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Titre : Compression de nuages de points par apprentissage profond

Mots clés : nuage de points, apprentissage profond, compression, évaluation de la
qualité

Résumé : Les nuages de points devien-
nent essentiels dans de nombreuses appli-
cations et les progrès des technologies de
capture conduisent à des volumes de don-
nées croissants. La compression est donc
essentielle pour le stockage et la transmis-
sion. La compression des nuages de points
peut être divisée en deux parties : la com-
pression de la géométrie et des attributs.
En outre, l’évaluation de la qualité des nu-
ages de points est nécessaire afin d’évaluer
les méthodes de compression des nuages de
points. La compression de la géométrie, la
compression des attributs et l’évaluation de
la qualité constituent les trois parties prin-
cipales de cette thèse.

Le défi commun à ces trois problèmes
est la parcimonie et l’irrégularité des nu-
ages de points. En effet, alors que d’autres
modalités telles que les images reposent sur
une grille régulière, la géométrie des nu-
ages de points peut être considérée comme
un signal binaire parcimonieux dans un es-
pace 3D et les attributs sont définis sur
la géométrie qui peut être à la fois parci-
monieuse et irrégulière.

Dans un premier temps, l’état de
l’art des méthodes de compression de la
géométrie et des attributs est passé en re-
vue, en mettant l’accent sur les approches
basées sur l’apprentissage profond. Les dé-
fis rencontrés lors de la compression de la
géométrie et des attributs sont examinés,
avec une analyse des approches actuelles
pour les résoudre, leurs limites et les re-
lations entre l’apprentissage profond et les

approches traditionnelles. Nous présen-
tons nos travaux sur la compression de la
géométrie : une approche de compression
de la géométrie avec perte basée sur la con-
volution avec une étude sur les facteurs de
performance clés pour ces méthodes et un
modèle génératif pour la compression de
la géométrie sans perte avec une variante
multi-échelle atténuant ses problèmes de
complexité. Ensuite, nous présentons une
approche basée sur le pliage pour la com-
pression d’attributs qui apprend un map-
ping du nuage de points à une grille 2D
afin de réduire la compression d’attributs
de nuages de points à un problème de
compression d’images. De plus, nous pro-
posons une métrique de qualité perceptive
profonde différentiable qui peut être util-
isée pour entraîner des réseaux de com-
pression géométrique de nuages de points
avec perte tout en étant corrélée avec la
qualité visuelle perçue, ainsi qu’un réseau
neuronal convolutif pour l’évaluation de la
qualité des nuages de points basé sur une
approche d’extraction de patchs. Enfin,
nous concluons la thèse et discutons des
questions ouvertes dans la compression des
nuages de points, des solutions existantes
et des perspectives. Nous soulignons le lien
entre la recherche actuelle sur la compres-
sion des nuages de points et les problèmes
de recherche dans des domaines adjacents,
tels que le rendu dans l’infographie, la com-
pression des maillages et l’évaluation de la
qualité des nuages de points.
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Abstract: Point clouds are becoming es-
sential in key applications with advances in
capture technologies leading to large vol-
umes of data. Compression is thus essen-
tial for storage and transmission. Point
Cloud Compression can be divided into two
parts: geometry and attribute compression.
In addition, point cloud quality assessment
is necessary in order to evaluate point cloud
compression methods. Geometry compres-
sion, attribute compression and quality as-
sessment form the three main parts of this
dissertation.

The common challenge across these
three problems is the sparsity and irregu-
larity of point clouds. Indeed, while other
modalities such as images lie on a regular
grid, point cloud geometry can be consid-
ered as a sparse binary signal over 3D space
and attributes are defined on the geometry
which can be both sparse and irregular.

First, the state of the art for geometry
and attribute compression methods with a
focus on deep learning based approaches is
reviewed. The challenges faced when com-
pressing geometry and attributes are con-
sidered, with an analysis of the current ap-
proaches to address them, their limitations
and the relations between deep learning

and traditional ones. We present our work
on geometry compression: a convolutional
lossy geometry compression approach with
a study on the key performance factors of
such methods and a generative model for
lossless geometry compression with a mul-
tiscale variant addressing its complexity is-
sues. Then, we present a folding-based ap-
proach for attribute compression that learns
a mapping from the point cloud to a 2D
grid in order to reduce point cloud attribute
compression to an image compression prob-
lem. Furthermore, we propose a differen-
tiable deep perceptual quality metric that
can be used to train lossy point cloud ge-
ometry compression networks while being
well correlated with perceived visual qual-
ity and a convolutional neural network for
point cloud quality assessment based on
a patch extraction approach. Finally, we
conclude the dissertation and discuss open
questions in point cloud compression, ex-
isting solutions and perspectives. We high-
light the link between existing point cloud
compression research and research prob-
lems to relevant areas of adjacent fields,
such as rendering in computer graphics,
mesh compression and point cloud quality
assessment.
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BDBR Bjontegaard-delta bitrate
bpov bits per occupied voxels
BSDF Bidirectional Scattering Distribution Function

CNN Convolutional Neural Network
CTC Common Test Condition

D1 Point-to-point metric
D2 Point-to-plane metric
DCM Direct Coding Mode
DCT Discrete Cosine Transform

FL Focal Loss
FR Full Reference

G-PCC Geometry-based Point Cloud Compression
GFT Graph Fourier Transform
GQI Global Quality Index

JPEG Joint Photographic Experts Group

KLT Karhunen-Loève Transform

LiDAR Light Detection And Ranging
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Notation Description

LoD Level of Detail
LSTM Long Short-Term Memory

MLP Multi Layer Perceptron
MOS Mean Opinion Score
MPEG Moving Picture Experts Group
MSE Mean Squared Error
MVUB Microsoft Voxelized Upper Bodies

naBCE neighborhood adaptive BCE
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PC Point Cloud
PCAC Point Cloud Attribute Compression
PCC Point Cloud Compression
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PLCC Pearson Linear Correlation Coefficient
PQI Patch Quality Index
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RMSE Root Mean Square Error
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Notation Description

SROCC Spearman Rank Order Correlation Coefficient
SVR Support Vector Machine

TDF Truncated Distance Field
TSDF Truncated Signed Distance Fields
TSP Traveling Salesman Problem

V-PCC Video-based Point Cloud Compression

WBCE Weighted Binary Cross Entropy
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1 - Introduction

1.1 . Context

Recent advances have increased the accuracy and availability of 3D capture
technologies making point clouds an essential data structure for transmission and
storage of 3D data. 3D point clouds are crucial to a large range of applications such
as virtual reality [33], mixed reality [63], autonomous driving [194], construction
[183], cultural heritage [172], etc. In such applications, large scale point clouds
can have large numbers of points. Compression is thus essential for storage and
transmission of point clouds.

Point clouds (Figure 1.1) are sets of points with x, y, z coordinates and associ-
ated attributes such as colors, normals and reflectance. Point clouds can be split
into two components: the geometry, the position of each individual point, and the
attributes, additional information attached to each of these points. A point cloud
with a temporal dimension is referred to as a dynamic point cloud, and without a
temporal dimension as a static point cloud.

The Moving Picture Experts Group (MPEG) has promoted two standards
[155]: MPEG Geometry-based Point Cloud Compression (G-PCC) and MPEG
Video-based Point Cloud Compression (V-PCC). These two standards have reached
the Final Draft International Standard stage. G-PCC makes use of native 3D
data structures such as the octree to compress point clouds while V-PCC adopts
a projection-based approach based on existing video compression technologies. In
addition, the Joint Photographic Experts Group (JPEG) has issued a call for
evidence [2] on PCC.

Research on PCC can be categorized along two dimensions. On one hand, one

Figure 1.1: Point clouds visualizations. From left to right, "Dourado Site" [201],
"soldier" [56], "phil" [116] and "Arco Valentino" [9]
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can either compress point cloud geometry, i.e., the spatial position of the points, or
their associated attributes. On the other hand, we can also separate works focusing
on compression of dynamic point clouds, which contain temporal information, and
static point clouds.

Due to the properties of point cloud capturing techniques, point clouds are
typically sparse. This makes point clouds different from other modalities such
images which have a dense regular geometry in the form of a regular grid. As a
result, point cloud compression is a challenging problem.

1.2 . Objectives and contributions

The main objective of this thesis is to investigate the use of deep learning tech-
niques for PCC. Specifically, we research the application of deep learning tech-
niques for the following problems: lossy geometry compression, lossless geometry
compression, lossy attribute compression and point cloud quality assessment. In-
deed, deep learning for these problems was previously unexplored in the literature.
In this thesis, we propose learning-based methods addressing these problems. In
addition, using this broad perspective, we highlight the underlying challenges these
closely related problems have in common namely point cloud sparsity and irregu-
larity. We then expand this perspective into an extensive background on PCC and
show how the sparsity and irregularity of point clouds can be resolved or alleviated
to propose novel deep learning based approaches to these problems.

We first show how convolutional neural networks can be used for both lossy
and lossless geometry compression. Decoding as classification is a flexible interpre-
tation that is suitable for both lossy and lossless geometry compression. Hence, we
propose a novel lossless compression approach based on masked convolution and
then extend it with an efficient multiscale formulation. We also investigate deep
learning based attribute compression and address the sparsity and irregularity of
the geometry by reducing the problem to a image compression. Indeed, we pro-
pose a learning based approach to map point cloud attributes to a 2D regular grid.
This enables the use of any image processing technique to point cloud attributes
and we demonstrate how image compression methods can be used in such a con-
text. Furthermore, we explore a differentiable deep perceptual point cloud quality
metric to estimate the perceived visual quality of a point cloud from its geometry.
This is strongly related to geometry compression as this metric is also suitable as
a loss function for training lossy geometry compression networks. Indeed, the loss
functions used in the literature tend to be weakly correlated with perceived vi-
sual quality. Loss functions that are more correlated with perceived visual quality
could improve the performance of learning based lossy compression methods. In
addition, we also propose a convolutional approach for point cloud quality assess-
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ment that handles sparsity and irregularity via a projection approach. Indeed, the
attributes lie on a sparse and irregular geometry which is a challenge for the design
of objective quality metrics. The sparsity and irregularity can be addressed via
a 2D projection approach. This then enables the use of 2D convolutional neural
networks for quality assessment which are well studied for images.

1.3 . Structure

First, we present the state of the art for PCC in Chapter 2. Then, we ad-
dress learning-based geometry compression with a lossy convolutional approach in
Chapter 3. The interpretation of decoding as classification paves the way for loss-
less compression with an auto-regressive generative model in Chapter 4. However,
such models exhibit high complexity due to the sequential generation of symbol
probabilities. We address this issue with a multiscale prediction approach in Chap-
ter 5. In Chapter 6, we propose a learning-based attribute compression method
which is based on image compression and a learning-based mapping of point cloud
attributes to a 2D grid. In lossy geometry compression methods such as the one
present in Chapter 3, the neural network is jointly optimized for rate and distor-
tion via a loss function. Thus, this formulation of this loss function is of great
importance and for human visualization, the measure of distortion should ideally
be strongly related to perceived visual quality. In Chapter 7, we propose a dif-
ferentiable perceptual quality metric that is well correlated with perceived visual
quality. Then, we address learning-based point cloud quality assessment with a
projection based approach in Chapter 8. Overall, these different approaches have
in common that the sparsity and irregularity of point clouds is a key problem across
geometry compression, attribute compression and point cloud quality assessment.
In the different chapters, we demonstrate how this problem can be resolved or at-
tenuated for the different problems. Finally, we present conclusions, perspectives
on open problems and the list of publications in Chapter 9.
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2 - State of the Art on Point Cloud Compression

2.1 . Introduction

In this chapter, the state of the art for geometry and attribute compression
methods with a focus on deep learning based approaches is reviewed. The chal-
lenges faced when compressing geometry and attributes are considered, with an
analysis of the current approaches to address them, their limitations and the rela-
tions between deep learning and traditional ones. Current open questions in point
cloud compression, existing solutions and perspectives are identified and discussed.
Finally, the link between existing point cloud compression research and research
problems to relevant areas of adjacent fields, such as rendering in computer graph-
ics, mesh compression and point cloud quality assessment, is highlighted.

Common capturing techniques for point clouds include camera arrays [164], Li-
DAR sensing [69] and RGBD cameras [28]. It is important to consider capturing
techniques as the resulting point clouds will exhibit specific characteristics which
can be exploited for compression. Among these characteristics, the geometry res-
olution and the number of points are key for point cloud compression algorithms.
The ratio between the number of points and the geometry resolution is the surface
sampling density of the point cloud.

For example, camera arrays tend to produce point clouds that are dense, reg-
ularly sampled and amenable to 2D projections. RGBD cameras produce point
clouds that can be represented on a 2D image with depth and color components;
the resulting point clouds are dense, regularly sampled and susceptible to occlu-
sions. Spinning LiDAR sensors are commonly used for autonomous driving, they
tend to produce point clouds that can be approximately represented on a 2D im-
age with depth and reflectance components. Such LiDAR point clouds are sparse
and unevenly sampled in euclidean space but more dense and evenly sampled in
spherical space which is an approximation of the sensing mechanism. In Figure
1.1, we show point clouds captured with aerial LiDAR ("Dourado Site"), camera
arrays ("soldier" and "phil") and fused terrestrial LiDARs ("Arco Valentino").

The target application must also be considered. In the case of human visualiza-
tion, a point cloud combined with a rendering method is a simplified model for a
plenoptic function [108] which results in six degrees of freedom. Therefore, we aim
to maximize the perceived visual quality given a rate constraint. For autonomous
driving, we instead aim to maximize the performance of the autonomous driving
function given a rate constraint. Note that it is actually possible to improve qual-
ity with lower bitrate in the case of point clouds. For example, sparse samplings
of surfaces are more costly to code compared to dense samplings (watertight at
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Figure 2.1: Point Cloud Compression by separating geometry and attribute com-
pression.

a given resolution). In addition, compared to dense samplings, sparse samplings
can result in inferior renderings and for autonomous driving, in safety issues due
to occupancy false negatives (not sampled).

This can be explained by the sampling process. The actual state of each voxel
can actually be considered as ternary instead of binary with unseen, empty and
near surface states [50]. As as result, deciding the occupancy of unseen voxels is
important when performing compression as a dense surface is less costly to code
than a sparsely sampled surface. In particular, compression methods based on
surface models and deep learning tend to complete missing points from surfaces in
sparser point clouds.

Existing literature reviews provide an overview of MPEG standardization ef-
forts [155, 71, 35], a classification taxonomy [138] and an analysis based on the
coding dimensionality [34]. In this review, we will provide a general overview of
PCC approaches with a focus on deep learning-based methods.

Point clouds can be divided into two components: the geometry and the at-
tributes. The geometry is represented by points at given positions and the at-
tributes attach information to each of these points. These two components can
be coded separately, although it is necessary to transfer attributes if we code the
geometry in a lossy manner as shown in Figure 2.1.

For geometry, one of the main difficulties is the sparsity of the signal. Ge-
ometry can be considered as a binary signal on a regular voxel grid. We define
sparsity as the ratio between the number of points and the number of voxels. In
addition, we introduce the concepts of global and local sparsity when evaluating
point cloud sparsity at different Level of Details (LoDs). A point cloud at its
original LoD has certain precision and coarser LoDs are obtained by reducing this
precision usually via quantization. Local sparsity refers to sparsity localized at
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finer LoDs and global sparsity to sparsity localized at coarser LoDs. Note that
local and global sparsity are not mutually exclusive. The localization of sparsity
in specific LoDs has been exploited for better entropy modeling of octree occu-
pancy codes at different LoDs [95]. Such LoDs can be defined in duality with an
octree representation by assuming the voxel grid dimensions are a common power
of two. Then, quantization by a power of two and duplicate removal is identical to
octree pruning. Following this, coarser LoDs are typically denser than finer LoDs
for locally sparse point clouds which is important as performance of compression
approaches depends on sparsity characteristics.

For attributes, the sparsity of the geometry which forms the support for the
attributes is also one of the difficulties. An additional difficulty is the irregularity of
the support: while geometry is a sparse signal on a regular support, attributes form
a signal on an irregular support that may also be locally sparse, globally sparse or
both. Irregularity can thus be defined as the absence of a regular support structure
such as the regular grid sampling of images. Essentially, regular supports can be
defined as the cartesian product of one or multiple regularly sampled intervals
coresponding to different dimensions (horizontal, vertical, temporal, ...).

In the case of text, audio, images and video, the attributes lie on a regular grid,
and the geometry, which represents a negligible amount of information. In the case
of point clouds, we can consider that the information lies on a sparse subset of
a regular grid and coding this sparse subset (the point positions, the geometry)
is expensive. In addition, the information now lies on a sparse, irregular domain
with irregular neighborhoods making attribute compression more difficult.

2.2 . Point Cloud Compression

We consider geometry and attribute compression separately and for each of
them, we separate approaches tailored to LiDAR point clouds as they tend to
have very specific structures.

2.2.1 . G-PCC and V-PCC standards
The MPEG G-PCC standard [3] features numerous techniques in order to han-

dle different types of point clouds. It separates geometry coding and attribute
coding following the scheme in Figure 2.1. Geometry can be coded using two
modes: octree coding and predictive geometry coding. Octree coding is a gen-
eral compression approach while predictive geometry coding targets LiDAR point
clouds. In addition, compression of LiDAR point clouds using a sequential struc-
ture [129] and compression of point cloud sequences with inter prediction [128] are
being investigated as exploratory experiments.

The MPEG V-PCC standard aims to compress point cloud sequences using
video coding techniques. The point cloud is divided into patches, they are then
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packed into a 2D grid and the geometry and attributes are compressed sepa-
rately with video codecs [5]. Preprocessing and postprocessing operations such
as smoothing, padding and interpolation are applied to improve reconstruction
quality.

2.2.2 . Geometry Compression

Geometry compression can be considered as the compression of a sparse bi-
nary occupancy signal over a regular voxel grid. One of the main difficulties in
compressing geometry is the sparsity of the signal which can be global, local or
both.

By definition, global sparsity occurs when large volumes of space are entirely
empty, e.g. when the point cloud is a scene composed of multiple objects. It can
also be a result of the sampling process which samples only the surfaces of real
world volumes resulting in the inside of the volumes being empty. Local sparsity
can occur when the sampling density, the number of points per unit of volume,
is low compared to the considered precision or voxel size. For example, this can
happen in fused LiDAR point clouds of monuments and buildings as LiDAR sensors
provide high precision captures with a sampling density that can be comparatively
low and/or non uniform.

The structure of the point cloud is also primordial. Spinning LiDAR point
clouds [113] are both globally and locally sparse in 3D space but with a model
of the sensor, such as the spherical coordinate system, it becomes more regular,
uniformly distributed and dense.

Regular point clouds

Octree Regular point clouds are quite dense allowing compression with a large
range of operations. Among these operations, the simplest is a hierarchical voxel
grid representation with the octree data structure. The geometry can be locally
simplified by fitting a primitive such as planes, triangles, etc. Transform coding
and dimensionality reduction are also possible by changing the voxel grid basis to
another basis, for example, with projection to 2D or 1D spaces.

The most common geometry compression algorithm is octree coding [153].
3D space is recursively divided into 8 equal subvolumes until the desired LoD
is achieved. This is equivalent to encoding an occupancy map, i.e. a binary signal
on a voxel grid, in a multiresolution manner. When a containing volume is empty,
all its subvolumes are empty. Therefore, only the occupancy of valid voxels, whose
parents are occupied, needs to be encoded. This explains the octree-voxel duality
as each level of an octree can be associated with a voxel grid as shown in Figure
2.2.

For each octree node, coding can be done bitwise (per voxel) but also bytewise
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Figure 2.2: Simplified 2D view of an octree construction. Octrees can be seen as
hierarchical binary voxel grids. An occupied voxel has at least one point within its
volume and a valid voxel is possibly occupied while invalid voxels must be empty.
Only valid voxels need to be coded at each LoD.

(per octree node). When coding occupancy bits bytewise, it is possible to reorder
bits to improve compression performance. Specifically, approaches using tangent
planes to guide reordering have been explored in the literature [153, 89, 95]. In
addition, an octree node can have between 1 and 8 occupied voxels. The number of
occupied voxels can be encoded to serve as a context for encoding occupancies [153].
For context based entropy modeling, the estimated occupancy probabilities can
also be conditioned on the previously coded occupancies in the current octree node
[3]. The structure of an octree node requires that at least one of eight occupancy
bits is occupied (256 − 1 = 255 combinations) and the voxel grid interpretation
enables the use of regular neighborhoods as contexts.

Taking advantage of the hierarchical nature of the octree, it is possible to use
information from the parent node to code voxel occupancies at the current LoD
Garcia and de Queiroz [66]. Such hierarchical contexts improve the compression
performance compared to using no context. Furthermore, the neighbors of the
parent node are also used as context in G-PCC neighbor-dependent entropy con-
text [3]. Based on the duality between each octree level and a voxel grid, a regular
neighborhood can be used to construct a voxel-based context using both current
and parent level(s).

Transforms and dimensionality reduction Point clouds can be represented
using 2D surfaces fitted to the point cloud. In addition, the points can also be
projected onto 2D surfaces either using predefined surfaces (such as axis aligned
planes) or fitted surfaces. Reducing the dimensionality to a single dimension makes
the point cloud into a point sequence.

For dense point clouds, assuming that points are sampled from surfaces is
common. Therefore, local point distributions can be modeled using surface models
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such as planes [59], triangles [58], Bézier patches [49], etc. Surfaces can also
be modeled implicitly with Bézier volumes [105] as the level set of a volumetric
function. Sim et al. [160] also represent point clouds as a tree of spheres.

The dimensionality of point cloud compression can also be reduced using pro-
jection methods. For example, geometry can be compressed with dyadic decom-
position Freitas et al. [62]; instead of an octree, a binary tree of 2D binary images
is encoded. A simplified approach based on a single projection has also been stud-
ied [177]. In Kaya et al. [99], the point cloud is partially reconstructed from two
depthmaps and the missed points are encoded separately. Projections can also
be performed adaptively at a local level. For example, it is possible to project
points on a 2D plane and encode a height field on this 2D plane [135]. Similarly,
the MPEG Video-based Point Cloud Compression standard (V-PCC) projects the
point cloud geometry to a 2D grid and performs compression with video com-
pression technologies [5]. [112] improve upon V-PCC with occupancy-map-based
rate distortion optimization and partition, [189] uses occupancy map information
for fast decision of coding units and fast mode decision. Similar to V-PCC, [199]
also propose a view-dependent video coding approach but focus on quality of ex-
perience for streaming and show competitive results in their subjective quality
experiments. We notice that modeling point clouds with surface models is the
same as projecting the points onto 2D surfaces with an height field that is zero
everywhere i.e. the third dimension is entirely discarded.

The dimensionality can be further reduced by considering point clouds as se-
quences of points. Given a sequence of points and a prediction method, it is
interesting to ask what is the optimal ordering for compression. However, this is
difficult to compute due to the combinatorial natural of the problem. A proxy
criterion for the reordering is a formulation as the Traveling Salesman problem
which is considered in Zhu et al. [198] with binary tree based block partitioning.

Graph transforms have also been applied to geometry compression. When
applying the graph transform for attribute compression, the geometry forms a
support on which a graph and a corresponding basis can be built. In such ap-
proaches, the graph and a corresponding basis are built from a support and a
graph transform is applied to a function lying on this support. However, the dif-
ficulty for geometry compression is that the geometry is the support itself or the
voxel grid is the support for binary occupancy. In the first case, the support is
not available at the decoder and, in the second case, the dimensionality is too
high. This conundrum can be resolved by encoding a lower resolution point cloud
(base layer) and upsampling it via surface reconstruction (upsampled base layer)
[52]. This upsampled base layer can then be used as a support and the original
geometry becomes an attribute on this support which resembles residual coding.
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LiDAR point clouds

LiDAR point clouds are typically sparse in 3D space and can exhibit non uniform
density due to their specific structures. Due to the scanning mechanism, spinning
LiDAR point clouds are usually denser near the sensor and sparser far from the
sensor. Such structures can be exploited for compression as these point clouds
typically lie on a lower dimensional manifold in 3D space.

Point clouds captured with LiDAR sensors can often be represented as a se-
quence. LASzip [91] is a lossless, order-preserving codec specialized for LiDAR
point clouds treating them as sequences and using metadata related to the LiDAR
scanning mechanism [12]. In the special case of spinning LiDAR sensors, Song
et al. [162] separate the point cloud into ground, object and noise layers. Typi-
cally, most points belong to the ground, and they form circular patterns which can
be efficiently compressed. The point cloud formed by objects is usually globally
sparse: the objects form clusters of points sparsely located in the scene.

LiDAR point clouds can be transformed to depth images by approximating the
LiDAR sensor mechanism with quantized spherical angular coordinates. However,
this transformation is often lossy on most LiDAR sensors albeit some new sen-
sors make it lossless [137] by outputting a range image directly. The distortion
introduced by this transformation will be acceptable or unacceptable depending
on the application. In Ahn et al. [18], range images are compressed with predictive
coding in hybrid coordinate systems: spherical, cylindrical and 3D space. Using
mode selection, the range is predicted either directly, via the elevation or using a
planar estimation. In Sun et al. [165], the range image is segmented into ground
and objects, followed by predictive and residual coding for compression.

LiDAR point cloud packets can be directly compressed in some cases. The
point cloud in this format has a natural 2D arrangement with the laser index and
rotation. Full LiDAR point cloud frames are produced at 10Hz, while packets
are typically produced at frequencies greater than 1000Hz. As a result, directly
compressing LiDAR packets is more appealing for low-latency scenarios than full
frames. Such packets can then be compressed using image compression techniques
[176]. In addition, Tu et al. [173] propose the use of Simultaneous Localization
And Mapping (SLAM) to predict and compress dynamic LiDAR point clouds.

In three dimensions, the structure of the LiDAR sensor can be used as a prior
for octree coding. Specifically, sensor information such as the number of lasers,
the position and angle of each laser and the angular resolution of each laser per
frame can be encoded and exploited to improve compression. Only valid voxels,
or plausible voxels according to the acquisition model, must be encoded when the
acquisition process is known. This has been implemented as the angular coding
mode in G-PCC [3].
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2.2.3 . Attribute compression
The geometry forms a support for the attributes. The sparsity and the irregu-

larity of this support is a source of difficulty for compressing point cloud attributes.
Indeed, classical compression problems on images, videos, audios have attributes
supported on regular grids. This results in regular neighborhoods for each sam-
ple leading to regular inputs for context modeling. The main difference between
point cloud compression and these well studied compression problems is that the
geometry, i.e. the support of the attributes, is sparse and irregular instead of be-
ing a regular grid. We show that the different point cloud attribute compression
approaches actually all attempt to address sparsity, irregularity or both at once.
Hence, sparsity and irregularity of this support are key challenges for point cloud
attribute compression.

In [195], sparsity and irregularity are also referred to as unstructured (absence
of a grid structure) and addressed with a graph transform. [54] specifically aim to
address irregularity and [48] focus on sparsity after irregularity has been addressed
with a graph transform [195]. We also note that for some types of point clouds
such as LiDAR point clouds, the point cloud structure, e.g. acquisition structure,
can be used to reduce sparsity and irregularity.

Regular point clouds

Point cloud attributes can be compressed using a graph transform [195]. We can
construct a graph based on the point cloud geometry to define a fourier transform
on graphs. This addresses the sparsity and irregularity issue as we are now in the
graph frequency domain instead of the spatial domain. However, building such
graphs and defining the specific transform for compression is a complex problem.
Cohen et al. [48] focus on sparse point clouds and propose a method to compact
attributes and generating efficient graphs for compression. de Queiroz and Chou
[53] partition the point cloud into blocks and perform transform coding on point
cloud attributes. Specifically, they propose a Gaussian Process Transform which is
a variant of the Karhunen-Loève Transform (KLT) that assumes points are samples
of a 3D zero-mean Gaussian Process. Such approaches resolve the irregularity by
working in the spectral domain defined by a graph transform.

The Region-Adaptive Hierarchical Transform (RAHT) [54] is akin to an adap-
tive variation of a Haar wavelet for point cloud attribute compression. In addition,
it has been found that reordering of the RAHT coefficients significantly improves
the performance of the run-length Golomb-Rice coding compared to other entropy
coding schemes [152]. Souto et al. [163] improve upon this RAHT with Set Par-
titioning in Hierarchical Trees [149]. Chou et al. [46] generalize the RAHT with
volumetric functions defined on a B-spline wavelet basis. They show that the
RAHT can be interpreted as a volumetric B-Spline of first order and that higher
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order volumetric B-Splines eliminate blocking artifacts. In this case, the irregular-
ity is resolved by considering the point cloud in an octree structure. Indeed, the
geometric structure is irregular but the hierarchical relations are regular.

Sandri et al. [151] propose a number of extensions to the RAHT in order to
compress plenoptic point cloud attributes. In plenoptic point clouds, the color of
a point varies with the viewing direction. In particular, they find out that the
combination of the RAHT and the KLT performs best: this method is referred to
as RAHT-KLT. Krivokuća and Guillemot [103] compress plenoptic point clouds
using a combination of clustering and separate encoding of diffuse and specular
components using the RAHT-KLT. Krivokuća et al. [106] extend this approach to
incomplete plenoptic point clouds (6-D) where a point may not have attributes
for some viewpoints as it is not visible. This extends the RAHT to plenoptic
point clouds whose plenoptic component is irregular. That is, for a given point,
some viewpoints may not be valid and may not have attributes resulting in a 6-D
structure.

G-PCC also proposes an attribute compression scheme based on prediction and
lifting operations [3]. Multiple LoDs are constructed and predictors are built based
on the attributes of nearest neighbors. This shows that attribute compression
schemes need not follow the same structure as geometry compression albeit doing
so may provide some complexity advantages (single pass). Indeed, by assuming
that geometry is fully available when decoding attributes, any type of division,
segmentation can be performed using this information. Attributes tend to be
spatially correlated, hence a subset of point attributes can form a good basis
for estimating remaining attributes. Similarly to RAHT, while the geometry is
irregular, here a regular hierarchical structure is built.

Mekuria et al. [120] propose a complete point cloud codec for both geometry
and attribute compression. It is also known as the "MPEG Anchor" as it was used
as a comparison basis in early stages of the MPEG standardization process for
point cloud compression. Attributes are projected to a 2D image and compressed
using the JPEG codec. Zhang et al. [197] cluster the point cloud with mean-shift
clustering and compress the attributes by projecting them on a 2D plane and
performing a 2D Discrete Cosine Transform (DCT). Gu et al. [74] also explore
the use of a 1D DCT to compress point cloud attributes. First, they group the
points by blocks and order them by their Morton codes [127]. Then, the 1D DCT
is applied and entropy coded. In these approaches, the attributes are mapped
on a 2D or 1D regular grid in a spatially contiguous manner. As a result, the
irregularity of the geometry is resolved or at least reduced.

Hou et al. [85] make use of sparse representations via a virtual adaptive sam-
pling. Indeed, point cloud attributes have an irregular structure, reducing a block
of voxels (voxel grid) to the subset of occupied voxels can be viewed as a vir-
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tual adaptive sampling process. Gu et al. [75] improve upon this approach with
inter-block prediction and run-length encoding. Shen et al. [157] also make use
of this virtual adaptive sampling formulation and propose learning a multi-scale
structured dictionary.

V-PCC [13] compresses attributes from 2D projections and video coding. The
attributes are mapped to a 2D image, the image is then smoothed using different
methods and compressed using video compression method [5]. The smoothing aims
to maximize rate-distortion performance by completing values of empty pixels.
Similarly, He et al. [83] propose an approach based on spherical projections to
project both geometry and attributes upon a 2D image. The attribute image can
then be compressed using image compression techniques.

In de Queiroz et al. [55], the authors propose a model description for volu-
metric point clouds that is independent of lighting and camera viewpoint. This
generalizes the concept of plenoptic point clouds as the point cloud is no longer
a simplified model for the plenoptic function Landy and Movshon [108]. Instead,
the visual aspect of the point cloud can vary depending on the characteristics of
the scene. This is related to the Bidirectional Scattering Distribution Function
(BSDF) [26] which models how light is reflected or transmitted by a given surface.
In perspective, by rendering point clouds with surfaces or volumes, it is possi-
ble to apply rendering techniques developed for meshes such as Physically Based
Rendering Greenberg [72] approaches. This is an important consideration for at-
tribute compression as it changes the nature and structure of the attributes being
compressed.

LiDAR point clouds

LASzip [91] is a specialized codec for LiDAR point clouds. The point cloud is
considered as a sequence and the attributes are compressed using delta coding,
predictive coding and context-based entropy coding. Specifically, the LAS format
[12] contains the number of returns and the return number for an emitted laser
pulse. This information is used to perform context-based entropy coding and
improve delta coding by selecting reference values that are more likely to be similar
to the current value.

He et al. [83] use equirectangular projection to produce a 2D image from a
LiDAR point cloud. Then, the authors test different image compression algorithms
on color and reflectance images. Similarly, Houshiar and Nüchter [86] compressed
color images using the PNG format.

Yin et al. [193] improve the predicting transform of G-PCC by exploiting nor-
mals. Specifically, the normals of two points are used to improve G-PCC mode
selection. This demonstrates that attributes can be conditioned on the geometry
by their position on the local characteristics of the geometry such as normals.
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Figure 2.3: A taxonomy of Learning-based Point Cloud Compression.

2.3 . Deep learning based Point Cloud Compression

In Figure 2.3, we present a taxonomy of learning-based approaches for point
cloud compression. A point cloud is composed of two components, geometry and
attributes and can include motion (dynamic) or not (static). The components can
be compressed separately or jointly and in a lossy or lossless manner.

We also differentiate approaches based on their encoding domain. Voxel based
approaches are typically more suited to dense point clouds and point-based ap-
proaches to sparse point clouds. Indeed, while the complexity of voxel based
approaches depends on the dimension of the voxel grid (precision), the complexity
of point based approaches depends on the number of points.

It is also important to consider prior information. The most common source
of structure in point clouds is usually the sensor. Spinning LiDAR sensors can
be approximately modeled using a spherical coordinate system, point clouds from
camera arrays have a representation as multiple 2D images, RGBD cameras pro-
duce a point cloud that can be stored on a single 2D image etc. Taking this
prior information into account can yield significant compression gains but requires
specific processing for each type of prior.

2.3.1 . Geometry compression

Lossy compression

By considering point clouds as a binary signal on a voxel grid, we can use Convolu-
tional Neural Networks (CNNs) for point cloud geometry compression. Specifically,
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Figure 2.4: Simple autoencoder architecture for compression. fa is an analysis
transform, fs a synthesis transform, Q refers to quantization and AC to arithmetic
coding with its associated entropy model.

CNN based autoencoder architectures aim to transform the input into a lower di-
mensional latent space and reconstruct an output identical to the input. This
can be interpreted from the point of view of transform coding with an analysis
fa and synthesis transform fs as shown in Figure 2.4. The quantization part is
also essential in that it must be differentiable in order to train the neural network.
It is shown in [24] that additive uniform noise models quantization well during
training and is differentiable. Additionally, the distribution of the latent space is
modeled as part of the network and the resulting entropy enables rate distortion
optimization of the network for specified rate distortion tradeoffs. The probabil-
ities predicted by the entropy model can then be used by an arithmetic coder in
order to encode and decode the latent space.

The decoding of a point cloud can be cast as a binary classification problem in
a voxel grid. However, point clouds tend to be extremely sparse and this causes
a class imbalance problem; this problem is resolved with the use of the focal loss
[114]. Also, [77] propose a neighborhood adaptive loss function as an alternative
to the focal loss.

A drawback of CNNs on voxel grids is the significant temporal and spatial
complexity. This can be alleviated by using block partitioning [180, 79]. Wang
et al. [182] go further along this path by making use of sparse convolutions [47]
which reduces the temporal and spatial complexities even further. However, the
disadvantage is that compression performance on sparse point clouds is degraded.
Furthermore, Killea et al. [101] propose the use of lightweight 1D+2D separable
convolutions for point cloud geometry compression resulting in less operations and
network parameters with almost equivalent performance to their baseline model.

Overall, more elaborate neural network architectures are explored in Wang
et al. [180, 182]. Wang et al. [182] propose a multiscale approach using sparse
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convolutions. This approach is extended in Wang et al. [181] by making use of
both the previous LoD and the current LoD by progressively building the current
LoD. In particular, the authors study different levels of progressivity: n-stage with
a sequential dependency chain, 8-stage which unpacks a voxel into 8 subvoxels one
by one and 3-stage which unpacks a voxel dimension-wise into 2, 4 and finally
8 voxels. The authors also make use of the lossless-lossy compression scheme to
adapt their method to point clouds with different levels of density.

Since the decoding can be cast as a classification problem, the compression
performance can be improved significantly with adaptive thresholding approaches.
Indeed, the density of the training dataset and the test dataset may vary. This
can cause a mismatch between the distribution of predicted occupancy probabil-
ities and the actual occupancies. This mismatch can be corrected with adaptive
thresholding. For example, Wang et al. [180] encode the number of points as a
threshold so that the reconstruction has the same number of points as the original.
Guarda et al. [76] perform mode selection on models trained for different densities
in order to achieve adaptive behavior.

A key observation is that CNNs for point cloud geometry compression tend
to be biased towards a particular density depending on the training dataset and
loss function parameters. Adaptive thresholding can correct this bias and can be
based on factors such as the number of points and the distortion metric. Using
mode selection on models targeting different densities is another way of making a
density adaptive solution. The neighborhood adaptive loss function also removes
the need to adjust focal loss parameters.

Commonly, one neural network is trained for each Rate-Distortion (RD) trade-
off. In that way, each network is optimized for a RD tradeoff at the cost of
additional training time. Different approaches have been proposed to reduce the
training time. Guarda et al. [80] propose the use of implicit-explicit quantization
of the latent space which reduces the number of models to be trained. Implicit
quantization controls the RD tradeoff with a scalar RD tradeoff parameter in the
loss function when training. On the other hand, explicit quantization controls the
RD tradeoff by varying the quantization step on the latent space. Surprisingly, the
performance of implicit-explicit quantization is higher compared to implicit-only
quantization.

In [111], CNNs are used for block prediction. More precisely, the blocks are pre-
dicted from already decoded neighboring blocks. Lazzarotto and Ebrahimi [110]
perform residual coding and encode a residual between a ground-truth block and
a degraded block compressed with G-PCC. [19] perform super-resolution using
CNNs which improves the reconstruction quality significantly without any addi-
tional coding cost.
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Lossless compression

Lossless compression algorithms can be extended using deep learning based entropy
models. These entropy models predict occupancy probabilities which are then fed
into an entropy coder. Different types of contexts can be used to make such
predictions.

In the context of octree coding, parent node information can be used as context.
Huang et al. [87] improve the coding of an octree by proposing a neural network
based entropy model for octree codes. Specifically, this neural network takes the
location and information from the parent node to predict occupancy probabilities.
Biswas et al. [29] extend this to dynamic point clouds and propose the use of
continuous convolutions to improve probability predictions using already decoded
frames. However, such a context only provides limited information.

By introducing a sequential dependency in the voxel grid, one can use voxels at
the current LoD as context. The neural network predicts the occupancy probability
of each voxel, and the probabilities are then fed to an arithmetic coder.

Also, we can entirely remove the sequential dependencies by predicting the
voxel occupancy using only the parent LoD. Que et al. [146] propose a neural
network which takes a voxel grid context from the parent LoD to predict occu-
pancy probabilities. These probabilities are then used for entropy coding. In
addition, they predict an offset for each point in order to further refine coordi-
nates. Although such approaches have a reasonable complexity, they do not take
into account already decoded voxels at the current LoD which limits compression
performance.

Kaya and Tabus [98] propose an approach that makes use of the current LoD
while reducing complexity. Such approaches typically exhibit a sequential depen-
dency in the current LoD. To alleviate this issue, the authors propose to process
the current LoD by slice. In this way, the probabilities can be estimated slice by
slice instead of voxel per voxel. The resulting parallelization significantly reduces
complexity while preserving most of the context in the current LoD.

Point-based approaches

Point-based approaches process the point cloud as a set of points instead of a bi-
nary occupancy signal over a voxel grid. Yan et al. [190] proposed the use of a
PointNet-like [37] autoencoder architecture for point cloud geometry compression.
Wen et al. [186] proposes a similar scheme improved with curvature-based adap-
tive octree partitioning and clustering. Gao et al. [64] propose a more elaborate
neural network architecture with a novel neural graph sampling module. Wies-
mann et al. [187] propose a point-based neural network for LiDAR point cloud
compression. The authors propose a convolutional autoencoder architecture based
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on the KPConv [170] and a novel deconvolution operator to compress point cloud
geometry.

LiDAR specific approaches

With some sensors, the LiDAR point cloud frame is constructed from packets. A
packet is arranged as 2D data with respect to the laser ID and emission. Tu et al.
[174] exploit this 2D structure to compress point cloud geometry with a convolu-
tional Long Short-Term Memory (LSTM) neural network [84, 159] and residual
coding; this is an extension of Tu et al. [173]. Tu et al. [175] take inspiration from
video coding and divide dynamic point cloud frames into I-frames and B-frames
[5]. The B-frames are predicted with U-net [148] based flow computation and
interpolation extending work in Tu et al. [176].

Assuming that LiDAR point clouds can be represented as a 2D range image,
Sun et al. [166] also take inspiration from video coding and propose the use of a
convolutional LSTM neural network to compress the range images.

2.3.2 . Deep learning based attribute compression

One key difficulty for point cloud attribute compression is the irregularity of
the geometry. Indeed, the geometry forms the support of the attributes. Hence,
irregular geometry results in irregular neighborhoods which in turn make context
modeling and prediction schemes difficult. Existing works attempt to resolve this
irregularity by substituting the support.

First, it is possible to assume that the point cloud is a sampling of a 2D manifold
and that it has a 2D parameterization that allows attributes to be projected onto
a 2D image. This is similar to the concept of UV texture maps [36] in Computer
Graphics except that here we seek to recover such a parameterization from a point
cloud.

Alternatively, attributes can be directly mapped onto a voxel grid. Alexiou
et al. [22] extend convolutional neural networks used for geometry compression to
attribute compression. Specifically, they propose joint compression of geometry
and attributes defined on a voxel grid.

Another approach is to design neural networks that embrace this irregularity.
This can be done with point-based neural networks and convolutions expressed
directly on points (point convolutions). Sheng et al. [158] propose a point-based
neural network for point cloud attribute compression. In particular, they propose a
second-order point convolution which improves upon the general point convolution.
Biswas et al. [29] also make use of point convolutions for inter-frame coding of
intensities for intensity prediction in dynamic LiDAR point clouds.

Isik et al. [92] compress point cloud attributes by representing them with vol-
umetric functions. This is strongly related to Chou et al. [46] where attributes
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are encoded using volumetric functions parameterized with a B-spline basis. In
Isik et al. [92], volumetric functions are parameterized with coordinate based net-
works instead and the latent vectors of a hierarchy of volumetric functions are
compressed with RAHT.

Overall, existing works handle the irregularity of the support, the geometry,
by mapping attributes onto a 2D plane, using CNNs to compress attributes on a
voxel grid or using point convolutions to directly define convolutions on the points.

2.4 . Discussion

2.4.1 . Geometry compression

In Table 2.1, we show an overview of geometry compression approaches for
point clouds. Methods are divided into traditional and deep learning based. Dif-
ferent data structures employed for geometry compression: octree, surface models,
sequence, graphs, voxel grids, range images etc.

For lossless octree coding, we can differentiate approaches depending on whether
they exploit the previous LoD, the current LoD or both as a context. Using only
the octree node information of the previous LoD presents a complexity advantage
in that the information can be retrieved easily. Using the previous LoD (in a voxel
grid sense) allows for parallel probability estimations on the current LoD that are
more precise than when restrained to the octree node in the previous LoD. When
employing the current LoD, a sequential constraint is necessary in that we can
only use already decoded occupancies as a context. This results in a more precise
entropy model at the cost of complexity. It is also possible to combine both the
previous and the current LoD. The first advantage is that the previous LoD can
provide coarse occupancy information for areas of the current LoD that are not yet
decoded. The second advantage is that the sequential constraint can be loosened
to form a hybrid approach that balances coding performance and complexity.

Projection and surface models transforms the data into another space which
typically has a lower dimensionality or a different structure. Typical surface mod-
els include planes, triangles etc... Point based deep learning approaches can be
thought of as projection based approaches in that the points are represented by a
codeword in a latent space of lower dimensionality. The point cloud information
is aggregated by a pooling operation which can be a max-pooling, an adaptive
pooling operation or other types of pooling. Here, we refer to adaptive pooling
as a pooling which aggregates information from points in a way that depends on
the neighborhood structure. This is typical in point based convolution operators
[170].

Point clouds can also be compressed as a sequence of points. This can be
interesting as it allows for formulating point cloud compression as a variant of the
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Category Traditional Deep Learning

Octree entropy coding
Previous LoD, octree
node Garcia and de Queiroz [66] Huang et al. [87]

Previous LoD Schnabel and Klein [153] Que et al. [146]

Current LoD
Previous + current
LoD G-PCC [3] Kaya and Tabus [98]

Projection / Surface
models / Point based

Dricot and Ascenso
[58, 59], Cohen et al.
[49], Krivokuća et al.
[105], Sim et al. [160], Freitas
et al. [62], Tzamarias et al.
[177], Kaya et al. [99], Ochotta
and Saupe [135], VPC [13]

Yan et al. [190], Wen et al.
[186], Gao et al.
[64], Wiesmann et al. [187]

Sequence Zhu et al. [198], Isenburg [91]

Graph de Oliveira Rente et al. [52]

Voxel grid

Vanilla

Wang et al. [180], Guarda
et al. [79], Lazzarotto et al.
[111], Lazzarotto and
Ebrahimi [110]

+ Octree (previous
LoD) Wang et al. [182]

+ Octree (previous +
current LoD) G-PCC [3] Wang et al. [181]

LiDAR

2D range image model Ahn et al. [18], Sun et al. [165] Sun et al. [166]

2D packets Tu et al. [173] Tu et al. [174]

Temporal prediction Tu et al. [176] Tu et al. [175]
Entropy modeling with
sensor model G-PCC [3]

Table 2.1: Approaches to point cloud geometry compression divided into tradi-
tional and deep learning based methods.
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Traveling Salesman Problem (TSP) [198]. In addition, for LiDAR point clouds,
a natural 1D structure exists and compression these points clouds as a sequence
preserves this natural structure [91].

Voxel-based deep learning based methods are the most common approaches for
geometry compression. Specifically, CNN autoencoders have been used to com-
press point cloud geometry as a binary signal over a regular voxel grid. We notice
that an octree level can be represented by a voxel grid and that the two represen-
tations are interchangeable. In particular, the octree encodes binary voxel grids
at multiple LoDs while eliminating sparsity of the binary signal and reducing the
redundancy between LoDs; if the parent voxel is empty, all its children are empty
and need not be encoded. In addition, block prediction and residual coding have
also been explored using CNN architectures. In general, such networks predict
a field of probabilities. Since the decoding can be seen as a classification prob-
lem, these approaches can be employed as both lossy (thresholding) and lossless
(thresholding + residual or entropy coding) codecs.

The loss function is a crucial factor when training neural networks for geometry
compression. While for lossless compression, the binary cross-entropy is suitable
as it is directly related to the bitrate. For lossy compression, it is important that
the loss function is suitable to the application. For example, loss functions corre-
lated with perceived visual quality would be relevant for applications with human
visualisation. A limitation of current approaches is the use of simple loss functions
such as the binary cross-entropy which may not adequately model perceived visual
quality. An open question is how to best design such loss functions for the best
rate-distortion performance.

de Oliveira Rente et al. [52] codes geometry by starting from a low resolution
point cloud, performing surface reconstruction on this low resolution point cloud
and then coding a residual between this surface reconstruction and the original
point cloud. As Lazzarotto and Ebrahimi [110] has explored point cloud residual
coding with neural networks, the intersection of deep learning based residual coding
and surface reconstruction can be an interesting avenue of research.

LiDAR point clouds tend to have very specific structures that typically lie in 1
or 2 dimensions rather 3 dimensions. As such, specialized approaches have been de-
veloped to compress LiDAR point clouds. LiDAR point clouds can be compressed
as 2D range images, as 2D LiDAR packets but also applying specific temporal
prediction techniques such as SLAM or flow estimation. This is applicable both
for learning-based [175, 174] and handcrafted methods [176, 173].

Compression performance

MPEG [130] performed a comparison in the performance of different state of the
art point cloud compression approaches. Overall, CNN based approaches [76, 181,
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Category Traditional Deep Learning

Graph
Zhang et al. [195], Cohen
et al. [48], de Queiroz and
Chou [53]

Sheng et al. [158]

Octree
de Queiroz and Chou
[54], Sandri et al. [152], Souto
et al. [163], Chou et al. [46]

Isik et al. [92]

Octree (plenoptic point
clouds)

Sandri et al. [151], Krivokuća
and Guillemot
[103], Krivokuća et al. [106]

Voxel grid Hou et al. [85], Gu et al.
[75], Shen et al. [157] Alexiou et al. [22]

2D grid Mekuria et al. [120], VPC
[13], Zhang et al. [197]

Sequence Gu et al. [74], Isenburg [91]

Table 2.2: Approaches to point cloud attribute compression divided into traditional
and deep learning based methods.

98] outperform the G-PCC codec with the drawback of additional computational
complexity. CNN based methods seem to perform better on denser point clouds.
Indeed, a difference is observed between 10-bit dense (watertight) point clouds
(longdress, redandblack, loot, soldier) from [56] and sparser 12-bit point clouds
(house without roof, statue klimt) which require downscaling the voxel grid in order
to make the point cloud denser and obtain competitive compression performance.
Also, CNN based methods using sparse convolution [181] achieve state of the art
compression performance with lower computational complexity compared to dense
convolutions. As described in [130], the runtime on GPU is faster to the G-PCC
runtime on CPU. However, on a CPU it is still significantly slower (3.65 times
slower for encoding and 37.1 times slower for decoding).

2.4.2 . Attribute compression

Traditional approaches handle the irregularity of the geometry by making use
of the octree structure to build a multiscale decomposition of the attributes [54].
Also, we can build a graph and use the Graph Fourier Transforms (GFTs) or
similar transforms to compress attributes [195]. In addition, attributes can be
mapped onto a 2D grid and then compressed using image compression methods
[120]; and similarly, points can be ordered into a sequence and compressed as such
[74]. Another type of approach is to modelize the irregularity of the geometry with
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a virtual adaptive sampling process [85]. Essentially, we modelize the attributes
as a 3D field over a voxel grid and this field is sampled at occupied voxels.

3D approaches

Deep learning based methods handle the irregularity of the geometry by using a 3D
regular space (voxel grid) [22], by mapping attributes onto a 2D grid or with the
use of point convolutions to define CNNs that operate directly on the points [158].
Note that such point convolutions can often be seen as graph convolutions with the
topology of the graph built from the point cloud geometry and its neighborhood
structure.

The essence of attribute compression is handling the irregularity of the geome-
try. One approach is to map attributes into n-dimensional regular grids where we
usually have 1 ≤ n ≤ 3. In addition to this mapping, with the virtual adaptive
sampling hypothesis, we can extrapolate attribute values to non-occupied voxels
to simplify the problem to compression of a 3D regularly sampled field (instead
of irregularly sampled). Another approach is to embrace the irregularity of the
geometry and make use of the same octree structure that is commonly used for
compression of the geometry.

In Table 2.2, we can see that deep learning based point cloud attribute com-
pression is still relatively unexplored. Current deep learning based approaches are
not competitive with G-PCC or V-PCC [3, 13]. One of the key difficulties is how
to handle the irregularity of the geometry and from Table 2.2 we can see a few
interesting points.

Alexiou et al. [22] has explored the use of CNNs on voxel grids for point cloud
attribute compression. However, the combination between such approaches and
the virtual adaptive sampling hypothesis explored in numerous works [85, 75, 157]
for learning sparse dictionaries has not been explored. Indeed, we can interpret
point cloud attributes as a color field defined everywhere on a voxel grid but only
sampled at occupied locations. Then, these attributes could be compressed by first
extrapolating the color field values everywhere on the voxel grid and compressing
the resulting regularly sampled color field.

Octree-based approaches, such as the RAHT [54], are an interesting basis for
deep learning based approaches. Specifically, sparse convolutions [47] may be a
possible avenue to express convolutions on an octree structure as is done for ge-
ometry compression in Wang et al. [182]. As there is a duality between octree
and voxel grids, the same question about extrapolation applies. It is an open
question whether good convolutional transforms can be learned to compress at-
tributes that lie on an irregular geometry and thus have irregular neighborhoods.
In addition, inspired by RAHT, Isik et al. [92] propose a deep learning attribute
compression approach based on volumetric functions parameterized by coordinate
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based neural networks. They adopt a hierarchical structure of latent vectors which
are compressed with RAHT.

Compressing attributes as volumetric functions is similar in spirit to virtual
adaptive sampling and extrapolation. All three of these approaches remove the
irregularity by assuming that the attributes are samples of an attribute field defined
over 3D space (a volumetric function) which can be seen as a virtual adaptive
sampling process. In other words, this is also extrapolating missing values from
the available samples. The final result is that the attributes are now defined over
the entire 3D space removing the sparsity and irregularity which may arise from
the geometry.

Dimensionality reduction

Point cloud attribute compression is difficult due to the irregularity and sparsity
of the support. It is possible to attenuate the irregularity with projections to
lower dimensions which makes the support denser and more regular. In addition,
techniques to remove the irregularity and sparsity in the 3D domain are actually
applicable in all dimensions. This is interesting as point clouds are known to
exhibit certain structures. For example, LiDAR point clouds have a 1D structure
and most point clouds have a 2D manifold or surface structure.

Numerous approaches have explored the use of 2D images for point cloud at-
tribute compression [120, 13, 197]. Mekuria et al. [120] have proposed a simple
mapping procedure that makes use of Morton ordering and VPC [13] a more ad-
vanced procedure that segments the point cloud according to their normals and
performs bin packing to store them in a 2D image. To the best of our knowledge,
the combination of such handcrafted mappings and deep learning based image
compression methods [24] has not been explored yet and may be promising.

Point cloud attributes can also be compressed as a sequence of points. This is
especially suitable for spinning LiDAR point clouds which have a clear 1D struc-
ture. In Isenburg [91], both LiDAR point cloud geometry and attributes such as
reflectance are compressed as a sequence. Currently, while research is considering
compression with 2D structures [174], deep learning based approaches have not
been explored for 1D structures yet.

Dimensionality reduction for point cloud attribute compression essentially ex-
ploits the spatial structure to alleviate irregularity and sparsity. How to find a new
geometry (support) and a mapping from the original geometry to the new geome-
try that results in the best rate-distortion performance remains an open question.
A limitation of existing approaches is that the new geometry and its mapping are
fixed and not optimized for rate-distortion.

43



Graph based approaches

Graph based approaches have been used to compress point cloud attributes with
the GFT [195, 48, 53]. Point based approaches can be considered as a special case
of graph based approaches where the graph is defined by the point cloud geom-
etry. In Sheng et al. [158], point convolutions are proposed for the compression
of attributes. Such convolutions have been shown to perform well for tasks such
as classification and segmentation but the compression performance is currently
lacking compared to traditional approaches such as the G-PCC implementation of
RAHT [3]. Point based neural networks are interesting as the complexity of these
approaches depends on the number of points and not on the number of voxels. The
drawback is that we are not working on a regular voxel grid anymore which makes
the design of such networks more difficult. As such, a currently open question is
how to build high performance point convolutional neural networks for attribute
compression?

Compression performance

Currently, deep learning based attribute compression approaches [92, 158, 22] are
not yet competitive with the latest G-PCC codec. However, it is shown in [92] and
[158] that these approaches are actually competitive with RAHT which is used
in G-PCC but improved with additional coding tools such as predictive RAHT,
context adaptive arithmetic coding and joint entropy coding of color as discussed
in [92]. In addition, [92] actually show performance close to earlier versions of
G-PCC at the cost of high complexity.

2.4.3 . LoD decomposition and compression
For both geometry and attribute compression, it is interesting to consider the

point cloud decomposed into multiple LoDs. Specifically, with LoDs based on
octree decomposition, we can consider sparsity for a given LoD as the number of
occupied voxels divided by the number of valid voxels at this LoD. Then, we can
consider point clouds whose coarse LoDs are sparse as globally sparse: it can be
the case in a point cloud composed of multiple objects. And we can consider point
clouds whose finer LoDs are sparse as locally sparse: this typically happens in
LiDAR point clouds or when the geometry resolution is too high compared to the
number of points. This is important as certain methods are known to work better
on dense point clouds (such as CNN based methods) than sparse ones.

In addition, decomposing the point cloud into multiple LoDs also allows us
to mix differents compression methods. A common scheme is to perform block
partitioning before applying compression methods that are more computationally
expensive. This can be seen as compressing a set of block coordinates, which is
by definition a point cloud, and then compressing a point cloud for each block.
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Such decompositions can be performed according to LoDs which makes it possible
to code sparse LoDs separately (with different methods) from dense LoDs. A
very common situation is that the first LoDs are dense and the last few LoDs
are sparse; this typically happens when point cloud geometry is described with a
precision that is high compared to the number of points or when the sampling is
not uniform (such as with LiDAR point clouds).

An interesting property of such decompositions is that it is always possible to
use a lossless geometry compression approach followed by a lossy one. For example,
when using block partitioning, the compression of block coordinates can be per-
formed with not only octree coding but any kind of lossless point cloud geometry
compression method. This is particularly useful combined with the observation
that point clouds can be sparse at different LoDs and that certain compression
methods are known to work better with certain densities. Considering a LoD-
based point decomposition, it is thus interesting to consider compression schemes
that select the most suitable compression method for each LoD based on their
density. In addition, the geometric distortion introduced by such lossless-lossy
schemes is bounded by the volume of losslessly coded voxels.

At a given LoD, the relation between compression algorithm, point cloud char-
acteristics at a given LoD and compression performance remains an open question.
How to best select and combine compression algorithms to adapt to different point
cloud characteristics is also mostly unexplored. A limitation of the current state
of the art is that algorithms tend to be specialized or manually tuned towards
specific characteristics: dense, sparse, spinning LiDAR, etc.

The contents of this chapter have been published in M. Quach, J. Pang, D. Tian,
G. Valenzise, and F. Dufaux, “Survey on Deep Learning-Based Point Cloud Com-
pression,” Frontiers in Signal Processing, vol. 2, 2022.
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3 - Convolutional Neural Networks for Lossy Point
Cloud Geometry Compression

3.1 . Introduction

In this chapter, we focus on the lossy compression of static point cloud geom-
etry. In PCC, a precise reconstruction of geometric information is of paramount
importance to enable high-quality rendering and interactive applications. For this
reasons, lossless geometry coding has been investigated recently in MPEG, but
even state-of-the-art techniques struggle to compress beyond about 2 bits per oc-
cupied voxels (bpov) [66]. This results in large storage and transmission costs for
rich point clouds. Lossy compression proposed in the literature, on the other hand,
are based on octrees which achieve variable-rate geometry compression by chang-
ing the octree depth. Unfortunately, lowering the depth reduces the number of
points exponentially. As a result, octree based lossy compression tends to produce
“blocky” results at the rendering stage with medium to low bitrates. In order to
partially attenuate this issue, [104] proposes to use wavelet transforms and volu-
metric functions to compact the energy of the point cloud signal. However, since
they still employ an octree representation, their method exhibits rapid geometry
degradation at lower bitrates. While previous approaches use hand-crafted trans-
forms, we propose here a data driven approach based on learned convolutional
transforms which directly works on voxels.

Specifically, we present a method for learning analysis and synthesis transforms
suitable for point cloud geometry compression. In addition, by interpreting the
point cloud geometry as a binary signal defined over the voxel grid, we cast de-
coding as the problem of classifying whether a given voxel is occupied or not. We
train our model on the ModelNet40 mesh dataset [188, 156], test its performance
on the Microsoft Voxelized Upper Bodies (MVUB) dataset [116] and compare it
with the MPEG anchor [120]. We find that our method outperforms the anchor
on all sequences at all bitrates. Additionally, in contrast to octree-based methods,
ours does not exhibit exponential diminution in the number of points when lower-
ing the bitrate. We also show that our model generalizes well by using completely
different datasets for training and testing.

Then, we propose a set of contributions to improve RD performance and ac-
celerate model training. We then present an ablation study identifying key per-
formance factors for deep learning-based point cloud geometry compression. In
particular, we start from a baseline model [141] and we consider the following
improvements:
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• Entropy modeling : we consider an hyperprior model to improve entropy cod-
ing.

• Deeper transforms that compensate downsampling with progressively higher
numbers of filters.

• Changing the balancing weight in the focal loss : similar to [141], we cast de-
coding as an unbalanced classification problem by optimizing a focal loss [114].
Hence, we study the RD performance impact of the focal loss α parameter.

• Optimal thresholding for decoding : in order to classify voxels as occupied or
not, we propose an optimal thresholding approach that minimizes a given
distortion metric (instead of a fixed threshold as in [141]).

• Sequential training : in order to reduce the computational complexity of
training a network for each RD tradeoff, we propose a sequential training
procedure. That is, we train a network corresponding to a given RD point
by fine tuning the network trained from the previous RD point. This makes
training times up to 8 times faster compared to training independently and
improves RD performance.

• Ablation study An extensive ablation study evaluating the impact of each
factor mentioned above on RD performance. The evaluated conditions are
detailed in Table 3.1.

• Octree partitioning An efficient octree partitioning algorithm that is signifi-
cantly faster compared to recursive octree partitioning.

3.2 . Related Work

Our research is related most closely to three research areas: static point cloud
geometry compression, deep image compression and deep point cloud compression.

Static point cloud geometry compression methods are usually based on the
octree structure [153]. Indeed, octrees provide an efficient way of partitioning the
3D space and representing point clouds. In particular, they are especially suitable
for lossless coding in combination with octree entropy models [66]. However, lossy
compression using octrees alone has poor performance as pruning octree levels
decreases the number of points exponentially resulting in significant distortion.
To alleviate this issue, many solutions have been proposed such as triangle [58]
surface models, planar [59] surface models, graph-based enhancement layers [52]
and volumetric functions [104]. The core idea is that by encoding approximations
along a coarse octree, we can alleviate the shortcomings of the octree structure.

48



Different from previous work in this area, we study learned approximation models
based on deep neural networks.

Deep image compression considers the use of deep neural networks for image
compression. An end-to-end image compression solution with joint RD optimiza-
tion along with a learned entropy model has been proposed in [24], which also
replaces (non-differentiable) quantization with uniform noise at training time. As
a follow-up of that work, a scale hyperprior model has been proposed in [25]. The
scale hyperprior enables the modeling of spatial correlations in the latent space; for
each element, it uses a Gaussian distribution whose standard deviation is predicted
by a dedicated network. We design models for PCC using these learning-based en-
tropy modeling techniques.

DPCC is a recent research avenue exploring the use of deep neural networks for
PCC. For lossy geometry coding, voxel-based DPCC methods have been shown to
outperform traditional methods significantly [141, 180, 78]. For lossless geometry
coding, deep neural networks have been used to improve entropy modeling [87].
Also, DPCC for attributes has been explored by interpreting point clouds as a 2D
discrete manifold in 3D space [140]. Closely related to our study, the behavior
and performance of DPCC methods has been investigated in [78]. However, this
particular study investigates the characteristics and RD impact of the latent space.
In contrast, we seek to understand and identify key performance factors for rate-
distortion (RD) performance on a larger scale.

3.3 . Basic Approach

3.3.1 . Proposed method

In this section, we describe the proposed method in more details.

Definitions

First, we define the set of possible points at resolution r as Ωr = [0 . . r]3. Then,
we define a point cloud as a set of points S ⊆ Ωr and its corresponding voxel grid
vS as follows:

vS : Ωr −→ {0, 1},

z 7−→
{
1, if z ∈ S

0, otherwise.

For notational convenience, we use s3 instead of s × s × s for filter sizes and
strides.
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(a) Strided convolution on a 52 input
with a 32 filter, 22 strides and same
padding. The shape of the output is 33.

(b) Strided transpose convolution on a
32 input with a 32 filter, 22 strides and
same padding. The shape of the output
is 52.

Figure 3.1: Strided convolution and strided transpose convolution operations. Il-
lustrations from [60].

Model

We use a 3D convolutional auto-encoder composed of an analysis transform fa,
followed by a uniform quantizer and a synthesis transform fs.

Let x = vS be the original point cloud. The corresponding latent represen-
tation is y = fa(x). To quantize y, we introduce a quantization function Q
so that ŷ = Q(y). This allows us to express the decompressed point cloud as
x̂ = v̂S = fs(ŷ). Finally, we obtain the decompressed point cloud x̃ = ṽS =
round(min(0,max(1, x̂))) using element-wise minimum, maximum and rounding
functions.

In our model, we use convolutions and transpose convolutions with same padding
and strides. They are illustrated in Figure 3.1 and defined as follows :

• Same (half) padding pads the input with zeros so that the output size is
equal to the input size.

• Convolution performed with unit stride means that the convolution filter is
computed for each element of the input array. When iterating the input
array, strides specify the step for each axis.

• Convolution can be seen as matrix multiplication and transpose convolution
can be derived from this. In particular, we can build a sparse matrix C with
non-zero elements corresponding to the weights. The transpose convolution,
also called deconvolution, is obtained using the matrix CT as a layout for the
weights.

Using these convolutional operations as a basis, we learn analysis and synthesis
transforms structured as in Figure 3.2 using the Adam optimizer [102] which is
based on adaptive estimates of first and second moments of the gradient.

We handle quantization similarly to [25]. Q represents element-wise integer
rounding during evaluation and Q adds uniform noise between −0.5 and 0.5 to
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Figure 3.2: Neural Network Architecture. Layers are specified using the following
format: number of feature maps, filter size, strides, activation and bias.

each element during training which allows for differentiability. To compress Q(y),
we perform range coding and use the Deflate algorithm, a combination of LZ77
and Huffman coding [90] with shape information on x and y added before com-
pression. Note however that our method does not assume any specific entropy
coding algorithm.

Our decoding process can also be interpreted as a binary classification problem
where each point z ∈ Ωr of the voxel grid is either present or not. This allows
us to decompose x̂ = v̂S into its individuals voxels z whose associated value is pz.
However, as point clouds are usually very sparse, most vS(z) values are equal to
zero. To compensate for the imbalance between empty and occupied voxels we use
the α-balanced focal loss as defined in [114]:

FL(ptz) = −αz(1− ptz)
γlog(ptz) (3.1)

with ptz defined as pz if vS(z) = 1 and 1− pz otherwise. Analogously, αz is defined
as α when vS(z) = 1 and 1 − α otherwise. The focal loss for the decompressed
point cloud can then be computed as follows:

FL(x̃) =
∑
z∈S

FL(ptz). (3.2)

Our final loss is L = λD + R where D is the distortion calculated using the
focal loss and R is the rate in number of bits per input occupied voxel (bpov).
The rate is computed differently during training and during evaluation. On one
hand, during evaluation, as the data is quantized, we compute the rate using the
number of bits of the final compressed representation. On the other hand, during
training, we add uniform noise in place of discretization to allow for differentiation.
It follows that the probability distribution of the latent space Q(y) during training
is a continuous relaxation of the probability distribution of Q(y) during evaluation
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which is discrete. As a result, entropies computed during training are actually
differential entropies, or continuous entropies, while entropies computed during
evaluation are discrete entropies. During training, we use differential entropy as
an approximation of discrete entropy. This makes the loss differentiable which is
primordial for training neural networks.

3.3.2 . Experimental results

We use train, evaluation and test split across two datasets. We train and
evaluate our network on the ModelNet40 aligned dataset [188, 156]. Then, we
perform tests on the MVUB dataset and we compare our method with the MPEG
anchor [120].

We perform our experiments using Python 3.6 and Tensorflow 0.12. We use
N = 32 filters, a batch size of 64 and Adam with lr = 10−4, β1 = 0.9 and
β2 = 0.999. For the focal loss, we use α = 0.9 and γ = 2.0.

To compute distortion, we use the point-to-plane symmetric PSNR computed
with the pc_error MPEG tool [171].

Dataset

The ModelNet40 dataset contains 12,311 mesh models from 40 categories. This
dataset provides us with both variety and quantity to ensure good generalization
when training our network. To convert this dataset to a point cloud dataset, we
first perform sampling on the surface of each mesh. Then, we translate and scale it
into a voxel grid of resolution r. We use this dataset for training with a resolution
r = 64.

The MVUB dataset [116] contains 5 sequences captured at 30 fps during 7 to 10
seconds each with a total of 1202 frames. We test our method on each individual
frame with a resolution r = 512. In other words, we evaluate performance for
intra-frame compression on each sequence.

We compute RD curves for each sequence of the test dataset. For our method,
we use the following λ values to compute RD points : 10−4, 5 × 10−5, 10−5,
5 × 10−6 and 10−6. For each sequence, we average distortions and bitrates over
time for each λ to obtain RD points. For the MPEG anchor, we use the same
process with different octree depths.

Evaluation

To evaluate distortion, we use the point-to-plane symmetric PSNR [171] esymm(A,B) =
min(e(A,B), e(B,A)) where e(A,B) provides the point-to-plane PSNR between
points in A and their nearest neighbors in B. This choice is due to the fact
that original and reconstructed point clouds may have a very different number of
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points, e.g., in octree-based methods the compressed point cloud has significantly
less points than the original, while in our method it is the opposite. In the rest of
this section, we refer to the point-to-plane symmetric PSNR as simply PSNR.

Results

Our method outperforms the MPEG anchor on all sequences at all bitrates. The
latter has a mean bitrate of 0.719 bpov and a mean PSNR of 16.68 dB while
our method has a mean bitrate of 0.691 and a mean PSNR of 24.11 dB. RD
curves and the Bjontegaard-delta bitrates (BDBR) for each sequence are reported
in Figure 3.3. Our method achieves 51.5% BDBR savings on average compared to
the anchor.

In Figure 3.4, we show examples on the first frame of the Phil sequence. Our
method achieves lower distortion at similar bitrates and produces more points
than the anchor which increases quality at low bitrates while avoiding “blocking”
effects. This particular example shows that our method produces 218 times more
points than the anchor at similar bitrates. In other words, both methods introduce
different types of distortions. Indeed, the number of points produced by octree
structures diminishes exponentially when reducing the octree depth. Conversely,
our method produces more points at lower bitrates as the focal loss penalizes false
negatives more heavily.

In this work, we use a fixed threshold of 0.5 during decompression. Changing
this threshold can further optimize rate-distortion performance or optimize other
aspects such as rendering performance (number of points).

3.4 . Improved Deep Point Cloud Compression

3.4.1 . Proposed Improvements

In this section we present different strategies to improve DPCC. We consider as
baseline the network proposed in our preliminary work [141] (denoted as c1 in the
following). In that work, we relied on shallow transforms to compress entire point
clouds at once. However, this has a fundamental limitation in terms of memory
usage, as it does not allow to compress large point clouds as those commonly used
in MPEG CTCs. Therefore, in this work we make use of octree partitioning to
partition point clouds into blocks of size 64× 64× 64 voxels, which we have found
to be a good trade-off between memory usage and coding performance. We denote
the different considered improvements with c2,. . ., c6, which are summarized in
Table 3.1.
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Figure 3.3: RD curves for each sequence of the MVUB dataset. We compare our
method to the MPEG anchor.
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Figure 3.4: Original point cloud (left), the compressed point cloud using the pro-
posed method (middle) and the MPEG anchor (right). Colors are mapped using
nearest neighbor matching. Our compressed point cloud was compressed using
λ = 10−6 with a PSNR of 29.22 dB and 0.071 bpov. The anchor compressed point
cloud was compressed using a depth 6 octree with a PSNR of 23.98 dB and 0.058
bpov. They respectively have 370,798; 1,302,027; and 5,963 points.

Table 3.1: Experimental conditions evaluated for point cloud geometry compres-
sion. Each condition is an improvement over the previous one.

Name Model Transforms α Threshold Training

c1 Baseline Shallow 0.90 Fixed Independent

c2 Hyperprior — — — —

c3 — Deep — — —

c4 — — 0.75 — —

c5 — — — Optimal —

c6 — — — — Sequential
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Figure 3.5: Entropy models considered for point cloud geometry compression. The
f functions are learned transforms, Q refers to quantization and AC to arithmetic
coding with its associated density model.

Entropy modeling (c2)

We consider models that take the voxelized point clouds x and x̃ as input and
output. In particular, we consider a baseline model (Fig. 3.5a) and an hyperprior
model (Fig. 3.5b).

The baseline model is based on an autoencoder architecture with an analysis
fa and a synthesis transform fs [24]. y is modeled using a learned entropy model
for each feature map. The baseline model is expressed as follows

y = fa(x) ỹ = Q(y) x̃ = fs(ỹ). (3.3)

We consider a scale hyperprior model [25] as a better entropy model for ỹ.
Specifically, we model y with a zero-mean gaussian density model N (0, σ̃2) where
standard deviations σ̃2 are predicted from y with σ̃ = fhs(Q(fha(y))). As a result,
the spatial dependencies can be modeled better compared to the learned entropy
model. The hyperprior model is expressed as follows

y = fa(x) ỹ = Q(y) x̃ = fs(ỹ) (3.4)
z = fha(y) z̃ = Q(z) σ̃ = fhs(z̃) (3.5)

where z is modeled with a learned density model for each feature map.
The compression model is trained using joint RD optimization with the loss

function R+ λD. For each RD tradeoff, we train a model with the corresponding
λ value resulting in transforms and entropy models specialized for this particular
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(h) Synthesis block (SB)

Figure 3.6: Transform types. Each layer is specified as follows: convolution type
(C refers to convolution, CT to transposed convolution), number of filters, filter
size and strides.

tradeoff. The entropy R is computed on ỹ, and z̃ for the hyperprior model, using
their associated entropy models. Since the quantization operation Q is not differ-
entiable, we use additive uniform noise during training in place of quantization as
originally proposed in [24].

Deeper transforms (c3)

We compare shallow and deep transforms for analysis and synthesis, as illustrated
in Fig. 3.6. Specifically, we focus on analysis and synthesis transforms and use
shallow hyper-analysis and hyper-synthesis transforms (Fig. 3.6c and 3.6f).

The transforms based on 3D convolutions and 3D transpose convolutions in-
troduced in [141] are referred to as shallow transforms (Fig. 3.6a and 3.6d). We
introduce deeper variants of shallow transforms (Fig. 3.6b and 3.6e), which we
refer to as deep transforms. These transforms are composed of residual [82] blocks
(Fig. 3.6g and 3.6h) which use skip-connections to prevent issues such as explod-
ing or vanishing gradients. The skip-connections act as “shortcuts” in the network
allowing gradients to backpropagate through shorter paths. We also make them
progressive by increasing the number of filters progressively as N1/4 = N2/2 = N3.
The rationale behind this choice is that the number of filters should compensate
the downsampling along the spatial dimensions. In that way, the capacity at a
given layer W × H × D × N decreases more slowly which allows the network to
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compress information more easily. In our experiments, we set N3 = 64.

Changing the balancing weight in the focal loss (c4)

When considering point clouds as voxel grids, we observe that most of the space is
empty (usually > 95%). This large class imbalance between occupied voxels and
unoccupied voxels is a barrier to effective training. Indeed, without any counter-
measures, the network would converge towards empty outputs only. In order to
resolve this class imbalance issue, we adopt the focal loss [114] as our distortion
loss.

The focal loss is well suited for point clouds since it addresses the class imbal-
ance issue with α-balancing. Moreover, the focal loss differentiates between easy
and hard examples using the γ parameter. Specifically, the higher γ is, the more
hard examples are emphasized. With γ = 0, the focal loss becomes equivalent to
the weighted binary cross-entropy.

For conciseness, we adopt the following notation. If x = 1, then xt = x, αt = α
and x̃t = x̃; otherwise xt = 1− x, αt = 1− α and x̃t = 1− x̃. We then define the
focal loss as

FL(x, x̃) = αtxt(1− x̃t)
γ log(x̃t). (3.6)

We study the impact of the focal loss α parameter on RD performance. The
α parameter governs the attention given to occupied voxels and empty voxels. A
high α value makes marking occupied voxels as empty more costly than marking
empty voxels as occupied and results in denser reconstructions. Originally, we
picked the same α value (0.90) as in [141]. This was motivated by the fact that
point clouds are often comprised of more than 95% of empty space.

However, we found experimentally that lower α values can actually provide
better coding gains. We hypothesize that this is due to the fact that the default
γ = 2 in the focal loss emphasizes hard examples (occupied voxels) more than easy
examples (empty voxels). Thus, γ = 2 already alleviates the class imbalance issue
which explains this phenomenon.

Optimal thresholding for decoding (c5)

For each block, after decoding y (and z for the hyperprior model) into x̃, we need
to convert x̃ into binary values in order to obtain the decompressed point cloud.
The baseline method (c1) employs a fixed threshold t = 0.5. In contrast, we
perform this conversion by finding optimal thresholds for each block of voxels.
This threshold is transmitted as side information in the bitstream with a small
overhead in terms of bitrate.
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We formulate optimal thresholding as the problem of finding an optimal thresh-
old t⋆ such that

t⋆ = argmin
t

d(x,H(x̃− t)) (3.7)

where d is a distortion metric and H(x) is the heaviside step function (equal to 1
when x ≥ 0 and 0 otherwise).

Sequential training (c6)

We train compression models for each RD tradeoff using a corresponding λ value.
This allows for transforms and entropy models to be specialized for this particular
tradeoff resulting in better RD performance. Unfortunately, using this independent
training scheme, we need to train one model for each tradeoff.

To alleviate this issue, we propose a novel sequential training scheme that
speeds up training significantly and improves RD performance. The core idea of
this scheme is to use previously trained neural network weights as a starting point
for new neural networks. Essentially, given a set of λ tradeoffs, we first train λ1.
Then, for each subsequent model, we train λi using the trained weights of λi−1.

In this training scheme, we proceed to train the different tradeoffs in descending
order. That is, we first train a low distortion, high bitrate model. Then, for each
subsequent model, we progressively lower the bitrate while trying to minimize the
increase in distortion.

3.4.2 . Experiments

We evaluate the six different improvement strategies described in subsection 3.4.1
and summarized in Table 3.1. The BD-PSNR gains are reported in Table 3.2.

Experimental setup

We perform our experiments on four point clouds specified in the MPEG CTCs
[1, 56]. Namely, “longdress_vox10_1300”, “loot_vox10_1200”, “redandblack_-
vox10_1490”, “soldier_vox10_0690” which we refer to as “longdress”, “loot”, “redand-
black” and “soldier”.

We train our models on a subset of the ModelNet40 dataset. First, we sample
the dataset into voxelized point clouds with resolution 512 and select the 200
largest point clouds. Then, we divide these point clouds into blocks with resolution
64 and select the 4000 largest blocks. This produces a small dataset containing rich
point clouds, accelerates dataset loading time and reduces memory footprint when
training. We perform training with λ values ranging from 5× 10−6 to 3× 10−4.

We evaluate the different conditions using G-PCC trisoup and octree as base-
lines. Specifically, we use G-PCC v10.0 (released in May 2020) with the included
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Table 3.2: RD performance for each experimental condition. We specify BD-
PSNR values (dB) compared to G-PCC trisoup and octree in each cell (trisoup
BD-PSNR / octree BD-PSNR). The greatest values for trisoup and octree are
indicated in bold and the second greatest in italic. c6 consistently outperforms
all other conditions.

Experimental conditions

Point cloud Metric c6 c5 c4 c3 c2 c1

loot
D1 5.91 / 7.00 5 .84 / 6 .89 4.05 / 5.06 2.03 / 3.67 −0.27 / 2.26 −0.72 / 1.88

D2 6 .85 / 6.12 6.90 / 6 .11 4.10 / 3.33 1.44 / 1.23 −1.81 / −0.81 −2.60 / −1.40

redandblack
D1 5.02 / 6.50 4 .81 / 6 .30 3.28 / 4.71 1.43 / 3.45 −0.19 / 2.58 −0.59 / 2.01

D2 5.93 / 5.65 5 .74 / 5 .46 2.91 / 2.62 0.55 / 0.79 −1.73 / −0.46 −2.42 / −1.18

longdress
D1 5.54 / 6.94 5 .41 / 6 .79 3.75 / 5.10 1.81 / 3.82 −0.26 / 2.64 −0.79 / 2.10

D2 6.59 / 6.01 6 .52 / 5 .91 3.90 / 3.30 1.41 / 1.36 −1.37 / −0.34 −2.20 / −1.09

soldier
D1 5.55 / 6.91 5 .49 / 6 .88 3.76 / 5.11 1.88 / 3.88 −0.28 / 2.60 −0.77 / 2.13

D2 6.54 / 6.02 6 .52 / 6.02 3.86 / 3 .36 1.39 / 1.45 −1.54 / −0.40 −2.31 / −1.06

Average
D1 5.50 / 6.84 5 .39 / 6 .71 3.71 / 5.00 1.79 / 3.71 −0.25 / 2.52 −0.72 / 2.03

D2 6.48 / 5.95 6 .42 / 5 .87 3.69 / 3.15 1.20 / 1.21 −1.61 / −0.50 −2.38 / −1.18

configurations, “mpeg-pcc-dmetric” v0.12.3 for D1 and D2 metrics, Python 3.6.9
and TensorFlow 1.15.0 with the Adam optimizer [102].

Experimental results

In Fig. 3.7 and Table 3.2, we observe that each condition is a net improvement
over previous ones. c6 outperforms G-PCC trisoup with an average BD-PSNR
of 5.50 dB on D1 and 6.48 dB on D2 and outperforms G-PCC octree with an
average BD-PSNR of 6.84 dB on D1 and 5.95 dB on D2. Note that the lowest
bitrate point for c6 is not included in BD-PSNR computations in order to keep
integration intervals consistent and keep BD-PSNRs comparable across different
conditions.

We also observe that c5 (optimal thresholding) is especially beneficial for the
point-to-plane metric (D2) with an improvement of 1.68 dB for D1 and 2.73 dB
for D2 compared to c4. Indeed, optimal thresholding provides optimal sets of
thresholds for D1 and D2 yielding two separate reconstructions.

In Fig. 3.8, we provide qualitative results on “soldier_vox10_0690”. We ob-
serve that shapes and local point densities are reproduced more accurately com-
pared to G-PCC trisoup. Overall, our method results in lower distortions at similar
bitrates.
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Figure 3.7: RD curves for each condition in Table 3.2. c6 consistently outperforms
G-PCC trisoup and G-PCC octree.
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(a) Original (b) c6 (D1 69.59 dB, 0.194 bpp) (c) G-PCC Trisoup
(D1 65.87 dB, 0.188 bpp)
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Figure 3.8: Qualitative evaluation on “soldier_vox10_0690”. For c6 and G-PCC
Trisoup, we show the decompressed point cloud and its D1 squared errors. The
errors are displayed according to the color scale on the right and are truncated to
the 99th percentile (3.0). In parentheses, we specify the D1 PSNR along with the
number of bits per input point (bpp).

Ablation study

In this subsection, we present BD-PSNR values when compared to G-PCC trisoup.
The hyperprior model (c2) results in an improvement of 0.47 dB for D1 and 0.77
dB for D2 compared to c1. Adding deep transforms (c3) further improves D1 by
2.04 dB and D2 by 2.81 dB compared to c2.

In Table 3.3, we observe that setting α = 0.75 for D1 and α = 0.50 for D2
increases RD performance significantly for all point clouds. The average BD-PSNR
for α = 0.75 is 3.71 dB for D1 and 3.69 dB for D2. Also, the average BD-PSNR
for α = 0.50 is 3.70 dB for D1 and 6.07 dB for D2. Indeed, higher α values lead to
denser reconstructions which are favored by D1 and lower α values to sparser ones
which are favored by D2. We select α = 0.75 (c4) as we have found experimentally
that it performs better when associated with optimal thresholding. Compared to
α = 0.90 (c3), α = 0.75 brings an improvement of 1.92 dB for D1 and 2.49 dB for
D2 .

Then, we use optimal thresholding (c5) with the point-to-point (D1) and point-
to-plane (D2) objective metrics. As a result, we obtain two point clouds respec-
tively optimized with D1 and D2. Also, we encode thresholds on 8 bits with 256
uniformly distributed threshold values between 0 and 1. Optimal thresholding
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Table 3.3: Impact of the focal loss α parameter on RD performance. We specify
BD-PSNR values (dB) compared to G-PCC trisoup for different α values. The
greatest values are indicated in bold and the second greatest in italic. α = 0.75
outperforms all other α values.

α

Point cloud Metric 0.90 0.75 0.50 0.25

loot
D1 2.03 4 .05 4.41 1.24

D2 1.44 4.10 6.47 4 .19

redandblack
D1 1.43 3.28 2 .24 −3.70
D2 0.55 2 .91 5.19 1.63

longdress
D1 1.81 3.75 3 .66 −0.11
D2 1.41 3 .90 6.28 3.88

soldier
D1 1.88 3 .76 4.48 1.68

D2 1.39 3.86 6.32 4 .45

Average
D1 1.79 3.71 3 .70 −0.22
D2 1.20 3 .69 6.07 3.54

(c5) results in an improvement of 1.68 dB for D1 and 2.73 dB for D2 compared to
c4.

Training DPCC models is time consuming as shown in Fig. 3.9. Indeed, the
c5 condition requires 4 hours of training resulting in a total of 16 hours for four
models on an Nvidia GeForce GTX 1080 Ti. With sequential training (c6), these
models train in 30 to 60 minutes instead of 4 hours which is up to 8 times faster.
In addition, this results in an improvement of 0.11 dB for D1 and 0.06 dB for D2
compared to c5.

0 10000 20000 30000
Training steps

1

2

3

4

5

6

b
it

s
p

er
p

oi
nt

3.00e-04

1.00e-04

5.00e-05

2.00e-05

0 10000 20000 30000
Training steps

20000

40000

60000

80000

100000

F
oc

al
lo

ss

3.00e-04

1.00e-04

5.00e-05

2.00e-05

(a) Independent training.
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(b) Sequential training.

Figure 3.9: Bits per point and focal loss when training independently and sequen-
tially. Sequential training is more efficient as it reuses previously trained models
to train subsequent ones.
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Sparser point clouds

In Guarda et al. [76] (Figure 10), the authors evaluate the performance of different
deep learning approaches on sparser point clouds. The method proposed in this
chapter performs competitively compared to the proposed adaptive approach in
[76] on sparser point clouds. This shows that adaptive thresholding successfully
adapts the network output to different input densities.

3.5 . Conclusion

First, we present a novel data-driven point cloud geometry compression method
using learned convolutional transforms and a uniform quantizer. Our method
outperforms the MPEG Anchor on the MVUB dataset in terms of rate-distortion
with 51.5% BDBR savings on average. Additionally, in constrast to octree-based
methods, our model does not exhibit exponential diminution in the number of
output points at lower bitrates. This work can be extended to the compression of
attributes and dynamic point clouds.

Then, we propose a set of key performance factors for such methods and we
present an extensive ablation study on the individual impact of these factors. More
precisely, we provide insights on the individual impact of scale hyperprior models,
deep transforms, the focal loss α value, optimal thresholding and sequential train-
ing. We analyze each of these factors in order to provide a better understanding
about why they improve RD performance. The final model (c6) outperforms G-
PCC trisoup with an average BD-PSNR of 5.50 dB on D1 and 6.48 dB on D2 and
outperforms G-PCC octree with an average BD-PSNR of 6.84 dB on D1 and 5.95
dB on D2.

Code is available at https://github.com/mauriceqch/pcc_geo_cnn and https:
//github.com/mauriceqch/pcc_geo_cnn_v2.

The contents of this chapter have been published in M. Quach, G. Valenzise,
and F. Dufaux, “Learning Convolutional Transforms for Lossy Point Cloud Geom-
etry Compression,” in 2019 IEEE International Conference on Image Processing
(ICIP), Sep. 2019, pp. 4320–4324 and M. Quach, G. Valenzise, and F. Dufaux,
“Improved Deep Point Cloud Geometry Compression,” in 2020 IEEE 22nd In-
ternational Workshop on Multimedia Signal Processing (MMSP), Sep. 2020, pp.
1–6.
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4 - Deep Generative Model for Lossless Point Cloud
Geometry Compression

4.1 . Introduction

In the previous chapter, decoding in the context of lossy point cloud geometry
compression was cast as classification. Indeed, the grid of probabilities resulting
from decoding are subject to binary classification via thresholding. In this chapter,
we instead focus on lossless coding of point cloud geometry which can be achieved
by considering these probabilities as input to an entropy coder. In particular, we
consider the case of voxelized point clouds. Voxelization consists in pre-quantizing
the geometric coordinates of the point cloud prior to coding in order to represent
the geometry with integer precision. This operation is common in many coding
scenarios, e.g., when dealing with dense point clouds such as those produced by
camera arrays. After voxelization, the point cloud geometry can be represented
either directly in the voxel domain or using an octree spatial decomposition. PCs
are divided into a fixed number of cubes, which defines the resolution (e.g., 10 bit
= 1024 cubes per dimension). Each cube is called a voxel. If a voxel contains
at least one point, it is called an occupied voxel. Usually, very few voxels are
occupied and a large part of the volume is empty. An octree representation can be
obtained by recursively splitting the volume into eight sub-cubes until the desired
precision is achieved. Then, occupied blocks are marked by bit 1 and empty blocks
are marked by bit 0. Consequently, at each level, the generated 8 bits represent
the occupancy state of an octree node (octant). Our method operates in both
the voxel and octree domain. On the one hand, the octree representation can
naturally adapt to the sparsity of the point cloud, as empty octants do not need
to be further split; on the other hand, in the voxel domain convolutions can be
naturally expressed, and geometric information (i.e., planes, surfaces, etc.) can be
explicitly processed by a neural network.

In this work, we propose a deep-learning-based method (named VoxelDNN) for
lossless compression of static voxelized point cloud geometry. Our main contribu-
tions are:

• We employ for the first time a deep generative model in the voxel domain
to estimate the occupancy probabilities sequentially using a masked 3D con-
volutional network. The conditional distribution is then used to model the
context of a context-based arithmetic coder.

• We propose an optimal rate-driven partitioning and context selection algo-
rithm. The partitioning algorithm adapts to the point cloud sparsity by

65



employing a hybrid octree/voxel representation while the context to encode
each block is expanded to the neighboring blocks and the expansion size is
optimally selected.

• We propose specific data augmentation techniques for 3D point clouds cod-
ing, to increase its generalization capability.

We demonstrate experimentally that the proposed solution outperforms the
state-of-the-art MPEG G-PCC lossless codec in terms of bits per occupied voxel
over a set of point clouds with varying density and content type. The rest of the
chapter is structured as follows: Section 4.2 reviews the related work; the proposed
method is described in Section 4.3; Section 4.4 presents the experimental results;
and finally Section 4.5 concludes the chapter.

4.2 . Related work

Relevant work related to this chapter includes state-of-the-art PC geometry
coding and learning-based methods in image and point cloud compression.

4.2.1 . MPEG G-PCC and Conventional Lossless Codecs
Most existing methods that compress point cloud geometry, including MPEG

G-PCC, use octree coding [153, 120, 96, 65, 66, 67, 87, 29] and local approximations
called “triangle soups” (trisoup) [153, 58]

In the G-PCC geometry coder, points are first transformed and voxelized into
an axis-aligned bounding box before geometry analysis using trisoup or octree
scheme. In the trisoup coder, geometry can be represented by a pruned octree plus
a surface model. This model approximates the surface in each leaf of the pruned
octree using 1 to 10 triangles. In contrast, the octree coder partitions voxelized
blocks until sub-cubes of dimension one are reached. First, the coordinates of
isolated points are independently encoded to avoid "polluting" the octree coding
(Direct Coding Mode - DCM) [7]. To encode the occupancy pattern of each octree
node, G-PCC introduces many methods to exploit local geometry information and
obtain an accurate context for arithmetic coding, such as Neighbour-Dependent
Entropy Context [10], intra prediction [8], planar/angular coding mode [11, 6], etc.
The lossless geometry coding mode of G-PCC is based on octree coding only.

In order to deal with the irregular point space, many octree-based lossless
PCC methods have been proposed. In [153], the authors proposed an octree-based
method which aims at reducing entropy by employing prediction techniques based
on local surface approximations to predict occupancy patterns. Recently, more
context modeling based approaches are proposed [65, 66, 67]. For example, the
intra-frame compression method P(PNI) proposed in [67] builds a reference octree
by propagating the parent octet to all children nodes, thus providing 255 contexts
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to encode the current octant. Octree coding allows for a progressive representation
of point clouds since each level of the octree is a downsampled version of the
point cloud. However, a drawback of octree representation is that, at the first
levels of the tree, it produces “blocky” scenes, and geometry information of point
clouds (i.e., curve, plane) is lost. The authors of [29] proposed a binary tree based
method which analyzes the point cloud geometry using binary tree structure and
realizes an intra prediction via the extended Travelling Salesman Problem (TSP)
within each leaf node. Instead, in this chapter, we employ a hybrid octree/voxel
representation to better exploit the geometry information. Besides, the methods in
[65, 66, 67] produce frequency tables which are collected from the coarser level or
the previous frame and must be transmitted to the decoder. Our method predicts
voxel distributions in a sequential manner at the decoder side, thus avoiding the
extra cost of transmitting large frequency tables.

4.2.2 . Generative Models and Learning-based Compression

Estimating the data distribution from a training dataset is the main objective
of generative models, and is a central problem in unsupervised learning. It has a
number of applications, from image generation [169, 73, 136, 150], to image com-
pression [185, 24, 121] and denoising [38]. Among the several types of generative
models proposed in the literature [68], auto-regressive models such as PixelCNN
[136, 150] are particularly relevant for our purpose as they allow to compute the
exact likelihood of the data and to generate realistic images, although with a high
computational cost. Specifically, PixelCNN factorizes the likelihood of a picture by
modeling the conditional distribution of a given pixel’s color given all previously
generated pixels. These conditional distributions only depend on the possible pixel
values with respect to the scanned context, which imposes a causality constraint.
PixelCNN models the distribution using a neural network and the causality con-
straint is enforced using masked filters in each convolutional layer. Recently, this
approach has also been employed in image compression to yield accurate and learn-
able entropy models [121]. This chapter explores the potential of this approach for
point cloud geometry compression by adopting and extending conditional image
modeling and masking filters into the 3D voxel domain.

Inspired by the success in learning-based image compression, deep learning has
been widely adopted in point cloud coding both in the octree domain [87, 29], voxel
domain [79, 81, 141, 142, 180, 81] and point domain [190, 88, 182]. Recently, the
authors of [87] proposed an octree-based entropy model that models the probability
distributions of the octree symbols based on the contextual information from octree
structure. This method only targets static LiDAR point cloud compression. The
extension version for intensity-valued LiDAR streaming data using spatio-temporal
relations is proposed in [29]. However, these methods target dynamically acquired
point clouds, while in this chapter we mainly focus on dense static point clouds.
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Working in the voxel domain enables to easily extend most 2D tools, such as
convolutions, to the 3D space. Many recent 3D convolution based autoencoder
approaches for lossy coding [141, 142, 180, 81] compress 3D voxelized blocks into
latent representations and cast the reconstruction as a binary classification prob-
lem. The authors of [190] proposed a pointnet-based auto-encoder method which
directly takes points as input rather than voxelized point cloud. To handle sparse
point clouds, recent methods leverage advances in sparse convolution [47, 70] to
allow point-based approaches [88, 182]. For example, the proposed lossy compres-
sion method in [182] progressively downscale the point cloud into multiple scales
using sparse convolutional transforms. Then, at the bottleneck, the geometry of
scaled point cloud is encoded using an octree codec and the attributes are com-
pressed using a learning-based context model. In contrast, in this chapter, we
focus on dense voxelized point clouds and losslessly encode each voxel using the
learned distribution from its 3D context. In addition, we apply this approach in
a block-based fashion, which has been successfully employed in traditional image
and video coding.

4.3 . Proposed method

4.3.1 . System overview

In this work, we propose a learning-based method for lossless compression of
point cloud geometry. We aim at minimizing the encoded rate measured by the
number of bits per occupied voxel (bpov) by exploiting the spatial redundancies
within point cloud. The general scheme of our method is shown in Figure 4.1. A
point cloud voxelized over a 2n×2n×2n grid is known as an n-bit depth PC, which
can be represented by an n level octree. In this work, we represent point cloud
geometry in a hybrid manner, by combining the octree and voxel domains. We
coarsely partition an n-depth point cloud up to level n−6. This allows to coarsely
remove most of the empty space in the point cloud. As a result, we obtain a n− 6
level octree and a number of non-empty binary blocks v of size 26× 26× 26 voxels,
which we refer to as resolution d = 64 or simply block 64 (Figure 4.1(a)). Blocks
64 can be further partitioned at resolution d = {64, 32, 16, 8, 4} corresponding to
maximum partitioning level maxLv = {1, 2, 3, 4, 5} as detailed in Section 4.3.3.
Figure 4.1(b) shows the multi-resolution encoder with maxLv = 2. A block of
size d can be encoded as a single block (b2) or partitioned into 8 sub-cubes (b1).
We then encode each non-empty block (blocks in blue in the figure) using the pro-
posed method in the voxel domain (Section 4.3.2) and select the partitioning mode
resulting in the smallest bpov. The overview of a single block encoder is shown
in Figure 4.1(c). Our context model predicts the distribution of each voxel given
all encoded voxels and pass it to an arithmetic coder to generate the final bit-
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Figure 4.1: Overview of the proposed method. (a): a n bit depth point cloud is
partitioned down to the n− 6 octree level, yielding occupied blocks of size
64× 64× 64. (b): We encode each block of 643 voxels as a single block (b1), or
divide it into 8 children blocks (b2), depending on the total number of bits of
each solution (partitioning level = 2). This procedure is repeated recursively for
increasing partitioning levels up to 5. (c): For each occupied block of size d, the
context model estimates the distribution of each voxel given the previously
encoded voxels.
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stream. The context is chosen adaptively following a rate optimization algorithm
(Section 4.3.3). The high-level octree, partitioning signal, selected context as well
as the depth of each block are converted to bytes and signaled to the decoder as
side information. For ease of notation, we index all voxels in block v at resolution
d from 1 to d3 in raster scan order with:

vi =

{
1, if ith voxel is occupied
0, otherwise.

(4.1)

4.3.2 . VoxelDNN
Our method losslessly encodes the voxelized point cloud using context-adaptive

binary arithmetic coding. Specifically, we focus on estimating accurately a prob-
ability model p(v) for the occupancy of a block v composed by d × d × d voxels.
We factorize the joint distribution p(v) as a product of conditional distributions
p(vi|vi−1, . . . , v1) over the voxel volume:

p(v) =
d3

Π
i=1

p(vi|vi−1, vi−2, . . . , v1). (4.2)

Each term p(vi|vi−1, . . . , v1) above is the probability of the voxel vi being occupied
given the occupancy of all previous voxels, referred to as a context. Figure 4.2(a)
illustrates such a 3D context. We estimate p(vi|vi−1, . . . , v1) using a neural network
which we dub VoxelDNN.

The conditional distributions in (4.2) depend on previously decoded voxels.
This requires a causality constraint on the VoxelDNN network. To enforce causal-
ity, we extend to 3D the idea of masked convolutional filters, initially proposed in
PixelCNN [136]. Specifically, two kinds of masks (A or B) are employed. Type
A mask is filled by zeros from the center position to the last position in raster
scan order as shown in Figure 4.2(b). Type B mask differs from type A in that
the value in the center location is 1 (colored in red). Type A masks are used in
the first convolutional filter to remove the connections between all future voxels
and the voxel currently being predicted. From the second layer, the value of the
current voxel is not used in its spatial position and is replaced by the result of the
convolution over previous voxels. As a result, from the second convolutional layer,
type B masks are applied which relaxes the restrictions of mask A by allowing the
connection from the current spatial location to itself.

In order to learn good estimates p̂(vi|vi−1, . . . , v1) of the underlying voxel oc-
cupancy distribution p(vi|vi−1, . . . , v1), and thus minimize the coding bitrate, we
train VoxelDNN using cross-entropy loss. That is, for a block v of resolution d, we
minimize :

H(p, p̂) = Ev∼p(v)

[
d3∑
i=1

− log p̂(vi)

]
. (4.3)
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(a) 3D voxel context (b) 3D type A mask

Figure 4.2: (a): Example 3D context in a 5× 5× 5 block. Previously scanned
elements are in blue. (b): 3× 3× 3 3D type A mask. Type B mask is obtained
by changing center position (marked red) to 1.

It is well known that cross entropy represents the extra bitrate cost to be paid
when the approximate distribution p̂ is used instead of the true p. More precisely,
H(p, p̂) = H(p) +DKL(p∥p̂), where DKL denotes the Kullback-Leibler divergence
and H(p) is Shannon entropy. Hence, by minimizing (4.3), we indirectly minimize
the distance between the estimated conditional distributions and the real data dis-
tribution, yielding accurate contexts for arithmetic coding. Note that this is differ-
ent from what is typically done in learning-based lossy PC geometry compression,
where the focal loss is used [141, 142]. In this lossy context, the motivation behind
using focal loss is to cope with the high spatial unbalance between occupied and
non-occupied voxels. The reconstructed PC is then obtained by hard thresholding
p̂(v), and the target is thus the final classification accuracy. Conversely, here we
aim at estimating accurate soft probabilities to be fed into an arithmetic coder.

Figure 4.3 shows our VoxelDNN network architecture for a block of dimension
d. Given the d × d × d input block, VoxelDNN outputs the predicted occupancy
probabilities of all input voxels. Our first 3D convolutional layer uses 7 × 7 × 7
kernels with a type A mask. Type B masks are used in the subsequent layers.
To avoid vanishing gradients and speed up the convergence, we implement two
residual blocks [82] with 5× 5× 5 kernels. Since type A masks are applied at the
first layer, identity skip connection of residual block does not violate the causality
constraint. Throughout VoxelDNN, the ReLu activation function is applied after
each convolutional layer, except in the last layer where we use softmax activation.
Using more filters generally increases the performance of VoxelDNN, at the expense
of an increase in the number of parameters and computational complexity. After
experimenting with various number of filters, we concluded that for input voxel
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Figure 4.3: VoxelDNN architecture, d is the dimension of the input block,
masked layers are colored in yellow and blue. A type A mask is applied to the
first layer (dashed borders) and type B masks afterwards. ‘f64,k7,s1’ stands for
64 filters, kernel size 7 and stride 1.

block (d× d× d× 1) which only has a single feature, 64 convolutional filters give
a good trade-off between complexity and model performance.

4.3.3 . Multi-resolution encoder and adaptive partitioning
We use an arithmetic coder to encode the voxels sequentially from the first

voxel to the last voxel of each block in a generative manner. Specifically, every
time a voxel is encoded, it is fed back into VoxelDNN to predict the probability of
the next voxel. Then, we pass the probability to the arithmetic coder to encode
the next symbol.

However, applying this coding process at a fixed resolution d (in particular,
on larger blocks) can be inefficient when blocks are sparse, i.e., they contain only
a few occupied voxels. This is due to the fact that in this case, there is little
or no information available in the receptive fields of the convolutional filters. To
overcome this problem, we propose to optimize the block size based on a rate-
optimized multi-resolution splitting algorithm as follows. We partition a block
into 8 sub-blocks recursively and signal the occupancy of sub-blocks as well as the
partitioning decision (0: empty, 1: encode as a single block, 2: further partition).
The partitioning decision depends on the bit rate after arithmetic coding. If the
total bitstream of partitioning flags and occupied sub-blocks is larger than encoding
the parent block as a single block, we do not perform partitioning. The details
of this process are shown in Algorithm 1. The maximum partitioning level or
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the maximum number of block sizes is controlled by maxLv and partitioning is
performed up to maxLv = 5 corresponding to a smallest block size of 4. Depending
on the output bits of each partitioning solution, a block of size 64 can contain a
combination of blocks with different sizes. Figure 4.4 shows 4 partitioning examples
for an encoder with maxLv = 4. Note that VoxelDNN learns to predict the
distribution of the current voxel based on previously encoded voxels. As a result,
we can use a bigger model size to predict the probabilities for smaller input block
size.

Algorithm 1: Block partitioning selection
Input: block: B, current level: curLv, max level: maxLv
Output: partitioning flags: fl, output bitstream: bits

1 Function partitioner(B, curLv,maxLv):
2 fl2 ← 2 ; // encode as 8 child blocks
3 for block b in child blocks of B do
4 if b is empty then
5 child_flag ← 0;
6 child_bit ← empty;
7 else
8 if curLv == maxLv then
9 child_flag ← 1;

10 child_bit ← singleBlockCoder(b);
11 else
12 child_flag, child_bit ← partitioner(b, curLv + 1,maxLv);
13 end
14 end
15 fl2← [fl2, child_flag];
16 bit2← [bit2, child_bit];
17 end
18 total_bit2 = sizeOf(bit2) + len(fl2)× 2;
19 fl1← 1; // encode as a single block
20 bit1← singleBlockCoder(B);
21 total_bit1 = sizeOf(bit1) + len(fl1)× 2;

/* partitioning selection */
22 if total_bit2 ≥ total_bit1 then
23 return fl1, bit1;
24 else
25 return fl2, bit2;
26 end

4.3.4 . Context extension
We have discussed our multi-resolution encoder with multiple block sizes to

adapt to the point cloud structure. However, with smaller block sizes, an implicit
context model (using the content of the block) will be less efficient because the
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(a) (b) (c) (d)

Figure 4.4: Partitioning a block of size 64 into: (a) a single block of size 64, (b):
blocks of size 32, (c): 32 and 16, (d): 32, 16 and 8. Non-empty blocks are
indicated by blue cubes.

context may be too small. Therefore, we extend the context of each block to
the encoded voxels that are above and on the left of the current voxel (causality
constraint). Figure 4.5 illustrates the context before and after extension. Before
extending the context, to encode voxel vc, only voxels from v1 to vi−1 in Figure
4.5(a) are considered as contexts. After extending the context to the bigger block,
the context is now composed of all voxels in the blue area in Figure 4.5(b). The
white area represent inactive voxels, i.e., not used in Eq. (4.2). Extending the
context does not change the partitioning algorithm discussed above, although it
might change the optimal selected partitions. Also, the causality is still enforced
as long as we use masked filters in our network.

However, extending to a larger context is not always efficient when the exten-
sion area is sparse or contains noise, therefore we employ a rate-optimized block
extension decision. To limit the computational complexity, we only allow certain
combinations of block sizes and extension sizes, as shown in Table 4.1. To encode
a block with context extension, in Algorithm 1, we encode a block with all the
possible extension sizes and select the best one in terms of bpov. In total, we build
5 models for 5 input sizes which are {128, 64, 32, 16, 8} in the context extension
mode.

4.3.5 . Data augmentation

Table 4.1: Extending block size

Block size Extending block size

64 128,64

32 64,32

16 64,32,16

8 64,32,16,8
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(a) (b)

Figure 4.5: 2D illustration of context extension from block 4× 4 to block 8× 8.
(a): Before extension, (b): after extension. Blue squares are active voxels in the
context, voxels in the white area are ignored by masks or from the bigger block.

In order to train more robust probability estimation models and to increase
the generalization capabilities of our model, we employ data augmentation tech-
niques specifically suited for PCC. In particular, we observed that methods based
on convolutional neural networks are especially sensitive to changes in PC density
and acquisition noise. Therefore, in addition to typical rotation and shifting data
augmentation used for other PC analysis tasks [23, 182], we also consider here alter-
native techniques, such as downsampling. Note that even though our VoxelDNN
operates on voxel domain, to reduce the complexity, all input pipelines process
point clouds in the form of x, y, z coordinates before converting into dense block
in the final step. Specifically, for each generated block from the training datasets,
we rotate them by an angle θ around each x, y, z axis. In addition, to adapt to
varying density levels of the test point clouds, we randomly remove points from
the original block as well as rotated blocks with the sampling rate fs (fs ∈ [0, 1])
over the total points. Figure 4.6 shows our data augmentation methods applying
on Longdress point cloud from MPEG.

4.4 . Experimental Results

4.4.1 . Experimental Setup

Training dataset

We consider point clouds from different and varied datasets, including ModelNet40
[188] which contains 12,311 models from 40 categories and three smaller datasets:
MVUB [116], MPEG CAT1 [1] and 8i [56]. We uniformly sample points from the
mesh models from ModelNet40 and then scale them to voxelized point clouds with
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Figure 4.6: Example of data augmentation applied on the Longdress point cloud.
(a) Original; (b) After removing color attributes; (c),(d),(e) Rotation with
θ = 45◦ on x, y and z axis; (f),(g) Sampling rate fs = 0.7 and fs = 0.4
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Table 4.2: Training and Testing Point Clouds

Training Set Test Set
Point Cloud # Fr ρ Point Cloud ρ

MVUB, 10 bits MVUB, 10 bits, dynamic upper body
Andrews 6 1.70 Phil 1.64
David 5 1.65 Ricardo 1.77
Sarah 6 1.72

8i, 10 bits, dynamic full body
8i, 10 bits Redandblack 1.49

Soldier 9 1.51 Loot 1.43
Longdress 9 1.52 Thaidancer 1.68

Boxer 1.56
CAT1, 10 bits

Facade 1 1.20 CAT1, 10 bits, static cultural heritage
Egyptian mask 1 0.12 Frog 1.13
Statue klimt 1 0.89 Arco Valentino 0.45
Head 1 1.43 Shiva 0.88
House w/o roof 1 1.21

USP, 10 bits, static cultural heritage
ModelNet40, 9 bits BumbaMeuBoi 0.18

200 largest PCs 200 1.53 RomanOilLight 0.94

9 bit precision. To enforce the fairness between the smaller datasets in which we
select point clouds for testing, point clouds from MPEG CAT1 are sampled to 10
bit precision as in MVUB and 8i. In addition, we measure the local density ρ of a
point cloud, computed as the average portion of occupied voxels in the blocks of
size 64, that is:

ρ =
1

NB
×
∑
Bi∈B

100× number of points in Bi
643

(%) (4.4)

where B is the set of occupied blocks of size 64, and NB is the cardinality of B.
The higher the value of ρ is, the denser the point cloud. The selected point clouds,
number of frames as well as ρ of the training data are shown in Table 4.2.

To train a VoxelDNN model of size d we divide all selected PCs into occupied
blocks of size d×d×d. Table 4.3 reports the number of blocks from each dataset for
training, with the majority coming from the ModelNet40 dataset. For the models
trained with data augmentation, we apply rotation with θ = 45◦ on x, y, z axis
and then sampling from all blocks with sampling rate fs = [0.7; 0.4]. In total, we
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Table 4.3: Number of blocks in the training sets of each model.

MVUB 8i CAT1 ModelNet40 Total

Model 128 1516 1101 677 2860 6154
Model 64 5777 4797 2777 11147 24498
Model 32 22082 20436 15243 50611 108372
Model 16 87578 86106 45626 224951 444261
Model 8 354617 349760 180037 986253 1870667

augment from each block to 12 variations in terms of density and rotation which
significantly increase the volume and diversity of our training set.

Test data

We evaluate the performance of our approach on a diverse set of point clouds in
terms of spatial density and content type. All selected point clouds are either used
in MPEG Common Test Condition or JPEG Pleno Common Test Condition to
evaluate point cloud compression methods. As shown in Table 4.2 the test PCs
can be categorized into four sets:

• MVUB: Microsoft Voxelized Upper Bodies [116] - a dynamic voxelized point
cloud dataset containing five subjects. For testing, we randomly select 2
frames from Phil (frame number 10) and Ricardo (76) sequences which are
both very dense (high ρ) with smooth surfaces.

• 8i: Dense point clouds from 8i Labs. They are also dynamic voxelized point
clouds but each sequence contains the full body of a human subject. In the
test set, loot (1000) and redandblack (1510) are from 8i Voxelized Full Bodies
(8iVFB v2) [56] while boxer and thaidancer are selected and downsampled
to 10 bits from 8i Voxelized Surface Light Field (8iVSLF) dataset.

• CAT1: static point clouds for cultural heritage and other related 3D pho-
tography applications [1]. We select Arco_Valentino_Dense_vox12, Frog_-
00067_vox12, and Shiva_00035_vox12 from this dataset and downsam-
ple to 10 bits to validate the performance of our method. PCs from this
dataset are less dense compared to the previous two datasets. Frog_00067
has smoother surfaces compared to the other two PCs which contain rough
surfaces.

• USP: an inanimate dataset from the University of São Paulo, Brazil, related
to cultural heritage with 10 bits geometry precision [201]. BumbaMeuBoi and
RomanOilLight are two selected point clouds from this dataset. PCs from
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USP dataset have simple shape with smooth surfaces. BumbaMeuBoi is the
sparsest PC in our test set with the smallest ρ.

Figure 4.7 illustrates the test point clouds.

Training procedure

We train 5 models for 5 input block sizes, i.e., 128, 64, 32, 16, 8. The mini-
batch sizes are 1, 8, 64, 128, 128, respectively. Our models are implemented in
TensorFlow and trained with Adam [102] optimizer, a learning rate of 0.001 for 80
epochs on a GeForce RTX 2080 GPU.

4.4.2 . Performance evaluation and ablation studies
In the following, we evaluate the performance of the proposed approach as

well as the impact of its various components. We start with models without data
augmentation nor context extension in order to study the optimal maximal par-
titioning depth for our method and establish a baseline for the evaluation. Next,
on top of the best encoder in this experiment (Baseline), we separately add data
augmentation (Baseline + DA) and context extension (Baseline + CE). Fi-
nally, Baseline + DA + CE incorporates both data augmentation and context
extension. We compare our method against the state-of-the-art point cloud com-
pression method G-PCC from MPEG [71] which has a dedicated lossless geometry
mode for static point clouds. We report the number of bits per occupied voxel
(bpov) for each test point cloud and the average per dataset.

In all experiments, the high-level octree plus partitioning signal are directly
converted to bytes without any compression. For the encoders with context exten-
sion, we signal the selected size using two bits (maximum 4 options on block 8).
This information is also directly converted to bytes in the bitstream. On average,
signaling bits account for 2.44% of the bitstream.

Optimal maximum partition depth

To evaluate the effectiveness of the partitioning scheme, we increase the maximum
partitioning level from 1 to 5, corresponding to a minimum block size of 64, 32,
16, 8, and 4. As 3D convolution is not able to efficiently exploit voxel relations on
a very small receptive field, we do not train a separate model for block 4. Instead,
we use the model trained on blocks of size 8 to predict its probabilities.

Table 4.4 shows the average bpov of our encoder on the 4 test datasets at 4 par-
titioning levels. The results with 5 partitioning levels are identical to 4 partitioning
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Figure 4.7: Point clouds in the test set. (a) Phil, (b) Ricardo (c) BumbaMeuBoi
(d) RomanOilLight, (e) Redandblack, (f) Loot, (g) Thaidancer (h) Boxer, (i)
Frog, (j) Arco Valentino, (k) Shiva.
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Table 4.4: Average rate in bpov per dataset at different partitioning levels and the
gain over the encoder with 1 partitioning level.

1 level 2 levels 3 levels 4 levels

Dataset Point Cloud bpov bpov Gain bpov Gain bpov Gain

MVUB
Phil 0.8943 0.8295 -7.25% 0.8206 -8.24% 0.8205 -8.25%
Ricardo 0.8109 0.7511 -7.37% 0.7440 -8.25% 0.7440 -8.25%
Average 0.8256 0.7903 -7.31% 0.7823 -8.25% 0.7823 -8.25%

8i

Redandblack 0.7920 0.7269 -8,22% 0.7191 -9.20% 0.7190 -9.22%
Loot 0.7017 0.6347 -9.56% 0.6271 -10.63% 0.6271 -10.63%
Thaidancer 0.7941 0.7360 -7.32% 0.7298 -8.10% 0.7297 -8.11%
Boxer 0.6462 0.5960 -7.77% 0.5901 -8.68% 0.5900 -8.70%
Average 0.7335 0.6734 -8.22% 0.6665 -9.15% 0.6665 -9.16%

CAT1

Frog 1.9497 1.8406 -5.60% 1.8216 -6.57% 1.8214 -6.58%
Arco Valentino 5.4984 5.2947 -4.52% 5.2051 -5.33% 5.2050 -5.34%
Shiva 3.7964 3.6632 -3.51% 3.6400 -4.01% 3.6403 -4.11%
Average 3.7482 3.5845 -4.54% 3.5569 -5.31% 3.5556 -5.34%

USP
BumbaMeuBoi 6.3618 5.8235 -8.46% 5.7305 -9.92% 5.7305 -9.92%
RomanOilLight 1.8708 1.7157 -5.14% 1.7030 -5.84% 1.7030 -5.84%
Average 4.0853 3.7696 -6.80% 3.7168 -7.88% 3.7168 -7.88%

levels and are not shown in the table. We observe that, as partitioning levels in-
creases, the corresponding gain over single-level also increases. However, adding
the 3rd and 4th level yields only a slight improvement compared to adding the 2nd

level. This can be explained with Figure 4.8 showing the percentages of occupied
voxels in each partition size. We observe that most voxels are encoded using blocks
64 and 32, while very few voxels are encoded using blocks of smaller size. Adding
more partitioning levels enables to better adapt to point cloud geometry, however,
this is not often compensated by a bitrate reduction of the sub-blocks, since in
the smaller partitions the encoder has access to limited contexts, resulting in less
accurate probability estimation. However, there is an increase in the portion of
block 32 and 16 on CAT1 and USP compared to MVUB and 8i. This reflects the
density characteristics of each dataset: on sparser datasets (CAT1 and USP), the
algorithm tends to partition point cloud into smaller blocks to eliminate as much
empty space as possible. Based on these observations, we use a maximum of 4
partitioning levels for our baseline codec in later experiments.

Comparison with G-PCC

In Table 4.5, we report the output bitrate of our methods to compare with MPEG
G-PCC. Both our method and G-PCC perform better on dense PCs while having
higher rates on sparser PCs. Compared to G-PCC, the Baseline encoder obtains
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Figure 4.8: Percentage of occupied voxels encoded in each partition size. From
top to bottom: block 8, 16, 32, 64. Most of occupied voxel are encoded in block
64 and block 32.

a significant gain – over 29% bitrate reduction on dense point clouds from MVUB
and 8i dataset. On CAT1 and USP datasets, our method achieves a comparable
rate with G-PCC. In particular, for Arco Valentino and BumbaMeuBoi, the two
point clouds having the lowest ρ, our baseline codec yields a rate higher than
G-PCC (+8.17% and +5.10%, respectively). For point clouds with high local
density levels, our VoxelDNN could efficiently leverage the relations between voxels
and predict more accurate probability. In contrast, probability prediction is less
accurate on sparser point clouds.

This can be partially solved by adding data augmentation during training.
Indeed, by random subsampling the point clouds in the training set, VoxelDNN
learns to predict more accurate probabilities when the point cloud is less dense.
Baseline + DA yields higher gains over G-PCC on CAT1 and USP compared
to Baseline, with average bitrate reductions of about 1.54% and 4.09%, respec-
tively. On the other hand, we observe a small degradation of the performance
compared to Baseline for denser datasets, such as MVUB and 8i dataset. This is
somehow expected, as data augmentation increases the generalization capability
of VoxelDNN, which instead is more adapted to denser PCs in the baseline mode.

The encoder with context extension, Baseline + CE, obtains a better rate on
all test point clouds compared to the Baseline encoder, regardless of the density,
with an average further bitrate reduction of 4.8% over G-PCC. The cost to be
paid for this performance improvement is a higher computational complexity in
the encoding process.

The last two columns of Table 4.5 show the experiment results for the encoder
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Table 4.5: Average rate in bpov of proposed method and percentage gains com-
pared with MPEG G-PCC (negative percentages mean bitrate reduction).

G-PCC Baseline Baseline + DA Baseline + CE Baseline + DA
+ CE

Dataset Point Cloud bpov bpov Gain over
G-PCC bpov Gain over

G-PCC bpov Gain over
G-PCC bpov Gain over

G-PCC

MVUB
Phil 1.1617 0.8205 -29.37% 0.8954 -22.92% 0.7601 -34.57% 0.8252 -28.97%
Ricardo 1.0672 0.7440 -30.28% 0.8235 -22.84% 0.6874 -35.59% 0.7572 -29.05%
Average 1.1145 0.7823 -29.83% 0.8595 -22.88% 07238. -35.06% 0.7912 -29.01%

8i

Redandblack 1.0899 0.7190 -34.3% 0.7772 -28.69% 0.6645 -39.03% 0.7003 -35.75%
Loot 0.9524 0.6271 -34.16% 0.6282 -34.04% 0.5766 -39.46 % 0.6084 -36.12%
Thaidancer 0.9985 0.7297 -26.92% 0.7253 -27.36% 0.6769 -32.21% 0.6627 -33.63%
Boxer 0.9479 0.5900 -37.76% 0.6573 -30.66% 0.5503 -41.95% 0.5906 -37.69%
Average 0.9972 0.6665 -33.22% 0.6870 -30.19% 0.6171 -38.12% 0.6405 -35.77%

CAT1

Frog 1.9085 1.8214 -4.56% 1.7662 -7.64% 1.6971 -11.08% 1.7071 -10.55%
Arco Valentino 4.8119 5.2050 +8.17% 5.0639 +5.24% 4.9923 +3.75% 4,9900 +3.70%
Shiva 3.6721 3.6403 -0.87% 3.5838 -2.04% 3.4619 -5.72% 3.5135 -4.32%
Average 3.4642 3.5556 +0.91% 3.7413 -1.54% 3.3838 -2.32% 3.4035 -3.72%

USP
BumbaMeuBoi 5.4522 5.7305 +5.10% 5.3831 -1.27% 5.3580 -1.73% 5.066 -7.08%
RomanOiLight 1.8604 1.7030 -8.46% 1.7319 -6.91% 1.6130 -13.30% 1.6231 -12.76%
Average 3.6563 3.7168 -1.68% 3.5575 -4.09% 3.4855 -7.51% 3.4855 -9.91%

incorporating both data augmentation and context extension, Baseline + DA
+ CE. On average, we have a higher gain than Baseline and Baseline + DA
because of the Context Extension. As expected, comparing with Baseline +
CE, Baseline + DA + CE has increasing gains on CAT1 and USP datasets
while obtaining a lower gain on MVUB and 8i datasets. Despite the different
performance trends for different densities of the input point clouds, we obtain, on
average, a bitrate reduction of 20.17% compared to G-PCC. Note that, in practice,
if the characteristics of point cloud to be coded are known in advance, our approach
is flexible, in that we could deploy different models targeting a specific application
(cultural heritage, tele-immersive conferencing, etc.) and content type to obtain
the best compression rate.

Effect of PC content and density on coding performance

In order to better understand the performance of our codec for different types of
content, we plot in Figure 4.9 the average bpov as a function of the percentage of
occupied voxels for each block 64 of Phil, Loot, Arco Valentino and BumbaMeuBoi
with the Baseline + DA + CE encoder. Notice that each block 64 can be split
up to different partition levels, indicated by the size of the dots in the figure. The
distribution of the density of blocks 64 is shown in the top panel.

From this figure, we can draw some observations. First, most of blocks are
partitioned into 3 levels (smallest dots) and the majority of the remaining blocks
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Figure 4.9: Performance on block 64 on four test point clouds. Each point
corresponds to a block 64 with percentage of occupied voxels (ρ) and bpov (log
scale) performance of that block. The size of each point indicates the partitioning
level and each partitioning level was sized according to its frequency. Higher
points indicate that VoxelDNN is performing worse. The marginal distributions
of occupied voxels for each point cloud are on the top of the scatter plot.
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Figure 4.10: Output geometry bitrate in bpov per block. (a) Phil, (b) Loot, (c)
Arco Valentino, (d) BumbaMeuBoi. The heatmap bar below each subfigure
shows the minimum and maximum bpov and the corresponding color.

are partitioned into 2 or 4 levels. Second, in each point cloud, denser blocks are
easier to compress, as mentioned before, due to the better capabilities of convo-
lution to capture spatial relations. On the other hand, our approach becomes
inefficient when the blocks are less dense, and the bitrate associated to the very
sparse blocks rapidly grows by an order of magnitude compared to the rest. This
phenomenon is true for all kinds of contents, although it has a stronger effect when
the block density distribution is skewed to the left, such as for Arco Valentino or
BumbaMeuBoi, which have the highest bitrates in our experiments.

We can also observe a content-dependence trend in the figure, which appears
like a vertical offset for different PCs. Arco Valentino and RomanOilLight overall
have higher bpov compared to Phil and Loot with the same number of occupied
voxels. This suggests that local density alone is not the only factor affecting the
performance of our approach, but that somehow higher-order statistics enter into
play. We will speculate more about this behaviour when discussing the bitrate
allocation in Figure 4.10. Further analysis of this trend, as well as how to take
better into account the PC characteristics to improve coding performance, are left
to future work.

Selection of context extension and impact on the partitioning

Figure 4.11 shows how many times an extended block size is selected in the Base-
line + DA + CE experiments. First, it can be seen that in most cases our
encoder choose to extend the context to encode the current block, and mostly the
immediate larger size is selected. By extending context to exploit geometry infor-

85



Figure 4.11: Number of extending block size for each block. (a) Phil, (b) Loot,
(c) Arco Valentino, (d) BumbaMeuBoi. Most of the time, the encoder extend the
context to neighboring voxels instead of independently encoding a block.

mation from the neighboring voxels, VoxelDNN can leverage a larger amount of
information and predict a better probability. In most cases where the encoder does
not extend the context, the blocks are on the border of the volume, corresponding
to a mostly empty extending area.

By summing the quantities in each column, we obtain the number of blocks
which are encoded using each block size and we observe that large parts of the
point cloud are partitioned into block 32 or 16. This is in contrast with the
previous observation on baseline experiments where the most frequent partitions
are 64 and 32 (Figure 4.8). This has an intuitive explanation: without context
extension, small block sizes of 32 or 16 were insufficient to provide a representative
enough context for VoxelDNN in most of the cases, even if they would better
adapt to areas with low point density. Conversely, the context extension allows to
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compensate for the small block dimension and renders these modes competitive.
As a result, context extension significantly affects the optimal partitioning and
enables VoxelDNN to adapt better to local sparsity while still providing enough
contextual information to predict accurate probabilities.

Using multiple models for the context

For the multi-resolution encoder, instead of using a separate model for each block
size, VoxelDNN can use only a single neural network to predict the distribution.
Specifically, we place small blocks (8, 16, 32) into a block of size 64 and then use
the network for block 64 to predict and extract the corresponding distributions.
This method of computing the occupancy distribution is different from Context
Extension in that the surrounding voxels are always set to 0. In Table 4.6, we
compare the performance of using a single model with Baseline, which is a multi-
models encoder. In this experiment, both encoders have 4 maximum partitioning
levels and use the same model 64. On average, by having a separate model for each
block size, a multi-model encoder obtains about 1% additional gain over G-PCC
compared to the single model encoder. This amount of gain indicates that the
bigger VoxelDNN model can predict the conditional distribution on smaller blocks
as efficiently as using a separate model for each block size. However, model 64 is
trained on blocks of size 64 only, and learns features at that scale. In general, a
model trained on small blocks could better capture the context from small input
blocks and thus provides a higher gain in some circumstances.

Visualization of the bitrate allocation on coded PCs

The bpov heatmaps of 4 point cloud are shown in Figure 4.10. The blocks in the fig-
ures reflect the optimal partitioning obtained by the algorithm. First, we visually
confirm what found in Figure 4.9, i.e., VoxelDNN performs better, i.e., achieves
a small bitrate, in the smooth and dense areas of the point cloud. Conversely, in
the noisy areas (Phil ’s hand, Loot ’s hand), sudden holes (Arco Valentino) or very
sparse regions (edges in Arco Valentino, the bottom part of BumbaMeuBoi), which
are indicated in red, the performance is worse. We can argue that the density of a
point cloud, together with the smoothness and noise characteristics of the content,
are among the main factors that influence the performance of VoxelDNN. On the
other hand, we can argue that noisy and very sparse areas are intrinsically diffi-
cult to code in general, and indeed also the MPEG G-PCC codec requires a large
number of bits to encode point clouds such as BumbaMeuBoi and Arco Valentino.

4.4.3 . Computational complexity analysis
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Table 4.6: Single model and multi-models comparison.

G-PCC Single model Multi-models

Point Cloud bpov bpov Gain over
G-PCC bpov Gain over

G-PCC
M

V
U

B Phil 1.1617 08312 -28.45% 0.8205 -29.37%
Ricardo 1.0672 0.7541 -29.34% 0.7440 -30.28%
Average 1.1145 0.7927 -28.89% 0.7823 -29.83%

8i

Redandblack 1.0899 0.7320 -32.84% 0.7190 -34.3%
Loot 0.9524 0.6403 -32.77% 0.6271 -34.16%
Thaidancer 0.9985 0.7305 -26.84% 0.7297 -26.92%
Boxer 0.9479 0.6008 -36.62% 0.5900 -37.76%
Average 0.9972 0.6759 -32.27% 0.6665 -33.22%

C
A
T

1

Frog 1.9085 1.8433 -3.42% 1.8214 -4.56%
Arco Valentino 4.8119 5.2173 +8.42% 5.2050 +8.17%
Shiva 3.6721 3.6595 -0.34% 3.6403 -0.87%
Average 3.4642 3.5734 +1.56% 3.5556 +0.91%

U
SP

BumbaMeuBoi 5.4522 5.7501 +5.46% 5.7305 +5.10%
RomanOiLight 1.8604 1.7094 -8.12% 1.7030 -8.46%
Average 3.6563 3.7298 -1.33% 3.7168 -1.68%

A well-known drawback of auto-regressive generative models such as PixelCNN
and VoxelDNN is the sequential generation of the symbol probabilities. This re-
quires to run the network for each voxel, which has a complexity that increases
linearly with the number of voxels. Therefore, VoxelDNN has a computational
complexity which is 3 orders of magnitures bigger than G-PCC.

Table 4.7 reports the encoding and decoding time of our Baseline and Base-
line + CE. Tests are benchmarked on an Intel(R) Xeon(R) Silver 4110 CPU @
2.10GHz machine with an Nvidia GeForce GTX 2080 GPU and 16 GB of RAM,
running Ubuntu 16.04. Our encoding time is highly dependent on the number of
blocks and the number of voxels within each block. Besides, the number of modes
in the partitioning algorithm and context extension also influence the complex-
ity. The Baseline + CE encoder tries all the extending modes and selects the
best one, thus its average encoding time is higher than Baseline – an increase of
about 182%. The reason why the encoding time for the Baseline codec is lower
than the decoding time is purely implementative: at the encoder it is possible
to predict the whole block probabilities in a single batch on a GPU, while in a
realistic scenario, at the decoder side the voxels need to be individually decoded.
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Table 4.7: Average runtime (in seconds) of different encoders comparing with G-
PCC.

G-PCC Baseline Baseline + CE

Encoding 2.91 3282 9271
Decoding 2.85 6783 5765

When context extension is enabled, point clouds are partitioned into even smaller
blocks, corresponding to a smaller complexity at the decoder, as a smaller number
of voxels need to be decoded. On the other hand, the total parameters of each
VoxelDNN model corresponds only to about 3.5 MB which is a small-size network
in practice. Notice that the bottleneck in our system comes from the adoption of
an auto-regressive model, which has the advantage of providing, in principle, an
exact likelihood estimation of the data, though at a high computational cost. We
are currently investigating the use of alternative generative approaches that avoid
sequential probability estimation.

4.5 . Conclusions and future work

This chapter presents a lossless compression method for point cloud geometry.
We extend a well-known auto-regressive generative model initially proposed for
2D images to the 3D voxel space, and we incorporate 3D data augmentation to
efficiently exploit the redundancies between points. This approach enables to build
accurate probability models for the arithmetic coder. As a result, when using
an adaptive partitioning scheme and context extension, our solution outperforms
MPEG G-PCC over a diverse set of point clouds.

Our analyses on the performance of the proposed method indicate at least two
major avenues for improvement. On one hand, handling low-density point clouds
would require to rethink the network architecture to handle sparse input data. On
the other hand, a major drawback of VoxelDNN is the high computational cost
of sequential probability generation, which we plan to replace in the future by a
more efficient generative model.

The contents of this chapter have been published in D. T. Nguyen, M. Quach,
G. Valenzise, and P. Duhamel, “Learning-Based Lossless Compression of 3D Point
Cloud Geometry,” in ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Jun. 2021, pp. 4220–4224 and
D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, “Lossless Coding of Point
Cloud Geometry Using a Deep Generative Model,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 31, no. 12, pp. 4617–4629, Dec. 2021.
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5 - Deep Multiscale Lossless Point Cloud Geometry
Compression

5.1 . Introduction

In order to efficiently code point cloud geometry losslessly, it is necessary to
accurately estimate the occupancy probabilities to be employed into a context
adaptive arithmetic codec. In our previous work, we have modeled the voxel occu-
pancy distributions using a likelihood-based deep autoregressive network called
VoxelDNN [132], inspired by the popular PixelCNN model [136]. VoxelDNN
achieves state-of-the-art gains (up to 34%) over the MPEG G-PCC reference codec.

Autoregressive models can accurately predict probability distributions. How-
ever, the decoding process using this approach is equivalent to sampling from the
high-dimensional conditional distribution of voxel occupancies, which is computa-
tionally complex as it demands one network evaluation per voxel. In this work,
taking inspiration from previous work in 2D image generation [147], we propose
a multiscale method (named MSVoxelDNN) for lossless geometry compression of
static dense point clouds which addresses the complexity problem of VoxelDNN.
Our main contributions are:

• We introduce for the first time a multiscale deep context model in the voxel
domain to estimate occupancy probabilities, in which higher-resolution scales
are modeled conditioned on the lower-resolution ones.

• We accelerate the inference by parallelizing voxel prediction. At each scale,
voxels are partitioned into groups. Voxels belonging to the same group are
assumed to be conditionally independent from each other. In this way, we
can predict all the voxels of the same group simultaneously, reducing the
computation time. Instead, each group of voxels is assumed to depend on
the previously decoded ones, and thus out context model can leverage de-
pendencies between groups.

Compared to VoxelDNN, we make an approximation in that we do not utilize
the statistical dependencies of voxels inside groups (due to the conditional inde-
pendence assumption). We demonstrate experimentally that this approximation
entails only a small loss of performance compared to the original VoxelDNN, and
still outperforms significantly MPEG G-PCC in terms of bits per occupied voxel.
However, in terms of complexity, MSVoxelDNN is on average 35 and 109 times
faster compared to VoxelDNN for encoding and decoding, respectively. The rest
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of the chapter is structured as follows: Section 5.2 reviews related work; the pro-
posed MSVoxelDNN method is described in Section 5.3.4; Section 5.4.2 presents
the experimental results; and conclusions are drawn in Section 5.5.

5.2 . Related Work

To deal with the irregular distribution of points in 3D space, many PCC meth-
ods employ octree representations [153, 120, 96, 65, 66, 67, 87] or local approxi-
mations [58]. The octree based method P(PNI) proposed in [67] builds a reference
octree using an intra prediction mode. Each octant is then encoded with 255
contexts and a 255×255 frequency table must be transmitted to the decoder. In
the MPEG G-PCC codec, geometry can be represented by a pruned octree plus a
surface model (trisoup coder) or a full octree (octree coder). To exploit local geom-
etry information within the octree and obtain an accurate context for arithmetic
coding, the G-PCC octree coder introduces many techniques such as Neighbour-
Dependent Entropy Context [10], intra prediction [8], planar/angular coding mode
[11, 6], etc. Instead, in this chapter, we represent the PC geometry in a hybrid
mode, mixing the octree and voxel domains. On the one hand, octree can adapt
to the sparsity of the point cloud, as partitioning stops at the empty node; on the
other hand, geometric information are kept and can be naturally processed by a
neural network.

Recently, deep learning has been applied widely in point cloud coding in both
the octree domain [87, 29] and especially voxel domain [79, 141, 180, 132]. A
coding method for static LiDAR point cloud is proposed in [87] which learns the
probability distributions of the octree based on contextual information and uses
an arithmetic coder for lossless coding. In this work we focus instead on dense
point clouds, where voxel-based approaches have shown interesting results. In
particular, our recent work, VoxelDNN [132], is an auto-regressive based model
which predicts the distribution of each voxel conditioned on the previously de-
coded voxels. VoxelDNN obtains an average rate saving of 30% over G-PCC. The
auto-regressive approach of VoxelDNN is similar to PixelCNN [136] which provides
accurate 2D data likelihood estimations. However, the common problem of auto-
regressive models is the complexity, as these models require a network evaluation
per voxel/sub-pixel. In 2D, several methods have been proposed to overcome this
limitation. PixelCNN++ [150] models the joint distribution of three color chan-
nels simultaneously and proposes several optimizations to PixelCNN. Multiscale
PixelCNN [147] generate pixels in certain groups in parallel. The L3C method
[122] employs a latent space to facilitate the learning of conditional probability
estimates at several scales. While this technique solves the complexity issue, the
estimated probabilities are not accurate enough and the coding gains are signifi-
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cantly less interesting than using Pixel CNN. In this chapter, we aim at finding a
good trade-off between complexity and compression performance. Thus, we follow
the principle of [147] introducing parallelization and multiscale prediction.

5.3 . Proposed Method

As mentioned before, in this chapter, we focus on voxelized point clouds. With-
out loss of generality, we assume the point cloud contains 2n × 2n × 2n voxels. An
octree is obtained by recursively spliting the voxel volume into eight sub-cubes
until the desired precision is achieved. The occupied cube is marked by bit 1 and
empty cube is marked by bit 0. As a result, in each octree node, the generated 8
bits represent the occupancy of the 8 child nodes. A point cloud of size 2n×2n×2n
can be represented by an n level octree. In this work, and similar to [132], we par-
tition an n-depth point cloud up to level n− 6, and thus obtain a n− 6 high level
octree and a number of non-empty binary blocks v of size 26 × 26 × 26, which we
refer to as resolution d = 64. The high-level octree allows to coarsely remove most
of the empty space in the point cloud, which does not contain any useful context
information to predict occupancies. All the non-empty voxel blocks are further
processed with our multiscale scheme. We first define a raster scan order in the
3D space that scans one voxel at a time in depth, height and width order. We
index all voxels in block v at resolution d from 1 to d3 in 3D raster scan order
with:

vi =

{
1, if ith voxel is occupied
0, otherwise.

(5.1)

5.3.1 . VoxelDNN context model

VoxelDNN [132] factorizes the joint distribution of a voxel block into a product
of conditional distributions:

p(v) =
d3

Π
i=1

p(vi|vi−1, vi−2, . . . , v1). (5.2)

Each term p(vi|vi−1, . . . , v1) above is the occupied probability of the voxel vi given
only the occupancy of previous voxels, referred to as causality constraint. All
factors in equation (5.2) are estimated by a neural network with masked filters
to enforce causality [132]. Therefore, the inference must also proceed sequentially
voxel-by-voxel and VoxelDNN performs one network evaluation per voxel.

5.3.2 . MSVoxelDNN context model

In this chapter, we predict multiple voxels in parallel. As mentioned above,
this calls for relaxing some dependencies between voxels.
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Figure 5.1: Overview of the MSVoxelDNN architecture with input block of size
64 and 3 scales. DS is the downsampling operation (max-pooling). The base
resolution of size 8 is encoded using a VoxelDNN context model. The higher
resolutions are predicted from lower resolution as well as encoded groups at the
same scale. The predicted block probabilities on the right side are passed to
an arithmetic coder for encoding voxel occupancies. The final bitstream is the
concatenation of all bits at all scales.

First, we divide a voxel block into G separate groups and use vg to represent
all voxels in group g, g = 1, . . . , G. We factorize the joint distribution p(v) as a
product of G conditional distributions p(vg|vg−1, vg−2, . . . , v1):

p(v) =
G∏

g=2

p(vg|vg−1, vg−2, . . . , v1)× p(v1|vLS). (5.3)

Each term p(vg|vg−1, vg−2, . . . , v1) is the joint probability of all voxels in vg being
occupied given all previous groups. Compared to VoxelDNN, we have removed
the dependencies of voxels within each group. In return, we are able to predict
all voxels in group g in parallel. In addition, given the first group, all other
groups can be autoregressively predicted. We model voxels in the first group
v1 as conditionally independent given the lower resolution vLS. This procedure
is applied recursively to lower resolutions until the lowest scale, which is encoded
using VoxelDNN. Figure 5.1 shows the general scheme of our Multiscale VoxelDNN
encoder (MSVoxelDNN). At each step of the pyramid, downsampling is obtained
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Figure 5.2: Prediction parallelization in MSVoxelDNN / (a) partitioning of a block
into groups of conditionally independent voxels. For the sake of clarity and without
loss of generality, we show the context modeling for a block of size 2 × 4 × 4.
Downsampling is achieved by applying a 2× 2× 2 max pooling operator, i.e., the
voxels in the lower scale are the maximum of all voxels having the same color
on higher scale (MaxPooling operation). (b), (c) and (d) illustrate some steps of
the groups prediction. The target groups are in gray, while the input (context)
groups are in pink. (b): the 1st group is predicted from all the groups at the lower
resolution. (c) the 2nd group is predicted from group 1 at the same resolution. (d)
the 5th group is predicted from group 1,2,3 and 4 (at the same scale).

by applying a maxpooling operation of size 2× 2× 2 to the high resolution block,
i.e., the resulting lower resolution voxel occupancy is one if at least one of the
8 higher resolution voxels is occupied. Therefore, by training the context model
to predict the first group from vLS, we somehow learn an inverse max pooling
mapping for occupancy probabilities.

At a given scale, voxel groups are obtained by dividing the voxel block into
non-overlapping 2× 2× 2 blocks. We then select one of the 8 corners for each of
2 × 2 × 2 blocks to get 8 groups. We build different models for different group
predictions. Figure 5.2 shows a grouping example and prediction scheme for group
1, 2 and 5. The other groups are modeled from previous groups in a similar manner
as group 2, 5.

5.3.3 . Network architecture
We employ a network structure similar to [147]. The network is composed

of two stages: first, for each group prediction, we extract features using ResNet
blocks. Compared to [147], we reduce the complexity of the feature extraction
layer by just using 4 Resnet blocks instead of 12. The features enable to smooth
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out the discontinuities in the input voxel data, due to the sampling introduced
with the grouping. The so-obtained spatial feature map is then partitioned into
contiguous patches, such that there are P patches for each dimension, and thus
P×P×P in total (we omit here for simplicity the number of channels in the feature
space). In the second stage, each patch is input to a shallow auto-regressive model
(in this case, a VoxelCNN). We can accelerate training/inference with parallel
patches prediction instead of prediction on the whole spatial feature map (i.e.,
using P > 1). However, too small patches can lead to inaccurate probabilities
due to limited contexts. Therefore, we use P = 2 which require 23 small network
evaluations in each forward pass (P = 4 in [147]).

Figure 5.3 shows the network architecture to predict group 2. Given group
1 of size D × D × D, the network outputs the predicted occupancy probabilities
of all voxels in group 2. First, we use 4 ResNet blocks to extract a feature map
from input, in each ResNet block, a 3D convolution with 3 × 3 × 3 filter size
is placed between two 1 × 1 × 1 convolution layers. Next, the feature map are
spatially divided into 8 patches of the same size and parallelly processed by a
shallow VoxelCNN to produce occupancy probabilities. The probabilities are then
merged back to a block of size D ×D ×D × 1 which is the size of group 2. The
shallow VoxelCNN is composed by one 3D convolutional layer with type A mask,
a Resnet block followed by a 3D convolution layer. In each scale, we performs one
network evaluation per group and then merge all 8 group probabilities into their
spatial position in the output block.

Our predicted probabilities are fed as input to an arithmetic coder for lossless
coding. Therefore, to minimize the output bitrate, we train MSVoxelDNN using
cross-entropy loss, which is a measurement of the bitrate cost to be paid when the
approximate symbol distribution p̂ is used instead of the true symbol distribution
p.

5.3.4 . Complexity analysis

The bottleneck of VoxelDNN comes from the fact that it is necessary to apply
the network on each new voxel to encode/decode. If there are d3 voxels in a block,
VoxelDNN requires O(d3) network evaluations to estimate probabilities during
decoding. For VoxelDNN encoding, it is possible to partially parallelize the process
by evaluating several contexts in parallel (since they are known at the encoder
side), and thus divide the computational time by a constant factor. However, this
does not influence the computational complexity.

Instead, MSVoxelDNN enables to reduce substantially the computational com-
plexity compared to VoxelDNN. At the lowest resolution the block is coded using
VoxelDNN with a small number of voxels (d = 8). Then, for each resolution level,
the network is evaluated only G times, where G (the number of groups) is constant
across scales. As we use a 2× 2× 2 max pooling as downsampling operator in our
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Figure 5.3: Group prediction network architecture. This network predict group
2 from group 1, corresponding to (c) in the example in Figure 5.2. The only
learnable modules are Resnet and VoxelDNN. Merge and split operations only
reshape data. We use a sequence of Resnet blocks to extract features from input.
The features are then spatially split into smaller blocks before parallel processing
by a small VoxelDNN. Black rectangular blocks are normal 3D convolution with
‘f32,k7,s1’ stands for 32 filters, kernel size 7 and stride 1. All convolutional blocks
of VoxelDNN are masked convolutions [132], type A mask is in the first layer (in
yellow), followed by type B masks.

work, the total number of levels is ⌈log8 d3⌉, and thus the complexity is O(log d).

5.4 . Experimental results

5.4.1 . Experimental Setup

Training dataset: We consider point clouds from different and varied datasets,
including ModelNet40 [188] which contains 12,311 models from 40 categories and
three smaller datasets: MVUB [116], MPEG CAT1 [1] and 8i [56]. We uniformly
sample points from the mesh models from ModelNet40 and then scale them to
voxelized point clouds with 9 bit precision. To enforce the fairness between the
smaller datasets in which we select point clouds for testing, point clouds from
MPEG CAT1 are sampled to 10 bit precision as in MVUB and 8i.

To train a MSVoxelDNN model of at scale d we divide all selected PCs into
occupied blocks of size d × d × d. Table 5.1 reports the number of blocks from
each dataset for training, with the majority coming from the ModelNet40 dataset.
Block 8 dataset is also used to train VoxelDNN model.

Training: We have 3 scales and at each scale we have 8 models for 8 groups
and thus, in total we train 24 MSVoxelDNN models. The mini-batch sizes are 32
at scale 64 and 64 at other scale. Our models are implemented in PyTorch and
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Table 5.1: Number of blocks in training sets for each block size.

Block size MVUB 8i CAT1 ModelNet40 Total

64 5,777 4,797 2,777 1,1147 24,498
32 22,082 20,436 15,243 50,611 108,372
16 87,578 86,106 45,626 224,951 444,261
8 354,617 349,760 180,037 986,253 1,870,667

trained with Adam optimizer, a learning rate of 1e−5 for 100 epochs on a GeForce
RTX 2080 GPU.

Experiments: We evaluate the performance of MSVoxelDNN on a set of
dense point clouds from MPEG and Microsoft datasets. These PCs were not used
during training. The final bitstream is composed of the bits at all scales and the
bits for the high-level octree. The average bits per occupied voxel (in bpov) is
then measured by dividing the total bits by the number of occupied voxels. We
compare the performance of MSVoxelDNN, VoxelDNN and G-PCC (version 12).
Note that in the VoxelDNN paper [132], we use a single model for all block sizes.
However, in this chapter, we train separate VoxelDNN models for each block sizes
on the same dataset as MSVoxelDNN to have a fair comparison.

5.4.2 . Experimental results

In all experiments, the high-level octree are directly converted to bytes without
any compression, this part only accounts for less than 1% of the bitstream.

Rate comparison: Table 5.2 reports the rate in bpov of the proposed method,
MSVoxelDNN, compared with G-PCC and VoxelDNN. We observe that MSVox-
elDNN outperforms G-PCC on all test point clouds with rate savings from 11.13%
to 26.32%. Compared to VoxelDNN, MSVoxelDNN has smaller gains over G-PCC,
with a bitrate increase of 8.12% to 18.21%. This is due to the fact that MSVox-
elDNN breaks some dependencies between voxels to model voxel probabilities in
parallel, resulting in a less accurate context model.

Complexity comparison: Table 5.3 shows the encoding/decoding run-time
for G-PCC, VoxelDNN and MSVoxelDNN. It can be seen that both VoxelDNN
and MSVoxelDNN are slower than G-PCC, however there is a very large speedup
of MSVoxelDNN compared to VoxelDNN. Specifically, MSVoxelDNN has a 35 and
109 times faster encoding and decoding time, respectively, compared to VoxelDNN.
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Table 5.2: Average rate in bpov of MSVoxelDNN compared with MPEG G-PCC
v12 and VoxelDNN. The last column shows the gain reduction of MSVoxelDNN
from VoxelDNN over G-PCC.

G-PCC VoxelDNN MSVoxelDNN

Point Cloud bpov bpov Gain over
G-PCC bpov Gain over

G-PCC

Rate
increase

over
VoxelDNN

Microsoft [116]

Phil10 1.15 0.82 -29.37% 1.02 -11.13% +18.25%
Ricardo10 1.07 0.74 -30.28% 0.95 -11.21% +19.07%
Average 1.11 0.78 -28.90% 0.99 -11.17% +17.73%

MPEG [1, 56]

Redandblack10 1.09 0.71 -34.31% 0.87 -20.18% +14.13%
Loot10 0.95 0.62 -34.16% 0.63 -21.05% +13.11%
Thaidancer 10 1.00 0.73 -27.00% 0.85 -15.00% +12.00%
Boxer 10 0.90 0.59 -34.44% 0.70 -26.32% +8.12%
Average 1.00 0.67 -31.79% 0.79 -20.55% +11.24%

The asymmetry of coding run-time is due to the possibility to partially parallelize
VoxelDNN at the encoder, as mentioned in Section 5.3.4.

5.5 . Conclusions

In this chapter, we propose a Multiscale VoxelDNN method to lossless code the
geometry of dense point clouds. On this kind of content, MSVoxelDNN reduces the
bitrate compared to G-PCC by up to 17% on average, while reducing by over two
orders of magnitudes the decoding complexity of the state-of-the-art VoxelDNN
lossless codec. This is obtained by removing some dependencies between voxels in
the same group in order to process them in parallel.

The performance of MSVoxelDNN could be further improved by optimizing the
grouping of voxels, in such a way to remove only those dependencies that do not
contribute significantly to the estimation of conditional occupancy probabilities.
Also, the MSVoxelDNN scheme (but this is a common issue of VoxelDNN as
well) yield poor performance on sparse point clouds – in general MSVoxelDNN
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Table 5.3: Encoding/decoding time comparison per dataset (in seconds).

G-PCC VoxelDNN MSVoxelDNN

Encoding

Microsoft 7 4,124 85
MPEG 3 2,459 54

Decoding

Microsoft 5 10,332 92
MPEG 3 6,274 58

has higher bitrates than G-PCC on point clouds which are not sufficiently dense.
This is due to some basic hypotheses behind voxelization and convolutional neural
networks, which require some substantial change of network architectures and
PC representation. We are currently working towards an efficient learning-based
lossless coding scheme for sparser point clouds to overcome these limitations.

The contents of this chapter have been published in D. T. Nguyen, M. Quach,
G. Valenzise, and P. Duhamel, “Multiscale deep context modeling for lossless point
cloud geometry compression,” in 2021 IEEE International Conference on Multi-
media Expo Workshops (ICMEW), Jul. 2021, pp. 1–6.
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6 - Folding-based Point Cloud Attribute Compres-
sion

6.1 . Introduction

In the previous part, we have focused on geometry compression. The sparsity of
the geometry was handled with different methods such as block partitioning, adap-
tive partitioning or the focal loss. Considering voxelized point clouds, geometry
can be considered as a sparse binary signal on a regular 3D grid. However, at-
tributes are defined on the geometry and thus on a domain that is both sparse and
irregular. In this chapter, we focus on lossy compression of point cloud attributes
and we make the observation that point clouds can be interpreted as 2D discrete
manifolds in 3D space. Therefore, instead of compressing point cloud attributes
using 3D structures such as octrees, we can fold this 2D manifold onto an image.
This opens many avenues of research, as it provides, e.g., a way to apply existing
image processing techniques straightforwardly on point cloud attributes. Thus, we
propose a novel system for folding a point cloud and mapping its attributes to a
2D grid. Furthermore, we demonstrate that the proposed approach can be used
to compress static point cloud attributes efficiently.

6.2 . Related Work

This chapter is at the crossroads of static point cloud attribute compression and
deep representation learning of 3D data. Compressing static point cloud attributes
has been explored using graph transforms [195], the Region-Adaptive Hierarchical
Transform (RAHT) [54] and volumetric functions [104]. Graph transforms take
advantage of the Graph Fourier Transform (GFT) and the neighborhood structure
present in the 3D space to compress point cloud attributes. The RAHT is a
hierarchical transform which extends the Haar wavelet transform to an octree
representation. In this chapter, we propose a different perspective, and leverage
the manifold interpretation of the point cloud by mapping its attributes onto a 2D
grid, which can then be compressed as an image.

Deep learning methods have been used for representation learning and com-
pression of point clouds [141]. In particular, the initial folding in our work is
inspired by [192] where an autoencoder network is trained on a dataset to learn
how to fold a 2D grid onto a 3D point cloud. In our work, we build on this folding
idea; however, we employ it in a very different way. Specifically, we do not aim
at learning a good representation that can generalize over a dataset; instead, we
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Figure 6.1: Proposed system for attribute compression. Segmentation is optional
and can help to adapt to local geometry complexity.

employ the folding network as a parametric function that maps an input 2D grid
to points in 3D space. The parameters of this function (i.e., the weights of the
network) are obtained by overfitting the network to a specific point cloud. In addi-
tion, the original folding proposed in [192] is highly inefficient for PCC as it poorly
adapts to complex geometries. In our work, we propose a number of solutions to
improve folding.

6.3 . Proposed method

We propose a novel system for compressing point cloud attributes based on
the idea that a point cloud can be seen as a discrete 2D manifold in 3D space. In
this way, we can obtain a 2D parameterization of the point cloud and we can map
attributes from a point cloud onto a grid, making it possible to employ 2D image
processing algorithms and compression tools. The overall system is depicted in
Figure 6.1. In a nutshell, our approach is based on the following two steps: a)
we find a parametric function (specifically, a deep neural network) to fold a 2D
grid onto a 3D point cloud; b) we map attributes (e.g., colors) of the original
point cloud to this grid. The grid and the parametric function contain all the
necessary information to recover the point cloud attributes. Assuming the point
cloud geometry is coded separately and transmitted to the decoder, the folding
function can be constructed at the decoder side, and the 2D grid is fully decodable
without any need to transmit network parameters. In practice, the 3D-to-2D
mapping is lossy, which entails a mapping distortion in the step b) above. In the
following, we propose several strategies to reduce this mapping distortion.

Notation. We use lowercase bold letters such as x to indicate 3D vectors (point
cloud spatial coordinates), and uppercase letters such as X to indicate sets of 3D
points (vectors). We denote with a tilde (like x̃ or X̃) compressed (distorted)
vectors or sets of vectors. We use the notation ⟨S⟩ =∑x∈S x/|S| for the average
over a set S.

6.3.1 . Grid folding
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We propose a grid folding composed of two steps, namely, an initial folding
step to get a rough reconstruction of X and a folding refinement step to improve
the reconstruction quality, which is quintessential to map point cloud attributes
with minimal mapping distortion.

We fold a grid onto a point cloud to obtain its 2D parameterization by solving
the following optimization problem:

min
f
L(X, X̃) (6.1)

where X is the set of n points in the original point cloud, X̃ = f(X,G) is the set
of n′ points in the reconstructed point cloud obtained by folding G onto X where
G the set of n′ = w × h points of a 2D grid with 3D coordinates. In general,
n′ ̸= n; however, we choose n′ to be close to n. L is a loss function and f is a
folding function.

We parameterize f using a neural network composed of an encoder fe and a
decoder fd such that y = fe(X) and X̃ = fd(G,y). The encoder fe is composed of
four pointwise convolutions with filter sizes of 128 followed by a maxpooling layer.
The decoder fd is composed of two folding layers with fd(G,y) = FL(FL(G,y),y).
Each folding layer has two pointwise convolutions with filter sizes of 64 and con-
catenates y to its input. The last pointwise convolution has a filter size of 3. We
use the ReLU activation [131] for the encoder and LeakyReLU activation [118] for
the decoder. A one-to-one mapping exists between each point x̃i in the folded grid
X̃ and their original position gi in the grid G.

We propose the following loss function

L(X, X̃) = dch(X, X̃) + drep(X̃) (6.2)

where dch is the Chamfer distance:

dch(X, X̃) =
∑
x∈X

min
x̃∈X̃
∥x− x̃∥22 +

∑
x̃∈X̃

min
x∈X̃
∥x̃− x∥22, (6.3)

and drep is a novel repulsion loss computed as the variance of the distance of each
point in X̃ to its nearest neighbor:

drep(X̃) = Var({ min
x̃′∈X̃\x̃

∥x̃− x̃′∥22 | x̃ ∈ X̃ }). (6.4)

The Chamfer distance ensures that the reconstruction X̃ is similar to X and the
repulsion loss penalizes variations in the reconstruction’s density.

We obtain the parameterized folding function f by training a neural network
using the Adam optimizer [102]. We use the point cloud X as the single input
which is equivalent to overfitting the network on a single sample.
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(a) Original (b) Folded (27.63 dB) (c) Refined (30.62 dB) (d) Opt. refined (33.39 dB)

Figure 6.2: Different steps of our proposed attribute mapping method for the first
frame of phil9 [116]. Top row: phases of point cloud reconstruction; bottom row:
the attributes mapped on a 2D grid, which is later compressed and transmitted.
The initial folding (b) provides a rough reconstruction X̃ which is improved with
folding refinement (c) and occupancy optimization (d) to reduce the density mis-
match between X and X̃. We then map attributes from the point cloud onto a
2D grid. The holes in the grid are filled to facilitate compression with HEVC. We
indicate Y PSNRs between original and colors distorted by mapping.

6.3.2 . Folding refinement

The initial folding has difficulties reconstructing complex shapes accurately as
seen in Figure 6.2b. Specifically, the two main issues are mismatches in local
density between X and X̃ and inaccurate reconstructions for complex shapes. As
a result, this introduces significant mapping distortion when mapping attributes
from the original PC to the folded one; additionally, this mapping distortion affects
the reconstructed point cloud attributes. For compression applications, this is a
serious issue as there are now two sources of distortion from both mapping and
compression. This is why we propose a folding refinement method that alleviates
mismatches in local density and inaccurate reconstructions.

First, we reduce local density variations by considering density-aware grid
structure preservation forces inside X̃. Specifically, each point x̃ is attracted to-
wards the inverse density weighted average of its neighbors pgrid. Since a one-to-one
mapping exists between X̃ and G, each point x̃i in the folded grid X̃ has a corre-
sponding point gi in the grid G. We then define the inverse density weight ωi for
x̃i as

ωi = ⟨{ ∥x̃i − x̃j∥2 | gj ∈ NG(gi) }⟩ . (6.5)

with NG(gi) the set of horizontal and vertical neighbors of gi in the grid G. This
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encourages the reconstruction to have a more uniform distribution by penalizing
high density areas. Given the set Ω comprising all weights ωi, we define the
normalized weights

ω̂i = (ωi −min(Ω))/(max(Ω)−min(Ω)). (6.6)

This allows us to define the weighted average

pgridi
= ⟨{ ω̂jx̃j | gj ∈ NG(gi) }⟩ . (6.7)

Second, we set up bidirectional attraction forces between X and X̃ to solve two
issues: incomplete coverage, when X̃ does not cover parts of X, and inaccurate
reconstructions, when X̃ fails to reproduce X accurately. As a solution, we attract
each point x̃ towards two points ppush and ppull. Specifically, ppush is the nearest
neighbor of x̃ in X and pushes X̃ towards X which allows for more accurate
reconstructions. On the other hand, ppull is the average of the points in X which
have x̃ as their nearest neighbor and allows X to pull X̃ closer which alleviates
incomplete coverage issues.

Finally, we combine these components into an iterative refinement system to
update the point cloud reconstruction:

x̃t+1,i = αpgridt,i
+ (1− α)(ppusht,i

+ ppullt,i
)/2 (6.8)

where x̃t,i is the value of x̃i after t iterations and x̃0 = x̃. The inertia factor
α ∈ [0, 1] balances the grid structure preservation forces in X̃ with the bidirectional
attraction forces set up between X and X̃. Preserving the grid structure preserves
the spatial correlation of the attributes mapped on the grid and the density-aware
aspect of these forces results in more uniformly distributed points. In addition,
the bidirectional forces improve the accuracy of the reconstruction significantly.

6.3.3 . Optimized Attribute Mapping
Once a sufficiently accurate 3D point cloud geometry is reconstructed (Figure

6.2c), we can map attributes from X to X̃. To this end, we first build a mapping
mX→X̃ from each point in X to a corresponding point in X̃ (for example, the
nearest neighbor). Hence, the inverse mapping mX̃→X maps x̃ back to X. As
mX→X̃ is not one-to-one (due to local density mismatches and inaccuracy of the
reconstruction), several points in X can map to the same x̃. Thus, a given x̃ can
correspond to zero, one or many points in X; we define the number of these points
as its occupancy o(x̃). Attribute mapping from X to X̃ is obtained using mX̃→X as
the attribute value for a point x̃ is the average of the attribute values of mX̃→X(x̃).
In case mX̃→X(x̃) = ∅, we simply assign to x̃ the attribute of its nearest neighbor
in X. As a consequence of this approach, points with higher occupancy tend to
have higher mapping distortion, as more attributes are averaged.
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To overcome this problem, we integrate the occupancy as a regularizing factor
when building the mapping. For each point x in X, we consider its k nearest
neighbors set Nk(x) ∈ X̃ and select

mX→X̃(x) = argmin
x̃∈Nk(x)

o(x̃)∥x̃− x∥2. (6.9)

Specifically, the mapping is built iteratively and the occupancies are updated pro-
gressively.

As noted above, when o(x̃) > 1, the attributes are averaged which introduces
distortion. We mitigate this problem by adding rows and columns in the 2D grid
(see Fig. 6.2d) using the following procedure. Since o(x̃) is defined on X̃ and there
is a one-to-one mapping between X̃ and G, we can compute mean occupancies
row-wise and column-wise. In particular, we compute mean occupancies with
zeros excluded and we select the row/column with the maximum mean occupancy.
Then, we reduce its occupancy by inserting additional rows/columns around it.
We repeat this procedure until we obtain a lossless mapping or the relative change
on the average of mean occupancies ∆r is superior to a threshold ∆r,min.

6.4 . Experimental results

We evaluate our system for static point cloud attribute compression and com-
pare it against G-PCC v3 [119] and v7 [4]. We also study the impact of folding
refinement and occupancy optimization on our method by presenting an ablation
study. Since folding is less accurate on complex point clouds, we manually segment
the point clouds into patches and apply our scheme on each patch. The patches
are then reassembled in order to compute rate-distortion measures.

We use TensorFlow 1.15.0 [14]. For the folding refinement, we set α to 1/3 and
perform 100 iterations. When mapping attributes, we consider k = 9 neighbors for
assignment. When optimizing occupancy, we set ∆r,min to 10−6. We then perform
image compression using BPG [27], an image format based on HEVC intra [5],
with QPs ranging from 20 to 50 with a step of 5. We note that any other image
compression approach could be used here, including learning based approaches.

In Figure 6.3, we observe that our method performs comparably to G-PCC
for “longdress" and “redandblack". The performance is slightly worse for “soldier"
as its geometry is much more complex making a good reconstruction difficult and
introducing mapping distortion. We obtain significant gains in terms of rate-
distortion by improving the reconstruction quality using folding refinement and
occupancy optimization. This shows the potential of our method and confirms the
importance of reducing the mapping distortion.

In our experiments, we’ve found that this approach does not perform well
when directly applied on sparser point clouds. Indeed, the mapping is signifi-
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Figure 6.3: RD curves showing the performance of the different steps of our method
on three point clouds [154].

cantly harder in sparser point clouds. Approaches to handle local sparsity such as
downscaling may help solve this problem.

6.5 . Conclusion

Based on the interpretation of a point cloud as a 2D manifold living in a 3D
space, we propose to fold a 2D grid onto it and map point cloud attributes into
this grid. As the mapping introduces distortion, this calls for strategies to min-
imize this distortion. In order to minimize mapping distortion, we proposed a
folding refinement procedure, an adaptive attribute mapping method and an oc-
cupancy optimization scheme. With the resulting image, we compress point cloud
attributes leveraging conventional image codecs and obtain encouraging results.
Our proposed method enables the use of 2D image processing techniques and
tools on point cloud attributes.

The contents of this chapter have been published in M. Quach, G. Valenzise,
and F. Dufaux, “Folding-Based Compression Of Point Cloud Attributes,” in 2020
IEEE International Conference on Image Processing (ICIP), Oct. 2020, pp. 3309–
3313.
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7 - Deep Perceptual Point Cloud Quality Metric

In the previous parts, we have discussed deep learning approaches to compress
geometry [141, 142, 180, 182, 168, 126] and attributes [140, 22] of points clouds.
Specific approaches have also been developed for sparse LIDAR point clouds [87,
29]. In existing approaches, different point cloud geometry representations are
considered for compression: G-PCC adopts a point representation, V-PCC uses a
projection or image-based representation and deep learning approaches commonly
employ a voxel grid representation. Point clouds can be represented in different
ways in the voxel grid. Indeed, voxel grid representations include binary and
Truncated Signed Distance Fields (TSDF) representations [50]. TDSFs rely on
the computation of normals; however, in the case of point clouds this computation
can be noisy. We then ignore the normal signs and reformulate TDSFs to propose
a new Truncated Distance Field (TDF) representation for point clouds

Deep learning approaches for lossy geometry compression typically jointly op-
timize rate and distortion. As a result, an objective quality metric, employed
as a loss function, is necessary to define the distortion objective during training.
Such metrics should be differentiable, defined on the voxel grid and well corre-
lated with perceived visual quality. In this context, the Weighted Binary Cross
Entropy (WBCE) and the focal loss [114] are commonly used loss functions based
on a binary voxel grid representation. They aim to alleviate the class imbalance
between empty and occupied voxels caused by point cloud sparsity. However, they
are poorly correlated with human perception as they only compute a voxel-wise
error.

A number of metrics have been proposed for Point Cloud Quality Assessment
(PCQA): the point-to-plane (D2) metric [171], PC-MSDM [124], PCQM [125],
angular similarity [21], point to distribution metric [94], point cloud similarity
metric [20], improved PSNR metrics [93] and a color based metric [179]. These
metrics operate directly on the point cloud. However, they are not defined on the
voxel grid and hence cannot be used easily as loss functions. Recently, to improve
upon existing loss functions such as the WBCE and the focal loss, a neighborhood
adaptive loss function [77] was proposed. Still, these loss functions are based
on the explicit binary voxel grid representation. We show in this chapter that
loss functions based on the TDF representation are more correlated with human
perception than those based on the binary representation.

The perceptual loss has previously been proposed as an objective quality metric
for images [196]. Indeed, neural networks learn representations of images that are
well correlated with perceived visual quality. This enables the definition of the
perceptual loss as a distance between latent space representations. For the case of
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Figure 7.1: Voxel grid representations of a point cloud. The upper bound distance
value is 2 for the TDF and the TSDF. Normals are facing up in the TSDF.

images, the perceptual loss provides competitive performance or even outperforms
traditional quality metrics. We hypothesize that a similar phenomenon can be
observed for point clouds.

Therefore, we propose a differentiable perceptual loss for training deep neural
networks aimed at compressing point cloud geometry. We investigate how to
build and train such a perceptual loss to improve point cloud compression results.
Specifically, we build a differentiable distortion metric suitable for training neural
networks to improve PCC approaches based on deep learning. We then validate
our approach experimentally on the ICIP2020 [139] subjective dataset. The main
contributions of the chapter are as follows:

• A novel perceptual loss for 3D point clouds that outperforms existing metrics
on the ICIP2020 subjective dataset

• A novel implicit TDF voxel grid representation

• An evaluation of binary (explicit) and TDF (implicit) representations in the
context of deep learning approaches for point cloud geometry compression

7.1 . Voxel grid representations

In this study, we consider different voxel grid representations for point clouds.
A commonly used voxel grid representation is the explicit binary occupancy repre-
sentation where the occupancy of a voxel (occupied or empty) is represented with a
binary value (Figure 7.1a). In the binary (Bin) representation (Figure 7.1a), each
voxel has a binary occupancy value indicating whether it is occupied or empty.
When the ith voxel is occupied, then xi = 1 and otherwise xi = 0.
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Table 7.1: Objective quality metrics considered in this study.

Domain Name Signal
type

Block ag-
gregation

Learning
based

Description

Points

D1 MSE Coordinates ✗ ✗ Point-to-point MSE

D2 MSE Coordinates ✗ ✗ Point-to-plane MSE

D1 PSNR Coordinates ✗ ✗ Point-to-point PSNR

D2 PSNR Coordinates ✗ ✗ Point-to-plane PSNR

Voxel
Grid

Bin BCE Binary L1 ✗ Binary cross entropy

Bin naBCE Binary L1 ✗ Neighborhood adaptive binary cross entropy [77]

Bin WBCE 0.75 Binary L2 ✗ Weighted binary cross entropy with w = 0.75

Bin PL Binary L1 ✓ Perceptual loss (explicit) on all feature maps

Bin PL F1 Binary L1 ✓ Perceptual loss (explicit) on feature map 1

TDF MSE Distances L1 ✗ Truncated distance field (TDF) MSE

TDF PL Distances L1 ✓ Perceptual loss (implicit) over all feature maps

TDF PL F9 Distances L1 ✓ Perceptual loss (implicit) on feature map 9

Another representation is the implicit TSDF representation which has been
employed for volume compression [168]. Instead of an occupancy value, the value
of a voxel is the distance from this voxel to the nearest point and the sign of this
value is determined from the orientation of the normal (Figure 7.1b). However,
this requires reliable normals which may not be available in sparse and/or heavily
compressed point clouds.

Hence, we propose an implicit TDF representation which is a variant of the
TSDF without signs and therefore does not require normals. In the implicit TDF
representation (Figure 7.1c), the ith voxel value is xi = d, where d is the distance
to its nearest occupied voxel. Consequently, xi = 0 when a voxel is occupied and
xi = d with d > 0 otherwise. Additionally, we truncate and normalize the distance
values into the [0, 1] interval with

xi = min(d, u)/u, (7.1)

where u is an upper bound value.
In this study, we focus on the explicit binary and implicit TDF representations.

7.2 . Objective quality metrics

In Table 7.1, we present the objective quality metrics considered in this study.
Specifically, we evaluate metrics that are differentiable on the voxel grid to eval-
uate their suitability as loss functions for point cloud geometry compression. We
include metrics defined on binary and TDF representations and we compare their
performance against traditional point set metrics.
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7.2.1 . Voxel grid metrics
We partition the point cloud into blocks and compute voxel grid metrics for

each block. For each metric, we aggregate metric values over all blocks with either
L1 or L2 norm. Specifically, we select the best aggregation experimentally for each
metric.

Given two point clouds A and B, we denote the ith voxel value for each point
cloud as x

(A)
i and x

(B)
i . Then, we define the WBCE as follows

− 1

N

∑
i

(
αx

(A)
i log(x

(B)
i )

+ (1− α)(1− x
(A)
i ) log(1− x

(B)
i )
)
,

(7.2)

where α is a balancing weight between 0 and 1. The binary cross entropy (BCE)
refers to the case α = 0.5.

Different from the WBCE, the Focal Loss (FL) amplifies (γ > 1) or reduces
(γ < 1) errors and is defined as follows

−
∑
i

(
αx

(A)
i (1− x

(B)
i )γ log(x

(B)
i )

+ (1− α)(1− x
(A)
i )(x

(B)
i )γ log(1− x

(B)
i )
)
,

(7.3)

where α is a balancing weight and the log arguments are clipped between 0.001
and 0.999.

Compared to the WBCE, the FL adds two factors (1 − x
(B)
i )γ and (x

(B)
i )γ.

However, while in the context of neural training, x(B)
i is an occupancy probability,

in the context of quality assessment, x(B)
i is a binary value. As a result, the FL is

equivalent to the WBCE since γ has no impact in the latter case. For this reason,
we include the WBCE with α = 0.75 in our experiments as an evaluation proxy
for the FL used in [142].

The neighborhood adaptive BCE (naBCE) [77] was proposed as an alternative
to the BCE and FL [114]. It is a variant of the WBCE in which the weight α
adapts to the neighborhood of each voxel u resulting in a weight αu. Given a voxel
u, its neighboorhood is a window W of size m × m × m centered on u. Then,
the neighborhood resemblance ru is the sum of the inverse euclidean distances of
neighboring voxels with the same binary occupancy value as u. Finally, the weight
αu is defined as αu = max(1− ru/max(r)), 0.001) where max(r) is the maximum
of all neighborhood resemblances.

The Mean Squared Error (MSE) on the TDF is expressed as follows

1

N

∑
i

(x
(A)
i − x

(B)
i )2. (7.4)
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Figure 7.2: Perceptual loss based on an autoencoder. The grayed out parts do not
need to be computed for the perceptual loss.

7.2.2 . Perceptual Loss

We propose a perceptual loss based on differences between latent space repre-
sentations learned by a neural network. More precisely, we use an autoencoder as
the underlying neural network. The model architecture of autoencoder used and
its training procedure are presented in the following.

Model architecture

We adopt an autoencoder architecture based on 3D convolutions and transposed
convolutions. Given an input voxel grid x, we perform an analysis transform
fa(x) = y to obtain the latent space y and a synthesis transform fs(y) = x̃ as
seen in Figure 7.2a. The analysis transform is composed of three convolutions
with kernel size 5, stride 2 while the synthesis transform is composed of three
transposed convolutions with same kernel size and stride. We use ReLU [131]
activations for all layers except for the last layer which uses a sigmoid activation.

Training

Using the previously defined architecture, we train two neural networks: one with
explicit representation (binary) and another with implicit representation (TDF).

In the explicit case, we perform training of the perceptual loss with a focal loss
function as defined in Eq. (7.3). In the implicit case, we first define the Kronecker
delta δi such that δi = 1 when i = 0 and otherwise δi = 0. Then, we define an
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adaptive MSE loss function for the training of the perceptual loss as follows
1
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∑
i
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i )2
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(7.5)

where w is a balancing weight. Specifically, we choose w as the proportion of
distances strictly inferior to 1 with

w = min

(
max

(∑
i 1− δ

1−x
(A)
i

N
, β

)
, 1− β

)
. (7.6)

where β is a bounding factor such that w is bounded by [β, 1−β]. This formulation
compensates for class imbalance while avoiding extreme weight values.

In that way, the loss function adapts the contributions from the voxels that
are far from occupied voxels (x(A)

i = 1) and voxels that are near occupied voxels
(x(A)

i < 1). We train the network with the Adam [102] optimizer.

Metric

As seen in Figure 7.2b, in order to compare two point clouds x(A) and x(B), we
compute their respective latent spaces fa(x

(A)) = y(A) and fa(x
(B)) = y(B) using

the previously trained analysis transform. These latent spaces each have F feature
maps of size W ×D×H (width, depth, height). Then, we define the MSE between
latent spaces as follows

1

N

∑
i

(y
(A)
i − y

(B)
i )2. (7.7)

We compute this MSE either over all F feature maps or on single feature maps.

7.2.3 . Point set metrics
Point-to-point (D1) and point-to-plane (D2)

The point-to-point distance (D1) [1] measures the average error between each point
in A and their nearest neighbor in B:

eD1
A,B =

1

NA

∑
∀ai∈A

∥ai − bj∥22 (7.8)

where bj is the nearest neighbor of ai in B.
In contrast to D1, the point-to-plane distance (D2) [171] projects the error

vector along the normal and is expressed as follows

eD2
A,B =

1

NA

∑
∀ai∈A

((ai − bj) · ni)
2 (7.9)
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where bj is the nearest neighbor of ai in B and ni is the normal vector at ai.
The normals for original and distorted point clouds are computed with local

quadric fittings using 9 nearest neighbors.
The D1 and D2 MSEs are the maximum of eA,B and eB,A and their Peak

Signal-to-Noise Ratio (PSNR) is then computed with a peak error corresponding
to three times the point cloud resolution as defined in [1].

7.3 . Experiments

7.3.1 . Experimental setup

We evaluate the metrics defined above on the ICIP2020 [139] subjective dataset.
It contains 6 point clouds [116, 56] compressed using G-PCC Octree, G-PCC
Trisoup and V-PCC with 5 different rates yielding a total of 96 stimuli (with 6
references) and their associated subjective scores. The two G-PCC approaches use
different geometry codecs (octree and trisoup) but the same Prediction-plus-Lifting
(i.e. Lifting) attribute codec.

For each metric, we compute the Pearson Linear Correlation Coefficient (PLCC),
the Spearman Rank Order Correlation Coefficient (SROCC), the Root Mean Square
Error (RMSE) and the Outlier Ratio (OR). We evaluate the statistical significance
of the differences between PLCCs using the method in [200]. These metrics are
computed after logistic fittings with cross-validation splits. Each split contains
stimuli for one point cloud (i.e. reference point cloud and its distorted versions) as
a test set and stimuli of all other point clouds as a training set. The metrics are
then computed after concatenating results for the test set of each split. They are
summarized in Table 7.1 and the values before and after logistic fitting are shown
in Figure 7.3.

We use an upper bound value u = 5 when computing the TDF in Eq. (7.1) and
a block size of 64 when block partitioning point clouds. The naBCE window size
is m = 5 as in the original paper. The perceptual loss is trained with a learning
rate of 0.001, β1 = 0.9 and β2 = 0.999 on the ModelNet dataset [156] after block
partitioning using Python 3.6.9 and TensorFlow [14] 1.15.0.

7.3.2 . Comparison of perceptual loss feature maps

In our experiments, we first considered the perceptual loss computed over all
feature maps. However, we observed that some feature maps are more perceptually
relevant than others. Consequently, we include the best feature maps for each voxel
grid representation in our results. This corresponds to feature map 9 (TDF PL
F9) for TDF PL and 1 (Bin PL F1) for Bin PL. Here, the best feature map is the
feature map with the lowest RMSE value after logistic fitting.

Moreover, we observe that some feature maps are unused by the neural network
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Figure 7.3: Scatter plots between the objective quality metrics and the MOS
values. The plots before and after logistic fitting are shown.
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Table 7.2: Statistical analysis of objective quality metrics.

Method PLCC SROCC RMSE OR

TDF PL F9 0.951 0.947 0.094 0.375

D2 MSE 0.946 0.943 0.100 0.469

TDF MSE 0.940 0.940 0.103 0.385

D1 MSE 0.938 0.933 0.109 0.479

TDF PL 0.935 0.933 0.110 0.490

Bin PL F1 0.922 0.916 0.115 0.406

D2 PSNR 0.900 0.898 0.129 0.500

Bin WBCE 0.75 0.875 0.859 0.144 0.531

Bin PL 0.863 0.867 0.151 0.552

D1 PSNR 0.850 0.867 0.158 0.448

Bin naBCE 0.740 0.719 0.201 0.573

Bin BCE 0.713 0.721 0.207 0.635

(constant). Therefore, they exhibit high RMSE values (all equal to 0.812) as their
perceptual loss MSE are equal to 0. Specifically, we observe that TDF PL has 6
unused feature maps, while Bin PL has a single unused feature map. This suggests
that the perceptual loss learns a sparser latent space representation when using
TDF compared to binary. Thus, implicit representations may improve compression
performance compared to explicit representations as fewer feature maps may be
needed.

7.3.3 . Comparison of objective quality metrics
In Table 7.2, we observe that the TDF PL F9 is the best method overall. In

particular, identifying the most perceptually relevant feature map and computing
the MSE on this feature map provides a significant improvement. Specifically,
the difference between the PLCCs of TDF PL F9 and TDF PL is statistically
significant with a confidence of 95%.

For voxel grid metrics, we observe that TDF metrics perform better than binary
metrics. In particular, the RMSEs of the former are noticeably lower for point
clouds compressed with G-PCC Octree compared to the RMSE of the latter as
can be seen in Table 7.3. This suggests that implicit representations may be better
at dealing with density differences between point clouds in the context of point
cloud quality assessment.
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Table 7.3: Statistical analysis of objective quality metrics by compression method.

Method
G-PCC Octree G-PCC Trisoup V-PCC

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

TDF PL F9 0 .975 0 .859 0.078 0.936 0.910 0.101 0.897 0.850 0.106

D2 MSE 0.962 0.829 0.094 0.954 0.924 0 .103 0 .903 0.860 0 .103

TDF MSE 0.952 0.839 0.106 0.933 0.917 0.106 0.912 0.867 0.098

D1 MSE 0.976 0.851 0 .082 0 .937 0 .918 0.126 0.876 0.844 0.119

TDF PL 0.970 0.840 0.087 0.918 0.900 0.127 0.876 0.837 0.115

Bin PL F1 0.941 0.786 0.138 0.927 0.907 0.107 0.898 0 .865 0.109

D2 PSNR 0.943 0.890 0.110 0.926 0.895 0.108 0.738 0.723 0.166

Bin WBCE 0.75 0.923 0.747 0.163 0.918 0.886 0.112 0.850 0.786 0.164

Bin PL 0.931 0.852 0.186 0.892 0.886 0.130 0.880 0.852 0.142

D1 PSNR 0.903 0.859 0.156 0.910 0.895 0.117 0.599 0.689 0.202

Bin naBCE 0.552 0.357 0.277 0.846 0.786 0.154 0.748 0.692 0.170

Bin BCE 0.946 0.841 0.188 0.776 0.800 0.177 0.574 0.500 0.250

7.4 . Conclusion

We proposed a novel perceptual loss that outperforms existing objective qual-
ity metrics and is differentiable in the voxel grid. As a result, it can be used
as a loss function in deep neural networks for point cloud compression and it is
more correlated with perceived visual quality compared to traditional loss func-
tions such as the BCE and the focal loss. Overall, metrics on the proposed implicit
TDF representation performed better than explicit binary representation metrics.
Additionally, we observed that the TDF representation yields sparser latent space
representations compared to the binary representations. This suggests that switch-
ing from binary to the TDF representation may improve compression performance
in addition to enabling the use of better loss functions.

The source code is available at https://github.com/mauriceqch/2021_pc_
perceptual_loss.

The contents of this chapter have been published in M. Quach, A. Chetouani,
G. Valenzise, and F. Dufaux, “A deep perceptual metric for 3D point clouds,”
Electronic Imaging, vol. 2021, no. 9, pp. 257–1–257–7, Jan. 2021.
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8 - Convolutional Neural Network for Point Cloud
Quality Assessment

8.1 . Introduction

In previous chapters, methods to handle point cloud sparsity and irregularity
have been explored for geometry compression, attribute compression and quality
assessment. In this chapter, we explore a convolution neural network approach
with a patch extraction process for quality assessment.

As most multimedia contents, PCs may undergo different types of distortion
introduced by several basic processing (acquisition, compression, transmission, vi-
sualization, etc.), usually applied to transmit or visualize such data [141, 142].
To estimate the perceptual impact of these distortions on the perceived quality,
subjective and objective evaluations are usually conducted. Subjective evalua-
tion gives scores that reflect the perception of human observers through psycho-
visual tests, while objective evaluation aims to automatically predict the subjective
scores. As for 2D images and videos, objective methods can be classified according
to the availability of the reference PC: Full Reference (FR) approaches that need
the reference PC, Reduced Reference (RR) approaches that exploit only partial
information from the reference PC and No Reference (NR) approaches that predict
the quality from only the distorted version of the reference PC.

Different point cloud objective metrics have been proposed in the literature.
Point-to-point metrics were among the first to be considered, and compute geom-
etry distance between corresponding points in the original and distorted PC. On
the other hand, the point-to-plane metric is an extension of the previous metric
and consists in projecting the point-to-point error vector along the local normal
[171]. Starting from these approaches, several point-based metrics have been then
developed. In [21], the authors proposed to estimate the geometrical error between
two PCs (i.e. reference PC and its distorted version) by measuring the angular
similarity between tangent planes. In [124], the authors proposed a metric called
PC-MSDM by extending the well-known SSIM metric [184], widely used for 2D
images, to PC, by considering features including local mean curvature as they
previously done for 3D meshes [109]. The authors proposed later a metric called
PCQM that integrates color information [125]. In [94], the authors proposed a
new approach that focuses more on the distribution of the data. They introduced
a new type of correspondence from point to distribution characterized using the
well-known Mahalanobis distance. In [179], the authors proposed a color-focused
metric that integrates geometry information. In [20], the authors adapted also the
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Figure 8.1: General framework of the proposed method.

SSIM metric for point clouds using a number of features, while in [93] the authors
improved the point cloud PSNR metric. Interesting methods were also proposed
for 3D meshes [15, 16, 40].

In this chapter, we present a deep learning-based method that efficiently pre-
dicts the quality of PCs. Our method extended our blind metric [44] and consists
first of selecting a set of points from the reference PC and determining for each
of them its nearest neighbor point in the distorted PC. We then define a patch of
size 32× 32 around each of the two points, each consisting of a point (i.e. selected
point in the reference PC or its nearest neighbor point in the distorted) and its
1023 neighboring points. The structural information of each pair of patches is af-
terward compared by computing element-wise distances on three main attributes:
geometry, curvature and color. The resulted patches (i.e. one per attribute) are
stacked into a patch of size 32× 32× 3 and fed as input to a Convolutional Neu-
ral Network (CNN) model to predict its quality. After applying the process in
both directions (i.e. from the reference PC to its distorted PC and from the dis-
torted PC to its reference PC) for each pair of corresponding patches, the global
quality index is finally given by averaging the predicted patch quality scores and
employing either a symmetrization function or a pooling strategy. The proposed
method was evaluated using two datasets, including a large dataset more suited
to deep models. The results obtained showed the relevance of using such deep
learning-based approach for predicting the quality of PCs.

The remainder of this chapter is structured as follows: the proposed method is
described in Section 8.2. Experiment results are discussed in Section 8.3, followed
by the conclusion in Section 8.4.

8.2 . Proposed method

The method proposed in this chapter is based on the prediction of Patch Quality
Indexes (PQIs) through CNN models and their symmetrization or pooling. Fig.
8.1 summarizes the general framework of our method. From the two PCs, we
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Figure 8.2: Patch Quality Index (PQI) prediction.

Figure 8.3: Patch extraction process.

first compute PQIs in both directions (i.e. from the reference PC to its distorted
version: PQI(X,Y ) as well as from the distorted PC to its reference version:
PQI(Y,X)) using a CNN model per direction. The Global Quality Index (GQI)
is finally given by averaging the PQIs obtained and then either symmetrizing or
pooling the resulted scores.

8.2.1 . Patch Quality Indexes
As illustrated by Fig. 8.2, PQIs are computed through several steps: patch

extraction, patch-based distances computation and patch quality prediction using
a CNN model. Each of these steps is described in this section. It is worth noting
that here we limit our description to one direction (i.e. from the reference PC to
its distorted version), since it remains similar in the second direction.

Patch extraction

In order to extract patches from the two PCs, we first select a set of points N
from the reference PC X. More precisely, 1000 points are randomly selected over
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all points of X and are here considered as key points from which the patch quality
indexes are predicted. For each selected point Ni, we determine its corresponding
point in the distorted PC Y by finding its nearest neighbor and define a region
around each of the two points, delimited by the area covered by their 1023 neigh-
boring points. The two regions are then reshaped into patches of size 32×32 based
on the distance of each neighbor to the point, forming thus a pair of patches (see
Fig. 8.3).

Patch-based distances

Element-wise patch-based distances are then computed to measure geometry, cur-
vature and color distortions between patches of corresponding points. Let us first
define Ak as the kth considered attribute with {k = 1: Geometry; k = 2:
Curvature; k = 3: Color}.

For each attribute Ak, the element-wise distance Dn
Ak

(i, j) between the nth

pair of patches of the reference X (P n
X) and the distorted PCs Y (P n

Y ) is computed
as follows:

Dn
Ak

(i, j) =

√(
Pn

Xk
(i, j)−Pn

Yk
(i, j)

)2
, (8.1)

where P n
Xk

(i, j) and P n
Yk
(i, j) represent the value of the kth attribute at position

(i, j) of the pair of patches n in the reference and distorted PCs, respectively.
The resulting patches are then stacked into a patch of size 32 × 32 × 3 where

32×32 represents the initial size of the extracted pair of patches and 3 is the number
of considered attributes (i.e. 1: geometry distances, 2: curvature distances and 3:
color distances). It is worth noting that the size of the patches was fixed according
to several studies dedicated for 2D images where the impact of the patch size was
analyzed [97, 31]. The authors concluded that a size of 32× 32 constituted a good
trade-off between performance and computation time. We opted here for the same
size. However, more in-depth analysis has to be carried-out in order to better
analyze its impact on the performance.

Architecture of the CNN models

Finally, the PQIs are predicted using a CNN model which has as input the normal-
ized stacked patches. A plethora of models have been proposed in the literature,
starting from one of the first models such as AlexNet [107] to the more complex like
ResNet [82] that introduced a residual module or inception [167] that employed
parallel layers. In this study, we adopted a pre-trained VGG model [161] that
was widely used for classification tasks and was successfully employed in several
studies related to quality assessment as well [57].
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This model was developed by the Oxford Visual Geometry Group in 2014. It
uses small filters of size 3 × 3 in contrast to AlexNet [107] where 11 × 11 and
5× 5 filters are used in the first two layers. It is also characterized by applying a
max pooling layer after a succession of convolution layers. Various versions with
different depths have been proposed. Here, we used V GG16 which is composed of
13 convolutional layers, followed by 3 fully connected layers. It initially takes an
image of size 224 × 224 × 3 as input and highlights one class among 1000 classes
(i.e. output of size 1000).

To adapt the model to our context, several modifications were realized. More
precisely, we replaced its input layer by another of size 32×32×3 and substituted
its fully connected layers with 3 other layers of size 64, 64 and 1, respectively.
The first fully connected layer is followed by a ReLu layer, while the second one
is followed by a ReLu layer and a dropout layer with a probability fixed to 0.5.
The third and last layer is a regression layer that aims to predict the PQIs of
the normalized stacked patches. The model thus modified was finally fine-tuned
to adapt its weights to our context. It is worth noting that two similar CNN
models with the architecture described above are used, each dedicated to a specific
direction: CNNXY (from the reference PC to the distorted one) and CNNY X

(from the distorted PC to the reference one).
To train our models, we used the stochastic gradient descent optimization al-

gorithm and the Mean Squared Error (MSE) as loss function. The learning rate
and the momentum were set to 0.001 and 0.9, respectively. The batch size was
fixed to 64 and the training data was shuffled every epoch. The number of epochs
was set to 100 with a validation frequency fixed to 5000 iterations. At each epoch,
the model was saved and the one that provides the best results was retained. It
is worth noting that the target of each stacked patch was the subjective score
of the whole distorted PC as commonly used to estimate the quality of several
multimedia content [97, 123].

8.2.2 . Global Quality Index

The Global Quality Index (GQI) that reflects the quality of the whole dis-
torted PC is finally given by aggregating the PQIs achieved for each direction and
applying either a symmetrization function or a pooling method.

Aggregated Patch Quality Indexes

As mentioned above, each CNN model predicts the quality score of each stacked
patch. In order to derive a single quality index for each direction, we aggregate
the obtained PQIs by computing the average scores as follows:
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APQI(X,Y) =
1

N

N∑
i=1

PQIi(X,Y), (8.2)

and

APQI(Y,X) =
1

N

N∑
i=1

PQIi(Y,X), (8.3)

where APQI(X,Y ) and APQI(Y,X) are the Aggregated Patch Quality In-
dexes (APQIs) that represent the predicted quality score in each direction. N is
the number of stacked patches and it was fixed to 1000.

It is worth noting that this strategy is commonly applied in image quality as-
sessment domain for both handcrafted and deep learning-based methods. Indeed,
handcrafted metrics like SSIM [184] or VDP [51] derive a single quality score from
the predicted visibility map by aggregating the local scores. Whereas, the initial
deep learning-based method [97] and most of those developed later [31, 41, 39]
predict the quality of patches and derive a single quality score by averaging the
predicted scores as well. For 3D contents, the same strategy was applied for 3D
PC [124] and 3D meshes [109, 17] as well.

Symmetrization or Pooling

As most of the existing full reference PC quality metrics [171, 93, 94], the final
quality index is computed in two directions (i.e. from the reference PC to the
distorted one and from the distorted PC to the reference one) where each reflects
a specific aspect. The two indexes are then usually symmetrized by applying a
function f as follows:

GQI(X,Y) = f(APQI(X,Y),APQI(Y,X)), (8.4)

where GQI(X,Y ) is the Global Quality Index computed between the reference
PC X and its distorted version Y in both directions.

In this study, we considered three classical symmetrization functions: min,
mean and weighted mean (Wmean). It is worth noting that the max was
not applied since the considered datasets provide the MOS (Mean Opinion Score)
as subjective score. The results are compared to those obtained by pooling the
indexes through a Support Vector Machine (SVR) and a Multi Layer Perceptron
(MLP). More precisely, the SVR model had a Gaussian function as kernel and
the MLP model was composed of 2 fully connected layers of size 30, followed by
a regression layer of size 1. Both models were trained and tested by applying the
protocol described in Section 8.3.2 and the results are shown in Section 8.3.3.
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8.3 . Experimental results

Our method is evaluated in terms of correlation with subjective judgments.
To do so, we first present the datasets used and describe the protocol applied to
train and test our CNN models. After defining the performance evaluation criteria
employed, we analyze the results obtained by either applying symmetrization func-
tions or pooling strategies. Finally, the performance of our method is compared
with state-of-the-art PC metrics and a cross-dataset evaluation is carried-out to
show the generalization ability of our method to predict the quality of unknown
PCs.

8.3.1 . Datasets
The proposed method is evaluated using two recent 3D point cloud datasets:

sjtu [191] and ICIP20 [139].

• sjtu is composed of 9 point clouds from which 378 degraded versions were
derived (i.e. 42 distorted PC per reference PC) through 6 degradation types
(OT: Octree-based compression, CN: Color Noise, DS: Downscaling, D+C:
Downscaling and Color noise, D+G: Downscaling and Geometry Gaussian
noise, GGN: Geometry Gaussian noise and, C+G: Color noise and Geometry
Gaussian noise).

• ICIP20 is composed of 6 common used point clouds from which 90 degraded
versions were derived (i.e. 15 distorted PC per reference PC) through 3 types
of compression: V-PCC, G-PCC with triangle soup coding and G-PCC with
octree coding. Each reference point cloud was compressed using five different
levels.

These datasets give a subjective score (i.e. MOS) for each distorted PC that
are used to train the CNN models and evaluate the performance of our method to
predict the global quality score.

8.3.2 . Protocol and performance evaluation
To assess the quality prediction effectiveness of our method, each dataset is

split into training and test sets F times (i.e F folds). Each fold is composed of a
reference PC and its distorted versions. Therefore, the training and test sets do
not contain same PC (i.e. no overlap between the two). At each time, F − 1 folds
are used to train the models and the rest to test it. In this study, F is equal to 7
and 6 for sjtu and ICIP20, respectively.

Two evaluation criteria commonly used to evaluate the performance of quality
metrics are adopted here: 1) Pearson Linear Correlation Coefficient (PLCC) and
2) Spearman Rank-Order Coefficient Correlation (SROCC). Both vary between
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0 and 1 (i.e. absolute value) with 1 the best performance. These correlations
are computed for each dataset over each fold and the mean correlations are then
reported as results. It is worth noting that the same procedure was applied to the
compared state-of-the-art metrics.

8.3.3 . Performance analysis
In this section, we analyze the correlations obtained by each CNN model as

well as their combination by either a symmetrization function (i.e. min, mean and
Wmean) or using an SVR and a MLP. Table 8.1 shows the results obtained for
each model and those obtained after symmetrization and pooling on sjtu dataset.
Best results are highlighted in bold.

Method PLCC SROCC

Aggregated Patch Quality Index

APQI(X,Y) 0.902 0.901

APQI(Y,X) 0.908 0.900

Symmetrization function

GQI(X,Y)=min(APQI(X,Y),APQI(X,Y)) 0.908 0.900

GQI(X,Y)=mean(APQI(AB),APQI(X,Y)) 0.908 0.902

GQI(X,Y)=Wmean(APQI(X,Y),APQI(X,Y)) 0.909 0.904

Pooling (machine learning)

GQI(X,Y)=SVR(APQI(X,Y),APQI(X,Y)) 0.918 0.907

GQI(X,Y)=MLP(APQI(X,Y),APQI(X,Y)) 0.927 0.906

Table 8.1: Mean correlations obtained on sjtu dataset before and after symmetriza-
tion and pooling. Best results are highlighted in bold.

As can be seen, the aggregated indexes (i.e. APQI) given by computing the
quality scores in both directions obtain close correlations. Their symmetrization
through the three functions does not increase the global performance. Whereas,
the pooling strategies applied improve the performance, particularly the linear
correlations (i.e. PLCC) without a significant increase in terms of mean SROCC.
Both SVR and MLP models achieve close mean SROCC with a higher mean PLCC
for MLP. The improvement gains in terms mean PLCC are about 1.8% and 2.8%
for SVR and MLP, respectively. Based on these results, it seems that the sym-
metrization function, at least, does not always provide the optimal results and
thus should be carefully employed.
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8.3.4 . Comparison with the state-of-the-art

Our method is here compared with point-based state-of-the-art metrics. More
precisely, we consider po2pointMSE and po2planeMSE metrics that are pooled
with MSE, PSNRpo2pointMSE and PSNRpo2planeMSE metrics that are pooled
with PSNR as well as recent metrics po2dist [94] (i.e. point to distribution) pooled
with MSE and PSNR. We also compare our method with a recent metric, called
PCQM, which is based on both geometry and color features [125]. Tables 8.2 and
8.3 show the results obtained for sjtu and ICIP20 datasets, respectively. The best
results are highlighted in bold.

Method PLCC SROCC

po2pointMSE 0.686 0.801
PSNRpo2pointMSE 0.799 0.844
po2pointHausdorff 0.517 0.686
PSNRpo2pointHausdorff 0.638 0.682
po2planeMSE 0.642 0.717
PSNRpo2planeMSE 0.744 0.722
po2planeHausdorff 0.539 0.682
PSNRpo2planeHausdorff 0.755 0.825
po2distMSE (mmd) 0.710 0.603
PSNRpo2distMSE (mmd) 0.621 0.603
po2distMSE (msmd) 0.706 0.603
PSNRpo2distMSE (msmd) 0.642 0.715
PCQM 0.879 0.888
GQI (our method) 0.927 0.906

Table 8.2: Comparison with state-of-the-art methods on sjtu dataset. Bests results
are highlighted in bold.

On sjtu (see Table 8.2), the proposed method performs the best with a perfor-
mance gain in terms of mean PLCC between 5% (compared to PCQM) and 79%
(compared to po2pointHausdorff). Among the state-of-the-art metrics, PCQM
achieves the best correlations with 0.879 and 0.888 as mean PLCC and SROCC,
respectively, far followed by PSNRpo2pointMSE and PSNRpo2planeMSE. All the
compared metrics obtained a mean PLCC and SROCC lower than 0.88 and 0.89,
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respectively. The worst result are obtained by po2pointHausdorff and po2planeHausdorff.
The low correlations achieved by these metrics, except PCQM, can be explained
by the fact that those metrics focus only on geometric aspects and therefore totally
fail to capture other distortions like color noise.

Method PLCC SROCC

po2pointMSE 0.945 0.950

PSNRpo2pointMSE 0.880 0.934
po2pointHausdorff 0.717 0.690
PSNRpo2pointHausdorff 0.597 0.763
po2planeMSE 0.945 0.959
PSNRpo2planeMSE 0.916 0.953
po2planeHausdorff 0.753 0.763
PSNRpo2planeHausdorff 0.939 0.970

po2distMSE (mmd) 0.965 0.963
PSNRpo2distMSE (mmd) 0.865 0.965
po2distMSE (msmd) 0.967 0.965
PSNRpo2distMSE (msmd) 0.902 0.972

PCQM 0.796 0.832

GQI (our method) 0.961 0.966

Table 8.3: Comparison with state-of-the-art methods on ICIP20 dataset. Best
results are highlighted in bold.

On ICIP20 (see Table 8.3), po2distMSE (msmd) obtains the best mean PLCC
(0.967), closely followed by po2distMSE (mmd) (0.965). Whereas the two best
mean SROCC is reached by PSNRpo2distMSE (0.972) and PSNRpo2planeHausdorff
(0.970), respectively. Our metric obtains competitive results and surpasses most
of the compared methods. PCQM is outperformed by most of the compared met-
rics, except po2point-based metrics pooled with Hausdorff (i.e. po2pointHausdorff
and PSNRpo2pointHausdorff) and po2planeHausdorff. Similarly to the results
obtained on sjtu, po2point-based and po2plane-based metrics pooled with MSE
obtain higher correlations than those pooled with PSNR, while the po2dist-based
metrics pooled with PSNR give better results than those pooled with MSE. The
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high correlations obtain by the point-based metrics, especially po2pointMSE and
po2planeMSE, can be explained by the fact that contrary to sjtu, this dataset
contains only compressed PCs with joint distortion of geometry and attributes.

We also evaluate the impact of the random selection step on the performance by
repeating the selection process 5 times on sjtu dataset. To this end, we computed
the p-values and F-values between the correlations obtained over the 5 iterations
using the One-way analysis of variance (ANOVA) test. A p-value close to 1 in-
dicates that the difference is not high, while a F-value close to 0 indicates that
the means and the standard deviations are similar. Table 8.4 shows the obtained
values. As can be seen, all the p-value are higher than the significance level (i.e.
0.05), indicating that there is no statistically significant difference between them.
Whereas the F-values are close to 0, indicating that the correlation distributions
are essentially identical.

Iteration 1 2 3 4 5

1 1.00/0.00 0.83/0.05 0.99/0.00 0.88/0.02 0.89/0.02

2 0.83/0.05 1.00/0.00 0.83/0.05 0.94/0.01 0.93/0.01

3 0.99/0.00 0.83/0.05 1.00/0.00 0.88/0.02 0.89/0.02

4 0.88/0.02 0.94/0.01 0.88/0.02 1.00/0.00 0.99/0.00

5 0.89/0.02 0.93/0.01 0.89/0.02 0.99/0.00 1.00/0.00

Table 8.4: p-values and F-values between the correlations obtained over the 5
random selection (p-value/F-score).

8.3.5 . Cross Dataset Evaluation
In this section, we evaluate the generalization ability of our method to predict

the quality of unknown PCs using sjtu as training/validation set and ICIP20 as
test set without overlap between both. More precisely, sjtu was split into two sets:
80% for the training and 20% for the validation. We obtain high correlations with
0.889 as mean PLCC and 0.930 as mean SROCC. These results can be explained
by the fact that ICIP20 is composed of only compressed PCs using G-PCC (octree
and trisoup) and V-PCC, while sjtu contains compressed PCs using octree as well
as PCs with several other distortions, including color noise. In other words, there
is a data overlap in terms of distortion types between both datasets, which enables
the trained models to well predict the quality. In addition, these results show
that using such deep learning-based method allows to predict well the quality
of unknown PCs with close unknown distortions. Indeed, training the considered
CNN models on sjtu that contains PCs compressed with octree-based compression,
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even allows to well predict the quality of trisoup-based compressed PCs as well
as those compressed with V-PCC. Nevertheless, due to the relatively wide variety
of distortions contained in sjtu, training those CNN models on ICIP20 does not
provide high correlations (∼ 0.5). The latter result is related to the generalization
ability of those deep learning models which is one of the challenging issues that
remains open.

8.4 . Conclusion and perspectives

In this chapter, we proposed a deep learning-based method that efficiently pre-
dicts the quality of distorted PCs with reference. We first randomly selecting a
set of points from the reference PC and its distorted version and, determined the
nearest neighbor of each of them. We then defined a region of size 32×32 for each
of the two points and the structural distortions are computed through element-
wise patch-based distances by considering three attributes: geometry, curvature
and color. The resulted patches are then stacked into a patch of size 32× 32× 3
and fed as input to CNN models to predict its quality (i.e. one CNN model per
direction). The global quality index is finally given by aggregating the predicted
patch quality indexes and applying either a symmetrization function or a pooling
strategy using machine learning tools (SVR or MLP). The best result was provided
by MLP and the use of symmetrization functions did not improve the performance.
The results are compared with state-of-the-art methods and a cross-dataset eval-
uation was carried-out to show the generalization ability of our method to predict
the quality of unknown PCs. The proposed method obtained promising results
on two datasets and showed a good ability to predict unknown PCs with close
unknown distortions. Despite the effectiveness of our method, some points should
be deeper analyzed, including the use of more efficient deep learning models, the
impact on the performance of the number of selected points as well as the patch
size.

The contents of this chapter have been published in A. Chetouani, M. Quach,
G. Valenzise, and F. Dufaux, “Convolutional Neural Network for 3D Point Cloud
Quality Assessment with Reference,” in IEEE International Workshop on Multi-
media Signal Processing (MMSP’2021), Oct. 2021.
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9 - Conclusion and perspectives

9.1 . Conclusion

Point clouds are increasingly common, with numerous applications and the
large amounts of data are a challenge for transmission and storage. Compression
is thus crucial but also complex as point cloud compression lies at the intersection
of signal processing, data compression, computer graphics and even deep learn-
ing for state of the art approaches. The signal characteristics make point cloud
compression significantly different from traditionally compressed media such as
images and video. Indeed, the geometry can be seen as a sparse binary signal on a
voxel grid or as a set of points and the attributes then lie on this sparse, irregular
geometry posing challenges for point cloud compression.

In recent works, deep learning based approaches have exhibited outstanding
performance on geometry compression and have become comparable to state of
the art approaches on attribute compression. However, many challenges remain
and exchange of ideas between traditional and deep learning based methods have
led to fast progress in the field. In this work, we put a focus on deep learning
approaches and highlight their relation to traditional methods. Specifically, we
highlight different categories of geometry and attribute compression approaches
with relations between deep learning and traditional approaches. We discuss the
importance of LoD decomposition for compression, the limitation of separating
geometry and attribute compression and the importance of rendering in the context
of compression. Then, we discuss the specific challenges posed by sparsity for
geometry compression, the importance of point cloud quality assessment and how
its challenges mirror those of compression. Finally, we discuss how point cloud
compression relates to mesh compression and point out their intersection.

We note that approaches for compressing point cloud geometry have improved
significantly by exploiting the duality between octree and voxel grid and the LoD
decomposition resulting from octrees. Currently, deep learning approaches using
sparse convolutions offer state of the art performance and competitive complexity
compared to G-PCC. However, the characteristics of point cloud geometry can vary
significantly resulting in numerous parameters that need to be tuned for a codec
to work uniformly well across various point clouds. We believe that geometry
compression approaches need to combine both hand-crafted and learning based
approaches in order to achieve compression performance, reasonable complexity
and adaptability to different point cloud characteristics (e.g. density).

In comparison, learning based attribute compression approaches has been the
subject of less research compared to geometry compression. Current learning based
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approaches struggle to compete the state of the art and often come at high complex-
ity cost. We believe that research into the different methods to construct regular
or almost regular neighborhoods for the attributes is essential for learning based
attribute compression. For example, using an octree provides a hierarchical regu-
lar neighborhood (one parent for each octree node) and mapping the attributes to
2D grid can provide an almost regular neighborhood. The attributes are spatially
correlated and this can be verified visually. As such, a key question is how can
learning based approaches best exploit this spatial correlation for compression?
Using which representation?

Overall, deep learning based approaches need to account for point cloud spar-
sity and irregularity for both geometry and attribute compression tasks. And
learning based point cloud quality assessment is also met with the same challenge.
To this end, our contributions are as follows:

• A lossy point cloud geometry compression method that casts decoding as a
classification problem along with an extensive study on the key performance
factors of such methods.

• A lossless point cloud geometry compression method using a generative
model.

• A multiscale lossless point cloud geometry compression method which re-
solves the complexity issues of the previous approach.

• A lossy attribute compression method that folds the geometry in order to
map the attributes onto a 2D grid. The problem is then reduced to an image
compression problem.

• A deep perceptual point cloud quality metric which is differentiable and
suitable as a loss function to train lossy point cloud geometry compression
methods.

• A Convolutional Neural Network for point cloud quality assessment that
makes use of projections to a 2D grid in order to learn an objective quality
metric that correlates well with perceived visual quality.

• An extensive state of the art on Point Cloud Compression that compares
both traditional and learning based methods. We emphasize the different
and common methods that are used to deal with point cloud sparsity and
irregularity and highlight the common patterns.
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9.2 . Perspectives

9.2.1 . Joint compression of geometry and attributes in relation with
rendering

We provide a general overview of the surroundings of point cloud compression
in Figure 9.1. We define the notion of 3D scene in a general manner as including
real world 3D scenes, meshes, voxels etc. A 3D scene can be modelled (or acquired,
sampled...) into a point cloud and prior to rendering, point clouds must be inter-
preted as they are only sets of coordinates. Common interpretations of a point
include screen-aligned squares with a given window-space size ("point" primitive),
cubes, spheres etc. In addition, surface reconstruction can also be performed to
build a mesh from a point cloud. Note that point clouds are only one way to
compress 3D scenes and their visualizations.

As shown in Figure 2.1, separating geometry and attributes compression sim-
plifies point cloud compression by dividing it into two independent components.
However, jointly compressing both geometry and attributes may be important
when considering the problem more globally as illustrated in Figure 9.1. Indeed,
for numerous applications (visualization, machine vision) geometry and attributes
may impact performance in an interdependent manner. In Computer Graphics,
the well-known bump mapping technique simulates wrinkled surfaces with a sim-
plified geometry by adding perturbations to the attributes [30]. In the case of
meshes, perturbations are added to the surface normals which results in an ap-
parently wrinkled surface due to lighting calculations. For point clouds, the same
could be achieved by perturbing the point colors. This is closely related to the
problem of finding an ideal rate balance between geometry and attributes (in the
case they are considered separately).

As a result, an open research question is how to design compression techniques
that compress point cloud geometry and attributes while maximizing perceived
visual quality subject to a rate constraint? This differs from existing approaches,
which take geometry and attributes into account separately and evaluate their
quality separately.

9.2.2 . LoD decomposition and rendering: points and voxels

We have previously treated the topic of rendering and its importance to point
cloud compression and quality assessment. Also, we have analyzed the topic of
point cloud compression with approaches based on LoD decompositions. Decom-
positions can be interpreted in two manners: point based or volumetric.

In a point based view, the decomposition can be interpreted as as decomposing
the point coordinates. With an octree decomposition, we decompose the coordi-
nates in base 2; then, the octree can be interpreted as a prefix tree [32] on the
Morton codes [127] of the coordinates.
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Figure 9.1: Different types of distortions when compressing 3D scenes (real world,
mesh, point clouds, voxels) as point clouds. Depending on the context, different
types of distortion may be evaluated: point cloud distortion, 3D scene distortion
(e.g. mesh distortion) or visualization distortion. For visualization distortion,
rendering is especially important and may be optimized as aprt of the point cloud
codec.
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On the other hand, we can interpret this decomposition in a volumetric manner.
A voxel is occupied if it contains at least one point within its volume; otherwise, it
is empty. When the point cloud is represented at a lower LoD, the voxels become
larger. With a point based interpretation, a problem of octree based compression is
that the point cloud becomes sparser at lower LoDs. The volumetric interpretation
offers an alternative in that the geometry becomes coarser at lower LoDs but not
sparser. As a result, octree based compression with a volumetric interpretation
does not result in sparse renderings. A possible implementation is to render each
voxel as a cube of corresponding volume.

Such coarse but dense geometry for point cloud compression is interesting as the
bounded geometric error allows preservation of watertightness which is beneficial
for rendering quality. How to best exploit such characteristics of compression
algorithms for rendering remains an open question and is currently unexplored in
the literature.

9.2.3 . Sparsity for geometry compression

One of the key problems with point cloud compression is sparsity. Sparsity can
be defined as the ratio between the number of captured points and the number of
voxels which is directly related to the geometry precision, also defined as geometry
bitdepth. The capturing process is the main driver behind sparsity: point clouds
captured with camera arrays are typically dense because the sampling density
is spatially uniform. On the other hand, LiDAR point clouds have non-uniform
density: denser near the sensor and sparser far from the sensor. However, they
exhibit near uniform density in the spherical coordinate system which explains
non-uniformity in the 3D space.

In such point clouds, the number of points can be low compared to the precision
of the point coordinates. To obtain a dense point cloud, it is necessary to use a
geometry precision that is suitable to the number of captured points. This is an
important consideration as some compression methods may perform better at some
density/sparsity levels. For example, deep learning based convolutional geometry
compression approaches tend to perform better on dense point clouds.

Decomposing point clouds into LoDs is also useful to analyze point cloud spar-
sity. In particular, the location of sparse LoDs is important to differentiate global
from local sparsity. Global sparsity is typically handled by performing block par-
titioning which removes global sparsity by focusing compression algorithms onto
occupied blocks. Handling local sparsity is currently an open problem. One ap-
proach is to remove local sparsity by removing the sparse local LoDs resulting in
a dense point cloud which is easier to compress. Another approach is to compress
these sparse LoDs separately by first using a lossless compression methods on the
first LoDs and another compression method suitable for sparse point clouds on the
later LoDs.
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Also, we have observed that on local sparse LoDs, existing methods are not able
to exceed 2 dB per bit per input point per LoD (D1 PSNR) which is equivalent to
the RD performance of a scalar quantizer. This suggests that sparse local LoDs
may not be compressible beyond this limit in some cases. Whether these local
sparse LoDs are akin to acquisition noise and are not compressible beyond this
limit remains an open question. If this is true, compressing dense LoDs and these
sparse LoDs separately may be essential to sparse point cloud compression.

9.2.4 . Point cloud quality assessment

Commonly used distortion measures include the point-to-point (D1), the point-
to-plane metric (D2) and other metrics based on nearest neighbors [1]. These dis-
tortion metrics may not be suitable for all applications such as LiDAR point clouds
for autonomous driving which may require application-specific distortion metrics.
For instance, Feng et al. [61] evaluate the performance of their LiDAR point cloud
compression method with registration translation error, object detection accuracy
and segmentation error. Such metrics may be more relevant than generic metrics
as these are common operations on such point clouds.

In addition, interpreting LiDAR point clouds in a volumetric manner could po-
tentially improve safety. Indeed, with volumetric octree compression point clouds
could be compressed with only false positives. This could be useful for colli-
sion avoidance in the context of autonomous driving. As a result, a distorted
point cloud with distance-bounded distortion and only false positives could actu-
ally improve collision avoidance. However, if such a distortion is too severe, an
autonomous vehicle could fail to find a valid route to its destination by overesti-
mating the size of obstacles.

Another related factor is the accuracy and the precision of the LiDAR sensor.
When considering LiDAR point clouds in a voxelized manner, we may want to
consider a certain space around each occupied voxel as occupied to account for
sensor uncertainty. This may be interesting for collision avoidance as marking a
safety margin as occupied would also make the point cloud denser and thus easier
to compress. Overall, how to design an objective metric that correlates best with
autonomous driving performance remains an open question.

Furthermore, deep learning based point cloud quality assessment approaches
are being explored [43, 44, 115]. We note that it presents the same challenges
as geometry and attribute compression simultaneously. We consider the following
open question: how to design an objective metric that correlates best with per-
ceived visual quality? We notice that rendering must be considered as the point
cloud cannot be viewed otherwise. Generally, it is important to consider what is
the distortion of interest: point cloud distortion, 3D scene distortion, or distortion
of the 3D scene visualization (Figure 9.1)?
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9.2.5 . Relation to mesh compression

Meshes can be constructed from point clouds using Poisson surface reconstruc-
tion [100] and point clouds can be sampled from meshes. Surfaces can be repre-
sented explicitly with polygons but also implicitly as Truncated Signed Distance
Functions (TSDFs). As such, meshes can be compressed under a TSDF repre-
sentation and deep learning based convolutional compression techniques for point
clouds [141] and for meshes [168] are strongly related. The key difference lies in
the signal representation which can be binary (point clouds) or a distance field
(point cloud or surface). Surface reconstruction from TSDFs can be performed
with methods such as Marching Cubes [117]. It remains an open question how
exchange of ideas between techniques of point cloud and mesh compression could
further progress in both fields.
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Over the course of the thesis, the following conference papers

• M. Quach, G. Valenzise, and F. Dufaux, “Learning Convolutional Transforms
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• M. Quach, G. Valenzise, and F. Dufaux, “Folding-Based Compression Of
Point Cloud Attributes,” in 2020 IEEE International Conference on Image
Processing (ICIP), Oct. 2020, pp. 3309–3313

• M. Quach, G. Valenzise, and F. Dufaux, “Improved Deep Point Cloud Ge-
ometry Compression,” in 2020 IEEE 22nd International Workshop on Mul-
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A - Synthèse

A.1 . Contexte

Les avancées récentes ont augmenté la précision et la disponibilité des technolo-
gies de capture 3D, faisant des nuages de points une structure de données essentielle
pour la transmission et le stockage des données 3D. Les nuages de points 3D sont
cruciaux pour un large éventail d’applications telles que la réalité virtuelle [33], la
réalité mixte [63], la conduite autonome [194], la construction [183], le patrimoine
culturel [172], etc. Dans de telles applications, les nuages de points à grande échelle
peuvent avoir un grand nombre de points. La compression est donc essentielle pour
le stockage et la transmission des nuages de points.

Les nuages de points (Figure A.1) sont des ensembles de points avec des co-
ordonnées x, y, z et des attributs associés tels que les couleurs, les normales et la
réflectance. Les nuages de points peuvent être divisés en deux composants : la
géométrie, la position de chaque point individuel, et les attributs, des informations
supplémentaires attachées à chacun de ces points. Un nuage de points avec dimen-
sion temporelle est appelé nuage de points dynamique, et un nuage de points sans
dimension temporelle est statique.

Le Moving Picture Experts Group (MPEG) a promu deux normes [155] :
MPEG Geometry-based Point Cloud Compression (G-PCC) et MPEG Video-
based Point Cloud Compression (V-PCC). Ces deux normes ont atteint le stade
de projet final de norme internationale (FDIS). G-PCC utilise des structures de
données 3D natives telles que l’octree pour compresser les nuages de points tandis
que V-PCC adopte une approche basée sur la projection basée sur les technologies
de compression vidéo existantes. De plus, le Joint Photographic Experts Group

Figure A.1: Visualisations des nuages de points. De gauche à droite, "Dourado
Site" [201], "soldier" [56], "phil" [116] et "Arco Valentino" [9]
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(JPEG) a lancé un appel à témoignages [2] sur la compression de nuages de points
(PCC).

La recherche sur la PCC peut être classée selon deux dimensions. D’une part,
on peut soit compresser la géométrie du nuage de points, c’est-à-dire la position
spatiale des points, soit leurs attributs associés. D’autre part, on peut également
séparer les travaux portant sur la compression des nuages de points dynamiques,
qui contiennent des informations temporelles, et les nuages de points statiques.

En raison des propriétés des techniques de capture de nuages de points, les
nuages de points sont généralement parcimonieux. Cela rend les nuages de points
différents des autres modalités telles que les images qui ont une géométrie régulière
et dense sous la forme d’une grille régulière. Par conséquent, la compression des
nuages de points est un problème difficile.

A.2 . Objectifs et contributions

L’objectif principal de cette thèse est d’étudier l’utilisation des techniques
d’apprentissage profond pour la PCC. Plus précisément, nous étudions l’application
de techniques d’apprentissage en profondeur pour les problèmes suivants : com-
pression géométrique avec perte, compression géométrique sans perte, compression
d’attribut avec perte et évaluation de la qualité des nuages de points. En effet,
l’apprentissage profond pour ces problèmes était auparavant inexploré dans la lit-
térature. Dans cette thèse, nous proposons des méthodes basées sur l’apprentissage
pour résoudre ces problèmes. De plus, en utilisant cette large perspective, nous
mettons en évidence les défis sous-jacents que ces problèmes étroitement liés ont
en commun, à savoir la rareté et l’irrégularité des nuages de points. Nous éten-
dons ensuite cette perspective avec un état de l’art étendu sur la PCC et montrons
comment la parcomonie et l’irrégularité des nuages de points peuvent être résolus
ou atténués pour proposer de nouvelles approches basées sur l’apprentissage en
profondeur.

Nous montrons d’abord comment les réseaux de neurones convolutifs peuvent
être utilisés pour la compression géométrique avec et sans perte. Le décodage en
tant que classification est une interprétation flexible qui convient à la fois à la
compression géométrique avec et sans perte. Par conséquent, nous proposons une
nouvelle approche de compression sans perte basée sur la convolution masquée,
puis nous l’étendons avec une formulation multi-échelle efficiente. Nous étudions
également la compression d’attributs basée sur l’apprentissage profond et traitons
la parcomonie et l’irrégularité de la géométrie en réduisant le problème à un
problème de compression d’image. En effet, nous proposons une approche basée
sur l’apprentissage pour mapper les attributs des nuages de points sur une grille
régulière 2D. Cela permet l’utilisation de n’importe quelle technique de traitement
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d’image pour compresser les attributs des nuages et nous montrons comment les
méthodes de compression d’image peuvent être utilisées dans un tel contexte.

De plus, nous explorons une métrique de qualité de nuage de points perceptuelle
profonde différentiable pour estimer la qualité visuelle perçue d’un nuage de points
à partir de sa géométrie. Ceci est fortement lié à la compression géométrique car
cette métrique convient également comme fonction de perte pour la formation de
réseaux de compression géométrique avec perte. En effet, les fonctions de perte
utilisées dans la littérature tendent à être faiblement corrélées à la qualité visuelle
perçue. Les fonctions de perte qui sont plus corrélées avec la qualité visuelle perçue
pourraient améliorer les performances des méthodes de compression avec perte
basées sur l’apprentissage. De plus, nous proposons également une approche con-
volutive pour l’évaluation de la qualité des nuages de points qui gère la parcimonie
et l’irrégularité via une approche de projection. En effet, les attributs reposent
sur une géométrie clairsemée et irrégulière ce qui est un défi pour la conception
de métriques de qualité objectives. La parcimonie et l’irrégularité peuvent être
traitées via une approche de projection 2D. Cela permet ensuite l’utilisation de
réseaux de neurones convolutifs 2D pour l’évaluation de la qualité qui sont bien
étudiés pour les images.

A.3 . Structure

Tout d’abord, nous présentons l’état de l’art du PCC au chapitre 2. Ensuite,
nous abordons la compression géométrique basée sur l’apprentissage avec une ap-
proche convolutive avec perte au chapitre 3. L’interprétation du décodage comme
classification ouvre la voie à une compression sans perte avec un modèle génératif
auto-régressif au chapitre 4. Cependant, de tels modèles présentent une grande
complexité en raison de la génération séquentielle de probabilités de symboles.
Nous abordons ce problème avec une approche de prédiction multi-échelle dans
le chapitre 5. Dans le chapitre 6, nous proposons une méthode de compression
d’attribut basée sur l’apprentissage qui est basée sur la compression d’image et
un mappage basé sur l’apprentissage des attributs de nuage de points sur une
grille 2D. Dans les méthodes de compression géométrique avec perte telles que
celle présentée au chapitre 3, le réseau de neurones est optimisé conjointement en
débit et en distorsion via une fonction de perte. Ainsi, cette formulation de cette
fonction de perte est d’une grande importance et pour la visualisation humaine, la
mesure de la distorsion devrait idéalement être fortement liée à la qualité visuelle
perçue. Dans le chapitre 7, nous proposons une métrique différentiable de qualité
perceptuelle bien corrélée avec la qualité visuelle perçue. Ensuite, nous abordons
l’évaluation de la qualité des nuages de points basée sur l’apprentissage avec une
approche basée sur la projection dans le chapitre 8. Dans l’ensemble, ces différentes
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approches ont en commun que la parcimonie et l’irrégularité des nuages de points
constituent un problème clé pour la compression de la géométrie, la compression
des attributs et l’évaluation de la qualité des nuages de points. Dans les différents
chapitres, nous montrons comment ce problème peut être résolu ou atténué pour
les différents problèmes. Enfin, nous présentons les conclusions, les perspectives
sur les problèmes ouverts et la liste des publications dans le chapitre 9.
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