repartition . 70
IV.B.3.b Job duration . 70
IV.B.3.c Periodicity . 71
IV.B.3.d IO generation . 71

IV.B.4 Uniform generation protocol . 71
IV.B.5 Evaluation criterion . 72
IV.B.6 Relevance of static workloads . 73

IV.C Evaluation and Results . 73
IV.C.1 Difference between workloads . 74

Parameter dependencies . 74
Noise filtering . 74
Utilization . 74
Stretch . 75

IV.C.2 Difference in execution . 79
IV.D Conclusion and prospects . 83

V Conclusion 85
V.A Retrospective . 85

Early work . 85
Second step, a change of scope 85
Maturation in the approach 86

V.B First thoughts on an open problem . 87
V.B.1 Openings . 87
V.B.2 Models . 87
V.B.3 Examples . 89

Conclusion . 90

References 91

Publications 101

Data scheduling at higher Scale vii

CONTENTS

viii Nicolas Vidal

List of Figures

I.1 Performance development of Top500 supercomputers (source: https:
//www.top500.org/) . 10

I.2 Bandwidth comparison for single and multiple applications 13
I.3 Periodical I/O behavior of an application 17
I.4 Simplified vision of our approach . 18

II.1 Schematic overview of three jobs J1, J2, J3 scheduled on a bi-colored plat-
form. 24

II.2 Comparison "Fair-share" "Exclusive access" 25
II.3 Example of HIERARCHICAL ROUND-ROBIN schedule 27
II.4 Policies performance comparison on generic inputs for the makespan . . . 38
II.5 Policies performance comparison on generic inputs for the makespan rel-

ative to the Best effort strategy with uniform noise on the computation or
I/O duration . 39

II.6 Policies performance comparison of the ML use case for the makespan
relative to HIERARCHICAL ROUND-ROBIN (top no noise, bottom 20% of
uniform noise). 41

III.1 Framework overview. 44
III.2 Schematic of the architecture. Jobs J1, J2, J3 and J4 compete for the band-

width available on nio
2 . 46

III.3 A solution to HPC-IO of eleven applications on a machine with two I/O
nodes. 49

III.4 Stretch of the different policies when varying the number of iteration
batches. 52

III.5 Max Stretch of the different policies when varying the number of iteration
batches. 53

III.6 Relative Makespan to FIFO of the different policies when varying the
number of iteration batches. 54

III.7 Comparison of Simulated vs real execution (on the Tucan Machine) of the
Longest I/O policy . 55

III.8 Comparison of makespan for different strategies 58
III.9 Comparison of stretch for different strategies 59

ix

https://www.top500.org/
https://www.top500.org/

LIST OF FIGURES

III.10Normalized number of packs produced by the Pack Partitioning algo-
rithm (relative to the First-Fit algorithm) for different sensibility 60

III.11Processor time and robustness: pack algorithm vs. First-Fit 61
III.12Average execution, idle and delay time (normalized) for different strategies 62
III.13Comparison of the relative makespan of Pack Partitioning Algorithm

(with sensibility =1) to the First-Fit algorithm with multiples I/O nodes. . 63

IV.1 Synchronization example with two identical applications. I/O are per-
formed in turn and no delay occurs past the first iteration. 67

IV.2 An example of list scheduling and pack scheduling for the same set of
tasks (packs are separated by dotted red lines). 68

IV.3 Utilization during the execution for different values of I/O load, with
MN workload profile . 75

IV.4 Utilization during the execution for different values of I/O load, with MB
workload profile . 76

IV.5 Utilization during the execution for different values of I/O load, with BU
workload profile . 77

IV.6 Utilization during the execution for different values of I/O load, with NU
workload profile . 78

IV.7 Max stretch for different workloads . 79
IV.8 Mean stretch for different workloads . 80
IV.9 Resource usage (average number of applications running, used proces-

sors, used bandwidth on MB and MN workloads 81
IV.10Mean stretch as a function of idle time . 82

V.1 Example with dissimilar applications . 88
V.2 Example with similar applications . 89
V.3 Example of an optimal application partitioning 90

x Nicolas Vidal

List of Tables

II.1 Parameters used for input generation . 37

III.1 Workload description for the experiment on the Tucan machine (for Fig-
ure III.4 to III.7). 52

xi

LIST OF TABLES

xii Nicolas Vidal

Remerciements

Cette thèse a été menée au sein de l’équipe TADaaM au centre de recherche Inria de Bor-
deaux. Je tiens à remercier tout les collègues qui m’ont entourés pendant ces presques
quatre ans. Tout d’abord Emmanuel Jeannot et Guillaume Pallez qui m’ont encadré.
Leur présence ne s’est pas limité à leurs apports pourtant nombreux sur le plan scien-
tifique mais aussi pas un lien humain conservé malgré les circonstances difficiles dues
la pandémie. Dans l’équipe, mes pensées vont particulièrement à Valentin Honoré, ami
cher et "grand frère de thèse", présence constante et réconfortante qui m’a conseillé et
encouragé. Après son départ, j’ai pu compter sur Philippe Swartvagher, toujours au fait
des différents impératifs et prêt à s’investir dans la vie de l’équipe et du centre. Guil-
laume Blin et Olivier Beaumont, membres de mon comité de suivi ont sû m’écouter
lorsque le besoin (et les impératifs de l’école doctorales) s’imposait. Sur une échelle de
temps plus longue, j’aimerai remercier Yves Robert pour ses enseignements et ses con-
seils depuis la licence. Enfin pour finir les remerciements professionnels, merci à tout
les chercheurs et chercheuses, collègues, ami.e.s avec qui j’ai pu parler, partager un café,
faire part de mon enthousiasme et de mes doutes au depuis 2018.

Mes remerciements vont au delà de l’équipe de travail, je pense également à mes
proches et mes amis. Les membres de ma famille m’ont toujours encouragés et
soutenus, j’en suis très touché et fier. Je pense à vous avec émotion, Christian, Régine,
Violaine et en particulier mon frère Aurélien qui n’a pas pû être présent pour ma sou-
tenance, accaparé par une nièce dont l’arrivée éclipse tout autre évènement de ce début
d’année. J’ai hâte de te rencontrer Marta, tu as déjà une place bien à toi dans mes pen-
sées. Enfin, j’ai conservé un lien très fort avec un groupe d’ami.e.s qui m’ont soutenus.
Arthur Blot et Victor Lutfalla lors de rendez-vous à distance réguliers, Axel Kerinec
à travers une correspondance parfois décousue mais toujours sincère. Alam, Amélie,
Maria, Titouan et tout les autres, vous comptez vraiment à mes yeux. Pour finir, depuis
plus d’un an, Léa Dislaire s’est fait une place dans ma vie, iel m’a encouragé, rassuré,
de jour comme nuit. Merci d’être avec moi.

J’ai envie de partager la fierté et le soulagement d’avoir mené ce grand projet à bien
avec chacun et chacune d’entre vous.

1

Résumé étendu en français

Introduction

Le calcul haute performance est le domaine scientifique entourant les plateformes de
calcul à grande échelle que représentent les supercalculateurs. De nos jours, les sci-
entifiques dépendent de ces machines afin d’exécuter des programmes qui ne peuvent
pas être exécutés sur un simple ordinateur. Ces programmes atteignent des dimensions
vertigineuses non seulement par la puissance de calcul nécessaire mais aussi par les
quantités de données entrant en jeu. Les coûts de constructions et d’entretien de tels
machines est justifié par leur utilisation efficace dans des domaines divers. Ainsi ces
plateformes doivent être capable de gérer les différents besoins venant d’utilisateurs in-
dépendants qui utilisent des sous ensemble de la machine indépendamment les uns les
autres. Ces dernières années, les performances en terme de bande passante pour la ges-
tion des données n’ont pas progressé au même rythme que l’augmentation de la puis-
sance de calcul. En parallèle, le développement de l’analyse de données à grande échelle
et de l’apprentissage en profondeur ont contribué à déplacer la focale d’une orientation
calcul à une approche consciente des données. Malgré des changement architecturaux,
l’utilisation de la bande passante n’est pas optimal dû au manque d’information sur
l’état des ressources du calculateur et des accès à la bande passante des différentes ap-
plications en cours d’exécution. Par conséquent, des déplacements de données non cor-
donnés font perdre des opportunités d’optimiser globalement les entrées/sortes (E/S)
conduisant à des opérations redondantes, de la contention et une perte performance.
S’il n’est pas clair de savoir si la perte dû à la contention est pire que linéaire, des accès
concurrents à la bande passante conduisent à des délais pour les applications devant
attendre ou n’ayant qu’un accès partiel au système de fichier.

Cette thèse s’intéresse au problème global de la gestion des ressources afin d’éviter
ce phénomène de goulot d’étranglement sur les données. D’autres travaux se sont
déjà attaqué à cette problématique. Les approches logicielles proposées incluent la
transformation des données en amont de leur transfert, l’inclusion de middleware ser-
vant d’intermédiaire entre le système de fichier et les applications afin de fluidifier les
échanges. Du point de vue matériel, les constructeurs de machines peuvent inclure des
mémoires tampons au niveau des nœuds de calcul afin de lisser les comportements par
secousses des applications. D’autres solutions proposent de partitionner ou d’étager les
architectures.

Nous avons choisi de traiter ce problème sur le plan théorique en le considérant
comme un cas particulier d’ordonnancement à deux ressources. Tout au long de cette
thèse, nous chercherons à définir comment modéliser des applications dans le cadre du
calcul haute performance en se basant sur des résultats de expérimentaux peu adap-
tés à l’exercice théorique. Nous proposons des algorithmes afin de placer et ordonner
les exécutions de ses application. Nous définirons aussi et surtout un protocole expéri-
mental cherchant à évaluer de manière convaincante des modèles théoriques. Dans une
première partie, nous nous intéressons à comment ordonner différentes tâches exclu-

2 Nicolas Vidal

sives sur la bande passante afin de fluidifier les opérations d’E/S. Dans une seconde
partie, nous proposerons un algorithme de placement d’application prenant en compte
leur besoins en terme de données. Enfin, nous comparerons les différentes manières
d’exercer un contrôle de la bande passante en essayant de faire le lien entre différence
qualitatives d’usage du réseau et caractéristiques du jeu d’application. Pour conclure,
nous ouvrirons de nouvelles perspectives sur des stratégies hybrides combinant accès
exclusifs et partage de bande passante.

Ordonnancement des accès à la bande passante

Dans ce premier chapitre, nous cherchons comment pouvons nous modéliser formelle-
ment le comportement des applications de calcul haute performance dans le cadre du
problème d’engorgement des E/S puis comment ordonner les accès au système de
fichier.

La première et fondamentale contribution de cette partie est la définition de modèles
formels de plateforme et d’applications qui servent non seulement à définir et étudier
le problème d’ordonnancement des opérations d’E/S mais qui sera adapté aux prob-
lèmes étendus des parties suivantes. Lorsque nous élargirons notre problématique au
placement des applications sur les machines.

Modèle de plateforme Nous considérons une plateforme constituée de deux types
de machinesA (nœuds de calculs) et B (nœuds d’E/S). Dans le cadre de notre problème
d’ordonnancement d’opérations d’E/S, nous supposons que les applications ont déjà
été placé sur la machine en amont et qu’il n’y a pas de compétition à ce niveau. Ainsi,
nous pouvons considérer que la machine A possède une quantité illimité de ressources
de calcul. A contrario, la bande passante du système de fichier (machine B) est partagée
par toutes les applications. Il y en a donc un quantité limitée B, en normalisant, B=1.
Nous appelons une telle instance une plateforme bicolore.

Modèle d’application Nous voulons prendre une compte un jeu d’applications sci-
entifiques s’exécutant simultanément sur une plateforme parallèle. Les ressources de
calculs ont déjà été allouées à chaque applications. En prenant en compte les E/S,
celles-ci consistent en une alternance de phases distinctes: (i) un phase de calcul (sur
la machine A): (ii) une phase d’E/S (sur la machine B). Formellement, un travail Ji est
constitué de 2ni opérations successives Ai,j ,Bi,j (j ⩽ ni). La tâche Ai,j+1 (resp. Bi,j) peut
seulement commencer quand l’opération Bi,j (resp. Ai,j).

Nous pouvons ainsi définir le problème d’ordonnancement suivant: Étant donné
un ensemble de travaux Ji = (

∏ni

j=1(Ai,j, Bi,j)), un ordonnancement S est défini
comme une permutations des tâches ((Bi,j)j≤ni

)i qui satisfait, pour tous i, j,Bi,j est
avant Bi,j+1. En définissant Ci la fin du temps d’exécution d’une application Ji suiv-
ant l’ordonnancement S et le makespan CS

max leur maximum. L’objectif est de trouver
un ordonnancement minimisant le makespan.

Nous proposons des résultats optimaux de complexité et des algorithmes pour des

Data scheduling at higher Scale 3

cas simples. Pour des tâches de taille arbitraire, le problème peut être résolu optimale-
ment par un algorithme glouton quand tout les chaînes ont une longueur 1. À partir du
moment ou une application est une chaîne de longueur au moins deux, le problème est
NP-complet. Quand toutes tâches composants les applications ont les mêmes durées,
nous proposons un algorithme "round-robin hiérarchique" et prouvons son optimalité.

Nous appliquons ensuite ce même algorithme dans le cas d’applications periodiques
ayant le même nombre n de période et montrons qu’il constitue une 1+1/n approxima-
tion du résultat optimal et que cette borne est atteinte.

Enfin nous proposons une résolution approchées dans le cas général. Nous démon-
trons que les heuristiques de liste fournissent une 2-approximation du résultat optimal
peu importe l’ordre utilisé.

En pratique, l’intuition nous laisse penser que l’ordre utilisé par les heuristiques de
liste a un impact et qu’il y a une différence entre leur performance réelle et théoriques.

Afin d’étudier cette différence, nous simulons leur comportement dans différents
scénarios dont la présence de bruit faussant la durée espérée des phases.

Contrôle de ressources par le placement d’applications

Après avoir considéré le placement des applications donné afin d’étudier
l’ordonnancement des opérations d’E/S, nous avons voulu, dans une seconde
partie, élargir le problème et fournir un algorithme fournissant ce placement tout en
prenant en compte les requêtes de bande passante.

Cette partie permet aussi de développer notre méthode de travail: construire des
modèles théoriques simplifiés basé sur l’observation de systèmes réels, construire des
solutions basées sur ceci pour enfin les évaluer dans des contextes réalistes.

Nous avons étendu le modèle de machine présenté précédemment afin d’inclure
à la fois les besoins en terme de calcul et en terme de bande passante des différentes
applications. Nous avons commencé par démontrer par l’expérience que les sim-
ples heuristiques de listes "équitables" exhibaient les meilleurs performances pour
l’ordonnancement des opérations d’E/S. Puis, nous avons cherché à définir quels
groupes d’applications vont être exécutées de manière concurrente sur la plateforme.
Pour cela, nous avons défini des groupes d’applications en vérifiant d’une part la
disponibilité des ressources de calcul nécessaire mais aussi celle de la bande passante.
Pour vérifier facilement ces contraintes, le comportement périodique des applications
en terme d’E/S est approché par une quantité moyenne d’occupation de la bande pas-
sante. Concrètement, après leur avoir associé cette valeur, les applications sont triées
selon leur temps espéré d’exécution (afin d’éviter une sous utilisation des ressources de
calcul en fin de paquet, nous discuterons d’autres ordre plus loin) puis l’on place chaque
application dans un paquet selon une politique « meilleur correspondant », un nouveau
paquet est créé si aucun ne convient. Chacun est ensuite exécuté séquentiellement. Dans
le cadre d’une collaboration avec l’Université Carlos III de Madrid, nous évaluons les

4 Nicolas Vidal

performances de cet algorithme en l’implantant dans leur middleware CLARISSE et con-
duisant des expériences par émulation avec celui-ci sur un de leur calculateur.

Avec un seul nœud d’E/S, Nous démontrons un surcoût en terme de temps
d’exécution comparé à des algorithmes ignorant les E/S dû à un plus grand contrôle des
ressources. Cependant, nous observons une baisse significative du temps (imprévisible)
perdu par le système lors de la contention au profit d’une inactivité (définie et prévis-
ible). Ces résultats sont permettent d’une part d’espérer de meilleures performances
en cas politique de récupération (remblayage). D’autre part, quand nous simulons
une augmentation du nombre de nœuds disponibles et permettons l’exécution paral-
lèle de plusieurs paquets, notre approche garanti à la fois un meilleur makespan et une
meilleure équité entre les utilisateurs.

Comparaison des modes de contrôle

L’algorithme par paquets défini dans la partie précédente impose que les sous-ensemble
d’applications exécutés en parallèle aient le même début d’exécution. Dans cette partie,
nous cherchons à le comparer de manière qualitative à une autre politique classique de
gestion les ressources d’une plateforme: les heuristiques de listes. Ces deux stratégies
sont plébiscité par les administrateurs de systèmes de calcul en raison de leur simplic-
ité à implémenter et tester ainsi que leur faible complexité qui permet de les appli-
quer à grande échelle. Par ailleurs, elles représentent toutes deux différentes manières
d’appliquer les contraintes en terme de ressources. En définissant groupant les appli-
cations à exécuter en paquets partageant une même date de début d’exécution et dont
la fin est définie de manière fiable, l’algorithme par paquet définit une fenêtre de temps
dans laquelle la contrainte de bande passante peut être dépassée à condition qu’elle soit
respectée en moyenne. Un algorithme de liste n’impose pas une telle contraints: il trie
les différentes applications selon un ordre de priorité (typiquement par ordre d’arrivé
dans les ordonnanceurs de tâches). En contrepartie d’une plus grande liberté sur les
dates de début d’exécution, la contrainte de bande passante doit donc être respectée
à tout instant. Pour comparer ces deux paradigmes nous avons voulu conserver les
propriétés définies dans la partie précédentes: les stratégies se basent sur des valeurs
moyennes pouvant être collectées par des outils comme Darshan et peuvent être implé-
mentées dans un middleware qui gère les E/S en direct. Afin de conduire notre éval-
uation expérimentale, nous avons implémenté un simulateur afin d’évaluer ces deux
approches dans plusieurs scenarios inspiré de la littérature relative à des supercalcula-
teur. Nous observons des performances variants fortement selon le profil de la charge
de travail sous-jacente. Bien que les ordonnancements par listes soient généralement les
stratégies d’allocations standard dans les ordonnanceurs et fonctionnent particulière-
ment bien avec des jeux d’applications hétérogènes, les jeux d’applications uniformes
et gourmands en E/S peuvent tirer partie des stratégies par paquets. De plus, construire
des paquets d’applications basés sur les temps caractéristiques permet, sous des condi-

Data scheduling at higher Scale 5

tions précises d’homogénéité (génération uniforme, répartition des I/O suivant une loi
normale) et de charge en E/S, une synchronisation des opérations améliorant grande-
ment la performance par rapport aux autres stratégies. Nous soulignons par ailleurs la
relation forte entre les caractéristiques des applications constituant la charge de travail
et la pertinence de la stratégie d’ordonnancement et fournissons des pistes sur comment
choisir la plus approprié.

Prospective

Les résultats de la partie précédente nous invite à réfléchir à des stratégies hybrides. En
regroupant les applications similaires et en partageant la bande passante entre de tels
sous-ensemble d’applications similaire, nous espérons tirer le meilleur des deux straté-
gies Dans ce manuscrit, nous présentons des exemple minimaux montrant que des ap-
plications similaires tirent bénéfice d’accès exclusifs à la bande passante alors que des
applications très différentes préfèrent le partage. Nous fournissons ensuite un modèle
mathématique minimum montrant que regrouper des applications ayant la même péri-
ode n’impacte que marginalement l’équité entre les utilisateurs. Nous approfondissons
cette direction avec des objectifs doubles: définir les groupes d’applications devant être
en concurrence et déterminer quelle proportion de la bande passante allouer à chaque
groupe. Une première intuition sur laquelle nous travaillons serait de grouper les ap-
plications en s’intéressant seulement à la longueur de leur itérations et allouer plus de
bande passante à celles ayant des phases courtes et une grande fréquence d’E/S. Nous
cherchons à répondre à ces questions en mettant en place un système d’évaluation réal-
iste utilisant SimGrid.

6 Nicolas Vidal

Abstract

In high performance computing, platforms (the supercomputers) are composed of com-
putational resources divided into racks. Each rack have one (sometimes several) I/O
nodes to access the parallel file system (PFS). Following the growth and the optimiza-
tion of the machines, the amount of data involved in the calculation is increasing. As
different parts of these racks are allocated to independent applications, and as the stor-
age is shared between these, too many concurrent accesses can lead to contention and
performance loss.

This thesis consist in studying strategies to map applications on the platform and
scheduling the different accesses to the storage system in order to avoid contention. We
discuss the relevance of our solution both from the administrators point of view (using
the throughput) and from the users one (using stretch).

In a first part, we assume that the mapping was done upstream and only study
the scheduling of bandwidth accesses in order to minimize the latency. We show the
intractability of the standard I/O scheduling problem, discuss some simple cases and
show the relevance of List-scheduling policies.

In a second part, we extend our problematic to the problem of mapping applications
into the nodes in order to avoid concurrent accesses.

To solve this problem, we propose a pack algorithm which, on a single I/O node, in-
creases greatly the stretch while slightly degrading the makespan. However, this degra-
dation in the consequence of a stricter control on resource usage. This allows to a better
scaling with more I/O nodes as well as facilitating loss recovery with back-filling for
example.

Finally, we discuss how to extend standard resource management strategies such
as list scheduling and the aforementioned pack scheduling in order to take I/O into
account and what it means in terms of resource utilization and performance. Such
strategies are largely used by HPC platform for resource allocation due to their sim-
plicity. We observe that the pack scheduling policy induces a limitation on average that
enables intensive I/O phases on condition that they are compensated during the exe-
cution. In comparison, list strategies always follow the prescribed restriction and are
therefore more restrictive. It follows that pack scheduling are to be preferred when high
quantities of data compared to the available bandwidth are involved.

In most of our work, we considered that I/O accesses were exclusive. However, in
highlighting notable performance discrepancies depending on the similarity between
applications, we showed that some should be executed in parallel. As a conclusion, we
discuss the recent development of our models seek to determine how to define these
applications partitions.

Data scheduling at higher Scale 7

8 Nicolas Vidal

Chapter I

Introduction

I.A Introduction

I.A.1 A quick presentation of HPC

High Performance Computing (HPC) is the scientific framework around large-scale
computational platforms called supercomputers. Nowadays, scientists rely on these
machines to run programs that could not run on simple computer. Their scale can be
dizzying: the last journey [35], an astronomy simulation project carried out on Mira, the
Argonne Leadership Computing Facility supercomputer evolved approximately 1.24
trillion particles producing almost 150 TB of data. Running voracious applications is not
a cosmologist privilege, climatologists and oceanographers complete their field obser-
vations using simulation. Modeling also bears promising results in medical science [37].
This programs are often very complex and composed of multiples specific tasks with
precedence constraints.

In this aspect, supercomputers must be able to handle diverse requirements coming
from concurrent users independent to each other. Indeed, the building and maintaining
cost of these mastodons can only be justified with a diverse and efficient usage. Au-
rora [4], an exascale machine under development at Argonne was estimated at more
than $500M With a power consumption of 30 to 40 MW, the current leader of the top
500 supercomputer, the Japanese Fugaku [5] consume several time the power output
of a little nation (Togo: 10.3 M). New problems emerges from these extreme orders of
magnitude opening new theoretical and optimization problems.

I.A.2 Evolution

Historically, as it became harder to add more and more component to a single module.
Cray decided in the 70s to split their computer into multiples modules, designing the
first supercomputer.

Nowadays supercomputers are composed of millions of cores, reaching the ex-
aFLOP/s (1018 floating-point operations per second), the equivalent of ten million per-

9

I.A. Introduction

sonal computers (100GFLOP/s).

Figure I.1: Performance development of Top500 supercomputers (source: https://
www.top500.org/)

In the mean time, Input/Output (I/O) throughput evolved but failed to keep up the
pace. A statement recalled recently by Khan et al. [42]. As shown by successive super-
computer at Argonne: Mira (2013 - Peak performance: 10 PFlop/s; peak I/O through-
put: 240 GB/s) is an upgrade of the older Intrepid (Peak performance: 0.56 PFlop/s;
peak I/O throughput: 88 GB/s). Yet, the next generation calculator of the same facility,
Aurora, expecting to reach the ExaFlop/s, only offers a storage of 25 TB/s per switch [4].
I/O throughput still scaling linearly to the previous one.

This is especially crucial as a linear increase of platform capacity does not leads to
an equivalent increase in performance.

The recent development of data-intensive computing applications such as high-
performance data analytics (HPDA) and deep learning (DL) contributes to shift the
computer-centric point of view to a data-aware approach. The growing demand for
data processing is accompanied by disruptive technological progress of the underly-
ing storage technologies. As a result, upcoming exascale HPC systems are transitioning
from a simple HPC storage architecture, consisting of a parallel back-end file system and

10 Nicolas Vidal

https://www.top500.org/
https://www.top500.org/

I. Introduction

archives often based on tapes, towards a multi-tier storage hierarchy that includes Non-
volatile main memory (NVMM) with a performance close to DRAM, NVMM-based
SSDs inside compute nodes with a bandwidth of many GB/s, SSDs on I/O nodes, par-
allel file systems, campaign storage, and archival storage.

I.A.3 The IO bottleneck

"Very few large scale applications of practical importance are not data intensive" -
Alok Choudhary, Apr. 2012

Despite this architectural shift, the usage of the I/O stack is not optimal since end
users lack the information about the state of the HPC resources and the I/O accesses
of the multiple applications running in a supercomputer. As a result, opportunities for
global I/O optimization are missed mostly due to uncoordinated data management,
which often leads to redundant data movement, large I/O accesses contention and de-
layed end-to-end performance.

In some scenario, sole applications can saturate a cluster bandwidth. As an example,
despite various optimizations, the aforementioned HACC simulation only reached 56%
of its ideal 26.7 GiB/s peak bandwidth [33].

Parker et al. [57] make an evaluation of the ’Theta’ platform in Argonne. Using ap-
plication as benchmark, they show that performance depended heavily on the under-
lying architecture. The LAMMPS application attaining a peaked memory bandwidth
ranging from 60 to 170 GB/s depending on the resources used.

Concurrent applications sharing larger machines leads to an increased risk of I/O
interference [80, 65]. Concurrent accesses are often performed in "best-effort" mode
leading to contention. The importance of this phenomenon is still discussed. It is un-
clear whether the amount of performed operation is degraded when several applica-
tions compete. Some studies tend to show that contention is over-additive (due to hard-
ware restrictions, the time spent by each application executed simultaneously is larger
than the time that each would spend without contention if they were executed alone).
Other studies failed to show the existence of a performance loss worse than linear. How-
ever, it is straightforward to notice that in both cases, concurrent accesses leads to delays
for the application waiting or having only partial bandwidth usage. This would then
reverberate throughout the execution

In this context, it is more important than ever to include data in our way of thinking,
designing and running HPC platforms.

I.A.4 Motivational example

Cross-application contention has been studied recently [34, 65, 74]. The Hashimoto and
Haida study [34] evaluates the performance degradation in each application program
when Virtual Machines (VMs) are executing two application programs concurrently in
a physical computing server. The experimental results indicate that the interference

Data scheduling at higher Scale 11

I.A. Introduction

among VMs executing two HPC application programs with high memory usage and
high network I/O in the physical computing server significantly degrades application
performance. A 2005 study by Skinnet and Kramer [65] cites application interference
as one of the main problems facing the HPC community. While the authors propose
ways of gaining performance by reducing variability, minimizing application interfer-
ence is still left open. A more general study by Xie et al. [77] analyzes the behavior
of the center-wide shared Lustre parallel file system on the Jaguar supercomputer and
its performance variability. One of the performance degradations seen on Jaguar was
caused by concurrent applications sharing the filesystem. All these studies highlight
the impact of having application interference on HPC systems, without, but they do not
offer a solution.

As a way to forge our own understanding of the phenomenon , we evaluated the
inter-application interference in PlaFRIM cluster [2] cluster for three representative use
cases. Each compute node of PlaFRIM consists of two 12-core Intel Xeon E5-2680 proces-
sors and 128GB RAM. The nodes are connected by Infiniband QDR TrueScale at 40Gb/s,
and the filesytem is Lustre configured with one metadata server, and four object stor-
age servers. We evaluated the system I/O performance by executing use-cases under
two different configurations: single application and multiple applications. In single
application one program was executed exclusively, having full access to complete I/O
bandwidth provided by the system. In contrast, with multiple applications, several pro-
gram instances are executed simultaneously (accessing to different files) and competing
for the I/O resources.

Figure I.2 shows the I/O bandwidths of each use-case and configurations. Use cases
A and B corresponds to an MPI program that writes a distributed matrix in a file using
non-collective calls. More precisely, in use case A, each process writes the data consec-
utively, whereas in use case B a striped write access is performed with a stride size of
195 MB. Use case C is the NAS BTIO simple benchmark, which also uses non-collective
MPI calls for accessing the file. In this use-case the I/O has a reduced data granularity.
Because of this, use case C has a smaller I/O bandwidth than the other counterparts.

Note that for all the use cases the I/O bandwidth degrades when multiple ap-
plications are executed. We define this degradation d as the percentage of band-
width that is lost when multiple applications are being executed. More formally,
d = 1−

∑
BWmulti

BWsingle
where BWsingle is the I/O bandwidth for single application configura-

tion and
∑

BWmulti is the aggregated bandwidth for multiple application configuration.
In our experiments we ran 4 applications are the same time and we saw a, degradations
of 2%, 16% and 11%, for use cases A, B and C, respectively. There are many reasons [80]
for this degradation (that does not always occur) that are related to the complex inter-
action between the applications and all the levels of the I/O subsystem. One of the
main factors occurs when the storage servers receive requests from multiple applica-
tions: One is that it is necessary to access to more locations in the hard disk surfaces,
reducing the access locality and I/O performance; Another reason is the contention at
I/O node-level, given that the raid servers are potentially connected with all the I/O

12 Nicolas Vidal

I. Introduction

1

10

100

1000

10000

Use case A Use case B Use case C

I/
O

 b
an

d
w

id
th

 (
M

B
/S

)

Single application

Multiple applications

Figure I.2: I/O bandwidth comparison for single and multiple applications of the three
use cases. In use cases A and B an MPI program that writes a distributed matrix in a file
using non-collective calls. Each application uses 96 processes for writing a 47.7GB file.
With multiple applications, four instances of the same application are executed simul-
taneously. Use case C corresponds to the NAS BTIO simple benchmark that operates
with an 1.6GB file using 64 processes. With multiple applications, two instances of the
same application are executed simultaneously.

nodes.
Based on these results we conclude that in some contexts, simultaneous inter-

application I/O should be avoided. This is the idea behind the CLARISSE I/O schedul-
ing control protocol [39]. Using a publish-subscribe protocol, when multiple applica-
tions access to the disk, only one is granted to perform the I/O. The remaining ones are
delayed waiting for the I/O completion.

I.B Context

I.B.1 Existing solutions

The issue of conflicting accesses on the I/O subsystem is a well known problem in HPC
infrastructures [23, 80, 58]. In the current section, we present some of the approaches

Data scheduling at higher Scale 13

I.B. Context

aiming at tackling the problem.

I.B.1.a Data transformation

Recent studies propose application-side strategies based on I/O management and trans-
formation. As contention arises with large amount of data, recent studies propose
application-side strategies based on I/O management and transformation. Lofstead
et al. [53] study adaptive strategies to deal with I/O variability due to congestion by
modifying at certain times both the number of processes sending data, and the size of
the data being sent. Tessier and al. [71] focus on the locality of aggregate nodes. These
nodes are compute nodes dedicated to accumulate data sent by other compute nodes
during the I/O phase of an application. Those nodes also have the possibility to trans-
form the data being sent (for instance by compressing it [22]). To go further, data can
even be compressed in a lossy way [20]. In-situ/intransit analysis developed in recent
works [25] try to deal with file systems reaching their limit. In the past, some work-
flows used to create the data and to store it on disks before analyzing it as a second step.
In-situ/in-transit analysis offers to dedicate some specific nodes to the analysis and to
perform it as the data is created. The goal is to reduce the load on the file systems.
We consider that all these solutions occur uphill to our problem and hence can be used
conjointly.

I.B.1.b Software to deal with I/O movement

Auto tuning Work using machine learning for auto tuning and performance study
[11, 46] can be applied for I/O scheduling but do not provide a global view of the I/O re-
quirements of the application. Coupling with a platform level I/O management ensure
better results. Isakov et al. [40] propose to design explainable models using machine
learning. They emphasize on the gap between black box model providing accurate pre-
dictions and less precise but simple and intuitive models.

Middlewares Singh et al. [63] present a strategy that combines I/O conflict predic-
tion and application malleability. By means of prediction, the future I/O conflicts are
forecast. Based on that, the time of the next I/O phase is shifted in order to avoid the
I/O conflict. This is carried on by dynamically changing the number of processes of the
conflicting application (by means of malleability). AHPIOS [38] is a light-weight ad-hoc
parallel I/O system with elastic partitions that can scale up and down with the number
of storage resources. Other works such as those of Lim et al. [50] or Cheng et al. [18]
present elastic solutions using Hadoop Distributed File System (HDFS). SpringFS [79]
presents an elastic filesystem for Cloud computing platforms.

The middleware CLARISSE [39] proposes mechanisms for designing and implement-
ing cross-layer optimizations of the I/O software stack. The specific implementation of
the problem considered here is a naive First Come First Served approach. They, how-
ever, provide an excellent opportunity to study our results in a real framework.

14 Nicolas Vidal

I. Introduction

Online schedulers Finally, the solution closest to our approach is to schedule the I/O
of applications in order to mitigate interference. Several works have tackled this prob-
lem. Some approaches [29, 82] use priority function scheduling at the I/O node level:
they consider applications already mapped on a machine, sharing some I/O bandwidth.
Several priority functions have been proposed by Gainaru et al. [29] to optimize either
the equity between applications or the machine throughput. Another recent approach
developed by Aupy et al. [9] is to look at structural properties of the applications (such
as a periodic behavior in I/O communications) to develop more advanced schedules.
In [23], the authors investigate the interference of two applications and analyze the ben-
efits of interrupting or delaying either one in order to avoid congestion. Unfortunately
their approach cannot be used for more than two applications. Another main difference
with our previous work is the light-weight approach of this study where the compu-
tation is only done once. In TWINS [12] the access to the I/O nodes is coordinated at
the I/O forwarding layer, reducing the contention. Another similar approach is AS-
CAR [49], that uses traffic controllers on storage clients to detect I/O congestion and
introduces traffic rules to reduce it. AIS [52] is an I/O-aware scheduler that performs an
offline analysis of the I/O traffic for identifying I/O characteristics of the applications.
Based on that, the applications are scheduled avoiding I/O conflicts. Other works that
use models to predict and avoid the application I/O interference are [6, 67, 21].

Batch scheduler There have been some recent works trying to incorporate several di-
mensions (such as I/O needs and compute nodes) into batch schedulers. On the more
theoretical side, several work have included these components to a scheduling prob-
lem [32, 73]. Bleuse et al. [13] have considered geometrical constraints where, given
some network topologies, they try to schedule applications while respecting their re-
quest both on the number of compute nodes and on the number of dedicated I/O nodes.
To the best of our knowledge, there is no specific work to consider the scheduling of
compute nodes while considering possible interference on I/O. On the practical side,
Herbein et al. [36] studied incorporating I/O awareness in batch scheduler strategies.
To develop a solution, they considered a simple model where all jobs had an I/O need
proportional to the number of nodes needed. Their observation was that taking I/O
into account reduced job performance variability.

I.B.1.c Hardware solutions

Diminishing I/O bottleneck can also be thought at the architectural level. A previous
paper [51] noticed that congestion occurs on a short period of time and the bandwidth
to the storage is often underutilized. As the computation power used to increase faster
than the I/O bandwidth, this observation may not hold in the future. In the mean-
time, delaying accesses to the system storage can smoothen the I/O request over time
and tackle latency. An example of this technique is presented in Kougkas et al [45]. A
dynamic I/O scheduling at the application level, using burst buffers, stages I/O and
allows computations to continue uninterrupted.

Data scheduling at higher Scale 15

I.B. Context

They design different strategies to mitigate I/O interference, including partitioning
the PFS, which reduces the effective bandwidth non-linearly. Note that for now, these
strategies are designed for only two applications, furthermore they are not coupled with
an efficient I/O bandwidth scheduling strategy and can only work because they con-
sidered an underutilized I/O bandwidth.

Sizing strategies have been studied [7], as well as buffer placement (shared or dis-
tributed) [8, 43]. Tang et al. [70] have studied draining strategies and have shown that
the natural reactive strategy to empty the buffer as soon as possible can lead to severe
degradation. Aupy et al. [7] have shown theoretically that only emptying the buffer
when it is at least 15% full do not lead to significant delays compared to the reactive
strategy, however it may mitigate the issues raised by the work of Tang et al. [70]. Fi-
nally, as was shown in the recent work by Aupy et al. [8], to be efficiently used the
buffers still need to be coupled with I/O management strategies.

Boito et al [14] design multi-layer memory architectures to mitigate the congestion
occurring at the I/O bandwidth level. The architectural enhancements are aiming to
fluidize I/O requests. It is often accompanied by the development of data middleware,
such as the design of an intermediate aggregating layer which enables collective opera-
tions [72, 64]

I.B.1.d Related theoretical problems

This overview of approaches to tackle the I/O bottleneck would not be complete with-
out mentioning classical theoretical problem related to scheduling with different re-
sources. Indeed, on the application side, if we choose to transform neither the execution
nor the output, the I/O contention issue is treated as scheduling problem [53, 81]. The
MS-HPC-IO problem of section II.A may recall the classical job shop problem (a opti-
mization problem where jobs needing to be schedule on different machines with - see
definition in [48]). In both problems jobs are composed of dependent tasks that have to
be performed on specific machines. However, here, we do not have constraints on the
computation machine therefore if knowledge of job shop can help to develop insight
of solutions, it can not be used straightforwardly for HPC-IO. Variants of job shop and
flow shop are abundantly discussed in the literature: [47, 48, 69, 15]. We recall that flow
shop is a particular case of job shop where the operation sequences do not depend on
jobs.

I.B.2 Monitoring

Monitoring softwares usually capture I/O accesses from HPC application execution in
order to be analysed to provide system and application characterization. However, in
order to be effective they need to capture the appropriate data for an expert to build
models and heuristics leading to performance improvement. In practice, monitoring
tools are developed using system-level counters either at an application level or at a

16 Nicolas Vidal

I. Introduction

platform level. This makes a lot of sense for the engineers and the system optimiza-
tion. However, when we need to broaden the scope and have a global vision of the
current behavior of applications it often falls short. It is indeed hard to capture the in-
dividual pattern of applications when monitoring the platform or the interaction with
other applications running when monitoring an application execution. Nonetheless the
data they provide is invaluable in order to build models. Tools commonly used include
TAU [62], Paraver [60], SCALASCA [31], Paradyn [55], Darshan [16, 66]. Darshan is
especially present in both the current thesis and related work from the same field as it
is specialized into capturing I/O traces.

I.B.3 Application modeling

I.B.3.a Periodic behavior

Observations shows that many HPC applications [16, 24, 29] periodically alternate be-
tween (i) operations (computations, local data accesses) executed on the compute nodes,
and(ii) I/O transfers of data. As shown in these studies, this behavior can be predicted
beforehand. Figure I.3 presents an example of I/O behavior. Data was provided by
ATOS and shows pseudo-periodical I/O operations.

Figure I.3: Roughly periodical I/O behavior of an application, obtained from data pro-
vided by ATOS

I.B.3.b I/O prediction

Literature discussing the I/O behavior prediction is abundant and convincing. Oly and
Reed [56] use I/O traces from scientific code to build Markov models representing the
spatial patterns of such applications.

Data scheduling at higher Scale 17

I.C. Positioning

Dorier et al. [24] construct a grammar based model in order to predict the occurrence
and amount of data of future I/O operations.

Other approaches to predict I/O are large scale log analysis [44] or machine learning
approaches [54].

I.C Positioning

HPC is a large domain regrouping different actors who have all their own objectives.
There are engineers and administrators aiming to optimize or design their platforms
to answer their users requests. There are users who want their applications to run as
smoothly as possible on the platform available to them. On the opposite side of the
spectrum, there are theoretical algorithms aiming to have results the most advanced
theoretically even if it means using oversimplified models. We want to be in between.
That is having the global vision and the force of abstraction of theoretician in order to
build the necessary knowledge to design well-thought future systems. On the other
hand, we want our solution to be in touch with the current reality of our field. Figure I.4
present schematically our approach. We take observations made on supercomputers as
a starting point to design realistic models. This model might be too complicated to build
theoretical proofs or design precise algorithms but is used as a thinking basis. Then, we
reduce it in order to have a simple version with few parameters. This model simplicity
serving to define clear theoretical objectives and to help designing strategies accord-
ingly. Finally, we test the strategies on the realistic models and study the discrepancies
in order to raise more concern and refine our models.

Build realistic-ish models

Simplified models

Propose strategiesTheoretical proofs

Simulation

Validate models Performance analysis

Refine

Figure I.4: Simplified vision of our approach. Contributions are presented in orange

18 Nicolas Vidal

I. Introduction

I.C.1 Simulating HPC workloads

I.C.1.a Scientific context

It seems pertinent to discuss the importance of simulation in the current manuscript.
The unfolding of the present thesis follows more or less the chronological path of its
development. we chose to keep it as such to follow the scientific progress of my studies.
Notably this last year we took a large step back with regards to experimental approach.

In chapter II, we settled for an ad-hoc python code aiming to model the problem
in the most direct way. This technique may be the most time efficient but it lacks in
re-usability and cannot provide insight outside of its limited scope. The experiments
performed for chapter III were run on Tucan, a cluster based in Charles III University
of Madrid and maintained by the arcos research group [1] and using an emulator of
the software Clarisse. Here, we only modified a small dedicated subpart of a tool de-
veloped independently: the scheduling heuristics. we could also choose and generate
the application profiles used by the emulator. Thus our experiments were much more
constrained with an impact on what could be done as policies but with more "realistic"
executions. Or at least, experiments closer to what it is possible to implement in a real
cluster with minimal engineering skills.

The European development of the pandemic early 2020 slowed down international
collaborations. As universities and labs closed down and as scientists juggled more
that ever between their teachings, the scientific challenge and their own personal life, it
became harder to work conjointly on a same software or in the same platform. In this
context, we decided to implement our own simulator.

I.C.1.b Implementation of the simulator

We attempted to produce an application divided in complementary yet roughly inde-
pendent component.

1. A workload generation module

2. A module defining the application schedule

3. A module scheduling the I/O accesses

4. A module emulating the platform

Each parts uses the result of the previous one. However, we expect to implement differ-
ent approaches at each level. This way we can keep the same execution stack and study
the impact of only one of this stage by tuning the adequate component.

Generating applications How to generate applications is crucial in performance eval-
uation. [27, 26] In a well-written article, Feitelson [26] goes through several pitfalls to
avoid when performing experiments on workloads In the introduction of his book [26],

Data scheduling at higher Scale 19

I.C. Positioning

he recalls that in the literature, almost all published articles exhibits results outperform-
ing the state of the art. His interpretation is not that scientist are lying about perfor-
mance but rather that the way the experiments are performed and mainly the way
workloads are simulated and evaluated are the product of presupposed assumption
and impact the scope of the experiment. In that case, it is capital to make clear and
explicit assumption on the workload at hand and discuss the possibilities and the lim-
itation of each experimental setup. Hence, in this thesis, the nature of HPC workloads
and their modeling is a constant concern. In most of the experiment, we chose to gener-
ate applications in order to support our theoretical models therefore sacrificing realism
in order to explore more extensively the parameters space. However, upstream of the
work presented in Chapter IV, we saw the limitation of this simulation scheme and
chose to implement a workload simulator based on the available data from Mira [59].
Details about the generation is provided in the related experimental sections.

Resolve schedules We chose to implement a set of queues one for each status an appli-
cation can have while running on a platform (waiting for a given resource, performing
I/O, computing...). They are initialized based on the application states. In order to emu-
late the platform, we compute the next event occurring and update both the applications
and the queues states.

All sources from this simulator are available on my gitlab repository [?] alongside
simulation scripts for chapter II.

I.C.2 Contributions

In Chapter II, we present a simple model for I/O scheduling focusing solely on the I/O
operations. We discuss the complexity of the problem at hand and provide theoreti-
cal solutions for simple scenario including list-scheduling strategies and uniform tasks.
Then, we experiment heuristics based on the periodical behavior of applications and
study their robustness.

We extend this model in Chapter III by taking into account the mapping problem
that we left aside previously. In order to perform I/O aware allocation of the platform,
we define an algorithm based on packs. We show that, compared to a baseline, the I/O
aware pack algorithm sacrifices overall machine throughput in favor of a better control
of the time loss in contention and a better fairness. This increased control on resource
usage enables a better scaling when increasing the platform size as defined by racks
(batches of compute nodes associated to an I/O node).

In Chapter IV, we compare the pack strategy aforementioned with the simple list
scheduling strategy with I/O awareness. These two strategies are used as tools to un-
derstand and discuss the different ways to enforce bandwidth control and the impact
of workloads on the performance of said control. We showed that choosing a strategy
must depend on workload characterization, mainly the I/O intensity of the applications
and their similarity.

20 Nicolas Vidal

I. Introduction

In the conclusive Chapter V, we make a retrospective of the last year in regard to
scientific path and progress. Finally, we open up on some ongoing research: based on
the observations of Chapter IV and some simple examples, we try to define groups of
applications should perform I/O exclusively while sharing bandwidth with others.

Data scheduling at higher Scale 21

I.C. Positioning

22 Nicolas Vidal

Chapter II

Scheduling bandwidth accesses

In the previous chapter, we presented the I/O bottleneck problem. In HPC settings,
the application I/O pattern leads to contention on the filesystem and to a loss of per-
formance. We ought to propose strategies to handle the I/O operations while limiting
this issue. Aupy et al. [9] design a strategy which uses the periodic nature of HPC ap-
plication to develop efficient periodic scheduling strategies for their I/O transfer. We
take this work as an entry point to address the I/O bottleneck. Then, as our main objec-
tives is to define scheduling algorithms. From their focus on the applications and their
phase-based behavior, it follows two problems.

• How do we model formally the HPC applications behavior in our context?

• How do we schedule the I/O accesses?

This chapter deal with these two subjects. First we propose a mathematical model for
HPC applications. We emphasize on the periodic behavior of most. Then, we design
static algorithms that prescribe when each application can access the storage. These
two basic problems are crucial for all of the remaining thesis. The mathematical model
we define here will be used, with adequate modifications, as a basis for future problem
definitions. Then, when increasing the scope and dealing with applications mapping
and different strategies, we will still need to schedule I/O calls at the lower level and
use the subsequent scheduling policies.

In the following, we first define formally the application model and the optimization
problem (Section II.A). Then, we provide theoretical result from the literature and poly-
nomial algorithms for simple cases in Section II.B. In Section II.C we discuss approxima-
tion for the general scheme. These algorithms are then experimentally evaluated using
simulation in Section II.D.

23

II.A. Bi-colored chains model

II.A Bi-colored chains model

II.A.1 Machine model

We consider a platform consisting of two types of machines: type A and type B. Each
of these machines can have either a bounded number of resources or an unbounded
one as would be the case in a typical scheduling problem. In the I/O problem under
consideration in this chapter, we consider that the jobs are already scheduled on the
compute nodes (machine of typeA) and that there is no competition at this level. Hence,
we can assume without loss of generality and unbounded number of such resources.
On the contrary the bandwidth of the Parallel File System (PFS) (machine of type B)
is shared amongst the different jobs. Hence, we say that it has a bounded number of
resources B. For the sake of simplicity, we normalize the bandwidth usage and consider
B =1. We call this instance of the platform an bi-colored platform.

Figure II.1 shows an overview of this model and jobs executed on this platform.

A
J1 A1,1 A1,2

J2 A2,1 A2,2 A2,3

J3 A3,1 A3,2 A3,3

B

Time0
0

B
B2,1 B1,1B3,1 B2,2 B3,2 B1,2 B2,3 B3,3

Figure II.1: Schematic overview of three jobs J1, J2, J3 scheduled on a bi-colored plat-
form.

II.A.2 Job Model

We consider scientific applications running simultaneously onto a parallel platform [9,
8]. The set of processing resources are already allocated to each application. With re-
spect to I/O, applications consist of consecutive non-overlapping phases: (i) a compute
phase (executed on machine A); (ii) an I/O phase (executed on machine B) which can
be either reads or writes.

Formally, a job Ji consists of 2ni successive operations Ai,j ,Bi,j , (j ⩽ ni). The depen-
dencies that need to be respected are such that: Ai,j+1 (resp. Bi,j) can only start its work
when operation Bi,j (resp. Ai,j) is done entirely. We denote by ai,j (resp. bi,j) the volume
of work of operations Ai,j (resp. Bi,j). In the current problem, because there is no con-
straint on the number of compute nodes allocated to Ji, we can assume without loss of
generality that it is equal to 1 and ai,j also corresponds to the execution time of opera-
tion Ai,j . Similarly, when Bi,j uses the full I/O bandwidth (B = 1), bi,j corresponds to
the minimal time to execute operation Bi,j .

24 Nicolas Vidal

II. Scheduling bandwidth accesses

We call such jobs bi-colored chains and write them:

Ji =

ni∏
j=1

(Ai,j, Bi,j) (II.1)

The minimal execution time of Ji is given by the equation:

Cmin
i =

ni∑
j=1

ai,j + bi,j (II.2)

In addition, in this chapter we consider some specific jobs called Periodic jobs. They
consist in successions of identical (in volume and time) compute operations and I/O
operations. Those are typical patterns in High Performance Computing [16, 29, 24]. We
extend the notation for bi-colored chains to these jobs:

Ji = ((Ai, Bi)
ni) (II.3)

Remark and motivational example While in real-life, platforms can allow bandwidth
sharing especially fair-share, this model describes exclusive I/O accesses. This simple
choice can be explained by a minimalist example described in Figure II.2. Two ap-
plications performing a compute phase and an I/O phase. The total execution time is
the same. However, when using exclusive accesses, App. 1 terminates earlier therefore
providing a better user experience as well as a earlier resource availability.

"Fair-share"

App. 1 Compute IO

App. 2 Compute IO

"Exclusive access"

App. 1 Compute IO

App. 2 Compute IO

Figure II.2: Comparison of "Fair-share" and "Exclusive accesses" on a single iteration

II.A.3 Optimization problem

In this context, we define the MS-HPC-IO optimization problem. We consider the spe-
cific model where the I/O of tasks is rigid: for all applications, the I/O is always per-
formed at full bandwidth and cannot be pre-empted. This model is what is currently
implemented in Clarisse [39].

A schedule S is fully defined by giving an order for the different I/O operations on
the machine of type B. Indeed, because there is no competition for the resources of type
A:

Data scheduling at higher Scale 25

II.B. Complexity of the MS-HPC-IO problem

• Ai,1 can start immediately;

• Bi,j can start as soon as both events are finished: (i) Ai,j is finished; (ii) all jobs
anterior to Bi,j in the schedule on the machine of type B are finished.

• Ai,j+1 can start as soon as Bi,j is finished.

Hence, we can formally define a schedule in Definition 1

Definition 1 (A schedule S). Given a set of jobs Ji = (
∏ni

j=1(Ai,j, Bi,j)), a schedule S is
defined by a permutation of the jobs ((Bi,j)j≤ni

)i that satisfies, for all i, j, Bi,j is before
Bi,j+1

We consider the classical objective function for scheduling problem. It corresponds
to the system performance (makespan or execution time). In the future, we may study
system fairness as well.

Let Ci be the end of the execution of a job Ji in the schedule S. We define the
makespan CS

max of the schedule S to be:

CS
max = maxCi (II.4)

Definition 2 (MS-HPC-IO). Given a set of rigid bi-colored chains Ji = (
∏ni

j=1(Ai,j, Bi,j)),
and an I/O platform. Find a schedule that minimizes the makespan CS

max.

II.B Complexity of the MS-HPC-IO problem

II.B.1 Intractability

In this part, we briefly present some intractability results from the literature for MS-
HPC-IO.

In the literature, several results relate to this problem. The closest to our model is the
Precedence Constrained Scheduling problem introduced by Wikum [75], which studies
a special case of MS-HPC-IO.

Theorem 1 ([75, Proposition 2.3]). MS-HPC-IO is NP-complete. Even in the simplest case
when n1 = 2, and for all jobs Ji, i ̸= 1, ni = 1.

II.B.2 Polynomial algorithms

In this section we present some instances where one can compute the optimal solution
in polynomial time. We focus here on instances that are important for the HPC-IO
problem. Several other specific instances have been studied by Wikum [75].

Case when ∀i, ni = 1 When for all jobs Ji, ni = 1, it is easy to see that any greedy
solution that schedules the I/O as soon as they are available is optimal for MS-HPC-
IO [75, Proposition 2.1].

26 Nicolas Vidal

II. Scheduling bandwidth accesses

Uniform jobs We study the case of uniform jobs which is a specific case of periodic
jobs. Specifically we consider that there exists A,B s.t., for all i, j, Ai,j = A and Bi,j = B.
We can then write: Ji = ((A,B)ni). Those jobs can be used to represent some new types
of workloads such as hyperparametrization in Machine Learning (see Section II.D.3 for
more details). In this context, all jobs are part of a bigger job and are released at the same
time. Because they are part of a bigger job, we are interested in solving MS-HPC-IO. In
this section, w.l.o.g we assume that the jobs (Ji)1≤i≤m are sorted by decreasing value of
ni.

Definition 3 (UNIFORM). Given a set of jobs (Ji)1≤i≤m s.t. ∀i, ri = 0, ni ≥ ni+1 and there
exists A,B s.t., for all i, j, Ai,j = A and Bi,j = B, UNIFORM is the problem of solving
MS-HPC-IO.

Theorem 2. UNIFORM can be solved in polynomial time.

To show this result, we show that Algorithm 1 (HIERARCHICAL ROUND-ROBIN)
solves the problem in polynomial time (Theorem 2.). The idea of HIERARCHICAL
ROUND-ROBIN is to structure the schedule around the job with the largest ni.

We start by scheduling each B operation of J1. Then, we schedule before each of
those B operations all B operations of jobs such that ni = n1. Finally, we schedule all
remaining jobs in a round-robin fashion between B1,1 and B1,n1 . We present in Figure II.3
an example of such a schedule.

B

Time0
0

B
B2,1B1,1

BS
0

B4,1B3,1B2,2B1,2

BS
1

B5,1B3,2B2,3B1,3

BS
2

B4,2B2,4B1,4

BS
3

Figure II.3: Example of HIERARCHICAL ROUND-ROBIN schedule
J1 = (2.5, 1)4, J2 = (2.5, 1)4, J3 = (2.5, 1)2, J4 = (2.5, 1)2, J5 = (2.5, 1)1

In this section, we focus on showing formally this result. To do so:

1. We define of a cost function C (Def. 5) such that for all schedule S, CS
max ⩾ C(S)

(Prop. 1);

2. We show that there exists an optimal schedule Sopt such that C(Sopt) ⩾ C(SHRr)
(where SHRr is the schedule returned by HIERARCHICAL ROUND-ROBIN);

3. Finally, we show that CSHRr
max = C(SHRr) (Prop. 2), showing the result.

Data scheduling at higher Scale 27

II.B. Complexity of the MS-HPC-IO problem

Algorithm 1 HIERARCHICAL ROUND-ROBIN

1: procedure HRR(Ji = (
∏

j≤ni
Ai,j, Bi,j)) ▷ ∀i, j, ni ≥ ni+1, Ai,j = A,Bi,j = B

2: Let S0, · · · , Sn1−1 be n1 empty stacks.
3: Idb ← 1.
4: for i = 1 to |{Ji}| do
5: if ni = n1 then
6: for j = 1 to ni do
7: Add Bi,j to Sj−1.
8: end for
9: else ▷ We do not schedule anymore on S0.

10: Ide ← 1 + (Idb + ni mod (n1 − 1)) ▷ Ji is scheduled from SIdb+1

to SIde
11: if Idb ≤ Ide then
12: for j = 1 to ni do
13: Add Bi,j to Sj+Idb

.
14: end for
15: else
16: for j = 1 to Ide do
17: Add Bi,j to Sj .
18: end for
19: for j = Ide + 1 to ni do
20: Add Bi,j to S(n1−1)−(ni−j).
21: end for
22: end if
23: end if
24: Idb ← Ide.
25: end forreturn SHRr = S0 · S1 · · · · · Sn1−1

26: end procedure

In the rest of this Section, we let Ji = (0,
∏ni

j=1(Ai,j, Bi,j)) be a set of uniform jobs
sorted by decreasing ni. We denote by a (resp. b) the execution tasks of tasks Ai,j (resp.
Bi,j).

We introduce the notion of block:

Definition 4 (Block of a schedule S and its cost). Given a schedule S, for k ∈ [[1, n1]],
we define the block BS

k to be:

• If k = 1, BS
1 is the set of tasks scheduled to be executed before (including) B1,1.

• Otherwise, BS
k is the set of tasks scheduled to be executed after (excluding) B1,k−1

and before (including) B1,k.

28 Nicolas Vidal

II. Scheduling bandwidth accesses

We define the cost of a block to be:

C(BS
k) =

{
a+ |BS

1 | if k = 1

max(a+ b, |BS
k | · b) else

We represent the notion of Blocks on Figure II.3

Definition 5 (Cost of a schedule). Given a schedule S, its cost is C(S) = Σn1
k=1C(BS

k),
where C is the function cost of a block.

Proposition 1. For any schedule S, CS
max ⩾ C(S).

Proof. To obtain this result, one can observe that the blocks partition the schedule until
B1,n1 , and hence the total makespan is greater than the sum of the makespan of all
blocks1. Then, we need to show that the makespan of each block is greater than the
cost of each block, hence showing the result. This comes naturally from the fact the
makespan of a block is necessarily greater than the maximum between (i) the total work
that has to be performed during this block (|BS

k | · b), and (ii) the minimal length imposed
by J1 (an execution of Ai,j and an execution of Bi,j). Hence, the makespan of a block is
greater than its cost, showing the result.

Definition 6 (Dominant schedules). For UNIFORM, we say that a schedule is dominant
if:

1. Prop. (Dom.1) The last task executed on platform B is B1,n1 ;

2. Prop. (Dom.2) For all Ji, (ni − j + i) < n1, implies Bi,j is executed after B1,1.

3. Prop. (Dom.3) For all Ji such that ni = n1, Bi,1 is executed before B1,1.

In practice Dominant Schedules are schedules that finish by the last operation of J1,
and that start by all first operations of long jobs and then by B1,1.

Lemma 1. There exists a dominant schedule which is optimal.

Proof. We show the result in three steps:

1. First, we show that there exists an optimal algorithm which ends by the execution
of B1,n1 ;

2. Amongst those optimal algorithms, we show that there exists at least one where
for all Ji such that (ni − j + 1) < n1, implies Bi,j is executed after B1,1;

3. Finally, amongst those, we show that there exists at least one such that for all Ji
such that ni = n1, Bi,1 is executed before B1,1.

1Where the makespan of block BS
k (resp. BS

1) is naturally defined as the time between the beginning of
the execution of B1,k on platform B and the beginning of the execution of B1,k+1 on platform B.

Data scheduling at higher Scale 29

II.B. Complexity of the MS-HPC-IO problem

There exists an optimal algorithm that satisfies Prop. (Dom.1) We show the result
by contradiction. Assume there does not exist an optimal schedule which ends by the
execution of B1,n1 .

Let S be an optimal schedule for UNIFORM that minimizes the number of operations
following B1,n1 . Let Bi,k be the operation directly subsequent to B1,n1 in the schedule.

If k = n1, then because all Ai,j are identical, for 1 ≤ j ≤ k, we can permute all Bi,j

operations with B1,j without increasing the makespan, and the number of operations
after B1,n1 decreased strictly, contradicting the minimality of S.

Otherwise, necessarily k < n1 (indeed, by definition, for all i, ni ≤ n1). In this
case, necessarily there exist two consecutive operations of J1 such that there are no
operations of Ji between them. Let us call B1,n1−j0−1 and B1,n1−j0 those last operations.
Then, because all jobs are identical, for 0 ≤ j ≤ j0, we can permute all Bi,k−j operations
with B1,n1−j operations without increasing the total makespan. In this new schedule, the
number of operations after B1,n1 decreased strictly, hence contradicting the minimality
of S.

We denote by A1
OPT the non-empty set of optimal schedules that satisfy

Prop. (Dom.1).

There exists a schedule in A1
OPT that satisfies Prop. (Dom.2) Similarly, we show

the result by contradiction. Assume that for all schedules of A1
OPT, none satisfy

Prop. (Dom.2).
Let S ∈ A1

OPT that minimizes the number of operations Bi,j that satisfy (i) Bi,j is
scheduled before B1,1; (ii) ni− jn1−1. Let Bi,j0 be the last of these operations before B1,1

in S.
Then, because (ni − j0 + 1) < n1, necessarily there exists k < n1 such that there are

no operations of Ji between B1,k and B1,k+1. Let us denote by k0 the smallest of such k.
Then, for j ∈ {1, · · · , k0}we can permute in S all operations B1,j and Bi,j0−1+j without
increasing the schedule length. Indeed, there is no new idle time between any pair of
operations B1,j and B1,j+1 for j < k0 (because a1,j = ai,j0−1+j = a, nor between B1,k0

and B1,k0+1 because B1,k0 was advanced in time while B1,k0+1 did not move. Similarly,
there is no new idle time created in the schedule between Bi,j0−1+j and Bi,j0+j . Bi,j0+k0 is
scheduled after B1,k0+1 while Bi,j0−1+k0 is scheduled where Bi,k0 was scheduled, so the
time difference between them is greater than a.

Finally, this did not impact either any other jobs because the number of jobs on B
between two occurrences on any other jobs was kept the same.

We can conclude that this transformation did not increase the execution time. In
addition, it did not change the schedule after B1,k0+1 where k0 + 1 ≤ n1, hence
Prop. (Dom.1) is still respected in this new optimal schedule. There was, however, one
fewer job before B1,1, contradicting the minimality of S.

We denote by A2
OPT the non-empty set of optimal schedules that satisfy both

Prop. (Dom.1) and Prop. (Dom.2).

30 Nicolas Vidal

II. Scheduling bandwidth accesses

There exists a schedule in A2
OPT that satisfies Prop. (Dom.3) Similarly, we show

the result by contradiction. Assume that for all schedules of A2
OPT, none satisfy

Prop. (Dom.3).
Let S ∈ A1

OPT that minimizes the number of operations Bi,1 that satisfy (i) Bi,1 is
scheduled after B1,1; (ii) ni = n1. Let Bi0,1 be the first of these operations after B1,1 in S.

By a reasoning very similar to the one used to prove the existence of the set A2
OPT,

one can show that S can be chosen such that Bi0,1 is the operation directly subsequent
to B1,1.

Because ni0 = n1, and because S satisfies Prop. (Dom.1), there exists j0 ≥ 1 such that
Bi0,j0 and Bi0,j0+1 are scheduled between B1,j0 and B1,j0+1.

Thanks to the property that ∀i, j, ai,j = a, we can then create a new schedule whose
execution time is not greater than that of S by permuting for 1 ≤ j ≤ j0, Bi0,j and B1,j .
This schedule still satisfies Prop. (Dom.1) (we have not modified the location of B1,n1),
and Prop. (Dom.2) (the only task that was moved before B1,1 is Bi0,1), contradicting the
minimality of S.

Finally, this concludes the proof that there exists an optimal schedule that is domi-
nant.

Lemma 2. Denote by l1 = |{Ji|ni = n1}| and SHRr the solution returned by HIERARCHICAL

ROUND-ROBIN. Let r1 = (
∑

i ni − l1) mod (n1 − 1), and q1 = ⌊
∑

i ni−l1
(n1−1)

⌋ Then, we have the
following results:

• |BSHRr
1 | = l1,

• for j = 2 to r1 + 1, |BSHRr
j | = q1 + 1,

• for j = r1 + 2 to n1, |BSHRr
j | = q1.

Proof. This is a direct consequence from Algorithm 1. One can notice that BSHRr
k corre-

sponds to Sk−1 as returned at the end of the execution.
Hence, BSHRr

1 only contains the first operation of jobs of length n1 (hence l1 opera-
tions), and the rest of the blocks share the remaining operations minus those l1 opera-
tions, hence the result.

Lemma 3. Given S a dominant schedule, then C(S) ≥ C(SHRr).

Proof. In this proof we use the definition of l1, q1 and r1 as defined in Lemma 2.
Let S be a dominant schedule. Denote by pmin = minn1

k=2{|BS
k |} (resp. pmax =

maxn1
k=2{|BS

k |}, the smallest (resp. largest) block size for all blocks of S but the first one.
We show the result by recurrence on |pmax−pmin|. By definition of a dominant sched-

ule, we know that
∑n1

k=2 |BS
k | =

∑
i ni − l1, hence necessarily pmin ≤ q1 ≤ pmax.

By definition of q1 and r1, if pmax − pmin ≤ 1, then pmin = q1 and there are exactly
r1 blocks of size pmax and n1 − r1 blocks of size pmin. Hence, C(S) = C(SHRr). In the
following we assume that pmax − pmin > 1. In particular we have: pmin ≤ q1 < q1 + 1 ≤
pmax.

Data scheduling at higher Scale 31

II.B. Complexity of the MS-HPC-IO problem

If pmin · b ≥ a + b (resp. pmax · b ≤ a + b) Then, we have:

n1∑
k=2

C(BS
k) =

n1∑
k=2

|BS
k | · b = b

(
(
∑
i

ni)− l1

)
= b

n1∑
k=2

|BSHRr
k | =

n1∑
k=2

C(BSHRr
k)

(resp.
∑n1

k=2 C(BS
k) =

∑n1

k=2 a + b =
∑n1

k=2 C(B
SHRr
k)), meaning that C(S) = C(SHRr).

Else, pmin · b < a + b < pmax · b In this case, because |pmax − pmin| ≥ 2, we can show that
the cost is strictly greater to the cost of a solution with one element fewer in the largest
block, and one more element in the smallest block. This can be done recursively until
one of the initialization case as seen above (either |pmax − pmin| ≤ 1, pmin · b ≥ a + b, or
pmax · b ≤ a + b) for which we have shown that the cost is equal to C(SHRr).

Indeed, assume the cost of the smallest block increases by 0 ≤ δ < b (resp. cost of the
largest bock decreased by 0 < δ ≤ b). Then, a+b ≤ (pmax−1)·b (resp. (pmin+1)·b ≤ a+b),
and the cost of the largest block decreased by b (resp. the cost of the smallest block did
not increase). Hence, the total cost decreased by b − δ > 0 (decreased by δ > 0).

Again, the path of solutions may not theoretically exist, however this process shows
that their cost is indeed greater than that of SHRr.

Proposition 2. C(SHRr) = CSHRr
max

Proof. We study the stacks S0, · · · , Sn1−1 as returned by Algorithm 1. Note that we have
seen that there execution time is necessarily at least equal to their cost because of J1. We
now show that this time is enough for a successful execution of the schedule.

The time to execute S0 is exactly C(S0), indeed all jobs in this stack are executed for
the first time, hence we need to wait for a time a, then all I/O operations are ready and
we can execute them consecutively (taking a time |S0| · b.

We then show the result on the other stacks by studying the lth element from the
bottom of the stack (the first element of each stack Sk is B1,k+1).

Given stack Sk, denote by Bi,j its lth element:

• Either j = 1, in which case it was ready since S0 and there are no additional time
constraints;

• Or Bi,j−1 was put on stack Sk−1, then it was at the lth position of the stack because
the stack is balanced. In which case, there are exactly l−1 (resp. |Sk|−l) operations
on stack Sk−1 (resp. Sk) between those two operations, hence a total time of (|Sk|−
1) · b. Hence, we need an idle time at the beginning of the execution of Sk of length
max(0, a − (|Sk| − 1) · b), and an execution time for Sk of C(Sk) is enough for its
successful execution.

• Finally, with the round robin property, Bi,j−1 could be scheduled on stack Sk′

where k′ < k − 1. In this case the time constraint is also respected because Sk−1

takes by definition more than a units of time.

32 Nicolas Vidal

II. Scheduling bandwidth accesses

Hence, the result, we have shown that an execution time equal to the cost for each
task was enough to satisfy all the time constraints.

Proof of Theorem 2. There exists an optimal schedule Sopt to UNIFORM, such that (i)
C

Sopt
max ≥ C(Sopt) (Prop. 1); (ii) C(Sopt) ≥ C(SHRr) (Lemma 1 and Lemma 3). Finally, we

have seen (Prop. 2) that C(SHRr) = CSHRr
max , proving that HIERARCHICAL ROUND-ROBIN

is optimal.

II.C Approximation algorithms for MS-HPC-IO

We have seen in Section II.B that MS-HPC-IO was in general intractable. A natural
question to this is whether there exist efficient approximation algorithms. In this part,
we show some results on list-scheduling algorithms, then discuss a specific framework
of algorithms, periodic algorithms.

Definition 7 (Approximation algorithm). For a maximization (resp. minimization)
problem P , we say that an algorithm A is a λ-approximation algorithm, if for any in-
stance I ∈ P , A(I) ≤ λAOPT(I) (resp. A(I) ≥ λAOPT(I)) (where AOPT is an optimal
algorithm for P).

II.C.1 List Scheduling algorithms

We start by considering list scheduling strategies (also called greedy) which are often con-
sidered the most natural algorithms: at all time, either the machine B is busy or no work
of type B is available. When the machine becomes idle and some multiple operations
are available, the machine sorts them (and schedule them) following a priority order.

Theorem 3. Any list-scheduling algorithm is a 2-approximation for MS-HPC-IO and this ratio
is tight.

Proof. First, we show that any list-scheduling algorithm is at best a factor two of the
optimal for MS-HPC-IO.

We create the instance Iε: J1 = ((A1,1 = 0, B1,1 = 1)), J2 = ((A2,1 = ε, B2,1 = ε)·(A2,2 =
1, B2,2 = 0)). The makespan of any list-scheduling algorithm is: 2 + ε. Indeed, at t = 0,
a list-scheduling algorithm has to schedule B1,1 because it is the only operation ready.
Then, once it is done, it can schedule B2,1, which will be followed by the execution of
A2,2 and B2,2.

On the other hand, an optimal schedule waits for ε units of time so it can schedule
B2,1 first. Then, it schedules B1,1 while A2,1 executes. The total execution time is 1 + 2ε.
Hence, the approximation ratio is at least:

λ = sup
ε>0

2 + ε

1 + 2ε
= 2

Data scheduling at higher Scale 33

II.C. Approximation algorithms for MS-HPC-IO

We now show that any list-heuristic algorithm is at most a 2-approximation. Given
an instance of the problem, let CList

max be the makespan of a list-scheduling algorithm and
COPT

max be the makespan of an optimal algorithm.
Necessarily, COPT

max ≥ maxi(
∑

j ai,j + bi,j) which is the minimal time needed for the
longest application Ji. We focus on the occupation of platform B. CList

max =
∑

i

∑
j bi,j +

tidle, where tidle is the time where platform B is waiting for work. Let Bi0,ni0
be the last

operation scheduled on B. Then, necessarily, tidle ≤
∑ni0

j=1 ai,j .
Hence, we have:

CList
max =

∑
i

∑
j

bi,j + tidle ≤ COPT
max +

ni0∑
j=1

ai,j ≤ 2COPT
max

II.C.2 Periodic algorithms

In this part, we focus on periodic applications as defined in Section II.A. These appli-
cations are very frequent in our target framework, High-Performance Computing (the
most common example is that of applications that store their checkpoint at regular in-
tervals for resilience purpose [19]). To tackle them, we study a specific sort of algo-
rithms: Periodic algorithms. Indeed it has been shown that those algorithms have many
efficient property such as a low memory and compute overhead with excellent perfor-
mance when the number of operations per jobs is very high [9]. We are interested here
in giving some theoretical results that motivates these recent results.

We start by showing that in some context, those algorithms are efficient approxima-
tions for the MS-HPC-IO problem.

We define formally a periodic algorithm:

Definition 8 (Periodic Algorithm). Given a periodic instance J = ((ai, bi)
ki·n).

A periodic algorithm P constructs a period which is a schedule of J = ((ai, bi)
ki): then

returns a schedule built by n periodic repetition of the period.

Periodic algorithms for MS-HPC-IO We start by considering periodic jobs whose ni

are all equal. In this case HIERARCHICAL ROUND-ROBIN is a periodic algorithm.

Theorem 4. HIERARCHICAL ROUND-ROBIN is a 1 + 1/n-approximation algorithm for MS-
HPC-IO where all jobs are periodic with the same number of periods (there exists n, such that
∀i, Ji = ((Ai, Bi)

n)), and the bound is tight.

Proof. First, we discuss the way of ordering tasks within a period and then discuss the
performance of such scheduling algorithms.

• In the following, we call "idle time" of a schedule S, the time ti(S) = MSS − Σ
i
nbi

34 Nicolas Vidal

II. Scheduling bandwidth accesses

• In PERIODIC, all jobs have only one task in each period. We can define the order
≺: i ≺ j if and only if bi appears before bj in the period.

The overall idle time of the periodic schedule is:

ti(Periodic) = (n− 1).max
i

(
ai − Σ

j ̸=i
bj

)
+max

k

(
ak − Σ

k≺j
bj

)
The order within a period does not change the overall idle time, therefore we can

sort tasks by non-increasing A-task length in a period with gives:

ti(Periodic) ≤ (n− 1).max
i

(
ai − Σ

j ̸=i
bj

)
+max

k
(ak)

Given an optimal schedule Sopt, the idle time is:

ti(Sopt)max
i

(
nai − nΣ

j ̸=i
bj + Σ

j≺i
bj

)
≥ n.

(
max

k

(
ak − Σ

j ̸=k
bj

))
where i is the last task running on A and i1 is its first iteration. Therefore, using

straightforward bounds, the difference between these periodic and opt is at most:

n.max
i

(ai) − n

(
max

k

(
ak − Σ

j ̸=k
bj

))
≤ n.max

i
(ai) The optimal makespan is at least

n.max
i

(ai + bi)

Remark 1. One can notice that HIERARCHICAL ROUND-ROBIN is asymptotically optimal
for MS-HPC-IO when all jobs are periodic with the same number of periods. In addition, one
can slightly improve the result by sorting the jobs by decreasing values of ai.

II.D Experimental evaluation

In this section we present the experimental evaluation of the proposed solutions. To
evaluate them we have designed a simulator that implements the model described in
section II.A i.e a virtual platform with two machine types, with no competition on re-
source A and competitive, exclusive accesses on machine B.

II.D.1 Heuristics

For the purpose of evaluation, we compared several heuristics, list-scheduling heuristic
as well as very simple periodic algorithms. These heuristics use different priority order
to choose which task to execute next. One of them is Johnson’s priority order

Definition 9 (Johnson’s order). Given a set of couples (ai, bi), divide the values into two
disjoint groups G1 and G2 , where G1 contains all couples (ai, bi) with ai ⩽ bi, and G2

contains all couples (aj, bj) with aj > bj . Order the couples in a sequence such that

Data scheduling at higher Scale 35

II.D. Experimental evaluation

the first part consists of the values in G1 , sorted in nondecreasing order of ai, and the
second part consists of the values in G2 , sorted in non-increasing order of bj .

The reason why Johnson’s order is considered is because if jobs are Ji = (ai, bi)
1, it

is known that the schedule using Johnson order minimizes the completion time of the
flowshop. [76].

List scheduling In list scheduling policy, as soon as I/O is free, we execute the most
critical, available application. We used different orders to define the criticality of a given
application:

• FIFO: the applications I/O are executed in the order of their request.

• Johnson: the application I/Os are executed following Johnson’s order (see defini-
tion 9)

• Most Remain: When scheduling an I/O, pick in priority the application with the
most remaining work to do.

Periodic We also use a simple variation of periodic heuristics defined in II.C.2. Given
an instance Ji = (ai, bi)

ni , each period of the periodic algorithm contains exactly one task
for each job until one of the job is completed. The jobs are sorted following the three
orders used for list-scheduling heuristics (FIFO, Johnson, Most Remain). The comple-
tion of a job or the release of a new one does not change the relative order of the other.
Hence, the period holds after such events (with the exception of the completed job who
is not running anymore).

Best effort With the best effort strategy, there is no schedule of I/O accesses. Instead
of waiting their turn to perform I/O operations, concurrent applications accessing the
storage system share equally the bandwidth without additional loss. If k applications
are performing I/O operations, an application with b amount of I/O will have, after
t units of time, b − t

k
remaining amount of I/O. The best effort strategy models what

happens in real systems when there is no congestion control or I/O scheduling at the
level of the applications.

II.D.2 Scenarios/Use-case and instantiation

Applications are modeled by their computation amount, I/O durations, and their num-
ber of periods. An input file describes an instance of the problem as a set of m applica-
tions and is generated according to table II.1. We have two different cases that represent
realistic settings.

The UNIFORM case is used for a machine learning multi-parameter training and cov-
ers the results of Section II.B.2.

36 Nicolas Vidal

II. Scheduling bandwidth accesses

cases m ai bi ni ri #instances
General U(2,15) U(1,20) U(0.1,1)ai U(5,150) 0 1000
UNIFORM U(2,15) U(1,20) U(0.1,1)ai U(100,200) 0 1000

Table II.1: Parameters used for input generation (u(a, b) stands for drawing uniformly
in [a, b])

II.D.3 Results

In Figure II.4, we present the makespan for the general case. The presented graph is the
smoothed conditional means on a set of 1000 instances of each case as a function of the
weight of I/O, W ,that accounts for a normalize way of measuring the amount of I/O:

W =
∑
i

∑
j bi,j∑

j ai,j + bi,j

In this figure, we see that, when the weight of I/O is small, the best effort strat-
egy provides the fastest makespan. This is due to the fact that when there are few I/O,
scheduling them is not very useful. However, as soon as the amount if I/O increases, the
scheduling strategies improves and outperform the best effort one. Moreover, we see
two groups of curves. Periodic schedules and list-scheduling ones. The periodic strate-
gies, FIFO Periodic, Johnson Periodic and Most Remain Periodic are superposed. If we com-
pare these two sets of strategies, we see that when the amount of I/O is small relative to
the total of work, list scheduling perform better than periodic strategies and when the
weight of I/O increases the periodic strategies are better than the list-scheduling ones.
Indeed, when there is few I/O the periodic schedule can force an application to wait
for their turn while when there is a high amount of I/O, the short view of the prob-
lem by list scheduling algorithm hinder their capacity to handle I/O burst. Whereas all
strategies have overall the same makespan evolution, the normalization with best effort
(Figure II.4a) accentuate a variation in performance around W=3.This can be explained
as follows: after a certain threshold in I/O weight, bandwidth is always busy, therefore
all applications have to wait for I/O accesses which mitigate a little the gain. Whereas
for low weights, our algorithms reduce the I/O contention, and for high I/O weights
it provides a better repartition on I/O operations compared to the best effort strategy.
If we look at the absolute tendencies (see Figure II.4b), we observe that the difference
bewteen best-effort and the other strategies is globally increasing with the weight of
I/O. Some fluctutations for the relative charts are also due to the impact of the input
workload.

Remark 2. In this part, we focus on the scheduling of I/O operations. Therefore the way of
measuring the I/O weight of applications takes only applications phases into account and is
agnostic to the platform state. In future chapters, as we will introduce platform constraints to
our reflection, we will prefer a refined definition (see Equation (III.5)).

Data scheduling at higher Scale 37

II.D. Experimental evaluation

0.95

1.00

1.05

0 2 4
Weight io

Re
la

tiv
e

m
ak

es
pa

n
to

 B
es

t E
ffo

rt

Algorithms
FIFO List Sched
FIFO Periodic
Johnson List Scheduling
Johnson Periodic
Most Remain List Sched
Most Remain Periodic

No noise

(a) Relative performance to the Best effort strategy

2500

5000

7500

10000

0 2 4
Weight io

M
ak

es
pa

n

Algorithms
Best effort
FIFO List Sched
FIFO Periodic
Johnson List Scheduling
Johnson Periodic
Most Remain List Sched
Most Remain Periodic

No noise

(b) Absolute performance

Figure II.4: Policies performance comparison on generic inputs for the makespan

Uncertainty and noise In our implementation, list scheduling and periodic policies
assume that the I/O and computation duration are known in advance. However, in
practice these values can never be known with a complete certainty [78]. To model
this uncertainty we have added noise to I/O and computation duration. This means
that each computation or the I/O phase can be subject to a variation in the range of
the noise value around the expected, periodical amount. This variation is determined
independently for each phase. It is generated based on a seed that is included with the
application specification in order to be reproducible. Indeed, we want this variation to
be the same without any concern of the application order. It is unclear what is the right
modeling for this variability. In the literature, some authors [78] propose a statistical
modeling via a large array of distributions (normal, gamma, lognormal etc). Here we
choose to model them with uniform distribution: we expect such noise model to be
worse for our policies than a distribution with concentrated density around the mean
and hence would lead to an lower bound in terms of performance.

In Figure II.5, we present the results with respectively 20% and 50% of noise using
the same inputs as for the one in Figure II.4.

We see that adding noise slightly degrades the performance when the amount of
I/O is small compared to the total amount of work. However, when the weight of I/O
increases we observe relatively similar performance compared to the case without noise.
This means that our strategies are robust to the uncertainty of the duration especially
when the amount of I/O is large.

Machine Learning Use-Case We describe here a use case where a set of applications
is launched at the same time and perform periodic I/O. The goal is to train, in parallel,
several deep-learning networks (DLNs) on the same dataset. It works as follows. A set
of m nodes of a parallel machine is reserved. m DLNs are generated and trained sepa-
rately on each node. The goal is to find the best network among the m ones. Therefore,
they are trained on the same dataset. Each DLN access a subpart of the dataset from

38 Nicolas Vidal

II. Scheduling bandwidth accesses

0.95

1.00

1.05

0 2 4
Weight io

R
e

la
tiv

e
 m

a
k
e

s
p

a
n

 t
o

 B
e

s
t

E
ff

o
rt

Algorithms
FIFO List S.
FIFO Per.
Johnson List S.
Johnson Per.
Most Remain List S.
Most Remain Per.

20% of noise

0.96

1.00

1.04

1.08

0 2 4
Weight io

R
e

la
tiv

e
 m

a
k
e

s
p

a
n

 t
o

 B
e

s
t

E
ff

o
rt

Algorithms
FIFO List S.
FIFO Per.
Johnson List S.
Johnson Per.
Most Remain List S.
Most Remain Per.

50% of noise

Figure II.5: Policies performance comparison on generic inputs for the makespan rela-
tive to the Best effort strategy with uniform noise on the computation or I/O duration

the storage and train itself on this subpart using supervised learning (e.g. with a gradi-
ent descent). Then, if the network has not converged it fetches another subpart of the
dataset and iterate the learning part. As, for a given DLN, the subpart is of the same
size, the IO time (without congestion) and learning time is constant across iterations.
However, as each DLN is different (e.g. in terms of topology and meta parameters) the
number of iterations is different across DLN. Therefore, according to our nomenclature
this use-case fits the UNIFORM case: Ji = (A,B)ni , i ∈ [1,m].

In Figure II.6, we compare best effort and the FIFO list scheduling strategies which
are both non-clairvoyant (they do not know in advance the number of periods) against
the HIERARCHICAL ROUND-ROBIN for which the closed form of the makespan is given
as follows. We are in the UNIFORM case: the set of jobs is Ji = (0, (a, b)ni . We denote by
n = maxi ni, l = |{Ji0 |ni0 = n}| (the number of jobs of maximum ni), q =

(
∑

i ni)−l

n−1
and

r = ((
∑

i ni) − l) mod (n − 1). Then, the makespan of HIERARCHICAL ROUND-ROBIN
CHRr

max is:

CHRr
max = a + l · b + (n− 1− r) ·max(a + b, qb) + r ·max(a + b, (q + 1)b)

According to Theorem 2, HIERARCHICAL ROUND-ROBIN is asymptotically optimal.
Moreover, the FIFO list-scheduling is a 2-approximation algorithm (Theorem 3). For this
use case, we see that despite the fact that the FIFO list-scheduling is non-clairvoyant
it provides a makespan very close to HIERARCHICAL ROUND-ROBIN (less than 10%
slower). Concerning the best effort strategy, we see that it performs worse than FIFO
list-scheduling and up to 60% slower than HIERARCHICAL ROUND-ROBIN. Indeed, in
this case, the access of the I/O is synchronized and the best-effort strategy maintain
this synchronization and hence the I/O contention during the whole execution of the
instance.

To test the case where we can have desynchronization due to uncertainty in compu-
tation or I/O execution, we have added 20% of uniform noise on these two costs. The
results are presented on Figure II.6. In this case, we see that the noise has almost no im-

Data scheduling at higher Scale 39

II.E. Summary and perspectives

pact on the FIFO list-scheduling strategy. For the best effort strategy, we see that it has a
better performance than without noise but it is still worse than the FIFO list-scheduling.
This shows that the best effort strategy does not behave well in case of high congestion
of the network.

II.E Summary and perspectives

In this chapter, we have studied the problem of scheduling I/O access for applica-
tions that alternate computation and I/O. We have formally described the problem
as scheduling bi-colored chains. Then, we have studied theoretical results. Despite
the fact that the general case is NP-complete, we have provided an optimal algorithm
for the UNIFORM case. Moreover, we have studied two classes of strategies: periodic
and list scheduling ones. We have shown that any list-scheduling algorithm is a 2-
approximation and that HIERARCHICAL ROUND-ROBIN is asymptotically optimal for
the periodic case. We have also studied different order for instantiating several heuris-
tics (both periodic and list-scheduling ones).

We have experimentally tested, through simulations, the proposed approaches on
realistic cases. We have shown that periodic approaches are the best ones when the rel-
ative amount of I/O is high and that the best effort strategy is the worst one. Moreover,
we have studied the case where the input is not known with complete certainty but
subject to noise. In this case the proposed approaches are shown to be robust. Last, we
have studied the case of a distributed learning phase for deep-learning. Results show
that the FIFO list-scheduling strategy is very close to the optimal one (despite being
non-clairvoyant) and much better than the best effort.

The most important contribution of this chapter is the introduction of a model for
HPC applications based on the simple observation of their two phase behavior. Con-
vincing results have been proposed for periodical applications.

We sketched tracks to deal with non-periodic applications as well but it makes the
problem significantly more complex, not theoretically but in practice, to design solu-
tions. However, we showed that this model stays valid when there is some noise tam-
pering with the periodicity. This chapter serves as a preamble for the following. The
model will be re-used, adapted and enriched throughout this manuscript. The next step,
described in Chapter III, is to incorporate machine consideration in our models. Taking
computational resource constraints into account, we address the problem of I/O-aware
application mapping onto the platform in order to tackle the contention upstream.

40 Nicolas Vidal

II. Scheduling bandwidth accesses

1.0

1.2

1.4

1.6

1 2 3 4
Weight io

R
e

la
tiv

e
 m

a
k
e

s
p

a
n

 t
o

 R
o

u
n

d
 R

o
b

in

Algorithms
Best Effort
FIFO List S.

No noise

1.00

1.05

1.10

1.15

1.20

1 2 3 4
Weight io

R
e

la
tiv

e
 m

a
k
e

s
p

a
n

 t
o

 R
o

u
n

d
 R

o
b

in

Algorithms
Best Effort
FIFO List S.

20% of noise

Figure II.6: Policies performance comparison of the ML use case for the makespan rela-
tive to HIERARCHICAL ROUND-ROBIN (top no noise, bottom 20% of uniform noise).

Data scheduling at higher Scale 41

II.E. Summary and perspectives

42 Nicolas Vidal

Chapter III

Mapping with pack scheduling -
Resource control

In the previous chapter, we studied scheduling algorithms to avoid I/O contention.
Indeed, I/O accesses are exclusive and as long as one operation is using the I/O node,
additional requests get delayed. However, we assume that application were mapped
beforehand. In this chapter, we include the application mapping in our study in order
to prevent contention upstream. However, it makes sense to discuss strategies only if
the application behavior is stable. That is to say, applications relative performance must
not depend on minor parameter changes. To this extent, we resume previous work in
order to define under what condition to perform experiments.

In the end, we propose a new solution aimed at reducing I/O interference via glob-
ally coordinated I/O access operation by studying two problems. The mapping prob-
lem consists in selecting the set of applications that are in competition to access sequen-
tially the I/O nodes. The scheduling problem consists then, given I/O requests on the
same resource, in determining the order of these accesses to minimize the I/O time.
The main contributions of this chapter are a mathematical model and a packing algo-
rithm to optimize the mapping of applications compute nodes to I/O nodes as well as
a thorough experimental study of several I/O scheduling policies to order sequences
of I/O operations that must be executed through each I/O node. Then we designed
and validated a simulator to perform the evaluation at a larger scale. We then used this
simulator to perform additional evaluations of the impact of the mapping strategy. The
evaluation results with a single I/O node, show that our cross-layer approach greatly
reduces the stretch of the machine while slightly degrading the makespan compared to
the standard First-Fit algorithm. Meanwhile, with several partitions (and I/O nodes),
our bandwidth-aware strategy performs better for both metrics.

43

III.A. Architecture overview

Resource
manager
Resource
manager

Application 1

CLARISSE
proxy

SchedulerScheduler

CLARISSECLARISSE

PoliciesPolicies

Control planeControl plane

Data planeData plane

Application 3

CLARISSE
proxy

Application 2

CLARISSE
proxy

Compute nodes
partition1

Management
nodes

New executing
application

MappingMapping

I/O schedulingI/O scheduling

I/O node 2I/O node 2I/O node 1I/O node 1

Compute nodes
partition 2

(1) (1) (1)

(2) (2)

(5)

(6)

(4)

I/O networkI/O network

RAID
server
RAID
server

RAID
server
RAID
server

(3) (3)

Figure III.1: Framework overview.

III.A Architecture overview

Figure III.1 shows the architecture of the proposed framework. The resources if the con-
sidered parallel machine are divided into management nodes, that execute the software
management tools, and compute nodes, that execute the applications. In this figure,
three running applications with 4, 2 and 1 processes are illustrated. Using a similar
scheme than in large HPC infrastructures, the compute nodes are divided into parti-
tions (two in the figure). Each partition is associated to one I/O node that is responsible
for managing the application I/O accesses (1) and translating them into requests to the
storage servers (2) that are subsequently sent to the disks (3).

On the management side, the administration tools include a resource manager for
monitoring the system and allocating compute nodes for new applications. The re-
source manager communicates with the scheduler (4), responsible for determining what
is the next application to be executed and on which resources. The third component is
controlling the I/O accesses to the bandwidth, effectively coordinating the I/O flow and
enforcing I/O scheduling policies. In addition, the control plane includes a communi-
cation line with the scheduler (arrow 6). The policy layer includes mapping techniques
that guide the scheduler to allocate the new executing application in certain partitions,
with the aim of reducing the number of conflicts accessing the I/O node.

44 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

This model can be implemented with a middleware. The arcos team [1] based in Uni-
versity Carlos III of Madrid implemented CLARISSE [39], a middleware for enhancing
I/O flow coordination and control in the HPC systems. For this study, we collaborated
with them, implementing I/O scheduling policies in the adequate CLARISSE layer and
using their code as a framework for experimental study.

CLARISSE decouples the policy, control, and data layers of the I/O stack software in
order to simplify the task of globally coordinating the parallel I/O on large-scale HPC
platforms. At the time we did this study, it incorporated a public-subscribe protocol in
the control plane for coordinating the I/O, and several I/O scheduling policies in the
policy layer. Each running application included a CLARISSE proxy that wrapped the
application I/O calls and communicates with CLARISSE via the control plane (arrow
5). By means of this channel, the I/O scheduling policies can impose a multi-criteria
I/O access order to the running application based on different performance metrics.

As an illustrative example, let’s assume that applications 1 and 2 are initially run-
ning in the system, and application 1 is more I/O intensive than application 2. Then,
application 3, that is also I/O intensive, is ready to be executed. In order to balance the
accesses to both I/O nodes, the mapping policy determines that is better to place appli-
cation 3 in partition 2, avoiding risk of contention in the I/O node related to application
1. In a second step, when all the applications are being executed, application 2 and 3
compete for the I/O resources in the same partition. Note that conflicts in the access
to the second I/O node may arise. Using the new CLARISSE’s I/O scheduling policy
introduced in this paper, the I/O accesses of both applications are coordinated with the
aim of reducing the number of conflicts.

III.B Formal definition

In this section we present a mathematical model of the problem considered. The ma-
chine model behavior has been verified experimentally to be consistent with the behav-
ior of Intrepid and Mira, supercomputers at Argonne [29], as well as with a supercom-
puter at Mellanox [9].

III.B.1 Machine Model

We consider a parallel platform structured as follows: R I/O nodes (nio
1 , . . . , n

io
R) are

available to perform I/O operations from the compute nodes to the parallel file system.
Given j ∈ {1, . . . , R}, each I/O node nio

j has a bandwidth bj for these operations, which
is shared among Pj compute nodes (for a total of

∑R
j=1 Pj compute nodes).

In this work we assume that the I/O bandwidth is homogeneous, that is, ∀j, bj = b,
as well as the number of compute nodes associated to each I/O node (∀j, Pj = P). We
represent this architecture model on Figure III.2.

Data scheduling at higher Scale 45

III.B. Formal definition

Rack 1 Rack 2 Rack 3

Parallel File System

nio
1

b Gb/s

nio
2 nio

3

Compute
Nodes

J1

J2

J3

J4

Figure III.2: Schematic of the architecture. Jobs J1, J2, J3 and J4 compete for the band-
width available on nio

2 .

III.B.2 Applications

We consider a batch of scientific applications that need to run simultaneously onto the
parallel platform. As in the previous chapter, applications consists of a series of consec-
utive non-overlapping phases: (i) a compute phase (executed on the compute nodes); (ii)
an I/O phase (a transfer of a certain volume of I/O using the available I/O bandwidth)
which can be either reads or writes.

Formally, we have a set of n jobs {J1, . . . , Jn}. Each job Ji requests Qi compute nodes
for its execution. Ji consists of ni successive, blocking and non-overlapping operations:
(i) Ai,j (a compute operation that lasts for a time ai,j); Bi,j (an I/O operation that consists
in transferring a volume bi,j of data). Therefore, if the bandwidth available to Ji to
transfer its I/O to the PFS is equal to b, the time Ti needed for the total execution of Ji
is:

Ti(b) =
∑
j≤ni

ai,j +
bi,j
b
. (III.1)

However, in general the I/O bandwidth is shared amongst several applications and it
may incur delays to the execution of Ji.

46 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

III.B.3 Optimization problem

In this work, we consider that each job must be scheduled on the compute nodes asso-
ciated to a single I/O node (contiguity), but that the I/O nodes can be shared amongst
several applications. In addition, following the motivational example on I/O inter-
ference presented in section I.A.4, we do not allow simultaneous bandwidth sharing
amongst applications (i.e. on a given I/O node, only one application is performing I/O
at the same time), and we do not allow preemption of I/O (once an application has
started to perform I/O, it has to finish its transfer).

A schedule is the solution of two allocation problems:

• The mapping problem, which consists in choosing for each application the alloca-
tion of compute nodes (as depicted in Figure III.2);

• The scheduling problem, which, for a given I/O node, consists in scheduling the
sequences of I/O operations that must be executed through this node (hence of
the applications mapped on the compute nodes associated to this I/O node).

We define several objectives. Given a schedule, each job Ji is released at time ri and
finishes its execution at time Ci.

The stretch ρi of Ji is the ratio between the minimal execution time and the actual
execution time:

ρi =

∑
j≤ni

ai,j +
bi,j
b

Ci − ri
(III.2)

(where b is the maximum available I/O bandwidth). A stretch of 1 means that the
application is not impacted by the other applications running on the system. A stretch
of 2 means that due to I/O contention, the application takes twice as long to execute as
it would normally. Typically the stretch is an objective more user oriented.

Recall that the makespan Cmax of a schedule is given as the end of the last execution:

Cmax = max
i

Ci (II.4)

Typically, the makespan is an objective more platform oriented: with a fixed amount of
work, the work over the makespan is the platform utilization.

Finally, our general optimization problem is the following. Given a set of jobs
J1, . . . , Jn and a platform with R I/O nodes, each with a bandwidth b to the PFS,
and connected to P compute nodes. Find a schedule that minimizes either the total
makespan, or that minimizes the maximum stretch (maxi ρi). We call the general setup
of these problems HPC-IO, and, depending on the function to optimize: MS-HPC-IO or
ρ-HPC-IO.

When the number of I/O nodes is equal to 1, this reduces to finding the right allo-
cation of I/O for the different applications. We call this subproblem IO-SCHED. Given
an allocation to a solution of HPC-IO, one can compute then independently the I/O
scheduling solution using an algorithm to IO-SCHED.

Data scheduling at higher Scale 47

III.C. Pack scheduling to solve HPC-IO

Note that both the HPC-IO problem and the IO-SCHED problems are NP-hard:
HPC-IO easily reduces to the multi-processor scheduling problem; IO-SCHED has been
shown to be NP-hard by Gainaru et al. [29].

III.C Pack scheduling to solve HPC-IO

Here, we focus on a special type of solutions to HPC-IO, specifically Pack scheduling
algorithms. In Pack scheduling [10], the jobs are partitioned into series of packs, which
are then executed consecutively. Tasks within each pack are scheduled concurrently and
a pack cannot start until all tasks in the previous pack have completed (see Figure III.3).

Pack scheduling has been advocated [28, 61] as it provides an easier and flexible
mean of designing and implementing novel algorithms while providing significant sav-
ings.

In this section we discuss some strategies for IO-SCHED and HPC-IO.

III.C.1 Policies for IO-SCHED with a single pack.

Once packs have been computed, we need to schedule applications within a pack.
Several works have considered the problem IO-SCHED. In general there are two ap-
proaches list-scheduling heuristics [29, 84], or more involved pattern-based algorithms
taking into account structural knowledge of the applications (such as their periodic-
ity) [9].

In this work, we focus on list-scheduling based solutions. List scheduling policies
consists in scheduling available I/O operations following a priority order as soon as a
resource is available. They are an interesting way to solve IO-SCHED given the recent
results in the previous chapter:

Theorem 3. Any list-scheduling algorithm is a 2-approximation for MS-HPC-IO and this ratio
is tight.

Specifically, we consider the following natural priority orders that gives 8 different
list-scheduling I/O policies:

1. Lowest ID: the scheduler picks the application with lowest system ID amongst
those which requested I/O.

2. Longest I/O: the scheduler picks the application which performs the longest I/O
phases (resource occupation).

3. Shortest I/O: the scheduler picks the application which performs the shortest I/O
phases (avoid long wait).

4. Shortest remaining: the scheduler picks the application which is expected to have
the least remaining work to do (free the machine ASAP).

48 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

J1

J2
J3

Pack 1

J4

J5

J6
Pack 2

J7

J8

Pack 3

J9

J10

Pack 4

J11

Pack 5

nio
1

nio
2

time

Compute
Nodes

(a) The mapping of 11 applications into packs for two I/O nodes

J4 a4,2 a4,3

J5 a5,1 a5,2 a5,3

J6 a6,1 a6,2 a6,3

Time0
0

b
b5,1b6,1b4,1 b5,2 b4,2b6,2 b5,3 b6,3 b4,2

(b) The scheduling of I/O operations (bottom) within Pack 2. Computations are allocated on dedicated
compute nodes and can start as soon as the I/O is transfered, but I/O operation share the available band-
width b and can delay applications.

Figure III.3: A solution to HPC-IO of eleven applications on a machine with two I/O
nodes.

5. Longest remaining: the scheduler picks the application which is expected to have
the most remaining work to do (platform occupation).

6. FIFO: Applications are sorted by increasing I/O request time.

7. Bandwidth oriented: applications with the lowest ratio between I/O time and
execution are advantaged (fairness).

Data scheduling at higher Scale 49

III.D. Evaluation

8. Stretch oriented: applications with the worse stretch are scheduled first (fairness).

III.C.2 Algorithms for the mapping problem

In this section we provide an algorithm for the mapping problem that takes into account
both the need for bandwidth and processor sharing between applications allocated to
an I/O node.

The algorithm works in two steps: a first step partition the jobs into packs, while the
second step schedules the pack on the different I/O nodes. The intuition of the parti-
tioning algorithm is the following: we sort them by decreasing no contention execution
time (as given by Equation III.1). Then we create packs following a Best-Fit procedure,
that is a procedure that schedules greedily the next application in the first pack where
it would fit with respect to an I/O constraint and a processor constraint, and otherwise
that creates a new pack.

Precisely, to account this constraints, given a pack of jobs Pack, we define:

• P Pack =
∑

i∈PackQi, the number of processors used by the pack;

• T Pack = maxi∈Pack
∑

j≤ni
ai,j +

bi,j
b

, the minimal length of the pack;

• LPack = 1
b·T Pack

∑
i∈Pack

∑
j≤ni

bi,j , the average I/O occupation of the pack.

• S the I/O sensibility for pack creation. It is a parameter of the algorithm, by default
S = 1.

The processor constraint to be respected is: P Pack ≤ P . The I/O constraint is LPack ≤
S. Intuitively, this constraint tries to ensure that there is enough I/O bandwidth to
perform all I/O operations with minimal delay.

We formalize this in Algorithm 2.

III.D Evaluation

In this Section we present experimental evaluations of both I/O scheduling and node
mapping algorithms.

The evaluation is performed in several steps: in Section III.D.1 we study the im-
pact of various I/O scheduling policies on IO-SCHED when the applications are already
mapped on the machine. Then we study the impact of the mapping algorithm in Sec-
tion III.D.2 on HPC-IO.

All experiments have been performed on the Tucan cluster consisting of compute
nodes with Intel(R) Xeon(R) E7 with 12 cores and 128GB of RAM, interconnected with
a 10 Gbps Ethernet.

50 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

Algorithm 2 Pack-partitioning algorithm.

1: procedure MAKE-PACK(Ji = (
∏

j≤ni
Ai,j, Bi,j)) ▷ Assume the jobs are

sorted in decreasing order of Ti(B) =
∑

j≤ni
ai,j +

bi,j
B
;

2: Let SP be a set of packs sorted by decreasing value of P Pack (empty initially);
3: for i = 1 to n do
4: Find the first Pack in SP such that:∑

j≤ni

bi,j ≤ (S − LPack) · bT Pack (III.3)

Qi ≤ P − P Pack (III.4)
5: Fit Ji in this pack;
6: If there is no such pack, create an empty pack
7: end for
8: return SP

9: end procedure

III.D.1 Impact of list-scheduling policies on IO-SCHED on a real ma-
chine

III.D.1.a Experimental setup

The workload is composed of five synthetic applications based on Jacobi decomposition
and having different I/O, computational needs and number of iterations. Each applica-
tion is configured to perform the CPU and I/O phases with a particular intensity level,
that produces a different duration of the phases. The total execution load1 is the same
for all the applications. This means that if each of them would be executed exclusively
their duration would be similar. All these applications have been executed in the pro-
posed framework depicted in Figure III.1. This means that the application I/O phases
are intercepted and coordinated by CLARISSE according to the I/O scheduling policy.
The workload depicted in Table III.1.

III.D.1.b Result analysis and discussion

To see if we attain a steady state in terms of stretch and makespan we have run the
workload described in table III.1 while increasing its number of iterations batches2. In
Figure III.4, we plot the stretch of the different strategies when varying the number of
iteration batches. We see that after some iterations the performance converges towards
a steady state. In general, applications 3 and 4 are the ones who have the largest stretch.

1Number of iterations × (computational Intensity + I/O Duration)
2An iteration batch is a multiplicative factor that increases of reduces the application iteration number.

For instance, a value of 2, makes the application run the double number of iterations (for instance, 500 for
application 1).

Data scheduling at higher Scale 51

III.D. Evaluation

Application id Matrix size CPU duration (s) I/O duration (s) Iterations
1 5000 32 10 250
2 5000 16 5 500
3 5000 8 2.5 1000
4 5000 8 2.5 1000
5 5000 16 5 500

Table III.1: Workload description for the experiment on the Tucan machine (for Fig-
ure III.4 to III.7).

This is explained by the fact that these applications have the lowest computational in-
tensity and hence are more sensible to I/O delay. We can also notice that some policies
have a large discrepancy in terms of stretch (for instance "longest I/O" or the "shortest
remaining"). They exhibit applications with a stretch close to one (i.e. not delayed) and
others with a very high stretch (up to 1.8). This is typical of a starvation situation where
some applications are highly favored while others are able to perform I/O only when
no other one is requesting access.

●

●

●
● ●

●
● ●

●

●
● ● ●

● ● ●

● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ●
●

● ● ●
●

●

● ● ● ●
● ● ●

● ● ●
●

● ●
●

●

●

●
● ● ● ● ● ●

Lowest ID Shortest IO Shortest remaining Stretch oriented

Bandwidth oriented FIFO Longest IO Longest remaining

0.5 1 2 4 8 16 32 64 0.5 1 2 4 8 16 32 64 0.5 1 2 4 8 16 32 64 0.5 1 2 4 8 16 32 64

1.00

1.25

1.50

1.75

1.00

1.25

1.50

1.75

Iteration batches

S
tr

et
ch

Applications ● App1 App2 App3 App4 App5

Figure III.4: Stretch of the different policies when varying the number of iteration
batches.

In Figure III.5, we plot, for all policies, the maximum stretch of all applications.
The maximum stretch measures the worst case for all the applications. We see that
the "longest I/O" or "shortest remaining" policies behave the worst as they tend to ex-
hibit starvation behavior. On the other side, several heuristics have a better behavior
than the FIFO policy, which is the basic policy for this problem. In particular heuristics
favoring applications that have a high stretch or the lowest ratio I/O vs. execution time
behave much better than FIFO. Indeed, these two policies tend to greedily improve the

52 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

●

●

● ●
●

●

●
●

1.4

1.6

1.8

0.5 1 2 4 8 16 32 64
Iteration batches

M
ax

 S
tr

et
ch

Policy
● Bandwidth

FIFO
Longest IO
Longest rem.

Lowest ID
Shortest IO

Shortest rem.
Stretch

Figure III.5: Max Stretch of the different policies when varying the number of iteration
batches.

.

fairness among the different applications.

In Figure III.6, we plot the makespan of all the policies compared to the default
policy (FIFO). Surprisingly, we see that heuristics favoring the maximum stretch are also
the ones that exhibit good performance in terms of makespan. Indeed, optimizing the
maximum stretch requires to optimize resource utilization in order to avoid applications
to be stalled. In addition, optimizing resource usage of each of them also optimize the
time they spent in the system.

At the end, we see that the two policies that tend to sacrifice a resource in the short
term behave poorly. Indeed, the "longest I/O" policy favors I/O and "Shortest remain-
ing" favors computation: for all these cases such unbalanced policies lead to very bad
fairness among applications. On the other hand, balanced policies that take into ac-
count the I/O and the fairness offer very good results compared to the FIFO policy.
This is especially the case for the "Stretch oriented", the "Shortest I/O" and the "longest
remaining” strategies.

Data scheduling at higher Scale 53

III.D. Evaluation

●

●

●
● ●

●

●
●

1.0

1.1

1.2

0.5 1 2 4 8 16 32 64
Iteration batches

R
el

. M
ak

es
pa

n
to

 F
IF

O

Policy
● Bandwidth

FIFO
Longest IO
Longest rem.

Lowest ID
Shortest IO

Shortest rem.
Stretch

Figure III.6: Relative Makespan to FIFO of the different policies when varying the num-
ber of iteration batches.

III.D.2 Analysis of solutions for HPC-IO with emulation

In the previous section, we analyzed several I/O scheduling policies for the IO-SCHED
problem. We now try to solve the more general HPC-IO problem by comparing the
different mapping algorithms presented in Section III.C.2.

First we present the experimental setup (machine simulator and synthetic applica-
tion generation). Then, the analysis takes place in two steps: first we study deeply the
model with a single I/O node, then we extend it on a machine with multiple I/O nodes.
Finally, in this section, we consider a machine with P = 2048 compute nodes per I/O
nodes and one to five I/O nodes. We normalize the I/O bandwidth by setting b = 1.

III.D.2.a Machine emulation

To perform the analysis of this section at a larger scale (both in terms of number of
applications and size of the target machine) we have designed a simulator able to test
larger settings than those presented in Section III.D.1.

The simulator tool is integrated in the execution framework, which means that it
is connected with the application scheduler as well as CLARISSE. Using the workload

54 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

provided by the scheduler, the simulator is able to compute the different CPU and I/O
phases of each application by means of a fixed-increment time progression. In case of
simultaneous I/O accesses, the CLARISSE’s scheduling policies are used to determine
the I/O access order. By means of this scheme, it is possible to simulate a given work-
load in the execution framework reusing the same software logic as the one used in the
actual workload execution.

●

●

●

●

● ●

●

●

●
●

● ● ● ●●

●

●

●
● ●

●

●

●
●

● ● ● ●●
●

●

●
● ●

●

●
● ● ● ● ● ●

1.2

1.4

1.6

1 2 4 8 16 32 64
Iteration batches

S
tr

et
ch

Applications
●●●
●●●

App1 Real
App1 Sim

App2 Real
App2 Sim

App3 Real
App3 Sim

App4 Real
App4 Sim

App5 Real
App5 Sim

Figure III.7: Comparison of Simulated vs real execution (on the Tucan Machine) of the
Longest I/O policy

Simulator validation In order to validate the simulator, we have rerun the experi-
ments presented in Figure III.4. We have compared the results on both cases (simulator
vs. real machine: Tucan). We have observed that for all heuristics the order between ap-
plications, for the stretch and the makespan, is kept. Moreover quantitatively the values
are extremely similar: the largest difference between the simulation and the real execu-
tion, for 64 batches is 15%, with a geometric mean less than 5%. We give the case for the
Longest I/O policy in Figure III.7 as it is a heuristic that displays high discrepancy in
terms of Stretch.

Data scheduling at higher Scale 55

III.D. Evaluation

III.D.2.b Synthetic workload generation

To perform the evaluation at a large scale, we propose a protocol to generate different
and numerous workloads. We based the design on our protocol on two elements:

• The generated workload needed to be representative of I/O behaviors (hence in-
cluding applications with high I/O load as well as applications with low I/O
load).

• Then, we intuited that the impact of the different algorithm was correlated to a
general property of the concurrent applications, namely the average I/O occupation.
As seen in Section III.C.2 (LPack), this property is linked to the schedule as it takes
into account the makespan. For the workload generation, we use a theoretical
upper-bound for the average I/O occupation that assumes that there is no gap
creating by the schedule. Mathematically, this writes as:

α =
P.
∑n

i=1

∑
j≤ni

bi,j/B∑n
i=1 (Qi · Ti(B))

(III.5)

Based on these two preliminary elements, for each value αgen ∈ {0.5, 0.75, 1 . . . 10},
we generate 10 workloads in the following way:

• We pick the proportion β of applications with low I/O load at random on [0, 1]
(0 meaning all applications have high I/O load, 1 meaning they all have low I/O
load).

• We generate the number of applications of each workload uniformly at random in
[25, 100].

Then for each application, for simplicity we assume that they are periodic (i.e. for all
j ≤ ni, bi,j = bi and ai,j = ai), and:

• Their number of iterations ni is chosen uniformly at random between 250 and
1000.

• ai is chosen uniformly at random in [10, 100].

• Applications I/O load (bi/ai, and ultimately bi) is chosen:

1. Following a normal distribution of mean µ1 = 0.1, variance σ1 = 0.1 trun-
cated on the interval [x, y] for applications of low I/O load;

2. Following a normal distribution of mean µ2 = 0.9, variance σ2 = 0.1 trun-
cated on the interval [x, y] for applications of high I/O load.

56 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

• Finally, to compute the number of processors Qi of each application, we use a
distribution in the discrete set {2j}j=0...11 of mean3

Q̄ =
P (βµ1 + (1− β)µ2)

αgen(1 + βµ1 + (1− β)µ2)
.

This protocol ensures that we have a various set of workloads, covering different I/O
load (α). Note that in the rest of the evaluation, for each workload, we use their actual
I/O load as defined by Equation (III.5), and not the value of αgen used for the genera-
tion. The precise code for the generation and execution of the workload is available at
https://gitlab.arcos.inf.uc3m.es:8380/desingh/IOscheduling.git.

III.D.2.c Evaluation with a single I/O node

In this section we study the overall problem HPC-IO and its solutions consisting in (i)
the Make-Pack procedure (Sec. III.C.2) including its sensitivity parameter S; (ii) once
the packs are done, the different I/O policies.

The experiments are done with comparison to a baseline algorithm: First-Fit [10]
for pack creation and FIFO for I/O policy (shown to be the most effective policy in Sec-
tion III.D.1). These two strategies are globally referred to as First-Fit in the following. As
the baseline algorithm, the pack creation does not take into account the I/O operations
of jobs but only their execution time when performed by themselves on the machine.
One can observe that essentially this is the Make-Pack procedure when the sensibility
S =∞.

In this Section, we study two different pack creation algorithms:

• Make-Pack when the sensibility is set to S = 1 (referred to as Sensibility=1 in the
following): intuitively, this strategy tries to minimize the likelihood that there are
delays due to I/O.

• Make-Pack when the sensibility is set to S = α (referred to as Sensibility=I/O load in
the following). This is intended as a middle-case behavior that one would obtain
if S varied.

Finally, we emulate the execution of the packs using the simulator described in Sec-
tion III.D.2.a using a defined scheduling policy. As default scheduling policy, we use
FIFO for both pack creation algorithms. In addition, we have also performed experi-
ments with I/O Sensibility=1 and with the "Longest remaining" policy which was proven
to be very effective in Section III.D.1.

3Q̄ is obtained by replacing in Equation (III.5) all values by their average value, which is not mathe-
matically correct but that we use as a first approximation to generate the workload.

Data scheduling at higher Scale 57

https://gitlab.arcos.inf.uc3m.es:8380/desingh/IOscheduling.git

III.D. Evaluation

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●
● ●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

● ●●
●

●

●

●

● ●
●

●

●

● ● ●

●

●
●

●
● ●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●● ●●
● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●● ●

●

●●
●

●

●
●

●

●
●

●
●
●

●

●
●
●

●

●

●

0.50

0.65

0.80

1.00

1.20

1.50

2.00

0.5 1.0 3.0 10.0 20.0
I/O load (α)

N
or

m
al

iz
ed

 M
ak

es
pa

n
(t

o
F

irs
t F

it
al

go
rit

hm
)

Strategy
● FIFO + sensibility=1 FIFO + sensibility = I/O load

Longest Remaining + sensibility = 1

Figure III.8: Comparison of makespan for different strategies

Overall performance To study the performance, we study both makespan (Fig-
ure III.8) and the stretch4 (Figure III.9) of the different solutions. The results are pre-
sented normalized to the respective performance of First-Fit, and we study them as a
function of the I/O load α (Equation (III.5)).

In the standard configuration, with a FIFO scheduling policy and a Pack partition-
ing sensibility equal to 1, Figure III.8 shows an average 10% overhead of our algorithm
in terms of makespan while Fig: III.9 show significant stretch improvement. The sig-
nificant stretch improvement could be expected: with the sensibility set to 1 we reduce
contention a lot, and intuitively our stretch stays close to 1. On the contrary, First-Fit
has an average I/O occupation factor that increases potentially with α, hence increasing
the contention and the stretch.

Changing I/O scheduling policy does not seem to have an impact on these measures.
Hence in the next evaluations we only consider FIFO policy.

It was to be expected as bandwidth-aware heuristics produce more packs. Indeed,
since we add more constraints on the packs (an I/O constraint, Eq (III.3)), when this
constraint is saturated and if it occurs before the processor constraint (Eq (III.4)), new
packs are created. Figure III.10 shows how many more packs are produced by our al-

4In this section, we use the average of the maximum stretch of each pack.

58 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●
●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

0.02

0.05

0.10

0.20

0.50

1.00

2.00

0.5 1.0 3.0 10.0 20.0
I/O load (α)

N
or

m
al

iz
ed

 S
tr

et
ch

 (
to

 F
irs

t F
it

al
go

rit
hm

)

Strategy
● FIFO + sensibility=1 FIFO + sensibility = I/O load

Longest Remaining + sensibility = 1

Figure III.9: Comparison of stretch for different strategies

gorithm compared to the First-Fit case when varying the I/O load. We see that, for a
sensibility of one, the number of packs is increasing with the I/O load. This is due to
the fact that when the I/O load is large the Pack Partitioning algorithm creates more
pack to avoid I/O contention. When the sensibility is α, the ratio is much smaller and
roughly constant because the sensibility determines how contention is avoided. Produc-
ing more packs has the advantage, however, of decreasing contention, which explains
the improvement in stretch. The downside is increasing the number of packs and un-
used processors within packs.

As the stretch improvement is noticeable, we may consider that a sensibility of 1
for Pack Partitioning Algorithm is too pessimistic and leads to an unbalanced trade-off.
Increasing the bandwidth limit as a function of α provides an alternative compromised,
mitigating the makespan loss while maintaining stretch improvement most of the time.

In depth performance For an in-depth performance evaluation, we focus on the FIFO
policies.

We present in Figure III.11 the ratio of the execution time as measured to an ideal
one that one could predict with no contention would occur (essentially if the global I/O
bandwidth was unbounded but keeping the individual I/O bandwidth bounded).

Data scheduling at higher Scale 59

III.D. Evaluation

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

1

2

5

0.5 1.0 3.0 10.0 20.0
I/O load (α)

N
or

m
al

iz
ed

 n
um

be
r

of
 p

ac
ks

 (
to

 F
irs

t F
it)

Sensibility ● 1 I/O load

Figure III.10: Normalized number of packs produced by the Pack Partitioning algorithm
(relative to the First-Fit algorithm) for different sensibility

The interesting observation is that the execution of Pack Part (S = 1) is a lot closer
to the ideal one (within 20%, while First-Fit can be as bad as 1000%). This provides
more control on the execution. This is coherent with the results observed by Herbein et
al. [36]. The version of Pack Part with S = α is close in behavior to that of First-Fit as
one would expect since the congestion constraint is relaxed.

This results is even more interesting when we study for each compute node the
average time that they spend: (i) doing useful execution (either they are doing some
compute, or the application mapped on them is performing I/O), (ii) being delayed
(the application mapped on them is waiting to perform I/O), or (iii) being idle (there
is no application mapped on them, or the application mapped on them has finished
working and the pack is waiting for some final applications). We plot these average
time in Figure III.12, normalized with respect to the average time of First-Fit, so that, if
the input to all algorithms were identical the Exec time (useful execution time) would
be identical. Here, the difference in Exec time for the three algorithms is an attribute of
the randomness in the generation of workloads.

This figure is interesting because again, we observe that for a trade-off of 10% in
makespan there is a transfer of 25% of the time from delay to idle. In addition, the ad-

60 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

1

2

5

10

0.5 1.0 3.0 10.0 20.0
I/O load (α)

N
or

m
al

iz
ed

 ti
m

e
(t

o
co

nt
en

tio
nl

es
s

ca
se

)

Algorithm ● First Fit Pack Part. S=1 Pack Part. S=I/O load

Figure III.11: Processor time and robustness: pack algorithm vs. First-Fit

ditional 10% of time wasted is also moved to idle time. This gives other opportunities
(such as turning-off nodes for energy consumption, using available nodes for backfill-
ing operations with applications that do not need I/O etc), while the idle time due to
contention is lost. This is another strong argument for bandwidth-aware scheduling
policies, even if locally it reduces machine utilization, globally it provides an opportu-
nity to improve it by a lot more than what is wasted.

III.D.2.d Multiple I/O nodes

Previous experiments were done using only one partition the compute nodes with one
I/O node: packs were executed sequentially. However, in many platforms, several I/O
nodes belonging to different partitions/racks are available (see Figure III.2). In order to
see the impact of this feature, we then studied the parallel execution of the computed
packs.

To do so, given the assumption that I/O nodes do not interact with each other and
that they have the same characteristics, we can simply allocate the packs computed by
Algorithm 2. In this section we only consider the case where the sensibility S = 1, and
we use FIFO as the default I/O policy. The pack allocation is done using the Largest

Data scheduling at higher Scale 61

III.D. Evaluation

44.37%

4.46%

59.17%

46.14%

20.51%

35.05%

45.25%

28.68%

26.06%

0

10

20

30

40

50

60

70

80

90

100

110

FIFO + sens. = 1 FIFO + sens. = I/O load First Fit
Strategy

%
 o

f t
im

e

Idle Delay Exec

Figure III.12: Average execution, idle and delay time (normalized) for different strate-
gies

Processing Time5 (LPT) heuristic, where pack duration is the contention less execution
time of its longest application.

Here, we use the FIFO I/O scheduling policy and the standard configuration of the
Pack Partitioning algorithm (sensibility=1). Hence, the one I/O node case is the same
as the sensibility = 1 case of Figure III.8.

We see that, when we increase the number of I/O nodes the relative makespan is
decreasing. The geometric mean6 of the 1 (resp. 3 and 5) I/O node(s) case is 1.09 (resp.
0.71 and 0.53). This means that in the five I/O nodes case our bandwidth-aware solution
is, on average, twice as fast as the First-Fit algorithm!

The interpretation of this result is the following. With our Pack Partitioning, we have
more but smaller packs than for the First-Fit case (see Figure III.10). Hence, providing
a balanced allocation is easier in this case than for the First-Fit case where packs are
less numerous but longer. Moreover, we are computing the pack allocation based on
the estimated pack duration ignoring the contention. These durations, as shown in Fig-
ure III.11, are more precise in the Pack Partitioning case than in the First-Fit case. Hence,

5We map the longest remaining pack on the I/O node on which it will finish the earliest
6We use the geometric mean instead of the arithmetic mean as we are dealing with ratios

62 Nicolas Vidal

III. Mapping with pack scheduling - Resource control

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●● ●
●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●
●

●

●

●

●

● ●●
●

●

●

●

● ●
●

●

●

● ● ●

●

●
●

●
● ●

●

●

●

●

●
●●●

●

●

●

●
●

●
●

●
●

●

●
●

●● ●●
● ●

●

●

●

●●

●
●

●

●
●

●
●

●

●● ●

●

●●
●

●

●
●

●

●
●

●●
●

●

●
●
●

●

●

●

0.30

0.50

0.65

0.80

1.00

1.20

1.50

0.5 1.0 3.0 10.0 20.0
I/O load (α)

N
or

m
al

iz
ed

 m
ak

es
pa

n
(t

o
F

irs
t F

it
al

go
rit

hm
)

Number of I/O nodes ● 1 3 5

Figure III.13: Comparison of the relative makespan of Pack Partitioning Algorithm
(with sensibility =1) to the First-Fit algorithm with multiples I/O nodes.

the load balancing computed is more accurate with our Pack Partitioning solution: al-
location decisions are more robust and hence lead to better solutions.

Last, the I/O nodes are homogeneous and the stretch is a local metric of each indi-
vidual pack. Therefore, the stretch performance of all algorithms does not depend on
the number of I/O nodes and is exactly the same as the one depicted in Figure III.9 for
a single I/O node.

In conclusion, in a realistic setting where there are multiple I/O nodes, our Pack
Partitioning algorithm outperforms the First-Fit algorithm both for the stretch and the
makespan.

III.E Conclusion and prospects

This chapter addressed the issue of executing concurrent applications in a system with
bounded I/O bandwidth. We presented a model, optimization framework as well as
simple heuristics for the issue of allocating the applications depending on the I/O re-
sources available on the machine. Through rigorous experiments, our first observation
was that simple and fair list-scheduling policies seemed to perform better in the long

Data scheduling at higher Scale 63

III.E. Conclusion and prospects

run when it comes to scheduling I/O access. In addition, we presented a simple strat-
egy to allocate applications together based on an approximation of their resource usage.
Our evaluation of this strategy gave interesting results: with a single I/O node, they im-
proved importantly the stretch of the machine while degrading slightly the makespan
(or throughput). But a more in-depth study showed that this degradation was a con-
sequence of a much better control of the waste (mostly by having more unoccupied
resources instead of resources waiting).

We have also studied the case where compute nodes are decomposed in several par-
titions/racks by increasing the number of I/O nodes. In this case our bandwidth-aware
strategy performs better for both metrics.

After this chapter, several directions open up, both for the mapping of applications
and the scheduling of I/O. With respect to the mapping, our natural first step will be
to remove the pack constraint and see if we can design an efficient bandwidth-aware
strategy. Another direction would be to simply enriching this Pack Partitioning policy
with small job backfilling. Both these directions are discussed in Chapter IV. We spent
some time trying to define how measure rendering of a schedule quality in regard for
backfilling. Such a measure would meter the amount of unused resources and for how
long. At equal performance, it is better to "regroup" the unused resources, having as
many idle processor and as long as possible to enable easier re-allocation. Then, we
should move from exclusive-access I/O policies to policies where the bandwidth can
be shared is a direction we intend to take, we will initiate a discussion on this matter
in Chapter V. The difficulty here is to make the middleware ready to evaluate these
strategies, maybe through containers.

This chapter marks a significant step in our thesis. First, it shows the difference in
magnitude of the improvement we can gain while mapping the applications in com-
parison with only scheduling the accesses. Of course, this study is done based on a
theoretical model and validated through simulation, without "real" I/O accesses so ma-
terial limitations do not occur. This difference of magnitude is not unexpected either.
Compared to scheduling that only change application behavior but does not change
the platform occupation paradigm, mapping use it as a leverage for resource control.
Necessary, this better resource control enables better parallelism.

64 Nicolas Vidal

Chapter IV

Comparison with List-Scheduling -
Strict constraint vs on average

In this chapter, we discuss the impact of data-awareness on the design of resource man-
agement algorithms. Specifically, we focus on the incorporation of the I/O needs of ap-
plications, one of the current major bottlenecks in HPC systems, into the batch schedul-
ing algorithms. Hence the targeted solutions should be (i) scalable (thus have a low
complexity); and (ii) easy to implement and to test to be adopted. For this reason, we
focus this study on two simple paradigms: list-scheduling and pack-scheduling (see
Figure IV.2). We presented Pack-Scheduling and studied in the previous chapter. Pack-
Scheduling is a strategy that maps applications by packs, i.e. sets of applications that
start at the same time. The next pack cannot start as long as the last application of the
previous pack has not finished its execution [68, 83]. List-Scheduling does not impose this
constraint: it sorts the tasks given a priority order (typically, First-Come-First-Served in
batch schedulers [3, 41]), and schedules them as soon as there are enough compute
nodes available.

In this chapter, we discuss and compare IO-aware versions of these two paradigms.
As in the previous chapter, for scalability we consider a two-pronged approach:

• The batch-scheduler uses average I/O information (which can be collected using
tools such as Darshan [66]) to create the mapping;

• An I/O scheduling middleware (such as Clarisse [39]) then schedules the concur-
rent I/O using online heuristics.

In the same way as in chapters II and III, there are two objectives to account for: a
platform-oriented objective (maximizing the utilization of the machine, i.e, the number
of FLOP/s), and a user-oriented objective (fairness).

In this chapter, we present the following important contributions:

• While list-scheduling is generally the standard mapping heuristic for batch-
schedulers, we show that in the case of I/O intensive workloads, an I/O-aware
pack scheduling strategy may be more efficient;

65

IV.A. Simulation

• For Pack-scheduling, we show that a characteristic time, i.e. the order of magnitude
of I/O transfers, can be taken into account to provide fairer policies. We provide
intuition and discuss the implications of this.

• We underline the strong relation between the workloads and the scheduling policy
relevance and provide insight on how to choose an adequate one.

IV.A Simulation

IV.A.1 Constraint implementation

As described in chapter III, we chose to model the I/O behavior of an application by
summing all volumes of I/O transfer and dividing by the application execution dura-
tion. In the heuristics, bandwidth constraints are enforced based on this value in such a
manner that the sum of all concurrent applications does not exceed the limitation. This
way, we obtain a model where all applications have a fluid I/O behavior in opposition
to their real-life, periodic one. These constraints can be implemented either as a strict
limit as described in IV.A.2 or as an average one in IV.A.3. These different heuristics are
then evaluated in realistic scenarios, with periodical I/O phases performed exclusively.

IV.A.2 List-scheduling (LS)

The first way to implement I/O limitation is to determine a strict constraint at every
moment. The sum of the average I/O bandwidth of all applications running at a time
cannot go over this threshold. Applications are scheduled in their order of appearance
in the workload on a first-come, first-served basis as soon as both their processor and
their bandwidth requirements are met.

IV.A.3 Pack-Scheduling

Chapter III, which resumes our article Carretero et al. [83], demonstrates that making
packs of applications starting at the same time and running concurrently can improve
the control over congestion. Here, we resume the same procedure. In Pack-scheduling,
the I/O constraint is enforced on average. Indeed, the average I/O bandwidth of a pack
is the sum of all I/O operations performed by the packs application divided by the pack
duration. It means that I/O operations can go past the I/O threshold at some points of
the execution. The pack heuristic was presented in Figure 2.

Variants Depending on the way we sort applications, we can change our objectives.
In the following, we propose three different ways to build packs.

66 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

1. Without sorting applications (Random), this serves as a baseline. It can also de-
scribe a way to build packs in steady-state without an overview of the application
pool.

2. Sorting applications following non-increasing execution time (Max), this is the
default way to make optimized packs, as scheduling applications with similar
duration minimizes the resource imbalance at the pack execution end.

3. Characteristic time (Char) is the duration of a period consisting of one compute
phase followed by an I/O phase. Sorting applications by this parameter is a less
intuitive approach. As I/O are performed exclusively, there is a delay induced ev-
ery time a request is blocked by another operation. Based on the periodic behav-
ior of applications, we expect the I/O phases to be delayed in the first iterations.
Then, if the period span are close enough, a synchronization effect may occur and
I/O can be performed in turn with little to no delays. A simple example is shown
in Figure IV.1.

Compute I/OApp. 1

App. 2 Delay

Figure IV.1: Synchronization example with two identical applications. I/O are per-
formed in turn and no delay occurs past the first iteration.

IV.A.4 Backfilling

In pack scheduling, the platform nodes become idle during the execution of each pack
as applications terminate. These nodes are not re-used until the next pack starts. In
a minor extent, idle resources waiting for a future application can occur as well as in
LS. However this performance loss can be avoided. Indeed, the packs and applica-
tions duration can be predicted as well as the amount of nodes involved. Using this
information, we can see if an application fits in the free space and modify the schedule
accordingly. In the following, such a backfilling strategy is implemented for both pack
and list scheduling.

IV.B Evaluation Methodology

Tampering directly with a production system, impacting the work of users solely for
the sake of evaluating prototype strategies is not an option. Evaluating the relevance of
the aforementioned strategies and their consequences is thus particularly challenging

Data scheduling at higher Scale 67

IV.B. Evaluation Methodology

List scheduling

1 6 8

2 5

3 4
7

Pack scheduling

1 4
72

5
3

6 8

Pack 1 Pack 2 Pack 3

Figure IV.2: An example of list scheduling and pack scheduling for the same set of tasks
(packs are separated by dotted red lines).

and hence requires, as a first step, the use of heavy simulation to compute statistically
significant evaluations.

The coherence of the behavior of the simulator that we describe below and that of
real machines were verified (with Vesta, a development platform for Mira in [29], and
with Jupiter a Cluster at Mellanox in [30]) with IOR benchmarks. Hence, for this evalu-
ation we will rely solely on this simulator which we detail below.

IV.B.1 Machine model for the simulator

The model used is similar to the one presented in the previous chapter and illustrated
in Figure III.2. We recall its main characteristics hereafter.

In high performance computing, parallel platforms consist of computational re-
sources structured in racks composed of compute nodes. One (or sometimes several)
I/O node is available on each rack for the compute nodes to access the parallel file sys-
tem (PFS). Each I/O node has a fixed, limited I/O bandwidth and hence compute nodes
share this bandwidth when accessing data on the PFS. In many supercomputers racks
are homogeneous: on each rack, the I/O bandwidth is the same as well as the number

68 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

of compute nodes associated to each I/O node.
Therefore, without, loss of generality, in this paper, we will consider only one rack

with one I/O node: extending it to several racks (or I/O nodes) [83] is straightforward:
the proposed solutions will be applicable to an arbitrary number of racks considering
the platform homogeneity.

Moreover, for the evaluations, following the trend in current I/O management soft-
ware (such as Clarisse [39]), we consider that simultaneous bandwidth sharing is not
allowed (i.e. on a given I/O node, only one application is performing I/O at the same
time). Blocking I/O guarantees that at all time the I/O bandwidth is not overloaded,
hence we do not need here to model I/O congestion. We discuss I/O blocking and its
consequences in the future work section. Additionally, we assume that I/O preemption
is not allowed either: once an application has started to perform I/O, it has to finish its
transfer.

IV.B.2 Applications

As in our previous chapters, we recall that our applications model considers a series of
consecutive non-overlapping phases:

• compute phases (executed on the compute nodes);

• I/O phases (a transfer of a certain volume of I/O using the available I/O band-
width) which can be either reads or writes.

In order to run properly, the applications must have access to sufficient computa-
tional and I/O resources. The amount of processors requested is defined beforehand
by the user and can be seen as one of the application characteristics. The amount of
data to be accessed during the I/O phase is also a characteristic that is assumed to be
deterministic. We assume that the user is able to give a cumulative behavior.

Formally, we have a set of n jobs {J1, . . . , Jn}. Each job Ji requests Qi compute nodes
for its execution. Ji consists of ni successive, blocking and non-overlapping operations:

• Ai,j (a compute operation that lasts for a time ai,j);

• Bi,j (an I/O operation that consists in transferring a volume bi,j of data).

Therefore, if the bandwidth available to Ji to transfer its I/O to the PFS is equal to b, the
time Ti needed for the total execution of Ji is:

Ti(b) =
∑
j≤ni

ai,j +
bi,j
b
. (III.1)

Data scheduling at higher Scale 69

IV.B. Evaluation Methodology

Synthetic workload generation

For the evaluation, we do not consider release time for the application but consider
them to be released as a single batch. This will have implications in how we evaluate
the performance of the algorithms which we discuss in the next section.

In order to perform a significant number of experiments, we designed a generator
aiming to produce diverse fitting workloads.

Characterization We hypothesize that the impact of I/O restriction policies depends
on the amount of I/O operations performed by the workload.

Therefore, in our study, we tested the impact of I/O scheduling policies as a func-
tion of the I/O load of the system. Given a workload, we recall that I/O load (or I/O
intensity) definition, α, as an upper-bound on the I/O bandwidth exertion is given in
equation (III.5):

α =
P.
∑n

i=1

∑
j≤ni

bi,j/b∑n
i=1 (Qi · Ti(b))

(III.5)

Application sets are generated following two different protocols detailed below: (i)
The uniform protocol in which all parameters are independent; and (ii) the Mira-based
protocol, inspired by data [59] collected on the eponymous supercomputer.

Real-life applications have pseudo-periodic behavior [16, 24]. Since the point of in-
terest is to study I/O conflicts on large workloads, the fluctuation in operation times
does not seem particularly relevant. Hence, to simplify the model at hand we assume
that each application is periodic (i.e. for all j ≤ ni, bi,j = bi and ai,j = ai) in all generated
workloads.

IV.B.3 Mira-based generation protocol

IV.B.3.a Processor repartition

Data found from Mira [59] shows that the required processors per job follow a discrete
exponential distribution of parameter λ = 1.35 · 10−4 with values ranged from 512 to
49152.

IV.B.3.b Job duration

The same source shows that the job duration depends on the amount of processors used.

• Less than 4K nodes, a median job time of 1 hour

• Between 4K and 16K nodes, more than 2 hours

• More than 16K, 0.5 hour

In each case, we use normal distribution with the same median and a variance of 10
percent. These distributions are obviously reduced to their positive values.

70 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

IV.B.3.c Periodicity

Whereas papers emphasize the periodic aspect [16, 24] of jobs, they rely on the analysis
of specific jobs.

The diverse IO phase occurrences are often described by their average amount per
execution or their amount of function calls. Neither of these descriptions is suitable to
describe applications following our theoretical models.

We have chosen to use a uniform distribution ranging from 10 to 100 iterations. The
number of iterations only impacts the length of a period as the application duration is
defined beforehand. Therefore if there are enough applications running, these parame-
ters have little impact on the resource usage. However, for a fixed execution the more
iterations there are, the closer we are to the continuous model and hence should behave
as expected by the algorithm.

IV.B.3.d IO generation

We explained above that applications I/O are often measured using their amount of
operations. It is not straightforward to deduce the amount of time spent performing
I/O by a given application. Measurement produced by Gainaru et al. [29] on Intrepid
seems to show that it follows then a uniform distribution with time ranging from 5 to
50 percent of the total execution time. However, this measurement takes into account
the time spent while doing I/O requests and includes the time lost in contention.

We chose to draw the proportion of time spent in I/O for each application following
(i) two normal distributions truncated to have values between 0 and 1, one having mean
0.1 for compute intensive applications, the other 0.9 for the I/O intensive ones. The
prevalence of each depends on the workload expected I/O load. (ii) Alternatively, we
use only one normal distribution centered on the expected I/O load.

In the following, we name these families of workloads, (i) Mira binormal (MB) and
(ii) Mira normal (MN) respectively.

From this time, we compute the total I/O volume by weighting with the requested
number of processors.

IV.B.4 Uniform generation protocol

• We choose an I/O intensity upper bound αgen, as described in definition III.5 for
workloads.

• We pick the proportion β of applications with low I/O load uniformly at random
on [0, 1] (0 meaning all applications have high I/O load, 1 meaning they all have
low I/O load).

• We generate uniformly at random between 100 and 500 applications for each
workload.

Data scheduling at higher Scale 71

IV.B. Evaluation Methodology

These applications have the following characteristics:

• Their number of iterations ni is chosen uniformly at random between 1000 and
10000.

• the duration of compute operations ai is chosen uniformly at random in interval
[10,100] (time units).

• case (a): Application I/O load (bi/ai, and ultimately bi) is chosen:

1. Following a normal distribution of mean µ1 = 0.1, variance σ1 = 0.1 trun-
cated on the interval [0, 1] for applications of low I/O load, the resulting mean
being 0.289;

2. Following a normal distribution of mean µ2 = 0.9, variance σ2 = 0.1 trun-
cated on the interval [0, 1] for applications of high I/O load. The resulting
mean being 0.711.

• case (b): Alternatively, we use a single application profile and bi is chosen fol-
lowing a normal distribution of mean µ = α, variance σ = 0.1 truncated on the
interval [0, 1]

• Finally, to instantiate the number of processors Qi of each application, we use a
distribution in the discrete set {2j}j=0...11 of mean Q̄. This is obtained by replacing
in Equation (III.5) all values by their average value as a first approximation to
generate the workload.

Q̄ =
P (βµ1 + (1− β)µ2)

αgen(1 + βµ1 + (1− β)µ2)
.

In the following, we name these families of workloads, case (a): binormal uniform
(BU) and case (b): normal uniform (NU).

IV.B.5 Evaluation criterion

In this work, we seek to design mapping strategies to optimize the usage of compute re-
sources and I/O bandwidth. Hence, we need to solve a scheduling problem composed
of two sub-problems at the same time.

First, we have to compute a job schedule, solution of the mapping problem which
consists in choosing for each application the allocation of compute nodes during the
execution timeframe of the batch.

Second, we have to compute an I/O schedule, which consists in deciding which ap-
plication acquires the usage of the I/O node to access the PFS.

The relevance of such a schedule can be measured either from the platform admin-
istrator point of view or from the user point of view. It is important to notice that these
two approaches, although not exactly opposites, can be in conflict.

72 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

Therefore, given a schedule, we use two different metrics to evaluate the relevance
of our strategies according to these two angles.

1. The platform utilization of a schedule at any time is given as the ratio between the
total work executed and the time. Typically, the utilization is an objective more
platform oriented. The evolution of the platform utilization during the execution
shows to what extend the resources are used.

2. The stretch ρi of an application Ji is the ratio between its minimal execution time
and its actual execution time. A stretch of 1 means that the application is not
impacted by the other applications running on the system. A stretch of 2 means
that due to I/O contention, the application takes twice as long to execute as it
would normally. Typically, the stretch is a user oriented objective.

To sum up, our general optimization problem is the following: given a batch of jobs
running on a platform with an available I/O bandwidth to the PFS, and connected to
P compute nodes. Find a schedule that either maximizes the total utilization, or that
minimizes the maximum stretch, respecting the resource constraint (available number
of nodes and no I/O bandwidth sharing). This reduces to finding the right allocation of
I/O for the different applications.

IV.B.6 Relevance of static workloads

For the sake of simplicity, we chose to use static workloads where the amount of work
to perform is defined beforehand. However, in real life, applications continue to ar-
rive all the time. Both our model and such dynamic workloads are comparable when
in a steady-state but ours presents a startup and a closure time that are not realistic.
Nonetheless, the core of mapping and scheduling applications is mostly relevant when
the system is under heavy load, typically during week days. A system administrator
could choose to use times with low utilization, e.g. nights and week-end, to wait the
completion of all applications submitted, before accepting a new one in order to avoid
starvation. Alternatively, we can imagine an overlap of several schedules when the plat-
form is not stressed ie starting a new schedule with the available resources as soon as
the previous one exits steady-state. In our experiments, we have to confined ourselves
to these possible scenarios.

IV.C Evaluation and Results

In this section, we present experimental evaluations of mappings using the pack or
list-scheduling strategies. We start with an analysis of the algorithms’ performance on
the different workloads. Then, we discuss these data in the light of resource usage
throughout the execution.

Data scheduling at higher Scale 73

IV.C. Evaluation and Results

IV.C.1 Difference between workloads

Parameter dependencies We expect the evaluation results to depend heavily on work-
loads. As a preamble for experiment, let us go through their characteristic differences.

Mira-based workloads exhibit a dependency between job duration and the number
of processors used. Considering that the amount of I/O operations they perform is
pondered by the processors, it follows that there is a correlation linking all parameters
of the application definition.

Compared to the uniform generation and due to the dependencies between different
parameters, these workloads have more diverse applications profiles with more defined
features. In the following, we see whether it has a positive or a negative impact on
scheduling policies.

Noise filtering The random factor, intrinsic to the generation leads to some distorted
workloads, with pathologically high I/O. For example, in the binomial workload case,
the I/O and the processor are not independently chosen in order to fit the target I/O
load. Consecutive imbalance in the first application defined can end up designing an
abnormally loaded workload. To avoid these artifacts, we exclude such data from the
generation.

Utilization We study the four heuristics defined in section IV.A (LS and the three
packs variants) behavior. Utilization measurement throughout the execution for each
workload profile are presented in Figures IV.3, IV.4, IV.5 and IV.6. The experiments
have been performed for different I/O load values ranging from 0.2 to 0.8. Each trace
presents the average on ten executions. Studies on single runs have been made before-
hand to ensure representativeness.

For all compute-intensive workloads, LS scheduling makes a better use of the plat-
form throughout the execution. However, LS utilization is degrading when the I/O
load increases, especially when dealing with uniform workloads. In all cases, the plat-
form utilization of LS is stable throughout the execution, fitting the constant constraint.
The small under-utilization at the beginning of some schedules is explained by the few
critical applications both prioritized and heavily-constrained.

As for pack-based scheduling, we can observe in most cases a startup time with
high machine utilization at the beginning and a quick deterioration at the end when the
workload is exhausted. During the steady-state, pack scheduling based on application
length can achieve a comparable utilization as LS, and even outperform it when the I/O
load increases. Packs based on different order is always worse than this one set apart
for I/O intensive uniform workloads.

It means that for a dynamic workload which ensures constant application dispos-
ability for the scheduler, Pack scheduling may achieve a better platform utilization.
However as it depends on the application sorting prior to pack building, it may also
lead to starvation for low-priority applications.

74 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

IO load = 0.6 IO load = 0.8

IO load = 0.2 IO load = 0.4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Normalized workload duration

U
til

iz
at

io
n

Algorithms

Char

LS

Max

Random

MN workload: Utilization depending on I/O load

Figure IV.3: Utilization during the execution for different values of I/O load, with MN
workload profile

Lessons learnt: List-scheduling performs consistently throughout the execution no matter the
remaining available application. It can be outperformed by Pack-scheduling during the steady-
state for high I/O loads (over 0.6).

Stretch Measurement on stretch as function of the I/O load are presented in Fig-
ure IV.7 for the maximum stretch and Figure IV.8 for the average stretch. Figures are

Data scheduling at higher Scale 75

IV.C. Evaluation and Results

IO load = 0.6 IO load = 0.8

IO load = 0.2 IO load = 0.4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Normalized workload duration

U
til

iz
at

io
n

Algorithms

Char

LS

Max

Random

MB workload: Utilization depending on I/O load

Figure IV.4: Utilization during the execution for different values of I/O load, with MB
workload profile

divided depending on the underlying workload. In each trace, every point plots the re-
sult of one run on a specific workload. Lines show the average stretch with confidence
intervals.

In all scenarios, pack scheduling provides a slight improvement on both the maxi-
mum and the mean stretch compared to LS.

Surprisingly packs built without sorting the applications have a lower average
stretch on Mira based workloads. Indeed, the correlation between parameters leads

76 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

IO load = 0.6 IO load = 0.8

IO load = 0.2 IO load = 0.4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Normalized workload duration

U
til

iz
at

io
n

Algorithms

Char

LS

Max

Random

BU workload: Utilization depending on I/O load

Figure IV.5: Utilization during the execution for different values of I/O load, with BU
workload profile

to contention when sorting application based on the execution times.
Pack scheduling based on characteristic time was designed in order to synchronize

applications and minimize the stretch. Indeed, it provides a significant improvement
for uniform workloads and performs in the same way as other for the MN scenario.

The same heuristic performs worse than any other algorithm for MB (Mira profile
and bi-distributed IO). Bi-distribution creates applications with the same characteristic
time that are very different in their I/O behavior and the synchronization is made at

Data scheduling at higher Scale 77

IV.C. Evaluation and Results

IO load = 0.6 IO load = 0.8

IO load = 0.2 IO load = 0.4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Normalized workload duration

U
til

iz
at

io
n

Algorithms

Char

LS

Max

Random

NU workload: Utilization depending on I/O load

Figure IV.6: Utilization during the execution for different values of I/O load, with NU
workload profile

loss. Indeed, when it happens, synchronism induces a constant delay for all concurrent
applications. This may ensure a better bound for the worse case scenario by dividing
equally the loss. However, when this delay is too long, it impacts all application execu-
tions.

One pitfall would be to evaluate pack scheduling with uniform workloads before
implementing them. It could result in an overestimation of their performance. This case
also emphasizes the setup sensibility and the difficulty to design solutions taking into

78 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

account both the general case and the specific.

MN NU

BU MB

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1

3

5

1

3

5

1

3

5

1

3

5

IO load

M
ax

 s
tr

et
ch

Algorithms

Char

LS

Max

Random

Figure IV.7: Max stretch for different workloads

IV.C.2 Difference in execution

In Figure IV.9, we present three measurement: the average number of applications run-
ning, the average number of processors used and the average portion of used band-
width throughout the execution of each heuristic. The top three charts are obtained

Data scheduling at higher Scale 79

IV.C. Evaluation and Results

MN NU

BU MB

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

IO load

M
ea

n
st

re
tc

h Algorithms

Char

LS

Max

Random

Figure IV.8: Mean stretch for different workloads

when scheduling applications from Mira Binormal workloads and the bottom three for
Mira Normal Workloads. Comparing the two, we want to explain why Pack Schedul-
ing is less efficient in the Mira Binormal case. We see that some applications profile are
favored throughout the execution. It can be divided into phases.

1. The application that use more processors are scheduled first.

2. I/O intensive applications are performed last.

80 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

0

20

40

0.00 0.25 0.50 0.75 1.00

R
un

ni
ng

 a
pp

lic
at

io
ns

0.0

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00

U
se

d
pr

oc
es

so
rs

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00

U
se

d
ba

nd
w

id
th

Algorithms

Char
LS
Max
Random

Platform usage for MB

Normalized workload duration

0

20

40

60

0.00 0.25 0.50 0.75 1.00

R
un

ni
ng

 a
pp

lic
at

io
ns

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00

U
se

d
pr

oc
es

so
rs

0.3

0.4

0.5

0.6

0.7

0.00 0.25 0.50 0.75 1.00

U
se

d
ba

nd
w

id
th

Algorithms

Char
LS
Max
Random

Platform usage for MN

Normalized workload duration

Figure IV.9: Resource usage (average number of applications running, used processors,
used bandwidth on MB and MN workloads

Lessons learnt: Heuristics without steady-state are symptomatic of starvation (e.g. execu-
tions have several phases with I/O intensive applications performed last). Hence, when choosing
an heuristic, it is crucial to check whether it reaches a steady-state or not. For instance, in Fig-
ure IV.9 no pack scheduling heuristic has a steady-state for MB workloads hence LS should be
favored.

Data scheduling at higher Scale 81

IV.C. Evaluation and Results

Idle time vs stretch

Depending of the constraint nature, the heuristics either choose to artificially add some
idle time in order to avoid loosing time to contention (maximum or random pack strate-
gies) or, in contrast increase the risk of conflict for a better resource usage (LS). More
than a straight-up comparison between heuristic performance, it is this trade-off we
discuss here.

In Figure IV.10, we show the idle ratio ie the mean stretch as a function of the accu-
mulated processor-time of non-allocated resources over the total processor-time of the
execution. The average of all experiments is drawn with confidence intervals in addi-
tion to a point for the result of each execution. Color gradient shows the final average
occupation achieved during the workload execution. This figure was obtained while
running with MB workloads. Similar results are obtained with MN whereas tendencies
are harder to read in uniform cases.

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8

Idle ratio

M
ea

n
st

re
tc

h

Algorithms
Char

LS

Max

Random

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Occupation

Figure IV.10: Mean stretch as a function of idle time

We see that standard pack and LS have a comparable Idle/stretch ratio with a slight
offset in diminishing idle ratio and increasing stretch for list-scheduling. This offset
gets in place for efficient workload (less than 10% idle time, and almost no stretch)
and stays constant thereafter. Optimized pack built after sorting the applications by
duration have exactly the same behavior as arbitrary constructed packs with only a
constant gain in regard to idle time. It is more complex to interpret the behavior of packs
based on characteristic time. It appears to introduce more idle time than an arbitrarily
pack building policy in order to gain on the contention. However this only works for
workloads that are already efficient. When the loss increases, the stretch skyrockets.
It is likely due to the fact that applications synchronize their I/O, therefore setting a

82 Nicolas Vidal

IV. Comparison with List-Scheduling - Strict constraint vs on average

constant delay for all applications running together. For compute intensive workloads
and for sets of comparable applications, this delay is close to zero hence the gain, but
when workloads become data intensive all applications are penalized.

Lesson learnt: When I/O increases and conflicts occur, both the idle time and the contention
increase. Packs based on characteristic time are advantageous under heavy I/O loads and must
be chosen only after rigorous study. As for other heuristics, they keep the same trade-off pace.
Then, choosing one over another depends only on the initial offset preference; in addition to the
performance discussed before.

IV.D Conclusion and prospects

In this chapter, we presented strategies for data-aware mapping. They were chosen for
their simplicity and the clear difference on the constraints they implement. The analy-
sis of LS enables to study strict constraints whereas Pack scheduling represents average
restrictions. We defined evaluation metrics and designed different workloads in order
to provide a deep understanding of the strategies’ behavior. Results show that Pack
scheduling can provide a better machine utilization throughout the execution when the
I/O exertion is high, in other cases LS is preferable. The parameters defining the work-
load are also capital with a trade-off between optimized stretch and better platform
utilization. For this purpose, we implemented pack based on characteristic time and
showed that, if the I/O exertion is not excessive, it can achieve better fairness than both
LS and other packs in the same scenarios. However, we have seen that performance
depends strongly on the workload, pack-scheduling algorithms, in particular the one
using characteristic time, perform better with comparable applications (uniform gener-
ation, normal repartition of I/O). The natural direction to open-up as continuation is to
discuss ways to classify applications in order to be more efficient in pack building and
have a finer workload appreciation. In a more elaborate way and more importantly, we
plan to allow parallel I/O operations instead of exclusive ones. In such a set-up, we
would be able to study not only single mapping strategies but also the combination of
several strategies, sharing an adequately dedicated portion of the bandwidth.

Data scheduling at higher Scale 83

IV.D. Conclusion and prospects

84 Nicolas Vidal

Chapter V

Conclusion

HPC applications grew more and more data intensive with the advent of high-
performance data analytic and deep learning. In this context, the strain exerted on the
shared bandwidth of a platform became a concern. The current thesis is a part of the re-
cent developments aiming to include I/O awareness in the design of theoretical models,
and mapping and scheduling strategies.

V.A Retrospective

Early work In Chapter II, we assumes a upstream allocation of the machine and focus
on the restricted field of I/O accesses for applications that alternate computation and
I/O. This work mainly serves as a basis for further development by describing a sim-
ple model taking into account the I/O pattern of HPC applications. The simple model
serves to set the first stone to discuss the trade-off between platform performance and
user fairness. Indeed, we proved that the problem is NP-complete and provide strate-
gies for simple cases. However, it gets harder to prove interesting result with more
exotic metrics. More interestingly, there is a gap between the theoretical approxima-
tion result, here "all list-scheduling heuristics provide a 2-approximation no matter the
order" and the practical result where the order has an obvious impact on the platform
usage. A theoretical analysis is necessary to enrich and discuss further the heuristics.
Reciprocally, there is little hope to gain understanding on application behavior by sim-
ulation without a proper definition of the parameters, of the problem and the metrics
to observe, in other words, without the theoretical development whose deepness con-
ditions our insight on the subject. This early work, although imperfect and improvable,
contributes to sketch the approach we refined these last years. That is to say a come and
go between mathematical modeling and experimental measurement using simulation.

Second step, a change of scope At this point, we had the different directions to con-
tinue, the first, unexplored one was to add complexity on the model: tackling non-
periodic applications or including malleability for example. It seemed unlikely to pro-

85

V.A. Retrospective

vide strong and relevant theoretical model for this problems. Instead, we chose to
broaden the scope and ask the question of the application mapping on the platform.
The subject connects: what is malleability if not a variation of the allocated resources?
In this case, mapping the application is a prerequisite for any further development. We
discuss this issue in Chapter III. Addressing application mapping represents a change
of scale on the approach. We moved from a point of view considering only applications
to one that encompasses the platform. To this purpose, we designed a platform model,
we also had to define a better characterization of the I/O intensity of a workload to
take into account the overall behavior. Based on this model, we propose a simple I/O
aware mapping strategy and evaluated it with simulation. The results were surprisingly
good at showing the trade-off between control (and fairness) and overall performance.
It strengthens my personal conviction that there is no absolute "best strategy" for map-
ping and scheduling applications. It is up to system administrators to choose in what
extend they want to exercise control on their platform depending on their way to "re-
cover" sacrificed resources. One exciting and contemporary direction arising from this
consideration is the link to make with energy management. Sacrificing (a little) plat-
form performance for a better resource usage is a direction to dig in the process to make
more responsible supercomputers.

Despite our interest in the matter, we could not build a connection on this two field
strong enough to justify investing a part of our already limited allocated time in this
area.

Another very stimulating thing in this second part was the collaboration with the
ARCOS team members in Madrid. Indeed, my skills tends to an empirical approach
of computer science, they provided their own software to handles I/O operations. We
were allowed to implement my policy in a dedicated part of the code. Thanks to them,
we were able to connect my first works to a functional software.

Maturation in the approach The encouraging result of this part opened up new ques-
tions. First of all, pack scheduling enforces strict restrictions on application execution.
Is it really pertinent to use compared to another less rigid I/O-aware strategy? Sec-
ondly, can we measure whether a schedule is good for waste-control (backfilling, power-
saving...) or not? Attempts in the domain were not very convincing: they implied to
design time-dependent metrics which could not only render the platform occupation
but its repartition during the execution. This trial and error contributes to build more
polished metrics in the following chapter. The Chapter IV answer the first question by
building a comparison with List-scheduling. However it revealed itself to be more in-
teresting than the simple opposition of algorithms. The two strategies translate different
resource usage philosophy and might both be interesting depending on the objective or
the set-up. One more discrete evolution in our approach was the return to more real-
istic workload generation. Indeed the scientific material took long enough to mature.
If what we wanted to do was straightforward, the process was slowed down not only
by the degraded work condition but also by the result variability. We found out that

86 Nicolas Vidal

V. Conclusion

the performance of a strategy depended on characteristic of the underlying workload.
In this condition, we seek to extract relevant indicators and design application accord-
ingly. Finally, we made the choice to compare our wide-range generated workloads
to one inspired by the literature. The first approach making independent parameters
definition thus exploring a patternless wide-range of parameters while the second one
linked parameters one to the other.

V.B First thoughts on an open problem

When we compared Pack scheduling to List scheduling, we underlined the importance
of application similarity to choose which strategy is the best. We know that, in a real-life
systems, we can find different groups of similar applications. We make the following
observations: Exclusive access is penalizing applications with small periods when they
have to wait for the I/O completion of a long application. Conversely, when applica-
tions with the same periods are sharing the bandwidth they suffer a slowdown at each
iteration.

As a closing point for this manuscript, we will provide some discussion on this on-
going research.

V.B.1 Openings

Previously, we developed the intuition that under certain conditions applications appli-
cations benefits from scheduling policies in exclusive access. In other cases, best effort
perform well. We illustrate these possibilities in Figs V.1 and V.2. In these figures,
two applications perform alternatively computation and I/O phases following either
"exclusive access" or "fair share" policies. In Figure V.1, applications have significantly
different characteristic time. With these parameters, "fair share" is more efficient than
"exclusive access". Indeed, the delay for Application 2 can be consequent as regard to
its period time.

In comparison, Figure V.2 shows similar applications. In this example, after the first
period, applications are synchronized and there is no more delay.

We extend this problematic by considering subsets of applications performing ex-
clusive access in their dedicated part of the bandwidth. The problem becomes: given a
set of applications on a platform with finite bandwidth, what is the best partitioning of
application into exclusive subsets and what is the optimal bandwidth for each part?

V.B.2 Models

We consider a set of applications A defined solely by two parameters.

1. a characteristic time ti

2. an amount of I/O operations to perform in this time.

Data scheduling at higher Scale 87

V.B. First thoughts on an open problem

Exclusive access

ComputeApp. 1 ...

App. 2 ...

I/O

Bandwidth
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fair share

App. 1 Compute ...

App. 2 ...

I/O

Bandwidth
1 2 3 4 5 6 7 8 9 10 11 12 13

Figure V.1: Example with dissimilar applications

Define a partition of the applications a set (Ik)n∈N ⊂ An such that ∀k A partitioning of
the bandwidth has to follow two constraints. First, the sum of the part bandwidths BI

cannot exceed the total bandwidth of the platform. Secondly, there is a lower bound
to the bandwidth dedicated to a part in order to perform all I/O operations within the
allocated time.

1.
∑

Bi ⩽ B

2.
∑

vi
ti
⩽ Bi

The objective is to minimize a simplified version of the stretch. This metric is the
maximum ratio between the longest execution time in each pack (max(vi)

Bi
) and the short-

est one in optimal conditions (min(vi)
B

)

max

(
max(vi)

min(vi)
· B
Bi

)
(V.1)

88 Nicolas Vidal

V. Conclusion

Exclusive access

Comp.App. 1 ...

App. 2 ...

I/O

Bandwidth
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fair share

Comp.App. 1 ...

App. 2 ...

I/O

Bandwidth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure V.2: Example with similar applications

V.B.3 Examples

The general idea, in this model, is that regrouping applications improves the group
bandwidth (Bi, increasing the I/O throughput) while degrading the stretch (ratio
max(vi)
min(vi)

, delay before starting an I/O operation).

Putting applications with similar vi only increases slightly the ratio max(vi)
min(vi)

while
decreasing B

Bi
. Therefore an optimal partition would be based on the similarity of vi

(Intuition 1).
Preliminary experiments testing all partitioning of a small number of applications

show this property. However, in our model, an application with an important vi
ti

ratio
has an impact on the bandwidth allocated to its group. Therefore, it may be optimal to
place such an application in a group with critical bandwidth regardless of other param-
eters. We aim to define "reasonable constraints" preventing this scenario.

Intuition 1. "Under reasonable constraints" ∃(In)n optimal s.t ∀n, i, j ∈ In ⇒ ∀vk ∈
[vi, vj], k ∈ In

Data scheduling at higher Scale 89

V.B. First thoughts on an open problem

As a preliminary evaluation, we simulated small sets of applications and tested all
possible partitioning of the applications. Showing that, in any case, there is always an
optimal partition that respect vi continuity. In most cases, there is an improvement to
build subsets of applications compared to the all-shared or all exclusive I/O accesses.
An example is presented in Figure V.3, with color showing different application group,
and the axis the parameters. Group are continuous in regards to vi.

20

40

60

80

100

2.5 5.0 7.5 10.0 12.5

v

t

part

0

1

2

Figure V.3: Example of an optimal application partitioning

Conclusion We are currently working on how to define groups of applications in a
realistic set-up with the help of the SimGrid [17] framework for experimental studies.

90 Nicolas Vidal

References

[1] Computer Architecture and Technology Area. https://www.arcos.inf.
uc3m.es/. Accessed: 2020-10-6.

[2] PlaFRIM cluster. https://www.plafrim.fr/. Accessed: 2020-07-27.

[3] Slurm Multifactor Priority Plugin. https://slurm.schedmd.com/priority_
multifactor.html. Accessed: 2020-10-06.

[4] Specifications of Aurora exascale machine. https://aurora.alcf.anl.gov/.
Accessed: 2020-07-01.

[5] Supercomputer Fugaku development. https://www.fujitsu.com/global/
about/innovation/fugaku/documents/fugaku-brochure-en.pdf. Ac-
cessed: 2021-07-01.

[6] Maicon Melo ALVES et Lucia Maria de ASSUMPÇAO DRUMMOND : A multivari-
ate and quantitative model for predicting cross-application interference in virtual
environments. Journal of Systems and Software, 128:150 – 163, 2017.

[7] Guillaume AUPY, Olivier BEAUMONT et Lionel EYRAUD-DUBOIS : What size
should your buffers to disks be? In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 660–669. IEEE, 2018.

[8] Guillaume AUPY, Olivier BEAUMONT et Lionel EYRAUD-DUBOIS : Sizing and
partitioning strategies for burst-buffers to reduce io contention. In 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 631–640. IEEE,
2019.

[9] Guillaume AUPY, Ana GAINARU et Valentin LE FÈVRE : Periodic i/o scheduling
for super-computers. In International workshop on performance modeling, benchmark-
ing and simulation of high performance computer systems, pages 44–66. Springer, 2017.

[10] Guillaume AUPY, Manu SHANTHARAM, Anne BENOIT, Yves ROBERT et Padma
RAGHAVAN : Co-scheduling algorithms for high-throughput workload execution.
Journal of Scheduling, 19(6):627–640, 2016.

91

https://www.arcos.inf.uc3m.es/
https://www.arcos.inf.uc3m.es/
https://www.plafrim.fr/
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/priority_multifactor.html
https://aurora.alcf.anl.gov/
https://www.fujitsu.com/global/about/innovation/fugaku/documents/fugaku-brochure-en.pdf
https://www.fujitsu.com/global/about/innovation/fugaku/documents/fugaku-brochure-en.pdf

[11] Babak BEHZAD, Huong Vu Thanh LUU, Joseph HUCHETTE, Surendra BYNA, Ruth
AYDT, Quincey KOZIOL, Marc SNIR et al. : Taming parallel i/o complexity with
auto-tuning. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, page 68. ACM, 2013.

[12] J. L. BEZ, F. Z. BOITO, L. M. SCHNORR, P. O. A. NAVAUX et J. MÉHAUT : Twins:
Server access coordination in the I/O forwarding layer. In 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP),
pages 116–123, March 2017.

[13] Raphaël BLEUSE, Konstantinos DOGEAS, Giorgio LUCARELLI, Grégory MOUNIÉ et
Denis TRYSTRAM : Interference-aware scheduling using geometric constraints. In
European Conference on Parallel Processing, pages 205–217. Springer, 2018.

[14] Francieli Zanon BOITO, Rodrigo Virote KASSICK, Philippe OA NAVAUX et Yves
DENNEULIN : Agios: Application-guided i/o scheduling for parallel file systems.
In 2013 International Conference on Parallel and Distributed Systems, pages 43–50.
IEEE, 2013.

[15] Peter BRUCKER et P BRUCKER : Scheduling algorithms, volume 3. Springer, 2007.

[16] Philip CARNS, Robert LATHAM, Robert ROSS, Kamil ISKRA, Samuel LANG et
Katherine RILEY : 24/7 characterization of petascale i/o workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops, pages 1–10. IEEE, 2009.

[17] Henri CASANOVA, Arnaud GIERSCH, Arnaud LEGRAND, Martin QUINSON et
Frédéric SUTER : Versatile, scalable, and accurate simulation of distributed applica-
tions and platforms. Journal of Parallel and Distributed Computing, 74(10):2899–2917,
juin 2014.

[18] Zhendong CHENG, Zhongzhi LUAN, You MENG, Yijing XU, Depei QIAN, Alain
ROY, Ning ZHANG et Gang GUAN : Erms: An elastic replication management sys-
tem for HDFS. In Cluster Computing Workshops, 2012 IEEE International Conference
on, pages 32–40. IEEE, 2012.

[19] J. T. DALY : A higher order estimate of the optimum checkpoint interval for restart
dumps. FGCS, 22(3):303–312, 2006.

[20] Sheng DI et Franck CAPPELLO : Fast error-bounded lossy hpc data compression
with sz. In 2016 ieee international parallel and distributed processing symposium (ipdps),
pages 730–739. IEEE, 2016.

[21] M. DORIER, S. IBRAHIM, G. ANTONIU et R. ROSS : Using formal grammars to pre-
dict I/O behaviors in HPC: The omnisc’io approach. IEEE Transactions on Parallel
and Distributed Systems, 27(8):2435–2449, Aug 2016.

92 Nicolas Vidal

References

[22] Matthieu DORIER, Gabriel ANTONIU, Franck CAPPELLO, Marc SNIR et Leigh ORF
: Damaris: How to efficiently leverage multicore parallelism to achieve scalable,
jitter-free i/o. In 2012 IEEE International Conference on Cluster Computing, pages
155–163. IEEE, 2012.

[23] Matthieu DORIER, Gabriel ANTONIU, Rob ROSS, Dries KIMPE et Shadi IBRAHIM
: Calciom: Mitigating i/o interference in hpc systems through cross-application
coordination. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th Inter-
national, pages 155–164. IEEE, 2014.

[24] Matthieu DORIER, Shadi IBRAHIM, Gabriel ANTONIU et Rob ROSS : Omnisc’io: a
grammar-based approach to spatial and temporal i/o patterns prediction. In SC’14:
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 623–634. IEEE, 2014.

[25] Matthieu DREHER et Bruno RAFFIN : A flexible framework for asynchronous in
situ and in transit analytics for scientific simulations. In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on, pages 277–
286. IEEE, 2014.

[26] Dror G FEITELSON : Workload modeling for computer systems performance evaluation.
Cambridge University Press, 2015.

[27] Eitan FRACHTENBERG et Dror G FEITELSON : Pitfalls in parallel job scheduling
evaluation. In Workshop on Job Scheduling Strategies for Parallel Processing, pages
257–282. Springer, 2005.

[28] Eitan FRACHTENBERG, G FEITELSON, Fabrizio PETRINI et Juan FERNANDEZ :
Adaptive parallel job scheduling with flexible coscheduling. IEEE Transactions on
Parallel and Distributed systems, 16(11):1066–1077, 2005.

[29] Ana GAINARU, Guillaume AUPY, Anne BENOIT, Franck CAPPELLO, Yves ROBERT
et Marc SNIR : Scheduling the i/o of hpc applications under congestion. In 2015
IEEE International Parallel and Distributed Processing Symposium, pages 1013–1022.
IEEE, 2015.

[30] Ana GAINARU, Valentin LE FÈVRE et Guillaume PALLEZ : I/o scheduling strategy
for periodic applications. ACM Transactions on Parallel Computing, 2019.

[31] Markus GEIMER, Felix WOLF, Brian JN WYLIE, Erika ÁBRAHÁM, Daniel BECKER
et Bernd MOHR : The scalasca performance toolset architecture. Concurrency and
computation: Practice and experience, 22(6):702–719, 2010.

[32] Robert GRANDL, Ganesh ANANTHANARAYANAN, Srikanth KANDULA, Sriram
RAO et Aditya AKELLA : Multi-resource packing for cluster schedulers. SIGCOMM
Comput. Commun. Rev., 44(4):455–466, août 2014.

Data scheduling at higher Scale 93

[33] Salman HABIB, Adrian POPE, Hal FINKEL, Nicholas FRONTIERE, Katrin HEIT-
MANN, David DANIEL, Patricia FASEL, Vitali MOROZOV, George ZAGARIS, Tom
PETERKA, Venkatram VISHWANATH, Zarija LUKIĆ, Saba SEHRISH et Wei keng
LIAO : Hacc: Simulating sky surveys on state-of-the-art supercomputing archi-
tectures. New Astronomy, 42:49–65, 2016.

[34] Yuya HASHIMOTO et Kento AIDA : Evaluation of performance degradation in
hpc applications with vm consolidation. In Networking and Computing (ICNC), 2012
Third International Conference on, pages 273–277. IEEE, 2012.

[35] Katrin HEITMANN, Nicholas FRONTIERE, Esteban RANGEL, Patricia LARSEN,
Adrian POPE, Imran SULTAN, Thomas URAM, Salman HABIB, Hal FINKEL, Danila
KORYTOV et al. : The last journey. i. an extreme-scale simulation on the mira super-
computer. The Astrophysical Journal Supplement Series, 252(2):19, 2021.

[36] Stephen HERBEIN, Dong H AHN, Don LIPARI, Thomas RW SCOGLAND, Marc
STEARMAN, Mark GRONDONA, Jim GARLICK, Becky SPRINGMEYER et Michela
TAUFER : Scalable i/o-aware job scheduling for burst buffer enabled hpc clus-
ters. In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, pages 69–80, 2016.

[37] Anthony JG HEY, Stewart TANSLEY, Kristin Michele TOLLE et al. : The fourth
paradigm: data-intensive scientific discovery, volume 1. Microsoft research Redmond,
WA, 2009.

[38] Florin ISAILA, Francisco Javier Garcia BLAS, Jesus CARRETERO, Wei keng LIAO et
Alok CHOUDHARY : A scalable message passing interface implementation of an
ad-hoc parallel I/O system. The International Journal of High Performance Computing
Applications, 24(2):164–184, 2010.

[39] Florin ISAILA, Jesus CARRETERO et Rob ROSS : Clarisse: A middleware for data-
staging coordination and control on large-scale hpc platforms. In Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium on, pages
346–355. IEEE, 2016.

[40] Mihailo ISAKOV, Eliakin DEL ROSARIO, Sandeep MADIREDDY, Prasanna BAL-
APRAKASH, Philip CARNS, Robert B ROSS et Michel A KINSY : Hpc i/o throughput
bottleneck analysis with explainable local models. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–13. IEEE,
2020.

[41] David JACKSON, Quinn SNELL et Mark CLEMENT : Core algorithms of the maui
scheduler. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 87–
102. Springer, 2001.

94 Nicolas Vidal

References

[42] Aw KHAN, Hyogi SIM, Sudharshan S VAZHKUDAI, Ali R BUTT et Youngjae KIM :
An analysis of system balance and architectural trends based on top500 supercom-
puters. In The International Conference on High Performance Computing in Asia-Pacific
Region, pages 11–22, 2021.

[43] Harsh KHETAWAT, Christopher ZIMMER, Frank MUELLER, Scott ATCHLEY, Sud-
harshan VAZHKUDAI et Misbah MUBARAK : Evaluating burst buffer placement in
hpc systems. Rapport technique, Oak Ridge National Lab.(ORNL), Oak Ridge, TN
(United States), 2019.

[44] Sunggon KIM, Alex SIM, Kesheng WU, Suren BYNA, Yongseok SON et Hyeonsang
EOM : Towards hpc i/o performance prediction through large-scale log analysis.
In Proceedings of the 29th International Symposium on High-Performance Parallel and
Distributed Computing, pages 77–88, 2020.

[45] Anthony KOUGKAS, Matthieu DORIER, Rob LATHAM, Rob ROSS et Xian-He SUN
: Leveraging burst buffer coordination to prevent i/o interference. In e-Science
(e-Science), 2016 IEEE 12th International Conference on, pages 371–380. IEEE, 2016.

[46] Sidharth KUMAR, Avishek SAHA, Venkatram VISHWANATH, Philip CARNS, John A
SCHMIDT, Giorgio SCORZELLI, Hemanth KOLLA, Ray GROUT, Robert LATHAM,
Robert ROSS et al. : Characterization and modeling of pidx parallel i/o for per-
formance optimization. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, page 67. ACM, 2013.

[47] J.K. LENSTRA, A.H.G. RINNOOY KAN et P. BRUCKER : Complexity of machine
scheduling problems. Ann. of Discrete Math., 1:343–362, 1977.

[48] Joseph LEUNG, Laurie KELLY et James H. ANDERSON : Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA,
2004.

[49] Y. LI, X. LU, E. L. MILLER et D. D. E. LONG : Ascar: Automating contention
management for high-performance storage systems. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–16, May 2015.

[50] Harold C LIM, Shivnath BABU et Jeffrey S CHASE : Automated control for elastic
storage. In Proceedings of the 7th international conference on Autonomic computing,
pages 1–10. ACM, 2010.

[51] Ning LIU, Jason COPE, Philip CARNS, Christopher CAROTHERS, Robert ROSS,
Gary GRIDER, Adam CRUME et Carlos MALTZAHN : On the role of burst buffers in
leadership-class storage systems. In Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on, pages 1–11. IEEE, 2012.

Data scheduling at higher Scale 95

[52] Y. LIU, R. GUNASEKARAN, X. MA et S. S. VAZHKUDAI : Server-side log data ana-
lytics for I/O workload characterization and coordination on large shared storage
systems. In SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 819–829, Nov 2016.

[53] Jay LOFSTEAD, Fang ZHENG, Qing LIU, Scott KLASKY, Ron OLDFIELD, Todd KO-
RDENBROCK, Karsten SCHWAN et Matthew WOLF : Managing variability in the io
performance of petascale storage systems. In Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Storage and Anal-
ysis, pages 1–12. IEEE Computer Society, 2010.

[54] Sandeep MADIREDDY, Prasanna BALAPRAKASH, Philip CARNS, Robert LATHAM,
Robert ROSS, Shane SNYDER et Stefan WILD : Modeling i/o performance variabil-
ity using conditional variational autoencoders. In 2018 IEEE international conference
on cluster computing (CLUSTER), pages 109–113. IEEE, 2018.

[55] Barton P MILLER, Mark D. CALLAGHAN, Jonathan M CARGILLE, Jeffrey K
HOLLINGSWORTH, R Bruce IRVIN, Karen L KARAVANIC, Krishna KUNCHITHA-
PADAM et Tia NEWHALL : The paradyn parallel performance measurement tool.
Computer, 28(11):37–46, 1995.

[56] James OLY et Daniel A REED : Markov model prediction of i/o requests for scien-
tific applications. In Proceedings of the 16th international conference on Supercomputing,
pages 147–155, 2002.

[57] Scott PARKER, Vitali MOROZOV, Sudheer CHUNDURI, Kevin HARMS, Chris
KNIGHT et Kalyan KUMARAN : Early evaluation of the cray xc40 xeon phi sys-
tem ‘theta’at argonne. Rapport technique, Argonne National Lab.(ANL), Argonne,
IL (United States), 2017.

[58] Tirthak PATEL, Suren BYNA, Glenn K LOCKWOOD et Devesh TIWARI : Revisiting
i/o behavior in large-scale storage systems: the expected and the unexpected. In
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–13, 2019.

[59] Tirthak PATEL, Zhengchun LIU, Raj KETTIMUTHU, Paul RICH, William ALLCOCK
et Devesh TIWARI : Job characteristics on large-scale systems: long-term analysis,
quantification, and implications. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–17. IEEE, 2020.

[60] Vincent PILLET, Jesús LABARTA, Toni CORTES et Sergi GIRONA : Paraver: A tool
to visualize and analyze parallel code. In Proceedings of WoTUG-18: transputer and
occam developments, volume 44, pages 17–31. Citeseer, 1995.

96 Nicolas Vidal

References

[61] Manu SHANTHARAM, Youngtae YOUN et Padma RAGHAVAN : Speedup-aware
co-schedules for efficient workload management. Parallel Processing Letters, 23(02):
1340001, 2013.

[62] Sameer S SHENDE et Allen D MALONY : The tau parallel performance system.
The International Journal of High Performance Computing Applications, 20(2):287–311,
2006.

[63] David E. SINGH et Jesus CARRETERO : Combining malleability and i/o control
mechanisms to enhance the execution of multiple applications. Journal of Systems
and Software, 148:21 – 36, 2019.

[64] David E SINGH, Florin ISAILA, Alejandro CALDERÓN, Felix GARCIA et Jesús CAR-
RETERO : Multiple-phase collective i/o technique for improving data access lo-
cality. In 15th EUROMICRO International Conference on Parallel, Distributed and
Network-Based Processing (PDP’07), pages 534–542. IEEE, 2007.

[65] David SKINNER et William KRAMER : Understanding the causes of performance
variability in hpc workloads. In IEEE International. 2005 Proceedings of the IEEE
Workload Characterization Symposium, 2005., pages 137–149. IEEE, 2005.

[66] Shane SNYDER, Philip CARNS, Kevin HARMS, Robert ROSS, Glenn K LOCKWOOD
et Nicholas J WRIGHT : Modular hpc i/o characterization with darshan. In 2016
5th workshop on extreme-scale programming tools (ESPT), pages 9–17. IEEE, 2016.

[67] Shane SNYDER, Philip CARNS, Robert LATHAM, Misbah MUBARAK, Robert ROSS,
Christopher CAROTHERS, Babak BEHZAD, Huong Vu Thanh LUU, Surendra BYNA
et PRABHAT : Techniques for modeling large-scale HPC I/O workloads. In Pro-
ceedings of the 6th International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems, PMBS ’15, pages 5:1–5:11, New
York, NY, USA, 2015. ACM.

[68] H. SUN, R. ELGHAZI, A. GAINARU, G. AUPY et P. RAGHAVAN : Scheduling parallel
tasks under multiple resources: List scheduling vs. pack scheduling. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 194–203,
May 2018.

[69] V TANAEV, W GORDON et Yakov M SHAFRANSKY : Scheduling theory. Single-stage
systems, volume 284. Springer Science & Business Media, 2012.

[70] K. TANG, P. HUANG, X. HE, T. LU, S. S. VAZHKUDAI et D. TIWARI : Toward manag-
ing HPC burst buffers effectively: Draining strategy to regulate bursty I/O behav-
ior. In 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 87–98, Sept 2017.

Data scheduling at higher Scale 97

[71] François TESSIER, Preeti MALAKAR, Venkatram VISHWANATH, Emmanuel JEAN-
NOT et Florin ISAILA : Topology-aware data aggregation for intensive i/o on large-
scale supercomputers. In 2016 First International Workshop on Communication Opti-
mizations in HPC (COMHPC), pages 73–81. IEEE, 2016.

[72] François TESSIER, Venkatram VISHWANATH et Emmanuel JEANNOT : Tapioca: An
i/o library for optimized topology-aware data aggregation on large-scale super-
computers. In 2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 70–80. IEEE, 2017.

[73] Tony T. TRAN, Meghana PADMANABHAN, Peter Yun ZHANG, Heyse LI, Dou-
glas G. DOWN et J. Christopher BECK : Multi-stage resource-aware scheduling
for data centers with heterogeneous servers. Journal of Scheduling, 21(2):251–267,
avril 2018.

[74] Andrew USELTON, Mark HOWISON, Nicholas J WRIGHT, David SKINNER, Noel
KEEN, John SHALF, Karen L KARAVANIC et Leonid OLIKER : Parallel i/o perfor-
mance: From events to ensembles. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–11. IEEE, 2010.

[75] Erick D. WIKUM, Donna C. LLEWELLYN et George L. NEMHAUSER : One-machine
generalized precedence constrained scheduling problems. Operations Research Let-
ters, 16(2):87 – 99, 1994.

[76] Guangwei WU, Jianer CHEN et Jianxin WANG : On scheduling two-stage jobs on
multiple two-stage flowshops. arXiv preprint arXiv:1801.09089, 2018.

[77] Bing XIE, Jeffrey CHASE, David DILLOW, Oleg DROKIN, Scott KLASKY, Sarp ORAL
et Norbert PODHORSZKI : Characterizing output bottlenecks in a supercomputer.
In Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, page 8. IEEE Computer Society Press, 2012.

[78] Li XU, Yueyao WANG, Thomas LUX, Tyler CHANG, Jon BERNARD, Bo LI, Yili
HONG, Kirk CAMERON et Layne WATSON : Modeling i/o performance variabil-
ity in high-performance computing systems using mixture distributions. Journal of
Parallel and Distributed Computing, 139:87 – 98, 2020.

[79] Lianghong XU, James CIPAR, Elie KREVAT, Alexey TUMANOV, Nitin GUPTA,
Michael A KOZUCH et Gregory R GANGER : Springfs: bridging agility and perfor-
mance in elastic distributed storage. In FAST, pages 243–255, 2014.

[80] Orcun YILDIZ, Matthieu DORIER, Shadi IBRAHIM, Robert ROSS et Gabriel ANTO-
NIU : On the Root Causes of Cross-Application I/O Interference in HPC Storage
Systems. In IPDPS 2016 - The 30th IEEE International Parallel and Distributed Process-
ing Symposium, pages 750–759, Chicago, United States, mai 2016.

98 Nicolas Vidal

References

[81] Xuechen ZHANG, Kei DAVIS et Song JIANG : Opportunistic data-driven execution
of parallel programs for efficient i/o services. In Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, pages 330–341. IEEE, 2012.

[82] Zhou ZHOU, Xu YANG, Dongfang ZHAO, Paul RICH, Wei TANG, Jia WANG et
Zhiling LAN : I/o-aware batch scheduling for petascale computing systems. In
Cluster Computing (CLUSTER), 2015 IEEE International Conference on, pages 254–
263. IEEE, 2015.

Data scheduling at higher Scale 99

100 Nicolas Vidal

Publications

Articles in Peer-reviewed Conferences

[83] Jesus Carretero, Emmanuel Jeannot, Guillaume Pallez, David E Singh, and Nicolas
Vidal. Mapping and scheduling hpc applications for optimizing i/o. In Proceedings
of the 34th ACM International Conference on Supercomputing, pages 1–12, 2020.

Articles in Peer-reviewed Journals

[84] Emmanuel Jeannot, Guillaume Pallez, and Nicolas Vidal. Scheduling periodic i/o
access with bi-colored chains: models and algorithms. Journal of Scheduling, pages
1–13, 2021.

Code

[85] Nicolas Vidal. Simulation code. https://gitlab.inria.fr/nividal/
simulation-code.git, 2021.

101

https://gitlab.inria.fr/nividal/simulation-code.git
https://gitlab.inria.fr/nividal/simulation-code.git

	Introduction
	Introduction
	A quick presentation of HPC
	Evolution
	The IO bottleneck
	Motivational example

	Context
	Existing solutions
	Data transformation
	Software to deal with I/O movement
	Batch scheduler

	Hardware solutions
	Related theoretical problems

	Monitoring
	Application modeling
	Periodic behavior
	I/O prediction

	Positioning
	Simulating HPC workloads
	Scientific context
	Implementation of the simulator
	Generating applications
	Resolve schedules

	Contributions

	Scheduling bandwidth accesses
	Bi-colored chains model
	Machine model
	Job Model
	Remark and motivational example

	Optimization problem

	Complexity of the MS-Hpc-IO problem
	Intractability
	Polynomial algorithms
	Case when i,=1
	Uniform jobs

	Approximation algorithms for MS-Hpc-IO
	List Scheduling algorithms
	Periodic algorithms
	Periodic algorithms for MS-Hpc-IO

	Experimental evaluation
	Heuristics
	List scheduling
	Periodic
	Best effort

	Scenarios/Use-case and instantiation
	Results
	Uncertainty and noise
	Machine Learning Use-Case

	Summary and perspectives

	Mapping with pack scheduling - Resource control
	Architecture overview
	Formal definition
	Machine Model
	Applications
	Optimization problem

	Pack scheduling to solve Hpc-IO
	Policies for IO-Sched with a single pack.
	Algorithms for the mapping problem

	Evaluation
	Impact of list-scheduling policies on IO-Sched on a real machine
	Experimental setup
	Result analysis and discussion

	Analysis of solutions for Hpc-IO with emulation
	Machine emulation
	Simulator validation

	Synthetic workload generation
	Evaluation with a single I/O node
	Multiple I/O nodes

	Conclusion and prospects

	Comparison with List-Scheduling - Strict constraint vs on average
	Simulation
	Constraint implementation
	List-scheduling (LS)
	Pack-Scheduling
	Variants

	Backfilling

	Evaluation Methodology
	Machine model for the simulator
	Applications
	Mira-based generation protocol
	Processor repartition
	Job duration
	Periodicity
	IO generation

	Uniform generation protocol
	Evaluation criterion
	Relevance of static workloads

	Evaluation and Results
	Difference between workloads
	Parameter dependencies
	Noise filtering
	Utilization
	Stretch

	Difference in execution

	Conclusion and prospects

	Conclusion
	Retrospective
	Early work
	Second step, a change of scope
	Maturation in the approach

	First thoughts on an open problem
	Openings
	Models
	Examples
	Conclusion

	References
	Publications

