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Titre : Phénoménologie des distributions de partons généralisées grâce à la diffusion Compton profon-
dément virtuelle
Mots clés : Distributions de partons généralisées, problème de déconvolution, QCD, structure du
nucléon, modélisation par réseau de neurones

Résumé : Les distributions de partons générali-
sées (GPD) contiennent une riche information sur
la structure des hadrons. Elles décrivent notam-
ment des distributions de quarks et de gluons tri-
dimensionnelles ainsi que les distributions en éner-
gie et en pression dans le milieu hadronique. Ces
propriétés motivent un effort théorique et expé-
rimental important, qui se concrétise notamment
par la construction de nouvelles installations expé-
rimentales à grande échelle comme le collisionneur
électron-ion (EIC).
Les GPD sont étudiées expérimentalement au tra-
vers de processus exclusifs, dont notamment la
diffusion Compton profondément virtuelle (DVCS)
qui est considérée comme l’un des processus les
mieux établis théoriquement pour accéder aux
GPD. La relation entre les GPD et les données
expérimentales DVCS est cependant complexe, et
nécessite notamment de résoudre un problème de

déconvolution. Nous présentons dans ce document
la première étude systématique des caractéristiques
de ce problème à l’ordre sous-dominant en pertur-
bation. Nous introduisons la notion de "shadow
distributions" comme un outil quantitatif pour me-
surer la difficulté de la procédure de déconvolution.
Il s’agit aussi d’un outil de modélisation intéres-
sant pour effectuer des extractions de GPD tout en
garantissant leurs propriétés théoriques correctes.
Afin de réduire la dépendence de modèle, nous uti-
lisons aussi des techniques de modélisation par ré-
seaux de neurones.
Nous étudions en détail la possibilité d’extraire les
propriétés mécaniques d’une manière moins dépen-
dante de modèle que les études actuelles, et nous
quantifions l’effet des futures installations envisa-
gées à la fois sur l’incertitude expérimentale du
DVCS et sur l’extraction des GPD par la procé-
dure de déconvolution.

Title : Phenomenology of generalised parton distributions from deeply virtual Compton scattering
Keywords : Generalised parton distributions, deconvolution problem, QCD, nucleon structure, neural
network modelling

Abstract : Generalised parton distributions
(GPDs) contain a wealth of information about
the structure of hadrons. In particular, they des-
cribe three-dimensional distributions of quarks and
gluons as well as the energy and pressure distri-
butions in the hadronic medium. These proper-
ties motivate a major theoretical and experimen-
tal effort, which is reflected in the construction of
new large-scale experimental facilities such as the
electron-ion collider (EIC).
GPDs are studied experimentally through exclu-
sive processes, including in particular deeply virtual
Compton scattering (DVCS) which is considered as
one of the best theoretically established processes
to access GPDs. The relationship between GPDs
and experimental DVCS data is however complex,
requiring in particular the solution of a deconvo-

lution problem. In this paper we present the first
systematic study of the characteristics of this pro-
blem at 1-loop in perturbation. We introduce the
notion of shadow distributions as a quantitative
tool to measure the difficulty of the deconvolu-
tion procedure. They represent also an interesting
modelling tool to perform GPD extractions while
guaranteeing their theoretically correct properties.
To achieve lesser model dependence, we make use
of neural networks modelling techniques.
We investigate in detail the possibility of extracting
mechanical properties in a less model-dependent
way than current studies, and quantify the effect
of the possible future facilities on both the expe-
rimental uncertainty of the DVCS and on the ex-
traction of GPDs by the deconvolution procedure.
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Detailed summary

Generalised parton distributions

Factorisation theorems provide one of the few practical ways to characterise hadron
structure from experimental data. They allow one to decompose scattering amplitudes
in terms of parton distributions, which are non-perturbative objects containing univer-
sal information on the structure of the hadron target, and process-dependent coefficient
functions computable in perturbation theory. Usual parton distribution functions (PDFs),
which enter notably the description of deeply inelastic scattering, receive a probabilistic
interpretation as the number density of partons (quarks and gluons) depending on the
fraction of longitudinal momentum x they carry in a fast moving hadron. Exclusive pro-
cesses – where all particles involved in the final state of the interaction are measured
– like deeply virtual Compton scattering (DVCS) or deeply virtual meson production
(DVMP) motivate the introduction of parton distributions of higher dimension, known
as generalised parton distributions (GPDs). Contrary to PDFs, GPDs may be used to
describe scattering amplitudes where a momentum transfer to the hadron target occurs.
As a consequence, in addition to the longitudinal momentum x, they also depend on
the longitudinal momentum transfer measured by ξ, and the total momentum transfer
measured by t. PDFs are recovered from GPDs in the so-called forward limit, where no
momentum is transferred to the hadron target (ξ = t = 0). GPDs also generalise elastic
form factors which are obtained by integrating GPDs over x.

In addition to the three variables x, ξ and t, and similarly to PDFs, GPDs depend on a
renormalisation scale µ2 which arises from the necessity to eliminate the UV divergence of
the field operators which formally define GPDs. The dependence of parton distributions
on the renormalisation scale can be expressed in perturbation theory thanks to integro-
differential equations known as evolution equations.

As generalisations of PDFs, GPDs also possess a probabilistic interpretation. They
encode the correlation between the longitudinal momentum fraction x and the transverse
position in the hadron with respect to the barycenter of longitudinal momentum. This
cartography of the radial distribution of longitudinal momentum is known as hadron
tomography, and it is one of the key motivations for the GPD study programme. Another
crucial physical motivation is the remarkable possibility to express matrix elements of
the energy momentum tensor in terms of gravitational form factors (GFFs) derived from
GPDs. The GFFs in turn allow one to define distributions of energy and pressure inside
the hadron matter. This subject has been at the center of a considerable theoretical and
experimental interest in recent years, and several phenomenological extractions based on
various available DVCS datasets with different modelling hypotheses have been published.

The DVCS deconvolution problem

Although GPDs are involved in several different experimental processes, DVCS has
received most of the theoretical and experimental attention in recent years. Indeed, it has
both the advantage of a significant cross-section – if necessary when taking into account its
interference with the Bethe-Heitler process – and a relatively clean theoretical description
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Detailed summary

– compared for instance with DVMP which involves another non-perturbative function
known as distribution amplitude. A factorisation theorem demonstrates that the DVCS
amplitude can be parameterised by Compton form factors (CFFs) F computed from GPDs
F in the following generic way

F(ξ, t, Q2) =
∑
a

∫ 1

−1

dx

ξ
T a
(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
F a(x, ξ, t, µ2)

xpa
, (1)

where the sum runs over parton types (with a = q for quarks and g for gluons), T a is
the DVCS coefficient function computable in perturbation theory, pa = 0 of a = q and 1
if a = g, αs is the strong coupling and Q2 is the virtuality of the photon mediating the
interaction between the incoming lepton and hadron target. The question of whether the
actual value of F a can be extracted from the experimental knowledge of F is known as
the DVCS deconvolution problem and is a central element of the study of this document.
The question must be refined, as for instance the parity of T q already implies that only
the x-odd part of the GPD Hq, known as singlet quark GPD and denoted by

Hq(+)(x, ξ, t, µ2) = Hq(x, ξ, t, µ2)−Hq(−x, ξ, t, µ2) , (2)

contributes to the integral of Eq. (1). Furthermore, the separation of the contributions
of the various parton types is notoriously hard to perform. The question is made all the
more difficult that GPDs must follow a number of theoretical constraints. Notably their
Mellin moments in x must be polynomials in ξ due to Lorentz covariance :∫ 1

−1
dx xnHq(x, ξ, t, µ2) =

n+1∑
k=0
k even

Hq
n,k(t, µ

2)ξk . (3)

It is actually equivalent for Hq to satisfy Eq. (3) and to write as an integral transform
known as Radon transform

Hq(x, ξ, t, µ2) =

∫
dαdβ δ(x− β − αξ)

[
f q(β, α, t, µ2) + ξδ(β)Dq(α, t, µ2)

]
, (4)

where the support of f q(β, α) is restricted to |α| +|β| ≤ 1 and that ofDq(α) to α ∈ [−1, 1].
f q is known as a double distribution (DD) and Dq as the q-contribution to the D-term.
Although the x and ξ dependence of GPDs is entangled by the requirement of Eq. (3),
the α and β dependence of DDs is unconstrained by that relation except for the support
property.

A study of the analytical properties of scattering amplitudes with some assumptions
on the behaviour of ImH(ξ, t, Q2) for ξ → 0 allows one to derive dispersion relations that
relate the real and imaginary parts of CFFs

ReH(ξ, t, Q2) =
1

π
p.v.

∫ 1

0

dξ′ ImH(ξ′, t, Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
+ CH(t, Q

2) , (5)

where CH , independent of ξ, is known as the subtraction constant, and is related to the
D-term by

CH(t, Q
2) =

2

π

∫ ∞
1

∑
a

dω

ωpa
ImT a

(
ω,
Q2

µ2
, αs(µ

2)

)∫ 1

−1
dz

Da(z, t, µ2)

ω − z
. (6)
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Detailed summary

In the end, the information on GPDs contained in DVCS experimental data is exactly
made of the imaginary part of Eq. (1) which constrains solely the β-odd part of the DD
denoted by f q(+), and Eq. (6) which constrains solely the D-term.

At leading order (LO) in αs, the imaginary part of Eq. (1) reads

ImH(ξ, t, Q2)
LO
= π

∑
q

e2qH
q(+)(ξ, ξ, t, µ2) , (7)

= π
∑
q

e2q

∫ 1

(ξ−1)/(1+ξ)
dα f q(+)(ξ(1− α), α, t, µ2) , (8)

and Eq. (6) yields

Cq(t, Q2)
LO
= 2

∑
q

e2q

∫ 1

−1
dz

Dq(z, t, µ2)

1− z
, (9)

where it is customary to choose µ2 close to Q2. We will assume in the following that
µ2 = Q2 unless explicitly stated otherwise.

Since both Eqs. (8) and (9) involve integrals of the DD and the D-term where one
variable is integrated out, it seems at first unlikely that even a perfect knowledge of DVCS
experimental data over a large kinematic range will be enough to actually retrieve the
β-odd part of the DD and the D-term. However, the knowledge of the dependence of these
two objects on µ2 thanks to evolution equations provides the theoretical argument that
demonstrates the possibility to perform this extraction.

Quantifying the uncertainty of the deconvolution problem for the subtraction
constant

The LO evolution of the D-term is conveniently expressed thanks to an expansion in
terms of Gegenbauer polynomials :

Dq(z, t, µ2) = (1− z2)
∞∑

odd n

dqn(t, µ
2)C(3/2)

n (z) , (10)

Dg(z, t, µ2) =
3

2
(1− z2)2

∞∑
odd n

dgn(t, µ
2)C

(5/2)
n−1 (z) . (11)

Then Eq. (9) gives

CH(t, Q
2)

LO
= 4

∑
q

e2q

∞∑
odd n

dqn(t, µ
2) . (12)

The interest of this representation is that it is possible to write LO evolution equations
as

dqn(t, µ
2)

LO
= Γqqn (µ

2, µ2
0)d

q
n(t, µ

2
0) + Γqgn (µ2, µ2

0)d
g
n(t, µ

2
0) , (13)

dgn(t, µ
2)

LO
= Γgqn (µ2, µ2

0)d
q
n(t, µ

2
0) + Γggn (µ2, µ2

0)d
g
n(t, µ

2
0) . (14)

The evolution operators Γabn dictate the behaviour of dan as functions of µ2. If the dan
form a linearly independent family of functions of µ2, then the measurement of DVCS
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experimental data on a range of various values Q2 should give in principle the power
to discriminate each dqn and reconstruct therefore the full D-term Dq(α, t, µ2) from the
simple knowledge of CH(t, Q2).

The assessment of the practical possibility to perform such extraction, both with res-
pect to the current DVCS dataset and the expected impact of the electron ion collider
(EIC), is one of the original contributions of this document. A model independent ex-
traction of the D-term would require dan for all values of n ∈ {1, 3, 5, ...} to be obtained
directly from experimental data. As a simplification, we first only allow d1 to be fitted,
and then d1 and d3 jointly. By studying the effect of adding a new free parameter in the
representation of the D-term, we can quantify the possibility of a lesser biased extrac-
tion. We show that under a certain number of modelling assumptions that are used in
state-of-the-art phenomenological extractions of the D-term, it is possible to estimate the
uncertainty on dq3 by

∆dq3 ≈
3

4
σ

(
1− Γqq3 (µ2

max, µ
2
min)

Γqq1 (µ2
max, µ

2
min)

)−1
, (15)

where [µ2
min, µ

2
max] represents the available range in Q2 where precise DVCS subtraction

constant data are collected, and σ their typical uncertainty. Eq. (15) highlights that
the uncertainty linked to the extraction of the D-term comes from two main sources :
uncertainty on the experimental data σ, and uncertainty due to the limited handle in Q2

here quantified by how similar the evolution of the various dn is on the available range in
Q2. It is indeed the fact that each dn behaves differently under evolution which provides
the theoretical leverage to solve the deconvolution problem.

We demonstrate how to reinterpret the uncertainty estimate of the deconvolution
procedure (15) by introducing what we called "shadow" D-terms. These objects bring
exactly no contribution to the subtraction constant CH(t, Q2) at the chosen perturbative
order for Q2 = µ2

0, and their contribution remains below the value of σ on the available
range of Q2. We show that the maximal size of the shadow D-terms which belong to the
allowed modelling space for theD-term provides a similar quantification of the uncertainty
of the deconvolution procedure compared to (15).

DVCS phenomenology

We show that our estimate is able to give a fair account of the current phenomenology
of DVCS. First we present in detail neural network modelling tools we use to give an
account of uncertainty propagation in complicated analyses of experimental data. We
discuss strategies for the training and validation of the networks and stress the impact
of outlier removal. We compare this computationally intensive technique with traditional
statistical tools like the Hessian matrix, and show in both cases how fits can accommodate
new data points without the need for a lengthy recalculation.

We notably use one of these tools, known as Bayesian reweighting, to investigate
the impact of a potential future experimental facility on the experimental uncertainty σ
in Eq. (15). We show how data taking with a positron beam at the Thomas Jefferson
National Accelerator Facility (JLab) could allow a significant reduction of uncertainty on
ReH, which plays a crucial role in the subtraction constant uncertainty, thanks to the
measurement of beam charge assymmetries. The assessment of the expected uncertainty
reduction on ReH under hypotheses detailed in the document is shown on Fig. 1.
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Figure 1 – 68% confidence regions for ReH with the current DVCS dataset (orange band)
and the expected reduced uncertainty thanks to the positron programme at JLab (blue band).
For each of the thirteen (xB, Q

2) bins [ξ ≈ xB/(2− xB)], the subgraph shows the results on the
t bins.

To investigate the uncertainty in the deconvolution procedure linked to the leverage in
Q2 in Eq. (15), we lead a detailed numerical analysis of evolution operators Γqqn . This study
allows us to understand several intriguing features of our phenomenological extraction of
the D-term : we are notably able to explain the ∼20 times increase in uncertainty when
fitting jointly d1 and d3 compared to d1 alone in our phenomenological extraction of the D-
term with the current DVCS dataset, but also the lack of sensitivity to gluon contributions
when they are generated radiatively from quark ones. We are furthermore able to predict
that with an extended coverage in Q2 provided by the EIC, a reduction of uncertainty by
a factor ∼3 on the joint fit of d1 and d3 may be expected from the sole effect of the Q2

range, not taking into account an effect of increased precision of the measurements σ.
We also present the first results of a phenomenological study of the subtraction

constant led at next-to-leading (NLO) order on the current DVCS dataset, and conclude
that most of the features identified at leading order remain relevant.

The deconvolution problem for double distributions

Having discussed in detail the uncertainty of the deconvolution procedure allowing to
recover the D-term from the subtraction constant, we turn to the issue of extracting the
DD from the imaginary part of the CFF. We use for this an extension of our concept of
shadow D-terms, namely shadow DDs. These are DDs whose contribution to the CFF
at the chosen perturbative order is exactly 0 at scale Q2 = µ2

0. As in the case of shadow
D-terms, the size of the contribution to the CFF of shadow DDs under evolution over the
available Q2 experimental range provides a measure of the deconvolution uncertainty.

We demonstrate in detail the existence of shadow DDs at NLO by using DDs which
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Figure 2 – Three GPDs depicted as functions of x for ξ = 0.1 and ξ = 0.5 whose NLO CFF
at ξ = 0.1 differs by less than ∼ 10−5 although the GPDs themselves differ by ∼1.

are polynomials in α and β. We show how this choice allows us to build a series of linear
systems with a convenient form, give explicitly the formulas required for the iterative
solution of these systems, and provide explicit solutions. We also discuss some advantages
and drawbacks of the use of polynomial DDs for the phenomenology of GPDs, and notably
the covariant extension programme.

To clarify the effect of LO evolution on shadow DDs, we devote a detailed presenta-
tion to the difference between the expansion of the DVCS coefficient function in terms
of leading logarithms and leading powers of αs. Although we are working at NLO, and
therefore shadow DDs strictly cancel the terms of order α0

s and α1
s of the DVCS coefficient

function, the resummation of all terms of order αks log
k(Q2/µ2) for k ≥ 2 (leading loga-

rithm expansion of the DVCS coefficient function) yields a non-vanishing contributions
to the CFF under LO evolution. We provide therefore the first result at order α1

s with
LO evolution showing that even on a range of [1, 100] GeV2, the three GPDs presented
on Fig. 2 are impossible to tell apart with only DVCS data, as their CFFs are indistingui-
shable in typical experimental uncertainty. Practically, shadow DDs represent archetypal
pitfalls for an unbiased extraction of GPDs : as the flexibility of the GPD model increases,
and such shadow GPDs enter the chosen modelling space, the deconvolution uncertainty
explodes.

New models of generalised parton distributions

On the goal towards lesser biased GPD phenomenology, neural network models, which
are already used to represent CFFs extracted from experimental data, arise as a natural
possibility. We demonstrate how it is possible to satisfy many theoretical constraints
on GPDs by using a neural network representation of DDs which enforces by design
the polynomiality of Mellin moments (see Eq. (3)), expected discrete symmetries, and
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Figure 3 – Demonstration of uncertainty for a neural network model trained to reproduce
the forward limit and LO CFF of a phenomenological model (Goloskokov-Kroll) while respecting
polynomiality of Mellin moments and a simplified positivity constraint. Comparison between the
neural network model (orange band) and the Goloskokov-Kroll model (black line) for ξ = 0.1
(left), ξ = 0.5 (center) and ξ = x (right). The hatched bands represent the excluded zone by the
positivity condition.

reproduces at the same time a given forward limit and LO CFF. An example of the
result of such neural network model applied to a popular phenomenological model is
demonstrated in Fig. 3. We design a specific DD representation to give an account of
the uncertainty related to shadow DDs. We also give a special attention to positivity
inequalities, which bring strong constraints on the shape of distributions in the large x
region. We notably show how the training procedure allows the implementation of these
constraints and stress their impact on the uncertainty of the fit.

We observe that shadow GPDs do not bring significant uncertainty on the small ξ
region due to an implicit assumption of regularity of DDs. In the small ξ and x limit, we
focus on a popular modelling proposal for GPDs based on the Shuvaev transform, which
allows one to approximate small ξ GPDs entirely from their forward limit. This possibility
is particularly enticing to constrain gluon PDFs at very low x from measurement of heavy
vector meson production in ultra-peripheral collisions. We show how it is possible to
reinterpret this modelling proposal thanks to a new evolution code APFEL++. As the
validity of the procedure relies crucially on the idea that the large x region of the PDF at
some low initial scale µ2

0 controls the small x and ξ region at a large scale µ2, we propose
a modification of the method to introduce a quantification of its systematic uncertainty.
Our quantification of uncertainty consists in an actual measurement of the dominance
of the large x region at some initial scale to the evolution of the GPD. It allows us to
establish some criteria on how small x and ξ, and how large the energy scale involved in
the process should be for the reconstruction of the GPD from its forward limit to appear
as a sound procedure.
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Introduction

Quantum chromodynamics (QCD) provides the current standard description of the
strong force, one of the three fundamental interactions in nature besides gravitation and
the electro-weak interaction. Introduced in 1973 by Fritzsch, Leutwyler and Gell-Mann, it
gives a formal frame to earlier ideas like Feynman’s parton model or the constituent quarks
of Gell-Mann and Zweig. QCD is a quantum field theory involving fermionic and bosonic
fields – respectively called quarks 1 and gluons – which carry a quantum number known
as colour. Because it is a non abelian gauge theory of colour symmetry SU(3) and strong
coupling at low energy, the dynamics of QCD is significantly more difficult to elucidate
than that of its eminent predecessor, quantum electrodynamics (QED). About 50 years
after the introduction of QCD, many challenges remain to access a better understanding
of the strong interaction. The fundamental issues of a precise description of confinement
– which prevents the observation of isolated coloured objects – and the origin of the mass
of nucleons – which stems mostly from spontaneous chiral symmetry breaking 2 – are key
elements of a Millenium Prize Problem by the Clay Mathematical Institute entitled "Yang-
Mills and mass gap". Other subjects of no lesser interest are for instance the description
of nuclei in terms of partonic degrees of freedom, or the study of hadron matter under
extreme conditions which prevailed a few microseconds after the Big Bang thanks to the
quark-gluon plasma. A final subject of considerable importance in the realm of QCD is the
description of the inner structure of hadrons, and notably nucleons. Protons and neutrons
are certainly among the most concrete and down to earth objects of study for a physicist.
Yet the precise dynamics of quarks and gluons inside such common objects remains largely
to unravel. In parallel to the search for exotic physics, the quest for precision in the
description of systems as ordinary as nucleons is now a clearly affirmed objective of the
high energy physics community. Beyond its intrinsic interest, this precision is anyway
necessary for searches of beyond the Standard Model physics, as the uncertainty in the
description of hadron states is now a significant part of the experimental uncertainty at
the LHC.

Hadron structure is non perturbative in nature due to the large value of the strong
coupling at energies of the order of the nucleon mass. A major tool to probe hadron
structure while keeping ingredients from perturbation theory is provided by factorisation
theorems. They decompose processes in a perturbative and a non-perturbative parts.
The latter is encoded in a universal object known as parton distribution which contains
crucial information on the inner dynamics of the hadron. We will focus in this work on
generalised parton distributions (GPDs) which were introduced more than two decades
ago. They contain a remarkable multidimensional information on the structure of hadrons,
providing insight on the long-standing question of the distribution of spin among the

1. Quark fields conceived as degrees of freedom of the QCD langrangian are conceptually quite different
from the constituent quarks previously mentioned. The latter had mostly been conceived prior to the
establishment of QCD as a mathematical encoding of the classification subtended by the Eightfold way
introduced by Gell-Mann and Ne’eman. However, in the limit of interaction at low energy, some features
of the QCD description of hadrons can be related to a description in terms of constituent quarks.

2. The explicit chiral symmetry breaking due to the coupling of quarks to the Higgs field contributes
only at the percent level to the mass of nucleons
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hadron constituents, giving a unique access to form factors of the energy-momentum
tensor, and mapping the radial distribution of momentum in a fast-moving hadron. Our
work mostly concerns a question whose formulation is very simple. What do factorised
observables, in particular of deeply virtual Compton scattering (DVCS), tell us exactly on
GPDs ? Although this question has been addressed several times since the introduction of
GPDs, we find that it has never been studied in the systematic way that we will propose.
Among the important contributions of this work are shadow distributions, which we
introduce as a way to study precisely the possibility of reverting the convolution produced
by factorisation. This issue, known as the deconvolution problem, will serve as a central
theme of the second part of our presentation.

The structure of this document is as follows. In the first part, we will present a brief
review of the theory of GPDs and revisit some aspects needed for the developments of
the second part. References on our published and preliminary articles are summarised at
the end of this introduction.

— The first chapter is devoted to an intuitive presentation of factorisation theorems,
the definition of GPDs and their link to non-perturbative objects of different di-
mensions and the presentation of some selected physical motivations for the study
of GPDs.

— The second chapter focuses on important properties of GPDs, like the consequences
of Lorentz covariance, the representation in terms of Fock state expansions and a
brief evocation of renormalisation which will be the subject of later developments
in the document, thanks notably to our publication of a new LO evolution code in
momentum space described in Ref. [1].

— The third chapter presents phenomenological aspects of GPDs, by studying their
experimental access and some existing modelling strategies.

In the second part, we will put a lot more emphasis on the study of the extraction of
GPDs, mostly from DVCS experimental data.

— The fourth chapter presents important aspects of statistical nature to understand
our analyses of experimental data and modelling strategies. We apply these tools
notably to discuss a study we have published in Refs. [2, 3] to provide a preliminary
assessment of the impact of a positron beam at the Thomas Jefferson National
Accelerator Facility (JLab) on some aspects of GPD physics.

— The fifth chapter deals in detail with the question of extracting a form factor of the
energy-momentum tensor from DVCS data. We present a detailed analysis of the
potential of current and future experimental data, and show how this extraction
is a prototype of the deconvolution problem, highlighting particularly the role of
evolution in its solution. This chapter contains several new results in addition to the
presentation of our published phenomenological analysis of the proton mechanical
properties in Ref. [4]. We notably demonstrate a new method to estimate the impact
of future experimental facilities like the electron ion collider (EIC), introduce a
discussion of what we have called shadow D-terms and present new results of
a next-to-leading order extraction of the gravitational form factor which will be
published in an article in preparation [5].

— The sixth chapter presents our derivation of shadow GPDs as a tool to give a
quantitative answer to the full deconvolution problem at next-to-leading order. We
show in detail the choices which have led us to the derivation we published in
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Refs. [6, 7]. We give an emphasis on the effect of evolution on these objects thanks
to the study of the requirements of consistency between DVCS coefficient functions
and evolution operators and discuss their consequences for the phenomenology of
GPDs.

— The seventh chapter builds upon our understanding of the contribution of shadow
GPDs to the modelling uncertainty to propose new models of GPDs. An analytical
unpublished model with the ability to exactly reproduce DVCS data at leading
order as well as other enticing properties is first derived, and its advantages and
limitations are discussed. We then present our modelling strategy of GPDs with
neural networks published in Ref. [8]. We end our discussion by focusing on the
question of the extrapolation to zero skewness of GPDs. This limit plays a speci-
fic role with respect to the deconvolution problem and shadow distributions. We
present a reinterpretation of the validity of the Shuvaev transform thanks to the
LO GPD evolution code published in Ref. [1] in momentum space. We propose a
closely related but nonetheless different strategy so as to give an account of the un-
certainty of the reconstruction of the low ξ dependence of GPDs from their forward
limit. We discuss the phenomenological interest of our proposal in the context of
photo-production of heavy vector mesons. This proposal will soon be submitted to
publication [9].

Published articles
[2] H. Dutrieux, V. Bertone, H. Moutarde, P. Sznajder. "Impact of a positron beam

at JLab on an unbiased determination of DVCS Compton form factors". Eur. Phys. J. A
57.8 (2021)

[3] A. Accardi et al. "An experimental program with high duty-cycle polarized and
unpolarized positron beams at Jefferson Lab". Eur. Phys. J. A 57.8 (2021)

[4] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawiński, J. Wagner. "Phe-
nomenological assessment of proton mechanical properties from deeply virtual Compton
scattering". Eur. Phys. J. C 81.4 (2021)

[6] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder. "Deconvolution
problem of deeply virtual Compton scattering". Phys. Rev. D 103.11 (2021)

[8] H. Dutrieux, O. Grocholski, H. Moutarde, P. Sznajder. "Artificial neural network
modelling of generalised parton distributions". Eur. Phys. J. C 82.3 (2022)

Article under review
[1] V. Bertone, H. Dutrieux, C. Mezrag, J.M. Morgado, H. Moutarde. "Revisiting

evolution equations for generalised parton distributions". (2022)

Articles in preparation
[5] H. Dutrieux, T. Meisgny, C. Mezrag, H. Moutarde, P. Sznajder. "Proton internal

pressure from deeply virtual Compton scattering on collider kinematics".
[9] H. Dutrieux, M. Winn, V. Bertone. "When exclusive meets inclusive at low Bjorken-

xB : how to use exclusive measurements to constrain PDFs based on evolution equations".

Published proceeding
[7] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder. "Shadow generali-

zed parton distributions : a practical approach to the deconvolution problem of DVCS".
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SciPost Phys. Proc. (8 2022)

0.1 . Notations

Recurring abbreviations by alphabetic order

BCA : beam charge asymmetry
CFF : Compton form factor
DD : double distribution
DDVCS : double deeply virtual Compton scattering
DIS : deep inelastic scattering
DVCS : deeply virtual Compton scattering
DVMP : deeply virtual meson production
EFF : elastic form factor
EIC : electron ion collider
EMT : energy momentum tensor
GFF : gravitational form factor
GPD : generalised parton distribution
HVMP : heavy vector meson production
l.h.s. / r.h.s. : left hand side / right hand side of an equation
LL / NLL : leading logarithm / next-to-leading logarithm
LO / NLO : leading order / next-to-leading order
MLP : multi-layer perceptron
PDF : parton distribution function
RDDA : Radyushkin’s double distribution Ansatz
RGE : renormalisation group equation
TCS : time-like Compton scattering

Symbols

In a general fashion, superscripts a or b denote the specialisation of a quantity to a
parton of type a or b. For instance Ha(x, µ2) is a GPD of parton of type a. Sometimes,
we will specify it by replacing a with g for gluons and q for quarks, or even u, d, s, c, ... if
the quark flavour plays a specific role.

A(t), B(t), C(t), C̄(t), DGFF (t) . : .GFFs
.

a(x, µ2) : unpolarised PDF of parton of type a (for instance
u(x, µ2) for quark flavour u, g(x, µ2) for gluons).

αs(µ
2) : strong coupling constant

CH(t, Q
2) : DVCS subtraction constant

CH,k[D
q, Dg](t, Q2) : DVCS subtraction constant computed from the D-terms

Dq and Dg at NkLO
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.
C

(α)
n (.) : Gegenbauer polynomial of order n (α = 3/2 for quarks

and 5/2 for gluons)
Da(z, t, µ2) : D-term of parton of type a
dan(t, µ

2) : coefficient of the expansion of Da(z, t, µ2) on Gegen-
bauer polynomials for C(α)

n

δ(.) : Dirac delta distribution
δjk : Kronecker symbol, equals 1 if j = k and 0 otherwise
∆ : four-momentum transfer to the hadron target
eq : electric charge of the quark of flavour q
fa(β, α, t, µ2) : DD of parton of type a
F1(t), F2(t) : Dirac and Pauli EFFs
Γab(z/ξ, ξ/x;µ2, µ2

0) : evolution operator of the GPD Hb at lower scale µ2
0 to

the GPD Ha at upper scale µ2

Γab,(k)(z/ξ, ξ/x;µ2, µ2
0) : evolution operator of the GPD truncated at perturbative

order αks
Γabn (µ

2, µ2
0) : evolution operator of the dbn(t, µ2) coefficients at lower

scale µ2
0 to the dan(t, µ2) coefficient at upper scale µ2

Ha, Ea, H̃a, Ẽa : GPDs of parton of type a
Ha(+)/Ha(−) : singlet / non-singlet components of the GPD
H, E , H̃, Ẽ : CFFs
M : hadron mass
µ2 : renormalisation scale
Oa
n(ξ, t, µ

2) : n-th conformal moment of Ha

Ω : support of the DDs (also called rhombus)
pa : equals 1 if a = g, and 0 otherwise
Q2 : square of the lepton four-momentum transfer (usually

photon virtuality)
t : square of four-momentum transfer to the hadron target

∆2

T ak (x/ξ,Q
2/µ2, αs(µ

2)) : DVCS coefficient function computed at NkLO for parton
of type a

Θ(.) : Heaviside step function
x : longitudinal momentum fraction
xB : Bjorken’s variable
ξ : skewness variable
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Generalised parton distributions
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1 - An introduction to generalised parton distributions

1.1 . An intuitive take on factorisation theorems

Generalised parton distributions were first introduced in the description of two exclu-
sive experimental processes : deeply virtual Compton scattering (DVCS) [10, 11, 12] and
deeply virtual meson production (DVMP) [13, 14] whose diagrammatic representations
are given in Fig. 1.1. In both processes, a virtual photon γ∗ with large space-like squared
four-momentum q2 ≪ −M2 is exchanged usually from an incoming lepton beam with a
hadron target of mass M . Contrary to inclusive processes where any final state of the
interaction is considered, exclusive processes require that the hadron remains intact in
the final state. DVCS and DVMP differ in the additional particle produced in the inter-
action, a real photon for DVCS and a meson for DVMP. Both processes share however a
deep similarity, in that they can be described by factorisation theorems involving GPDs 1

[15, 16, 17]. Ref. [18] provides a clear picture of the physical content of factorisation for
inclusive processes and the interpretation of usual parton distribution functions (PDFs)
as probability distributions. We also refer to the introduction of Ref. [19] for a very nice
intuitive introduction to factorisation. We try here to give a very naive understanding of
why deeply virtual processes allow us to access information about the inner structure of
hadrons, and why exclusive processes give a more complete picture compared to inclu-
sive ones. We will not dwell on the numerous technicalities of the proofs of factorisation
theorems, and postpone a formal definition of GPDs to the next section.

When a deeply virtual photon interacts with a parton inside a hadron, the struck
parton receives a large four-momentum transfer. It is usual to introduce Q2 ≡ −q2 ≫M2

as the opposite of the squared four-momentum of the virtual photon, and the interac-
tion of the struck parton with the rest of the hadron can be viewed diagrammatically
as the exchange of partons of virtuality of the order of Q2. Their contribution to the
cross-section of the process is suppressed by powers of 1/Q as the number of exchanged

1. These theorems are demonstrated at leading twist (see later for an intuitive view of the twist
expansion) for transverse polarised photons in DVCS and longitudinal polarised photons in DVMP, in
specific kinematic regions. We will provide more details in Chapter 3 when coming back on experimental
access to GPDs.

Figure 1.1 – Deeply virtual Compton scattering (left) and deeply virtual production of a J/ψ
meson (right) for an incoming electron beam.
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Figure 1.2 – Quark contributions to the factorisation of DVCS in the leading twist (left panel)
and next-to-leading twist approximations (right panel). µ2F is the factorisation scale. A similar
plot can be produced with gluons instead of quarks.

partons increases 2. This gives rise to a so-called twist expansion of the process (see for
instance Ref. [20] for a precise definition of twist). We show on the left panel in Fig. 1.2
the diagrammatic representation of a leading twist contribution – that is twist-two in
this context – to the description of DVCS, where the upper grey area representing the
interaction of the struck parton with the virtual photon is separated from the lower grey
area representing the rest of the consituents of the hadron as long as a large virtuality is
transferred to the struck parton. The right panel of Fig. 1.2 shows a higher twist contri-
bution, where an interaction between the struck parton carrying a large four-momentum
and the rest of the hadron is mediated by a gluon.

The region where a large virtuality flows thanks to the interaction with the deeply
virtual photon is called hard part, whereas the region where only small virtuality is
encountered is called soft part. The separation between large and small virtuality is
somewhat arbitrary and fixed by the choice of a factorisation scale µ2

F . Technically,
the factorisation scale arises as the renormalisation scale of the bilocal operator involved
in the formal definition of GPDs given in Section 1.2. It corresponds roughly to an up-
per cut-off on the transverse momentum k⊥ carried by partons within the hadron (see
Ref. [18, 21] for instance for more details). Intuitively the renormalisation scale can be
viewed as the energy resolution at which the system is described. As it increases, partons
are splitted into multiple radiatively generated constituents. It is usual to choose the re-
normalisation / factorisation scale close to the actual virtuality involved in the process
to reduce the necessity of resumming large logarithmic corrections due intuitively to the
inadequacy between the resolution at which the system is described and the one at which
it is experimentally probed. We will explore aspects of the resummation of logarithmic
contributions in more detail in Section 6.3.1.

Thanks the remarkable property of asymptotic freedom of QCD [22, 23, 24], it
is possible to describe the hard part of the scattering with a perturbative expansion in
increasing orders of the strong coupling αs(µ

2
R), where µ2

R is the renomalisation scale.
Fig. 1.3 shows the leading order (LO) and an example of next-to-leading order (NLO)
contributions to the description of the hard part where the struck quark radiates a gluon
loop. The perturbative expression of the hard part of the scattering is called coefficient

2. We do not consider the case of longitudinally polarised gluons whose contribution is contained in
the Wilson line which is cancelled by an appropriate gauge fixing procedure.
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Figure 1.3 – Factorisation of DVCS in the leading twist description at leading order (left
panel) and an example of a next-to-leading order contribution (right panel).

function. Different processes like DVCS and DVMP are described by different coefficient
functions. As we have previously mentioned, the coefficient functions must depend on the
factorisation scale to absorb – at least up to the perturbative order at which it is defined
– the consequence of arbitrary variations of scale. Section 6.3.1 will notably derive the
practical consequences of this requirement.

On the contrary, the soft part of the interaction, which contains the dynamics of
the low energy QCD interaction in the hadron, does not let itself handled within the
perturbative formalism. It is described by a non-perturbative parton distribution. Deeply
inelastic scattering (DIS) [25] requires only the knowledge of usual PDFs. On the contrary,
DVCS and DVMP require the introduction of GPDs. The reason for this refinement is
the more complicated kinematic structure of the latter two processes. Whereas structure
functions of DIS depend solely on Bjorken’s variable xB, Q2 and angles characterising the
trajectory of the lepton, the fact that the final state of exclusive processes is measured
introduces a kinematic dependence on the transfer of four-momentum to the target. GPDs
generalise the information contained in PDFs, which only describe the distribution of
forward momentum x in the struck hadron, by also depending on the total four-momentum
transfer t and its longitudinal component ξ, often called skewness.

Unlike the coefficient functions which depend on the process under consideration,
parton distributions are universal objects in the sense that the same object is involved in
the description of various processes. For instance, GPDs are not only involved in DVCS
and DVMP, but also time-like Compton scattering (TCS) [26], double deeply virtual
Compton scattering (DDVCS) [27, 28, 29], di-photon production [30, 31, 32] or photon-
meson pair production [33, 34].

Already at the stage of this very informal introduction, the reader might wonder what
will be the driving question of most of this work : does the combination of the soft
and hard part of the scattering through the means of factorisation theorems allow one
to actually recover from experimental data the GPD characterising the structure of the
proton ? Before dealing with this question, it is however useful to formally introduce GPDs
and understand what information they actually contain on hadron structure.

1.2 . Formal definition

We follow the notations of the review Ref. [35]. The formal definition of GPDs is conve-
niently expressed in light-cone coordinates, defined from the usual time-space coordinates
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(z0, z1, z2, z3) with Minkowskian metric ηµν of signature (+,−,−,−) by

z± =
1√
2
(z0 ± z3) and z⊥ = (0, z1, z2, 0) . (1.1)

GPDs are formally defined as integral transforms of bilocal matrix elements, where
the quark and gluon fields composing the operator are separated by a light-like distance.
For a spin-1/2 hadron, quark GPDs Hq and Eq are defined as

1

2

∫
dz−

2π
eixP

+z−
〈
p2

∣∣∣∣ψ̄q (−z2) γ+ψq (z2)
∣∣∣∣p1〉

z⊥=0,z+=0

=
1

2P+

(
Hq(x, ξ, t)ū(p2)γ

+u(p1) + Eq(x, ξ, t)ū(p2)
iσ+µ∆µ

2M
u(p1)

)
, (1.2)

where p1 and p2 denote the incoming and outgoing hadron four-momenta, and we define

P ≡ 1

2
(p1 + p2) , ∆ ≡ p2 − p1 , (1.3)

t ≡ ∆2 , ξ ≡ − ∆+

2P+
. (1.4)

We work in the light-cone gauge, where we do not need to consider Wilson lines which
ensure the gauge invariance of the definition. To simplify, we have not made the renor-
malisation scale apparent until we actually discuss specifically this aspect in Section 2.4.
ψq is a quark field of flavour q and the Dirac matrices are defined by γµγν + γνγµ = 2ηµν ,
and γ+ = (γ0 + γ3)/

√
2. σµν = i

2
(γµγν − γµγν). The normalisation of the spinors is taken

as ū(p2)u(p1) = 2Mδ(λ1, λ2) where λ1,2 are the respective helicities of the incoming and
outgoing hadron states and M the hadron mass. The gluon GPDs Hg and Eg are likewise
defined as

1

P+

∫
dz−

2π
eixP

+z−
〈
p2

∣∣∣∣G+µ
(
−z
2

)
G+
µ

(z
2

) ∣∣∣∣p1〉
z⊥=0,z+=0

=
1

2P+

(
Hg(x, ξ, t)ū(p2)γ

+u(p1) + Eg(x, ξ, t)ū(p2)
iσ+µ∆µ

2M
u(p1)

)
, (1.5)

where Gµν the gluon field strength. It is also possible to define polarised proton GPDs H̃
and Ẽ by introducing a γ5 operator in the matrix element. For instance for quarks,

1

2

∫
dz−

2π
eixP

+z−
〈
p2

∣∣∣∣ψ̄q (−z2) γ+γ5ψq (z2)
∣∣∣∣p1〉

z⊥=0,z+=0

=
1

2P+

(
H̃q(x, ξ, t)ū(p2)γ

+γ5u(p1) + Ẽq(x, ξ, t)ū(p2)
γ5∆

+

2M
u(p1)

)
, (1.6)

For a spin-0 hadron, the situation is simplified since only the GPDs H and H̃ are
necessary to parameterise the Fourier transform of the non-local matrix element, giving
immediately

Hq
spin 0(x, ξ, t) =

1

2

∫
dz−

2π
eixP

+z−
〈
p2

∣∣∣∣ψ̄q (−z2) γ+ψq (z2)
∣∣∣∣p1〉

z⊥=0,z+=0

. (1.7)
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For completeness, let us notice that all GPDs we have presented here are chiral-
even, in the sense that the struck parton helicity is conserved. There exist also chiral-odd
GPDs, often coined as transversity GPDs, which enter notably the description of exclusive
processes with several produced particles in the final state (see for instance Ref. [36]). We
will not consider these objects in this document.

Partonic interpretation

GPDs are functions of x, ξ and t. The latter two variables are defined in Eq. (1.4). We
notice that t is the traditional Mandelstam variable equal to the square of the total transfer
of four-momentum to the hadron, while ξ characterises the transfer of plus-momentum. In
a frame where the hadron travels almost at light-speed, the plus-momentum p+ becomes
proportional to the forward momentum p3 and to the energy p0. It is therefore frequent
to denote the plus-momentum as "longitudinal momentum" or "forward momentum"
with an implicit reference to this frame. On the other hand, x is only indirectly defined
in Eq. (1.2) as a factor preceding P+ in the exponential weight eixP+z− of the integral
transform.

Using the context of exclusive processes which we introduced in the previous section, it
is possible to give a partonic interpretation to GPDs. xP+ is then shown to be the average
plus-momentum of the struck parton, whereas ∆+ = −2ξP+ (1.4) is the plus-momentum
transfer to the struck parton, or equivalently the hadron. We deduce then that (x+ ξ)P+

is the plus-momentum of the struck parton before interacting with the virtual photon, and
(x− ξ)P+ its plus-momentum before re-absorption in the hadron. It is shown in Ref. [37]
that GPDs are defined for (x, ξ) ∈ [−1, 1]2. Depending on the relative values of x and ξ,
several regions with significantly different properties can be identified for a quark GPD 3.

— If x ≥ |ξ|, both x+ξ and x−ξ are positive, and the struck parton can be interpreted
as a simple quark as in the right panel of Fig. 1.4.

— If on the contrary x ≤ −|ξ|, then both x+ ξ and x− ξ are negative, and the struck
parton can be interpreted as an anti-quark with initial plus-momentum ξ − x and
final plus-momentum −x− ξ as in the left panel of Fig. 1.4.

— Finally, if −|ξ| ≤ x ≤ |ξ|, x + ξ ≥ 0 and x− ξ ≤ 0, so the scattering can actually
be interpreted as the annihilation of a pair of a quark and an anti-quark carrying
respectively plus-momentum fractions x + ξ and ξ − x as in the central panel of
Fig. 1.4.

Since gluons are their own anti-particles, the same reasoning shows that the gluon
GPD is even in the variable x.

1.3 . The family tree of parton distributions

1.3.1 . Forward limit
As we have mentioned in Section 1.1, the fact that a non-vanishing four-momentum

transfer t is received by the hadron target in DVCS and DVMP makes it necessary to
describe the soft part of the interaction thanks to GPDs, and not ordinary PDFs. The
link between the two distributions can be observed formally by setting ∆ = 0, known as

3. GPDs can be extended for |ξ| larger than 1 provided that |x| ≤ |ξ|. The extension is then known
as generalised distribution amplitudes (GDAs) [38, 39, 40, 41].
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Figure 1.4 – Partonic interpretation of GPDs for ξ ≥ 0, depending on the values of x. The
grey area represents the soft part of the factorised description of exclusive processes – similar
to the lower grey areas in Fig. 1.2 for instance. For −1 ≤ x ≤ −ξ, the struck parton can be
interpreted as an anti-particle which is emitted and later re-absorbed by the hadron (left panel).
For −ξ ≤ x ≤ ξ, the hard scattering can be interpreted as the annihilation of a particle anti-
particle pair (central panel). For ξ ≤ x ≤ 1, the struck parton can be interpreted as an ordinary
particle. Figure taken from Ref. [19].

forward limit in Eq. (1.2) : the obtained matrix element then exactly defines PDFs. We
obtain the important result

Hq(x, ξ = 0, t = 0) = q(x)Θ(x)− q̄(−x)Θ(−x) , (1.8)
Hg(x, ξ = 0, t = 0) = xg(x)Θ(x)− xg(−x)Θ(−x) , (1.9)

where Θ is the Heaviside step function, and q, g(x) are the usual quark and gluon unpola-
rised PDFs and q̄(x) the unpolarised PDF of q̄. Since PDFs are well-known from a wealth
of experimental data, notably thanks to inclusive processes like DIS, the fact that they
are the forward limit of GPDs is a crucial aspect of the modelling of the latter.

A similar relation involving polarised PDFs can be obtained for H̃. On the contrary,
due to the presence of a factor ∆µ in front of the E distribution in Eq. (1.2), the forward
limit ∆ = 0 does not bring any constraint on E. The situation is similar for Ẽ. Nonetheless,
values of E in this limit which are unaccessible from DIS plays an important role in the
determination of the spin decomposition of hadrons, as we will show later.

1.3.2 . Link to elastic form factors

GPDs also generalise the usual elastic form factors (EFFs) F q
1 and F q

2 which parame-
terise the matrix element of the electromagnetic current at z = 0 :

⟨p2|ψ̄q(z)γµψq(z)|p1⟩ = ū(p2)

[
F q
1 (t)γ

µ + F q
2 (t)

iσµν∆ν

2M

]
u(p1) . (1.10)

From F q
1 (t) and F q

2 (t) are defined the Dirac and Pauli form factors F1(t) and F2(t) defined
by

F1(t) =
∑
q

eqF
q
1 (t) and F2(t) =

∑
q

eqF
q
2 (t) , (1.11)

where eq is the electric charge of the quark of flavour q. At t = 0, F1(0) gives the total
electric charge of the hadron, and F2(0) its anomalous magnetic moment.

The link between GPDs and EFFs is obtained by taking the limit z− = 0 in Eq. (1.2),
which can be achieved by integrating Hq and Eq over their dependence on x. Indeed,
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using the fact that for ξ ∈ [−1, 1], GPDs take non-zero values only for x ∈ [−1, 1],

ū(p2)

∫ 1

−1
dx

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2M

]
u(p1)

=

∫ ∞
−∞

dx ū(p2)

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2M

]
u(p1) (1.12)

= P+

∫ ∞
−∞

dx

∫
dz−

2π
eixP

+z−
〈
p2

∣∣∣∣ψ̄q (−z−2
)
γ+ψq

(
z−

2

) ∣∣∣∣p1〉 , (1.13)

= P+

∫
dz−

2π

(∫ ∞
−∞

dx eixP
+z−
)〈

p2

∣∣∣∣ψ̄q (−z−2
)
γ+ψq

(
z−

2

) ∣∣∣∣p1〉 , (1.14)

and the Fourier transform of 1 gives that∫ ∞
−∞

dx eixP
+z− = 2πδ(P+z−) =

2π

P+
δ(z−) , (1.15)

where δ is the Dirac delta distribution 4, hence

ū(p2)

∫ 1

−1
dx

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2M

]
u(p1)

=

∫
dz−δ(z−)

〈
p2

∣∣∣∣ψ̄q (−z−2
)
γ+ψq

(
z−

2

) ∣∣∣∣p1〉 , (1.16)

= ⟨p2|ψ̄q(0)γ+ψq(0)|p1⟩ . (1.17)

We deduce therefore that∫ 1

−1
dxHq(x, ξ, t) = F q

1 (t) and
∫ 1

−1
dxEq(x, ξ, t) = F q

2 (t) (1.18)

This relation has been extensively used to decribe the t-dependence of GPDs.
One can therefore understand why GPDs are called "generalised" since they encompass

several well-known sources of non-perturbative information on hadron structure. There
exist an even higher order generalisation of parton distributions, known as generalised
transverse momentum dependent distributions (GTMDs) [42, 43] as shown on the "family
tree" of parton distributions in Fig. 1.5. GTMDs corresponds to unintegrated GPDs over
the parton transverse momentum k⊥. Performing this integration amounts to setting
z⊥ = 0 for GPDs, which we have implicitly done in Eq. (1.2) by only considering z−

in the definition of the matrix element.

1.4 . Why study generalised parton distributions ?

We select in this section two important physical motivations for the study of GPDs
which have been at the center of a continued experimental and theoretical interest for

4. We used that P+ is positive since it corresponds to the four-momentum of a massive particle :
(P 0)2 − (P 1)2 − (P 2)2 − (P 3)2 = M2 ≥ 0, so (P 0)2 ≥ (P 3)2, and since P 0 ≥ 0, we obtain P 0 ≥ |P 3|.
Therefore both P+ and P− are positive. This is not true for a state which is not on its mass shell.
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Figure 1.5 – Family tree of parton distributions. The link from GPDs to EFFs (here simply
written as FFs) is obtained by integrating the x dependence, whereas the link from GPDs to
PDFs is obtained thanks to the limit ∆ = 0. Figure taken from Ref. [44], itself inspired from
Ref. [45].

several decades : the perspective of hadron tomography, and that of mapping the dis-
tributions of energy and momentum inside the hadron. This interest has been strongly
reaffirmed in the context of the discussion of new facilities dedicated to nuclear experi-
ments at the electron-ion collider (EIC) [46, 47], Chinese electron-ion collider (EIcC) [48,
49] and large hadron-electron collider (LHeC) [50].

1.4.1 . Hadron tomography : impact parameter distributions
Usual PDFs a(x) possess a probabilistic interpretation as the number density of partons

of type a carrying a fraction x of the plus-momentum of the hadron. As generalisations
of PDFs, GPDs have an even more interesting probabilistic interpretation in the so-called
impact parameter representation. At zero skewness ξ = 0, the Fourier transform of
a GPD with respect to ∆⊥ is called an impact parameter distribution (IPD) [51, 52]

q(x, b⊥) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥Hq(x, 0, t = −∆2
⊥) . (1.19)

b⊥ is the Fourier conjugate variable of the transverse momentum transfer ∆⊥. It can be
interpreted as the transverse distance to the center of plus-momentum of the hadron b(0)⊥ ,
which is the average of b⊥,i defined with respect to an arbitrary origin weighted by the
plus-momentum fraction k+i over all partons i making up the hadron :

b
(0)
⊥ =

∑
k+i b⊥,i∑
k+i

, (1.20)

where the sum is running over all partons in the hadron. This formulation can be establi-
shed rigorously in the wave function representation (see Section 2.3 for a brief presentation
of this formalism). Since the incoming hadron carries a plus-momentum (1+ξ)P+ whereas
the outgoing one carries (1 − ξ)P+, the center of plus-momentum is shifted during the
interaction if ξ is non zero. Ref. [52] shows precisely that this shift is proportional to ξ.
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Figure 1.6 – Number density of u quarks as a function of x and b⊥ in an unpolarised proton.
Figure taken from Ref. [53].

When ξ = 0 on the contrary, the IPD of Eq. (1.19) possess a probabilistic interpre-
tation as the number density of quarks with any helicity, plus-momentum fraction x and
transverse distance b⊥ from the center of plus-momentum. GPDs therefore allow access
to a three-dimensional information on the structure of hadron, in an hybrid space with
one dimension of momentum and two spatial dimensions.

The practical extraction of IPDs faces the challenges of accessing a large range of
values in t. However, as we will discuss more in the description of experimental processes
in Chapter 3, factorisation theorems are only valid for |t| small with respect to Q2, which
restricts considerably the access to moderate values of |t| of the order of several GeV2.
In addition, an extrapolation to ξ = 0 is necessary. We will focus on the question of the
modelling of GPDs at small ξ in Section 7.3. Nonetheless, extractions from experimental
data with constrained parameterisations have been attempted. For instance, we reproduce
in Fig. 1.6 the result of the fit of IPDs led in Ref. [53].

1.4.2 . Properties of hadron matter : the energy-momentum tensor

A remarkable feature of GPDs is their relation to the QCD energy-momentum tensor
(EMT). It allows not only to shed light on the long-standing puzzle of the nucleon spin
decomposition which emerged 30 years ago with the EMC measurements [54], but can
also be used to access information about the mechanical properties of hadrons [55, 56],
like distributions of pressure inside the nucleon. The possibility of studying mechanical
properties of partonic matter was first highlighted in Ref. [57].

In the case of a spin-1/2 hadron, the matrix element of the local gauge-invariant EMT
operator can be parameterised in terms of five gravitational form factors (GFFs) Aa(t),
Ba(t), Ca(t), C̄a(t) and Da

GFF (t)
5 as [58, 59, 60]

⟨p2|T µνa (0)| p1⟩ = ū(p2)

{
P µP ν

M
Aa(t) +

∆µ∆ν − ηµν∆2

M
Ca(t) +MηµνC̄a(t)

+
P {µiσν}ρ∆ρ

4M
[Aa(t) +Ba(t)] +

P [µiσν]ρ∆ρ

4M
Da
GFF (t)

}
u(p1) ,

(1.21)

where a{µbν} = aµbν + aνbµ and a[µbν] = aµbν − aνbµ. The connection between GPDs and

5. The choice of notation for the last GFF will become clearer when we introduce the completely
independent notion of D-term in the next chapter, which we will denote by Da.
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GFFs is given for quarks by [35]∫ 1

−1
dx xHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t) , (1.22)∫ 1

−1
dx xEq(x, ξ, t) = Bq(t)− 4ξ2Cq(t) , (1.23)

∑
q

∫ 1

−1
dx H̃q(x, ξ, t) = −

∑
q

Dq
GFF (t) , (1.24)

and for gluons by ∫ 1

−1
dxHg(x, ξ, t) = Ag(t) + 4ξ2Cg(t) , (1.25)∫ 1

−1
dxEg(x, ξ, t) = Bg(t)− 4ξ2Cg(t) , (1.26)

Dg
GFF (t) = 0 . (1.27)

Access to the GFF C̄a is more intricate since it involves higher twist GPDs [61, 59, 62].

Ji’s sum rule

It can be shown that the total angular momentum carried by each flavour of quark Jq
and gluons Jg verifies for a spin-1/2 hadron [63, 12]

Jq =
1

2
(Aq(0) +Bq(0)) , and Jg =

1

2
(Ag(0) +Bg(0)) . (1.28)

We deduce therefore from Eqs. (1.22) to (1.26) the decomposition of the total spin of the
hadron, known as Ji’s sum rule

1

2
=
∑
q

Jq + Jg (1.29)

=
∑
q

1

2

∫ 1

−1
dx x(Hq(x, ξ, 0) + Eq(x, ξ, 0)) +

1

2

∫ 1

−1
dxHg(x, ξ, 0) + Eg(x, ξ, 0) . (1.30)

The fact that this relation is independent of ξ will be investigated in depth in the next
chapter. Note however that the precise decomposition between quark flavours and gluons
is renormalisation scale and scheme dependent. This sum rule is not without reminding
of the one observed by usual PDFs :

1 =
∑
a=q,q̄,g

∫ 1

0

dx xa(x) . (1.31)

Thanks to the probabilistic interpretation of PDFs, this sum rule merely states that when
adding the fractional plus-momentum over all partons, we obtain the full plus-momentum
of the hadron.
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Mechanical properties

We note by boldface characters spatial three-vectors. In the Breit frame where P = 0
and t = −∆2, Fourier transforms of GFFs with respect to ∆ allow us to measure how
energy and momentum are distributed inside the hadron [57, 56, 64]. Denoting by r = |r|
the radial coordinate, one can define for instance the radial energy εa(r) distribution in
the Breit frame as a Fourier transform of the GFFs Aa(t), Ba(t), Ca(t) and C̄a(t) :

εa(r) =M

∫
d3∆

(2π)3
e−i∆·r

{
Aa(t) + C̄a(t) +

t

4M2

[
Ba(t)− 4Ca(t)

]}
. (1.32)

Among several distributions of radial mechanical properties which can be defined, the
pressure anisotropy sa(r) has attracted attention due to the fact that it does not depend
on C̄a(t). In theory, it can therefore be completely extracted from leading twist GPDs :

sa(r) = −4M

r2

∫
d3∆

(2π)3
e−i∆·r

t−1/2

M2

d2

dt2
[
t5/2Ca(t)

]
. (1.33)

We will study in more depth this distribution in Section 5.2.4 when considering a pheno-
menological extraction of Ca(t).
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2 - Further properties

2.1 . General behaviour

Domain

We have already mentioned that the definition domain of GPDs consists of (x, ξ) ∈
[−1, 1]2 [37]. However, as ξ is the related to the plus component of the total four-
momentum transfer ∆, it is also bound kinematically by the value of t according to

|ξ| ≤
√
−t√

−t+ 4M2
. (2.1)

In practice, this bound is significantly constraining the available range in ξ, since for
t = −0.2 GeV2, a typical value considered in JLab DVCS kinematics, |ξ| is limited to less
than 0.23 for the nucleon.

Parity

The study of the effect of time reversal on field operators led for instance in Ref. [21]
demonstrates that for spin-0 or 1/2 hadrons most GPDs 1 verify

F (x,−ξ, t) = F (x, ξ, t) , (2.2)

notably for F = H,E, H̃, Ẽ. Added to the fact that hermicity constraints yield

F ∗(x, ξ, t) = F (x,−ξ, t) , (2.3)

where ∗ denotes complex conjugation, one obtains that GPDs are real-valued 2.
The fact that gluons are their own anti-particles implies that gluons GPDs Hg and Eg

are even in x, whereas H̃g and Ẽg are odd. No such constraint appears on the quark GPDs.
It is useful to separate their x-odd and x-even parts, which exhibit different behaviours
with respect to the charge operator. We will coin singlet GPD F q(+) the part which
couples with the gluon distribution, and non-singlet GPD F q(−) the part which remains
independent from the gluon distribution. For F = H,E,

F q(+)(x, ξ, t) = F q(x, ξ, t)− F q(−x, ξ, t) , (2.4)

F q(−)(x, ξ, t) = F q(x, ξ, t) + F q(−x, ξ, t) , (2.5)

whereas for F̃ = H̃, Ẽ,

F̃ q(+)(x, ξ, t) = F̃ q(x, ξ, t) + F̃ q(−x, ξ, t) , (2.6)

F̃ q(−)(x, ξ, t) = F̃ q(x, ξ, t)− F̃ q(−x, ξ, t) . (2.7)

1. For the quark GPDs in a spin-1/2 hadron, Ref. [21] demonstrates that only the transversity GPD
Ẽq

T is an odd function of ξ. The situation is more complicated for hadrons of larger spin as the number
of GPDs proliferates.

2. ẼT is also real-valued owing to the fact that (Ẽq
T )

∗(x, ξ, t) = −Ẽq
T (x,−ξ, t).
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Limit x→ 1

In the limit where x → 1, the active parton carries alone most of the hadron plus-
momentum, so is itself the center of plus-momentum as defined in Eq. (1.20). Ref. [65],
following the idea that in that limit, hard gluon exchanges dominate the structure func-
tions [66] and allow a calculation in perturbative QCD, demonstrates notably that for the
pion

Hq(x, ξ, t) ∼ (1− x)2

1− ξ2
, (2.8)

and for the nucleon,

Hq
π(x, ξ, t) ∼

(1− x)3

(1− ξ2)2
, (2.9)

Eq
π(x, ξ, t) ∼

(1− x)5

(1− ξ2)2
. (2.10)

It is remarkable that there is no t dependence in these formulas.

2.2 . Polynomiality of Mellin moments

We have so far explored the link of
∫
dxHq with the EFF F q

1 (1.18), and of
∫
dx xHq

with the GFFs Aq and Cq (1.22). Likewise,
∫
dxHg has been related to the GFFs Ag and

Cg (1.25). Similar relations have been established for the GPD E, and could be derived
as well for H̃ and Ẽ. We refer to reviews such as [35, 21, 67] for complete sets of such
relations. These are particular cases of Mellin moments of GPDs, defined by

Ha
n(ξ, t) =

∫ 1

−1
dx xnHa(x, ξ, t) . (2.11)

In a similar way to the demonstration of Eq. (1.17), it is possible to relate these moments
to matrix elements of twist-two local operators. For instance for a spin-1/2 hadron,

ū(p2)

∫ 1

−1
dx xn

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2M

]
u(p1)

= P+

∫
dz−

2π

(∫ ∞
−∞

dx xneixP
+z−
)〈

p2

∣∣∣∣ψ̄q (−z−2
)
γ+ψq

(
z−

2

) ∣∣∣∣p1〉 , (2.12)

and using this time the fact that the Fourier transform of xn yields∫ ∞
−∞

dx xneixP
+z− = 2πinδ(n)(P+z−) =

2πin

(P+)n+1

(
∂

∂z−

)n ∣∣∣∣
z−=0

, (2.13)

where δ(n) is the n-th derivative of the Dirac delta distribution 3, we find

ū(p2)

∫ 1

−1
dx xn

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2M

]
u(p1)

=
1

(P+)n

〈
p2

∣∣∣∣ (i ∂

∂z−

)n
ψ̄q (0) γ+ψq (0)

∣∣∣∣p1〉 . (2.14)

3. We have used that δ(n)(ax) = sgn(a)δ(n)(x)/an+1, P+ ≥ 0 and δ(n)(x) = (−1)n(∂n/∂xn)|x=0.
sgn(a) = |a|/a designates the sign of a.
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Eq. (2.14) demonstrates that Mellin moments of GPDs are form factors of some local
twist-two operators. A precise study of the requirements imposed by Lorentz covariance
on these operators shows that the form factor decomposition can be written as specific
combinations of the four-vectors P and ∆ with t dependent coefficients aqn,i(t), b

q
n,i(t) and

cqn(t) [35] :〈
p2

∣∣∣∣ (i ∂

∂z−

)n
ψ̄q (0) γ+ψq (0)

∣∣∣∣p1〉 = ū(p2)

[
γ+

n∑
i=0
i even

aqn,i(t)(∆
+)i(P+)n−i

+
iσ+ν∆ν

2M

n∑
i=0
i even

bqn,i(t)(∆
+)i(P+)n−i +

mod(n, 2)
M

cqn(t)(∆
+)n+1

]
u(p1) , (2.15)

where mod(n, 2) equals 1 if n is odd, and 0 if n is even. Finally, with the factor 1/(P+)n

of Eq. (2.14), ξ = −∆+/(2P+) and the use of the Gordon identity [68] to treat the final
term of Eq. (2.15)

P+

M
ū(p2)u(p1) = ū(p2)

[
γ+ − i

σ+ν∆ν

2M

]
u(p1) , (2.16)

we obtain ∫ 1

−1
dx xnHq(x, ξ, t) =

n∑
i=0
i even

aqn,i(t)(2ξ)
i + mod(n, 2)cqn(t)(2ξ)

n+1 , (2.17)

∫ 1

−1
dx xnEq(x, ξ, t) =

n∑
i=0
i even

bqn,i(t)(2ξ)
i − mod(n, 2)cqn(t)(2ξ)

n+1 . (2.18)

This remarkable property is called polynomiality. Deeply rooted in Lorentz covariance,
it states that the n-th Mellin moments of Hq and Eq are polynomials in ξ of order n+ 1
at most if n is odd, and of order n at most if n is even. We recover in particular that the
0-th Mellin moments of Hq and Eq are independent of ξ, which was noticed in (1.18).

As the coefficients of the term of order n+ 1 are opposite in sign for Hq and Eq, n-th
Mellin moments of Hq + Eq are only polynomials in ξ of order n. A similar derivation
can be obtained for polarised GPDs H̃q and Ẽq, without any term of order n+1 because
the study of their form factor decomposition does not make the last term of Eq. (2.15)
appear. Gluon GPDs obey similar relations, except the polynomial in ξ is of order up to
n+ 2.

2.2.1 . The double distribution representation
The polynomiality of Mellin moments imposes an interesting constraint on the mutual

dependence on x and ξ of GPDs. A mathematical result by Hertle [69] demonstrates that
it is equivalent for the n-th Mellin moments integrated over x to be polynomials in ξ of
order n and for the GPD to belong to the image of the Radon transform [70, 71]. The
theorem can be applied directly for the case of Hq + Eq, H̃q or Ẽq. On the contrary, for
Hq and Eq, it is first necessary to isolate the problematic power ξn+1 which may appear
for n odd.
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This can be done by defining a function 4, known as the D-term, such that∫ 1

−1
dααnDq(α, t) = mod(n, 2)2n+1cqn(t) . (2.19)

As all its even moments are 0, Dq(α, t) is an α-odd function, and by design its sup-
port is limited to α ∈ [−1, 1]. Then the function defined by Hq(x, ξ, t) − sgn(ξ)Θ(1 −
|x|/|ξ|)Dq(x/ξ, t), where sgn(ξ) = |ξ|/ξ is the sign of ξ, verifies∫ 1

−1
dx xn

[
Hq(x, ξ, t)− sgn(ξ)Θ

(
1− |x|

|ξ|

)
Dq

(
x

ξ
, t

)]
=

∫ 1

−1
dx xnHq(x, ξ, t)− sgn(ξ)

∫ |ξ|
−|ξ|

dx xnDq

(
x

ξ
, t

)
, (2.20)

=

∫ 1

−1
dx xnHq(x, ξ, t)− ξn+1

∫ 1

−1
dααnDq (α, t) , (2.21)

=

∫ 1

−1
dx xnHq(x, ξ, t)− ξn+1mod(n, 2)2n+1cqn(t) , (2.22)

=
n∑
i=0
i even

aqn,i(t)(2ξ)
i , (2.23)

where we used successively Eqs. (2.19) and (2.17) in the two final lines. The subtraction of
sgn(ξ)Θ(1−|x|/|ξ|)Dq(x/ξ, t) allows therefore to satisfy the conditions of Hertle’s theorem
even for Hq and Eq. Taking the example of Hq, there exists a function f q(β, α, t), coined
double distribution (DD), such that Hq(x, ξ, t)− sgn(ξ)Θ(1− |x|/|ξ|)Dq(x/ξ, t) is the
Radon transform of f q(β, α, t) :

Hq(x, ξ, t)− sgn(ξ)Θ
(
1− |x|

|ξ|

)
Dq

(
x

ξ
, t

)
=

∫
dβdα δ(x− β − αξ)f q(β, α, t) , (2.24)

which can be put concisely under the form

Hq(x, ξ, t) =

∫
dβdα δ(x− β − αξ) [f q(β, α, t) + ξδ(β)Dq(α, t)] . (2.25)

The DD formalism was introduced independently in Refs. [10, 15]. Initially proposed as
an alternative way compared to GPDs to parameterise the hadron matrix element of
Eq. (1.2), its link to GPDs via the Radon transform was later formalised in Ref. [73]. The
D-term was originally introduced Ref. [74] from the point of view of tensorial structures
in the DD.

A similar DD can be constructed for GPD Eq, with the exception that the D-term is
opposite. A DD representation can likewise be built for Hq +Eq, H̃q and Ẽq without any
contribution of a D-term. On the contrary, gluon DDs involve a D-term.

4. Whether or not there exists a unique function determined by the value of its integer moments is a
delicate question. A general answer is known for under the assumption that the function to reconstruct
is positive – see for instance the Hausdorff moment problem [72], but this assumption does not hold in
our case. If the D-term is well behaved enough, we might hope that our "definition" is satisfactory.
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Figure 2.1 – The grey square represents the rhombus Ω on which DDs are defined. The orange
dotted line corresponds to x = β+αξ. Integration of the DD along this line yields the contribution
of the DD to the GPD through the Radon transform of Eq. (2.25). The line intersects the edges
of the rhombus at α1 = (x − 1)/(1 + ξ) and α2 = (1 − x)/(1 − ξ) for the case x > ξ > 0 which
we have depicted here.

2.2.2 . Properties of double distributions

Domain

As a consequence of the fact that GPDs have a domain of definition (x, ξ) ∈ [−1, 1]2,
DDs are non-vanishing only on a so-called rhombus Ω defined by

Ω = {(β, α) | |α|+ |β| ≤ 1} . (2.26)

This region is represented by the grey square on Fig. 2.1.
The Radon transform of Eq. (2.25) corresponds to a line integration on the DD. One

such line is shown on Fig. 2.1 in the case x > ξ > 0. The kinematic region x > |ξ|, which
we have interpreted in Section 1.2 as corresponding to the emission and re-absorption of
a quark, only probes the DD for β > 0. On the contrary, the kinematic region x < −|ξ|
probes the DD only for β < 0 and corresponds to the partonic interpretation of GPDs in
terms of emission and reabsorption of an anti-quark.

The region −|ξ| < x < |ξ|, in which GPDs probe quark anti-quark pairs, corresponds
to Radon integration lines which cross the line β = 0. It is interesting to note that lines
with |ξ| larger than 1 while respecting −|ξ| < x < |ξ| have an intersection with the
rhombus. The DD can therefore describe an object which extends the definition domain
of GPDs beyond |ξ| = 1. These objects are known as generalised distribution amplitudes
(GDAs) [38, 39, 40, 41].

Parity

Inherited directly from the ξ parity and real-valuedness of the GPD Hq, the DD f q

is even in α and real-valued as well. Singlet and non-singlet components of the DD can
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likewise be defined as

f q(+)(β, α, t) = f q(β, α, t)− f q(−β, α, t) (2.27)

f q(−)(β, α, t) = f q(β, α, t) + f q(−β, α, t) . (2.28)

For the DDs associated to other GPDs than Hq, simple modifications according to the
parity of the GPD must be applied.

Moments of DDs

We have specifically introduced the D-term as a way to encompass the terms with a
dependence of order ξn+1 in the n-th Mellin moment of the GPD. Subtracting the D-term
allowed us to introduce the DD f q thanks to the property of the Radon transform. We
know therefore that f q will only contribute to the terms of order ξi up to i = n in the
polynomial expansion of Mellin moments of the GPD. Let us verify quickly that it is
indeed the case :∫ 1

−1
dx xnHq(x, ξ, t) =

∫ 1

−1
dx xn

∫
Ω

dβdα δ(x− β − αξ) [f q(β, α, t) + ξδ(β)Dq(α, t)] ,

(2.29)

=

∫
Ω

dβdα (β + αξ)n [f q(β, α, t) + ξδ(β)Dq(α, t)] , (2.30)

=
n∑
i=0

ξi
(
n
i

)∫
Ω

dβdααiβn−if q(β, α, t) + ξn+1

∫ 1

−1
dααnDq(α, t) .

(2.31)

The fact that only even powers of ξ are actually non vanishing in Eq. (2.31) is a conse-
quence of the correct parity of DDs.

The coefficients aqn,i(t) mentioned in Eqs. (2.15) and (2.17) can then be expressed in
terms of twice integrated moments of the DD as

2iaqn,i(t) =

(
n
i

)∫
Ω

dβdααiβn−if q(β, α, t) . (2.32)

Coming back to the relation between the GPD Hq and the GFFs Aq and Cq stated in
Eq. (1.22), we can deduce from Eq. (2.31) that Cq is linked to the D-term thanks to

Cq(t) =
1

4

∫ 1

−1
dααDq(α, t) , (2.33)

A similar result can be obtained for gluons under the form

Cg(t) =
1

4

∫ 1

−1
dαDg(α, t) . (2.34)

We will use extensively this relation in Chapter 5.
As a conclusion, the DD representation allows by design to satisfy the important

property of polynomiality of Mellin moments of GPDs : although it implies a complex
interdependence of x and ξ at the level of the GPD H(x, ξ, t), it does not yield any
constraint on the interdependence of β and α at the level of the DD. We stress that
admitting a representation in terms of DDs is equivalent to satisfying the
polynomiality property derived from Lorentz covariance.
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2.2.3 . Schemes of double distributions
We have dealt with the issue of contributions of order ξn+1 in the n-th Mellin mo-

ment of GPDs by encompassing them all in the D-term. However, as was pointed out in
Ref. [73], there are other ways to handle this situation, giving rise to different schemes
(or representations) of double distributions. The scheme we have introduced so far, with
a DD f q and a D-term, is often named the Polyakov-Weiss representation owing to the
contribution of the two authors to the introduction of the D-term [74].

It is also possible to deal with terms of order ξn+1 by considering the Mellin moments
of (Hq(x, ξ, t)−Hq(x, 0, t))/ξ instead of Hq(x, ξ, t)− sgn(ξ)Θ(1− |x|/|ξ|)Dq(x/ξ, t) as we
have done so far. Then using the coefficients aqn,i(t) and cqn(t) (2.17),∫ 1

−1
dx xn

(
Hq(x, ξ, t)−Hq(x, 0, t)

ξ

)
=

1

ξ

∫ 1

−1
dx xnHq(x, ξ, t)− 1

ξ

∫ 1

−1
dx xnHq(x, 0, t) ,

(2.35)

=
1

ξ
aqn,0 +

n∑
i=2
i even

aqn,i(t)2
iξi−1 + mod(n, 2)cqn(t)2

n+1ξn − 1

ξ
aqn,0(t) . (2.36)

Therefore, the Mellin moments of (Hq(x, ξ, t)−Hq(x, 0, t))/ξ are polynomials in ξ of order
n, so it is possible to introduce a different DD gqT [75] such that

Hq(x, ξ, t) = Hq(x, 0, t) + ξ

∫
Ω

dβdα δ(x− β − αξ)gqT (β, α, t) . (2.37)

This scheme has the very nice feature of making explicit the t-dependent forward limit
of the GPD, which we know to be equal to usual PDFs when t = 0. Eq. (2.37) can be
rewritten as

Hq(x, ξ, t) =

∫
Ω

dβdα δ(x− β − αξ) [δ(α)Hq(β, 0, t) + ξgqT (β, α, t)] . (2.38)

Another popular way to define a DD representation, often called the Pobylitsa represen-
tation, is to take [76]

Hq(x, ξ, t) = (1− x)

∫
Ω

dβdα δ(x− β − αξ)f qP (β, α, t) . (2.39)

One could wonder what is the interest of having many different ways to represent the
same object. Each scheme highlights a different feature of the GPD which makes it more
convenient to work in one scheme or the other depending on the objective of the study.

For instance, most of our work in Chapters 5 and 6 will be performed in the Polyakov-
Weiss representation because we will be strongly interested in the D-term : in Chapter 5
due to its relation to the GFF Ca(t), and in Chapter 6 due to dispersion relations that
relate the real and imaginary parts of Compton form factors (see Chapter 3). However,
some results in Chapter 6 will be obtained in the Pobylitsa gauge to compare them with
a publication. In Chapter 7, we will actually develop our own DD gauge only suited for
the singlet quark GPD due to specific modelling challenges we will be facing.

An interested reader will find more details in Ref. [77] on how to navigate from one
scheme to the other, as well as examples of how a very simple model in one scheme can
become singular and complicated in another.
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2.3 . Wave function representation and positivity bounds

2.3.1 . GPDs representation as an overlap of light-front wave functions

Light-front quantisation allows one to decompose a hadron state on a Fock basis [78].
For a nucleon for instance,

|p⟩ =
∑
β

Φqqq
β |qqq⟩+

∑
β

Φqqq,qq̄
β |qqq, qq̄⟩+ ... (2.40)

where the expansion contains Fock states with an ever larger number of partons summed
over the relevant quantum numbers collectively denoted by β. Φ denotes light-front wave
functions (LFWFs) [79], non-perturbative objects which depend on the momenta and
quantum numbers of partons contained in the associated Fock state. Precisely, the LFWF
of a Fock state with N particles, which we will denote ΦN

β in the following, depends on the
longitudinal momentum fractions (x1, ..., xN) of the constituents which verify

∑N
i=1 xi = 1,

and on their transverse momentum (k⊥,1, ...k⊥,N) satisfying
∑N

i=1 k⊥,i = p⊥.
The link between LFWFs and GPDs is derived in detail in Ref. [80]. The presentation

of this result requires the introduction of many rather cumbersome notations. For the
sake of legibility, we will therefore adopt a simplified presentation. In the regions x > |ξ|
(respectively x < −|ξ|) where GPDs can be interpreted as the emission and re-absorption
of a particle (respectively anti-particle), they can be written as an overlap between LFWFs
with the same number of particles in the initial and final states. For instance for x > |ξ|,
a generic representation of that overlap is given by

Hq(x, ξ, t)− ξ2

1− ξ2
Eq(x, ξ, t) =

∑
N

(
16π3

√
1− ξ2

)1−N∑
β

N∑
j=1

δfjq

∫ [ N∏
i=1

dxi d
2k⊥,i

]

× δ

(
1−

N∑
i=1

xi

)
δ(2)

(
p⊥ −

N∑
i=1

k⊥,i

)
δ(x− xj)

(
ΦN
β (rout)

)∗
ΦN
β (rin) .

(2.41)

The right hand side (r.h.s.) is summed over the number of particles in the Fock state N
and the active quark j whose flavour is denoted by fj. An integration over the longitu-
dinal and transverse momentum of all constituents of the Fock state – denoted by i – is
performed. δfjq denotes the Kronecker symbol. ΦN

β (r) is a LFWF associated to a Fock
state with N particles and quantum numbers β evaluated at the momentum configuration
r encompassing the momentum of its N constituents. We refer to Ref. [80] for the pre-
cise definition of the frames and momenta involved in this expression. Owing to the fact
that only LFWFs corresponding to a similar number of particles overlap, it is possible to
truncate the Fock expansion in an unambiguous way.

One the contrary, in the region −|ξ| < x < |ξ|, the partonic interpretation of GPDs
as the annihilation of a parton anti-parton pair means that the number of particles is not
conserved between the initial and final states of the interaction. The GPD then writes
as overlap of LFWFs with N + 1 partons in the initial state and N − 1 in the final.
The structure in terms of quantum numbers is more complicated since it must take into
account the quantum numbers of both the active particle and antiparticle. The GPD
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overlap writes generically as

Hq(x, ξ, t)− ξ2

1− ξ2
Eq(x, ξ, t) =

∑
N

16π3(1− ξ)
(
16π3

√
1− ξ2

)−N∑
β,β′

N+1∑
j,j′=1

Ξ
√
njnj′

×
∫ [ N+1∏

i=1,i ̸=j′
dxi d

2k⊥,i

]
δ

(
1− ξ −

N+1∑
i=1,i ̸=j,j′

xi

)
δ(2)

(
∆⊥
2

−
N+1∑

i=1,i ̸=j,j′
k⊥,i

)
× δ(x− xj)

(
ΦN−1
β′ (rout)

)∗
ΦN+1
β (rin) . (2.42)

We hid in the simple character Ξ a large multiplication of Kronecker symbols intended
to guarantee the correct flavours, colours and helicities both for the active and spectator
partons. The active quark is denoted by j and anti-quark by j′. nj (respectively nj′) is the
number of quarks (respectively anti-quarks) in the initial proton wave function. As the
overlap writes in this kinematic region between LFWFs with N +1 and N − 1 partons, it
is not clear how to truncate the Fock expansion in a consistent way with the truncation
performed in the previous region |x| ≥ |ξ|. This gives rise to a difficulty when employing
models based on truncated overlap of LFWFs notably discussed in Ref. [81, 82]. The
method only provides suitable results for |x| > |ξ|. A way to go beyond this difficulty is
presented in Section 3.4.3, and further touched again in Section 6.2.2.

Similar relations to those briefly sketched here are demonstrated in Ref. [80] for pola-
rised and gluon GPDs.

2.3.2 . Positivity inequalities
In the forward limit ∆ = 0 where GPDs yield PDFs, there is no asymmetry between

the incoming and outgoing proton states. Therefore, rout = rin = r. Since ξ = 0, we are
always in the kinematic region |x| ≥ |ξ|, and the overlap of Eq. (2.41) involves(

ΦN
β (rout)

)∗
ΦN
β (rin) = |ΦN

β (r)|2 . (2.43)

As LFWFs are quantum weights of states in a Fock basis, their squared modulus can
be classically interpreted as the probability that the hadron is found in this Fock state.
Then summing and integrating δ(x − xj)|ΦN

β (r)|2 over all other variables in Eq. (2.41)
amounts to extracting the marginal distribution of the probability of interacting with an
active quark carrying a forward momentum x, which is exactly the traditional probabilistic
interpretation of PDFs.

As observed for instance in Ref. [83], the representation of GPDs in terms of overlap
of LFWFs has formally the structure of a scalar product in the Hilbert space of LFWFs.
We have noticed in Eq. (2.43) that the norm of LFWFs is linked to usual PDFs. Positivity
conditions can then be derived from the Cauchy-Schwartz inequality which relates a scalar
product to the product of norms of the vectors 5. Refs. [84, 85] complemented by [80] give∣∣∣∣Hq(x, ξ, t)− ξ2

1− ξ2
Eq(x, ξ, t)

∣∣∣∣ ≤√q (x1) q (x2)
1

1− ξ2
, (2.44)

where
x1 =

x+ ξ

1 + ξ
and x2 =

x− ξ

1− ξ
. (2.45)

5. |⟨u|v⟩| ≤ ||u|| · ||v||
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The equivalent bound for gluon GPDs is∣∣∣∣Hg(x, ξ, t)− ξ2

1− ξ2
Eg(x, ξ, t)

∣∣∣∣ ≤
√
g (x1) g (x2)

x2 − ξ2

1− ξ2
. (2.46)

A more constraining relation is derived in Ref. [86] as∣∣∣∣Hq(x, ξ, t)− ξ2

1− ξ2
Eq(x, ξ, t)

∣∣∣∣2 + √
t0 − t

2M
√

1− ξ2
|Eq(x, ξ, t)|2 ≤ q (x1) q (x2)

1− ξ2
, (2.47)

where
t0 = −4ξ2M2

1− ξ2
. (2.48)

t0 is the maximal value of t (that is t ≤ t0 ≤ 0) which is kinematically allowed at a
fixed value of ξ following Eq. (2.1). Not only is Eq. (2.47) a stronger bound compared to
Eq. (2.44), but it yields the additional result on the Eq distribution alone

√
t0 − t

2M
|Eq(x, ξ, t)| ≤

√
q (x1) q (x2) . (2.49)

Ref. [87] demonstrates how to derive stronger inequalities involving polarised and trans-
versity PDFs, and derives a bound on the GPD Hq alone as

|Hq(x, ξ, t)| ≤

√(
1− t0ξ2

t0 − t

)
q(x1)q(x2)

1− ξ2
. (2.50)

Refs. [88, 87] show that positivity bounds are much more general than the few examples
we have mentioned so far, and form a vast class of inequalities that can be obtained by
the mean of constructing arbitrary states and requiring that their norm in the Hilbert is
positive. Working with LFWFs is a way to systematically fulfill all these inequalities
at once. We will demonstrate how the GPD models we develop in Chapter 7 based on the
DD formalism can accommodate some of these positivity constraints, which will represent
an important tool to counter the uncertainty arising from the shadow GPDs introduced
in Chapter 6.

2.4 . Evolution of generalised parton distributions

As we mentioned briefly at the beginning of Chapter 1, GPDs depend additionally
on a renormalisation scale, which arises from the necessity to cure UV divergences of the
bilocal operator defining GPDs. In practice, it is possible to make the scale dependence
emerge from the UV regulator ϵ through the relation

Ha(x, ξ, t, µ2)

xpa
=
∑
b

∫ 1

−1

dz

|z|
Zab

(
z

ξ
,
ξ

x
, αs(µ

2), ϵ

)
Ĥb(z, ξ, t, ϵ)

zpb
, (2.51)

where the sum is performed over parton types b to account for the possibility of mixing
of GPDs under evolution, and pa = 1 if a = g and 0 otherwise 6. In Ref. [1], we give

6. Thanks to the scaling by x−pa , the forward limit (ξ = 0, t = 0) of x−paHa(x, ξ, t) is exactly a(x)
even in the gluon case. This scaling allows one to write Zab, and later the splitting kernels, as functions
of the two ratios z/ξ and ξ/x instead of the three variables x, ξ, z.

46



Chapter 2. Further properties

more details on the determination of Zab which is obtained by studying the poles of the
operator in dimensional regularisation in the MS renormalisation scheme. Using the fact
that Ĥ has no dependence on the scale, the differentiation of Eq. (2.51) with respect to
log(µ2) yields the renormalisation group equation (RGE), which writes generically at LO
in αs as

1

xpa
∂Ha(x, ξ, t, µ2)

∂ log(µ2)
= αs(µ

2)
∑
b

∫ 1

x

dz

ξ
Kab,(0)

(
z

ξ
,
ξ

x

)
Hb(z, ξ, t, µ2)

zpb
. (2.52)

The Kqb,(0) distributions are known as splitting kernels, where (0) denotes the LO ex-
pansion. To fix the notations, we will denote the RGE of αs as [89]

∂αs(µ
2)

∂ log(µ2)
= β(αs(µ

2)) = −b0α2
s(µ

2)− b1α
3
s(µ

2)− ... , (2.53)

where notably b0 = β0/(4π), β0 ≡ 11− 2nf/3 and nf is the number of active flavours.
In the limit where ξ = 0, Eq. (2.52) yields the RGE of usual PDFs 7, known as the

Dokshitzer – Gribov – Lipatov – Altarelli – Parisi (DGLAP) equation [90, 91, 92]. On
the contrary, in the limit ξ → 1, GPDs evolve according to the Efremov – Radyushkin
– Brodsky – Lepage (ERBL) RGE [93, 94], which is also responsible for the evolution
of distribution amplitudes. In particular, the D-term evolves exactly following the ERBL
equation.

Observing that both the forward limit and the D-term follow their own evolution
equations, we can conclude that if either the forward limit or the D-term are 0 at one
scale, then they remain null at any scale. This statement is true at any perturbative order
of evolution. We will make a significant use of this result in Chapters 5 and 6.

More generally, evolution is completely compatible with the polynomiality property at
any order, as it can be expressed at the level of DDs themselves [85]. On the contrary, the
preservation of the positivity property (2.44) is a more delicate question. Ref. [88] argues
that positivity constraints on GPDs are stable under LO evolution to higher scales : if they
are verified at one scale, then they are as well under upward evolution. However, in general,
renormalisation includes subtractions which can violate naive positivity bounds. It is
known for instance that some renormalisation schemes produce PDFs with negative values
for low renormalisation scales [95, 96], which is generally not considered as a problem as
long as physical cross-sections computed from these objects are positive. As positivity
bounds on GPDs arise from the same reasoning as positivity of PDFs, Ref. [88] underlines
that the possibility of violation of positivity for PDFs implies a similar possibility of
violation of positivity bounds for GPDs. Ref. [97] clarifies the physical domain where the
positivity bounds are expected to hold. Let us notice that the question of positivity of
PDFs is still at the center of a lot of attention as testified by recent contradictory takes
on the subject – see notably Ref. [96].

Conformal moments

The LO splitting kernels were determined already in seminal papers of the field, like
Refs. [12, 10, 15, 98]. Next-to-leading order corrections were computed in Refs. [99, 100,

7. Splitting kernels are independent of t at leading twist, so the GPD at ξ = 0 and t ̸= 0 still evolves
exactly in the same manner as the PDF.
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101] and recently confirmed [102]. Three-loop computations are also available in the non-
singlet sector [103].

Many of these derivations were performed in the space of so-called conformal mo-
ments owing to the fact that LO evolution in QCD preserves conformal symmetry [104].
Conformal moment of GPDs can be defined as

Oq
n(ξ, t, µ

2) =
Γ(n+ 1)Γ(3/2)

2nΓ(n+ 3/2)
ξn
∫ 1

−1
dxC(3/2)

n

(
x

ξ

)
Hq(x, ξ, t, µ2) , (2.54)

Og
n(ξ, t, µ

2) =
Γ(n)Γ(5/2)

2n−1Γ(n+ 3/2)
ξn−1

∫ 1

−1
dxC

(5/2)
n−1

(
x

ξ

)
Hg(x, ξ, t, µ2) , (2.55)

where Γ(n) = (n−1)! denotes the Gamma function which extends the concept of factorial
and C

(α)
n are Gegenbauer polynomials 8 with α = 3/2 for quarks and α = 5/2 for gluons.

The peculiar normalisation in the definition of Eq. (2.54) is chosen so that in the limit
where ξ = 0, conformal moments coincide with Mellin moments of the PDF :

Oa
n(ξ = 0, t, µ2) =

∫ 1

−1
dx xna(x, µ2) . (2.56)

Conformal moments are in principle a particularly suitable way to study the evolution of
GPDs because moments associated to different values of n do not mix under LO evolu-
tion [105]. For n even, the quark conformal moments factorise their ξ and µ dependence
following

Oq
n(ξ, t, µ

2) = Oq
n(ξ, t, µ

2
0)

(
αs(µ

2)

αs(µ2
0)

)2γn/β0

, (2.57)

whereas the gluon conformal moments are strictly 0 due to the parity in x of Hg. The
exponents γn, often known as anomalous dimensions, are remarkably independent of
ξ 9. It means that they are in particular the same governing the solution of the DGLAP
equation (ξ = 0) and the ERBL equation (ξ = 1). We postpone a precise definition of
these exponents to Eq. (5.9), where the reason why we will need to study their numerical
values will appear more clearly.

On the contrary, for n odd, some mixing occurs between quark and gluon conformal
moments, but only strictly for the same values of n. More precisely, flavour non singlet
components obtained as the difference of two GPDs associated to different quark flavours
evolve in the same way as Eq. (2.57) :

Oq1
n (ξ, t, µ

2)−Oq2
n (ξ, t, µ

2) =

[
Oq1
n (ξ, t, µ

2
0)−Oq2

n (ξ, t, µ
2
0)

](
αs(µ

2)

αs(µ2
0)

)2γn/β0

, (2.58)

whereas the flavour singlet component, summed over all quark flavours, mixes with gluons

8. Gegenbauer polynomials C(α)
n (x) are polynomial in x of order n which are orthogonal on [−1, 1]

with respect to the weight function (1 − x2)α−1/2. They generalise two other families of orthogonal
polynomials : the Legendre and Chebyshev polynomials.

9. This observation is linked to the fact that in the MS scheme, anomalous dimensions of local
operators are fixed independently of incoming or outgoing states.
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in the following manner [35] :

1

nf

∑
q

Oq
n(ξ, t, µ

2) = O+
n (ξ, t, µ

2
0)

(
αs(µ

2)

αs(µ2
0)

)2γ+n /β0

+O−n (ξ, t, µ2
0)

(
αs(µ

2)

αs(µ2
0)

)2γ−n /β0

,

(2.59)

Og
n(ξ, t, µ

2) = a+nO+
n (ξ, t, µ

2
0)

(
αs(µ

2)

αs(µ2
0)

)2γ+n /β0

+ a−nO−n (ξ, t, µ2
0)

(
αs(µ

2)

αs(µ2
0)

)2γ−n /β0

,

(2.60)

where O±n (ξ, t, µ2
0) are defined straightforwardly by evaluating Eqs. (2.59) and (2.60) at

µ2 = µ2
0 :

1

nf

∑
q

Oq
n(ξ, t, µ

2
0) = O+

n (ξ, t, µ
2
0) +O−n (ξ, t, µ2

0) , (2.61)

Og
n(ξ, t, µ

2
0) = a+nO+

n (ξ, t, µ
2
0) + a−nO−n (ξ, t, µ2

0) . (2.62)

The values of coefficients a±n and anomalous dimensions γ±n were first derived in Refs. [106,
107]. We will provide an alternative matrix formulation of LO evolution in the space of
conformal moments for n odd in Chapter 5, where the precise values of a±n and γ±n will
be detailed, and an approximate solution of the evolution derived.

At higher perturbative order, the property of non-mixing of conformal moments with
different values of n is no longer true in the MS scheme. A GPD evolution code ba-
sed on conformal moments is proposed in Ref. [108] at NLO in the MS scheme, and
NNLO in a specific choice of renormalisation scheme called the conformal scheme. Let
us notice however that the exact reconstruction of GPDs from conformal moments is a
technical procedure, which requires the introduction of formal resummations or the ana-
lytical continuation of the moments to complex values of n. Two analytical techniques,
the Mellin-Barnes integral [108, 109] and the Shuvaev transform [110, 111] have been
proposed to reconstruct exactly the GPD from its conformal moments. Both were shown
to be equivalent in Ref. [112]. If no analytical form of the moments is known, the GPD
reconstruction can be attempted numerically by an expansion on a polynomial basis. One
of the early studies of this kind performed using an expansion of GPDs on Gegenbauer
polynomials 10 reported in Ref. [114] to have used 80 polynomials. Due to the oscillatory
behaviour of the polynomials, it was necessary to perform exact calculations and interpo-
late the results by a smooth function. The review led in Ref. [35] likewise mentions the
necessity of tens if not hundreds of polynomials, and severe numerical issues for x close
to ξ or ξ too small where GPDs may present fast variations in x.

For these reasons, and considering the peculiar shadow distributions whose evolution
we will be interested in, we preferred to use an evolution code we published recently in
Ref. [1]. It solves the LO RGE directly in the (x, ξ) space thanks to a numerical method
(Runge-Kutta method), bypassing any need for a reconstruction from the space of confor-
mal moments. We have led extensive tests to verify the excellent numerical preservation
of polynomiality of Mellin moments, as well as the correct reduction to the DGLAP and

10. Formally, it is not needed to use Gegenbauer polynomials to expand the GPD, and other bases of
orthogonal polynomials have been used. Ref. [113] uses 70 terms computed with Legendre polynomials.
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ERBL kernels in the ξ → 0 and ξ → 1 limits. Although it is not the first evolution
code in the (x, ξ) space, it offers significantly improved numerical properties compared to
the no-longer maintained Vinnikov code [115]. In addition to providing the results of the
evolution of shadow GPDs, our (x, ξ) space code will allow us to revisit in a modelling
proposal of the behaviour of GPDs at small x and ξ inspired from the Shuvaev transform
in Chapter 7.

50



3 - Experimental sensitivity and modelling

As we have already mentioned in Chapter 1, GPDs were introduced in the context
of the description of DVCS and DVMP thanks to factorisation theorems. We have skim-
med intuitively the content of these theorems, stating that they allow us to represent a
scattering process in terms of a hard part characterised by a coefficient function and a
soft part involving a parton distribution. In this chapter, we will present in a more syste-
matic way the concrete realisation of the factorisation theorems, the experimental access
they provide to GPDs, as well as some modelling tools which have been developed for
phenomenological studies.

3.1 . Deeply virtual Compton scattering

As depicted schematically on the left panel of Fig. 1.1 in the case of an electron,
DVCS corresponds to the initial and final states lh → lγh, where l is a lepton, γ a real
photon and h the hadron target. DVCS is therefore measured thanks to photon lepto-
production events. There exists however another process with the same initial and final
states, known as Bethe-Heitler (BH). A diagrammatic representation of a contribution to
the BH is given in Fig. 3.1. The incoming electron is elastically scattered by the hadron
target and radiates a photon. The description of this process involves only EFFs.

DVCS and BH interfere coherently, so the cross-section of lepto-production of a photon
(lh → lγh) writes as the sum of the squared amplitudes of the two processes |TDV CS|2
and |TBH |2 with the addition of an interference term I. The differential cross-section can
therefore be written (see Ref. [116] and references therein) as :

d5σ

dxB d|t| dQ2 dϕ dϕS
∝ |TDV CS|2 + |TBH |2 + I , (3.1)

I = T ∗DV CSTBH + TDV CST ∗BH , (3.2)

where ∗ denotes complex conjugation. The differential cross-section depends on two va-
riables we have already introduced : t, the square of the total four-momentum transfer
to the hadron (1.4) and Q2 ≡ −q2 defined as the opposite of the square of the four-
momentum of the photon emitted by the incoming lepton. In addition, the cross-section

Figure 3.1 – A contribution to the Bethe-Heitler process.
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Figure 3.2 – Kinematics of a photon lepto-production event in the hadron rest frame (Trento
notations [117]). The incoming and outgoing leptons are denoted by k⃗ and k⃗′, the exchanged
photon by q⃗ and the real photon in the final state by q⃗′. The incoming and outgoing lepton
trajectories define the leptonic plane, and the recoil hadron and real photon define the hadronic
plane. In this reference system, ϕ is the angle between the leptonic and hadronic planes. ϕS is
the angle between the leptonic plane and the transverse polarisation of the hadron in case of a
polarised target. Figure taken from Ref. [118].

depends on previously not introduced variables : Bjorken’s variable xB and angles ϕ and
ϕS. Bjorken’s variable is defined by

xB ≡ Q2

2p1 · q
, (3.3)

which can be related to the skewness variable ξ = −∆+/(2P+) (1.4) of GPDs by noting
that

ξ =
p+1 − p+2
p+1 + p+2

so p+2 = p+1
1− ξ

1 + ξ
, (3.4)

hence the approximate relation 1

xB ≈ 2ξ

1 + ξ

(
1− t

Q2

)
. (3.5)

The angular dependence of the DVCS cross-section in the hadron rest frame is defined
in Fig. 3.2 : ϕ is the angle between the leptonic and hadronic planes, and ϕS is the
angle between the leptonic plane and the transverse polarisation of the hadron in case
of a polarised target. Dependence on ϕ is often expressed by a decomposition on Fourier
harmonics. For instance, up to twist-three contributions and corrections suppressed by
1/Q [119],

|TDV CS|2 = ΓDV CS(xB, Q
2, t)

[
cDV CS0 +

2∑
n=1

(
cDV CSn cos(nϕ) + sDV CSn sin(nϕ)

) ]
, (3.6)

1. The requirement that the photon in the final state is on-shell yields (q −∆)2 = 0, that is −Q2 +
t + 2p1 · q − 2p2 · q = 0, or equivalently −1 + t

Q2 + 1
xB

− 2p2·q
Q2 = 0. Using that p+2 = p+1

1−ξ
1+ξ (3.4) and

assuming that most of the momentum transfer is in the forward direction, that is p+ ≫ p−, p⊥, we obtain
the approximation p2 ≈ p1

1−ξ
1+ξ . Hence −1 + t

Q2 + 1
xB

− 1
xB

1−ξ
1+ξ ≈ 0 which yields immediately Eq. (3.5).
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where ΓDV CS(xB, Q
2, t) is a known kinematic prefactor 2. Pure BH term |TBH |2 and BH-

DVCS interference I are likewise frequently expressed in terms of Fourier harmonics,
although the situation is made more difficult by the presence of an additional ϕ dependence
originating from lepton propagators in the BH amplitude [119] :

|TBH |2 =
ΓBH(xB, Q

2, t)

P1(ϕ)P2(ϕ)

[
cBH0 +

2∑
n=1

cBHn cos(nϕ) + sBH1 sin(ϕ)

]
, (3.7)

I =
ΓI(xB, Q

2, t)

P1(ϕ)P2(ϕ)

[
cI0 +

3∑
n=1

(
cIn cos(nϕ) + sIn sin(nϕ)

) ]
. (3.8)

The terms 1/(P1(ϕ)P2(ϕ)) coming from the lepton propagators make the expansion in
Fourier harmonics of |TBH |2 and I infinite, and the practical recovery of the cn and sn
coefficients is therefore more complicated.

Recent expressions for coefficients cn and sn are found in Refs. [120]. Pure BH har-
monics let themselves write simply in terms of the EFFs F1 and F2. As elastic scattering
provides a precise enough source of information on EFFs for the needs of DVCS mea-
surements, we may consider that the pure BH contribution is well-known theoretically.
On the contrary, pure DVCS term and BH-DVCS interference harmonics bring a new
source of information on the hadron inner structure. They are usually expressed in terms
of Compton form factors (CFFs).

3.1.1 . Compton form factors
CFFs enter linearly the description of the BH-DVCS interference term, and quadrati-

cally that of the pure DVCS term. At leading twist, they are expressed as convolutions
of GPDs with coefficient functions thanks to a factorisation theorem [16]. The CFF H
associated to the GPD H can be expressed as

H(ξ, t, Q2) =
∑
a

∫ 1

−1

dx

ξ
T a
(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
Ha(x, ξ, t, µ2)

xpa
, (3.9)

≡
∑
a

T a
(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
⊗Ha(x, ξ, t, µ2) (3.10)

where pa = 1 if a = g and 0 otherwise, and we have introduced the notation ⊗ to subtend
the integration on the first variable of GPDs with correct xpa factor. T a is the coefficient
function, a complex distribution computable in perturbation theory. We denote by T ak its
expansion up to order αks . At LO, the coefficient function has no scale dependence and
reads

1

ξ
T q0

(
x

ξ

)
= e2q

(
1

ξ − x− iϵ
− 1

ξ + x− iϵ

)
. (3.11)

The formulation with iϵ is often used, but for many practical purposes, it is preferable
to compute directly the limit ϵ → 0+. Owing to the Sokhotski-Plemelj formula, it is

2. There is still a dependence in ϕ − ϕS in coefficients cn and sn, reason why some authors use
φ = ϕ − ϕS or equivalent definitions as angular dependence instead of ϕS (see for instance Ref. [119]).
We stick however to the Trento conventions. Ref. [116] explains precisely how to switch to the alternative
BMK conventions.
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straightforward at LO, and

T q0 (ω) = e2q

(
p.v.

[
1

1− ω
− 1

1 + ω

]
+ iπ[δ(1− ω)− δ(1 + ω)]

)
, (3.12)

T g0 = 0 , (3.13)

where p.v. denotes Cauchy’s principal value. Finally, the convolution with the GPD yields
for the imaginary part

ImT q0

(
x

ξ

)
⊗Hq(x, ξ, t, µ2) = πe2q

[
Hq(ξ, ξ, t, µ2)−Hq(−x, ξ, t, µ2)

]
, (3.14)

= πe2qH
q(+)(ξ, ξ, t, µ2) , (3.15)

(3.16)

and for the real part

ReT q0

(
x

ξ

)
⊗Hq(x, ξ, t, µ2) = e2q p.v.

∫ 1

−1
dx

[
1

ξ − x
− 1

ξ + x

]
Hq(x, ξ, t, µ2) , (3.17)

= e2q p.v.
∫ 1

0

dx

[
1

ξ − x
− 1

ξ + x

]
Hq(+)(x, ξ, t, µ2) , (3.18)

where we have used the explicit x parity of the DVCS coefficient function to restrict
integration on [0, 1]. It is a general feature that, as the DVCS process is C-even, its
coefficient functions have a definite parity in terms of x and T a⊗Ha(−) = 0. Therefore it
is already clear that DVCS does not provide any information on non-singlet GPDs.

Due to the presence of Cauchy’s principal value in Eq. (3.18), this expression is still
a bit cumbersome to evaluate numerically. Subtracting the diagonal Hq(+)(ξ, ξ, t, µ2)
increases the regularity of the integrand, yielding an expression which can be computed
straightforwardly without principal value for ξ > 0 :

ReT q0

(
x

ξ

)
⊗Hq(x, ξ, t, µ2)

= −e2q
∫ 1

0

dx

[
Hq(+)(x, ξ)−Hq(+)(ξ, ξ)

x− ξ
+
Hq(+)(x, ξ)

ξ + x

]
− e2qH

q(+)(ξ, ξ) log

(
1− ξ

ξ

)
,

(3.19)

where we have omitted (t, µ2) dependence in the right hand side for brevity and used that
for ξ > 0,

p.v.
∫ 1

0

dx

x− ξ
= log

(
1− ξ

ξ

)
. (3.20)

The coefficient functions T a expressed at NLO have been computed for instance in
Refs. [121, 17, 122, 123, 124, 29]. Two loops corrections have been recently published
in Refs. [125, 126]. The general structure of the perturbative expansion of the coefficient
function will be studied in detail in Section 6.3.1. We show in Appendix A.3 how to derive
expressions without iϵ on a more complicated example compared to the simple LO one,
as such expressions will be useful both in Chapters 5 and 6.
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Most studies of DVCS have been performed at LO, taking advantage of the remar-
kable direct access to the diagonal of the GPD provided by the imaginary part of the
LO coefficient function (3.15), and using the fact that the limited coverage in Q2 of the
current experimental DVCS dataset does not require a careful study of Q2 dependence.
NLO studies of DVCS have been pioneered in Ref. [108]. Future facilities with an exten-
ded coverage in Q2, which we will detail in Section 3.3, make studies at least at NLO
necessary. We will therefore develop a full NLO approach of the question of whether or
not it is possible to recover Ha(+) from the knowledge of T a ⊗ Ha, issue known as the
deconvolution problem.

DVCS observables

Before even trying to invert the convolution of Eq. (3.10), extracting CFFs from ex-
perimental data is already a challenge in itself. Experimentalists have the possibility to
measure different kinds of observables : notably total or differential cross-sections and
asymmetries. The latter are defined as the ratio of cross-sections, and offer an intrinsic
advantage since some systematic uncertainties linked to the normalisation of the cross-
sections cancel out. As an example of asymmetry, let us mention the beam spin asymmetry
(BSA) measured for longitudinally polarised electrons and unpolarised hadrons defined
by [127]

A−LU(xB, t, Q
2, ϕ) =

d4σ→,−(xB, t, Q
2, ϕ)− d4σ←,−(xB, t, Q

2, ϕ)

d4σ→,−(xB, t, Q2, ϕ) + d4σ←,−(xB, t, Q2, ϕ)
. (3.21)

The superscript − denotes the fact that the asymmetry is measured with a negatively
charged beam, the LU subscript characterises the polarisations of the beam (L for longi-
tudinal) and target (U for unpolarised), and the superscripts →, ← denote the helicity of
the beam.

The Fourier harmonics of A−LU are defined by

A−,cosnϕLU =
1

π

∫ 2π

0

dϕ cos(nϕ)A−LU(ϕ) , (3.22)

A−,sinnϕLU =
1

π

∫ 2π

0

dϕ sin(nϕ)A−LU(ϕ) . (3.23)

The parameterisation in terms of CFFs of the BH-DVCS interference contribution to
A−,sinϕLU can be expressed at leading twist and leading order in 1/Q [128]

A−,sinϕLU,I ∝ Im
[
F1H + ξ(F1 + F2)H̃ − t

4M2
F2E

]
. (3.24)

Different observables – including different Fourier harmonics of the same asymmetry –
are sensitive to different combinations of CFFs and provide therefore various handles to
perform CFF extraction from experimental data. Refs. [129, 116] summarise expressions
of various observables in terms of CFFs. The question of determining which observables
to measure in which kinematic regions is central to increase the experimental knowledge
on CFFs. We will develop this aspect in Section 4.4, where we present another observable
known as beam charge asymmetry, and gauge the impact of its potential measurement at
JLab on the knowledge of ReH.
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We have overlooked in this very brief presentation many subtleties that render the
extraction of CFFs from experimental data particularly challenging. Notably, 1/Q power
corrections which we have neglected may be quite large considering the low values of Q2

at which most data are obtained, which forces to consider higher twist CFFs. Corrections
in t/Q2 and M/Q2 are presented for instance in Refs. [130, 131, 132] and exploited in
Ref. [133].

Two main strategies of extraction of CFFs from experimental data have been develo-
ped. The first consists in so-called local fits (see for instance Refs. [134, 135, 136, 137,
138, 139, 140, 141]). Independently for each kinematic bin, the CFFs are fitted as free
parameters on the experimental data. This method introduces therefore no bias on the
general form of the CFF apart from the chosen framework of general approximation, like
twist truncation, neglection of some CFFs, assumption of dominance of either BH or either
DVCS, ... Local fits have however no ability to predict the result of measurements in pre-
viously unexplored kinematics. On the other hand, global fits (see for instance Refs. [135,
137, 108, 109, 53]) assume a functional shape of the CFFs and adjust it using data on all
available kinematics at once. The model may be built at the level of the CFF, or directly
at the level of the GPD. We will explore in Section 3.4 several distinct strategies to model
GPDs. The global fit method allows one to predict measurements in unprobed kinematics,
but at the cost of introducing some level of model dependence. Efforts to reduce this bias
have been led, notably by the introduction of neural network parameterisations of CFFs
[142, 143]. We will present this aspect in detail in Section 4.2.

The difficulty of CFF extractions, which require to manipulate a large number of
observables, as well as expansions in twist and orders of αs, has motivated the development
of integrated softwares dedicated to the phenomenology of GPDs, such as PARTONS [144]
(https://partons.cea.fr) and GeParD (https://gepard.phy.hr). The study of the
deconvolution problem of DVCS will show how multi-channel analyses – that is including
processes different from DVCS – is crucial to extract GPDs, making the pertinence of
these integrated software approaches all the more stringent.

3.1.2 . Dispersion relations

A remarkable description of CFFs is inherited from the study of their analytical pro-
perties [145, 108, 146]. The ξ dependences of the real and imaginary parts of CFFs are
related through the following dispersion relation with one subtraction 3

ReH(ξ, t, Q2) =
1

π
p.v.

∫ 1

0

dξ′ ImH(ξ′, t, Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
+ CH(t, Q

2) . (3.25)

CH(t, Q
2) is known as the subtraction constant as it is independent of ξ. The derivation

of Eq. (3.25) finds its roots in the general analytical properties of scattering amplitudes,
notably causality and unitarity. In particular, it does not depend on the formalism of per-
turbative QCD and the development of dispersion relations applied to hadron scattering

3. The number of necessary subtractions is dictated by the behaviour of the CFF at high-energy, which
corresponds to the limit ξ → 0. Commonly advocated Regge trajectories give that the CFF behaves as
ξ−α with 1 < α < 2, so one subtraction is thought to be enough and yields a ξ independent term
CH(t, Q2). If a higher value of α is encountered, more subtractions need to be introduced (see Refs. [146,
108] for more details), and the derived dispersion relation will involve terms of the form C

[k]
H (t, Q2)/ξk

with k > 0 even, which are therefore no longer constant with respect to ξ.
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dates back to the 1950s 4. Ref. [148] underlines that since the value of ξ is bounded by
kinematic considerations (2.1), the integral in Eq. (3.25) is partly performed in an unphy-
sical region where the CFF simply cannot be measured. In practice, it means that ImH
must be continued in some manner, for instance thanks to a model of its ξ dependence, to
extract the subtraction constant. In spite of the difficulty linked to the unphysical large
values of ξ, let us mention that the real part of the CFF contains an information on the
imaginary part integrated from ξ′ = 0 to the upper kinematic bound, which represents
an opportunity to constrain the imaginary part at small values of ξ which are difficult to
reach in experiments.

Ref. [146] observes that the coefficient functions obey similar dispersion relations
thanks to their interpretation as hard parton scattering. The authors demonstrate that
the consistency of the dispersion relations at the level of the CFF and the coefficient func-
tion, combined with the requirements of Lorentz covariance on GPDs expressed through
the form of Eq. (2.25), implies that, for a coefficient function T ak computed at order αks ,
the subtraction constant reads

CH(t, Q
2) =

∑
a

Ca
H,k[D

a](t, Q2, µ2) +O(αk+1
s ) , (3.26)

where

Ca
H,k[D

a](t, Q2, µ2) =
2

π

∫ ∞
1

dω

ωpa
ImT ak

(
ω,
Q2

µ2
, αs(µ

2)

)∫ 1

−1
dz

Da(z, t, µ2)

ω − z
. (3.27)

To differentiate the experimental value of the subtraction constant CH(t, Q2) defined in
Eq. (3.25) from the computation of the contribution of the D-term to the subtraction at
NkLO, we introduce the notation

CH,k[D
q, Dg](t, Q2) ≡

∑
a

Ca
H,k[D

a](t, Q2, µ2) . (3.28)

Therefore,
CH(t, Q

2) = CH,k[D
q, Dg](t, Q2) +O(αk+1

s ) . (3.29)

At LO in αs(µ2), T g0 = 0 and ImT q0 (ω) = πe2q[δ(1− ω)− δ(1 + ω)] (3.13), so

CH,0[D
q, Dg](t, Q2) = 2

∑
q

e2q

∫ 1

−1
dz

Dq(z, t, µ2)

1− z
. (3.30)

The derivation of an NLO quark contribution is demonstrated in Appendix A.3. The
subtraction constant represents a channel for the specific extraction of the D-term which
we will exploit in detail in Chapter 5. On the contrary, the imaginary part of the CFF
allows the access to the pure DD fa contribution, whose exact nature we will study in
Chapter 6.

4. See for instance the interesting discussion of Ref. [147] where it is heuristically argued why the
real part of a scattering can be obtained as an integral of the imaginary part. It is also demonstrated
mathematically that "strict causality" amounts for the scattering amplitude to be the boundary value on a
complex half-plane of an analytical function of its complexified kinematic dependence. The iϵ prescription
allows one to identify how the boundary value should be approached from the complex plane and is deeply
related to the requirement of causality.
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3.2 . Sensitivity to other processes

Although DVCS is widely considered as the golden channel to extract GPDs thanks
to its relative theoretical cleanness, we have already mentioned in Chapter 1 that GPDs
are universal objects which enter the description of other exclusive processes. As DVCS
will occupy most of our attention in this document, we only briefly mention a few of these
additional channels, and some properties relevant to our study.

Time-like Compton scattering

Time-like Compton scattering (TCS) [26] is a close relative to DVCS since it corres-
ponds to a similar process, except the incoming photon is real, and outgoing photon is
virtual. The virtual photon usually decays in a lepton pair in the final state. Due to its
proximity with DVCS, TCS can be described in terms of CFFs with coefficient functions
which are notably detailed in Refs. [29, 149].

The similarity of the two processes allows one to extend to TCS theoretical develop-
ments performed for DVCS. The slight differences in coefficient functions provide a first
test of universality of GPDs : can objects derived from DVCS describe equally well TCS
observables ? The first experimental measurements have been recently obtained at JLab
[150] and pave the way to this important test of universality.

Deeply virtual meson production

DVMP, whose schematic depiction is given on the right panel of Fig. 1.1, played an
important role in the introduction of GPDs. However, because mesons are bound states
of QCD, DVMP involves further theoretical refinements compared to DVCS or TCS. Its
factorisation [14], proved for longitudinally polarised photons, involves not only GPDs
and coefficient functions known at NLO [151], but also another non-perturbative object :
the distribution amplitude (DA). The equivalent of a CFF for DVMP, called transition
form factor T (TFF), reads generically at twist-two as

T (ξ, t, Q2) =

∫ 1

0

du

∫ 1

−1
dxTDVMP

(
x, ξ, u,

Q2

µ2
, αs(µ

2)

)
H(x, ξ, t, µ2)ϕ(u, µ2) , (3.31)

where ϕ(u, µ2) is the leading-twist meson DA and TDVMP a coefficient function which now
depends jointly on x, ξ and u. At LO, the coefficient function TDVMP can be separated
into TDVMP (x, ξ, u) = T

(1)
0 (u)T (2)(x, ξ) under the form [151]

T (ξ, t, Q2)
LO
=

[ ∫ 1

0

duT
(1)
0 (u)ϕ(u, µ2)

][ ∫ 1

−1
dxT (2) (x, ξ)H(x, ξ, t, µ2)

]
, (3.32)

∝ αs(µ
2)

[ ∫ 1

0

du
ϕ(u, µ2)

1− u

][ ∫ 1

−1
dx

(
1

ξ − x− iϵ

)
H(±)(x, ξ, t, µ2)

]
, (3.33)

where we have only shown a generic quark contribution for simplicity. We refer to Ref. [151]
for a detailed presentation of the results at LO and NLO. One will notice that the x-
dependent LO DVMP coefficient function is exactly the same as the LO DVCS one.
The TFF is sensitive to singlet GPDs for longitudinally polarised light vector mesons,
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and to non-singlet GPDs for pseudo-scalar mesons, providing therefore a complementary
knowledge on GPDs compared to DVCS.

A closely related process is heavy vector meson production (HVMP) where the hard
scale of the process is not provided by the virtuality of the incoming photon, but the mass
of the produced meson. One can therefore consider incoming real or quasi-real photons,
as for instance in ultra-peripheral collisions [152]. As HVMP is the subject of a significant
theoretical and experimental interest due to the possibility of constraining gluon PDFs,
we will focus more on this process in Section 7.3.

Processes with a richer kinematic structure

The three processes we have mentioned so far can be described in terms of form factors
(either CFFs or TFFs) which depend on (ξ, t, Q2). As GPDs are functions of (x, ξ, t, µ2),
one variable is "missing" in the kinematic structure of the form factors. In practice, the x
variable is integrated out in the convolutions of Eqs. (3.10) and (3.31). We will observe in
Chapter 6 that this renders the deconvolution problem – that is the extraction of GPDs
from experimental data – particularly difficult.

Several other processes involving GPDs with a richer kinematic structure have been
studied. First, allowing the outgoing photon of DVCS to be virtual while keeping the
incoming one also virtual yields double DVCS (DDVCS) [27, 28, 29]. DVCS and TCS are
therefore limiting cases of this more general process. Noting q′ the four-momentum of the
outgoing virtual photon and keeping q for the incoming virtual photon and p1,2 for the
hadron four-momenta, it is possible to define specifically for DDVCS

ξ′ = − (q + q′)2

4(p1 + p2) · (q + q′)
and ξ = − (p2 − p1) · (q + q′)

2(p1 + p2) · (q + q′)
. (3.34)

In the DVCS limit, ξ′ = ξ, while for TCS, ξ′ = −ξ. DDVCS form factors depend on
(ξ′, ξ, t, Q2), and the imaginary part of the convolution with the LO coefficient function
writes [29]

ImT q0,DDV CS(x, ξ
′)⊗Hq(x, ξ, t, µ2)

= Im
∫ 1

−1
dx e2q

(
1

ξ′ − x− iϵ
− 1

ξ′ + x− iϵ

)
Hq(x, ξ, t, µ2) ,

(3.35)

= πe2qH
q(+)(ξ′, ξ, t, µ2) . (3.36)

Therefore, the imaginary part of the DDVCS form factor at LO gives a direct access to
values of the GPD outside of the diagonal without the need for any deconvolution. Let
us note however that, because the outgoing virtual photon is time-like, |ξ′| ≤ |ξ|, so we
can only probe a limited region of the GPD. An analogous strategy with respect to the
one we will present in Section 3.4.2 may be developed in this situation to recover the full
GPD based on the requirements of Lorentz covariance.

Other channels with a richer kinematic structure compared to DVCS, TCS and DVMP
are processes where several particles are produced in the final state. For instance, the
production of a pair of photons [30, 31, 32] or a photon-meson pair [33, 34] have been sug-
gested. However, these processes, as well as DDVCS, are more challenging experimentally
and their plausible impact on GPD extraction is still being studied.
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Lattice-QCD inputs on parton distributions

Although computations on the lattice do not belong to experimental measurements,
the progress in numerical simulations deserves a mention. This progress is first characteri-
sed by an increase in computational power and an improvement of algorithms which allow
one to carry out simulations at the physical value of parameters like the pion mass (see
for instance Ref. [153]). But it is also and maybe more importantly a profound concep-
tual change. For a long time, lattice-QCD was understood to only be able to compute
values of Mellin moments of parton distributions, accessible from local matrix elements
in Euclidean space. In practice only the first three moments could even be computed due
to divergence and noise issues [154].

The developments of new techniques to match Euclidean correlators to light-cone ones
has however completely changed the picture. It is now possible to extract x-dependent
parton distributions owing to a matching procedure quite analogous to the standard fac-
torisation of experimental cross-sections. Two approaches are most commonly met : the
quasi-distribution formalism [155] and the pseudo-distribution one [156]. A recent review
on the subject may be found in Ref. [157]. The precise control of systematic uncertainty,
both in the computation of matrix elements and in the matching procedure to the light-
cone, is still being actively investigated. GPDs represent in addition further complications
compared to usual PDFs, so experimental data are bound to remain the major source of
information on GPDs still for some years.

3.3 . Status of available DVCS data and future experimental projects

The first measurements of DVCS started about 20 years ago, at the HERA accelarator
(DESY, Germany) and at JLab in the US. At HERA, the H1 [158] and ZEUS [159]
collaborations used a collider set-up, giving access to the smallest values of xB and largest
values of Q2 where DVCS was measured so far. Values as small as xB ∼ 10−4 and as
large as Q2 ∼ 100 GeV2 were probed as shown on Fig. 3.3, unfortunately with only
with a rather low statistics. Having access to both an electron and a positron beam,
they published beam charge asymmetries [160] (see Section 4.4) as well as cross-sections
dominated by the pure DVCS contribution at small values of xB.

At HERA also, the HERMES collaboration [161] used a fixed target which could be
longitudinally or transversely polarised. They published a complete set of asymmetries
for xB in the range 0.04 to 0.1 with Q2 up to about 7 GeV2.

At JLab, the CLAS [162, 163] and Hall A [133, 164] collaborations also used a fixed
target, although they worked at a larger value of xB of the order of 0.1 to 0.5 and even
lower Q2 up to about 4 GeV2. With the upgrade of JLab 12 GeV, an increased kinematic
region with better experimental precision is expected in the coming years.

At the CERN, the COMPASS collaboration [47] with a fixed target provides an in-
termediate range in xB between HERMES and H1 / ZEUS data, with the possibility of
using both positively and negatively charged muons.

For now, most of the statistically constraining data for global fits of DVCS is obtained
at rather low values of Q2 with the bulk of points ranging from 1.5 to 4 GeV2. It is well
understood that obtaining data on a larger range in Q2 is crucial, and we will demonstrate
in detail the importance of this matter in Chapters 5 and 6. Obtaining data with a higher
luminosity than HERA at very low xB offers also very interesting physical perspectives
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Figure 3.3 – Summary of the current and planned DVCS measurements in terms of xB and
Q2. A few measurements are missing, without significantly changing the picture, as this figure
was also used in the 2021 EIC yellow report. Figure taken from Ref. [46].

which we will mention more precisely in Section 7.3. Overall, an increased precision of
experimental data is necessary to progress on the physical motivations for the study of
GPDs, like hadron tomography (Section 1.4.1) and the extraction of mechanical properties
(Section 1.4.2).

The future electron ion collider (EIC) [46, 47], which has already received a serious
governmental commitment in the US, is at the center of a lot of attention thanks to its
promise of a high luminosity coverage over an extended region at relatively small xB and
large Q2 as depicted on Fig. 3.3. When deriving numerical estimates in this work, we will
frequently have the EIC in mind and a coverage in Q2 roughly estimated from 1 to 50
or 100 GeV2. Let us mention also competing projects with the hadron-electron collider
(LHeC) [50] and the Chinese electron-ion collider (EIcC) [48, 49].

3.4 . Models of generalised parton distributions

Due to the scarcity of experimental measurements and the difficulty of the overall
procedure of extraction of GPDs from experimental data, models have played a very
important role in phenomenology. We choose to only present three selected strategies of
modelling in this section, and refer to Ref. [116] for a more detailed presentation of the
subject. The three strategies we will present, one based on double distributions, one on
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conformal moments and one on the inversion of the Radon transform, will all be revisited
in the next chapters. We will present new models of double distributions in Section 7.1
and 7.2, where we intend to provide a lesser model dependence and a better flexibility. In
Section 7.3, we will study a proposal of modelling GPDs at small ξ based on the Shuvaev
transform for conformal moments, reinterpret its validity and justify why we feel that an
alternative view on the matter is relevant. Finally we will propose a different strategy for
the inversion of the Radon transform in Section 6.2.

3.4.1 . RDDA-based models
We remind that the DD formalism is equivalent to satisfying the requirements of

Lorentz covariance on the polynomiality of Mellin moments of GPDs. A simple way to
combine DDs and the excellent knowledge of PDFs is known as Radyushin’s double dis-
tribution Ansatz (RDDA), introduced in Ref. [165]. In this Ansatz, the DD f q(β, α, t) is
modelled as

f q(β, α, t) = πN(β, α)q(β, t) , (3.37)

where q(x, t) produces the usual PDF q(x) in the limit where t = 0, and πN is called a
profile function. Eq. (2.25) gives that

Hq(x, 0, t) =

∫ 1−|x|

|x|−1
dα f q(x, α, t) , (3.38)

= q(x, t)

∫ 1−|x|

|x|−1
dαπN(x, α) , (3.39)

so to produce the expected forward limit at t = 0, the profile function must be normalised
in the following way : ∫ 1−|β|

|β|−1
dαπN(β, α) = 1 . (3.40)

A straightforward way to satisfy Eq. (3.40) is to propose

πN(β, α) =
Γ(N + 3/2)√
πΓ(N + 1)

((1− |β|)2 − α2)N

(1− |β|)2N+1
. (3.41)

The fact that the α dependence of the RDDA is merely controlled by a single parameter N
produces a rather inflexible modelling. In fact, the model converges quickly as N increases
as demonstrated in Refs. [166, 167], so the effective freedom is limited.

The RDDA is however the basis of two very popular phenomenological models : the
Vanderhaeghen - Guichon - Guidal (VGG) model [168, 169, 170, 171], and the Golosko-
kov - Kroll (GK) model [172, 173, 174]. The main difference between the two resides in
the implementation of the t dependence of q(x, t). VGG uses the generic form q(x, t) ∝
q(x)x−η(1−x)t for the unpolarised GPD Hq, whereas GK uses q(x, t) ∝ q(x)x−ηteνt. The
exponents η and ν are fixed to approximately reproduce the large t behaviour of the EFF
F1(t).

Although initially tailored on DVMP experimental data, the GK model produces a
good agreement in a LO description of DVCS experimental data on a wide kinematic
range as demonstrated in Ref. [129]. However, Ref. [175] argues that predictions obtained
with RDDA models are generally too large at small xB, and that the good agreement
pointed out in Ref. [129] is coincidental.
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3.4.2 . Partial wave expansion
Another popular approach to the modelling of GPDs is to work in the space of confor-

mal moments introduced in Section 2.4. The relation between GPDs and conformal mo-
ments can be represented in terms of a formally divergent infinite polynomial expansion

Hq(x, ξ, t) =
∞∑
j=0

1

ξ

(
−2

ξ

)j
Γ(j + 5/2)

Γ(3/2)Γ(j + 3)

(
1− x2

ξ2

)
C

(3/2)
j

(
−x
ξ

)
Oq
j (ξ, t) , (3.42)

where the C(3/2)
j are Gegenbauer polynomials, and Oq

j (ξ, t) the conformal moments de-
fined in Eq. (2.54). We have already mentioned in Section 2.4 that numerical studies of
reconstruction of GPDs from conformal moments based on polynomial expansions face
difficulties due to the large number of terms required to faithfully reconstruct the GPD,
but analytical models can be used.

The simplest model consists probably in choosing Oq
j (ξ, t) to be ξ independent with

the same t dependence for all j. This leads to an interesting proposal of model at small ξ
– with some shortcomings – which we will look into in detail in Section 7.3.

A less trivial way to model the ξ and t dependence of the conformal moments is
obtained in the formalism of SO(3) partial wave expansion in the t-channel [39, 176, 177,
108] :

Oq
j (ξ, t) =

j+1∑
J=Jmin

OJ
j (t)ξ

j+1−J d̂J(ξ) , (3.43)

where the summation is performed over the t-channel angular momentum J . The d̂J(ξ)
functions derive from the Wigner rotation matrix and can be written in terms of Jacobi
polynomials.

At t = 0, the leading partial wave amplitude Oj+1
j (t = 0) is the j-th Mellin moment

of the PDF

qj ≡ Oj+1
j (t = 0) =

∫ 1

0

dx xjq(x) . (3.44)

The SO(3) expansion can be envisioned as the exchange of mesons carrying a total an-
gular momentum J (see Refs. [177, 108, 109] for more details). A simplified proposal
of dependence at small ξ is obtained by modelling this exchange of mesons by Regge
trajectories :

Oq
j (ξ, t) = qj(1 + s2ξ

2 + s4ξ
4 + ...)

1 + j − α

1 + j − α− α′t

(
1− t

m2

)−p
, (3.45)

where α and α′ parameterise the Regge trajectory and p and m control the strength of the
coupling between the hadron target and the meson. More explanations on the physical
hypotheses leading to the model of Eq. (3.45) are found in Ref. [116] for instance.

3.4.3 . The covariant extension
After having broadly discussed modelling strategies based on double distributions

and conformal moments, let us briefly mention a third distinct path of modelling, based
on LFWFs introduced in Section 2.3. We have already noticed that, depending on the
kinematic region under consideration, the representation of GPDs as an overlap of LFWFs
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involves either an overlap of LFWFs with the same number of particles for |x| > |ξ| (2.41),
or an overlap of LFWFs with differing number of particles in the region |x| < |ξ| (2.42).
In the latter case, the mismatch in the number of particles in the Fock states triggers an
ambiguity on the Fock space truncation : assuming a truncation at N particles has been
implemented in the |x| > |ξ| region, how should we proceed for |x| < |ξ| ? Should we only
keep overlap between at most N and N − 2 particles ? Or are overlap between N +1 and
N − 1 particles also allowed ? There does not seem to be any natural good answer.

As the Fock space truncation does not produce ambiguities in the region |x| > |ξ|, a
technique proposed in Ref. [77] consists in modelling the GPD in that region from LFWFs,
and using afterwards the requirements of Lorentz covariance to perform the covariant
extension of the GPD to the region |x| < |ξ|. In practice, a DD is extracted thanks to
the inverse Radon transform from the knowledge of the GPD in the region |x| > |ξ|, and
is then used to compute the value of the GPD for |x| < |ξ| 5.

This procedure allows therefore to keep at the same time the advantages of the LFWF
overlap representation, which ensures the respect of the complicated set of positivity
constraints in the |x| > |ξ| region, and the advantages of the DD representation, which
guarantees correct properties with respect to Lorentz covariance.

A practical implementation of the inversion of the Radon transform is presented in
Refs. [77, 179] thanks to a finite element method. The DD domain in (β, α) is discretised
in a mesh with several hundred nodes, and a linear system relating the values of the DD
on the nodes of the mesh to the targeted GPD in the |x| > |ξ| region is built and then
inverted. We will provide more technical details in Section 6.2, where we will propose an
alternative strategy to the finite element method. Indeed, the formalism of DDs defined
as polynomials in α and β which we will develop for a completely separate objective can
be applied to obtain a covariant extension with very satisfactory results. The modelling
based on DDs which we will later expose in Section 7.2 follows from the same general
idea than the covariant expansion we have sketched here. However, instead of starting
from positivity bounds (LFWF formalism) and implementing Lorentz covariance (DD
formalism), we will follow the inverse path, starting from a DD and showing how it can
satisfy positivity bounds thanks to the shadow distributions we introduce in Chapters 5
and 6.

5. Formally, it is demonstrated in Ref. [77] from a theorem in Ref. [178] that the knowledge of the
GPD in the region |x| > |ξ| is sufficient to exactly reconstruct the DD fq, up to an ambiguity on the
β = 0 line which is not probed by Radon integration lines in that kinematic region. In particular, the
D-term, which writes in the DD formalism as δ(β)Dq(α, t) (2.25), cannot be reconstructed, as well as any
δ(β) singularity included directly in the DD fq. This means that once the DD has been extracted, some
new modelling choices are likely necessary to eliminate the ambiguity, but they will be exactly compatible
with polynomiality of Mellin moments and positivity bounds.
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4 - Neural network parameterisation of Compton form
factors

As a prerequisite to the various analyses and modelling efforts led in this thesis, it
is necessary to familiarise ourselves with uncertainty propagation from an experimental
dataset to a generic model, and the general principles of neural network modelling. In
this chapter, we notably demonstrate on a custom example the advantage of the replica
method over the traditional Hessian method to estimate uncertainty. The last part of this
chapter is devoted to the question of adding new experimental data to an existing fit. This
issue is of significant interest since complex models like neural networks call for lengthy
optimisation procedures that frequently require tens of hours if not days of computing on
clusters. Assessing broadly but reliably the impact of a new dataset without needing the
time and computing power of a full refit is therefore useful to perform impact studies and
identify which observables and kinematic regions would bring the most striking constraints
on extractions. Considering the number of available observables for experimentalists, and
the projects of future facilities which would explore different kinematic domains, reliable
impact studies have come at the forefront of hadron physics. We first demonstrate results
on the addition of a new datapoint to an existing fit in the linear case, before focusing
on the more general Bayesian reweighting procedure. We finally present the results of
the study led in Ref. [2] where we assess the impact of a positron beam at JLab on the
experimental uncertainty of Compton form factors.

4.1 . Modelling uncertainty with neural networks

4.1.1 . Some general aspects of uncertainty modelling

The most straightforward way to assess the uncertainty on a quantity measured on
various kinematics is to propose a functional form of the relation between the quantity
of interest and the kinematic variables, and fit its free parameters to the experimental
data. The fit consists in finding the optimal parameters of the model so as to minimise
a loss function like the least squares estimate, or maximise the likelihood of the observed
dataset. The actual uncertainty on the extraction is then derived from the behaviour of the
loss function around its extremum. Intuitively, if the likelihood is flat near its maximum,
nearby parameters are equally likely, and the uncertainty is large. It is clear that this
procedure to assess experimental uncertainty suffers from several sources of bias, notably
the choice of model and loss function, and the practical procedure to study the behaviour of
the loss function around its minimum. We will call the bias introduced by modelling choices
epistemic uncertainty following the terminology described for instance in Ref. [180].
On the contrary, the intrinsic randomness contained in the fitted data also translates into
an uncertainty in the extraction, which we will refer to as aleatoric uncertainty. We
first present results concerning the aleatoric uncertainty in the case of a linear model,
before discussing the general strategy we used to evaluate uncertainty in non-linear cases.
Discussion of epistemic uncertainty will be led in the next section.
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Uncertainty quantification in the linear Gaussian case

It is useful to study briefly the case where the fitted model is linear in its parameters
and the experimental uncertainty is normally distributed. A linear model can be written
in general as

fA(X) = XTA =
n∑
k=1

akxk , (4.1)

where A = (ak) is the vector of free parameters of length n and X = (xk) a vector of
functions of the kinematic variables. XT denote the transposition of matrix X. To clarify
the notations, let us take the example of a model which depends on a kinematic variable
µ through a linear combination of sin(µ) and cos(µ) :

f(µ) = a sin(µ) + b cos(µ) . (4.2)

a and b are free parameters. Then the model f(µ) can be represented as fA(X) with our

previous notations by the vector of free parameters A =

(
a
b

)
and the vector of functions

of the kinematic variables X =

(
sin(µ)
cos(µ)

)
.

Our goal is to estimate the aleatoric uncertainty on parameters A from a set of m
experimental measurements F = (fi) for 1 ≤ i ≤ m. The functions of the kinematic
variables on which the measurements are obtained are stored in a matrix C with m lines
and n columns. Using again our previous example, let us assume we want to fit a dataset

made of two points (µ1 = 0, f1 = 1) and (µ2 = 1, f2 = 1). Then F =

(
f1
f2

)
=

(
1
1

)
is the

vector of measurements, and C =

(
sin(µ1) cos(µ1)
sin(µ2) cos(µ2)

)
=

(
0 1

sin(1) cos(1)

)
is the matrix

containing information on the probed kinematics. As we have exactly the same number
of measurements as free parameters, there exist a set of parameters such that the model
reproduces exactly the vector of measurements F . This set of parameters, which we will
note A(0), is obtained by solving a simple 2× 2 linear system. Observing the structure of
the matrix C demonstrates that this system writes CA(0) = F . Therefore

A(0) = C−1F =

(
1/ sin(1)− 1/ tan(1)

1

)
. (4.3)

In general, we do not expect our model to be able to reproduce exactly the cen-
tral values of the measurements. We are furthermore interested in understanding how
uncertainty on the measurement vector F is translated into uncertainty on the best fit
parameters. Let us therefore assume that F follows a multivariate normal distribution of
dimension m with covariance matrix Ω, which gives an account of the correlations among
uncertainty. Since we assume the experimental uncertainty to be normally distributed,
minimising the generalised least squares loss function – that is the least squares with
full account of correlations among fitted data introduced historically in Ref. [181] – also
amounts to maximising the likelihood that the observed realisations result from a normal
distribution. The generalised least squares loss function writes

χ2(A) = (F − CA)T Ω−1 (F − CA) . (4.4)
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χ2(A) is a quadratic form with respect to A, and the optimal value of A to minimise
χ2(A), which we note A(0), is obtained by cancelling the gradient of the loss function :(

∂χ2 (A)

∂ak

)
= −2CTΩ−1(F − CA) . (4.5)

Provided the matrix CTΩ−1C is invertible, the general solution is obtained as 1

A(0) = (CTΩ−1C)−1CTΩ−1F . (4.6)

This expression is sufficient to derive the uncertainty on A(0). Direct calculation with
the assumption of normal distribution of F gives that A(0) follows a multivariate normal
distribution of covariance matrix Σ = (CTΩ−1C)−1. One will notice that the central value
of F plays no role on the uncertainty of A(0), as a direct consequence of the linearity of
our model in its parameters.

In the simple linear case that we are focusing on right now, χ2(A) contains all the
necessary information to recover the uncertainty on A(0) without the need for the closed
form solution of the optimisation (4.6). Indeed, the Hessian matrix(

∂2χ2(A)

∂ai∂aj

)
= 2CTΩ−1C = 2Σ−1 (4.7)

is exactly equal to twice the inverse of the covariance matrix of the optimal parameter
extraction. The Hessian method [182, 89] can be adapted to more complicated cases
where a closed form solution relating A(0) to F is not available. Assuming the loss function
behaves in the vicinity of A(0) in a quadratic way, the covariance matrix on A(0) will be
approximated as [

1

2

∂2χ2(A(0))

∂ai∂aj

]−1
. (4.8)

As mentioned before, we recover the intuitive notion that if the likelihood is almost flat
near its maximum – so with a small second derivative – the uncertainty on the parameter
extraction is large. The Hessian method is still mostly satisfactory if experimental uncer-
tainties are not normally distributed since the generalised least squares estimate is the
best linear unbiased estimator [181]. A more striking limitation occurs for a model which is
not linear in terms of its kinematic variables, for instance because the loss function might
well exhibit several significant local minima. Such is particularly the case in parton distri-
butions studies, since many models incorporate a dependence on the kinematic variable
x as (1 − x)αxβ where α, β are parameters to fit, to account for the phenomenological
behaviour of PDFs at end points. Furthermore, as mentioned in Ref. [142] for instance,
it is frequent that the Hessian matrix is poorly conditioned, with eigenvalues varying in

1. Coming back to our simple example, one can verify easily that C is invertible, so

(CTΩ−1C)−1CTΩ−1 = C−1ΩC−TCTΩ−1 = C−1 =

(
−1/ tan(1) 1/ sin(1)

1 0

)
. This gives immediately

the result of Eq. (4.3) when mutiplying by F . We observe in addition the general result that Ω plays no
role in the determination of the best fit value if the matrix C is invertible. It corresponds indeed to having
exactly the same number of free parameters and independent experimental constraints, so the best fit
goes exactly through the central values of the measurements. However, the uncertainty on the best fit
will of course still depend on the uncertainty of the measurements contained in Ω.
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a very large range causing numerical difficulties. Finally, when fitting together datasets
obtained by different experimental collaborations, it is not unlikely that the datasets are
in tension with one another due to unevaluated systematic uncertainties. For this reason,
uncertainties computed with the Hessian method are often increased by a factor 5 to 10,
known as tolerance parameter T [183]. Recent fits in the field of PDF phenomenology
have used adaptive values of the tolerance parameter for each eigenvector of the Hessian
matrix, see Ref. [184] for a review of modern techniques in fits of PDFs.

The replica method

A more general method to evaluate aleatoric uncertainty is based on Monte-Carlo
techniques, and consists in creating artificial experimental datasets by drawing new va-
lues of the measurements in their respective experimental distributions.The statistical and
systematic uncertainties are taken into account with their correlations. For each artificial
dataset, the optimal value of parameters is obtained to minimise the loss function. One
obtains thus a sampling of the joint distribution of the model parameters, which is absolu-
tely not constrained to remain close to a normal distribution, and can exhibit arbitrarily
complex interdependence. Each fit on an artificial experimental dataset will be called a
replica. The replicas form a sampling of the probability distribution of the quantity of
interest in the functional space determined by the form of the model. In simple cases, the
final uncertainty on the quantity at a given kinematic configuration is typically defined as
the standard deviation computed over a large number of replicas, typically 100 or more
decided on a case-by-case basis.

Fig. 4.1 shows an example that we have designed specifically to highlight how the
replica method can provide results that would be out of reach for traditional methods
which only study the behaviour of the loss function in the vicinity of its minimum. We
give ourselves a simple, yet realistic model of PDF inspired from the traditional fitting
method described in Ref. [184] :

xBf(xB) = axbB(1− xB)
c(1 + dxB) , (4.9)

where a, b, c and d are free parameters. Let us then assume we have at our disposal an
experimental dataset of eleven measurements. Ten of them are spaced regularly in loga-
rithmic space between xB = 0.01 and 0.4 with uncorrelated relative uncertainty of 15%.
This corresponds to typical measurements in terms of kinematic coverage and experimen-
tal uncertainty for DVCS at JLab. One additional measurement is obtained at a much
lower value of xB = 5e − 4 with uncorrelated relative uncertainty of 37%. The first ten
measurements have central values that correspond exactly to model (4.9) for a = 1.9,
b = 0.5, c = 3 and d = 2, in accordance with the general behaviour of u valence quark
PDFs in the PDF4LHC15 NNLO fit at 10 GeV2 [185]. However, the eleventh measurement
clearly differs from these parameter values. We show on the left panel of Fig. 4.1 the result
of the fit of model (4.9) on 100 different artificial datasets for the generalised least squares
loss function (4.4). A remarkable feature is the separation of the replica bundle in two
clusters at small xB of approximately equal size. This branching is particularly obvious in
the distribution of parameter b depicted on the right panel of the figure. Depending on the
actual value drawn for the last isolated measurement in each artificial dataset, the strain
it exerts on the overall fit is either dominant and drives the entire small xB behaviour of
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Figure 4.1 – (left) The purple points represent the experimental dataset with its uncertainty.
The orange curves are 100 replicas fitted with model (4.9) on artificial datasets drawn according to
the experimental uncertainty. – (right) We represent the distribution of values of the parameters
of model (4.9) for 3000 replicas. It is especially clear on parameter b (upper right), which drives
the behaviour of the model in the small xB limit, that the replica bundle is separated in two
clusters approximately equally populated.

the replica, or is insufficient to significantly alter the tendency entailed by the first ten
measurements.

Since the distribution of parameters diverges significantly from a normal distribution
to the point that it has several modes, the traditional Hessian method, which focuses
on the study of χ2 around its global minimum, will fail to give a precise account of
uncertainty. If the Hessian method was applied unceremoniously to such a case, it would
simply hide the nature of the problem and underestimate the total uncertainty. However,
the χ2 contains information on this separation in clusters, under the form of local minima.
Since the χ2 is a function of four parameters a, b, c and d in this example, it is unpractical
to visualise the overall shape of the function. We use a dimensionality reduction tool, the
t-distributed stochastic neighbor embedding (t-SNE) algorithm [186], to bring the study
back to a more manageable two dimensions. As a consequence, the four dimensional
space of parameters is embedded in a two dimensional representation via a non-linear
transformation. Although non-linearity means that it is difficult to interpret the meaning
of the final space with t-SNE, the objective is to preserve clusters, so that points that are
close to each other in higher dimension remain close through dimensionality reduction 2.
We will use this tool to identify the regions corresponding to significant local minima in
the space of parameters (a, b, c, d) and try to understand what kind of information on the
branching of the probability distributions of the parameters the χ2 contains.

In practice, on the left panel of Fig. 4.2, we first produce a four-dimensional grid
spanning a large region of parameters which we expect to encompass all significant local
minima of the χ2. Out of 160000 points of the grid, we only select 1055 such that the

2. More precisely, given points in a high-dimensional space, the algorithm constructs a probability
distribution on pairs of these points such that the probability associated to a pair of points which are
close in high dimension is much larger than that associated to a pair of distant points. Then another
distribution is built on pairs of points in the low dimensional space, and the algorithm minimises the
Kullback-Leibler divergence between the two probability distributions by means of an iterative gradient-
descent. We refer the reader to Ref. [186] for more details on this popular dimensionality reduction tool.
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associated χ2 is less than 30. This amounts to selecting a few separate regions of the four
dimensional grid which contain the strongest local minima of the χ2. The chosen parame-
ters are the result of a series of trials, as is necessary when studying a complex function
with many local minima and no clear theoretical property. The threshold on χ2 chosen at
30 guarantees that we only consider parameters that at least remotely reproduce the fitted
data, while we checked that increasing the region spanned by the grid does not reveal new
local minima. Then we apply to the 1055 selected points in four dimension the t-SNE
algorithm to visualise their characteristics in two dimensions. As seen on the left panel,
it is possible to identify broadly four regions where notably small χ2 are encountered. We
denote them by 1 to 4, and highlight by a star the position of the local minimum in each
region. The star in the first region represents the global minimum of χ2. The parameters
associated to each star are summarised in the following table :

Parameters a b c d Value of χ2

Global minimum (region 1) 0.0089 -0.38 2.3 300 2.3
Local minimum (region 2) 0.70 0.28 3.4 11 5.7
Local minimum (region 3) 2.6 0.58 2.3 0.0 6.4
Local minimum (region 4) 1.1 0.36 2.3 2.9 7.1

If one remembers that the first ten points in the fitted dataset were generated with
a = 1.9, b = 0.5, c = 3 and d = 2, the global minimum singles out itself as being
particularly remote from these values, unlike the other three local minima. This is visible
on the right panel of Fig. 4.2 where we plot the curves associated to each minimum. We
observe the same behaviour of branching of the parameter distributions at small xB as
the one we put forth thanks to the replica method in Fig. 4.1. This demonstrates that a
study of the χ2 not limited to the sole global minimum contains significant information for
a complicated uncertainty extraction without the need of the replica method. Since the
latter requires repeated global minimisations of the χ2 for various artificially generated
experimental dataset, it can become very computationally intensive. It is in particular
the case if the model is complex and strongly non-linear – as neural networks can be –
and if the loss function behaves poorly. It may then become more interesting from a
computational point of view to focus on the extraction of a few local minima
of the χ2 rather than repeatedly looking for its global minimum for varying
experimental data. We found that it was in general conceptually simpler and still
manageable in terms of computing power to estimate our uncertainties thanks to the
replica method. However, our neural networks models in Chapter 7 where we implement
a simplified positivity constraints take of the order of a full day of computation to be
trained. Should the computation time keep increasing, a more sophisticated approach in
the fashion we have described here might prove necessary.

We have mostly concerned ourselves so far with aleatoric uncertainty emerging from
experiment, neglecting epistemic uncertainty. However, in the absence of strong theoretical
motivations guiding the choice of a model, epistemic uncertainty comes at the forefront.
Fitting collaborations in the field of PDFs have increasingly relied on data-driven ap-
proaches allowed by neural network modelling [187, 188, 189, 190, 191]. As we will see,
neural network architectures are very flexible, reducing the amount of prior knowledge in-
troduced in the modelling and therefore the epistemic uncertainty. Additionally, there are
practical tools specific to neural networks to assess to some extend epistemic uncertainty.
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Figure 4.2 – (left) Embedding in a two dimensional space of the regions of the four dimensional
parameter space where χ2 < 30. Four clusters appear. In each cluster, the local minimum of χ2 is
depicted by a star. The star of cluster 1 is the global minimum of χ2. – (right) Representation of
the model corresponding to each star. The best fitting model, model 1, is substantially different
from the other three in its small xB behaviour.

4.1.2 . Neural networks
The general idea of artificial neural networks can be traced back at least to 1957 with

Rosenblatt’s perceptron [192] – a single neuron whose output is 0 if the weighted sum of its
input lies below a threshold, and 1 otherwise. Development of back-propagation algo-
rithms in the 1970s and 1980s (see for instance Ref. [193] where the term back-propagation
is coined, although the general principles of the technique predates the paper by about
two decades) extended the applicability of the concept by allowing to train multilayer
perceptrons on non linearly separable datasets (that is datasets whose convex hulls are
disjoint). Both back-propagation and multilayer perceptrons will be detailed in the follo-
wing. Overwhelming interest in neural networks in recent years is linked to deep learning,
the training of neural networks with a large number of layers and free parameters on very
large datasets. For instance, the deep convolutional neural network AlexNet [194] which
revolutionised the field of image recognition in 2012 possesses more than 62 million free
parameters, and the ImageNet database contains more than 14 million annotated images.
Deep learning was only made possible recently, thanks to the availability of computing
power provided by graphics processing units (GPUs) and the emergence of large datasets
in the age of social media, although grounding theoretical works on convolutional neural
networks dates back to the 1980s for instance [195]. The enthusiasm for the field has led
to a proliferation of architectures and training procedures, and it is out of the scope of
this document to give a general overview of the subject.

Architecture of multilayer perceptrons

For the purpose of our study, we only used the simple architecture of the multilayer
perceptron (MLP) which we detail now. An MLP can be considered as a complicated
function taking n features as input, and producing m values as output. Fig. 4.3 shows a
typical MLP with n = 3 and m = 2.

The information is processed sequentially layer after layer. The internal layers of the
network – that is neither the input nor the output layers – are called hidden layers. Let
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Figure 4.3 – (a) A multilayer perceptron with two hidden layers. – (b) General principle of
an individual neuron. Figure taken from Ref. [143].

us note vik the output of the k-th neuron in the i-th layer. The first layer simply distributes
the input features to the next layer, so v1k are the input features. vi−1k is distributed to
the j-th neuron of layer i via a connection of weight βij,k. Each neuron computes the
weighted sum of its inputs, adds a specific bias βij,0 and feeds the result to an activation
function σi. The image through the activation function determines the output vij. The
operation of one neuron can be summarised as

vij = σi

(
βij,0 +

∑
k

βij,k v
i−1
k

)
. (4.10)

The successive layers of the network act as nested compositions of activation functions
and weighted summations. The free parameters of the network are the weights and biases
βij,k which are optimised during a training procedure. The number of layers, neurons in
each layers and the choice of activation functions σ are usually considered as modelling
hypotheses, although some advanced training procedures allow one to adapt these choices
during the training.

Two main advantages justify the use of neural networks to model the complex relation
existing between kinematic variables and interesting quantities like CFFs or parton dis-
tributions themselves. First, they provide abstract parameterisations that are not driven
by a strong physical a priori on the relation. In this sense, the model is essentially data-
driven, and not theory-driven. However this can only work if the model is flexible enough
so that the specific architecture choices do not practically act as a strong prior bias. The
flexibility is the second advantage of this modelling. It can be expressed mathematically
by universal approximation theorems, demonstrated for their first variant in Ref. [196]
and notably extended in Ref. [197]. Let us rephrase the universal approximation theorem
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for arbitrary width under a form which is better suited for our presentation :

Universal approximation theorem for MLPs of arbitrary width
(Hornik, [197]) For every (n,m) ∈ N2, compactK of Rn, continuous
function f fromK to Rm and ϵ > 0, there exists k ∈ N and an MLP with
exactly one hidden layer of k neurons and a linear activation function
in its output layer whose output g(x) verifies

sup
x∈K

||g(x)− f(x)|| < ϵ , (4.11)

if and only if the activation function of the hidden layer is not polyno-
mial.

It is interesting to observe that the key element to the universal approximation theo-
rem is the non polynomiality of the activation function in the hidden layer. Traditional
activation functions are the sigmoid x 7→ 1/(1 + exp(−λx)) and the rectified linear unit
(ReLU) x 7→ xΘ(x) where Θ(x) designates the Heaviside step function.

Training

Once the architecture of the network has been defined, the determination of the free
parameters is performed through a training procedure. For our modelling purposes, we
used supervised learning, since we know the expected output that the neural network
should produce for a given set of kinematic variables. Several types of supervised learning
procedures are available. The most frequent one consists in defining a loss function to
measure the error between the current output of the network and its expected output.
Then the gradient of the loss function depending on the free parameters of the network
is computed. The gradient calculation can be optimised by taking into account the fact
that the network consists in a nested composition of activation functions. Thanks to
the derivation chain rule, the gradient is computed iteratively layer after layer starting
from the final layer in a procedure known as back-propagation. Once the gradient is
computed, the parameters are modified in its opposite direction so as to decrease the
value of the loss function. Back-propagation is used to obtain a pre-training of the neural
network modelling of CFFs described in the next section. This very basic minimisation
strategy faces the risk of converging to a local minimum of the loss function. To prevent
it, it is customary to split the training dataset into several batches, and to iteratively
apply gradient descent while regularly changing the training batch. Another issue which
prevented for a long time the training of very deep neural networks is the vanishing or
exploding gradient problem (see for instance Ref. [198]) : several activation functions, like
the sigmoid x 7→ 1/(1 + exp(−x)), have derivatives which are systematically much lower
than 1. Then the derivation chain rule shows that the gradient becomes exponentially
suppressed for parameters in the initial layers compared to the final layers, due to repeated
products of numbers smaller than 1. Likewise, an exploding gradient problem can occur
in situations where all gradients would be much larger than 1.

A popular alternative to gradient descent is provided by genetic algorithms [199],
which are particularly suited for exploring spaces with no clear underlying structure and
many potential local minima. We will mostly use genetic algorithms for the training of our
neural network models. They are also particularly suited to implement conditions on the
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output of the network that do not let themselves write easily in terms of χ2 loss functions.
It is the case for instance in Section 7.2 where we will enforce positivity conditions on
the output of a neural network model of GPDs published in Ref. [8]. We initially build a
number of candidates, which are randomly generated configurations of free parameters. At
each step of the training, called a training epoch, a given fraction of the best candidates
with respect to the loss function are selected. The winners of this selection form the group
A. The candidates that are not selected are discarded, and new candidates are generated
to maintain their total number at a constant level by two means : cross-over (group B)
and mutation (group C). The cross-over procedure consists in building new candidates by
mixing features of candidates of group A. The mutation procedure builds new candidates
by randomly varying some features of candidates of group A. The analogy with biological
evolution justifies the name of this algorithm. The selection of group A is an avatar of
natural selection of the fittest individuals in a population. They are given the opportunity
to reproduce, therefore mixing their traits and producing descendants in group B. They
also suffer random mutations of their genes, producing group C. Mutation is key to allow
the exploration of the space of parameters, but must not be too frequent at the risk of
transforming the genetic algorithm into a simple random search. Cross-over is crucial to
the speed of convergence, by allowing successful parameters to be propagated quickly to
a large number of candidates. Genetic algorithms are heuristic optimisation procedures
whose precise parameters are often a matter of empirical trials.

Regularisation

Regardless of the actual training procedure, it is important to try to prevent over-
fitting, that is an excessive sensitivity of the trained parameters to anecdotical features of
fitted data. When confronted with new data, the model is then notably less precise, even
in the range of training data. Several techniques are used to prevent over-fitting, known
as regularisation methods. The most frequent is to optimise the network only on a
fraction of available data known as training set, usually of the order of 80% of all data.
The remaining 20% of the dataset is known as validation set. Training is continued as
long as the goodness of fit measured by the loss function on the validation set seems to
increase, but the error on the validation set is never used directly in the optimisation
procedure.

An alternative to prevent excessive sensitivity of the network to its training data is to
disturb it regularly by de-activating randomly small parts of the network during training.
During their de-activation phase, the values of the frozen parameters are put to zero, and
their previous values restored once they are re-activated. This method, known as drop-out
[200, 201], amounts in practice to training in parallel many different architectures of the
network. Once training is satisfactory, drop-out can still be applied during standard use
of the model. The different architectures probed during evaluation give different output
values, producing an account of epistemic uncertainty. If all neurons are activated during
evaluation, the model outputs an superposition of all the different architectures it was
trained upon, increasing the robustness of its predictions. We have notably used drop-out
to regularise our neural network model of GPDs in Section 7.2 [8].
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Figure 4.4 – Architecture of the neural network modelling the real or imaginary part of a
Compton form factor. Figure taken from Ref. [143].

4.2 . State of world DVCS data in neural network analyses

The first use of neural network modelling in the field of generalised parton distributions
was performed in 2011 by Kumerički, Müller and Schäfer in Ref. [142]. They fitted the
CFF H on HERMES data for DVCS on unpolarised protons. In 2019, Moutarde, Sznajder
and Wagner fitted most of the world DVCS data, that is 2624 xB, t, Q

2, ϕ) data points
collected over 17 years from about 30 observables at 6 experimental facilities in Ref. [143].
This study led prior to the contributions of this thesis is however the basis for most of
the subsequent statistical analyses and deserves therefore a presentation. Other neural
network parameterisations of DVCS data have been performed in Refs. [202, 203].

Out of the twelve CFFs entering the description of DVCS, only H, E , H̃ and Ẽ asso-
ciated to the four leading twist chiral-even GPDs H, E, H̃ and Ẽ are taken into account,
and the eight real and imaginary parts of these CFFs are modelled independently by
eight neural networks such as the one depicted in Fig. 4.4. Each neural network takes as
inputs the three kinematic variables (ξ,Q2, t) which have previously undergone a specific
pre-treatment detailed below. The output is a single real number which also undergoes a
post-treatment. The hidden layer consists of 6 neurons with sigmoid activation functions.
This number was determined by observing that it gave a satisfactory goodness of fit on a
benchmark with Goloskokov and Kroll’s (GK) model.

The pre-treatment consists in what Fig. 4.4 calls linearisation 3, that is taking the
logarithm of ξ and Q2, and a normalisation intended to linearly project input values in
the [−1, 1] interval. The post-treatment consists of an inverse normalisation to increase
the range of values, and a so-called inverse linearisation which divides the output by
ξ. The pre- and post-treatments considerably increase performance, by regularising the
behaviour of the CFFs at small ξ and bringing input values in the range where the sigmoid
function is most sensitive to avoid inputs that directly saturate the network.

Overall, the eight networks representing the real and imaginary parts of the four
CFFs have 248 free parameters. The training is performed in two steps. First, a local
extraction of CFFs is performed for each kinematic bin. The neural network is trained on

3. It is a linearisation in the sense that it attempts to spread linearly the kinematic values of the data
points to facilitate the work of the neural network.
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this local CFF extraction with back-propagation of a simple least squares loss function.
This can be considered as a pre-training to initially adjust the parameters of the network.
Then proper training is performed on real experimental measurements of observables
via a genetic algorithm with a population of 1000 candidates. Since observables write
as complicated non-linear functions of CFFs, the loss function is not a straightforward
least squares between the output of the network and an expected value, but requires the
intermediate step of evaluating observables from the output of the network. The use of a
genetic algorithm allows in particular to evade the issue of computing the gradient of this
complicated loss function.

The left panel of Fig. 4.5 shows the result of the fit for 101 replicas of the imaginary
part of the CFF H as a function of ξ for some value of t and Q2. It is customary to
summarise this information under the form of confidence intervals. This is only a par-
tial representation of the amount of information actually contained in the replicas – for
instance, all replicas that go down at large ξ could go up at small ξ and vice versa, and
confidence intervals would not reflect it – but it gives an account of the local uncertainty
on the quantity of interest. On the right panel of Fig. 4.5, we show in light blue the
confidence interval obtained naively as [mean - standard deviation, mean + standard
deviation] for the distribution of replicas at each value of ξ. Under the hypothesis of a
normal distribution of replicas, it should amount to the 68% confidence interval. However,
this interval is extremely sensitive to the presence of outliers.

Several techniques are known to increase the robustness of confidence interval extrac-
tions. One of them is called three sigma rule [204]. Separately for each kinematic value,
the replicas distant from the mean of the replica distribution by more than three standard
deviations are considered as outliers and discarded. Mind that the replica might be dis-
carded as outlier in some kinematic regions, but kept in others. The procedure is repeated
with the remaining replicas and their newly computed mean and standard deviation un-
til no outliers are suppressed. The band at the considered kinematic value is then again
defined by the interval [mean - standard deviation, mean + standard deviation].

An alternative method which does not require the identification and removal of outliers
is known as median absolute deviation (MAD) and traces back at least to Gauss (see
for instance Ref. [205] for a more recent take on the subject). The central value of the
interval is given by the median of the replica distribution, which we note median(Xi), and
its spread depends on the median of the absolute distance of replicas to median(Xi) :

median
(∣∣∣∣Xi − median(Xi)

∣∣∣∣)
Φ−1(3/4)

, (4.12)

where Φ is the cumulative distribution function of a standard normal distribution, Φ−1
designates the reciprocal – and not the inverse – and Φ−1(3/4) ≈ 0.67. The use this
normalisation factor is an implicit assumption that the replica distribution is normally
distributed. The estimator can be applied to other assumed distributions by choosing
modifying the normalisation factor. Because the estimator uses the median and absolute
distance, unlike the mean and squared distance as for the standard deviation, it is natu-
rally less affected by outliers. We demonstrate on the right panel of Fig. 4.5 that the three
sigma rule and the MAD give very comparable results, except for the very large ξ region
where the three sigma rule gives sensibly larger uncertainties. Both robust estimators of
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Figure 4.5 – (left) 101 replicas of ξImH(ξ, t = −0.3 GeV2, Q2 = 2 GeV2) – (right) Confidence
intervals derived with the naive method [mean - standard deviation, mean + standard deviation]
(blue band), the three sigma rule where outliers have been suppressed independently at each
value of ξ before the same interval as before is computed (purple band) and the mean absolute
deviation estimator (yellow band).

uncertainty are considerably tighter than the naive version except in the region where the
CFF are the most constrained, around ξ = 0.1. It is therefore paramount to use robust
estimators. In the following, we use the three sigma rule unless specified otherwise.

Fig. 4.6 shows the result of the fit for both the real and imaginary parts of the CFF H
(grey band), and compares it to an extraction on an almost similar experimental dataset,
but with a model depending on a small number of parameters described in Ref. [53] (blue
band). The data-driven flexible parameterisation produces much larger uncertainties than
the contrained parameterisation. Indeed, neural networks bring a much lesser model bias,
so the variance of the model is much larger as a traditional case of variance-bias tradeoff.
Said otherwise, the epistemic uncertainty associated with the constrained parameterisa-
tion, which is not accounted for in the blue band, is much larger than the one of the neural
network model.

In some kinematic regions, particularly for ξ smaller than 10−4 and larger than 0.5,
the uncertainty of the neural network extraction is very large due to the scarcity of
available experimental data. Future experiments are expected to bring a much desired
experimental precision in this region. We have worked on a proposal for a positron beam
at JLab which could also bring a complementary knowledge on CFFs compared to the
one showed in Ref. [143]. To assess the impact of these experiments, we could simulate
plausible experimental results and train again the neural networks. However, the training
is quite lengthy and computationally expensive. It is therefore interesting to be able to
quantify broadly but reliably the impact of the addition of new experimental data on a
previously completed fit. We develop interesting aspects surrounding this question in the
following section.

4.3 . Assessing the impact of new measurements

Following the general structure of Section 4.1, we start by presenting the result of the
effect of adding a single new point to a linear fit with normally distributed uncertainties.
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Figure 4.6 – Real (left) and imaginary (right) parts of the CFF H as a function of ξ for
t = −0.3 GeV2 and Q2 = 2 GeV2. The blue band denotes the result of a fit on an almost similar
dataset, but with a model with a small number of parameters [53]. The grey band is the data-
driven extraction produced by the neural networks. The dotted lines are the CFFs obtained from
two phenomenological GPD models, GK and VGG. Figure taken from Ref. [143].

We briefly study the possible generalisations of the linear results to non-linear models.
Under some criteria that we establish, we provide therefore a fast qualitative estimate of
the constraining power of the addition of a new measure on the knowledge of a quantity
of interest. We introduce then the general method of Bayesian reweighting suited for
non-linear cases and uncertainties evaluated through the replica method. This paves the
way to the precise discussion of the use of the reweighting technique in our impact study
related to a positron beam at JLab.

4.3.1 . Adding a new point to a linear fit

Using the notations of Section 4.1.1 on the linear fit with the generalised least squares
loss function, we denote by fA(X) = XTA (4.1) a linear model evaluated on the kinematic
configuration X with parameters A. When the model is fitted on experimental data with
uncertainty, A becomes a random variable, and we note ⟨fA(X)⟩ the central value of the
fitted model at X and ∆fA(X) its standard deviation giving an account of the aleatoric
uncertainty. Let us assume that we have already performed a fit on experimental data
and obtained a vector of best fit parameters A(0) (4.6).

We now add to the current fit a new uncorrelated datapoint obtained at the kinematic
configurationX(1) with central value f1 and normally distributed experimental uncertainty
σ1. The new vector of best fit parameters is noted A(1). We demonstrate in Appendix A.1
that a simple relation relates the central value and standard deviation of the initial fit
at X(1) – that is ⟨fA(0)(X(1))⟩ and ∆fA(0)(X(1)) – to the same quantities for the new fit
– ⟨fA(1)(X(1))⟩ and ∆fA(1)(X(1)). We are not aware of any other derivation of this result,
which gives an interesting insight on the behaviour of linear fits when confronted to new
data. We partially presented this relation in Ref. [206], although it was only obtained for
models with a polynomial dependence of order 3 in a unique kinematic variable, whereas
the new result is fully general.

Introducing

λ =

[
1 +

(∆fA(0)(X(1)))2

σ2
1

]−1
, (4.13)
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we demonstrate that{
⟨fA(1)(X(1))⟩ = λ⟨fA(0)(X(1))⟩+ (1− λ)f1 ,

(∆fA(1)(X(1)))2 = λ(∆fA(0)(X(1)))2 .
(4.14)

It is therefore possible to predict the effect at X = X(1) of adding a new uncorrelated point
to any linear fit thanks only to the knowledge of the current central value and uncertainty
of the model at that point and the central value and uncertainty of the added point.
Practically, it means that the final model distribution at X = X(1) can be predicted
graphically without any knowledge of the actual model that is fitted, except
that it is linear ! However, the effect of the newly added point for X ̸= X(1) can be
arbitrarily complicated, and will depend on the actual model.

Considering the generality of this result, we would like to estimate its validity in the
non-linear case, for instance for the PDF model presented in Eq. (4.9). Fig. 4.7 allows us
to compare the actual distributions computed via the replica method to the predictions
of the linear estimate (4.14). Successively at each point of the plane, we assume that a
new data point is added to the original dataset of eleven measurements, with always the
same uncertainty σ1 = 0.1. The colour at that point shows the discrepancy between the
linear estimate and the actual replica result. The plot allows therefore to identify regions
where the linear estimate is satisfactory, and where it fails. The results for the mean of
the distribution on the left panel are excellent in the strongly experimentally constrained
region where the dense ten data points are located. There, the linear estimate of the mean
agrees with the replica method at the percent level. Agreement quickly fades away at small
and very large xB, except in a narrow region approximately in the middle of the initial
replica bundle. The results are qualitatively the same for the estimation of the standard
deviation on the right panel, although the agreement is overall worse. We led in Ref. [206]
several other tests and concluded empirically that the linear estimate gives satisfactory
results when the replica bundle after inclusion of the new data point is approximately
normally distributed at the new kinematic. The situation is notably met if (1) the new
data point is considerably more precise than the previous knowledge at that kinematic,
so the post-fit distribution of the replicas is close to the uncertainty of the new data
point itself, (2) the replicas are already strongly constrained by previous measurements
in the region and have already approximately a normal distribution, or (3) the new point
is added close to the maximum of the previous replica distribution. When one of these
criteria is fulfilled, the estimate (4.14) allows one to quickly measure the physical interest
of probing this region to better constrain the quantity of interest.

Although the local impact of the addition of a new experimental measurement can be
empirically assessed in the vicinity of the new kinematic provided one of the previously
listed conditions is met, the linear estimate does not allow one to predict long range effects
on the fit. Replicas not only allow the calculation of the local uncertainty at a given
kinematic, but they also form a sampling of the probability distribution of the quantity
of interest in the functional space determined by the form of the model. Therefore, they
contain information on the long range dependence of the fit that we would like to use in
the assessment of the impact of a new measurement.

81



Chapter 4. Neural network parameterisation of Compton form factors

10 4 10 3 10 2 10 1 100

xB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
f(x

B
)

20

15

10

5

0

5

10

15

20

Pr
ec

isi
on

 o
f m

ea
n 

pr
ed

ict
io

n 
(%

)

10 4 10 3 10 2 10 1 100

xB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(x
B
)

20

15

10

5

0

5

10

15

20

Pr
ec

isi
on

 o
f s

ta
nd

ar
d 

de
vi

at
io

n 
pr

ed
ict

io
n 

(%
)

Figure 4.7 – Comparison between the prediction of the linear estimate (4.14) of the mean
(left) and standard deviation (right) of model (4.9), and the actual values obtained by the replica
method. The results are given as percentage of difference with the result of the replica method as
reference. The purple points represent the original dataset of eleven measurements. At each point
of plane, we successively simulate the addition of a new data point with uncertainty σ1 = 0.1.
For the left panel, if the linear prediction of the mean after inclusion of the new point is larger
than the actual value given by replicas, the point is coloured red, and blue if the linear prediction
is smaller than the actual value. Same on the right panel for the standard deviation.

4.3.2 . Bayesian reweighting
Given a set of replicas, Bayesian reweighting assesses the impact of a new dataset by

attributing a weight to each replica measuring its compatibility with the new measure-
ments. Strongly incompatible replicas receive a tiny weight, which amounts in effect to
discarding them. The demonstration of the validity of this principle and the formula for
the weights can be found for instance in Ref. [207]. For the k-th replica, the reweighting
coefficient ωk is defined by

wk =
1

Z
(χ2

k)
(N−1)/2 exp(−χ2

k/2) , (4.15)

where Z is a normalisation constant determined after all wk are computed so that
∑

k wk =
1, N stands for the number of points in the new dataset, and χ2

k is the generalised least
squares loss function measuring the goodness of fit of the k-th replica with the new
dataset :

χ2
k = (Y − Yk)

TΩ−1(Y − Yk) , (4.16)

where Y is the vector of central values of the new measurements, Ω its covariance matrix
and Yk the vector of values of the k-th replica at the kinematic configurations of the new
dataset. For Bayesian reweighting to give sensible results, the initial set of replicas should
be dense enough in the region where the new dataset is added, so that many replicas are
roughly compatible with the new measurements. Otherwise, due to the sharp decrease
of Eq. (4.15) as χ2 increases, Bayesian reweighting quickly ends up solely selecting the
least incompatible replica, and attributes it a weight w ≈ 1 − ϵ. To prevent this issue
and keep track of the statistical relevance of the procedure, it is possible to compute the
Shannon entropy [208] of the weights and use it to define an effective number of replicas
post-reweighting by

Neff = exp

(
−

Nrep∑
k=1

wk log(wk)

)
, (4.17)
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where Nrep is the number of replicas. Neff can be interpreted as the number of replicas that
still carry information on the distribution in functional space after the new measurements
are included. The constraining power of the new dataset is measured by the ratio between
Nrep and Neff.

After Bayesian weights have been computed according to Eq. (4.15), it is possible
to characterise the weighted distribution by its weighted mean and unbiased variance
estimators, defined by [209]

⟨f(X)⟩reweighted =

Nrep∑
k=1

wkfk(X) , (4.18)

(∆f(X)unbiased)
2 =

1

1−
∑Nrep

k=1 w
2
k

Nrep∑
k=1

wk(fk(X)− ⟨f(X)⟩reweighted)
2 , (4.19)

where fk(X) is the value of the k-th replica at kinematic X, and Nrep is the number of
replicas. The initial factor in the unbiased variance estimator corrects the bias due to the
fact that the weighted mean estimator is correlated to the data samples. The situation is
more familiar in the unweighted case, where the uncorrected variance estimator

1

Nrep

Nrep∑
k=1

(fk(X)− ⟨f(X)⟩)2 (4.20)

is biased and systematically underestimates the actual variance by a factor (1− 1/Nrep).
Bessel’s correction

1

Nrep − 1

Nrep∑
k=1

(fk(X)− ⟨f(X)⟩)2 (4.21)

produces an unbiased estimator of the variance. The difference is only significant if Nrep

or Neff are small respectively in the unweighted and weighted cases. It is interesting to
notice that as Neff is a real number unlike Nrep, we can study the limit Neff → 1 for
a configuration of weights wk. For instance, if the weights favour overwhelmingly the
first replica and discard equally all others, that is w1 = 1 − (Nrep − 1)ϵ and wk = ϵ for
2 ≤ k ≤ Nrep, the unbiased variance estimator converges when ϵ→ 0 to

1

2(Nrep − 1)

Nrep∑
k=2

(fk(X)− f1(X))2 , (4.22)

which is half of the unbiased variance estimator in the unweighted case with f1(X) as
empirical mean. This shows how even for an extremely constraining new dataset, the
prior knowledge represented by the unweighted distribution of replicas is still driving
significantly the final result.

Finally, taking the square-root of an unbiased variance estimator introduces a new layer
of bias because of the non-linearity of the square-root function. Therefore, the standard
deviation estimator derived from Eq. (4.19) is biased by a slight systematic underestima-
tion, but there is no simple way to correct this bias systematically that is independent of
the precise distribution of the variance estimator.
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4.4 . Impact study of a positron beam at JLab

Bayesian reweighting techniques are commonly used in the field of PDF phenomeno-
logy (see for instance Ref. [210]) to assess the impact of new data points, including lattice
QCD inputs on PDF fits [211]. To the best of our knowledge, the impact study led in
Ref. [2] is the first where that technique was applied to a neural network extraction of
CFFs.

So far, most of the knowledge on CFFs has been obtained from DVCS with a beam of
negatively charged leptons. Only HERMES and COMPASS experiments allowed to col-
lect some observables with positively charged beams (see experimental review of DVCS
datasets in Section 3.3). The possibility to change experimental settings like the charge
or polarisation of colliding particles is particularly interesting since it allows one to se-
parate contributions of various terms in the photon lepto-production cross-section, and
therefore provides different sensitivity to various CFFs (see Section 3.1). For instance, the
unpolarised beam charge asymmetry (BCA) is defined as

AC(xB, t, Q
2, ϕ) =

d4σ+(xB, t, Q
2, ϕ)− d4σ−(xB, t, Q

2, ϕ)

d4σ+(xB, t, Q2, ϕ) + d4σ−(xB, t, Q2, ϕ)
, (4.23)

where d4σ± denotes the differential cross-section of lepto-production of a single photon
averaged over the polarisations of both the lepton and hadron for either positively or
negatively charged beam particles. The BCA is particularly sensitive to the real part of
the CFF H as presented in Ref. [129], via for instance its cosϕ Fourier harmonics at
leading twist and leading order under the assumption of dominance of the BH-DVCS
interference term over the pure DVCS one :

Acosϕ
C ∝ Re

[
F1H + ξ(F1 + F2)H̃ − t

4M2
F2E

]
. (4.24)

BCA is therefore considered as a particularly constraining measurement for ReH, which
as we will see in the next chapter is currently the source of a large uncertainty in the
extraction of proton mechanical properties.

The possibility of operating a positron beam at JLab [212, 3] yields the desirable
perspective of collecting precise measurements of BCA in the valence region, whereas the
few measurements of HERMES and COMPASS were obtained on restricted kinematics
where sea quarks are expected to dominate. We investigate the foreseen impact of these
measurements with the CLAS12 spectrometer [213]. To this purpose, we first generate
BCA pseudo-data while giving a specific attention to their plausible experimental uncer-
tainty. We then reweight the replicas of the neural network parameterisation of CFFs of
Ref. [143] and summarise the observed features.

4.4.1 . Pseudo-data generation
We select 1656 kinematic bins spanning the (xB, t, Q

2, ϕ) region based on a technical
proposal from a working group of the CLAS Collaboration 4 for the beam operating at
energy 10.6 GeV. The bins are constructed by first selecting 13 bins in (xB, Q

2) shown
on Fig. 4.8, and further dividing them along t and ϕ while respecting the condition
−t < 0.2Q2 which was used to discard measurements in the neural network fit of CFFs.

4. Eric Voutier, private communication
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The neural network fit, whose determination we have detailed in Section 4.2, takes
the form of 101 sets of replicas, each set containing the four CFFs H, E , H̃ and Ẽ . For a
kinematic bin centered at (xB, t, Q2, ϕ) and the k-th set of CFF replicas, we compute the
expected number N±k (xB, t, Q

2, ϕ) of single photon lepto-production events respectively
for a positron and electron beams of luminosity 0.6× 1035cm−2.s−1 with 40 days of data
taking each. N±k (xB, t, Q

2, ϕ) is the product of the duration of data taking, luminosity,
differential cross-section d4σ±(xB, t, Q

2, ϕ) and bin phase space volume. We assume that
the variations of the cross-section over the bin phase space volume are negligible, and a
perfect detector acceptance and efficiency. This computation is made straightforward by
the inclusion of the replicas in the PARTONS software which allows us to evaluate many
DVCS observables.

Once the values of the number of events N±k (xB, t, Q
2, ϕ) are computed in each bin

and for each set of replicas, we determine the BCA thanks to (4.23) :

AC,k(xB, t, Q
2, ϕ) =

N+
k (xB, t, Q

2, ϕ)−N−k (xB, t, Q
2, ϕ)

N+
k (xB, t, Q

2, ϕ) +N−k (xB, t, Q
2, ϕ)

. (4.25)

We omit the arguments (xB, t, Q
2, ϕ) in the following for concision of the notations. The

central value of the pseudo-data is taken as the average over all replicas of AC,k, which
we denote ⟨AC⟩.

We also need to determine the experimental uncertainty of our pseudo-data. Assuming
the N±k are uncorrelated, their statistical uncertainty is ∆N±k =

√
N±k , so the statistical

uncertainty on AC,k can be expressed by the usual uncertainty propagation formula :(
∆AstatC,k

)2
=

(
∂AC,k
∂N+

k

)2 (
∆N+

k

)2
+

(
∂AC,k
∂N−k

)2 (
∆N−k

)2
, (4.26)

=

(
2N−k

(N+
k +N−k )

2

)2

N+
k +

(
2N+

k

(N+
k +N−k )

2

)2

N−k , (4.27)

=
4N+

k N
−
k

(N+
k +N−k )

3
, (4.28)

=
1− A2

C

N+
k +N−k

. (4.29)

Therefore, it would only seem logical to take as statistical uncertainty of our pseudo-data

∆AstatC =

√
1− ⟨AC⟩2
⟨N+ +N−⟩

, (4.30)

where ⟨N+ + N−⟩ is the average over all replicas of the number of events in the bin.
However, the neural network fit is essentially unconstrained in some regions of the pro-
bed (xB, t, Q

2, ϕ) phase space due to a current lack of experimental measurements. In
particular, the neural network does not implement – by design – the general theoretical
expectation that CFFs and cross-sections should decrease at large |t| values, and produces
therefore cross-sections in this region that we consider abnormally large in view of our
prior knowledge. This would lead to an unreasonable expectation for the statistical pre-
cision of our pseudo-data 5. For this reason, N+ +N− is evaluated in each bin thanks to
the physically motivated CFF global fit of Ref. [53], and the result shown on Fig. 4.8.

5. More precisely, the fact that in an unconstrained region, the neural network of Ref. [143] produces
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Figure 4.8 – Total number of single photon lepto-production events integrated over the t and
ϕ bins for 80 days of operation of at beam energy 10.6 GeV and luminosity 0.6× 1035cm−2.s−1.
Perfect detector acceptance and efficiency is assumed. Computed with the physically motivated
CFF global fit of Ref. [53]. Figure taken from Ref. [2].

Since we use the physically motivated model of Ref. [53] to compute N+ + N−, we
could use it as well to determine AC . However, we prefer to keep the central value of our
pseudo-data as ⟨AC⟩ averaged over neural network replicas to ensure that our new data
points are maximally compatible with the current neural network fit, while benefitting
from reasonable uncertainties. Indeed, as we mentioned previously, Bayesian reweighting
only gives reliable results when many replicas are compatible with the new dataset, and
selecting central values of the simulated experimental points that are in tension with the
replicas would reduce considerably the statistical relevance of the procedure.

An uncorrelated relative systematic uncertainty of 3% is furthermore assumed follo-
wing Ref. [214], and added in quadrature to the statistical uncertainty for simplicity in
this first sensitivity study. The total uncertainty on AC is therefore obtained in each bin
as uncorrelated

∆AC =

√
0.032⟨AC⟩2 +

1− ⟨AC⟩2
N+ +N−

. (4.31)

Finally, to simulate actual experimental data taking, we smear the central values of our
measurements according to ∆AC .

large uncertainties approximately normally distributed should be considered as a modelling bias. Let us
show the problem on a simple example. Observables are non linear functions of CFFs, which can for
instance involve quantities like 1/(1+H2). It is particularly the case for timelike Compton scattering. In
the limit where the uncertainty on H is represented by a normal distribution of infinite uncertainty, it
becomes increasingly likely that H is large overall. Therefore, it is also increasingly likely that 1/(1+H2)
is close to 0. We are reaching an apparent paradox, where the larger the uncertainty on H, the more
precisely the observable is known. The issue boilds down to (1) the non-linearity of the relation between
the observable and the CFF means that distances and what they actually measure are severely distorted
when switching between the spaces of observables and CFFs and (2) representing unconstrained CFFs
by large standard deviation is making an implicit choice of measure, the usual distance in R, which is a
significant modelling bias.
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Figure 4.9 – BCA value computed on 24 bins in ϕ for (xB = 0.18, t = −0.14 GeV2, Q2 = 1.89
GeV2). The grey lines represent the 101 replicas obtained from the neural network fit and the
orange band the associated 68% confidence interval. The blue points are the generated pseudo-
data with their uncertainties. The blue band is the reweighted replica distribution. Figure taken
from Ref. [2].

4.4.2 . Reweighting and discussion

Fig. 4.9 shows 24 bins in ϕ spanning [0, 2π] for (xB = 0.18, t = −0.14 GeV2, Q2 = 1.89
GeV2). The value of the BCA computed for each set of CFF replicas is shown by the light
grey curves, and the current uncertainty on BCA derived from this fit is shown as the
orange 68% confidence interval. In each of the 24 bins in ϕ, a pseudo-data is generated
according to the principles we detailed before. The assumed experimental uncertainty,
determined by Eq. (4.31), is much smaller than the current uncertainty on the BCA
represented by the orange band. The fact that pseudo-data are expected to be much more
precise than the current knowledge of the BCA is particularly true in the large |t| and
middle (xB, Q

2) region as well as the small |t| and small (xB, Q2) region. On the contrary,
the uncertainty of new points will probably not be very constraining in the intermediate |t|
region, because CFFs are already well constrained there, or large (xB, Q

2) region because
of the low expected statistics. In some bins of that region, only a few hundred events are
expected.

The blue band of Fig. 4.9 shows the reweighted BCA replica distribution computed
thanks to Eq. (4.19) after Bayesian reweighting on the new dataset of 24 points has been
performed. The effective number of replicas (4.17) has been reduced from Nrep = 101 to
Neff = 8. For several (xB, t, Q2) bins, the effective number of replicas after reweighting
on the 24 ϕ bins drops as small as 2. It means the pseudo-data are so precise compared
to the actual knowledge of the BCA that all replicas except the couple least bad fits are
essentially discarded. The estimation of the reweighted distribution in this context is of
course very lacunar, so in an effort to make the results more robust and less dependent on
the precise central value of the pseudo-data, we average the weighted mean and standard
deviation on 300 successive smearings of the pseudo-data according to their assumed
central value and uncertainty. The smearing results in a slight increase of the reweighted
uncertainty in the case of particularly low Neff.
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Figure 4.10 – 68% confidence regions for ReH resulting from the initial neural network fit
(orange band) and the local reweighting of the ϕ dependence of BCA pseudo-data (blue band).
For each of the thirteen (xB, Q

2) bins, the subgraph shows the results on the t bins. Figure taken
from Ref. [2].

The reweighting of the ϕ dependence of the BCA performed independently on each
(xB, t, Q

2) bin allows us to attribute independent weights to the CFF replicas in each of
these bins. We present on Fig. 4.10 the resulting weighted distribution of the real part of
the CFF H. Due to the fact that we consider each bin independently, we do not use the
information encoded in the overall structure of the CFF replicas in the (xB, t, Q

2) space.
For this reason, we call this procedure a local reweighting. The results are nonetheless
striking and show a first assessment of the remarkable refinement on the knowledge of
ReH that could be produced by the BCA observable measured at CLAS12.

An attempt at a global reweighting along the entire dataset of 1656 pseudo-data is
bound to fail due to the relatively small number of replicas available. Already in some
bins, the simple reweighting of the ϕ-dependence on 24 pseudo-data gave rise to a very
low number of effective replicas. The amount of constraint brought by the large dataset
would inevitably result in a final effective number of replicas of 1. It is however possible
to partly circumvent the issue by considering the results of the local reweighting as an
experimental-like input on CFFs themselves. Precisely, we will consider the 68% confidence
interval obtained independently on each (xB, t, Q

2) bin as a normally distributed input
on CFFs, and further reweight the replica distribution along these new inputs. That way,
we actually factorise the reweighting procedure along successive variables. We show on
Fig. 4.11 the reweighting on the 6 t bins in a (xB, Q

2) bins. Taking into account correlations
along the t variables results in a further reduction of the uncertainty on CFFs.
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Figure 4.11 – ReH(t) for (xB = 0.18, Q2 = 2.66 GeV2). The orange band is the 68%
confidence interval stemming from the neural network fit. The blue band is the result of the local
reweighting on the ϕ dependence of BCA pseudo-data. The purple band is a further reweighting
using the blue band as an experimental-like input on CFFs. Figure taken from Ref. [2].

Conclusion

The statistical tools presented in this chapter constitute the foundation of the analyses
and modelling efforts of this thesis : linear fits, uncertainty estimation via the replica
method, neural networks and their training, Bayesian reweighting. We have briefly studied
the interest and limitations of linear estimates for non-linear models. First we showed
that a study of the χ2 around its global minimum inspired from the linear case fails to
give an account of uncertainty in some situations like a multimodal distribution of the
fitted parameters. We highlighted nonetheless that a study of the local minima of the
χ2 contains a lot of information even in these complicated cases. We also demonstrated
that the linear view on the effect of adding a new point to a fit can prove quite useful
for non-linear models provided some general criteria are fulfilled. Finally we presented
our impact study of the addition of observables linked to a positron beam at JLab on
the uncertainty in CFF neural networks extractions. Our results show the vast increase
in precision that could be achieved, notably on ReH, thanks to this new experimental
setup. Reducing the experimental uncertainty on CFFs will appear as a crucial issue in
the following chapter where we focus on the extraction of physical properties of hadron
matter from the DVCS channel.
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5 - Extracting a gravitational form factor from DVCS
data

As presented in Section 1.4.2, one of the major motivations for the study of generalised
parton distributions is their link to the hadron EMT and the possibility to compute
distributions of hadron matter properties like energy or internal pressure. Among the
five gravitational form factors (GFFs) Aa, Ba, Ca, C̄a and Da

GFF that parameterise the
EMT proton matrix element (1.21), Ca has attracted most attention owing to the specific
experimental sensitivity achievable through the DVCS channel. Section 3.1.2 presents the
dispersive formalism of DVCS, which allows one to single out from CFFs the subtraction
constant giving information on the GPD D-term Da(z, t, µ2). We remind that the GFF
Ca can be computed from the D-term as (see Eqs. (2.33) and (2.34))

Ca(t, µ2) =
1

4

∫ 1

−1
dz z1−paDa(z, t, µ2) , (5.1)

where pa = 1 if a = g and 0 otherwise. On the other hand, the GFFs Aa, Ba and Da
GFF

depend on a Mellin moments of the full GPDs (see Eqs. (1.22) to (1.26)), but are insensitive
to the D-term. The determination of these GFFs will therefore come as a by-product of
our discussion of the full deconvolution problem in the next chapter.

The first experimental extraction of the GFF Ca from a DVCS dataset was performed
in 2018 in Ref. [139]. Their approach relied on a parametric fit of CFFs inspired by
the KM model [109, 116]. Shortly after, a data-driven approach to the DVCS subtraction
constant using neural network parameterisations of CFFs to reduce the modelling bias was
published in Ref. [202]. The first result of Ref. [139] headed in the direction of a very large
internal pressure inside the proton, possibly even larger than that modelled at the center
of neutron stars and clearly incompatible with 0. The subsequent study with more flexible
modelling gave in turn extremely large uncertainties, to the point that the subtraction
constant, and consequently the gravitational form factor Ca, appear compatible with 0.

We published in 2021 our own data-driven extraction of the GFF Ca from the world
DVCS dataset in Ref. [4]. The neural network study of CFFs performed in Ref. [143], which
we presented in Section 4.2 allowed the extraction of the DVCS subtraction constant.
Based on this result, we devote a significant attention to the question of the extraction
of the D-term and GFF Ca from the subtraction constant, exploring various schemes
and their limitations. As part of the general program to extract GPDs from experimental
data – known as deconvolution problem – the step of extracting simply the D-term from
the subtraction constant is particularly important. It is a simpler problem, in the sense
that the D-term is just a function of (z = x/ξ, t, µ2) whereas GPDs are functions of
(x, ξ, t, µ2). This means that issues related to the sparsity of experimental data and the
overall complexity of the extraction are less stringent. However all the ingredients of the
generic problem of deconvolution of GPDs are already present at this stage.
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5.1 . D-term extraction as a deconvolution problem

We remind from the discussion of dispersion relations in Section 3.1.2 that the DVCS
subtraction constant is related to the D-term through Eq. (3.27), which notably yields at
LO :

CH,0[D
q, Dg](t, Q2) = 2

∑
q

e2q

∫ 1

−1
dz

Dq(z, t, µ2)

1− z
. (5.2)

Extracting the D-term at some perturbative order k from the knowledge of the experimen-
tal subtraction constant CH(t, Q2) defined in Eq. (3.25) consists in finding the functions
Da such that CH,k[Dq, Dg](t, Q2) fits best CH(t, Q2). This raises however the issue of
uniqueness of the solution to this optimisation problem. At LO, characterising uniquely
Dq(z, t, µ2) from the knowledge of

∫
dz Dq(z, t, µ2)/(1−z) in the absence of strong model-

ling assumptions might seem a hopeless task at first, since one of the variables has been
integrated out. There is hope that the extraction of the GFF Ca(t, µ2) might be easier,
since it is related to the D-term through an integral on z (5.1) as the subtraction constant,
so intuitively it contains less information than the full D-term. However, at this stage,
in the absence of a straightforward relation between Eqs. (5.2) and (5.1), it is unclear
whether there is a definitive advantage in focusing on the extraction of the GFF alone, or
the D-term as a whole. We will clarify this aspect in the following.

The issue of extracting a function, or one of its non-trivial features, which has been
integrated against a kernel is called a deconvolution problem. We will now demonstrate
that for the LO evolution, the theoretical solution to this problem is obtained by observing
that the µ2 dependence of the D-term is already known.

5.1.1 . LO evolution of the D-term
We have detailed in Eqs. (2.58) to (2.60) the solution of the LO evolution for conformal

moments of the GPD. We also remind that theD-term evolves independently from the rest
of GPD, following exactly the ERBL evolution equation [93, 94]. We can therefore express
the evolution of the D-term Da(z, t, µ2) in terms of its own conformal moments. More
precisely, we expand the D-term on a basis of Gegenbauer polynomials by introducing
the coefficients dq,gn (t, µ2) :

Dq(z, t, µ2) = (1− z2)
∑
odd n

dqn(t, µ
2)C(3/2)

n (z) , (5.3)

Dg(z, t, µ2) =
3

2
(1− z2)2

∑
odd n

dgn(t, µ
2)C

(5/2)
n−1 (z) . (5.4)

Unlike the solution of evolution given in Section 2.4 or in Ref. [4] for instance, we find it
preferable to recast the evolution from initial scale µ2

0 to final scale µ2 at LO in αs in a
matrix system formulation, which allows us to convince ourselves more easily of the linear
and invertible nature of evolution and to solve readily the system. We use a simplifying
assumption concerning the behaviour of heavy quarks. We neglect the possibility of in-
trinsic heavy quark content of the proton at low µ2, and we do not include corrections
in the ERBL equation to take into account heavy quark masses. Instead, apart from the
three light quarks which are always considered, heavy flavours are progressively activated
once µ2 is larger than the squared mass of the heavy quark m2

q with threshold condition
dqn(t,m

2
q) = 0. This means that heavy quark contributions are not actual free parameters,
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but entirely radiatively generated by lighter quarks and gluon splittings. If µ2 and µ2
0 be-

long to an interval where no activation threshold is crossed, evolution takes the following
form for n odd and nf active quark flavours 1 :

dgn(t, µ
2)

dq1n (t, µ
2)

dq2n (t, µ
2)

...
d
qnf
n (t, µ2)

 =



1
a−n−a+n

a+n
(a+n−a−n )nf

· · · a+n
(a+n−a−n )nf

1
a+n−a−n

a−n
(a−n−a+n )nf

· · · a−n
(a−n−a+n )nf

0
...
0

1
...
1

−Inf−1



−1

×



Γ−
n (µ2,µ20)

a−n−a+n
Γ−
n (µ2,µ20)a

+
n

(a+n−a−n )nf
· · · Γ−

n (µ2,µ20)a
+
n

(a+n−a−n )nf

Γ+
n (µ2,µ20)

a+n−a−n
Γ+
n (µ2,µ20)a

−
n

(a−n−a+n )nf
· · · Γ+

n (µ2,µ20)a
−
n

(a−n−a+n )nf

0
...
0

Γ0
n(µ

2, µ2
0)

...
Γ0
n(µ

2, µ2
0)

−Γ0
n(µ

2, µ2
0) Inf−1




dgn(t, µ

2
0)

dq1n (t, µ
2
0)

dq2n (t, µ
2
0)

...
d
qnf
n (t, µ2

0)

 . (5.6)

Inf−1 designates the identity matrix of rank nf − 1,

Γ0
n(µ

2, µ2
0) =

(
αs(µ

2)

αs(µ2
0)

)2γn/β0

, (5.7)

Γ±n (µ
2, µ2

0) =

(
αs(µ

2)

αs(µ2
0)

)2γ±n /β0

, (5.8)

We detail now the anomalous dimensions γn [41] whose definition we had postponed in
Section 2.4 since we will need to study their precise values in the following :

γn = γQQ(n) , (5.9)

γ±n =
1

2

(
γQQ(n) + γGG(n)±

√
(γQQ(n)− γGG(n))2 + 4γQG(n)γGQ(n)

)
, (5.10)

γQQ(n) = CF

(
1

2
− 1

(n+ 1)(n+ 2)
+ 2

n+1∑
k=2

1

k

)
, (5.11)

γQG(n) = −nfTF
n2 + 3n+ 4

n(n+ 1)(n+ 2)
, (5.12)

γGQ(n) = −2CF
n2 + 3n+ 4

(n+ 1)(n+ 2)(n+ 3)
, (5.13)

γGG(n) =
2

3
nfTF + Ca

(
1

6
− 2

n(n+ 1)
− 2

(n+ 2)(n+ 3)
+ 2

n+1∑
k=2

1

k

)
. (5.14)

1. The careful reader may wonder why the matrix formulation seems to give a particular role to the
quark flavor q1. It is because it serves as a "pivot" for the flavour non singlet evolution equations

dqin (t, µ2)− dqjn (t, µ2) = Γ0
n(µ

2, µ2
0)
[
dqin (t, µ2

0)− dqjn (t, µ2
0)
]
, (5.5)

which are all expressed using qi = q1. All flavours are therefore evolved with respect to the first one.
However, when the matrix product is computed, all flavours play a symmetric role, as shown in Eq. (5.17).
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Here CF = 4/3, TF = 1/2 and Ca = 3. Finally

a±n = 2
nf
n

γ±n − γn
γQG(n)

. (5.15)

The first term of Eq. (5.6) is invertible since γQG(n) < 0 and therefore a−n > a+n . Keeping
in mind we work with the assumption of no activation threshold crossed between µ2

0 and
µ2, the explicit solution of the system is found as

dgn(t, µ
2) =

[
Γ−n a

−
n − Γ+

n a
+
n

a−n − a+n

]
dgn(t, µ

2
0) +

a−n a
+
n

nf (a−n − a+n )
(Γ+

n − Γ−n )

nf∑
j=1

dqjn (t, µ
2
0) , (5.16)

dqkn (t, µ
2) = Γ0

nd
qk
n (t, µ

2
0) +

[
Γ−n − Γ+

n

a−n − a+n

]
dgn(t, µ

2
0)

+
1

nf

(
−Γ0

n +
Γ+
n a
−
n − Γ−n a

+
n

a−n − a+n

) nf∑
j=1

dqjn (t, µ
2
0) , (5.17)

where we have omitted the arguments (µ2, µ2
0) of the Γn functions for conciseness. This

formulation allows us to immediately notice that the µ dependence of parameters dan(t, µ2)
of the Gegenbauer expansion of the D-term is obtained simply by a linear combinations
of the three functions Γ0

n(µ
2, µ2

0) and Γ±n (µ
2, µ2

0).
If evolution from µ2

0 to µ2 crosses a heavy quark activation threshold m2
qnf

, we assume
that the heavy quark contribution is exactly 0 at that threshold, so

dgn(t, µ
2)

dq1n (t, µ
2)

dq2n (t, µ
2)

...
d
qnf−1

n (t, µ2)

d
qnf
n (t, µ2)


= Γn,nf

(
µ2,m2

qnf

)


dgn(t,m
2
qnf

)

dq1n (t,m
2
qnf

)

dq2n (t,m
2
qnf

)
...

d
qnf−1

n (t,m2
qnf

)

0


, (5.18)

= Γn,nf

(
µ2,m2

qnf

)(Γn,nf−1

(
m2
qnf
, µ2

0

)
0 · · · 0

)
dgn(t, µ

2
0)

dq1n (t, µ
2
0)

dq2n (t, µ
2
0)

...
d
qnf−1

n (t, µ2
0)

 . (5.19)

By lowering µ2
0 below the squared charm mass, it is possible to express all parameters

dan(t, µ
2) as functions of the four free parameters dgn(t, µ2

0) and dqn(t, µ2
0) where q = u, d, s.

It is straightforward to derive that the µ dependence of dan(t, µ2) is obtained by a linear
combination of the three functions Γ0

n(µ
2,m2

qnf
) and Γ±n (µ

2,m2
qnf

).

5.1.2 . Theoretical extraction of the D-term
The LO subtraction constant CH,0[Dq, Dg] (5.2) can be expressed in terms of the

Gegenbauer parameters dqn (5.3) in the following way

CH,0[D
q, Dg](t, Q2) = 2

∑
q

e2q
∑
odd n

dqn(t, µ
2)

∫ 1

−1
dz (1 + z)C(3/2)

n (z) . (5.20)
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Noting that the Gegenbauer polynomials are coefficients of the formal series
∞∑
n=0

C(α)
n (z)tn = (1− 2zt+ t2)−α , (5.21)

one obtains that
∞∑
n=0

∫ 1

−1
dz (1 + z)C(3/2)

n (z)tn =

∫ 1

−1
dz

1 + z

(1− 2zt+ t2)3/2
, (5.22)

=
2

1− t
, (5.23)

=
∞∑
n=0

2tn , (5.24)

hence the identification ∫ 1

−1
dz (1 + z)C(3/2)

n (z) = 2 , (5.25)

which yields
CH,0[D

q, Dg](t, Q2) = 4
∑
q

e2q
∑
odd n

dqn(t, µ
2) . (5.26)

As a consequence of this expression, the possibility of extracting unambiguously the LO
D-term from the knowledge of the subtraction constant translates directly into the ques-
tion of uniqueness of the decomposition of a function in an (infinite) sum of dqn(t, µ2). If
two different series dqn(t, µ2) and d̄qn(t, µ

2) produce the same results when summed along
Eq. (5.26), then even a perfect experimental knowledge of the subtraction constant with
no uncertainty will not be able to distinguish between the two. In that case, due to the
linearity of the problem, there would even be an infinite number of solutions. On the
contrary, if the µ2 dependences of the dqn(t, µ2) terms are linearly independent, then the
uniqueness of the extraction can in theory be achieved. We need therefore to study the
effect of evolution on the sum of dqn(t, µ2).

Using the expression of Eq. (5.17), the solution of the D-term evolution from µ2
0 to µ2

with no threshold crossing gives∑
q

e2q
∑
odd n

dqn(t, µ
2) =

∑
odd n

Γ0
n(µ

2, µ2
0)

[
In −

ne
nf
Jn

]
+ Γ−n (µ

2, µ2
0)

[
ne

a−n − a+n
Kn −

ne
nf

a+n
a−n − a+n

Jn

]
− Γ+

n (µ
2, µ2

0)

[
ne

a−n − a+n
Kn −

ne
nf

a−n
a−n − a+n

Jn

]
,

(5.27)

where we have introduced

ne =
∑
q

e2q , (5.28)

In(t, µ
2
0) =

∑
q

e2qd
q
n(t, µ

2
0) , (5.29)

Jn(t, µ
2
0) =

∑
q

dqn(t, µ
2
0) , (5.30)

Kn(t, µ
2
0) = dgn(t, µ

2
0) , (5.31)
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and omitted the argument (t, µ2
0) of In, Jn and Kn for brevity. We do not show expressions

for one or more threshold crossings whose complexity brings no theoretical change ; it is
straightforward to check that the general form of Eq. (5.27) is preserved. The general
µ2 dependence of CH,0[Dq, Dg] remains the same, and its dependence on Da is equally
contained in the variables In, Jn and Kn, although they appear with different linear
combinations. We remind that the Γ0

n(µ
2) and Γ±n (µ

2) functions are proportional to αs(µ2)γ

(5.7)-(5.8) for some exponent γ. If all distinct Γ functions possess different γ exponents,
they are linearly independent functions of µ2, meaning that the bracketed expressions after
the Γ functions in Eq. (5.27) are uniquely determined by the knowledge of the functional
dependence of the subtraction constant on Q2. Then it is easy to see that the values of
In, Jn and Kn are also uniquely determined by the invertible system1 − ne

nf
0

0 − ne

nf

a+n
a−n−a+n

ne

a−n−a+n
0 ne

nf

a−n
a−n−a+n

− ne

a−n−a+n


 In(t, µ

2
0)

Jn(t, µ
2
0)

Kn(t, µ
2
0)

 . (5.32)

If an activation threshold is crossed, the above system is different and includes notably
Γn(m

2
q, µ

2
0) factors, but it makes no theoretical change to the discussion. In, Jn and Kn

for all n is the actual entire information on the D-term which can be retrieved from the
perfect experimental knowledge of the DVCS subtraction constant in a LO analysis. Since
there are four free parameters dun, ddn, dsn and dgn to recover with our simplified heavy quark
schemes, it is therefore not possible to separate the values of dqn for each flavour. However,
a limited flavour separation is theoretically possible with the assumption dun = ddn and a
free dsn and dgn, which provides three free variables to recover from the three quantities In,
Jn and Kn. Notice that this separation is made possible by the fact that In and Jn are
not proportional thanks to the different electric charges of quarks 2. The most common
assumption is however that dun = ddn = dsn, that is equal light flavour contributions. This
prior bias makes the extraction more robust, because the system is over-constrained with
only two free parameters for three independent equations. The least squares solution can
be used to determine the appropriate values.

As we have seen, the fact that In, Jn and Kn can theoretically be extracted from the
subtraction constant depends on the fact that all γ exponents associated to the various Γ
functions are actually always distinct from one another. Owing to the slightly complicated
form of the exponents presented in Eqs. (5.9)-(5.14), it is however not completely obvious
that it is the case. To demonstrate that γn and γ−n can never be equal, we first consider
that in the limit n→ ∞,

γn ∼ 2CF log(n) , (5.33)
γGG(n) ∼ 2Ca log(n) , (5.34)

γQG(n)γGQ(n) ∼
2nfCFTF

n2
. (5.35)

Since Ca > CF , γGG(n) is asymptotically larger than γn, and γQG(n)γGQ(n) is negligible

2. This limited flavour separation might be interesting since flavours u and d are closely related thanks
to the (imperfect) isospin symmetry SU(2). The flavour symmetry SU(3) relating u, d and s is significant
less stringent.
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Figure 5.1 – (left) Values of γn and γ±n for nf = 3 and n = 1 to 25 – (right) Relative
discrepancy between γn and γ−n . At n = 3, the two are already in agreement at the level of 2%.

compared (γGG(n)− γn)
2, so

γ−n =
1

2

(
γn + γGG(n)− |γGG(n)− γn|

√
1 +

4γQG(n)γGQ(n)

(γGG(n)− γn)2

)
(5.36)

= γn −
γQG(n)γGQ(n)

γGG(n)− γn
+O

(
γQG(n)γGQ(n)

γGG(n)− γn

)2

, (5.37)

= γn −
nfCFTF

(Ca − CF )n2 log(n)
+O

(
1

n2 log2(n)

)
. (5.38)

Eq. (5.38) proves that as n increases, γ−n is asymptotically below γn by a distance of order
1/(n2 log(n)). Since γn−1 and γn are asymptotically separated by 2CF/n, it also means γ−n
is too close to γn to possibly be equal to γn−1. Therefore, asymptotically, γn−1 < γ−n < γn.
Numerically, the asymptotic regime starts as soon as n = 3 as demonstrated on Fig. 5.1,
with γ3 = 3.49 and γ−3 = 3.42.

As for γ+n , it varies as γnCa/CF , so grows so quickly compared to γn and γ−n that the
question of equality of a value of γ+n with some γk or γ−k is hardly a practical issue. It
would take an extraction taking into account n = 47 terms in the Gegenbauer expansion
of the D-term for γn to be even close to γ+5 for instance. In practice, the rapid growth of
γ+n associated to the limited number of extracted coefficients allows us to consider in the
following that γ exponents associated to different Γ functions are formally distinct.

However, Eq. (5.38) also demonstrates how dangerously close γ−n is from γn. Since
in practice γ−n ≈ γn for n ≥ 3, we have equivalently Γ0

n ≈ Γ−n and we loose the ability
to independently determine In, Jn and Kn from the three different coefficients of each
term in n of Eq. (5.27). Indeed, there are now only two equations available to determine
three parameters. We stress that what we are actually demonstrating is that, although
the problem of extracting the In, Jn and Kn parameters admits formally a unique solu-
tion, it is numerically ill-defined, so that even with perfect experimental knowledge of the
subtraction constant on an interval in Q2, no reliable independent extraction of the In, Jn
and Kn coefficients can be performed at even small values of n. The root of the problem
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is that with a Gegenbauer expansion of p terms of the D-term, we are proposing a linear
model with 3p Γ functions to fit the subtraction constant, but the family of Γ functions,
although free which guarantees uniqueness of the decomposition, is comprised of nume-
rically extremely similar functions 3. Of course, the addition of experimental uncertainty
will only make the problem worse. We delay however the study of actual experimental
uncertainty to Section 5.2.

Conclusion

To summarise the characteristics of the deconvolution problem of the D-term in a LO
study, we note that it is mathematically possible to uniquely determine In, Jn and Kn

(5.29)-(5.31) at some point t from a perfect experimental knowledge of the subtraction
constant CH,LO at the same t and an interval on Q2. The fact that the subtraction constant
is measured on an interval in Q2 allows formally the discrimination between each terms
in µ2 contributing to Eq. (5.27). This is as close to a determination of the D-term as can
be achieved considering it is not possible to separate flavours from the DVCS subtraction
constant alone. However, due to the extreme numerical proximity of γ−n and γn, it is not
practically possible to determine In, Jn andKn for n ≥ 3, but only a linear relation relating
them. The addition of heavy quark contributions solely through evolution makes no formal
difference on the extraction since it does not change the number of free parameters or the
µ dependence.

Assumptions or external information coming from other dataset on flavour separation
allows one to progress further. Early studies of the use of deeply virtual meson production
data have demonstrated the potential of a joint analysis [215]. For instance, the assumption
dun = ddn = dsn allows one to perform theoretically a full D-term extraction. Practically, by
linking directly In to Jn and reducing the number of parameters to extract, this assumption
evades the numerical issue with γ−n ≈ γn. However, as n increases, γn−1 gets in turn closer
to γn 4, so the numerical stability of the extraction worsens anyway.

The larger the interval in Q2 on which the subtraction constant is known, the more
robust the extraction will be, since for instance the approximation Γ0

n ≈ Γ−n will be less
accurate over a large range of scales, giving more breath to separate In, Jn and Kn.

5.1.3 . Theoretical extraction of the GFF C

In terms of Gegenbauer parameters dqn, the GFF Cq (5.1) writes

Cq(t, µ2) =
1

4

∑
odd n

dqn(t, µ
2)

∫ 1

−1
dz (1− z2)zC(3/2)

n (z) , (5.39)

=
1

12

∑
odd n

dqn(t, µ
2)

∫ 1

−1
dz (1− z2)C

(3/2)
1 (z)C(3/2)

n (z) . (5.40)

The Gegenbauer polynomials C(α)
n (z) are orthogonal for the L2([−1, 1]) inner product

with weight (1 − z2)α−1/2, so only the term n = 1 gives a non-vanishing contribution to

3. An ideal situation would be that the Γ functions are for instance orthogonal for the L2([µ2
0, µ

2
max])

inner product, so that each new vector brings intrinsically different information, and not extremely
redundant information as is the case now. It is a pity nature chose these values for the anomalous
dimensions.

4. Since γn ∼ 2CF log(n) (5.33), γn − γn−1 ∼ 2CF /n
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the sum of Eq. (5.40), and

Cq(t, µ2) =
1

5
dq1(t, µ

2) . (5.41)

A similar calculation with Gegenbauer polynomials C(5/2)
n (z) gives

Cg(t, µ2) =
1

5
dg1(t, µ

2) . (5.42)

The sum over all types of partons defines the full GFF C(t) which is scale-independent
as an observable form factor of the energy momentum tensor :

C(t) =
∑
q

Cq(t, µ2) + Cg(t, µ2) =
1

5

(∑
q

dq1(t, µ
2) + dg1(t, µ

2)

)
, (5.43)

=
1

5

(
B1(t, µ

2) + C1(t, µ
2)
)
, (5.44)

following the notations introduced in Eqs. (5.29)-(5.31). As we have demonstrated in the
previous section, B1 and C1 can theoretically and practically be extracted from a perfect
experimental knowledge of the subtraction constant in a LO study at the same value of
t and on an interval in Q2. Since γ1 and γ±1 do not interfere with other exponents of
very close value which would bring a significant numerical uncertainty, the difficulties we
highlighted in the previous section for n ≥ 3 are less relevant here. This shows therefore
that indeed, extraction of the GFF is more robust than that of the D-term.

We finish by noting that, since all values of the γ exponents are strictly positive except
γ−1 = 0 and αs(µ2) tends to 0 as µ2 tends to infinity, Eqs. (5.7) and (5.8) readily show that
all Γ(µ2, µ2

0) functions tend to 0 in this limit except Γ−1 (µ2, µ2
0) which equals 1. Therefore,

Eq. (5.27) gives

∑
q

e2q
∑
odd n

dqn(t, µ
2)

µ2→∞−→ ne
a−1 − a+1

C1(t, µ
2
0)−

ne
nf

a+1
a−1 − a+1

B1(t, µ
2
0) , (5.45)

and computing

a−1 = 2
CF
TF

, (5.46)

a+1 = −nf , (5.47)

we obtain∑
q

e2q
∑
odd n

dqn(t, µ
2)

µ2→∞−→ ne

2CF

TF
+ nf

(
C1(t, µ

2
0) +B1(t, µ

2
0)
)
=

5ne

2CF

TF
+ nf

C(t) . (5.48)

As we mentioned before, obtaining values of the subtraction constant on a large Q2 range
is beneficial for the numerical quality of the extraction of In, Jn and Kn by reducing
the similarity of the fitted Γ functions, but we see here that the large Q2 limit gives an
immediate access to the GFF C(t) without any need for a practical deconvolution.
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Figure 5.2 – Extraction of the DVCS subtraction constant CH related to CFF H from the
neural network parameterisation of Ref. [143] (grey band) and subsequent fit by the simplest
Ansatz with just one free parameter detailed in Section 5.2.1 (green band) as a function of ξ for
(t = −0.3 GeV2, Q2 = 2 GeV2) (top left), a function of −t for (ξ = 0.2, Q2 = 2 GeV2) (top right)
and a function of Q2 for (ξ = 0.2, t = −0.3 GeV2) (bottom). Figure taken from Ref. [4].

5.2 . Practical extraction from experimental data at leading order

We have mostly focused so far on the uniqueness and theoretical amplification of
uncertainty of the extraction, without mentioning the additional uncertainty coming from
experimental knowledge about the subtraction constant. This is the objective of this
section, where we notably present our results on the extraction of the GFF from Ref. [4].

The analysis of most of the world DVCS dataset led in Ref. [143] provides a data-driven
extraction of CFFs under the form of 101 neural network replicas. We have detailed in
Section 4.2 the general features of this extraction. The real and imaginary parts of the
CFFs are modelled independently, allowing to compute 101 replicas of the subtraction
constant CH(t, Q2) related to CFF H following Eq. (3.25). For practical reasons, the
integral on the imaginary part of the CFF is only evaluated for ξ′ > 10−6, and not ξ′ > 0,
but we estimate that it generates an approximation of the order of 1% only for the values
of ξ corresponding to actual DVCS measurements included in the neural network fit of the
CFFs. The results are shown on Fig. 5.2 by the grey band, representing the 68% confidence
interval with iterative removal of outliers lying more than three standard deviation from
the mean, as described in more details in Section 4.2.

The subtraction constant CH(t, Q2) is theoretically supposed to be independent of
ξ, but since the real and imaginary parts of CFF H were extracted independently, it is
expected that some variation along ξ occurs. We note that on Fig. 5.2, the confidence
interval as a function of ξ is approximately horizontal in the region ξ > 0.1 at t = −0.3
GeV2 and Q2 = 2 GeV2 which is where the bulk of JLab experimental measurements
are located. At lower values of ξ, the lack of strong experimental constraints prevents
the expected ξ independence. Similarly, the small and large |t| and large Q2 regions are
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essentially unconstrained, explaining the very large confidence intervals.
One major feature of this extraction of the subtraction constant is that it is compatible

with 0. This results to a large extent from the fact that the real part of CFF H is poorly
constrained by current experimental data, as seen for instance on the left panel of Fig. 4.6.
This highlights the interest of a better knowledge of this quantity, which could be achieved
for instance by measuring unpolarised BCA observables with a positron beam at JLab as
we showed in Section 4.4. That the subtraction constant is compatible with 0 for a flexible
parameterisation of CFFs is also a feature of the neural network study of Ref. [202].

Because of the large experimental uncertainty, no clear trend appears in the subtraction
constant at large |t| or large Q2. We know from the discussion on pseudo-data generation
for reweighting performed in Section 4.4.1 that using the replicas at large |t| introduces
a source of bias in the analysis, because it favours large values in this region, while
knowledge of elastic form factors at large |t| would rather hint at small and decreasing
values. Furthermore, we demonstrated in the previous section that the Q2 dependence is
instrumental to perform an actual extraction of the GFF or D-term. That the subtraction
constant is so poorly known as soon as Q2 is larger than a few GeV2 is already preventing
any possibility of a serious unbiased extraction of either quantities in the current state
of experimental knowledge. Unlike Ref. [202], we wish nonetheless to proceed further and
decide to introduce a physically motivated Ansatz at this stage.

5.2.1 . Simple Ansatz
We first start by the simplest possible Ansatz, with solely one free parameter. This is

a for instance the assumption made in Ref. [139]. We limit the expansion of the D-term
(5.3)-(5.4) to only n = 1 and all terms with n ≥ 3 are assumed to be zero. Thanks to the
properties of the evolution of the D-term which we detailed in Section 5.1.1, this property
is true at all scale. We further assume that all light flavours have equal contributions, that
is du1 = dd1 = ds1 ≡ duds1 . The gluon contribution is not let free, but generated radiatively
from the threshold condition

dg1(t, 0.1 GeV2) = 0 . (5.49)

For µ2 > 0.1 GeV2, dg1(t, µ2) takes non vanishing values thanks to evolution. This assump-
tion is frequently met in the computation of various parton distribution functions from
quark models, and does not prevent an analysis of the existing DVCS data. We study fur-
thermore later the sensitivity on this choice of threshold. Considering most of the DVCS
data are obtained for Q2 larger than the squared mass of the charm quark m2

c ≈ 1.64
GeV2, we allow a radiatively generated charm contribution, from threshold

dc1(t,m
2
c) = 0 . (5.50)

Finally, the t-dependence of duds1 is fixed by assuming the factorised form

duds1 (t, µ2) = duds1 (µ2)

(
1− t

Λ2

)−α
, (5.51)

where Λ = 0.8 GeV and α = 3. The value of Λ is motivated by the chiral quark-soliton
model [55, 216], while that for α ensures a realistic shape of the pressure distribution at
large t [64]. Since the dependence of duds1 on µ2 is determined by evolution equations, the
only free parameter in this model can be taken as the value of duds1 (µ2

0) at some scale µ2
0,

so one real number.
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We fit the model independently on each replica of the subtraction constant. The fit
is performed by finding the optimal value of the free parameter duds1 (µ2

0) minimising the
following least squares for each replica i :

χ2
i (d

uds
1 (µ2

0)) =

Npts∑
j=1

(
CH,i(ξj, tj, Q

2
j)− modelduds1 (µ20)

(ξj, tj, Q
2
j)

σCH
(ξj, tj, Q2

j)

)2

, (5.52)

where (ξj, tj, Q2
j) represent the Npts = 277 kinematics of all actual measurements included

in the CFF neural network fit, CH,i(ξj, tj, Q2
j) is the value of the i-th replica of the subtrac-

tion constant at the probed kinematics, σCH
(ξj, tj, Q

2
j) the uncertainty on the subtraction

constant computed from the robust estimate of the dispersion of the replica distribution,
and modelduds1 (µ20)

the value produced by our model for the free parameter duds1 (µ2
0). We

only use values of kinematics which correspond to actual measurements included in the
CFF fit to minimise the introduction of bias by fitting in unconstrained regions. The
result of the fit is 101 replicas of our model, whose confidence interval is represented as
the green bands in Fig. 5.2. Independence on ξ is now a direct feature of the model, and
the t dependence is entirely driven by the form of Eq. (5.51). As for the Q2 dependence,
it is obtained by solving the LO evolution equations, and it appears that on a scale from
Q2 = 1 GeV2 to 100 GeV2, the standard deviation at ξ = 0.2 and t = −0.3 GeV2 of the
replicas is only reduced from 1.05 to 0.85 (see lower panel of Fig. 5.2). Evolution effects are
therefore overall quite tame on dq1, which is partly a consequence of the fact that γ−1 = 0.

The results of the fit are the following, expressed at reference scale µ2
0 = 2 GeV2. Only

duds1 (µ2
0) is actually a free parameter, the other contributions being radiatively generated.

Parameter Value
duds1 (µ2

0) −0.5± 1.2
dc1(µ

2
0) −0.002± 0.005

dg1(µ
2
0) −0.6± 1.6

The charm quark contribution comes out as negligible, and as expected, all contributions
are compatible with 0.

The value at which the radiative gluon threshold is fixed (5.49), which is 0.1 GeV2 for
the result presented above, has a significant impact on the extraction of dg1(µ2

0). Fig. 5.4
shows that choosing 1 GeV2 as a threshold for gluon contributions results in a reduction
of the amplitude of gluon contributions at 2 GeV2 by a factor 8. However, the value of
duds1 (µ2

0) is remarkably insensitive to that value. Therefore, the extraction of
∑

q d
q
1(t, µ

2)

is robust with respect to this threshold, but not the GFF C(t) =
∑

q d
q
1(t, µ

2) + dg1(t, µ
2)

(5.44). Insensitivity of the quark contribution to the gluon threshold will be fully unders-
tood in the upcoming discussions. Fig 5.3 shows the comparison of our extraction with
several other analyses, including phenomenological extractions, lattice-QCD predictions
and theoretical models.

5.2.2 . New terms in the Gegenbauer expansion

Among several assumptions that can be relaxed, the most interesting to our discussion
is that only n = 1 contributions were considered so far. The chiral quark-soliton model
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dc1(2 GeV2) (brown solid band) depending on the threshold at which gluon contribution is fixed
to 0. The charm contribution has been amplified by a factor 100. duds1 (2 GeV2) has no apparent
sensitivity to the gluon threshold. Figure taken from Ref. [4].
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(χQSM) [171] gives an insight on the behaviour of the Gegenbauer expansion :

du+d1 (0, 0.36 GeV2) ≈ −4.0 , (5.53)
du+d3 (0, 0.36 GeV2) ≈ −1.2 , (5.54)
du+d5 (0, 0.36 GeV2) ≈ −0.4 . (5.55)

Each new term is roughly three times smaller than the previous. When extrapolating
this tendency, terms larger than n = 1 therefore amount to about 30% of the value of
the subtraction constant at LO for this model. Fitting with only the n = 1 contribution
corresponds therefore to a significant inclusion in da1 of contributions that should belong to
da3, da5, ... Not only are higher n contributions possibly significant from a numerical point
of view, they also play an important theoretical role. We demonstrated in the beginning
of this chapter how evolution is supposed to allow us to identify B1 and C1 independently
from contributions of higher values of n. We presented leverage in Q2 as a mean to perform
deconvolution in a model independent way. Let us therefore allow a free contribution duds3 ,
while keeping radiatively generated gluon and charm contributions for both n = 1 and
n = 3. That there is only one free parameter for each value of n discards the theoretical
concerns we exposed about the inability to properly identify In, Jn and Kn. The result of
the fit with the two free parameters duds1 and duds3 is the following at µ2

0 = 2 GeV2 :

Parameter Value
duds1 (µ2

0) 11± 25
duds3 (µ2

0) −11± 26
dc1(µ

2
0) −0.05± 0.1

dc3(µ
2
0) −0.004± 0.01

dg1(µ
2
0) 15± 34

dg3(µ
2
0) −1.8± 3.9

Compared to the previous fit where we had obtained duds1 (µ2
0) = −0.5 ± 1.2, uncertainty

on duds1 has been increased by a factor 20. Fig. 5.5 shows the joint distribution of duds1 (0.1
GeV2) and duds3 (0.1 GeV2) over the 101 replicas. With a correlation coefficient of -0.997,
this distribution essentially amounts to a linear relation between duds1 and duds3 . We will
now show how we can understand and predict the general features of these results.

Our objective is to derive an estimate of the standard deviation of the free parameters
(duds1 , duds3 ) depending on the available range of evolution, to broadly assess the impact
of future experimental facilities like the EIC on the extraction of hadron mechanical
properties without going through the generation a large pseudo-dataset and fitting it.
To this purpose, we first present a simplification of evolution to make the problem more
tractable analytically. Thanks to the independence of evolution operators on t at leading
twist, all this derivation will be performed implicitly at a fixed value of t – in practice,
t = 0 where all fitted values were extracted in the previous tables.

Simplified evolution

In the simple case where dudsn is the only free parameter for each n, since evolution
equations are linear in dudsn , they can be exactly summarised as

dudsn (µ2) = Γqqn (µ
2, µ2

0) d
uds
n (µ2

0) (5.56)
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Figure 5.5 – Joint distribution of duds1 (0.1 GeV2) and duds3 (0.1 GeV2) over 101 replicas of the
model where the two quantities are the only free parameters. The ellipses show the 68% and 95%
confidence regions. Figure taken from Ref. [4].

for some functions Γqqn 5. Taking into account threshold crossings and radiative generation
of gluons and heavy flavours is straightforward from a theoretical point of view, but com-
plicates significantly all explicit derivations. Considering that the charm content obtained
in the fit with the simplest Ansatz was of the order of 0.1% of the sum of the contribu-
tions of light flavours, we will consider that dcn = 0 at all scale. However, we will keep
nf = 4 in evolution equations since most of the fitted data are above charm production
threshold, while verifying that nf = 3 or 4 makes actually little difference on our results.
Finally, we will likewise ignore gluon contributions. A formal discussion of why radiative
gluon contributions can be ignored will be led in Section 5.2.4, but let us quickly justify
it so far by the fact that varying the threshold where gluon contributions start to be
radiatively generated from 0.1 GeV2 to 1 GeV2 made no difference on the fitted value of
duds1 (2 GeV2), indicating that in this regime, dg1 brings no significant contribution to the
subtraction constant. With these simplifying assumptions, Eq. (5.17) gives

Γqqn (µ
2, µ2

0) =
1

4
Γ0
n(µ

2, µ2
0) +

3

4

Γ+
n (µ

2, µ2
0)a
−
n − Γ−n (µ

2, µ2
0)a

+
n

a−n − a+n
. (5.57)

Construction of an estimate of the uncertainty of duds3 depending on the lever
arm in evolution

Fig. 5.6 shows the values of Γqq1 (µ2, µ2
0) and Γqq3 (µ2, µ2

0) for µ2
0 = 2 GeV2 obtained

thanks to Eq. (5.57) on the range µ2 ∈ [1.5 GeV2, 10 GeV2]. The latter contains almost
all data on which the neural network fit of CFFs has been performed. It is striking that
both functions are numerically very close to one another. We propose in Appendix A.2 a
demonstration of the effect of performing a linear fit with two parameters whose associa-
ted functional dependences are numerically very close. The generic result is that, as the

5. Let us stress that Eq. (5.56) is not an approximation but an exact consequence of linearity as long
as the postulate that only dudsn is a free parameter is valid. This means that the operator Γqq

n defined in
this way has a complicated dependence on Γ0

n, Γ±
n and all the radiative thresholds.
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difference between the two functional dependences decreases like ϵ 6, the uncertainty on
the fitted parameters increases as 1/ϵ, and their correlation coefficient converges quickly
as −1+O(ϵ2). We understand therefore that the strong numerical proximity of Γqq1 (µ2, µ2

0)
and Γqq3 (µ2, µ2

0) over the range in µ2 probed by experimental data contributes to the ex-
plosion of uncertainty when fitting jointly duds1 (µ2

0) and duds3 (µ2
0), as well as the very large

anti-correlation between the two 7.
If on the contrary, Γqq1 and Γqq3 had been extremely dissimilar, we could have expected

that the fitted parameters duds1 (µ2
0) and duds3 (µ2

0) would be almost uncorrelated. Then using
that

CH,0[D
q, Dg](Q2) =

8

3

(
duds1 (Q2) + duds3 (Q2)

)
, (5.58)

=
8

3

(
duds1 (µ2

0)Γ
qq
1 (Q2, µ2

0) + duds3 (µ2
0)Γ

qq
3 (Q2, µ2

0)

)
, (5.59)

assuming that cov(duds1 (µ2
0), d

uds
3 (µ2

0)) = 0, and noting ∆duds1,3 the standard deviation of
duds1,3 (µ

2
0), we could write

(
∆duds1

)2 (
Γqq1 (Q2, µ2

0)
)2

+
(
∆duds3

)2 (
Γqq3 (Q2, µ2

0)
)2

=

(
3

8

)2

σ2
CH

(Q2) , (5.60)

where σCH
(Q2) is the experimental uncertainty on the subtraction constant at the implicit

fixed value of t we use in all this derivation. Eq. (5.60) would yield for instance the simple
inequality on the uncertainty of duds3

∆duds3 ≤ 3

8
inf

σCH
(Q2)

|Γqq3 (Q2, µ2
0)|

, (5.61)

where the inferior bound is computed on the range in Q2 where experimental data are
available. However, the very large correlation between duds1 and duds3 makes Eq. (5.60)
grossly inexact.

To circumvent this issue, inspired by the demonstration of Appendix A.2, we introduce
a function f2 defined as a linear combination of Γqq1 and Γqq3 by

f2(µ
2, µ2

0) =
1

ϵ
Γqq3 (µ2, µ2

0)−
1− ϵ

ϵ
Γqq1 (µ2, µ2

0) (5.62)

for a given ϵ. Replacing Γqq3 by f2, we can propose an alternative model of the subtraction
constant – which is completely equivalent to the one of Eq. (5.59) since f2 is a linear
combination of Γqq1 and Γqq3 – as

CH,0[D
q, Dg](t, Q2) =

8

3

(
αΓqq1 (Q2, µ2

0) + βf2(Q
2, µ2

0)

)
. (5.63)

6. This difference might be defined in many different ways, we are merely interested in its general
scaling properties.

7. Similarity of the functional dependences of the model is not the only cause of strong correlations
among fitted parameters, another obvious cause being strong correlations in the fitted data themselves.
We will come back to this aspect later, but let us consider so far – as it is the case in our study – that
most of the correlation and inflation of uncertainty comes indeed from the functional dependences of the
model.
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Figure 5.6 – Values of Γqq1 (µ2, 2 GeV2), Γqq3 (µ2, 2 GeV2) and f2(µ2, 2 GeV2) corresponding to
ϵ = 0.041. We show an interval in µ2 equal to [1.5 GeV2, 10 GeV2].

By replacing f2 by its value (5.62) and comparing with Eq. (5.59), one obtains that

α = duds1 (µ2
0) + (1− ϵ)duds3 (µ2

0) , (5.64)
β = ϵduds3 (µ2

0) . (5.65)

One may see therefore the motivation for the peculiar choice of f2. The fact that Γqq1 and
Γqq3 only differ by ϵ triggers an inflation of the uncertainty of fitted parameters by 1/ϵ
and causes the fact that duds1 ≈ −duds3 . We are specifically trying to counter this effect,
by finding a value of ϵ so as to obtain a robust extraction of α and β, that is precisely
cov(α, β) = 0. Since

cov(α, β) = ϵ cov(duds1 (µ2
0), d

uds
3 (µ2

0)) + ϵ(1− ϵ)(∆duds3 )2 , (5.66)

solving cov(α, β) = 0 gives either ϵ = 0 or

ϵ = 1 +
cov(duds1 (µ2

0), d
uds
3 (µ2

0))

(∆duds3 )2
= 1 + corr(duds1 (µ2

0), d
uds
3 (µ2

0))
∆duds1

∆duds3

. (5.67)

The numerical application with the values of our phenomenological fit produces ϵ = 0.041.
The other solution ϵ = 0 corresponds to f2 infinite. It is a trivial solution of no interest
to us since robustness of the extraction of (α, β) is only obtained at the cost that β =
0 systematically. It corresponds actually to a fit with just the first parameter. On the
contrary, ϵ = 0.041 allows us to transform Γqq3 into a new function f2 shown on Fig. 5.6
which is now clearly different from Γqq1 , such that the joint fit of f2 and Γqq1 on experimental
data produces uncorrelated uncertainties, contrary to the almost fully correlated results
obtained when using the initial Γqq3 . The values of the standard deviations of α and β,
noted ∆α and ∆β, contain in a reliable way information on the actual uncertainty of the
subtraction constant, unlike (∆duds1 ,∆duds3 ) which contains mostly information about the
close proximity of Γqq1 and Γqq3 . We can use the equivalent of Eq. (5.60) where we have
replaced Γqq3 by f2, yielding

(∆α)2(Γqq1 (Q2, µ2
0))

2 + (∆β)2f 2
2 (Q

2, µ2
0) = (3/8)2σ2

CH
(Q2) , (5.68)
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and this time, we have indeed the bound

∆β ≤ 3

8
inf

σCH
(Q2)

|f2(Q2, µ2
0)|

. (5.69)

This bound on the parameter β which has no physical meaning is converted into a bound
on duds3 (µ2

0) = β/ϵ (5.65) by

∆duds3 =
∆β

|ϵ|
. (5.70)

Noting that using the definition of f2 (5.62)

1

ϵ
=

f2(Q
2, µ2

0)− Γqq1 (Q2, µ2
0)

Γqq3 (Q2, µ2
0)− Γqq1 (Q2, µ2

0)
, (5.71)

we obtain

∆duds3 = ∆β

∣∣∣∣ f2(Q2, µ2
0)

Γqq1 (Q2, µ2
0)

− 1

∣∣∣∣ ∣∣∣∣1− Γqq3 (Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣−1 , (5.72)

≤ 3

8

(
inf

σCH
(Q2)

|f2(Q2, µ2
0)|

) ∣∣∣∣ f2(Q2, µ2
0)

Γqq1 (Q2, µ2
0)

− 1

∣∣∣∣ ∣∣∣∣1− Γqq3 (Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣−1 . (5.73)

This expression can be divided in two parts : the first two factors depend on the actual
experimental uncertainty σCH

and the set of "ideal" functions (Γqq1 , f2), whereas the final
factor measures the proximity of Γqq1 and Γqq3 and produces the observed correlations. The
structure of the first two factors with f2 both on the numerator and denominator and
knowing that Γqq1 ≈ 1, guarantees that it will remain essentially of the order σCH

on the
entire available range in Q2. Indeed,

— if |f2(Q2, µ2
0)| ≪ Γqq1 (Q2, µ2

0), since f2(µ2
0, µ

2
0) = 1,(

inf
σCH

(Q2)

|f2(Q2, µ2
0)|

) ∣∣∣∣ f2(Q2, µ2
0)

Γqq1 (Q2, µ2
0)

− 1

∣∣∣∣ ≲ σCH
(µ2

0) , (5.74)

— if on the contrary, |f2(Q2, µ2
0)| ≫ Γqq1 (Q2, µ2

0),(
inf

σCH
(Q2)

|f2(Q2, µ2
0)|

) ∣∣∣∣ f2(Q2, µ2
0)

Γqq1 (Q2, µ2
0)

− 1

∣∣∣∣ ≲ σCH
(Q2)

|f2(Q2, µ2
0)|

∣∣∣∣ f2(Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣ ≈ σCH
(Q2) ,

(5.75)
— finally, if |f2(Q2, µ2

0)| is of the order of Γqq1 (Q2, µ2
0), the result is of the order of

σCH
(Q2). It is precisely the case in our study.

Therefore, we can build an estimate of the uncertainty on duds3 (µ2
0) when fitted on

experimental data spanning over a range of Q2 ∈ [µ2
0, µ

2] by introducing a factor K of the
order of 1 and writing

∆duds3 ≈ KσCH

∣∣∣∣1− Γqq3 (Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣−1 . (5.76)

σCH
is a typical value of the experimental uncertainty of the subtraction constant on the

experimental range in Q2. As discussed previously, if the final term verifies∣∣∣∣1− Γqq3 (Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣−1 ≫ 1 , (5.77)
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Figure 5.7 – Estimate of the uncertainty on duds3 (µ20)/σCH
given by 0.75/(1 −

Γqq3 (Q2, µ20)/Γ
qq
1 (Q2, µ20)) for experimental data spanning a range Q2 ∈ [µ20, µ

2]. The red star
shows the result for µ20 = 1.5 GeV2 and µ2 = 4 GeV2, which is relevant for the world DVCS data-
set included in the current neural network study. The estimate gives an uncertainty on duds3 /σCH

of 9.5, so a total uncertainty on duds3 of 28, which is consistent with our phenomenological fit.
The yellow star shows an hypothetical EIC configuration, with µ2 = 50 GeV2. The uncertainty
on duds3 /σCH

is expected to drop at 3.4.

we can deduce than uncertainty on duds1 in the joint fit case is mostly driven by the close
proximity of Γqq1 and Γqq3 rather than by the precise characteristics of the fitted subtraction
constant.

We choose K = 3/4 for numerical applications, motivated by the fact that in our ex-
traction shown on Fig. 5.6, a typical order of magnitude of f2 is -1. Therefore, 3/8|f2/Γqq1 −
1| ≈ 3/8 ∗ 2 = 3/4. Then the estimate gives an uncertainty on duds3 (µ2

0) of 28 for µ2
0 = 1.5

GeV2, µ2 = 4 GeV2 and σCH
= 3 (see the second panel of Fig. 5.2 at t = 0). The values

of µ2
0 and µ2 are chosen since the vast majority of DVCS measurements included in the

neural network fit take values in that range for Q2. A few measurements go as high as
Q2 = 10 GeV2, but they do not represent a strong statistical constraint to the fit. The re-
sult is largely compatible with our own experimental extraction duds3 (2 GeV2) = −11±26.
We show on Fig. 5.7 the expected uncertainty on duds3 (µ2

0) normalised by σCH
depending

on the range of evolution [µ2
0, µ

2] where experimental data are available.
Therefore, without any increase in the precision of subtraction constant data, but an

increase in the available range in Q2 up to 50 GeV2 as could be obtained in the EIC,
this quick estimate predicts a reduction of uncertainty on duds3 from 28 to 10, so about
a factor 3. As the uncertainty remains three times larger than σCH

, it is foreseeable that
d1 and d3 will remain mostly driven by the correlation between the two, but a significant
improvement has been achieved compared to the current situation.

Conclusion

Under the assumptions of simplified evolution – no heavy flavour and negligible radia-
tive gluons contributions –, we showed that it is possible to approximate the uncertainty
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on duds3 by the estimate

KσCH

∣∣∣∣1− Γqq3 (Q2, µ2
0)

Γqq1 (Q2, µ2
0)

∣∣∣∣−1 . (5.78)

σCH
is the typical experimental uncertainty of the subtraction constant data on the probed

range in Q2, and K = 3/4 gives excellent results on actual data. This estimate allows us to
simultaneously gauge the impact of increasing the range in Q2 of available data, and the
impact of adding new functional forms to the estimation of the dudsn terms for a given range
in energy. The results for EIC kinematics look promising, with an expected reduction of
uncertainty on (duds1 , duds3 ) by a factor 3 when only considering the increase in range of
Q2, without even taking into account that experimental data themselves will increase in
precision.

5.2.3 . Shadow D-terms
We have only considered the deconvolution problem in terms of similarity between

functional forms of evolution operators so far. This approach is practical in the context
of GFF extraction from the DVCS subtraction constant since we were only interested
in a quantity, d1, whose LO evolution could be very conveniently written thanks to the
Gegenbauer expansion. However, higher order evolution of the D-term, as well as the evo-
lution of full GPDs in the context of the general deconvolution problem are much more
difficult to represent. Although conformal moments of GPDs allow a relatively similar re-
presentation of the effect of LO evolution compared to what we have described here, the
reconstruction of the full GPD from its conformal moments is a rather technical procedure
which requires an analytical form for the moments. We will therefore approach the full
deconvolution problem of GPDs with a more intuitive and powerful tool : shadow distri-
butions. Let us present briefly the application of this concept to the D-term extraction,
before presenting more systematically shadow GPDs in the next chapter.

Shadow D-term A shadow D-term at NkLO and (t, µ2
F ) is a set of

functions Da
0(t, µ

2) for a = u, d, s, g, ... following the same evolution
equations that traditional D-terms such that the subtraction constant
computed from Da

0 at order NkLO and (t, µ2
F ) noted CH,k[Da

0 ](t, µ
2
F ) is

exactly vanishing.

Since the LO subtraction constant writes (5.26)

CH,0[D
q, Dg](t, µ2

F ) = 4
∑
q

e2q
∑
odd n

dqn(t, µ
2
F ) , (5.79)

defining a LO shadow D-term amounts to finding a set of dqn(t, µ2
F ) such that∑

q

e2q
∑
odd n

dqn(t, µ
2
F ) = 0 . (5.80)

The simplest solution is to choose all light flavours equal and duds1 (t, µ2
F ) = −duds3 (t, µ2

F )
with dudsn = 0 if n ≥ 5. Therefore, the simplest LO shadow D-term is defined as

Duds
0 (z, t, µ2

F ) = (1− z2)duds1 (t, µ2
F )
(
C

(3/2)
1 (z)− C

(3/2)
3 (z)

)
, (5.81)

=
7z(1− z2)(3− 5z2)

2
duds1 (t, µ2

F ) . (5.82)
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But we could as well define more complicated LO shadowD-terms by choosing duds1 (t, µ2
F ) =

duds3 (t, µ2
F ) and duds5 (t, µ2

F ) = −2 duds1 (t, µ2
F ) for instance, which would yield

Duds
0 (z, t, µ2

F ) = (1− z2)duds1 (t, µ2
F )
(
C

(3/2)
1 (z) + C

(3/2)
3 (z)− 2C

(3/2)
5 (z)

)
, (5.83)

= −z(1− z2)(123− 700z2 + 693z4)

4
duds1 (t, µ2

F ) . (5.84)

Any linear combination of the two previous functions is still a LO shadow D-term, since
its contribution to the subtraction constant remains 0. Therefore, we can build a vector
space of z-dependent functions which bring no contributions to the subtraction constant
at (t, µ2

F ), and only contributions of order αs(µ2) for µ2 ̸= µ2
F .

This vector space provides a practical way to assess the uncertainty of a deconvolution
procedure. For instance, the extraction of the D-term from subtraction constant data
can be represented by Da

best + Da where Da
best is the best fit value obtained for a linear

model 8 optimised on the central value of experimental data, and Da is an element of the
allowed functional space spanned by the model such that |CH,k[Da](t, µ2)| is of the order
of the experimental uncertainty for all experimental kinematics (t, µ2). The diversity of
all possible Da gives an account of the uncertainty of the extraction. Provided that the
functional space spanned by the model intersects the vector space of shadow distributions,
the latter form a natural way to determine some of these Da and obtain a measure of the
uncertainty of extraction.

For instance, let us go back again to our fit with free duds1 and duds3 . As we have just
discussed before, there is a vector space of dimension one of shadow D-terms which can be
obtained with such parameterisation, corresponding to duds1 (t, µ2

F ) = −duds3 (t, µ2
F ). Let’s

assume the experimental uncertainty is of the order of σCH
on the range [µ2

0, µ
2]. A measure

of the uncertainty on the D-term can be obtained by choosing µ2
F = µ2

0 and exploring the
maximal value of the shadow D-terms such that |CH,k[Da

0 ](t, µ
2)| ≤ σCH

. Keeping all our
previous assumptions on the simplified evolution behaviour,

|CH,k[Da
0 ](t, µ

2)| = 8

3
|duds3 (t, µ2

0)|
∣∣Γqq1 (Q2, µ2

0)− Γqq3 (Q2, µ2
0)
∣∣ , (5.85)

and enforcing that |CH,k[Da
0 ](t, µ

2)| ≤ σCH
gives

|duds3 (t, µ2
0)| ≤

3

8

σCH

Γqq1 (Q2, µ2
0)

(
1− Γqq3 (Q2, µ2

0)

Γqq1 (Q2, µ2
0)

)−1
. (5.86)

We retrieve an estimate with exactly the same general behaviour that the one we derived
in the previous section 9. Note that even if we have no precise knowledge of the Γqqn

8. What is important is that Da
best + Da belongs to the functional space spanned by the model –

otherwise it is of course not a relevant object to determine the result of the deconvolution procedure with
the model under consideration. This condition is fulfilled immediately if the model is linear and Da

best

and Da each belong to its functional space, which is exactly the case we have faced so far.
9. What is then exactly the difference between this procedure and the previous estimate of Eq. (5.78) ?

The latter is more general, since it does not make reference to the evolution of any specific function, but
is based on the scale dependence of evolution operators themselves. For instance, all the derivations of
the previous section remain true even if there are no shadow D-terms in the functional space spanned by
the chosen model for the D-term. The new procedure estimates the uncertainty specifically in functional
spaces where shadow D-terms can be found by measuring the growth of their contributions to the convo-
lution. Although less general, the new method is also far more manageable, especially when evolution is
only performed numerically.
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operators, but simply a numerical procedure that evolves directly the shadow D-term as
a function of z, we are still able to determine the maximal size of shadow D-terms which
obey |CH,k[Da

0 ](t, µ
2)| ≤ σCH

.

5.2.4 . Enriching the Ansatz
Free gluon contribution

Considering the results of allowing the simultaneous fit of duds1 and duds3 , it does not
seem useful to increase the number of values of n allowed. However, other hypotheses of our
Ansatz can be relaxed. From now on, we return to only allowing the n = 1 contribution.
Let us fit dg1 as a free parameter. We obtain at µ2

0 = 2 GeV2

Parameter Value
duds1 (µ2

0) −0.7± 1.2
dg1(µ

2
0) 51± 111

dc1(µ
2
0) 0.2± 0.4

Compared to the fit of duds1 as sole free parameter where we obtained duds1 (µ2
0) = −0.5±1.2,

the result has barely changed. On the contrary, the gluon uncertainty explodes, from
−0.6 ± 1.6 to 51 ± 111. To explain this behaviour, we notice that the contribution of
gluons to the quark terms through evolution is particularly small : the explicit solution of
D-term evolution derived in Eq. (5.17) shows that the contribution of dg1(µ2

0) to duds1 (µ2)
is suppressed by a factor

Γqg1 (µ2, µ2
0) =

Γ−1 (µ
2, µ2

0)− Γ+
1 (µ

2, µ2
0)

a−1 − a+1
. (5.87)

Numerically, for the typical range from µ2
0 = 1.5 GeV2 to µ2 = 4 GeV2, this factor is

only of the order of 0.015, while for the same evolution range, Γqq1 ≈ 0.92, Γgq1 ≈ 0.31 and
Γgg1 ≈ 0.94. With dg1 and duds1 as free parameters and neglecting heavy flavours, our model
of the subtraction constant reads

CH,0[D
q, Dg](Q2) =

8

3

(
Γqq1 (Q2, µ2

0)d
uds
1 (µ2

0) + Γqg1 (Q2, µ2
0)d

g
1(µ

2
0)
)(

1− t

Λ2

)−α
. (5.88)

Since the factor in front of dg1(µ2
0) is at least 60 times smaller than the one in front of

duds1 (µ2
0), it is not a surprise that the resulting distribution of dg1 is overall much wider than

that of duds1 when dg1 is a free parameter. On the contrary, for radiatively generated gluon
contributions at threshold 0.1 GeV2, that is when dg1(0.1 GeV2) = 0 is imposed verify

dg1(2 GeV2) = Γgq1 (2 GeV2, 0.1 GeV2) duds1 (0.1 GeV2) , (5.89)

=
Γgq1 (2 GeV2, 0.1 GeV2)

Γqq1 (2 GeV2, 0.1 GeV2)
duds1 (2 GeV2) , (5.90)

≈ 1.4 duds1 (2 GeV2) . (5.91)

Therefore radiatively generated dg1 is just slightly larger than duds1 , and the gluon indirect
contribution to the LO subtraction constant is more than 60/1.4 ≈ 40 times smaller than
the direct quark one. There is therefore virtually no sensitivity to gluon with radiative
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Figure 5.8 – Values of Γqq1 (µ2, 2 GeV2) and 60Γqg(µ2, 2 GeV2) over the relevant experimental
range [1.5 GeV2, 4 GeV2] to our study. The dent on the curve of Γqg1 represents the threshold of
charm activation. Although we neglect the dc1 term in the numerical applications, we take into
account the change of number of active flavours in the definition of αs. It brings however only
very little difference over all.

generation in a LO subtraction constant study, explaining the remarkable independence of
duds1 on the gluon generation threshold. We had previously observed this fact on Fig. 5.4,
and used it as a tool for the simplification of evolution with radiative gluon generation.

Although this explains why free gluon contributions are considerably larger than free
quark contributions in a LO analysis, it does not justify why the two are essentially
uncorrelated. Fig. 5.8 shows the values of Γqq1 and 60Γqg1 over the relevant experimental
range. The two functions exhibit significantly different shapes. This is a strong argument
for the decorrelation of duds1 (2 GeV2) and dg1(2 GeV2) following the discussion of Section
5.2.2 10

t-dependent Ansatz

In all the previous fits, the parameters α and Λ of the assumed factorised t-dependence
have remained fixed at values α = 3 and Λ = 0.8 GeV. Allowing one or the other to be

10. Formally, as we remarked on a previous note, correlations can also emerge from the poor information
content of replicas of the subtraction constant themselves. Borrowing the notations of Section 4.1.1, the
covariance matrix of the best fit parameters in a linear fit is obtained as (CTΩ−1C)−1 where C is the
matrix of the functional dependences of the model on the probed kinematics, and Ω the covariance matrix
of the data. Large correlations in the fitted parameters can emerge from the poor conditioning of either C
– which corresponds precisely to the idea which we have already explored that the functional dependences
in the model are too similar – or Ω. For instance, if the fitted dataset has been generated from a linear
model with r parameters, then Ω is of rank r. It is easy to show that as a consequence, the matrix of
fitted parameters is at most of rank r too. This means that even if a totally different linear model with
n parameters is fitted on the dataset, perfect correlations between parameters will emerge as soon as
n > r. However, considering that we perform our fit on non-linear replicas of a neural network with
great flexibility, and that we only try to fit a handful of parameters at a time, the issue of insufficient
information in the fitted data does not emerge. It is then sufficient to observe that the functional forms
of the model are strongly different.
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fitted jointly with duds1 produces however very inconsistent results. The fit is now no
longer linear in its parameters, which exposes us to the risk of unexpected behaviour as
for instance the separation of replicas into clusters that we highlighted in Section 4.1.1.
Overall, no significant trend emerges from the fit. This does not come completely as a
surprise, since we know that the experimental coverage in t is one of the weak points of the
available data. Let us note however that the limited coverage in t is partly a consequence of
the imposed kinematic cutQ2 > 1.5 GeV2 we used to select fitted DVCS experiments. This
cut is meant to protect the dataset from higher twist corrections, which are suppressed
by a factor t/Q2. Taking into account higher twist corrections could in principle allow us
to incorporate more data and extend the range of t.

From a phenomenological point of view, the t-dependence is crucial since it drives
the energy and pressure profiles computed from the GFF. We remind that the pressure
anisotropy s(r) can be defined in the Breit frame (see Section 1.4.2, Eq. (1.33)) by

sa(r) = −4M

r2

∫
d3∆

(2π)3
e−i∆·r

t−1/2

M2

d2

dt2
[
t5/2Ca(t)

]
, (5.92)

where t = −||∆||2. Since Ca(t) = da1(t)/5, fixing the values of α and Λ corresponds to
entirely fixing the r profile of the pressure anisotropy, and relegating the result of the fit
of da1 to a simple normalisation factor.

Since the integral depends only on the norm of r, we are free to choose any representa-
tive for the vector. Let us consider r and ∆ with respective spherical coordinates (r, 0, 0)
and (∆, θ, ϕ) with the radius-colatitude-longitude convention. Then ∆ ·r = r∆cos θ, and
the differential element d3∆ gives ∆2 sin θd∆dθdϕ, so

sa(r) = − 4

5Mr2(2π)3

∫ 2π

0

dϕ

∫ π

0

dθ

∫ ∞
0

d∆∆2 sin θ e−i∆r cos θ t−1/2
d2

dt2
(
t5/2da1(t)

)
.

(5.93)
Using ∫ π

0

dθ sin θ e−i∆r cos θ =
2 sin(∆r)

∆r
, (5.94)

gives

sa(r) = − 2

5Mr3π2

∫ ∞
0

d∆∆sin(∆r) t−1/2
d2

dt2
(
t5/2da1(t)

)
. (5.95)

Assuming

da1(t) = da1

(
1− t

Λ2

)−α
, (5.96)

d2

dt2
(
t5/2da1(t)

)
= t1/2

da1(t)

4(Λ2 − t)2
[
15Λ4 + t(20α− 30)Λ2 + t2(4α2 − 16α + 15)

]
. (5.97)

A closed form solution can be found for α = 3 :

sa(r) = − da1
160Mπ

Λ6re−Λr . (5.98)

For other values, it does not seem that a simple analytical solution exists, but the integral
can be evaluated numerically easily. We give on Fig. 5.9 a representation of the pressure
profile obtained for various combinations of α and Λ. We observe that even moderate
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Figure 5.9 – Profile of pressure anisotropies sa(r) obtained for various values of the parameters
of the t dependent Ansatz. (left) for Λ = 0.8 GeV, and various values of α. (right) for α = 3 and
various values of Λ. Figure taken from Ref. [4].

variations of these two parameters produce drastic impact on the value of the maximum
of the curve and its tail behaviour. Considering the weak sensitivity on these parameters
achieved with experimental data, a serious caution should be exerted when trying to
interpret any physical value emerging from such analyses.

5.3 . Effect of next-to-leading order

5.3.1 . Subtraction constant at NLO
So far, we have only used the LO expression of the subtraction constant (5.2) which

is expressed at order 0 in αs. However, the use of LO evolution equations means that
we have already included implicit corrections of order 1 in αs in our fits. Indeed, the Γ±n
and Γ0

n functions defined in Eq. (5.7)-(5.8) which drive the evolution of the Gegenbauer
coefficients of the D-term satisfy

Γ(µ2, µ2
0) =

(
αs(µ

2)

αs(µ2
0)

)2γ/β0

, (5.99)

= 1 +
2γ

β0

[
αs(µ

2)− αs(µ
2
0)

αs(µ2
0)

]
+ ... , (5.100)

= 1 +
2γ

β0

1

αs(µ2
0)

log

(
µ2

µ2
0

)
∂αs

∂ log µ2
+ ... , (5.101)

and using the LO solution of the renormalisation group equations (2.53)

∂αs
∂ log µ2

= − β0
4π
α2
s , (5.102)

so

Γ(µ2, µ2
0) = 1 + γ

αs(µ
2)

2π
log

(
µ2
0

µ2

)
+O(α2

s) . (5.103)

Since scale dependence of the order of O(αs) has been included in our previous analysis
thanks to the effect of evolution, it is interesting for completeness to also include cor-
rections of the same order in the DVCS coefficient function. Following the relations of
Eq. (3.27), the definition of the subtraction constant itself will be changed to include
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corrections of order O(αs). We provide in Appendix A.3 an example of computation of
the contribution of the NLO DVCS coefficient functions to the subtraction constant. We
present here the resulting relation between the D-term and the subtraction constant at
NLO

Cq
H,1[D

q](t, Q2) = 2e2q

∫ 1

−1
dz

Dq(z, t, Q2)

1− z

+ αs(Q
2)
e2qCF

2π

∫ 1

−1
dz

Dq(z, t, Q2)

1− z

[
9 + (log 2)2 + log(1− z)

(
−3 +

6

1 + z
− log(1− z)

)]
,

(5.104)

Cg
H,1[D

g](t, Q2) = αs(Q
2)
e2qTF

2π

∫ 1

−1
dz

Dg(z, t, Q2)

(1− z)2
log

(
1 + z

2

)[
2− 3 + z

1 + z

]
, (5.105)

where the assumption that Q2 = µ2 eliminates the log(Q2/µ2) contributions. Contrary to
the LO case where a simple closed form could be found in terms of Gegenbauer coefficients,
we are forced to resort to approximate values. Truncation to n = 3 gives :

CH,1[D
q, Dg](t, Q2) ≈

∑
q

4e2q

[(
1 + 0.060αs(Q

2)
CF
2π

)
dq1(t, Q

2)

+

(
1 + 3.33αs(Q

2)
CF
2π

)
dq3(t, Q

2)

]
+ αs(Q

2)ne
TF
2π

[
− 9.56 dg1(t, Q

2)− 11.1 dg3(t, Q
2)

]
.

(5.106)

Notice that contrary to the LO case, we now benefit from a direct sensitivity to gluon
contributions in the subtraction constant.

5.3.2 . Results of the neural network fit
As in the LO case, we start by a fit with the simplest Ansatz with only duds1 as free

parameter. The results shown here represent the first fit of the full NLO DVCS subtraction
constant. The numerical values presented here will soon be submitted for publication. We
recall the results of the LO + LO evolution fit in the first column, and then the result of
the full NLO fit in the second at µ2

0 = 2 GeV2 :

Parameter LO + LO evolution fit
duds1 (µ2

0) −0.5± 1.2
dc1(µ

2
0) −0.002± 0.005

dg1(µ
2
0) −0.6± 1.6

Full NLO fit
−0.5± 1.4

−0.002± 0.006
−0.7± 1.9

Addition of the NLO contributions makes very little difference compared to the LO results
with LO evolution. With our treatment of heavy quarks, αs(2 GeV2) = 0.31. Using ne
the sum of the squared charges of active quarks (5.28), the coefficient of duds1 (2 GeV2)
changes from 4ne at LO to 4.02ne at NLO, and the coefficient of dg1(2 GeV2) from 0 to
−0.24ne. Although we now have a direct sensitivity to dg1, it is suppressed by a factor
20 approximatively compared to duds1 . Since gluons are radiatively generated with the
same evolution as before, we have demonstrated in Eq. (5.91) that their ratio to the
quark distribution is systematically of the order of 1.4 for a gluon threshold of 0.1 GeV2.
Therefore, radiative gluon sensitivity is still reduced by a factor of the order of 10 compared
to quark sensitivity at NLO. This is nonetheless a significant improvement compared to
the minimal factor of the order of 40 we identified at LO.
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Allowing duds1 and duds3 as free parameters yields

Parameter LO + LO evolution fit
duds1 (µ2

0) 11± 25
duds3 (µ2

0) −11± 26
dg1(µ

2
0) 15± 34

dg3(µ
2
0) −1.8± 3.9

Full NLO fit
11± 23

−7.7± 17
15± 32

−1.2± 2.6

We have already mentioned that the coefficient of duds1 (2 GeV2) barely changes from 4ne
at LO to 4.02ne at NLO. The coefficient of duds3 (2 GeV2) on the other hand changes from
4ne to 4.9ne, that is an increase of the order of 20%. We expect therefore duds3 to decrease
by about 20% in the NLO study compared to the LO one. The slight variation of the Q2

dependence introduced by the NLO αs(Q
2) term mostly affects duds3 , and not duds1 because

of their different respective factors. We show on the left panel of Fig. 5.10 the modified
µ2 dependence of the operators defined by

Γ̃qq1 (µ2, µ2
0) ∝

(
1 + 0.060αs(µ

2)
CF
2π

)
Γqq1 (µ2, µ2

0) , (5.107)

Γ̃qq3 (µ2, µ2
0) ∝

(
1 + 3.33αs(µ

2)
CF
2π

)
Γqq3 (µ2, µ2

0) , (5.108)

where we have included the µ2 dependence introduced by the explicit dependence on
αs. Eq. (5.108) uses the ∝ symbol because we have rescaled each operator so that
Γ̃qq1,3(µ

2
0, µ

2
0) = 1 to eliminate the absolute difference size effect of 20% in favor of duds3 .

As can be seen, the new µ2 dependence has only slightly changed. It is possible to define
an estimate of the uncertainty of the extraction of duds3 in exactly the same fashion as in
Eq. (5.78), except we replace Γqqn by the normalised Γ̃qqn . The difference of the result, shown
on the right panel of Fig. 5.10, is almost uniquely driven by the overall rescaling of duds3 .
For µ2

0 = 1.5 GeV2, µ2 = 4 GeV2 and σCH
= 3, we obtain an estimation of the uncertainty

of duds3 of 17 in the NLO case, which is what was found when actually performing the fit,
compared to a prediction of 28 in the LO case.

The functional dependence of duds1 and duds3 remains largely similar, and the decorrela-
tion effect is minute. As we did in the LO case, we can introduce NLO shadow D-terms.
The situation is made slightly more complicated by the direct gluon sensitivity. We have
to choose duds1 (µ2

0) and duds3 (µ2
0) such that the quark and gluon contributions cancel out

each other in Eq. (5.106). This means that our shadow D-term will depend explicitly on
the gluon radiative threshold. The NLO shadow D-term is obtained thanks to[

4

(
1 + 0.060αs(µ

2
0)
CF
2π

)
− 9.56αs(µ

2
0)
TF
2π

Γgq1 (µ2
0, 0.1 GeV2)

Γqq1 (µ2
0, 0.1 GeV2)

]
duds1 (t, µ2

0)

= −
[
4

(
1 + 3.33αs(µ

2
0)
CF
2π

)
− 11.1αs(µ

2
0)
TF
2π

Γgq1 (µ2
0, 0.1 GeV2)

Γqq1 (µ2
0, 0.1 GeV2)

]
duds3 (t, µ2

0) ,

(5.109)

where we have replaced dg1,3 by their radiatively generated values as in Eq. (5.91). This
gives at µ2

0 = 2 GeV2

duds1 (t, µ2
0) = −1.4duds3 (t, µ2

0) , (5.110)
which is slightly different from the LO shadow D-term duds1 (t, µ2

0) = −duds3 (t, µ2
0). Again,

the shadow D-term is consistent with the obtained results, since σd1 ≈ 1.4σd3 .
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Figure 5.10 – (left) Values of Γ̃qq1 (µ2, 2 GeV2) and Γ̃qq3 (µ2, 2 GeV2) as defined in Eq. (5.108)
to take into account the slight modification introduced by NLO contributions, compared to the
original Γqq1 (µ2, 2 GeV2) and Γqq3 (µ2, 2 GeV2). – (right) estimate of the uncertainty of duds3 /σCH

built with the NLO operator.

Finally, allowing duds1 and dg1 as free parameters gives

Parameter LO + LO evolution fit
duds1 (µ2

0) −0.7± 1.2
dg1(µ

2
0) 51± 111

dc1(µ
2
0) 0.2± 0.4

Full NLO fit
0.4± 2.8
5.3± 19

0.02± 0.06

The most striking effect is the reduction by a factor 6 of the uncertainty on gluons. It is
coherent with the significant increase in sensitivity for gluons we have mentioned earlier,
going from at least 40 times less than quarks thanks to indirect contribution via evolution
to only about 10 times less thanks to the direct introduction of dg1 in the subtraction
constant. Contrary to the situation at LO, adding gluon to the NLO fit changes the value
of duds1 , multiplying the uncertainty on duds1 by a factor 2. It is a sign that duds1 and dg1 are
now slightly correlated, compared to the situation at LO. However, the joint fit of quark
and gluon contributions remains the most robust extension of our model we can perform
on actual experimental data.

Conclusion

Extracting either the GFF C(t) – or the more difficult full D-term – from the know-
ledge of the subtraction constant is a deconvolution problem whose theoretical solution
is obtained thanks to evolution equations. However, due to the tame effect of evolution,
and the large similarity of anomalous dimensions for Gegenbauer coefficients at large
n, the amplification of uncertainty of the problem is particularly large on the current
experimental range.

First, on the physical side, we corroborate the findings of Ref. [202] by showing that
the subtraction constant derived from a neural network fit of most of the world DVCS
data is compatible with 0. Therefore, a significant effort to collect more precise data is
necessary for the study of hadron matter properties to produce statistically significant
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results in analyses that are not strongly model dependent. We notice that most of the
uncertainty comes from the poor knowledge of the real part of the CFF, which could be
constrained by charge dependent observables as we demonstrated in Section 4.4.

Then, the analytic solution of the D-term evolution allows us to understand to a good
quantitative extent the results of all our fits. Among notable results, we have shown that
radiative gluon contributions are so weak that they amount in practice to no sensitivity
to gluons, either at LO (sensitivity suppressed by a factor at least 40) or NLO (sensiti-
vity suppressed by a factor 10). The fit of duds1 is quite resilient to the addition of free
gluon contributions either at LO or NLO. On the contrary, it behaves very poorly when
confronted with duds3 . We have developed an estimate of the uncertainty on duds3 based on
the similarity of the fitted functional dependence on µ2 between duds1 (µ2) and duds3 (µ2).
This estimate allows notably to gauge the impact of the lever arm in Q2 which could be
achieved at an EIC.

We have presented many important concepts that allow us to better understand the
challenges of deconvolution on a simpler problem of yet significant physical relevance
compared to the full extraction of GPDs from CFFs we will tackle in the next chapter.
Notably, we have briefly introduced shadow D-terms as an alternative source of knowledge
on the uncertainty of the D-term extraction from subtraction constant data. This intuitive
and flexible tool will represent most of the forthcoming discussion about the general
deconvolution problem.
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6 - The full DVCS deconvolution problem

After presenting in the previous chapter the issue of deconvoluting the D-term and the
gravitational form factor Ca(t) from the experimental knowledge of the DVCS subtraction
constant, it is time to devote interest to the extraction of the rest of the information on
GPDs contained in DVCS data. We remind from the presentation of DVCS in Chapter
3 that photon lepto-production – the actual experimental channel in which DVCS is
measured – provides sensitivity to GPDs in a leading twist analysis thanks to EFFs and
CFFs. EFFs dependence arises from Bethe-Heitler contributions to the photon lepto-
production cross-section, which only bring constraints on the non-singlet (C-odd) quark
GPDs through (see Eq. (1.18))

2F q
1 (t) =

∫ 1

−1
dxHq(−)(x, ξ, t, µ2) , (6.1)

2F q
2 (t) =

∫ 1

−1
dxEq(−)(x, ξ, t, µ2) , (6.2)

where the factor 2 arises from using explicitly the non-singlet component of the GPD.
With no dependence on Q2 or ξ in these form factors, the potential for deconvolution is
inexistent. On the other hand, DVCS is only sensitive to C-even contributions and brings
rich constraints on the singlet quark and gluon GPDs thanks to the factorisation of CFFs
(see Section 3.1, (3.10)) :

2H(ξ, t, Q2) =
∑
a

T a
(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
⊗Ha(+)(x, ξ, µ2) . (6.3)

For simplicity, we will present all the results with GPD H and the associated CFF H.
Formulas for E, H̃ and Ẽ can readily be derived.

The DVCS deconvolution problem consists in recovering Ha(+) from the experimental
knowledge of H. As in the case of the D-term, the flavour separation possibilities are
limited. A simpler version of the problem consists in trying to recover parton-by-parton
Ha(+) from Ha = T a⊗Ha(+) assuming that flavour separation has been achieved by other
means. These could include a theoretical model of the relation between flavours – the
simplest being that all light flavours are equal and heavy flavours are purely radiatively
generated as we did in the D-term study in Chapter 5, with either free or radiative
gluon contributions – or some experimental input. The latter can for instance stem from
changing the target on which DVCS is performed from a proton to a neutron [203], or
using meson production which is sensitive to the flavour content of GPDs. We will focus on
the simpler parton-by-parton deconvolution in the following. The status of the literature
on the feasibility of the deconvolution procedure is contrasted. Already in the early days
of GPDs, Ref. [217] argued that evolution provided the theoretical means to perform this
deconvolution, in principle without the need to resort to a parametric fit. Aside from the
detailed status of Ref. [35], most reviews of GPDs either briefly mention the absence of
a generic deconvolution procedure [21, 67, 116] or asserted that a parametric form had
to be chosen to fit to experimental data [218, 171, 219, 220]. The quantitative impact of
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evolution on typical EIC evolution range from 2 GeV2 to 50 GeV2 in a LO analysis has
been questioned in Ref. [221].

Our objective in this chapter is to determine an order of magnitude of what we will
call the conditioning of the deconvolution problem at NLO, that is the factor of
amplification applied to experimental CFF uncertainty in the extraction of GPDs in the
worst case 1. As far as we know, no systematic attempt at characterising this issue at NLO
has been performed before. We know that this conditioning depends on the modelling
assumptions imposed on Ha(+) as we have demonstrated in Section 5.2 in the case of the
subtraction constant, where a joint fit of duds1 and dg1 gave a reasonably robust result,
whereas the joint fit of duds1 and duds3 was drown in the uncertainty emerging from shadow
D-terms. It is therefore crucial in our discussion of the full deconvolution problem to
determine clearly what modelling assumptions we want to enforce on Ha(+), all the more
that this object fulfills theoretical properties, like polynomiality of Mellin moments and
positivity.

Our approach will be based on shadow GPDs that we introduced in Refs. [6, 7]. As we
have explored in the case of the subtraction constant, finding shadow distributions – that
is essentially distributions with vanishing imprint on CFFs at some scale µ2

F – within the
parameter space spanned by the model of GPD and studying their growth with µ2 provides
an estimation of the difficulty of the deconvolution problem on a experimental range
[µ2
F , µ

2]. Evolution of shadow distributions determines the conditioning of the extraction,
but their actual functional dependence is also a very interesting input. Our study of
shadow GPDs will be the basis for the modelling efforts we conduct in the next chapter
to pave the way for data-driven extractions of GPDs from experimental data.

Neighbour concepts to shadow GPDs have been envisioned in the literature, although
no systematic search comparable to what we perform here has been attempted as far as
we are aware, and particularly not a NLO. Ref. [222] discusses "zero modes" of the LO
subtraction constant, which are exactly LO shadow D-terms at a fixed scale, although
the influence of scale dependence was not explicitely evaluated. Ref. [221] discussed the
possible weakness of LO evolution of GPDs even on EIC kinematics by considering three
different models of GPDs with quite similar CFFs at scale µ2

0 = 2 GeV2, and observing
that they remain barely distinguishable at µ2 = 50 GeV2. As we will see, the difference
between the models used in this study can be considered as an approximate LO shadow
GPD.

6.1 . Shadow generalised parton distributions

Let us start by formally defining the notion of shadow GPD. Due to the number of
theoretical and experimental constraints that GPDs obey, our definition is more constrai-

1. We borrow the terminology from the conditioning of a matrix, defined as the ratio of its largest
eigenvalue over its smallest one. The conditioning measures the worst-case amplification of error through
the inversion of the matrix. In practice, let A be the matrix of interest, and X1 and Xϵ two eigenvectors of
norm 1 associated respectively to the largest and smallest eigenvalues λ1 and λϵ. Let us assume that their
ratio λ1/λϵ, which we defined as the conditioning of A, equals 1/ϵ. Then A(X1 +Xϵ) = λ1X1 + λϵXϵ =
λ1[X1 + O(ϵ)]. Therefore, as the conditioning increases, ϵ decreases, and the contribution of Xϵ may
be considered as noise. However, provided A−1 exists, A−1[λ1X1 + λϵXϵ] = X1 +Xϵ. Applying A−1 to
what we considered as negligible noise just before now yields contributions of size 1 : the error has been
amplified by the inversion by a factor 1/ϵ, which is the conditioning of the matrix.
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ning than that for shadow D-terms. What we call "actual GPD" in this definition is any
GPD which satisfies the properties that we have reviewed in Chapter 2 while giving a
satisfying account of experimental data.

Shadow GPDs A shadow GPD at NkLO and µ2
F is a set of functions

H
a(+)
0 (x, ξ, µ2) for a = u, d, s, g, ... which verify

— H
a(+)
0 (x, ξ, µ2) has the same parity in x and ξ that an actual

singlet GPD of the same type (even in ξ, odd in x for quarks
and even in x for gluons),

— it vanishes at least as fast as an actual GPD at end point x = 1,
— it respects the polynomiality of Mellin moments or equivalently

admits a double distribution (DD) representation – which shall
be called shadow DD,

— it follows the same evolution equations as actual GPDs,
— its convolution with the NkLO DVCS coefficient function is

exactly vanishing at µ2
F :

T a
(
x

ξ
,
Q2

µ2
F

, αs(µ
2
F )

)
⊗H

a(+)
0 (x, ξ, µ2

F ) = 0 , (6.4)

— its forward limit is exactly vanishing

H
a(+)
0 (x, 0, µ2

F ) = 0 . (6.5)

The interest of shadow GPDs is similar to that of shadow D-terms detailed in Section
5.2.3. More precisely, the uncertainty on a linear GPD extraction can be represented by
H
a(+)
best +H

a(+), where Ha(+)
best is the best fit value obtained for the linear 2 model of the GPD

and Ha(+) is an element of the allowed functional space spanned by the model such that
|T a⊗Ha(+)(µ2)| is of the order or less than the experimental uncertainty over the probed
range in µ2. Since shadow GPDs are intended to bring particularly small contributions to
the CFF convolution, they are ideal candidates to obtain maximal such functions Ha(+).

Since the forward limit of GPDs at t = 0 is related to ordinary parton distribution
functions (PDFs), we have added the requirement of vanishing forward limit in the de-
finition of the shadow GPD. This is particularly useful for H, since its forward limit is
the unpolarised PDF which is very well constrained. Therefore, we may consider that the
experimental uncertainty on the forward limit is virtually 0, and for our shadow GPDs
to remain below, they have to vanish in this limit. H̃ gives polarised PDFs in its forward
limit, which are also quite well constrained by a wealth of experimental data. On the
opposite, the forward limit of E and Ẽ are poorly known, so the requirement can be lifted
then. It is also the case if we are explicitly interested in a value of t ̸= 0. Let us notice that,
for our general purpose of evaluating the conditioning of the deconvolution problem, put-
ting too much constraints on our shadow GPDs will result in an underestimation of their
potential maximal effect, so will give an inferior bound on the worse conditioning which is
still useful. Since the forward limit of GPDs follows its own evolution equation DGLAP,

2. Same comment as for shadow D-terms. In order to quantify the uncertainty of the deconvolution
given a modelling assumption, shadow GPDs are only useful if Ha(+)

best +Ha(+) belongs to the functional
space spanned by the model, which is easier to fulfill in case of a linear model encompassing independently
H

a(+)
best and Ha(+).
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vanishing forward limit at scale µ2
F implies the same result at any scale, regardless of the

perturbative order under consideration.
All other conditions are intended to guarantee that the sum of a shadow GPD and the

best fit GPD is still a GPD. One of the important properties of actual GPDs which we did
not list is positivity. Shadow GPDs themselves violate positivity inequalities maximally.
We remind that the inequalities bound the value of combinations of GPDs by their forward
limit. Since shadow GPDs have vanishing forward limits, satisfying positivity inequalities
would condemn them to remain equally 0. But as shadow GPDs are meant to be added
to actual good GPD candidates, their positivity bound must be derived from the forward
limit of the good GPD candidate. We will deal with this question in the next chapter
where we build models based on shadow GPDs, but for now we will not concern ourselves
with positivity bounds.

We note that shadow GPDs verify a fundamental property : they can be written simply
as the difference of two actual singlet GPDs with the same NkLO CFF at µ2

F and the same
forward limit. This would immediately fulfill all conditions enumerated in our previous
definition, and the opposite is true. We will use this fact to our advantage in the modelling
part, but it is less useful to explicitly demonstrate the existence of such objects.

An important consequence of the fact that shadow GPDs admit a double distribution
representation is that they can be decomposed in the Polyakov-Weiss scheme into a DD
fa(+)(β, α, µ2) and aD-term. It is easy to verify thanks to the dispersive formalism that the
D-term of a shadow GPD is a shadow D-term as defined in Section 5.2.3. Indeed, the real
and imaginary parts of the NkLO CFF associated to the shadow GPD are 0 at scale µ2

F by
definition, so Eq. (3.25) gives that the subtraction constant itself is 0. As we have already
studied the conditioning of the deconvolution problem for the subtraction constant, we
can focus here solely on the shadow DD fa(+)(β, α, µ2). In the absence of a D-term, the
dispersion relation shows that ImT a ⊗H

a(+)
0 (µ2

F ) =0 =⇒ ReT a ⊗H
a(+)
0 (µ2

F ) = 0, so the
cancelling the CFF of a shadow DD fa(+)(β, α, µ2) simply amounts to solving

ImT a
(
x

ξ
,
Q2

µ2
F

, αs(µ
2
F )

)
⊗
∫
Ω

dαdβ δ(x− β − αξ)fa(+)(β, α, µ2
F ) = 0 (6.6)

that is for quarks,∫
Ω

dαdβ

ξ
ImT q

(
α +

β

ξ
,
Q2

µ2
F

, αs(µ
2
F )

)
f q(+)(β, α, µ2

F ) = 0 . (6.7)

We will now demonstrate explicitly that there exist shadow DDs for some very lax mo-
delling assumptions at LO and NLO.

6.2 . Proof of the existence of LO and NLO shadow DDs at a given scale

In order to demonstrate the existence of shadow DDs, we first have to determine a
general functional space in which we allow our DDs to live. The determination of this space
is crucial : there may exist shadow DDs, but they may only live in such exotic spaces that
they never come close to any reasonable parameterisation, and are therefore completely
irrelevant from a phenomenological point of view. Since we are not interested in such
exotic constructions, we choose a very reasonable space : polynomials in the variable α
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and β. The freedom of our model is determined by the maximal order N which we allow
for our polynomials. Thanks to the Stone-Weierstrass theorem, any continuous function
on a compact separated space can be approximated by polynomials provided N is large
enough. They represent therefore a simple but quite generic representation for DDs.

It is true that phenomenological models of GPDs would require a prohibitively large
number of terms, because polynomials have a hard time producing the observed power
divergence of singlet PDFs at small x. But we are trying to model here a shadow GPD,
that is the difference of two singlet GPDs with a vanishing forward limit, and it is very
reasonable to expect them to cancel out their small x divergence. Another pitfall is that
high order polynomials can have a tendency to oscillate quickly. What kind of accep-
table oscillating behaviour for DDs is allowed is not a settled question as far as we are
aware. Widely accepted phenomenological GPDs exhibit noticeable irregularities in the
(x, ξ) plane. For instance, the presence of a D-term translates into a contribution of the
form sgn(ξ)D(x/ξ) in the GPD, which produces frequently significant oscillations and
a discontinuity in the small |ξ| > |x| region. Ref. [179] demonstrates that the covariant
extension of a completely well-behaved GPD defined by saturation of its positivity bound
in the region |x| ≥ |ξ| can produce significant oscillations in the region |x| ≤ |ξ|. None-
theless, we shall check that even N of the order of 20 or more does not produce obviously
unacceptable oscillating behaviour with our shadow GPDs.

With our polynomial assumption, a quark shadow DD writes for β > 0

f q(+)(β, α) =

m+n≤N∑
m,n=0
m even

cm,nα
mβn , (6.8)

with implicit (t, µ2
F ) parameters which we will omit unless necessary.

For f q(+) to be the DD of a singlet GPD, it must be odd in β. We can either guarantee
this by defining f q(+)(β, α) = −f q(+)(|β|, α) for β < 0 or by only considering n odd in
Eq. (6.8) as we did in Ref. [6]. The first option means that f q(+) is not actually a true
polynomial over the whole rhombus, but only separately for β > 0 and β < 0. Due to the
second option, we will systematically consider that N is odd in the following. Then the
definition of f q(+) requires (N + 1)(N + 3)/4 coefficients cm,n.

The two prescriptions for negative β are useful, the first one spanning a large functional
space and serving as a stepping stone for the second one as we will see in the following. Let
us note already an interesting consequence of the first prescription. If f q(+)(0+, α) ̸= 0,
then the DD is not continuous on the β = 0 line. The consequence of this discontinuity
is quite similar to that of introduced by a D-term – which is also a discontinuity on the
β = 0 line – from the point of view of the regularity of the obtained GPD. In the region
|x| ≥ |ξ|, since Radon integration lines never cross the β = 0 line inside the rhombus, the
GPD will be perfectly well-behaved. Troubles appear when going to the (x, ξ) = (0, 0)
limit with |ξ| > |x|. Assume that x, ξ > 0 and x = λξ for a fixed value of λ < 1. Then the
Radon transform gives

Hq(+)(λξ, ξ) =

∫ (1+λξ)/(1+ξ)

(λξ−1)/(1+ξ)
dα f q(+)((λ− α)ξ, α) . (6.9)
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Using that |λ| < 1 and the parity of f q(+) in β,

Hq(+)(λξ, ξ) =

∫ λ

(λξ−1)/(1+ξ)
dα f q(+)((λ− α)ξ, α)−

∫ (1+λξ)/(1+ξ)

λ

dα f q(+)((α− λ)ξ, α) .

(6.10)
Then taking the limit ξ → 0 gives

Hq(+)(λξ, ξ) →
∫ λ

−1
dα, f q(+)(0+, α)−

∫ 1

λ

dα f q(+)(0+, α) . (6.11)

Then
∂

∂λ
lim
ξ→0

Hq(+)(λξ, ξ) = 2f q(+)(0+, λ) . (6.12)

One sees therefore that unless f q(+)(0+, α) is identically vanishing, the limit when (x, ξ) →
(0, 0) of Hq(+)(x, ξ) is not well defined in the sector |ξ| > |x|, and depends on the "angle
of approach" defined by λ. The situation is similar for the D-term, which produces a term
sgn(ξ)Dq(x/ξ) in the GPD, whose limit when (x, ξ) → (0, 0) depends also on the angle of
approach unless the D-term is 0.

6.2.1 . Vanishing forward limit
The first condition that we choose to fulfill to build our shadow GPD is the cancellation

of the forward limit of the associated GPD. With the form of Eq. (6.8), the associated
forward limit reads thanks to the Radon transform

Hq(+)(x, 0) =

∫ 1−x

x−1
dα f q(+)(x, α) , (6.13)

= 2(1− x)
N∑
v=0

xv

 N−1∑
m=0
m even

min(v,m)∑
k=0

cm,v−k
m+ 1

(
m
k

)
(−1)k

 . (6.14)

Cancelling the forward limit therefore amounts to solving the system on the coefficients
cm,n such that the bracketed term of Eq. (6.14) equals 0 for each value of v ∈ {0, ..., N}.
This is a set of N + 1 linear independent equations 3 for (N + 1)(N + 3)/4 variables cm,n.
The explicit solution of the system can be found relatively easily 4 for β > 0 as

f q(+)(β, α) =
N−1∑
m=2
m even

Pm(β)((m+ 1)αm − (1− β)m) , (6.15)

where Pm(β) is an arbitrary polynomial in β of order N − m. Notice that we have not
imposed any parity condition in β on our result. On the other hand, characterising true

3. Independence can be demonstrated by observing that each equation involves a coefficient cm,n which
is used in no other. Precisely, c0,v is only involved in the equation associated to xv.

4. The easiest demonstration of this result consists in starting from the solution. First we verify that
Eq. (6.15) yields indeed systematically a vanishing forward limit. Second we check that the dimension of
the space of solutions that we have exhibited corresponds exactly to the expected dimension, which we
know from the number of variables and independent equations in the system contained in Eq. (6.14). We
will not detail such kind of straightforward but numerically cumbersome verifications in the following.
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β-odd polynomial DDs with vanishing forward limit is significantly more difficult. We
could solve directly the system made only of cm,n with n odd at a fixed value of N . This
would yield a first solution where the kernel of the matrix is non trivial at order N = 5.
The β-odd polynomial DDs with vanishing forward limit of lowest order are proportional
to

f
q(+)
5 (β, α) = β(5α4 − 6α2β2 − 6α2 + β4 − 2β2 + 1) . (6.16)

However, each new order N will then bring new functions, with a more and more compli-
cated shape. This is where it becomes interesting to have solved the system in the more
general and simpler case of Eq. (6.15). We know that f q(+)

5 is a particular case of that
general solution and we can rewrite it as

P2(β) = −2β(1 + β2) , and P4(β) = β . (6.17)

This is the simplest combination of polynomials Pm(β) which satisfies that each Pm(β)
is an odd function and

∑
m Pm(β)(1− β)m is also odd. Sparing further technical details,

having translated the system no longer in terms of the cm,n coefficients but in terms of
the Pm(β) polynomials makes it easier to find the general solution for a truly polynomial
singlet DD which cancels its forward limit as

f q(+)(β, α) =
N−1∑
m=4
m even

βQm(β)((m+ 1)αm − (1− β)m)+

+
1

4

(
3α2 − (1− β)2

) N−1∑
m=4
m even

Qm(β) ((1− β)m − (1 + β)m) , (6.18)

where Qm(β) are now arbitrary even polynomials in β of order N −m− 1. The simplest
solution f q(+)

5 can be written in this new representation as

Q4(β) = 1 , (6.19)

which is quite a simplification compared to the form of Eq. (6.16). There are (N−1)(N−
3)/8 independent β-odd solutions which can be generated for order N odd, corresponding
for instance to taking Pm(β) successively as all allowed monomials. The 10 different GPDs
obtained for N = 11 are represented on Fig. 6.1. Each monomial produces a quite similar
overall shape, but with a different scale in x which allows us to build by linear combination
a very flexible behaviour away from ξ = 0.

Remark The generality of Eqs. (6.15) and (6.18) which involve arbitrary po-
lynomials allows one to consider changing Pm(β) and Qm(β) into arbitrary func-
tions. Then of course the resulting DD will no longer be a polynomial, but it will
inherit the property of vanishing forward limit. This is another argument why
the polynomial representation is pertinent : it can serve as a practical calculation
platform to derive more general results not specifically linked to the polynomial
assumption. In practice, there is a very general and simple way to build a DD
with a vanishing associated forward limit. We can first set the DD to just any

127



Chapter 6. The full DVCS deconvolution problem

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
H

q(
+)

(x
,

=
0.

2)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

H
q(

+)
(x

,
=

0.
5)

Figure 6.1 – The GPDs on the lines ξ = 0.2 (left) and ξ = 0.5 (right) associated to 10
independent β-odd polynomial DDs of order n ≤ 11 with vanishing forward limit ξ = 0. The
GPDs are scaled to reach maximal value of ±1 on their ξ = 0.5 line. Each line corresponds to a
monomial Qm(β) in Eq. (6.18). The GPDs decrease in size as ξ becomes closer to 0, which is of
course a consequence of the fact that all these GPDs cancel exactly when ξ = 0.

value, and correct its α-independent part so as to cancel the forward limit. For
β > 0, this method writes

f q(+)(β, α) = f̃(β, α)− 1

2(1− β)

∫ 1−β

β−1
dγ f̃(β, γ) , (6.20)

where f̃(β, α) is any function with correct support property. The formulation
of Eq. (6.20) is more general and might seem more powerful than the one we
have presented in Eq. (6.15). The latter is however far better suited for our
purpose because it provides a rigorous computation scheme to add more and
more constraints on the DD. For instance, we will later want to cancel CFFs,
which we see a priori no easy way to do with the formulation of Eq. (6.20).
On the contrary, the polynomial parameterisation will allow us to translate this
constraint into another system on the cm,n coefficients which we can actually solve.
We have already shown with Eq. (6.18) how we can build upon the solution of
Eq. (6.15) to enforce more constraints on the DD.

6.2.2 . Radon transform with polynomial DDs

Before going further and cancelling the contribution of shadow GPDs to CFFs, it is
necessary both to be able to express the Radon transform of a polynomial DD, and to
recover a polynomial DD from the inverse Radon transform of a GPD. As we have seen in
Section 3.4.2, computing the inverse Radon transform is an important issue for modelling
based on the covariant extension programme. Our explicit analytical formulation of the
Radon transform for polynomial DDs will therefore provide an additional angle of attack
to this issue, in parallel with finite element methods.

The associated GPD computed thanks to the Radon transform of our polynomial DD
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is the following rational fraction for x > |ξ| :

Hq(+)(x, ξ) =

∫ (1−x)/(1−ξ)

(x−1)/(1+ξ)
dα f q(+)(x− αξ, α) , (6.21)

=
N+1∑

u=1,v=0

[
1

(1 + ξ)u
+

1

(1− ξ)u

]
qu,vx

v , (6.22)

where uniqueness of the partial fraction decomposition guarantees that coefficients qu,v
are unambiguously determined. The linear relation between cm,n and qu,v derived from
the Radon transform reads

qu,v =

min(u,N)−1∑
m=0
m even

N∑
n=max(u,v)−m−1

Rm,n
u,v cm,n , (6.23)

where

Rm,n
u,v =

n∑
j=0

(−1)u+v+j+n+1

m+ j + 1

(
n
j

)(
j

m− u+ j + 1

)(
m+ j + 1
v − n+ j

)
. (6.24)

A demonstration of this result is provided in Appendix A.4. From Eq. (6.22), we deduce
that a polynomial DD of order N odd gives rise to (N + 1)(N + 2) qu,v coefficients. Note
that the linear relation of Eq. (6.23) guarantees that the apparent divergence of Eq. (6.22)
for |ξ| → 1 is only fictitious, since the simultaneous limit x→ 1 cancels out the issue 5.

Knowing explicitly the image of polynomial DDs through the Radon transform brings
a new light to the covariant extension procedure presented in Section 3.4.2. We remind
that the covariant extension consists in practice in building a DD which reproduces the
values of a GPD in the region |x| ≥ |ξ|, and then using this DD to extend the GPD to
the region |x| ≤ |ξ|. Ref. [179] elaborating on results of Ref. [77] demonstrated how to
perform practically this inversion of the Radon transform in the region |x| ≥ |ξ| thanks
to a finite elements method. Having discretised the (β, α) plane of DDs into hundreds
of nodes, the authors build a relation between the values of the DD at those nodes and
values of the GPD on a large number of xi ≥ ξi ≥ 0 kinematics under the form of a
linear system. The inversion of the system allows us to recover the values of the DD at
the nodes. Our previous calculation provides an alternative. We can parameterise our DD
by a polynomial of order N , and build likewise a relation between the coefficients cm,n
and the values of the GPD of interest. Our linear model is given by

Hq(x, ξ) =

m+n≤N∑
m,n=0
m even

cm,nRm,n(x, ξ) , (6.25)

where

Rm,n(x, ξ) =
N+1∑

u=m+1,v=0

[
1

(1 + ξ)u
+

1

(1− ξ)u

]
xvRm,n

u,v . (6.26)

5. One can notice that GPDs computed in the perturbative limit x → 1 (see Section 2.1, Eq. (2.9))
have a form which is quite reminiscent of the ξ pole structure of Eq. (6.22). With our formulation, we
can easily makes powers of (1− ξ2) appear at the denominator of H.
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Using the machinery of the linear fit introduced in Section 4.1.1, and considering we are
fitting the GPD on xi ≥ ξi ≥ 0 kinematics with 1 ≤ i ≤ M and no uncertainty, we
introduce the matrix

C =

 R0,0(x1, ξ1) R0,1(x1, ξ1) · · · RN−1,1(x1, ξ1)
. . .

R0,0(xM , ξM) R0,1(xM , ξM) · · · RN−1,1(xM , ξM)

 . (6.27)

C can be entirely computed analytically once the grid of values (xi, ξi) is fixed. We use
a rectangular grid of 210 points regularly 6 spaced to span the entire (x, ξ) plane where
1 > x ≥ ξ ≥ 0. Then if Y is the vector of values of the GPD at the probed kinematics,
the coefficients cm,n fitting best the GPD are obtained as (CTC)−1CTY . The extension
of the GPD in the region |x| < |ξ| can then easily be computed from the knowledge of
the DD. To compare our results with Ref. [179], we work in the Pobylitsa DD scheme and
adopt one of the pion GPDs discussed in the paper, namely for x > |ξ| and t = 0 :

Hu(x, ξ) =

√
u

(
x+ ξ

1 + ξ

)
u

(
x− ξ

1− ξ

)
, (6.28)

where the pion PDF is given by

u(x) = 213.32x2(1− x)2
[
1 + 2.29x(1− x)− 2.93

√
x(1− x)

]
. (6.29)

This definition of the GPD saturates the pion positivity property. The specific shape of the
PDF is intended to give an account of dynamical chiral symmetry breaking at low scale
[223]. In addition, the soft pion theorem [39, 224] allows one to fix a part of the ambiguity
of the DD on the β = 0 line – which is unconstrained by measurements solely in the
region |x| ≥ |ξ| – by requiring that the reconstructed GPD at ξ = 1 is an even function
of x. We follow the same prescription which consists in subtracting to the reconstructed
GPD the following D-term for x > 0

Du (x) =
1

2

[
Hu(x, 1)−Hu(−x, 1)

]
. (6.30)

The result of our fit with the addition of the aforementioned D-term, is shown on
Fig. 6.2 for three different orders N of the polynomial DD : N ∈ {5, 7, 9}. We only fit
the DD for β > 0, and keep fu(β, α) = 0 for β < 0 to satisfy the requirement that
Hu(x, ξ) = 0 for x < −|ξ| (no antiquarks for this valence GPD). As can be seen on the
first three panels, as N increases, the agreement of the reconstructed GPD (dotted lines)
with the fitted GPD (solid lines) becomes excellent. On the lower left panel, we show in
addition to the best fit value an account of the uncertainty of the extraction. What is
shown precisely are replicas generated using the covariance matrix of the fit (CTC)−1,
where we assumed that each of the fitted values of the GPD varies independently by a
normal distribution of absolute standard deviation 0.0023. This value is selected because
68% of the absolute distances between the best fit and the targeted GPD on the fitted

6. The pion valence PDF we will consider has no divergence at small x, so a linear grid is more adapted
than a logarithmic one. The choice of the grid is absolutely transparent in the formalism.
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Figure 6.2 – (first three panels) Fit of the GPD defined by Eq. (6.28) in the region |x| ≥ |ξ|
(solid lines) by the image through the Radon transform of a polynomial DD (dotted lines) of
degree N = 5 (upper left), N = 7 (upper right) and N = 9 (lower left). The image of the Radon
transform is also computed in the region |x| ≤ |ξ| to demonstrate the possibility of covariant
extension. The fit is performed on 210 (x, ξ) points. N = 5 corresponds to 12 free parameters,
N = 7 to 20 and N = 9 to 30. The χ2 divided by degrees of freedom (number of points minus
number of free parameters) is 3.5e-3 for N = 5, 1.8e-4 for N = 7 and 1.2e-5 for N = 9. In
the case N = 9, we show in addition replicas demonstrating the uncertainty of our fit when the
210 fitted points are smeared by uncorrelated uncertainty of absolute size 0.0023. – (lower right)
Central value and uncertainty on a few parameters cm,n for N = 5, N = 7 and N = 9. The dot
represents the best fit value, and the band the uncertainty if the fitted GPD is smeared as in the
previous panel.
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points are inferior to it. It is so minute that it is impossible to see in the region |x| ≥ |ξ|
where the fit is performed. However, it translates into a visible uncertainty in the region
|x| ≤ |ξ|, which can reach a standard deviation of about 0.3. That represents therefore
an increase of error by a factor 100, which we will consider more precisely below. The
last panel of Fig. 6.2 shows the uncertainty on a few different cm,n coefficients of lowest
order depending on the total order of the fit. When increasing order N , the values of the
coefficients change a lot and χ2 still decreases significantly, signifying that higher orders
in N are likely to bring changes to the extracted DD. This is visible overall by the change
of extension in the region |x| ≤ |ξ| produced at each order.

When comparing with the result of Ref. [179] (Fig. 5), noticeable differences are vi-
sible in the region |x| ≤ |ξ|, some of them being significantly outside both uncertainty
evaluations. A first answer is that our polynomial fit will keep evolving as N increases,
until it probably comes closer to the finite elements extraction. Indeed, at N = 9, we still
use only 30 free parameters compared to the 427 nodes used in Ref. [179]. Furthermore,
the uncertainty band represents only aleatoric uncertainty, obtained by varying the inputs
but not the model used for fitting. They bring therefore only a limited picture of the real
uncertainty of the fit. However, the agreement in the region |x| ≥ |ξ| is already excellent
at N = 9. This is a striking example of the ill-posed character of the inversion of the
Radon transform [225], or equivalently of its very large conditioning. Precisely, the issue
is that there exist particularly small eigenvalues of the linear Radon transform operator,
such that the image of associated eigenvectors is small in size. Therefore, when applying
the inverse Radon transform to the image of these eigenvectors, a tiny feature of the fitted
data gets considerably amplified. The stability of the inverse Radon transform will depend
on the ability of the fitted functional form to not incorporate these eigenvectors 7. This
explains why, as the space of polynomial increases with N , the sensitivity of the fitted
coefficients to noise on the fitted data increases significantly. We are facing once again the
dilemma of bad conditioning. Do we want to relax strong model assumptions which bias
our result, but at the possible cost of letting poorly constrainable eigenvectors sneak into
our probed functional space ?

Finally let us note that the polynomial form is at the same time an advantage, since
it allows generic calculations with solely additions and multiplications, but a drawback
as well. Already at N = 9, to obtain a reliable value of the fit, we had to resort to exact
fraction calculations and inversion of matrices thanks to Gauss-Jordan elimination. With
the lowest values of x and ξ for fitted kinematics of the order of 0.05 and the largest of the
order of 1, raising to power 9 forces to consider in the same matrix values spanning 10−12

to 1. Fortunately, if the (x, ξ) points on which the fit is performed are taken as fractions,
C can always be computed exactly, so it is not a problem as long as the polynomial order
remains small enough – so that the size of the numerator and denominator of the fractions
under consideration do not become prohibitively large as well.

7. Maybe we should call them shadow eigenvectors ? :) In practice, shadow distributions as we have
defined them are elements of the kernel of a number of linear operators (notably the linear operators
which compute the forward limit and the CFFs from the GPD) at their definition scale, so formally
eigenvectors associated exactly to the eigenvalue 0 at that scale. Evolution whose effect we will study
in Section 6.3 prevents shadow distributions to remain exactly eigenvectors of the mentioned operators
at other scales, but the analogy we draw here further illustrates how shadow distributions are a tool to
quantify the conditioning of a linear inversion / deconvolution problem.
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Analytic inversion of the Radon transform

The formal demonstration of the results of this section can be found in Appendix A.4.
There are (N + 1)(N + 2) coefficients qu,v for only (N + 1)(N + 3)/4 coefficients cm,n for
a polynomial DD of order N . Therefore, the qu,v form a family with too much freedom
to parameterise the image of the Radon transform of polynomials DDs. Some functions
which can be written under the form of Eq. (6.22) for x > |ξ| do not stem from the Radon
transform a polynomial DD. Therefore, assuming a GPD derives indeed from a polynomial
DD, the coefficients cm,n can be retrieved from only a subset of qu,v. A systematic way to
do so is to select

q1,1, q1,2, ..., q1,N+1,

q3,3, q3,4, ..., q3,N+1,

...., qN,N , qN,N+1 (6.31)

Then ordering of the coefficients cm,n by lexicographic order of (m+n,m) and the selected
subset of qu,v by lexicographic order of (v, u), Eq. (6.23) can be recasted in a matrix
formulation – for instance for N = 3 :

q1,1
q1,2
q1,3
q3,3
q1,4
q3,4

 =


−1

−1/2
−1/3
−1/3 −1/3

−1/4
−1/4 −1/12




c0,0
c0,1
c0,2
c2,0
c0,3
c2,1

 . (6.32)

The above matrix is block-diagonal, and grows in an orderly fashion when N increases :
an increase in N results simply in the addition of a new block at the end of the diagonal.
It is an excellent and non-trivial property of the chosen subset of the qu,v coefficients,
which allows us to compute explicitly its inverse. We find for instance for N = 3

c0,0
c0,1
c0,2
c2,0
c0,3
c2,1

 =


−1

−2
−3
3 −3

−4
12 −12




q1,1
q1,2
q1,3
q3,3
q1,4
q3,4

 . (6.33)

The general solution of the inversion is found as

cm,n = −
(
n+m
m

)
(n+m+ 1)

m∑
k=0
k even

(
m
k

)
Em−kqk+1,n+m+1 , (6.34)

where the Ek are known as Euler numbers, defined by

2

exp(x) + exp(−x)
=
∞∑
k=0

Ek
k!
xk . (6.35)

133



Chapter 6. The full DVCS deconvolution problem

We adhere to the convention of alternating signs. In particular, Em is null for m odd and
E0 = 1, E2 = −1, E4 = 5, E6 = −61, ..., Em ≈ 2m!(2/π)m+1(−1)m/2. Eq. (6.34) has
practical consequences, since it provides a way to determine whether or not a GPD which
writes under the form of Eq. (6.22) for x > |ξ| derives indeed from a polynomial DD. After
obtaining a candidate polynomial DD with Eq. (6.34), computing its image through the
Radon transform and verifying whether or not the initial GPD is recovered will prove if
the GPD derives from a polynomial DD. Notice however that deriving from a polynomial
DD is DD representation dependent.

6.2.3 . LO shadow GPDs

To progress on our construction of shadow GPDs, we now wish to cancel the imaginary
part of LO CFF. We remind that (3.15)

ImT q0

(
x

ξ
,
Q2

µ2
F

, αs(µ
2
F )

)
⊗Hq(x, ξ, µ2) = πe2qH

q(+)(ξ, ξ, t, µ2) . (6.36)

Using the result of Eq. (6.22),

Hq(+)(ξ, ξ) =
N+1∑

u=1,v=0

[
1

(1 + ξ)u
+

1

(1− ξ)u

]
qu,vξ

v . (6.37)

(6.38)

Since

ξv = (±1)v(−1 + 1± ξ)v = (±1)v
v∑

w=0

(
v
w

)
(−1)w+v(1± ξ)w , (6.39)

so

ξv

(1± ξ)u
= (∓1)v

v−u∑
w=−u

(
v

w + u

)
(−1)w+u(1± ξ)w , (6.40)

and we obtain the partial fractions expansion of Hq(+)(ξ, ξ) as

Hq(+)(ξ, ξ) =
N∑

w=−N−1

[(1− ξ)w + (−1)v(1 + ξ)w]

[
N+1∑

u=1,v=0

(−1)w+uqu,v

(
v

w + u

)]
. (6.41)

As we mentioned before, there exist however GPDs which can write under the form of
Eq. (6.22) and do not actually derive from a polynomial DD. When only spanning the
qu,v coefficients that can actually result from the Radon transform of a polynomial DD,
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Eq. (6.41) takes the considerably friendlier form 8

Hq(+)(ξ, ξ)
pol. DD
=

N+1∑
w=1

1

(1 + ξ)w

[
N+1∑

u=w,v=0

(−1)w+u+vqu,v

(
v

u− w

)]
. (6.43)

With the same reasoning as for the forward limit in Eq. (6.14), the cancellation of the LO
CFF amounts to solving a system on the coefficients qu,v such that the bracketed term in
Eq. (6.43) equals 0 for each value of w ∈ {1, ..., N+1}. As the qu,v are themselves expressed
as a linear function of the cm,n thanks to the action of the Radon transform which we
have derived in the previous section, we can produce a fully matricial formulation of all
the systems to solve 9.

Matricial form of the system giving LO shadow GPDs

To write the matricial form of the systems, it is useful to introduce a multi-index
notation

m = (m,n) , (6.44)
u = (u, v) . (6.45)

Then we can denote by R the matrix of the Radon transform relating the cm to the qu,
whose general term Ru,m was given in Eq. (6.24). It is a matrix with (N +1)(N +2) lines
and (N + 1)(N + 3)/4 columns which yields(

qu
)
=
(
Ru,m

)
·
(
cm
)
. (6.46)

The cancellation of the LO CFF can be written from Eq. (6.43) as(
Cw,u

)
·
(
qu
)
=
(
Cw,u

)
·
(
Ru,m

)
·
(
cm
)
=
(
0
)
, (6.47)

where C is a matrix of N + 1 lines and (N + 1)(N + 2) columns of general term

Cw,u = (−1)w+u+v
(

v
u− w

)
. (6.48)

8. This simplification is best understood by writing directly the Radon transform of the polynomial
DD for x = ξ in Eq. (6.21) :

Hq(+)(ξ, ξ) =

∫ 1

(ξ−1)/(1+ξ)

dα fq(+)(ξ(1− α), α) =
∑
m,n

cm,nξ
n

∫ 1

(ξ−1)/(1+ξ)

dααm(1− α)n . (6.42)

It is already clear from this expression that the pole structure at ξ = 1 of Eq. (6.41) has to disappear as
only a pole structure at ξ = −1 will emerge from Eq. (6.42). The fact that the polynomial part of Eq. (6.41)
(so for w ≥ 0 in that expression) disappears as well is found by a cumbersome but straightforward partial
fractions expansion of Eq. (6.42).

9. Computing fully the partial fractions expansion of Eq. (6.42) would yield directly a system on the
cm,n coefficients to cancel the LO CFF. Instead, we have chosen an hybrid approach, where we derive a
system on the qu,v but need to perform manually simplifications like the one from Eq. (6.41) to (6.43)
due to the fact that not all qu,v arise from polynomial DDs. Then we build a system on the cm,n thanks
to the Radon matrix. The reason for this two step procedure is that the system expressed at the level
of the qu,v has a much nicer overall formulation, and it becomes increasingly helpful as we incorporate
more constraints on the DD.
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Owing to the relation derived straightforwardly from Eq. (6.22) :

Hq(+)(x, 0) =
N+1∑
w=0

xw
N+1∑

u=1,v=0

2qu,w , (6.49)

one can likewise reinterpret the system we solved to cancel the forward limit in Eq. (6.14)
as (

Qw,u

)
·
(
Ru,m

)
·
(
cm
)
=
(
0
)
, (6.50)

where Q is a matrix of N + 1 lines and (N + 1)(N + 2) columns of general term 10

Qw,u = 2δwv . (6.51)

This formulation is therefore far more compact and practical to implement numerically
compared to the sole expressions of Eqs. (6.14) and (6.43).

Cancelling only the LO CFF

Finding shadow LO DDs now requires to solve both systems (6.47) and (6.50) si-
multaneously. Since we have already derived the general solution of Eq. (6.50) given in
Eqs. (6.15) or (6.18) depending on how the extension to β < 0 is done, we can simply
focus first on the cancellation of the LO CFF (6.47). Characterising the general solution
space becomes increasingly difficult, and the upcoming results are found by solving the
exact value of the system (6.47) for large values of N and uncovering their remarkable
regularity. Although no demonstration will be given, these results are thoroughly checked
up to a very large order in N . If we do not impose direct parity in β, the solution space
is given by

f q(+)(β, α) =
N−1∑
m=2
m even

N−m∑
k=0

λm,kβ
k

[
αm −

m∑
j=0

βj
(
m
j

)
(−1)jP̃m−j(k + j)

]
, (6.52)

where the λm,k are a series of arbitrary real coefficients, and the rational fractions P̃j(x)
are defined through the recursion relation

(x+ j)(x+ j + 1)P̃j(x) = x(x+ 1) + j(j − 1)P̃j−2(x) , (6.53)

with initialisation 11 P̃0(x) = 1 and P̃1(x) = x/(x + 2). There is a similarity with the
solution for the forward limit of Eq. (6.15), which would correspond almost to the same
form, but where P̃j(x) = 1 for all j, up to a factor m + 1 in front of αm. We will come
back on that aspect later. In particular, the space of polynomial DDs cancelling their
forward limit and the one cancelling their LO CFF have the same dimension. However,
the fact that the bracketed expression in Eq. (6.52) depends on k prevents the convenient

10. The interest of the hybrid approach of expressing the conditions in terms of qu,v and not cm,n

mentioned in the previous footnote might appear more clearly here when comparing with the system in
terms of the cm,n expressed in Eq. (6.14).

11. Initialisation would almost seem unnecessary, considering that putting j = 0 and j = 1 in Eq. (6.53)
gives immediately x(x+1)P̃0(x) = x(x+1)+0× P̃−2(x) and (x+1)(x+2)P̃1(x) = x(x+1)+0× P̃−1(x).
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formulation obtained for the forward limit. To illustrate the actual complexity of the
expression hidden behind the P̃ functions, the first two terms of the development in m of
Eq. (6.52) read

f q(+)(β, α) =
N−2∑
k=0

λ2,kβ
k

[
α2 − β2 + 2β

k + 1

k + 3
− k2 + k + 2

(k + 2)(k + 3)

]
+

N−4∑
k=0

λ4,kβ
k

[
α4 − β4

+ 4β3k + 3

k + 5
− 6β2 k2 + 5k + 8

(k + 4)(k + 5)
+ 4β

k3 + 6k2 + 17k + 12

(k + 3)(k + 4)(k + 5)
− k4 + 6k3 + 23k2 + 18k + 24

(k + 2)(k + 3)(k + 4)(k + 5)

]
+ ... .

(6.54)

Based on this first result, the solution space for explicitly β-odd polynomials is obtained
as

f q(+)(β, α) =
N−1∑
m=4
m even

N−m∑
k=1
k odd

λm,kβ
k

[
αm −

m∑
j=0

βj
(
m
j

)
(−1)jP̃m−j(k + j)

]
− 1

2

N−2∑
j=1
j odd

βj×

[
α2 − β2 + 2β

j + 1

j + 3
− j2 + j + 2

(j + 2)(j + 3)

] N−1∑
m=4
m even

N−m∑
k=1
k odd

λm,k

(
m

j + 1− k

)
Q̃m+k−j(m+ k) ,

(6.55)

where the Q̃j(x) are closely related to the rational fractions P̃j(x), since they are also
rational fractions defined as :

x(x+ 1)Q̃j(x) = (x− j + 2)(x− j + 3) + (j − 1)(j − 2)Q̃j−2(x− 2) , (6.56)

with initialisation Q̃1(x) = (x + 2)/x and Q̃2(x) = 1. The simplest polynomial solution
with β-odd can be represented as

λ4,1 = 1 , (6.57)

corresponding to

f q(+)(β, α) = β

(
α4 − 2α2β2 − 6

5
α2 + β4 − 2

3
β2 +

1

5

)
. (6.58)

As for the vanishing of the forward limit, the solution space for β-odd solutions is of
dimension (N − 1)(N − 3)/8. We show the 10 solutions corresponding to N = 11 on
Fig. 6.3.

A similar generalisation compared to the one we exposed in Section 6.2.1 is also pos-
sible, following the idea that solutions can be found by setting the DD to just any value,
and correcting its α-independent part so as to cancel the LO CFF. It is done in the
following way, which we will use in Chapter 7 for modelling purposes for β > 0 :

f q(+)(β, α) = f̃(β, α)− d

dβ

(
β

2− β

∫ 1

β−1
dγ f̃

(
β(1− γ)

2− β
, γ

))
(6.59)

The fact that this DD has systematically a vanishing LO CFF comes from, for ξ > 0,

H(ξ, ξ) =

∫ 1

(ξ−1)/(1+ξ)
dα f(ξ − αξ, α) =

1

ξ

∫ 2ξ/(1+ξ)

0

dβ f

(
β, 1− β

ξ

)
, (6.60)
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Figure 6.3 – The GPDs on the lines ξ = 0.2 (left) and ξ = 0.5 (right) associated to 10
independent β-odd polynomial DDs of order n ≤ 11 with vanishing LO CFF. The GPDs are
scaled to reach maximal value of ±1 on their ξ = 0.5 line. Each line corresponds to a unique
non-zero λm,k in Eq. (6.55). The GPDs vanish at x = 0 by parity, and x = ±ξ.

and

1

ξ

∫ 2ξ/(1+ξ)

0

dβ
d

dβ

(
β

2− β

∫ 1

β−1
dγ f̃

(
β(1− γ)

2− β
, γ

))
=

1

ξ

(
2ξ/(1 + ξ)

2− 2ξ/(1 + ξ)

∫ 1

2ξ/(1+ξ)−1
dγ f̃

(
2ξ/(1 + ξ)

2− 2ξ/(1 + ξ)
(1− γ), γ

))
(6.61)

=

∫ 1

(ξ−1)/(1+ξ)
dγ f̃ (ξ − γξ, γ) , (6.62)

which is exactly the diagonal generated by the DD f̃ . However, just like for the simi-
lar formula obtained for the forward limit in Eq. (6.20), it is very impractical to use
this formulation to try to impose more constraints on the DD, like parity, simultaneous
cancellation of the forward limit, and later higher order considerations.

Building a complete LO shadow GPD

Having determined the solution space of DDs cancelling only their forward limit on the
one hand, and only their LO CFF on the other, we need to compute the intersection of the
two spaces to construct a LO shadow GPD. We remind that it corresponds to solving the
linear system of the joint conditions Eqs. (6.47) and (6.50). The solution space is further
reduced, but owing to the general argument that we still only have O(N) independent
equations for O(N2) coefficients cm,n, we know we will find an infinite vector space of
solutions. Due to the difficulties of determining the general solution space, we will now
only propose an infinite family of β-odd solutions which cancel both their forward limit
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and LO CFF defined by, for N ≥ 9

f q(+)(β, α) = βN−8
[
α8 − 28

9
α6

(
N2 − 3N + 20

(N + 1)N
+ β2

)
+

10

3
α4

(
N2 − 7N + 40

(N + 1)N

+
2(N2 − 3N + 44)

3(N + 1)N
β2 + β4

)
− 4

3
α2

(
N2 − 11N + 60

(N + 1)N
− N − 8

N
β2

− N2 − 3N − 28

(N + 1)N
β4 + β6

)
+

1

9
(1− β2)2

(
N2 − 15N + 80

(N + 1)N
− 2(N − 8)

N
β2 + β4

)]
.

(6.63)

These represent only a small subset of the total solution space of dimension (N − 5)(N −
7)/8, as testified by its very limited exploration of the dependence in α.

Having cancelled the forward limit and LO CFF of a DD with correct parity, we merely
have to verify a final criterion when referring to our definition of a shadow GPD in Section
6.1, that is the behaviour at x = 1. It is however made unnecessary by the observation
that GPDs generated by Eq. (6.63) are already factorised by (1−x)3. We observe that as
we keep adding more constraints to our shadow GPDs, they get even factorised by larger
powers of (1− x), making this constraint essentially void.

The existence of infinitely many GPDs with a null LO CFF at a given scale was
already known and expressed in different forms – see for instance, Ref. [226]. However, to
the best of our knowledge the vanishing of the LO CFF has never been studied before in
conjunction with the vanishing of the forward limit of the GPD. Moreover, the advantage
of the analysis we have developed here will become obvious when extended at NLO. The
general strategy of reducing the problem to linear set of O(N) equations although we
have at our disposal O(N2) coefficients will allow us to demonstrate the infinite number
of NLO shadow GPDs, as well as to explicit some of them.

6.2.4 . NLO shadow GPDs
Considering the inflation of the size of formulas as we implemented further constraints,

one can legitimately fear about the results once we actually consider NLO CFFs, which are
true integrals, and not point-wise information on the GPD as the forward limit and LO
CFF were. Actually, as long as one does not intend to provide a full analytic description
of shadow GPDs, and sticks to the minimal programme of demonstrating their existence
and exhibiting a few realisations, things are not that bad.

At NLO, the DVCS coefficient function is composed of two parts in addition to the
LO part (see for instance Ref. [149]) :

T a1

(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
= T a0

(
x

ξ

)
+ αs(µ

2) log

(
Q2

µ2

)
T a1,0

(
x

ξ

)
+ αs(µ

2)T a1,1

(
x

ξ

)
. (6.64)

We devote a significant attention to the role of these terms in Section 6.3. For now, let
us take them as granted, and focus first on T q1,0, which is also often called collinear term.
Explicit calculations demonstrated in Appendix A.3 yield (A.48)

ImT q1,0

(
x

ξ

)
⊗Hq(x, ξ, µ2) =

e2qCF

2

([
3

2
+ log

(
1− ξ

2ξ

)]
Hq(+)(ξ, ξ) +

∫ 1

ξ

dx
Hq(+)(x, ξ)−Hq(+)(ξ, ξ)

x− ξ

)
.

(6.65)
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For a β-odd polynomial DD, the integral can be written as∫ 1

ξ

dx
Hq(+)(x, ξ)−Hq(+)(ξ, ξ)

x− ξ
=

N+1∑
w=1

1

(1 + ξ)w

N+1∑
u=w,v=0

Dw,uqu , (6.66)

where a new matrix of constraints is introduced 12

Dw,u = (−1)u+v+w
v∑
k=1

(−1)k

k

(
v − k
u− w

)
− 1

k

(
v

u− w

)
. (6.67)

It is remarkable that the polynomial DD representation allows us to decompose ImT q1,0 ⊗
Hq(+) into a rational fraction (6.66) with poles of finite order at ξ = −1 and a logarithmic
singularity log

(
1−ξ
2ξ

)
factorised by the previously studied term Hq(+)(ξ, ξ). It means that

we can build on the solution found at previous order to immediately cancel the logarithmic
term, and only need to preoccupy ourselves with the linear system formed by (Dw,u) ·
(qu), which brings at most N + 1 new constraints. This behaviour is also observed when
studying the real part of the LO CFF, which involves likewise a separation into logarithmic
singularities factorised by Hq(+)(ξ, ξ) and a finite number of poles – which are exactly
cancelled by the vanishing of the imaginary part by virtue of the dispersion relation.

The situation is also encountered for the term T q1,1 – the 1-loop term, by noting that
if Hq(+)(ξ, ξ) = 0,

ImT q1,1

(
x

ξ

)
⊗Hq(x, ξ, µ2) = log

(
1− ξ

2ξ

)
ImT q1,0

(
x

ξ

)
⊗Hq(ξ, t, µ2)

+
e2qCF

4

N−1∑
w=1

1

(1 + ξ)w

N+1∑
u=w,v=0

Ew,uqu , (6.68)

where

Ew,u = (−1)u+w
v∑
k=1

3

k

(
v − k
u− w

)
− 3(−1)k

k

(
v

u− w

)

− 2(−1)v

k

k∑
j=1

(−1)j

j

(
v − j
u− w

)
− 1

j

(
v

u− w

)
. (6.69)

Again, we can (and must) build on the previous cancellation of the collinear term to cancel
the 1-loop term. The latter then brings at most N − 1 new linear constraints.

We also note that a GPD resulting from a DD f q(+) may exhibit a discontinuity at
(x, ξ) = (1, 1). The reasoning is very similar to the one we led about the discontinuity
at (x, ξ) = (0, 0), and the reason is essentially the same. While the discontinuity at
(x, ξ) = (0, 0) was a consequence of a discontinuity of the DD on the β = 0 line, the

12. This formula is obtained in a similar fashion as Eq. (6.43), that is first by inserting the expression
of the GPD Hq(+)(x, ξ) (6.22) in the left hand side (l.h.s.) of Eq. (6.66), then performing the partial
fractions decomposition, and finally simplifying the expression by considering only the qu,v coefficients
which can actually result from the Radon transform of a polynomial DD.
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discontinuity at (x, ξ) = (1, 1) is a consequence of the fact that the DD does not go
smoothly to 0 on the edges of the rhombus. For instance, for any λ ≥ 1,

lim
ε→0

Hq(+)
(
1− ε

λ
, 1− ε

)
=

∫ 1/λ

0

dα f q(+) (1− α, α) , (6.70)

and the limit at (x, ξ) = (1, 1) may depend on the actual path to (1, 1) in the (x, ξ)-plane,
unless f q(+)(1− α, α) = 0. This adds another set of equations on the DD with

f q(+)(1− α, α) =

m+n≤N∑
m,n=0
m even

cm,nα
m(1− α)n =

N∑
w=0

αw
m+n≤N∑
m=w,n=0
m even

Bw,m cm , (6.71)

where
Bw,m = (−1)w

(
n

w −m

)
. (6.72)

Notice that working in the Pobylitsa representation of DDs spares us from the trouble
of implementing this condition, since the (1 − x) factor introduced by this alternative
representation guarantees better regularity in the limit x→ 1.

Adding all these constraints means that the order N at which a non zero solution
can be found increases. When asking only the cancellation of the LO CFF, collinear term
and 1-loop term, first solutions arise at N = 17. With the further requirements that the
forward limit vanishes as well as the DD on the edges of the rhombus, the first solutions are
found for N = 25. One is displayed in its full complexity in Appendix A.5, and depicted
as the dotted brown curve in Fig. 6.4 where it is added to the popular phenomenological
GK model. Another NLO shadow GPD of order 27 is also depicted as the dashed orange
curve. Therefore, at scale µ2

F where the shadow NLO GPDs are defined, the three models
have exactly the same forward limit and full NLO CFF.

In spite of the large polynomial order, the shadow GPDs do not oscillate in a way a
priori excluded on physical grounds. Additionally, they exhibit very different shapes in
both |x| > |ξ| and |x| < |ξ| regions, illustrating already on this very small subset of the
solution space that NLO shadow GPDs can produce a large range of different effects.

We foresee that the argument of the relative increase of the number of constraints
and of free parameters can be extended mutatis mutandis to guarantee the existence of
shadow gluon GPDs and more generally of shadow GPDs at any finite order in pQCD.
Having not searched for non-trivial shadow gluon GPDs, we will work with the solution
(H

q(+)
0 , H

g(+)
0 = 0) where Hq(+)

0 is a non-trivial shadow quark GPD to study the effect of
evolution. 0 is obviously a shadow GPD, so the pair will exhibit all required properties.

6.3 . The effect of evolution on shadow GPDs

The size of shadow GPDs that can remain invisible in DVCS data is inversely pro-
portional to the maximal contribution they bring to CFFs on the probed Q2 range. By
design, this contribution is exactly 0 at the definition scale of the shadow distribution µ2

F .
If no evolution effects are taken into account, the problem is then formally not invertible,
and infinite shadow GPDs will plague the extraction 13. If however shadow GPDs bring

13. Neglecting the effect of positivity bounds which we will consider in the next chapter.
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Figure 6.4 – Hu(+) as a function of x for ξ = 0.1 and 0.5, t = −0.1 GeV2 and µ2F = 1 GeV2.
Solid blue : GK model. Dashed orange and dotted brown : GK model with the addition of two
different NLO shadow GPDs. In all cases one obtains exactly the same NLO CFF and forward
limit at scale µ2F . Figure taken from Ref. [6].

sizable contributions to the CFF as soon as Q2 strays from µ2
F , then they are relatively

easy to discriminate and will not present a serious issue to the deconvolution.

By design, our construction of shadow GPDs cancels all terms of order O(αs) in the
DVCS coefficient function. We would therefore expect any contribution of the shadow
GPDs to the CFF to be of order α2

s. However, considering that we lead this study with
EIC kinematics in mind, that is very roughly speaking a range in Q2 of the order of 1 to
100 GeV2, the size of the logarithmic corrections generated by the rather large evolution
range might spoil this O(α2

s) behaviour, and generate larger than expected contributions
to the CFF.

Let us note that by neutralising the collinear term T q1,0 with the system (6.67), we have
already cancelled a part of the logarithmic corrections. Before investigating numerically
the effect of the resummation of the full leading logarithmic corrections, we would like
to present in a bit more precise way their origin, and clarify the interplay between fixed
order truncation and leading logarithm expansion. This will allow us to understand more
clearly what is the theoretical origin of the residual effect of evolution on shadow GPDs
once all terms of order O(αs) have been cancelled. Although the results shown in the next
section are globally already known and belong to the common knowledge of the behaviour
of the perturbative expansion, they have not been frequently spelled out in detail, and
particularly not in the context of GPD phenomenology – probably mainly due to the fact
that currently probed DVCS experimental range in Q2 is limited enough that evolution
effects at high order were deemed secondary until now. Similar aspects to those discussed
below are found for instance in Ref. [227] in the case of DIS, although presented in less
detail than we do now.
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6.3.1 . Combining evolution equations and the DVCS coefficient function
The link between truncation of the renormalisation group equation (RGE) at fixed

order in αs and the leading logarithm (LL) expansion is probably the most clearly seen
when solving the RGE of αs itself, which we presented already in Eq. (2.53). We remind
that

∂αs(µ
2)

∂ log µ2
= β(αs(µ

2)) = −b0α2
s(µ

2)− b1α
3
s(µ

2)− ... , (6.73)

The general solution can be written under the form of a Taylor expansion 14

αs(Q
2) =

∞∑
j=0

1

j!
logj

(
Q2

µ2

)
∂jαs(µ

2)

∂ logj(µ2)
, . (6.78)

Differentiating again Eq. (6.73) yields

∂2αs(µ
2)

∂ log2 µ2
=

[
− 2b0αs(µ

2)− 3b1α
2
s(µ

2)− ...

]
∂αs(µ

2)

∂ log µ2
, (6.79)

= 2b20α
3
s(µ

2) + 5b0b1α
4
s(µ

2) + ... (6.80)

A trivial recursion gives immediately that the term of lowest order in the expansion of
∂jαs(µ

2)/∂ logj µ2 is j! bj0αj+1
s (µ2). It is therefore possible to introduce ηj,l coefficients

depending on b0, b1, ... such that

αs(Q
2) = αs(µ

2) +
∞∑
j=2

αjs(µ
2)

[
logj−1

(
Q2

µ2

)
(−b0)j−1 +

j−1∑
l=2

logj−l
(
Q2

µ2

)
ηj,l

]
. (6.81)

One observes therefore that the mere form of the RGE gives rise to an expansion
of the solution both in terms of powers of αs and logarithmic corrections. Let
us introduce the notation

L = log

(
Q2

µ2

)
. (6.82)

14. The mixture of dependences in µ2 and log(µ2) might appear displeasing. Either one can elude the
question by considering that αs(µ

2) is a short-hand notation for αs(log(µ
2)), in which case Eq. (6.78) is

just a standard Taylor expansion in the variable log(µ2), or one can notice the following implication of
the fact that f admits a series expansion in terms of powers of g :

f(x) =

∞∑
k=0

akg
k(x) =⇒ f(x) =

∞∑
j=0

(g(x)− g(x0))
j

j!

djf(x0)

dgj(x)
, (6.74)

which corresponds exactly to the result we are interested in with f = αs, x = Q2, x0 = µ2 and g = log.
Indeed

djf(x0)

dgj(x)
=

∞∑
k=j

ak
k!

(k − j)!
gk−j(x0) , (6.75)

and
∞∑
j=0

(g(x)− g(x0))
j

j!

djf(x0)

dg(x)j
=

∞∑
j=0

(g(x)− g(x0))
j

j!

∞∑
k=j

ak
k!

(k − j)!
gk−j(x0) , (6.76)

=

∞∑
k=0

ak

k∑
j=0

(
k
j

)
(g(x)− g(x0))

jgk−j(x0) =

∞∑
k=0

akg
k(x) = f(x) . (6.77)

.
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The LL terms in Eq. (6.81) are therefore αjs(µ2)(−Lb0)j−1 for j ≥ 1. Their resummation
to infinity while ignoring sub-leading logarithms yields

αs(Q
2)

LL
=

αs(µ
2)

1 + αs(µ2)Lb0
. (6.83)

On the other hand, solving directly the RGE truncated at LO ∂αs(µ
2)/∂ log(µ2) =

−b0α2
s(µ

2) gives

αs(Q
2)

LO
=

1

b0 log(Q2/Λ2)
, (6.84)

for some integration constant Λ, which corresponds to the Landau pole of divergence of
the perturbative strong coupling at low scale. It is easy to verify that Eqs. (6.83) and
(6.84) are exactly equal, so resumming the LL expansion of αs is equivalent to
exactly solving its LO evolution equation.

General solution of GPD evolution

GPDs follow a RGE whose general form is close to the one followed by αs itself.
Therefore, the general features of the previous paragraph still apply. The singlet GPD
RGE can be written as

∂Ha(+)(µ2)

∂ log(µ2)
=
∑
b

[
αs(µ

2)Kab,(0) + α2
s(µ

2)Kab,(1) + ...
]
⊗Hb(+)(µ2) , (6.85)

where a and b stand for the various parton types, and Kab,(j) are the splitting kernels
computed at NjLO. The ⊗ notation serves as a compact way to represent the integral
depicted fully in Eq. (2.52) as in the case of the coefficient function. There again, the
general solution is found as

Ha(+)(Q2) =
∞∑
j=0

Lj

j!

∂jHa(+)(µ2)

∂ logj(µ2)
. (6.86)

The differentiation of Eq. (6.85) gives a slightly more tedious expression compared to
Eq. (6.80)

∂2Ha(+)(µ2)

∂ log2(µ2)
=
∑
b

∂αs(µ
2)

∂ log(µ2)

(
Kab,(0) + 2αs(µ

2)Kab,(1) + ...
)
⊗Hb(+)(µ2) +

(
αs(µ

2)Kab,(0)

+ α2
s(µ

2)Kab,(1) + ...

)
⊗
∑
c

(
αs(µ

2)Kbc,(0) + α2
s(µ

2)Kbc,(1) + ...
)
⊗Hc(+)(µ2) ,

(6.87)

=
∑
b

[
−α2

s(µ
2)b0K

ab,(0) +
∑
c

α2
s(µ

2)Kac,(0) ⊗Kcb,(0)

]
⊗Hb(+)(µ2) +O(α3(µ2)) .

(6.88)
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Higher order derivatives are of order α3
s at least, so we deduce

Ha(+)(Q2) =
∑
b

[
δab + αs(µ

2)LKab,(0) +
1

2
α2
s(µ

2)L2

(
−b0Kab,(0) +

∑
c

K(0)
ac ⊗K

(0)
cb

)

+ α2
s(µ

2)LKab,(1)

]
⊗Hb(+)(µ2) +O(α3

s) , (6.89)

where δab is the Kronecker symbol. In general, a recursion on higher order derivatives of
Ha(+) allows us to conclude that the GPD evolution operator defined by

Ha(+)(Q2) =
∑
b

Γab,(k)(Q2, µ2)⊗Hb(+)(µ2) (6.90)

can be expressed at order αks thanks to the introduction of the γabj,l coefficients such that

Γab,(k)(Q2, µ2) = δab +
k∑
j=1

αjs(µ
2)

j−1∑
l=0

Lj−lγabj,l . (6.91)

Note that apart from the initial δab term, all terms come with a non-zero power of log. Once
again, the double expansion in terms of powers of αs and logarithmic corrections come from
the fact that the RGE takes the generic form ∂f(µ2)/∂ log(µ2) = polynomial in αs(µ2)⊗
f(µ2).

DVCS coefficient function and the requirements of consistency of evolution

The DVCS coefficient function shows a very similar form with also a double expansion
in αs and L. When expanded at order αks , it writes in general as

T ak

(
ω,
Q2

µ2
, αs(µ

2)

)
=

k∑
j=0

αjs(µ
2)

j∑
l=0

Lj−lT aj,l(ω) , (6.92)

= T a0,0(ω) + αs(µ
2) log

(
Q2

µ2

)
T a1,0(ω) + αs(µ

2)T a1,1(ω) + ... , (6.93)

where T aj,l(ω) is a complex-valued distribution, and we have highlighted the beginning of
the DVCS coefficient function expansion which we have precisely cancelled for our NLO
shadow GPDs. The LL terms read αjs(µ2)LjT aj,0(ω). Contrary to the case of the evolution
operator, there are also terms with no logarithm power, namely αjs(µ

2)T aj,j(ω). We will
call T a0,0(ω) the tree-level term, and T aj,j(ω) for j ≥ 1 the j-loop term. They are computed
from j-loop perturbative diagrams of the hard scattering of the DVCS process.

We will now demonstrate that the independence of CFFs on the factorisation scale –
up to sub-leading contributions of order O(αk+1

s ) if the CFFs are computed at order αks
– implies that the terms with non-zero logarithm power in the expansion of the DVCS
coefficient function (6.92) are entirely determined by the interplay of the j-loop terms
T aj,j(ω) and the coefficients γabj,l of the expansion of the evolution operator (6.91). The
requirement of independence of CFFs on the factorisation scale can be translated into the

145



Chapter 6. The full DVCS deconvolution problem

following equation

T ak

(
ω,
Q2

µ2
, αs(µ

2)

)
⊗Ha(+)(µ2) = T ak

(
ω, 1, αs(Q

2)
)
⊗Ha(+)(Q2) +O(αk+1

s ) , (6.94)

=
∑
b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2) +O(αk+1

s ) . (6.95)

Expansion at order α2
s To get an intuition of what is happening, let us first work at

fixed order α2
s. We will show that the adequacy of the left hand side (l.h.s.) and right

hand side (r.h.s.) of Eq. (6.95) brings mutual constraints between the evolution equation
and DVCS coefficient function.

The r.h.s. of Eq. (6.95) involves the expression∑
b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2)

=
∑
b

[
T a0,0 + αs(Q

2)T a1,1 + α2
s(Q

2)T a2,2
]
⊗
[
δab + αs(µ

2)Lγab1,0 + α2
s(µ

2)L2γab2,0

+ α2
s(µ

2)Lγab2,1

]
⊗Hb(+)(µ2) +O(α3

s) (6.96)

where we have used the expressions (6.92) and (6.91). Then using that αs(Q2) = αs(µ
2)−

α2
s(µ

2)Lb0 +O(α3
s) and developing the expression,∑

b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2)

=
∑
b

[
T a0,0 ⊗ δab + αs(µ

2)LT a0,0 ⊗ γab1,0 + αs(µ
2)T a1,1 ⊗ δab + α2

s(µ
2)L2T a0,0 ⊗ γab2,0

+ α2
sL(−b0T a1,1 ⊗ δab + T a1,1 ⊗ γab1,0 + T0,0 ⊗ γ2,1) + α2

s(µ
2)T a2,2 ⊗ δab

]
⊗Hb(+)(µ2) +O(α3

s) .

(6.97)

On the other hand, the l.h.s of Eq. (6.95) gives

T ak

(
ω,
Q2

µ2
, αs(µ

2)

)
⊗Ha(+)(µ2) =

∑
b

[
T a0,0 + αs(µ

2)

(
LT a1,0 + T a1,1

)
+ α2

s(µ
2)

(
L2T a2,0 + LT a2,1 + T a2,2

)]
⊗ δab ⊗Hb(+)(µ2) . (6.98)

Therefore, identification of Eqs. (6.97) and (6.98) leads to the following relations at order
α2
s 

T a1,0 ⊗ δab = T a0,0 ⊗ γab1,0
T a2,0 ⊗ δab = T a0,0 ⊗ γab2,0
T a2,1 ⊗ δab = T a1,1 ⊗ γab1,0 − b0T

a
1,1 ⊗ δab + T a0,0 ⊗ γab2,1 .

(6.99)

One sees on this example that NjLL terms T ak,j are exactly obtained from convolutions
of T al,l – that is what we called l-loop terms before – where 0 ≤ l ≤ j with evolution
operators.
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General result For simplicity, we will only derive explicitly the constraints induced by
Eq. (6.95) on the LL and NLL terms of the DVCS coefficient function. The method can
be applied straightforwardly to any order in the leading logarithms expansion. The r.h.s.
of Eq.(6.95) involves the expression∑

b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2)

=
∑
b

[
k∑

m=0

αms (Q
2)T am,m

]
⊗

[
δab +

k∑
j=1

αjs(µ
2)

j−1∑
l=0

Lj−lγabj,l

]
⊗Hb(+)(µ2) +O(αk+1

s ) ,

(6.100)

using Eqs. (6.92) and (6.91). We first need to compute the LL expansion of αms (Q2)
involved in the first term of Eq. (6.100), which is obtained from the LL terms of Eq. (6.81)
as

αms (Q
2)

LL
=

∞∑
n=m

αns (µ
2)Ln−m(−b0)n−m

(
n− 1
m− 1

)
. (6.101)

Therefore, the LL term of αms (Q2) is of order αns (µ2)Ln−m and has a "deficit" of m powers
of logarithms compared to the LL term in the DVCS coefficient function, which is of order
αns (µ

2)Ln. Only m = 0 in the first term of Eq. (6.100) contributes therefore to the LL
term in the DVCS coefficient function. It must be associated to l = 0 in the second term
of Eq. (6.100) to indeed yield a LL term.

NLL terms are obtained either with m = 0 and l = 1, or m = 1 and l = 0. By applying
these counting rules in Eq. (6.100), we obtain the NLL expansion∑

b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2)

NLL
=
∑
b

[
T a0,0 ⊗

(
δab +

k∑
j=1

αjs(µ
2)Ljγabj,0

)
+ T a0,0 ⊗

(
k∑
j=2

αjs(µ
2)Lj−1γabj,1

)

+
k∑

n=1

αns (µ
2)Ln−1(−b0)n−1T a1,1 ⊗

(
δab +

k∑
j=1

αjs(µ
2)Ljγabj,0

)]
⊗Hb(+)(µ2) +O(αk+1

s ) .

(6.102)

Mind that the final sum of the second line starts at j = 2 due to the fact that γab1,1 is
undefined with the formula of Eq. (6.91). The sum can be started at j = 1 by conveniently
defining γab1,1 = 0. A slight reshuffling of the third line of Eq. (6.103) yields

∑
b

T ak
(
ω, 1, αs(Q

2)
)
⊗ Γab,(k)(Q2, µ2)⊗Hb(+)(µ2)

NLL
=
∑
b

[
T a0,0 ⊗

(
δab +

k∑
j=1

αjs(µ
2)Ljγabj,0

)

+ T a0,0 ⊗

(
k∑
j=2

αjs(µ
2)Lj−1γabj,1

)
+

k∑
n=1

αns (µ
2)Ln−1(−b0)n−1T a1,1 ⊗ δab

+
k∑
p=2

αps(µ
2)Lp−1

p−1∑
j=1

(−b0)p−j−1T a1,1 ⊗ γabj,0

]
⊗Hb(+)(µ2) +O(αk+1

s ) . (6.103)

147



Chapter 6. The full DVCS deconvolution problem

By identifying with the l.h.s. of Eq. (6.95), we obtain the following conditions{
T aj,0 ⊗ δab = T a0,0 ⊗ γabj,0 for j ≥ 1 ,

T aj,1 ⊗ δab =
∑j−1

m=1(−b0)j−m−1T a1,1 ⊗ γabm,0 + (−b0)j−1T a1,1 ⊗ δab + T a0,0 ⊗ γabj,1 for j ≥ 2 .

(6.104)
The result for j ≤ 2 is in agreement with the previously found results of Eq. (6.99). This
system demonstrates that the LL DVCS coefficient T aj,0(ω) is exactly the tree-level
term T a0,0(ω) convoluted with the LL GPD evolution. Resumming the entire NLL
expansion of the DVCS coefficient function thanks to Eq. (6.104) yields

∞∑
j=1

αjs(µ
2)Lj−1T aj,1 ⊗ δab = αs(µ

2)T a1,1 ⊗ δab +
∞∑
j=2

αjs(µ
2)Lj−1

j−1∑
m=1

(−b0)j−m−1T a1,1 ⊗ γabm,0

+
∞∑
j=2

αjs(µ
2)Lj−1(−b0)j−1T a1,1 ⊗ δab + T a0,0 ⊗

∞∑
j=2

αjs(µ
2)Lj−1γabj,1

(6.105)

= αs(µ
2)T a1,1 ⊗ δab +

αs(µ
2)

1 + αs(µ2)Lb0

∞∑
m=1

αms (µ
2)LmT a1,1 ⊗ γabm,0

− α2
s(µ

2)Lb0
1 + αs(µ2)Lb0

T a1,1 ⊗ δab + T a0,0 ⊗
∞∑
j=2

αjs(µ
2)Lj−1γabj,1 (6.106)

=
αs(µ

2)

1 + αs(µ2)Lb0
T a1,1 ⊗

(
δab +

∞∑
m=1

αms L
mγabm,0

)
+ T a0,0 ⊗

∞∑
j=2

αjs(µ
2)Lj−1γabj,1 .

(6.107)

The final term is the tree-level term convoluted with the NLL GPD evolu-
tion, whereas the first term is the 1-loop term convoluted with the LL GPD
evolution. The factor in front of T a1,1, which we have already met in Eq. (6.83),
is actually the LL expansion of αs(Q2).

Remark We have expressed the results for the LL and NLL DVCS coefficient
functions in Eq. (6.104) in terms of the γabk,j elements of the evolution operator
expansion defined in Eq. (6.91). However, this is a redundant source of informa-
tion, which can be reduced to the sole Kab,(i) introduced in Eq. (6.85). Eq. (6.89)
shows for instance that we have already derived

γab1,0 = Kab,(0)

γab2,0 = 1/2(−b0Kab,(0) +
∑

cK
ac,(0) ⊗Kcb,(0))

γab2,1 = Kab,(1) .

(6.108)

The study of the LL expansion of the evolution operator Γab demonstrates that
it is exactly the solution of the LO evolution, involving only the kernel Kab,(0).
Similar results can be obtained for the NkLL expansion, which only involves
kernels up to Kab,(k).
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Conclusion

We understand therefore that the convolution of the tree-level coefficient function T a0,0
and the solution of the LO evolution gives the full LL expansion of the DVCS coefficient
function, by convoluting T a0,0 with combinations of Kab,(0). The full NLL expansion is
obtained from the additional knowledge of T a1,1 and Kab,(1) and so on so forth.

When only considering a narrow range µ2 around Q2, |L| ≪ 1 and the size of loga-
rithmic contributions is small. Then fixed order perturbation can be envisioned 15 and
we could satisfy ourselves from having cancelled all terms of order O(αs) in the DVCS
coefficient function by construction of the shadow GPDs. Formally, within a fixed order
αs truncation, we would then have shown the deconvolution problem to be non invertible.

However, as evolution range gets significant, development in terms of leading loga-
rithms becomes more relevant than fixed order due to the increase of L. At LL, we are
led to consider an infinite resummation of terms αjsLj and the presence of the logarithms
spoils the expected O(α2

s) behaviour of the CFF. Having cancelled the contributions of
T a0,0 and T a1,0 only in the LL expansion, our shadow GPDs will now leave an imprint on
CFF. The evaluation of the numerical size of this contribution is the object of the next
section. Let us note that the limit of validity of fixed order perturbation at αks can be
probed numerically by observing to what extend the residuals are well approximated by
Aαk+1

s (µ2) as we will explore in the following section.

6.3.2 . Practical effect of evolution on a NLO shadow GPD

The software APFEL++ [228, 229, 1], interfaced with the PARTONS framework,
provides the solution of the LO GPD evolution equation thanks to a fourth order Runge-
Kutta method. The entire LL expansion of the evolution operator is therefore resummed.
As we have demonstrated in the previous section, combining the tree-level DVCS coeffi-
cient function T a0,0 with the LL GPD evolution equation amounts to resumming the entire
LL expansion of the DVCS coefficient function. Combining the 1-loop coefficient function
T a1,1 with LL evolution gives additionally the resummation of a part of the NLL expansion
of the DVCS coefficient function. The combination of the tree-level DVCS coefficient with
NLL GPD evolution is missing to obtain the complete NLL expansion of the DVCS coef-
ficient function. However, no NLL GPD evolution code in momentum space is available
at the time of writing, so we will work only with a partial account of NLL contributions.

We compute the convolution of the full NLO DVCS coefficient function at µ2 = Q2

(which makes the collinear term vanish) with the LL evolution of the shadow GPD from
its definition scale µ2

F . Thus, using Eq. (6.91) and the fact that we take the gluon shadow
GPD as 0 at µ2

F , the CFF convolution reads

H(Q2) =
[
T q0,0 + αs(Q

2)T q1,1
]
⊗

[
1 +

∞∑
j=1

αjs(µ
2
F ) log

j

(
Q2

µ2
F

)
γqqj,0

]
⊗H

q(+)
0 (µ2

F ) , (6.109)

= T q0,0 ⊗H
q(+)
0 (µ2

F ) + αs(µ
2
F ) log

(
Q2

µ2
F

)
T q0,0 ⊗ γqq1,0 ⊗H

q(+)
0 (µ2

F )

+ αs(Q
2)T q1,1 ⊗H

q(+)
0 (µ2

F ) +O(α2
s) . (6.110)

15. provided the terms of the higher order are numerically small and leaving aside any question related
to the asymptotic nature of the perturbative series.

149



Chapter 6. The full DVCS deconvolution problem

Since we have demonstrated that (6.99)

T q0,0 ⊗ γqq1,0 = T q1,0 , (6.111)

we find back the expected result that the NLO shadow GPD cancels exactly all terms of
order α0

s and α1
s even under evolution, and

H(Q2) = O(α2
s) . (6.112)

We want to verify numerically the predicted behaviour of Eq. (6.112), observe the effect
of logarithmic corrections which is expected to break down this property, and measure the
overall size of the term O(α2

s) on an evolution range of 1 to 100 GeV2. To verify Eq. (6.112),
APFEL++ provides the possibility to arbitrarily set αs(µ2

0) at some reference scale µ2
0.

By choosing particularly small values of αs, we suppress the size of LL contributions αjsLj
where j is large (L is fixed by our choice of evolution range), so we expect to observe
the prescribed quadratic behaviour. If however αs becomes relatively large, we expect
the effect of all the logarithms and larger powers of αs to come into play and spoil the
quadratic behaviour.

We show the result of evolution to Q2 = 100 GeV2 from an initial definition scale of
the shadow GPD of µ2

F = 1 GeV2 on Fig. 6.5. We have chosen the dotted brown NLO
shadow GPD depicted in Fig. 6.4 – we have of course subtracted the phenomenological
model to only keep the shadow component. The continuous blue line on Fig. 6.5 represents
the fit of the total (quarks + radiatively generated gluons) imaginary part of the CFF
by a quadratic function of αs. The agreement is very satisfactory as long as αs ≤ 0.15,
after which it starts to break as expected. A phenomenologically relevant value of αs(100
GeV2) in the MS scheme is of the order of 0.18.

The most striking feature of this graph is the extremely small absolute value of the
contribution of the NLO shadow GPD to the CFF even on a considerable evolution range
from 1 to 100 GeV2. At the phenomenologically relevant value of αs(100 GeV2) ≈ 0.15,
the imaginary part of the CFF is only of order 10−5 for ξ = 0.1 although the shadow GPD
itself is of order 1. Provided the functional space chosen to extract GPDs can accommodate
flexible enough objects to include NLO shadow GPDs like the one we are discussing here,
we see therefore that a possible factor of amplification of uncertainty when going from the
CFF to the GPD could reach 105. The conditioning of the extraction is very poor even
on a very large evolution range corresponding to the future EIC.

We notice finally that the fact that contributions of quarks and gluons are of opposite
sign in Fig. 6.5 is the cause of an additional suppression of the effect of evolution by a
factor 5 or more. This fact is already well-known, see for instance Refs. [124, 149]. The very
recent publication in Ref. [126] of NNLO DVCS coefficient functions observes a similar
phenomenon.

6.3.3 . Consequences of the deconvolution problem for the phenomenology of
GPDs

The developments on shadow GPDs presented in this chapter demonstrate that there
exist spaces with extremely poor conditioning of the extraction of GPDs from DVCS data
in an NLO framework. This result is true even over kinematic domains relevant for the
experiments at JLab, CERN, EIC or EIcC. The form of the GPDs living in these poorly
constrained spaces has been carefully selected on general theoretical principles to make
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Figure 6.5 – Imaginary part of the NLO CFF H(ξ = 0.1, Q2 = 100 GeV2) evaluated with
the NLO shadow GPD 1 shown in Fig. 6.4 and Hd(+) = Hs(+) = Hg(+) = 0 at µ2F = 1 GeV2.
The blue dots correspond to computations made with different values of αs(Q2 = 100 GeV2)
and the solid blue line results from a quadratic fit to the first seven points. The dashed orange,
dash-dotted green and dotted brown lines indicate u, d or s, and g contributions to the CFF,
respectively. Figure taken from Ref. [6].

sure these objects remain relevant for the usual phenomenology of GPDs. This will be
demonstrated by the prominent role they will play in different modelling proposals in the
next chapter.

Even if lattice QCD (see Section 3.2) might in the long term provide an evaluation
of the functional shape of GPDs, experimental data – and particularly DVCS data – are,
and will remain for years, the main source of quantitative knowledge about GPDs.

Our results on DVCS can straightforwardly be extended to TCS and LO DVMP due
to the similarity of the coefficient functions involved in these processes. The evaluation
of the first few Mellin moments from lattice QCD is not expected to qualitatively mo-
dify the answer we have provided here to the deconvolution problem. In terms of fits to
experimental data, only a multichannel analysis beyond leading order, over large kine-
matic domains accessible in collider experiments, and within a complete framework such
as PARTONS or GeParD may provide the needed leverage to quantitatively constrain
GPDs. Double DVCS or processes where the active parton emits several particles provide
a richer kinematic dependence of the structure functions which could radically change the
considerations on the deconvolution problem. Notably, DDVCS offers a direct access to
GPDs at x ̸= ξ at LO and seems a natural candidate to make the deconvolution well-
defined. However, the smaller cross-section and more demanding experimental analysis
reduce for now the possibilities coming from these channels.

In parallel to joint experimental analyses at higher order and lattice inputs in x-space,
it is also desirable to constrain GPDs with additional physical principles. In particular,
implementation of positivity constraints is a main aspect of the reduction of the size of
shadow distributions which we will discuss in the following chapter.
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7 - New models of generalised parton distributions

We have demonstrated in Chapters 5 and 6 that the extraction of GPDs from DVCS is
ambiguous in practice due to the presence of shadow terms, that give essentially negligible
contributions to CFFs over the range of virtuality Q2 accessible to current and envisioned
facilities, and are therefore unconstrained by experimental data. However, this does cer-
tainly not mean that nothing of value can be said about GPDs from the DVCS process.
First, the small ξ limit benefits from the excellent knowledge of PDFs. By construction,
shadow terms tend to zero as ξ gets smaller, which gives rise to modelling opportunities
which we will explore in more detail at the end of this chapter. Furthermore, even if a
considerable uncertainty exists due to the shadow terms outside the diagonal and small ξ
limit, dealing with ill-defined, badly conditioned, or simply non-invertible problems is an
issue arising in every field of science without becoming insurmountable impediments.

A remarkable example of a way around this kind of issues is given by missing data
inpainting, that is the recreation of a full set of data from only a portion of it. Even in
cases where the missing data is completely lost and unknown, statistical tools provide
reconstruction procedures with a very high level of satisfaction (see for instance a work
on data inpainting increasing considerably the robustness of the recovery of gravitational
wave signals in Ref. [230]). The key element is to identify a good systematic way to perform
the extrapolation, either through the selection of a specific basis deemed relevant to the
studied case – for instance selecting a number of modes in a principal component analysis,
or a basis of relevant wavelets for image reconstruction, or by constructing a satisfactory
model architecture as in the case of neural network modelling.

In this chapter, we explore several models we have developed in order to give a reaso-
nable account of the uncertainty associated with GPDs extracted from DVCS data. We
present first a simple analytical model that reproduces exactly LO CFFs, which can be
used in association with polynomial shadow DDs found in the previous chapter. We give
afterwards a presentation of a grounding work on the neural network modelling of double
distributions, which we have published in Ref. [8]. We end up the chapter by discussing
specific aspects of the modelling of GPDs in the small ξ region. This region attracts a lot
of interest for reasons we will detail, and evades the issue of shadow GPDs in a way that
is instructive to study.

7.1 . A simple analytical model

Having determined exactly the solution space of polynomial DDs that either cancel
their forward limit – Eqs. (6.15) and (6.18) – or their LO CFF – Eqs. (6.52) and (6.55) –,
and provided an infinite family of polynomial DDs which cancel both – Eq. (6.63) –, as
well as the building blocks to extract many more in case the need would be felt, we have at
our disposal an extensive characterisation of the solution space of the homogeneous system
"vanishing forward limit, vanishing LO CFF". Since it is a linear system, we know that
the complete solution to the problem "known forward limit, known LO CFF" is obtained
by adding a particular solution to the previously determined homogeneous solution. We
present now a systematic way to find such a particular solution.
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7.1.1 . Description of the model
Let us consider that at a determined value of t and µ2

F , we know a forward limit q(+)(x)
and a CFF Hq(ξ). We look for a model of GPD which reproduces exactly these two limits
at LO. Thanks to our earlier observation of Eq. (6.60), the DD defined for β > 0 by

f
q(+)
1 (β, α) =

1

πe2q

d

dβ

(
β

2− β
ImHq

(
β

2− β

))
, (7.1)

and extended by parity to β < 0 produces exactly the expected imaginary part of the LO
CFF. We note Hq(+)

1 the Radon transform of f q(+)
1 , and further define for β > 0

f
q(+)
2 (β, α) =

q(+)(β)−H
q(+)
1 (β, 0)

2(1− β)β2
, (7.2)

with again a parity extension to β < 0. The form of f q(+)
2 is chosen to enforce the expected

forward limit while correcting the unwanted one produced by f
q(+)
1 . We define Hq(+)

2 as
the Radon transform associated to f q(+)

2 . Then

H
q(+)
3 (x, ξ) = H

q(+)
1 (x, ξ) + (x2 − ξ2)H

q(+)
2 (x, ξ) (7.3)

has both the correct imaginary part of the LO CFF since (x2 − ξ2) neutralises the contri-
butions of Hq(+)

2 , and the correct forward limit :

H
q(+)
3 (x, 0) = H

q(+)
1 (x, 0) + x2

∫ 1−x

x−1
dα f

q(+)
2 (x, α) , (7.4)

= H
q(+)
1 (x, 0) + x2

q(+)(x)−H
q(+)
1 (x, 0)

2(1− x)x2
2(1− x) , (7.5)

= q(+)(x) . (7.6)

Let us show in addition that Hq(+)
3 verifies the important property of polynomiality of

the Mellin moments. Hq(+)
1 and H

q(+)
2 satisfy polynomiality since they write as Radon

transform of double distributions. To show that Hq(+)
3 satisfies it as well, we just need to

observe that since Hq(+)
2 is a singlet GPD with no D-term, its Mellin moments for n even

are 0, and for n odd, ∫ 1

−1
dx xnH

q(+)
2 (x, ξ) =

n−1∑
k=0 even

ξkAn,k . (7.7)

Multiplying Hq(+)
2 by (x2 − ξ2) simply adds a term ξn+1 :∫ 1

−1
dx xn(x2 − ξ2)H

q(+)
2 (x, ξ) =

∫ 1

−1
dx xn+2H

q(+)
2 (x, ξ)− ξ2

∫ 1

−1
dx xnHq(+)

2 (x, ξ) , (7.8)

= An+2,0 +
n+1∑
k=2
even

(An+2,k − An,k−2)ξ
k . (7.9)

Therefore, Hq(+)
3 satisfies polynomiality, but with a D-term generated by the interplay of

H
q(+)
2 and the factor (x2 − ξ2). Technically, multiplying a DD f q(+) by a factor (x2 − ξ2)
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may be considered as a new DD scheme, in the same way that (1−x)f
q(+)
P was presented

as the Pobylitsa representation in Eq. (2.39). Our new scheme is however only adapted
to singlet GPDs with vanishing diagonals 1.

Having fulfilled polynomiality, desired forward limit and imaginary part of the LO
CFF, we still need to concern ourselves with its real part. The LO dispersion relation
reads

ReHq(ξ) = 2e2q

∫ 1

−1
dz

Dq(z)

1− z
+

1

π
p.v.

∫ 1

0

dξ′ ImHq(ξ′)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
. (7.10)

Therefore, obtaining the correct real part of the LO CFF simply amounts to obtaining the
correct subtraction constant, which we note CH . We have introduced a spurious D-term
– and therefore a spurious subtraction constant – by multiplying a GPD by (x2 − ξ2) in
Eq. (7.3). This spurious subtraction constant, noted CH3 can be identified by the use of
the dispersion relation (7.10) on H

q(+)
3 . We can correct it by adding a D-term Dq

3 to our
model such that

2e2q

∫ 1

−1
dz

Dq
3(z)

1− z
= CH − CH3 . (7.11)

One particularly easy solution is provided by

Dq
3(z) =

3

4e2q
(CH − CH3)z(1− z2) , (7.12)

which yields the final model

Hq(+)(x, ξ, t) = H
q(+)
3 (x, ξ, t) +

3

4e2q
(CH − CH3)

x

|ξ|
R

(
1− x2

ξ2

)
, (7.13)

where R(x) = (x+ |x|)/2 is the ramp function.

Summary of the model
To produce a singlet GPD model satisfying the polynomiality property and

having the exact forward limit q(+)(x) and LO CFF Hq(ξ) at some fixed t and
µ2
F values :

1. Compute the CFF subtraction constant CH .
2. Compute the Radon transform H

q(+)
1 (x, ξ) of the DD defined for β > 0 –

and expanded for β < 0 so that it is β-odd – by

f
q(+)
1 (β, α) =

1

πe2q

d
dβ

[
β

2− β
ImHq

(
β

2− β

)]
.

3. Compute the Radon transform H
q(+)
2 (x, ξ) of the DD defined for β > 0 –

1. It is technically possible to represent singlet GPDs with a non zero limit for x → ξ in this scheme
(the diagonal x = ξ itself would then be undefined except using a continuous extension). We will even
face a GPD with divergent behaviour when x → ξ when applying our model to the proton case in the
following. It necessitates however a singular DD to overcome the factor (x2 − ξ2) and it is therefore ill
advised to use this representation as a general DD scheme.
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and expanded for β < 0 so that it is β-odd – by

f
q(+)
2 (β, α) =

q(+)(β)−H
q(+)
1 (β, 0)

2(1− β)β2
.

4. Compute the CFF subtraction constant CH3 of

H
q(+)
3 (x, ξ) = H

q(+)
1 (x, ξ) + (x2 − ξ2)H

q(+)
2 (x, ξ) .

5. The GPD model is given by

H
q(+)
3 (x, ξ) +

3

4e2q
(CH − CH3)

x

|ξ|
R

(
1− x2

ξ2

)
,

where R(x) = (x+ |x|)/2 is the ramp function.

7.1.2 . Practical use
We will show the results of the model on two practical cases, one for pions and one

for protons.

Pion model

For the pion model, we use successively the two PDFs discussed in Ref. [179], namely

u1(x) = Θ(x)
(
30x2(1− x)2

)
, (7.14)

u2(x) = Θ(x)
(
213.32x2(1− x)2

[
1 + 2.29x(1− x)− 2.93

√
x(1− x)

])
, (7.15)

where Θ(x) is the Heaviside step function. Because the PDFs are vanishing for x < 0, the
associated singlet PDFs read

u
(+)
1 (x) = sgn(x)

(
30x2(1− |x|)2

)
, (7.16)

u
(+)
2 (x) = sgn(x)

(
213.32x2(1− |x|)2

[
1 + 2.29 |x|(1− |x|)− 2.93

√
|x|(1− |x|)

])
.

(7.17)

Positivity constraint for the pion on the singlet GPD takes the simple form for x > |ξ|

|Hu(+)(x, ξ)| ≤

√
u(+)

(
x+ ξ

1 + ξ

)
u(+)

(
x− ξ

1− ξ

)
. (7.18)

As a consequence,

lim
x→ξ
x>ξ

Hu(+)(x, ξ) ≤

√
u(+)

(
2ξ

1 + ξ

)
u(+)(0) . (7.19)

Considering u(+)(0) = 0 for both considered pion PDFs, we conclude therefore that the
imaginary part of the LO CFF for our model has to be 0. We have no way a priori to fix
a sensible value for the real part of the LO CFF or equivalently the expected subtraction
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Figure 7.1 – Singlet analytical models that reproduce exactly a given PDF and imaginary
part of a LO CFF, and that vanish at ξ = 1 to satisfy the requirements of the soft pion theorem.
We use two pion PDFs u(+)

1 (Eq. (7.16) - left) and u
u(+)
2 (Eq. (7.17) - right). Due to positivity

constraints, the imaginary part of the LO CFF is constrained to be 0. The models are shown in
solid lines for ξ = 0 (blue), ξ = 0.25 (orange) and ξ = 0.5 (green). On the right panel, the dotted
lines represent the positivity bound of Eq. (7.18). It is exactly equal to our analytical model on
the left panel.

constant in the absence of actual experimental data. We can however replace steps 1 and 5
of our modelling procedure – which are intended to adjust the model to the expected real
part of the LO CFF by defining a custom D-term contribution – by another procedure
intended to satisfy the soft pion theorem [39, 224] already mentioned in Section 6.2.2. We
remind that the latter requires that the singlet quark GPD vanishes on the ξ = 1 line.
Therefore, step 1 is suppressed, and step 5 replaced by

H
u(+)
3 (x, ξ)− sgn(ξ)Θ

(
1− x2

ξ2

)
H
u(+)
3

(
x

ξ
, 1

)
. (7.20)

Starting directly at step 2, since ImHu(ξ) = 0, we find that f q(+)
1 (β, α) = 0, and

following the rest of the procedure with modified step 5 brings the results of Fig. 7.1.
We reproduce exactly the correct PDFs and the vanishing imaginary part of the LO CFF
in both cases. We compare the model with the positivity bound defined for x > |ξ| by
the r.h.s. of Eq. (7.18). Surprisingly, for the PDF choice u(+)

1 (left panel), our analytical
model is exactly equal to the positivity bound. For u(+)

2 (right panel), our analytical
model remains below the positivity bound. In both cases, the behaviour looks excellent.
Therefore, this model could represent an alternative to the procedure of Ref. [231, 179]
or the polynomial fit we presented in Section 6.2.2 consisting in finding a DD which
approximately saturates the positivity bound of Eq. (7.18) to extend the GPD to the
ERBL region. We have here a model that directly satisfies polynomiality, is
defined on both the DGLAP and ERBL regions, reproduces exactly a given
PDF, imaginary part of the LO CFF and allows further constraints on the
D-term – either to reproduce the real part of the LO CFF or satisfy the soft-
pion theorem for instance – and seems to co-exist well with the constraint
of positivity. Note that even if positivity was not obtained by the analytical model for
some requirements of PDF and LO CFF, we could add to the model a LO shadow GPD
to try and obtain the correct positivity property. LO shadow GPDs would not spoil the
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Figure 7.2 – (left) DD f
u(+)
1 (β, α) intended to reproduce the imaginary part of the u quark

contribution to the LO CFF in GK model for ξ ∈ [ϵ, 1], and ϵ = 0.01 or 0.001. As ϵ decreases and
we reproduce correctly the imaginary part of the LO CFF on a wider interval, the DD tends to a
continuous function plus a singularity at β = 0. – (right) Radon transform H

u(+)
1 (x, ξ = 0.5) of

the previous DDs (orange and green), with the value of the singlet u quark GK model in dotted
blue. One can observe that we reproduce indeed with this exotic model the correct diagonal of
the GPD, but the rest of it looks nothing like a traditional GPD.

exact agreement of the forward limit and LO CFF by definition, and produce a wide
range of behaviours away from the regions x = ξ and x = 0 that can help correct a lack
of positivity. First attempts in this direction have been very promising, justifying the use
of shadow GPDs in the neural network modelling of Section 7.2.

Proton model

We can apply our model to try to reproduce the phenomenological GK model. We
extract the singlet PDF and LO CFF of the u quark GK model, and use them as seeds to
fabricate our own. The subtraction constant in the GK model is 0 owing to the absence
of a modelling of the D-term. However, already at the second step of our procedure, a
notable difficulty appears. Due to the divergence of the imaginary part of the LO CFF at
small ξ, the derivative required to compute fu(+)

1 (β, α) is difficult to estimate at small β.
To understand what is happening, it is useful to only try to reproduce the imaginary part
of the LO CFF starting from ξ > ϵ. We demonstrate on Fig. 7.2 the effect of choosing
ϵ = 0.01 (orange curves) and ϵ = 0.001 (green curves). The DD f

u(+)
1 (β, α) on the left

panel seems to be overall very well-behaved, except in the limit where β is close to 0
where it oscillates very strongly. As ϵ decreases, the range in β of oscillations decreases
quickly, but the their amplitude increases on the other hand. In the limit where ϵ → 0
and we reproduce the imaginary part of the LO CFF on the entire interval ]0, 1], the DD
becomes a continuous background with an superimposed distribution at β = 0. This is
visible on the Radon transform H

q(+)
1 (x, ξ) shown on the right panel, where as ϵ→ 0, the

GPD becomes a continuous background, plus a finite height but infinitely narrow peak
at x = ξ. The second step of our model produces therefore an "exotic" solution to the
problem of getting the correct imaginary part of a diverging LO CFF while remaining
polynomial. Let us stress that the distribution at the β = 0 line does not create a D-term,
but still belong to the DD f in the Polyakov-Weiss representation.
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Figure 7.3 – H
u(+)
3 (x, ξ = 0.5) of our model which reproduces the correct forward limit and

diagonal of the GK model, but with a divergence when x → ξ with x ̸= ξ. The variation of ϵ
makes no observable difference in the model.

One may wonder if following the further steps of our modelling procedure allows us to
somehow regularise this exotic GPD. It is however not the case, the third step with fu(+)

2

bringing even more issues. Indeed, fu(+)
2 is singular at β = 0 because of the factor 1/β2

in its definition. When ξ ̸= 0, the factor (x2 − ξ2) = (x+ ξ)(x− ξ) by which we multiply
the Radon transform of f2 can tame only a divergence of order 1/(x− ξ) on the diagonal,
but not 1/(x − ξ)2. For the pion model, we had the chance that u(+)(β) − H

u(+)
1 (β, 0)

was vanishing in the limit β → 0, providing the necessary regularisation. However, for
the GK model, the ill-defined behaviour of Hu(+)

1 (β, 0) at small β and the divergence of
u(+)(β) do not offer this relief. We end up therefore with an even more peculiar GPD : it
is polynomial, has the correct diagonal and forward limit, but diverges when x gets close
to ξ from either superior or inferior values, while being finite and equal to the expected
diagonal at x = ξ. This effect can be observed on Fig. 7.3.

As a conclusion, we have proposed a model which gives excellent results for GPDs
whose PDF remains finite when x → 0, reproducing correctly the forward limit and LO
CFF while respecting polynomiality and showing a good compatibility with positivity
inequalities. However, in the case of diverging PDFs at small x, the results are quite
exotic, although they still produce the correct forward limit and LO CFF while satisfying
polynomiality. It is possible to envision an hybrid modelling where the divergent part
of the GPD is modelled first, for instance thanks to an RDDA-like approach, and the
resulting GPD now cleared from divergences is modelled thanks to our procedure with
the addition of shadow LO GPDs. We want however to explore the possibility of dealing
directly with the phenomenological small x divergence.

7.2 . Neural network modelling of the double distribution

Our objective of being able to exactly reproduce a forward limit and LO CFF while
respecting positivity and polynomiality has only been partially fulfilled in the previous
section owing to the bad behaviour of our model when facing the phenomenological Regge
behaviour of PDFs at small x. We consider nonetheless that our objective is important
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since it encompasses directly some of the most stringent experimental constraints on
GPDs. It is known that models based on the RDDA (see Section 3.4.1) for instance offer
only a limited flexibility : although they reproduce exactly a given forward limit by design,
their ability to accommodate the LO CFF is entirely contained in just one free parameter
and is therefore quite limited (see for instance Ref. [166]).

Having used neural network models of CFFs precisely for their flexibility and the lesser
model dependence they introduce compared to physically motivated parameterisations,
it is only natural to try to satisfy our objective of reproducing the forward limit and LO
CFF with a neural network model of the double distribution. Neural network modelling
has now become common practice in the field of PDFs, see for instance Refs. [188, 190,
191]. However, it is not completely straightforward to apply the PDF strategy to the
GPD case, owing to the higher dimensionality of GPDs and extra non-trivial theoretical
constraints. We will notably illustrate how to deal with the simplified positivity inequality
for x > |ξ| inspired from Eq. (2.44) 2 :

|Hq(x, ξ, t)| ≤

√
q

(
x+ ξ

1 + ξ

)
q

(
x− ξ

1− ξ

)
1

1− ξ2
. (7.21)

This section is largely based on the published work of Ref. [8].

7.2.1 . Description of the model

Our neural network model for singlet DDs consists of three parts

f q(+)(β, α) = (1− x2)f
q(+)
C (β, α) + (x2 − ξ2)f

q(+)
S (β, α) + ξf

q(+)
D (β, α) . (7.22)

The first term, (1− x2)f
q(+)
C (β, α), is inspired from the RDDA, except it will use a much

more flexible profile function to be able to adapt to different LO CFFs. The second term,
(x2 − ξ2)f

q(+)
S (β, α), is directly dictated by our study of shadow GPDs. Its contribution

vanishes by design for x = ξ, and we will make sure it vanishes as well for ξ = 0. The
inclusion of this term is important for a proper estimation of model uncertainties when
GPDs are constrained by a sparse set of data. We have demonstrated previously that
adding factors x2 or ξ2 to singlet DDs did not violate the polynomiality property, but
simply resulted in the production of a D-term contribution. The third term, ξf q(+)

D (β, α),
only contributes to the D-term. The inclusion of this term gives an extra flexibility to the
model required to reproduce all x-moments of GPDs and correct the possibly unwanted
D-term contributions of the two previous terms. Let us detail more precisely the exact
modelling of each term.

First term

As in the RDDA, we factorise the well-known forward limit q(+)(x) with a profile
function hC(β, α), except the profile function is produced by a neural network. We have
added a factor (1− x2) in front of f q(+)

C in Eq. (7.22) which helps to satisfy positivity in
the large x region where the inequalities are particularly stringent. It translates into the

2. This simplified positivity inequality overlooks the role of the GPD E which we have not specifically
modelled so far.
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Figure 7.4 – Architecture of the neural network used to represent the profile function hC(β, α).
Figure taken from Ref. [8].

factoring of a term 1/(1− β2) in the expression of f q(+)
C , that is

f
q(+)
C = q(+)(β)hC(β, α)

1

1− β2
. (7.23)

To ensure the correct behaviour of the GPD, the profile function hC(β, α) must be even
in the α and β variables, and normalised as follows∫ 1−β

β−1
dαhC(β, α) = 1 , (7.24)

so that the proper reduction to q(+) is obtained for the Radon transform of this term when
ξ = 0. In addition, to increase the regularity of the term and facilitate the implementation
of positivity constraints, we require that the profile function vanishes on the edges of the
rhombus, that is

hC(β, α) = 0 for |α|+ |β| = 1 . (7.25)

To satisfy all these requirements, we propose to model the profile function by

hC(β, α) =
ANNC(|β|, α)∫ 1−|β|

|β|−1 ANNC(|β|, α)
, (7.26)

where ANNC(β, α) is the output of a neural network whose architecture is detailed in
Fig. 7.4. It is a feed-forward network with a single hidden layer, taking |β| and α as
inputs. Denoting by φ the activation function of the hidden layer neurons, the output of
the k-th hidden neuron is

o
(2)
k = φ

(
bk + w

(1)
1,k|β|+ w

(1)
2,k

α

1− |β|

)
−φ

(
bk + w

(1)
1,k|β|+ w

(1)
2,k

)
+
[
w

(1)
2,k → −w(1)

2,k

]
, (7.27)

where bk is the bias of the neuron, and w(1)
1,k, w

(1)
2,k are the weights connecting it to the input

layer. They are free parameters to be fitted on data. The activation function is chosen as
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the sigmoid φ(x) = 1/(1 + exp(−x)). One can see therefore that the neurons do not act
simply as the composition of the activation function and the mere weighted sum of its
inputs.

The reason for the form of Eq. (7.27) is to satisfy by design most of the requirements
of our profile function. First, the term

[
w

(1)
2,k → −w(1)

2,k

]
guarantees that the output is

even in α, while using directly |β| gives the correct parity in β. Then rescaling α by
1 − |β| serves two purposes. First it is easy to see in Eq. (7.27) that the output is 0 if
α = 1−|β|, so the profile function vanishes on the edges of the rhombus. Then it provides
a desirable transformation from variable α which spans [|β|−1, 1−|β|] to α/(1−|β|) which
spans [−1, 1]. This standardisation of variables produces a better behaviour in terms of
convergence of the neural network.

The output of the network itself is then obtained this time as a simple weighted sum
of the outputs of the hidden layers o(2)k :

ANNC(|β|, α) =
∑
k

w
(2)
k,1o

(2)
k . (7.28)

This amounts to using the linear activation function in the output layer, without any
biases. The parameters w(2)

k,1 are free. It is possible to compute explicitly the normalisation
factor in Eq. (7.26) as

∫ 1−|β|

|β|−1
ANNC(|β|, α) = 2

∑
k

w
(2)
k,1

w
(1)
2,k

(|β| − 1)

[
log

(
cosh

(
bk − w

(1)
2,k + |β|w(1)

1,k

))
− log

(
cosh

(
bk + w

(1)
2,k + |β|w(1)

1,k

))
+ w

(1)
2,k tanh

(
bk − w

(1)
2,k + |β|w(1)

1,k

)
+ w

(1)
2,k tanh

(
bk + w

(1)
2,k + |β|w(1)

1,k

)]
. (7.29)

Second term

We have extracted shadow GPDs in Chapter 6 thanks to a polynomial parameterisa-
tion of DDs which yielded many remarkable properties. It is an excellent framework to
demonstrate the existence of these objects and perform their explicit extraction at NLO
in view of the quantification of the conditioning of the deconvolution problem. However,
since no constraint has been imposed on the large β region of polynomial DDs, shadow
GPDs extracted in this manner are not particularly small at large x, as can be witnessed
for the brown curve on Fig. 6.4 for instance. Since positivity constraints are so stringent
in the large x region, it means that contributions to the uncertainty stemming from this
NLO shadow GPD will be extremely suppressed. The orange curve on Fig. 6.4, extrac-
ted at a slightly higher polynomial order, is better behaved in the large x region, so will
contribute more to the uncertainty while taking into account positivity, but we find it
preferable to use an alternative modelling of shadow GPDs.

We remind that shadow GPDs can be either defined explicitly through the criteria
enumerated in Section 6.1, or more simply be defined as difference of actual GPDs with
the same forward limit and (N)LO CFF. We will take advantage of that second definition
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to produce the term f
q(+)
S (β, α) in a similar way to f q(+)

C (β, α) :

f
q(+)
S (β, α) = q(+)(β)hS(β, α) , (7.30)

where hS(β, α) is a new profile function whose normalisation is not 1 as for the previous
term, but 0 to cancel the forward limit :∫ 1−β

β−1
dαhS(β, α) = 0 . (7.31)

All other properties of parity and cancellation on the edges of the rhombus are preserved.
Thanks to the (x2− ξ2) factor in Eq. (7.22), the imaginary part of the LO CFF is equally
cancelled. It is not the case of the real part, due to the D-term induced by this factor,
but we will take care of this in the final term. One may wonder why we introduced a
reference to q(+) in Eq. (7.30) although we are explicitly building a term whose forward
limit vanishes. It is because we are interested in the large x behaviour induced by factoring
the phenomenologically relevant PDF, which will prove very useful to enforce positivity.

A model of the profile function hS(β, α) can be proposed as

hS(β, α) = NS

 ANN
(1)
S (|β|, α)∫ 1−|β|

|β|−1 ANN
(1)
S (|β|, α)

− ANN
(2)
S (|β|, α)∫ 1−|β|

|β|−1 ANN
(2)
S (|β|, α)

 . (7.32)

In practice, we are subtracting two GPDs having the same forward limit, obtained thanks
to two neural networks ANN(1,2)

S . For simplicity, we will fix ANN(2)
S = ANNC , and choose

for ANN(1)
S a similar architecture to ANNC , but with free parameters unrelated to that of

the latter. NS is a normalisation which can be in principle arbitrary without producing
any forward limit or contribution to the imaginary part of the LO CFF. In practice,
it will of course be limited by positivity inequalities, and to give the most complete
account of uncertainty related to shadow GPDs, we will systematically try to maximise
this normalisation without violating positivity.

Third term

We model f q(+)
D (β, α) as a traditional D-term contribution

f
q(+)
D (β, α) = δ(β)D(α) , (7.33)

where D is represented by its expansion in terms of Gegenbauer polynomials truncated
at order N

D(α) = (1− α2)
N∑

i=1 odd

diC
(3/2)
i (α) . (7.34)

The coefficients di are free parameters.

7.2.2 . Practical use
Ability to reproduce the GK model

To assess the potential of the model presented above, we generate pseudo-data from
the GK model and first verify our ability to reproduce them. Considering the GK model
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is based on the RDDA and our model is also built on factoring the forward limit with a
profile function, what we are actually mainly probing through this test is the ability of the
neural network to reproduce Radyushkin’s choice of profile function. Precisely, we sample
the GK model on I = 400 points probing logarithmically the domain x, ξ ∈ [10−4, 0.95] for
t = 0 and Q2 = 4 GeV2, and train the ANN to minimise the root mean squared relative
error (RMSE)

RMSE =
I∑
i=1

√√√√1

I

(
GKu(+)(xi, ξi)−Hu(+)(xi, ξi)

GKu(+)(xi, ξi)

)
, (7.35)

where Hu(+) denotes the Radon transform of our neural network model of DD. We use
5 neurons in the hidden layers of ANNC and ANN

(1)
S , and an expansion of the D-term

in f
q(+)
D of 5 elements, that is up to i = 9 in Eq. (7.34). The scaling parameter of the

f
q(+)
S (β, α) term is maintained fixed. Training is performed thanks to a genetic algorithm,

with a drop-out regularisation to prevent overfitting (see Section 4.1.2 where the method
is presented). We remind that drop-out amounts to randomly de-activating neurons – here
one neuron in each network is de-activated at any time – during training while keeping
in memory their previously trained parameters. The output of other neurons is scaled to
compensate for the loss of signal intensity. The fraction of de-activated neurons has been
validated by confronting the model to independent samples and observing the absence of
over-fitting effects. This method allows us to introduce an element of stochasticity in the
fit which prevents excessive sensitivity to minute features of the fitted data, and amounts
in practice to training in parallel several different architectures. We re-activate all neurons
for testing after the training, so the output of the full neural network may be considered
as a superposition of the output of all architectures trained in parallel. We additionally
perform the minimisation 100 times starting from different random initialisations of the
neural networks, producing therefore what we will call 100 replicas. This allows us to
reduce issues with imperfect convergence to a local minimum, and give an account of the
uncertainty generated by the stochastic contribution of the drop-out method.

Finally, we apply outlier suppression thanks to a modified 3σ exclusion procedure :
once training of the 100 replicas is achieved, we evaluate each on 1000 random points in
the (x, ξ) space and discard replicas which are more than 3σ away from the mean of the
distribution formed by all replicas in more than 10% of the probed kinematics.

The result is shown on Fig. 7.5. The fit of a single replica takes about 1.9h on 40
computing cores and ends with an RMSE of 0.016 on average. As can be assessed on the
plot, the agreement is overall very satisfactory. Increasing the number of neurons in the
hidden layers, which yields an even better agreement with the fitted data, is therefore not
deemed necessary. A comparison of Mellin moments of the GK model and the distribution
of Mellin moments of our model is shown on Fig. 7.6. We remind that the Mellin moments
of a singlet GPD are exactly 0 for n even, and satisfy for n odd∫ 1

−1
dx xnHq(+)(x, ξ) =

n+1∑
k=0 even

ξkAn,k . (7.36)

The abscissa for each Mellin coefficient An,k on the plot of Fig. 7.6 is designed to include
0 to allow a visual measurement of the relative uncertainty of the extraction – except for
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Figure 7.5 – Fit of the GK model (black dashed line) with our neural network DD model on
400 points covering a large range in (x, ξ). The orange band represents the 1σ interval computed
from 100 minimisations starting from random initialisations of the network trained with drop-out
method. We compared the GK model with our own for ξ = 0.1 (left), ξ = 0.5 (center) and ξ = x
(right). Figure taken from Ref. [8].

Figure 7.6 – Comparison of the Mellin coefficients defined in Eq. (7.36) for the GK model
and our fitted model. Figure taken from Ref. [8].
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Figure 7.7 – 100 replicas (solid red lines) of the fit of our neural network DD model on the
PDF and diagonal of the GK model PDF while enforcing the positivity condition of Eq. (7.21).
We show the result for ξ = 0.01 (left) and ξ = 0.9 (right). The grey hatched bands are exclusion
zones prohibited by the positivity condition. Figure taken from Ref. [8].

coefficients An,n+1 which are associated to the D-term and vanish in the GK model due to
the absence of a D-term. We observe that moments An,0, which correspond to moments
of the forward limit, are particularly well reconstructed. This is not a surprise since our
model is factorised by the forward limit and reproduces it exactly. Overall this test of
reproducibility of the GK model is very conclusive, and the fact that GK is right in the
uncertainty bands shows that the neural network has the ability to reproduce GK without
significant bias.

Uncertainty associated to only knowing the forward limit and diagonal of the
GPD

We would like to lead now a more ambitious test. Assuming we only know the PDF and
imaginary LO CFF – that is the diagonal of the GPD – and enforce positivity constraints,
what kind of uncertainty on the extraction of the GPD does our model produce ? Since
as we mentioned before, we always reproduce exactly any desired forward limit, we just
have to fit our model on the diagonal of the GK model. We use the same loss function
as above (7.35), except we now apply it only to I = 200 points logarithmically spaced
with x = ξ ∈ [10−4, 0.95]. To enforce positivity, we use the following procedure during
training with the genetic algorithm. For each candidate considered during training, we
check by how much we can scale f q(+)

S by changing the NS parameter to saturate the
simplified positivity inequality of Eq. (7.21). We check this on 10 000 points covering the
x > |ξ| domain. If we are not able to scale f q(+)

S to respect the constraint on all points,
we simply discard the candidate in the training. If we can, we choose the highest allowed
value of |NS|. This method to enforce positivity requires a substantial computing power,
but gives satisfactory results. Note that f q(+)

C and f
q(+)
S may not fulfill positivity when

taken separately, but fulfill it in sum after the minimisation. This indicates that inclusion
of f q(+)

S gives extra-freedom to satisfy this important theoretical requirement.
We demonstrate the result of our procedure to guarantee the satisfaction of positivity

condition (7.21) in Fig. 7.7. As one can witness, the replicas do not enter the exclusion
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Figure 7.8 – Fit of the diagonal of the GK model (black dashed line) with our neural network
DD model on 200 points covering a large range in x = ξ. The deep orange band represents the 1σ

interval computed from 100 replicas of f q(+)
C alone, the light orange one of the sum f

q(+)
C +f

q(+)
S .

We compared the GK model with our own for ξ = 0.1 (left), ξ = 0.5 (center) and ξ = x (right).
The hatched bands represent the excluded zone by the positivity condition of Eq. (7.21). Figure
taken from Ref. [8].

band prohibited by the positivity condition. At small ξ, the variance of the replicas is
very reduced, due to the strong constraining power of the imposed forward limit. On the
contrary, at large ξ, the replicas fill the entire space authorised by positivity constraints.

The general result of the fit of the diagonal with positivity enforced is shown on
Fig. 7.8. On the right panel, the excellent agreement of our model with the diagonal of
the GK model is visible. The RMSE is on average 0.0075. This time, computation for a
single replica takes however about 26h on 40 computing cores. For ξ = 0.1 and ξ = 0.5, we
show the uncertainty bands associated to 100 replicas for the contribution of f q(+)

C alone
(deep orange) and the sum f

q(+)
C +f

q(+)
S (light orange). Considering fitting the model only

on its diagonal brings no constraint on the D-term, we do not show the unconstrained
contribution of f q(+)

D . Two main observations can be made. First, the shadow term f
q(+)
S

brings no visible contribution to the extraction at ξ = 0.1, but a noticeable one at ξ = 0.5.
Very practically, this is due to the fact that shadow contributions vanish for ξ = 0. A
deeper understanding of the small ξ behaviour of GPDs will be the subject of the final
section of this document. Second, there is a systematic deviation between our model and
the target GK for x slightly smaller than ξ. The cause of this discrepancy is not that our
model would somehow fail to reproduce the GK one, since we know well from our first
test that we are able to do it. The actual reason is that the u singlet GPD H in the GK
model does not satisfy the simplified positivity condition of Eq. (7.21). Indeed, a more
complete version of the positivity condition would notably imply GPD E, which is out of
the scope of this exploratory study.

Conclusion

The two tests we have shown demonstrate that our neural network modelling of DDs
has the ability to reproduce the general features of a phenomenologically relevant model,
while offering at the same time a far greater flexibility. It provides an interesting possibility
to quantify the uncertainty associated to the joint knowledge of PDFs and CFFs, while
allowing to implement positivity conditions in a framework guaranteeing the polynomiality
property. One can envision straightforwardly the addition of further constraints, like the

167



Chapter 7. New models of generalised parton distributions

knowledge of some Mellin moments which could be jointly fitted together with the CFF
knowledge thanks to an adapted loss function. A complete working example of this model
based on experimental data is still to be done. Among aspects which remain to be dealt
with are a deeper reflection on inclusion of t dependence, the need to take into account
other types of GPDs and managing the complex link between GPDs and experimental
data.

We believe this model can be generalised to include these effects. As an increased
control of systematic effects is highly desirable in front of the precision era of GPD physics,
we hope that our model may conveniently be used in current and future analyses of GPDs,
or in connection for instance to lattice QCD, either in x-space or through Mellin moments.

7.3 . Specificities of the small ξ region

As we have already noticed, the proximity of the well-known forward limit at small
ξ, at least for the GPDs H and H̃ at t = 0, restricts a lot the relevence of shadow
GPDs in that region. The only way to introduce shadow GPDs would be by means of
abrupt functions which jump suddenly from 0 at ξ = 0 to a significant value at still
negligible values of ξ – objects that we found too exotic to be considered so far. The
assumed regularity of GPDs in the small ξ limit has given rise to interesting modelling
proposals, already since the early days of GPD studies more than two decades ago. The
subject has triggered a renewed phenomenological interest thanks to the perspective of
using exclusive measurements at very small values of ξ to constrain gluon PDFs at equally
small longitudinal momentum fraction x. Gaining a precise knowledge of gluon PDFs in
this region is crucial for the search of signs of gluon saturation [232], calculations of event
rates in ultra-high energy neutrino astrophysics [233], and the characterization of the
gluonic system that defines the initial state of heavy-ion collisions [232].

The uncertainty on gluon PDFs for x ∼ 10−4 or less is still quite large, mainly because
experimental access is scarcer than for larger values of x. Experimental sensitivity to the
very small ξ and x region can be achieved through different measurements in collider
facilities which provide the largest collision energies

√
s. At the LHC, inclusive particle

production in particular of charm and beauty quarks has been proposed to constrain gluon
PDFs in the proton for instance in Refs. [234, 235, 236]. Although a noticeable reduction
of uncertainty is produced by inclusion of these measurements, the impact is limited
by missing higher order corrections indicated by large scale uncertainties, hadronization
uncertainties and other effects not accounted for in perturbative QCD. In addition to
these observables, exclusive hard photoproduction processes which can also be measured
at colliders are interesting to consider since they should be less or, at least, differently
affected by phenomena not accounted for in state-of-the-art pQCD calculations.

Of particular interest is exclusive heavy vector meson production (HVMP) of J/ψ or
Υ mesons, where the hard scale is provided by the mass of the vector meson mV in the
final state, and typically probed values of ξ 3 are of the order of e−ymV /

√
s where y is the

pseudorapidity. HERA [237, 238, 239, 240, 241, 242, 243], LHC [244, 245, 246, 247, 248,
249] or a future LHeC allow measurements at small values of ξ of the order of 10−4 down
to 10−6. The future EIC will provide precise HVMP data with ξ of the order of 10−3 to

3. As it is customary for experimentalists to talk in terms of Bjorken’s variable xB , we remind that
in the kinematic region of interest here, xB ≈ 2ξ (see Eq. (3.5)).
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Figure 7.9 – Photoproduction of heavy vector meson J/ψ, adapted from [251].

10−4.

The leading order two-gluon exchange in the t-channel depicted on Fig. 7.9 is the
dominant contribution to the HVMP cross-section. Because there is a transfer of four-
momentum between initial and final hadron states p and p′, the description of this process
in the framework of collinear factorization does not involve usual PDFs, but GPDs. As we
will see shortly, simply equating GPDs in the small ξ region with their forward limit is a
tempting possibility, which comes however with a number of issues. A more sophisticated
proposal to relate GPDs to PDFs in the small ξ region, which we will refer to in the
following as Shuvaev’s proposal for concision since it is based on the Shuvaev transform,
was proposed in Refs. [110, 250] and was applied to LHC and HERA data for instance in
Ref. [251] or more recently to LHCb data for instance in Ref. [252]. The recent development
of the software APFEL++ for the LO evolution of GPDs in momentum-space [1] allows
us to reinterpret Shuvaev’s proposal, and suggest an alternative procedure where we find
the evaluation of the theoretical uncertainty associated to linking GPDs to PDFs easier
to perform.

We will start by exposing some properties of the evolution operators of GPDs and
PDFs in the very small x and ξ limits. Then we revisit Shuvaev’s proposal to reconstruct
the small ξ dependence of GPDs from PDFs and reinterpret its validity in the context
of the properties of evolution operators discussed in the previous section. After that, we
introduce an alternative proposal, and discuss the uncertainty associated with it.

7.3.1 . Properties of evolution operators in the small x and ξ limit

The problem of reconstructing GPDs from PDFs in the small ξ limit might appear
quite trivial. We know well that PDFs correspond to the forward limit of GPDs when
t → 0, and therefore ξ → 0. For simplicity, we will express all results with the GPD H,
but similar results can be obtained for E, H̃ and Ẽ. We will also systematically consider
ξ ≥ 0, parity in ξ allowing to derive all result for ξ < 0. By proposing a factorised t-Ansatz
as we have done for instance for the study of the GFF Ca(t) in Chapter 4, we could think
about suggesting

Ha(x, ξ, t, µ2) = xpaa(x, µ2)A(t) , (7.37)
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in the limit where ξ is small, where pa = 1 if a = g and 0 otherwise 4. Surely the factorised
t-dependence is a serious assumption per se 5 but there is a bigger theoretical issue. It is
possible to write Eq. (7.37) at some scale µ2

0, but as we will see, the form of the equation
is not preserved by evolution. Then this would lead us to wonder what scale µ2

0 would be
suitable, and what level of uncertainty we can expect from this approximation.

Let us notice that, provided we accept the assumption of factorised t-dependence, the
suggestion (7.37), which is exactly true if ξ = 0, is still very satisfactory if ξ is not strictly
zero, but x≫ ξ. Indeed, in that limit, GPD evolution tends towards the DGLAP evolution
of PDFs, and Eq. (7.37) becomes valid for all scales. The situation is more difficult when
ξ is not negligible compared to x, due to the relation x, ξ and µ2 enjoy via evolution
equations. This case deserves a particular attention since the convolutions of GPDs that
enter the description of exclusive HVMP exhibit a strong sensitivity to the region x ≈ ξ
– as in the case of DVCS. Likewise, HVMP is only sensitive to singlet GPDs.

Thanks to the discussion of Section 6.3.1 explaining the link between the LL resum-
mation and the LO splitting kernels Kab,(0) introduced in Eq. (2.52), we define the LO
evolution of GPDs with full LL resummation as

Ha(x, ξ, t, µ2)

xpa
=
∑
b

∫ 1

0

dz

x
Γab,(0)

(
z

ξ
,
ξ

x
;µ2, µ2

0

)
Hb(z, ξ, t, µ2

0)

zpb
. (7.38)

In light of the definition of Eq. (7.38), the usual LO DGLAP evolution equation of PDFs
can be written as

a(x, µ2) =
∑
b

∫ 1

0

dz

x
Γ
ab,(0)
DGLAP

(z
x
;µ2, µ2

0

)
b(z, µ2

0) , (7.39)

where the DGLAP evolution operator Γab,(0)DGLAP is linked to the general one Γab,(0) through

Γ
ab,(0)
DGLAP (α;µ

2, µ2
0) = lim

r→0
Γab,(0)

(α
r
, r;µ2, µ2

0

)
. (7.40)

One can consider the Γab,(0) operators as weights of the GPD at initial scale µ2
0 to produce

GPDs at final scale µ2. We will call z the longitudinal momentum fraction at initial scale
µ2
0, and x the same quantity at final scale µ2. Γab,(0) operators provide therefore a measure

of the importance of various z regions of the GPD at initial scale to the GPD at x at final
scale.

The properties of evolution at small values of ξ have for instance been studied in
Refs. [253, 254, 250, 256], but to the best of our knowledge, studies of this kind have been
performed thanks to models of GPDs and DDs, often with the assumption of power-law
behaviour at small x, and have therefore a lesser generality than our discussion which
takes place directly at the level of the Γab,(0) operators. The evolution code APFEL++
allows indeed the explicit extraction of these objects.

4. Hq(x, ξ, t, µ2) = q(x+ ξ, µ2)A(t) has been likewise proposed [253, 254] but suffers in the end from
the same issues as Eq. (7.37) in addition to requiring more care to implement the correct parity of the
result in ξ.

5. Let us note for instance that the large x behaviour described in Eq. (2.9) is independent of t, and
therefore incompatible with a factorised t dependence, and that lattice results seem to confirm it [255].
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For numerical applications, we will use the typical hard scales encountered in HVMP,
given by half the mass of the vector meson as argued in Ref. [257]. Indeed, Ref. [258]
demonstrates the large sensitivity of the NLO HVMP cross-section to the precise choice
of factorisation scale, largely due to the log(1/ξ) enhancement of the NLO corrections.
Ref. [257] argues that fixing the factorisation scale at half the mass of the vector meson
allows a resummation of the log(1/ξ) contributions and a stabilisation of the perturbative
expansion. We will therefore use the final scales µc = mJ/ψ/2 = 1.5 GeV and µb = mΥ/2 =
4.7 GeV. Since we only perform LO evolution, we need an initial scale to start evolution
which is high enough to produce consistent results. We choose as initial scale µ0 = 1 GeV
and plot on Fig. 7.10 evolution operators Γab,(0)(y, ξ/x;µ2, µ2

0) evaluated for µ2 = µ2
c and

µ2
b . We have named the ratio y = z/ξ because this variable will play a predominant role

in the discussion. Mind that only values of y in the range [0, 1/ξ] should be considered
as a consequence of the fact that z varies between 0 and 1. The plot allows therefore to
observe evolution operators for ξ as small as 10−6. Let us comment on some important
features.
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Figure 7.10 – Value of Γab,(0)(y, ξ/x;µ2, µ20 = 1 GeV2) where y = z/ξ in the four sectors
ab = qq (upper left), ab = qg (upper right), ab = gq (lower left) and ab = gg (lower left). The
continuous lines stand for µ = mJ/ψ/2 = 1.5 GeV and the dotted lines for µ = mΥ/2 = 4.7
GeV. The colours refer to various values of the ratio ξ/x : ξ = x (blue), ξ = 0.5x (orange) and
ξ = 0.001x (green). The light grey region is y < 30 which serves as our criterion to discriminate
between the small and large y regions.

— Feature 1 : We have only shown curves for x ≥ ξ since it is the region where we
have the best hope of directly relating the GPD to the PDF. In the 0 < x < ξ re-
gion, contributions of the D-term, which evolve with their own independent ERBL
equation, are completely independent from the PDF. If x ≥ ξ, Ha(x, ξ, t, µ) only
depends of values of Hb(z, ξ, t, µ0) such that z ≥ x, or y ≥ x/ξ, and the weights
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Γab,(0)(y, ξ/x) are null if y < x/ξ as can be assessed on Fig. 7.10.

— Feature 2 : The qq and gg sectors exhibit a strong peak at z = x, or y = x/ξ,
all the more that µ2 is close to µ2

0. It is easily understandable since in the limit
of no evolution where µ2 = µ2

0, Γab,(0)(y, ξ/x;µ2, µ2
0) = δabδ(1− y ξ/x) where δab is

the Kronecker delta 6. On the contrary, as µ2 increases, the contribution from the
region y > x/ξ becomes increasingly important, especially for gluons.

The large y region, where z ≫ ξ, corresponds to a kinematic region where at ini-
tial scale µ2

0, the asymmetry between the four-momenta of incoming and outgoing ha-
dron states z + ξ and z − ξ is negligible, and the GPD can safely be replaced with its
forward limit. We choose y > 30 as criterion to discriminate between small and large
y, which is enough to ensure both z ≫ ξ, and to clear away from the peak region of
Γab,(0)(y, ξ/x = 1;µ2, µ2

0) which will be of specific interest to this study. Conversely, it
would be in general unwise to replace the GPD with the PDF in the small y region (in
grey on the figure), where they may differ significantly.

— Feature 3 : As it is our general goal to extract the largest possible information on
GPDs at small ξ from the PDF, we are led to wonder what are the criteria so that
the large y region plays the most important possible role in evolution. We notice
that weights Γab,(0) increase in the large y region if :

1. the evolution range characterised by µ2 increases as previously mentioned. This
is demonstrated graphically on Fig. 7.10 by the difference between the solid
(µ = 1.5 GeV) and dotted (µ = 4.7 GeV) lines.

2. the ratio x/ξ gets larger, since Γab,(0) only takes non-zero values for y ≥ x/ξ if
x ≥ ξ. It corresponds roughly to pushing the curves of Fig. 7.10 to the right,
outside of the grey region.

3. at a fixed value of the ratio x/ξ, the value of ξ decreases. Indeed, for x ≥ ξ,
relevant values of y range from x/ξ to 1/ξ, so it corresponds to increasing the
range of y to the right on Fig. 7.10. Note however that the actual value of the
evolved GPD depends not only on the weights Γab,(0), but also on the value of
the GPD at initial scale. Whether the contributions of the large y region ac-
tually increase when both ξ and x decrease will depend on whether the increase
of Γab,(0) at large y exceeds the increase of the initial GPD at small x. This de-
pends on the chosen shape of the GPD at initial scale, and we will provide a
quantitative answer to the dominance of the large y region in Section 7.3.3.

— Feature 4 : A final remarkable feature which is only partly visible on Fig. 7.10 is
the similarity of shape. We present in Fig. 7.11 the same plot where we multiply y
by ξ/x so the peaks are systematically aligned at z/x = 1. The curves in the gg and
gq sectors seem almost independent of ξ/x as soon as z/x > 5. They actually differ
by an almost constant factor of 5% between ξ = x and ξ = 0.5x in the large z/x

6. We observe that there is also a noticeable peak in the qg sector which increases fastly when x gets
closer to ξ. This tends to imply that gluons close to the diagonal would produce more quarks than those
away from the diagonal although we have not investigated precisely the reason for this phenomenon.
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Figure 7.11 – Same as Fig. 7.10 except we now represent Γab,(0) as a function of z/x instead
of y = z/ξ.

domain at µ = 4.7 GeV. The difference is much starker in the qq and qg sectors,
with an almost constant factor of 50% of difference for the same parameters. Signi-
ficant differences are furthermore observed in the region where z is of the order of x.

Practically, the last feature we indentified means that provided the region z ≫ x at
initial scale µ2

0 is dominant in the evolution, which is the case if the GPD does not increase
too quickly at small x, the change brought by evolution to the diagonal x = ξ of the
quark GPD is 50% larger than the change brought to the PDF. This fact was previously
highlighted for instance in Refs. [253, 254, 250, 259], where it is shown analytically that
for a power-law behaviour of the forward limit at small x and scale µ2

0, then for µ2 > µ2
0

and x ≥ ξ,

lim
(x,ξ)→(0,0)

Ha(x, ξ, µ2)

Ha(x, 0, µ2)
= h

(
ξ

x
, µ2, µ2

0

)
. (7.41)

h(ξ/x, µ2) tends to 1 when ξ/x→ 0 since the GPD tends towards its forward limit in that
case, and the evolution equation of the GPD tends towards the traditional PDF DGLAP
evolution equation. However, h(ξ/x, µ2) is larger than 1 at finite ξ/x > 0, all the more that
µ2 is larger than µ2

0 and ξ/x close to 1. Therefore, the diagonal of the GPD receives larger
contributions from evolution compared to the forward limit. Ref. [260] finds for instance
a ratio of the diagonal to the forward limit of gluon GPDs of 1.6 for µ2

0 = 0.6 GeV2 to
µ2 = 100 GeV2 for a Regge-inspired Ansatz. By observing that all Γab,(0) operators are
proportional to one another in the large z/x regime, we obtain similarly that

lim
(x,ξ)→(0,0)

Γab,(0)(z/ξ, ξ/x;µ2, µ2
0)

Γab,(0)(z/x, 0;µ2, µ2
0)

= h̃

(
ξ

x
, µ2, µ2

0

)
. (7.42)
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This observation does not rely on an analytical demonstration with assumption of power-
law behaviour of the forward limit at some scale – which Ref. [256] shows to be only
approximatively preserved by evolution – but on an observation of the properties of the
weights Γab,(0) with the assumption that the large z region is dominating evolution.

This demonstrates that the naive proposal of Eq. (7.37) cannot remain valid under LO
evolution if x is of the order of ξ. Assuming Eq. (7.37) is valid at µ0 = 1 GeV, already at
µ = 4.7 GeV, the l.h.s. of the relation may be about 50% bigger than the r.h.s. for small
values of x = ξ. It is therefore clear that any attempt at linking HVMP data, which is
particularly sensitive to the x ≈ ξ region, to PDFs must pay attention to the entanglement
of x and ξ dependence via evolution equations. We will discuss in the following section
Shuvaev’s proposal regarding this link, and illustrate it in view of the Γab,(0) operators.

7.3.2 . Revisiting the role of evolution in Shuvaev’s proposal
The Shuvaev transform [110, 250] allows one to relate the representation of GPDs in

momentum space as we have mostly used them so far to the representation of GPDs in
the space of conformal moments defined in Section 2.4, Eqs (2.54) and (2.55). We remind
that conformal moments provide a convenient tool to study evolution as they do not mix
under LO evolution. We also noticed in Section 2.4 that the anomalous dimensions γn
(5.9) governing the general evolution of GPDs are precisely the same that those governing
the DGLAP evolution of PDFs. This property will be at the basis of Shuvaev’s proposal
to reconstruct small ξ GPDs through the effect of evolution.

The Shuvaev operator, which we denote Sa(x, ξ;n), allows us to relate the two repre-
sentations of GPDs through

Ha(x, ξ, t, µ2) = Sa(x, ξ, n) ∗ Oa
n(ξ, t, µ

2) , (7.43)

where we use the ∗ notation to indicate the action of the Shuvaev operator on an analytical
continuation of the conformal moments. The transform provides therefore a resummation
of the infinite formal expansion of Eq. (3.42).

Reconstructing the ξ dependence of GPDs can equivalently take the form of defining
the ξ dependence of conformal moments. Shuvaev’s proposal consists in approximating in
the limit ξ ≪ 1 the conformal moments by their value for ξ = 0, i.e. (2.56)

Oa
n(ξ, t, µ

2) ≃ Oa
n(ξ = 0, t, µ2) =

∫ 1

−1
dx xn−paHa(x, ξ = 0, t, µ2) , (7.44)

which are exactly the Mellin moments of the PDF if t = 0. This proposal greatly simplifies
the expression of Eq. (7.43), since it can be turned into the following form

Ha(x, ξ, t, µ2) ≈ S ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’, µ2)A(t) , (7.45)

where we assumed a factorised t-dependence and S ′a is now the composition of the Shu-
vaev operator Sa and the simple Mellin transform (see Appendix A.6 for details). We
use boldface character x’ so that no ambiguity arises on the actual integration variable
subtended by the symbol ∗. The practical consequences on GPDs of the assumption of ξ
independence of conformal moments has been discussed in Ref. [165]. The proposal has
been extended in Ref. [111] which provides a technical fix so that the reconstructed GPD
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does not expand outside the correct support x ∈ [−1, 1]. Since both Shuvaev’s proposal
and its extension of Ref. [111] take the general form

Oa
n(ξ, t, µ

2) = F(ξ)Oa
n(ξ = 0, t, µ2) , (7.46)

with F(ξ) = 1 in Shuvaev’s case and F(ξ) = 2(ξ/2)n+1Tn+1(1/ξ) where Tn(x) are Cheby-
chev polynomials of the first kind in Ref. [111], these reconstructions of ξ dependence are
more compatible with evolution than the naive (7.37), in the sense that for the non-singlet
component, reconstructing first the ξ dependence from the PDF at scale µ2

0 and evolving
the obtained GPD to µ2, or evolving first the PDF from µ2

0 to µ2 and then reconstruc-
ting the ξ dependence produce the same result. It can be seen by the fact that the ratio
Oq
n(ξ, t, µ

2)/Oq
n(ξ = 0, t, µ2) for n even is independent of µ2 thanks to Eq. (2.57) for LO

evolution.
It has been however argued in Ref. [109] that the operations of truncating the ξ

expansion of conformal moments - in this case to its first term - and performing their
analytical continuation to apply the Shuvaev transform are non-commutative, so that
in some cases, the reconstructed GPD would not present the correct forward limit. The
authors also describe this procedure as a model among others to reconstruct the small
ξ dependence of GPDs not without its own theoretical uncertainty. It is precisely our
objective to better understand the domain of validity of this approximation, and affect a
quantitative uncertainty to it.

A way to understand Shuvaev’s proposal relies on the following remarkable property
linking the DGLAP LO evolution operators Γab,(0)0 introduced in Eq. (7.39) to the general
LO evolution operators defined in Eq. (7.38) : provided y = z/ξ ≫ 1, and any µ2 > µ2

0,

1

x
Γab,(0)

(
y,
ξ

x
;µ2, µ2

0

)
≈ 1

xpa
S ′a
(
ξ

x
,
x’
ξ

)
∗ 1

x’
Γ
ab,(0)
DGLAP

( z
x’

;µ2, µ2
0

)
. (7.47)

Fig. 7.12 shows the excellent quality of this approximation in the qq and gg sectors for
ξ/x = 1, where we expect the largest deviations between the DGLAP evolution operators
and the GPD ones. The agreement in the large y region is of the percent level, and we
believe that this discrepancy for y > 103 is dominated by the precision of the grid we used
in the extraction of evolution operators from APFEL++, and not the actual inacurracy
of Eq. (7.47). However, in the small y region (in grey on the figure), the agreement of
Eq. (7.47) is poor. It is obvious from the details of Appendix A.6 since for ξ/x = 1, the
r.h.s. of Eq. (7.47) gives non vanishing contributions down to y = 1/2, while the l.h.s.
vanishes as soon as y < 1.

We briefly discussed in Section 7.3.1 general criteria so that most of the weights Γab,(0)
reside in the large y region. Provided there exists an initial scale µ2

0 such that the large y re-
gion completely dominates the evolution to µ2 for a given PDF, Shuvaev’s proposal (7.45)
gives

S ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’, µ2)A(t)

= S ′a
(
ξ

x
,
x’
ξ

)
∗
∑
b

∫ 1

0

dz

x’
Γ
ab,(0)
DGLAP

( z
x’

;µ2, µ2
0

)
b(z, µ2

0)A(t) , (7.48)

≈ xpa
∑
b

∫ 1

0

dz

x
Γab,(0)

(
y,
ξ

x
;µ2, µ2

0

)
b(z, µ2

0)A(t) , (7.49)

175



Chapter 7. New models of generalised parton distributions

10 2

10 1

100

101

QQ
 se

ct
or

qq(y, /x = 1; 0, )
x S ′q(1, x′/ ) qq

0 (z/x′; 0, ) / x′

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ec

isi
on

 o
f t

he
 a

pp
ro

xi
m

at
io

n 
(%

)

100 101 102 103 104

y = z/

10 1

100

101

GG
 se

ct
or

gg(y, /x = 1; 0, )
S ′g(1, x′/ ) gg

0 (z/x′; 0, ) / x′

100 101 102 103 104

y = z/

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ec

isi
on

 o
f t

he
 a

pp
ro

xi
m

at
io

n 
(%

)

Figure 7.12 – Test of the approximation of LO evolution operators Γab,(0)(y, ξ/x;µ2, µ20) by
Eq. (7.47), as a function of y = z/ξ in the case ξ/x = 1, µ0 = 1 GeV, µ = 4.7 GeV. Test in the
qq sector (upper left) and gg sector (lower left). On the right, depiction of the precision of the
approximation, reaching ∼ 1% in the qq sector and ∼ 0.3% in the gg sector in the large y region.
The light grey region is y < 30 which serves as our criterion to discriminate between the small
and large y region.

where we used Eq. (7.39) in the first line, and applied the approximation of Eq. (7.47) in
the second. Note that by virtue of our assumption that the large y region dominates evolu-
tion, the integral of Eq. (7.49) actually takes non negligible values only for y ≥ 30, that is
z ≥ 30ξ. Then in this region, we can also safely assume b(z, µ0)A(t) ≈ z−pbHb(z, ξ, t, µ0),
and using Eq. (7.38)

S ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’, µ2)A(t) ≈ xpa

∑
b

∫ 1

0

dz

x
Γab,(0)

(
y,
ξ

x
;µ2, µ2

0

)
Hb(z, ξ, t, µ2

0)

zpb
, (7.50)

= Ha(x, ξ, t, µ2) . (7.51)

This demonstration of the validity of Shuvaev’s proposal introduces explicitly of a lower
scale µ2

0 such that the large y region dominates evolution. As the ξ dependence of the GPD
at initial scale µ2

0 is assumed negligible in the large y region, the Shuvaev transform
relies on the idea that the ξ dependence generated by evolution dominates
compared to the ξ dependence of the GPD at initial scale µ2

0. However any
reference to µ2

0 disappears in the final formulation of the proposal because the relation
between general LO and DGLAP evolution operators of Eq. (7.47) holds independently of
µ2. Yet, the disappearance of scale µ2

0 deprives us of a handle on the systematic uncertainty
created by the procedure.

We notice that some generic arguments used to argue of the numerical accuracy of
Shuvaev’s method have been disputed. For instance, Ref. [261] argues that the ξ depen-
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dence of conformal moments only comes from moments with n > 1, and can therefore
be neglected as all these moments tend to 0 as µ2 increases. Ref. [35] notes that first,
this argument implies that the method is also valid even if ξ is not small although we
have built an intuition that it is an important element of the discussion. Second, the ξ
independent part of higher order conformal moments tends to 0 at the same speed than
the ξ dependent part. There is therefore no reason to neglect only the ξ dependent part of
higher order conformal moments, but neglecting them altogether amounts to considering
only the asymptotic form of GPDs, which is clearly unsuited from a phenomenological
point of view.

Another argument found in Ref. [250] is that the ξ dependent part of conformal mo-
ments starts at ξ2 due to the polynomiality property of GPDs, so that uncertainty caused
by neglecting this ξ dependence is of order O(ξ2). However, as Ref. [35] notes again, this
time the argument seems independent on µ2, so the actual numerical size of corrections
hidden in the O(ξ2) must be clarified.

We wish therefore to produce an estimate of the systematic uncertainty which takes
into account both ξ and the values of µ2 and µ2

0. One could wonder what µ2
0 actually

means as it seems completely arbitrary when trying to relate the GPD to the PDF at µ2.
Intuitively, the best choice of µ2

0 to maximise the validity of an approach à la Shuvaev is
always the lowest possible value, since as evolution range increases, so does the dominance
of the large y region as we have seen in Section 7.3.1. But owing to the LO formalism
developed here, we would still like µ2

0 to remain large enough. We will therefore fix µ2
0 = 1

GeV2, and will derive our estimate of the systematic uncertainty of the reconstruction of
the small ξ dependence depending on the value of µ2.

In addition to the desire of producing an uncertainty estimation, we are also motiva-
ted to present an alternative proposal by numerical difficulties in the implementation of
Shuvaev’s method. As the Shuvaev transform presents itself under the form of a "quite
poorly convergent double integral" [262] (see Appendix A.6 for details), it is sometimes
not directly used, but simplified under the assumption of power-law behaviour at small
x. It is argued in Ref. [262] that this simplification leads sometimes to inaccuracies.

7.3.3 . An alternative proposal

We remind that our demonstration of the validity of Shuvaev’s proposal based on
evolution operators in the previous section relied crucially on the possibility to make two
approximations at a low scale µ2

0 : first approximating the general LO evolution operators
from the DGLAP ones via Eq. (7.47), and then approximating the GPD by the PDF
itself. Considering that APFEL++ provides a straightforward way to perform evolution
at non-vanishing ξ, the need for the first approximation does not seem particularly crucial.
Furthermore, the first approximation is rooted in properties of the LO evolution operator,
which we do not expect to hold at higher orders. It seems therefore to us that only
keeping the second approximation is simpler, and closely equivalent to Shuvaev’s one
provided the large y region actually dominates evolution from µ2

0 to µ2. This is exactly
the naive intuition we had in Eq. (7.37) and which we discarded because it was not scale
independent. As we have seen, the Shuvaev transform essentially provides a sophisticated
way to transform this assumption into a (partly) scale independent one, but we feel that
keeping the scale dependence is on the contrary a great way to quantify the uncertainty
in the procedure.
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Our proposal is therefore very simply Eq. (7.37) at some scale µ2
0

Ha(x, ξ, t, µ2
0) = xpaa(x, µ2

0)A(t) , (7.52)

and performing the actual GPD evolution to µ2 afterwards. To the sole purpose of making
the difference with Shuvaev’s proposal obvious, we express it in the space of conformal
moments for the quark GPD and n even, where evolution of conformal moments is very
simply summarised by Eq. (2.57) :

— Shuvaev’s proposal :

Oq
n(ξ, t, µ

2) =

∫ 1

−1
dx xnq(x, µ2)A(t) . (7.53)

— our proposal with LO evolution :

Oq
n(ξ, t, µ

2) = η(ξ, µ2
0)

∫ 1

−1
dx xnq(x, µ2)A(t) , (7.54)

where

η(ξ, µ2
0) =

Γ(n+ 1)Γ(3/2)

2nΓ(n+ 3/2)

ξn
∫ 1

−1 dxC
(3/2)
n (x/ξ)q(x, µ2

0)∫ 1

−1 dx x
nq(x, µ2

0)
. (7.55)

Notice that the dependence on ξ and µ2
0 of conformal moments with our proposal

is entirely dictated by the profile of the PDF at scale µ2
0.

As we have previously discussed, HVMP data constrains mostly the gluon GPDHg(x, ξ, t, µ2)
with µ of the order of half the mass of the heavy meson, and x in the vicinity of ξ, both
being very small for events we are interested in. Shuvaev’s proposal directly translates this
constraint into one on the gluon PDF at the same µ2 and similarly small x. The situation
is very schematically described on the upper left panel of Fig. 7.13. This figure is merely
intended for illustration purposes and makes no claim of correct orders of magnitude in
the respective uncertainties. We assume that the value of Hg(x = ξ = 10−5, µ2) is ex-
tracted with some uncertainty from a LO HVMP analysis, and transformed into a point
with uncertainty – represented by the purple dot in the upper left panel of Fig. 7.13 – on
the gluon PDF thanks to Shuvaev’s proposal. No systematic uncertainty is associated to
this transformation. It is then possible to perform a reweighting of the gluon PDF with
respect to this new information in a similar way to what we presented in Section 4.4, or
a complete refit. The new information is independent of our previous knowledge of the
gluon PDF.

The situation is more involved with our proposal which intends to provide a systematic
uncertainty on the transformation from GPD to PDF. As our procedure depends on the
profile of the gluon PDF at µ2

0 (7.55), systematic uncertainty will depend on the current
knowledge of the gluon PDF.

First, we compute approximate replicas of the GPD Hg(x = ξ = 10−5, µ2) thanks to
the ξ dependent GPD evolution operator applied to replicas of our current knowledge of
the gluon PDF at initial scale µ2

0. The latter is represented schematically in the upper
right panel of Fig. 7.13, while the constructed approximate GPD is shown on the lower
left panel. Our approximate replicas of Hg(x = ξ = 10−5, µ2) are then reweighted against
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the HVMP experimental data, giving rise to the blue band. For the reweighting, we add to
the experimental uncertainty a systematic one (yellow band) designed to give an account
of the approximation we have made by building the GPD from the ξ-dependent evolution
of the PDF. The derivation of an estimate of this uncertainty will be detailed below. In
practice, the more the large y region dominates evolution from µ2

0 to µ2 at the values of
x and ξ selected, the lower the systematic uncertainty. With this reweighting performed,
it is then possible to measure its impact on the PDF at µ2 as sketched out in the lower
right panel by evolving the reweighted replicas of the gluon PDF from initial scale µ2

0 to
µ2 7.

The explicit reference to µ2
0 provides a tool to estimate the uncertainty associated

to the reconstruction of the small ξ dependence. For instance, if µ2
0 is taken as µ2 – so

no evolution is considered in practice – then our proposal leads to assuming that the
GPD is exactly equal to the PDF. We know that this approximation can be wrong by
about 50% as we previously discussed at the end of Section 7.3.1. We expect however
that taking lower values of µ2

0 will yield a better approximation. We build an estimate of
the systematic uncertainty of the reconstruction of the ξ dependence by measuring the
proportion of the contribution of the large y region at initial scale – where we consider
that we can safely conflate GPD and PDF at µ2

0 – to the evolved GPD at scale µ2. We
know that our assumption that the GPD is equal to the t-factorised PDF at initial scale
does introduce a significant bias in the small y region, but if the latter is bringing only
insignificant contributions to the evolution of the GPD, the bias is considerably reduced
and the procedure is sound. However, as we have already mentioned in Section 7.3.1, the
actual dominance of the large y region is not just a matter of the properties of the Γab,(0)

operators, but also of the growth of the GPD at small x.
For the sake of illustration of our method, we use the gluon PDF of the MMHT 2014

LO PDF datasets [263], which is precisely defined at µ2
0 = 1 GeV2. We propose an estimate

of systematic uncertainty of the ξ reconstruction as a relative factor of 1/R, where

R =

∫ 1

30ξ

dz

x
Γgg,(0)

(
y,
ξ

x
;µ2, µ2

0

)
g(z, µ2

0)∫ 1

0

dz

x
Γgg,(0)

(
y,
ξ

x
;µ2, µ2

0

)
g(z, µ2

0)

, (7.56)

which measures precisely the proportion of large y = z/ξ contribution to the evolved
gluon GPD, where large y is defined as y > 30. Fig. 7.14 shows the results obtained for
the evolved diagonal x = ξ, and x = 2ξ. This plot allows us to recover the general features
we identified in Section 7.3.1. First, as either µ2 or the ratio x/ξ increase, so does the
contribution of the large y region. Second, as ξ decreases for a fixed value of the ratio
x/ξ, two trends are noticeable. When ξ is still rather large, the decrease of ξ triggers a
very quick increase of the contribution of the large y region. A first part of this increase
is trivial, since the large y region is defined by z > 30ξ, and z < 1. Therefore, as long as
ξ > 1/30, there is no contribution from the large y region at all, because ξ is simply too

7. Another way to see the difference between our proposal and Shuvaev’s is to notice that, for each
replica of the gluon PDF at scale µ2

0, the relation between the GPD reconstructed at ξ and µ2 and the
PDF at µ2 is slightly different, as it depends on the profile of the gluon PDF at initial scale. On the
contrary, Shuvaev’s proposal produces systematically the same relation on the GPD and PDF at scale
µ2.
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Figure 7.13 – Schematic depiction of the difference between Shuvaev’s proposal (upper left
panel) and our proposal (the next three panels). Shuvaev’s proposal transforms directly uncer-
tainty on the GPD derived from HVMP experimental uncertainty into uncertainty on the PDF.
No account of the systematic uncertainty introduced by the transformation is given. On the
contrary, we are able to introduce a systematic uncertainty created by the assumption that the
GPD is equal to the PDF at a low scale µ20, and add it to the experimental uncertainty to re-
weight our approximation of the GPD, and therefore the PDF at µ2.
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Figure 7.14 – The MMHT 2014 LO gluon PDF g(x) is evolved from µ0 = 1 GeV to µ with
the GPD LO evolution operator at ξ/x = 1 (left) and ξ/x = 0.5 (right) for various values of ξ
and µ. The proportion of contribution of the large y = z/ξ region to the final result is shown.

large for this region to exist. As soon as ξ becomes smaller than 1/30, the large y region
becomes quickly dominant. However, when ξ keeps decreasing below roughly 3 × 10−4,
the contribution of the large y region starts to decrease slowly. The cause of this behavior
is an interplay between the increase of the operator weights Γgg,(0) in the large y region
and the steep increase of the gluon PDF itself at small y. The power law behavior of the
gluon PDF at small y erodes the domination of the large y region in evolution.

The value of µ2 plays a crucial role in the dominance of the large y region. Whereas
at the low value of µ = mJ/ψ/2 = 1.5 GeV, the large y region represent just about
50% of the contributions to the evolved GPD in the case x = ξ, it quickly increases to
about 80% at µ = mΥ/2. Let us notice however that our estimator of uncertainty is very
conservative. It roughly amounts to assuming that the GPD would differ from the PDF
by about 100% in the entire region z ∈ [x, 30ξ] at initial scale µ2

0. It is interesting to
observe for instance what is actually this difference in a popular phenomenological model
like GK. We show the difference between the GPD at ξ = 3 × 10−4 and ξ = 0 for the u
singlet quark on Fig. 7.15. As expected, when nearing the diagonal z = ξ = 3× 10−4 on
the orange curve, the GPD is larger than its forward limit. However, it is not uniformly
larger by 100% on the full small y region (grey band), but only very locally in the vicinity
of the diagonal and not by more than 25% (about 2600 vs 2100 for z = ξ on the right
panel of Fig. 7.15). The difference between the GPD and the PDF is even smaller for the
gluon distribution. The actual uncertainty of the reconstruction procedure would therefore
be considerably reduced compared to our estimator of Fig. 7.14. As we have previously
discussed, models based on the RDDA lack flexibility and only explore a limited range of
plausible phenomenological models. We may expect therefore that they produce a lower
bound of uncertainty, whereas our conservative estimate is a large upper bound.

7.3.4 . Conclusion

Our proposal (7.52) can be used without any change with any perturbative order
of GPD evolution. With beyond LO evolution, the general statement at the basis of
Shuvaev’s proposal – that is conformal moments of GPDs are independent of ξ and equal
to Mellin moments of the PDF – is no longer valid regardless of the scale. Therefore,
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Figure 7.15 – u singlet GPD in the GK model at µ20 = 1 GeV2 and t = −0.1 GeV2 for ξ = 0
(blue curve) and ξ = 3×10−4 (orange curve). The small y region, corresponding to z ∈ [ξ, 30ξ] is
represented by the grey area. It is zoomed in on the right panel, where the discrepancy between
the PDF and the diagonal can be observed on the left most value of z.

an explicit reference to the arbitrary scale were this statement is chosen to be true has
to be made, losing the main advantage of Shuvaev’s method compared to ours. Using
higher order evolution with our proposal brings also the advantage that it is possible to
lower the value of µ2

0, and therefore decrease the uncertainty of ξ reconstruction. Indeed,
although one can always lower the value of the arbitrary value of µ2

0 to benefit from a
larger evolution range, it comes at the expense of reducing the stability of the perturbative
expansion and increasing the size of radiative corrections. A trade-off must therefore be
found, and lower values of µ2

0 can be used jointly with higher order evolution. Higher order
evolution is also intrinsically important regardless of the question of the lowest achievable
value of µ2

0 since usual techniques to quantify missing higher order corrections, like varying
the scale or introducing a custom coupling αs will not enlighten us on the ξ dependence
induced by higher orders evolution.
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Conclusion

We have offered a presentation of some aspects of the extraction of GPDs from experi-
mental data, focusing mostly on the quantification of the potential of the actual extraction
of GPDs from DVCS.

We have first demonstrated the physical interest of collecting more DVCS observables
in varied kinematic regions by showing the potential constraining power of a beam charge
asymmetry dataset on the real part of the CFF H. In this impact study related to the
installation of a positron beam at JLab, we have detailed the generation of preliminary
pseudo-data and their use to reweight a flexible model of the current knowledge of CFFs.
The potential for a considerable improvement of our knowledge of ReH has been demons-
trated. As the uncertainty on ReH is a major cause of the large uncertainty on the DVCS
subtraction constant – which we find to be compatible with 0 with a flexible modelling of
CFFs fitted on most of the world DVCS dataset –, the improvement of the experimental
knowledge of CFFs should be viewed as a priority for a data-driven extraction of proton
mechanical properties with lesser model bias. Our study also shows how the Bayesian
reweighting technique, which had not been used yet in the context of GPD studies as far
as we are aware, provides a useful tool to scan the space of kinematics and observables
and select those with the largest expected constraining power.

However, experimental uncertainty is only a part of the overall issue of the extraction
of mechanical properties in the current state of experimental data. Thanks to a detailed
study of the numerical properties of the D-term evolution, we have been able to measure
quantitatively the impact of the range in Q2 on the robustness of the GFF extraction,
and therefore the ability to reduce model dependence in the analysis. We have built an
estimate of the impact of EIC kinematics on this uncertainty based on general principles,
and shown that a reduction of uncertainty by a factor 3 could be anticipated by the
sole effect of increasing the range in Q2 without even assuming an increased precision
of measurements. Furthermore, we have presented results for fits of the GFF at NLO
accuracy for the first time. The most striking feature is the increased gluon sensitivity
achieved by the direct presence of a gluon contribution to the subtraction constant. We
have devoted a significant attention to the discussion of the difference of results between
radiative gluon generation from a threshold where the gluon contribution is fixed to 0,
and allowing gluon contributions to be freely fitted. We hope that the detailed statistical
analysis we have presented will prove useful to interpret the results of fits performed
on future datasets whose coverage in Q2 is expected to be much larger, and effects of
evolution will therefore need to be taken into account all the more crucially.

Our presentation of the extraction of the GFF has been largely made under the prism
of the deconvolution problem. Our estimate of the impact of the EIC kinematics provides
a first tool to understand the numerical stability of the deconvolution procedure. We have
also introduced a new formulation in terms of shadow D-terms, whose similarity with our
estimate we have demonstrated. These objects are specifically designed to cancel their
contribution to the DVCS subtraction constant at a given scale, where they are mathe-
matically impossible to extract from experimental data. The growth of their contribution
to the subtraction constant with increasing scale provides a quantitative tool to measure
the amplification factor of experimental uncertainty in D-term extractions.
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We have generalised this approach to the full deconvolution problem which consists in
recovering a complete GPD from the knowledge of CFFs. As far as we know, no systematic
attempt at a quantification of the numerical stability of the deconvolution problem at
next-to-leading order has been led before. We dedicated a lot of attention to the details
of the derivation of NLO shadow GPDs, demonstrating the numerous advantages of the
polynomial parameterisation of DDs and the remarkable nested structure which appears
when trying to cancel CFFs built from these objects. We have provided detailed formulas
to allow the reproduction and extension of this work, and explicit examples of shadow
GPDs. The precise study of their behaviour under evolution has led to a quantification
of the amplification of the experimental uncertainty on CFFs when recovering GPDs by
a factor 105 over an evolution range from 1 GeV2 to 100 GeV2. Note that this result
has been properly demonstrated only if the chosen GPD modelling is flexible enough to
include our shadow GPDs. Models with a physical parameterisation with few parameters
are less subject to this amplification of uncertainty, although at the cost of a much larger
modelling bias. We have discussed the practical consequences of this severe uncertainty
issue and argued for the necessity of a multi-channel approach of the extraction of GPDs
intended to mitigate the effect of these shadow GPDs.

In addition to being a tool to quantify the amplification of experimental errors during
the deconvolution procedure, shadow GPDs give also interesting modelling insights due
to the peculiar properties they obey by definition. Having a vanishing forward limit and
CFF at the desired order, they can be added to GPD models without bringing any change
to DVCS and DIS experimental inputs on the GPD. They are therefore a convenient tool
to ensure that a satisfactory model which violates nonetheless positivity constraints can
be corrected with minimal changes. We have proposed a model precisely intended to
reproduce these experimental inputs at LO at will, so that the affine space made of the
addition of this model and the vector space of shadow distributions provides a fully generic
analytical solution to the question of extracting a GPD from DIS and LO DVCS. The
behaviour of our model is excellent for non-diverging PDFs and CFFs at low x, but rather
peculiar in the presence of phenomenological Regge-inspired divergences. We resorted
therefore to a neural network modelling of double distributions where we put to use our
understanding of shadow GPDs to add flexibility to the model. In practice, we have built
a shadow scheme of DDs by adding a factor (x2 − ξ2) in front of the singlet GPD and
cancelling its forward limit thanks to appropriate normalisations. We have demonstrated
that our modelling strategy is able to reproduce a phenomenological divergence at small x,
that it can be adapted to fulfill positivity constraints and produces an interesting account
of uncertainty related to the sole knowledge of forward limit and CFFs.

Noting that shadow GPDs bring only little contribution to the small ξ region due
to their vanishing forward limit and good regularity properties, we have explored the
possibility of providing a realistic uncertainty associated with the reconstruction of the
small ξ region from the knowledge of the PDF. This matter is of significant importance to
constrain gluon PDFs at small x, and has been the subject of several modelling proposals.
Among them, the popular Shuvaev method provides an interesting reconstruction based
on properties of evolution, which unfortunately does not provide easily the means for the
evaluation of the systematic uncertainty of the reconstruction procedure. It is understood
from the traditional justification of the method that its validity relies on the small value of
ξ and the comparatively large effect of ξ dependence generated by evolution. The recent
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publication of a LO GPD evolution code in momentum space gave us an interesting
opportunity to propose a closely related but alternative method to reconstruct the ξ
dependence. Our proposal allows the computation of an explicit bound of the systematic
uncertainty of the reconstruction. The study of the small ξ dependence is important even
in a larger context than the determination of small x gluon PDFs, as many physical
applications of GPDs are performed at zero skewness – like hadron tomography in the
impact parameter representation – although most experimental constraints are obtained
at non vanishing skewness. We understand therefore how the uncertainty on experimental
extraction characterised by shadow GPDs is translated into an uncertainty in the zero
skewness limit.

Among the extensions of this work which could be considered, the most important one
in our opinion is to apply the formalism of shadow GPDs to other hard processes like
DVMP beyond leading order 8, in order to get a better idea of the potential of a joint
analysis at this stage. As the possibilities of analytical derivation of shadow distributions
are probably reaching their limits with the complexity of the expressions we had to deal
with for NLO DVCS, switching to numerical approximate methods seems necessary. Our
neural network model of double distributions including LO shadow contributions seems
the ideal basis to start this study. First, the model would have to be improved to include
the already known NLO shadow GPDs. This could be performed in an approximate way
by not requiring that shadow terms brings an exactly vanishing contribution to the NLO
CFF as we did so far, but only a very small contribution compared to the typical size of
the PDF for instance. Then an assessment of the impact of a NLO DVMP analysis would
yield enlightening conclusions on the potential of tri-dimensional experimental processes 9

on the extraction of DVCS.
Our quantification of the numerical stability of the deconvolution procedure invites to

collect experimental measurements for processes with a richer kinematic structure than
DVCS and DVMP. We are notably thinking about DDVCS or processes where the ac-
tive parton emits several particles. The larger number of kinematic dependences of the
structure functions of these processes provides a handle that radically changes the consi-
derations on the deconvolution problem. However, the smaller cross-section and more
demanding experimental analysis reduce for now the possibilities coming from these chan-
nels. On the other hand, lattice QCD brings promises of extractions of x-dependent parton
distributions which could change radically our knowledge of hadron structure provided
systematic uncertainties are well controlled. Experiment would still have its importance
in the case of a lattice breakthrough, since it would be used as a reference to demonstrate
precisely the consistence of lattice results.

With the perspective of a significant improvement on the experimental access to GPDs
with the JLab 12 GeV upgrade and the projects of future facilities like the EIC, GPDs are
on the verge of entering a precision era where the level of modelling bias which is currently
considered as a necessity for the sake of producing results with "reasonable" error bars
will no longer remain acceptable. We hope that this work has paved the way for this
change of paradigm, and will provide useful insights on the behaviour of phenomenological

8. The current formalism is adapted to LO DVMP as the amplitudes are closely related to the DVCS
ones.

9. The structure functions of both DVCS and DVMP depend on the three kinematic variables (ξ, t,Q2).
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extractions when the flexibility of the modelling is increased.
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A - Appendix

A.1 . Demonstration of the effect of adding a new point to a linear fit

We remind from the derivation in Section 4.1.1 that for a linear fit with generalised
least squares loss function, the uncertainty on the extracted parameters A(0) is given by
the covariance matrix Σ = (CTΩ−1C)−1 where Ω is the covariance matrix of the vector
of experimental measurements F , and C the matrix of probed kinematic configurations.
The mean of A(0) is given by ΣCTΩ−1F (4.6). Assume we add to the current fit a new
uncorrelated datapoint evaluated on the kinematic configuration X(1) with central value
f1 and normally distributed experimental uncertainty σ1. F , Ω and C are upgraded to
F ′, C ′ and Ω′ in the form of block-matrices :

F ′ =

(
F
f1

)
, C ′ =

(
C
X(1)T

)
, Ω′ =

(
Ω 0
0 σ2

1

)
, (A.1)

and
C ′TΩ′−1C ′ = Σ−1 +

1

σ2
1

X(1)X(1)T . (A.2)

Hence the covariance of the extracted parameters Σ′ = (C ′TΩ′−1C ′)−1 after addition of
the new uncorrelated point can be deduced from the former Σ via

Σ′ = Σ

[
Idn −

1

σ2
1

X(1)X(1)TΣ +
1

σ4
1

(
X(1)X(1)TΣ

)2 − · · ·
]
. (A.3)

where Idn is the identity matrix of size n. When evaluated at a given kinematic configura-
tion X, the model fA(0)(X) = XTA(0) follows a simple normal distribution with variance

(∆fA(0)(X))2 = XTΣX . (A.4)

Therefore
X(1)TΣX(1) = (∆fA(0)(X(1)))2 , (A.5)

and

Σ′ = Σ− ΣX(1)X(1)TΣ

σ2
1 + (∆fA(0)(X(1)))2

, (A.6)

where we have used the fact that (A.5) is a scalar. For the new parameters A′(0) obtained
after inclusion the additional data point, the uncertainty at kinematic configuration X is
given by

(∆fA(1)(X))2 = XTΣ′X = (∆fA(0)(X))2 − (XTΣX(1))2

σ2
1 + (∆fA(0)(X(1)))2

. (A.7)

Notice that the uncertainty is systematically reduced or equal when adding a new data
point, with equality for X orthogonal to ΣX(1) for the usual Euclidian scalar product. For
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X = X(1), that is at the very location where the new point is added, Eq. (A.7) simplifies
to

(∆fA(1)(X(1)))2 = (∆fA(0)(X(1)))2 − (∆fA(0)(X(1)))4

σ2
1 + (∆fA(0)(X(1)))2

, (A.8)

=

(
1

σ2
1

+
1

(∆fA(0)(X(1)))2

)−1
. (A.9)

A similar result can be obtained concerning the mean of the fit, which is given by

⟨fA(0)(X)⟩ = XTΣCTΩ−1F . (A.10)

Then

⟨fA(1)(X(1))⟩ = X(1)TΣ′C ′TΩ′−1F ′ , (A.11)

= X(1)TΣ′
[
CTΩ−1F +

f1
σ2
1

X(1)

]
, (A.12)

= X(1)TΣ′CTΩ−1F +
(∆fA(1)(X(1)))2

σ2
1

f1 . (A.13)

The first term can be expressed thanks to Eq. (A.6) :

X(1)TΣ′CTΩ−1F = ⟨fA(0)(X(1))⟩
[
1 +

(∆fA(0)(X(1)))2

σ2
1

]−1
, (A.14)

and finally, introducing

λ =

[
1 +

(∆fA(0)(X(1)))2

σ2
1

]−1
, (A.15)

we obtain the expected result{
⟨fA(0)′ (X(1))⟩ = λ⟨fA(0)(X(1))⟩+ (1− λ)f1 ,

(∆fA(0)′ (X(1)))2 = λ(∆fA(0)(X(1)))2 .
(A.16)

A.2 . Impact of having to very close functional forms in a linear fit

As we have presented in Section 5.1.2, the deconvolution problem of the D-term should
admit a unique solution thanks to the different µ2 behaviour of the Γqqn functions. Although
linearly independent, these functions take actually close numerical values, especially if the
lever arm in µ2 is small. Let us try to formalise briefly the impact of enriching a linear
model by adding a new functional dependence which is very close numerically to the
existing one. Consider the following situation. A fit with uncertainties has been obtained
with the following model on some experimental data :

αf1(µ
2) + βf2(µ

2) , (A.17)

where α and β are the free parameters and f1 and f2 are known and linearly independent.
Let us assume the best fit values (α, β) follow a bivariate normal distribution with variance
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((∆α)2, (∆β)2) and covariance cov(α, β). Assume now that we replace f2 by another
function

fϵ(µ
2) = (1− ϵ)f1(µ

2) + ϵf2(µ
2) . (A.18)

Therefore, as ϵ tends to 0, fϵ becomes increasingly close to f1 while remaining linearly
independent. If we fit again the original dataset by replacing f2 with fϵ, the new best fit
parameters are noted (αϵ, βϵ), and verify

αϵf1(µ
2) + βϵfϵ(µ

2) = αf1(µ
2) + βf2(µ

2) . (A.19)

Since
αϵf1(µ

2) + βϵfϵ(µ
2) = [αϵ + βϵ(1− ϵ)] f1(µ

2) + ϵβϵf2(µ
2) , (A.20)

we obtain readily

αϵ = α− β
1− ϵ

ϵ
, βϵ =

β

ϵ
, (A.21)

and

(∆αϵ)
2 = (∆α)2 +

(
1− ϵ

ϵ

)2

(∆β)2 − 2
1− ϵ

ϵ
cov(α, β) , (A.22)

(∆βϵ)
2 =

(∆β)2

ϵ2
, (A.23)

cov(αϵ, βϵ) =
cov(α, β)

ϵ
− 1− ϵ

ϵ2
(∆β)2 . (A.24)

In particular, the linear correlation coefficient reads

corr(αϵ, βϵ) =
cov(αϵ, βϵ)
(∆αϵ)(∆βϵ)

, (A.25)

= −1 +
ϵ2

2

[
(∆α)2(∆β)2 − cov(α, β)2

(∆β)4

]
+O(ϵ3) . (A.26)

Therefore, as f1 and fϵ become increasingly similar, the distributions of best fit parameters
(αϵ, βϵ) see their standard deviations grow as 1/ϵ, and their correlation coefficient converge
quickly to −1. If |f1 − fϵ| ≪ f1, we can propose additionally the following approximation
for the model :

αϵf1(µ
2) + βϵfϵ(µ

2) ≈ (αϵ + βϵ) f1(µ
2) = (α + β) f1(µ

2) . (A.27)

Therefore, the fit with only the functional dependence f1(µ2) gives as best fit approxima-
tely α + β, while it gives exactly α + β − β/ϵ (A.21) when fitted jointly with fϵ(µ2).
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A.3 . DVCS coefficient function at next-to-leading order

With the notations of Eq. (3.10), the DVCS coefficient functions at NLO read

T q1

(
ω,
Q2

µ2
, αs(µ

2)

)
= T q0 (ω) + αs(µ

2) log

(
Q2

µ2

)
T q1,0 (ω) + αs(µ

2)T q1,1 (ω) , (A.28)

T g1

(
ω,
Q2

µ2
, αs(µ

2)

)
= αs(µ

2) log

(
Q2

µ2

)
T g1,0 (ω) + αs(µ

2)T g1,1 (ω) . (A.29)

We refer to the expressions found in Ref. [149]. As we have mentioned in Section 3.1.1,
Ref. [149] uses the traditional iϵ prescription which we find quite inconvenient both for
the numerical and exact computation of the DVCS convolution (3.10). In particular, in
Chapter 5 where we compute the NLO contributions to the subtraction constant and
in Chapter 6 where we cancel exactly the NLO CFF of a GPD, we need to use the
exact limit ϵ → 0+ of the iϵ prescription. In both cases, only the imaginary part of the
coefficient function will be of interest to us. At LO, the Sokhotski-Plemelj formula provides
immediately the solution as (3.13)

lim
ϵ→0+

ImT q0 (ω, ϵ) = e2qπ[δ(1− ω)− (ω → −ω)] . (A.30)

To express higher order terms, it is useful to introduce the plus-prescription which we
define as (

1

ω − 1

)
+

=
1

ω − 1
+ δ(ω − 1) v.p.

∫ ω

0

dz

z − 1
. (A.31)

The action of the plus-prescription on a test function f yields∫ x

1

dω

(
1

ω − 1

)
+

f(ω) =

∫ x

1

dω

(
1

ω − 1

)
f(ω) + f(1) v.p.

∫ 1

0

dω

ω − 1
, (A.32)

=

∫ x

1

dω
f(ω)− f(1)

ω − 1
+ f(1) v.p.

∫ x

0

dω

ω − 1
, (A.33)

=

∫ x

1

dω
f(ω)− f(1)

ω − 1
+ f(1) log |x− 1| . (A.34)

Ref. [149] gives that the so-called quark collinear term of the DVCS coefficient function,
which we denoted by T q1,0 for reasons which will become clear in Section 6.3.1, writes

1

ξ
T q1,0

(
x

ξ
, ϵ

)
=
e2qCF

4π

1

x+ ξ − iϵ

[
−3− 2 log

(
x+ ξ

2ξ
− iϵ

)]
− (x→ −x) , (A.35)

where CF = 4/3. Let us demonstrate that the explicit limit ϵ→ 0+ yields

lim
ϵ→0+

ImT q1,0 (ω, ϵ) =
e2qCF

2

(
Θ(ω − 1)

(
1

ω − 1

)
+

+ δ(ω − 1)

[
3

2
− log(2)

])
− (ω → −ω) .

(A.36)

190



Demonstration Let us assume that ξ > 0. Thanks to parity properties, the
DVCS convolution can be written for x ≥ 0 with the explicit introduction of
Hq(+) : ∫ 1

−1

dx

ξ
T q
(
x

ξ

)
Hq(x, ξ) =

∫ 1

0

dx

ξ
T q
(
x

ξ

)
Hq(+)(x, ξ) . (A.37)

We observe in Eq. (A.35) that no singularity emerges from the term which we
have made explicit, due to the fact that x + ξ > 0 for x ≥ 0 and ξ > 0. On the
contrary, the term symbolically denoted as −(x→ −x) contains singularities for
x = ξ, which generate an imaginary contribution. Using that

lim
ϵ→0+

1

1− ω − iϵ
= p.v.

1

1− ω
+ iπδ(1− ω) , (A.38)

lim
ϵ→0+

log

(
1− ω

2
− iϵ

)
= log

∣∣∣∣ω − 1

2

∣∣∣∣− iπΘ(ω − 1) , (A.39)

we obtain that the imaginary part of the coefficient function reads

lim
ϵ→0+

ImT q1,0 (ω, ϵ) =
e2qCF

2

[
Θ(ω − 1)

ω − 1
+ δ(ω − 1)

(
3

2
+ log

∣∣∣∣ω − 1

2

∣∣∣∣)] , (A.40)

where we have suppressed the principal value due to the Heaviside distribution.
Noting that the plus-prescription (A.31) can also be written as(

1

ω − 1

)
+

=
1

ω − 1
+ δ(ω − 1) log |ω − 1| , (A.41)

we observe that Eq. (A.40) may be rewritten as

lim
ϵ→0+

ImT q1,0 (ω, ϵ) =
e2qCF

2

[
Θ(ω − 1)

(
1

ω − 1

)
+

+ δ(ω − 1)

(
3

2
− log(2)

)]
. (A.42)

When coming back to the traditional expression of the convolution with integra-
tion for ξ from −1 to 1 and the full GPD (and not just its singlet component),
it is necessary to complete Eq. (A.42) with −(ω → −ω), producing the expected
result. □

Having expressed , ImT q1,0(ω) as a distribution without reference to the iϵ term, we can
compute the exact value of its convolution with a GPD for ξ > 0 as∫ 1

−1

dx

ξ
ImT a1,0

(
x

ξ

)
Hq(x, ξ) =

∫ 1

0

dx

ξ
ImT a1,0

(
x

ξ

)
Hq(+)(x, ξ) , (A.43)

=

∫ 1/ξ

0

dω ImT a1,0 (ω)H
q(+)(ωξ, ξ) , (A.44)

=
e2qCF

2

[
Hq(+)(ξ, ξ)

(
3

2
− log(2)

)
+

∫ 1/ξ

1

dω

(
1

ω − 1

)
+

Hq(+)(wξ, ξ)

]
. (A.45)

191



Eq. (A.34) gives∫ 1/ξ

1

dω

(
1

ω − 1

)
+

Hq(+)(wξ, ξ)

=

∫ 1/ξ

1

dω
Hq(+)(ωξ, ξ)−Hq(+)(ξ, ξ)

ω − 1
+Hq(+)(ξ, ξ) log

∣∣∣∣1ξ − 1

∣∣∣∣ , (A.46)

=

∫ 1

ξ

dx
Hq(+)(x, ξ)−Hq(+)(ξ, ξ)

x− ξ
+Hq(+)(ξ, ξ) log

(
1− ξ

ξ

)
, (A.47)

hence the final result used in Eq. (6.65)

ImT q1,0

(
x

ξ

)
⊗Hq(x, ξ) =

e2qCF

2

([
3

2
+ log

(
1− ξ

2ξ

)]
Hq(+)(ξ, ξ) +

∫ 1

ξ

dx
Hq(+)(x, ξ)−Hq(+)(ξ, ξ)

x− ξ

)
.

(A.48)

Contribution to the subtraction constant

The form of Eq. (A.36) also allows us to evaluate the contribution of the quark collinear
term to the subtraction constant according to Eq. (3.27) :

2

π

∫ ∞
1

dω ImT q1,0 (ω)

∫ 1

−1
dz

Dq(z)

ω − z
=
e2qCF

π

[(
3

2
− log(2)

)∫ 1

−1
dz

Dq(z)

1− z

+ lim
x→∞

∫ x

1

dω

ω − 1

∫ 1

−1
dz Dq(z)

(
1

ω − z
− 1

1− z

)
+ log(x− 1)

∫ 1

−1
dz

Dq(z)

1− z

]
. (A.49)

Using that
1

ω − 1

(
1

ω − z
− 1

1− z

)
= − 1

(1− z)(ω − z)
, (A.50)

we obtain

2

π

∫ ∞
1

dω ImT q1,0 (ω)

∫ 1

−1
dz

Dq(z)

ω − z
=
e2qCF

π

∫ 1

−1
dz

Dq(z)

1− z

[
3

2
− log(2)

+ lim
x→∞

log(x− 1)−
∫ x

1

dω

ω − z

]
. (A.51)

Then

lim
x→∞

log(x− 1)−
∫ x

1

dω

ω − z
= lim

x→∞
log

(
(z − 1)(x− 1)

z − x

)
= log(1− z) , (A.52)

so we obtain finally the contribution of the quark collinear term to the subtraction constant
as

2

π

∫ ∞
1

dω ImT q1,0 (ω)

∫ 1

−1
dz

Dq(z)

ω − z
=
e2qCF

π

∫ 1

−1
dz

Dq(z)

1− z

[
3

2
+ log

(
1− z

2

)]
(A.53)

The derivation is therefore rather straightforward although a bit cumbersome, and we
give directly the results for the 1-loop quark and gluon terms in Eqs. (5.104) and (5.105).
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A.4 . Radon transform in the context of the polynomial parameterisation
of DDs

If f q(+)(β, α) =

m+n≤N∑
m,n=0
m even

cm,nα
mβn , (A.54)

then, for x > |ξ|,

Hq(+)(x, ξ) =
N+1∑

u=1,v=0

[
1

(1 + ξ)u
+

1

(1− ξ)u

]
qu,vx

v , (A.55)

where

qu,v =

min(u,N)−1∑
m=0
m even

N∑
n=max(u,v)−m−1

cm,n

n∑
j=0

(−1)u+v+j+n+1

m+ j + 1

(
n
j

)(
j

m− u+ j + 1

)(
m+ j + 1
v − n+ j

)
.

(A.56)

Demonstration In the region x > |ξ|,

Hq(+)(x, ξ) =

m+n≤N∑
m,n=0
m even

cm,n

∫ (1−x)/(1−ξ)

(x−1)/(1+ξ)
dα αm(x− αξ)n , (A.57)

=

m+n≤N∑
m,n=0
m even

cm,n

n∑
j=0

(
n
j

)
(−ξ)jxn−j

∫ (1−x)/(1−ξ)

(x−1)/(1+ξ)
dα αm+j , (A.58)

=

m+n≤N∑
m,n=0
m even

cm,n

n∑
j=0

(
n
j

)
(−ξ)jxn−j (1− x)m+j+1

m+ j + 1

(
1

(1− ξ)m+j+1

+
(−1)j

(1 + ξ)m+j+1

)
. (A.59)

Developing the term (1 − x)m+j+1 and then performing the partial fractions ex-
pansion thanks notably to Eq. (6.40) yields

Hq(+)(x, ξ) =

m+n≤N∑
m,n=0
m even

cm,n

n∑
j=0

m+j+1∑
k=0

j∑
l=0

(
n
j

)(
j
l

)(
m+ j + 1

k

)

× (−1)j+l+k

m+ j + 1
xn−j+k

(
1

(1− ξ)m+j+1−l +
1

(1 + ξ)m+j+1−l

)
. (A.60)

A straight-forward variable change v = n− j + k and u = m+ j +1− l gives the
expected result, and the refinement of the summation bounds for m and n comes
from a simple study of the non vanishing binomial coefficients in Eq. (A.60). □
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Inversion of the Radon transform matrix

As described in the main text, we extract a subset of qu,v such that the matrix relating
them to the cm,n is invertible by selecting

q1,1, q1,2, ..., q1,N+1,

q3,3, q3,4, ..., q3,N+1,

...., qN,N , qN,N+1 (A.61)

Ordering the selected qu,v by alphabetic order of (v, u) and the cm,n by alphabetic order
of (m + n,m), we obtain a triangular, block-diagonal, invertible matrix of the Radon
transform.

Demonstration Thanks to eq. (A.56), we know that the coefficient qu,v is cal-
culated using cm,n coefficients such that

m− u+ j + 1 ≤ j =⇒ m ≤ u− 1 , (A.62)

v − n+ j ≤ m+ j + 1 =⇒ v −m− 1 ≤ n =⇒ n ≥ v − u . (A.63)

If we select a series of coefficients qu,v by either increasing u or decreasing v
at u kept fixed, the last selected coefficient qu,v involves the cu−1,v−u coefficient
which was never used to calculate any previous qu′,v′ . This selection requires that
u is odd since u − 1 has to be even, and that v ≥ u. It is the choice made in
(A.61). With this selection and ordering, the matrix relating the qu,v to the cm,n
is therefore triangular inferior. We can check additionally that the coefficient of
cu−1,v−u in the calculation of qu,v is equal to

v−u∑
j=0

(−1)j+1

u+ j

(
v − u
j

)
= −(v − u)!(u− 1)!

v!
= −1

u

(
v
u

)−1
, (A.64)

which in particular is never 0. Therefore, using the selection of (A.61) will give
an injective matrix. It is then enough to notice that the matrix is square for all
N to show that it is invertible. We obtain for instance at N = 3

q1,4
q1,3
q1,2
q1,1
q3,4
q3,3

 =


−1/4 0 0 0 0 0
0 −1/3 0 0 0 0
0 0 −1/2 0 0 0
0 0 0 −1 0 0

−1/4 0 0 0 −1/12 0
0 −1/3 0 0 0 −1/3




c0,3
c0,2
c0,1
c0,0
c2,1
c2,0

 . (A.65)

Although this demonstrates the reason behind the selection of qu,v and that the
matrix is invertible, it is not a good ordering of the elements, since when N
increases, new lines are inserted in the middle of the matrix and not simply at
the end. The next step is to observe that for our selection of qu,v, the contribution
of cm,n is 0 if m+n > v−1. This is a non-trivial observation which we will justify
later. Therefore, since m+n ≥ v− 1 (A.63), only terms where m+n = v− 1 are

194



non-zero, and the suggested ordering in the main text transforms the matrix into
a block-diagonal one with excellent properties with respect to the growth of N .
Finally, note that the calculated terms of the diagonal are also the eigenvalues
of the matrix. This gives a hint at the conditioning of the Radon transform.
However, due to the fact that we are working in the quite peculiar bases of the
coefficients cm,n and a subset of the coefficients qu,v, it is not clear how to properly
interpret this hint practically. □

For instance, at order N = 3 with the proper ordering,
q1,1
q1,2
q1,3
q3,3
q1,4
q3,4

 =


−1 0 0 0 0 0
0 −1/2 0 0 0 0
0 0 −1/3 0 0 0
0 0 −1/3 −1/3 0 0
0 0 0 0 −1/4 0
0 0 0 0 −1/4 −1/12




c0,0
c0,1
c0,2
c2,0
c0,3
c2,1

 . (A.66)

The structure of the block corresponding to m+n = N even in the block-diagonal matrix
is given by

q1,N+1

q3,N+1
...

qN+1,N+1

 =


A1(1, N + 1) 0 · · · 0
A3(3, N + 1) A1(3, N + 1) 0

... . . .
AN+1(N + 1, N + 1) AN−1(N + 1, N + 1) · · · A1(N + 1, N + 1)




c0,N
c2,N−2

...
cN,0


(A.67)

where
Ak(u,N + 1) = −(N + k − u)!(u− 1)!

(k − 1)!(N + 1)!
. (A.68)

The only change brought by choosing N odd would be that the last line stops at qN,N+1

and not qN+1,N+1.

Demonstration We start from the expression of eq. (A.56). As explained be-
fore, only the coefficients such that m ≤ u − 1 and m + n = v − 1 are used
to compute qu,v if said qu,v belongs to the selection (A.61). This means we can
rewrite (A.56)

qu,v =
u−1∑

m=0 even

cm,v−m−1

v−m−1∑
j=0

(−1)j+1

m+ j + 1

(
v −m− 1

j

)(
j

m− u+ j + 1

)(
m+ j + 1
m+ j + 1

)
,

(A.69)

=
u−1∑

m=0 even

cm,v−m−1
(v −m− 1)!

(u−m− 1)!

v−m−1∑
j=0

(−1)j+1

m+ j + 1

1

(v −m− 1− j)!(m− u+ j + 1)!
,

(A.70)

and obtain that

qu,v = −
u−1∑

m=0 even

(v −m− 1)!

(u−m− 1)!

(u− 1)!

v!
cm,v−m−1 =

u−1∑
m=0 even

Au−m(u, v) cm,v−m−1 , (A.71)
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which is a much simpler formulation than Eq. (A.56), but only valid for u odd and
v ≥ u since it relies crucially on the choice of (A.61). The fact that coefficients
with m+n > v− 1 are systematically 0, which we have not demonstrated so far,
is obtained by a similar calculation. One can even use directly the current result,
since these terms would correspond to Ak(u,N + 1) with negative values of k.
Eq. (A.68) can still be used where (k − 1)! is replaced by Euler’s Γ(k), which is
infinite for negative integer values – giving indeed that the coefficients are 0. □

We are now ready to verify that the inverse of the Radon transform matrix is obtained
thanks to

cm,n = −
(
n+m
m

)
(n+m+ 1)

m∑
k=0 even

(
m
k

)
Em−k qk+1,n+m+1 , (A.72)

where the E2i are Euler numbers. We adhere to the convention of alternating signs
(sequence A028296 in the OEIS – https://oeis.org/search?q=A028296) : E0 = 1,
E2 = −1, E4 = 5, E6 = −61, ...

Demonstration We verify that the combination of our formulas (A.71) and
(A.72) gives back the identity :

qu,v = −
u−1∑

m=0 even

(v −m− 1)!

(u−m− 1)!

(u− 1)!

v!
cm,v−m−1 , (A.73)

=
u−1∑

m=0 even

(v −m− 1)!

(u−m− 1)!

(u− 1)!

v!

(v − 1)!

(v −m− 1)!m!
v

m∑
k=0 even

(
m
k

)
Em−k qk+1,v , (A.74)

=
u−1∑

m=0 even

(
u− 1
m

) m∑
k=0 even

(
m
k

)
Em−k qk+1,v , (A.75)

=
u−1∑

k=0 even

qk+1,v

u−1∑
m=k even

(
u− 1
m

)(
m
k

)
Em−k , (A.76)

=
u−1∑

k=0 even

qk+1,v

(
u− 1
k

) u−k−1∑
m=0 even

(
u− 1− k

m

)
Em . (A.77)

(A.78)

To conclude, it is enough to use the remarkable, yet rarely mentioned property
that

u∑
m=0 even

(
u
m

)
Em = 1 if u = 0, and 0 for u even > 0 . (A.79)

(see for instance https://mathworld.wolfram.com/EulerNumber.html where it
is symbolically noted (E − i)u = 0 where Em is to be interpreted as |Em| due to
our sign convention). □
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A.5 . An example of NLO shadow GPD

Here is the exact expression of one of the three polynomial DDs of lowest order N = 25
which cancel analytically their forward limit, LO, collinear and 1- loop CFFs and vanish
on the edges of the rhombus. The coefficients of the monomials are fractions with about
25 figures in their numerator and denominator.

The numerical value of the associated GPD rounded up to 20 decimals is available
in the PARTONS framework [144] as the module GPDBDMMS21. Note that even with
such a precise rounding, numerical errors can appear for ξ ≥ 0.8 in the region |x| > |ξ|.
If sampling at very large values of ξ is required, we recommend to use the exact formula
below with a fraction module.

The code of the PARTONS framework is open source and can be found online at
https://drf-gitlab.cea.fr/partons/core/partons on version 3 of the GPL (GPLv3).

Value of the DD

fq(+)(β, α) = - 902951624458552763993/7949224070189526888655776 α0β1 +1645153381705985462447/2208117797274868580182160
α0β3 - 15015439407107785592303/2649741356729842296218592 α0β5 +7695803311862564769589/248413252193422715270493
α0β7 - 62209966890128536618623/441623559454973716036432 α0β9 +378876730074805795892507/662435339182460574054648
α0β11 - 12606501240867630643788647/6624353391824605740546480 α0β13 +516650785371355289922447/110405889863743429009108
α0β15 - 21124344012571718483806351/2649741356729842296218592 α0β17 +35789839795529417052559867/3974612035094763444327888
α0β19 - 5644458778059994341187049/883247118909947432072864 α0β21 +4257963054831799340828089/1656088347956151435136620
α0β23 - 887194154219027030796875/1987306017547381722163944 α0β25 +5370264770844120458307/441623559454973716036432 α2β1

- 25332177063896702834235/441623559454973716036432 α2β3 +34232491976828620631152/82804417397807571756831 α2β5

- 86841220431539825394585/55202944931871714504554 α2β7 +951164308680049994541109/220811779727486858018216 α2β9 -
5622610481573927305388687/662435339182460574054648 α2β11 +829252629367280752867485/110405889863743429009108 α2β13

+1535527878083407864929379/110405889863743429009108 α2β15 - 73539466090933888988026015/1324870678364921148109296 α2β17

+34151434015312715718525837/441623559454973716036432 α2β19 - 5658457905176554327251771/110405889863743429009108 α2β21

+4435970771095135153984375/331217669591230287027324 α2β23 - 213132741228535919841225/883247118909947432072864 α4β1

+77891687999322003391375/110405889863743429009108 α4β3 - 609309959634473899035355/110405889863743429009108 α4β5

+1295367943497923016017765/110405889863743429009108 α4β7 - 22051658150553580606445185/1324870678364921148109296 α4β9

+848816622290825400692585/110405889863743429009108 α4β11 +2146239115711889506366275/220811779727486858018216
α4β13 +9489952150145859605337985/331217669591230287027324 α4β15 - 141865143304125258388901705/883247118909947432072864 α4β17

+6077628261119191188931250/27601472465935857252277 α4β19 - 22179853855475675769921875/220811779727486858018216 α4β21

+673028602010250304175875/331217669591230287027324 α6β1 - 292476439026168482115639/110405889863743429009108 α6β3

+3637462068018209428036949/110405889863743429009108 α6β5 - 4965346936133528256678709/331217669591230287027324 α6β7

+2503551223107976432515803/110405889863743429009108 α6β9 +1851829369036815586119023/110405889863743429009108 α6β11

+3654076206524637645595991/110405889863743429009108 α6β13 +7491457286473302279399619/110405889863743429009108 α6β15

- 8844902835330684650085362/27601472465935857252277 α6β17 +31051795397665946077890625/82804417397807571756831 α6β19

- 4136704165765632413399985/441623559454973716036432 α8β1 - 140453576317407364043571/220811779727486858018216 α8β3 -
53041002460736776036311711/441623559454973716036432 α8β5 - 12790393881300446915250615/110405889863743429009108 α8β7

- 73106568587303261724097467/441623559454973716036432 α8β9 - 44902025504722590467799475/220811779727486858018216 α8β11

- 88380416514378409712612937/441623559454973716036432 α8β13 - 8724255239384306834681727/55202944931871714504554 α8β15

- 93155386192997838233671875/110405889863743429009108 α8β17 +5860376206888412998007681/220811779727486858018216 α10β1

+33475645279468201747961023/1104058898637434290091080 α10β3 +33025591574455853066478587/110405889863743429009108 α10β5

+181611152158927264379444003/331217669591230287027324 α10β7 +177659155875454905425891821/220811779727486858018216 α10β9

+221700435737546257680535039/220811779727486858018216 α10β11 +319541232926564315098928727/276014724659358572522770 α10β13

+68313949874865081371359375/55202944931871714504554 α10β15 - 64827892654525651673134567/1324870678364921148109296 α12β1

- 10191522656137129492999905/110405889863743429009108 α12β3 - 111087646415775948115422537/220811779727486858018216 α12β5

- 46059520000279623456459295/43202304729290907003564 α12β7 - 685234628354767481330158637/441623559454973716036432 α12β9

- 46890129360985049003271043/27601472465935857252277 α12β11 - 403673340169657299012578125/331217669591230287027324 α12β13

+6630001426758260012167725/110405889863743429009108 α14β1 +15091826744259849395348925/110405889863743429009108 α14β3

+59217086167151091225704915/110405889863743429009108 α14β5 +116976297690572355462636555/110405889863743429009108 α14β7

+34825544896628183481693675/27601472465935857252277 α14β9 +22179853855475675769921875/27601472465935857252277 α14β11

- 43109663309126623737340525/883247118909947432072864 α16β1 - 49453047196038655431976229/441623559454973716036432 α16β3

- 292463954088848105414718437/883247118909947432072864 α16β5 - 55883046166200169280641377/110405889863743429009108 α16β7

- 75411503108617297617734375/220811779727486858018216 α16β9 +100512205340087282917008715/3974612035094763444327888 α18β1

+21524193879591746625661757/441623559454973716036432 α18β3 +33243841204347672865795207/331217669591230287027324 α18β5

+84283444650807567925703125/993653008773690861081972 α18β7 - 6691392647034077116454397/883247118909947432072864 α20β1

- 100126670622932300319/11342760115860876655 α20β3 - 6210359079533189215578125/662435339182460574054648 α20β5 +
α22β1
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Value of the GPD for x > |ξ|

The nullity of the forward limit and LO CFF are made very explicit respectively by
the ξ2 and (x2−ξ2) factors, whereas (1−x)5 guarantees a very smooth behaviour at large
x.

Hq(+)(x, ξ) = (65536 (1 - x)5 (x2 - ξ2) ξ2 (-8363771153192798115x - 41818855765963990575 x2 - 2291958055186829401725
x3 - 11125239429806435084025 x4 + 913222467358957809358284 x5 + 4654645881048661730769180 x6 +
238069679477453290288066140 x7 - 2962760887935657721678189860 x8 + 6569870366810084150878305780 x9 +
18761012723785934692103395128 x10 - 76928400823343726746081064520 x11 + 41017836020009001958211348760 x12

+ 76834572510678115789139906520 x13 - 22420022896664405471246022060 x14 - 66864462549508597243006970172 x15

- 15512628910724367358088291100 x16 + 23726225441438503939679841780 x17 + 16767969514739610882060937500
x18 + 3353593902947922176412187500 x19 + 1936477503984725876820xξ2 + 9682387519923629384100 x2ξ2 -
1148131469580890853082680 x3ξ2 - 5818116448063843300486200 x4ξ2 + 121923841174870312375816872 x5ξ2 -
4478361335951958971026764120 x6ξ2 + 41569429075455721504118181624 x7ξ2 - 65873134592387896080837321450 x8ξ2 -
489545630557885942209811607250 x9ξ2 + 2004704012778183135029354484054 x10ξ2 - 2234534856263426592490273718850 x11ξ2

- 307870131671801827046956893912 x12ξ2 + 1261427836707032758622049674280 x13ξ2 + 430802391180094899116978662500
x14ξ2 - 361589433792555263624449291116 x15ξ2 - 270453632089604720060949014760 x16ξ2 - 43359225928487593047670802952
x17ξ2 + 6707187805895844352824375000 x18ξ2 + 1341437561179168870564875000 x19ξ2 + 336681394104956384998659xξ4
+ 1683406970524781924993295 x2ξ4 - 413558757991817684446511355 x3ξ4 + 7844782594322716313068676865 x4ξ4 -
33833380732598545306708111584 x5ξ4 - 86920937387611069554046719120 x6ξ4 + 468890185063289289040298761392 x7ξ4 +
2237728610614128475158536274810 x8ξ4 - 13923931065860427209313861430910 x9ξ4 + 23653486346969934917789786747702 x10ξ4
- 10763700454260477933616617268674 x11ξ4 - 6309679726957161669375775894156 x12ξ4 + 2522319874156000202513219862340
x13ξ4 + 2227214081038559720504091473100 x14ξ4 + 288063012333504469503372891612 x15ξ4 - 97840707258698883729294814380
x16ξ4 - 18971946980104590581163462876 x17ξ4 + 372621544771991352934687500 x18ξ4 + 74524308954398270586937500
x19ξ4 + 102005252436848125514548332xξ6 - 843257695854040752309458340 x2ξ6 - 18783135855456536941745093160 x3ξ6 +
164228137100633310564087429420 x4ξ6 + 221838557419242366167978256396 x5ξ6 - 4313589842271876455515907072700 x6ξ6 +
6447817633121394178475493189684 x7ξ6 + 24140786122579579681685842862640 x8ξ6 - 81227147644572001593190607666000 x9ξ6
+ 75735173003934541979411445995792 x10ξ6 - 7782542294728914754516730052912 x11ξ6 - 13299786278241568754818657921132
x12ξ6 - 1486359166580668601571969885980 x13ξ6 + 724090469838709949857175005740 x14ξ6 + 134065710163663968814090937532
x15ξ6 - 6720239877548763223340039760 x16ξ6 - 1344047975509752644668007952 x17ξ6 - 410234629791797857911150000 ξ8

+ 9649158034659247009630240014xξ8 - 34056348347179890223302830670 x2ξ8 - 195156675327280446617888738970 x3ξ8 -
248471074267092559434848457510 x4ξ8 + 13083103872462977884215019554492 x5ξ8 - 49071201503618589151810860329640 x6ξ8

+ 44876009242554338181103408360920 x7ξ8 + 72961294997833345788792874766340 x8ξ8 - 158527054628349378519637491849020
x9ξ8 + 74024545904866816892142596859824 x10ξ8 + 8732970127845718532481110708496 x11ξ8 -
3725270172372627198415439773660 x12ξ8 - 665406336380638776481155793580 x13ξ8 + 49779811308679164501207600720
x14ξ8 + 9955962261735832900241520144 x15ξ8 - 6322284197731911480129714786 ξ10 + 23811068688981025617088355790xξ10 +
674349476395723696600855203390 x2ξ10 - 4030784120888624453600415212370 x3ξ10 - 3719575543394114440208761411320 x4ξ10 +
69618417243516856573764653634936 x5ξ10 - 159824454649233465428641309651380 x6ξ10 + 91948799033337891281434484285820
x7ξ10 + 91893298890700035896165670144570 x8ξ10 - 107669053139563947501508486017950 x9ξ10 +
16394590072795823456831785110650 x10ξ10 + 2918663483749049275018187393490 x11ξ10 - 225159081756322135217606017900
x12ξ10 - 45031816351264427043521203580 x13ξ10 + 22412583894051240034914095002 ξ12 - 1027378553080908248958853978360xξ12
+ 9027663558573138279574084318884 x2ξ12 - 25541305658609626188640420868200 x3ξ12 - 1438655830874178161289998412650
x4ξ12 + 121321200107500906916300415372708 x5ξ12 - 181299080331491653893067232486820 x6ξ12 +
53265622454080043369740969687596 x7ξ12 + 46032948972668967621414613291950 x8ξ12 - 18916968152364568311797563289850
x9ξ12 + 786167314115378875834301294850 x10ξ12 + 157233462823075775166860258970 x11ξ12 +
360787498650311340569865791056 ξ14 - 5596666463372152475160052745128xξ14 + 27787270863557584809501810705912 x2ξ14 -
50678573641634010525222989395120 x3ξ14 + 4504070389195336991577964577320 x4ξ14 + 82110525390855025726060079248344
x5ξ14 - 69353831846842296024416345356632 x6ξ14 + 4485117593855414749971937902408 x7ξ14 +
5009822881729633502252109096000 x8ξ14 - 676974032195957187401884924800 x9ξ14 + 971968321459914846351536213416 ξ16 -
9429943173675346463452661694799xξ16 + 30259316417155987363625807014449 x2ξ16 - 34791985535830528468266741444325 x3ξ16
+ 187271571837050277722697958315 x4ξ16 + 19955470635025218070583559080964 x5ξ16 - 5916958879966792224142796119536
x6ξ16 - 16582936267379480337015715584 x7ξ16 + 61725684137569260582805395000 x8ξ16 + 962121147336805163045785576402
ξ18 - 6107528242336184526613483834738x ξ18 + 12164497352096521345934596394910 x2ξ18 - 7351688165986962158651585230390
x3ξ18 - 1034220339197008139237036005940 x4ξ18 + 854725870309553438455263228588 x5ξ18 - 56921890611922093007847101232
x6ξ18 + 386072771046974846369606881810 ξ20 - 1491273766904930894922316575295xξ20 + 1507072402330955391162157111185
x2ξ20 - 209473743071146365630215101705 x3ξ20 - 21693382885093885956940224275 x4ξ20 + 59070702889243936616432386680
ξ22 - 106790573511567065724280857180xξ22 + 16682728710185112558340817460 x2ξ22 + 2586428492678168045792304420
ξ24))/(27709612688932234336443554842455 (1 - ξ2)17)
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A.6 . Formulas for Shuvaev’s proposal

The operator S ′a resulting from the composition of the Shuvaev operator Sa and the
simple Mellin transform acts on a PDF a(x) in the following way [250]

S ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’)

=

∫ 1

−1
dx′

 2
π

Im

∫ 1

0

ds

 4s(1− s)

(1 + ξ
x
(1− 2s))1+pa

√√√√1−
4sx

′

ξ
(1− s)

x
ξ
+ 1− 2s

−1
 d

dx′

(
a(x′)

|x′|

)
,

(A.80)

where pa = 1 for gluons (a = g) and 0 otherwise.

Support of integration

Let us determine exactly the values of x′ and s such that the imaginary part in
Eq. (A.80) is non zero. We consider the case where x > ξ ≥ 0. Then the only source
of imaginary part comes from

1− 4sx′(1− s)

x+ ξ(1− 2s)
≤ 0 =⇒ x′ ≥ x+ ξ(1− 2s)

4s(1− s)
. (A.81)

In particular, x > ξ and 0 ≤ s ≤ 1 imply that x′ > 0. It is also necessary that

x+ ξ(1− 2s)− 4sx′(1− s) ≤ 0 , (A.82)

which yields the constraint

s1 ≤ s ≤ s2 with s1,2 =
1

2
+

ξ

4x′
∓
√

4x′2 + ξ2 − 4xx′

4x′
, (A.83)

where we used that x′ > 0. Furthermore, the fact that x > ξ implies that

ξ − 2x′ < −
√
4x′2 + ξ2 − 4xx′ , (A.84)

as seen by squaring the inequality. It gives that s2 < 1. The fact that x + ξ > 0 gives
similarly that s1 > 0. Therefore, we never need to integrate down to s = 0 or up to s = 1
where non-integrable singularities would appear.

Finally, the imaginary part is not null only if 4x′2 + ξ2 − 4xx′ > 0 in Eq. (A.83), that
is

either x′ <
x

2
−
√
x2 − ξ2

2
or x′ >

x

2
+

√
x2 − ξ2

2
. (A.85)

The first possibility implies

2x′ − ξ < x− ξ −
√
x2 − ξ2 < x− ξ −

√
(x− ξ)2 = 0 , (A.86)

which is ruled out by ξ − 2x′ < −
√

4x′2 + ξ2 − 4xx′ < 0 (A.84). To summarise, for
x > ξ ≥ 0,

S ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’) =

∫ 1

x/2+
√
x2−ξ2/2

dx′Ca

(
ξ

x
,
x′

ξ

)
d

dx′

(
a(x′)

x′

)
, (A.87)
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where

Ca

(
ξ

x
,
x′

ξ

)
=

2

π
Im

∫ s2

s1

ds

 4s(1− s)

(1 + ξ
x
(1− 2s))1+pa

√√√√1−
4sx

′

ξ
(1− s)

x
ξ
+ 1− 2s

−1 . (A.88)

The fact that the lower bound on the x′ integration in Eq. (A.87) is x/2 +
√
x2 − ξ2/2,

which is strictly less than x if ξ > 0, is crucial to understand why the relation between
the DGLAP and general evolution operators expressed in Eq. (7.47) cannot be
exact.

Using the notations of Eq. (7.47), the DGLAP operator 1/x′Γab0 (z/x′;µ2, µ2
0) is non

zero for z ≥ x′. Since values of x′ ∈ [x/2+
√
x2 − ξ2/2, x] give non vanishing contributions

to the integral defining the operator S ′a (A.87), it means that DGLAP operators with
z ≥ x/2 +

√
x2 − ξ2/2 contribute to the approximation of the general evolution operator

at x > ξ in Eq. (7.47). We know however that the latter should only depend on values
z ≥ x. The approximation is therefore bound to behave poorly in the low z (or low y)
region, which is precisely observed on Fig. 7.12.

We can check nonetheless that in the case where ξ = 0 – where the lower bound on
the x′ integration in Eq. (A.87) is x – the operator S ′a reconstructs correctly the forward
limit.

Case ξ → 0

If the reconstruction procedure is sound, it should reproduce the PDF in the limit
ξ → 0 with our gluon GPD convention, that is xS ′a(ξ/x,x’/ξ) ∗ a(x’) → a(x). We verify
this analytically.

lim
ξ→0

Ca

(
ξ

x
,
x′

ξ

)
=

2
√
x

π
Im

∫ s2

s1

ds

4s(1− s)
√
x− 4sx′(1− s)

, (A.89)

where s1,2 =
1

2

(
1∓

√
1− x

x′

)
. (A.90)

The analytical computation of the integral in Eq. (A.89) gives Ca(ξ/x, x′/ξ) → −1 when
ξ → 0. Hence

lim
ξ→0

xS ′a
(
ξ

x
,
x’
ξ

)
∗ a(x’) = −x

∫ 1

x

dx′
d

dx′

(
a(x′)

x′

)
= a(x) , (A.91)

if we take into account that f(1) = 0 in the last equality.

Case x = ξ

We have so far only concerned ourselves with x > ξ since it is clear that the integral
is finite in that case as we never get to integrate up to the problematic boundaries s = 0
and 1. The result can be extended without any change for x = ξ. It is sufficient to notice
that the integral remains convergent although we are integrating up to s = 1 where a
potential divergence might occur.

Ca

(
1,
x′

x

)
=

2

π
Im

∫ 1

x/2x′
ds

(
4s(1− s)

(2(1− s))1+pa

√
1− 2sx′

x

)−1
. (A.92)
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Therefore, even though we integrate up to s = 1 if x = ξ, no divergence appears thanks
to the cancellation of terms (1− s) in Eq. (A.92).
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B - Résumé détaillé en Français

Les distributions de partons généralisées

Les théorèmes de factorisation constituent l’un des rares moyens pratiques pour ca-
ractériser la structure des hadrons à partir de données expérimentales. Ils permettent
de décomposer les amplitudes de diffusion en termes de distributions de partons d’une
part, qui sont des objets non-perturbatifs contenant des informations universelles sur la
structure de la cible hadronique, et d’autre part en termes de fonctions coefficients dépen-
dant du processus expérimental, calculables en théorie des perturbations. Les fonctions
de distribution de partons habituelles (PDF), qui entrent notamment dans la description
de la diffusion profondément inélastique (DIS), reçoivent une interprétation probabiliste
en temps que densités de nombre de partons (quarks et gluons) en fonction de la fraction
d’impulsion longitudinale x qu’ils portent dans un hadron en mouvement rapide. Les pro-
cessus exclusifs – où toutes les particules impliquées dans l’état final de l’interaction sont
mesurées – comme la diffusion Compton profondément virtuelle (DVCS) ou la production
de mésons profondément virtuelle (DVMP) motivent l’introduction de distributions de
partons de dimension supérieure, appelées distributions de partons généralisées (GPD).
Contrairement aux PDF, les GPD peuvent être utilisées pour décrire les amplitudes de
diffusion où un transfert d’impulsion vers la cible hadronique se produit. Par conséquent,
outre la fraction d’impulsion longitudinale x, elles dépendent également du transfert d’im-
pulsion longitudinal mesuré par ξ, et du transfert d’impulsion total mesuré par t. Les PDF
constituent une limite des GPD quand aucune impulsion n’est transférée à la cible ha-
dronique (ξ = t = 0). Les GPD généralisent également les facteurs de forme élastiques
(EFF) qui sont obtenus en intégrant les GPD sur x.

En plus des trois variables x, ξ et t, et de manière similaire aux PDF, les GPD dé-
pendent d’une échelle de renormalisation µ2 qui découle de la nécessité d’éliminer la diver-
gence UV des opérateurs de champ qui définissent formellement les GPDs. La dépendance
des distributions de partons en fonction de l’échelle de renormalisation peut être exprimée
en théorie des perturbations grâce à des équations intégro-différentielles connues sous le
nom d’équations d’évolution.

En tant que généralisations des PDF, les GPD possèdent également une interprétation
probabiliste. Elles encodent la corrélation entre la fraction d’impulsion longitudinale x et
la position transversale dans le hadron par rapport au barycentre de l’impulsion longitudi-
nale. Cette cartographie de la distribution radiale de l’impulsion longitudinale est connue
sous le nom de tomographie hadronique et constitue l’une des principales motivations du
programme d’étude des GPD. Une autre motivation physique cruciale est la possibilité
remarquable d’exprimer les éléments de matrice du tenseur énergie-impulsion en termes
de facteurs de forme gravitationnels (GFF) dérivés des GPD. Les GFF permettent à leur
tour de définir des distributions d’énergie et de pression à l’intérieur de la matière ha-
dronique. Ce sujet est au centre d’un intérêt théorique et expérimental considérable ces
dernières années, et plusieurs extractions phénoménologiques basées sur divers ensembles
de données DVCS disponibles avec différentes hypothèses de modélisation ont été publiées.
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Le problème de déconvolution du DVCS

Bien que les GPD soient impliquées dans plusieurs processus expérimentaux différents,
le DVCS a reçu la plus grande attention théorique et expérimentale ces dernières années.
En effet, il présente à la fois l’avantage d’une section efficace significative – si nécessaire en
tenant compte de son interférence avec le processus de Bethe-Heitler – et d’une descrip-
tion théorique relativement propre – comparée par exemple au DVMP qui implique une
autre fonction non-perturbative appelée amplitude de distribution (DA). Un théorème de
factorisation démontre que l’amplitude du DVCS peut être paramétrée par des facteurs de
forme Compton (CFF) F calculés à partir des GPD F de la manière générique suivante

F(ξ, t, Q2) =
∑
a

∫ 1

−1

dx

ξ
T a
(
x

ξ
,
Q2

µ2
, αs(µ

2)

)
F a(x, ξ, t, µ2)

xpa
, (B.1)

où la somme s’étend sur les types de partons (avec a = q pour les quarks et g pour les
gluons), T a est la fonction coefficient du DVCS calculable en théorie des perturbations,
pa = 0 si a = q et 1 si a = g, αs est le couplage fort et Q2 est la virtualité du photon
médiant l’interaction entre le lepton entrant et la cible hadronique. La question de savoir
si la valeur de F a peut être extraite de la connaissance expérimentale de F est appelée
"problème de déconvolution" du DVCS et constitue un élément central de ce document.
La question doit être affinée, car par exemple la parité de T q implique déjà que seule la
partie x-impaire de la GPD Hq, connue sous le nom de GPD singlet de quark et notée
par

Hq(+)(x, ξ, t, µ2) = Hq(x, ξ, t, µ2)−Hq(−x, ξ, t, µ2) , (B.2)
contribue à l’intégrale de l’équation (B.1). De plus, la séparation des contributions des dif-
férents types de partons est notoirement difficile à réaliser. Le problème de déconvolution
est d’autant plus difficile que les GPD doivent suivre un certain nombre de contraintes
théoriques. Notamment, leurs moments de Mellin en x doivent être polynomiaux en ξ en
raison de la covariance de Lorentz :∫ 1

−1
dx xnHq(x, ξ, t, µ2) =

n+1∑
k=0
even

Hq
n,k(t, µ

2)ξk . (B.3)

Il est en fait équivalent pour Hq de satisfaire l’équation (B.3) et de s’écrire sous la forme
d’une transformée intégrale connue sous le nom de transformée de Radon

Hq(x, ξ, t, µ2) =

∫
dαdβ δ(x− β − αξ)

[
f q(β, α, t, µ2) + ξδ(β)Dq(α, t, µ2)

]
, (B.4)

où le support de f q(β, α) est restreint à |α| + |β| ≤ 1 et celui de Dq(α) à α ∈ [−1, 1].
f q est appelée une double distribution (DD) et Dq la contribution de q au D-terme. Bien
que la dépendance en x et ξ des GPD soit intriquée par la condition de l’équation (B.3),
la dépendance en α et β des DD n’est pas contrainte par cette relation, sauf pour la
propriété de support.

Une étude des propriétés analytiques des amplitudes de diffusion avec quelques hypo-
thèses sur le comportement de ImH(ξ, t, Q2) pour ξ → 0 permet de dériver des relations
de dispersion qui relient les parties réelles et imaginaires des CFF :

ReH(ξ, t, Q2) =
1

π
p.v.

∫ 1

0

dξ′ ImH(ξ′, t, Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
+ CH(t, Q

2) , (B.5)
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où CH , indépendant de ξ, est appelé constante de soustraction, et est lié au D-terme par

CH(t, Q
2) =

2

π

∫ ∞
1

∑
a

dω

ωpa
ImT a

(
ω,
Q2

µ2
, αs(µ

2)

)∫ 1

−1
dz

Da(z, t, µ2)

ω − z
. (B.6)

En fin de compte, l’information sur les GPD contenue dans les données expérimentales
DVCS est exactement constituée de la partie imaginaire de l’équation (B.1) qui contraint
uniquement la partie β-impaire de la DD – désignée par f q(+) –, et de l’équation (B.6)
qui contraint uniquement le D-terme.

À l’ordre dominant (LO) en αs, la partie imaginaire de l’équation (B.1) se lit comme
suit

ImH(ξ, t, Q2)
LO
= π

∑
q

e2qH
q(+)(ξ, ξ, t, µ2) , (B.7)

= π
∑
q

e2q

∫ 1

(ξ−1)/(1+ξ)
dα f q(+)(ξ(1− α), α, t, µ2) , (B.8)

et l’équation (B.6) donne

Cq(t, Q2)
LO
= 2

∑
q

e2q

∫ 1

−1
dz

Dq(z, t, µ2)

1− z
, (B.9)

où il est habituel de choisir µ2 proche de Q2. Dans ce qui suit, nous supposerons que
µ2 = Q2, sauf indication contraire explicite.

Puisque les deux équations (B.8) et (B.9) impliquent des intégrales de la DD et du D-
terme où une variable est intégrée, il semble au premier abord improbable que même une
connaissance parfaite des données expérimentales DVCS sur une large gamme cinématique
soit suffisante pour retrouver effectivement la partie β-impaire de la DD et le D-terme.
Cependant, la connaissance de la dépendance de ces deux objets selon µ2 grâce aux
équations d’évolution fournit l’argument théorique qui démontre la possibilité d’effectuer
cette extraction.

Quantifier l’incertitude du problème de déconvolution pour la constante de
soustraction

L’évolution LO du D-terme est exprimée de manière pratique grâce à une expansion
en termes de polynômes de Gegenbauer :

Dq(z, t, µ2) = (1− z2)
∞∑

odd n

dqn(t, µ
2)C(3/2)

n (z) , (B.10)

Dg(z, t, µ2) =
3

2
(1− z2)2

∞∑
odd n

dgn(t, µ
2)C

(5/2)
n−1 (z) . (B.11)

Ensuite, l’équation (B.9) donne

CH(t, Q
2)

LO
= 4

∑
q

e2q

∞∑
odd n

dqn(t, µ
2) . (B.12)
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L’intérêt de cette représentation est qu’il est possible d’écrire les équations d’évolution
LO sous la forme suivante

dqn(t, µ
2)

LO
= Γqqn (µ

2, µ2
0)d

q
n(t, µ

2
0) + Γqgn (µ2, µ2

0)d
g
n(t, µ

2
0) , (B.13)

dgn(t, µ
2)

LO
= Γgqn (µ2, µ2

0)d
q
n(t, µ

2
0) + Γggn (µ2, µ2

0)d
g
n(t, µ

2
0) . (B.14)

Les opérateurs d’évolution Γabn dictent le comportement de dan en tant que fonctions de
µ2. Si les dan forment une famille de fonctions de µ2 linéairement indépendantes, alors la
mesure des données expérimentales DVCS sur une gamme de valeurs variées en Q2 devrait
donner en principe le pouvoir de discriminer chaque dqn et de reconstruire ainsi le terme
Dq(α, t, µ2) complet à partir de la simple connaissance de CH(t, Q2).

L’évaluation de la possibilité pratique d’effectuer une telle extraction, à la fois en ce qui
concerne l’ensemble actuel de données DVCS et l’impact attendu du collisionneur électron-
ion (EIC), est l’une des contributions originales de ce document. Une extraction du D-
terme indépendante de modèle nécessiterait d’obtenir dan pour toutes les valeurs de n ∈
{1, 3, 5, ...} directement à partir des données expérimentales. Par souci de simplification,
nous ne permettons d’abord que l’extraction de d1, puis de d1 et d3 conjointement. En
étudiant l’effet de l’ajout d’un nouveau paramètre libre dans la représentation duD-terme,
nous pouvons quantifier la possibilité d’une extraction moins biaisée. Nous montrons que
sous un certain nombre d’hypothèses de modélisation qui sont couramment utilisées dans
les extractions phénoménologiques du D-terme, il est possible d’estimer l’incertitude sur
dq3 par

∆dq3 ≈
3

4
σ

(
1− Γqq3 (µ2

max, µ
2
min)

Γqq1 (µ2
max, µ

2
min)

)−1
, (B.15)

où [µ2
min, µ

2
max] représente la plage disponible en Q2 où les données précises de la constante

de soustraction DVCS sont collectées, et σ leur incertitude typique. L’équation (B.15)
met en évidence que l’incertitude liée à l’extraction du D-terme provient de deux sources
principales : l’incertitude sur les données expérimentales σ, et l’incertitude due au bras
de levier limité en Q2 ici quantifiée par la similarité de l’évolution des différents dn sur la
plage disponible en Q2. C’est en effet le fait que chaque dn se comporte différemment sous
l’effet de l’évolution qui fournit le levier théorique permettant de résoudre le problème de
déconvolution.

Nous démontrons comment réinterpréter l’estimation de l’incertitude de la procédure
de déconvolution (B.15) en introduisant ce que nous avons appelé des D-termes "fan-
tômes". Ces objets n’apportent exactement aucune contribution à la constante de sous-
traction CH(t, Q

2) à l’ordre perturbatif choisi pour Q2 = µ2
0, et leur contribution reste

inférieure à la valeur de σ sur la plage disponible en Q2. Nous montrons que la taille
maximale des D-termes fantômes qui appartiennent à l’espace de modélisation autorisé
pour le D-terme fournit une quantification similaire de l’incertitude de la procédure de
déconvolution par rapport à (B.15).

Phénoménologie du DVCS

Nous montrons que notre estimation est capable de rendre compte de la phénoméno-
logie actuelle des DVCS. Nous présentons d’abord en détail les outils de modélisation par
réseaux de neurones que nous utilisons pour rendre compte de la propagation de l’incerti-
tude dans les analyses complexes de données expérimentales. Nous discutons des stratégies
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Figure B.1 – Régions de confiance à 68% pour ReH avec l’ensemble actuel de données DVCS
(bande orange) et l’incertitude réduite attendue grâce au programme positrons à JLab (bande
bleue). Pour chacun des treize bins de (xB, Q

2) [ξ ≈ xB/(2 − xB)], le sous-graphe montre les
résultats sur les bins en t.

d’entraînement et de validation des réseaux de neurones et soulignons l’impact de la sup-
pression des valeurs aberrantes. Nous comparons cette technique qui nécessite beaucoup
de calculs avec des outils statistiques traditionnels tels que la matrice hessienne, et nous
montrons dans les deux cas comment les fits peuvent prendre en compte de nouveaux
points de données sans nécessiter un nouveau calcul fastidieux.

Nous utilisons notamment l’un de ces outils, appelé repondération bayésienne, pour
étudier l’impact d’une future installation expérimentale potentielle sur l’incertitude expé-
rimentale σ dans l’équation (B.15). Nous montrons comment la prise de données avec un
faisceau de positrons au Thomas Jefferson National Accelerator Facility (JLab) pourrait
permettre une réduction significative de l’incertitude sur ReH, qui joue un rôle crucial
dans l’incertitude de la constante de soustraction, grâce à la mesure des asymétries de
charge du faisceau. L’évaluation de la réduction attendue de l’incertitude sur ReH selon
les hypothèses détaillées dans le document est présentée sur la Fig. B.1.

Pour étudier l’incertitude de la procédure de déconvolution liée à l’effet de levier en
Q2 dans l’équation (B.15), nous menons une analyse numérique détaillée des opérateurs
d’évolution Γqqn . Cette étude permet de comprendre plusieurs caractéristiques intrigantes
de notre extraction phénoménologique du D-terme : nous sommes notamment en mesure
d’expliquer l’augmentation d’un facteur 20 de l’incertitude lors du fit conjoint de d1 et d3
par rapport à d1 seul dans notre extraction phénoménologique du D-terme avec l’ensemble
actuel de données DVCS, mais aussi le manque de sensibilité aux contributions des gluons
lorsqu’elles sont générées radiativement à partir de celles des quark. Nous sommes en outre
en mesure de prédire qu’avec une couverture étendue en Q2 fournie par EIC, une réduction
de l’incertitude d’un facteur ∼3 sur le fit conjoint de d1 et d3 peut être attendue du seul
effet de la plage en Q2, sans tenir compte d’un effet de précision accrue des mesures σ.
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Nous présentons également les premiers résultats d’une étude phénoménologique de la
constante de soustraction menée à l’ordre sous-dominant (NLO) sur l’ensemble actuel de
données DVCS, et nous concluons que la plupart des caractéristiques identifiées à l’ordre
dominant restent pertinentes.

Le problème de déconvolution pour les doubles distributions

Après avoir discuté en détail de l’incertitude de la procédure de déconvolution per-
mettant de récupérer le D-terme à partir de la constante de soustraction, nous abordons
la question de l’extraction de la DD de la partie imaginaire du CFF. Nous utilisons pour
cela une extension de notre concept de D-termes fantômes, à savoir les DD fantômes. Ce
sont des DD dont la contribution au CFF à l’ordre perturbatif choisi est exactement 0 à
l’échelle Q2 = µ2

0. Comme dans le cas des D-termes fantômes, la taille de la contribution
au CFF des DDs fantômes évoluées sur la plage expérimentale en Q2 disponible fournit
une mesure de l’incertitude de la déconvolution.

Nous démontrons en détail l’existence de DD fantômes à NLO en utilisant des DD
polynomiales en α et β. Nous montrons comment ce choix permet de construire une
série de systèmes linéaires avec une forme commode, donnons explicitement les formules
requises pour la solution itérative de ces systèmes, et fournissons des solutions explicites.
Nous discutons également de certains avantages et inconvénients de l’utilisation de DD
polynomiales pour la phénoménologie des GPD, et notamment le programme d’extension
covariante.

Pour clarifier l’effet de l’évolution LO sur les DD fantômes, nous consacrons une pré-
sentation détaillée à la différence entre l’expansion de la fonction coefficient du DVCS en
termes de logarithmes dominants d’une part et de puissances de αs d’autre part. Bien que
nous travaillions à NLO, et donc que les DDs fantômes annulent strictement les termes
d’ordre α0

s et α1
s de la fonction coefficient du DVCS, la resommation de tous les termes

d’ordre αks log
k(Q2/µ2) pour k ≥ 2 (expansion en logarithmes dominants de la fonction

coefficient du DVCS) donne une contribution non nulle au CFF sous évolution LO. Nous
fournissons donc le premier résultat à l’ordre α1

s avec évolution LO montrant que même
sur un intervalle de [1, 100] GeV2, les trois GPD présentés sur la Fig. B.2 sont impos-
sibles à distinguer avec les seules données DVCS, car leurs CFF sont indiscernables dans
l’incertitude expérimentale typique. En pratique, les DD fantômes représentent des arché-
types de modes particulièrement difficiles à contraindre dans le cadre d’une extraction non
biaisée des GPD : à mesure que la flexibilité du modèle GPD augmente, et que de telles
GPD fantômes entrent dans l’espace de modélisation choisi, l’incertitude de déconvolution
explose.

Nouveaux modèles de distributions de partons généralisées

Dans l’optique d’une phénoménologie des GPD moins biaisée, les modèles avec réseaux
de neurones, qui sont déjà utilisés pour représenter les CFF extraits de données expérimen-
tales, apparaissent comme une possibilité naturelle. Nous démontrons qu’il est possible
de satisfaire de nombreuses contraintes théoriques sur les GPD en utilisant une représen-
tation des DD par réseau de neurones qui satisfait par conception la polynomialité des
moments de Mellin (voir l’équation (B.3)), les symétries discrètes attendues, et reproduit
en même temps la limite des PDF et un CFF LO donnés. Un exemple de résultat d’un tel

208



0.0 0.2 0.4 0.6 0.8 1.0
−10

0

10

H
u(
+)
(x
,ξ

=
0.
1)

GK model
+ NLO shadow 1
+ NLO shadow 2

0.0 0.2 0.4 0.6 0.8 1.0
x

−10

0

10

H
u(
+)
(x
,ξ

=
0.
5)

Figure B.2 – Trois GPD représentées en fonction de x pour ξ = 0, 1 et ξ = 0, 5 dont le CFF
NLO à ξ = 0, 1 diffère de moins de ∼ 10−5 bien que les GPD elles-mêmes diffèrent de ∼1.

réseau de neurones appliqué à un modèle phénoménologique populaire est présenté dans
la Fig. B.3. Nous avons conçu une représentation spécifique des DD pour rendre compte
de l’incertitude liée aux DD fantômes. Nous avons également accordé une attention par-
ticulière aux inégalités de positivité, qui apportent des contraintes fortes sur la forme
des distributions dans la région des grands x. Nous démontrons notamment comment la
procédure d’apprentissage permet l’implémentation de ces contraintes et soulignons leur
impact sur l’incertitude du fit.

Nous observons que les GPDs fantômes n’apportent pas d’incertitude significative sur
la région des petits ξ en raison d’une hypothèse implicite de régularité des DDs. Dans
la limite des petits ξ et x, nous nous concentrons sur une proposition de modélisation
populaire pour les GPDs basée sur la transformée de Shuvaev, qui permet d’approximer
les GPDs à petit ξ entièrement à partir de leur PDF. Cette possibilité est particulièrement
séduisante pour contraindre les PDFs de gluons à très petit x à partir de la mesure
de la production de mésons vecteurs lourds dans les collisions ultra-périphériques. Nous
montrons comment il est possible de réinterpréter cette proposition de modélisation grâce
à un nouveau code d’évolution nommé APFEL++. Comme la validité de la procédure
repose de manière cruciale sur l’idée que la région des grands x de la PDF à une certaine
échelle initiale basse µ2

0 contrôle la région des petits x et ξ à une grande échelle µ2,
nous proposons une modification de la méthode pour introduire une quantification de
son incertitude systématique. Notre quantification de l’incertitude consiste en une mesure
de la domination effective de la région des grands x à une certaine échelle initiale sur
l’évolution de la GPD. Elle permet d’établir certains critères sur la taille de x et ξ, et sur
la taille de l’échelle d’énergie impliquée dans le processus pour que la reconstruction de
la GPD à partir de sa PDF apparaisse comme une procédure maîtrisée.
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Figure B.3 – Démonstration de l’incertitude pour un modèle avec réseau de neurones entraîné
à reproduire la PDF et le CFF LO d’un modèle phénoménologique (Goloskokov-Kroll) tout en
respectant la polynomialité des moments de Mellin et une contrainte de positivité simplifiée.
Comparaison entre le réseau de neurones (bande orange) et le modèle Goloskokov-Kroll (ligne
noire) pour ξ = 0, 1 (gauche), ξ = 0, 5 (centre) et ξ = x (droite). Les bandes hachurées repré-
sentent la zone exclue par la condition de positivité.
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