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Résumé : Les distributions de partons générali-
sées (GPD) contiennent une riche information sur
la structure des hadrons. Elles décrivent notam-
ment des distributions de quarks et de gluons tri-
dimensionnelles ainsi que les distributions en éner-
gie et en pression dans le milieu hadronique. Ces
propriétés motivent un effort théorique et expé-
rimental important, qui se concrétise notamment
par la construction de nouvelles installations expé-
rimentales a grande échelle comme le collisionneur
électron-ion (EIC).

Les GPD sont étudiées expérimentalement au tra-
vers de processus exclusifs, dont notamment la
diffusion Compton profondément virtuelle (DVCS)
qui est considérée comme |'un des processus les
mieux établis théoriquement pour accéder aux
GPD. La relation entre les GPD et les données
expérimentales DVCS est cependant complexe, et
nécessite notamment de résoudre un probléme de

Distributions de partons généralisées, probléme de déconvolution, QCD, structure du

déconvolution. Nous présentons dans ce document
la premiére étude systématique des caractéristiques
de ce probléme a I'ordre sous-dominant en pertur-
bation. Nous introduisons la notion de "shadow
distributions" comme un outil quantitatif pour me-
surer la difficulté de |la procédure de déconvolution.
Il s'agit aussi d'un outil de modélisation intéres-
sant pour effectuer des extractions de GPD tout en
garantissant leurs propriétés théoriques correctes.
Afin de réduire la dépendence de modéle, nous uti-
lisons aussi des techniques de modélisation par ré-
seaux de neurones.

Nous étudions en détail la possibilité d'extraire les
propriétés mécaniques d'une maniére moins dépen-
dante de modéle que les études actuelles, et nous
quantifions |'effet des futures installations envisa-
gées A la fois sur l'incertitude expérimentale du
DVCS et sur l'extraction des GPD par la procé-
dure de déconvolution.

Title : Phenomenology of generalised parton distributions from deeply virtual Compton scattering

Keywords :
network modelling

Abstract Generalised parton distributions
(GPDs) contain a wealth of information about
the structure of hadrons. In particular, they des-
cribe three-dimensional distributions of quarks and
gluons as well as the energy and pressure distri-
butions in the hadronic medium. These proper-
ties motivate a major theoretical and experimen-
tal effort, which is reflected in the construction of
new large-scale experimental facilities such as the
electron-ion collider (EIC).

GPDs are studied experimentally through exclu-
sive processes, including in particular deeply virtual
Compton scattering (DVCS) which is considered as
one of the best theoretically established processes
to access GPDs. The relationship between GPDs
and experimental DVCS data is however complex,
requiring in particular the solution of a deconvo-

Generalised parton distributions, deconvolution problem, QCD, nucleon structure, neural

lution problem. In this paper we present the first
systematic study of the characteristics of this pro-
blem at 1-loop in perturbation. We introduce the
notion of shadow distributions as a quantitative
tool to measure the difficulty of the deconvolu-
tion procedure. They represent also an interesting
modelling tool to perform GPD extractions while
guaranteeing their theoretically correct properties.
To achieve lesser model dependence, we make use
of neural networks modelling techniques.

We investigate in detail the possibility of extracting
mechanical properties in a less model-dependent
way than current studies, and quantify the effect
of the possible future facilities on both the expe-
rimental uncertainty of the DVCS and on the ex-
traction of GPDs by the deconvolution procedure.
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Generalised parton distributions

Factorisation theorems provide one of the few practical ways to characterise hadron
structure from experimental data. They allow one to decompose scattering amplitudes
in terms of parton distributions, which are non-perturbative objects containing univer-
sal information on the structure of the hadron target, and process-dependent coefficient
functions computable in perturbation theory. Usual parton distribution functions (PDFs),
which enter notably the description of deeply inelastic scattering, receive a probabilistic
interpretation as the number density of partons (quarks and gluons) depending on the
fraction of longitudinal momentum x they carry in a fast moving hadron. Exclusive pro-
cesses — where all particles involved in the final state of the interaction are measured
— like deeply virtual Compton scattering (DVCS) or deeply virtual meson production
(DVMP) motivate the introduction of parton distributions of higher dimension, known
as generalised parton distributions (GPDs). Contrary to PDFs, GPDs may be used to
describe scattering amplitudes where a momentum transfer to the hadron target occurs.
As a consequence, in addition to the longitudinal momentum x, they also depend on
the longitudinal momentum transfer measured by &, and the total momentum transfer
measured by t. PDFs are recovered from GPDs in the so-called forward limit, where no
momentum is transferred to the hadron target ({ = ¢ = 0). GPDs also generalise elastic
form factors which are obtained by integrating GPDs over x.

In addition to the three variables z, £ and ¢, and similarly to PDFs, GPDs depend on a
renormalisation scale ;2 which arises from the necessity to eliminate the UV divergence of
the field operators which formally define GPDs. The dependence of parton distributions
on the renormalisation scale can be expressed in perturbation theory thanks to integro-
differential equations known as evolution equations.

As generalisations of PDFs, GPDs also possess a probabilistic interpretation. They
encode the correlation between the longitudinal momentum fraction x and the transverse
position in the hadron with respect to the barycenter of longitudinal momentum. This
cartography of the radial distribution of longitudinal momentum is known as hadron
tomography, and it is one of the key motivations for the GPD study programme. Another
crucial physical motivation is the remarkable possibility to express matrix elements of
the energy momentum tensor in terms of gravitational form factors (GFFs) derived from
GPDs. The GFFs in turn allow one to define distributions of energy and pressure inside
the hadron matter. This subject has been at the center of a considerable theoretical and
experimental interest in recent years, and several phenomenological extractions based on
various available DVCS datasets with different modelling hypotheses have been published.

The DVCS deconvolution problem

Although GPDs are involved in several different experimental processes, DVCS has
received most of the theoretical and experimental attention in recent years. Indeed, it has
both the advantage of a significant cross-section — if necessary when taking into account its
interference with the Bethe-Heitler process — and a relatively clean theoretical description
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— compared for instance with DVMP which involves another non-perturbative function
known as distribution amplitude. A factorisation theorem demonstrates that the DVCS
amplitude can be parameterised by Compton form factors (CFFs) F computed from GPDs
F' in the following generic way

Fen@) =Y [ Fr (3 o) FESE )

where the sum runs over parton types (with a = ¢ for quarks and ¢ for gluons), 7 is
the DVCS coefficient function computable in perturbation theory, p, = 0 of a = ¢ and 1
if a = g, a, is the strong coupling and Q? is the virtuality of the photon mediating the
interaction between the incoming lepton and hadron target. The question of whether the
actual value of F'* can be extracted from the experimental knowledge of F is known as
the DVCS deconvolution problem and is a central element of the study of this document.
The question must be refined, as for instance the parity of T already implies that only
the z-odd part of the GPD HY, known as singlet quark GPD and denoted by

Hq(+)(xa§7tau2) = Hq(x7§,t,u2) - Hq<_$a§7tau2) ) (2)

contributes to the integral of Eq. (1). Furthermore, the separation of the contributions
of the various parton types is notoriously hard to perform. The question is made all the
more difficult that GPDs must follow a number of theoretical constraints. Notably their
Mellin moments in x must be polynomials in £ due to Lorentz covariance :

1 n+1
/ dz 2" H(x, &, t, 1?) ZHZktu (3)

k even

It is actually equivalent for H? to satisfy Eq. (3) and to write as an integral transform
known as Radon transform

G t) = [ dads ot — 5 - ag) [qu,a,t,p?) LB D et )], (@)

where the support of f4(3, «) is restricted to || +|8] < 1 and that of D?(«) to« € [—1,1].
f%is known as a double distribution (DD) and D? as the g-contribution to the D-term.
Although the x and £ dependence of GPDs is entangled by the requirement of Eq. (3),
the o and 8 dependence of DDs is unconstrained by that relation except for the support
property.

A study of the analytical properties of scattering amplitudes with some assumptions
on the behaviour of Im H (&, t, Q?) for £ — 0 allows one to derive dispersion relations that
relate the real and imaginary parts of CFFs

ReH(.1.0%) = Tpv [ @m0 (g - g ) +OntQ). )
R P NE—e T T

where C'y, independent of &, is known as the subtraction constant, and is related to the

D-term by
. QZ 1 Da<Z,t,/,l/2)
Cu(t,Q%) = / E e “ Im T (%?,%(MZ) ) dzﬁ- (6)

1

10
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In the end, the information on GPDs contained in DVCS experimental data is exactly
made of the imaginary part of Eq. (1) which constrains solely the $-odd part of the DD
denoted by f2*) and Eq. (6) which constrains solely the D-term.

At leading order (LO) in a4, the imaginary part of Eq. (1) reads

ImH(E Q%) Ly edHUD (& t,1), (7)

—WZ / e =) ), 8

and Eq. (6) yields
a5 [ PP )

where it is customary to choose pu? close to Q*. We will assume in the following that
p? = Q% unless explicitly stated otherwise.

Since both Egs. (8) and (9) involve integrals of the DD and the D-term where one
variable is integrated out, it seems at first unlikely that even a perfect knowledge of DVCS
experimental data over a large kinematic range will be enough to actually retrieve the
[B-odd part of the DD and the D-term. However, the knowledge of the dependence of these
two objects on p? thanks to evolution equations provides the theoretical argument that
demonstrates the possibility to perform this extraction.

Quantifying the uncertainty of the deconvolution problem for the subtraction
constant

The LO evolution of the D-term is conveniently expressed thanks to an expansion in
terms of Gegenbauer polynomials :

Dzt %) = (1= 2°) Y di(t, p)CF2(2), (10)
odd n
3 [eS)
2\ 2\2 2 5/2)
Dz, t, %) = 5(1 = 27) OdEdndZ(t,M )G (2) - (11)

Then Eq. (9) gives
Cr(t,Q*) € 4y ) D dift.r?). (12)

q odd n

The interest of this representation is that it is possible to write LO evolution equations
as

LO

di(t, 1*) = TR, pg)di (¢, i) + T2 (1, 1) i (¢, 1) (13)
LO

d (8, 1) = T90(p?, ) di (¢, ) + T8 (1?, ) (¢, 1) - (14)

The evolution operators I'?’ dictate the behaviour of d? as functions of p?. If the d®
form a linearly independent family of functions of p?, then the measurement of DVCS

11
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experimental data on a range of various values Q? should give in principle the power
to discriminate each d? and reconstruct therefore the full D-term DY(«,t, u?) from the
simple knowledge of Cy(t, Q?).

The assessment of the practical possibility to perform such extraction, both with res-
pect to the current DVCS dataset and the expected impact of the electron ion collider
(EIC), is one of the original contributions of this document. A model independent ex-
traction of the D-term would require d? for all values of n € {1,3,5,...} to be obtained
directly from experimental data. As a simplification, we first only allow d; to be fitted,
and then d; and ds jointly. By studying the effect of adding a new free parameter in the
representation of the D-term, we can quantify the possibility of a lesser biased extrac-
tion. We show that under a certain number of modelling assumptions that are used in
state-of-the-art phenomenological extractions of the D-term, it is possible to estimate the
uncertainty on di by

qq( 2 2 -1
Adg ~ %J <1 o ?gq(:u;nawﬂrznin)) ’ (15)
1 (Mmax? Mmin)

where [p2 , p2..] represents the available range in Q* where precise DVCS subtraction
constant data are collected, and o their typical uncertainty. Eq. (15) highlights that
the uncertainty linked to the extraction of the D-term comes from two main sources :
uncertainty on the experimental data o, and uncertainty due to the limited handle in (?
here quantified by how similar the evolution of the various d,, is on the available range in
Q?. Tt is indeed the fact that each d,, behaves differently under evolution which provides
the theoretical leverage to solve the deconvolution problem.

We demonstrate how to reinterpret the uncertainty estimate of the deconvolution
procedure (15) by introducing what we called "shadow" D-terms. These objects bring
exactly no contribution to the subtraction constant Cy(t, Q?) at the chosen perturbative
order for Q* = p2, and their contribution remains below the value of o on the available
range of (Q*. We show that the maximal size of the shadow D-terms which belong to the
allowed modelling space for the D-term provides a similar quantification of the uncertainty
of the deconvolution procedure compared to (15).

DVCS phenomenology

We show that our estimate is able to give a fair account of the current phenomenology
of DVCS. First we present in detail neural network modelling tools we use to give an
account of uncertainty propagation in complicated analyses of experimental data. We
discuss strategies for the training and validation of the networks and stress the impact
of outlier removal. We compare this computationally intensive technique with traditional
statistical tools like the Hessian matrix, and show in both cases how fits can accommodate
new data points without the need for a lengthy recalculation.

We notably use one of these tools, known as Bayesian reweighting, to investigate
the impact of a potential future experimental facility on the experimental uncertainty o
in Eq. (15). We show how data taking with a positron beam at the Thomas Jefferson
National Accelerator Facility (JLab) could allow a significant reduction of uncertainty on
ReH, which plays a crucial role in the subtraction constant uncertainty, thanks to the
measurement of beam charge assymmetries. The assessment of the expected uncertainty
reduction on ReH under hypotheses detailed in the document is shown on Fig. 1.

12
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FIGURE 1 — 68% confidence regions for ReH with the current DVCS dataset (orange band)
and the expected reduced uncertainty thanks to the positron programme at JLab (blue band).
For each of the thirteen (5, Q?) bins [¢ ~ 25/(2 — 2B)], the subgraph shows the results on the
t bins.

To investigate the uncertainty in the deconvolution procedure linked to the leverage in
@Q? in Eq. (15), we lead a detailed numerical analysis of evolution operators I'%. This study
allows us to understand several intriguing features of our phenomenological extraction of
the D-term : we are notably able to explain the ~20 times increase in uncertainty when
fitting jointly d; and d3 compared to d; alone in our phenomenological extraction of the D-
term with the current DVCS dataset, but also the lack of sensitivity to gluon contributions
when they are generated radiatively from quark ones. We are furthermore able to predict
that with an extended coverage in Q? provided by the EIC, a reduction of uncertainty by
a factor ~3 on the joint fit of d; and d3 may be expected from the sole effect of the Q?
range, not taking into account an effect of increased precision of the measurements o.

We also present the first results of a phenomenological study of the subtraction
constant led at next-to-leading (NLO) order on the current DVCS dataset, and conclude
that most of the features identified at leading order remain relevant.

The deconvolution problem for double distributions

Having discussed in detail the uncertainty of the deconvolution procedure allowing to
recover the D-term from the subtraction constant, we turn to the issue of extracting the
DD from the imaginary part of the CFF. We use for this an extension of our concept of
shadow D-terms, namely shadow DDs. These are DDs whose contribution to the CFF
at the chosen perturbative order is exactly 0 at scale Q* = p2. As in the case of shadow
D-terms, the size of the contribution to the CFF of shadow DDs under evolution over the
available (Q? experimental range provides a measure of the deconvolution uncertainty.

We demonstrate in detail the existence of shadow DDs at NLO by using DDs which

13
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FIGURE 2 — Three GPDs depicted as functions of x for £ = 0.1 and & = 0.5 whose NLO CFF
at & = 0.1 differs by less than ~ 10~° although the GPDs themselves differ by ~1.

are polynomials in a and 3. We show how this choice allows us to build a series of linear
systems with a convenient form, give explicitly the formulas required for the iterative
solution of these systems, and provide explicit solutions. We also discuss some advantages
and drawbacks of the use of polynomial DDs for the phenomenology of GPDs, and notably
the covariant extension programme.

To clarify the effect of LO evolution on shadow DDs, we devote a detailed presenta-
tion to the difference between the expansion of the DVCS coefficient function in terms
of leading logarithms and leading powers of a,. Although we are working at NLO, and
therefore shadow DDs strictly cancel the terms of order a? and o} of the DVCS coefficient
function, the resummation of all terms of order o log®(Q?/u?) for k > 2 (leading loga-
rithm expansion of the DVCS coefficient function) yields a non-vanishing contributions
to the CFF under LO evolution. We provide therefore the first result at order a! with
LO evolution showing that even on a range of [1,100] GeV?, the three GPDs presented
on Fig. 2 are impossible to tell apart with only DVCS data, as their CFFs are indistingui-
shable in typical experimental uncertainty. Practically, shadow DDs represent archetypal
pitfalls for an unbiased extraction of GPDs : as the flexibility of the GPD model increases,
and such shadow GPDs enter the chosen modelling space, the deconvolution uncertainty
explodes.

New models of generalised parton distributions

On the goal towards lesser biased GPD phenomenology, neural network models, which
are already used to represent CFFs extracted from experimental data, arise as a natural
possibility. We demonstrate how it is possible to satisfy many theoretical constraints
on GPDs by using a neural network representation of DDs which enforces by design
the polynomiality of Mellin moments (see Eq. (3)), expected discrete symmetries, and
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FIGURE 3 — Demonstration of uncertainty for a neural network model trained to reproduce
the forward limit and LO CFF of a phenomenological model (Goloskokov-Kroll) while respecting
polynomiality of Mellin moments and a simplified positivity constraint. Comparison between the
neural network model (orange band) and the Goloskokov-Kroll model (black line) for £ = 0.1
(left), & = 0.5 (center) and £ = z (right). The hatched bands represent the excluded zone by the
positivity condition.

reproduces at the same time a given forward limit and LO CFF. An example of the
result of such neural network model applied to a popular phenomenological model is
demonstrated in Fig. 3. We design a specific DD representation to give an account of
the uncertainty related to shadow DDs. We also give a special attention to positivity
inequalities, which bring strong constraints on the shape of distributions in the large x
region. We notably show how the training procedure allows the implementation of these
constraints and stress their impact on the uncertainty of the fit.

We observe that shadow GPDs do not bring significant uncertainty on the small &
region due to an implicit assumption of regularity of DDs. In the small ¢ and x limit, we
focus on a popular modelling proposal for GPDs based on the Shuvaev transform, which
allows one to approximate small ¢ GPDs entirely from their forward limit. This possibility
is particularly enticing to constrain gluon PDFs at very low x from measurement of heavy
vector meson production in ultra-peripheral collisions. We show how it is possible to
reinterpret this modelling proposal thanks to a new evolution code APFEL++. As the
validity of the procedure relies crucially on the idea that the large = region of the PDF at
some low initial scale u2 controls the small x and & region at a large scale u?, we propose
a modification of the method to introduce a quantification of its systematic uncertainty.
Our quantification of uncertainty consists in an actual measurement of the dominance
of the large x region at some initial scale to the evolution of the GPD. It allows us to
establish some criteria on how small z and £, and how large the energy scale involved in
the process should be for the reconstruction of the GPD from its forward limit to appear
as a sound procedure.
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Introduction

Quantum chromodynamics (QCD) provides the current standard description of the
strong force, one of the three fundamental interactions in nature besides gravitation and
the electro-weak interaction. Introduced in 1973 by Fritzsch, Leutwyler and Gell-Mann, it
gives a formal frame to earlier ideas like Feynman’s parton model or the constituent quarks
of Gell-Mann and Zweig. QCD is a quantum field theory involving fermionic and bosonic
fields — respectively called quarks® and gluons — which carry a quantum number known
as colour. Because it is a non abelian gauge theory of colour symmetry SU(3) and strong
coupling at low energy, the dynamics of QCD is significantly more difficult to elucidate
than that of its eminent predecessor, quantum electrodynamics (QED). About 50 years
after the introduction of QCD, many challenges remain to access a better understanding
of the strong interaction. The fundamental issues of a precise description of confinement
— which prevents the observation of isolated coloured objects — and the origin of the mass
of nucleons — which stems mostly from spontaneous chiral symmetry breaking? — are key
elements of a Millenium Prize Problem by the Clay Mathematical Institute entitled "Yang-
Mills and mass gap". Other subjects of no lesser interest are for instance the description
of nuclei in terms of partonic degrees of freedom, or the study of hadron matter under
extreme conditions which prevailed a few microseconds after the Big Bang thanks to the
quark-gluon plasma. A final subject of considerable importance in the realm of QCD is the
description of the inner structure of hadrons, and notably nucleons. Protons and neutrons
are certainly among the most concrete and down to earth objects of study for a physicist.
Yet the precise dynamics of quarks and gluons inside such common objects remains largely
to unravel. In parallel to the search for exotic physics, the quest for precision in the
description of systems as ordinary as nucleons is now a clearly affirmed objective of the
high energy physics community. Beyond its intrinsic interest, this precision is anyway
necessary for searches of beyond the Standard Model physics, as the uncertainty in the
description of hadron states is now a significant part of the experimental uncertainty at
the LHC.

Hadron structure is non perturbative in nature due to the large value of the strong
coupling at energies of the order of the nucleon mass. A major tool to probe hadron
structure while keeping ingredients from perturbation theory is provided by factorisation
theorems. They decompose processes in a perturbative and a non-perturbative parts.
The latter is encoded in a universal object known as parton distribution which contains
crucial information on the inner dynamics of the hadron. We will focus in this work on
generalised parton distributions (GPDs) which were introduced more than two decades
ago. They contain a remarkable multidimensional information on the structure of hadrons,
providing insight on the long-standing question of the distribution of spin among the

1. Quark fields conceived as degrees of freedom of the QCD langrangian are conceptually quite different
from the constituent quarks previously mentioned. The latter had mostly been conceived prior to the
establishment of QCD as a mathematical encoding of the classification subtended by the Eightfold way
introduced by Gell-Mann and Ne’eman. However, in the limit of interaction at low energy, some features
of the QCD description of hadrons can be related to a description in terms of constituent quarks.

2. The explicit chiral symmetry breaking due to the coupling of quarks to the Higgs field contributes
only at the percent level to the mass of nucleons
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hadron constituents, giving a unique access to form factors of the energy-momentum
tensor, and mapping the radial distribution of momentum in a fast-moving hadron. Our
work mostly concerns a question whose formulation is very simple. What do factorised
observables, in particular of deeply virtual Compton scattering (DVCS), tell us exactly on
GPDs? Although this question has been addressed several times since the introduction of
GPDs, we find that it has never been studied in the systematic way that we will propose.
Among the important contributions of this work are shadow distributions, which we
introduce as a way to study precisely the possibility of reverting the convolution produced
by factorisation. This issue, known as the deconvolution problem, will serve as a central
theme of the second part of our presentation.

The structure of this document is as follows. In the first part, we will present a brief
review of the theory of GPDs and revisit some aspects needed for the developments of
the second part. References on our published and preliminary articles are summarised at
the end of this introduction.

— The first chapter is devoted to an intuitive presentation of factorisation theorems,
the definition of GPDs and their link to non-perturbative objects of different di-
mensions and the presentation of some selected physical motivations for the study
of GPDs.

— The second chapter focuses on important properties of GPDs, like the consequences
of Lorentz covariance, the representation in terms of Fock state expansions and a
brief evocation of renormalisation which will be the subject of later developments
in the document, thanks notably to our publication of a new LO evolution code in
momentum space described in Ref. [1].

— The third chapter presents phenomenological aspects of GPDs, by studying their
experimental access and some existing modelling strategies.

In the second part, we will put a lot more emphasis on the study of the extraction of
GPDs, mostly from DVCS experimental data.

— The fourth chapter presents important aspects of statistical nature to understand
our analyses of experimental data and modelling strategies. We apply these tools
notably to discuss a study we have published in Refs. |2, 3| to provide a preliminary
assessment of the impact of a positron beam at the Thomas Jefferson National
Accelerator Facility (JLab) on some aspects of GPD physics.

— The fifth chapter deals in detail with the question of extracting a form factor of the
energy-momentum tensor from DVCS data. We present a detailed analysis of the
potential of current and future experimental data, and show how this extraction
is a prototype of the deconvolution problem, highlighting particularly the role of
evolution in its solution. This chapter contains several new results in addition to the
presentation of our published phenomenological analysis of the proton mechanical
properties in Ref. [1]. We notably demonstrate a new method to estimate the impact
of future experimental facilities like the electron ion collider (EIC), introduce a
discussion of what we have called shadow D-terms and present new results of
a next-to-leading order extraction of the gravitational form factor which will be
published in an article in preparation [5].

— The sixth chapter presents our derivation of shadow GPDs as a tool to give a
quantitative answer to the full deconvolution problem at next-to-leading order. We
show in detail the choices which have led us to the derivation we published in
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Refs. [0, 7]. We give an emphasis on the effect of evolution on these objects thanks
to the study of the requirements of consistency between DVCS coefficient functions
and evolution operators and discuss their consequences for the phenomenology of
GPDs.

— The seventh chapter builds upon our understanding of the contribution of shadow
GPDs to the modelling uncertainty to propose new models of GPDs. An analytical
unpublished model with the ability to exactly reproduce DVCS data at leading
order as well as other enticing properties is first derived, and its advantages and
limitations are discussed. We then present our modelling strategy of GPDs with
neural networks published in Ref. [3]. We end our discussion by focusing on the
question of the extrapolation to zero skewness of GPDs. This limit plays a speci-
fic role with respect to the deconvolution problem and shadow distributions. We
present a reinterpretation of the validity of the Shuvaev transform thanks to the
LO GPD evolution code published in Ref. [I] in momentum space. We propose a
closely related but nonetheless different strategy so as to give an account of the un-
certainty of the reconstruction of the low £ dependence of GPDs from their forward
limit. We discuss the phenomenological interest of our proposal in the context of
photo-production of heavy vector mesons. This proposal will soon be submitted to
publication [9].

Published articles

[2] H. Dutrieux, V. Bertone, H. Moutarde, P. Sznajder. "Impact of a positron beam
at JLab on an unbiased determination of DVCS Compton form factors". Eur. Phys. J. A
57.8 (2021)

[3] A. Accardi et al. "An experimental program with high duty-cycle polarized and
unpolarized positron beams at Jefferson Lab". Eur. Phys. J. A 57.8 (2021)

[4] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawinski, J. Wagner. "Phe-
nomenological assessment of proton mechanical properties from deeply virtual Compton
scattering". Fur. Phys. J. C' 81.4 (2021)

[6] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder. "Deconvolution
problem of deeply virtual Compton scattering". Phys. Rev. D 103.11 (2021)

[3] H. Dutrieux, O. Grocholski, H. Moutarde, P. Sznajder. "Artificial neural network
modelling of generalised parton distributions". Fur. Phys. J. C' 82.3 (2022)

Article under review

[1] V. Bertone, H. Dutrieux, C. Mezrag, J.M. Morgado, H. Moutarde. "Revisiting
evolution equations for generalised parton distributions". (2022)

Articles in preparation

[5] H. Dutrieux, T. Meisgny, C. Mezrag, H. Moutarde, P. Sznajder. "Proton internal
pressure from deeply virtual Compton scattering on collider kinematics".

[9] H. Dutrieux, M. Winn, V. Bertone. "When exclusive meets inclusive at low Bjorken-
xp : how to use exclusive measurements to constrain PDFs based on evolution equations".

Published proceeding

[7] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder. "Shadow generali-
zed parton distributions : a practical approach to the deconvolution problem of DVCS".
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SciPost Phys. Proc. (8 2022)

0.1 . Notations

Recurring abbreviations by alphabetic order

BCA
CFF
DD
DDVCS
DIS
DVCS
DVMP
EFF
EIC
EMT
GFF
GPD
HVMP

Lhs. / r.hs.

LL / NLL
LO / NLO
MLP

PDF
RDDA
RGE

TCS

Symbols

: beam charge asymmetry

: Compton form factor

: double distribution

: double deeply virtual Compton scattering
: deep inelastic scattering

: deeply virtual Compton scattering

: deeply virtual meson production

: elastic form factor

: electron ion collider

: energy momentum tensor

: gravitational form factor

: generalised parton distribution

: heavy vector meson production

: left hand side / right hand side of an equation
: leading logarithm / next-to-leading logarithm
: leading order / next-to-leading order

: multi-layer perceptron

: parton distribution function

: Radyushkin’s double distribution Ansatz
: renormalisation group equation

: time-like Compton scattering

In a general fashion, superscripts a or b denote the specialisation of a quantity to a
parton of type a or b. For instance H%(x, u?) is a GPD of parton of type a. Sometimes,
we will specify it by replacing a with g for gluons and ¢ for quarks, or even u,d, s, c, ... if
the quark flavour plays a specific role.

A(t), B(t),C(t),C(t), Dgrr(t) . GFFs

a(z, 1?) unpolarised PDF of parton of type a (for instance
u(x, u?) for quark flavour u, g(x, u?) for gluons).

as(p?) strong coupling constant

Cr(t,Q?%) DVCS subtraction constant

Cux[D1, DI)(t, Q%)

D? and DY at NFL.O
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10 (2 /€, € ) 1, 1)
T (2, 1)

He, B, H*, E°
Ha(+)/Ha(—)
HEHE

Ti(x/€, Q% /12, as(i?)

o()

§

Gegenbauer polynomial of order n (o = 3/2 for quarks
and 5/2 for gluons)

D-term of parton of type a

coefficient of the expansion of D?(z,t,u?) on Gegen-
bauer polynomials for C.%

Dirac delta distribution

Kronecker symbol, equals 1 if j = k and 0 otherwise
four-momentum transfer to the hadron target

electric charge of the quark of flavour ¢

DD of parton of type a

Dirac and Pauli EFFs

evolution operator of the GPD H? at lower scale 2 to
the GPD H® at upper scale p?

evolution operator of the GPD truncated at perturbative
order o¥

evolution operator of the do (¢, u?) coefficients at lower
scale p2 to the d®(t, u?) coefficient at upper scale i
GPDs of parton of type a

singlet / non-singlet components of the GPD

CFFs

hadron mass

renormalisation scale

n-th conformal moment of H®

support of the DDs (also called rhombus)

equals 1 if a = g, and 0 otherwise

square of the lepton four-momentum transfer (usually
photon virtuality)

square of four-momentum transfer to the hadron target
A2

DVCS coefficient function computed at N*LO for parton
of type a

Heaviside step function

longitudinal momentum fraction

Bjorken’s variable

skewness variable

21



Introduction

22



Part 1

Generalised parton distributions
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1 - An introduction to generalised parton distributions

1.1 . An intuitive take on factorisation theorems

Generalised parton distributions were first introduced in the description of two exclu-
sive experimental processes : deeply virtual Compton scattering (DVCS) [10, 11, 12| and
deeply virtual meson production (DVMP) [13, 11] whose diagrammatic representations
are given in Fig. 1.1. In both processes, a virtual photon v* with large space-like squared
four-momentum ¢> < —M? is exchanged usually from an incoming lepton beam with a
hadron target of mass M. Contrary to inclusive processes where any final state of the
interaction is considered, exclusive processes require that the hadron remains intact in
the final state. DVCS and DVMP differ in the additional particle produced in the inter-
action, a real photon for DVCS and a meson for DVMP. Both processes share however a
deep similarity, in that they can be described by factorisation theorems involving GPDs !
[15, 16, 17]. Ref. [18] provides a clear picture of the physical content of factorisation for
inclusive processes and the interpretation of usual parton distribution functions (PDFs)
as probability distributions. We also refer to the introduction of Ref. [19] for a very nice
intuitive introduction to factorisation. We try here to give a very naive understanding of
why deeply virtual processes allow us to access information about the inner structure of
hadrons, and why exclusive processes give a more complete picture compared to inclu-
sive ones. We will not dwell on the numerous technicalities of the proofs of factorisation
theorems, and postpone a formal definition of GPDs to the next section.

When a deeply virtual photon interacts with a parton inside a hadron, the struck
parton receives a large four-momentum transfer. It is usual to introduce Q? = —¢? > M?
as the opposite of the squared four-momentum of the virtual photon, and the interac-
tion of the struck parton with the rest of the hadron can be viewed diagrammatically
as the exchange of partons of virtuality of the order of Q2. Their contribution to the
cross-section of the process is suppressed by powers of 1/Q as the number of exchanged

1. These theorems are demonstrated at leading twist (see later for an intuitive view of the twist
expansion) for transverse polarised photons in DVCS and longitudinal polarised photons in DVMP, in
specific kinematic regions. We will provide more details in Chapter 3 when coming back on experimental
access to GPDs.

P %)

F1GURE 1.1 — Deeply virtual Compton scattering (left) and deeply virtual production of a .J /v
meson (right) for an incoming electron beam.
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P1

F1GURE 1.2 — Quark contributions to the factorisation of DVCS in the leading twist (left panel)
and next-to-leading twist approximations (right panel). ,uQF is the factorisation scale. A similar
plot can be produced with gluons instead of quarks.

partons increases?. This gives rise to a so-called twist expansion of the process (see for
instance Ref. [20] for a precise definition of twist). We show on the left panel in Fig. 1.2
the diagrammatic representation of a leading twist contribution — that is twist-two in
this context — to the description of DVCS, where the upper grey area representing the
interaction of the struck parton with the virtual photon is separated from the lower grey
area representing the rest of the consituents of the hadron as long as a large virtuality is
transferred to the struck parton. The right panel of Fig. 1.2 shows a higher twist contri-
bution, where an interaction between the struck parton carrying a large four-momentum
and the rest of the hadron is mediated by a gluon.

The region where a large virtuality flows thanks to the interaction with the deeply
virtual photon is called hard part, whereas the region where only small virtuality is
encountered is called soft part. The separation between large and small virtuality is
somewhat arbitrary and fixed by the choice of a factorisation scale u%. Technically,
the factorisation scale arises as the renormalisation scale of the bilocal operator involved
in the formal definition of GPDs given in Section 1.2. It corresponds roughly to an up-
per cut-off on the transverse momentum %, carried by partons within the hadron (see
Ref. [18, 21] for instance for more details). Intuitively the renormalisation scale can be
viewed as the energy resolution at which the system is described. As it increases, partons
are splitted into multiple radiatively generated constituents. It is usual to choose the re-
normalisation / factorisation scale close to the actual virtuality involved in the process
to reduce the necessity of resumming large logarithmic corrections due intuitively to the
inadequacy between the resolution at which the system is described and the one at which
it is experimentally probed. We will explore aspects of the resummation of logarithmic
contributions in more detail in Section 6.3.1.

Thanks the remarkable property of asymptotic freedom of QCD [22, 23, 21], it
is possible to describe the hard part of the scattering with a perturbative expansion in
increasing orders of the strong coupling a,(u%), where p% is the renomalisation scale.
Fig. 1.3 shows the leading order (LO) and an example of next-to-leading order (NLO)
contributions to the description of the hard part where the struck quark radiates a gluon
loop. The perturbative expression of the hard part of the scattering is called coefficient

2. We do not consider the case of longitudinally polarised gluons whose contribution is contained in
the Wilson line which is cancelled by an appropriate gauge fixing procedure.
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F1IGURE 1.3 — Factorisation of DVCS in the leading twist description at leading order (left
panel) and an example of a next-to-leading order contribution (right panel).

function. Different processes like DVCS and DVMP are described by different coefficient
functions. As we have previously mentioned, the coefficient functions must depend on the
factorisation scale to absorb — at least up to the perturbative order at which it is defined
— the consequence of arbitrary variations of scale. Section 6.3.1 will notably derive the
practical consequences of this requirement.

On the contrary, the soft part of the interaction, which contains the dynamics of
the low energy QCD interaction in the hadron, does not let itself handled within the
perturbative formalism. It is described by a non-perturbative parton distribution. Deeply
inelastic scattering (DIS) [25] requires only the knowledge of usual PDFs. On the contrary,
DVCS and DVMP require the introduction of GPDs. The reason for this refinement is
the more complicated kinematic structure of the latter two processes. Whereas structure
functions of DIS depend solely on Bjorken’s variable x, ? and angles characterising the
trajectory of the lepton, the fact that the final state of exclusive processes is measured
introduces a kinematic dependence on the transfer of four-momentum to the target. GPDs
generalise the information contained in PDFs, which only describe the distribution of
forward momentum x in the struck hadron, by also depending on the total four-momentum
transfer ¢ and its longitudinal component £, often called skewness.

Unlike the coefficient functions which depend on the process under consideration,
parton distributions are universal objects in the sense that the same object is involved in
the description of various processes. For instance, GPDs are not only involved in DVCS
and DVMP, but also time-like Compton scattering (TCS) [20], double deeply virtual
Compton scattering (DDVCS) [27, 28, 29], di-photon production [30, 31, 32| or photon-
meson pair production |33, 34].

Already at the stage of this very informal introduction, the reader might wonder what
will be the driving question of most of this work : does the combination of the soft
and hard part of the scattering through the means of factorisation theorems allow one
to actually recover from experimental data the GPD characterising the structure of the
proton ? Before dealing with this question, it is however useful to formally introduce GPDs
and understand what information they actually contain on hadron structure.

1.2 . Formal definition

We follow the notations of the review Ref. [35]. The formal definition of GPDs is conve-
niently expressed in light-cone coordinates, defined from the usual time-space coordinates
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(29,21, 2% 23) with Minkowskian metric n** of signature (4, —, —, —) by

1
+ 0. .3 1.2
zt = z'+2°) and z;, =(0,27,2°,0). 1.1
GPDs are formally defined as integral transforms of bilocal matrix elements, where

the quark and gluon fields composing the operator are separated by a light-like distance.
For a spin-1/2 hadron, quark GPDs H? and E? are defined as

% /%ep< o (__) wq( ) >ZEO’Z+ZO

1 ioTHA

= QPﬁ (Hq(xa§7t)u(p2)7+u(pl) + Eq(l‘,f,t>ﬂ(p2) IN #u(pl)) ) (12)

where p; and p, denote the incoming and outgoing hadron four-momenta, and we define

1
PE§(P1 +p2), A=py—p1, (1.3)
A+

We work in the light-cone gauge, where we do not need to consider Wilson lines which
ensure the gauge invariance of the definition. To simplify, we have not made the renor-
malisation scale apparent until we actually discuss specifically this aspect in Section 2.4.
! is a quark field of flavour ¢ and the Dirac matrices are defined by y#~" 4 ~¥~* = 2nt,
and 7+ = (v° ++°)/v/2. 0" = (44" — v#4"). The normalisation of the spinors is taken
as u(p2)u(pr) = 2M3(A1, Ag) where ;o are the respective helicities of the incoming and
outgoing hadron states and M the hadron mass. The gluon GPDs HY and EY are likewise

defined as
1 dZ__emp+Z— GHH <_E> G+ <E>
Pt 2 b2 2 #A\2 b 21 =0,2t=0
1 iotHA,
= = (e 0n ) + B ) Ty ) (1)

where G* the gluon field strength. It is also possible to define polarised proton GPDs H
and F by introducing a 75 operator in the matrix element. For instance for quarks,

1 [dz . - _ z z
5 / —€wP+Z P2 1/1q (“) 7+V5¢q (‘) b1
2 2 2 2 2L =0.2+=0
J’_

(0. € 0t () + B ) Byaton) ) (10

~2pt

For a spin-0 hadron, the situation is simplified since only the GPDs H and H are
necessary to parameterise the Fourier transform of the non-local matrix element, giving

immediately
dZ +,—
q icPTz q(_ = + q
28
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For completeness, let us notice that all GPDs we have presented here are chiral-
even, in the sense that the struck parton helicity is conserved. There exist also chiral-odd
GPDs, often coined as transversity GPDs, which enter notably the description of exclusive
processes with several produced particles in the final state (see for instance Ref. [30]). We
will not consider these objects in this document.

Partonic interpretation

GPDs are functions of z, £ and ¢. The latter two variables are defined in Eq. (1.4). We
notice that ¢ is the traditional Mandelstam variable equal to the square of the total transfer
of four-momentum to the hadron, while £ characterises the transfer of plus-momentum. In
a frame where the hadron travels almost at light-speed, the plus-momentum p* becomes
proportional to the forward momentum p* and to the energy p°. It is therefore frequent
to denote the plus-momentum as "longitudinal momentum" or "forward momentum"
with an implicit reference to this frame. On the other hand, = is only indirectly defined
in Eq. (1.2) as a factor preceding P* in the exponential weight ¢F"*" of the integral
transform.

Using the context of exclusive processes which we introduced in the previous section, it
is possible to give a partonic interpretation to GPDs. 2P is then shown to be the average
plus-momentum of the struck parton, whereas AT = —2£ P+ (1.4) is the plus-momentum
transfer to the struck parton, or equivalently the hadron. We deduce then that (x +&)P*
is the plus-momentum of the struck parton before interacting with the virtual photon, and
(x — &) P its plus-momentum before re-absorption in the hadron. It is shown in Ref. [37]
that GPDs are defined for (z,&) € [—1,1]?. Depending on the relative values of x and ¢,
several regions with significantly different properties can be identified for a quark GPD 3.

— Ifz > |£], both z+¢ and 2 —¢& are positive, and the struck parton can be interpreted
as a simple quark as in the right panel of Fig. 1.4.

— If on the contrary z < —[¢|, then both x + ¢ and = — £ are negative, and the struck
parton can be interpreted as an anti-quark with initial plus-momentum £ — = and
final plus-momentum —xz — ¢ as in the left panel of Fig. 1.4.

— Finally, if —|¢] <2 <|{], z+& >0 and 2 — & < 0, so the scattering can actually
be interpreted as the annihilation of a pair of a quark and an anti-quark carrying
respectively plus-momentum fractions z + £ and £ — x as in the central panel of
Fig. 1.4.

Since gluons are their own anti-particles, the same reasoning shows that the gluon

GPD is even in the variable x.

1.3 . The family tree of parton distributions

1.3.1 . Forward limit
As we have mentioned in Section 1.1, the fact that a non-vanishing four-momentum
transfer ¢ is received by the hadron target in DVCS and DVMP makes it necessary to
describe the soft part of the interaction thanks to GPDs, and not ordinary PDFs. The
link between the two distributions can be observed formally by setting A = 0, known as

3. GPDs can be extended for |£| larger than 1 provided that |z| < |£|. The extension is then known
as generalised distribution amplitudes (GDAs) [38, 39, 40, 41].
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x+§/ /E—x x+§/ \x—a

-lsx=<-f -E=x=<§ E=x=1

FIGURE 1.4 — Partonic interpretation of GPDs for £ > 0, depending on the values of . The
grey area represents the soft part of the factorised description of exclusive processes — similar
to the lower grey areas in Fig. 1.2 for instance. For —1 < z < —¢, the struck parton can be
interpreted as an anti-particle which is emitted and later re-absorbed by the hadron (left panel).
For —¢ < x < £, the hard scattering can be interpreted as the annihilation of a particle anti-
particle pair (central panel). For £ < x <1, the struck parton can be interpreted as an ordinary
particle. Figure taken from Ref. [19].

forward limit in Eq. (1.2) : the obtained matrix element then exactly defines PDFs. We
obtain the important result

H(z,£ = 0,t = 0) = q(2)O(2) — ¢(—2)O0(=x), (1.8)
HY(z,£ =0,t =0) = xg(2)O(x) — zg(—2)0(—x), (1.9)

where O is the Heaviside step function, and ¢, g(z) are the usual quark and gluon unpola-
rised PDFs and ¢(x) the unpolarised PDF of §. Since PDFs are well-known from a wealth
of experimental data, notably thanks to inclusive processes like DIS, the fact that they
are the forward limit of GPDs is a crucial aspect of the modelling of the latter.

A similar relation involving polarised PDFs can be obtained for H. On the contrary,
due to the presence of a factor A, in front of the E distribution in Eq. (1.2), the forward
limit A = 0 does not bring any constraint on . The situation is similar for E.N onetheless,
values of F in this limit which are unaccessible from DIS plays an important role in the
determination of the spin decomposition of hadrons, as we will show later.

1.3.2 . Link to elastic form factors

GPDs also generalise the usual elastic form factors (EFFs) Fi! and Fy which parame-
terise the matrix element of the electromagnetic current at z =0 :

oM A,
2M

ol T (08 ()lpr) = () [Ff(tw 0 } ). (110)

From F{(t) and Fy(t) are defined the Dirac and Pauli form factors F(t) and Fy(t) defined
by
Fi(t) =) e F{(t) and Fy(t) =Y e, Fi(t), (1.11)

q q

where e, is the electric charge of the quark of flavour ¢. At t = 0, F;(0) gives the total
electric charge of the hadron, and F5(0) its anomalous magnetic moment.

The link between GPDs and EFFs is obtained by taking the limit 2~ = 0 in Eq. (1.2),
which can be achieved by integrating H? and EY over their dependence on z. Indeed,
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using the fact that for £ € [—1, 1], GPDs take non-zero values only for x € [—1, 1],

w0VA,

ﬂ(pz)/1 dz [Hq(x,éat)WwLEq(rv,ﬁ,t) 5 }U(pl)

1 oo 10TV A
- [ acat) {H%,g,tw (e 1) ] ulpy) (1.12)

o o0 d —_ . + B -~ — —

ot [T [ e (i () e () )
dz— o0 S _ - -

e [ ([ ) i (5) e (5) )

and the Fourier transform of 1 gives that
dx € =2m0(P"z7) = =4(27) ( )
Pz _ons(Pt = 0 , .15

—00

—~

1.13)

—~

1.14)

where ¢ is the Dirac delta distribution®, hence

1 . +VA
u<p2)/ dz |:Hq(x7€7t)’7+ + Eq($7§7t>20—2M V:| U(pl)

| = /dz_5(2_)<p2 P (—%) vt (%) p1>, (1.16)
= (pa|1(0)y*(0)[p1) - (1.17)

We deduce therefore that

1

/1 de Hi(z,&,t) = Fi(t) and / dx B(x, &, t) = Fy(t) (1.18)

1 1

This relation has been extensively used to decribe the t-dependence of GPDs.

One can therefore understand why GPDs are called "generalised" since they encompass
several well-known sources of non-perturbative information on hadron structure. There
exist an even higher order generalisation of parton distributions, known as generalised
transverse momentum dependent distributions (GTMDs) [12, 13| as shown on the "family
tree" of parton distributions in Fig. 1.5. GTMDs corresponds to unintegrated GPDs over
the parton transverse momentum k. Performing this integration amounts to setting
z; = 0 for GPDs, which we have implicitly done in Eq. (1.2) by only considering 2~
in the definition of the matrix element.

1.4 . Why study generalised parton distributions ?

We select in this section two important physical motivations for the study of GPDs
which have been at the center of a continued experimental and theoretical interest for

4. We used that PT is positive since it corresponds to the four-momentum of a massive particle :
(P%)?% — (P12 — (P?)2 — (P?)?2 = M? > 0, so (P°)? > (P3)?, and since P° > 0, we obtain P° > |P3|.
Therefore both PT and P~ are positive. This is not true for a state which is not on its mass shell.
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| L, 67 kJ_7 AJ_

TMD

Chargew

FIGURE 1.5 — Family tree of parton distributions. The link from GPDs to EFFs (here simply
written as FFs) is obtained by integrating the x dependence, whereas the link from GPDs to
PDFs is obtained thanks to the limit A = 0. Figure taken from Ref. [11], itself inspired from
Ref. [15].

several decades : the perspective of hadron tomography, and that of mapping the dis-

tributions of energy and momentum inside the hadron. This interest has been strongly

reaffirmed in the context of the discussion of new facilities dedicated to nuclear experi-

ments at the electron-ion collider (EIC) |16, 17], Chinese electron-ion collider (EIcC) [18,
| and large hadron-electron collider (LHeC) [50].

1.4.1 . Hadron tomography : impact parameter distributions

Usual PDFs a(x) possess a probabilistic interpretation as the number density of partons
of type a carrying a fraction x of the plus-momentum of the hadron. As generalisations
of PDFs, GPDs have an even more interesting probabilistic interpretation in the so-called
impact parameter representation. At zero skewness £ = 0, the Fourier transform of

a GPD with respect to A, is called an impact parameter distribution (IPD) [51, 52]
d*A. —iby -A 2
g(z,b) = / s ¢ S HI w0 = —AY). (1.19)

b, is the Fourier conjugate variable of the transverse momentum transfer A, . It can be
interpreted as the transverse distance to the center of plus-momentum of the hadron b(f),
which is the average of b, ; defined with respect to an arbitrary origin weighted by the
plus-momentum fraction k;” over all partons i making up the hadron :

Sokbo

where the sum is running over all partons in the hadron. This formulation can be establi-
shed rigorously in the wave function representation (see Section 2.3 for a brief presentation
of this formalism). Since the incoming hadron carries a plus-momentum (1+4¢&)P* whereas
the outgoing one carries (1 — §)P*, the center of plus-momentum is shifted during the
interaction if £ is non zero. Ref. [52] shows precisely that this shift is proportional to &.
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FIGURE 1.6 — Number density of u quarks as a function of z and b, in an unpolarised proton.
Figure taken from Ref. [53].

When £ = 0 on the contrary, the IPD of Eq. (1.19) possess a probabilistic interpre-
tation as the number density of quarks with any helicity, plus-momentum fraction x and
transverse distance b, from the center of plus-momentum. GPDs therefore allow access
to a three-dimensional information on the structure of hadron, in an hybrid space with
one dimension of momentum and two spatial dimensions.

The practical extraction of IPDs faces the challenges of accessing a large range of
values in t. However, as we will discuss more in the description of experimental processes
in Chapter 3, factorisation theorems are only valid for |¢| small with respect to %, which
restricts considerably the access to moderate values of |t| of the order of several GeVZ.
In addition, an extrapolation to & = 0 is necessary. We will focus on the question of the
modelling of GPDs at small £ in Section 7.3. Nonetheless, extractions from experimental

data with constrained parameterisations have been attempted. For instance, we reproduce
in Fig. 1.6 the result of the fit of IPDs led in Ref. [53].

1.4.2 . Properties of hadron matter : the energy-momentum tensor

A remarkable feature of GPDs is their relation to the QCD energy-momentum tensor
(EMT). It allows not only to shed light on the long-standing puzzle of the nucleon spin
decomposition which emerged 30 years ago with the EMC measurements [51], but can
also be used to access information about the mechanical properties of hadrons [55, 50],
like distributions of pressure inside the nucleon. The possibility of studying mechanical
properties of partonic matter was first highlighted in Ref. [77].

In the case of a spin-1/2 hadron, the matrix element of the local gauge-invariant EMT
operator can be parameterised in terms of five gravitational form factors (GFFs) A%(t),

B(t), C*(t), C*(t) and Dgpp(t)® as |58, 59, 60]
prpr ARAY — i A? )
(2|13 (0)] p1) = ﬂ(pz){ T AN+ M” C(t) + M C(t)
Plrighte N, . Pligvle N,
+ Tp [A“(t) + B*(1)] + Tp DGFF(t)}U(pl) ;

(1.21)

where al#b"} = a#b” + a’b* and al#b’) = b’ — ab*. The connection between GPDs and

5. The choice of notation for the last GFF will become clearer when we introduce the completely
independent notion of D-term in the next chapter, which we will denote by D*®.
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GFFs is given for quarks by [37]

/1 dezHY(x, & t) = AYt) +4€2CU¢) (1.22)

/1 de 2 E9(x, €,1) = BU(t) — 4E2C9(8) (1.23)

Z/ dx H(z, €, t) ZDGFF (1.24)

and for gluons by

/1 do H9(x,&,t) = AI(t) + 4€2C9(t), (1.25)
/1 do B9(x,&,t) = BI(t) — 462C9(t), (1.26)
Dpp(t) =0. (1.27)

Access to the GFF C® is more intricate since it involves higher twist GPDs [61, 59, 62].

Ji’s sum rule
It can be shown that the total angular momentum carried by each flavour of quark J¢
and gluons J¢ verifies for a spin-1/2 hadron [63, 12]

1= %(Aq(o) + BU0)), and J9 — %(AQ(O) + BU(0)). (1.28)

We deduce therefore from Eqs. (1.22) to (1.26) the decomposition of the total spin of the
hadron, known as Ji’s sum rule

%:Z‘]”Jg (1.29)
! 1
= Z%/_l dz x(HY(z,£,0) + E(z,£,0)) —{—%/_1 da H9(z, £,0) + E9(2,£,0). (1.30)

The fact that this relation is independent of £ will be investigated in depth in the next
chapter. Note however that the precise decomposition between quark flavours and gluons
is renormalisation scale and scheme dependent. This sum rule is not without reminding
of the one observed by usual PDFs :

1= Z / dz za(x (1.31)
a=q,q,9

Thanks to the probabilistic interpretation of PDFs, this sum rule merely states that when
adding the fractional plus-momentum over all partons, we obtain the full plus-momentum
of the hadron.
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Mechanical properties

We note by boldface characters spatial three-vectors. In the Breit frame where P = 0
and t = —A?, Fourier transforms of GFFs with respect to A allow us to measure how
energy and momentum are distributed inside the hadron [57, 56, 64]. Denoting by r = |r|
the radial coordinate, one can define for instance the radial energy £,(r) distribution in
the Breit frame as a Fourier transform of the GFFs A%(t), B4(t), C%(t) and C*(¢) :

13
4M?

ga(r) =M / LA e AT {A“(t) + C(t) +

@) [Be(t) — ac (1) } s

Among several distributions of radial mechanical properties which can be defined, the
pressure anisotropy s,(r) has attracted attention due to the fact that it does not depend
on Ca(t). In theory, it can therefore be completely extracted from leading twist GPDs :

AM [ B3A A, t7Y2d2
6 —
r2 | (2m)3 M2 dt2

[t°/2 C(1)] . (1.33)

We will study in more depth this distribution in Section 5.2.4 when considering a pheno-
menological extraction of C*(t).
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2 - Further properties

2.1 . General behaviour

Domain

We have already mentioned that the definition domain of GPDs consists of (z,§) €
[—1,1]* [37]. However, as £ is the related to the plus component of the total four-
momentum transfer A, it is also bound kinematically by the value of ¢ according to

V=t
V—t+4M?
In practice, this bound is significantly constraining the available range in &, since for

t = —0.2 GeV?, a typical value considered in JLab DVCS kinematics, || is limited to less
than 0.23 for the nucleon.

&l < (2.1)

Parity

The study of the effect of time reversal on field operators led for instance in Ref. [21]
demonstrates that for spin-0 or 1/2 hadrons most GPDs! verify

Bz, =€, t) = F(x,&,1), (2.2)
notably for F'= H, F, H , E. Added to the fact that hermicity constraints yield
F*(z,&,t) = F(z, =€), (2.3)

where * denotes complex conjugation, one obtains that GPDs are real-valued 2.

The fact that gluons are their own anti-particles implies that gluons GPDs HY and EY
are even in x, whereas HY and EY are odd. No such constraint appears on the quark GPDs.
It is useful to separate their x-odd and x-even parts, which exhibit different behaviours
with respect to the charge operator. We will coin singlet GPD F*) the part which
couples with the gluon distribution, and non-singlet GPD F9(-) the part which remains
independent from the gluon distribution. For F' = H, F,

FI) (g, €. t) = F(x,&,t) — FI(—x,€,1), (2.4)
Fq(_)<l’,£,t) = Fq(x7§7t) + Fq(_x7§7t) )

whereas for F = H , E ,

Fi (@,6,1) = Fi(x,&,1) + FU(—,6,1), (2.6)

Fq(i)(x}gat) :Fq(.ib',f,t) _Fq(_$7€7t)' (27)

1. For the quark GPDs in a spin-1/2 hadron, Ref. [21] demonstrates that only the transversity GPD
EZ. is an odd function of £. The situation is more complicated for hadrons of larger spin as the number

of GPDs proliferates.
2. Ep is also real-valued owing to the fact that (E7.)*(z,§,t) = —Ef(x, =&, t).
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Limit z — 1

In the limit where z — 1, the active parton carries alone most of the hadron plus-
momentum, so is itself the center of plus-momentum as defined in Eq. (1.20). Ref. [65],
following the idea that in that limit, hard gluon exchanges dominate the structure func-
tions [66] and allow a calculation in perturbative QCD, demonstrates notably that for the
pion

ERPRY)
w60~ S0 (28)
and for the nucleon,
A3
HI(60) ~ (=g (29)
IRPRY:
Bi(x,€,t) ~ ((1_;))2. (2.10)

It is remarkable that there is no t dependence in these formulas.

2.2 . Polynomiality of Mellin moments

We have so far explored the link of [ da HY with the EFF FY (1.18), and of [ dzzHY
with the GFFs A7 and C? (1.22). Likewise, [ dz HY has been related to the GFFs A9 and
(9 (1.25). Similar relations have been established for the GPD E, and could be derived

as well for H and E. We refer to reviews such as [35, 21, 67] for complete sets of such
relations. These are particular cases of Mellin moments of GPDs, defined by

1
Hp(&t) = /_lda:a:"H“(x,f,t). (2.11)

In a similar way to the demonstration of Eq. (1.17), it is possible to relate these moments
to matrix elements of twist-two local operators. For instance for a spin-1/2 hadron,

10V, ()
o | WP

de= [ [ — _ - -
-7 [ (Lo ) (ol (7)o ()

and using this time the fact that the Fourier transform of " yields

Pt — 211 0 "
n _irPTz -n ¢(n) + .-
= ==
/ dz x"e 2" (P27 G )n1< )

1
) [ doar [H%:c,atw (a6,

1

p1> . (2.12)

, (2.13)
z—=0

[e.e]

where 6 is the n-th derivative of the Dirac delta distribution?®, we find

1w0tVA, ()
ov | P

- (el () PO e ). 21

3. We have used that 6" (az) = sgn(a)d™ (z)/a"*t, P > 0 and 6 (z) = (=1)"(0"/92")|s=0-
sgn(a) = |a|/a designates the sign of a.

1
i) [ dwar [H%x, €607+ + Bi(.£.1)
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Eq. (2.14) demonstrates that Mellin moments of GPDs are form factors of some local
twist-two operators. A precise study of the requirements imposed by Lorentz covariance
on these operators shows that the form factor decomposition can be written as specific
combinations of the four-vectors P and A with ¢ dependent coefficients a;’ ;(t), b7, ;(¢) and

ca(t) [39] o

(v

p1> — a(p) [f S at (AT (P

=0
1 even

e Zb rpry s o fup), @219

(%) §9(0) v+ (0)

M

7 even

where mod(n, 2) equals 1 if n is odd, and 0 if n is even. Finally, with the factor 1/(P*)"
of Eq. (2.14), ¢ = —AT/(2P") and the use of the Gordon identity [6&] to treat the final
term of Eq. (2.15)

Pt oTVA

<7 2@2)ulpr) = ulps) {7+ oM

”] u(p1) , (2.16)

we obtain

n

/1 dea"HY(x,&,t) = Z al (£)(28)" +mod(n, 2)cd (£)(28)" (2.17)
-1 =0

/ de " E(x, &, t) Z bl — mod(n, 2)c? (t)(26)" . (2.18)

7 even

This remarkable property is called polynomiality. Deeply rooted in Lorentz covariance,
it states that the n-th Mellin moments of H? and E9 are polynomials in £ of order n + 1
at most if n is odd, and of order n at most if n is even. We recover in particular that the
0-th Mellin moments of H? and E? are independent of £, which was noticed in (1.18).

As the coefficients of the term of order n + 1 are opposite in sign for H? and E9, n-th
Mellin moments of H? + E? are only polynomials in § of order n. A similar derivation
can be obtained for polarised GPDs H? and EY, without any term of order n + 1 because
the study of their form factor decomposition does not make the last term of Eq. (2.15)
appear. Gluon GPDs obey similar relations, except the polynomial in £ is of order up to
n+ 2.

2.2.1 . The double distribution representation

The polynomiality of Mellin moments imposes an interesting constraint on the mutual
dependence on x and £ of GPDs. A mathematical result by Hertle [69] demonstrates that
it is equivalent for the n-th Mellin moments integrated over x to be polynomials in & of
order n and for the GPD to belong to the image of the Radon transform [70, 71]. The
theorem can be applied directly for the case of H? + E9, H? or E4. On the contrary, for
HY and E9, it is first necessary to isolate the problematic power £"*! which may appear
for n odd.
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This can be done by defining a function®, known as the D-term, such that
1
/ daa”D(a,t) = mod(n,2)2" el (t). (2.19)
-1

As all its even moments are 0, D?(a,t) is an a-odd function, and by design its sup-
port is limited to a € [—1,1]. Then the function defined by H9(z,§,t) — sgn(£)O(1 —
|z|/1€]) DI (z /€, t), where sgn(&) = [£]/€ is the sign of &, verifies

/_11 dz 2" {Hq(x,g,t) — sgn(£)© (1 - %) D¢ (%t)}

| € .
_ / dz 2" H(z, £, ) — sen(€) / da 2" D" (—,t) L (220)
-1 —¢] §
1 1
:/ dxm"Hq(x,f,t)—S"H/ daa" D (a,t) , (2.21)
-1 -1
1
:/ doz"H(z,€,t) — " Mmod(n, 2)2" el (¢) (2.22)
1

= > atme), (223)

i even

where we used successively Egs. (2.19) and (2.17) in the two final lines. The subtraction of
sgn(&)O(1—|x|/|£]) DY(x /€, t) allows therefore to satisfy the conditions of Hertle’s theorem
even for H? and E?. Taking the example of HY, there exists a function f9(5, a,t), coined
double distribution (DD), such that H%(x,&,t) — sgn(§)O(1 — |z|/[¢]) DY (x /&, t) is the
Radon transform of f9(5,a,t) :

H(x, €, 1) — sgn(€)0 ( - %) DI (%t) - /dﬁda 5(x— B — ) f1(B,at), (2.24)
which can be put concisely under the form

H(a.6.0) = [ d8dad(e =5 - ag) [1"(B.at) + SHD (0] . (225)

The DD formalism was introduced independently in Refs. [10, 15]. Initially proposed as

an alternative way compared to GPDs to parameterise the hadron matrix element of
Eq. (1.2), its link to GPDs via the Radon transform was later formalised in Ref. [73]. The
D-term was originally introduced Ref. [74] from the point of view of tensorial structures
in the DD.

A similar DD can be constructed for GPD EY, with the exception that the D-term is
opposite. A DD representation can likewise be built for H?+4 E?, H? and E? without any
contribution of a D-term. On the contrary, gluon DDs involve a D-term.

4. Whether or not there exists a unique function determined by the value of its integer moments is a
delicate question. A general answer is known for under the assumption that the function to reconstruct
is positive — see for instance the Hausdorfl moment problem [72], but this assumption does not hold in
our case. If the D-term is well behaved enough, we might hope that our "definition" is satisfactory.
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FIGURE 2.1 — The grey square represents the rhombus 2 on which DDs are defined. The orange
dotted line corresponds to x = S+a€. Integration of the DD along this line yields the contribution
of the DD to the GPD through the Radon transform of Eq. (2.25). The line intersects the edges
of the rhombus at a1 = (z —1)/(1 4+ &) and ag = (1 — x)/(1 — &) for the case x > £ > 0 which
we have depicted here.

2.2.2 . Properties of double distributions

Domain

As a consequence of the fact that GPDs have a domain of definition (z,¢) € [—1,1)?,
DDs are non-vanishing only on a so-called rhombus (2 defined by

Q={(8,a) |lal+ |B] < 1}. (2.26)

This region is represented by the grey square on Fig. 2.1.

The Radon transform of Eq. (2.25) corresponds to a line integration on the DD. One
such line is shown on Fig. 2.1 in the case x > £ > 0. The kinematic region = > [£|, which
we have interpreted in Section 1.2 as corresponding to the emission and re-absorption of
a quark, only probes the DD for 5 > 0. On the contrary, the kinematic region = < —[¢|
probes the DD only for § < 0 and corresponds to the partonic interpretation of GPDs in
terms of emission and reabsorption of an anti-quark.

The region —|¢| < = < |£], in which GPDs probe quark anti-quark pairs, corresponds
to Radon integration lines which cross the line 5 = 0. It is interesting to note that lines
with |£| larger than 1 while respecting —|¢| < x < |£] have an intersection with the
rhombus. The DD can therefore describe an object which extends the definition domain
of GPDs beyond |£] = 1. These objects are known as generalised distribution amplitudes
(GDAs) [38, 39, 40, 41].

Parity

Inherited directly from the £ parity and real-valuedness of the GPD HY, the DD f¢
is even in o and real-valued as well. Singlet and non-singlet components of the DD can
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likewise be defined as
fq(+)(67avt> = fq(ﬁaawt) —fq(—B,CY,t) (227)
FOB o, t) = fUB . t) + fI(—B, 1) . (2.28)

For the DDs associated to other GPDs than HY, simple modifications according to the
parity of the GPD must be applied.

Moments of DDs

We have specifically introduced the D-term as a way to encompass the terms with a
dependence of order £ in the n-th Mellin moment of the GPD. Subtracting the D-term
allowed us to introduce the DD f? thanks to the property of the Radon transform. We
know therefore that f? will only contribute to the terms of order £ up to i = n in the
polynomial expansion of Mellin moments of the GPD. Let us verify quickly that it is
indeed the case :

| arariasn = [ dra [ dgdasts =5 - ) [175,0.6) + €5(8) (0.0

(2.29)

- / dBda (B + a€)" [f1(B, a,t) + £5(8) DY 1)) | (2.30)

1

— angi (7) / dpda o’ f1(B, o, t) + &M HH /1 daa"D(a,t).
i= Q -
’ (2.31)

The fact that only even powers of £ are actually non vanishing in Eq. (2.31) is a conse-
quence of the correct parity of DDs.

The coefficients a;, ;() mentioned in Egs. (2.15) and (2.17) can then be expressed in
terms of twice integrated moments of the DD as

2iafl’l-(t) = (7;) /Qdﬂda o' BB, L t) . (2.32)

Coming back to the relation between the GPD H? and the GFFs A? and C'? stated in
Eq. (1.22), we can deduce from Eq. (2.31) that C? is linked to the D-term thanks to

1 1
CiU(t) = Z/ daaD¥(a,t), (2.33)
-1
A similar result can be obtained for gluons under the form
1 1
CI(t) = Z/ da D% (a,t) . (2.34)
-1

We will use extensively this relation in Chapter 5.

As a conclusion, the DD representation allows by design to satisfy the important
property of polynomiality of Mellin moments of GPDs : although it implies a complex
interdependence of z and £ at the level of the GPD H(x,&,t), it does not yield any
constraint on the interdependence of f and « at the level of the DD. We stress that
admitting a representation in terms of DDs is equivalent to satisfying the
polynomiality property derived from Lorentz covariance.
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2.2.3 . Schemes of double distributions

We have dealt with the issue of contributions of order £"*! in the n-th Mellin mo-
ment of GPDs by encompassing them all in the D-term. However, as was pointed out in
Ref. |73], there are other ways to handle this situation, giving rise to different schemes
(or representations) of double distributions. The scheme we have introduced so far, with
a DD f? and a D-term, is often named the Polyakov-Weiss representation owing to the
contribution of the two authors to the introduction of the D-term [74].

It is also possible to deal with terms of order £"*! by considering the Mellin moments
of (Hi(z,&,t) — HY(x,0,t))/¢ instead of HY(x, &, t) —sgn(§)O(1 — |z|/|€]) DY (z /&, t) as we
have done so far. Then using the coefficients a;, ;(t) and ci(t) (2.17),

! n Hq(l‘,f,t)—Hq(l‘,O,t))_l ' nrrq _1 ' nrrq
/_ dx x ( —6/_1dxaz H(z,&,t) f/_ dza"H(z,0,t),

1 § 1
(2.35)
1 - - 1
- EG?L,O + ) af (H)2°€ + mod(n, 2)ch (£)2"HE" — waz,o(t) : (2.36)
=2

Therefore, the Mellin moments of (H%(x,&,t)— H%(x,0,t))/£ are polynomials in £ of order

n, so it is possible to introduce a different DD g¢7. [75] such that
Hq(x7 57 t) = H(I(x, 0, t) + 5/ dﬁdaé(m - ﬂ - Oéé)g%(ﬁ, a, t) : (237>

Q

This scheme has the very nice feature of making explicit the t-dependent forward limit
of the GPD, which we know to be equal to usual PDFs when ¢ = 0. Eq. (2.37) can be
rewritten as

Hi(z, &, 1) Z/Qdﬁda5(w—ﬁ—a€) [6(c) H(B,0,8) + Eg7(B, o, )] - (2.38)

Another popular way to define a DD representation, often called the Pobylitsa represen-
tation, is to take [70]

HO(z,6,8) = (1 — 1) /Q dfda sz — B — al) f4(8, a,t) (2.39)

One could wonder what is the interest of having many different ways to represent the
same object. Each scheme highlights a different feature of the GPD which makes it more
convenient to work in one scheme or the other depending on the objective of the study.

For instance, most of our work in Chapters 5 and 6 will be performed in the Polyakov-
Weiss representation because we will be strongly interested in the D-term : in Chapter 5
due to its relation to the GFF C“(¢), and in Chapter 6 due to dispersion relations that
relate the real and imaginary parts of Compton form factors (see Chapter 3). However,
some results in Chapter 6 will be obtained in the Pobylitsa gauge to compare them with
a publication. In Chapter 7, we will actually develop our own DD gauge only suited for
the singlet quark GPD due to specific modelling challenges we will be facing.

An interested reader will find more details in Ref. [77] on how to navigate from one
scheme to the other, as well as examples of how a very simple model in one scheme can
become singular and complicated in another.
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2.3 . Wave function representation and positivity bounds

2.3.1 . GPDs representation as an overlap of light-front wave functions

Light-front quantisation allows one to decompose a hadron state on a Fock basis [75].
For a nucleon for instance,

) =D ®5lgqq) + Y 5" qqq, qq) + .. (2.40)
5 5

where the expansion contains Fock states with an ever larger number of partons summed
over the relevant quantum numbers collectively denoted by 3. ® denotes light-front wave
functions (LFWFs) [79], non-perturbative objects which depend on the momenta and
quantum numbers of partons contained in the associated Fock state. Precisely, the LEFWF
of a Fock state with N particles, which we will denote @év in the following, depends on the
longitudinal momentum fractions (z1, ..., zx) of the constituents which verify Zf\il x; =1,
and on their transverse momentum (k, 1,...k; n) satisfying Zfil ki;=pi.

The link between LEWFs and GPDs is derived in detail in Ref. [80]. The presentation
of this result requires the introduction of many rather cumbersome notations. For the
sake of legibility, we will therefore adopt a simplified presentation. In the regions = > [¢|
(respectively © < —[¢|) where GPDs can be interpreted as the emission and re-absorption
of a particle (respectively anti-particle), they can be written as an overlap between LEWFs
with the same number of particles in the initial and final states. For instance for x > |,
a generic representation of that overlap is given by

§2 N N N
Hi(r61) = =B ) =3 (16n°VI=€) 303 dn / [H d; d?/m]
N B j=1 i=1
N N ]
) (1 — sz> 5@ (pj_ — Z kzu> oz — zy) (@g(rout))* @g(rin) .
i=1 =1

(2.41)

The right hand side (r.h.s.) is summed over the number of particles in the Fock state N
and the active quark j whose flavour is denoted by f;. An integration over the longitu-
dinal and transverse momentum of all constituents of the Fock state — denoted by ¢ — is
performed. dy,, denotes the Kronecker symbol. (I)g (r) is a LFWF associated to a Fock
state with N particles and quantum numbers 3 evaluated at the momentum configuration
r encompassing the momentum of its N constituents. We refer to Ref. [30] for the pre-
cise definition of the frames and momenta involved in this expression. Owing to the fact
that only LFWFs corresponding to a similar number of particles overlap, it is possible to
truncate the Fock expansion in an unambiguous way.

One the contrary, in the region —|¢| < = < |£], the partonic interpretation of GPDs
as the annihilation of a parton anti-parton pair means that the number of particles is not
conserved between the initial and final states of the interaction. The GPD then writes
as overlap of LEWFs with N + 1 partons in the initial state and N — 1 in the final.
The structure in terms of quantum numbers is more complicated since it must take into
account the quantum numbers of both the active particle and antiparticle. The GPD
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overlap writes generically as

52 N+1 E
HO(r,6.1) = 1= B0 1) = Zl67r (1-¢ (167r 1—52) 3 o
8,8 4.i'=1 J 3’
N-+1 N—+1 N+1
X / [ I de d2/ﬁ,i] 5 (1 —&— > x) 5 ( > /m>
i=1,i#7’ i=1,1#73,j' i=1,1#7,j'
x 0(x — x;) (@g_l(rout))* @g“(rin) : (2.42)

We hid in the simple character = a large multiplication of Kronecker symbols intended
to guarantee the correct flavours, colours and helicities both for the active and spectator
partons. The active quark is denoted by j and anti-quark by j'. n; (respectively n;) is the
number of quarks (respectively anti-quarks) in the initial proton wave function. As the
overlap writes in this kinematic region between LEWFs with N 4+ 1 and N — 1 partons, it
is not clear how to truncate the Fock expansion in a consistent way with the truncation
performed in the previous region |z| > |£|. This gives rise to a difficulty when employing
models based on truncated overlap of LFWFs notably discussed in Ref. [81, 82]. The
method only provides suitable results for |z| > |£|. A way to go beyond this difficulty is
presented in Section 3.4.3, and further touched again in Section 6.2.2.

Similar relations to those briefly sketched here are demonstrated in Ref. [$0] for pola-
rised and gluon GPDs.

2.3.2 . Positivity inequalities

In the forward limit A = 0 where GPDs yield PDFs; there is no asymmetry between
the incoming and outgoing proton states. Therefore, r,,; = 7;, = r. Since £ = 0, we are
always in the kinematic region |z| > [¢|, and the overlap of Eq. (2.41) involves

(D5 (rowr))” 5 (rin) = 125 (r)[. (2.43)

As LFWFs are quantum weights of states in a Fock basis, their squared modulus can
be classically interpreted as the probability that the hadron is found in this Fock state.
Then summing and integrating &(z — x;)|®5 (r)|* over all other variables in Eq. (2.41)
amounts to extracting the marginal distribution of the probability of interacting with an
active quark carrying a forward momentum x, which is exactly the traditional probabilistic
interpretation of PDFs.

As observed for instance in Ref. [83], the representation of GPDs in terms of overlap
of LEFWFs has formally the structure of a scalar product in the Hilbert space of LEWFs.
We have noticed in Eq. (2.43) that the norm of LFWFs is linked to usual PDFs. Positivity
conditions can then be derived from the Cauchy-Schwartz inequality which relates a scalar

product to the product of norms of the vectors®. Refs. [34, 85| complemented by [30] give
q & 1
1-¢2 1-¢
where e ¢
x T —
= = ) 24
T o and o ¢ (2.45)

5. [(ulv)| < lull - [[v]|
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The equivalent bound for gluon GPDs is

£2 22 — €2
'Hg(l%f,t) 1= 52E9(9€,57t)‘ < /g (1) g (x2) T (2.46)
A more constraining relation is derived in Ref. [30] as
2
'Hq(x,f,t) 7 §2€2Eq(:p,§,t) + Wto—l__té? |Eq(x,f7t)|2 < %qf(fz)’ (2.47)
where sen?
to = — e (2.48)

tp is the maximal value of ¢ (that is t < to < 0) which is kinematically allowed at a
fixed value of ¢ following Eq. (2.1). Not only is Eq. (2.47) a stronger bound compared to
Eq. (2.44), but it yields the additional result on the E9 distribution alone

—”goj\;t\Eq(x,i,t)! < V(@) q(a2). (2.49)

Ref. [87] demonstrates how to derive stronger inequalities involving polarised and trans-
versity PDFs, and derives a bound on the GPD H? alone as

|H(z,€,)| < \/ (1 _ b > a(21)q(x2) (2.50)

to—t) 1-¢&

Refs. [88, 87| show that positivity bounds are much more general than the few examples
we have mentioned so far, and form a vast class of inequalities that can be obtained by
the mean of constructing arbitrary states and requiring that their norm in the Hilbert is
positive. Working with LEWFs is a way to systematically fulfill all these inequalities
at once. We will demonstrate how the GPD models we develop in Chapter 7 based on the
DD formalism can accommodate some of these positivity constraints, which will represent
an important tool to counter the uncertainty arising from the shadow GPDs introduced
in Chapter 6.

2.4 . Evolution of generalised parton distributions

As we mentioned briefly at the beginning of Chapter 1, GPDs depend additionally
on a renormalisation scale, which arises from the necessity to cure UV divergences of the
bilocal operator defining GPDs. In practice, it is possible to make the scale dependence
emerge from the UV regulator € through the relation

H(z,&,t, 1u?) _ Z/l %Zub (E §,QS(M2)>E) M (2.51)

Y

RN
where the sum is performed over parton types b to account for the possibility of mixing
of GPDs under evolution, and p, = 1 if a = g and 0 otherwise®. In Ref. [1], we give

6. Thanks to the scaling by x P, the forward limit (¢ = 0,¢ = 0) of x P H*(x,&,t) is exactly a(x)
even in the gluon case. This scaling allows one to write Z%, and later the splitting kernels, as functions
of the two ratios z/£ and £/x instead of the three variables z, ¢, z.
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more details on the determination of Z® which is obtained by studying the poles of the
operator in dimensional regularisation in the MS renormalisation scheme. Using the fact
that H has no dependence on the scale, the differentiation of Eq. (2.51) with respect to
log (%) yields the renormalisation group equation (RGE), which writes generically at LO
in oy as

1 8Ha($7€7t7:u2) _ 2 le ab,(0) z 5 Hb(z,g,t7p2)

The K9 distributions are known as splitting kernels, where (V) denotes the LO ex-
pansion. To fix the notations, we will denote the RGE of aj as [39]

2
St = By = ~ha4) — hia2y) = . (2.53)
where notably by = By/(47), fop = 11 — 2ny/3 and ny is the number of active flavours.

In the limit where £ = 0, Eq. (2.52) yields the RGE of usual PDFs”, known as the
Dokshitzer — Gribov — Lipatov — Altarelli — Parisi (DGLAP) equation [90, 91, 92]. On
the contrary, in the limit £ — 1, GPDs evolve according to the Efremov — Radyushkin
— Brodsky — Lepage (ERBL) RGE [93, 91], which is also responsible for the evolution
of distribution amplitudes. In particular, the D-term evolves exactly following the ERBL
equation.

Observing that both the forward limit and the D-term follow their own evolution
equations, we can conclude that if either the forward limit or the D-term are 0 at one
scale, then they remain null at any scale. This statement is true at any perturbative order
of evolution. We will make a significant use of this result in Chapters 5 and 6.

More generally, evolution is completely compatible with the polynomiality property at
any order, as it can be expressed at the level of DDs themselves [35]. On the contrary, the
preservation of the positivity property (2.44) is a more delicate question. Ref. [38] argues
that positivity constraints on GPDs are stable under LO evolution to higher scales : if they
are verified at one scale, then they are as well under upward evolution. However, in general,
renormalisation includes subtractions which can violate naive positivity bounds. It is
known for instance that some renormalisation schemes produce PDFs with negative values
for low renormalisation scales |95, 96], which is generally not considered as a problem as
long as physical cross-sections computed from these objects are positive. As positivity
bounds on GPDs arise from the same reasoning as positivity of PDFs, Ref. [38] underlines
that the possibility of violation of positivity for PDFs implies a similar possibility of
violation of positivity bounds for GPDs. Ref. [97] clarifies the physical domain where the
positivity bounds are expected to hold. Let us notice that the question of positivity of
PDFs is still at the center of a lot of attention as testified by recent contradictory takes
on the subject — see notably Ref. [90].

Conformal moments

The LO splitting kernels were determined already in seminal papers of the field, like
Refs. [12, 10, 15, 98]. Next-to-leading order corrections were computed in Refs. |99, ,

7. Splitting kernels are independent of ¢ at leading twist, so the GPD at £ = 0 and ¢ # 0 still evolves
exactly in the same manner as the PDF.
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| and recently confirmed [102]. Three-loop computations are also available in the non-
singlet sector [103].

Many of these derivations were performed in the space of so-called conformal mo-
ments owing to the fact that LO evolution in QCD preserves conformal symmetry [10].
Conformal moment of GPDs can be defined as

q 2\ I(n+1)I'3/2) , ' 3/2) (¥ q 2
OL(&,t,u) = 2T (n +3/2) € /1dx Cy (g) HY(x, &t 1), (2.54)

g 2\ F(”)F(5/2) n—1 ' (5/2) <£) g 2
On(ga twu“ ) - 2”711_‘(77/ + 3/2) 5 /_1 d!lf Cn—l g H (x7€a tnu ) ) (255)

where I'(n) = (n—1)! denotes the Gamma function which extends the concept of factorial
and C\ are Gegenbauer polynomials® with o = 3/2 for quarks and o = 5/2 for gluons.
The peculiar normalisation in the definition of Eq. (2.54) is chosen so that in the limit
where ¢ = 0, conformal moments coincide with Mellin moments of the PDF :

1

Ou(e=0.t.2) = [ dustalo ). (2.56)

-1

Conformal moments are in principle a particularly suitable way to study the evolution of
GPDs because moments associated to different values of n do not mix under LO evolu-
tion [105]. For n even, the quark conformal moments factorise their £ and p dependence
following

QS(Mz))2vn/Bo
O‘S(,“(%) ’

whereas the gluon conformal moments are strictly 0 due to the parity in x of H9. The
exponents 7,, often known as anomalous dimensions, are remarkably independent of
£°. It means that they are in particular the same governing the solution of the DGLAP
equation (£ = 0) and the ERBL equation (£ = 1). We postpone a precise definition of
these exponents to Eq. (5.9), where the reason why we will need to study their numerical
values will appear more clearly.

O5(&,1,11%) = OL(E, 1, 12) ( (2.5

On the contrary, for n odd, some mixing occurs between quark and gluon conformal
moments, but only strictly for the same values of n. More precisely, flavour non singlet
components obtained as the difference of two GPDs associated to different quark flavours
evolve in the same way as Eq. (2.57) :

a (,U2) 2vn/Bo
O?Ll (57 t, MQ) - ng (57 t, M2> = Og,l (67 t Mg> - OZQ (67 t //“(2)):| ( : 2 ) ) (258)
(1)

whereas the flavour singlet component, summed over all quark flavours, mixes with gluons

8. Gegenbauer polynomials C’T(LO‘)(:E) are polynomial in z of order n which are orthogonal on [—1,1]
with respect to the weight function (1 — z2)*~1/2. They generalise two other families of orthogonal
polynomials : the Legendre and Chebyshev polynomials.

9. This observation is linked to the fact that in the MS scheme, anomalous dimensions of local
operators are fixed independently of incoming or outgoing states.
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in the following manner [35] :

2\\ 274 /Bo 2\ 27 /Bo
nifz@%(é,tﬁ):@:(&wﬁ) (“8(“2)) +On(f,t,ug)(—%(“)) |

O[s(:uo) 045(#%)
(2.59)
21\ 27 /Bo 2\\ 27 /Bo
o6t = arof(end) (2 aonend) (ST
(2.60)

where OF(&,t, u2) are defined straightforwardly by evaluating Egs. (2.59) and (2.60) at
2 2
W™= Ho -

nif SO 1 R) = OF (6.t i2) + O (6.1, 12) (2.61)

O9(&,t, ) = af OF (E,t, 1d) + a, O, (€, ¢, 1) - (2.62)

The values of coefficients a and anomalous dimensions v were first derived in Refs. [106,

|. We will provide an alternative matrix formulation of LO evolution in the space of
conformal moments for n odd in Chapter 5, where the precise values of a® and v= will
be detailed, and an approximate solution of the evolution derived.

At higher perturbative order, the property of non-mixing of conformal moments with
different values of n is no longer true in the MS scheme. A GPD evolution code ba-
sed on conformal moments is proposed in Ref. [105] at NLO in the MS scheme, and
NNLO in a specific choice of renormalisation scheme called the conformal scheme. Let
us notice however that the exact reconstruction of GPDs from conformal moments is a
technical procedure, which requires the introduction of formal resummations or the ana-
lytical continuation of the moments to complex values of n. Two analytical techniques,

the Mellin-Barnes integral [108, | and the Shuvaev transform [110, | have been
proposed to reconstruct exactly the GPD from its conformal moments. Both were shown
to be equivalent in Ref. [112]. If no analytical form of the moments is known, the GPD

reconstruction can be attempted numerically by an expansion on a polynomial basis. One
of the early studies of this kind performed using an expansion of GPDs on Gegenbauer
polynomials '° reported in Ref. [114] to have used 80 polynomials. Due to the oscillatory
behaviour of the polynomials, it was necessary to perform exact calculations and interpo-
late the results by a smooth function. The review led in Ref. [35] likewise mentions the
necessity of tens if not hundreds of polynomials, and severe numerical issues for x close
to & or £ too small where GPDs may present fast variations in z.

For these reasons, and considering the peculiar shadow distributions whose evolution
we will be interested in, we preferred to use an evolution code we published recently in
Ref. [1]. It solves the LO RGE directly in the (z, &) space thanks to a numerical method
(Runge-Kutta method), bypassing any need for a reconstruction from the space of confor-
mal moments. We have led extensive tests to verify the excellent numerical preservation
of polynomiality of Mellin moments, as well as the correct reduction to the DGLAP and

10. Formally, it is not needed to use Gegenbauer polynomials to expand the GPD, and other bases of
orthogonal polynomials have been used. Ref. [113] uses 70 terms computed with Legendre polynomials.
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ERBL kernels in the £ — 0 and £ — 1 limits. Although it is not the first evolution
code in the (z, &) space, it offers significantly improved numerical properties compared to
the no-longer maintained Vinnikov code [115]. In addition to providing the results of the
evolution of shadow GPDs, our (z,&) space code will allow us to revisit in a modelling
proposal of the behaviour of GPDs at small z and £ inspired from the Shuvaev transform
in Chapter 7.

20



3 - Experimental sensitivity and modelling

As we have already mentioned in Chapter 1, GPDs were introduced in the context
of the description of DVCS and DVMP thanks to factorisation theorems. We have skim-
med intuitively the content of these theorems, stating that they allow us to represent a
scattering process in terms of a hard part characterised by a coefficient function and a
soft part involving a parton distribution. In this chapter, we will present in a more syste-
matic way the concrete realisation of the factorisation theorems, the experimental access
they provide to GPDs, as well as some modelling tools which have been developed for
phenomenological studies.

3.1 . Deeply virtual Compton scattering

As depicted schematically on the left panel of Fig. 1.1 in the case of an electron,
DVCS corresponds to the initial and final states [h — [yh, where [ is a lepton, v a real
photon and h the hadron target. DVCS is therefore measured thanks to photon lepto-
production events. There exists however another process with the same initial and final
states, known as Bethe-Heitler (BH). A diagrammatic representation of a contribution to
the BH is given in Fig. 3.1. The incoming electron is elastically scattered by the hadron
target and radiates a photon. The description of this process involves only EFFs.

DVCS and BH interfere coherently, so the cross-section of lepto-production of a photon
(Ih — lyh) writes as the sum of the squared amplitudes of the two processes |Tpycos/|?
and |Tpx|? with the addition of an interference term Z. The differential cross-section can

therefore be written (see Ref. [110] and references therein) as :
O e o Toveslt + 1Tonl + T )
de d|t| ng dgbdgbs DV(CS BH 5 .
I ="TpvesTea + TovesTen (3.2)

where * denotes complex conjugation. The differential cross-section depends on two va-
riables we have already introduced : ¢, the square of the total four-momentum transfer
to the hadron (1.4) and Q? = —¢* defined as the opposite of the square of the four-
momentum of the photon emitted by the incoming lepton. In addition, the cross-section

FIGURE 3.1 — A contribution to the Bethe-Heitler process.
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F1GURE 3.2 — Kinematics of a photon lepto-production event in the hadron rest frame (Trento
notations [117]). The incoming and outgoing leptons are denoted by k and k' , the exchanged
photon by ¢ and the real photon in the final state by q_; . The incoming and outgoing lepton
trajectories define the leptonic plane, and the recoil hadron and real photon define the hadronic
plane. In this reference system, ¢ is the angle between the leptonic and hadronic planes. ¢g is
the angle between the leptonic plane and the transverse polarisation of the hadron in case of a
polarised target. Figure taken from Ref. [115].

depends on previously not introduced variables : Bjorken’s variable xp and angles ¢ and
¢s. Bjorken’s variable is defined by

Q2
2]91'61’

(3.3)

I =

which can be related to the skewness variable { = —A™/(2P*) (1.4) of GPDs by noting
that

+ +
Py — Do + +1_€

= — -2 350 = —_—, 3.4

13 e Py =Piiy (3.4)

hence the approximate relation !

% t

The angular dependence of the DVCS cross-section in the hadron rest frame is defined
in Fig. 3.2 : ¢ is the angle between the leptonic and hadronic planes, and ¢g is the
angle between the leptonic plane and the transverse polarisation of the hadron in case
of a polarised target. Dependence on ¢ is often expressed by a decomposition on Fourier
harmonics. For instance, up to twist-three contributions and corrections suppressed by

1/Q [119],

2
|7bvcs|2 = FDVCS<IB7 QQ, t) |:CODVCS + Z (CEVCS COS(H¢) + ST?VCS sm(ngzﬁ)) y (36)

n=1

1. The requirement that the photon in the final state is on-shell yields (¢ — A)? = 0, that is —Q? +
t+2p1-q—2ps-q = 0, or equivalently —1 + & + % - 22222“1 = 0. Using that pj = pf% (3.4) and

assuming that most of the momentum transfer is in the forward direction, that is p* > p~, p., we obtain

the approximation py ~ pl%' Hence —1 + & + i — ii—;g ~ 0 which yields immediately Eq. (3.5).
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where ' pyes(zp, Q%) is a known kinematic prefactor >. Pure BH term |7px|* and BH-
DVCS interference Z are likewise frequently expressed in terms of Fourier harmonics,
although the situation is made more difficult by the presence of an additional ¢ dependence
originating from lepton propagators in the BH amplitude [119] :

2
Tonf = Pt 8 [+ St aostno) + sfsinie) | 6
3
T — % [ Z:I ' cos(ng) + s sm(ngzﬁ))} (3.8)

The terms 1/(P(¢)P(¢)) coming from the lepton propagators make the expansion in
Fourier harmonics of |Tzg|?> and Z infinite, and the practical recovery of the ¢, and s,
coefficients is therefore more complicated.

Recent expressions for coefficients ¢, and s, are found in Refs. [120]. Pure BH har-
monics let themselves write simply in terms of the EFFs F; and F5. As elastic scattering
provides a precise enough source of information on EFFs for the needs of DVCS mea-
surements, we may consider that the pure BH contribution is well-known theoretically.
On the contrary, pure DVCS term and BH-DVCS interference harmonics bring a new
source of information on the hadron inner structure. They are usually expressed in terms
of Compton form factors (CFFs).

3.1.1 . Compton form factors

CFFs enter linearly the description of the BH-DVCS interference term, and quadrati-
cally that of the pure DVCS term. At leading twist, they are expressed as convolutions
of GPDs with coefficient functions thanks to a factorisation theorem [16]. The CFF H
associated to the GPD H can be expressed as

H(EL Q) Z/l ) e N CT)
=y (5% ait) o e (3.10)

where p, = 1 if a = g and 0 otherwise, and we have introduced the notation ® to subtend
the integration on the first variable of GPDs with correct zP+ factor. T is the coefficient
function, a complex distribution computable in perturbation theory. We denote by T} its
expansion up to order of. At LO, the coefficient function has no scale dependence and

reads
1 EAN 1 _ 1
()i am) o

The formulation with ie is often used, but for many practical purposes, it is preferable
to compute directly the limit ¢ — 0. Owing to the Sokhotski-Plemelj formula, it is

2. There is still a dependence in ¢ — ¢g in coefficients ¢, and s,, reason why some authors use
@ = ¢ — ¢g or equivalent definitions as angular dependence instead of ¢g (see for instance Ref. [119]).
We stick however to the Trento conventions. Ref. [116] explains precisely how to switch to the alternative
BMK conventions.
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straightforward at L.O, and

T () = (pv L_lw—liw} +i7r[5(1—w)—5(1+w)]), (3.12)

TS =0, (3.13)

where p.v. denotes Cauchy’s principal value. Finally, the convolution with the GPD yields
for the imaginary part

Ty <Z> @ H(w, &t %) = me; [H%s, €.,1%) — H(—2.6.1, w] NERTY
= 7re2Hq V€&t 1), (3.15)
3.16)

and for the real part

Re Ty (E

1
5) ®Hq(x,§,t,yz):eg p.v./ dx{ L1 }Hq(x,f,t,ug), (3.17)

1 5—55 €+.I'

! 1 1
— 2 _ q(+
_eqp.v./0 dx[ﬁ—x S_HJH W, &t 1?), (3.18)

where we have used the explicit x parity of the DVCS coefficient function to restrict
integration on [0,1]. It is a general feature that, as the DVCS process is C-even, its
coefficient functions have a definite parity in terms of z and 7% @ H¥~) = 0. Therefore it
is already clear that DVCS does not provide any information on non-singlet GPDs.

Due to the presence of Cauchy’s principal value in Eq. (3.18), this expression is still
a bit cumbersome to evaluate numerically. Subtracting the diagonal H4(*) (&,&,t, u?)
increases the regularity of the integrand, yielding an expression which can be computed
straightforwardly without principal value for £ > 0 :

Re Ty (§>®Hq(x &t 1)

1 Ha+) — Hi+) Ha+)
:_62A d.%'|: (I,f;_g (575) + é—i_('j’;g)] 2Hq (6 5)10g< gg) :
(3.19)

where we have omitted (¢, u*) dependence in the right hand side for brevity and used that

for 5 > 0, . /1 dz e <1 . é-) (3 20)

The coefficient functions 7T expressed at NLO have been computed for instance in
Refs. [121, 17, , , , 29]. Two loops corrections have been recently published
in Refs. [125, |. The general structure of the perturbative expansion of the coefficient
function will be studied in detail in Section 6.3.1. We show in Appendix A.3 how to derive
expressions without i€ on a more complicated example compared to the simple LO one,
as such expressions will be useful both in Chapters 5 and 6.
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Chapter 3. Ezrperimental sensitivity and modelling

Most studies of DVCS have been performed at LO, taking advantage of the remar-
kable direct access to the diagonal of the GPD provided by the imaginary part of the
LO coefficient function (3.15), and using the fact that the limited coverage in Q? of the
current experimental DVCS dataset does not require a careful study of Q? dependence.
NLO studies of DVCS have been pioneered in Ref. [108]. Future facilities with an exten-
ded coverage in %, which we will detail in Section 3.3, make studies at least at NLO
necessary. We will therefore develop a full NLO approach of the question of whether or
not it is possible to recover H¥*) from the knowledge of 7% ® H®, issue known as the
deconvolution problem.

DVCS observables

Before even trying to invert the convolution of Eq. (3.10), extracting CFFs from ex-
perimental data is already a challenge in itself. Experimentalists have the possibility to
measure different kinds of observables : notably total or differential cross-sections and
asymmetries. The latter are defined as the ratio of cross-sections, and offer an intrinsic
advantage since some systematic uncertainties linked to the normalisation of the cross-
sections cancel out. As an example of asymmetry, let us mention the beam spin asymmetry
(BSA) measured for longitudinally polarised electrons and unpolarised hadrons defined
R d'o™ (25,1, Q% ¢) —d'o" (p5,t,Q% ¢)

Ay (am, t,Q9) = G — Bt T P T (321)
o" (‘TB, t QQa ¢) + dto (mB7 l Q27 Qb)
The superscript ~ denotes the fact that the asymmetry is measured with a negatively
charged beam, the ;; subscript characterises the polarisations of the beam (L for longi-
tudinal) and target (U for unpolarised), and the superscripts ~, < denote the helicity of
the beam.
The Fourier harmonics of A}, are defined by

Areosns _ L 7 d A7 3.22

LU = ;/0 o COS(”¢) LU(¢), ( . )
—,sinngo 1 o . -

A = ;/0 do sin(ne) A, (o). (3.23)

The parameterisation in terms of CFFs of the BH-DVCS interference contribution to
A7 can be expressed at leading twist and leading order in 1/Q [128]

13
4M?

@ﬁﬂﬂmﬁm+aﬂ+gm— RE|. (3.24)

Different observables — including different Fourier harmonics of the same asymmetry —
are sensitive to different combinations of CFFs and provide therefore various handles to
perform CFF extraction from experimental data. Refs. [129, | summarise expressions
of various observables in terms of CFFs. The question of determining which observables
to measure in which kinematic regions is central to increase the experimental knowledge
on CFFs. We will develop this aspect in Section 4.4, where we present another observable
known as beam charge asymmetry, and gauge the impact of its potential measurement at
JLab on the knowledge of Re H.
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Chapter 3. Ezrperimental sensitivity and modelling

We have overlooked in this very brief presentation many subtleties that render the
extraction of CFFs from experimental data particularly challenging. Notably, 1/Q) power
corrections which we have neglected may be quite large considering the low values of )
at which most data are obtained, which forces to consider higher twist CFFs. Corrections
in ¢/Q* and M/Q? are presented for instance in Refs. [130, , | and exploited in
Ref. [133].

Two main strategies of extraction of CFFs from experimental data have been develo-
ped. The first consists in so-called local fits (see for instance Refs. [134, , , ,

, , , |). Independently for each kinematic bin, the CFFs are fitted as free
parameters on the experimental data. This method introduces therefore no bias on the
general form of the CFF apart from the chosen framework of general approximation, like
twist truncation, neglection of some CFFs, assumption of dominance of either BH or either
DVCS, ... Local fits have however no ability to predict the result of measurements in pre-
viously unexplored kinematics. On the other hand, global fits (see for instance Refs. [135,

, , , 53]) assume a functional shape of the CFFs and adjust it using data on all
available kinematics at once. The model may be built at the level of the CFF, or directly
at the level of the GPD. We will explore in Section 3.4 several distinct strategies to model
GPDs. The global fit method allows one to predict measurements in unprobed kinematics,
but at the cost of introducing some level of model dependence. Efforts to reduce this bias
have been led, notably by the introduction of neural network parameterisations of CFFs
[142; 143]. We will present this aspect in detail in Section 4.2.

The difficulty of CFF extractions, which require to manipulate a large number of
observables, as well as expansions in twist and orders of o, has motivated the development
of integrated softwares dedicated to the phenomenology of GPDs, such as PARTONS [111]
(https://partons.cea.fr) and GeParD (https://gepard.phy.hr). The study of the
deconvolution problem of DVCS will show how multi-channel analyses — that is including
processes different from DVCS - is crucial to extract GPDs, making the pertinence of
these integrated software approaches all the more stringent.

3.1.2 . Dispersion relations

A remarkable description of CFFs is inherited from the study of their analytical pro-
perties [1415, , |. The £ dependences of the real and imaginary parts of CFFs are
related through the following dispersion relation with one subtraction *

1
§-¢ §+¢

1
Re(E.1, Q%) = Tpv. [ e/ (e’ .02 ) Cult @) 32
0

Cx(t,Q?) is known as the subtraction constant as it is independent of £. The derivation
of Eq. (3.25) finds its roots in the general analytical properties of scattering amplitudes,
notably causality and unitarity. In particular, it does not depend on the formalism of per-
turbative QCD and the development of dispersion relations applied to hadron scattering

3. The number of necessary subtractions is dictated by the behaviour of the CFF at high-energy, which
corresponds to the limit £ — 0. Commonly advocated Regge trajectories give that the CFF behaves as
£ with 1 < a < 2, so one subtraction is thought to be enough and yields a £ independent term
Cr(t,Q?). If a higher value of « is encountered, more subtractions need to be introduced (see Refs. [146,

| for more details), and the derived dispersion relation will involve terms of the form Cg;] (t,Q%)/¢&x
with k& > 0 even, which are therefore no longer constant with respect to &.
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dates back to the 1950s?. Ref. [145] underlines that since the value of ¢ is bounded by
kinematic considerations (2.1), the integral in Eq. (3.25) is partly performed in an unphy-
sical region where the CFF simply cannot be measured. In practice, it means that Im H
must be continued in some manner, for instance thanks to a model of its & dependence, to
extract the subtraction constant. In spite of the difficulty linked to the unphysical large
values of &, let us mention that the real part of the CFF contains an information on the
imaginary part integrated from & = 0 to the upper kinematic bound, which represents
an opportunity to constrain the imaginary part at small values of £ which are difficult to
reach in experiments.

Ref. [116] observes that the coefficient functions obey similar dispersion relations
thanks to their interpretation as hard parton scattering. The authors demonstrate that
the consistency of the dispersion relations at the level of the CFF and the coefficient func-
tion, combined with the requirements of Lorentz covariance on GPDs expressed through
the form of Eq. (2.25), implies that, for a coefficient function 77 computed at order o,
the subtraction constant reads

= Z Cye[DY(t, Q% p?) + O(alth) (3.26)
where
d 2 1 Do 1, 2
Ch [ D(t, Q% ) = 7T/1 w: Im T} (w, %’as(lﬁ)) /1 dszzu)' (3.27)

To differentiate the experimental value of the subtraction constant Cy (¢, Q%) defined in
Eq. (3.25) from the computation of the contribution of the D-term to the subtraction at
N*¥LO, we introduce the notation

Cux[D?, D) (t, Q%) ZOHkD“ [(t, Q% 1) (3.28)

Therefore,
Cu(t, Q%) = Cy[D?, DI)(t, Q%) + O(ai™). (3.29)

At LO in ay(p?), Ty = 0 and Im T (w) = me2[6(1 — w) — (1 + w)] (3.13), so

CrolD?, D)(t, Q%) _22 / dz f_tz"). (3.30)

The derivation of an NLO quark contribution is demonstrated in Appendix A.3. The
subtraction constant represents a channel for the specific extraction of the D-term which
we will exploit in detail in Chapter 5. On the contrary, the imaginary part of the CFF
allows the access to the pure DD f® contribution, whose exact nature we will study in
Chapter 6.

4. See for instance the interesting discussion of Ref. [147] where it is heuristically argued why the
real part of a scattering can be obtained as an integral of the imaginary part. It is also demonstrated
mathematically that "strict causality" amounts for the scattering amplitude to be the boundary value on a
complex half-plane of an analytical function of its complexified kinematic dependence. The ie prescription
allows one to identify how the boundary value should be approached from the complex plane and is deeply
related to the requirement of causality.
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3.2 . Sensitivity to other processes

Although DVCS is widely considered as the golden channel to extract GPDs thanks
to its relative theoretical cleanness, we have already mentioned in Chapter 1 that GPDs
are universal objects which enter the description of other exclusive processes. As DVCS
will occupy most of our attention in this document, we only briefly mention a few of these
additional channels, and some properties relevant to our study.

Time-like Compton scattering

Time-like Compton scattering (TCS) [20] is a close relative to DVCS since it corres-
ponds to a similar process, except the incoming photon is real, and outgoing photon is
virtual. The virtual photon usually decays in a lepton pair in the final state. Due to its
proximity with DVCS, TCS can be described in terms of CFFs with coefficient functions
which are notably detailed in Refs. [29, 119].

The similarity of the two processes allows one to extend to TCS theoretical develop-
ments performed for DVCS. The slight differences in coefficient functions provide a first
test of universality of GPDs : can objects derived from DVCS describe equally well TCS
observables 7 The first experimental measurements have been recently obtained at JLab
[150] and pave the way to this important test of universality.

Deeply virtual meson production

DVMP, whose schematic depiction is given on the right panel of Fig. 1.1, played an
important role in the introduction of GPDs. However, because mesons are bound states
of QCD, DVMP involves further theoretical refinements compared to DVCS or TCS. Its
factorisation [11], proved for longitudinally polarised photons, involves not only GPDs
and coefficient functions known at NLO [151], but also another non-perturbative object :
the distribution amplitude (DA). The equivalent of a CFF for DVMP, called transition
form factor 7 (TFF), reads generically at twist-two as

2

T(ga t? Qz) - /0 du /_1 dz TDVMP (xa fa U, %a 045([1/2>> H(‘Ta 67 ta /,62)¢(U, MZ) ) (331)

where ¢(u, p?) is the leading-twist meson DA and Ty arp a coefficient function which now
depends jointly on x,£ and u. At LO, the coefficient function Tpyp can be separated
into Tpyyp(x, & u) = To(l)(u)T(2) (x,€) under the form [151]

7@ 2| [arPuotwd)| [ a0 woneenn]. o)

0

o as(p1?) {/01 du ¢§”_”f)1 l/_ll dz (ﬁ) H(i)(x,ﬁ,t,;ﬁ)] . (3.33)

where we have only shown a generic quark contribution for simplicity. We refer to Ref. [151]
for a detailed presentation of the results at LO and NLO. One will notice that the x-
dependent LO DVMP coefficient function is exactly the same as the LO DVCS one.
The TFF is sensitive to singlet GPDs for longitudinally polarised light vector mesons,
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and to non-singlet GPDs for pseudo-scalar mesons, providing therefore a complementary
knowledge on GPDs compared to DVCS.

A closely related process is heavy vector meson production (HVMP) where the hard
scale of the process is not provided by the virtuality of the incoming photon, but the mass
of the produced meson. One can therefore consider incoming real or quasi-real photons,
as for instance in ultra-peripheral collisions [152]. As HVMP is the subject of a significant
theoretical and experimental interest due to the possibility of constraining gluon PDFs,
we will focus more on this process in Section 7.3.

Processes with a richer kinematic structure

The three processes we have mentioned so far can be described in terms of form factors
(either CFFs or TFFs) which depend on (&, ¢,Q*). As GPDs are functions of (z,&,t, u?),
one variable is "missing" in the kinematic structure of the form factors. In practice, the z
variable is integrated out in the convolutions of Eqgs. (3.10) and (3.31). We will observe in
Chapter 6 that this renders the deconvolution problem — that is the extraction of GPDs
from experimental data — particularly difficult.

Several other processes involving GPDs with a richer kinematic structure have been
studied. First, allowing the outgoing photon of DVCS to be virtual while keeping the
incoming one also virtual yields double DVCS (DDVCS) [27, 28, 29]. DVCS and TCS are
therefore limiting cases of this more general process. Noting ¢’ the four-momentum of the
outgoing virtual photon and keeping ¢ for the incoming virtual photon and p; 5 for the
hadron four-momenta, it is possible to define specifically for DDVCS

¢ - (¢+4q) and = P2=p)(a+d)
Apr+p2) - (g +¢) 20p1+p2) - (a+q)

In the DVCS limit, ¢’ = &, while for TCS, ¢ = —£. DDVCS form factors depend on
(€,€,t,Q%), and the imaginary part of the convolution with the LO coefficient function
writes [29]

Im T ppyes(e, &) @ Hi(x, &t L 12)

1 1
—1 . HE 2
m/ d$€ ( —x—’ée é-/—i—SE'—ZE) (1‘,£,t,ﬂ),
(3.35)

= el HI(E €, ¢, 1%) . (3.36)

(3.34)

Therefore, the imaginary part of the DDVCS form factor at LO gives a direct access to
values of the GPD outside of the diagonal without the need for any deconvolution. Let
us note however that, because the outgoing virtual photon is time-like, || < [£], so we
can only probe a limited region of the GPD. An analogous strategy with respect to the
one we will present in Section 3.4.2 may be developed in this situation to recover the full
GPD based on the requirements of Lorentz covariance.

Other channels with a richer kinematic structure compared to DVCS, TCS and DVMP
are processes where several particles are produced in the final state. For instance, the
production of a pair of photons [30, 31, 32] or a photon-meson pair [33, 31| have been sug-
gested. However, these processes, as well as DDVCS, are more challenging experimentally
and their plausible impact on GPD extraction is still being studied.
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Lattice-QCD inputs on parton distributions

Although computations on the lattice do not belong to experimental measurements,
the progress in numerical simulations deserves a mention. This progress is first characteri-
sed by an increase in computational power and an improvement of algorithms which allow
one to carry out simulations at the physical value of parameters like the pion mass (see
for instance Ref. [153]). But it is also and maybe more importantly a profound concep-
tual change. For a long time, lattice-QCD was understood to only be able to compute
values of Mellin moments of parton distributions, accessible from local matrix elements
in Euclidean space. In practice only the first three moments could even be computed due
to divergence and noise issues |151].

The developments of new techniques to match Euclidean correlators to light-cone ones
has however completely changed the picture. It is now possible to extract z-dependent
parton distributions owing to a matching procedure quite analogous to the standard fac-
torisation of experimental cross-sections. Two approaches are most commonly met : the
quasi-distribution formalism [155] and the pseudo-distribution one [156]. A recent review
on the subject may be found in Ref. [157]. The precise control of systematic uncertainty,
both in the computation of matrix elements and in the matching procedure to the light-
cone, is still being actively investigated. GPDs represent in addition further complications
compared to usual PDFSs, so experimental data are bound to remain the major source of
information on GPDs still for some years.

3.3 . Status of available DVCS data and future experimental projects

The first measurements of DVCS started about 20 years ago, at the HERA accelarator
(DESY, Germany) and at JLab in the US. At HERA, the H1 [158] and ZEUS [159]
collaborations used a collider set-up, giving access to the smallest values of xz and largest
values of Q* where DVCS was measured so far. Values as small as x5 ~ 107 and as
large as Q% ~ 100 GeV? were probed as shown on Fig. 3.3, unfortunately with only
with a rather low statistics. Having access to both an electron and a positron beam,
they published beam charge asymmetries [160] (see Section 4.4) as well as cross-sections
dominated by the pure DVCS contribution at small values of xg.

At HERA also, the HERMES collaboration [1(1] used a fixed target which could be
longitudinally or transversely polarised. They published a complete set of asymmetries
for 5 in the range 0.04 to 0.1 with Q? up to about 7 GeV?2.

At JLab, the CLAS [162, 163] and Hall A [133, 164] collaborations also used a fixed
target, although they worked at a larger value of xp of the order of 0.1 to 0.5 and even
lower Q2 up to about 4 GeV2. With the upgrade of JLab 12 GeV, an increased kinematic
region with better experimental precision is expected in the coming years.

At the CERN, the COMPASS collaboration [17] with a fixed target provides an in-
termediate range in xp between HERMES and H1 / ZEUS data, with the possibility of
using both positively and negatively charged muons.

For now, most of the statistically constraining data for global fits of DVCS is obtained
at rather low values of (Q? with the bulk of points ranging from 1.5 to 4 GeV2. It is well
understood that obtaining data on a larger range in )? is crucial, and we will demonstrate
in detail the importance of this matter in Chapters 5 and 6. Obtaining data with a higher
luminosity than HERA at very low zp offers also very interesting physical perspectives
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FIGURE 3.3 — Summary of the current and planned DVCS measurements in terms of xp and
Q?. A few measurements are missing, without significantly changing the picture, as this figure
was also used in the 2021 EIC yellow report. Figure taken from Ref. [10].

which we will mention more precisely in Section 7.3. Overall, an increased precision of
experimental data is necessary to progress on the physical motivations for the study of
GPDs, like hadron tomography (Section 1.4.1) and the extraction of mechanical properties
(Section 1.4.2).

The future electron ion collider (EIC) |46, 47], which has already received a serious
governmental commitment in the US, is at the center of a lot of attention thanks to its
promise of a high luminosity coverage over an extended region at relatively small xp and
large ? as depicted on Fig. 3.3. When deriving numerical estimates in this work, we will
frequently have the EIC in mind and a coverage in Q? roughly estimated from 1 to 50
or 100 GeV2. Let us mention also competing projects with the hadron-electron collider
(LHeC) [50] and the Chinese electron-ion collider (EIcC) [18, 19].

3.4 . Models of generalised parton distributions

Due to the scarcity of experimental measurements and the difficulty of the overall
procedure of extraction of GPDs from experimental data, models have played a very
important role in phenomenology. We choose to only present three selected strategies of
modelling in this section, and refer to Ref. [I16] for a more detailed presentation of the
subject. The three strategies we will present, one based on double distributions, one on
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conformal moments and one on the inversion of the Radon transform, will all be revisited
in the next chapters. We will present new models of double distributions in Section 7.1
and 7.2, where we intend to provide a lesser model dependence and a better flexibility. In
Section 7.3, we will study a proposal of modelling GPDs at small £ based on the Shuvaev
transform for conformal moments, reinterpret its validity and justify why we feel that an
alternative view on the matter is relevant. Finally we will propose a different strategy for
the inversion of the Radon transform in Section 6.2.

3.4.1 . RDDA-based models
We remind that the DD formalism is equivalent to satisfying the requirements of
Lorentz covariance on the polynomiality of Mellin moments of GPDs. A simple way to
combine DDs and the excellent knowledge of PDFs is known as Radyushin’s double dis-
tribution Ansatz (RDDA), introduced in Ref. [165]. In this Ansatz, the DD f9(5, a,t) is
modelled as

1B, a,t) = mn (B, )q(B,1), (3.37)
where ¢(z,t) produces the usual PDF ¢(z) in the limit where ¢ = 0, and 7y is called a
profile function. Eq. (2.25) gives that

1—|z|

HO(2,0,1) = /| do f(z, 0 t) (3.39)

z|—1

1—|z|
= q(x,1t) / dany(z,a), (3.39)
|[—1
so to produce the expected forward limit at ¢ = 0, the profile function must be normalised
in the following way :
1—|8]
/ dany(B,a)=1. (3.40)
18]—1
A straightforward way to satisfy Eq. (3.40) is to propose
D(N +3/2) (1—1]8))* —a®)¥

YN S R (R | (34

The fact that the a dependence of the RDDA is merely controlled by a single parameter N
produces a rather inflexible modelling. In fact, the model converges quickly as IV increases

as demonstrated in Refs. [166, 167], so the effective freedom is limited.

The RDDA is however the basis of two very popular phenomenological models : the
Vanderhaeghen - Guichon - Guidal (VGG) model [168, 169, 170, 171], and the Golosko-
kov - Kroll (GK) model [172, , |. The main difference between the two resides in

the implementation of the ¢ dependence of ¢(z,t). VGG uses the generic form ¢(x,t)
q(z)x~"1=2) for the unpolarised GPD H?, whereas GK uses q(z,t) o q(z)r " e". The
exponents n and v are fixed to approximately reproduce the large ¢ behaviour of the EFF
Fi(t).

Although initially tailored on DVMP experimental data, the GK model produces a
good agreement in a LO description of DVCS experimental data on a wide kinematic
range as demonstrated in Ref. [129]. However, Ref. [175] argues that predictions obtained
with RDDA models are generally too large at small g, and that the good agreement
pointed out in Ref. [129] is coincidental.
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3.4.2 . Partial wave expansion
Another popular approach to the modelling of GPDs is to work in the space of confor-
mal moments introduced in Section 2.4. The relation between GPDs and conformal mo-
ments can be represented in terms of a formally divergent infinite polynomial expansion

Hﬂﬁgjy_ézé(‘g)zx;é;8€g>(“‘g)cfm<}§>oﬂ§“’ -

where the C](fg/ 2 are Gegenbauer polynomials, and Of(¢,t) the conformal moments de-
fined in Eq. (2.54). We have already mentioned in Section 2.4 that numerical studies of
reconstruction of GPDs from conformal moments based on polynomial expansions face
difficulties due to the large number of terms required to faithfully reconstruct the GPD,
but analytical models can be used.

The simplest model consists probably in choosing O;?(f ,1) to be ¢ independent with
the same t dependence for all j. This leads to an interesting proposal of model at small £
— with some shortcomings — which we will look into in detail in Section 7.3.

A less trivial way to model the ¢ and ¢ dependence of the conformal moments is
obtained in the formalism of SO(3) partial wave expansion in the t-channel |

| :

Y Y Y

Ojet)= Y, O, (3.43)

J=Jmin

where the summation is performed over the ¢-channel angular momentum .J. The d’ €)
functions derive from the Wigner rotation matrix and can be written in terms of Jacobi
polynomials.

At t = 0, the leading partial wave amplitude Oj+1(t = 0) is the j-th Mellin moment
of the PDF

¢ = (’);“(t =0) = /0 dr 27q(z) . (3.44)

The SO(3) expansion can be envisioned as the exchange of mesons carrying a total an-
gular momentum J (see Refs. [177, , | for more details). A simplified proposal
of dependence at small £ is obtained by modelling this exchange of mesons by Regge
trajectories :

1+j—« t\ 7
OUE ) = q:(1 2 4 1—— 3.45
R e el (RS IS

where a and o’ parameterise the Regge trajectory and p and m control the strength of the

coupling between the hadron target and the meson. More explanations on the physical
hypotheses leading to the model of Eq. (3.45) are found in Ref. [116] for instance.

3.4.3 . The covariant extension
After having broadly discussed modelling strategies based on double distributions
and conformal moments, let us briefly mention a third distinct path of modelling, based
on LFWFs introduced in Section 2.3. We have already noticed that, depending on the
kinematic region under consideration, the representation of GPDs as an overlap of LEWEFs
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involves either an overlap of LEFWFs with the same number of particles for |z| > |£] (2.41),
or an overlap of LFWFs with differing number of particles in the region |z| < |£| (2.42).
In the latter case, the mismatch in the number of particles in the Fock states triggers an
ambiguity on the Fock space truncation : assuming a truncation at N particles has been
implemented in the |z| > || region, how should we proceed for |z| < |£|? Should we only
keep overlap between at most N and N — 2 particles? Or are overlap between N + 1 and
N — 1 particles also allowed ? There does not seem to be any natural good answer.

As the Fock space truncation does not produce ambiguities in the region |z| > |{], a
technique proposed in Ref. [77] consists in modelling the GPD in that region from LFWFs,
and using afterwards the requirements of Lorentz covariance to perform the covariant
extension of the GPD to the region |z| < [£]. In practice, a DD is extracted thanks to
the inverse Radon transform from the knowledge of the GPD in the region |z| > |£|, and
is then used to compute the value of the GPD for |x| < |¢|5.

This procedure allows therefore to keep at the same time the advantages of the LEWF
overlap representation, which ensures the respect of the complicated set of positivity
constraints in the |z| > |£] region, and the advantages of the DD representation, which
guarantees correct properties with respect to Lorentz covariance.

A practical implementation of the inversion of the Radon transform is presented in
Refs. [77, 179] thanks to a finite element method. The DD domain in (5, «) is discretised
in a mesh with several hundred nodes, and a linear system relating the values of the DD
on the nodes of the mesh to the targeted GPD in the || > |{] region is built and then
inverted. We will provide more technical details in Section 6.2, where we will propose an
alternative strategy to the finite element method. Indeed, the formalism of DDs defined
as polynomials in o and S which we will develop for a completely separate objective can
be applied to obtain a covariant extension with very satisfactory results. The modelling
based on DDs which we will later expose in Section 7.2 follows from the same general
idea than the covariant expansion we have sketched here. However, instead of starting
from positivity bounds (LFWF formalism) and implementing Lorentz covariance (DD
formalism), we will follow the inverse path, starting from a DD and showing how it can
satisfy positivity bounds thanks to the shadow distributions we introduce in Chapters 5
and 6.

5. Formally, it is demonstrated in Ref. [77] from a theorem in Ref. [178] that the knowledge of the
GPD in the region |z| > |¢] is sufficient to exactly reconstruct the DD f?, up to an ambiguity on the
B = 0 line which is not probed by Radon integration lines in that kinematic region. In particular, the
D-term, which writes in the DD formalism as §(5)D%(«, t) (2.25), cannot be reconstructed, as well as any
0(pB) singularity included directly in the DD f9. This means that once the DD has been extracted, some
new modelling choices are likely necessary to eliminate the ambiguity, but they will be exactly compatible
with polynomiality of Mellin moments and positivity bounds.
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4 - Neural network parameterisation of Compton form
factors

As a prerequisite to the various analyses and modelling efforts led in this thesis, it
is necessary to familiarise ourselves with uncertainty propagation from an experimental
dataset to a generic model, and the general principles of neural network modelling. In
this chapter, we notably demonstrate on a custom example the advantage of the replica
method over the traditional Hessian method to estimate uncertainty. The last part of this
chapter is devoted to the question of adding new experimental data to an existing fit. This
issue is of significant interest since complex models like neural networks call for lengthy
optimisation procedures that frequently require tens of hours if not days of computing on
clusters. Assessing broadly but reliably the impact of a new dataset without needing the
time and computing power of a full refit is therefore useful to perform impact studies and
identify which observables and kinematic regions would bring the most striking constraints
on extractions. Considering the number of available observables for experimentalists, and
the projects of future facilities which would explore different kinematic domains, reliable
impact studies have come at the forefront of hadron physics. We first demonstrate results
on the addition of a new datapoint to an existing fit in the linear case, before focusing
on the more general Bayesian reweighting procedure. We finally present the results of
the study led in Ref. [2] where we assess the impact of a positron beam at JLab on the
experimental uncertainty of Compton form factors.

4.1 . Modelling uncertainty with neural networks

4.1.1 . Some general aspects of uncertainty modelling

The most straightforward way to assess the uncertainty on a quantity measured on
various kinematics is to propose a functional form of the relation between the quantity
of interest and the kinematic variables, and fit its free parameters to the experimental
data. The fit consists in finding the optimal parameters of the model so as to minimise
a loss function like the least squares estimate, or maximise the likelihood of the observed
dataset. The actual uncertainty on the extraction is then derived from the behaviour of the
loss function around its extremum. Intuitively, if the likelihood is flat near its maximum,
nearby parameters are equally likely, and the uncertainty is large. It is clear that this
procedure to assess experimental uncertainty suffers from several sources of bias, notably
the choice of model and loss function, and the practical procedure to study the behaviour of
the loss function around its minimum. We will call the bias introduced by modelling choices
epistemic uncertainty following the terminology described for instance in Ref. [180].
On the contrary, the intrinsic randomness contained in the fitted data also translates into
an uncertainty in the extraction, which we will refer to as aleatoric uncertainty. We
first present results concerning the aleatoric uncertainty in the case of a linear model,
before discussing the general strategy we used to evaluate uncertainty in non-linear cases.
Discussion of epistemic uncertainty will be led in the next section.
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Uncertainty quantification in the linear Gaussian case

It is useful to study briefly the case where the fitted model is linear in its parameters
and the experimental uncertainty is normally distributed. A linear model can be written
in general as

fa(X)=XTA =) apy, (4.1)
k=1
where A = (ay) is the vector of free parameters of length n and X = (x}) a vector of
functions of the kinematic variables. X7 denote the transposition of matrix X. To clarify
the notations, let us take the example of a model which depends on a kinematic variable
@ through a linear combination of sin(u) and cos(u) :

f(p) = asin(p) + beos(p) . (4.2)

a and b are free parameters. Then the model f(u) can be represented as f4(X) with our

previous notations by the vector of free parameters A = Z and the vector of functions

sin(p)

cos(11)
Our goal is to estimate the aleatoric uncertainty on parameters A from a set of m

experimental measurements F' = (f;) for 1 < i < m. The functions of the kinematic
variables on which the measurements are obtained are stored in a matrix C' with m lines
and n columns. Using again our previous example, let us assume we want to fit a dataset

made of two points (u1 =0, fi = 1) and (ue = 1, fo = 1). Then F = (?) = (1) is the
2

vector of measurements, and C' = (s?n(m) COS(M)) = < . 0 L > is the matrix
sin(ua)  cos(puz) sin(1) cos(1)

containing information on the probed kinematics. As we have exactly the same number

of measurements as free parameters, there exist a set of parameters such that the model

reproduces exactly the vector of measurements F. This set of parameters, which we will

note A, is obtained by solving a simple 2 x 2 linear system. Observing the structure of

the matrix C' demonstrates that this system writes CA© = F. Therefore

40 _ o1 (1/sin(1) - 1/tan(1)> . (4.3)

of the kinematic variables X =

1

In general, we do not expect our model to be able to reproduce exactly the cen-
tral values of the measurements. We are furthermore interested in understanding how
uncertainty on the measurement vector F' is translated into uncertainty on the best fit
parameters. Let us therefore assume that F' follows a multivariate normal distribution of
dimension m with covariance matrix €2, which gives an account of the correlations among
uncertainty. Since we assume the experimental uncertainty to be normally distributed,
minimising the generalised least squares loss function — that is the least squares with
full account of correlations among fitted data introduced historically in Ref. [181] — also
amounts to maximising the likelihood that the observed realisations result from a normal
distribution. The generalised least squares loss function writes

X}(A) = (F - CATQ Y (F-CA). (4.4)
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x%(A) is a quadratic form with respect to A, and the optimal value of A to minimise
x2(A), which we note A(®) is obtained by cancelling the gradient of the loss function :

(W (A)) _ 20T Y(F — CA). (4.5)

aak
Provided the matrix CTQ~1C is invertible, the general solution is obtained as*
AV = (cTo o)y teTa T F. (4.6)

This expression is sufficient to derive the uncertainty on A©. Direct calculation with
the assumption of normal distribution of F' gives that A© follows a multivariate normal
distribution of covariance matrix ¥ = (CTQ~1C)~!. One will notice that the central value
of F plays no role on the uncertainty of A, as a direct consequence of the linearity of
our model in its parameters.

In the simple linear case that we are focusing on right now, y?(A) contains all the
necessary information to recover the uncertainty on A® without the need for the closed
form solution of the optimisation (4.6). Indeed, the Hessian matrix

(82X2(A)) — 20T = 25! (4.7)

8011'8@]'

is exactly equal to twice the inverse of the covariance matrix of the optimal parameter
extraction. The Hessian method [1582, 89] can be adapted to more complicated cases
where a closed form solution relating A©® to F is not available. Assuming the loss function
behaves in the vicinity of A©® in a quadratic way, the covariance matrix on A© will be
approximated as

F@?qul | (48)

2 aaiaaj

As mentioned before, we recover the intuitive notion that if the likelihood is almost flat
near its maximum — so with a small second derivative — the uncertainty on the parameter
extraction is large. The Hessian method is still mostly satisfactory if experimental uncer-
tainties are not normally distributed since the generalised least squares estimate is the
best linear unbiased estimator [181]. A more striking limitation occurs for a model which is
not linear in terms of its kinematic variables, for instance because the loss function might
well exhibit several significant local minima. Such is particularly the case in parton distri-
butions studies, since many models incorporate a dependence on the kinematic variable
x as (1 — x)*2” where a, 3 are parameters to fit, to account for the phenomenological
behaviour of PDFs at end points. Furthermore, as mentioned in Ref. [112] for instance,
it is frequent that the Hessian matrix is poorly conditioned, with eigenvalues varying in

1. Coming back to our simple example, one can verify easily that C is invertible, so
(CTQ—lc)—lcTQ—l = Cc1QCc-TcTO-1 = 01 = _1/t1an(1) 1/531(1)
the result of Eq. (4.3) when mutiplying by F. We observe in addition the general result that Q plays no
role in the determination of the best fit value if the matrix C' is invertible. It corresponds indeed to having
exactly the same number of free parameters and independent experimental constraints, so the best fit
goes exactly through the central values of the measurements. However, the uncertainty on the best fit
will of course still depend on the uncertainty of the measurements contained in €.

>. This gives immediately
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a very large range causing numerical difficulties. Finally, when fitting together datasets
obtained by different experimental collaborations, it is not unlikely that the datasets are
in tension with one another due to unevaluated systematic uncertainties. For this reason,
uncertainties computed with the Hessian method are often increased by a factor 5 to 10,
known as tolerance parameter T [183]. Recent fits in the field of PDF phenomenology
have used adaptive values of the tolerance parameter for each eigenvector of the Hessian
matrix, see Ref. [181] for a review of modern techniques in fits of PDFs.

The replica method

A more general method to evaluate aleatoric uncertainty is based on Monte-Carlo
techniques, and consists in creating artificial experimental datasets by drawing new va-
lues of the measurements in their respective experimental distributions.The statistical and
systematic uncertainties are taken into account with their correlations. For each artificial
dataset, the optimal value of parameters is obtained to minimise the loss function. One
obtains thus a sampling of the joint distribution of the model parameters, which is absolu-
tely not constrained to remain close to a normal distribution, and can exhibit arbitrarily
complex interdependence. Each fit on an artificial experimental dataset will be called a
replica. The replicas form a sampling of the probability distribution of the quantity of
interest in the functional space determined by the form of the model. In simple cases, the
final uncertainty on the quantity at a given kinematic configuration is typically defined as
the standard deviation computed over a large number of replicas, typically 100 or more
decided on a case-by-case basis.

Fig. 4.1 shows an example that we have designed specifically to highlight how the
replica method can provide results that would be out of reach for traditional methods
which only study the behaviour of the loss function in the vicinity of its minimum. We
give ourselves a simple, yet realistic model of PDF inspired from the traditional fitting
method described in Ref. [181] :

rpf(zp) = axh(1 — 25)°(1 + dzp), (4.9)

where a, b, ¢ and d are free parameters. Let us then assume we have at our disposal an
experimental dataset of eleven measurements. Ten of them are spaced regularly in loga-
rithmic space between zz = 0.01 and 0.4 with uncorrelated relative uncertainty of 15%.
This corresponds to typical measurements in terms of kinematic coverage and experimen-
tal uncertainty for DVCS at JLab. One additional measurement is obtained at a much
lower value of x5 = 5e — 4 with uncorrelated relative uncertainty of 37%. The first ten
measurements have central values that correspond exactly to model (4.9) for a = 1.9,
b= 0.5, c =3 and d = 2, in accordance with the general behaviour of u valence quark
PDFs in the PDFALHC15 NNLO fit at 10 GeV? [185]. However, the eleventh measurement
clearly differs from these parameter values. We show on the left panel of Fig. 4.1 the result
of the fit of model (4.9) on 100 different artificial datasets for the generalised least squares
loss function (4.4). A remarkable feature is the separation of the replica bundle in two
clusters at small zp of approximately equal size. This branching is particularly obvious in
the distribution of parameter b depicted on the right panel of the figure. Depending on the
actual value drawn for the last isolated measurement in each artificial dataset, the strain
it exerts on the overall fit is either dominant and drives the entire small x5 behaviour of
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F1GURE 4.1 — (left) The purple points represent the experimental dataset with its uncertainty.
The orange curves are 100 replicas fitted with model (4.9) on artificial datasets drawn according to
the experimental uncertainty. — (right) We represent the distribution of values of the parameters
of model (4.9) for 3000 replicas. It is especially clear on parameter b (upper right), which drives
the behaviour of the model in the small zpg limit, that the replica bundle is separated in two
clusters approximately equally populated.

the replica, or is insufficient to significantly alter the tendency entailed by the first ten
measurements.

Since the distribution of parameters diverges significantly from a normal distribution
to the point that it has several modes, the traditional Hessian method, which focuses
on the study of x? around its global minimum, will fail to give a precise account of
uncertainty. If the Hessian method was applied unceremoniously to such a case, it would
simply hide the nature of the problem and underestimate the total uncertainty. However,
the y? contains information on this separation in clusters, under the form of local minima.
Since the x? is a function of four parameters a, b, ¢ and d in this example, it is unpractical
to visualise the overall shape of the function. We use a dimensionality reduction tool, the
t-distributed stochastic neighbor embedding (t-SNE) algorithm [186], to bring the study
back to a more manageable two dimensions. As a consequence, the four dimensional
space of parameters is embedded in a two dimensional representation via a non-linear
transformation. Although non-linearity means that it is difficult to interpret the meaning
of the final space with t-SNE, the objective is to preserve clusters, so that points that are
close to each other in higher dimension remain close through dimensionality reduction 2.
We will use this tool to identify the regions corresponding to significant local minima in
the space of parameters (a, b, ¢, d) and try to understand what kind of information on the
branching of the probability distributions of the parameters the y? contains.

In practice, on the left panel of Fig. 4.2, we first produce a four-dimensional grid
spanning a large region of parameters which we expect to encompass all significant local
minima of the x2. Out of 160000 points of the grid, we only select 1055 such that the

2. More precisely, given points in a high-dimensional space, the algorithm constructs a probability
distribution on pairs of these points such that the probability associated to a pair of points which are
close in high dimension is much larger than that associated to a pair of distant points. Then another
distribution is built on pairs of points in the low dimensional space, and the algorithm minimises the
Kullback-Leibler divergence between the two probability distributions by means of an iterative gradient-
descent. We refer the reader to Ref. [186] for more details on this popular dimensionality reduction tool.
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associated y? is less than 30. This amounts to selecting a few separate regions of the four
dimensional grid which contain the strongest local minima of the x2. The chosen parame-
ters are the result of a series of trials, as is necessary when studying a complex function
with many local minima and no clear theoretical property. The threshold on x? chosen at
30 guarantees that we only consider parameters that at least remotely reproduce the fitted
data, while we checked that increasing the region spanned by the grid does not reveal new
local minima. Then we apply to the 1055 selected points in four dimension the t-SNE
algorithm to visualise their characteristics in two dimensions. As seen on the left panel,
it is possible to identify broadly four regions where notably small x? are encountered. We
denote them by 1 to 4, and highlight by a star the position of the local minimum in each
region. The star in the first region represents the global minimum of y2. The parameters
associated to each star are summarised in the following table :

Parameters a b c d | Value of x?
Global minimum (region 1) | 0.0089 | -0.38 | 2.3 | 300 2.3
Local minimum (region 2) | 0.70 | 0.28 | 3.4 | 11 5.7
Local minimum (region 3) 2.6 0.58 | 23] 0.0 6.4
Local minimum (region 4) 1.1 0.36 | 2.3 | 2.9 7.1

If one remembers that the first ten points in the fitted dataset were generated with
a =19, b= 0.5, c =3 and d = 2, the global minimum singles out itself as being
particularly remote from these values, unlike the other three local minima. This is visible
on the right panel of Fig. 4.2 where we plot the curves associated to each minimum. We
observe the same behaviour of branching of the parameter distributions at small zp as
the one we put forth thanks to the replica method in Fig. 4.1. This demonstrates that a
study of the x2 not limited to the sole global minimum contains significant information for
a complicated uncertainty extraction without the need of the replica method. Since the
latter requires repeated global minimisations of the x? for various artificially generated
experimental dataset, it can become very computationally intensive. It is in particular
the case if the model is complex and strongly non-linear — as neural networks can be —
and if the loss function behaves poorly. It may then become more interesting from a
computational point of view to focus on the extraction of a few local minima
of the y? rather than repeatedly looking for its global minimum for varying
experimental data. We found that it was in general conceptually simpler and still
manageable in terms of computing power to estimate our uncertainties thanks to the
replica method. However, our neural networks models in Chapter 7 where we implement
a simplified positivity constraints take of the order of a full day of computation to be
trained. Should the computation time keep increasing, a more sophisticated approach in
the fashion we have described here might prove necessary.

We have mostly concerned ourselves so far with aleatoric uncertainty emerging from
experiment, neglecting epistemic uncertainty. However, in the absence of strong theoretical
motivations guiding the choice of a model, epistemic uncertainty comes at the forefront.
Fitting collaborations in the field of PDFs have increasingly relied on data-driven ap-
proaches allowed by neural network modelling 187, , , , |. As we will see,
neural network architectures are very flexible, reducing the amount of prior knowledge in-
troduced in the modelling and therefore the epistemic uncertainty. Additionally, there are
practical tools specific to neural networks to assess to some extend epistemic uncertainty.
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F1GURE 4.2 — (left) Embedding in a two dimensional space of the regions of the four dimensional
parameter space where x? < 30. Four clusters appear. In each cluster, the local minimum of 2 is
depicted by a star. The star of cluster 1 is the global minimum of y2. — (right) Representation of
the model corresponding to each star. The best fitting model, model 1, is substantially different
from the other three in its small g behaviour.

4.1.2 . Neural networks

The general idea of artificial neural networks can be traced back at least to 1957 with
Rosenblatt’s perceptron [192] — a single neuron whose output is 0 if the weighted sum of its
input lies below a threshold, and 1 otherwise. Development of back-propagation algo-
rithms in the 1970s and 1980s (see for instance Ref. [193] where the term back-propagation
is coined, although the general principles of the technique predates the paper by about
two decades) extended the applicability of the concept by allowing to train multilayer
perceptrons on non linearly separable datasets (that is datasets whose convex hulls are
disjoint). Both back-propagation and multilayer perceptrons will be detailed in the follo-
wing. Overwhelming interest in neural networks in recent years is linked to deep learning,
the training of neural networks with a large number of layers and free parameters on very
large datasets. For instance, the deep convolutional neural network AlexNet [194] which
revolutionised the field of image recognition in 2012 possesses more than 62 million free
parameters, and the ImageNet database contains more than 14 million annotated images.
Deep learning was only made possible recently, thanks to the availability of computing
power provided by graphics processing units (GPUs) and the emergence of large datasets
in the age of social media, although grounding theoretical works on convolutional neural
networks dates back to the 1980s for instance [195]. The enthusiasm for the field has led
to a proliferation of architectures and training procedures, and it is out of the scope of
this document to give a general overview of the subject.

Architecture of multilayer perceptrons

For the purpose of our study, we only used the simple architecture of the multilayer
perceptron (MLP) which we detail now. An MLP can be considered as a complicated
function taking n features as input, and producing m values as output. Fig. 4.3 shows a
typical MLP with n = 3 and m = 2.

The information is processed sequentially layer after layer. The internal layers of the
network — that is neither the input nor the output layers — are called hidden layers. Let
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FIGURE 4.3 — (a) A multilayer perceptron with two hidden layers. — (b) General principle of
an individual neuron. Figure taken from Ref. [1413].

us note v}, the output of the k-th neuron in the i-th layer. The first layer simply distributes
the input features to the next layer, so v} are the input features. v,i_l is distributed to
the j-th neuron of layer i via a connection of weight B;k Each neuron computes the
weighted sum of its inputs, adds a specific bias 3} ; and feeds the result to an activation
function ¢°. The image through the activation function determines the output v;. The

operation of one neuron can be summarised as

v; =o' ( ot D Bk Ulic_l) : (4.10)
K

The successive layers of the network act as nested compositions of activation functions
and weighted summations. The free parameters of the network are the weights and biases
ﬂ;k which are optimised during a training procedure. The number of layers, neurons in
each layers and the choice of activation functions o are usually considered as modelling
hypotheses, although some advanced training procedures allow one to adapt these choices
during the training.

Two main advantages justify the use of neural networks to model the complex relation
existing between kinematic variables and interesting quantities like CFFs or parton dis-
tributions themselves. First, they provide abstract parameterisations that are not driven
by a strong physical a priori on the relation. In this sense, the model is essentially data-
driven, and not theory-driven. However this can only work if the model is flexible enough
so that the specific architecture choices do not practically act as a strong prior bias. The
flexibility is the second advantage of this modelling. It can be expressed mathematically
by universal approximation theorems, demonstrated for their first variant in Ref. [190]
and notably extended in Ref. [197]. Let us rephrase the universal approximation theorem
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for arbitrary width under a form which is better suited for our presentation :

Universal approximation theorem for MLPs of arbitrary width
(Hornik, [197]) For every (n,m) € N2, compact K of R", continuous
function f from K to R™ and € > 0, there exists k € N and an MLP with
exactly one hidden layer of k£ neurons and a linear activation function
in its output layer whose output g(x) verifies

sup lg(z) = f(2)]] <€, (4.11)

if and only if the activation function of the hidden layer is not polyno-
mial.

It is interesting to observe that the key element to the universal approximation theo-
rem is the non polynomiality of the activation function in the hidden layer. Traditional
activation functions are the sigmoid = — 1/(1 4 exp(—Az)) and the rectified linear unit
(ReLU) z — xO(z) where ©(z) designates the Heaviside step function.

Training

Once the architecture of the network has been defined, the determination of the free
parameters is performed through a training procedure. For our modelling purposes, we
used supervised learning, since we know the expected output that the neural network
should produce for a given set of kinematic variables. Several types of supervised learning
procedures are available. The most frequent one consists in defining a loss function to
measure the error between the current output of the network and its expected output.
Then the gradient of the loss function depending on the free parameters of the network
is computed. The gradient calculation can be optimised by taking into account the fact
that the network consists in a nested composition of activation functions. Thanks to
the derivation chain rule, the gradient is computed iteratively layer after layer starting
from the final layer in a procedure known as back-propagation. Once the gradient is
computed, the parameters are modified in its opposite direction so as to decrease the
value of the loss function. Back-propagation is used to obtain a pre-training of the neural
network modelling of CFFs described in the next section. This very basic minimisation
strategy faces the risk of converging to a local minimum of the loss function. To prevent
it, it is customary to split the training dataset into several batches, and to iteratively
apply gradient descent while regularly changing the training batch. Another issue which
prevented for a long time the training of very deep neural networks is the vanishing or
exploding gradient problem (see for instance Ref. [195]) : several activation functions, like
the sigmoid = + 1/(1 + exp(—=x)), have derivatives which are systematically much lower
than 1. Then the derivation chain rule shows that the gradient becomes exponentially
suppressed for parameters in the initial layers compared to the final layers, due to repeated
products of numbers smaller than 1. Likewise, an exploding gradient problem can occur
in situations where all gradients would be much larger than 1.

A popular alternative to gradient descent is provided by genetic algorithms [199],
which are particularly suited for exploring spaces with no clear underlying structure and
many potential local minima. We will mostly use genetic algorithms for the training of our
neural network models. They are also particularly suited to implement conditions on the
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output of the network that do not let themselves write easily in terms of y? loss functions.
It is the case for instance in Section 7.2 where we will enforce positivity conditions on
the output of a neural network model of GPDs published in Ref. [¢]. We initially build a
number of candidates, which are randomly generated configurations of free parameters. At
each step of the training, called a training epoch, a given fraction of the best candidates
with respect to the loss function are selected. The winners of this selection form the group
A. The candidates that are not selected are discarded, and new candidates are generated
to maintain their total number at a constant level by two means : cross-over (group B)
and mutation (group C). The cross-over procedure consists in building new candidates by
mixing features of candidates of group A. The mutation procedure builds new candidates
by randomly varying some features of candidates of group A. The analogy with biological
evolution justifies the name of this algorithm. The selection of group A is an avatar of
natural selection of the fittest individuals in a population. They are given the opportunity
to reproduce, therefore mixing their traits and producing descendants in group B. They
also suffer random mutations of their genes, producing group C. Mutation is key to allow
the exploration of the space of parameters, but must not be too frequent at the risk of
transforming the genetic algorithm into a simple random search. Cross-over is crucial to
the speed of convergence, by allowing successful parameters to be propagated quickly to
a large number of candidates. Genetic algorithms are heuristic optimisation procedures
whose precise parameters are often a matter of empirical trials.

Regularisation

Regardless of the actual training procedure, it is important to try to prevent over-
fitting, that is an excessive sensitivity of the trained parameters to anecdotical features of
fitted data. When confronted with new data, the model is then notably less precise, even
in the range of training data. Several techniques are used to prevent over-fitting, known
as regularisation methods. The most frequent is to optimise the network only on a
fraction of available data known as training set, usually of the order of 80% of all data.
The remaining 20% of the dataset is known as validation set. Training is continued as
long as the goodness of fit measured by the loss function on the validation set seems to
increase, but the error on the validation set is never used directly in the optimisation
procedure.

An alternative to prevent excessive sensitivity of the network to its training data is to
disturb it regularly by de-activating randomly small parts of the network during training.
During their de-activation phase, the values of the frozen parameters are put to zero, and
their previous values restored once they are re-activated. This method, known as drop-out
[200, |, amounts in practice to training in parallel many different architectures of the
network. Once training is satisfactory, drop-out can still be applied during standard use
of the model. The different architectures probed during evaluation give different output
values, producing an account of epistemic uncertainty. If all neurons are activated during
evaluation, the model outputs an superposition of all the different architectures it was
trained upon, increasing the robustness of its predictions. We have notably used drop-out
to regularise our neural network model of GPDs in Section 7.2 [8].
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FIGURE 4.4 — Architecture of the neural network modelling the real or imaginary part of a
Compton form factor. Figure taken from Ref. [113].

4.2 . State of world DVCS data in neural network analyses

The first use of neural network modelling in the field of generalised parton distributions
was performed in 2011 by Kumericki, Miiller and Schéfer in Ref. [112]. They fitted the
CFF H on HERMES data for DVCS on unpolarised protons. In 2019, Moutarde, Sznajder
and Wagner fitted most of the world DVCS data, that is 2624 xp,t, Q? ¢) data points
collected over 17 years from about 30 observables at 6 experimental facilities in Ref. [1413].
This study led prior to the contributions of this thesis is however the basis for most of
the subsequent statistical analyses and deserves therefore a presentation. Other neural
network parameterisations of DVCS data have been performed in Refs. [202, 203].

Out of the twelve CFFs entering the description of DVCS, only H, &, H and & asso-
ciated to the four leading twist chiral-even GPDs H, E, H and E are taken into account,
and the eight real and imaginary parts of these CFFs are modelled independently by
eight neural networks such as the one depicted in Fig. 4.4. Each neural network takes as
inputs the three kinematic variables (¢, @2, ¢) which have previously undergone a specific
pre-treatment detailed below. The output is a single real number which also undergoes a
post-treatment. The hidden layer consists of 6 neurons with sigmoid activation functions.
This number was determined by observing that it gave a satisfactory goodness of fit on a
benchmark with Goloskokov and Kroll’s (GK) model.

The pre-treatment consists in what Fig. 4.4 calls linearisation®, that is taking the
logarithm of ¢ and @2, and a normalisation intended to linearly project input values in
the [—1, 1] interval. The post-treatment consists of an inverse normalisation to increase
the range of values, and a so-called inverse linearisation which divides the output by
&. The pre- and post-treatments considerably increase performance, by regularising the
behaviour of the CFFs at small £ and bringing input values in the range where the sigmoid
function is most sensitive to avoid inputs that directly saturate the network.

Overall, the eight networks representing the real and imaginary parts of the four
CFFs have 248 free parameters. The training is performed in two steps. First, a local
extraction of CFFs is performed for each kinematic bin. The neural network is trained on

3. It is a linearisation in the sense that it attempts to spread linearly the kinematic values of the data
points to facilitate the work of the neural network.
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this local CFF extraction with back-propagation of a simple least squares loss function.
This can be considered as a pre-training to initially adjust the parameters of the network.
Then proper training is performed on real experimental measurements of observables
via a genetic algorithm with a population of 1000 candidates. Since observables write
as complicated non-linear functions of CFFs, the loss function is not a straightforward
least squares between the output of the network and an expected value, but requires the
intermediate step of evaluating observables from the output of the network. The use of a
genetic algorithm allows in particular to evade the issue of computing the gradient of this
complicated loss function.

The left panel of Fig. 4.5 shows the result of the fit for 101 replicas of the imaginary
part of the CFF H as a function of ¢ for some value of ¢t and Q?. It is customary to
summarise this information under the form of confidence intervals. This is only a par-
tial representation of the amount of information actually contained in the replicas — for
instance, all replicas that go down at large £ could go up at small £ and vice versa, and
confidence intervals would not reflect it — but it gives an account of the local uncertainty
on the quantity of interest. On the right panel of Fig. 4.5, we show in light blue the
confidence interval obtained naively as [mean - standard deviation, mean + standard
deviation| for the distribution of replicas at each value of . Under the hypothesis of a
normal distribution of replicas, it should amount to the 68% confidence interval. However,
this interval is extremely sensitive to the presence of outliers.

Several techniques are known to increase the robustness of confidence interval extrac-
tions. One of them is called three sigma rule [201]. Separately for each kinematic value,
the replicas distant from the mean of the replica distribution by more than three standard
deviations are considered as outliers and discarded. Mind that the replica might be dis-
carded as outlier in some kinematic regions, but kept in others. The procedure is repeated
with the remaining replicas and their newly computed mean and standard deviation un-
til no outliers are suppressed. The band at the considered kinematic value is then again
defined by the interval [mean - standard deviation, mean + standard deviation].

An alternative method which does not require the identification and removal of outliers
is known as median absolute deviation (MAD) and traces back at least to Gauss (see
for instance Ref. [205] for a more recent take on the subject). The central value of the
interval is given by the median of the replica distribution, which we note median(X;), and
its spread depends on the median of the absolute distance of replicas to median(X;) :

)

©=1(3/4) ’

median (‘XZ — median(X;)

(4.12)

where @ is the cumulative distribution function of a standard normal distribution, ®~*
designates the reciprocal — and not the inverse — and ®~'(3/4) ~ 0.67. The use this
normalisation factor is an implicit assumption that the replica distribution is normally
distributed. The estimator can be applied to other assumed distributions by choosing
modifying the normalisation factor. Because the estimator uses the median and absolute
distance, unlike the mean and squared distance as for the standard deviation, it is natu-
rally less affected by outliers. We demonstrate on the right panel of Fig. 4.5 that the three
sigma rule and the MAD give very comparable results, except for the very large ¢ region
where the three sigma rule gives sensibly larger uncertainties. Both robust estimators of
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FIGURE 4.5 — (left) 101 replicas of {Im H (&, = —0.3 GeV2, Q? = 2 GeV?) — (right) Confidence
intervals derived with the naive method [mean - standard deviation, mean + standard deviation|
(blue band), the three sigma rule where outliers have been suppressed independently at each
value of ¢ before the same interval as before is computed (purple band) and the mean absolute
deviation estimator (yellow band).

uncertainty are considerably tighter than the naive version except in the region where the
CFF are the most constrained, around & = 0.1. It is therefore paramount to use robust
estimators. In the following, we use the three sigma rule unless specified otherwise.

Fig. 4.6 shows the result of the fit for both the real and imaginary parts of the CFF H
(grey band), and compares it to an extraction on an almost similar experimental dataset,
but with a model depending on a small number of parameters described in Ref. [53] (blue
band). The data-driven flexible parameterisation produces much larger uncertainties than
the contrained parameterisation. Indeed, neural networks bring a much lesser model bias,
so the variance of the model is much larger as a traditional case of variance-bias tradeoff.
Said otherwise, the epistemic uncertainty associated with the constrained parameterisa-
tion, which is not accounted for in the blue band, is much larger than the one of the neural
network model.

In some kinematic regions, particularly for ¢ smaller than 10~* and larger than 0.5,
the uncertainty of the neural network extraction is very large due to the scarcity of
available experimental data. Future experiments are expected to bring a much desired
experimental precision in this region. We have worked on a proposal for a positron beam
at JLab which could also bring a complementary knowledge on CFFs compared to the
one showed in Ref. [143]. To assess the impact of these experiments, we could simulate
plausible experimental results and train again the neural networks. However, the training
is quite lengthy and computationally expensive. It is therefore interesting to be able to
quantify broadly but reliably the impact of the addition of new experimental data on a
previously completed fit. We develop interesting aspects surrounding this question in the
following section.

4.3 . Assessing the impact of new measurements

Following the general structure of Section 4.1, we start by presenting the result of the
effect of adding a single new point to a linear fit with normally distributed uncertainties.
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FIGURE 4.6 — Real (left) and imaginary (right) parts of the CFF H as a function of £ for
t = —0.3 GeV? and Q? = 2 GeV2. The blue band denotes the result of a fit on an almost similar
dataset, but with a model with a small number of parameters [53]. The grey band is the data-
driven extraction produced by the neural networks. The dotted lines are the CFFs obtained from
two phenomenological GPD models, GK and VGG. Figure taken from Ref. [113].

We briefly study the possible generalisations of the linear results to non-linear models.
Under some criteria that we establish, we provide therefore a fast qualitative estimate of
the constraining power of the addition of a new measure on the knowledge of a quantity
of interest. We introduce then the general method of Bayesian reweighting suited for
non-linear cases and uncertainties evaluated through the replica method. This paves the
way to the precise discussion of the use of the reweighting technique in our impact study
related to a positron beam at JLab.

4.3.1 . Adding a new point to a linear fit

Using the notations of Section 4.1.1 on the linear fit with the generalised least squares
loss function, we denote by f4(X) = XTA (4.1) a linear model evaluated on the kinematic
configuration X with parameters A. When the model is fitted on experimental data with
uncertainty, A becomes a random variable, and we note (f4(X)) the central value of the
fitted model at X and Af4(X) its standard deviation giving an account of the aleatoric
uncertainty. Let us assume that we have already performed a fit on experimental data
and obtained a vector of best fit parameters A (4.6).

We now add to the current fit a new uncorrelated datapoint obtained at the kinematic
configuration X" with central value f; and normally distributed experimental uncertainty
1. The new vector of best fit parameters is noted A", We demonstrate in Appendix A.1
that a simple relation relates the central value and standard deviation of the initial fit
at XM — that is (f40(X®D)) and Afy0(XD) — to the same quantities for the new fit
— (fa (X)) and Af 40 (XD). We are not aware of any other derivation of this result,
which gives an interesting insight on the behaviour of linear fits when confronted to new
data. We partially presented this relation in Ref. [206], although it was only obtained for
models with a polynomial dependence of order 3 in a unique kinematic variable, whereas
the new result is fully general.

Introducing

(Afao (XW))2] 7

A= |1
+ pe

, (4.13)
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we demonstrate that

{< (X)) =AM faw (XU + (L= Wi, (1)
(Ao (KO = A(DS g (KON

It is therefore possible to predict the effect at X = X1 of adding a new uncorrelated point
to any linear fit thanks only to the knowledge of the current central value and uncertainty
of the model at that point and the central value and uncertainty of the added point.
Practically, it means that the final model distribution at X = X® can be predicted
graphically without any knowledge of the actual model that is fitted, except
that it is linear! However, the effect of the newly added point for X # X® can be
arbitrarily complicated, and will depend on the actual model.

Considering the generality of this result, we would like to estimate its validity in the
non-linear case, for instance for the PDF model presented in Eq. (4.9). Fig. 4.7 allows us
to compare the actual distributions computed via the replica method to the predictions
of the linear estimate (4.14). Successively at each point of the plane, we assume that a
new data point is added to the original dataset of eleven measurements, with always the
same uncertainty o7 = 0.1. The colour at that point shows the discrepancy between the
linear estimate and the actual replica result. The plot allows therefore to identify regions
where the linear estimate is satisfactory, and where it fails. The results for the mean of
the distribution on the left panel are excellent in the strongly experimentally constrained
region where the dense ten data points are located. There, the linear estimate of the mean
agrees with the replica method at the percent level. Agreement quickly fades away at small
and very large xpg, except in a narrow region approximately in the middle of the initial
replica bundle. The results are qualitatively the same for the estimation of the standard
deviation on the right panel, although the agreement is overall worse. We led in Ref. [200]
several other tests and concluded empirically that the linear estimate gives satisfactory
results when the replica bundle after inclusion of the new data point is approximately
normally distributed at the new kinematic. The situation is notably met if (1) the new
data point is considerably more precise than the previous knowledge at that kinematic,
so the post-fit distribution of the replicas is close to the uncertainty of the new data
point itself, (2) the replicas are already strongly constrained by previous measurements
in the region and have already approximately a normal distribution, or (3) the new point
is added close to the maximum of the previous replica distribution. When one of these
criteria is fulfilled, the estimate (4.14) allows one to quickly measure the physical interest
of probing this region to better constrain the quantity of interest.

Although the local impact of the addition of a new experimental measurement can be
empirically assessed in the vicinity of the new kinematic provided one of the previously
listed conditions is met, the linear estimate does not allow one to predict long range effects
on the fit. Replicas not only allow the calculation of the local uncertainty at a given
kinematic, but they also form a sampling of the probability distribution of the quantity
of interest in the functional space determined by the form of the model. Therefore, they
contain information on the long range dependence of the fit that we would like to use in
the assessment of the impact of a new measurement.
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F1GURE 4.7 — Comparison between the prediction of the linear estimate (4.14) of the mean
(left) and standard deviation (right) of model (4.9), and the actual values obtained by the replica
method. The results are given as percentage of difference with the result of the replica method as
reference. The purple points represent the original dataset of eleven measurements. At each point
of plane, we successively simulate the addition of a new data point with uncertainty o; = 0.1.
For the left panel, if the linear prediction of the mean after inclusion of the new point is larger
than the actual value given by replicas, the point is coloured red, and blue if the linear prediction
is smaller than the actual value. Same on the right panel for the standard deviation.

4.3.2 . Bayesian reweighting

Given a set of replicas, Bayesian reweighting assesses the impact of a new dataset by
attributing a weight to each replica measuring its compatibility with the new measure-
ments. Strongly incompatible replicas receive a tiny weight, which amounts in effect to
discarding them. The demonstration of the validity of this principle and the formula for
the weights can be found for instance in Ref. [207]. For the k-th replica, the reweighting
coefficient wy, is defined by

wi = 5 () exp(—xd/2), (4.15)
where Z is a normalisation constant determined after all wy, are computed so that ), wy =
1, N stands for the number of points in the new dataset, and x3 is the generalised least
squares loss function measuring the goodness of fit of the k-th replica with the new
dataset :

Xi = (Y =Y)"Q (Y - V), (4.16)

where Y is the vector of central values of the new measurements, €) its covariance matrix
and Y} the vector of values of the k-th replica at the kinematic configurations of the new
dataset. For Bayesian reweighting to give sensible results, the initial set of replicas should
be dense enough in the region where the new dataset is added, so that many replicas are
roughly compatible with the new measurements. Otherwise, due to the sharp decrease
of Eq. (4.15) as x? increases, Bayesian reweighting quickly ends up solely selecting the
least incompatible replica, and attributes it a weight w ~ 1 — €. To prevent this issue
and keep track of the statistical relevance of the procedure, it is possible to compute the
Shannon entropy [208] of the weights and use it to define an effective number of replicas
post-reweighting by

Nrcp
N.g = exp (— Z Wy, log(wk)> , (4.17)
k=1

82



Chapter 4. Neural network parameterisation of Compton form factors

where N, is the number of replicas. Neg can be interpreted as the number of replicas that
still carry information on the distribution in functional space after the new measurements
are included. The constraining power of the new dataset is measured by the ratio between
Nrep and Neﬁ‘.

After Bayesian weights have been computed according to Eq. (4.15), it is possible
to characterise the weighted distribution by its weighted mean and unbiased variance
estimators, defined by [209]

Nrep
(f (X)) reweighted = Z wy fr.(X) (4.18)
k=1 .
(Af<X)unbiased>2 = 1 Nrep Z Wy, fk <f( )>reweighted)27 (419>
o k k=1

where f;(X) is the value of the k-th replica at kinematic X, and Ny, is the number of
replicas. The initial factor in the unbiased variance estimator corrects the bias due to the
fact that the weighted mean estimator is correlated to the data samples. The situation is
more familiar in the unweighted case, where the uncorrected variance estimator

LS () = (OO (4.20)
N,
TP k=1

is biased and systematically underestimates the actual variance by a factor (1 — 1/Nyep).
Bessel’s correction

T L) - OO (121)

produces an unbiased estimator of the variance. The difference is only significant if Ny,
or N.g are small respectively in the unweighted and weighted cases. It is interesting to
notice that as Neg is a real number unlike N,ep, we can study the limit Neg — 1 for
a configuration of weights wy. For instance, if the weights favour overwhelmingly the
first replica and discard equally all others, that is wy = 1 — (Nyep — 1)e and wy, = € for
2 < k < N,ep, the unbiased variance estimator converges when ¢ — 0 to

mZ(fk(X) — fi(X))?, (4.22)

which is half of the unbiased variance estimator in the unweighted case with f;(X) as
empirical mean. This shows how even for an extremely constraining new dataset, the
prior knowledge represented by the unweighted distribution of replicas is still driving
significantly the final result.

Finally, taking the square-root of an unbiased variance estimator introduces a new layer
of bias because of the non-linearity of the square-root function. Therefore, the standard
deviation estimator derived from Eq. (4.19) is biased by a slight systematic underestima-
tion, but there is no simple way to correct this bias systematically that is independent of
the precise distribution of the variance estimator.
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4.4 . Impact study of a positron beam at JLab

Bayesian reweighting techniques are commonly used in the field of PDF phenomeno-

logy (see for instance Ref. [210]) to assess the impact of new data points, including lattice
QCD inputs on PDF fits [211]. To the best of our knowledge, the impact study led in
Ref. |2] is the first where that technique was applied to a neural network extraction of
CFFs.

So far, most of the knowledge on CFFs has been obtained from DVCS with a beam of
negatively charged leptons. Only HERMES and COMPASS experiments allowed to col-
lect some observables with positively charged beams (see experimental review of DVCS
datasets in Section 3.3). The possibility to change experimental settings like the charge
or polarisation of colliding particles is particularly interesting since it allows one to se-
parate contributions of various terms in the photon lepto-production cross-section, and
therefore provides different sensitivity to various CFFs (see Section 3.1). For instance, the
unpolarised beam charge asymmetry (BCA) is defined as

. d40+($B,t,Q2y¢) - d40‘7($B,t,Q2,¢)
- diot(xp,t,Q2 ¢) + dio(zp,t, Q% P)

where d*o* denotes the differential cross-section of lepto-production of a single photon
averaged over the polarisations of both the lepton and hadron for either positively or
negatively charged beam particles. The BCA is particularly sensitive to the real part of
the CFF H as presented in Ref. [129], via for instance its cos ¢ Fourier harmonics at
leading twist and leading order under the assumption of dominance of the BH-DVCS
interference term over the pure DVCS one :

AC(:EB’ 7(“-7 Q27 Qb)

(4.23)

t

AS®? o Re | FYH + E(Fy + Fo)H — e

RE| . (4.24)

BCA is therefore considered as a particularly constraining measurement for Re H, which
as we will see in the next chapter is currently the source of a large uncertainty in the
extraction of proton mechanical properties.

The possibility of operating a positron beam at JLab [212, 3] yields the desirable
perspective of collecting precise measurements of BCA in the valence region, whereas the
few measurements of HERMES and COMPASS were obtained on restricted kinematics
where sea quarks are expected to dominate. We investigate the foreseen impact of these
measurements with the CLAS12 spectrometer [213]. To this purpose, we first generate
BCA pseudo-data while giving a specific attention to their plausible experimental uncer-
tainty. We then reweight the replicas of the neural network parameterisation of CFFs of
Ref. [113] and summarise the observed features.

4.4.1 . Pseudo-data generation

We select 1656 kinematic bins spanning the (xp,t, Q?, ¢) region based on a technical
proposal from a working group of the CLAS Collaboration* for the beam operating at
energy 10.6 GeV. The bins are constructed by first selecting 13 bins in (xp, @?) shown
on Fig. 4.8, and further dividing them along ¢ and ¢ while respecting the condition
—t < 0.2Q? which was used to discard measurements in the neural network fit of CFFs.

4. Eric Voutier, private communication
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The neural network fit, whose determination we have detailed in Section 4.2, takes
the form of 101 sets of replicas, each set containing the four CFFs #, £, H and €. For a
kinematic bin centered at (xp,t, Q? ¢) and the k-th set of CFF replicas, we compute the
expected number N (xp,t, Q% ¢) of single photon lepto-production events respectively
for a positron and electron beams of luminosity 0.6 x 10*°cm~2.s7! with 40 days of data
taking each. N;5(wp,t,Q% ¢) is the product of the duration of data taking, luminosity,
differential cross-section d*o™(xp,t, Q2 ¢) and bin phase space volume. We assume that
the variations of the cross-section over the bin phase space volume are negligible, and a
perfect detector acceptance and efficiency. This computation is made straightforward by
the inclusion of the replicas in the PARTONS software which allows us to evaluate many
DVCS observables.

Once the values of the number of events Ni*(z3,t, Q% ¢) are computed in each bin
and for each set of replicas, we determine the BCA thanks to (4.23) :

+ 2 - 2
AC,k<xBa t? Q27 ¢) = Nk (IB’ t7 Q : ¢) — Nk;(IB’ t7 Q : ¢) . (425)
N (wp,t,Q% ¢) + Ny, (5,1, Q% ¢)
We omit the arguments (xp,t, Q% ¢) in the following for concision of the notations. The
central value of the pseudo-data is taken as the average over all replicas of A¢, which
we denote (Ac).

We also need to determine the experimental uncertainty of our pseudo-data. Assuming
the V. ,;t are uncorrelated, their statistical uncertainty is AN,;'[ = \/W , so the statistical
uncertainty on Ac can be expressed by the usual uncertainty propagation formula :

0A-\ > s (0Acr\> 5
AAstat)? — Gk (AN k) (AN 4.2
( C,k) (aN]:- ( k) + 8Nk— ( k) ) ( 6)
N, 2 ING )2 _
() N (k) N 4.27
((N,:+Nk>2) 2 <<N;+Nk>2 ¢ (4.27)
ANF N,
- N (4.28)
1 — A2
k k

Therefore, it would only seem logical to take as statistical uncertainty of our pseudo-data

1 —(A¢)?

stat __
AT = (N+ 4+ N-)’

(4.30)
where (NT + N7) is the average over all replicas of the number of events in the bin.
However, the neural network fit is essentially unconstrained in some regions of the pro-
bed (zp,t,Q% ¢) phase space due to a current lack of experimental measurements. In
particular, the neural network does not implement — by design — the general theoretical
expectation that CFFs and cross-sections should decrease at large || values, and produces
therefore cross-sections in this region that we consider abnormally large in view of our
prior knowledge. This would lead to an unreasonable expectation for the statistical pre-
cision of our pseudo-data®. For this reason, N* + N~ is evaluated in each bin thanks to
the physically motivated CFF global fit of Ref. [73], and the result shown on Fig. 4.8.

5. More precisely, the fact that in an unconstrained region, the neural network of Ref. [143] produces
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FIGURE 4.8 — Total number of single photon lepto-production events integrated over the ¢t and
¢ bins for 80 days of operation of at beam energy 10.6 GeV and luminosity 0.6 x 103°cm=2.s 1.
Perfect detector acceptance and efficiency is assumed. Computed with the physically motivated
CFF global fit of Ref. [53]. Figure taken from Ref. |2].

Since we use the physically motivated model of Ref. [53] to compute N* + N~ we
could use it as well to determine Ac. However, we prefer to keep the central value of our
pseudo-data as (A¢) averaged over neural network replicas to ensure that our new data
points are maximally compatible with the current neural network fit, while benefitting
from reasonable uncertainties. Indeed, as we mentioned previously, Bayesian reweighting
only gives reliable results when many replicas are compatible with the new dataset, and
selecting central values of the simulated experimental points that are in tension with the
replicas would reduce considerably the statistical relevance of the procedure.

An uncorrelated relative systematic uncertainty of 3% is furthermore assumed follo-
wing Ref. [211], and added in quadrature to the statistical uncertainty for simplicity in
this first sensitivity study. The total uncertainty on A¢ is therefore obtained in each bin
as uncorrelated

1 - (Ag)?

. 4.31
N*+N- (4:31)

AAc = \/0.032<AC>2 +

Finally, to simulate actual experimental data taking, we smear the central values of our
measurements according to AAc.

large uncertainties approximately normally distributed should be considered as a modelling bias. Let us
show the problem on a simple example. Observables are non linear functions of CFFs, which can for
instance involve quantities like 1/(1 +#?2). It is particularly the case for timelike Compton scattering. In
the limit where the uncertainty on H is represented by a normal distribution of infinite uncertainty, it
becomes increasingly likely that # is large overall. Therefore, it is also increasingly likely that 1/(1+ H?)
is close to 0. We are reaching an apparent paradox, where the larger the uncertainty on H, the more
precisely the observable is known. The issue boilds down to (1) the non-linearity of the relation between
the observable and the CFF means that distances and what they actually measure are severely distorted
when switching between the spaces of observables and CFFs and (2) representing unconstrained CFFs
by large standard deviation is making an implicit choice of measure, the usual distance in R, which is a
significant modelling bias.
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FIGURE 4.9 — BCA value computed on 24 bins in ¢ for (zp = 0.18,¢ = —0.14 GeV?,Q? = 1.89
GeV?). The grey lines represent the 101 replicas obtained from the neural network fit and the
orange band the associated 68% confidence interval. The blue points are the generated pseudo-
data with their uncertainties. The blue band is the reweighted replica distribution. Figure taken
from Ref. |2].

4.4.2 . Reweighting and discussion

Fig. 4.9 shows 24 bins in ¢ spanning [0, 27| for (zp = 0.18,¢t = —0.14 GeV?, Q% = 1.89
GeV?). The value of the BCA computed for each set of CFF replicas is shown by the light
grey curves, and the current uncertainty on BCA derived from this fit is shown as the
orange 68% confidence interval. In each of the 24 bins in ¢, a pseudo-data is generated
according to the principles we detailed before. The assumed experimental uncertainty,
determined by Eq. (4.31), is much smaller than the current uncertainty on the BCA
represented by the orange band. The fact that pseudo-data are expected to be much more
precise than the current knowledge of the BCA is particularly true in the large |t| and
middle (zg, Q%) region as well as the small || and small (x5, Q?) region. On the contrary,
the uncertainty of new points will probably not be very constraining in the intermediate ||
region, because CFFs are already well constrained there, or large (x5, @*) region because
of the low expected statistics. In some bins of that region, only a few hundred events are
expected.

The blue band of Fig. 4.9 shows the reweighted BCA replica distribution computed
thanks to Eq. (4.19) after Bayesian reweighting on the new dataset of 24 points has been
performed. The effective number of replicas (4.17) has been reduced from N,o, = 101 to
N = 8. For several (zp,t,Q?%) bins, the effective number of replicas after reweighting
on the 24 ¢ bins drops as small as 2. It means the pseudo-data are so precise compared
to the actual knowledge of the BCA that all replicas except the couple least bad fits are
essentially discarded. The estimation of the reweighted distribution in this context is of
course very lacunar, so in an effort to make the results more robust and less dependent on
the precise central value of the pseudo-data, we average the weighted mean and standard
deviation on 300 successive smearings of the pseudo-data according to their assumed
central value and uncertainty. The smearing results in a slight increase of the reweighted
uncertainty in the case of particularly low Neg.
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FIGURE 4.10 — 68% confidence regions for Re H resulting from the initial neural network fit
(orange band) and the local reweighting of the ¢ dependence of BCA pseudo-data (blue band).
For each of the thirteen (xp,Q?) bins, the subgraph shows the results on the ¢ bins. Figure taken
from Ref. [2].

The reweighting of the ¢ dependence of the BCA performed independently on each
(rp,t, Q%) bin allows us to attribute independent weights to the CFF replicas in each of
these bins. We present on Fig. 4.10 the resulting weighted distribution of the real part of
the CFF H. Due to the fact that we consider each bin independently, we do not use the
information encoded in the overall structure of the CFF replicas in the (zp,t, Q%) space.
For this reason, we call this procedure a local reweighting. The results are nonetheless
striking and show a first assessment of the remarkable refinement on the knowledge of
ReH that could be produced by the BCA observable measured at CLAS12.

An attempt at a global reweighting along the entire dataset of 1656 pseudo-data is
bound to fail due to the relatively small number of replicas available. Already in some
bins, the simple reweighting of the ¢-dependence on 24 pseudo-data gave rise to a very
low number of effective replicas. The amount of constraint brought by the large dataset
would inevitably result in a final effective number of replicas of 1. It is however possible
to partly circumvent the issue by considering the results of the local reweighting as an
experimental-like input on CFFs themselves. Precisely, we will consider the 68% confidence
interval obtained independently on each (zp,t,Q?) bin as a normally distributed input
on CFFs, and further reweight the replica distribution along these new inputs. That way,
we actually factorise the reweighting procedure along successive variables. We show on
Fig. 4.11 the reweighting on the 6 ¢ bins in a (x5, Q?) bins. Taking into account correlations
along the t variables results in a further reduction of the uncertainty on CFFs.
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FIGURE 4.11 — ReH(t) for (zp = 0.18,Q? = 2.66 GeV?). The orange band is the 68%
confidence interval stemming from the neural network fit. The blue band is the result of the local
reweighting on the ¢ dependence of BCA pseudo-data. The purple band is a further reweighting
using the blue band as an experimental-like input on CFFs. Figure taken from Ref. [2].

Conclusion

The statistical tools presented in this chapter constitute the foundation of the analyses
and modelling efforts of this thesis : linear fits, uncertainty estimation via the replica
method, neural networks and their training, Bayesian reweighting. We have briefly studied
the interest and limitations of linear estimates for non-linear models. First we showed
that a study of the y? around its global minimum inspired from the linear case fails to
give an account of uncertainty in some situations like a multimodal distribution of the
fitted parameters. We highlighted nonetheless that a study of the local minima of the
x? contains a lot of information even in these complicated cases. We also demonstrated
that the linear view on the effect of adding a new point to a fit can prove quite useful
for non-linear models provided some general criteria are fulfilled. Finally we presented
our impact study of the addition of observables linked to a positron beam at JLab on
the uncertainty in CFF neural networks extractions. Our results show the vast increase
in precision that could be achieved, notably on Re, thanks to this new experimental
setup. Reducing the experimental uncertainty on CFFs will appear as a crucial issue in
the following chapter where we focus on the extraction of physical properties of hadron
matter from the DVCS channel.
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5 - Extracting a gravitational form factor from DVCS
data

As presented in Section 1.4.2; one of the major motivations for the study of generalised
parton distributions is their link to the hadron EMT and the possibility to compute
distributions of hadron matter properties like energy or internal pressure. Among the
five gravitational form factors (GFFs) A%, B, C¢, C, and D%, that parameterise the
EMT proton matrix element (1.21), C'* has attracted most attention owing to the specific
experimental sensitivity achievable through the DVCS channel. Section 3.1.2 presents the
dispersive formalism of DVCS, which allows one to single out from CFFs the subtraction
constant giving information on the GPD D-term D%(z,t, u?). We remind that the GFF
C® can be computed from the D-term as (see Egs. (2.33) and (2.34))

1
Ctt) = [ Az D), (5.1
—1
where p, = 1 if a = g and 0 otherwise. On the other hand, the GFFs A%, B* and D¢pp
depend on a Mellin moments of the full GPDs (see Egs. (1.22) to (1.26)), but are insensitive
to the D-term. The determination of these GFFs will therefore come as a by-product of
our discussion of the full deconvolution problem in the next chapter.

The first experimental extraction of the GFF C* from a DVCS dataset was performed

in 2018 in Ref. [139]. Their approach relied on a parametric fit of CFFs inspired by
the KM model [109, 116]. Shortly after, a data-driven approach to the DVCS subtraction
constant using neural network parameterisations of CFFs to reduce the modelling bias was
published in Ref. [202]. The first result of Ref. [139] headed in the direction of a very large

internal pressure inside the proton, possibly even larger than that modelled at the center
of neutron stars and clearly incompatible with 0. The subsequent study with more flexible
modelling gave in turn extremely large uncertainties, to the point that the subtraction
constant, and consequently the gravitational form factor C%, appear compatible with 0.

We published in 2021 our own data-driven extraction of the GFF C* from the world
DVCS dataset in Ref. [1]. The neural network study of CFFs performed in Ref. [113], which
we presented in Section 4.2 allowed the extraction of the DVCS subtraction constant.
Based on this result, we devote a significant attention to the question of the extraction
of the D-term and GFF C® from the subtraction constant, exploring various schemes
and their limitations. As part of the general program to extract GPDs from experimental
data — known as deconvolution problem — the step of extracting simply the D-term from
the subtraction constant is particularly important. It is a simpler problem, in the sense
that the D-term is just a function of (z = z/&,t, u?) whereas GPDs are functions of
(x,&,t, 4?). This means that issues related to the sparsity of experimental data and the
overall complexity of the extraction are less stringent. However all the ingredients of the
generic problem of deconvolution of GPDs are already present at this stage.
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5.1 . D-term extraction as a deconvolution problem

We remind from the discussion of dispersion relations in Section 3.1.2 that the DVCS
subtraction constant is related to the D-term through Eq. (3.27), which notably yields at

LO:
CrolD?, D)(t,Q?) = 22 / 1Z_t2“ ). (5.2)

Extracting the D-term at some perturbative order k from the knowledge of the experimen-
tal subtraction constant Cg (¢, Q%) defined in Eq. (3.25) consists in finding the functions
D such that Cyx[D9, D9](t,Q*) fits best Cy(t,Q?). This raises however the issue of
uniqueness of the solution to this optimisation problem. At LO, characterising uniquely
Di4(z,t, p?) from the knowledge of [ dz D9(z,t, u*)/(1— =) in the absence of strong model-
ling assumptions might seem a hopeless task at first, since one of the variables has been
integrated out. There is hope that the extraction of the GFF C%(t, u*) might be easier,
since it is related to the D-term through an integral on z (5.1) as the subtraction constant,
so intuitively it contains less information than the full D-term. However, at this stage,
in the absence of a straightforward relation between Eqs. (5.2) and (5.1), it is unclear
whether there is a definitive advantage in focusing on the extraction of the GFF alone, or
the D-term as a whole. We will clarify this aspect in the following.

The issue of extracting a function, or one of its non-trivial features, which has been
integrated against a kernel is called a deconvolution problem. We will now demonstrate
that for the LO evolution, the theoretical solution to this problem is obtained by observing
that the x? dependence of the D-term is already known.

5.1.1 . LO evolution of the D-term

We have detailed in Egs. (2.58) to (2.60) the solution of the LO evolution for conformal
moments of the GPD. We also remind that the D-term evolves independently from the rest
of GPD, following exactly the ERBL evolution equation |93, 91]. We can therefore express
the evolution of the D-term D?(z,t,u?) in terms of its own conformal moments. More
precisely, we expand the D-term on a basis of Gegenbauer polynomials by introducing
the coefficients d%9(t, u?) :

DYzt 1) = (1= 2%) Y di(t,u”)CPP(2), (5.3)
odd n
DI(z,t, u?) = 1—z ng t, u?) 05 )( ). (5.4)
odd n
Unlike the solution of evolution given in Section 2.4 or in Ref. [4] for instance, we find it

preferable to recast the evolution from initial scale pZ to final scale y? at LO in ay in a
matrix system formulation, which allows us to convince ourselves more easily of the linear
and invertible nature of evolution and to solve readily the system. We use a simplifying
assumption concerning the behaviour of heavy quarks. We neglect the possibility of in-
trinsic heavy quark content of the proton at low u?, and we do not include corrections
in the ERBL equation to take into account heavy quark masses. Instead, apart from the
three light quarks which are always considered, heavy flavours are progressively activated
once £? is larger than the squared mass of the heavy quark mg with threshold condition
di(t, mg) = 0. This means that heavy quark contributions are not actual free parameters,
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but entirely radiatively generated by lighter quarks and gluon splittings. If 2 and u2 be-
long to an interval where no activation threshold is crossed, evolution takes the following

form for n odd and n; active quark flavours® :

9 1 at at -1
d%(t, % ) a, —ay (a,ffaﬁ)nf T (ajffa;)nf
da(t, u?) 1 G ... an
4% (t, ,U2) _ ano—an : (ar, —an )y (an —ah)ny
: : : — It
dy”! (t, u?) 0 1 '
T, 27 2 T, 27 2 a;t T, 2’ 2 ai
aéliaé?) (aniliago)ilf T (aﬁ(lia;))nf d%@’ Mg)
FI£M27M(2)) Fi(;ﬂ,uﬁ)a; o T rpd)an da(t, ul)
an —an (an —am)ny (an —an)ny de(t. ;12
1 0 0 (42, 41g) b (:, ) (5.6)
: o ~T0(1% 1) Tnp—a s (2 2
0 I (1, 1g) v

I, 1 designates the identity matrix of rank ny — 1,
Oés(,UQ) 2vn/Bo
5 , (5.7)
(15)

Qg

21\ 277 /Bo
F:l: 2 2 — Oés(/’b) 58
)= (2 (5.5)

We detail now the anomalous dimensions 7, [!1] whose definition we had postponed in
Section 2.4 since we will need to study their precise values in the following :

L0 (12, 1)

Tn = ’VQQ(n) ) (5'9>
+ 1 2

T =5 (’YQQ(”) +70c(n) £ \/(’YQQ(”) —Yac(n))? + 47@@(71)7@@(”)) ;o (5.10)

=C L L 2 S 5.11
e =Cr | 5~ i Dmr o) T ];E / (5.11)
n®+3n+4
Yaa(n) = _nfTFn(n +1)(n+2)’ (5-12)
n?+3n+4
Yeg(n) = —2Cr ECEDICEDR (5.13)
2 (1 2 2 1

tee(n) = gnTe+C (6 TamtD  med)mts 2; E) - G

1. The careful reader may wonder why the matrix formulation seems to give a particular role to the
quark flavor ¢;. It is because it serves as a "pivot" for the flavour non singlet evolution equations

i (t, p?) = dfy (t, %) = To(u®, ) [d% (8, 153) — df (¢, 1)) (5.5)
which are all expressed using ¢; = ¢1. All flavours are therefore evolved with respect to the first one.

However, when the matrix product is computed, all flavours play a symmetric role, as shown in Eq. (5.17).
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Here Cr =4/3, Tr = 1/2 and C* = 3. Finally

P ey (5.15)
n ga(n)
The first term of Eq. (5.6) is invertible since yga(n) < 0 and therefore a,, > a;'. Keeping
in mind we work with the assumption of no activation threshold crossed between p2 and
p?, the explicit solution of the system is found as

I'oa, —Tlhat a;ab el
d9(t. y2) = |—nmn " n7n g9y ,2 __mm (Pt _T- d (t. 12 5.16
1eat) = | )+ DY), 610

r--r
0.0 = TS 1)+ | 2

1 Tra- —Toah\ «
+—<—r2 . )qu (t,12), (5.17)

’I’L

where we have omitted the arguments (p?, 3) of the T',, functions for conciseness. This
formulation allows us to immediately notice that the u dependence of parameters d? (¢, 1i%)
of the Gegenbauer expansion of the D-term is obtained simply by a linear combinations
of the three functions I'%(u?, p2) and T'F(u?, ud).

If evolution from p2 to u? crosses a heavy quark activation threshold mgnf, we assume

that the heavy quark contribution is exactly 0 at that threshold, so

di (t, u?) ds (2, mﬁnf)
do (t, u? da(t,m? )
e Et752§ de mgnf)
’ 2 2 n \b Mg,
. =T, (22, A (5.18)
an
£ Py
dn’ (t, p?) 0
a5 (t, 113)
=T, (p2m2, ) (20 (i) ) | i) | (5.19)
L an 0 L. 0 :

qn ¢ — ‘
dnf 1(t7//“3)

By lowering p2 below the squared charm mass, it is possible to express all parameters
d®(t, u?) as functions of the four free parameters d?(t, u3) and d?(t, u2) where ¢ = u, d, s.
It is straightforward to derive that the p dependence of d%(¢, u?) is obtained by a linear
combination of the three functions T'%(u?, mgnf) and I'E(p?, mgnf).

5.1.2 . Theoretical extraction of the D-term

The LO subtraction constant Cpo[D?, D9 (5.2) can be expressed in terms of the
Gegenbauer parameters d? (5.3) in the following way

Cro[D?, DY)(t, Q%) = 22 Z di(t, u? / dz (1+ 2)C3/2(2). (5.20)

q odd n

94



Chapter 5. Eztracting a gravitational form factor from DVCS data

Noting that the Gegenbauer polynomials are coefficients of the formal series

(e 9]

SOt = (1 -2zt + 7)™ (5.21)
n=0
one obtains that
0o 1 1 14z
dz (1 (3/2) ()¢ :/ d 22
> [ a0 = [0z T, (5.22)
2
=> o, (5.24)
n=0
hence the identification )
/ dz (14 2)C®2(2) =2, (5.25)
-1
which yields
CuglD?, D7)(1, Q) =432 S dt(t, 1) (5.26)

q odd n

As a consequence of this expression, the possibility of extracting unambiguously the LO
D-term from the knowledge of the subtraction constant translates directly into the ques-
tion of uniqueness of the decomposition of a function in an (infinite) sum of d4 (¢, u?). If
two different series d? (¢, %) and di(t, u?) produce the same results when summed along
Eq. (5.26), then even a perfect experimental knowledge of the subtraction constant with
no uncertainty will not be able to distinguish between the two. In that case, due to the
linearity of the problem, there would even be an infinite number of solutions. On the
contrary, if the u* dependences of the d(t, u?) terms are linearly independent, then the
uniqueness of the extraction can in theory be achieved. We need therefore to study the
effect of evolution on the sum of d4 (¢, u?).

Using the expression of Eq. (5.17), the solution of the D-term evolution from p2 to p?
with no threshold crossing gives

S 3 ) = 3t |- o)
odd n odd n

FT ()| Tk, e
TLM7MO a__a

n n

Jo| =TF (2, 1) | ——K, — —<—"=—J,1|,
nfa»;_ayt :| n(u MO) —CL+ - _ gt

where we have introduced

Ne = Zeg, (5.28)

W (t 1) Zequ (t, 1), (5.29)
W (t, 1) qu (t, 12) (5.30)
Kn(t7 :U’O) = d%(t7 :U’O) ) (531>
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and omitted the argument (¢, u3) of I,,, J,, and K, for brevity. We do not show expressions
for one or more threshold crossings whose complexity brings no theoretical change; it is
straightforward to check that the general form of Eq. (5.27) is preserved. The general
©? dependence of Cyo[D?, DY) remains the same, and its dependence on D* is equally
contained in the variables [, J, and K,, although they appear with different linear
combinations. We remind that the T'? (u?) and ' (12) functions are proportional to s (u?)”
(5.7)-(5.8) for some exponent ~. If all distinct I' functions possess different v exponents,
they are linearly independent functions of 12, meaning that the bracketed expressions after
the I" functions in Eq. (5.27) are uniquely determined by the knowledge of the functional
dependence of the subtraction constant on Q2. Then it is easy to see that the values of
I,, J, and K, are also uniquely determined by the invertible system

1 — De 0
n£+ [n<t7:ug>
Thfanal el Tu(ts i) | - (5.32)
0 Z_;% o a*n—eaJr Kn (t7 ,LL(Z))

If an activation threshold is crossed, the above system is different and includes notably
Fn(mg, pd) factors, but it makes no theoretical change to the discussion. I,,, J, and K,
for all n is the actual entire information on the D-term which can be retrieved from the
perfect experimental knowledge of the DVCS subtraction constant in a LO analysis. Since
there are four free parameters d*, d%, d* and dY to recover with our simplified heavy quark
schemes, it is therefore not possible to separate the values of d¢ for each flavour. However,
a limited flavour separation is theoretically possible with the assumption d* = d¢ and a
free d} and d¥, which provides three free variables to recover from the three quantities 7,,,
J, and K,. Notice that this separation is made possible by the fact that I, and J,, are
not proportional thanks to the different electric charges of quarks?2. The most common
assumption is however that d* = d¢ = d*, that is equal light flavour contributions. This
prior bias makes the extraction more robust, because the system is over-constrained with
only two free parameters for three independent equations. The least squares solution can
be used to determine the appropriate values.

As we have seen, the fact that I,,, J, and K, can theoretically be extracted from the
subtraction constant depends on the fact that all v exponents associated to the various I'
functions are actually always distinct from one another. Owing to the slightly complicated
form of the exponents presented in Eqgs. (5.9)-(5.14), it is however not completely obvious
that it is the case. To demonstrate that 7, and v, can never be equal, we first consider
that in the limit n — oo,

Yn ~ 2Crlog(n), (5.33)
Yaa(n) ~2C"log(n), (5.34)

Yoc(n)vcg(n) ~ (5.35)

n2

Since C* > Cp, vac(n) is asymptotically larger than ~,, and yoa(n)yao(n) is negligible

2. This limited flavour separation might be interesting since flavours u and d are closely related thanks
to the (imperfect) isospin symmetry SU(2). The flavour symmetry SU(3) relating u, d and s is significant
less stringent.
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FIGURE 5.1 — (left) Values of v, and 7 for ny = 3 and n = 1 to 25 — (right) Relative
discrepancy between 7, and ~, . At n = 3, the two are already in agreement at the level of 2%.

compared (7ag(n) — 7n)?, 50

Tn = ! (% +vea(n) = [vaa(n) — %|\/1 + ?VQG(H)VGQ(H)> (5.36)

2 Yea(n) — vn)?
~196(n)vee(n) v9c(n)rco(n) )’
— Yo (n) — Yn o ( Yaa(n) = Tn ) 7 (5:87)
. _ nfCFTF 1
=, (Co = Cpyn? Tog(n) +0 (—n2 logQ(n)) : (5.38)

Eq. (5.38) proves that as n increases, v, is asymptotically below ~,, by a distance of order
1/(n*log(n)). Since 7,_; and ~, are asymptotically separated by 2Cr/n, it also means -,
is too close to v, to possibly be equal to 7,_;. Therefore, asymptotically, 7,-1 <7, < Va.
Numerically, the asymptotic regime starts as soon as n = 3 as demonstrated on Fig. 5.1,
with 73 = 3.49 and ~5 = 3.42.

As for ~;F, it varies as ,C*/CF, so grows so quickly compared to 7, and ~, that the
question of equality of a value of ~ with some 7, or 7, is hardly a practical issue. It
would take an extraction taking into account n = 47 terms in the Gegenbauer expansion
of the D-term for v, to be even close to 74 for instance. In practice, the rapid growth of
~+ associated to the limited number of extracted coefficients allows us to consider in the
following that v exponents associated to different I functions are formally distinct.

However, Eq. (5.38) also demonstrates how dangerously close v, is from ~,. Since
in practice v, & 7, for n > 3, we have equivalently T ~ T', and we loose the ability
to independently determine I, J, and K, from the three different coefficients of each
term in n of Eq. (5.27). Indeed, there are now only two equations available to determine
three parameters. We stress that what we are actually demonstrating is that, although
the problem of extracting the I,,, J, and K, parameters admits formally a unique solu-
tion, it is numerically ill-defined, so that even with perfect experimental knowledge of the
subtraction constant on an interval in )%, no reliable independent extraction of the I,,, J,
and K, coefficients can be performed at even small values of n. The root of the problem
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is that with a Gegenbauer expansion of p terms of the D-term, we are proposing a linear
model with 3p I' functions to fit the subtraction constant, but the family of I" functions,
although free which guarantees uniqueness of the decomposition, is comprised of nume-
rically extremely similar functions3. Of course, the addition of experimental uncertainty
will only make the problem worse. We delay however the study of actual experimental
uncertainty to Section 5.2.

Conclusion

To summarise the characteristics of the deconvolution problem of the D-term in a LO
study, we note that it is mathematically possible to uniquely determine I,,, J, and K,
(5.29)-(5.31) at some point ¢ from a perfect experimental knowledge of the subtraction
constant C'y 1,0 at the same ¢ and an interval on QQ?. The fact that the subtraction constant
is measured on an interval in Q? allows formally the discrimination between each terms
in p? contributing to Eq. (5.27). This is as close to a determination of the D-term as can
be achieved considering it is not possible to separate flavours from the DVCS subtraction
constant alone. However, due to the extreme numerical proximity of v, and ~,, it is not
practically possible to determine I,,, J,, and K, for n > 3, but only a linear relation relating
them. The addition of heavy quark contributions solely through evolution makes no formal
difference on the extraction since it does not change the number of free parameters or the
i dependence.

Assumptions or external information coming from other dataset on flavour separation
allows one to progress further. Early studies of the use of deeply virtual meson production
data have demonstrated the potential of a joint analysis [215]. For instance, the assumption
d* = d? = d* allows one to perform theoretically a full D-term extraction. Practically, by
linking directly I, to J,, and reducing the number of parameters to extract, this assumption
evades the numerical issue with v, ~ ~,. However, as n increases, 7,1 gets in turn closer
to v, %, so the numerical stability of the extraction worsens anyway.

The larger the interval in ? on which the subtraction constant is known, the more
robust the extraction will be, since for instance the approximation I'? ~ '~ will be less
accurate over a large range of scales, giving more breath to separate I, J, and K,,.

5.1.3 . Theoretical extraction of the GFF C
In terms of Gegenbauer parameters d?, the GFF C? (5.1) writes

1 1
Ot = 7 3 datt) [z (1= ):00(0), (5.39)
odd n -
1
LY@ [Caza-20Peene. )
12 odd n -1

The Gegenbauer polynomials C’,(La)(z) are orthogonal for the L?([—1,1]) inner product
with weight (1 — 22)®~%/2, so only the term n = 1 gives a non-vanishing contribution to

3. An ideal situation would be that the T' functions are for instance orthogonal for the L?([u3, t2..])
inner product, so that each new vector brings intrinsically different information, and not extremely
redundant information as is the case now. It is a pity nature chose these values for the anomalous
dimensions.

4. Since v, ~ 2Crlog(n) (5.33), Yn — Yn—1 ~ 2CF/n
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the sum of Eq. (5.40), and
1
CUt,