
HAL Id: tel-03894764
https://theses.hal.science/tel-03894764v1

Submitted on 12 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning From Simulated Data in Finance : XVAs, Risk
Measures and Calibration

Bouazza Saadeddine

To cite this version:
Bouazza Saadeddine. Learning From Simulated Data in Finance : XVAs, Risk Measures and Cali-
bration. Machine Learning [cs.LG]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASM024�.
�tel-03894764�

https://theses.hal.science/tel-03894764v1
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T

N
N
T
:2
02
2U

PA
SM

02
4

Learning From Simulated Data in Finace :
XVAs, Risk Measures and Calibration

Apprentissage sur données simulées en finance :
XVAs, mesures de risque et calibration

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦574, École Doctorale de Mathématiques Hadamard
(EDMH)

Spécialité de doctorat : Mathématiques appliquées
Graduate School : Mathématiques

Référent : Université d’Evry Val d’Essonne

Thèse préparée dans l’unité de recherche Université Paris-Saclay,
Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry,

CNRS UMR 8001, Evry, France,
sous la direction de Stéphane CRÉPEY, Professeur des Universités,

le co-encadrement de Lokman ABBAS-TURKI, Maître de Conférences,
et la co-supervision de Christophe MICHEL, Responsable Rech. Quantitative à

CACIB

Thèse soutenue à Paris, le 21 octobre 2022, par

Bouazza SAADEDDINE

Composition du jury
Huyên PHAM Président
Professeur des universités, Université Paris-Cité
Pierre HENRY-LABORDÈRE Rapporteur & Examinateur
Global head of quantitative research, Natixis
Josef TEICHMANN Rapporteur & Examinateur
Professor, ETH Zürich
Ludovic GOUDENÈGE Examinateur
Chargé de recherche CNRS, CentraleSupélec
Blanka HORVATH Examinatrice
Professor, University of Oxford
Olivier PIRONNEAU Examinateur
Professeur émérite, Sorbonne Université
Stéphane CRÉPEY Directeur de thèse
Professeur des universités, Université Paris-Cité

Acknowledgements
I would firstmost like to acknowledge and give my sincerest thanks to my PhD supervisors
Stéphane Crépey and Lokmane Abbas-Turki for their trust, guidance and constant
support during my thesis which made this work possible. I am also grateful to Stéphane
for having presented me the opportunity of this CIFRE thesis with Crédit Agricole CIB
(CACIB) when I was still hesitating on my career path towards the end of my Masters and
for having always supported me. Chapter 5, in particular, would probably not have seen
the light of the day without his encouragement and support. I also thank Lokmane for
sharing his passion and expertise in numerical finance with CUDA with me.

I am also thankful to CACIB and ANRT for financing this thesis. I am also grateful to
Christophe Michel and Vincent Porte for having made this CIFRE thesis possible
and for welcoming me into CACIB where they were always available for technical and
financial discussions around my works, of which Chapter 5 is a direct result for instance.
I am also grateful to Moez Mrad for insightful discussions around XVA calculations and
hedging. My thanks extend to my quant and IT colleagues who made my three years at
CACIB a real joy.

I sincerely thank Pierre Henry-Labordère and Joseph Teichmann for honouring
me by accepting to review my manuscript. I am equally honoured by having Ludovic
Goudnège, Blanka Horvath, Huyên Pham and Olivier Pironneau in my jury. I
am also grateful to Joseph Teichmann and Blanka Horvath for having traveled from
Switzerland and the United Kingdom to attend my thesis defense in-person.

My thesis also would not have been successful without the help and availability of the
LaMME and LPSM staff. In this regard, I would like to thank Patricia Authier and
Maurice Baudry for allowing me access to the laboratories' GPU servers, which were
vital for my computational results, and for always being there to help me with server-
related issues. I would also like to thank Nathalie Bergame, Valérie Gontier-Picot
and Elise Maspimby for welcoming me into the laboratories and helping me with all the
administrative tasks.

I also wish to extend my gratitude to the Graduate School of Mathematics Hadamard
and especiallyAna-Maria Castravet,Pierre Gilles Lemarié-Rieusset, Stéphane
Menozzi, Stéphane Nonnenmacher, Vincent Sécherre for their crucial follow-
ups during my thesis and for having made the organization of the defense a success.

I also thank Michael Allouche, Emmanuel Gobet, Zoltan Szabo and Elodie
Vernet for organizing the Machine Learning Journal Club at CMAP and for inviting me
to speak there at multiple occasions.

I would also like to thank everyone at CMAP, LaMME and LPSM with whom I had
the chance to work or have fruitful discussions, in particular David Barrera, Cyril
Benezet, Mohamed-Raed Blel, Marc Chataignier, Babacar Diallo and Hoang
Dung Nguyen.

1

This manuscript was written entirely in TeXmacs (texmacs.org) and I am grateful
for the help provided by the community at forum.texmacs.cn which made writing this
manuscript a breeze.

Finally, none of my accomplishments would have come forward without the constant
love and support of my family. I am hereby forever grateful to my parents and to my
brother Azzad.

2 Acknowledgements

texmacs.org
forum.texmacs.cn

Table of contents

Acknowledgements
. 1

Introduction . 7

1 Context . 7
1.1 The Era of Big Data and Machine Learning . 7
1.2 A Brief XVA Intermezzo . 9
1.3 Projections, Not Function Fitting . 12
1.4 Non-Stationarity and Access to the Generating Process 15
1.5 Related Generic Issues . 16

2 Chapter Summaries . 17
2.1 Chapter 1 � XVA Analysis From the Balance Sheet 17
2.2 Chapter 2 � Pathwise CVA Regressions With Oversimulated Defaults 19
2.3 Chapter 3 � Learning Value-at-Risk and Expected Shortfall 22
2.4 Chapter 4 � Pathwise XVAs: The Direct Scheme 24
2.5 Chapter 5 � Fast Calibration using Complex-Step Sobolev Training 25

Introduction (français) . 29

1 Contexte . 29
1.1 L'ère du Big Data et de l'apprentissage automatique 29
1.2 Un bref intermezzo sur les XVAs . 31
1.3 Des projections et non pas des ajustements de courbes 34
1.4 Non-stationnarité, accès au processus générateur des données 37
1.5 Questions génériques connexes . 38

2 Résumés des chapitres . 39
2.1 Chapitre 1 � XVA Analysis From the Balance Sheet 40
2.2 Chapitre 2 � Pathwise CVA Regressions With Oversimulated Defaults 41
2.3 Chapitre 3 � Learning Value-at-Risk and Expected Shortfall 44
2.4 Chapitre 4 � Pathwise XVAs: The Direct Scheme 47
2.5 Chapitre 5 � Fast Calibration using Complex-Step Sobolev Training 48

1 XVA Analysis From the Balance Sheet . 53

1.1 Introduction . 53
1.1.1 Contents . 54
1.1.2 Outline and Contributions . 55

1.2 Balance Sheet and Capital Structure Model of the Bank 56
1.2.1 Run-Off Portfolio . 60

1.3 XVA Analysis in a Static Setup . 61
1.3.1 Cash Flows . 62
1.3.2 Contra-assets and Contra-liabilities . 63
1.3.3 Capital Valuation Adjustment . 64

3

KVA Risk Premium and Indifference Pricing Interpretation 65
1.3.4 Collateral With Clients and Fungibility of Capital at Risk as a Funding Source
. 66

1.3.5 Funds Transfer Price . 67
Wealth Transfer Analysis . 67
Connection With the Modigliani-Miller Theory 68

1.4 XVA Analysis in a Dynamic Setup . 68
1.4.1 Case of a Run-Off Portfolio . 69
1.4.2 Trade Incremental Cost-of-Capital XVA Strategy 70
1.4.3 Computational Challenges . 71
1.4.4 Deep (Quantile) Regression XVA Framework 72

1.5 Swap Portfolio Case Study . 74
1.5.1 Validation Results . 75
1.5.2 Portfolio-wide XVA Profiles . 81
1.5.3 Trade Incremental XVA Profiles . 83
1.5.4 Trade and Hedge Incremental XVA Profiles . 83
1.5.5 Scalability . 84

1.6 Continuous-Time XVA Equations . 85
1.6.1 Cash Flows . 85
1.6.2 Valuation . 86
1.6.3 The XVA Equations are Well-Posed . 87
1.6.4 Collateralization Schemes . 88

2 Pathwise CVA Regressions With Oversimulated Defaults 91

2.1 Introduction . 91
2.1.1 Outline . 92

2.2 Neural Regression Setup . 93
2.2.1 Neural Net Parameterization . 94
2.2.2 Local Training Algorithm . 95
2.2.3 Backward Learning . 96
2.2.4 Separable Case . 97
2.2.5 A Posteriori Twin Monte Carlo Validation Procedure 98
2.2.6 Python/CUDA Optimized Implementation Using GPU 98

2.3 Hierarchical Simulation and its Analysis . 99
2.3.1 Identification of the Variance Contributions Using Automatic Relevance Deter-
mination . 99
2.3.2 Learning on Hierarchically Simulated Paths 100
2.3.3 Choosing the Hierarchical Simulation Factor 101
2.3.4 Statistical Convergence Analysis . 102

2.4 CVA Case Study . 104
2.4.1 Market and Credit Model . 105
2.4.2 Learning the CVA . 105
2.4.3 Preliminary Learning Results Based on IID Data 107
2.4.4 Learning Results Based on Hierarchically Simulated Data 107
2.4.5 Conclusion . 111

2.5 Technical Proofs . 112
2.5.1 Proof of Theorem 2.6 . 114
2.5.2 Proof of Theorem 2.7 . 115

2.6 Market and Credit Model in Continuous Time . 117

3 Learning Value-at-Risk and Expected Shortfall 119

4 Table of contents

3.1 Introduction . 119
3.2 A learning algorithm for VaR and ES . 120

3.2.1 VaR and ES as optimization problems . 122
3.2.2 The algorithm . 123

3.3 Convergence Analysis of the Learning Algorithm 124
3.3.1 The approximation error of the estimator of VaR 124
3.3.2 A confidence interval for the estimator of VaR 127
3.3.3 A Rademacher confidence interval for the estimator of ES¡VaR 130
3.3.4 VC confidence interval for the estimator of ES¡VaR 133

Rademacher vs VC: from �small� to �big� data 133
3.3.5 Multiple-� learning . 134

3.3.5.1 Related literature . 134
3.3.5.2 Extension of the bounds to multiple-� learning 135

3.4 Learning Using Neural Networks . 135
3.4.1 Error bound of the learning algorithm with one-layer neural networks . . 135
3.4.2 Learning the VaR . 137

3.4.2.1 Single-� learning . 137
3.4.2.2 Multiple-� learning . 138

Learning for a continuum of �'s . 138
Learning for a discrete set of �'s . 138

3.4.3 Learning the ES using a two-steps approach 139
3.4.4 Validating VaR and ES learners without groundtruth values 139

3.5 Conditionally Gaussian Toy Model . 141
3.5.1 Results . 141

3.6 Dynamic Initial Margin Case Study . 143
3.6.1 Estimating IMt using a nested Monte Carlo 143
3.6.2 Results . 144

Conclusion . 146
3.A Value-at-Risk and Expected Shortfall Representations 146
3.B The Role of Data Transformations and Truncations 150

4 Pathwise XVAs: The Direct Scheme . 153

4.1 Introduction . 153
4.1.1 Standing Notation . 154

4.2 Limiting Equations . 155
4.2.1 Spaces and Martingale Representation . 155
4.2.2 The Markovian Anticipated BSDE . 156

4.3 Approximation Schemes . 158
4.3.1 Time Discretizations . 158
4.3.2 Fully Discrete Algorithms . 159
4.3.3 A Posteriori Analysis of the Regression Error 163

4.4 XVA Application . 164
4.4.1 Numerical Results . 166

4.5 Conclusion . 172
4.A XVA Numerical Schemes . 173

4.A.1 Explicit scheme . 174
4.A.2 Picard scheme . 174

5 Fast Calibration using Complex-Step Sobolev Training 177

5.1 Introduction . 177

Table of contents 5

5.2 Learning to Project Payoffs . 178
5.3 Regularizing with Sobolev Training . 180
5.4 Complex-step Sobolev Training . 183

5.4.1 Restricting to Stochastic Directional Derivatives 183
5.4.2 Faster Directional Derivatives with Complex-step Differentiation 186

5.5 Numerical Case-study: Fixed-grid Local Volatility 190
5.5.1 Setup of The Experiments . 190
5.5.2 Execution Times and Benchmarks . 191
5.5.3 Validation Without Ground-truth Values . 192
5.5.4 Calibration Example . 192

5.A Derivatives with respect to time to maturity in discrete time models 193
5.B Differentiation of the local volatility function in Example 5.8 195

Bibliography . 197

6 Table of contents

Introduction

1 Context
The mathematical notations in this section are local to this section only.

1.1 The Era of Big Data and Machine Learning
The 21st century is marked by an abundance of data [Sirko et al., 2021; Sidorov et al.,
2020; Kuznetsova et al., 2020; Abu-El-Haija et al., 2016; Deng et al., 2009], the emergence
of new technologies to structure and manage it [Zaharia et al., 2016; Lakshman and Malik,
2010; Borthakur, 2007], and continuous hardware innovations to process it in reasonable
time [Nickolls and Dally, 2010]. This defined the so-called era of �Big Data� [Magoulas and
Lorica, 2009] marked by the ubiquity of parallel programming techniques and architectures,
the widespread use of massively parallel compute architectures such as Graphics Processing
Units (GPUs) via programming APIs such as CUDA [Luebke, 2008] and OpenCL [Stone
et al., 2010] due to the reliance of most state-of-the-art algorithms on linear algebra rou-
tines that benefit greatly from GPU acceleration [Shi et al., 2016], and the prevalence of
stochastic programming algorithms, from the original version of stochastic gradient descent
(SGD) studied in the seminal work of Robbins and Monro, 1951 to the most recent and
immensely successful variants such as the ADAM algorithm by Kingma and Ba, 2014, due
to the attractive scalability properties of these algorithms [Bottou, 2010].

102

103

104

 2008 2010 2012 2014 2016 2018

HD 3870

HD 4870

HD 5870

HD 6970

HD 6970
HD 7970 G

Hz E
d.

HD 8970
FirePro W9100

FirePro S9150

MI25

MI60

X5482

X5492

W
5590

X5680

X5690

E5-2690 E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Platin
um 8180 Platin

um 9282

8800 G
TS

GTX 280

GTX 285 GTX 580

GTX 580

GTX 680

GTX Tita
n

Tesla
 K

40

GTX Tita
n X

Tita
n X Tita

n V

Tita
n R

TX

G
F

LO
P

/s
ec

End of Year

INTEL Xeon CPUs

NVIDIA GeForce GPUs

AMD Radeon GPUs

Theoretical Peak Performance, Single Precision

Figure 1. Theoretical peak floating-point operations per second (FLOP/s,
1GFLOP/s=109FLOP/s) for Intel CPUs vs AMD and NVidia GPUs in simple precision. Pro-
duced using code and data by Karl Rupp available at https://github.com/karlrupp/cpu-gpu-
mic-comparison under a CC BY 4.0 license.

7

https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison

With this revolution in compute architectures, parallel programming, stochastic opti-
mization and other scalable numerical methods, another paradigm to designing computer
programs gained in prominence, where programmers do not have to explicitly program
the solution to a problem they are trying to solve and where they can instead implement
an algorithm which learns the solution, or at least how to get close to one, given sufficient
amounts of data by using statistical learning techniques. This new paradigm is more
relevant now than ever in this era of Big Data. The essence of this paradigm can perhaps
be best summarized by the following quotes from Samuel, 1959, who coined the term
Machine Learning , in the context of the game of checkers:

[. . .] a computer can be programmed so that it will learn to play a better
game of checkers than can be played by the person who wrote the program.
Furthermore, it can learn to do this in a remarkably short period of time.
[. . .] Programming computers to learn from experience should eventually
eliminate the need for much of this detailed programming effort.

Machine Learning approaches, and more prevalently Neural Network based ones, knew
tremendous success in disciplines such as computer vision [Janai et al., 2020; Voulodimos
et al., 2018], natural language processing [Wolf et al., 2019; Young et al., 2018], recom-
mender systems [Zhang et al., 2019; Adomavicius and Tuzhilin, 2005] or anomaly detection
[Chalapathy and Chawla, 2019; Zenati et al., 2018; Omar et al., 2013].

Although there was a certain adoption by financial institutions, mostly in consumer
banking with applications such as credit scoring [Lessmann et al., 2015] or fraud detec-
tion [Chan et al., 1999], its use remained limited in quantitative finance especially on
the sell-side. This is, in our view, mostly due to a common misconception that Machine
Learning would apply only on problems with real-world applications and empirical data,
as opposed to mathematical models and risk-neutral valuation frameworks in pricing and
hedging problems. Applications emerged nevertheless especially in fast pricing applications
[Horvath et al., 2021; De Spiegeleer et al., 2018] where the goal is to construct fast price
approximations that could replace slow pricing routines, e.g. based on Monte Carlo simu-
lations. Goudenege et al., 2020 propose to combine a one-step tree method [Ekvall, 1996]
with Gaussian process regression [Rasmussen and Williams, 2006] in order to approximate
the continuation value at exercise dates when valuing a Bermudan option via backward
dynamic programming. These applications are undoubtedly essential as they are important
building blocks on which transactions, regulatory and risk calculations, model calibration
and electronic trading, among others, are highly dependent both functionally and per-
formance-wise, i.e. fast pricing libraries necessarily translate into faster risk calculations.
In these settings, Machine Learning algorithms are employed in explicit function fitting
setups.

New uses of Machine Learning specific to mathematical finance models began to emerge
thanks to seminal works such as [Huré et al., 2020; Raissi, 2018; Han et al., 2018]. By
casting backward stochastic differential equations (BSDEs) [Pardoux and Peng, 1990] as
stochastic control problems in discrete time, the authors manage to solve BSDEs or the
associated partial differential equations (PDEs) using a space of neural networks with a
suitable architecture as their search space in the minimization problem and paths simulated
via Monte Carlo as their training data. The applicability of BSDEs in finance was first
highlighted in [El Karoui et al., 1997] and a more up-to-date treatment is given in [Crépey,
2013]. Buehler et al., 2019 use a formally similar approach to directly tackle the problem
of hedging a financial derivative product in the presence of market imperfections like

8 Introduction

transaction costs, slippage and market impact, which are usually neglected in common
risk-neutral valuation frameworks. Becker et al., 2019 also propose a novel technique for
solving optimal stopping problems by representing the policy using neural networks and
show applications in pricing Bermudan and callable derivatives. This marked the beginning
of a trend where Machine Learning in finance goes beyond function fitting and exploited
the unique mathematical setting of the models used by the banks.

This thesis also continues along the same line of thought in devising Machine Learning
based schemes, or more precisely neural networks based ones, to address the problems of
computing X-Valuation Adjustments (XVAs) and conditional risk measures and acceler-
ating the calibration of pricing models.

1.2 A Brief XVA Intermezzo

The 2008�2009 financial crisis saw numerous banking reforms aimed at increasing the
robustness of the financial system. A consequence of this was an increase in the use of
XVA metrics during the pricing of derivative products. These metrics were intended to
help quantify and price market incompleteness by banks and account for counterparty risk
and its capital and funding implications. The letter X is a catch-all letter to be replaced by:

� C for credit , i.e. Credit Valuation Adjustment (CVA);

� D for debt , i.e. Debt Valuation Adjustment (DVA);

� F for funding , i.e. Funding Valuation Adjustment (FVA);

� M for margin, i.e. Margin Valuation Adjustment (MVA);

� K for capital1, i.e. Capital Valuation Adjustment (KVA).

XVA applications form a sizable part of this thesis due to their importance in regulatory
calculations. This is done in the framework of [Albanese et al., 2021] (work which is also
presented in Chapter 1), addressing refined features such as the simulation of defaults (see
Chapter 2) or the fungibility of the reserve capital and capital at risk with variation margin
(see Chapter 4).

For the purpose of this introduction, we will briefly give an example using the CVA and
the FVA to highlight the computational complexity involved in the calculation of these
metrics. In particular, we address the problem of computing these metrics at future time-
steps under a risk-neutral model of market and credit risk-factors.

Indeed, successfully modelling the future evolution of the CVA, and in particular mod-
elling it as a stochastic process, is essential as losses can materialize merely because of the
fluctuation of this metric. For instance, the Basel Committee said the following in [The
Bank for International Settlements, 2011]:

During the financial crisis, roughly two-thirds of losses attributed to counter-

1. as C was already taken for the CVA.

1 Context 9

party credit risk were due to CVA losses and only about one-third were due
to actual defaults.

1996
2000

2004
2008

2012
2016

2020

0

500

1000

1500

2000

O
p

ti
on

-A
d

ju
st

ed
S

p
re

a
d

(b
p

s)

AAA

High Yield

Figure 2. CVA losses can be caused simply by fluctuations in its value caused by changes in credit
spreads. This plot represents the ICE BofA US High Yield Index (purple) and the ICE BofA
AAA US Corporate Index (blue) Option-Adjusted Spreads. Data retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/BAMLH0A0HYM2 and https://
fred.stlouisfed.org/series/BAMLC0A1CAAA.

Assuming for simplicity one single counterparty and one single uncollateralized deriv-
ative transaction that the bank and the client entered into, zero recovery in the case of a
default, neglecting any discounting, and assuming a time discretization 0= t0< t1< � � �<
ti< � � �<tn=T where T is the horizon of the product, one can define the CVA process in
discrete time as follows:

CVAi :=E

24X
j=i

n¡1

MtMj+1
+ 1ftj<��tj+1g

������������Xi; 1f�>tig

35 (1)

for each i2f0;:::; n¡1g, where MtMj is the value, or mark-to-market , of the product from
the point of view of the bank (i.e. positive when it is asset to the bank and negative when
it is a liability) at time tj, � is the default time of the counterparty, Xi is a vector of market
risk factors prevailing at time ti and we assumed a certain multi-factor pricing model under
a stochastic pricing basis. Defined this way, the CVA is an expectation of future losses due
to defaults conditional on the prevailing market (through X) and credit (through 1f�>:g)

10 Introduction

https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA

states. A brute-force method for simulating realizations of the conditional expectation in
(1), for example in order to inject them into other nonlinearities or higher-order XVAs like
the FVA or simply to compute a Value-at-Risk on it, consists in using an estimator such as:

CVAd i
(k) := 1

M

X
l=1

M X
j=i

n¡1 ¡
MtMj+1

(k;l)�+1ftj<� (k;l)�tj+1g
for k2f1;:::;N g where we assume we have access to an i.i.d sample

�¡
Xi
(k)
; � (k)

�	
1�k�N of

(Xi; �) and for each k2f1;:::;N gwe have a conditionally independent sample
�¡

MtMi+1
(k;l)

;:::;

MtMn
(k;l)

; � (k;l)
�	

1�l�M of (MtMi+1; : : : ;MtMn; �) conditional on (Xi; 1f�>tig) =
¡
Xi
(k)
;

1f� (k)>tig
�
. This defines a Nested Monte Carlo (NMC) procedure for simulating the con-

ditional expectation in (1). Notice that we would need an additional layer of nested
simulations if the MtM is not analytic. Although this brute force scheme can be imple-
mented for the CVA, it becomes out-of-scope for the FVA.

Using the previous notation, and, only for the sake of simplicity of this introduction,
neglecting most feedback terms and the fungibility of capital at risk with variation margin
[Crépey et al., 2020], we can write for the FVA the following simplified definition:

FVAi :=E

24X
j=i

n¡1
�j+1(MtMj+11f�>tj+1g¡CVAj+1¡FVAj+1)+(tj+1¡ tj)

������������Xi;1f�>tig

35 (2)

where � is a stochastic process representing the bank's funding spread and is a component
in the vector X. Here, the FVA represents the cost of funding our uncollateralized trade
and our definition takes into account the fact that the CVA and FVA themselves both help
reduce the need for funding. Modelling the FVA as we did also allows one to account for
its future fluctuations. Very recently, three US banks suffered a combined $2 billion FVA
loss [Becker, 2020] because of how the COVID-19 pandemic, and central banks' responses
to it, impacted interest rates and funding spreads (see Table 1).

Tenor USD EUR
2y 226% 398%
5y 119% 170%
10y 83% 69%

Table 1. Jumps in funding spreads from 2020-02-21 to 2020-03-24. Source: Takei, 2020 (IHS
Markit).

As one can see from the definition in (2), implementing a purely Nested Monte Carlo
procedure for the FVA as we presented for the CVA would suppose to implement nested
simulations with as many layers of sub-simulations as there are time steps until maturity
because of the dependence on future FVA values in the integrand of the expectation. This
of course is prohibitive in terms of computation time and will lead to algorithms that have
exponential complexity in the number of time steps. This complexity is further exacerbated
when one takes into account other XVAs or risk measures such as the KVA or the economic
capital given the coupling they create with the FVA in particular (see Chapter 1).

1 Context 11

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 .

. .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. .

Figure 3. Interdependence between the different XVAs and risk measures in a Nested Monte Carlo
context. In such a context, in order to simulate one realization of the economic capital for example
at a given Monte Carlo node, one needs inner-simulations of the FVA, CVA and MVA conditional
on that node. Each of those inner FVAs in turn needs another layer of inner-simulations and so
forth. Source: Abbas-Turki et al., 2018.

In [Abbas-Turki et al., 2018], a benchmark approach involving multiple layers of Nested
Monte Carlo and linear regressions has been developed along with GPU optimization
strategies. That benchmark however has an exponential complexity in the number of XVA
layers. In chapters 1, 2 and 4, we develop an approach using Machine Learning, and more
precisely regressions based on Neural Networks, in order to make the complexity linear in
the number of XVA layers.

1.3 Projections, Not Function Fitting

What the CVA and the FVA, as introduced in (1) and (2) have in common is that each of
them is a conditional expectation of a certain integrand. The basic principle behind our
proposed approach is to interpret those conditional expectations as orthogonal projections
of their respective integrands. More generally, assume we are given two random variablesX
and Y such that X is supported on a space X and Y is square integrable and supported on
R and suppose that we are interested in E[Y jX]. Since E[Y jX] can be seen as an orthogonal
projection of Y onto the vector subspace consisting of2 square integrable �(X)-measurable
random variables, and hence a minimizer of the associated projection error, one can write:

E[Y jX]=h?(X)

where h? is such that

h?2 argmin
h2B(X ;R)

E[(h(X)¡Y)2] (3)

where B(X ;R) is the space of Borel functions h:X!R such that h(X) is square integrable.
Another way to view this is from a purely probabilistic point of view as follows, where h

2. more precisely, of the equivalence classes with respect to the almost sure equality relation.

12 Introduction

is any function in B(X ;R):

E[(h(X)¡Y)2]=E[(h(X)¡E[Y jX])2]+ E[var(Y jX)]||| |{z}}} }
independent of h

The common strategy then in this thesis is to solve the minimization problem in (3) by
introducing two layers of approximation:

� Approximating argminh2B(X ;R): we first propose to perform the minimization in
a sufficiently rich space of parametrized functions so that the minimization becomes
finite dimensional and can thus be done with respect to the parameters using clas-
sical numerical optimization techniques. Our choice for the entire thesis has been
neural networks (we refer for example to chapters 2, 4, 3 or 5 for precise definitions
of neural networks as adopted in this thesis) and is motivated by the following
considerations:

� Universal Approximation property: If � is a non-affine continuously
differentiable activation function, q 2N? and K �Rn a compact. Then for
any " > 0 and f 2 C(K;Rq), there exists a neural network u:Rn!Rq with
p hidden layers, q+ n+2 neurons per hidden layer and � as its activation
function such that supx2K ku(x)¡ f(x)k<". This result [Kidger and Lyons,
2020] is a deep (i.e. fixed width) version of the usual fixed depth Universal
Approximation theorem for neural networks [Hornik, 1991; Cybenko, 1989].
Hence, one can be optimistic about being able to get close to h? by choosing
a sufficiently large neural network either in width or in depth, with recent
results such as [Cohen et al., 2016; Eldan and Shamir, 2016] more in favor
of deep networks;

� Ability to automatically learn a linear regression basis: Assuming
no nonlinearity at the output of the feed-forward neural network shown in
Figure 4, the last hidden layer, when seen as a function �� of the input x
parametrized by the collection � of all hidden weights, can be interpreted as
a parametrized feature map. For fixed �, denoting by w the weights of the
output layer and assuming that the output is scalar, then training a neural
network by optimizing only with respect to w amounts to performing a
simple linear regression using ��(x) as a feature transform. Thus, training
with respect to all weights (i.e. � and w jointly) amounts to learning both
the feature map and the associated weights in the output layer. Hence, given
enough data, a neural network can automatically learn a linear regression
basis and thus avoid the manual selection of regression bases that is usually
done by domain experts and which cannot be done for example in the case of
XVAs where the dependence of the XVAs on the many risk factors is highly
non-trivial. This joins the idea of Samuel, 1959 above that a program can be
made to learn how to solve a task, in this case the selection of a regression

1 Context 13

basis, eventually better than its programmer;

Figure 4. Training by optimizing with respect to all the weights in a neural
network amounts to learning both the feature map and the associated weights in
the output layer.

� Ease of knowledge transfer: One can do a so-called transfer learning
[Bozinovski, 2020; Pan and Yang, 2009] with neural networks very easily by
simply reusing weights from earlier and related neural network trainings. We
used this technique extensively in our XVA applications in chapters 2 and
4, where the learning tasks associated with nearby time steps are necessarily
close.

� Approximating argminE[:]: The minimization of the expectation of a point-wise
loss (in this example the squared distance between the output of the neural network
and the variable to be projected) is done using the tools of stochastic programming
[Shapiro et al., 2021] using a finite-sample approximation of the expectation. This
approach is also known as empirical risk minimization in the context of stastis-
tical learning [Vapnik, 1991]. In particular, we solve the minimization problem
numerically by performing stochastic gradient descent (more precisely, using ADAM
[Kingma and Ba, 2014]) on the empirical approximation3. Here we leverage the fact
that we have access to the data generating process since the risk factors are driven
by known stochastic differential equations (SDEs). The gradients with respect to the
neural network parameters are computed exactly using algorithmic differentiation
[Baydin et al., 2018; Savine, 2018], which is implemented by libraries such as JAX
[Bradbury et al., 2018], PyTorch [Paszke et al., 2019] and Tensorflow [Abadi et
al., 2016]. We refer to chapters 2 and 4 for detailed pseudo-codes of the training
procedures that we used.

Assume now that one finished the approximation and is now given a
candidate h 2 B(X ; R). One way to measure whether this candidate is satisfactory is
to see whether it is close enough (of course depending on some subjective threshold
by the user of the approach) from the ground-truth value (i.e. E[Y jX]) by com-

puting the distance E[(h(X)¡E[Y jX])2]
q

. Unfortunately, the prospective user of our

3. This means that we do not draw completely new realizations at each SGD iteration. More precisely, we
perform instead multiple passes or epochs over the data-set, where inside of each epoch we iterate over disjointmini-
batches. For each mini-batch we compute the empirical loss gradient by averaging over the mini-batch and perform
a descent along the opposite direction of that gradient. The goal is to not have to spend an excessive amount of
time on new simulations at every SGD step.

14 Introduction

learning approaches usually has access only to couples of realizations (X; Y) and does
not have direct access to E[Y jX], otherwise there would be no need to approximate
it. Hence one can estimate E[(h(X) ¡ Y)2] directly but not, at least not via direct
Monte Carlo, E[(h(X)¡E[Y jX])2] and of course these two squared distances, while having
the same argmin with respect to h on B(X ;R), are not necessarily interchangeable (see
Figure 5).

²

²

Figure 5. The distances E[(h(X)¡E[Y jX])2]
p

and E[(h(X)¡Y)2]
p

are not interchangeable
in general, unless Y is �(X)-measurable.

One way to estimate this distance would be to approximate E[Y jX] using a nested
Monte Carlo approach. However, this is slow and inefficient, and not suitable for live
validation in a production setting. Instead, we developed a simple way in Chapter 2 to
estimate our L2 distance. In particular, we show that:

E[(h(X)¡E[Y jX])2] =E[h(X) (h(X)¡Y (1)¡Y (2))+Y (1)Y (2)] (4)

where Y (1) and Y (2) are two copies of Y that are independent conditional on X. Hence
h(X) (h(X)¡Y (1)¡Y (2))+Y (1)Y (2) is an unbiased estimator of our squared L2 distance
and it involves only two sub-simulations (as opposed to hundreds or even thousands if one
were to approximate E[Y jX] directly using Nested Monte Carlo).

We extend the study of this learning approach to the approximation of the conditional
Value-at-Risk and Expected-Shortfall in Chapter 3.

1.4 Non-Stationarity and Access to the Generating Process

We emphasize a key difference with respect to how Machine Learning is used in other
disciplines. While in those disciplines, one usually has a finite data-set, with the data

1 Context 15

coming either from a manual or automatic data collection and annotation, in the case
of learning from simulated data we have by definition full access to the data generating
process. In our case, the risk factors are usually modeled using SDEs or discrete Markov
chains and hence our data-set is typically constructed via Monte Carlo simulations of paths
of those stochastic processes and computing along each path the integrand that we wish to
project using precise algorithmic steps. This makes issues like over-fitting less problematic
as we can always generate more data if needed. Such issues are, however, theoretically still
existent and one should still verify the results using out-of-sample metrics, computed using
a sample that is independent of the training data and which is usually called a test set .

The conditional expectations or risk measures that we seek to approximate are needed
at least on a daily basis. However, the model parameters (e.g. the parameters of the SDEs
governing the risk factors) and other variables, such as the composition of the bank's
portfolio in the case of our portfolio-wide XVAs, change continuously, hence introducing a
certain non-stationarity. Thus, one cannot simply train the neural network approximators
once and then use them in inference mode in every market condition at any subsequent
date. Instead, one needs to regenerate the data-set by launching new Monte Carlo simu-
lations under the new model parameters, and then retrain the neural networks using the
new data-set and, in the case of XVAs, the bank's new portfolio.

In this setting, generating the data-set (i.e. Monte Carlo paths) and training are both
part of the final product . This is precisely why we spent considerable efforts in devising sim-
ulations that are fast, using highly optimized CUDA kernels due to Monte Carlo simulations
being intrinsically parallelizable, and training schemes which leverage many character-
istics such as reusing weights through the time steps in BSDEs (chapters 2 and 4), the
use of custom CUDA kernels to help with the generation of the labels for the training, and
the extensive use of PyTorch's just-in-time (JIT) compilation mechanism. In Chapter 5,
where we do not have this issue of non-stationarity but where fast training is still desir-
able in order to iterate faster in research and development, we provide an application
where we went beyond these optimizations and implemented high performance training
directly in C++ using the libtorch library.

1.5 Related Generic Issues

There are a couple of questions that were voluntarily omitted during this thesis as we feel
that these issues are already addressed or are being addressed by other researchers.

In particular, while we implemented our learning schemes using only one GPU, a suc-
cessful large-scale implementation will necessarily need to use multiple GPUs and even
multiple nodes.

On the simulation side, the different GPUs or nodes do not need to communicate
between each other and they can perfectly generate their own Monte Carlo paths inde-
pendently of each other by providing them with the simulation code but configuring the
parallel random number generators in such a way that independence of the generated
random numbers is guaranteed across GPUs and nodes [Abbas-Turki et al., 2014].

On the training side, the most challenging functional block is the SGD algorithm. One
simple and naive way to parallelize it across multiple workers is to first synchronize them4,

4. i.e. make sure they all have the same copies of neural network parameters.

16 Introduction

then split the mini-batch5 on which the average needs to be computed at a given SGD
iteration across those workers and have each worker compute the values on the batch and
average them, compute the associated gradients and then send the results back to a single
master worker for final aggregation and leave all the other workers waiting while the master
worker updates the neural network parameters using an SGD step. These synchronizations
and locks create overhead which makes the parallelization across multiple workers less
attractive. More recently, approaches that avoid locking and synchronization while having
theoretical guarantees emerged and we cite in particular the Hogwild! algorithm [Recht
et al., 2011] which is natively supported by PyTorch. We refer to [Chen et al., 2016] for a
detailed discussion of the merits and shortcomings of synchronous and asynchronous SGD
in the context of distributed training.

Another issue is that of the optimization of hyper-parameters, e.g. the number of layers
and neurons in a neural network. While we do not believe that this is something that
needs to be done at each run, unless the model parameters and market conditions exhibit
strong changes, we do believe that this is a fine-tuning that could be done occasionally as
part of the maintenance of the neural network approximation codes. Exhaustive and naive
approaches include Grid Search, where one tests all the combinations in a discrete grid
of hyper-parameters and choses the ones that minimize the training objective (or another
relevant cost function, depending on the task) evaluated using a data-set, usually called
a validation set, that is independent from the one that was used for training but also
independent from the test set. This approach, while very simple to implement, is slow and
suffers from the curse of dimensionality because of the need to construct a grid of parameter
values. More intelligent approaches are based on Bayesian optimization [Shahriari et al.,
2015] and include bandit-based [Slivkins, 2019] algorithms such as HyperBand [Li et al.,
2017], for which we refer to Optuna [Akiba et al., 2019] for a professional and stable
implementation that is compatible with PyTorch.

Finally, we recognize that the idea of having to invest in infrastructures, in particular
GPU clusters, in order to implement our proposed approaches in large-scale settings might
seem intimidating. However, thanks to the availability of cloud solutions such as Amazon
AWS or Google Cloud to name a few, one can start small with prototypes to assess both
the applicability and the return-on-investment one can expect and then scale up as needed
before investing in large in-house infrastructures.

2 Chapter Summaries

The mathematical notations in this section are local to each sub-section only.

2.1 Chapter 1 � XVA Analysis From the Balance Sheet

The 2008�2009 financial crisis reshaped the way in which derivatives are being priced.

5. No communication of data points is needed in our case as each worker already is supposed to have its own
instance of the simulation code generating perfectly independent Monte Carlo paths.

2 Chapter Summaries 17

That pushed banks to increasingly take into account valuation adjustments, called XVAs
as introduced above, that make the task of pricing more nonlinear and necessitate a global
approach to the pricing task, i.e. taking into account their entire portfolios. The capital
structure model and valuation adjustment approach outlined in this chapter are rooted in
a balance sheet and dividend policy perspective. This is aligned with shareholder interest
and gives precise economic meaning to the different XVA terms.

In the proposed capital structure model, we mainly distinguish between contra-asset
(CA) desks, which are in charge of counterparty risk and its funding implications, and clean
desks, which are focused on the market risks related to their respective business lines. CA
desks value contra-assets (i.e. CVA and FVA), charge them to clients in a trade-incremental
way and make deposits in a reserve account which is then used for coping with the average
losses due to counterparty risk and funding expenditures. Another important party in the
capital structure model is the management which sources a risk margin, released in the
form of KVA payments back to shareholders, as a risk premium on their capital at risk , i.e
as the difference6 between an Expected-Shortfall of the CA loss and the KVA, assumed to
be loss-absorbing.

Assume7 fully collateralized hedges, no recovery upon default, no variation margin
on client deals and a stochastic risk-neutral pricing basis8 (
;A;F ;Q) with expectation
operator E and Et=E[:jFt]. In this simplified setup, the proposed capital structure model
gives rise to the following XVA equations in continuous-time9:

CVAt =
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ �� (c)(ds)�

FVAt = Et

"Z
t

T

�s

 X
c2C

MtMs
(c)1f� (c)>sg¡CAs¡CRs

!
+

ds

#
CAt = CVAt+FVAt

CRt = max (ECt;KVAt)
ECt = ESt[Lt+1¡Lt]

dLt = dCAt+
X
c2C

¡
MtMt

(c)�+ �� (c)(dt)|| |{z}} }
default losses

+t

 X
c2C

¡
MtMt

(c)�+1f� (c)>tg¡CAt¡CRt

!
+

dt

||| |{z}}} }
funding expenditures

KVAt = Et
�Z

t

T

h (CRs¡KVAs)+ds
�

where T is the final maturity of the bank's portfolio (assumed to be held on a run-off
basis), CVAt, FVAt, CAt, CRt, ECt, KVAt and Lt are the time t values of the respective
CVA, FVA, contra-assets (i.e. CVA+FVA), capital-at-risk, economic capital, KVA and CA
desk loss processes. C is a finite set indexing the counterparties of the bank, and for every
c2C, MtM(c) and � (c) are respectively the bank's mark-to-market process of the positions

6. More precisely the positive part of the difference, i.e. (EC¡KVA)+ where EC is the Economic Capital,
defined as a 97.5% Expected-Shortfall of the CA loss.

7. All these are however fully taken into account in the full chapter.

8. Q here is the bank survival measure.

9. These continuous-time equations are actually a particular case of Anticipated Backward Stochastic Differ-
ential Equations (ABSDEs) for which we give a general learning scheme in Chapter 4.

18 Introduction

with counterparty c and its default time, assumed to be a stopping time with respect to
F . The process is the bank's funding spread and h is a constant hurdle rate representing
the rate at which shareholders expect to be paid for their capital at risk.

ESt is the conditional Expected-Shortfall operator defined for every FT -measurable
random variable ` as follows:

ESt[`] =Et[`j`�VaRt(`)]

and VaRt is the F-conditional left-quantile of ` at the level �, also referred to as the Value-
at-Risk at the confidence level �.

In a Markov setting, i.e. when Et[:]=E[:jXt] and VaRt coincides with the left-quantile
conditional on Xt in the equations above for some risk-factors process X , we propose to
approximate the processes defined above using neural networks. For processes defined using
conditional expectations, such as the CVA, FVA and the KVA above, we use least-squares
regression against the risk factor process X using neural network approximators. For the
conditional Expected-Shortfall, however, we do not have a direct elicitability result, i.e.,
the functional representation of the conditional Expected-Shortfall is not a minimizer of
a certain loss function10. However, from [Fissler and Ziegel, 2016; Fissler et al., 2016], the
pair composed of the conditional Expected-Shortfall and the conditional quantile is jointly
elicitable, i.e. one can recover both of them at the same time by minimizing a certain loss
function. We thus implement a joint conditional Expected-Shortfall and Value-at-Risk
learning algorithm which minimizes that loss function over a space of neural networks with
outputs in R2 (i.e. outputting a couple of ES and VaR) as opposed to the usual scalar
valued neural networks that we use in approximating conditional expectations.

We finally perform extensive numerical experiments showing that the proposed holistic
approach can be implemented numerically and path-wise and trade-incremental XVAs can
be computed efficiently using a combination of neural networks, Picard iterations and GPU
computing.

2.2 Chapter 2 � Pathwise CVA Regressions With Oversimulated
Defaults

In this chapter, we address the potential variance issues stemming from the need to specif-
ically simulate defaults in our XVA approach in Chapter 1. In the case of the CVA,
practitioners generally circumvent this issue by noticing that one can write it in intensity-
form as follows:

CVAt =
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ �� (c)(ds)�

=
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ s(c) exp�¡Z
t

s

u
(c) du

�
ds
�

assuming that each counterparty c2C has a stochastic default intensity process (c) such

10. unless one has access to the conditional quantile.

2 Chapter Summaries 19

that, for every 0� t < s,

Q(� (c)>sjFt; f� (c)>tg)=Et
�
exp
�
¡
Z
t

s

u
(c) du

��

0 20 40 60 80 100

0

2000

4000
using default indicators

0 20 40 60 80 100

using default intensities

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 6. When the default indicators are absent from the integrand defining our CVA, regressions
are more well-behaved as the variance of the integrand is reduced. x-axis: pricing time step, y-
axis: level of the considered statistic of the CVA at the given time step.

However, this intensity-based work-around applies only to conditional expectations
with integrands that are linear in the default indicators. In particular, this does not apply
to the FVA, which has survival indicators inside a nonlinearity in the integrand, or the
EC, whose definition depends on an expected shortfall of losses, including default losses
and funding expenditures, which in turn depend on survival indicators.

To address this, we propose a simple simulation scheme where we separate the risk
factors into two sub-groups: one group which we do not consider to be a significant con-
tributor to our variance issue (in particular the diffusive factors) represented by a vector-
valued process Y , and another composed of the major contributors to the variance (in
our case the default indicators) and represented by another vector-valued process X. The
main idea is then to simulate, at every time step, more realizations of X conditional on
each realization of Y , given that simulating defaults conditional on diffusive risk factors is
usually computationally inexpensive.

𝟙 𝟙

𝟙 𝟙

Figure 7. Proposed simulation scheme in the case of default events.

Assume for simplicity in this summary one single counterparty, which allows us to

20 Introduction

skip the index of the counterparty in the intensity process notation , and assume all the
considered processes are now in discrete time (i.e. i is the discrete-time default intensity at
the i-th time step of some time discretization). The idea in the case of our XVA setup is to
first simulate a certain number of pathsM of the diffusive risk factors (of which is part).
Then, at every time step i, where we assume to have access to paths until i of , i.e. an
i.i.d sample f(jk)0�j�ig1�k�M of (j)0�j�i, we simulate conditional on each path, indexed
by k2f1; : : : ;M g, N i.i.d realizations of default indicators, i.e. a sample f1f�k;l�igg1�l�N
(using an i.i.d sample f"k;lg1�l�N of a standard exponential random variable).

This then allows one to define a sample of size M �N of any integrand in the XVA
equations, or any other regression task that falls into our framework, by considering the
different combinations of the conditioning index (k above) and the index of the over-simu-
lation (l above). The resulting sample however does not consist of independent realizations.
But we show numerically that such a sampling scheme is effective in tackling the variance
issue described above for a low computational cost.

0

2000

4000
N = 1 N = 32

0

2000

4000
N = 64 N = 128

0 20 40 60 80 100

0

2000

4000
N = 256

0 20 40 60 80 100

N = 512

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 8. Starting from just N = 32 more simulations of the defaults conditional on each real-
ization of the diffusion risk factors (assuming a sample of size M = 214 = 16384 of the diffusive
realizations), we already get meaningful CVA profiles compared to the situation with no over-
simulation of defaults (i.e. N = 1). x-axis: pricing time step, y-axis: level of the considered
statistic of the CVA at the given time step.

We also extend the sample-average approximation results of [Shapiro et al., 2021] to

2 Chapter Summaries 21

our non i.i.d setup. We give statistical convergence guarantees in the form of a deviation
inequality that helps drawing intuition as to how M and N impact the convergence of the
minimum of the empirical loss (where the average is computed over ourM �N realizations)
to the minimum of the theoretical loss, i.e. where we use the expectation operator instead
of an average over a finite sample.

Finally, in the case of conditional expectations, we address the problem of validating
this learning approach in a live production setting without access to a nested Monte Carlo
benchmark. We provide a procedure, introduced above in (4), to estimate the L2 distance
between the learned approximation and the ground-truth conditional expectation which
does not require any knowledge of the latter.

2.3 Chapter 3 � Learning Value-at-Risk and Expected Shortfall

In this chapter, we study a two-step approach to learn the conditional Value-at-Risk and
the conditional Expected Shortfall. Consider a probability space (
;A; P) and let X be
a random vector supported on a Polish space S and Y be an integrable scalar random
variable. If we define the VaR and ES as follows:

VaR(Y jX) = inf fy 2R:P(Y � y jX)��g

ES(Y jX) = 1
1¡� E[Y 1fY �VaR(Y jX)gjX]

for some confidence level �2 (0; 1), then there exist Borel measurable functions q and s
such that

VaR(Y jX) = q(X)
ES(Y jX) = s(X)

Moreover,

q 2 argmin
f2B1(S)

E
�

1
1¡� (Y ¡ f(X))

++ f(X)
�

s 2 argmin
f2B2(S)

E[(Y 1fY �q(X)g¡ f(X))2]

where B1(S) and B2(S) are the sets of Borel functions f :S!R such that f(X) is respec-
tively integrable and square integrable. We give more general loss functions in Theorem 3.5
of this chapter. The conditional Value-at-Risk and the conditional Expected Shortfall can
then be learned via the following two-steps approach:

1. Draw an i.i.d sample f(X1; Y1); : : : ; (Xn; Yn)g of (X;Y);

2. Learn VaR(Y jX) by finding q̂2argminf2F
1

n

P
i=1
n 1

1¡� (Yi¡f(Xi))++f(Xi);

3. Learn ES(Y jX) by finding ŝ2argminf2G
1

n

P
i=1
n
�
q̂(Xi)+

1

1¡� (Yi¡ q̂(Xi))+¡f(Xi)
�
2
.

22 Introduction

where F and G are two families of functions (also called the hypothesis spaces) over which
we seek an approximation of respectively the Value-at-Risk and the Expected Shortfall. The
second step approximates ES(Y jX)= 1

1¡� E[Y 1fY �VaR(Y jX)gjX] by replacing VaR(Y jX)
with the learned candidate q̂(X), i.e.

ES(Y jX) = VaR(Y jX)+ 1
1¡� E[(Y ¡VaR(Y jX))

+jX]

� q̂(X)+ 1
1¡� E[(Y ¡ q̂(X))

+jX]:

A non-asymptotic convergence analysis, rooted in results from the Rademacher and Vapnik-
Chervonenkis theory [Shalev-Shwartz and Ben-David, 2014] and non-asymptotic bounds
proven in [Barrera, 2022], is provided. Theorem 3.21 in particular states that:

cB1En[(q̂(X)¡ q(X))2] �
�
2(2¡�) inf

f2F
E[jf(X)¡q(X)j]

�
^
�
CB1 inf

f2F
E[(f(X)¡q(X))2]

�
+4(2¡�)B2

n
p 2log

�
2
�

�s

+8(2¡�)B1
n
p

0@1+E
24 2log

�
N1

�
F ;X1:n;

B1
n
p

��s 351A
for every �2 (0;1) with probability at least 1¡�, whereX1:n=fX1;:::;Xng, En[:]=E[:jX1:n]
and we assume that F is uniformly bounded by B1> 0, with VaR(Y jX) also assumed to
be bounded by the same constant. We also assume that Y is bounded by a certain constant
B2> 0 such that B1�B2 and that there exist constants CB1� cB1> 0 such that

cB1�FY jX0 (y)�CB1

P-a.s for every y 2 [¡B1; B1], where FY jX is the cumulative distribution function of Y
conditional on X. N1 is a certain covering number function defined more in detail in
Definition 3.17. A similar result is also shown for the approximation of the discrepancy
between ES(Y jX) and VaR(Y jX), i.e the difference s¡ q, in Theorem 3.25.

We also provide several learning schemes, using neural networks, to approximate both
VaR(Y jX) and ES(Y jX) for many confidence levels � at the same time. Among those
schemes, we propose a novel one where we penalize the negative part of the derivative of
the neural network approximator of the VaR with respect to the confidence level �. � is
randomized and considered as a covariate alongside X. We ensure numerically almost non-
existent quantile crossing [Takeuchi et al., 2006; He, 1997; Koenker and Park, 1996].

In order to evaluate our proposed learning schemes numerically, we also performed two
experiments: learning VaR(Y jX) and ES(Y jX) in a Gaussian toy-model with first and
second conditional moments of Y polynomial in X, and a more involved case-study where
we learn aDynamic Initial Margin in the same XVA calculation setting as in Chapter 2. For
the purpose of the latter example, we provide a nested Monte Carlo procedure which per-
forms a non-parametric learning VaR(Y jX) using conditional stochastic gradient descents
accelerated by initializing with a conditional Gaussian Value-at-Risk.

2 Chapter Summaries 23

0

1000

2000

3000

α = 0.999 α = 0.995 α = 0.99

S
in

g
le

-α

0

1000

2000

3000

M
u

lt
i-
α

(I
)

0

1000

2000

3000

M
u

lt
i-
α

(I
I)

0 50 100

0

1000

2000

3000

0 50 100 0 50 100
M

u
lt

i-
α

(I
II

)

Mean of learned IM, out-of-sample

95th percentile of learned IM, out-of-sample

5th percentile of learned IM, out-of-sample

Mean of Nested Monte-Carlo IM, out-of-sample

95th percentile of Nested Monte-Carlo IM, out-of-sample

5th percentile of Nested Monte-Carlo IM, out-of-sample

Figure 9. We successfully learn profiles of a dynamic initial margin (IM) for different confidence
levels � in our XVA setting. Each column represents a given confidence level � and each row
represents one of the learning schemes detailed in Chapter 3. x-axis: pricing time step, y-axis:
level of the considered statistic of the IM at the given time step.

Finally, we also address the issue of validating this learning approach in settings where
one does not have access to ground-truth values and cannot afford the computational cost
of nested Monte Carlo benchmarks. We extend in particular the twin simulation trick
introduced in Chapter 2 to the estimation of the distance in p-values (resp. in L2) between
the learned approximation and the ground-truth VaR(Y jX) (resp. ES(Y jX)).

2.4 Chapter 4 � Pathwise XVAs: The Direct Scheme
Assuming that the capital-at-risk is fungible for variation margin, we have seen in Chapter 1
that the FVA, at any time 0� t�T , can be written in continuous time as follows:

FVAt=Et

"Z
t

T

�s

 X
c2C

MtMs
(c) 1f� (c)>sg¡CAs¡CRs

!
+

ds

#
: (5)

24 Introduction

However, we have CA= CVA+ FVA and the capital-at-risk term CR depends on the
economic capital EC which is in turn defined as an Expected Shortfall of the contra-assets
desk's future losses. These involve losses due to the variation of the FVA and funding
expenditures. Equation (5) belongs to the class of anticipated backward stochastic differen-
tial equation (ABSDE) [Peng and Yang, 2009]. Crépey et al., 2020 show the existence of
a unique solution to such ABSDEs when the anticipative term in the driver depends on a
conditional Expected Shortfall of future increments of the martingale part of the solution.
In this chapter, we are interested in solving numerically ABSDEs of the form:

Yt=Et
�
�(XT)+

Z
t

T

f(s;Xs; Ys;ESs(�s�(M))) ds
�

(6)

where Y is a special semimartingale with canonical Doob-Meyer local martingale compo-
nentM , X =(X;J) with X an Rp-valued strong solution of an SDE and J a f0;1gq-valued
Markov chain like component, � is a continuous function from Rp to Rl, f is a contin-
uous function from [0; T]�Rp�Rl�R to Rl satisfying certain integrability and Lipschitz
regularity assumptions, �� is a deterministic operator which maps each time t into a time
t�2 [t; T], ESs is a conditional Expected Shortfall as previously defined in Chapter 1, and
�s� is defined for every s2 [0; T] as follows:

�s�(M)=�(s;X[s;s�];M[s;s�]¡Ms)

where �(s;x;m) is a real valued deterministic map of time s and càdlàg paths x and m
on [s; s�] such that ms=0, and M is the martingale part of Y .

While we solve a particular case of ABSDEs in Chapter 1 using a learning approach
combined with Picard iterations, we propose in this chapter a one-shot scheme that does
not require Picard iterations, to solve more general ABSDEs in the form of (6). More
precisely, we propose the following explicit discrete time scheme:

Yti
h = Eti[Yti+1

h + f(ti;Xti
h; Yti+1

h ; �ti+1
h)�ti+1]

�ti
h = ESti

�ti�
h

Yt`
h+
X
k<`

f(tk;Xtk
h ; Ytk+1

h ; �tk+1
h)�tk+1; `=0; : : : ; n

!!

where we consider a time-grid 0 = t0< t1< � � � < tn= T , �ti+1= ti+1¡ ti, ti� is assumed
in this context to be approximated on this time grid, X h is a simulatable approximation
of X in discrete time (e.g. using an Euler scheme for X) and �ti�

h is a certain computable
discrete time approximation of �ti�. This proposed scheme is then implemented using least-
squares (see Chapter 2) and quantile (see Chapter 3) regressions using neural network
approximators. In the absence of a nested Monte Carlo benchmark, we estimate local L2

regression errors using the twin simulation approach introduced in Chapter 2. In addition
to the simplicity in the formulation of our explicit scheme, we demonstrate on an XVA case-
study the superiority, both in terms of computational speed and stability with respect to
the size of the time steps, of our approach compared to schemes based on Picard iterations.

2.5 Chapter 5 � Fast Calibration using Complex-Step Sobolev
Training

Given a parametrized pricing model, its calibration usually seeks to solve a minimization

2 Chapter Summaries 25

problem of the form:

�?2 argmin
�2�

X
l=1

L ¡
pmodel(�; k(l); � (l))¡ pmkt

(l) �2
where the calibration instruments are vanilla European calls, pmodel(�;k; �) is the price of a
vanilla call with strike k and time-to-maturity � in our pricing model assuming parameters
� 2Rn, � is a set of admissible model parameters, and we have access to L market prices
of vanilla calls pmkt

(1)
;:::; pmkt

(L) corresponding to strikes k(1);:::;k(L) and maturities � (1);:::; � (L).

Unless in special settings where the minimization above can be solved in closed form
(e.g. in a local volatility model using Dupire's formula), one generally has to solve the
problem by using a numerical optimization routine which usually involves repeated evalu-
ations of the objective function (and its gradient if using a gradient-based optimizer). The
computational cost of the calibration can sometimes be prohibitive if pmodel is difficult to
compute, i.e. if one does not have an analytic or semi-analytic formula for the model price,
as is the case for example for rough volatility models [Bayer et al., 2016].

To circumvent this issue, approaches have been proposed where one first constructs
a fast approximation of pmodel as a function of model and product parameters using
Machine Learning techniques, e.g. based on neural networks [Horvath et al., 2021; Bayer and
Stemper, 2018] or gaussian process regressions [De Spiegeleer et al., 2018]. These approaches
learn an approximation of the model pricing function using pre-constructed data-sets con-
sisting of combinations of model/product parameters and model prices obtained using
a Monte Carlo routine, hence effectively treating the model pricing function as a black-box.

In this chapter, we propose to leverage the fact that the model price is a conditional
expectation of the considered payoff, which we may denote Z�, i.e.

pmodel(�; K; T)=E[Z�j�; K; T]

where �, K and T are randomized versions, in a sense to be specified, of respectively the
model parameters vector, the strike and the maturity. We neglect the discounting for the
sake of this introduction. Hence, the model price corresponding to model and product
parameters �, K and T , when seen as an L2 projection of Z� on the vector subspace
consisting of square integrable �(�;K; T)-measurable random variables, is a minimizer of
the associated L2 projection error, i.e.

pmodel2 argmin
'2B

E[('(�; K; T)¡Z�)2]:

One could then carry out the minimization over a suitable space of neural networks N as
we did in the previous chapters for similar projection problems, i.e. seek an approximation
pproxy such that

pproxy2 argmin
'2N

E[('(�;K; T)¡Z�)2]:

In the present chapter11, however, we propose to augment the learning using path-wise
derivatives of the payoff with respect to model and product parameters, i.e. we instead

11. We did not use this approach, at least in its current form, in the XVA setting of the previous chapters because
it is challenging from the point of view ofmemory space occupation, as path-wise derivatives will have to be computed
and kept in memory at every coarse time step. Moreover, this approach does not apply directly to conditional risk-
measures, as one cannot for example interchange conditional Value-at-Risk and differentiation operators.

26 Introduction

solve the following minimization problem

pproxy2 argmin
'2N

E[('(�;K; T)¡Z�)2]+
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @kZ�)2] (7)

where � 2 (R+?)n+2, the networks in N are assumed to be sufficiently regular and @k is
the partial derivative with respect to the k-th component of the concatenation of � and
(K;T), with @kZ� a so-called path-wise derivative [Broadie and Glasserman, 1996] which
we recall and for which we give sufficient assumptions such that one has

@kE[Z�j�;K; T]=E[@kZ�j�;K; T]: (8)

Thus, in light of (8), the learning problem expressed in (7) then explicitly seeks to project
both the payoff and its path-wise derivatives. Augmenting the learning with information
on the derivatives was first12 studied in a neural network context in [Czarnecki et al., 2017]
under the name of Sobolev training , with Huge and Savine, 2020 later applying the same
approach to the learning of prices seen as functions of the initial values of the SDE of the
underlying. In an empirical risk minimization setting, this approach is more efficient than
brute-force simulation of more paths, as path-wise derivatives can share not only the same
random numbers but also usually many common sub-expressions.

We also show that one can avoid the computational burden associated with the eval-
uation of the squared errors for each partial derivative in (7) and that one can instead
compute a squared projection error associated with only one directional derivative in a
randomized direction. Indeed, we have:

E[(u>r'(�;K; T)¡u>r(e¡rTZ�))2]=
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @k(e¡rTZ�))2]

for any L2-integrable random vector u supported on Rn+2 with zero-mean components
such that cov(u) = diag(�1; : : : ; �n+2) and u is independent of �; K; T ; Z�. We also show
how to choose the distribution over u such that the added13 variance in the integrand in
(7) is minimized.

We then propose to compute the directional derivative u>r'(�; K; T) with an error
down to machine precision using complex-step differentiation [Martins et al., 2003; Squire
and Trapp, 1998] while remaining in single precision by introducing a small imaginary
perturbation in the direction of differentiation, i.e.

1
"
Im('(�+ i " u1:n; K+ i " un+1; T + i " un+2))=u>r'(�;K; T)+O("2)

as "!0 whenever ' is analytic and at least thrice differentiable with respect to its inputs
and where i is the imaginary unit. In contrast, the finite difference method usually fails
for step sizes that are too small because of round-off errors unless one moves to double
precision, which would harm performance on the GPU and would use twice the amount of
memory that is used in single precision.

12. At least to our knowledge.

13. Indeed, as we show in the chapter, randomizing the direction of differentiation necessarily increases the
variance of the integrand in (7).

2 Chapter Summaries 27

10 6 10 4 10 2
10 7

10 5

10 3

10 1

101

er
ro

r

10 6 10 4 10 2
10 6

10 4

10 2

100

102

Finite Difference 1 ((x + u) (x))
Central Finite Difference 1

2 ((x + u) (x u))
Complex-step Differentiation 1 Im((x + i u))

Figure 10. Sample average of the absolute value of (left) absolute and (right) relative errors,
when approximating the directional derivative of a randomly initialized neural network ', with
28 inputs, 6 hidden layers, 112 hidden units per layer and an analytic Softplus activation, with
respect to its inputs, using each of the finite difference, central finite difference and complex-step
differentiation methods. The average is done over an i.i.d sample of 214= 16384 errors each corre-
sponding to a network input vector x with components drawn independently from U([¡ 3

p
; 3
p

])
and a direction u drawn as in Proposition 5.10 with �1= � � �=�28=1. Plots are in log-log scale.

We show that this approach to computing the randomized directional derivatives is
faster than computing them exactly using vector-jacobian products in forward mode. We
dub the resulting learning approach complex-step sobolev training .

We show the effectiveness of our method by testing it numerically on a 5� 5 fixed-
grid local volatility example model where each local volatility node is treated as a model
parameter, i.e. yielding 25 pricing model parameters in total. We also provide benchmarks
showing the speedups gained using our proposed approach and show that it is statistically
more efficient than simply brute-force generating more Monte Carlo paths.

0.55

0.60

0.65

0.70 residual maturity = 0.34 years residual maturity = 0.59 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.55

0.60

0.65

0.70 residual maturity = 0.94 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00

residual maturity = 1.96 years

Figure 11. Fit of TSLA implied volatility smiles on 2022/02/14 using a 5�5 local volatility model
calibrated using our proxy pricer. Blue dots: market prices, purple curve: implied volatility
smile of fitted local volatility model, x-axis: moneyness, y-axis: implied volatility levels.

28 Introduction

Introduction (français)

1 Contexte

1.1 L'ère du Big Data et de l'apprentissage automatique
Le 21ème siècle est marqué par une abondance de données [Sirko et al., 2021; Sidorov et al.,
2020; Kuznetsova et al., 2020; Abu-El-Haija et al., 2016; Deng et al., 2009], l'émergence
de nouvelles technologies pour les structurer et les gérer [Zaharia et al., 2016; Lakshman
and Malik, 2010; Borthakur, 2007], et des innovations matérielles continues pour les traiter
dans des délais de plus en plus courts [Nickolls and Dally, 2010]. Ceci a défini l'ère dite du
�Big Data� [Magoulas and Lorica, 2009], marquée par l'omniprésence et la popularité des
techniques et des architectures de programmation parallèle, l'utilisation généralisée d'archi-
tectures de calcul massivement parallèles telles que les unités de traitement graphique
(GPUs) via des APIs de programmation comme CUDA [Luebke, 2008] et OpenCL [Stone
et al., 2010] en raison de la dépendance de la plupart des algorithmes de pointe des routines
d'algèbre linéaire qui bénéficient grandement de l'accélération fournie par les GPUs [Shi et
al., 2016], et la prévalence des algorithmes d'optimisation stochastique, de la version orig-
inelle de la descente du gradient stochastique (SGD) étudiée dans les travaux fondateurs
de Robbins and Monro, 1951 à des variantes plus récentes et qui ont connu beaucoup de
succés telles que l'algorithme ADAM de Kingma and Ba, 2014, grâce aux propriétés de
passage à l'échelle attrayantes de ces algorithmes [Bottou, 2010].

102

103

104

 2008 2010 2012 2014 2016 2018

HD 3870

HD 4870

HD 5870

HD 6970

HD 6970
HD 7970 G

Hz E
d.

HD 8970
FirePro W9100

FirePro S9150

MI25

MI60

X5482

X5492

W
5590

X5680

X5690

E5-2690 E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Platin
um 8180 Platin

um 9282

8800 G
TS

GTX 280

GTX 285 GTX 580

GTX 580

GTX 680

GTX Tita
n

Tesla
 K

40

GTX Tita
n X

Tita
n X Tita

n V

Tita
n R

TX

G
F

LO
P

/s
ec

End of Year

INTEL Xeon CPUs

NVIDIA GeForce GPUs

AMD Radeon GPUs

Theoretical Peak Performance, Single Precision

Figure 1. Pic théorique d'opérations en virgule flottante par seconde (FLOP/s,
1GFLOP/s=109 FLOP/s) pour des CPUs Intel vs des GPUs AMD et NVidia en simple pré-
cision. Produite en utilisant un code et des données par Karl Rupp disponibles sur https://
github.com/karlrupp/cpu-gpu-mic-comparison sous licence CC BY 4.0.

29

https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison

Avec cette révolution dans les architectures de calcul, la programmation parallèle,
l'optimisation stochastique et autres méthodes numériques passant à l'échelle, un autre
paradigme de conception de programmes informatiques a pris de l'importance. Dans ce
nouveau paradigme, les programmeurs n'ont pas à écrire explicitement la solution à un
problème. En utilisant des techniques d'apprentissage statistique, ils peuvent, à la place,
implémenter un algorithme qui apprend la solution, ou du moins à s'en approcher, à
condition d'avoir des quantités suffisantes de données. Ce paradigme est plus pertinent
que jamais à l'ère du Big Data. L'essence de celui-ci peut être mieux résumée par les
citations suivantes de Samuel, 1959, qui a inventé le terme Machine Learning, ou appren-
tissage automatique, dans le contexte du jeu de dames:

[. . .] un ordinateur peut être programmé pour qu'il apprenne à jouer au jeu
de dames mieux que la personne qui a écrit le programme. De plus, il peut
apprendre à le faire dans un laps de temps remarquablement court. [. . .] La
programmation d'ordinateurs pour apprendre à partir de l'expérience devrait
éventuellement éliminer le besoin d'une grande partie de cet effort de pro-
grammation détaillée.

Les approches d'apprentissage automatique, et plus particulièrement celles basées sur
les réseaux de neurones, ont connu un énorme succès dans des disciplines telles que la
vision par ordinateur [Janai et al., 2020; Voulodimos et al., 2018], le traitement du langage
naturel [Wolf et al., 2019; Young et al., 2018], les systèmes de recommandation [Zhang et
al., 2019; Adomavicius and Tuzhilin, 2005] ou encore la détection d'anomalies [Chalapathy
and Chawla, 2019; Zenati et al., 2018; Omar et al., 2013].

Bien qu'il y ait eu une certaine adoption par les institutions financières, principalement
dans le secteur de la banque de détail avec des applications telles que le credit scoring
[Lessmann et al., 2015] ou la détection de fraude [Chan et al., 1999], son usage est resté
limité en finance quantitative, notamment du côté de la vente. Cela est, à notre avis,
principalement dû à une idée fausse selon laquelle l'apprentissage automatique ne s'appli-
querait qu'aux problèmes avec des applications réelles et des données empiriques, par
opposition aux modèles mathématiques et au cadre de l'évaluation risque-neutre dans les
problèmes d'évaluation et de couverture de produits dérivés. Des applications ont néan-
moins émergé, notamment celles de l'évaluation rapide (fast pricing) [Horvath et al., 2021;
De Spiegeleer et al., 2018] où l'objectif est de construire des approximations de prix rapides
qui remplaceraient des routines d'évaluation lentes, comme celles basées sur des simulations
de Monte Carlo. Goudenege et al., 2020 proposent de combiner une méthode d'arbre
en une étape [Ekvall, 1996] avec une régression par processus gaussiens [Rasmussen and
Williams, 2006] afin d'approximer la valeur de continuation aux dates d'exercice lors de
la valorisation d'une option bermudienne via une programmation dynamique rétrograde.
Ces applications sont sans aucun doute essentielles car elles constituent des éléments de
base importants desquels dépendent fortement les transactions, les calculs réglementaires
et de risques, la calibration de modèles et le trading électronique, entre autres, à la fois
sur le plan fonctionnel et des performances. En effet, des bibliothèques d'évaluation plus
rapides conduisent nécessairement à des calculs de risque plus rapides. Dans ce cadre,
les algorithmes d'apprentissage automatique sont utilisés dans un but d'ajustement de
courbes.

De nouveaux usages de l'apprentissage automatique spécifiques aux modèles mathéma-
tiques de la finance quantitative ont commencé à émerger grâce à des travaux fondateurs
tels que [Huré et al., 2020; Raissi, 2018; Han et al., 2018]. En reformulant des équations
différentielles stochastiques rétrogrades (BSDEs) [Pardoux and Peng, 1990] comme des

30 Introduction (français)

problèmes de contrôle stochastique en temps discret, les auteurs arrivent à résoudre des
BSDEs ou des équations aux dérivées partielles (PDEs) en utilisant un espace de réseaux de
neurones avec une architecture appropriée comme espace de recherche dans le problème de
minimisation ainsi que des trajectoires simulées via Monte Carlo comme leur jeu de données
d'entraînement . L'applicabilité des BSDEs en finance a été mise en évidence pour la
première fois dans [El Karoui et al., 1997] et un traitement plus récent est fait dans [Crépey,
2013]. Buehler et al., 2019 utilisent une approche formellement similaire pour aborder
directement le problème de la couverture d'un produit dérivé en présence d'imperfections
de marché comme la présence des coûts de transaction, des effets de glissement (slippage en
anglais) et l'impact de marché, souvent négligés dans le cadre usuel de l'évaluation risque-
neutre. Becker et al., 2019 proposent également une nouvelle technique pour résoudre les
problèmes d'arrêt optimal en représentant la politique (policy en anglais) à l'aide de réseaux
de neurones et montrent des applications dans la valorisation de dérivés bermudiens ou avec
clauses de rappel. Cela a marqué le début d'une tendance où l'apprentissage automatique
dans la finance va au-delà de l'ajustement de courbes et exploite le cadre mathématique
propre aux modèles utilisés par les banques.

Cette thèse s'inscrit également dans la même ligne de pensée en proposant des schémas
basés sur l'apprentissage automatique, ou plus précisément des schémas basés sur des
réseaux de neurones, pour résoudre les problèmes de calcul d'ajustements de valeurs, X-
Valuation Adjustments (XVAs) en anglais, et des mesures de risque conditionnelles et
l'accélération de calibration de modèles de valorisation.

1.2 Un bref intermezzo sur les XVAs

La crise financière de 2008�2009 a vu de nombreuses réformes bancaires visant à renforcer
la robustesse du système financier. Une conséquence a été l'utilisation accrue des métriques
XVA lors des valorisations des produits dérivés. Ces métriques ont pour but d'aider à
quantifier et évaluer l'incomplétude du marché par les banques et à tenir compte du risque
de contrepartie et de ses répercussions en termes de capital et de financement. La lettre
X est à remplacer par:

� C pour credit , i.e. Credit Valuation Adjustment (CVA);

� D pour debt , i.e. Debt Valuation Adjustment (DVA);

� F pour funding , i.e. Funding Valuation Adjustment (FVA);

� M pour margin, i.e. Margin Valuation Adjustment (MVA);

� K pour capital1, i.e. Capital Valuation Adjustment (KVA).

Les applications XVA constituent une partie importante de cette thèse en raison de leur
importance dans les calculs réglementaires. Ceci est fait dans le cadre défini dans [Albanese
et al., 2021] (travail qui est également présenté dans le Chapitre 1), abordant des carac-
téristiques raffinées telles que la simulation de défauts (voir Chapitre 2) ou la fongibilité
du capital de réserve et du capital à risque avec la marge de variation (voir Chapitre 4).

Pour les besoins de cette introduction, nous donnons brièvement un exemple avec la
CVA et la FVA pour mettre en évidence la complexité du calcul de ces métriques. En
particulier, nous abordons le problème du calcul de ces métriques à des pas de temps futurs
dans le cadre d'un modèle risque-neutre sur les facteurs de risque de marché et de crédit.

1. la lettre C est déjà prise pour la CVA.

1 Contexte 31

Réussir à modéliser l'évolution future de la CVA, et en particulier la modéliser comme
un processus stochastique, est essentiel car des pertes peuvent se matérialiser du seul fait
de la fluctuation de cette métrique. Ainsi par exemple, le Comité de Bâle a déclaré ce qui
suit dans [The Bank for International Settlements, 2011]:

Pendant la crise financière, environ deux tiers des pertes attribuées au risque
de contrepartie étaient dues à des pertes de CVA et seulement un tiers environ
était dû à des événements de défaut.

1996
2000

2004
2008

2012
2016

2020

0

500

1000

1500

2000

O
p

ti
on

-A
d

ju
st

ed
S

p
re

a
d

(b
p

s)

AAA

High Yield

Figure 2. Les pertes de CVA peuvent être dues simplement par des fluctuations de sa valeur
causées par des changements dans les spreads de crédit. Ce graphe représente les Option-Adjusted
Spreads des indices ICE BofA US High Yield Index (violet) and the ICE BofA AAA US Cor-
porate Index (bleu). Données récupérées depuis FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/BAMLH0A0HYM2 et https://fred.stlouisfed.org/series/
BAMLC0A1CAAA.

En supposant pour simplifier une seule contrepartie et une seule transaction non-col-
latéralisée conclue par la banque et le client sur un produit dérivé, un recouvrement nul en
cas de défaut, en négligeant l'actualisation, et en supposant une discrétisation temporelle
0= t0< t1< � � �< ti< � � �<tn=T où T est la maturité du produit, on définit le processus
CVA en temps discret conme suit:

CVAi :=E

24X
j=i

n¡1
MtMj+1

+ 1ftj<��tj+1g

������������Xi; 1f�>tig

35 (1)

pour tout i2f0;:::; n¡1g, où MtMj est la valorisation, ou mark-to-market , du produit du
point de vue de la banque (i.e. positif lorsqu'il s'agit d'un actif pour la banque et négatif
lorsqu'il s'agit d'un passif) à l'instant tj, � est le temps de défaut de la contrepartie, Xi est
un vecteur de facteurs de risque de marché à l'instant ti et on suppose un certain modèle
de valorisation multi-facteurs dans une base stochastique de valorisation. Définie de cette
manière, la CVA est une anticipation des pertes futures dues aux défauts, conditionnelle-
ment à l'état du marché (via X) et des contreparties (via 1f�>:g). Une méthode brute-

32 Introduction (français)

https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA
https://fred.stlouisfed.org/series/BAMLC0A1CAAA

force pour simuler des réalisations de l'espérance conditionelle en (1), par exemple pour
les injecter ensuite dans d'autres non-linéarités ou XVAs d'ordre supérieur comme la FVA
ou simplement pour calculer une Value-at-Risk dessus, consisterait à utiliser un estimateur
tel que:

CVAd i
(k) := 1

M

X
l=1

M X
j=i

n¡1 ¡
MtMj+1

(k;l)�+1ftj<� (k;l)�tj+1g
pour k2f1;:::;N g où on dispose d'un échantillon i.i.d

�¡
Xi
(k)
;� (k)

�	
1�k�N de (Xi;�) et pour

chaque k2f1;:::;N g d'un échantillon indépendant
�¡

MtMi+1
(k;l)

;:::;MtMn
(k;l)

; � (k;l)
�	

1�l�M
de (MtMi+1; : : : ;MtMn; �) conditionnellement à (Xi; 1f�>tig) =

¡
Xi
(k)
; 1f� (k)>tig

�
. Ceci

définit une procédure Nested Monte Carlo (NMC), ou simulations dans les simulations,
pour simuler l'éspérance conditionnelle dans (1). Il est à noter qu'on aurait besoin d'une
couche supplémentaire de simulations imbriquées si le MtM n'est pas analytique. Bien
que ce schéma brute-force puisse être implémenté pour la CVA, il devient hors de portée
pour la FVA.

En reprenant la notation précédente, et, uniquement dans un souci de simplicité pour
cette introduction, en négligeant la plupart des termes de rétroaction et la fongibilité du
capital à risque avec la marge de variation [Crépey et al., 2020], on peut écrire pour la
FVA la définition simplifiée suivante:

FVAi :=E

24X
j=i

n¡1

�j+1(MtMj+11f�>tj+1g¡CVAj+1¡FVAj+1)+(tj+1¡ tj)

������������Xi;1f�>tig

35 (2)

où � est un processus stochastique représentant le spread de financement de la banque et
est une composante du vecteur X. Ici, la FVA représente le coût de financement de notre
transaction non collatéralisée et notre définition tient compte du fait que la CVA et la
FVA elles-mêmes aident à réduire le besoin en financement. Modéliser la FVA comme nous
l'avons fait permet également de tenir compte de ses fluctuations futures. Très récemment,
trois banques américaines ont subi une perte combinée de 2 milliards de dollars en FVA
[Becker, 2020] en raison de l'impact de la pandémie de COVID-19 et des réponses des ban-
ques centrales à celle-ci sur les taux d'intérêt et les spreads de financement (voir Tableau 1).

Ténor USD EUR
2 ans 226% 398%
5 ans 119% 170%
10 ans 83% 69%

Table 1. Sauts dans les spreads de financement du 2020-02-21 au 2020-03-24. Source: Takei, 2020
(IHS Markit).

Comme on peut le voir à partir de la définition dans (2), implémenter une procé-
dure nested Monte Carlo pure pour la FVA comme nous l'avons présenté pour la CVA
supposerait d'implémenter des simulations imbriquées avec autant de couches de sous-sim-
ulation qu'il y a de pas de temps jusqu'à maturité à cause de la dépendance de l'intégrand
des valeurs futures de la FVA. Ceci est bien sûr prohibitif en terme de temps de calcul
et conduirait à des algorithmes avec une complexité exponentielle en nombre de pas de
temps. Cette complexité est encore exacerbée lorsqu'on prend en compte d'autres XVAs
ou mesures de risque comme la KVA ou le capital économique compte tenu du couplage
qu'ils créent notamment avec la FVA (voir Chapitre 1).

1 Contexte 33

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 .

. .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. .

Figure 3. Interdépendance entre les différentes XVAs et mesures de risque dans un contexte
nested Monte Carlo. Dans un tel contexte, pour simuler une réalisation du capital économique par
exemple à un n÷ud Monte Carlo donné, il faut avoir des simulations internes de la FVA, CVA et
MVA conditionnelles à ce n÷ud. Chacune de ces FVAs intérieures à son tour nécessite une autre
couche de simulations internes et ainsi de suite. Source: Abbas-Turki et al., 2018.

Dans [Abbas-Turki et al., 2018], les auteurs proposent une approche benchmark impli-
quant plusieurs couches de nested Monte Carlo et des régressions linéaires, ainsi que des
stratégies d'optimisation spécifiques aux GPUs. Ce benchmark a cependant une complexité
exponentielle en nombre de couches XVA. Dans les chapitres 1, 2 et 4, nous développons
une approche utilisant le Machine Learning, et plus précisément des régressions basées sur
les réseaux de neurones, afin de rendre la complexité linéaire en nombre de couches XVA.

1.3 Des projections et non pas des ajustements de courbes

Comme introduites dans (1) et (2), chacune de la CVA et de la FVA est une espérance
conditionnelle d'un certain intégrand. Le principe de base de l'approche que nous proposons
est d'interpréter ces espérances conditionnelles comme des projections orthogonales de
leurs intégrands respectifs. Plus généralement, supposons qu'on dispose de deux variables
aléatoires X et Y telles que X soit supportée sur un espace X et Y soit de carré intégrable
et supportée sur R et supposons qu'on s'intéresse à E[Y jX]. Puisque E[Y jX] peut être
vue comme une projection orthogonale de Y sur le sous-espace vectoriel composé de2

variables aléatoires �(X)-mesurables de carré intégrable, et donc un minimiseur de l'erreur
de projection associée, on peut écrire:

E[Y jX]=h?(X)

avec h? est tel que

h?2 argmin
h2B(X ;R)

E[(h(X)¡Y)2] (3)

2. plus précisément, des classes d'équivalence par rapport à la relation d'égalité presque sûre.

34 Introduction (français)

où B(X ;R) est l'espace des fonctions boréliennes h:X !R telles que h(X) est de carré
intégrable. On peut aussi aboutir au même résultat de manière purement probabiliste
comme suit:

E[(h(X)¡Y)2] =E[(h(X)¡E[Y jX])2] + E[var(Y jX)]||| |{z}}} }
indépendant de h

;

où h est une fonction quelconque dans B(X ;R).
La stratégie commune alors dans cette thèse est de résoudre le problème de minimisa-

tion de (3) en introduisant deux couches d'approximation:

� Approximation de argminh2B(X ;R): nous proposons d'abord d'effectuer la min-
imisation dans un espace suffisamment riche de fonctions paramétrées pour que la
minimisation devienne de dimension finie et puisse ainsi se faire par rapport aux
paramètres via des techniques d'optimisation numérique classiques. Notre choix
pour l'ensemble de la thèse s'est porté sur les réseaux de neurones (cf. chapitres 2,
3, 4 ou 5 pour dls définitions précises des réseaux de neurones adoptés dans cette
thèse) et est motivé par les considérations suivantes:

� Propriété d'approximation universelle: Si � est une fonction d'acti-
vation continûment différentiable non affine, q 2N? et K �Rn un compact.
Alors pour tout ">0 et f 2C(K;Rq), il existe un réseau de neurones u:Rn!
Rq avec p couches cachées, q+n+2 neurones par couche cachée et � comme
fonction d'activation tel que supx2K ku(x)¡ f(x)k<". Ce résultat [Kidger
and Lyons, 2020] est une version profonde (i.e. à largeur fixe) du théorème
usuel d'approximation universelle à profondeur fixe pour les réseaux de neu-
rones [Hornik, 1991; Cybenko, 1989]. Ainsi, on peut être optimiste quant
à la possibilité de pouvoir se rapprocher de h? en choisissant un réseau de
neurones suffisamment grand soit en largeur soit en profondeur, avec des
résultats récents comme [Cohen et al., 2016; Eldan and Shamir, 2016] plus
en faveur des réseaux profonds;

� Capacité à apprendre automatiquement une base de régression
linéaire: En supposant qu'il n'y a pas de non-linéarité à la sortie du réseau
de neurones illustré dans la Figure 4, la dernière couche cachée, lorsqu'elle
est vue comme une fonction �� de l'entrée x paramétrée par la collection
� de tous les poids cachés, peut être interprétée comme une base de régres-
sion linéaire parametrisée par �. Pour � fixé, en désignant par w les poids
de la couche de sortie et en supposant que la sortie est scalaire, alors entraîner
un réseau de neurones en optimisant uniquement par rapport à w revient
à effectuer une simple régression linéaire en utilisant ��(x) comme base
de régression. Ainsi, l'entraînement par rapport à tous les poids (i.e. � et
w conjointement) revient à apprendre à la fois la base de régression et les
poids associés dans la couche de sortie. Ainsi, avec suffisamment de don-
nées, un réseau de neurones peut apprendre automatiquement une base de
régression linéaire et ainsi éviter la sélection manuelle de celle-ci qui est
généralement effectuée par des experts du domaine et qui ne peut pas être
effectuée par exemple dans le cas des XVAs où la dépendance des XVAs des
nombreux facteurs de risque est non triviale. Ceci rejoint l'idée de Samuel,
1959 ci-dessus qu'un programme peut être fait pour apprendre à résoudre
une tâche, dans ce cas la sélection d'une base de régression, éventuellement
plus efficacement que son programmeur;

1 Contexte 35

Figure 4. Entraîner en optimisant par rapport aux poids dans un réseau de
neurones revient à apprendre à la fois la base de régression et les poids associés
dans la couche de sortie.

� Facilité de transfert de connaissances: Nous pouvons faire un soi-disant
apprentissage par transfert (transfer learning en anglais) [Bozinovski, 2020;
Pan and Yang, 2009] avec des réseaux de neurones en réutilisant simplement
les poids des entraînements de réseaux de neurones antérieurs et connexes.
Nous avons beaucoup utilisé cette technique dans nos applications XVA dans
les chapitres 2 et 4, où les tâches d'apprentissage associées à des pas de temps
voisins sont nécessairement proches.

� Approximation de argmin E[:]: La minimisation de l'espérance de la perte
ponctuelle (dans cet exemple, le carré de la distance entre la sortie du réseau de
neurones et la variable aléatoire à projetter) est faite avec les outils de l'optimisa-
tion stochastique [Shapiro et al., 2021] en utilisant une approximation à échantillon
fini de l'espérance. Cette approche est aussi connue sous le nom de minimisa-
tion de risque empirique (empirical risk minimization en anglais) dans le contexte de
l'apprentissage statistique [Vapnik, 1991]. En particulier, nous résolvons numérique-
ment le problème de minimisation en utilisant l'algorithme de la descente du gradient
stochastique (plus précisément, en utilisant ADAM [Kingma and Ba, 2014]) sur
l'approximation empirique3. Ici, nous tirons parti du fait que nous avons accès
au processus de génération de données puisque les facteurs de risque sont déter-
minés par des équations différentielles stochastiques (EDS) connues. Les gradients
par rapport aux paramètres du réseau de neurones sont calculés de manière exacte
par différentiation automatique [Baydin et al., 2018; Savine, 2018], qui est implé-
mentée par des librairies telles que JAX [Bradbury et al., 2018], PyTorch [Paszke et
al., 2019] et Tensorflow [Abadi et al., 2016]. Nous référons aux chapitres 2 et 4 pour
les pseudo-codes détaillés des procédures d'entraînement que nous avons utilisées.

Supposons maintenant qu'on a terminé l'approximation et qu'on dispose d'un can-
didat h 2 B(X ;R). Une façon de mesurer si ce candidat est satisfaisant est de voir s'il
est suffisamment proche (en fonction bien sûr d'un certain seuil subjectif de l'utilisateur de

l'approche) de la vraie valeur (i.e. E[Y jX]) en calculant la distance E[(h(X)¡E[Y jX])2]
q

.

Cependant, l'utilisateur potentiel de nos approches d'apprentissage n'a généralement accès
qu'à des couples de réalisations (X; Y) et n'a pas d'accès direct à E[Y jX], sinon il n'y

3. Cela signifie que nous ne tirons pas de réalisations complètement nouvelles à chaque itération SGD. Nous
effectuons à la place plusieurs passes ou epochs sur l'ensemble de données, où à l'intérieur de chaque époque nous
itérons sur desmini-batchs disjoints. Pour chaquemini-batch nous calculons le gradient de perte empirique en faisant
la moyenne sur le mini-batch et nous effectuons une descente dans la direction opposée de ce gradient. L'objectif
est de ne pas avoir à passer trop de temps sur de nouvelles simulations à chaque étape de SGD.

36 Introduction (français)

aurait pas besoin de l'approximer. On peut donc certes estimer E[(h(X)¡ Y)2] directe-
ment mais non pas, du moins pas via Monte Carlo direct, E[(h(X)¡ E[Y jX])2]. Bien
sûr ces deux distances au carré, tout en ayant le même argmin par rapport à h sur B(X ;R),
ne sont pas nécessairement interchangeables (voir Figure 5).

²

²

Figure 5. Les distances E[(h(X)¡E[Y jX])2]
p

et E[(h(X)¡Y)2]
p

ne sont pas interchangeables
en général, sauf si Y est �(X)-mesurable.

Une façon d'estimer cette distance serait d'approximer E[Y jX] en utilisant une approche
de Nested Monte Carlo. Cependant, cela est lent et inefficace, et ne convient pas à la val-
idation en direct dans un environnement de production. À la place, nous avons développé
un moyen simple dans le Chapitre 2 pour estimer notre distance L2. En particulier, nous
montrons que:

E[(h(X)¡E[Y jX])2] =E[h(X) (h(X)¡Y (1)¡Y (2))+Y (1)Y (2)] (4)

où Y (1) et Y (2) sont deux copies de Y indépendantes conditionnellement à X. D'où
h(X) (h(X)¡Y (1)¡Y (2))+Y (1)Y (2) est un estimateur sans biais de notre distance L2 au
carré et il ne nécessite que deux sous-simulations (par opposition à des centaines ou même
des milliers si l'on devait approximer E[Y jX] directement en utilisant Nested Monte Carlo).

Nous étendons l'étude de cette approche d'apprentissage à l'approximation des Value-
at-Risk et Expected-Shortfall conditionnels au Chapitre 3.

1.4 Non-stationnarité, accès au processus générateur des données

Nous soulignons une différence clé par rapport à la façon dont l'apprentissage automatique
est utilisé dans d'autres disciplines. Alors que dans ces disciplines, on dispose généralement
d'un ensemble de données fini, ces données provenant d'une collecte et d'une annotation
manuelles ou automatiques, dans le cas de l'apprentissage à partir de données simulées,
nous avons par définition un accès complet au processus de génération de données. Dans

1 Contexte 37

notre cas, les facteurs de risque sont généralement modélisés à l'aide d'EDS ou de chaînes
de Markov discrètes. Par conséquent, notre ensemble de données est généralement construit
via des simulations de Monte Carlo des trajectoires de ces processus stochastiques et en
calculant le long de chaque chemin l'intégrand que nous souhaitons projeter en utilisant
des étapes algorithmiques précises. Cela rend les problèmes tels que l'over-fitting moins
critiques, car nous pouvons toujours générer plus de données si nécessaire. Ces problèmes
persistent en théorie et il convient toujours de vérifier les résultats à l'aide de métriques hors
échantillon, calculées à l'aide d'un échantillon qui est indépendant des données d'appren-
tissage et qui est généralement appelé un ensemble de test.

Les espérances conditionnelles ou mesures de risque à approximer sont à calculer au
moins quotidiennement. Cependant, les paramètres de modèle (par exemple les paramètres
des EDS régissant les facteurs de risque) et d'autres variables, telles que la composition du
portefeuille de la banque dans le cas de nos XVAs à l'échelle du portefeuille global, changent
continuellement, introduisant ainsi une certaine non-stationnarité. Par conséquent, on ne
peut pas simplement entraîner les réseaux de neurones approchants une fois puis les réu-
tiliser en mode inférence dans toutes les conditions de marché et à n'importe quelle date
ultérieure. À la place, il faut régénérer l'ensemble de données en lançant de nouvelles
simulations Monte Carlo sous les nouveaux paramètres de modèle, puis réentraîner les
réseaux de neurones en utilisant le nouvel ensemble de données et, dans le cas des XVAs,
le nouveau portefeuille de la banque.

Dans ce contexte, la génération du jeu de données (i.e. les trajectoires Monte Carlo)
et l'entraînement font toutes deux partie du produit final . C'est précisément pourquoi
nous déployons des efforts considérables pour concevoir des simulations rapides. Nous util-
isons en particulier des noyaux CUDA hautement optimisés pour les simulations de Monte
Carlo et pour aider à la génération des annotations ou labels pour l'entraînement. Pour
les BSDEs, nous nous servons des schémas d'apprentissage qui exploitent de nombreuses
caractéristiques telles que la réutilisation des poids à travers les pas de temps (chapitres
2 et 4). Nous nous servons également de manière intensive du mécanisme de compilation
juste-à-temps (JIT) de PyTorch. Dans le Chapitre 5, où nous n'avons pas ce problème de
non-stationnarité mais où l'entraînement rapide est toujours souhaitable afin d'itérer plus
efficacement dans la recherche et le développement, nous fournissons une application où
nous sommes allés au-delà de ces optimisations et avons implémenté un entraînement haute
performance directement en C++ en utilisant la librairie libtorch.

1.5 Questions génériques connexes

Certaines questions ont été volontairement omises au cours de cette thèse car nous pensons
que ces questions sont déjà abordées ou sont en train d'être traitées par d'autres chercheurs.

En particulier, alors que nous implémentons nos schémas d'apprentissage en utilisant
un seul GPU, une implémentation réussie à grande échelle devra nécessairement utiliser
plusieurs GPUs et même plusieurs n÷uds.

Côté simulation, les différents GPUs ou n÷uds n'ont pas besoin de communiquer entre
eux et ils peuvent parfaitement générer leurs propres trajectoires Monte Carlo indépen-
damment les uns des autres en leur fournissant le code de simulation mais en configurant
les générateurs de nombres aléatoires parallèles de telle manière à ce que l'indépendance
des nombres aléatoires générés soit garantie entre les GPU et les n÷uds [Abbas-Turki et
al., 2014].

38 Introduction (français)

Côté entraînement, le bloc fonctionnel le moins trivial est l'algorithme SGD. Une façon
simple et naïve de le paralléliser sur plusieurs unités de calcul, ou worker , est de commencer
par les synchroniser4, puis diviser et répartir sur ces workers le mini-batch5 sur lequel la
moyenne doit être calculée à une itération SGD donnée et demander à chaque worker de
calculer les valeurs sur le batch puis leur moyenne, calculer les gradients associés puis
renvoyer les résultats à un seul worker maître pour agrégation finale et laisser tous les
autres workers au repos pendant que le worker maître met à jour les paramètres du réseau
de neurones à l'aide d'une étape SGD. Ces synchronisations et ces verrous créent une
surcharge qui rend la parallélisation entre plusieurs unités de calcul moins attrayante. Plus
récemment, des approches qui évitent le verrouillage et la synchronisation tout en ayant
des garanties théoriques ont vu le jour et nous citons notamment l'algorithme Hogwild!
[Recht et al., 2011] qui est nativement implémenté par PyTorch. Nous référons à [Chen
et al., 2016] pour une discussion détaillée des avantages et des inconvénients des SGD
synchrones et asynchrones dans le contexte de l'apprentissage distribué.

Un autre problème est celui de l'optimisation des hyper-paramètres, par exemple le
nombre de couches et de neurones dans un réseau. Bien que nous ne pensons pas que ce
soit quelque chose qui doive être faite systématiquement à chaque exécution, à moins que
les paramètres de modèle et les conditions du marché ne présentent de forts changements,
nous pensons qu'il s'agit d'un fine-tuning qui pourrait être effectué occasionnellement dans
le cadre du maintien des codes d'approximation du réseau de neurones. Les approches
exhaustives et naïves incluent le Grid Search, où on teste toutes les combinaisons dans une
grille discrète d'hyper-paramètres et on choisit celles qui minimisent l'objectif d'entraîne-
ment (ou une autre fonction de coût pertinente, selon la tâche). Ce dernier est évalué à
l'aide d'un jeu de données, généralement appelé ensemble de validation, qui est indépendant
de celui qui a été utilisé pour l'entraînement mais également indépendant de l'ensemble
de test. Cette approche, bien que très simple à mettre en ÷uvre, est lente et souffre de
la malédiction de la dimensionnalité en raison de la nécessité de construire une grille
de valeurs de paramètres. Des approches plus intelligentes sont basées sur l'optimisation
bayésienne [Shahriari et al., 2015] et incluent des algorithmes basés sur les bandits [Slivkins,
2019] tels que HyperBand [Li et al., 2017], pour lesquels nous référons à Optuna [Akiba et
al., 2019] pour une implémentation professionnelle et stable compatible avec PyTorch.

Enfin, nous reconnaissons que l'idée de devoir investir dans des infrastructures, en
particulier des clusters GPU, afin de mettre en ÷uvre nos approches proposées dans des
contextes à grande échelle peut sembler intimidante. Cependant, grâce à la disponibilité de
solutions cloud telles qu'Amazon AWS ou Google Cloud pour n'en nommer que quelques-
unes, on peut commencer petit avec des prototypes pour évaluer à la fois l'applicabilité et le
retour sur investissement auquel on peut s'attendre, puis évoluer au besoin avant d'investir
dans de grandes infrastructures internes.

2 Résumés des chapitres

Les notations mathématiques dans cette section sont locales à chaque sous-section unique-
ment.

4. i.e. s'assurer qu'ils ont tous les mêmes copies des paramètres du réseau de neurones.

5. Aucune communication de données n'est nécessaire dans notre cas car chaque worker est déjà censé avoir sa
propre instance du code de simulation générant des trajectoires Monte Carlo parfaitement indépendantes.

2 Résumés des chapitres 39

2.1 Chapitre 1 � XVA Analysis From the Balance Sheet

La crise financière de 2008�2009 a changé la manière dont les produits dérivés sont valorisés.
Cela a poussé les banques à prendre de plus en plus en compte les ajustements de valeur,
appelés XVAs comme introduit ci-dessus. Ceux-ci rendent la valorisation davantage non
linéaire et nécessitent une approche globale de celle-ci, c'est-à-dire la prise en compte de
l'ensemble de leur portefeuille. Le modèle de structure du capital et l'approche d'ajuste-
ment de valeur décrits dans ce chapitre sont ancrés dans une perspective de bilan et de
politique de dividende. Cette approche est alignée sur l'intérêt des actionnaires et donne
un sens économique précis aux différents termes XVA.

Dans le modèle de structure de capital proposé, nous distinguons principalement les
desks contra-asset (CA), qui sont en charge du risque de contrepartie et de ses implications
de financement, et les clean desks, qui se concentrent sur les risques de marché liés à leurs
lignes de métier respectives. Les desks CA évaluent les contra-assets (i.e. CVA et FVA),
les imputent aux clients de manière incrémentielle et effectuent des dépôts sur un compte
de réserve qui est ensuite utilisé pour faire face aux pertes moyennes dues au risque de
contrepartie et aux dépenses de financement. Une autre partie importante dans le modèle
de structure du capital est la direction qui génère une marge de risque. Celle-ci est ensuite
versée sous la forme de paiements de KVA aux actionnaires, en tant que prime de risque
sur leur capital à risque, i.e. la différence6 entre un Expected-Shortfall de la perte du desk
CA et la KVA, supposée être absorbante pour les pertes.

Sous la forme la plus simple, i.e. en supposant7 des couvertures entièrement collatéral-
isées, aucun recouvrement en cas de défaut et aucune marge de variation sur les transactions
avec les clients, une base stochastique de valorisation risque-neutre8 (
;A; F ; Q) avec
opérateur d'espérance E et Et=E[:jFt] , le modèle de structure du capital proposé donne
lieu aux équations XVA suivantes en temps continu9:

CVAt =
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ �� (c)(ds)�

FVAt = Et

"Z
t

T

�s

 X
c2C

MtMs
(c)1f� (c)>sg¡CAs¡CRs

!
+

ds

#
CAt = CVAt+FVAt

CRt = max (ECt;KVAt)
ECt = ESt[Lt+1¡Lt]

dLt = dCAt+
X
c2C

¡
MtMt

(c)�+ �� (c)(dt)|| |{z}} }
default losses

+t

 X
c2C

¡
MtMt

(c)�+1f� (c)>tg¡CAt¡CRt

!
+

dt

||| |{z}}} }
funding expenditures

KVAt = Et
�Z

t

T

h (CRs¡KVAs)+ds
�

6. Plus précisément la partie positive de la différence, i.e. (EC¡KVA)+ où EC est le Capital Èconomique
(Economic Capital en anglais), défini comme un Expected-Shortfall à 97.5% de la perte du desk CA.

7. Tous ces éléments sont cependant pleinement pris en compte dans le chapitre complet.

8. Q ici est la mesure de survie de la banque.

9. Ces équations à temps continu sont en fait un cas particulier d'équations différentielles stochastiques rétro-
grades anticipées (ABSDE) pour lesquelles nous donnons un schéma général d'apprentissage au Chapitre 4.

40 Introduction (français)

où T est la maturité du portefeuille de la banque (supposé détenu sur une base run-
off), CVAt, FVAt, CAt, CRt, ECt, KVAt et Lt sont les valeurs à l'instant t des processus
respectifs CVA, FVA, contra-assets (i.e. CVA+FVA), capital-at-risk, capital économique,
KVA et perte du desk CA. C est un ensemble fini indexant les contreparties de la banque,
et pour chaque c2C, MtM(c) et � (c) sont respectivement le processus mark-to-market de la
banque des positions avec la contrepartie c et le temps de défaut de celle-ci, supposé être un
temps d'arrêt par rapport à F . Le processus est le spread de financement de la banque
et h un taux de rendement minimal constant représentant le taux auquel les actionnaires
s'attendent à être payés pour leur capital à risque.
ESt est l'opérateur Expected-Shortfall conditionnel, que nous définissons comme suit

pour toute variable aléatoire ` FT -mesurable:

ESt[`] =Et[`j`�VaRt(`)]

et VaRt est le quantile gauche conditionnel à Ft de ` au niveau �, que nous allons aussi
appeler par la suite Value-at-Risk (VaR) conditionnelle au niveau de confiance �.

Dans un cadre markovien, i.e. lorsque Et[:] = E[:jXt] et VaRt coïncide avec la VaR
conditionnelle à Xt dans les équations ci-dessus pour un processus de facteurs de risque X ,
nous proposons d'approximer les processus définis ci-dessus à l'aide de réseaux de neurones.
Pour les processus définis à l'aide d'espérances conditionnelles, tels que la CVA, la FVA et la
KVA ci-dessus, nous utilisons la régression par moindres carrés par rapport au processus de
facteur de risque X avec des réseaux de neurones comme approximateurs. Pour l'Expected-
Shortfall conditionnel, cependant, nous n'avons pas de résultat d'élicitabilité direct, i.e. la
représentation fonctionnelle de l'Expected-Shortfall conditionnel n'est pas un minimiseur
d'une certaine fonction de perte10. Cependant, d'après [Fissler and Ziegel, 2016; Fissler
et al., 2016], le couple composé de l'Expected-Shortfall conditionnel et du quantile con-
ditionnel est conjointement élicitable, i.e. on peut récupérer les deux en même temps
en minimisant une certaine fonction de perte. Nous implémentons donc un algorithme
d'apprentissage conjoint de l'Expected-Shortfall et Value-at-Risk conditionnels qui min-
imise cette fonction de perte sur un espace de réseaux de neurones avec des sorties dans
R2 (i.e. c'est-à-dire produisant un couple de ES et VaR) par opposition aux réseaux de
neurones à sorties scalaires usuels utilisés pour approcher des espérances conditionelles.

Enfin, nous effectuons des expériences numériques approfondies montrant que l'approche
holistique proposée peut être implémentée numériquement. Les XVAs incrémentiels sont
calculés efficacement pour chaque trajectoire Monte Carlo en utilisant une combinaison
de réseaux de neurones, d'itérations de Picard et de calcul sur GPU.

2.2 Chapitre 2 � Pathwise CVA Regressions With Oversimulated
Defaults

Dans ce chapitre, nous abordons les problèmes de variance potentiels découlant de la
nécessité de simuler spécifiquement les défauts dans notre approche XVA au Chapitre 1.
Dans le cas de la CVA, les praticiens contournent généralement ce problème en remarquant
qu'on peut l'écrire sous forme intensité comme suit:

CVAt =
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ �� (c)(ds)�
=
X
c2C

Et
�Z

t

T¡
MtMs

(c)�+ s(c) exp�¡Z
t

s

u
(c) du

�
ds
�

10. à moins d'avoir accès au quantile conditionnel.

2 Résumés des chapitres 41

en supposant que chaque contrepartie c2C a un processus d'intensité de défaut stochas-
tique (c) tel que, pour tout 0� t < s,

Q(� (c)>sjFt; f� (c)>tg)=Et
�
exp
�
¡
Z
t

s

u
(c) du

��

0 20 40 60 80 100

0

2000

4000
using default indicators

0 20 40 60 80 100

using default intensities

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 6. Les indicatrices de défaut étant désormais absentes de l'intégrand définissant notre
CVA, les régressions se comportent mieux car la variance de l'intégrand est réduite. abscisses:
pas de temps de valorisation, ordonnées: niveau de la statistique considérée de la CVA au pas
de temps donné.

Cependant, cette solution de contournement basée sur l'intensité s'applique uniquement
aux espérances conditionnelles avec des intégrands linéaires dans les indicatrices de défaut.
En particulier, cela ne s'applique pas à la FVA qui comporte des indicatrices de survie à
l'intérieur d'une non-linéarité dans l'intégrand. Ceci est également vrai pour l'EC dont la
définition dépend d'un Expected Shortfall de pertes, incluant les pertes dues au défaut et
les dépenses liées au financement qui à leur tour dépendent des indicatrices de survie.

Pour résoudre ce problème, nous proposons un schéma de simulation simple où nous
séparons les facteurs de risque en deux sous-groupes: un groupe qui ne contribue pas sig-
nificativement à notre problème de variance (en particulier les facteurs diffusifs) représenté
par un processus vectoriel Y , et un autre qui est composé des principaux contributeurs à
la variance (dans notre cas les indicatrices de défaut) et représentés par un autre processus
vectoriel X . L'idée principale est alors de simuler, à chaque pas de temps, plus de réalisa-
tions de X conditionnelles à chaque réalisation de Y . Ceci est motivé par une simulation
peu coûteuse des défauts conditionnellement aux facteurs de risque diffusifs.

𝟙 𝟙

𝟙 𝟙

Figure 7. Schéma de simulation proposé pour les défauts.

42 Introduction (français)

En supposant pour simplifier dans ce résumé une seule contrepartie, et donc en omet-
tant l'indice de la contrepartie dans la notation du processus d'intensité , et en supposant
que tous les processus considérés sont maintenant en temps discret (i.e. i est l'intensité de
défaut en temps discret au i-ème pas de temps d'une certaine discrétisation temporelle),
l'idée dans le cas de notre cadre XVA est de simuler d'abord un certain nombre M de
trajectoires des facteurs de risque diffusifs (dont fait partie). Ensuite, à chaque pas de
temps i, on suppose avoir accès aux trajectoires jusqu'au pas de temps i de , i.e. un
échantillon i.i.d f(jk)0�j�ig1�k�M de (j)0�j�i. On simule alors conditionnellement à
chaque trajectoire, indexée par k2f1;:::;M g, N réalisations i.i.d de l'indicatrice de défaut,
i.e. un échantillon f1f�k;l�igg1�l�N (en utilisant un échantillon i.i.d f"k;lg1�l�N d'une
variable aléatoire exponentielle standard).

Cela permet alors de définir un échantillon de tailleM �N de n'importe quel intégrand
dans les équations XVA, ou toute autre tâche de régression qui rentre dans notre cadre, en
considérant les différentes combinaisons de l'indice de conditionnement (k ci-dessus) et de
l'indice de la sur-simulation (l ci-dessus). L'échantillon qui en résultera ne sera cependant
pas composé de réalisations indépendantes. Mais nous montrons numériquement qu'un
tel schéma d'échantillonnage est efficace pour résoudre le problème de variance décrit ci-
dessus pour un faible coût de calcul.

0

2000

4000
N = 1 N = 32

0

2000

4000
N = 64 N = 128

0 20 40 60 80 100

0

2000

4000
N = 256

0 20 40 60 80 100

N = 512

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 8. À partir de seulement N = 32 simulations supplémentaires des défauts conditionnelle-
ment à chaque réalisation des facteurs de risque diffusifs (en supposant un échantillon de taille
M = 214 = 16384 des réalisations diffusives), nous obtenons déjà de meilleurs profils CVA par
rapport à la situation sans sur-simulation des défauts (i.e. N = 1). abscisses: pas de temps de
valorisation, ordonnées: niveau de la statistique considérée de la CVA au pas de temps donné.

2 Résumés des chapitres 43

Nous étendons également les résultats du cadre de l'approximation avec moyenne
empirique de [Shapiro et al., 2021] à notre cas non i.i.d et donnons des garanties de conver-
gence statistique sous la forme d'une inégalité de déviation qui aide à comprendre comment
M et N impactent la convergence du minimum de la perte empirique (où la moyenne
est calculée sur nos M �N réalisations) vers minimum de la perte théorique, c'est-à-dire
celle où nous utilisons l'opérateur d'espérance au lieu d'une moyenne sur un échantillon fini.

Enfin, dans le cas des espérances conditionnelles, nous abordons le problème de la
validation de cette approche d'apprentissage dans un contexte de production en direct sans
accès à un benchmark Nested Monte Carlo. Nous fournissons une procédure, introduite ci-
dessus dans (4), pour estimer la distance L2 entre l'approximation apprise et l'espérance
conditionnelle recherchée, et qui ne nécessite aucune connaissance de cette dernière.

2.3 Chapitre 3 � Learning Value-at-Risk and Expected Shortfall

Dans ce chapitre, nous étudions une approche en deux étapes pour apprendre la Value-at-
Risk et l'Expected Shortfall conditionnels. Considérons un espace probabilisé (
;A;P) et
soient X un vecteur aléatoire supporté sur un espace polonais S et Y une variable aléatoire
réelle intégrable. Si nous définissons la VaR et l'ES comme suit:

VaR(Y jX) = inf fy 2R:P(Y � y jX)��g

ES(Y jX) = 1
1¡� E[Y 1fY �VaR(Y jX)gjX]

pour un certain niveau de confiance �2 (0;1), alors il existe des fonctions boréliennes q et
s telles que

VaR(Y jX) = q(X)
ES(Y jX) = s(X)

En outre,

q 2 argmin
f2B1(S)

E
�

1
1¡� (Y ¡ f(X))

++ f(X)
�

s 2 argmin
f2B2(S)

E[(Y 1fY �q(X)g¡ f(X))2]

où B1(S) et B2(S) sont les ensembles de fonctions boréliennes f :S!R tels que f(X) est
respectivement intégrable et de carré intégrable. Nous donnons des fonctions de perte plus
générales dans le Theorème 3.5 de ce chapitre. La Value-at-Risk et l'Expected Shortfall
conditionnels peuvent ensuite être appris via l'approche en deux étapes suivante:

1. Tirer un échantillon i.i.d f(X1; Y1); : : : ; (Xn; Yn)g de (X;Y);

2. Apprendre VaR(Y jX) en cherchant q̂ tel que

q̂ 2 argmin
f2F

1
n

X
i=1

n
1

1¡� (Yi¡ f(Xi))++ f(Xi);

44 Introduction (français)

3. Apprendre ES(Y jX) en cherchant ŝ tel que

ŝ2argmin
f2G

1
n

X
i=1

n �
q̂(Xi)+

1
1¡� (Yi¡ q̂(Xi))+¡f(Xi)

�
2

:

où F et G sont deux familles de fonctions (aussi appelées espaces d'hypothèses) sur lesquelles
on cherche une approximation respectivement de la Value-at-Risk et de l'Expected Short-
fall conditionnels. La seconde étape approxime ES(Y jX) = 1

1¡� E[Y 1fY �VaR(Y jX)gjX]
en remplaçant VaR(Y jX) par le candidat appris q̂(X), i.e.

ES(Y jX) = VaR(Y jX)+ 1
1¡� E[(Y ¡VaR(Y jX))

+jX]

� q̂(X)+ 1
1¡� E[(Y ¡ q̂(X))

+jX]

Basée sur des résultats de la théorie de Rademacher et Vapnik-Chervonenkis [Shalev-
Shwartz and Ben-David, 2014] et sur des bornes non-asymptotiques prouvées dans [Barrera,
2022], une analyse de convergence non-asymptotique est fournie. Le Theorème 3.21 énonce
notamment que:

cB1En[(q̂(X)¡ q(X))2] �
�
2(2¡�) inf

f2F
E[jf(X)¡q(X)j]

�
^
�
CB1 inf

f2F
E[(f(X)¡q(X))2]

�
+4(2¡�)B2

n
p 2log

�
2
�

�s

+8(2¡�)B1
n
p

0@1+E
24 2log

�
N1

�
F ;X1:n;

B1
n
p

��s 351A
pour tout � 2 (0; 1) avec une probabilité d'au moins 1 ¡ �, où X1:n = fX1; : : : ; Xng,
En[:] = E[:jX1:n] et nous supposons que F est uniformément borné par B1 > 0, avec
VaR(Y jX) également supposée bornée par la même constante. On suppose aussi que
Y est bornée par une certaine constante B2 > 0 telle que B1 � B2 et qu'il existe des
constantes CB1� cB1> 0 telles que

cB1�FY jX0 (y)�CB1

P-p.s pour tout y 2 [¡B1; B1], où FY jX est la fonction de répartition de Y condition-
nellement à X. N1 est un certain nombre de recouvrements défini plus en détail dans la
Définition 3.17. Un résultat similaire est également montré pour l'approximation de l'écart
entre ES(Y jX) et VaR(Y jX), i.e la différence s¡ q, dans le Théorème 3.25.

Nous fournissons également plusieurs schémas d'apprentissage, utilisant des réseaux de
neurones, pour approximer VaR(Y jX) et ES(Y jX) pour plusieurs niveaux de confiance
� en même temps. Parmi ces schémas, nous en proposons un nouveau où nous pénalisons
la partie négative de la dérivée du réseau de neurones approchant la VaR par rapport
au niveau de confiance �, randomisé et considéré ici comme une covariable à côté de X.
Nous assurons aussi numériquement une quasi-inexistence du problème du croisement de
quantiles [Takeuchi et al., 2006; He, 1997; Koenker and Park, 1996].

Afin d'évaluer numériquement nos schémas d'apprentissage proposés, nous avons égale-
ment réalisé deux expériences: l'apprentissage de VaR(Y jX) et ES(Y jX) dans un cadre
gaussien avec des moments conditionnels d'ordre 1 et 2 de Y polynomiaux en X, et un

2 Résumés des chapitres 45

cas d'étude plus complexe où nous apprenons une marge initiale dynamique dans un cadre
XVA similaire au Chapitre 2. Pour les besoins de ce dernier exemple, nous fournissons
une procédure de Nested Monte Carlo qui effectue un apprentissage non paramétrique de
VaR(Y jX) en utilisant des descentes du gradient stochastiques conditionnelles accélérées
via une initialisation avec une Value-at-Risk gaussienne conditionnelle.

0

1000

2000

3000

α = 0.999 α = 0.995 α = 0.99

S
in

g
le

-α

0

1000

2000

3000

M
u

lt
i-
α

(I
)

0

1000

2000

3000

M
u

lt
i-
α

(I
I)

0 50 100

0

1000

2000

3000

0 50 100 0 50 100

M
u

lt
i-
α

(I
II

)

Mean of learned IM, out-of-sample

95th percentile of learned IM, out-of-sample

5th percentile of learned IM, out-of-sample

Mean of Nested Monte-Carlo IM, out-of-sample

95th percentile of Nested Monte-Carlo IM, out-of-sample

5th percentile of Nested Monte-Carlo IM, out-of-sample

Figure 9. Nous obtenons avec succès les profils d'une marge initiale dynamique (IM) pour dif-
férents niveaux de confiance � dans notre cadre XVA. Chaque colonne représente un niveau
de confiance donné � et chaque ligne représente un des schémas d'apprentissage détaillés au
Chapitre 3. Abscisses: pas de temps de valorisation, ordonnées: niveau de la statistique con-
sidérée de l'IM au pas de temps donné.

Enfin, nous abordons également la question de la validation de cette approche d'appren-
tissage dans des contextes où on n'a pas accès aux valeurs de référence et où on ne peut
pas se permettre le coût du calcul d'un benchmark Nested Monte Carlo. Nous étendons en
particulier l'astuce du twin simulation introduite dans le Chapitre 2 à l'estimation de la

46 Introduction (français)

distance en p-values (resp. en L2) entre l'approximation apprise et la valeur de référence
VaR(Y jX) (resp. ES(Y jX)).

2.4 Chapitre 4 � Pathwise XVAs: The Direct Scheme

En supposant que le capital à risque est fongible pour la marge de variation, nous avons vu
au Chapitre 1 que la FVA, à tout instant 0� t�T , peut s'écrire en temps continu comme
suit:

FVAt=Et

"Z
t

T

�s

 X
c2C

MtMs
(c) 1f� (c)>sg¡CAs¡CRs

!
+

ds

#
: (5)

Cependant, nous avons CA=CVA+FVA et le terme de capital à risque CR dépend du
capital économique EC qui est à son tour défini comme un Expected Shortfall des pertes
futures du desk contra-assets. Ces dernières concernent les pertes dues à la variation de la
FVA et aux dépenses de financement. L'équation (5) appartient à la classe des équations
différentielles stochastiques rétrogrades anticipées (ABSDE) [Peng and Yang, 2009]. Crépey
et al., 2020 montrent l'existence d'une solution unique à de telles ABSDEs lorsque le
terme anticipatif dans le driver dépend d'un Expected Shortfall conditionnel d'incréments
futurs de la partie martingale de la solution. Dans ce chapitre, nous nous intéressons à la
résolution numérique des ABSDE de la forme:

Yt=Et
�
�(XT)+

Z
t

T

f(s;Xs; Ys;ESs(�s�(M))) ds
�

(6)

où Y est une semi-martingale spéciale avecM comme composante martingale locale canon-
ique dans sa décomposition Doob-Meyer, X =(X; J) avec X une solution forte à valeurs
dans Rp d'une EDS et J une pseudo-chaîne de Markov à valeurs dans f0; 1gq, � est une
fonction continue de Rp dans Rl, f est une fonction continue de [0; T]�Rp�Rl�R dans
Rl satisfaisant certaines hypothèses d'intégrabilité et de régularité Lipschitz, �� est un
opérateur déterministe qui transforme chaque instant t en un instant t�2 [t; T], ESs est un
Expected Shortfall conditionnel tel que défini précédemment dans le Chapitre 1, et �s� est
définie pour tout s2 [0; T] comme suit:

�s�(M)=�(s;X[s;s�];M[s;s�]¡Ms)

où �(s;x;m) est une application déterministe à valeurs réelles du temps s et des trajec-
toires càdlàg x et m sur [s; s�] tels que ms=0, et M est la partie martingale de Y .

Alors que nous avons résolu un cas particulier d'ABSDE dans le Chapitre 1 en utilisant
une approche d'apprentissage combinée avec des itérations de Picard, nous proposons dans
ce chapitre un schéma qui ne nécessite pas d'itérations de Picard, implémenté à l'aide
d'approximations avec des réseaux de neurones, pour résoudre des ABSDEs plus générales
de la forme de (6). Plus précisément, nous proposons le schéma explicite en temps discret
suivant:

Yti
h = Eti[Yti+1

h + f(ti;Xti
h; Yti+1

h ; �ti+1
h)�ti+1]

�ti
h = ESti

�ti�
h

Yt`
h+
X
k<`

f(tk;Xtk
h ; Ytk+1

h ; �tk+1
h)�tk+1; `=0; : : : ; n

!!

2 Résumés des chapitres 47

où nous avons considéré une grille de temps 0 = t0< t1< � � � < tn= T , �ti+1= ti+1¡ ti,
ti� est dans ce contexte approximé sur cette grille temporelle, X h est une approximation
simulable de X en temps discret (par exemple en utilisant un schéma d'Euler pour X) et
�ti�
h est une certaine approximation en temps discret calculable de �ti�. Ce schéma proposé

est ensuite implémenté en utilisant des régressions par moindres carrés (voir Chapitre 2)
et des régressions quantiles (voir Chapitre 3) en utilisant des approximateurs sous forme
de réseaux de neurones. En l'absence d'un benchmark Nested Monte Carlo, nous estimons
les erreurs de régression locales L2 en utilisant l'approche de twin simulation introduite au
Chapitre 2. Outre la simplicité de la formulation de notre schéma explicite, nous démon-
trons sur une étude de cas XVA la supériorité de notre approche par rapport aux schémas
basés sur des itérations de Picard, tant en termes de vitesse de calcul que de stabilité vis-
à-vis de la taille des pas de temps.

2.5 Chapitre 5 � Fast Calibration using Complex-Step Sobolev
Training

Étant donné un modèle de valorisation paramétré, sa calibration consiste généralement à
résoudre un problème de minimisation de la forme:

�?2 argmin
�2�

X
l=1

L ¡
pmodel(�; k(l); � (l))¡ pmkt

(l) �2
où les instruments de calibration sont des calls européens vanilles, pmodel(�; k; �) est le
prix d'un call vanille avec un prix d'exercice k et une maturité � dans notre modèle
de valorisation paramétré par � 2�, ��Rn est un ensemble de paramètres de modèle
admissibles. Nous avons également accès à L prix de marché de calls vanilles pmkt

(1)
;:::; pmkt

(L)

correspondant aux prix d'exercice k(1); : : : ; k(L) et maturités � (1); : : : ; � (L).
Sauf dans des contextes spéciaux où la minimisation ci-dessus peut être résolue sous

forme fermée (e.g. dans un modèle de volatilité locale utilisant la formule de Dupire), il
faut en général résoudre le problème en utilisant une routine d'optimisation numérique qui
implique souvent des évaluations répétées de la fonction objectif11. Le coût en temps de
calcul de la calibration peut parfois être prohibitif si pmodel est difficile à calculer, c'est-
à-dire si on ne dispose pas d'une formule analytique ou semi-analytique pour le prix de
modèle. C'est le cas par exemple pour les modèles à volatilité rugueuse [Bayer et al., 2016].

Pour contourner ce problème, des approches ont été proposées où on construit d'abord
une approximation rapide de pmodel en fonction des paramètres du modèle et du produit.
Celles-ci utilisent des techniques d'apprentissage automatique, comme celles basées sur des
réseaux de neurones [Horvath et al., 2021; Bayer and Stemper, 2018] ou des régressions
de processus gaussiens [De Spiegeleer et al., 2018]. Ces approches apprennent une approx-
imation de la fonction de prix de modèle à l'aide d'ensembles de données préconstruits
constitués de combinaisons de paramètres de modèle/produit et de prix de modèle obtenus
à l'aide d'une routine Monte Carlo, traitant ainsi la fonction de prix de modèle comme une
boîte noire.

Dans ce chapitre, nous proposons de tirer parti du fait que le prix du modèle est une
espérance conditionnelle du payoff considéré, noté Z�, i.e.

pmodel(�; K; T)=E[Z�j�; K; T]

11. et de son gradient en cas d'utilisation d'un optimiseur d'ordre 1, i.e. nécéssitant des gradients.

48 Introduction (français)

où �, K et T sont des versions randomisées, dans un sens à préciser, respectivement du
vecteur des paramètres du modèle, du prix d'exercice et de la maturité. Nous avons négligé
l'actualisation pour simplifier cette introduction. Par conséquent, le prix de modèle corre-
spondant aux paramètres du modèle et du produit �, K et T , vu comme une projection L2

de Z� sur le sous-espace vectoriel constitué de variables aléatoires �(�; K; T)-mesurables
de carrés intégrables, est un minimiseur de l'erreur de projection L2 associée, c'est-à-dire

pmodel2 argmin
'2B

E[('(�; K; T)¡Z�)2]:

On pourrait alors effectuer la minimisation sur un espace bien choisi de réseaux de neurones
N comme nous l'avons fait dans les chapitres précédents pour des problèmes de projection
similaires, c'est-à-dire chercher une approximation pproxy telle que

pproxy2 argmin
'2N

E[('(�;K; T)¡Z�)2]:

Dans le présent chapitre12, cependant, nous proposons d'enrichir l'apprentissage en util-
isant des dérivées trajectorielles du payoff par rapport aux paramètres du modèle et du
produit, c'est-à-dire que nous résolvons à la place le problème de minimisation suivant

pproxy2 argmin
'2N

E[('(�;K; T)¡Z�)2]+
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @kZ�)2] (7)

où �2(R+?)n+2, les réseaux dansN sont supposés suffisamment réguliers et @k est la dérivée
partielle par rapport à la k-ème composante de la concaténation de � et (K;T). @kZ� est
une dérivée dite trajectorielle [Broadie and Glasserman, 1996] que l'on rappelle et pour
laquelle on donne suffisamment d'hypothèses pour que l'on ait

@kE[Z�j�;K; T]=E[@kZ�j�;K; T]: (8)

Ainsi, à la lumière de (8), dans le problème d'apprentissage exprimé dans (7) on cherche
alors explicitement à projeter à la fois le payoff et ses dérivées trajectorielles. Enrichir
l'apprentissage avec des informations sur les dérivées a d'abord été13 étudié dans un con-
texte de réseaux de neurones dans [Czarnecki et al., 2017] sous le nom d'entraînement
Sobolev , avec Huge and Savine, 2020 appliquant plus tard la même approche à l'appren-
tissage des prix vus comme des fonctions des valeurs initiales de l'EDS du sous-jacent.
Dans un contexte de minimisation du risque empirique, cette approche est plus efficace
que la simulation par force brute de plusieurs trajectoires, car les dérivés trajectorielles
peuvent partager non seulement les mêmes nombres aléatoires, mais aussi généralement de
nombreuses sous-expressions communes.

Nous montrons également qu'on évite la charge de calcul associée à l'évaluation des
erreurs quadratiques pour chaque dérivée partielle dans (7) en calculant à la place une
erreur quadratique de projection associée à une seule dérivée directionnelle dans une direc-
tion aléatoire. En effet, nous avons:

E[(u>r'(�;K; T)¡u>r(e¡rTZ�))2]=
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @k(e¡rTZ�))2]

12. Nous n'avons pas utilisé cette approche, du moins dans sa forme actuelle, dans le cadre XVA des chapitres
précédents car elle est non triviale du point de vue de l'occupation de l'espace mémoire. En effet, les dérivées
trajectorielles devront être calculées et conservées en mémoire à chaque pas de temps grossier. De plus, cette
approche ne s'applique pas directement aux mesures de risque conditionnelles, car on ne peut pas, par exemple,
intervertir les opérateurs Value-at-Risk conditionnelle et dérivée.

13. Du moins à notre connaissance.

2 Résumés des chapitres 49

pour tout vecteur aléatoire L2-intégrable u supporté sur Rn+2 à composantes centrées telles
que cov(u)=diag(�1;:: :; �n+2) et u est indépendant de �;K;T ;Z�. Nous montrons égale-
ment comment choisir la distribution sur u telle que la variance ajoutée14 dans l'intégrand
de (7) est minimisée.

Nous proposons ensuite de calculer la dérivée directionnelle u>r'(�; K; T) avec une
erreur proche de la précision machine en utilisant la différenciation à pas complexe [Martins
et al., 2003; Squire and Trapp, 1998] tout en restant en simple précision. Ceci consiste à
introduire une petite perturbation imaginaire dans le sens de la différenciation, c'est-à-dire

1
"
Im('(�+ i " u1:n; K+ i " un+1; T + i " un+2))=u>r'(�;K; T)+O("2)

lorsque "!0, pour tout ' analytique et au moins trois fois différentiable par rapport à ses
entrées et où i est l'unité imaginaire. En revanche, la méthode des différences finies échoue
généralement pour des tailles de pas trop petites en raison d'erreurs d'arrondi en simple
précision, sauf si on passe à la double précision, ce qui nuirait aux performances sur GPU
et utiliserait deux fois la quantité de mémoire nécessaire en simple précision.

10 6 10 4 10 2
10 7

10 5

10 3

10 1

101

er
ro

r

10 6 10 4 10 2
10 6

10 4

10 2

100

102

Finite Difference 1 ((x + u) (x))
Central Finite Difference 1

2 ((x + u) (x u))
Complex-step Differentiation 1 Im((x + i u))

Figure 10. Moyenne empirique de la valeur absolue des erreurs absolues (gauche) et relatives
(droite), lors de l'approximation de la dérivée directionnelle d'un réseau de neurones initialisé
aléatoirement ' par rapport à ses entrées, en utilisant chacune des méthodes de différence finie,
de différence finie centrale et de différenciation à pas complexe. Ce réseau comporte 28 entrées, 6
couches cachées, 112 unités cachées par couche et une activation analytique Softplus. La moyenne
est faite sur un échantillon i.i.d de 214=16384 erreurs correspondant chacune à un vecteur d'entrée
x avec des composantes tirées indépendamment l'une des autres et de loi U([¡ 3

p
; 3
p

]) et une
direction u tirée comme dans la Proposition 5.10 avec �1= � � � = �28= 1. Les graphes sont dans
une échelle log-log.

Nous montrons que cette approche pour calculer les dérivées directionnelles randomisées
est plus rapide qu'un calcul exact utilisant des produits vecteur-jacobien dans la direction
forward . Nous appelons l'approche d'apprentissage qui en résulte entraînement Sobolev
à pas complexe.

Nous montrons l'efficacité de notre méthode en la testant numériquement sur un exemple
de modèle de volatilité locale à grille fixe 5� 5 où chaque n÷ud de volatilité locale est
traité comme un paramètre de modèle, donnant donc lieu à 25 paramètres de modèle
au total. Nous fournissons également des benchmarks présentant les accélérations obtenues
en utilisant notre approche. Nous montrons que cette approche est statistiquement plus
efficace que la méthode brute force qui consiste à générer plus de chemins de Monte Carlo.

14. En effet, comme nous le montrons dans le chapitre, randomiser la direction de différenciation augmente
nécessairement la variance de l'intégrand dans (7).

50 Introduction (français)

0.55

0.60

0.65

0.70 residual maturity = 0.34 years residual maturity = 0.59 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.55

0.60

0.65

0.70 residual maturity = 0.94 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00

residual maturity = 1.96 years

Figure 11. Ajustement du smile de volatilité implicite TSLA au 2022/02/14 en utilisant un
modèle de volatilité locale 5� 5 calibré à l'aide de notre approximation de prix. Points en bleu:
prix du marché, Courbe en violet: smile de volatilité implicite du modèle de volatilité locale
calibré, abscisses: moneyness, ordonnées: niveaux de volatilité implicite.

2 Résumés des chapitres 51

Chapter 1

XVA Analysis From the Balance Sheet

This chapter, published as a paper in [Albanese et al., 2021], was co-authored with Claudio
Albanese, Stéphane Crépey and Rodney Hoskinson.

XVAs denote various counterparty risk related valuation adjustments that are applied
to financial derivatives since the 2007�09 crisis. We root a cost-of-capital XVA strategy
in a balance sheet perspective which is key in identifying the economic meaning of the
XVA terms. Our approach is first detailed in a static setup that is solved explicitly. It is
then plugged in the dynamic and trade incremental context of a real derivative banking
portfolio. The corresponding cost-of-capital XVA strategy ensures to bank shareholders a
submartingale equity process corresponding to a target hurdle rate on their capital at risk,
consistently between and throughout deals. Set on a forward/backward SDE formulation,
this strategy can be solved efficiently using GPU computing combined with deep learning
regression methods in a whole bank balance sheet context. A numerical case study empha-
sizes the workability and added value of the ensuing pathwise XVA computations.

1.1 Introduction

XVAs, with X as C for credit, D for debt, F for funding, M for margin, or K for capital,
are post-2007�09 crisis valuation adjustments for financial derivatives. In broad terms
to be detailed later in the paper (cf. Table 1.1 in Section 1.2), CVA is what the bank
expects to lose due to counterparty defaults in the future; DVA (irrelevant for pricing
but material to bank creditors as we will see) is what the bank expects to gain due to its
own default; FVA is the expected cost for the bank of having to raise variation margin
(re-hypothecable collateral); MVA is the expected cost for the bank of having to raise
initial margin (segregated collateral); KVA is the expected cost for the bank of having to
remunerate its shareholders through dividends for their capital at risk.

XVAs deeply affect the derivative pricing task by making it global, nonlinear, and
entity dependent. However, before these technical implications, the fundamental point is
to understand what really deserves to be priced and what does not, by rooting the pricing
approach in a corresponding collateralization, accounting, and dividend policy of the bank.

53

Coming after several papers on the valuation of defaultable assets in the 90's, such as
[Duffie and Huang, 1996], [Bielecki and Rutkowski, 2002] (Eq. (14.25) p. 448) obtained
the formula

CVA¡DVA (1.1)

for the valuation of bilateral counterparty risk on a swap, assuming risk-free funding.
This formula, rediscovered and generalized by others since the 2008�09 financial crisis
(cf. e.g. [Brigo and Capponi, 2010]), is symmetrical, i.e. it is the negative of the analogous
quantity considered from the point of view of the counterparty, consistent with the law of
one price and the Modigliani and Miller, 1958 theorem.

Around 2010, the materiality of the DVA windfall benefit of a bank at its own default
time became the topic of intense debates in the quant and academic communities. At least,
it seemed reasonable to admit that, if the own default risk of the bank was accounted for
in the modeling, in the form of a DVA benefit, then the cost of funding (FVA) implication
of this risk should be included as well, leading to the modified formula (CVA¡DVA+
FVA). See for instance [Burgard and Kjaer, 2011, 2013, 2017], [Crépey, 2015], [Brigo and
Pallavicini, 2014], or [Bichuch et al., 2018]. See also [Bielecki and Rutkowski, 2015] for an
abstract funding framework (without explicit reference to XVAs), generalizing [Piterbarg,
2010] to a nonlinear setup.

Then Hull andWhite, 2012 objected that the FVA was only the compensator of another
windfall benefit of the bank at its own default, corresponding to the non-reimbursement by
the bank of its funding debt. Accounting for the corresponding �DVA2� (akin to the FDA
in this paper) brings back to the original firm valuation formula:

CVA¡DVA+FVA¡FDA=CVA¡DVA;

as FVA=FDA (assuming risky funding fairly priced as we will see).

However, their argument implicitly assumes that the bank can perfectly hedge its own
default: cf. [Burgard and Kjaer, 2013](end of Section 3.1) and see Section 1.3.5 below. As a
bank is an intrinsically leveraged entity, this is not the case in practice. One can mention
the related corporate finance notion of debt overhang in Myers, 1977, by which a project
valuable for the firm as a whole may be rejected by shareholders because the project
is mainly valuable to bondholders. But, until recently, such considerations were hardly
considered in the field of derivative pricing.

The first ones to recast the XVA debate in the perspective of the balance sheet of the
bank were Burgard and Kjaer, 2011, to explain that an appropriately hedged derivative
position has no impact on the dealer's funding costs. Also relying on balance sheet models
of a dealer bank, Castagna, 2014 and Andersen et al., 2019 end up with conflicting conclu-
sions, namely that the FVA should, respectively should not, be included in the valuation of
financial derivatives. Adding the KVA, but in a replication framework, Green et al., 2014
conclude that both the FVA and the KVA should be included as add-ons in entry prices
and as liabilities in the balance sheet.

1.1.1 Contents

Our key premise is that counterparty risk entails two distinct but intertwined sources of

54 XVA Analysis From the Balance Sheet

market incompleteness:

� A bank cannot perfectly hedge counterparty default losses, by lack of sufficiently
liquid CDS markets;

� A bank can even less hedge its own jump-to-default exposure, because this would
mean selling protection on its own default, which is nonpractical and, under certain
juridictions, even legally forbidden (see Section 1.2).

We specify the banking XVA metrics that align derivative entry prices to shareholder
interest, given this impossibility for a bank to replicate the jump-to-default related cash
flows. We develop a cost-of-capital XVA approach consistent with the accounting stan-
dards set out in IFRS 4 Phase II (see International Financial Reporting Standards, 2013),
inspired from the Swiss solvency test and Solvency II insurance regulatory frameworks (see
Swiss Federal Office of Private Insurance, 2006 and Committee of European Insurance and
Occupational Pensions Supervisors, 2010), which so far has no analogue in the banking
domain. Under this approach, the valuation (CL) of the so-called contra-liabilities and
the cost of capital (KVA) are sourced from clients at trade inceptions, on top of the
(CVA¡DVA) complete market valuation of counterparty risk, in order to compensate bank
shareholders for wealth transfer and risk on their capital.

The cost of the corresponding collateralization, accounting, and dividend policy is, by
contrast with the complete market valuation (CVA¡DVA) of counterparty risk,

CVA+FVA+KVA; (1.2)

computed unilaterally in a certain sense (even though we do crucially include the default
of the bank itself in our modeling), and charged to clients on an incremental run-off basis
at every new deal1.1.

All in one, our cost-of-capital XVA strategy makes shareholder equity a submartingale
with drift corresponding to a hurdle rate h on shareholder capital at risk, consistently
between and throughout deals. Thus we arrive at a sustainable strategy for profits reten-
tion, much like in the above-mentioned insurance regulation, but in a consistent continuous-
time and banking framework.

Last but not least, our approach can be solved efficiently using GPU computing com-
bined with deep learning regression methods in a whole bank balance sheet context.

1.1.2 Outline and Contributions

Section 1.2 sets a financial stage where a bank is split across several trading desks and
entails different stakeholders. Section 1.3 develops our cost-of-capital XVA approach in a
one-period static setup. Section 1.4 revisits the approach at the dynamic and trade incre-
mental level. Section 1.5 is a numerical case study on large, multi-counterparty portfolios
of interest rate swaps, based on the continuous-time XVA equations for bilateral trade
portfolios recalled in Section 1.6.

1.1. See also Remark 1.1 regarding the meaning of the FVA in (1.2).

1.1 Introduction 55

The main contributions of the paper are:

� The one-period static XVA model of Section 1.3, with explicit formulas for all the
quantities at hand, offering a concrete grasp on the related wealth transfer and risk
premium issues;

� Proposition 1.20, which establishes the connections between XVAs and the core
equity tier 1 capital of the bank, respectively bank shareholder equity;

� Proposition 1.25, which establishes that, under the XVA policy represented by the
balance conditions (1.3) between deals and the counterparty risk add-on (1.50)
throughout deals, bank shareholder equity is a submartingale with drift corre-
sponding to a target hurdle rate h on shareholder capital at risk. This perspective
solves the puzzle according to which, on the one hand, XVA computations are
performed on a run-off portfolio basis, while, on the other hand, they are used
for computing pricing add-ons to new deals;

� The XVA deep learning (quantile) regression computational strategy of Section 1.4.4;

� The numerical case study of Section 1.5, which emphasizes the materiality of refined,
pathwise XVA computations, as compared to more simplistic XVA approaches.

From a broader point of view, this paper reflects a shift of paradigm regarding the pricing
and risk management of financial derivatives, from hedging to balance sheet optimization,
as quantified by relevant XVA metrics. In particular (compare with the last paragraph
before Section 1.1.1), our approach implies that the FVA (and also the MVA, see Remark
1.1) should be included as an add-on in entry prices and as a liability in the balance sheet;
the KVA should be included as an add-on in entry prices, but not as a liability in the
balance sheet.

From a computational point of view, this paper opens the way to second generation
XVA GPU implementation. The first generation consisted of nested Monte Carlo imple-
mented by explicit CUDA programming on GPUs (see Albanese et al., 2017, Abbas-Turki
et al., 2018). The second generation takes advantage of GPUs leveraging via pre-coded
CUDA/AAD deep learning packages that are used for the XVA embedded regression and
quantile regression task. Compared to a regulatory capital based KVA approach, an eco-
nomic capital based KVA approach is then not only conceptually more satisfying but also
simpler to implement.

1.2 Balance Sheet and Capital Structure Model of the
Bank

We consider a dealer bank, which is a market maker involved in bilateral derivative port-
folios. For simplicity, we only consider European derivatives. The bank has two kinds
of stakeholders, shareholders and bondholders. The shareholders have the control of
the bank and are solely responsible for investment decisions before bank default. The
bondholders represent the senior creditors of the bank, who have no decision power until
bank default, but are protected by laws, of the pari-passu type, forbidding trades that
would trigger value away from them to shareholders during the default resolution process of

56 XVA Analysis From the Balance Sheet

Reserve capital (RC)

Shareholder capital at risk (SCR)

yr1

Uninvested capital (UC)

ASSETS

LIABILITIES

yr39 yr40

Core equity tier I capital (CET1)

Mark-to-market of the

portfolio receivables

Mark-to-market of the

portfolio payables

Contra-liabilities (CL)

yr1 yr39 yr40

Contra-assets (CA)

Accounting equity

Capital at risk (CR)

CVA

Collateral posted by the

clean desks

Collateral received by the

clean desks

FVA

DVA

FVA desk

(Treasury)CA desks

Clean desks

KVA desk

(management)

CVA desk

Risk Margin (RM=KVA)

(MtM+) (CM+)

(CM−) (MtM−)

FDA = FVA

Figure 1.1. Balance sheet of a dealer bank. Contra-liability valuation (CL) at the top is shown in
dotted boxes because it is only value to the bondholders (see Section 1.3.5). Mark-to-market valua-
tion (MtM) of the derivative portfolio of the bank by the clean desks, as well as the corresponding
collateral (clean margin CM), are shown in dashed boxes at the bottom. Their role will essentially
vanish in our setup, where we assume a perfect clean hedge by the bank. The arrows in the left
column represent trading losses of the CA desks in �normal years 1 to 39� and in an �exceptional
year 40� with full depletion (i.e. refill via UC, under Assumption 1.5.ii) of RC, RM, and SCR. The
numberings yr1 to yr40 are fictitious yearly scenarios in line with a 97.5% expected shortfall of
the one-year-ahead trading losses of the bank that we use for defining its economic capital. The
arrows in the right column symbolize the average depreciation in time of contra-assets between
deals. The collateral between the bank and its counterparties is not shown to alleviate the picture.

the bank. The bank also has junior creditors, represented in our framework by an external
funder , who can lend unsecured to the bank and is assumed to suffer an exogenously given
loss-given-default in case of default of the bank.

We consider three kinds of business units within the bank (see Figure 1.1 for the
corresponding picture of the bank balance sheet and refer to Table 1.1 for a list of the main
financial acronyms used in the paper): the CA desks, i.e. the CVA desk and the FVA
desk (or Treasury) of the bank, in charge of contra-assets, i.e. of counterparty risk and its
funding implications for the bank; the clean desks, who focus on the market risk of the
contracts in their respective business lines; themanagement of the bank, in charge of the
dividend release policy of the bank.

1.2 Balance Sheet and Capital Structure Model of the Bank 57

Amounts on dedicated cash accounts of the bank:
CM Clean margin Definition 1.2 and Assumption 1.5
RC Reserve capital Definition 1.2 and Assumption 1.5
RM Risk margin Definition 1.2 and Assumption 1.5
UC Uninvested capital Definition 1.2 and Assumption 1.5

Valuations:
CA Contra-assets valuation (1.2), (1.16), and (1.64)

CL Contra-liabilities valuation
Definition 1.2 and (1.19), (1.41), and
(1.50)

CVA Credit valuation adjustment (1.17), (1.16), (1.65), and (1.76)�(1.77)
DVA Debt valuation adjustment (1.19) and (1.17)
FDA Funding debt adjustment (1.19) and (1.26)

FV Firm valuation of counterparty
risk

(1.22) and (1.26)

FVA Funding valuation adjustment Remark 1.1, (1.17), (1.16), and (1.65)
KVA Capital valuation adjustment (1.3), (1.31), and (1.71)
MtM Mark-to-market (1.3) and (1.15)
MVA Margin valuation adjustment Remark 1.1, (1.37), (1.65), and (1.78)
XVA Generic �X� valuation adjustment First paragraph

Also:
CR Capital at risk (1.69)

CET1 Core equity tier I capital (1.2) and (1.47)
EC Economic capital Definitions 1.13 and 1.27
FTP Funds transfer price (1.50)
SHC Shareholder capital (or equity) (1.2) and (1.48)
SCR Shareholder capital at risk Assumption 1.5 and (1.30)

Table 1.1. Main financial acronyms and place where they are introduced conceptually and/or
specified mathematically in the paper, as relevant.

Collateral means cash or liquid assets that are posted to guarantee a netted set of
transactions against defaults. It comes in two forms: variation margin, which is re-hypothe-
cableotecable, i.e. fungible across netting sets, and initial margin, which is segregated. We
assume cash only collateral. Posted collateral is supposed to be remunerated at the risk-
free rate (assumed to exist, with overnight index swap rates as a best market proxy).

Remark 1.1. To alleviate the notation, in this conceptual section of the paper, we only
consider an FVA as the global cost of raising collateral for the bank, as opposed to a
distinction, in the industry and in later sections in the paper, between an FVA, in the strict
sense of the cost of raising variation margin, and an MVA for the cost of raising initial
margin. �

The CA desks guarantee the trading of the clean desks against counterparty defaults,
through a clean margin account , which can be seen as (re-hypothecable) collateral
exchanged between the CA desks and the clean desks. The corresponding clean margin
amount (CM) also plays the role of the funding debt of the clean desks put at their disposal
at a risk-free cost by the Treasury of the bank. This is at least the case when CM>0 (clean
desks clean margin receivers). In the case when CM<0 (clean desks clean margin posters),
(¡CM) corresponds to excess cash generated by the trading of the clean desks, usable by
the Treasury for its other funding purposes. See the bottom, dashed boxes in Figure 1.1.

58 XVA Analysis From the Balance Sheet

In addition, the CA desks value the contra-assets (future counterparty default losses
and funding expenditures), charge them to the (corporate) clients at deal inception, deposit
the corresponding payments in a reserve capital account , and then are exposed to the
corresponding payoffs. As time proceeds, contra-assets realize and are covered by the CA
desks with the reserve capital account.

On top of reserve capital, the so-called risk margin is sourced by the management of
the bank from the clients at deal inception, deposited into a risk margin account , and
then gradually released as KVA payments into the shareholder dividend stream.

Another account contains the shareholder capital at risk earmarked by the bank to
deal with exceptional trading losses (beyond the expected losses that are already accounted
for by reserve capital).

Last, there is one more bank account with shareholder uninvested capital .
All cash accounts are remunerated at the risk-free rate.

Definition 1.2. We write CM, RC, RM, SCR, and UC for the respective (risk-free
discounted) amounts on the clean margin, reserve capital, risk margin, shareholder capital
at risk, and uninvested capital accounts of the bank. We also define

SHC=SCR+UC; CET1=RM+SCR+UC:�

From a financial interpretation point of view, before bank default, SHC corresponds to
shareholder capital (or equity); CET1 is the core equity tier I capital of the bank, rep-
resenting the financial strength of the bank assessed from a regulatory, structural solvency
point of view, i.e. the sum between shareholder capital and the risk margin (which is also
loss-absorbing), but excluding the value CL of the so-called contra-liabilities (see Figure
1.1). Indeed, the latter only benefits the bondholders (cf. Section 1.3.5), hence it only
enters accounting equity. Before the default of the bank, shareholder wealth and bond-
holder wealth are respectively given by SHC+RMsh and CL+RMbh, for shareholder and
bondholder components of RM to be detailed in Remark 1.15; shareholder and bondholder
wealths sum up to the accounting equity RM+SCR+UC+CL, i.e. the wealth of the firm
as a whole (see Figure 1.1).

Remark 1.3. The purpose of our capital structure model of the bank is not to model
the default of the bank, like in a Merton, 1974 model, as the point of negative equity (i.e.
CET< 0). In the case of a bank, such a default model would be unrealistic. For instance,
at the time of its collapse in April 2008, Bear Stearns had billions of capital. In fact,
the legal definition of default is an unpaid coupon or cash flow, which is a liquidity (as
opposed to solvency) issue. Eventually we will model the default of the bank as a totally
unpredictable event at some exogenous time � calibrated to the credit default swap (CDS)
curve referencing the bank. Indeed we view the latter as the most reliable and informative
credit data regarding anticipations of markets participants about future recapitalization,
government intervention, bail-in, and other bank failure resolution policies.

The aim of our capital structure model, instead, is to put in a balance sheet perspective
the contra-assets and contra-liabilities of a dealer bank, items which are not present in the
Merton model and play a key role in our XVA analysis. �

In line with the Volcker rule banning proprietary trading for a bank, we assume a perfect
market hedge of the derivative portfolio of the bank by the clean desks, in a sense to be
specified below in the respective static and continuous-time setups. By contrast, as jump-
to-default exposures (own jump-to-default exposure, in particular) cannot be hedged by
the bank (cf. Section 1.1.1), we conservatively assume no XVA hedge.

1.2 Balance Sheet and Capital Structure Model of the Bank 59

We work on a measurable space (
;A) endowed with a probability measure Q?, with
Q? expectation denoted by E?, which is used for the linear valuation task, using the risk-
free asset as our numéraire everywhere.

Remark 1.4. Regarding the nature of our reference probability measure Q, �physical or
risk-neutral�, one should view it as a blend between the two. For instance, even if we do
not use this explicitly in the paper, one could conceptually think of Q? as the probability
measure introduced by Dybvig, 1992 to deal with incomplete markets that are a mix of
financial traded risk factors and unhedgeable ones (jumps to default, in our setup), recently
revisited in a finance and insurance context by Artzner et al., 2020. Namely, one could think
of Q as the unique probability measure on A1.2 that coincides (i) with a given risk-neutral
pricing measure on the financial � algebra �A, and (ii) with the physical probability
measure conditional on the financial � algebra (the risk-neutral and physical measures
being assumed equivalent on the financial � algebra). The risk-neutral pricing measure
(hence, in view of (i), Q? itself) is calibrated to prices of fully collateralized transaction
for which counterparty risk is immaterial. The physical probability measure expresses
user views on the unhedgeable risk factors. The uncertainty about Q? can be dealt with
by a Bayesian variation on our baseline XVA approach, whereby paths of alternative, co-
calibrated models are combined in a global simulation (cf. Hoeting et al., 1999). �

1.2.1 Run-Off Portfolio
Until Section 1.4.2, we consider the case of a portfolio held on a run-off basis, i.e. set up
at time 0 and such that no new unplanned trades enter the portfolio in the future.

The trading cash flows of the bank (cumulative cash flow streams starting from 0 at
time 0) then consist of

� the contractually promised cash flows P from counterparties,
� the counterparty credit cash flows C to counterparties (i.e., because of counterparty

risk, the effective cash flows from counterparties are P ¡C),
� the risky funding cash flows F to the external funder, and

� the hedging cash flows H of the clean desks to financial hedging markets

(note that all cash flow differentials can be positive or negative). See Section 1.3.1 and
(1.58)�(1.61) for concrete specifications in respective one-period and continuous-time setups.

Assumption 1.5.
1. (Self-financing condition) RC+RM+SCR+UC¡CM evolves like the received

trading cash flows P ¡C ¡F ¡H.
2. (Mark-to-model) The amounts on all the accounts but UC are marked-to-model

(hence the last, residual amount, UC, plays the role of an adjustment variable).
Specifically, we assume that the following shareholder balance conditions hold
at all times:

CM=MtM; RC=CA; RM=KVA; (1.3)

for theoretical target levels MtM, CA, and KVA to be specified in later sections of
the paper (which will also determine the theoretical target level for SCR).

3. (Agents) The initial amounts MtM0, CA0, and KVA0 are provided by the clients
at portfolio inception time 0. Resets between time 0 and the bank default time
� (excluded) are on bank shareholders. At the (positive) bank default time �, the
property of the residual amount on the reserve capital and risk margin accounts
is transferred from the shareholders to the bondholders of the bank. �

1.2. See [Artzner et al., 2020] (Proposition 2.1) for a proof.

60 XVA Analysis From the Balance Sheet

Remark 1.6. In an asymmetric setup with a price maker and a price taker, the price
maker passes his costs to the price taker. Accordingly, in our setup, the (corporate) clients
provide all the amounts to the clean margin, reserve capital, and risk margin accounts
of the bank required for resetting the accounts to their theoretical target levels (1.3)
corresponding to the updated portfolio. �

Under a cost-of-capital XVA approach, we define valuation so as to make shareholder
trading losses (that include marked-to-model liability fluctuations) centered, then we add
a KVA risk premium in order to ensure to bank shareholders some positive hurdle rate h
on their capital at risk.

In what follows, such an approach is developed, first, in a static setup, which can be
solved explicitly, and then, in a dynamic and trade incremental setup, as suitable for
dealing with a real derivative banking portfolio.

1.3 XVA Analysis in a Static Setup

In this section, we apply the cost-of-capital XVA approach to a portfolio made of a single
deal, P (random variable promised to the bank), between a bank and a client, without prior
endowment, in an elementary one-period (one year) setup. All the trading cash flows P, C,
F , and H are then random variables (as opposed to processes in a multi-period setup later
in the paper). We first assume no collateral exchanged between the bank and its client (but
collateral exchanged as always between the CA and the clean desks as well as collateral on
the market hedge of the bank, the way explained after the respective Remarks 1.1 and 1.3).
Risky funding assets are assumed fairly priced by the market, in the sense that E?F =0.

The bank and client are both default prone with zero recovery to each other. The bank
also has zero recovery to its external funder. We denote by J and J1 the survival indicators
(random variables) of the bank and client at time 1, with default probability of the bank
Q?(J =0)= .

Since prices and XVAs only matter at time 0 in a one-period setup, we identify all the
XVA processes, as well as the mark-to-market (valuation by the clean desks) MtM of the
deal, with their values at time 0.

For any random variable Y, we define

Y�=JY and Y�=¡(1¡J)Y , hence Y =Y�¡Y�:

Let E denote the expectation with respect to the bank survival measure, say Q, associated
with Q?, i.e., for any random variable Y ,

EY =(1¡)¡1E?(Y�) (1.4)

(which is also equal to EY�). The notion of bank survival measure was introduced in
greater generality by Schönbucher, 2004. In the present static setup, (1.4) is nothing but
the Q? expectation of Y conditional on the survival of the bank (note that, whenever Y
is independent from J , the right-hand-side in (1.4) coincides with E?Y).

Lemma 1.7. For any random variable Y and constant Y, we have

Y =E?(Y�+(1¡ J)Y)()Y =EY:

Proof. Indeed,

Y =E?(JY +(1¡ J)Y)()E?(J (Y ¡Y))=0()E(Y ¡Y)=0()Y =EY ;

1.3 XVA Analysis in a Static Setup 61

where the equivalence in the middle is justified by (1.4). �

Remark 1.8. For simplicity in a first stage, we will ignore the possibility of using capital
at risk for funding purposes, only considering in this respect reserve capital RC= CA
(cf. (1.3)). The additional free funding source provided by capital at risk will be introduced
later, as well as collateral between bank and client, in Section 1.3.4.

1.3.1 Cash Flows

Lemma 1.9. Given the (to be specified) MtM and CA amounts (cf. Assumption 1.5.ii),
the credit and funding cash flows C and F of the bank and its trading loss (and profit) L
are such that

C�= J (1¡ J1)P+=J (MtM¡CA)+ (1.5)
C�=(1¡ J) (P¡¡ (1¡ J1)P+);F�=(1¡J) ((MtM¡CA)+¡ (MtM¡CA)+) (1.6)
L�= C�+F�¡ J CA; L�= C�+F�+(1¡J)CA; L= C+F ¡CA: (1.7)

Proof. For the deal to occur, the bank needs to borrow (MtM¡CA)+ unsecured or invest
(MtM¡CA)¡ risk-free (cf. Remark 1.8). Having assumed zero recovery to the external
funder, unsecured borrowing is fairly priced as � the amount borrowed by the bank (in
line with our assumption that E?F =0), i.e. the bank must pay for its risky funding the
amount

 (MtM¡CA)+:

Moreover, at time 1, under zero recovery upon defaults:

� If the bank is not in default (i.e. J =1), then the bank closes its position with the
client while receiving P from its client if the latter is not in default (i.e. J1= 1),
whereas the bank pays P¡ to its client if the latter is in default (i.e. J1= 0). In
addition, the bank reimburses its funding debt (MtM¡CA)+ or receives back the
amount (MtM¡CA)¡ it had lent at time 0;

� If the bank is in default (i.e. J = 0), then the bank receives back J1 P+ on the
derivative as well as the amount (MtM¡CA)¡ it had lent at time 0.

Also accounting for the hedging loss H, the trading loss of the bank over the year is

L= (MtM¡CA)+¡J (J1P ¡ (1¡ J1)P¡¡ (MtM¡CA)++(MtM¡CA)¡) (1.8)
¡ (1¡J) (J1P++(MtM¡CA)¡)+H: (1.9)

In the static setup, the perfect clean hedge condition (see after Remark 1.3) writes
H=P ¡MtM. Inserting this into the above yields

L=(1¡J1)P++ (MtM¡CA)+¡CA¡ (1¡ J) (P¡+(MtM¡CA)+); (1.10)

as easily checked for each of the four possible values of the pair (J ; J1). That is,

L�=J (1¡J1)P+||| |{z}}} }
C�

+J (MtM¡CA)+||| |{z}}} }
F�

¡J CA (1.11)

L�=(1¡J) (P¡¡ (1¡J1)P+)||| |{z}}} }
C�

+(1¡J) ((MtM¡CA)+¡ (MtM¡CA)+)||| |{z}}} }
F�

+(1¡J)CA;

(1.12)

62 XVA Analysis From the Balance Sheet

where the identification of the different terms as part of C or F follows from their financial
interpretation. �

Remark 1.10. The derivation (1.8) implicitly allows for negative equity (that arises
whenever L�>CET1, cf. (1.2)), which is interpreted as recapitalization. In a variant of the
model excluding both recapitalization and negative equity, the default of the bank would
be modeled in a structural fashion as the event fL=CET1g, where

L=((1¡ J1)P++ (MtM¡CA)+¡CA)^CET1; (1.13)

and we would obtain, instead of (1.10), the following trading loss for the bank:

1fCET1>LgL+ 1fCET1=Lg(CET1¡P¡¡ (MtM¡CA)+): (1.14)

In this paper we consider a model with recapitalization for the reasons explained in Remark
1.3.

Structural XVA approaches in a static setup have been proposed in Andersen et al.,
2019 (without KVA) and Kjaer, 2019 (including the KVA). Their marginal, limiting results
as a new deal size goes to zero are comparable to some of the results that we have here.
But then, instead of developing a continuous time version of their corporate finance model
and taking the small trade limit, these papers start the development of the continuous
time model from the single period small trade limit model. By contrast, in our framework,
we have end to end development in the continuous time model of Section 1.4 and in the
present single period model.

1.3.2 Contra-assets and Contra-liabilities
To make shareholder trading losses centered (cf. the next-to-last paragraph of Section
1.2), clean and CA desks value by Q? expectation their shareholder sensitive cash flows.
These include, in case of default of the bank, the transfer of property from the CA desks
to the clean desks of the collateral amount MTM on the clean margin account, as well as
(cf. Assumptions 1.5.ii and iii) the transfer from shareholders to bondholders of the residual
value RC=CA on the reserve capital account. Accordingly:

Definition 1.11. We let

MtM=E?(P�+(1¡ J)MtM) (1.15)

and

CA=CVA+FVA; (1.16)

where

CVA=E?(C�+(1¡J)CVA) (1.17)
FVA=E?(F�+(1¡J)FVA); (1.18)

hence CA=E?(C�+F�+(1¡ J)CA). We also define the contra-liabilities value

CL=DVA+FDA (1.19)

where

DVA=E?(C�+(1¡ J)CVA) (1.20)
FDA=E?(F�+(1¡J)FVA): (1.21)

1.3 XVA Analysis in a Static Setup 63

Finally we define the firm valuation of counterparty risk,

FV=E?(C+F): (1.22)

The definitions of MtM;CVA, and FVA are in fact fix-point equations. However, the
following result shows that these equations are well-posed and yields explicit formulas for
all the quantities at hand.

Proposition 1.12. We have

MtM=EP� (1.23)
CVA=E((1¡J1)P+) (1.24)

FVA= (MtM¡CA)+=
1+

(MtM¡CVA)+ (1.25)

and

E?L�=EL=0 (1.26)
FDA=FVA (1.27)
FV=E?C=CVA¡DVA=CA¡CL: (1.28)

Proof. The first identities in each line of (1.23) follow from Definition 1.11 by Lemma
1.7 and definition of the involved cash flows in Lemma 1.9. Given (1.16), the formula
FVA= (MtM¡CA)+ in (1.23) is in fact a semi-linear equation

FVA= (MtM¡CVA¡FVA)+: (1.29)

But, as (a probability) is nonnegative, this equation has the unique solution given by
the right-hand side in the third line of (1.23).

Regarding (1.26), we have

E?L�=(1¡)E((1¡J1)P++ (MtM¡CA)+¡CA)= 0;

by application of (1.4), the first line in (1.11), (1.23), and (1.16). Hence, using (1.4) again,

EL=(1¡)¡1E?L�=0:

This is the first line in (1.26), which implies the following ones by definition of the involved
quantities and from the assumption that E?F =0. �

Note that MtM= EP� also coincides with EP (cf. (1.23) and the parenthesis following
(1.4)). In practice P� has less terms than P (that also includes cash flows from bank
default onward), which is why we favor the formulation EP� in (1.23). The alternative
formulation EP may seem more in line with the intuition of MtM as value deprived from
any credit/funding considerations. However, as the measure underlying E is the survival
one (see before Lemma 1.7), this intuition is in fact simplistic and only strictly correct in
the case without wrong way risk between credit and market (cf. the parenthesis preceding
Lemma 1.7).

1.3.3 Capital Valuation Adjustment
Economic capital (EC) is the level of capital at risk that a regulator would like to see on
an economic, structural basis. Risk calculations are typically performed by banks �on a
going concern�, i.e. assuming that the bank itself does not default. Accordingly:

64 XVA Analysis From the Balance Sheet

Definition 1.13. The economic capital (EC) of the bank is given by the 97.5% expected
shortfall1.3 of the bank trading loss L under Q, which we denote by1.4 ES(L�).

The risk margin (sized by the to-be-defined KVA in our setup) is also loss-absorbing,
i.e. part of capital at risk, and the KVA is originally sourced from the client (see Assumption
1.5.iii). Hence, shareholder capital at risk only consists of the difference between the (total)
capital at risk and the KVA. Accordingly (and also accounting, regarding (1.31), for the
last part in Assumption 1.5.iii):

Definition 1.14. The capital at the risk (CR) of the bank is given by max (EC;KVA) and
the ensuing shareholder capital at risk (SCR) by

SCR=max (EC;KVA)¡KVA=(EC¡KVA)+; (1.30)

where, given some hurdle rate (target return-on-equity) h,

KVA=E?(hSCR�+(1¡J)KVA): (1.31)

Remark 1.15. In view of (1.31) and of the last balance condition in (1.3), we have

RMsh=E?(hSCR�)RMbh=E?((1¡ J)KVA): (1.32)

We refer the reader to the last bullet point in [Crépey, 2022](Definition A.1) for the anal-
ogous split of RM between shareholder and bondholder wealth in a dynamic, continuous-
time setup.

Proposition 1.16. We have

KVA=hSCR= h
1+h

EC= h
1+h

ES(L�): (1.33)

Proof. The first identity follows from Lemma 1.7. The resulting KVA semi-linear equation
(in view of (1.30)) is solved similarly to the FVA equation (1.29). �

The KVA formula (1.33) (as well as its continuous-time analog (1.71)) can be used either
in the direct mode, for computing the KVA corresponding to a given h, or in the reverse-
engineering mode, for defining the �implied hurdle rate� associated with the actual level
on the risk margin account of the bank. Cost of capital proxies have always been used to
estimate return-on-equity. The KVA is a refinement, fine-tuned for derivative portfolios,
but the base return-on-equity concept itself is far older than even the CVA. In particular,
the KVA is very useful in the context of collateral and capital optimization.

KVA Risk Premium and Indifference Pricing Interpretation The CA component
of the FTP corresponds to the expected costs for the shareholders of concluding the deal.
This CA component makes the shareholder trading loss L� centered (cf. the first line in
(1.26)). On top of expected shareholder costs, the bank charges to the clients a risk margin
(RM). Assume the bank shareholders endowed with a utility function U on R such that
U(0)=0. In a shareholder indifference pricing framework, the risk margin arises as per the
following equation:

E?U (J (RM¡L))=E?U(0)= 0 (1.34)

(the expected utility of the bank shareholders without the deal), where

E?U (J (RM¡L))=E?(JU (RM¡L))= (1¡)EU (RM¡L);

1.3. See e.g. [Föllmer and Schied, 2016](Section 4.4).

1.4. Note that, by definition of Q, this quantity does not depend on L�.

1.3 XVA Analysis in a Static Setup 65

by (1.4). Hence

EU (RM¡L)=0: (1.35)

The corresponding RM is interpreted as the minimal admissible risk margin for the deal
to occur, seen from bank shareholders' perspective.

Taking for concreteness U (¡`) = 1¡ e�`
�

, for some risk aversion parameter �, (1.35)

yields RM= �¡1 lnEe�L= �¡1 lnEe�L�, by the observation following (1.4). In the limiting
case where the shareholder risk aversion parameter �! 0 and EU (¡L)!¡E(L)= 0 (by
the first line in (1.26)), then RM! 0.

In view of (1.3) and (1.33), the corresponding implied KVA and hurdle rate h are such
that

KVA= �¡1 lnEe�L�h 1+h= �¡1 lnEe�L�

ES(L�) :

Hence, �for h and � small�,

h� Var(L�)
2ES(L�) �

(1.36)

(as E(L�)=0), where Var is the Q variance operator. The hurdle rate h in our KVA setup
plays the role of a risk aversion parameter, like � in the exponential utility framework.

An indifference price has a competitive interpretation. Assume that the bank is com-
peting for the client with other banks. Then, in the limit of a continuum of competing
banks with a continuum of indifference prices, whenever a bank makes a deal, this can
only be at its indifference price. Our stylized indifference pricing model of a KVA defined
by a constant hurdle rate h exogenizes (by comparison with the endogenous hurdle rate
h in (1.35)) the impact on pricing of the competition between banks. It does so in a way
that generalizes smoothly to a dynamic setup (see Section 1.4), as required to deal with a
real derivative banking portfolio. It then provides a refined notion of return-on-equity for
derivative portfolios, where a full-fledged optimization approach would be impractical.

1.3.4 Collateral With Clients and Fungibility of Capital at Risk as
a Funding Source

In case of variation margin (VM) that would be exchanged between the bank and its client,
and of initial margin that would be received (RIM) and posted (PIM) by the bank, at the
level of, say, some Q value-at-risk of �(P ¡VM), then

� P needs be replaced by (P ¡ VM¡ RIM) everywhere in the above, whence an
accordingly modified (in principle: diminished) CVA,

� an additional initial margin related cash flow in F� given as J PIM, triggering an
additional adjustment MVA in CA, where

MVA=E?(J PIM+(1¡ J)MVA)= PIM; (1.37)

� additional initial margin related cash flows in F� given as (1¡ J) (PIM¡ PIM)
and (1¡ J)MVA, triggering an additional adjustment MDA=MVA in CL;

� the second FVA formula in (1.23) modified into

FVA=
1+

(MtM¡VM¡CVA¡MVA)+:

66 XVA Analysis From the Balance Sheet

Accounting further for the additional free funding source provided by capital at risk
(cf. Remark 1.8), then, in view of the specification given in the first sentence of Definition
1.14 for the latter, one needs replace (MtM¡CA)� by (MtM¡VM¡CA¡max(EC;KVA))�

everywhere before. This results in the same CVA and MVA as in the bullet points above,
but in the following system for the random variable L� and the FVA and the KVA num-
bers (cf. the corresponding lines in (1.11), (1.23), (1.33), and recall (1.16)):

L� = J (1¡J1)P++J(MtM¡VM¡CA¡max(EC;KVA))++JPIM¡JCA (1.38)
FVA = (MtM¡VM¡CA¡max(EC;KVA))+ (1.39)

KVA = h
1+h

ES(L�): (1.40)

This system entails a coupled dependence between, on the one hand, the FVA and
KVA numbers and, on the other hand, the shareholder loss process L�. However,
once CVA, PIM, RIM, and MVA computed as in the above, the system (1.38) can be
addressed numerically by Picard iteration, starting from, say, L(0) = KVA(0) = 0 and
FVA(0)=

1+
(MtM¡VM¡CVA¡MVA)+ (cf. the last line in (1.23)), and then iterating

in (1.38) until numerical convergence.

Remark 1.17. The rationale for funding FVA but not MVA from CA+max (EC;KVA)
is set out before Equation (15) in [Albanese et al., 2017].

1.3.5 Funds Transfer Price
The funds transfer price (all-inclusive XVA rebate to MtM) aligning the deal to shareholder
interest (in the sense of a given hurdle rate h, cf. the next-to-last paragraph of Section 1.2) is

FTP = CVA+FVA||| |{z}}} }
Expected shareholder costs CA

+ KVA|||||||{z}}}}}}}
Shareholder risk premium

(1.41)

= CVA¡DVA||| |{z}}} }
Firm valuation FV

+ DVA+FDA||| |{z}}} }
Wealth transfer CL

+ KVA|||||||{z}}}}}}}
Shareholder Risk premium

; (1.42)

where all terms are explicitly given in Propositions 1.12 and 1.16 (or the corresponding
variants of Section 1.3.4 in the refined setup considered there).

Wealth Transfer Analysis The above results implicitly assumed that the bank cannot
hedge jump-to-default cash flows (cf. Section 1.1.1). To understand this, let us temporarily
suppose, for the sake of the argument, that the bank would be able to hedge its own jump-
to-default through a further deal, whereby the bank would deliver a payment L� at time
1 in exchange of a fee fairly valued as

CL=E?L�=DVA+FDA; (1.43)

deposited in the reserve capital account of the bank at time 0.
We include this hedge and assume that the client would now contribute at the level

of FV=CA¡CL (cf. (1.26)), instead of CA before, to the reserve capital account of the
bank at time 0. Then the amount that needs be borrowed by the bank for implementing
its strategy is still (MtM¡CA)+ as before (back to the baseline funding setup of Remark
1.8). But the trading loss of the bank becomes, instead of L before,

C+F ¡FV+(L�¡CL)= C+F ¡CA+L�=L+L�=L�; (1.44)

where the last line in (1.26) and the last identity in (1.5) were used in the first and second
equality. By comparison with the situation from previous sections without own-default
hedge by the bank:

� the shareholders are still indifferent to the deal in expected counterparty default
and funding expenses terms,

1.3 XVA Analysis in a Static Setup 67

� the recovery of the bondholders becomes zero,
� the client is better off by the amount CA¡FV=CL.

The CL originating cash flow L� has been hedged and monetized by the shareholders, who
have passed the corresponding benefit to the client.

Under a cost-of-capital pricing approach, the bank would still charge to its client a
KVA add-on h

1+h
ES(L�), as risk compensation for the nonvanishing shareholder trading

loss L� still triggered by the deal. If, however, the bank could also hedge the (zero-valued,
by the first line in (1.26)) loss L�, hence the totality of L=L�¡L� (instead of L� only in
the above), then the trading loss and the KVA would vanish. As a result, the all-inclusive
XVA add-on (rebate from MtM valuation) would boil down to

FV=CVA¡DVA

(cf. (1.1)), the value of counterparty risk and funding to the bank as a whole.
Connection With the Modigliani-Miller Theory

The Modigliani-Miller invariance result, with Modigliani and Miller, 1958 as a seminal
reference, consists in various facets of a broad statement that the funding and capital
structure policies of a firm are irrelevant to the profitability of its investment decisions.
Modigliani-Miller (MM) irrelevance, as we put it for brevity hereafter, was initially seen
as a pure arbitrage result. However, it was later understood that there may be market
incompleteness issues with it. So quoting [Duffie and Sharer, 1986](page 9), �generically,
shareholders find the span of incomplete markets a binding constraint [...] shareholders
are not indifferent to the financial policy of the firm if it can change the span of markets
(which is typically the case in incomplete markets)�; or [Gottardi, 1995](page 197): �When
there are derivative securities and markets are incomplete the financial decisions of the
firm have generally real effects�.

A situation where shareholders may �find the span of incomplete markets a binding
constraint� is when market completion is legally forbidden. This corresponds to the XVA
case, which is also at the crossing between market incompleteness and the presence of
derivatives pointed out above as the MM non irrelevance case in Gottardi, 1995. Specifi-
cally, the contra-assets and contra-liabilities that emerge endogenously from the impact of
counterparty risk on the derivative portfolio of a bank cannot be �undone� by shareholders,
because jump-to-default risk cannot be replicated by a bank.

As a consequence, MM irrelevance is expected to break down in the XVA setup. In
fact, as visible on the trade incremental FTP (counterparty risk pricing) formula (1.41)
(cf. also (1.50) and Proposition 1.25 in a dynamic and trade incremental setup below),
cost of funding and cost of capital are material to banks and need be reflected in entry
prices for ensuring shareholder indifference to the trades, i.e. preserving their hurdle rate
throughout trades.

1.4 XVA Analysis in a Dynamic Setup
We now consider a dynamic, continuous-time setup, with model filtration G and a (pos-
itive) bank default time � endowed with an intensity . The bank survival probability
measure associated with the measure Q? is then the probability measure Q with (G;Q?)
density process Je

R
0
�
sds (assumed integrable), where J=1[0;�) is the bank survival indicator

process (cf. [Schönbucher, 2004] and [Collin-Dufresne et al., 2004]). In particular, writing
Y �=JY +(1¡J)Y�¡, for any left-limited process Y , we have by application of the results
of Crépey and Song, 2017 (cf. the condition (A) there):

Lemma 1.18. For every Q (resp. sub-, resp. resp. super-) martingale Y, the process Y �

is a Q? (resp. sub-, resp. resp. super-) martingale.

68 XVA Analysis From the Balance Sheet

Remark 1.19. In the dynamic setup, the survival measure formulation is a light presen-
tation, sufficient for the purpose of the present paper (skipping the related integrability
issues), of an underlying reduction of filtration setup, which is detailed in the above-men-
tioned reference (regarding Lemma 1.18, cf. also [Collin-Dufresne et al., 2004](Lemma 1)).

1.4.1 Case of a Run-Off Portfolio
First, we consider the case of a portfolio held on a run-off basis (cf. Section 1.2.1). We
denote by T the final maturity of the portfolio and we assume that all prices and XVAs
vanish at time T if T < � . Then the results of Crépey, 2022 show that all the qualitative
insights provided by the one-period XVA analysis of Section 1.3 are still valid. The trading
loss of the bank is now given by the process

L= C+F +CA¡CA0 (1.45)

and the bank shareholder trading loss by the Q (hence Q?, by Lemma 1.18) martingale

L�= C�+F�+CA�¡CA0: (1.46)

In (1.45)-(1.46), we have CA=CVA+FVA as in (1.16); the processes C, F , CVA, and FVA
are continuous-time processes analogs, detailed in the case of bilateral trade portfolios in
Section 1.6.1-1.6.2, of the eponymous quantities in Section 1.3 (which were constants or
random variables there).

Proposition 1.20. The core equity tier 1 capital of the bank is given by

CET1=CET10¡L: (1.47)

Shareholder equity is given by

SHC= SHC0¡ (L+KVA¡KVA0): (1.48)

Proof. In the continuous-time setup, Assumption 1.5.i is written as

RC+RM+SCR+UC¡CM¡ (RC+RM+SCR+UC¡CM)0=P ¡ (C+F +H):

Given the definition of CET1 in (1.2), the perfect clean hedge condition (see after Remark
1.3) written in the dynamic setup as P+MtM¡MtM0¡H=0, and the balance conditions
(1.3), this is equivalent to

CA+CET1¡ (CA+CET1)0=¡(C+F):
In view of (1.45), we obtain (1.47).

As SHC=CET1¡RM (cf. (1.2)), we have by (1.47):

SHC=CET10¡L¡RM=CET10¡RM0¡ (L+RM¡RM0);

which, by the third balance condition in (1.3), yields (1.48). �

Moreover, by Lemma 1.18, the continuous-time process KVA that stems from (1.69)-
(1.70) is a Q? supermartingale with terminal condition KVAT = 0 on fT < � g and drift
coefficient h SCR, where SCR is given as in (1.30), but for EC there dynamically defined
as the time-t conditional, 97.5% expected shortfall of (Lt+1� ¡Lt�) under Q, killed at � .

Remark 1.21. It is only before � that the right-hand-sides in the definitions (1.2) really
deserve the respective interpretations of shareholder equity of the bank and core equity
tier 1 capital. Hence, it is only the parts of (1.47) and (1.48) stopped before � , i.e.

CET1�=CET10¡L�; SHC�=SHC0¡ (L�+KVA�¡KVA0); (1.49)

which are interesting financially.

1.4 XVA Analysis in a Dynamic Setup 69

1.4.2 Trade Incremental Cost-of-Capital XVA Strategy
In [Crépey, 2022] and in Section 1.4.1 above, the derivative portfolio of the bank is assumed
held on a run-off basis. By contrast, real-life derivative portfolios are incremental.

Assume a new deal shows up at time � 2 (0; �). We denote by ��, for any portfolio
related process, the difference between the time � values of this process for the run-off
versions of the portfolio with and without the new deal.

Definition 1.22. We apply the following trade incremental pricing and accounting policy:

� The clean desks pay �MtM to the client and the CA desks add an amount �MtM
on1.5 the clean margin account;

� The CA desks charge to the client an amount �CA and add it on1.6 the reserve
capital account;

� The management of the bank charges the amount �KVA to the client and adds it
on1.7 the risk margin account.

The funds transfer price of a deal is the all-inclusive XVA add-on charged by the
bank to the client in the form of a rebate with respect to the mark-to-market �MtM of
the deal. Under the above scheme, the overall price charged to the client for the deal is
�MtM¡�CVA¡�KVA, i.e.

FTP =�CVA+�KVA=�CVA+�FVA+�KVA (1.50)
=�FV+�CL+�KVA; (1.51)

by (1.16) and the last line in (1.26) (which still hold in continuous time, see [Crépey,
2022](Equations (1) and (66))) applied to the portfolios with and without the new deal.

Remark 1.23. As opposed to the�XVA terms, which entail portfolio-wide computations,
�MtM reduces to the so-called clean valuation of the new deal, by trade-additivity of MtM
(as follows from [Crépey, 2022](Equations (25) and (37))).

Obviously, the legacy portfolio of the bank has a key impact on the FTP. It may very
well happen that the new deal is risk-reducing with respect to the portfolio, in which case
FTP< 0, i.e. the overall, XVA-inclusive price charged by the bank to the client would be
�MtM¡FTP>�MtM (subject of course to the commercial attitude adopted by the bank
under such circumstance).

In order to exclude for simplicity jumps of our L and KVA processes at � (the ones
related to the initial portfolio, but also those, starting at time �, corresponding to the
augmented portfolio), we assume a quasi-left continuous model filtration G and a G pre-
dictable stopping time �. The first assumption excludes that martingales can jump at
predictable times. It is satisfied in all practical models and, in particular, in all models with
Lévy or Markov chain driven jumps. The second assumption is reasonable regarding the
time at which a financial contract is concluded. Note that it was actually already assumed
regarding the (fixed) time 0 at which the portfolio of the bank is supposed to have been
set up in the first place.

Lemma 1.24. Assuming the new trade at time � handled by the trade incremental policy
of Definition 1.22 after that the balance conditions (1.3) have been held before �, then
shareholder equity SHC� (see Remark 1.21) is a Q? submartingale on [0; �]\R+, with drift
coefficient hSCR killed at �.

1.5. i.e. remove (¡�MtM) from, if �MtM< 0.

1.6. i.e. remove (¡�CA) from, if �CA< 0.

1.7. i.e. removes (¡�KVA) from, if �KVA< 0.

70 XVA Analysis From the Balance Sheet

Proof.
In the case of a trade incremental portfolio, a priori, the second identity in (1.49) is

only guaranteed to hold before �. However, in view of the observation made in Remark
1.6 and because, under our (harmless) technical assumptions, there can be no dividends
arising from the portfolio expanded with the new deal (i.e. jumps in the related processes
L and KVA, defined on [�;+1)) at time � itself, the process SHC does not jump at �. The
process L and KVA related to the legacy portfolio cannot jump at � either. As a result,
the second identity in (1.49) still holds at �. It is therefore valid on [0; �]\R+. The result
then follows from the respective martingale and supermartingale properties of the (original)
processes L� and KVA recalled before and after Proposition 1.20. �

The above XVA strategy can be iterated between and throughout every new trade.
We call this approach the trade incremental cost-of-capital XVA strategy . By an
iterated application of Lemma 1.24 at every new trade, we obtain the following:

Proposition 1.25. Under a dynamic and trade incremental cost-of-capital XVA strategy,
shareholder equity SHC� is a Q? submartingale on R+, with drift coefficient h SCR killed
at �.

Thus, a trade incremental cost-of-capital XVA strategy results in a sustainable strategy for
profits retention, both between and throughout deals, which was already the key principle
behind Solvency II (see Section 1.1.1). Note that, without the KVA (i.e. for h= 0), the
(risk-free discounted) shareholder equity process SHC� would only be a Q? martingale,
which could only be acceptable to shareholders without risk aversion (cf. Section 1).

1.4.3 Computational Challenges
Figure 1.2 yields a picturesque representation, in the form of a corresponding XVA depen-
dence tree, of the continuous-time XVA equations.

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 .

. .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. .

Figure 1.2. The XVA equations dependence tree (Source : [Abbas-Turki et al., 2018]).

For concreteness, we restrict ourselves to the case of bilateral trading in what follows,
referring the reader to [Albanese et al., 2020](Section 6.2) for the more general and real-
istic situation of a bank also involved in centrally cleared trading. As visible from the
corresponding equations in Section 1.6, the CVA of the bank can then be computed as

1.4 XVA Analysis in a Dynamic Setup 71

the sum of its CVAs restricted to each netting set (or counterparty i of the bank, with
default time denoted by �i in Figure 1.2). The initial margins and the MVA are also most
accurately calculated at each netting set level. By contrast, the FVA is defined in terms of
a semilinear equation that can only be solved at the level of the overall derivative portfolio
of the bank. The KVA can only be computed at the level of the overall portfolio and relies
on conditional risk measures of future fluctuations of the shareholder trading loss process
L�, which itself involves future fluctuations of the other XVA processes (as these are part
of the bank liabilities).

Moreover, the fungibility of capital at risk with variation margin (cf. Remark 1.17)
induces a coupling between, on the one hand, the �backward� FVA and KVA processes
and, on the other hand, the �forward� shareholder loss process L�. As in the static case of
Section 1.3.4 (cf. the last paragraph there), the ensuing forward backward system can be
decoupled by Picard iteration.

These are heavy computations encompassing all the derivative contracts of the bank.
Yet these computations require accuracy so that trade incremental XVA computations,
which are required as XVA add-ons to derivative entry prices (cf. Section 1.4.2), are not
in the numerical noise of the machinery.

As developed in [Abbas-Turki et al., 2018](Section 3.2), computational strategies for
(each Picard iteration of) the XVA equations involve a mix of nested Monte Carlo (NMC)
and of simulation/regression schemes, optimally implemented on GPUs. In view of Figure
1.2, a pure NMC approach would involve five nested layers of simulation (with respective
numbers of paths Mxva� Mmtm

p
, see [Abbas-Turki et al., 2018](Section 3.3)). Moreover,

nested Monte Carlo implies intensive repricing of the mark-to-market cube, i.e. pathwise
MtM valuation for each netting set, or/and high dimensional interpolation. In this work,
we use no nested Monte Carlo or conditional repricing of future MtM cubes: beyond the
base MtM layer in the XVA dependence tree, each successive layer (from right to left in
Figure 1.2, at each Picard iteration) will be �learned" instead.

1.4.4 Deep (Quantile) Regression XVA Framework
We denote by Et, VaRt, and ESt (and simply, in case t= 0, E, VaR, and ES) the time-
t conditional expectation, value-at-risk, and expected shortfall with respect to the bank
survival measure Q.

We compute the mark-to-market cube using CUDA routines. The pathwise XVAs are
obtained by deep learning regression, i.e. extension of Longstaff and Schwartz, 2001 kind
of schemes to deep neural network regression bases as also considered in [Huré et al., 2020]
or [Beck et al., 2019], based on the classical quadratic (also known as mean square error,
MSE) loss function. The conditional value-at-risks and expected shortfalls involved in the
embedded pathwise EC and IM computations are obtained by deep quantile regression, as
follows.

Given features X and labels Y (random variables), we want to compute the conditional
value-at-risk and expected shortfall functions q(�) and s(�) such that VaR(Y jX) = q(X)
and ES(Y jX) = s(X). Recall from [Fissler et al., 2016] and [Fissler and Ziegel, 2016]
that value-at-risk is elicitable, expected shortfall is not, but their pair is jointly elicitable.
Specifically, we consider loss functions � of the form (where in our notation Y is a signed
loss, whereas it is a signed gain in their paper)

�(q(�); s(�);X;Y)= (1¡�)¡1 (f(Y)¡ f(q(X)))++ f(q(X))+ (1.52)
g(s(X))¡ g_(s(X)) (s(X)¡ q(X)¡ (1¡�)¡1 (Y ¡ q(X))+): (1.53)

One can show (cf. also [Dimitriadis and Bayer, 2019]) that, for a suitable choice of the
functions f , g including f(z) = z and g=¡ln (1+ e¡z) (our choice in our numerics), the

72 XVA Analysis From the Balance Sheet

pair of the conditional value-at-risk and expected shortfall functions is the minimizer, over
all measurable pair-functions (q(�); s(�)), of the error

E�(q(�); s(�);X;Y): (1.54)

In practice, one minimizes numerically the error (1.54), based on m independent sim-
ulated values of (X; Y), over a parametrized family of functions (q; s)(x)� (q; s)�(x).
Dimitriadis and Bayer, 2019 restrict themselves to multilinear functions. In our case we
use a feedforward neural network parameterization (see e.g. [Goodfellow et al., 2016]). The
minimizing pair (q; s)�̂ then represents the two scalar neural network approximations of
the conditional value-at-risk and expected shortfall functions pair.

The left and right panels of Figure 1.3 show the respective deep neural networks for
pathwise value-at-risk/expected shortfall (with error (1.54)) and pathwise XVAs (with
classical quadratic norm error). Deep learning methods often show particularly good gen-
eralization and scalability performances (cf. Section 1.5.5). In the case of conditional value-
at-risk and expected shortfall computations, deep learning quantile regression is also easier
to implement than more naive methods, such as the resimulation and sort-based scheme
of Barrera et al., 2019 for the value-at-risk and expected shorfall at each outer node of a
nested Monte Carlo simulation.

H.,2

H20,1 H20,2

H1,1

H.,1

H1,2 H1,3

H.,3

H20,3

ESt

VaRt

RFnt

RF1t

Input Layer 3 by 20 Hidden layers Output Layer

H.,2

H20,1 H20,2

H1,1

H.,1

H1,2 H1,3

H.,3

H20,3

XVAt

RFnt

RF1t

Input Layer 3 by 20 Hidden layers Output Layer

Figure 1.3. Neural networks with state variables (realizations of the risk factors at the considered
pricing time) as features. (Left) Joint value-at-risk/expected shortfall neural network: output is
joint estimate of pathwise conditional value-at-risk and expected shorfall, at a selected confidence
level, of the label (inputs to initial margin or economic capital) given the features. (Right) XVAs
neural network: output is estimate of pathwise conditional mean of the label (XVA generating cash
flows) given the features.

The neural network topology and hyper-parameters used by default in our examples
are detailed in Table 1.8. We use hyperbolic tangent activation functions in all cases.

CVA FVA IM MVA Gap CVA1.8 EC KVA
Hidden Layers 3 5 3 3 3 3 3
Hidden Layer Size 20 6 20 20 20 20 20
Learning Rate 0.025 0.025 0.05 0.1 0.1 0.025 0.1
Momentum 0.95 0.95 0.5 0.5 0.5 0.95 0.5
Iterations 100 50 150 100 100 100 100
Loss Function MSE MSE (1.52) MSE (1.52) (1.52) MSE
Application netting set portf. netting set netting set netting set portf. portf.

Table 1.2. Neural network topology and learning parameters used by default in our numerics
(portf. � overall derivative portfolio of the bank).

1.4 XVA Analysis in a Dynamic Setup 73

Algorithm 1.1 yields our fully (time and space) discrete scheme for simulating the
Picard iteration (1.74) until numerical convergence to the XVA processes. Note that, as
opposed to more rudimentary, expected exposure based XVA computational approaches
(see Section 1 in [Abbas-Turki et al., 2018]), this algorithm requires the simulation of the
counterparty defaults.

Algorithm 1.1
Deep XVAs algorithm.

� Simulate forward m realizations (Euler paths) of the market risk factor processes and
of the counterparty survival indicator processes (i.e. default times) on a refined time
grid;

� For each pricing time t= ti of a pricing time grid, with coarser time step denoted by
h, and for each counterparty c:

� Learn the corresponding VaRt and ESt terms visible in (1.75) or (under the time-
discretized outer integral in) (1.77);

� Learn the corresponding Et terms visible in (1.76) through (1.78);

� Compute the ensuing pathwise CVA and MVA as per (1.76)�(1.78);

� For FVA(0), consider the following time discretization of (1.73) (in which � is the risky
funding spread process of the bank) with time step h:

FVAt
(0)�Et[FVAt+h

(0)]+h��t

 X
c

Jt
c (Ptc¡VMt

c)¡CVAt¡MVAt¡FVAt
(0)

!
+

(1.55)

and, for each t= ti, learn the corresponding Et in (1.55), then solve the semi-linear
equation for FVAt

(0);

� For each Picard iteration k (until numerical convergence), simulate forward L(k) as
per the first line in (1.74) (which only uses known or already learned quantities), and:

� For economic capital EC(k), for each t = ti, learn ESt((L(k))t+1� ¡ (L(k))t�)
(cf. Definition 1.27);

� KVA(k) and FVA(k) then require a backward recursion solved by deep learning
approximation much like the one for FVA(0) above.

1.5 Swap Portfolio Case Study

We consider an interest rate swap portfolio case study with counterparties in different
economies, first involving 10 one-factor Hull White interest-rates, 9 Black-Scholes exchange
rates, and 11 Cox-Ingersoll-Ross default intensity processes. The default times of the
counterparties and the bank itself are jointly modeled by a �common shock� or dynamic
Marshall-Olkin copula model as per [Crépey et al., 2014](Chapt. 8�10) and [Crépey and
Song, 2016] (see also Elouerkhaoui (2007, 2017)). This whole setup results in about 40 risk

74 XVA Analysis From the Balance Sheet

factors used as deep learning features (including the counterparty default indicators).

In this model we consider a bank portfolio of 10K randomly generated swap trades, with

� trade currency and counterparty both uniform on [1; 2; 3 : : : ; 10],

� notional uniform on [10K; 20K; : : : ; 100K],

� collateralization (cf. Section 1.6.4): either �no CSA counterparty� without initial
margin (IM) nor variation margin (VM), or �CSA counterparty� with VM=MtM
and posted initial margin (PIM) pledged at 99% gap risk value-at-risk, received
initial margin (RIM) covering 75% gap risk and leaving excess as residual gap CVA,

� for economic capital, 97.5% expected shortfall of 1-year ahead trading loss of the
bank shareholders.

By default we use Monte Carlo simulation with 50K paths of 16 coarse (pricing) and 32
fine (risk factors) time steps per year.

1.5.1 Validation Results

The validation of our deep learning methodology is done in the setup of a portfolio of swaps
issued at par, with final maturity T = 10 years, without initial margin (IM) nor variation
margin (VM).

We first focus on the CVA, as the latter is amenable to validation by a standard nested
Monte Carlo (�NMC�) methodology. Figures 1.4, 1.5 and 1.6 show that the learned CVA
is consistent with that obtained from a nested Monte Carlo simulation. Regarding Figure
1.6 (and also later below), note the equivalence of optimising the mean quadratic error

� between the neural network-learned estimator h(X) and the labels Y (�MSE�),
E[(h(X)¡Y)2], and

� between the neural network-learned estimator and the conditional expectation
E[Y jX] (in our case estimated by NMC), E[(h(X)¡E[Y jX])2].

The equivalence stems from the following identities, which hold for any random variables
X, Y and hypothesis function h such that Y and h(X) are square integrable:

E[(h(X)¡Y)2] = E[(h(X)¡E[Y jX])2] +E[(E[Y jX]¡Y)2] (1.56)
+2E [(h(X)¡E[Y jX]) (E[Y jX]¡Y)]

= E[(h(X)¡E[Y jX])2] +E[Var(Y jX)]

(as the second line vanishes), where E[Var(Y jX)] does not depend on h.

The CVA error profile on Figure 1.6 reveals slightly more difficulty in learning the earlier
CVAs. This is because of a higher variance of the corresponding cash flows (integrated
over longer time frames) in conjunction with a lower variance of the features (risk factors
diffused over shorter time horizons).

1.5 Swap Portfolio Case Study 75

0 25 50 75 100 125 150 175 200
0.000

0.005

0.010

0.015

0.020

0.025

learned CVA at t = 1 year

Nested Monte-Carlo CVA at t = 1 year

0 25 50 75 100 125 150 175 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30
learned CVA at t = 7 years

Nested Monte-Carlo CVA at t = 7 year

Figure 1.4. Random variables CVA1
c and CVA7

c (in the case of a no CSA netting set c, respectively
observed after 1 and 7 years) obtained by learning (blue histogram) versus nested Monte Carlo
(orange histogram). All histograms are based on out-of-sample paths.

0 50 100 150 200

Nested CVA

0

50

100

150

200

L
ea

rn
ed

C
V

A

t = 1 year

0 50 100 150 200

Nested CVA

0

50

100

150

200
L

ea
rn

ed
C

V
A

t = 7 years

Figure 1.5. QQ-plot of learned versus nested Monte Carlo CVA for the random variables CVA1
c

(left) and CVA7
c (right). Paths are out-of-sample.

0 2 4 6 8 10

t (years)

0

500

1000

1500

2000

2500

M
S

E

learned CVA, out-of-sample

unconditional mean

Nested Monte-Carlo CVA, out-of-sample

Figure 1.6. Empirical quadratic loss of each CVA estimator at all coarse time-steps. The lower,
the closer to the true conditional expectation (cf. (1.56)). Since the nested Monte Carlo method is
computationally expensive, it was carried out only once every 10 coarse time-steps.

Table 1.3 shows the computational cost and accuracy of the nested Monte Carlo method

76 XVA Analysis From the Balance Sheet

for different number of inner paths, using 32768 outer paths. The convergence is already
achieved for approximately 128 inner paths, in line with the NMC square root rule that is
recalled in an XVA setup in [Abbas-Turki et al., 2018](Section 3.3). Figure 1.7 and Table
1.4 show that a good accuracy can be achieved through learning at a lower computational
cost than through nested Monte Carlo, while also enjoying the advantages of the approach
being parametric. Indeed, once the CVA is learned, one would pay only the cost of inference
later on, which is generally negligible compared to training time. By contrast, a nested
Monte Carlo approach would require to relaunch the nested simulations every time the
CVA estimator is needed on new paths. Early stopping could be used to help reduce
training time further while improving regularization.

of inner paths MSE (vs labels) Computational time (seconds)
2 0.523 37.562
4 0.427 37.815
8 0.393 37.819
16 0.370 38.988
32 0.360 40.707
64 0.353 57.875
128 0.348 157.536
256 0.349 301.406
512 0.348 584.475

1024 0.348 1213.756

Table 1.3. Accuracy and computation times for the estimation of a CVA at a given coarse time-
step using the nested Monte Carlo procedure. The MSE here is the mean quadratic error between
the nested Monte Carlo estimator and the labels, and hence quantifies how well it is doing as a
projection.

0 200 400 600 800 1000 1200

Computation time (sec)

0.4

0.5

0.6

0.7

0.8

M
S

E
lo

ss
(s

ta
n

d
ar

d
iz

ed
b
y

la
b

el
s

va
r)

nested Monte-Carlo

learning, in-sample

learning, out-of-sample

0 10 20 30 40 50 60

0.35

0.40

0.45

0.50

Figure 1.7. Speed versus accuracy in the case of a CVA at a given pricing time. We kept varying
the number of inner paths for the nested Monte Carlo estimator and the number of epochs for the
learning approach and recorded the computation time and the empirical quadratic loss.

1.5 Swap Portfolio Case Study 77

MSE (vs NMC CVA) MSE (vs labels) Simulation time Training time
of epochs
1 0.977 0.979 21.992 0.880
2 0.729 0.729 21.992 0.434
4 0.423 0.425 21.992 0.524
8 0.399 0.401 21.992 0.719
16 0.371 0.369 21.992 1.088
32 0.369 0.365 21.992 1.800
64 0.370 0.363 21.992 3.243
128 0.371 0.363 21.992 6.227
256 0.370 0.361 21.992 10.883
512 0.370 0.362 21.992 20.096
1024 0.371 0.362 21.992 39.338

Table 1.4. Accuracy and computation times (in sec) for the calculation of a CVA at a given
coarse time-step using the learning approach. MSE against NMC CVA is the mean quadratic error
between the learned CVA and a CVA obtained using a nested Monte Carlo with 512 inner paths,
while MSE against labels designates the mean quadratic error between the learned CVA and the
labels that were used during training and thus quantifies how well it is doing as a projection. Both
errors are respectively normalized by the variances of the nested Monte Carlo estimator and of the
labels. The paths used here are out-of-sample.

More generally, in the presence of a multiple number of XVA layers (cf. Figure 1.2), a
purely nested Monte Carlo approach would require multiple layers of nested simulations,
which would amount to a computational time that is exponential in the number of XVA
layers, while the computational complexity for the learning approach is linear.

As with mainstream interpolation (as opposed to regression in our case) learning prob-
lems, a good architecture is key to better learning and hence better approximation of our
XVA metrics. As expected, increasing the model capacity reduces the in-sample error as
shown in the bottom panel of Figure 1.8. Although fine-tuning in our case suggests a single
layer yields the best out-of-sample performance for the CVA, a standard guess such as 3
layers can also be considered good enough as shown in the top panel. Of course such con-
clusions may depend on the complexity of the portfolio and the number of counterparties

78 XVA Analysis From the Balance Sheet

and risk factors.

0 20 40 60 80 100 120

epochs

0.4

0.5

0.6

0.7

0.8

0.9

M
S

E
lo

ss
(s

ta
n

d
a
rd

iz
ed

b
y

la
b

el
s

va
r)

Nlayers = 1, Nunits = 11

Nlayers = 1, Nunits = 16

Nlayers = 1, Nunits = 22

Nlayers = 2, Nunits = 11

Nlayers = 2, Nunits = 16

Nlayers = 2, Nunits = 22

Nlayers = 3, Nunits = 11

Nlayers = 3, Nunits = 16

Nlayers = 3, Nunits = 22

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
0.34

0.36

0.38

0.40

0.42

0 20 40 60 80 100 120

epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
S

E
lo

ss
(s

ta
n

d
ar

d
iz

ed
b
y

la
b

el
s

va
r)

Nlayers = 1, Nunits = 11

Nlayers = 1, Nunits = 16

Nlayers = 1, Nunits = 22

Nlayers = 2, Nunits = 11

Nlayers = 2, Nunits = 16

Nlayers = 2, Nunits = 22

Nlayers = 3, Nunits = 11

Nlayers = 3, Nunits = 16

Nlayers = 3, Nunits = 22

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
0.32

0.33

0.34

0.35

0.36

0.37

0.38

Figure 1.8. Empirical quadratic loss during CVA learning at time-step t=5years, standardized
by the variance of the labels. (Bottom) Paths are in-sample. (Top) Paths are out-of-sample.

1.5 Swap Portfolio Case Study 79

Figure 1.9 shows the learned FVA(0) profile as per (1.55). The orange FVA curve repre-
sents the mean FVA originating cash flows, which, in principle as on the picture, matches
the blue mean FVA itself learned from these cash flows. The 5th and 95th percentiles FVA
estimates are a bit less smooth in time then the mean profiles, as expected.

0 2 4 6 8 10

t (years)

0

20000

40000

60000

80000

100000

120000 E
[
FVA

(0)
t

]

E
[∫ T
t
λs

(∑
c J

c
s (P cs −VMc

s)− CVAs −MVAs − FVA(0)
s

)+

ds

]

5-th percentile of FVA
(0)
t

95-th percentile of FVA
(0)
t

Figure 1.9. Learned FVA(0).

Figure 1.10 (left) is a sanity check that the profiles of the successives iterates L(k) of
the shareholder trading loss process L� in Algorithm 1.1 converge rapidly with k. Figure
1.10 (right) shows the loss process L(3), displayed as its mean and mean � 2 stdev profiles.
Consistent with its martingale property, the loss process L(3) appears numerically centered
around zero. The latter holds, at least, beyond t�5 years. For earlier times, the regression
errors, accumulated backward across pricing times since the final maturity of the portfolio,
induce a non negligible bias (the corresponding confidence intervals no longer contains 0).
This is the reason why we use a coarser pricing time step than simulation time step in
Algorithm 1.1.

-6000

-4000

-2000

0

2000

4000

6000

8000

0 5 10 15 20 25 30

D
o

m
e

st
ic

 C
u

rr
e

cn
y

U
n

it
s

Year

Liability-Heavy Bank No CSA Mean Loss Process Convergence

Loss Iter 0 Loss Iter 1 Loss Iter 2

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

0 5 10 15 20 25 30

D
o

m
e

st
ic

 C
u

rr
e

cn
y

U
n

it
s

Year

Liability-Heavy Bank Loss Process - No CSA

Loss Mean Loss Mean+2SE Loss Mean-2SE

Figure 1.10. (Left) Profiles of the processes L(k), for k=1; 2; 3; (Right) Mean � 2 stdev profiles
of the process L(3).

80 XVA Analysis From the Balance Sheet

1.5.2 Portfolio-wide XVA Profiles

For the financial case study that follows, we consider

� swap rates uniformly distributed on [0.005;0.05] (hence swaps already in-the-money
or out-of-the-money at time 0),

� number of six-monthly coupon resets uniform on [5 � � � 60] (final maturity of the
portfolio T = 30 years),

� portfolio direction: either �asset heavy� bank mostly in the receivables in the future,
or �liability-heavy� bank mostly in the payables in the future (respectively corre-
sponding, with our data, to a bank 75% likely to pay fixed in the swaps, or 75%
likely to receive fixed).

The figures that follow only display profiles, i.e. term structures, that is, expectations as
a function of time of the corresponding processes. But all these processes are computed
pathwise, based on the deep learning regression and quantile regression methodology of
Section 1.4.4, allowing for all XVA inter-dependencies. Of course, XVA profiles (or pathwise
XVAs if wished) are much more informative for traders than the spot XVA values (or time
0 confidence intervals) returned by most XVA systems.

Assuming 10 counterparties, Figure 1.11 shows the GPU generated profiles of

MtM=
X
c

P c 1[0;�c�) (1.57)

in the case of the asset-heavy portfolio and of the liability-heavy portfolio.

 -

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

 7,000,000

 8,000,000

 9,000,000

 10,000,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio MtM : Mainly Payer (Asset-Heavy)

MtM

-9,000,000

-8,000,000

-7,000,000

-6,000,000

-5,000,000

-4,000,000

-3,000,000

-2,000,000

-1,000,000

 -

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio MtM: Mainly Receiver (Liability-Heavy)

MtM

Figure 1.11. MtM profiles. (Left) Asset-heavy portfolio. (Right) Liability-heavy portfolio.

Figure 1.12 shows the porftolio-wide XVA profiles of the asset-heavy (top) vs. lia-
bility�heavy (bottom) portfolio and of the no CSA (left) vs. CSA portfolio (right).
Obviously, asset�heavy or no CSA means more CVA. The correponding curves also empha-
size the transfer from counterparty credit into liquidity funding risk prompted by extensive
collateralisation. Yet FVA/MVA risk is ignored in current derivatives capital regulation.

1.5 Swap Portfolio Case Study 81

 -

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 1,400,000

 1,600,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy - XVA no CSA

CVA

FVA

KVA

3
0

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

 450,000

 500,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy - XVA IM CSA

CVA

MVA

KVA

 -

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Liability-Heavy - XVA no CSA

CVA

FVA

KVA

3
0

 -

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Liability-Heavy - XVA IM CSA

CVA

MVA

KVA

Figure 1.12. (Top left) Asset-heavy portfolio, no CSA. (Top right) Asset-heavy portfolio under
CSA. (Bottom left) Liability�heavy portfolio, no CSA. (Bottom right) Liability-heavy portfolio
under CSA.

Figure 1.13 shows that (top left) capital at risk as funding (cf. Section 1.3.4) has a
material impact on the already (reserve capital as funding) reduced FVA, (top right)
treating KVA as a risk margin (cf. (1.31)) gives a huge discounting impact, (bottom left)
deep learning detects material initial margin convexity in the asset-heavy CSA portfolio,
and (bottom right) deep learning detects material economic capital convexity in the asset-
heavy no CSA portfolio.

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

cn
y

U
n

it
s

Years

Swaps Portfolio Liability-Heavy - FVA offsets - no CSA

FVA No Offset - Bank level FCA

FVA CA Offset

FVA CA EC Offset

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

 5,000,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
st

ic
 C

u
rr

e
n

cy
 U

n
it

s

Years

Swaps Portfolio Asset-Heavy - KVA Discounting no CSA

Discount OIS+h Discount OIS

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

 5,000,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy - Posted IM Unconditional vs Average Conditional

Unconditional Average Conditional

 200

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy- Convexity ES(L)
Unconditional vs Average Conditional: no CSA

Unconditional Average Conditional

Figure 1.13. (Top left) FVA ignoring the off-setting impact of reserve capital and capital at risk,
cf. Section 1.3.4 (blue), FVA as per (1.73) accounting for the off-setting impact of reserve capital
but ignoring the one of capital at risk (green), refined FVA as per (1.65) accounting for both
impacts (red). (Top right) KVA ignoring the off-setting impact of the risk margin, i.e. with CR
instead of (CR¡KVA) in (1.71) (red), refined KVA as per (1.69)�(1.70) (blue). (Bottom left) In the
case of the asset-heavy portfolio under CSA, unconditional PIM profile, i.e. with VaRt replaced by
VaR in (1.75) (blue), vs. pathwise PIM profile, i.e. mean of the pathwise PIM process as per (1.75)
(red). (Bottom right) In the asset-heavy portfolio no CSA case, unconditional economic capital
profile, i.e. EC profile ignoring the words �time-t conditional� in Definition 1.27 (blue), vs. pathwise
economic capital profile, i.e. mean of the pathwise EC process as per Definition 1.27 (red).

82 XVA Analysis From the Balance Sheet

The above findings demonstrate the necessity of pathwise capital and margin calcula-
tions for accurate FVA, MVA, and KVA calculations.

1.5.3 Trade Incremental XVA Profiles

Next, we consider, on top of the previous portfolios, an incremental trade given as a par
30 year (receive fix or pay fix) swap with 100K notional. Figure 1.14 shows the trade
incremental XVA profiles produced by our deep learning approach. Note that, for obtaining
such smooth incremental profiles, it has been key to use common random numbers, as much
as possible, between the original portfolio XVA computations and the ones regarding the
portfolio expanded with the new trade.

Years

3
0

 -

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy - Incremental XVA IM CSA

CVA

MVA

KVA

-180

-160

-140

-120

-100

-80

-60

-40

-20

 -

 20

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Asset-Heavy (mainly Payer) - Incremental Receiver XVA IM CSA

CVA

MVA

KVA

 -

 100.0

 200.0

 300.0

 400.0

 500.0

 600.0

 700.0

 800.0

 900.0

 1,000.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Liability-Heavy - Incremental XVA no CSA

CVA

FVA

KVA

-1,000.0

-900.0

-800.0

-700.0

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

 -

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio Liability-Heavy - Incremental XVA no CSA

CVA FVA

KVA

Figure 1.14. (Top left) Asset-heavy portfolio, no CSA. Incremental receive fix trade. (Top right)
Liability-heavy portfolio, no CSA. Incremental pay fix trade. (Bottom left) Asset-heavy portfolio
under CSA. Incremental Pay Fix Trade. (Bottom right) Liability-heavy portfolio under CSA.
Incremental receive fix trade.

1.5.4 Trade and Hedge Incremental XVA Profiles

Our model assumes the market risk of trades to be fully hedged (see the paragraph following
Remark 1.3 and the proofs of Lemma 1.9 and Proposition 1.20). In the previous subsection,
the new swap was implicitly meant to be hedged, in terms of market risk, by the clean
desks, through an accordingly modified hedging loss process H (see Section 1.2.1). Here
we consider an alternative situation where the market risk of the new swap is back-to-back
hedged via a financial, hedge counterparty. Specifically, we deal with

� 10 counterparties: 8 no CSA clients and 2 bilateral VM/IM CSA hedge counterpar-
ties,

� portfolios of 5K randomly generated swap trades as before, plus 5K corresponding
hedge trades,

1.5 Swap Portfolio Case Study 83

� an incremental trade given as a par 30 year swap with 100K notional, along with
the corresponding hedge trade.

In particular, MtM0=0 (cf. (1.57)), in both portfolios excluding or including the new swap.
In case a client or hedge counterparty defaults, the corresponding market hedge is assumed
to be rewired through the clean desks via an accordingly modified hedging loss process H.

The 8 no CSA counterparties are primarily asset or liability heavy. One bilateral CSA
hedge counterparty is asset-heavy and one liability-heavy. Figure 1.15 provides the trade
incremental XVA profiles of the bilateral hedge alternatives in combination with those for
the initial counterparty trade. The main XVA impact of the hedge is then a corresponding
incremental MVA term, which can contribute to make the global FTP related to the
trade+hedge package more or less positive or negative, depending on the data (cf. the four
panels in Figure 1.15), as can only be inferred by a refined XVA computation.

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

 -

 100.0

 200.0

 300.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio: XVA-reducing no-CSA CP Trade -
Incremental 30Y pay fix swap+ XVA-increasing IM CP hedge

CVA

KVA

MVA

FVA

 -

 100.0

 200.0

 300.0

 400.0

 500.0

 600.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio: XVA-increasing no-CSA CP Trade -
Incremental 30Y receive fix swap + XVA-increasing IM CP hedge

CVA

KVA

MVA

FVA

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

 -

 100.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio: XVA-reducing no-CSA CP Trade -
Incremental 30Y pay fix swap + XVA-reducing IM CP hedge

CVA

KVA

MVA

FVA

2
7

2
8

2
9

3
0

-200.0

-100.0

 -

 100.0

 200.0

 300.0

 400.0

 500.0

 600.0

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

D
o

m
e

st
ic

 C
u

rr
e

n
cy

 U
n

it
s

Years

Swaps Portfolio: XVA-increasing no-CSA CP Trade -
Incremental 30Y receive fix swap + XVA-reducing IM CP hedge

CVA

KVA

MVA

FVA

Figure 1.15. (Top left) XVA-reducing trade + XVA-increasing bilateral hedge (Top right) XVA-
increasing trade + XVA-increasing bilateral hedge. (Bottom left) XVA-reducing trade + xva-
reducing bilateral hedge (Bottom right) XVA-increasing trade + XVA-reducing bilateral hedge.

Remark 1.26. In the above, we do not include the XVA costs/benefits of the bilateral
hedge counterparty itself. Given Remark 1.6, in different circumstances it may be possible
to attribute them to client trades of the original or hedge bank. Space is lacking for a fuller
discussion of economics of XVA trading in different setups. In particular, many hedge
trades now face central instead of bilateral counterparties. This occurs at additional XVA
costs for the client of the initial swap that can be computed the way explained in [Albanese
et al., 2020].

1.5.5 Scalability

Our deep learning XVA implementation uses CNTK, the Microsoft Cognitive Toolkit.
CNTK is written in core C++/CUDA (with wrappers for Python, C#, and Java). This is
convenient for XVA applications, which are usually developed in C++: CNTK automatic
differentiation in C++/CUDA enables C++ in-process training. This allows embedding
the deep learning task within XVA processing.

84 XVA Analysis From the Balance Sheet

Table 1.5 sets out computation times, including additional results obtained by doubling
the numbers of counterparties and risk factors (to 20 counterparties and 80 risk factors).

10 CP 40 risk factors 20 CP 80 risk factors
No CSA IM CSA No CSA IM CSA

Initial risk factor & trade pricing simulation Cuda 352 352 426 426
Counterparty and bank level learning calculations 4,529 13,466 19,154 59,342

Total initial batch 4,881 13,818 19,580 59,768
Re-simulate 1 counterparty trade pricing Cuda 40 40 51 51

Counterparty and bank level learning calculations 2,785 2,736 7,694 6,628
Total incremental trade 2,825 2,776 7,745 6,679

Table 1.5. XVA deep learning computation timings (seconds).

All these results were based on 50K simulation paths, 32 time steps per year for risk
factor simulation, and 16 time steps per year for all XVA calculations and deep learning.
They were computed on a Lenovo P52 laptop with NVidia Quadro P3200 GPU @ 5.5
Teraflops peak FP32 performance, and 14 streaming multiprocessors.

The computations for 20 counterparties took more than twice as long as those for 10
counterparties. However, our deep learning calculations achieved around 80 to 90% Cuda
occupancy for 10 counterparties and at times fell to half that level for 20 counterpar-
ties. Scaling to realistically high dimensions should be achievable, but acceptable trade
incremental pricing performance in production would require server-grade GPU hardware,
performance tuning for high GPU utilisation, and, possibly, caching computations.

1.6 Continuous-Time XVA Equations

We recall from [Crépey et al., 2020] the continuous-time XVA equations for bilateral trade
portfolios when capital at risk is deemed fungible with variation margin, also adding here
initial margin and MVA as in the refined static setup of Section 1.3.4.

We write �� (d t)=d1f��tg for the Dirac measure at a random time �.

1.6.1 Cash Flows

We suppose that the derivative portfolio of the bank is partitioned into bilateral netting
sets of contracts which are jointly collateralized and liquidated upon bank or counterparties
(whether these are clients or market hedge counterparties) default. Given a netting set c
of the bank portfolio, we denote by:

� Pc and P c, the corresponding contractually promised cash flows and clean value
processes;

� �c, Jc, and Rc, the corresponding default times, survival indicators, and recovery
rates, whereas � , J , and R are the analogous data regarding the bank itself, with
bank credit spread process �=(1¡R) taken as a proxy of its risky funding spread
process1.9;

� �c
�= �c+ � and � �= � + �, where � is a positive margin period of risk, in the sense

that the liquidation of the netting set c happens at time �c
�^ � �;

1.9. See [Albanese et al., 2020](Section 5) for the discussion of cheaper funding schemes for initial margin.

1.6 Continuous-Time XVA Equations 85

� VMc, the variation margin (re-hypothecable collateral) exchanged between the bank
and counterparty c, counted positively when received by the bank;

� PIMc and RIMc, the related initial margin (segregated collateral) posted and received
by the bank;

� RC and CR, the reserve capital and capital at risk of the bank.

The contractually promised cash flows are supposed to be hedged out by the bank but one
conservatively assumes no XVA hedge, so that the bank is left with the following trading
cash flows C and F (cf. (1.45) and see [Crépey, 2022](Lemmas 5.1 and 5.2) for detailed
derivations of analogous equations in a slightly simplified setup):

� The (counterparty) credit cash flows

dCt= (1.58)X
c;�c���

(1¡Rc) ((P c+Pc)�c�^��¡ (P
c+VMc+RIMc)(�c^�)¡)

+��c�^�� (d t) (1.59)

¡(1¡R)
X
c;���c�

((P c+Pc)��^�c�¡(P
c+VMc¡PIMc)(�^�c)¡)

¡���^�c� (dt); (1.60)

� The (risky) funding cash flows

dFt=Jt�t
�X

c

Jc (P c¡VMc)¡RC¡CR
�
t

+
d t (1.61)

¡(1¡R)
�X

c

Jc (P c¡VMc)¡RC¡CR
�
�¡

+
�� (d t) (1.62)

+Jt�~t
X
c

Jt
cPIMt

c d t¡ (1¡R~)
X
c

J�¡
c PIM�¡

c �� (d t); (1.63)

where the RC and CR terms account for the fungibility of reserve capital and capital
at risk with variation margin.

1.6.2 Valuation

Here (as in our numerics) we distinguish between a (strict) FVA, in the strict sense of the
cost of raising variation margin, and an MVA for the cost of raising initial margin (see
Remark 1.1). The (other than K)VA equations are then

RC=CA=CVA+FVA+MVA (1.64)

the so-called �contra-assets valuation� sourced from the clients and deposited in the reserve
capital account of the bank, where, for t < � ,

CVAt=Et
X
t<�c

�

(1¡Rc) ((P c+Pc)�c�¡ (P
c+VMc+RIMc)�c¡)

+ (1.65)

FVAt=Et
Z
t

T

�s

�X
c

Jc (P c¡VMc)¡CA¡CR
�
s

+
d s (1.66)

MVAt=Et
Z
t

T

�s
X
c

Js
cPIMs

c d s: (1.67)

86 XVA Analysis From the Balance Sheet

The corresponding trading loss and profit process L of the bank is such that

L0=0 and, for t < � ;
dLt=

X
c

(1¡Rc) ((P c+Pc)�c�¡ (P
c+VMc+RIMc)�c¡)

+ ��c� (d t)

+�t
�X

c

Jc (P c¡VMc)¡CA¡CR
�
t

+
d t

+�t
X
c

Jt
cPIMt

c d t

+dCAt;

(1.68)

so that L is a Q martingale, hence (by Lemma 1.18) L� is a Q? martingale.
By the same rationale as Definitions 1.13 and 1.14 in the static setup:

Definition 1.27. ECt is the time-t conditional 97.5% expected shortfall of (Lt+1� ¡Lt�)
under Q.

Given a positive target hurdle rate h:

Definition 1.28. We set

CR=max (EC;KVA); (1.69)

for a KVA process such that, for t < �,

KVAt=Et
�Z

t

T

h (CRs¡KVAs) d s
�
: (1.70)

Hence, for t < � ,

KVAt =Et
�Z

t

T

h e¡h(s¡t)CRsd s
�

(1.71)

=Et
�Z

t

T

h e¡h(s¡t)max (ECs;KVAs) d s
�
: (1.72)

The next-to-last identity is the continuous-time analog of the risk margin formula under
the Swiss solvency test cost of capital methodology: see [Swiss Federal Office of Private
Insurance, 2006](Section 6, middle of page 86 and top of page 88).

1.6.3 The XVA Equations are Well-Posed
In view of (1.64), the second line in (1.65) is in fact an FVA equation. Likewise, the second
line in (1.71) is a KVA equation. Moreover, as capital at risk is fungible with variation
margin (cf. Section 1.3.4), i.e. in consideration of the CR term in (1.65)-(1.68), where
CR=max (EC;KVA), we actually deal with an (FVA;KVA) system, and even, as EC
depends on L (cf. Definition 1.27), with a forward backward system for the forward loss
process L and the backward pair (FVA;KVA).

However, as in the refined static setup of Section 1.3.4, the coupling between (FVA;
KVA) and L can be disentangled by the following Picard iteration:

� Let CVA and MVA be as in (1.65), L(0)=KVA(0)=0, and , for t < � ,

FVAt
(0)=Et

Z
t

T

�s

�X
c

Jc (P c¡VMc)¡CA(0)
�
s

+
d s; (1.73)

1.6 Continuous-Time XVA Equations 87

where CA(0)=CVA+FVA(0)+MVA;

� For k�1, writing explicitly EC=EC(L) to emphasize the dependence of EC on L,
let L0

(k)=0 and, for t < � ,

dLt
(k) =

X
c

(1¡Rc) ((P c+Pc)�c�¡ (P
c+VMc+RIMc)�c¡)

+ ��c� (d t)

+�t
�X

c

Jc(P c¡VMc)¡CA(k¡1)¡max(EC(L(k¡1));KVA(k¡1))
�
t

+
dt

+�t
X
c

Jt
cPIMt

c d t+dCAt
(k¡1)

;

KVAt
(k) = hEt

Z
t

T

e¡h(s¡t)max
¡
ECs(L(k));KVAs

(k)�
d s;

CAt
(k) = CVAt+FVAt

(k)+MVAt

FVAt
(k) = Et

Z
t

T

�s

�X
c

Jc (P c¡VMc)¡CA(k)¡max (EC(L(k));KVA(k))
�
s

+
d s:

(1.74)

Theorem 4.1 in [Crépey et al., 2020] Assuming square integrable data, the XVA
equations are well-posed within square integrable solution (including when one accounts for
the fact that capital at risk can be used for funding variation margin). Moreover, the above
Picard iteration converges to the unique square integrable solution of the XVA equations.

1.6.4 Collateralization Schemes
We denote by �t

c=Ptc¡P(t¡�)¡c the cumulative contractual cash flows with the counter-
party c accumulated over a past period of length �. In our case study, we consider both
�no CSA� netting sets c, with VM=RIM=PIM=0, and �(VM/IM) CSA� netting sets c,
with VMt

c=Ptc and, for t� �c,

RIMt
c=VaRt((Pt�

c +�t�
c)¡Ptc); �tPIMt

c=VaRt(¡(Pt�
c +�t�

c)+Ptc); (1.75)

for some PIM and RIM quantile levels apim and arim (and t�= t+ �).
The following result can be derived by similar computations as the ones in [Albanese

et al., 2020](Section A).

Proposition 1.29. In a common shock default model of the counterparties and the bank
itself (see the beginning of Section 1.5), with pre-default intensity processes c of the coun-
terparties and of the bank, then CVA=CVAnocsa+CVAcsa, where, for t < �,

CVAt
nocsa=

X
c nocsa

1t<�c (1¡Rc)Et
Z
t

T

(Ps�
c +�s�

c)+ sc e
¡
R
t
s
u
cdu

d s

+
X

c nosca

1�c<t<�c� (1¡Rc)Et(P�c�
c +��c

�
c)+; (1.76)

CVAt
csa=

X
c csa

1t<�c (1¡Rc) (1¡ arim)�

Et
Z
t

T

(ESs¡VaRs) ((Ps�
c +�s�

c)¡Psc) sc e
¡
R
t

s
u
cdu

d s (1.77)

+
X
c csa

1�c<t<�c� (1¡Rc)Et
¡
(P�c�

c +��c
�
c)¡ (P�c

c +RIM�c
c)
�
+;

88 XVA Analysis From the Balance Sheet

where (ESs¡VaRs) in (1.77) is computed at the arim confidence level. Assuming its posted
initial margin borrowed unsecured by the bank, then MVA=MVAcsa, where, for t < �,

MVAt
csa=

X
c csa

Jt
cEt
Z
t

T

(1¡R)sPIMs
c e
¡
R
t

s
u
cdu

d s: (1.78)

1.6 Continuous-Time XVA Equations 89

Chapter 2

Pathwise CVA Regressions With Over-
simulated Defaults

This chapter, accepted for publication in Mathematical Finance, was co-authored with
Lokman A. Abbas-Turki and Stéphane Crépey.

We consider the computation by simulation and neural net regression of conditional
expectations, or more general elicitable statistics, of functionals of processes (X;Y). Here
an exogenous component Y (Markov by itself) is time-consuming to simulate, while the
endogenous component X (jointly Markov with Y) is quick to simulate given Y , but is
responsible for most of the variance of the simulated payoff. To address the related variance
issue, we introduce a conditionally independent, hierarchical simulation scheme, where
several paths of X are simulated for each simulated path of Y . We analyze the statistical
convergence of the regression learning scheme based on such block-dependent data. We
derive heuristics on the number of paths that should be simulated. The resulting algorithm
is optimally implemented on a graphics processing unit (GPU) combining Python/CUDA
and learning with PyTorch. A CVA benchmarking case study of the method with a refer-
ence nested Monte Carlo approach shows that the hierarchical simulation technique is key
to the success of the learning approach.

An optimized GPU implementation of our hierarchical simulation and regression learning
scheme, as well as single-file python notebook demo for our CVA use case, are avail-
able at https://github.com/BouazzaSE/NeuralXVA.

2.1 Introduction

Greensill defaulted on March 8, 2021, a collapse estimated by British parliamentarians to
trigger a cost for UK taxpayers of up to ¿5bn2.1. Greensill fell short of capital because
they lent to Gupta against future invoices which then did not materialize. A projection
of Greensill's capital requirements including the tail risk related to Gupta's default would
have highlighted a sizable concentrated and unsecured credit risk to a junk-rated counter-
party. This example emphasizes the interest of default risk simulations, as opposed to
credit spread simulations simply, as typically done in the industry for the sake of simplicity.
Another, related example is the path-wise XVA regressions of Albanese et al., 2021, which
also require a hybrid market and credit setup, where the actual defaults of the clients of
the bank are simulated.

2.1. cf. https://www.theguardian.com/business/2021/apr/28/greensill-collapse-could-cost-uk-taxpayer-up-to-
5bn-mps-told.

91

https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA

However, to obtain the required level of accuracy in a simulation setup with defaults,
one needs a very large number of simulations�100 times more, say, than in a standard
mark-to-market simulation without simulation of the defaults, where 100 is in reference to
credit spreads that would be of the order of 1%. A factor 100 is not necessarily a sizable
amount as far as the simulation of the risk factors is involved. But it also means that the
mark-to-market cube of path-wise prices of all trades of the bank becomes 100 times larger.
When applied at the level of a realistic banking portfolio, this becomes prohibitive in terms
of both computation time and memory occupancy.

To overcome this problem, we introduce in this paper an acceleration technique for
the computation by simulation and regression of conditional expectations of functions �
of Markov pairs (X; Y), where Y is an exogenous component, Markov by itself, whose
simulation is time-consuming, while the endogenous componentX (jointly Markov with Y)
is quick to simulate given Y , but also responsible for most of the variance of the simulated
payoff. The idea, which we call the hierarchical simulation setup, is then to draw an
optimized number of realizations of X conditional on each simulation of Y . For example,
in the above-mentioned XVA regression framework, we simulate a few hundred paths of
client defaults conditionally on each mark-to-market path. Proceeding in this way, the
computational burden of the mark-to-market cube is not amplified by the simulation of
the client defaults. We demonstrate, both mathematically and empirically, that the lack
of independence of the ensuing simulation setup is not detrimental to the quality of the
ensuing learner, i.e. (in the above case) of the regressions of the XVA layers built over the
mark-to-market cube and defaults scenarios.

Note that the use of regression-based Monte Carlo simulations for XVA computations
is not new. It was already presented in Cesari et al., 2010 as a key CVA computational
paradigm, intended to avoid nested Monte Carlo. However, from traditional XVA compu-
tations to [Huge and Savine, 2020], the regressions are used for computing the mark-to-
market cube of the prices of all the contracts of the bank with all its clients (or netting sets)
at all times of a simulation time-grid, out of which the CVA of the bank at time 0 (and
only it) is obtained by integration of the so-called expected positive exposure relative to
each netting set against the credit curve of the corresponding client, and summation over
netting sets. By contrast, in this paper, we aim at learning the CVA as a process, i.e. at
every node of a simulation for all risk factors, based on a mark-to-market cube computed
by model analytics at the forward simulation stage. Regressions for the mark-to-market of
derivatives are typically multiple standard parametric regressions in a diffusive and low-
dimensional setup, as opposed to the hybrid and high-dimensional neural net regressions
that we handle in this paper. Recently, Gnoatto et al., 2021 deep-hedge and learn the CVA
and the FVA, but this is again in a purely diffusive setup, after the default of the bank and
its (assumed single) counterparty have been eliminated from the model by the reduction of
filtration technique of Crépey and Song, 2015. We believe that this technique of reduction
of filtration is not extensible to the realistic case of a bank involved in transactions with
several (in fact, many, e.g. several thousands of) clients, the default times of which enter
the ensuing FVA and KVA equations in a nonlinear fashion, so that there is no other choice
but simulating these defaults and including them in the regressions�but this requires
special care, which is the topic of our work.

2.1.1 Outline

In Section 2.2, we introduce a neural net learning framework for conditional expecta-
tions, iterated in time as they appear naturally in dynamic pricing problems, taking into
account the dynamics of the problem by means of a backward algorithm. In Section 2.4,

92 Pathwise CVA Regressions With Oversimulated Defaults

we introduce a CVA case study. In Section 2.3, we identify the variance issue at hand and
we propose a hierarchical simulation approach to address it. We establish the benefit of
this approach mathematically by providing associated generalization bounds. Section 2.4.4
illustrates it numerically.

Note that, although our CVA case study only covers quadratic risk minimization (for
benchmarking purposes), the approach and the proofs of this paper are valid for more
general loss functions and apply to the learning of any elicitable statistics. In particular, via
the Rockafellar and Uryasev, 2000 representation of value-at-risk and expected shortfall of
a given loss (random variable) in terms of �far out-of-the-money call options� on that loss,
our hierarchical simulation approach is also relevant for learning value-at-risk and expected
shortfall in hybrid mark-to-market and default simulation setups. Such an approach is
even particularly relevant in these cases, where the fact that X is responsible for most
of the variance of the payoff is then intrinsic to the far out-of-the-money feature of the
corresponding �option�.

2.2 Neural Regression Setup

A reference probability space, with corresponding probability measure and expectation
denoted by Q and E, is fixed throughout the paper. The state spaces of X and Y are
taken as Rp and Rq, for some positive integers p and q. In the (default risk) case of a
Markov chain like component X, referred to hereafter as the Markov chain X case (but
with transition intensities modulated by Y), we assume, without loss of generality in this
case, that X evolves on the vertices f0; 1gp of the unit cube in Rp. We take the problem
after discretisation of time (if the latter was continuous in the first place), for a time step
set to one year for ease of notation.

We then consider (Xi)0�i�n and (Yi)0�i�n as discrete-time processes on the time grid.
Our goal is to estimate, for every i, conditional expectations of the form

�i=E[�i;njXi; Yi]; (2.1)

where

�i;n := fi(Xi; : : : ; Xn; Yi; : : : ; Yn): (2.2)

Here fi is a measurable real function such that �i;n is a square-integrable random variable.
Conditional expectations such as (2.1) can be estimated via linear regression using a

finite sample. This is ubiquitous in quantitative finance since the Bermudan Monte Carlo
papers of Tsitsiklis and Van Roy, 2001 and Longstaff and Schwartz, 2001. In order to
estimate the conditional expectation in (2.1), one draws i.i.d. samples f(Xi

�; Yi
�; �i;n

�)g�2I
of (Xi; Yi; �i;n) where I is a finite set of indices. Then, given a feature map �: Rp �
Rq!Rm (for some positive integer m), one linearly regresses f�i;n� g�2I against f�(Xi

�;
Yi
�)g�2I, solving for

ŵi2 argmin
wi2Rm

X
�2I

(�i;n� ¡wi> �(Xi
�; Yi

�))2: (2.3)

One then uses ŵi
> �(Xi; Yi) as an approximation for �i.

The above procedure is justified by the characterization, in the square integrable case,
of conditional expectations as orthogonal projections, i.e.

E[�i;njXi; Yi] = 'i
?(Xi; Yi) a.s.;

2.2 Neural Regression Setup 93

where, denoting by B(E) the set of Borel measurable real functions on a metric space E,

'i
?2 argmin

'i2B(Rp�Rq)
E[(�i;n¡ 'i(Xi; Yi))2]: (2.4)

One recovers the linear regression formulation (2.3) by approximating the expectation
by an empirical mean and restricting the search space to the functions of the form
Rp�Rq 3 (x; y) 7!wi

> �(x; y), where wi2Rm.

2.2.1 Neural Net Parameterization

Linear regression by means of a priori, explicit factors has a reasonable chance of success
when 'i

? is simple enough and the feature mapping � can be judiciously chosen, usually
from expert knowledge. This is however not always the case, e.g. when considering port-
folio-wide XVA metrics, which exhibit non-trivial dependencies on the many risk factors
being regressed against. It is then impossible to manually devise a satisfactory feature
mapping �.

Figure 2.1 shows how a linear regression with the raw risk factors as features fails
for even a simple portfolio comprised of a call option, while the neural net estimator
almost matches with the nested Monte Carlo estimator (see Sections 2.4 and 2.4.4 for more
numerical details).

−100 −50 0 50 100 150 200
0.00

0.01

0.02

0.03

0.04
Linear model

Neural network

Nested MC

Figure 2.1. Density plot of the CVA
of a vanilla call, at mid-life of the option.

0 20 40 60 80 100

0.992

0.994

0.996

0.998

1.000

n
or

m
al

iz
ed

M
S

E

retaining best SGD iterate

retaining last SGD iterate

Figure 2.2. Out-of-sample MSEs against
labels �i;n at different time-steps divided
by the variance of the labels.

In the Markov chain X case, we face the additional peculiarity of a hybrid regression
setting, in view of the discrete and continuous natures of the X and Y model components.

Neural networks [Bengio et al., 2016] propose an alternative way to parameterize and
learn the feature map. Let NNp+q;h;u;& denote the set of functions of the form

Rp+q 3 z 7! �(z;W [h+1]; : : : ;W [1]; b[h+1]; : : : ; b[1])= � [h+1](z;W ; b)

where W [h+1] 2 R1�u; : : : ; W [`] 2 Ru�u; : : : ; W [1] 2 Ru�(p+q) are the weight matrices,
b[h+1] 2 R; : : : ; b[`] 2 Ru; : : : ; b[1] 2 Ru are the bias offsets, W and b are the respective
concatenations of the W [`] and of the b[`], & is an element-wise scalar nonlinearity and,
for every z 2Rp+q,

� [0](z;W ; b)= z

� [`](z;W ; b)= & (W [`] � [`¡1](z;W ; b)+ b[`]); `=1; : : : ; h

� [h+1](z;W; b)=W [h+1] �(h)(z;W; b)+ b[h+1]:

94 Pathwise CVA Regressions With Oversimulated Defaults

The function z 7! � [h+1](z;W;b) can be seen as a nonlinear feature mapping from Rp+q to
Ru, parameterized by W [h+1]; : : : ;W [1]; b[h+1]; : : : ; b[1] (for a given activation function &).
On top of the setNNp+q;h;u;& of real-valued neural networks taking inputs from Rp+q, with
h hidden layers, u units per hidden layer, and & as the activation function, we also define

NNp+q;h;u;&
+ := fRp+q 3 z 7! (f(z))++ �; f 2NNp+q;h;u;& ; �2Rg: (2.5)

This specification ensures positivity of the output when the additive constant � is non-
negative and is useful for learning positive (e.g. XVA) functions. The additive constant �
is introduced in order to improve the fit of the first moment and hence reduce the bias.

In what follows, we identify Rp+q with Rp�Rq and write �(z) or �(x; y) interchange-
ably, where z is the concatenation of x and y, for every function � defined over Rp+q or
Rp�Rq, and for every x2Rp and y 2Rq.

2.2.2 Local Training Algorithm

Learning the conditional expectation (2.1) in a positive neural net search space consists in
applying the same empirical risk minimization (2.3) approximation as in linear regression,
using this time NNp+q;h;u;&+ as the search space, i.e. solving for

'̂i2 argmin
'i2NNp+q;h;u;&

+

X
�2I

(�i;n� ¡ 'i(Xi
�; Yi

�))2: (2.6)

This is achieved by using an iterative gradient-based optimization algorithm, which we will
assume to be mini-batch stochastic gradient descent.

In the context of learning a positive output (e.g. an XVA), the addition of a ReLU
activation (�)+ at the output layer in (2.5) can jeopardize the learning as the gradient may
vanish at a certain SGD iteration and the parameters are then frozen irrespective of the
number of subsequent iterations. Thus, for more stability of the learning procedure, we first
perform the first half of SGD steps on the network without the ReLU at the output layer.
Then, still without the ReLU, we fine-tune the weights of the output layer by optimizing
with respect to those weights only (freezing the weights of the hidden layers), which can
be done in closed form in the case of quadratic risk minimization.

Remark 2.1. This step isn't achievable in closed-form in the case of, for example, quantile
regression2.2. However, even in this case, the optimization problem is still convex and as
such easier to solve numerically.

Finally, we restore the ReLU at the output layer and we finish the last half of the SGD
iterations.

We also chose to retain the best set of parameters among those explored during the
SGD iterations. Figure 2.2 shows the corresponding improvement in generalization when
applied in the context of the case study of Sections 2.4 and 2.4.4.

The ensuing learning scheme is detailed in Algorithm 2.1. Note that we presented
vanilla SGD iterations only for the sake of simplicity. In practice, accelerated SGDmethods
like Adam ([Kingma and Ba, 2014]) are used instead.

2.2. cf. the last paragraph of Section 2.1.

2.2 Neural Regression Setup 95

Algorithm 2.1
Baseline learning scheme for training at a given time-step i

name: BaseAlg
input: f(Xi

�; Yi
�; �i;n

�); �2Ig, a partition B of I, a number of epochs E 2N?, a learning rate � >0, initial
values for the network parameters W , b and �
output: Trained parameters Wbest, bbest and �best
define

L(W ; b; �; batch; pos)=
� 1
jbatchj

X
�2batch

(�[h+1](Xi
�; Yi

�;W ; b)+ �¡ �i;n�)2 if pos=0

1

jbatchj
X

�2batch

((�[h+1](Xi
�; Yi

�;W ; b))++ �¡ �i;n�)2 if pos=1

Lbest 1, pos 0
// loop over epochs
for epoch=1; : : : ; E do

// loop over batches
for batch2B do

for `=1; : : : ; h+1 do
W [`] W [`]¡ �rW [`]L(W ; b; �; batch; pos)
b[`] b[`]¡ �rb[`]L(W ; b; �; batch; pos)

end
� �¡ � @�L(W ; b; �; batch; pos)

end
if epoch=

� E
2

�
then

// tune weights of last layer
(W [h+1];b[h+1]) argminW~ [h+1];b~[h+1]L(fW [0]; : : : ;W [h];W~ [h+1]g;fb[0]; : : : ;b[h];b~[h+1]g;�;obs;0)
pos 1

end
if L(W ; b; �;I ; 1)<Lbest then

// keep track of best parameters
Lbest L(W ; b; �; o b s; 1)
Wbest W
bbest b
�best �

end
end

2.2.3 Backward Learning

In the setup of the path-wise pricing problem (2.1), at each pricing time i, a separate
learning problem is solved by Algorithm 2.1. Since the algorithm returns for each problem
a local minimum, it is possible to end up with an approximation of the pricing function
E[�i;njXi= x; Yi= y] (cf. (2.1)) with noisy paths (i.e. with respect to time i) if the local
minima are not close to each other, even for fixed x and y. Yet, for two consecutive time-
steps i and i+1, the learning problems are similar. One possible refinement is, after having
learned �i+1;n, to initialize the parameters of the network at time i with the parameters
of the network trained at time i+1. This not only smoothes the results across regression
times, but also accelerates convergence.

We obtain an algorithm which starts the learnings at time step n and, proceeding back-
ward in time until time step 1, reuses each time the previous solution as an initialization
for the next learning. The ensuing backward learning scheme is detailed in Algorithm 2.2.
This process of reusing knowledge from a different but related learning task can be seen
as a form of transfer learning [Pan and Yang, 2009; Bozinovski, 2020].

96 Pathwise CVA Regressions With Oversimulated Defaults

Algorithm 2.2
Backward learning scheme

input: f(Xi
�;Yi

�; �i;n
�); �2I ;1� i�ng, a partition B of I, a number of epochs E2N?, a learning rate �>0

output: '̂1; : : : ; '̂n
initialize parameters Wn+1, bn+1 and �n+1 of the network at terminal time-step n
// loop backwards over the time steps
for i=n; : : : ; 1 do

Wi; bi; �i BaseAlg(f(Xi
�; Yi

�; �i;n
�); �2Ig;B; E; �;Wi+1; bi+1; �i+1)

'̂i fx 7! �[h+1](x; y;Wi; bi)+ �ig
end

Remark 2.2. A variation on the above would be forward learning. We favor the backward
learning scheme because it is the only one that is amenable to more general backward
stochastic differential equations, such as the equations for the FVA and the KVA in [Crépey
et al., 2020]. In addition, in these XVA applications, the labels/features corresponding to
times i close to the final maturity n of the portfolio have a lower/higher variance. Hence
the training task corresponding to a higher i is easier.

2.2.4 Separable Case

Next we present a fine-tuning which is applicable when �i;n=
P

j=1
p �i;n

(j), where, for every
1� j � p, denoting by x(j) the jth component of x2Rp, one has (cf. (2.2))

�i;n
(j) := fi

(j)(Xi
(j)
; : : : ; Xn

(j)
; Yi; : : : ; Yn)

for some real function fi
(j) such that �i;n

(j) is square-integrable. Then

E[�i;n
(j)jXi; Yi] =E[�i;n

(j)jXi
(j)
; Yi] =�i

(j)
;

which can be learned separately for each coordinate j.

In the Markov chain case with state space f0; 1gp of X, we can write

�i
(j)=E[�i;n

(j)jfXi
(j)=1g; Yi]Xi

(j)+E[�i;n
(j)jfXi

(j)=0g; Yi] (1¡Xi
(j)): (2.7)

Thus, for every i we have two sub-learning problems, respectively conditional on fXi
(j)=1g

and fXi
(j)=0g, and the feature Xi

(j) is no longer needed in the regressions. Algorithms 2.1
and 2.2 can be easily adapted to this setting by averaging over the respective samples where
Xi
(j)=1 and 0 (instead of averaging over the whole dataset as before). A requirement is to

have enough samples for both events, but this can be facilitated by the approach presented
in Section 2.3.

Separability comes in handy when learning for example a CVA or an MVA for each
counterparty of a bank (whether default indicator based as in (2.20) or default intensity
based as in (2.22)). However, it is not applicable to FVA computations and KVA com-
putations, which can only be addressed at the level of the overall portfolio of the bank
[Albanese et al., 2021].

2.2 Neural Regression Setup 97

2.2.5 A Posteriori Twin Monte Carlo Validation Procedure

As part of the validation of our approach, we computed a benchmark estimator and com-
pared the learning approach against it by computing L2 error estimates. In fact, one can
compute such L2 error estimates without necessarily performing a slow nested Monte Carlo
benchmark run. At a given time step i, let �i;n

(1) and �i;n
(2) denote two independent copies of

�i;n conditional on (Xi; Yi)2.3. For any Borel function ':Rp�Rq!R such that '(Xi; Yi)
is square integrable (e.g. a neural net estimate of E[�i;njXi; Yi]), we have:

E[('(Xi; Yi)¡E[�i;njXi; Yi])2] =E ['(Xi; Yi)2¡ (�i;n
(1)+ �i;n

(2)) '(Xi; Yi)+ �i;n
(1)
�i;n
(2)]: (2.8)

The equality stems from the fact that, by conditional independence,

E[�i;njXi; Yi]2=E[�i;n
(1)jXi; Yi]E[�i;n

(2)jXi; Yi] =E[�i;n
(1)
�i;n
(2)jXi; Yi]; (2.9)

followed by an application of the tower rule. Thus, one is able to approximate the L2 error
of any estimator for the conditional expectation, without any knowledge on the latter,
using only two inner paths. This can be used as a very fast validation procedure and as
a safeguard in a production environment before using the learned values. A slower but
more complete nested Monte Carlo approach is then only needed periodically, e.g. after
significant changes in the risk factor models, or to perform more elaborate checks (e.g. tail
behavior).

2.2.6 Python/CUDA Optimized Implementation Using GPU

Contrary to most use-cases of machine learning where the final product is the trained
model and thus execution time is only critical during inference, in the case of learning
from simulated data in pricing applications, the training process itself is part of the final
product. Hence particular care is needed when writing the training procedures.

We implemented Algorithm 2.2 using Python programming with the CUDAAPI (Appli-
cation Programming Interface). Because the considered problem involves high variances
and thus requires a sufficiently large sample size, both training and inference are not
easy to achieve in a reasonable execution time. First, we need to leverage the many-
core parallel architecture of GPUs that involves streaming multiprocessors, which are used
for the simulation, learning and inference phases. All phases are intertwined and per-
formed inline. Hence we need to carefully optimize each part of the algorithm.

On the simulation side, due to their intrinsically parallel nature, Monte Carlo simula-
tions easily lend themselves to parallelization on GPUs. Nevertheless, various optimizations
are needed to have achieve a reasonable solution executed within a few seconds (cf. Figure
2.8 in Section 2.4.4). We chose to use Python and the CUDA kernels are compiled just-
in-time using the module numba, which allows to dynamically generate CUDA kernels at
run-time.

Regarding learning, we opted for PyTorch for its proximity to the CUDA programming
model and its just-in-time compiler allowing for static computation graphs and automatic
fusion, whenever appropriate, of the kernels associated with the PyTorch operations used
by the model.

2.3. The conditional independence means that for any Borel bounded functions �1 and �2, we have
E[�1(�i;n

(1)
) �2(�i;n

(2)
)jXi; Yi] =E[�1(�i;n

(1)
)jXi; Yi]E[�2(�i;n

(2)
)jXi; Yi].

98 Pathwise CVA Regressions With Oversimulated Defaults

We used most of the optimization techniques already presented in Abbas-Turki et al.,
2018, except those related to regressions since these are replaced here by neural networks.
We also introduced several additional optimizations, the most important one being to
judiciously manage the CPU and GPU memories. A naive solution would involve the
CPU/GPU virtual unified memory [NVIDIA Corporation, 2020b] and let the compiler
choose. However, this usually results in sub-optimal memory accesses. Our choice rather
targets an efficient use of the GPU memory space, a reduction of CPU/GPU transfer and
an optimized transfer when needed. These optimizations and implementation choices are
developed in the accompanying Github repository2.4.

2.3 Hierarchical Simulation and its Analysis

Learning from defaults based on (2.23) may be challenging, even with optimized training
schemes. As should always be first scrutiny with machine learning, the difficulty here comes
from the data, i.e. from the simulation part in our case. Specifically, a large variance of the
estimated population loss function can jeopardize the learning approach, which we address
in what follows by a suitable hierarchical simulation approach.

2.3.1 Identification of the Variance Contributions Using Automatic
Relevance Determination

In this part we show how to hierarchize the variance impact of explanatory variables
using automatic relevance determination (ARD). As detailed in [Rasmussen and Williams,
2006](Sections 5.1, 5.4.3, 6.6, and 8.3.7), ARD is a Bayesian procedure for feature selec-
tion and consists in estimating the relevance of the features by maximizing a marginal
likelihood. In our setup, we apply a Gaussian process regression based ARD to quantify
empirically the impact of the variances of X and Y on that of �.

Toward this aim, we treat the vector of the financial model parameters, denoted by �,
as a latent variable endowed with some instrumental distribution.

Given �, we sample the following time-averages of the variances of X1; : : : ;Xn, Y1; : : : ;
Yn and �1;n; : : : ; �n;n,

V (X j�)= 1
n+1

X
i=0

n

Ê�[(Xi¡ Ê�[Xi])2]

V (Y j�)= 1
n+1

X
i=0

n

Ê�[(Yi¡ Ê�[Yi])2]

V (� j�)= 1
n+1

X
i=0

n

Ê�[(�i;n¡ Ê�[�i;n])2]

meant componentwise in the vector cases of X and Y , where Ê� is an empirical average
over paths sampled for a given realization � of the financial model parameters. Then,
based on a finite sample of � and on the corresponding realizations of the triple (V (X j�);

2.4. https://github.com/BouazzaSE/NeuralXVA.

2.3 Hierarchical Simulation and its Analysis 99

https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA
https://github.com/BouazzaSE/NeuralXVA

V (Y j�); V (� j�)), we perform a Gaussian process regression [Rasmussen and Williams,
2006] of V (� j�) against V (X j�) and V (Y j�). In this procedure we use an anisotropic

kernel exp (¡
P

j=1
p (vj¡ vj0)2

2 �x;j
2 ¡

P
j=1
q (wj¡wj0)2

2 �y;j
2), where the hyperparameters �x;1; : : : ; �x;p

and �y;1; : : : ; �y;q are characteristic length-scales for the corresponding components of
V (X j�) and V (Y j�). Maximizing the marginal likelihood on the dataset allows to recover
those length-scales and these can then be interpreted as relevance estimates for our input
variables. The higher the inverse length-scale gets, the more the corresponding variable
influences the output (payoff variance, in our case).

The above procedure is then itself randomized, i.e. run multiple times on the restricted
datasets corresponding to different sub-samplings of �. This provides a distribution of
the fitted hyper-parameters � in the above, while being also less prone to over-fitting and
local minima issues. A similar analysis was used in Bergstra and Bengio, 2012 to study the
relevance of different neural network hyper-parameters with respect to the validation loss.

Figure 2.3 reveals the dominance of the impact of the variance of X on that of � in
the context of our CVA case study of Section 2.4, here for a single client of the bank and
relying on the CVA representation (2.20), where Y is the vector of mark-to-market risk
factor processes and X is the default indicator process of the client.

V(X|)

Inverse of length-scale
0.00 0.25 0.50 0.75 1.00 1.25 1.50

V(Y|)

Figure 2.3. (Single client CVA (2.20)) Box-plot of the inverse length-scales obtained by
randomized Gaussian process regressions of the conditional variances of the cash flows � against
the conditional variances of the risk factors X and Y , where conditional here is in reference to the
parameters of the model treated as a random vector with a postulated distribution.

2.3.2 Learning on Hierarchically Simulated Paths

If X contributes more to the variance of � than Y , then, in order to deal with the resulting
variance issue regarding the associated simulation/learning scheme, an idea is to simulate
more realizations of X than Y , even if this means giving up the independence of the
simulation setup. More precisely, we simulate M i.i.d paths Y 1; : : : ; YM of Y and, for
every k 2f1; : : : ;M g and i2f1; : : : ng, we simulate N i.i.d realizations Xi

k;1; : : : ; Xi
k;N of

Xi conditional on Y k. For every i, this yields to a sample (Xi
k;l; Yi

k; �i;n
k;l)k 2 f1; : : : ; M g;

l2f1;:::;N g of (Xi;Yi; �i;n) of sizeMN , where, within each block k, independence between
the Xk;l only holds conditionally on Y k.

100 Pathwise CVA Regressions With Oversimulated Defaults

Algorithm 2.2 is then run on the resulting hierarchically simulated dataset by taking
I = f1; : : : ;M g� f1; : : : ; N g, with by convention Y k;l= Y k for all l. For implementation
efficiency reasons pertaining to memory contiguity, the set of indices of the {-th batch, with
1� {� jBj, is chosen to be

f(k; l)2f1; : : : ;M g�f1; : : : ; N g: ({¡ 1) jI jjBj � (l¡ 1)N +(k¡ 1)+1<{ jI jjBjg:

Hierarchical simulation in the above sense can be thought of as a form of data augmentation
procedure (see e.g. [Shorten and Khoshgoftaar, 2019]), but in a simulation setup where one
knows how to generate the data perfectly. In this framework, the main question is then to
which extent one should augment the data, i.e. the choice of the hierarchical simulation
parameters M and N , which is the focus of the sequel of this section.

Remark 2.3. Hierarchical simulation is different in nature from importance sampling that
favors particular events, e.g., in a credit risk setup, default versus survival (see e.g. [Carmona
and Crépey, 2010]). In an XVA setup, however, some metrics, like the CVA, need default
events for being properly estimated, whereas others, like the FVA, require survival events.
Hence what one needs is richness regarding both default and survival events, which is
precisely what hierarchical simulation provides.

2.3.3 Choosing the Hierarchical Simulation Factor

Assume that simulating Yi costs P times more than simulating Xi given a path fYjgj�i
in terms of computation time. The hierarchical simulation factor N can be chosen so as
to minimize the variance (Var) of the loss 1

MN

P
k=1
M P

l=1
N gi(�;Xi

k;l; : : : ;Xn
k;l; Yi

k; : : : ; Yn
k)

with respect to N , under a budget constraintM(N+P)=B, where gi is the point-wise loss
of our learning task at time-step i, e.g. gi(�;Xi; : : : ;Xn; Yi; : : : ; Yn)= (�i;n¡ '�(Xi; Yi))2 in
our CVA case study, and '� is the neural net (element of NNp+q;h;u;&+) with parameters �.

For ease of notation in this and the next part, we write gi(�;Xk;l; Y k) and gi(�;X; Y)
instead of gi(�;Xi

k;l;:::;Xn
k;l;Yi

k;:::;Yn
k) and gi(�;Xi;:::;Xn;Yi;:::;Yn) (it is then implied that

X and Y play formally the role of vectors containing their path from time-step i up to n).

Proposition 2.4. The hierarchical simulation factor that minimizes the variance of the
loss 1

MN

P
k=1
M P

l=1
N gi(�; Xk;l; Y k) with respect to N, subject to the budget constraint

M(N +P)=B, is

Ni
�= Qi

�P

Ri
�

s
; (2.10)

where

Ri
� = Cov(gi(�;X1;1; Y 1); gi(�;X1;2; Y 1))=Var(E(gi(�;X1;1; Y 1)jY 1))

Qi
� = E(Var(gi(�;X1;1; Y 1)jY 1))=Var(gi(�;X1;1; Y 1))¡Ri�:

Proof. After rearranging terms, one can show that

Var(1
MN

X
k=1

M X
l=1

N

gi(�;Xk;l; Y k))= Ri
�

B
(1
N
(N ¡ Qi

�P

Ri
�

s
)2+(Qi

�

Ri
�

s
+ P
p

)2);

2.3 Hierarchical Simulation and its Analysis 101

where

Qi
� = E[(gi(�;X1;1; Y 1))2]¡E [gi(�;X1;1; Y 1) gi(�;X1;2; Y 1)]

Ri
� = E [gi(�;X1;1; Y 1) g(�;X1;2; Y 1)]¡ (E[gi(�;X1;1; Y 1)])2:

�

The ratio
Qi
�

Ri
�
= E(Var(gi(�;X1;1; Y 1)jY 1))

Var(E(gi(�;X1;1; Y 1)jY 1))

in (2.10) measures the relative contributions of Y and X to the variance of the loss
estimator (note that Qi�+Ri

�=Var(gi(�; X1;1; Y 1)), by the total variance formula). To
estimate the values of Qi� and of Ri� therein, one only needs to simulate (X1;1; X1;2;
Y 1), i.e., with respect to the bare simulation of (X; Y), one extra simulation of X con-
ditional on each realization of Y .

As a fixed value of N has to be chosen throughout all the simulation and training task,
for the above result to be of practical use, Ni� has to be reasonably stable with respect to
both pricing time steps i and SGD iterations (the transfer learning scheme of Section 2.2.3
is advantageous in this respect in that it stabilizes the learning). If so, it leads to the
following:

Heuristic 2.5. Choose for N the average of the values Ni� obtained during the SGD
iterations and the time steps. Make for M the corresponding choice deduced from the
budget constraint, i.e. M = B

N +P
.

Note that N depends only on P , and M on P and 	. If P is not analytically known, it
can be deduced from simulation times of experiments corresponding to the same M but
different N . Namely, let B and B 0 the budgets corresponding to configurations (M;N)
and (M;N 0). We have

B
B 0

= P +N
P +N 0 (2.11)

One can deduce P by identifying the ratio in (2.11) to that of the execution times of
(M;N) and (M;N 0). For doing so, it is preferable to chooseM large enough to avoid time
measurement noise that may be due to caching or parallelization of the simulations.

2.3.4 Statistical Convergence Analysis

In this part we completely omit the index i from the notation. For every possible
parameterization �2��Rd of our neural network (with d parameters), define:

G(�) := E[g(�;X ; Y)]

ĜM;N(�) := 1
MN

X
k=1

M X
l=1

N

g(�;Xk;l; Y k)

and for all �> 0 and non-empty subsets E of �:

S�(E) := f�2E:G(�)�min
E
G+ �g

ŜM;N
� (E) := f�2E: ĜM;N(�)�min

E
ĜM;N + �g

102 Pathwise CVA Regressions With Oversimulated Defaults

Let X and Y be the state spaces of X and Y . For all �; � 02� and t2R; y 2Y , denote:

¡(�; � 0; X ; Y) := g(� 0; X; Y)¡ g(�;X ; Y)
M(�; � 0; t; y) := E [exp (t¡(�; � 0; X; Y))jY = y]:

We are interested in the event

fŜM;N
� (E)�/ S�(E)g=

[
�2E nS�(E)

\
� 02E

fĜM;N(�)� ĜM;N(� 0)+ �g; (2.12)

where E is a non-empty subset of � and �; � >0. This is the event that a minimum of the
finite-sample problem is far from being a minimum of the population mean minimization
problem. Theorem 2.6 provides a bound on the probability of this event when E is finite.

Theorem 2.6. Let E be a finite and non-empty subset of � and let 0< � < �. Assume
that E nS�(E)=/ ; and that there exist b1; b2> 0 such that for every t2R and �; � 02E:

M(�; � 0; t; Y) � exp (E[¡(�; � 0; X; Y)jY] t+ b1
2 t2

2
) a.s. (2.13)

E[exp (tE[¡(�; � 0; X ; Y)jY])] � exp (E[¡(�; � 0; X; Y)] t+ b2
2 t2

2
): (2.14)

Then we have:

Q(ŜM;N
� (E)�/ S�(E))< jE j exp (¡M(�¡ �)2

2 (b12/N + b22)
):

Proof. See Section 2.5.1. �

Theorem 2.7 yields a similar bound valid for a possibly infinite parameter space, under
additional assumptions of compactness and convexity of this space and Lipschitz continuity
of the point-wise loss function. For brevity we write S�(�) :=S�, ŜM;N

� (�) := ŜM;N
� .

Theorem 2.7. Assume that � is a compact and convex and let 0 < � < �. Let
D := sup�;� 02�k� ¡ � 0k and assume that there exists a mapping L:X � Y!R+? such that
E[exp (t L(X;Y))]<1 for all t in some neighbourhood of 0 and for all �; � 02�:

jg(�;X ; Y)¡ g(� 0;X ; Y)j�L(X;Y) k�¡ � 0k a.s. (2.15)

Let L� :=E[L(X;Y)] and assume that there exist `1; `2> 0 such that:

jL(X;Y)¡E[L(X;Y)jY]j � `1 a.s. (2.16)
jE[L(X;Y)jY]¡L� j � `2 a.s. (2.17)

and that there exist b1; b2> 0 such that for every t2R and �; � 02� :

M(�; � 0; t; Y) � exp (E[¡(�; � 0; X ; Y)jY] t+ b1
2 t2

2
) a:s:

E[exp (tE[¡(�; � 0;X ; Y)jY])] � exp (E[¡(�; � 0; X ; Y)] t+ b2
2 t2

2
):

Then

Q(ŜM;N
� �/ S�)� inf

L0>L�
f
�
(8L

0D
�¡ � +1)d+1

�
exp (¡M(�¡ �)2

8 (b12/N + b22)
)+ exp (¡M(L0¡L�)2

2 (`12/N + `22)
)g:

Proof. See Section 2.5.2. �

2.3 Hierarchical Simulation and its Analysis 103

The Lipschitz assumptions of Theorem 2.7 are reasonable in our case since our neural
network is Lipschitz with respect to its parameters, and its composition with the loss
function remains Lipschitz if we assume that the parameters are bounded. In particular,
these Lipschitz assumptions are satisfied in our learnings if we assume that (i) the processes
X and Y are bounded (natively or after numerical truncation), (ii) the payoff function f
(cf. (2.2)), which is embedded in the loss function g, is Lipschitz continuous or bounded,
and (iii) Lipschitz continuous activation functions are used in the neural networks.

The following result can help in selecting M for reaching a target confidence level
(1¡�).

Corollary 2.8. Let 0< � < 1 and assume the conditions in Theorem 2.7 hold. Then
choosing an arbitrary L0>L�, 0<u< 1, and

M =max f8 (b1
2/N + b22)
(�¡ �)2 log (1

u�

�
(8L

0D
�¡ � +1)d+1

�
); 8 (`1

2/N + `22)
(L0¡L�)2

log (1
(1¡u)�)g

we obtain that ŜM;N
� �S� with probability at least (1¡�).

Proof. Choose any L0>L� and 0<u< 1. Then it suffices that:8>>>>>>>>>><>>>>>>>>>>:

�
(8L

0D

�¡ � +1)d+1
�
exp (¡M(�¡ �)2

8 (b1
2

N
+ b22)

) < u�

exp (¡M(L0¡L�)2

2 (`1
2

N
+ `22)

) < (1¡u)�

which is verified by choosing M as stated. �

As the above formula for M is decreasing in N , no matter how large N is, M has to be
greater than the limit as N!1, which provides a lower bound for M . This is natural as
we do not expect to get an efficient sampling and good generalization just by increasing
the number of realizations of X only. Accordingly:

Heuristic 2.9. In order to satisfy a constraint Q(ŜM;N
� �S�)� 1¡� instead of a target

budget B, choose N as in Heuristic 2.5 (since it is independent of the budget value), then
deduce M from Corollary 2.8.

In the data augmentation logic recalled before Remark 2.3, one could then set the sizeM of
the mark-to-market data Y as a function of the hierarchical simulation factor N and of the
confidence level (1¡�). In a context where collecting the data Y is expensive, Corollary 2.8
would thus allow the user to benefit from the augmentation factor N through a reduction
of the size M of the dataset for Y . However, making Heuristic 2.9 really practical would
require to know (or estimate) the parameters b1, b2, `1, `2 and L�.

2.4 CVA Case Study

We now introduce a CVA case study, to be pursued in Section 2.4.4. In this context the
reference probability measure represents a risk-neutral measure chosen by the market, to
which the model is calibrated in mark-to-market terms.

104 Pathwise CVA Regressions With Oversimulated Defaults

2.4.1 Market and Credit Model

We consider a bank trading derivative contracts in different economies e with various
clients c. The currency corresponding to the economy labeled by 0 is taken as the reference
currency. Let there be given the short rate process rhei in each economy e, as well as
the exchange rate process �hei from the currency of each economy e=/ 0 to the reference
currency. Each client c of the bank has a stochastic default intensity process hci and a
default-time � hci. For notational convenience we also define �h0i=1 and we denote by h0i

the default intensity of the bank itself. We consider an Euler-Marayama time-discretization
of the model in Section 2.6. We use the same notation for the continuous-time processes and
their discrete-time approximations (with time-step equal to 1year to alleviate the notation).

Remark 2.10. In practice, the time-discretizations are stepping through a refined simula-
tion time grid. This simulation grid is also used when integrating numerically some of the
above diffusions, e.g. the default intensities in (2.39), or for defining risk-neutral discount
factors �i associated with the reference currency by approximating (¡ln�i) using numerical
integration2.5 of rh0i on [0; i]. Learning, pricing and checking for default events, however,
are only done at the coarser pricing time steps. Hence, although we step through the fine
time grid in our discretized diffusions, we only need to store the values of the processes at
the pricing time steps.

We define X as the collection of all the default indicator processes of the clients c and
Y as the collection of all the short interest rate, FX, and default intensity processes r, �
and (except for the instrumental �h0i=1), endowed with the filtration generated by the
innovation in the model, i.e. the collection of all the Gaussian and exponential variables
involved at the increasing time steps i2f1; : : : ; ng. Note that both Y (by itself) and (X;
Y) (jointly) are Markov processes with respect to this filtration.

2.4.2 Learning the CVA

We denote by MtMi
hci the mark-to-market at time i, from the point of view of the bank

and in units of the reference currency, of all the contracts with the client c. By mark-
to-market we mean trade additive counterparty-risk-free valuation, i.e. the risk-neutral
conditional expectation of the future contractually promised cash flows, expressed in units
of the reference currency and discounted at the risk-free rate rh0i. We restrict ourselves
to interest-rate derivatives for which mark-to-market valuation at i is a function of Yi, by
the nature of the cash-flows and the Markov property of Y 2.6. The CVA of the bank then
corresponds to the risk-neutral conditional expectation of its future risk-free discounted
client default losses. Namely, the CVA of the bank at the time step i is given by2.7

CVAi=
X
c

CVAi
hci1fi<�hcig; (2.18)

2.5. It is also possible to jointly simulate exactly rh0i and its integral without the need for numerical integration,
see for example Glasserman, 2004.

2.6. see Remark 2.13.

2.7. Assuming that the netting set for a given client is the whole set of transactions with this client.

2.4 CVA Case Study 105

for a (pre-default) CVA of the client c such that

CVAi
hci=E

24X
j=i

n

�i
¡1 �j+1(MtMj+1

hci)+1j<�hci�j+1

������������Xi; Yi

35: (2.19)

Hence CVAi
hci= 1fi<� hcig 'i

hci(Yi), where (cf. (2.4) and (2.7))

'i
hci2 argmin'2B(Rq)E

24(X
j=i

n¡1

�i
¡1 �j(MtMj

hci)+1j<�hci�j+1¡ '(Yi))
2

������������i< � (c)
35: (2.20)

We also mention the following default intensity-based formula for the CVA of the client c
(cf. [Albanese et al., 2021]):

CVAg i
hci=E

24X
j=i

n¡1

�i
¡1 �j(MtMj

hci)+ j
hci exp

¡
X
s=i

j¡1

s
hci
!������������Yi

351fi<� (c)g; (2.21)

which converges to the same continuous-time limit as CVAi
hci when the time discretisation

step2.8 goes to zero. Hence CVAg i
hci= 1fi<�hcig '~

hci(Yi), where (cf. (2.4) and (2.7))

'~i
hci2 argmin'2B(Rq)E

0@X
j=i

n¡1

�i
¡1 �j(MtMi

hci)+ j
hci exp (¡

X
s=i

j¡1

s
hci)¡ '(Yi)

1A2: (2.22)

We reiterate that Algorithm 2.2 with hierarchical simulation of (X;Y) is generically applic-
able to all the XVA metrics. The focus on the CVA in our case study is for benchmarking
purposes only. Were it for the CVA only, the regression learning scheme with minimal
variance would obviously be the one based on (2.21), where a CVA is computed separately
for each client based on its default intensity. At the other extreme of the spectrum, equiv-
alently to (2.18)-(2.19), one can rewrite the CVA of the bank using a single expectation
conditional on the default states of all clients, as

CVAi=E

24X
c

X
j=i

n

�i
¡1 �j+1(MtMj+1

hci)+1j<�hci�j+1

������������Xi; Yi

35: (2.23)

Hence CVAi= 'i
?(Xi; Yi), where

'i
?2argmin'2B(Rp�Rq)E

240@X
c

X
j=i

n

�i
¡1�j+1(MtMj+1

hci)+1j<�hci�j+1¡'(Xi;Yi)

1A235: (2.24)

On top of the learning schemes (2.22) and (2.24) associated with the formulations (2.21)
and (2.23), another computational alternative in each case is nestedMonte Carlo as detailed
in [Abbas-Turki et al., 2018]. This variety of approaches will be useful for benchmarking
purposes.

2.8. Conventionally set to one in this paper.

106 Pathwise CVA Regressions With Oversimulated Defaults

2.4.3 Preliminary Learning Results Based on IID Data
In the following experiments, we assume that a bank is trading derivatives in 10 economies
with 8 clients. Implementing the discretized mark-to-market and credit model, we get a
total of 10 interest rates, 9 cross-currency rates, and 8 default intensities. This yields 27
diffusive mark-to-market risk factors and 8 default indicator processes. For time-stepping,
we use n= 100 pricing time steps and 25 simulation sub-steps per pricing time step (see
Remark 2.10). We consider a portfolio of 500 interest rate swaps with random character-
istics (notional, currency and counterparty), the MtMhci are thus analytic. All swaps are
priced at par at inception. For all the runs of the simulations in this section, whether they
be for training or testing, we use M = 16384 paths for the market risk factors Y .

We implemented the learning procedure of Algorithm 2.2 in PyTorch with custom
CUDA kernels for label generation during the backward iterations, the way detailed in
Section 2.2.6 (and in the accompanying github repository). Moreover we implemented
an optimized CUDA benchmark involving nested simulations, using the intensity-based
formulation (2.21) for the inner CVA computations. For the nested Monte Carlo, with a
view on the square-root rule recalled in [Abbas-Turki et al., 2018](Section 3.3), we used
128 inner paths. The nested Monte Carlo CVA is only computed at few pricing times due
to the heavy calculation.

The comparison between the two panels of Figure 2.4 reveals a difficulty with the neural
net learning approach of Algorithm 2.2 applied to the defaults-based formulation (2.23) on
the basis of i.i.d. simulated data. In this case, represented by the left panel in Figure 2.4,
the network only learns a rather crude and noisy approximation of the CVA conditional
to each training time: it is only on the mean that the learned CVA agrees with the nested
Monte Carlo estimator; on the tails it largely fails. As visible from the right panel, the
CVA learned using the intensity-based formulation, instead, yields satisfactory results on
a wide range of quantiles of the targeted distribution.

0 20 40 60 80 100

0

2000

4000
using default indicators

0 20 40 60 80 100

using default intensities

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 2.4. CVA learned using default indicators versus using default intensities (X axis: pricing
times, Y axis: CVA levels). Statistics computed using out-of-sample paths.

2.4.4 Learning Results Based on Hierarchically Simulated Data
In order to improve the learning (2.24) of the defaults-based CVA (2.23) (cf. Section 2.4.3),
we apply to it the hierarchical simulation technique of Section 2.3. Let (r1; �1; 1);:::; (rM ;
�M ; M), be i.i.d sample paths of the triple of processes (r; �;). Let f�k;l; 1� k �M;
1� l�N g be i.i.d samples of �, the vector defined by the right-hand side in (2.39) where c
ranges over clients. Then we can defineMN samples of the vector of the default indicator
processes of the clients at every pricing time i based on (2.39). Figure 2.5 illustrates the
ensuing simulation scheme for the default indicator of a generic client of the bank, with
sampled default times �k;l.

2.4 CVA Case Study 107

𝟙 𝟙

𝟙 𝟙

Figure 2.5. Default simulation scheme.

We then learn the CVA process at different time steps for the whole portfolio at once
based on (2.23), trying different combinations of the number of market paths M and of
the hierarchical simulation factor N . Figures 2.6 and 2.8 and show the relative RMSE of
the trained neural network against the nested Monte Carlo benchmark2.9, the simulation
and training times on the GPU and the host RAM usage, as functions of the number of
diffusion pathsM and of the hierarchical simulation factor N . An estimation of the RMSE
against the groundtruth CVA, without computing the latter, is also provided in Figure 2.7.
We already see some configurations (1

2
M;N) being better than (M;

1

2
N), as they achieve

a similar accuracy with less memory footprint. For example, (32768; 1024) is better than
(65536;512), given that the former is 30% faster to simulate and price, while also occupying
23% less CPU memory. For the execution times in Figure 2.8, the runs were done on a
server with an Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs (out of which we
used only one). For performance comparison reasons, we use for all (M;N) configurations
the same number of epochs E=8 and number of batches jBj= 32, which yields a total of
256 stochastic gradient descent steps during any training task.

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

of diffusion paths

131072

65536

32768

16384

8192

4096

2048

1024

512

256

32

1

o
ve

r-
si

m
u

la
ti

o
n

fa
ct

o
r

0.26

0.26 0.26

0.26 0.26 0.28

0.25 0.28 0.28 0.23

0.31 0.27 0.27 0.23 0.18

0.33 0.3 0.29 0.23 0.17 0.14

0.41 0.37 0.29 0.22 0.18 0.13 0.1

0.54 0.36 0.29 0.22 0.18 0.13 0.1 0.07

0.67 0.45 0.32 0.24 0.19 0.14 0.11 0.08 0.07

1 0.54 0.39 0.29 0.22 0.15 0.12 0.09 0.07 0.05

2 1.2 0.96 0.65 0.51 0.33 0.27 0.15 0.12 0.09

2.2 2.7 3 2.5 1.9 1.4 0.96 0.87 0.69 0.49

0.5

1.0

1.5

2.0

2.5

Figure 2.6. Relative RMSE of the prediction against a nested Monte Carlo benchmark at the
pricing time i=5 years, for different combinations of the number of market pathsM and of the hier-
archical simulation (or simply over-simulation in the figure) factorN , when the nested Monte Carlo

benchmark is non-zero. The error here is a Monte Carlo estimate of E
h�

CVApred¡CVAnested

CVAnested

�
2
ir

where CVApred is the CVA estimate predicted by the considered neural network given a state of
market and default factors and CVAnested is a nested Monte Carlo estimator given the same state.

2.9. RMSE restricted to the realizations where the benchmark is non-zero.

108 Pathwise CVA Regressions With Oversimulated Defaults

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

of diffusion paths

131072

65536

32768

16384

8192

4096

2048

1024

512

256

32

1

o
ve

r-
si

m
u

la
ti

o
n

fa
ct

o
r

0.22

0.21 0.24

0.2 0.21 0.25

0.23 0.22 0.23 0.2

0.25 0.23 0.22 0.19 0.18

0.27 0.3 0.22 0.18 0.17 0.14

0.69 0.24 0.22 0.18 0.15 0.13 0.11

0.43 0.52 0.4 0.18 0.17 0.13 0.11 0.08

1.7 0.32 0.26 0.22 0.17 0.15 0.11 0.08 0.07

1.2 0.42 0.72 0.28 0.26 0.17 0.13 0.09 0.08 0.05

1.3 0.97 0.77 0.78 0.45 0.41 0.28 0.19 0.14 0.1

1.9 1.8 1.7 1.7 1.6 1.3 1 0.77 0.64 0.48

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 2.7. Relative RMSE of the prediction against the ground-truth CVA at the pricing time
i=5 years, computed by the twin simulation approach of Section 2.2.5 for different combinations
of the number of market paths M and of the hierarchical simulation (or simply over-simulation

in the figure) factor N . The error here is a Monte Carlo estimate of E[(CVApred¡CVAexact)2]

E[CVAexact
2]

q
,

where CVApred is the CVA estimate predicted by the considered neural network given a state of
market and default factors and CVAexact is the exact CVA (the value of which does not need to
be computed, by virtue of (2.8)-(2.9)), given the same state.

81
92

16
38

4

32
76

8

65
53

6

13
10

72

of diffusion paths

40
96

20
48

10
24

51
2

25
6

1o
ve

r-
si

m
u

la
ti

o
n

fa
ct

o
r 3.1

1.9 3.1

1.3 1.9 3.2

1.1 1.4 2.0 4.0

1.0 1.1 1.5 2.8 5.7

0.8 0.9 1.0 1.7 3.4

1

2

3

4

5

81
92

16
38

4

32
76

8

65
53

6

13
10

72

of diffusion paths

40
96

20
48

10
24

51
2

25
6

1o
ve

r-
si

m
u

la
ti

o
n

fa
ct

o
r 8.1

4.5 8.1

2.6 4.5 8.1

1.9 2.7 4.6 8.2

1.7 1.9 2.7 4.7 8.5

1.7 1.4 1.5 1.6 2.0

2

4

6

8

81
92

16
38

4

32
76

8

65
53

6

13
10

72

of diffusion paths

40
96

20
48

10
24

51
2

25
6o
ve

r-
si

m
u

la
ti

o
n

fa
ct

o
r 0.57

0.3 0.6

0.16 0.33 0.66

0.096 0.19 0.39 0.77

0.063 0.12 0.25 0.5 1

0.2

0.4

0.6

0.8

1.0

Figure 2.8. Simulation times in seconds (left) and training times in minutes (center) and
RAM usage as a % of its maximum usage over all the displayed experiments (right), for different
combinations of the number of market paths M and of the hierarchical simulation factor N .

The dominance of the impact of the variance of X on that of � has been demonstrated

2.4 CVA Case Study 109

in Figure 2.3. Figure 2.9 shows the Qi
�

Ri
�

r
(cf. (2.10)) obtained in the base case N =1.

36

38

40

t = 9.0 years 50

100

150

t = 8.0 years

3.0

3.5

t = 6.0 years
4

6

t = 5.0 years

0 50 100 150 200 250
2

4

6

t = 4.0 years

0 50 100 150 200 250

3

4

t = 3.0 years

Figure 2.9. Qi
�

Ri
�

r
at different pricing time steps i (panels) and SGD iterations (x axes).

With respect to the discussion introducing Heuristic 2.5, one can note that these are
quite stable, of the order of a few tens, with respect to both pricing time steps i and SGD

iterations. To obtain from the Qi
�

Ri
�

r
the Ni

� in (2.10), one needs to multiply them by P
p

(e.g. if a market simulation is 100 times slower than an ensuing default simulation, then the
factors displayed in Figure 2.9 must be multiplied by 10). Solving the equation (2.11) for
P on the basis of the columnsM =65536 in Figures 2.6-2.8 yields P �497. So the numbers
in Figure 2.9 need to be multiplied by 497

p
� 22.3 to get the optimal N as per Heuristic

2.5. In view of this, we expect an optimal hierarchical simulation factor N of the order of
a few hundreds.

More results for N = 1; 32; 64; 128; 512 are shown in Figure 2.10, which are to be
compared to the right plot in Figure 2.4 obtained when learning the CVA relying on the
intensity-based formula (2.21). In line with the above expectations, one needs N = 512
in order to have a close enough match between the 1, 2.5, 97.5 and 99-th percentiles of
the CVA learned from defaults and those of the nested Monte Carlo estimator (or of the
intensity-based CVA learner represented by the right panel in Figure 2.4).

110 Pathwise CVA Regressions With Oversimulated Defaults

0

2000

4000
N = 1 N = 32

0

2000

4000
N = 64 N = 128

0 20 40 60 80 100

0

2000

4000
N = 256

0 20 40 60 80 100

N = 512

Mean of learned CVA

99% & 1% percentiles of learned CVA

97.5% & 2.5% percentiles of learned CVA

Mean of nested MC CVA

99% & 1% percentiles of nested MC CVA

97.5% & 2.5% percentiles of nested MC CVA

Figure 2.10. Learned and nested Monte Carlo CVA processes for various hierarchical simulation
factors N (x-axis: pricing times, y-axis: CVA levels; M =16384). Statistics computed using out-
of-sample paths.

These results show that hierarchical simulation is essential to a defaults-based CVA
learner.

Even after writing an optimized GPU implementation for the nested Monte Carlo
estimator, it takes at least 32 minutes on the same hardware as above to compute that
estimator for M = 16384 and M

p
= 128 inner paths2.10, compared to approximately 8

minutes in the case of the learning approach with a very high hierarchical simulation factor
(N =2048). Moreover, going to higher XVA layers such as the FVA and the KVA, a nested
Monte Carlo approach would become M

p
times slower per each new layer [Abbas-Turki et

al., 2018], whereas a regression approach would just become slower by a constant each time
a new XVA layer is added. In addition, learned XVA metrics can be used in predictionat a
very low cost (inference is very fast as it involves no automatic differentation or stochastic
gradient descent), whereas nested Monte Carlo numbers must be recomputed from scratch
every time.

2.4.5 Conclusion

Having in mind a portfolio of the order of one million trades spread over maturities ranging
over 50 years and involving a few thousands of clients, the computational CPU ressources
typically available in banks hardly allow considering a mark-to-market cube with more
than 104 paths. Switching to GPU ressources (as required anyway if training path-wise

2.10. However, when doing the error computations and in all plots, we used 1024 inner paths to get benchmark
CVAs that are sufficiently accurate point-wise and be able to get accurate tail estimates, and nested Monte Carlo
simulation thus takes 8 times more computation time.

2.4 CVA Case Study 111

XVA metrics is envisioned) could allow computing a mark-to-market cube with 105 to 106

paths (in about one hour of computations spread over a few GPUs). Moreover, while we
performed our computations using only one GPU, we expect a bank to have access to more
than just a single GPU, which would drastically reduce the computation times given that
Monte Carlo simulations and stochastic gradient descent can easily be adapted to multi-
GPU setups.

The bottom row of Figure 2.6 and the first plot (N =1) of Figure 2.10 illustrate that
a path-wise CVA cannot be learned based on the hybrid market and defaults formulation
(2.23): forM =16384 and 131072, the corresponding errors with respect to the banchmark
nested Monte Carlo are 96% and 49%. However, increasing N from 1 (bottom row) to 256
brings these errors down to 11% and to 5%, while for M = 1024 and N = 512 the error is
1%. As visible from Figure 2.8, the simulation times are only marginally increased when
increasing the hierarchical simulation factor N (while increasing the number of diffusion
paths M increases the simulation time approximately by the same factor of increase in
M). These results show that the hierarchical simulation technique is key to the success of
a learning approach involving a combination of mark-to-market and default data.

2.5 Technical Proofs

The following proofs use arguments from Shapiro et al., 2014 and extend similar results to
the conditionally independent, hierarchical simulation case. Theorem 2.6 extends the finite
case in [Shapiro et al., 2021](Section 5.3.1). The major modifications in the proof are the
use of a conditional moment generating function, the establishment of a large deviation
upper-bound based on it, and the strict convexity of log (E[M(t

N
; Y)N]) with respect to

t which becomes more technical in the conditional case. Then, similar to [Shapiro et al.,
2021](Section 5.3.2), Theorem 2.7 extends these results to the infinite and bounded case,
by Lipschitz continuity arguments. In both cases we rely on the following:

Lemma 2.11. Let ':X �Y!R be such that '(X;Y) is integrable, does not degenerate
to a constant and that, for all z 2 R and y 2 V, M(z; y) := E [exp (z '(X; Y))jY = y]
is well-defined. Then the Fenchel conjugate IN: a 7! supt2R ft a¡ log (E[M(t

N
; Y)N])g of

t 7! log (E[M(t
N
; Y)N]) is well-defined and

1
M

log

(
Q

1

MN

X
k=1

M X
l=1

N

'(Xk;l; Y k)� a

!)
�¡IN(a) for all a>E['(X;Y)] (2.25)

where

IN(a)=
(a¡E['(X;Y)])2

1

N
E[Var('(X;Y)j�)]+Var(E['(X;Y)jY])

+ o(ja¡E['(X;Y)]j2) (2.26)

Proof.
Let t > 0. Applying the Markov inequality, we have:

Q(1
MN

X
k=1

M X
l=1

N

'(Xk;l; Y k)� a) = Q(exp (t
N

X
k=1

M X
l=1

N

'(Xk;l; Y k))� exp (Mta))

� exp(¡Mta)E[exp(t
N

X
k=1

M X
l=1

N

'(Xk;l;Y k))]: (2.27)

112 Pathwise CVA Regressions With Oversimulated Defaults

For every i 2 f1; : : : ; M g, denote ZNi := exp (t
N

P
j=1
N '(X i;j ; Y i)). By using the tower

property repeatedly, one can show recursively that for all i 2 f1; : : : ; M g, denoting
Zi :=�(ZM;N

1 ; : : : ; ZM;N
M¡i; Y M¡i+1; : : : Y M):

E[exp(t
N

X
k=1

M X
l=1

N

'(Xk;l;Y k))] = E

"
E

" Y
k=1

M¡i+1

ZN
k

! Y
k=1

i¡1

M(t
N
;YM¡k+1)N

!
jZi

##

= E

" Y
k=1

M¡i

ZN
k

! Y
k=1

i¡1

M
�
t
N
;Y M¡k+1

�
N

!
E[ZNM¡i+1jYM¡i+1]

#

= E

" Y
k=1

M¡i
ZN
k

! Y
k=1

i

M(t
N
;Y M¡k+1)N

!#
:

(2.28)

In particular, this identity for i=M yields (recalling Y and the Y k are i.i.d.)

E[exp (t
N

X
k=1

M X
l=1

N

'(Xk;l; Y k))] = (E[M(t
N
; Y)N])M:

Hence, by (2.27),

1
M

log fQ(1
MN

X
k=1

M X
l=1

N

'(Xk;l; Y k)� a)g�¡t a+ log (E[M(t
N
; Y)N]):

The inequality being true for arbitrary t > 0, taking the infimum over t > 0 on the RHS
yields

1
M

log

Q(1
MN

X
k=1

M X
l=1

N

'(Xk;l; Y k)� a)

!
�¡sup

t>0

�
t a¡ log (E[M(t

N
; Y)N])

�
:

In order to establish (2.25), it remains to show that t 7! log (E[M(t
N
; Y)N]) is convex and

that IN(a)= supt>0 ft a¡ log (E[M(t
N
; Y)N])g.

Define �(t) := log (E[M(t
N
; Y)N]). As a moment generating function is infinitely differ-

entiable on its domain of definition, � is infinitely differentiable. After computations we
get �0(0)=E['(X;Y)] and �00(t)= det (E[A])

E[E[V jY]N]2 for the 2� 2 random matrix

A=

24 1
N
E [U2V jY]E[V jY]N¡1+(1¡ 1

N
)E [UV jY]2E[V jY]N¡2 E [UV jY]E[V jY]N¡1

E [UV jY]E[V jY]N¡1 E[V jY]N

35;
where U := '(X;Y) and V := exp (t

N
'(X;Y)). We have:

A=E[V jY]N¡2
24 1
N
E [U2V jY]E[V jY] + (1¡ 1

N
)E [UV jY]2 E [UV jY]E[V jY]

E [UV jY]E[V jY] E[V jY]2

35
Let �; � 2R and

��;� :=
1

E[V jY]N¡2
[�; �]A

�
�
�

�
=�2(1

N
E [U2V jY]E[V jY]+(1¡ 1

N
)E [UV jY]2)+�2E[V jY]2+2��E [UV jY]E[V jY]:

2.5 Technical Proofs 113

From the Cauchy-Schwarz inequality, we have:

E [U2V jY]E[V jY]�E [UV jY]2: (2.29)
We then have:

��;� � �2E [UV jY]2+ �2E[V jY]2+2��E [UV jY]E[V jY]
= (�E [UV jY]+ �E[V jY])2� 0:

Furthermore, we have ��;�> 0 because ��;�=0 would imply equality in (2.29), which in
turn is only attained when U =1 a.s., contradicting the non-degeneracy assumption made
on '. Therefore A is a.s. positive definite. Hence E[A] is positive definite, i.e. det(E[A])>0.
In conclusion, � is strictly convex.

Let (t) := t a¡�(t). For a>E['(X;Y)], we have

 0(0)= a¡�0(0)= a¡E['(X;Y)]> 0:

Therefore there exists some ">0 such that 0(t)> 0 for all t2 (0; "). Hence, for all t2 (0;
"), we have t a¡�(t)> 0.

On the other hand, we have:

sup
t<0
ft a¡�(t)g= sup

t<0
ft (a¡E['(X;Y)])|| |{z}} }

<0

+ tE['(X;Y)]¡�(t)g:

Using convexity and concavity inequalities, we have

�(t) = log (E[M(t
N
; Y)N])

� N log (E[M(t
N
; Y)])

� tE['(X;Y)]:

We then obtain that
sup
t<0
ft a¡�(t)g� 0:

Thus
sup
t>0
ft a¡ log (E[M(t

N
; Y)N])g= sup

t2R
ft a¡ log (E[M(t

N
; Y)N])g= IN(a);

which finishes to prove (2.25). As the Fenchel conjugate of the twice differentiable and
strictly convex function �, IN is twice differentiable and we have

IN(E['(X;Y)]) = ¡�(0)=0
IN
0 (E['(X;Y)]) = 0

IN
00(E['(X;Y)]) = 1

�00(0)
= 1

1

N
E[Var('(X;Y)jY)]+Var(E['(X;Y)jY])

:

Hence a Taylor expansion around E['(X;Y)] gives (2.26). �
Remark 2.12. The Taylor approximation for the Fenchel conjugate in Lemma 2.11 would
become exact if we added the hypothesis that '(X; Y) is Gaussian conditionally on Y
and that E['(X; Y)jY] is Gaussian. However, we can still obtain a similar expression as
an exact lower-bound if we just assume sub-Gaussianity as in Theorem 2.7 (see the end of
Section 2.5.1).

2.5.1 Proof of Theorem 2.6
Under the assumptions of Theorem 2.6, we have in view of (2.12):

Q(ŜM;N
� (E)�/ S�(E))�

X
�2E nS�(E)

Q(
\
� 02E

fĜM;N(�)� ĜM;N(� 0)+ �g) (2.30)

114 Pathwise CVA Regressions With Oversimulated Defaults

Let us consider a minimizer �? of G over E, hence

8� 2E nS�; G(�?)<G(�)¡ �: (2.31)

We then have:

Q(ŜM;N
� (E)�/ S�(E))�

X
�2E nS�(E)

Q(ĜM;N(�)� ĜM;N(�?)+ �) (2.32)

Define:

¡̂M;N(�) :=
1

M;N

X
k=1

M X
l=1

N

¡(�?; �;Xk;l; Y k)= ĜM;N(�?)¡ ĜM;N(�)

Inequality (2.32) can then be rewritten:

Q(ŜM;N
� �/ S�(E))�

X
�2E nS�(E)

Q(¡̂M;N(�)�¡�): (2.33)

Now observe that

E[¡(�?; �;X; Y)] =G(�?)¡G(�)<¡� <¡� (2.34)

for all �2E. Hence, from inequality (2.33) and Lemma 2.11, we obtain

Q(ŜM;N
� (E)�/ S�(E)) � jE j max

�2EnS�(E)
fQ(¡̂M;N(�)�¡�)g

� jE j exp (¡M min
�2E nS�(E)

fIN� (¡�)g); (2.35)

where IN
� is the Fenchel conjugate of log (E[M�(t

N
; Y)N]) and

M�(z; y) :=E [exp (z ¡(�?; �;X ; Y))jY = y]

for every �2E. From inequalities (2.13) and (2.14), we get for every �2E nS�(E) and t2R:

log (E[M�(t
N
; Y)N])�E[¡(�?; �;X; Y)] t+ 1

2
(b1
2

N
+ b22) t2

Thus, for every �2E nS�(E), we have:

IN
� (¡�) = sup

t2R
ft (¡�¡E[¡(�?; �;X; Y)])+E[¡(�?; �;X ; Y)] t¡ log (E[M�(t

N
; Y)N])g

� sup
t2R
ft (¡�¡E[¡(�?; �; �;¡)])¡ 1

2
(b1
2

N
+ b22) t2g

= (¡�¡E[¡(�?; �; �;¡)])2

2 (b1
2

N
+ b22)

>
(�¡ �)2

2 (b1
2

N
+ b22)

(2.36)

where the last inequality comes from (2.34). This yields the result.

2.5.2 Proof of Theorem 2.7
From the Lipschitz assumption (2.15), it follows that for all �; � 02�:

jĜM;N(�)¡ ĜM;N(� 0)j� L̂M;N k�¡ � 0k a.s.

2.5 Technical Proofs 115

and

jG(�)¡G(� 0)j �E [L (X;Y)] k�¡ � 0k
where

L̂M;N :=
1

MN

X
k=1

M X
l=1

N

L (Xk;l; Y k):

Let 0<� 0< �0 and let �0 := f�1; : : : ; �Cg be a minimal %-covering of �, for a given %> 0.
We then have (cf. [Vershynin, 2018](Corollary 4.2.13 p.85)):

C � (2D
%

+1)d:

Let �~ :=�0[f�?g, where �?2Argmin�2�G(�). We have j�~ j� (2D
%
+1)d+1. Theorem 2.6

yields:

Q(ŜM;N
� 0 (�~)�/ S�0(�~))<

�
(2D
%

+1)d+1
�
exp (¡M (�0¡ � 0)2

2 (b1
2

N
+ b22)

):

Our next goal is to show the following assertion for suitable choices of � 0 and �0 and for
any L0>L� (note that L�<1):

fŜM;N
� �/ S�g\fL0� L̂M;Ng�fŜM;N

� 0 (�~)�/ S�0(�~)g: (2.37)

Let L0>L� and assume that ŜM;N
� �/ S� and L0� L̂M;N, and that ŜM;N

� 0 (�~)� S�0(�~). In
particular, there exists �2� such that ĜM;N(�)�min� ĜM;N + � and G(�)>min�G+ �.
Let then � 0��~ such that k�¡ � 0k< %. We have:

ĜM;N(� 0)� ĜM;N(�)+L0 %�min
�
ĜM;N + �+L0 %:

Thus, if we choose � 0=�+L0 %, then we have ĜM;N(� 0)�min� ĜM;N+� 0, and consequently
� 02 ŜM;N

� 0 (�~) (as �~ ��). Hence, by our assumption ŜM;N
� 0 (�~)�S�0(�~), we get that � 02

S�
0
(�~). Thus:

G(�)�G(� 0)+L0 %�min
�~
G+ �0+L0 %=min

�
G+ �0+L0 %;

as min�~ G=min�G (since �?2�~). Hence, if we also choose �0= �¡L0 % with % such that

%<
�¡ �
2L0

in order to ensure that 0<� 0<�0, then G(�)�min�G+ �, which contradicts our
assumption and proves (2.37). Thus

Q(fŜM;N
� �/ S�g\ fL0� L̂M;Ng)�Q(ŜM;N

� 0 (�~)�/ S�0(�~)):
As a consequence,

Q(ŜM;N
� �/ S�)�Q(ŜM;N

� 0 (�~)�/ S�0(�~))+Q(L̂M;N >L
0):

But applying Hoeffding's lemma on the inequalities (2.16) and (2.17), Lemma 2.11, and
proceeding similarly as in (2.36) to establish a lower bound for the Legendre transform,
yields

Q(L̂M;N >L
0)� exp (¡M (L0¡L�)2

2 (`1
2

N
+ `22)

) (2.38)

Thus,

Q(ŜM;N
� �/ S�)�

�
(2D
%

+1)d+1
�
exp (¡M (�0¡ � 0)2

2 (b1
2

N
+ b22)

)+ exp (¡M (L0¡L�)2

2 (`1
2

N
+ `22)

):

116 Pathwise CVA Regressions With Oversimulated Defaults

We have �0¡ � 0= �¡ �¡2L0 %. Finally, if we choose %= �¡ �
4L0

, then we get �0¡ � 0= �¡ �
2

and

Q(ŜM;N
� �/ S�)�

�
(8L

0D
�¡ � +1)d+1

�
exp (¡M (�¡ �)2

8 (b1
2

N
+ b22)

)+ exp (¡M (L0¡L�)2

2 (`1
2

N
+ `22)

):

This concludes our proof.

2.6 Market and Credit Model in Continuous Time

For every economy e, the short-rate rhei and the exchange rate �hei against the reference
currency respectively follow Vasicek and log-normal dynamics

drt
hei = ahei (bhei¡ rt

hei)dt+�r;heidB~t
r;hei

dlog �t
hei = (rt

h0i¡ rt
hei¡ 1

2
j��;heij2)dt+��;heidBt

�;hei
:

For both the bank (�c=0�) and every counterparty c (=/0), the process hci (funding spread
for c=0 and default intensity for c� 1) follows CIR dynamics

dt
hci=�hci (�hci¡ t

hci)dt+ �hci t
hci

q
dBt

;hci
:

In the above, for every e, B~r;hei is a Qhei Brownian motion and, for every client c and
economy e, B�;hei and B;hci are Qh0i Brownian motions. Here Qhei is the risk-neutral

measure corresponding to the numeraire e
R
0
�
rs
hei
ds, and ah:i, bh:i, �:;h:i, �h:i, �h:i, �h:i are model

parameters calibrated using liquid market instruments.
In line with the fundamental theorem of asset pricing, for any asset Z priced in a foreign

currency e� 1, exp (¡
R
0

�
rs
heids)Z and ¡

R
0
�
rs
h0i
ds
�heiZ are martingales with respect to Qhei

and Qh0i respectively. In particular,

EQhei [e¡
R
0
t
rs
hei
ds
Zt] =Z0=

1

�0
hei E

Qh0i [e¡
R
0
t
rs
h0i
ds
�t
hei
Zt]:

Thus,
dQhei

dQh0i jt
= exp (

Z
0

t

(rs
hei¡ rs

h0i)ds)
�t
hei

�0
hei = exp (¡1

2
(��;hei)2 t+��;heiBt

�;hei):

Hence, by Girsanov's theorem, if we define Bt
r;hei such that:

dB~t
r;hei=dBt

r;hei¡��;heidhBr;hei; B�;heiit;

then Bt
r;hei is a Qh0i Brownian motion. In particular, assuming dhBr;hei; B�;heiit= �heidt,

we get the following Qh0i dynamics for the short-rate of economy e:

drt
hei=(ahei (bhei¡ rt

hei)¡ �hei��;hei)dt+�r;heidBt
r;hei

:

For every counterparty c, the default time � hci can be modeled as a the stopping time
inf ft > 0;

R
0

t
s
hcids� �hcig, where �hci is a standard exponential. That is, for every t� 0,

1f�hci�tg=1, � hci� t,
Z
0

t

s
hcids� �hci: (2.39)

2.6 Market and Credit Model in Continuous Time 117

For the instruments, we assume a book comprised of interest rate swaps at par at inception.
For each swap, we denote the set of its reset dates by R and by t¡ and t+ the reset dates
respectively immediately preceding and following t. We assume that successive reset dates
are regularly spaced by �, that the swap is spot starting, i.e. 02R, and that the swap is
paying fixed �s, where s is the swap rate, and receiving floating 1

ZCt¡(t)
¡1, where ZCt(t 0) is

the price of a zero-coupon bond2.11 at time t with maturity t 0, at each reset date t2Rnf0g.
Denoting by Ptsw the price of the swap at time t in units of the underlying currency2.12,
we have for all t� t�:=maxR:

Pt
sw=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ZCt(t+)
ZCt¡(t+)

¡ZCt(t�)¡ � s
X

t 02R;t 0>t
ZCt(t 0) if t2/R nf0g

1
ZCt¡(t)

¡ZCt(t�)¡ � s (1+
X

t 02R;t0>t
ZCt(t 0)) if t2R nf0g

1¡ZC0(t�)¡ � s
X

t 02Rnf0g
ZC0(t 0) if t=0

Remark 2.13. The path-dependence induced by the previous reset date can be resorbed
by including the short rates of that date among the risk factors.

2.11. Note that the price of a zero-coupon bond has a closed-form under our affine short-rate model.

2.12. The swap prices are then to be multiplied by the cross-currency exchange rate processes to have all prices
in the same reference currency.

118 Pathwise CVA Regressions With Oversimulated Defaults

Chapter 3

Learning Value-at-Risk and Expected
Shortfall

This chapter, also submitted as a paper, was co-authored with David Barrera, Stéphane
Crépey, Emmanuel Gobet and Hoang-Dung Nguyen.

In a recent paper, Dimitriadis and Bayer devised a linear regression based method
to jointly learn a conditional VaR (Value-at-Risk) and ES (Expected Shortfall) based
on a joint elicitability representation developed by Fissler and Ziegel, and provided an
asymptotic analysis of its convergence. We propose a non-asymptotic convergence analysis
of an alternative two-steps approach to learn these functionals in a non-parametric setting
using Rademacher and VC-based bounds. Our approach for the VaR is extended to the
problem of learning multiple VaRs corresponding to multiple quantile levels. We provide
efficient learning schemes based on neural network quantile and least-squares regressions
and extensive numerical experiments in a Gaussian toy-model and a financial case-study
where the objective is to learn a Dynamic Initial Margin (DIM).

Python notebooks reproducing the results of this paper are available at https://
github.com/BouazzaSE/Learning-VaR-and-ES. HTML versions of the same notebooks
are also available in order to view the experiments and the results on a browser without
having to install Jupyter Notebook. Note that, due to GitHub size limitations, the HTML
files must be downloaded locally (and then opened with a browser) to be displayed.

3.1 Introduction

Quantile regression is a classical statistical problem that has received attention since the
1750s. Recent developments are extensively surveyed in [Koenker, 2017], where it is noted
that the least absolute criterion (or pinball loss function) for the median even preceded the
least squares for the mean (introduced by Legendre in 1805).

Quantile regression is commonly done in the context of linear models, where the mini-
mization problem can be cast as a linear program and subsequently solved using a simplex
method. When several quantile levels are jointly considered, a flaw inherent to linear quan-
tile regression is the problem of crossing quantile curves. Alternative approaches include
nonlinear quantile regression based on interior point methods [Koenker and Park, 1996], or
nonparametric quantile regression based on stochastic gradient descent methods [Rodrigues
and Pereira, 2020].

119

https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES
https://github.com/BouazzaSE/Learning-VaR-and-ES

Dimitriadis and Bayer, 2019 develop an asymptotic convergence analysis, establishing
the consistency and asymptotic normality, under somewhat strong semiparametric assump-
tions and regularity conditions, of a joint linear regression estimator for the value-at-
risk and expected shortfall based on their joint elicitability representation [Fissler and
Ziegel, 2016; Fissler et al., 2016], which is implemented numerically using the Nelder-Mead
optimization algorithm. Closer to our proposals, [Padilla et al., 2020] consider quantile
regression with ReLU networks, including a discussion on minimax rates for quantile func-
tions with Hölder-related regularity conditions, and providing qualitative non-asymptotic
estimates for such networks, of which our corresponding results can be considered quan-
titative versions. [Shen et al., 2021] consider a different approach to the non-asymptotic
analysis where they assume that the target conditional quantile function has a composi-
tional structure using Hölder-continuous functions. The authors derive VC-based error
bounds that depend on a combination of input dimension and the dimension of the com-
posed functions, as opposed to only on the dimension of the inputs as usually found in the
literature, and are therefore less impacted by the curse of dimensionality

In harmony with the numerous financial applications, we also refer to quantiles as value-
at-risk (VaR). The contribution of the present paper is the non-asymptotic convergence
analysis of a learning algorithm for the VaR and for the related expected shortfall (ES),
i.e. the expected loss given the loss exceeds the VaR, possibly for multiple quantile levels
at the same time, in a nonparametric setup. We also provide extensive discussions about
practical implementations using feedforward neural networks, numerical experiments in a
Gaussian toy model, and a financial case-study where the goal is to learn a dynamic initial
margin in a multi-factor model.

The paper is outlined as follows: Section 3.2 presents our base learning algorithm. The
convergence analysis of this scheme is performed in Section 3.3, relying on the general
results of [Barrera, 2022]. We introduce multi-quantile extensions of the above scheme
in Section 3.3.5. Appendix 3.A gathers classical elicitability results underlying different
possible VaR and ES learning algorithms (including the one in Section 3.2, but also a
joint representation à la [Fissler and Ziegel, 2016; Fissler et al., 2016], shown less efficient
numerically in the paper's github).

We denote by (
;A; P) a probability space, which admits all the random variables
appearing below (the existence of (
;A;P) can be verified a posteriori), with corresponding
expectation operator denoted by E, and we denote by R the Borel sigma algebra on R.

3.2 A learning algorithm for VaR and ES
Let S be a Polish space with Borel sigma algebra S. From now on

(X;Y):
!S �R

is a fixed random vector in S�R3.1, with Y 2LP1. We will use the usual notation PX, P(X;Y)
for the laws of X and (X;Y): for every Borel sets A�S, A0�S �R

PX(A)=P[X 2A]; P(X;Y)(A0)=P[(X;Y)2A0]: (3.1)

We fix a conditional distribution function �: S �R! [0; 1] of Y given X [Kallenberg,
2006], and we assume that the function S �R!R defined by (x; y) 7! �(x; (¡1; y]) is
(S
R)/R (i.e. Borel)-measurable.3.2 With these conventions, we will use implicitly the
corresponding version

P[Y 2 �jX] :=�(X; �)

3.1. i.e. an A/(S
R) measurable function.
3.2. This the case if for instance S = Rd for some d and (X; Y) admits a density with respect to Lebesgue

measure.

120 Learning Value-at-Risk and Expected Shortfall

of the conditional probability of Y given X. In particular, we will use the conditional
(cumulative) distribution (function) of Y given X,

FY jX(y) :=P[Y � y jX] := �(X; (¡1; y]):

We will finally assume, without loss of generality, that FY jX(!)(�) is integrable for every
! 2
.3.3

Definition 3.1. The conditional value-at-risk (VaR) and expected shortfall (ES) of Y
given X at the confidence level �2 (0; 1) are (cf. (3.68))

VaR(Y jX) = VaR(FY jX)= inf FY jX
¡1 ([�; 1])= inf fy 2R; FY jX(y)��g;

ES(Y jX) = 1
1¡FY jX (VaR(Y jX)¡)

Z
[VaR(Y jX);1)

y FY jX (d y):

(3.2)

Lemma 3.2. The functions ! 7!VaR(Y jX(!)) and ! 7!ES(Y jX(!)) are �(X)-measur-
able.

Proof. Given t2R,

fVaR(Y jX)< tg=
[
n2N?

fFY jX (t¡ 1/n)��g;

which is a countable union of �(X)-measurable sets (FY jX(y) is �(X)-measurable for every
fixed y). This shows the claim for VaR(Y jX). As for the �(X)-measurability of ES(Y jX),
notice that the function es:S �R!R defined by

es(v; x)= 1
1¡ �(x; (¡1; v))

Z
y 1[v;1)(y) �(x; d y)

is Borel-measurable (on the set where �((¡1; v); x)< 1) and that

ES(Y jX)= es(X;VaR(Y jX)):
�

From the Doob-Dynkin lemma, it follows that

Corollary 3.3. There exist Borel measurable functions q:S!R and s:S!R such that

q(X)=VaR(Y jX); s(X)=ES(Y jX); P-a: s:

The goal of the article is to present and analyze algorithms for approximating (PX-
versions of) the functions q(�) and/or s(�), efficient in high dimension d, based on i.i.d. sam-
ples of (X;Y)2Rd�R and on suitable hypothesis spaces (including families of functions
represented in terms of neural nets which are used in the experimental part of the paper)

F = ff :Rd!Rg; G= fg:Rd!Rg;H= fh=(f ; g):Rd!R2g

for q(�), s(�), and (q(�); s(�)), respectively.

3.3. Since Y 2LP1, we have that 1>E[jY j] =E[E[jY jjX]] =E[
R
R jy jFY jX (d y)], thus FY jX(!) is integrable for

P-a.e. !: it suffices to change the version of X to guarantee integrability for every !.

3.2 A learning algorithm for VaR and ES 121

3.2.1 VaR and ES as optimization problems
To provide suitable representations of VaR(Y jX), ES(Y jX) in the context of convex opti-
misation, we will work under the following assumption.

Assumption 3.4. FY jX (defined by (3.2) for a given �) satisfies Assumption 3.35, P-
a.s., and if �f , 'g, �f ;g, q(�) and s(�) are respectively as in (3.73), (3.74), (3.75), (3.3),
then �f(Y ; q(X)), 'g(Y ; q(X); s(X)¡ q(X)) and �f ;g(Y ; q(X); s(X)) are P-integrable.

Our methods rely on the following functional representations of VaR(Y jX) and
ES(Y jX). We use implicitly in the statement the convention E[h(X; Y)] =1 whenever
h(X; Y) is not P-integrable. We also use the notation L(S) [resp. L+(S)] for the space
of Borel measurable functions S!R [resp. S!R+].

Theorem 3.5. Under Assumption 3.4:

q(�)2 argmin
f2L(S)

E[�f(Y ; f(X))]; (3.3)

s(�)¡q(�)2 argmin
g2L+(S)

E['g(Y ; q(X); g(X))]; (3.4)

(q(�); s(:))2 argmin
(f ;g)2L(S)�L(S)

E[�f ;g(Y ; f(X); g(X))]: (3.5)

If (Y ¡ q(X))+ is P-integrable, then

s(X)= q(X)+ (1¡�)¡1E[(Y ¡ q(X))+jX]; P-a: s: (3.6)

(this does not depend on the assumptions on �f , 'g, �f ;g).

Proof.

All these statements are a straightforward consequence of the fact that, if h(X;Y) is
P-integrable, then

E[h(X;Y)jX] =
Z
R
h(X; y)FY jX (d y); P-a: s:;

together with the characterizations of VaR and ES in Lemmas 3.37, 3.38 and 3.39.
To illustrate for q(X)(�): using Lemma 3.37 and the above identity, we obtain that

E[�f(Y ; q(X))jX]�E[�f(Y ; f(X))jX]; P-a: s:; (3.7)

for every f 2L(S). This implies (3.3) by integrating with respect to P. The other state-
ments can be proved in a similar fashion. �

Remark 3.6. If (Y ¡ q(X))+2LP2, then the representation (3.6) is also a consequence of
the characterization (3.4). To see this notice that, by the Pythagorean theorem and the
nonnegativity of (Y ¡ q(X))+, any r 2L+(S) satisfying

r(�)2 argmin
g2L+(S)

E[((1¡�)¡1 (Y ¡ q(X))+¡ g(X))2] (3.8)

has the property that

r(X)=E[(1¡�)¡1 (Y ¡ q(X))+jX]; P-a: s: (3.9)

Notice next that, with the choice g(z)= z2, 'g in (3.74) is given by

'g(y; v; z)= z2¡ 2 (1¡�)¡1 (y¡ v)+ z (3.10)
=(z¡ (1¡�)¡1 (y¡ v)+)2¡ ((1¡�)¡1 (y¡ v)+)2: (3.11)

122 Learning Value-at-Risk and Expected Shortfall

from where it follows that the minimization criteria (3.4) and (3.8) are then exactly the
same, leading in particular to

s(X)¡ q(X)= r(X)= (1¡�)¡1E[(Y ¡ q(X)(X))+jX]; P-a: s:; (3.12)

as claimed by (3.6).

Remark 3.7. The minimizers in (3.3)-(3.5) do not need to be unique: notice for instance
that the proof of (3.3) (illustrated above) shows that any function q(X)1:S!R satisfying
FY jX(q(X)1(X))=� is a minimizer of f 7!E[�f(Y ; f(X))], and that there are infinitely
many such functions if FY jX

¡1 (�) is an interval with positive length, P-a.s.

3.2.2 The algorithm
The functional representations in (3.3)-(3.8) give immediately rise to equally many approx-
imation algorithms for conditional VaR and/or ES. In all cases, the numerical recipe is
simply that of replacing the minimization problems in (3.3)-(3.8) by empirical versions.
Instead of L(S);L+(S) and L(S)�L(S) we use convenient hypotheses spaces F �L(S),
G �L+(S), and H�L(S)�L(S). Instead of integration with respect to P we use a Monte
Carlo approximation based on (properly truncated) i.i.d. samples of (X;Y).

After some preliminary empirical investigations reported in the paper's GitHub, the
best turned out to be the simplest, i.e. the two-steps algorithm that first uses (3.3) to obtain
an approximation q̂(�) of the (conditional) VaR, and then uses (3.6) together with the
interpretation of the conditional expectation as a least-squares minimization problem, i.e.
(3.8), to learn ES, using the approximation q̂(�) obtained before. This two-steps algorithm
will be our main focus in what follows. Its pseudo-code is provided as Algorithm 3.1. The
restrictions on F and f , the transformation h1; h2 and the truncations TB defined by

TB y=max fmin fy;Bg;¡Bg; (y;B)2R� [0;1) (3.13)

permit a fitting of the algorithm within the framework of the bounds developed in [Barrera,
2022]. They may also have practical advantages, as discussed in Appendix 3.B.

Algorithm 3.1
Estimating the conditional VaR and ES by regression in two steps

Parameters:

� The loss � given by (3.73) with �(z)= z.

� Constants (B1; B2; B3)2 (0;1)3 with B1�B2.
� A function h1:S �R! [¡B2; B2] such that, for PX-a.e. x2S, h1;x(�) :=h1(x; �) is

increasing in a set Ix with P(Y 2 IxjX =x)=1.

� A conditionally affine function h2(x; y) = � (x) y+ �(x) with � (x)> 0 for PX a.e.
x2S.

� A set F of Borel measurable functions S! [¡B1; B1].
� A set G of Borel measurable functions S! [0; B3].

Input: An i.i.d sample D= f(Xk; Yk)gk=1n of (X;Y).
1 Compute f̂ 2 argminf2F

P
k=1
n `(h1(Xk; Yk); f(Xk));

2 Set q̂(x)=h1;x
¡1 � f̂ (x);

3 Compute ĝ2argming2G
P

k=1
n (g(Xk)¡TB3((1¡�)¡1(h2(Xk;Yk)¡h2(Xk; q̂(Xk))+))2;

4 Set r̂(x)= (ĝ(x)¡ �(x))/�(x);
Return (VaRd (Y j:);ESb (Y j:))= (q̂(:); q̂(:)+ r̂ (:))

3.2 A learning algorithm for VaR and ES 123

3.3 Convergence Analysis of the Learning Algorithm
In what follows, we will be using the assumption hk(x; y) = y (k= 1; 2) for the data

transformations in Algorithm 3.1. Our results, therefore, leave open the error induced by
the operations (hk(X; �))¡1 used for the final estimates.

We will use the notation
D= f(Xj ; Yj)gj=1n (3.14)

for an i.i.d. sample of (X;Y) (with n given). If there are several (say l) of these samples,
we will denote them by

Dk= f(Xk;j ; Yk;j)gj=1
nk ; k=1; : : : ; l: (3.15)

Using also the notation (3.73), (3.74), (3.75), we will denote, for (f ; g)2L(S)�L+(S)

�~ �(f) = E[��(Y ; f(X))];

�̂�(f) = 1
n

X
k=1

n

��(Yk; f(Xk));

'~&(f ; g) = E['&(Y ; f(X); g(X))];

'̂&(f ; g) = 1
n

X
k=1

n

'&(Yk; f(Xk); g(Xk));

�~ �;&(f ; g) = E[��;&(Y ; f(X); f(X)+ g(X))];

�̂�;&(f ; g) = 1
n

X
k=1

n

��;&(Yk; f(Xk); f(Xk)+ g(Xk)):

(3.16)

Throughout this section,

F �L(S); G �L+(S); H�L(S)�L+(S) (3.17)

will be fixed hypothesis spaces. Associated to these and to the loss functions in (3.15) there
are the following quantities of interest,

q~2 argmin
f2F

�~ �(f); q̂ 2 argmin
f2F

�̂�(f) (3.18)

and given f 2L(S),

r~f 2 argmin
g2G

'~&(f ; g); r̂f 2 argmin
g2G

'̂&(f ; g): (3.19)

Thus (3.18) defines respectively the best mean and empirical hypothesis for VaR within
F , and (3.19) defines the best mean and empirical hypotheses for ES ¡ VaR within G
conditioned to the hypothesis f for VaR (f may not belong to F). Similarly, we define the
best mean and empirical joint hypotheses for (VaR;ES¡VaR) respectively by

(q~; r~)2 argmin
h=(f ;g)2H

�~ �;&(f ; g); (q̂ ; r̂)2 argmin
h=(f ;g)2H

�̂�;&(f ; g): (3.20)

3.3.1 The approximation error of the estimator of VaR
Algorithm 3.1 is based on the following assumption:

Assumption 3.8. The function f :R!R in (3.73) is the identity function. We therefore
omit f and write

�(y; v)= (1¡�)¡1 (y¡ v)++ v;

124 Learning Value-at-Risk and Expected Shortfall

as well as �~(�) and �̂(�) instead of ��(�; �);�~ �(�) and �̂�(�).

Assumption 3.8 implies the convexity of �(y; �) (for all y), which we exploit in several
manners. In a sense, Assumption 3.8 is only an apparent restriction: notice that for any
(y; v)2R2

��(y; v)=�(�(y); �(v));

which allows us to transport any conclusion under Assumption 3.8 to the respective conclu-
sion for generic �, by �transferring" the hypotheses related to (y; v) to hypotheses related
to (�(y); �(v)).

The following assumption is a conditional version of Assumption 3.35:

Assumption 3.9. There exist functions a; b:S!R such that

FY jX(a(X))<��FY jX(b(X)); (3.21)

on a set
0 of P-measure one and such that FY jX(!)(�) is absolutely continuous in
[a(X(!)); b(X(!))] for every ! 2
0.

Notice that, under this assumption, a(X)� q(X)� b(X) except on a set of measure
zero.

Assumption 3.10. (for a generic family F1�L(S)) Assumption 3.9 holds, and F1�L(S)
is such that

1. For every f 2F1, a(X)� f(X)� b(X), except on a set
0 of P-measure zero.

2. There exists cF1> 0 such that, for every f 2F1,

FY jX
0 (f(X))� cF1 ; P-a: s:

Assumption 3.10 is needed to succeed in applying Taylor expansions towards the estimation
of errors in our analysis.

Lemma 3.11. Given F �L(S), and under Assumption 3.8, define q~ by (3.18), let F0�F,
and consider

F0�= ft f +(1¡ t) q: (t; f)2 [0; 1]�F0g; F�= ft f +(1¡ t) q: (t; f)2 [0; 1]�Fg;

If F1�F� satisfies Assumption 3.10 and if

CF0�= sup
f2F0�

fjjFY jX0 (f(X))jjP;1g;
then the inequalities

cF�jjq~¡ q jjPX ;2
2 � 2 (1¡�) (�~(q~)¡�~(q))

� (2 (2¡�) inf
f2F
jj f ¡ q jjPX ;1)^ (CF0� inf

f2F0
jj f ¡ q jjPX ;2

2)

(3.22)

hold.

Proof. For any f 2F , consider the function [0; 1]!R defined by

t 7!Vf(t)=�~(q+ t (f ¡ q));
which has a minimum at t=0.

3.3 Convergence Analysis of the Learning Algorithm 125

We use the definition of FY jX(�) and differentiation under the integral sign to obtain,
for every t2 [0; 1]

Vf
00(t) = @2

@ t2
E
�Z
R
�(y; q(X)+ t (f(X)¡ q(X)))FY jX (d y)

�
= @

@ t
E[(f(X)¡ q(X)) ((1¡�)¡1 (FY jX (q(X)+ t (f(X)¡ q(X)))¡ 1)+ 1)]

= E[(f(X)¡ q(X))2FY jX0 (q(X)+ t (f(X)¡ q(X)))/(1¡�)]
� cF�

1¡�E[(f(X)¡ q(X))
2]:

(3.23)

This shows in particular that Vf is twice continuously differentiable (from the right at t=0)
and convex. Applying Taylor's theorem and the fact that Vf

0(0)=0 we arrive at

cF�

2 (1¡�) jj f ¡ q jjPX ;2
2 ��~(f)¡�~(q): (3.24)

Since this is valid for any f 2F , it is valid for f = q~. This gives

cF�

2 (1¡�) jjq~¡ q jjPX ;2
2 ��~(q~)¡�~(q): (3.25)

The upper bound

�~(q~)¡�~(q)� CF0�

2 (1¡�) inf
f2F0

jj f ¡ q jjPX ;2
2 (3.26)

follows from the inequality �~(q~)¡�~(q)��~(f)¡�~(q) (valid for any f 2F0) and an obvious
modification of the previous argument starting from the last inequality in (3.22).

Finally, the upper bound

�~(q~)¡�~(q)�
�
2¡�
1¡�

�
inf
f2F
jj f ¡ q jjPX ;1 (3.27)

follows via an elementary estimation using

ja+¡ b+j� ja¡ bj (3.28)

and the triangle inequality, together (again) with the inequality �~(q~)¡�~(q)��~(f)¡�~(q),
valid for every f 2F . The conclusion follows from (3.25), (3.26) and (3.27). �

Remark 3.12. Notice that asF0 gets larger, CF0� in (3.11) increases and inff2F0 jj f¡ q jjPX ;2
decreases: by making the bound (3.11) depend of F0� F we leave open the room for
a trade-off between these quantities.

Remark 3.13. If we strengthen Assumption 3.10 by requiring that for
some (c; C)2 (0;1)� (0;1), and except on a set of P-measure zero

c�FY jX0 (y)�C ; for every y 2 [a(X); b(X)]; (3.29)

then the conclusion of Lemma 3.11 holds with (cF�; CF0�) replaced by (c;C) under the sole
assumption that, for every f 2F ,3.4

[f(X); q(X)][[q(X); f(X)]� [a(X); b(X)]; except on a set of P-measure zero.

(3.30)

3.4. [u; v] [[v; u] is just the closed segment of the real line determined by (u; v) 2 R2. Notice that (3.30) is
exactly the same as 1. in Assumption 3.10 for F1=F�.

126 Learning Value-at-Risk and Expected Shortfall

As will be illustrated in Examples 3.14 and 3.15, these observations allow weakening the
dependence on F in the estimate (3.11).

Example 3.14. Assume (3.29) and, given � > 0, assume that F is such that (3.30) holds
and

inf
f2F
jj f ¡ q jjPX ;2<�:

Denoting by q~� the solution to the left-hand side of (3.18), an application of Remark 3.13
gives that

cjjq~�¡ q jjPX ;2
2 � � (2 (2¡�)^C�)�C�2;

leading to the estimate

jjq~�¡ q jjPX ;2�
�
C
c

�
1/2

�:

Example 3.15. To give a concrete instance of the previous example, assume that, for
some (A;B)2R2,

q(X)2 [A;B];PX -a: s:

(see also Remark 3.34), assume that (3.21) and (3.29) hold with a(X)�A and b(X)�B,
and assume that there exists a finite or countable partition fSjgj�S of S such that, for
all j,

jjq jjTVSj= sup
(x;x0)2Sj�Sj

jq(x)¡ q(x0)j<�

(for instance if q is continous, as S is a Polish space). Then (3.14) holds with

F = fx 7!
X
j

aj 1Sj(x): aj 2 [A;B];8jg:

Partitions fSjgj as above can be available with only partial information on q on cases of
interests: consider for example the case in which S is compact and q is uniformly Lipschitz
with a known Lipschitz constant.

3.3.2 A confidence interval for the estimator of VaR
Let us now give an upper bound for the error in probability associated to the empirical
estimator q̂ of q~. For this, we need to introduce the following measures of complexity
applicable to the families of hypotheses used along our schemes:

Definition 3.16. If S is a Polish space, H�L(S), and X1:n is a random sequence in
S, the empirical Rademacher complexity Remp(H; X1:n) and the Rademacher complexity
Rave(H;X1:n) of H at X1:n are defined as

Remp(H;X1:n)=E

"
sup
h2H

X
k=1

n

Ukh(Xk)

����������X1:n

#
; Rave(H; X1:n)=E[Remp(H;X1:n)]

where U1:n is an i.i.d. Rademacher sequence P[Uk=1]=P[Uk=¡1]= 1/2 independent of
X1:n.

The Rademacher complexities have the following property, which we will use later and
whose proof is an easy exercise: if

co(H)=
[
m

(X
k=1

m

tkhk:h1:m2Hm; t1:m2 [0; 1]m;
X
k

tk=1

)
(3.31)

3.3 Convergence Analysis of the Learning Algorithm 127

is the convex hull of H, and if

cobal(H)= co(H[¡H)

is the balanced convex hull of H, then

Remp(c o(H); X1:n)=Remp(H;X1:n); Remp(c o b a l(H); X1:n)� 2Remp(H;X1:n):

Definition 3.17. If S;H and X1:n are as in Definition 3.16, and if r � 0, the covering
number of H with respect to the empirical L1-norm at X1:n, N1(H; X1:n; r), is defined as

N1(H;X1:n; r) := inf

(
m2N:9 g1:m2Lm(S): sup

h2H
min
l

X
k=1

n

jh(Xk)¡ gl(Xk)j<nr

)
; (3.32)

with the convention inf ;=1. A sequence g1:m satisfying the condition in (3.32) is called
an r-covering of H with respect to the empirical L1¡ norm at X1:n.

In what follows, (X;Y)1:n is the sample (3.14) used to compute q̂ and

�(F)= f(x; y) 7!�(y; f(x)): f 2Fg;

is the family of instantaneous losses associated to F .

Lemma 3.18. Under the hypotheses of Lemma 3.11, and given � 2 (0; 1), the bound

cF�jjq̂ ¡ q jjPX ;2
2 �

�
2 (2¡�) inf

f2F
jj f ¡ q jjPX ;1

�
^
�
CF0

� inf
f2F0

jj f ¡ q jjPX ;2
2

�
+(1¡�)

�
25

n

�
1/2

sup
f2F
jj�(Y ; f(X))jjP;1

�
log
�
2
�

��
1/2
!

+8 (1¡�)
n

Rave(�(F); (X;Y)1:n) (3.33)

holds with probability at least 1¡ �. The right-hand side of (3.18) can be further upper
bounded via the inequalities, valid for every r > 0

Rave(�(F); D) � ((2¡�)/(1¡�))Rave(F ; X1:n)
� ((2¡�)/(1¡�))(r+ n

p
sup
f2F
jjf(X)jjP;1E

�
2log(N1(F ;X1:n;r/n))

p �
):

(3.34)

Remark 3.19. If max fjjY jjP;1; supf2F jj f(X)jjP;1g�B then, clearly,

sup
f2F
jj�(Y ; f(X))jjP;1�

�
2¡�
1¡�

�
B:

Proof. (of Lemma 3.18) According to (3.24), for every f 2F

cF�jj f ¡ q jjPX ;2
2 � 2 (1¡�) (�~(f)¡�~(q));

implying in particular that

cF�jjq̂ ¡ q jjPX ;2
2 � 2 (1¡�) ((�~(q̂)¡�~(q~))+ (�~(q~)¡�~(q)))

128 Learning Value-at-Risk and Expected Shortfall

The term 2 (1¡�) (�~(q~)¡�~(q)) is upper bounded in (3.11). To upper bound �~(q̂)¡�~(q~)
in probability we apply the Rademacher bound [Barrera, 2022] taking Zk=(Xk; Yk)� (X1;
Y1) i.i.d. and the diagonal family

�(F)1:n
(n)= f((xk; yk))k21:n 7! (�(f)(xk; yk)/n)k21:n: f 2Fg

to obtain the inequality (see also [Barrera, 2022](eqns. (2.25), (2.26))

�~(q̂)¡�~(q~) � 2
�
(1/ n
p

) sup
f2F
jj�(Y ; f(X))jjP;1 2 log (2/�)

p
+(2/n)Rave(�(F);D)

�
= (23/n)1/2

�
sup
f2F
jj�(Y ; f(X))jjP;1(log(2/�))1/2+(2/n)1/2Rave(�(F);D)

�
(3.35)

with probability at least 1¡ �. We deduce (3.18) combining (3.19) with the above.To
prove the first inequality in (3.33), note that by Talagrand contraction lemma [Mohri et
al., 2018](Lemma 4.2 p.78), since u 7! (1¡�)¡1u+ is (1¡�)¡1-Lipschitz, then for any (x;
y)1:n� (S �R)n

Remp(�(F); (x; y)1:n) � Remp(f(x;y) 7!(1¡�)¡1(y¡f)+:f2Fg;(x;y)1:n)+Remp(F ;x1:n)
� (1¡�)¡1Remp(f(x;y) 7!y¡f :f2Fg;(x;y)1:n)+Remp(F ;x1:n)

� (1¡�)¡1Remp(fIdRg; y1:n)||| |{z}}} }
=0

+ 2¡�
1¡� Remp(F ; x1:n)

which implies the first inequality in (3.33) by integration with respect to the law of D.
The second and third inequalities in (3.33) are a direct consequence of [Barrera,

2022](eqn. (3.47)) and the argument in [Barrera, 2022](eqn. (3.53))[Barrera, 2022]. The
fourth follows easily from the fact that if F 0�L(S) is a (1¡�)r/(2¡�) covering of F with
respect to the empirical L1-norm at x1:n, then f(x; y) 7! y¡ f(x)jf 2F 0g is an r-covering of
�(F) with respect to the empirical L1-norm at (x; y)1:n (this can be proved using (3.28)). �

Let us now introduce the following hypothesis, which covers the estimation error of f̂
in Algorithm 3.1.

Assumption 3.20. For given 0<B1�B2,

jjY jjP;1�B2:

In addition, VaR(Y jX) takes values in (¡B1; B1] and y 7! FY jX(!)[(¡1; y]] is P-a.e.
differentiable, with derivative uniformly bounded away from 0 and 1 in [¡B1;B1]. That is,

FY jX (¡B1)<��FY jX(B1); P-a: s:;

and there exist 0<cB1�CB1<1 such that

cB1�FY jX0 (y)�CB1; P-a: s:;
for every y 2 [¡B1; B1].

Using Assumption 3.20, the following result follows easily from Lemma 3.18:

Theorem 3.21. Under Assumption 3.20, let

F 0�F � co(F 0)�L(S) (3.36)

3.3 Convergence Analysis of the Learning Algorithm 129

where F is a family of functions uniformly bounded by B1 (see also (3.31)). Then the
inequality

cB1jjq̂ ¡ q jjPX ;2
2 �

�
2 (2¡�) inf

f2F
jj f ¡ q jjPX ;1

�
^
�
CB1 inf

f2F
jj f ¡ q jjPX ;2

2

�
+4 (2¡�)B2

n
p 2 log

�
2
�

�s

+8 (2¡�)B2
n
p

0@1+E
24 2 log

�
N1

�
F�; X1:n;

B1
n
p

��s 351A (3.37)

holds or every � 2 (0; 1) with probability at least 1¡ �.

Proof. As discussed in Remark 3.13, it is easy to see that the hypotheses of Lemma 3.11
hold for cF�= cB1 and CF�=CB1 in this case.

The second inequalities in (3.33) and [Barrera, 2022](Remark 3.4) for
(H1:n

0 ;H1:n) = (diag(F 0)1:n; diag(F)1:n) (see [Barrera, 2022](eqn (2.3))) give that for
every � > 0

Rave(�(F);(X;Y)1:n)�
2¡�
1¡� (�+ n

p
sup
f2F
jjf(X)jjP;1E

�
2log(N1(F 0;X1:n;r/n))

p �
): (3.38)

Taking �=B1 n
p

and using (3.38) we obtain

Rave(�(F); (X;Y)1:n)�
2¡�
1¡� B1 n

p
(1+E

�
2 log (N1(F 0; X1:n; B1/n))

p �
):

This inequality, when used to estimate the right-hand side of (3.18), gives the right hand
side of (3.36). �

Remark 3.22. As the proof shows, we obtain the same conclusion if F and F 0 are simply
assumed to satisfy Rave(F ; X1:n)�Rave(F 0; X1:n); in particular for F � (c o(F 0))+ by a
novel application of Talagrand's contraction lemma. Notice also that a slightly bigger upper
bound is obtained in place of (3.36) (some terms are multiplied by 2) if we replace (3.36)
by the less restrictive condition

F 0�F � cobal(F 0)

3.3.3 A Rademacher confidence interval for the estimator of
ES¡VaR

In what follows, we will focus on the estimator r̂q̂ of r=s¡ q obtained under the following
assumption corresponding to the scheme for approximating r in Algorithm 3.1.

Assumption 3.23. Assume that '& � '(B) in (3.19) (see below) is given by the square
loss with truncation on the response

'(B)(y; v; z)= (z¡TB ((1¡�)¡1 (y¡ v)+))2 (3.39)

for B> 0, and that G is a family of functions S! [0; B].

As seen in Remark 3.6, the choice (3.39) corresponds to an approximation scheme (with

an additional truncation) for the case g(z)= z2. We will also consider the family 'f
(B)(G)

defined (for f fixed) by

'f
(B)(G)= f(x; y) 7! 'f

(B)(g)(x; y)= '(B)(y; f(x); g(x))jg 2 Gg:

130 Learning Value-at-Risk and Expected Shortfall

Let us denote by rf (f 2L+(S)) any function satisfying

rf(X)=E[(1¡�)¡1 (Y ¡ f(X))+jX]; P-a: s:;

and let rf
(B):S! [0; B] be one of its truncated companions, defined by

rf
(B)(X)=E[TB ((1¡�)¡1 (Y ¡ f(X))+)jX]; P-a: s:

For every (f ; g)2L(S)�L+(S), we will define

h(f ;g)(X;Y)= '(B)(Y ; f(X); g(X))¡ '(B)(Y ; f(X); rf
(B)(X));

which is the same as the function in [Barrera, 2022](Section 3, eqn. (4.5)) for the case in
consideration.

Lemma 3.24. For every (f ; f 0;B)2L+(S)�L+(S)� (0;1] and every p�1, the inequal-
ities

jjrf ¡ rf
(B)jjPX ;p � jj ((1¡�)¡1 (y¡ f)+¡B)+jjPX ;p

jjrf
(B)¡ rf 0

(B)jjPX ;p � (1¡�)¡1jj f ¡ f 0jjPX ;p

hold (with rf
(1)� rf).

Proof. The first inequality is a direct consequence of Jensen's inequality:

E[jE[(W ¡TBW)jX]jp]�E[jW ¡TBW jp]=E[((jW j¡B)+)p];

valid for p� 1 and any integrable random variable W . As for the second, notice first that
for every (a; b; B)2R�R� [0;1],

jTB a¡TB bj� ja¡ bj:

Combining (3.24) with (3.28) and with Jensen's inequality we get, for every p� 1:

jjrf
(B)¡ rf 0

(B)jjPX ;p
p = E[jE[TB ((1¡�)¡1 (Y ¡ f(X))+)¡TB ((1¡�)¡1 (Y ¡ f 0(X))+)jX]jp]

� E[E[jTB ((1¡�)¡1 (Y ¡ f(X))+)¡TB ((1¡�)¡1 (Y ¡ f 0(X))+)jpjX]]
� (1¡�)¡pjj f ¡ f 0jjPX ;p

p :

�

Theorem 3.25. Under Assumption 3.23, given f 2L(S) and given G 0�G�co(G 0)�L+(S)
where G is a family of functions uniformly bounded by B, the inequality

jjr̂f ¡ r jjPX ;2 � inf
g2G
jj g¡ r jjPX ;2+

2
1¡� jj f ¡ q jjPX ;2+

� 1
1¡� (y¡ q)

+¡B
�
+

PX ;2

+B
�
(2/ n
p

)
�

2log(2/�)
p

+8
�
1+E

h
2log(N1(G 0;X1:n;B/ n

p
))

q i���
1/2
:

(3.40)

holds for every � 2 (0; 1), with probability at least 1¡ � (and Remark 3.22 also applies).
Proof.

In this proof, jj � jj denotes either the LPX
2 seminorm on L+(S) or the LPX;Y

2 seminorm
on L(S �R), the appropriate choice will be always clear (any other norm will be made
explicit).

3.3 Convergence Analysis of the Learning Algorithm 131

For f 2F , the triangle inequality and Lemma 3.24 yield

jjr̂f ¡ r jj � jjr̂f ¡ rf
(B)jj+jjrf

(B)¡ rq
(B)jj+jjrq

(B)¡ r jj

� jjr̂f ¡ rf
(B)jj+(1¡�)¡1jj f ¡ q jj+jj ((1¡�)¡1 (y¡ q)+¡B)+jj; (3.41)

Now, if (X 0; Y 0) is an independent copy of (X; Y), then by the argument leading to
[Barrera, 2022](Section 3, eqn. (4.15))3.5

jjr̂f¡rf
(B)jj2¡ inf

g2G
jjg¡rf

(B)jj2 = E['(B)(Y 0;f(X 0);r̂f(X 0))¡'(B)(Y 0;f(X 0);rf(X 0))jD]

� sup
g2G

(
1
n

X
k=1

n

(E['(B)(Y ;f(X);g(X))]¡'(B)(Yk;f(Xk);g(Xk)))

)

+sup
g2G

(
1
n

X
k=1

n

('(B)(Yk;f(Xk);g(Xk))¡E['(B)(Y ;f(X);g(X))])
)
:

We conclude as in the argument for [Barrera, 2022](eqn. (3.38)) that the inequality

jjr̂f ¡ r jjPX ;2
2 � inf

g2G
jj g¡ rf

(B)jjPX ;2
2 + 2

n
p

�
sup
g2G
jj'f

(B)(g)(X;Y)jjP;1g 2 log (2/�)
p �

+4
n
Rave('f

(B)(G); (X;Y)1:n) (3.42)

holds for every � 2 (0; 1) with probability at least 1¡ �. In virtue again of the triangle
inequality and the inequality a2+ b2

p
� jaj+ jbj, (3.5) and Lemma 3.24 imply that

jjr̂f ¡ rf
(B)jj � inf

g2G
jj g¡ r jj

+(1¡�)¡1jj f ¡ q jj+jj ((1¡�)¡1 (Y ¡ q(X))+¡B)+jj

+

2
n
p

sup
g2G
jj'f

(B)(g)(X;Y)jjP;1 2log(2
�
)

r
+ 2

n
p Rave('f

(B)(G);(X;Y)1:n)
!!

1/2

:

(3.43)

A combination of (3.40) and (3.42) leads to

jjr̂f ¡ r jj � inf
g2G
jj g¡ r jj

+2 (1¡�)¡1jj f ¡ q jj+jj ((1¡�)¡1 (y¡ q)+¡B)+jj

+

2
n
p

sup
g2G
jj'f

(B)(g)(X;Y)jjP;1 2log(2
�
)

r
+ 2

n
p Rave('f

(B)(G);(X;Y)1:n)
!!

1/2

:

(3.44)

Let us now upper bound the Rademacher complexity. Since the function u 7!u2 is Lipschitz
on [0; 2B] with Lipschitz constant 4B, the Talagrand contraction lemma gives

Rave('f
(B)(G); (X;Y)1:n)� 4BRave(G ;X1:n)= 4BRave(G 0; X1:n): (3.45)

An application of [Barrera, 2022](eqn. (3.47)) together with (3.45) gives the inequality

Rave('f
(B)(G); (X;Y)1:n)� 4B (�+B n

p
E
�

2 log (N1(G 0; X1:n; �/n))
p �

) (3.46)

for every �> 0, which in turns implies that (taking �=B n
p

)

Rave('f
(B)(G); (X;Y)1:n)� 4B2 n

p �
1+E

h
2 log (N1(G 0;X1:n; B/ n

p
))

q i�
(3.47)

3.5. Taking Z1:n0 =(X; Y)1:n
0 � (X; Y) i.i.d., independent of (X;Y)1:n and �=1.

132 Learning Value-at-Risk and Expected Shortfall

(3.25) follows from a combination of (3.43), (3.47), and the bound

sup
g2G
jj'f

(B)(g)(X;Y)jjP;1�B2: �

3.3.4 VC confidence interval for the estimator of ES¡VaR

Theorem 3.26. Under Assumption 3.23, given f 2L+(S) and G �L+(S), the inequality

jjr̂f ¡ r jjPX ;2� (6 �¡ 5)
p

inf
g2G
jj g¡ r jjPX ;2

+(1+ (6 �¡ 5)
p

) (1
1¡� jj f ¡ q jjPX ;2+jj (

1
1¡� (y¡ q)

+¡B)+jjPX;Y ;2)

+B 27 � 3
(�¡ 1)n

�
log (42)+ log (1/�)+ log

�
E
�
N1

�
G ;X1:n;

B
24n

����s (3.48)

holds for every � 2 (0; 1) with probability at least 1¡ �, provided that

1<�� 13/12: (3.49)

Proof. In this case we depart from the estimate (3.40) and we then estimate jjr̂f ¡ rf
(B)jj

via [Barrera, 2022](Theorem 4.2) to arrive, by an argument as the one leading to (3.43),
at the estimate

jjr̂f ¡ r jj � (6 �¡ 5)
p

inf
g2G
jj g¡ r jj

+ (1+ (6 �¡ 5)
p

) ((1¡�)¡1jj f ¡ q jj+jj ((1¡�)¡1 (y¡ q)+¡B)+jj)

+
�
6
�
�n(c; �)_ (

1
n b(c; �)

(log a(c; �; �n(c; �))+ log (2/�)))
��

1/2
(3.50)

for (; 0; � 0)2 (0;1)3, with probability at least 1¡�. Restricting � to the range (3.49) and
using the analysis leading to [Barrera, 2022](eqn. (4.41)), the result follows from (3.50). �

Rademacher vs VC: from �small� to �big� data To give a crude comparison between
(3.25) and (3.48), first note that, since 6�¡ 5

p
�1 (under (3.49)), it is reasonable to limit

the discussion to a comparison between the terms in the third line of the inequalities (3.25)
and (3.48).

The ratio between these two terms is lower bounded (crudely) by

(23 � 3)¡1/2 ((�¡ 1) n
p

)1/2(log (42E[N1(G ;X1:n; B/(24 n))]/�))¡1/2;

which shows that (3.25) is worse (bigger) than (3.48) provided that

n
p

� 23 � 3
�¡ 1 log (42E[N1(G ;X1:n; B/(24 n))]/�)

� 25 � 32 (log (42)+ log (1/�)); (3.51)

where in the last inequality we used the upper bound for � in (3.49).
The first inequality in (1) is an exact (but crude) criterion on the sample size indicating

a domain where (3.48) is preferable to (3.25). The inequality between the first and the third
terms in (1) can be understood as an �heuristic� criterion for this preference, indicating in
particular the heuristic boundary

n� (25 � 32 � log (42))2

3.3 Convergence Analysis of the Learning Algorithm 133

between �small-medium� and �big� data, where we pass from the Rademacher to the VC
regimes.

3.3.5 Multiple-� learning

In this part we are interested in learning VaR(Y jX) for multiple confidence levels �2 (0;1)
using a single empirical error minimization. This can help give insights into the sensitivity
of VaR(Y jX) to the confidence level, or into the full distribution of the law of Y given X
(e.g. reflected by an histogram representation).

3.3.5.1 Related literature

The simultaneous learning of conditional quantiles for multiple confidence levels and the
problem of quantile crossing, i.e. the violation of the monotonicity with respect to the
confidence level, are early addressed in [Takeuchi et al., 2006; Koenker, 2004; He, 1997].
We refer the reader to [Moon et al., 2021] for a review of more recent references. To deal
with the quantile crossing problem, two strategies for constraints can be considered. The
first strategy is to use spaces of functions which are nondecreasing with respect to the
confidence level. Meinshausen and Ridgeway, 2006 introduce quantile regression forests,
where the predicted quantile of a new point is based on the empirical percentile of the group
(i.e. the terminal leaf of each tree) to which this point belongs and thus the monotonicity
of the quantile estimates is satisfied by construction. Regarding neural networks, Hatalis
et al., 2017 propose a specific initialization scheme for the weights of the output layer,
which does not prevent quantile crossings, but appears to reduce them significantly in
their experiments. Cannon, 2018 consider the confidence level as an additional explanatory
variable and then explore a network such that the estimate is monotone with a defined
covariate (confidence level), imposing the non-crossing. Gasthaus et al., 2019 and Padilla et
al., 2020 use a (deep) network with multiple outputs, constrained by design to be positive,
which are expected to approximate quantile increments. The latter resembles our multi-�
III approach in Section 3.4.2.2.2, especially when the increments are constrained to be pos-
itive. Under our multi-� III approach, however, we sample the confidence level uniformly
on a given interval and we further interpolate linearly with respect to the confidence level
in order to have a conditional quantile function that is valid for all quantile levels in the
interval.

The second strategy is to consider explicitly the non-crossing constraints during the
learning phase of the model in form of either hard constraints (that the model must strictly
satisfy) or soft constraints (i.e. penalization). Once the non-crossing hard constraints are
employed, the model is usually learned using primal-dual optimization algorithms. The
latter are applicable in a wide class of models, e.g. support vector regression [Takeuchi et
al., 2006; Sangnier et al., 2016] and spline regression [Bondell et al., 2010], but notably
not in the case of the family of (deep) neural network, because of the computational
cost and the poor scalability of projected gradient descent. Therefore, the non-crossing
constraints are more preferably embedded in the training of neural networks via a penalty
term [Liu and Wu, 2011; Moon et al., 2021], whose penalization weight then becomes an
additional hyperparameter that would need to be tuned. In Section 3.4.2.2.1 we use a
similar penalization strategy, where, instead of penalizing discrete increments, we penalize
the partial derivative of the network with respect to the confidence level as these give more
information about the local behavior around training points and do not add an additional
hyperparameter which is the size of the discrete increments in confidence levels.

134 Learning Value-at-Risk and Expected Shortfall

3.3.5.2 Extension of the bounds to multiple-� learning

The various proofs and bounds presented in this paper for a fixed �2 [0;1] can be extended
to the multiple-� learning framework where � is now a random variable supported on
[�
�
; ��]� (0; 1) treated as a covariate alongside X. Denoting by A the Borel �-algebra on

[�
�
; ��], the table below presents the main changes that need to be done in order to have

similar results in this new framework:
Single-� Multiple-�

D= f(Xj; Yj)gj=1n is an i.i.d sample of (X;Y) D=f(�j;Xj;Yj)gj=1n is an i.i.d sample of (�;X; Y)

S
R A
S
R
�(y; v)=

1

1¡�
(y¡ v)++ v �(�; y; v)=

1

1¡� (y¡ v)
++ v

�~(f)=E[�(Y ; f(X))] �~(f)=E[�(�; Y ; f(�;X))]
F �L(S) F �L ([�

�
; ��]�S)

q~2 argminf2FE[�(Y ; f(X))] q~2 argminf2FE[�(�; Y ; f(�;X))]
q̂ 2 argminf2F

1

n

P
k=1

n
�(Yk; f(Xk)) q̂ 2 argminf2F

1

n

P
k=1

n
�(�k; Yk; f(�k;Xk))

�~(q~)¡�~(q)� cF�

2 (1¡�) kq~¡ qkPX;2
2 �~(q~)¡�~(q) � cF�

2
E[(q~(�;X)¡ q(�;X))

2

1¡�]

� cF�

2 (1¡�
�
)
kq~¡ qkP(�;X);22

�~(q~)¡�~(q)� CF0�

2 (1¡�) kq~¡ qkPX;2
2 �~(q~)¡�~(q) � cF0�

2
E[(q~(�;X)¡ q(�;X))

2

1¡�]

� CF0�

2 (1¡��) kq~¡ qkP(�;X);2
2

�~(q~)¡�~(q)� 2¡�
1¡� inff2F kf ¡ qkPX;12 �~(q~)¡�~(q) � inf

f2F
E[
�
2¡�
1¡�

�
jf(�;X)¡ q(�;X)j]

� 2¡��
1¡�� inf

f2F
kf ¡ qkP(�;X);12

�(F)1:n
(n)=f(Xk;Yk)k21:n 7!(

�(Yk;f(Xk))

n
)k21:n;f2Fg �(F)1:n

(n)=
f(�k;Xk;Yk)k21:n 7!(

�(�k;Yk;f(Xk))

n
)k21:n;f2Fg

The implementation of this approach using Neural Networks is discussed in Section
3.4.2.2.

3.4 Learning Using Neural Networks

3.4.1 Error bound of the learning algorithm with one-layer neural
networks

We apply the previous developments to the estimation of errors from Algorithm 3.1 when
one-hidden-layer neural networks with bounded weights are used to define the hypothesis
spaces. We consider the following families of functions:

Definition 3.27. Let �:R! [0; 1] be a nondecreasing measurable function that is applied
element-wise when supplied with a vector as input and let (d; M ; B) 2 N � N � (0;1).
Denote by F~(d; B;m; �)�LRd the family of neural networks on S =Rd with m (or less)
units, one hidden layer, activation function � and Lasso regularization bound B, defined
as follows

F~(d;B;m; �)= fRd3x 7! c0+
X
k=1

m

ck� (ak �x+ bk)2R j

(a1:m; b1:m)2 (Rd)m�Rm; c0:m2Rm+1with
X
k=0

m

jckj �Bg:

3.4 Learning Using Neural Networks 135

It is clear that F~(d;B;m; �) is totally bounded by B. Notice also that for all m2N?

F~(d;B; 1; �)�F~(d;B;m; �)� co(F~(d;B; 1; �))= cobal(F~(d;B; 1; �));

where co(�) and cobal(�) are defined in (3.31) and (3.31). We have from [Barrera, 2022] for

all 0< �<
B

2
:

log (N1(F~(d;B;m; �); X1:n; �))� ((2 d+5)m+1) (1+ log (12)+ log (B/�)+ log (m+1))

This estimate can be combined with Theorem 3.21 to give an error estimate for Algorithm
3.1. In the context of this algorithm, we simplify the notation by writing

Yhk(!)=hk(X(!); Y (!)); q(X)hk(x)=hk(x; q(x)) (k=1; 2);
rh2(x)=h2(x; r(x))

where q and r= s¡ q are defined as in (3.3).

Theorem 3.28. With the notation of Algorithm 3.1 and in (3.27), and for F~=F~(d;B1;
m; �), if Yh1 satisfies Assumption 3.20, then the inequality

cB1jjf̂¡qh1jjPX ;2
2 �

�
2(2¡�) inf

f2F~
jjf¡qh1jjPX ;1

�
^
�
CB1 inf

f2F~
jjf¡qh1jjPX ;2

2
�

+4(2¡�)
n
p

0@B2 2log
�
2
�

�s
+2B1

�
1+ 2((2d+5)m+1)(1+log(12(m+1) n

p
))

q �1A
holds for every � 2 (0; 1) with probability at least 1¡ �.

Remark 3.29. The discussion in [Padilla et al., 2020] implies that the rates following
from these bounds cannot be improved in general, but as proved in [Chen, 2007](Example
3.2.2), the dimension of the feature space can play a role in a variety of examples.

Analogous reasoning, using this time Theorems 3.25 and 3.26 and the observations in
Remark 3.22, lead to the following bound on the error of ĝ in Algorithm 3.1:

Theorem 3.30. With the notation of Algorithm 3.1 and in (3.27), for 3.6

G=(F~(d;B;m; �))+, the inequality

jjĝ¡rh2jjPX ;2� (6 �¡5)
p

inf
g2G
jjg¡rh2jjPX ;2

+(1+ (6 �¡5)
p

)((1¡�)¡1jjf¡qh2jjPX ;2+jj((1¡�)¡1(yh2¡qh2)+¡B)+jjPX;Y ;2)

+ 2
p

B

n4p

0@24 (log(2�3�7
�

)+ ((2d+5)m+1)(1+log(25�32(m+1)n))
(�¡1) n

p
s

^ 2log(2/�)
p

+23
�
1+ 2(d+3)(1+log(23�3 n

p
))

q �r !

holds with probability at least 1¡ �, for every 1<�� 13/12 and every f 2F .

3.6. with (H)+= f(h)+:h2Hg for any set of functions H.

136 Learning Value-at-Risk and Expected Shortfall

More generally, we consider feed-forward neural networks with more than one
layer in what follows. We define Fd;o;m;n, to be the set of functions of the form
Rd3x 7! �n+1

d;o (x;W ; b)2Ro, where:

�0
d;o(x;W ; b)=x

�i
d;o(x;W ; b)=� (Wi �i¡1

d;o (x;W ; b)+ bi); 8i2f1; : : : ; ng
�n+1
d;o (x;W ; b)=Wn+1 �n

d;o(x;W ; b)+ bn+1

and W12Rm�d;W2 : : : ;Wn2Rm�m;Wn+12Ro�m, b1; : : : ; bn2Rm; bn+12Ro. The function
� is called an activation function. We also choose the Softplus activation function, i.e.
�(x)= log (1+ exp (x)).

In what follows, we assume a finite i.i.d sample of (X;Y) given byDN :=f(Xi;Yi)g1�i�N.

3.4.2 Learning the VaR

3.4.2.1 Single-� learning

In this approach, we fix the confidence level �2 (1
2
;1). The goal then is to find an approxi-

mation of VaR(Y jX), at the confidence level �, as a function of X, represented by a neural
network from Fd;1;m;n, for given m and n. More precisely, we aim to solve the following
optimization problem (cf. (3.3) and (3.73)):

q~�2 argmin
q2Fd;1;m;n

E[(Y ¡ q(X))++(1¡�) q(X)] (3.52)

or, equivalently, find weights

(W~ �; b~�)2 argmin
W ;b

E[(Y ¡ �n+1
d;1 (X;W ; b))++(1¡�) �n+1

d;1 (X;W ; b)]: (3.53)

Problem (3.53) is then solved numerically by applying a stochastic gradient descent, or
an accelerated version of it, to a finite-sample formulation of the problem (cf. step 3 in
Algorithm 3.1):

(Ŵ�; b̂
�)2 argmin

W ;b

1
N

X
i=1

N

[(Yi¡ �n+1
d;1 (Xi;W ; b))++(1¡�) �n+1

d;1 (Xi;W ; b)]: (3.54)

Once (3.54) has been solved numericallly (a procedure to which we will refer to as training
in what follows), we obtain an approximation of VaR(Y jX), at the confidence level �,
given by '̂�(X), where

'̂�(x) := �n+1
d;1 (x; Ŵ�

; b̂
�)x2Rd:

Given that the training is done for a single fixed confidence level �, we refer to this approach
as the single-� learning (or single-� for brevity in the numerics). Under this approach, if
one is interested in finding the conditional VaR for another confidence level, one has to
repeat the training procedure using the new confidence level in the learning problem (3.54).

3.4 Learning Using Neural Networks 137

3.4.2.2 Multiple-� learning

Learning for a continuum of �'s In this approach, we assume that we are interested in
conditional VaR estimators for a continuum of confidence levels in [�

�
;��]. We randomize �

and assume ��U([�
�
;��]). We then consider a finite i.i.d sample �1;:::;�N of �, independent

of DN . The finite-sample training problem for this approach can be stated as follows:

(Ŵ�
�
;��; b̂�� ;��)2argmin

W;b

1
N

X
i=1

N

(Yi¡�n+1
d+1;1([�i;Xi];W ;b))++(1¡�i)�n+1

d+1;1([�i;Xi];W ;b) (3.55)

where [x; y] is the vector obtained by concatenating the vector y to the real x. One can also
approximately impose the non-crossing of the quantiles by penalizing the sample average
of the negative part of the partial derivative @

@�
�n+1
d+1;1([�;X];W ; b):

(Ŵ�
�
;��;b̂�� ;��)2argmin

W;b

1
N

X
i=1

N

(Yi¡�n+1
d+1;1([�i;Xi];W ;b))++(1¡�i)�n+1

d+1;1([�i;Xi];W ;b)

+�(¡ @
@�

�n+1
d+1;1([�i;Xi];W ;b))+;

where �>0 determines the strength of the penalization. An approximation for VaR(Y jX)
for any �2 (�

�
;��) is then given by �n+1

d+1;1([�;X]; Ŵ�
�
;��; b̂�� ;��). Notice that one can compute

the derivative in (3.55) fast in closed-form given our neural network parametrization, as
@

@�
�n+1
d+1;1([�;X];W ; b)=Wn+1

@

@�
�n
d+1;1([�;X];W ; b), where

@
@�

�0
d+1;1([�;X];W ;b) =[1;0d]and, for i=1; : : : ;n;

@
@�

�i
d+1;1([�;X];W ;b) =(Wi

@
@�

�i¡1
d+1;1([�;X];W ;b))�� 0(Wi�i¡1

d+1;1([�;X];W ;b)+bi¡1):

Here� is an element-wise product and � 0 is the derivative of � (applied element-wise). Given
the calculations of �n+1

d+1;1([�;X];W ; b) and @

@�
�n+1
d+1;1([�;X]; W ; b) share many common

sub-expressions, the recursions can be done at the same time, i.e. at each i2f0; : : :; n+1g,
compute �i

d+1;1([�; X]; W ; b) and then reuse the common sub-expressions to compute

also @

@�
�i
d+1;1([�; X]; W ; b). In the numerics, we refer to this approach with multi-�

(I) if we use a non-zero �, and multi-� (II) otherwise.

Learning for a discrete set of �'s Another approach for multiple-� learning would be
to target a finite set of confidence levels �(1); : : : ; �(K) in [�

�
; ��] simultaneously and then

yield the estimator corresponding to any confidence level �2 [�
�
;��] via linear interpolation.

More precisely, we solve:

(Ŵ 1;K ; b̂1;K)2argmin
W ;b

1
N

X
i=1

N

[(Yi¡ �~n+1
d;K(�i;Xi;W ;b))++(1¡�i) �~n+1

d;1 (�i;Xi;W ;b)] (3.56)

where:

�~n+1
d;K(�;x;W ;b):=[�n+1

d;K(�;x;W ;b)]0+
X
j=1

K¡1
(minf�;�(j+1)g¡�(j))[�n+1

d;K(�;x;W ;b)]j1���j

(3.57)

with [x]j denoting the j-th component of vector x. Once the optimization problem solved,
an approximation for the VaR of Y given X for any � 2 (�

�
; ��) is this time given by

�~n+1
d+1;K(�;X; Ŵ�

�
;��; Ŵ 1;K ; b̂1;K). Notice that one can impose the monotonicity by design

138 Learning Value-at-Risk and Expected Shortfall

by adding a positive activation function to each neuron in the output layer of �n+1
d+1;K,

except for the first neuron, e.g. by replacing [�n+1
d;K(�;x;W ; b)]j with �([�n+1

d;K (�;x;W ; b)]j),
for all j 2 1; : : : ; K ¡ 1, in (3.57). However we haven't found doing so to be satisfactory
numerically and thus we keep the formulation in (3.57) as is. In the numerics, we refer to
this approach as multi-� (III).

3.4.3 Learning the ES using a two-steps approach

As in Section 3.4.2.1, we fix the confidence level �2 (0; 1). Our aim is to find an approx-
imation of the ES(Y jX), at the confidence level �, as a function of X that is represented
by a neural network from Fd;1;m;n, for given m, n. Assuming a representation, or approx-
imation, q� of the VaR of Y given X at the confidence level �, which we will call VaR
candidate, the goal is to solve the following problem (cf. (3.6)):

s~�2 argmin
e2Fd;1;m;n

E[(1
1¡� (Y ¡ q�(X))

++ q�(X)¡ s(X))2]

for which we can write a finite-sample version in parameter space as follows (cf. step 4 in
Algorithm 3.1):

(Ŵ�
; b̂
�)2 argmin

W ;b

1
N

X
i=1

N

[(1
1¡� (Yi¡ q�(Xi))++ q�(Xi)¡ �n+1

d;1 (Xi;W ; b))2]: (3.58)

Although one could formulate multiple-� learning versions as in Section 3.4.2.2, we have
found numerically that it significantly degrades the learning and thus we chose to present
only the single-� formulation. However, using a transfer learning trick, one can deduce
an ES approximation very quickly using a VaR candidate that is in neural network form.
Namely, one can look for an ES approximator using a neural network with the same
architecture as the one used for the VaR, set the weights of all hidden layers to those of the
VaR network and then freeze them. The training of the ES approximator then falls down
to a linear regression to determine the weights of the output layer. We show in Section 3.5
that such a scheme is enough to obtain good approximations, while also being very fast (a
fraction of a second in our experiments) if one uses highly optimized linear algebra routines
such as the ones implemented by cuBLAS for Nvidia GPUs.

3.4.4 Validating VaR and ES learners without groundtruth values

Assuming one has access to the generative process of the data, as it is the case in most
quantitative finance problems, one can estimate distances to the groundtruth VaR and ES
without directly computing those, using a simple twin-simulation trick.

Proposition 3.31. Let q� and s� be two Borel functions of x (underlying tentative approxi-
mations q�(X) and s�(X) of VaR(Y jX) and ES(Y jX) at the confidence level �). Introducing
two conditionally independent copies3.7 Y (1) and Y (2) of Y given X and denoting Y (1) ^
Y (2)=min fY (1); Y (2)g, we have

ks�(X)¡ES(Y jX)kP;2= ks�(X)¡ q�(X)¡E[
1

1¡� (Y ¡ q�(X))
+jX]kP;2+ "; (3.59)

3.7. i.e. for any bounded Borel functions ' and , we have E['(Y (1)) (Y (2))jX] =E['(Y (1))jX]E[(Y (2))jX]
and E['(Y (1))jX] =E['(Y (2))jX] =E['(Y)jX].

3.4 Learning Using Neural Networks 139

where

ks�(X)¡ q�(X)¡E[1
1¡� (Y ¡ q�(X))

+jX]kP;22 = ks�(X)¡ q�(X)kP;22

+ 1
(1¡�)2E[(Y

(1)¡ q�(X))+ (Y (2)¡ q�(X))+]

¡ 2
1¡�E[(s�(X)¡ q�(X)) (Y ¡ q�(X))

+]

(3.60)

and, assuming FY jX
0 (Y)� c, P-a.s, for some c> 0,

"� 1
c
(1+ 1

1¡�) kP[Y � q�(X)jX]¡ 1+�kP;2; (3.61)
where

kP[Y �q�(X)jX]¡1+�kP;2= (1¡�)(1¡�¡2P(Y >a�(X)))+P[Y (1)^Y (2)>q�(X)]
q

: (3.62)

Proof. We have

kP[Y � q�(X)jX]¡ 1+�kP;2= E[P[Y � q�(X)jX]2] + (1¡�)2¡ 2 (1¡�)P[Y � q�(X)jX]
q

;

where

E[P[Y � q�(X)jX]2] =E[P[Y (1)� q�(X)jX]P[Y (2)� q�(X)jX]] =P[Y (1)^Y (2)� q�(X)]:

Thus (3.62) follows. For the ES, if we assume FY jX
0 (Y)� c, P-a.s, for some c > 0, then

we get (3.59), where " satisfies (3.61). This follows from an application of the triangular
inequality yielding (with �(y; v)= 1

1¡� (y¡ v)
++ v) :

ks�(X)¡�(Y ;VaR(Y jX))kP;2 � ks�(X)¡�(Y ; q�(X))kP;2
+k�(Y ;VaR(Y jX))¡�(Y ; q�(X))kP;2

One then uses the (1+ 1

1¡�)-Lipschitz regularity of � with respect to the second argument
and the 1

c
-Lipschitz regularity of FY jX

¡1 to get the result. Using the twin-simulation trick
again, we get (3.60). �

The expectations in (3.62) and (3.60) can then be estimated via a simply dedoubled Monte
Carlo simulation, as opposed to a nested Monte Carlo that would be required to explicitly
attempt to approximate conditional expectations. Moreover the accuracy of the dedou-
bled Monte-Carlo estimates can be controlled by computing confidence intervals. The
distance in (3.62) can be interpreted as a distance in p-values between the quantile estimate
q�(X) and the true quantile q(X), as opposed to a distance directly between values of
conditional quantile estimators. If the approximation q� is sufficiently good, i.e. if this
distance is sufficiently small (as compared to 1¡ �), then (3.60) can be used as a proxy
for ks�(X)¡ES(Y jX)kP;22 . Note however that, because of the 1

1¡� factor in (3.61), the
inequality in (3.61) becomes crude when � gets close to 1.

In the case where the dedoubled Monte Carlo estimates for the right-hand-sides in
(3.62) and (3.60), after having been confirmed to be accurate by drawing enough samples,
are not good enough, one can improve the stochastic gradient descent by changing the
optimizer and/or its hyperparameters, in first attempt, and then act on the hypothesis
spaces, e.g., in the case of neural networks, try to train with more layers/units or better
architectures.

We now test the proposed procedures on a Gaussian toy-example and a dynamic initial
margin (DIM) case-study. Any minimization of loss functions over Fd;D;m;n or similar
sets of neural networks is done using the Adam algorithm of [Kingma and Ba, 2014] over

140 Learning Value-at-Risk and Expected Shortfall

the parameters W and b along with mini-batching. In both examples, for the multi-� (I)
and multi-� (II) learning approaches, we use the bounds (�

�
; ��)=(0.85; 1¡10¡4). For the

multi-� (III) approach, we use a uniform interpolation grid �(k)=1¡ 10¡3¡ k0.15¡ 10¡3

20 ,
with k 2 f0; : : : ; 20g. All neural networks have 3 hidden layers, and twice their input
dimensionality as the number of neurons per hidden layer.

3.5 Conditionally Gaussian Toy Model
Here we take for X a standard multivariate normal vector and we assume that,
conditional on X , Y is normally distributed. We denote �(x) = E[Y jX = x] and

�(x)= E[(Y ¡ �(x))2jX =x]
q

.

Then, denoting by � the CDF of the standard normal distribution and by ' its density,
we have:

VaR(Y jX) = �(X)+�(X) �¡1(�) (3.63)

ES(Y jX) = �(X)+ 1
1¡� �(X) '(�

¡1(�)) (3.64)

These will serve us as ground-truth values. In our toy example, we will assume that
for some d 2 N?, X � N (0; Id) and Y jX � N (P1(X); jP2(X)j2) where P1 and P2 are
multivariate polynomials of degree 2, i.e. for some coefficients � and � we have
for every x = (x1; : : : ; xd) 2 Rd: P1(x) = �0 +

P
i=1
d �i xi +

P
1�i<j�d �i;j xi xj and

P2(x)= �0+
P

i=1
d �ixi+

P
1�i<j�d�i;jxixj.

3.5.1 Results
We use a dimension of d = 25 for the state space of X, leading to 1 + d + d (d+1)

2
=

351 monomials in the multivariate polynomials P1 and P2. The coefficients � and � of
those monomials are drawn independently from a standard normal distribution. For this
example, we use 219= 524288 training points and the same number of testing points for
computing the errors. For the Adam algorithm, we used 2000 epochs, mini-batching with
batches of size 215=32768 a learning rate =0.01, and the rest of the parameters kept at
their default values as in [Kingma and Ba, 2014].

Tables 3.1, as also 3.5, 3.6 and 3.7 below in the DIM case, suggest that the multi-
� approaches are competitive compared to the single-� approach by yielding acceptable
errors for confidence levels below 99%, while requiring only one single training, as opposed
to the single-� approach which requires one training per target confidence level. For very
extreme confidence levels, like 99.9%, the multi-� (III) approach outperforms all the other
approaches. This can be explained by the fact that, even if the target confidence level is
hard to reach given a limited training set, the lower confidence levels in the interpolation
grid contribute to inferring the VaR for the target confidence level. Table 3.2 confirms that
one can rely on the twin-simulation trick to draw mostly similar conclusions as in Table
3.1, without the need to have access to the goundtruth estimators. Note that we computed
upper-bounds of 95% confidence intervals for (3.62), instead of the estimates directly in
order to be conservative and take into account the potentially high variance in the indicator
functions that need to be simulated in order to estimate (3.62). Table 3.3 demonstrates the
effectiveness of the penalization term in the multi-� (I) approach to mitigate the quantiles
crossing problem. Table 3.3 also shows that the other multiple-� learning approaches, even
without directly penalizing the crossing of the quantiles, behave better than a single-�
learning in terms of the crossing of the quantiles.

3.5 Conditionally Gaussian Toy Model 141

� 0.999 0.995 0.99
Multi-� (I) 0.151 (0.004) 0.060 (0.002) 0.039 (0.001)
Multi-� (II) 0.161 (0.004) 0.065 (0.002) 0.042 (0.002)
Multi-� (III) 0.061 (0.002) 0.051 (0.002) 0.043 (0.001)
Single-� 0.612 (0.043) 0.062 (0.001) 0.044 (0.001)
� 0.98 0.95 0.9
Multi-� (I) 0.029 (0.001) 0.023 (0.001) 0.018 (0.001)
Multi-� (II) 0.031 (0.001) 0.024 (0.001) 0.019 (0.001)
Multi-� (III) 0.037 (0.001) 0.029 (0.001) 0.025 (0.001)
Single-� 0.032 (0.001) 0.021 (0.001) 0.016 (0.001)

Table 3.1. Mean of RMSE errors of learned conditional VaR estimators against groundtruth
values in the Gaussian toy-example across multiple runs (standard deviations of RMSE errors are in
parentheses). Errors are normalized by dividing by the standard deviation of the groundtruth VaR.

� 0.999 0.995 0.99
Multi-� (I) 0.00020 (0.000010) 0.00021 (0.000009) 0.00027 (0.000008)
Multi-� (II) 0.00023 (0.000013) 0.00024 (0.000013) 0.00029 (0.000013)
Multi-� (III) 0.00003 (0.000002) 0.00008 (0.000003) 0.00024 (0.000008)
Single-� 0.00008 (0.000003) 0.00020 (0.000007) 0.00035 (0.000008)
� 0.98 0.95 0.9
Multi-� (I) 0.00046 (0.000009) 0.00157 (0.000020) 0.00379 (0.000060)
Multi-� (II) 0.00046 (0.000009) 0.00157 (0.000030) 0.00398 (0.000086)
Multi-� (III) 0.00057 (0.000015) 0.00171 (0.000030) 0.00428 (0.000066)
Single-� 0.00066 (0.000008) 0.00171 (0.000029) 0.00343 (0.000069)

Table 3.2. Mean across multiple runs of the upper-bounds (standard deviations of those upper-
bounds are in parentheses) of 95% confidence intervals of L2 p-value error estimates , i.e. as defined
in (3.62), of learned conditional VaR estimators in the Gaussian toy-example.

E q0.999(X)< q0.995(X) q0.995(X)< q0.99(X) q0.99(X)< q0.98(X)
Multi-� (I) 0.000004 (0.000001) 0.000005 (0.000002) 0.000008 (0.000003)
Multi-� (II) 0.000016 (0.000008) 0.000017 (0.000007) 0.000020 (0.000008)
Multi-� (III) 0.000461 (0.000107) 0.000164 (0.000037) 0.002765 (0.000619)
Single-� 0.111117 (0.003184) 0.251983 (0.006574) 0.213348 (0.005818)
E q0.98(X)< q0.97(X) q0.97(X)< q0.96(X) q0.96(X)< q0.95(X)
Multi-� (I) 0.000022 (0.000007) 0.000073 (0.000017) 0.000367 (0.000059)
Multi-� (II) 0.000032 (0.000008) 0.000080 (0.000012) 0.000405 (0.000096)
Multi-� (III) 0.016378 (0.003258) 0.159370 (0.011163) 0.011956 (0.002695)
Single-� 0.272327 (0.005291) 0.316263 (0.006022) 0.336678 (0.004992)

Table 3.3. Empirical estimates of P(E), for the events E listed in the first row, for learned
conditional VaR estimators in the Gaussian toy-example across multiple runs (standard deviations
of the empirical estimators are in parentheses).

For the ES learning in the Gaussian toy-example, for brevity, we denote by �LR using
M VaR" an ES learning using linear regression only for the output layer, as described
in Section 3.4.3, and a VaR learned using the approach M as the candidate VaR. For
example, LR using single-� VaR refers to the linear regression approach for learning the
ES, by using a VaR that is learned with the single-� approach as the VaR candidate. To
demonstrate the effectiveness of these linear regression approach, we also introduce an ES

142 Learning Value-at-Risk and Expected Shortfall

that is learned by neural regression, by using a neural network in (3.58), without freezing
any weights and using the groundtruth VaR as the VaR candidate. Table 3.4 shows that
the linear regression approach outperforms the neural regression, no matter which approach
is used for learning the VaR candidate in the context of the ES LR approach. The relative
performance of the different linear regression approaches in Table 3.4 is explained by the
relative performance of the VaR learning approaches, given that the VaR learning error
contributes to the ES learning error.

� 0.999 0.995 0.99
NNR using true VaR 0.408 (0.013) 0.106 (0.002) 0.076 (0.002)
LR using single-� VaR 0.536 (0.037) 0.062 (0.001) 0.045 (0.001)
LR using multi-� (I) VaR 1.900 (0.166) 0.068 (0.004) 0.037 (0.002)
LR using multi-� (II) VaR 2.382 (0.174) 0.082 (0.006) 0.041 (0.002)
LR using multi-� (III) VaR 0.126 (0.005) 0.057 (0.002) 0.050 (0.002)
� 0.98 0.95 0.9
NNR using true VaR 0.054 (0.001) 0.041 (0.001) 0.034 (0.001)
LR using single-� VaR 0.034 (0.001) 0.025 (0.001) 0.021 (0.001)
LR using multi-� (I) VaR 0.031 (0.001) 0.025 (0.001) 0.022 (0.001)
LR using multi-� (II) VaR 0.032 (0.001) 0.026 (0.001) 0.023 (0.001)
LR using multi-� (III) VaR 0.043 (0.002) 0.036 (0.001) 0.030 (0.001)

Table 3.4. Mean of RMSE errors of learned conditional ES estimators against groundtruth values
in the Gaussian toy-example across multiple runs (standard deviations of RMSE errors are in
parentheses). Errors are normalized by dividing by the standard deviation of the groundtruth ES.

3.6 Dynamic Initial Margin Case Study

A financial application of the quantile learning framework is the learning of path-wise initial
margins in the context of XVA computations (see [Albanese et al., 2021]). Let there be
given respectively Rd valued and real valued stochastic proceesses (Xt)t�0 and (MtMt)t�0,
where Xt is Markov and represents the state of the market at time t (e.g. diffused market
risk factors) and MtMt represents the mark-to-market (price) of the portfolio of the bank
at time t�cumulative price including the cash flows cumulated up to time t, such that
MtMt+�¡MtMt is �(Xs; t� s� t+ �) measurable. We ignore risk-free discounting in the
notation (while preserving it in the numerical experiments). The initial margin of the bank
at time t at the confidence level �, denoted by IMt, is defined as:

IMt:=VaR(MtMt+�¡MtMtjXt) (3.65)

Hence, having simulated paths of (Xt)t�0 and (MtMt)t�0, one can estimate the initial
margin at future time steps t > 0 using either quantile learning, or a brute-force method
involving nested simulations.

3.6.1 Estimating IMt using a nested Monte Carlo
Alternatively, given t > 0, we can consider a nested Monte Carlo scheme based on
nouter i.i.d samples (Xt

(1)
;MtMt

(1)); : : : ; (Xt
(nouter);MtMt

(nouter)) of (Xt;MtMt) and, for each
i2f1; : : : ; nouterg, K i.i.d sub-samples

fMtMt+�
(i;1);[1]

; : : : ;MtMt+�
(i;ninner);[1]g; : : : ; fMtMt+�

(i;1);[K]
; : : : ;MtMt+�

(i;ninner);[K]g

3.6 Dynamic Initial Margin Case Study 143

of MtMt+� conditional on Xt=Xt
(i). We can then use these sub-simulations to estimate

the conditional quantile in (3.65) for each realization of Xt. For GPU memory limitation
reasons, and in order to avoid having to store simulations on the global memory, we
chose to do so via one stochastic approximation algorithm per (conditional on) each outer
simulation node. More precisely, for every i 2 f1; : : : ; nouterg, we define iteratively over
k 2f1; : : : ; Kg:

IMt
(i);[k+1]:=IMt

(i);[k]+ (p(i);[k]¡ 1+�) (3.66)

where is a positive learning rate (see below) and

p(i);[k] := 1
ninner

X
j=1

ninner

1fMtMt+�
(i;j);[k]¡MtMt

(i)�IMt
(i);[k]g:

One then iterates over k, simultaneously for all i in parallel, until convergence in order to
obtain an approximation of IMt at each outer realization of Xt. In practice, we take to
be of the order of the conditional standard deviation of MtMt+�¡MtMt, itself estimated via
the same nested Monte Carlo procedure, to speed-up the convergence, and we use Adam
instead of plain vanilla stochastic gradient descent. We use ninner= 1024 samples for the
sub-simulations andK=256 iterations, enough to achieve an error in p-value, as computed
using (3.62), of roughly 0.5 (1¡�) in our experiments. In order to accelerate convergence,
we use a Gaussian VaR as the initial value (i.e. IMt

(0);[k]), computed using conditional
expectation and standard deviation estimates using the inner samples at the first iteration.

3.6.2 Results

We consider a portfolio composed of 100 interest rate swaps with randomly drawn char-
acteristics and final maturity 10 years, assessed in the market model of [Abbas-Turki et
al., 2021], with d=29. The sawtooth-like behaviour in the paths of (IMt)t�0 that is visible
in the plots in Figure 3.1 is expected, due to the recurring cash-flows inherent to interest
rate swaps [Andersen et al., 2017]. We use a multi-factor market model with 10 short-rate
processes representing 10 economies and 9 cross-currency rate processes. Given that swap
coupons can depend on short-rates at previous fixing dates, we also include in the regression
basis the same short-rates but observed at the latest previous fixing date, which leads in
total to a dimensionality of 29 for the state vector Xt at a given time t> 0, with 100 time
steps uniformly spread between time 0 and the final maturity of the portfolio equal to 10
years. Here we use 222=4194304 simulated paths (generated in 25 seconds using the code
developed in [Abbas-Turki et al., 2021]) for training and 214 simulated paths, independent
of the former, for evaluating the nested Monte Carlo benchmark and computing the errors.
We leveraged the transfer learning trick used in [Abbas-Turki et al., 2021], which consists
in doing the training starting from the latest time-step and then proceeding backwards by
reusing the solution obtained at a time-step tk+1 as an initialization for the learning to be
done at time tk. This allows us to use only 16 training epochs. As in the Gaussian toy-
example, we use mini-batching. The batch size is taken to be 217= 131072 and we use a
learning rate of 0.001, and the rest of the Adam parameters are kept at their default values.

To illustrate that the quantile learning approach allows one to learn an entire sto-
chastic process (dynamic initial margin), we plot the mean and 5-th/95-th percentiles of
the learned IM process at each time-step for the different quantile learning schemes in
Figure 3.1.

144 Learning Value-at-Risk and Expected Shortfall

0

1000

2000

3000

α = 0.999 α = 0.995 α = 0.99

S
in

g
le

-α

0

1000

2000

3000

M
u

lt
i-
α

(I
)

0

1000

2000

3000

M
u

lt
i-
α

(I
I)

0 50 100

0

1000

2000

3000

0 50 100 0 50 100
M

u
lt

i-
α

(I
II

)

Mean of learned IM, out-of-sample

95th percentile of learned IM, out-of-sample

5th percentile of learned IM, out-of-sample

Mean of Nested Monte-Carlo IM, out-of-sample

95th percentile of Nested Monte-Carlo IM, out-of-sample

5th percentile of Nested Monte-Carlo IM, out-of-sample

Figure 3.1. Mean and 5-th/95-th percentiles of both the learned and the nested Monte Carlo
IM at different time steps and for different values of � and learning approaches. The learning
approach used for the plots in each row is indicated on the right, and each column corresponds to
one value of � which is indicated at the top of each column. Statistics are computed using out-of-
sample trajectories of the diffused risk-factors, and the time steps are on the x-axis.

Tables 3.5, 3.6 and 3.7 (using the nested Monte Carlo as a benchmark, cf.) confirms
the conclusions of Table 3.1 regarding the competitiveness of the multi-� approaches.

� 0.999 0.995 0.99 0.98 0.95 0.9
Multi-� (I) 0.265 0.160 0.109 0.065 0.058 0.056
Multi-� (II) 0.261 0.155 0.107 0.066 0.057 0.056
Multi-� (III) 0.128 0.185 0.102 0.133 0.116 0.074
Single-� 0.134 0.074 0.070 0.056 0.066 0.065

Table 3.5. RMSE errors of learned IMt estimators against nested Monte Carlo estimators, for
t= 2.5years. Errors are normalized by dividing by the standard deviation of the nested Monte
Carlo benchmark.

3.6 Dynamic Initial Margin Case Study 145

� 0.999 0.995 0.99 0.98 0.95 0.9
Multi-� (I) 0.204 0.166 0.131 0.072 0.061 0.069
Multi-� (II) 0.212 0.162 0.127 0.072 0.062 0.069
Multi-� (III) 0.150 0.123 0.067 0.065 0.066 0.068
Single-� 0.165 0.095 0.070 0.057 0.060 0.066

Table 3.6. RMSE errors of learned IMt estimators against nested Monte Carlo estimators, for
t=5years. Errors are normalized by dividing by the standard deviation of the nested Monte Carlo
benchmark.

� 0.999 0.995 0.99 0.98 0.95 0.9
Multi-� (I) 0.292 0.119 0.122 0.095 0.073 0.072
Multi-� (II) 0.296 0.118 0.118 0.091 0.071 0.070
Multi-� (III) 0.157 0.118 0.090 0.089 0.079 0.086
Single-� 0.119 0.088 0.082 0.068 0.061 0.061

Table 3.7. RMSE errors of learned IMt estimators against nested Monte Carlo estimators, for
t= 7.5years. Errors are normalized by dividing by the standard deviation of the nested Monte
Carlo benchmark.

Conclusion These numerical experiments suggest that learning multiple quantiles
(multi-� (I), multi-� (II) or multi-� (III)), although counter-intuitive at first, can help
better target extreme quantiles compared to a standard single quantile learning approach.
This can be explained by the fact that multiple quantile approaches leverage the infor-
mation given by nearby quantiles and thus are better at extrapolating at the extremes.
The multi-� (II) approach is remarkably good at ensuring, via soft-constraints on the
derivative with respect to the quantile level, monotonicity, in cases where consistency
among different quantile levels is desired. Our experiments also show that one can suc-
cessfully use these quantile estimation methods in an XVA or risk calculation setting,
where the computation times may be greatly accelerated by replacing nested Monte Carlo
estimations by quantile and expected-shortfall learnings.

3.A Value-at-Risk and Expected Shortfall Representa-
tions

In this appendix we recall various elicitability results underlying our VaR and ES learning
algorithms.

We start by reminding that a cumulative distribution function (c.d.f.) F :R! [0; 1] is
by definition integrable if Z

R
jy j F (d y)<1 (3.67)

where the integration is in the sense of Stieltjes. If Y is a random variable with cumulative
distribution function F , then (3.67) holds if and only if Y is P-integrable (the left-hand
side of (3.67) is E[jY j]).

Definition 3.32. Let F :R! [0; 1] be an integrable c.d.f. and let �2 (0; 1). The value-at-
risk (VaR) and expected shortfall (ES) of F at the confidence level � are defined respec-
tively by

VaR(F)= inf F¡1([�; 1]); ES(F)= 1
1¡F (VaR(F)¡)

Z
[VaR(F);1)

y F (d y): (3.68)

146 Learning Value-at-Risk and Expected Shortfall

where F (y0¡)= limy"y0F (y). If Y is an integrable random variable on the probability space
(
;A;P), we write

VaR(Y)=VaR(FY); ES(Y)=ES(FY)

where FY is the cumulative distribution function of Y.

Remark 3.33. If Y is an integrable random variable, then it is easy to see that

VaR(Y)= inf ft:P[Y � t]��g; ES(Y)=E[Y jY �VaR(Y)] (3.69)

(the conditional expectation is with respect to P). In particular,

VaR(Y)�ES(Y); (3.70)

with equality if and only if

P[Y �VaR(Y)] = 1: (3.71)

The versions of (3.69), (3.70) and (3.71) for abstract cumulativbe distribution functions F
are clear mutatis mutandis.

Remark 3.34. It is necessary to assume that our random variables are bounded (possibly
after transformation as explained in Sections 3.2.2 and 3.B) in order to obtain nonasymp-
totic bounds in the errors induced by the methods to approximate VaR and ES presented
here (see for instance (3.18)).

This entails no loss of generality for VaR. To see why, let Y be any integrable random
variable defined on (
; A; P), let I � R be a (possibly infinite) interval supporting Y
(P[Y 2 I] = 1), let ¡1<a<b<1, and let h: I! (a; b) be any increasing bijective, Borel
measurable function. Then by monotonicity

VaR(h(Y))=h(VaR(Y));

which allows us to reduce the approximation of VaR(Y) to the bounded case: to approxi-
mate VaR(Y), approximate VaR(h(Y)) and compose with h¡1. The error bounds provided
in this paper, which apply to VaR(h(Y)), can then be translated into error bounds on the
approximation of VaR(Y) using ad hoc analytic properties of h.

As for ES, notice that for such h

ES(h(Y))1fh(Y)�VaR(h(Y))g=E[h(Y)j1fh(Y)�VaR(h(Y))g] =E[h(Y)j1fY �VaR(Y)g]:

From this it follows that if h is in addition convex [concave] on I \ [VaR(F);1), then3.8

ES(Y)� [�]h¡1(ES(h(Y))):

The inequality (3.8) for convex [concave] h shows that h¡1(ES(h(Y))) is a conservative
[risky] estimate of ES(Y).

Notice that conservative estimates as before are available only when Y is assumed
upper bounded, for there is no convex, increasing and bounded bijection with domain [a;
1). Note also that if h is an increasing affine transformation, then ES(h(Y))=h(ES(Y)).

3.8. If Z is an integrable random variable on (
;A; P) and A0�A is a sigma-algebra, then for every convex,
bijective and bimeasurable function h:R!R,

h¡1(E[h(Z)jA0])�E[h¡1(h(Z))jA0] =E[Z jA0]:

If A0=�(1fY �ag) and the invertible, bimeasurable function h:R!R is convex in the interval J = I \ [a;1) where
P[Y 2 I]=1, then h0=h1I\[a;1)+h11Rn(I\[a;1)) is convex, invertible and bimeasurable in R for an appropriate h1:
R!R, and E[h(Z)jA0]=E[h0(Z)jA0]=E[h0(Z)jY �a]1fY �ag. Even more, E[h0(Z)jY �a]=E[h(Z)jY �a] because
h0jI\[a;1)=hjI\[a;1). The argument for concave h is similar.

3.A Value-at-Risk and Expected Shortfall Representations 147

It is convenient for what follows to present the discussion in terms of distribution
functions. We start by noticing that if F has an �-quantile, namely if

F (y)=� for some y,

then VaR(F) is the minimum of such y's. In this case (and this case only)

F (VaR(F))=�: (3.72)

By the intermediate value theorem, such y exists in [a; b] if

Assumption 3.35. There exists an interval [a;b] where F is continuous and F (a)<��F (b):

The following operator will allow us to characterize VaR and ES as minimizers of a
suitable functional.

Definition 3.36. Given a Polish space S, a (Borel measurable) function h:S�R!R and
a distribution function F, we define (h �F):S!R by

(h �F)(x)=
Z
R
h(x; y) F (d y)

provided that h(x; �) is F-integrable for all x. When necessary, we will
write (h �F)(�)=h(�; y) �F (d y).

Our methods are built over the following results of [Rockafellar and Uryasev, 2000]3.9,
whose easy proof we give for the sake of completeness:

Lemma 3.37. Let f :R!R be an increasing, continuously differentiable function, and let
�f:R2!R be the tilted loss at level � (given f) defined by

�f(y; v)= (1¡�)¡1 (f(y)¡ f(v))++ f(v): (3.73)

If F is an integrable distribution function satisfying Assumption 3.35, then the set of
minimizers of the function (�f � F)j[a;b] is the set of �-quantiles of F within [a; b], and
given c> 0,

ES(F)= 1
c
min
v
(�c� �F)j[a;b](v);

Proof. Since f is increasing and continuous, and since F is absolutely continous in [a; b],
the identity

(�f �F)0(v) = d
d v

�
(1¡�)¡1

Z
v

1
(f(y)¡ f(v))F (d y)+ f(v)

�
=f 0(v) (1¡ (1¡�)¡1 (1¡F (v))):

holds for v 2 [a; b]. It follows in particular that the (continuously differentiable) function
(�f � F)j[a;b] has critical points in the set of �-quantiles of F within [a; b]. Since F is
increasing, these critical points are the minimizers of �f �F .

With this, (3.73) is a straigthforward consequence of the definition (3.68) of ES(F)
together with (3.72): given any �-quantile q of F within [a; b], and since F is constant in
[VaR(F); q),

ES(F) = 1
1¡�

Z
q

1
yF (d y)= 1

1¡�

Z
R
(y¡ q)+F (d y)+ q

=1
c
(�c� �F) j[a;b](q)=

1
c
min
v
(�c� �F)j[a;b](v);

3.9. where we only added � for the sake of data transformation to boundedness.

148 Learning Value-at-Risk and Expected Shortfall

where for the last equality we used the first part already proved. �

Notice that the estimation of ES via (3.73) implies the estimation of an integral with
respect to F . It is desirable, in order to propose distribution-free methods for the estima-
tion of ES, to have characterizations of this risk measure as a minimizer (rather than a
minimum). The following theorem presents the first one, which works given a corresponding
�-quantile:

Lemma 3.38. Let &: [0;1)!R be twice continuously differentiable with & 00 positive, and let

'&(y; v; z)= & 0(z) (z¡ (1¡�)¡1 (y¡ v)+)¡ &(z) (3.74)

be the tilted loss for ES (given &). If F is an integrable distribution function and if q is an
�-quantile of F, then ES(F)¡ q2 [0;1) is the unique minimizer of '&(y; q; �)�F (dy)j[0;1).

Proof. In this case,

d
d z

('&(y; q; z) �F (d y))= g 00(z)
�
z¡ (1¡�)¡1

Z
R
(y¡ q)+ F (d y)

�
;

whose sign changes at z=ES(F)¡q because & 00(z)>0: this follows as in the proof of (3.73). �

Inspired by Corollary 5.5 in [Fissler and Ziegel, 2016], we finally present the following
�joint" function, which is basically a combination of (3.73) and (3.74), for the elicitability
(representation as minimizer of an expected loss) of (VaR;ES).

Lemma 3.39. Let �; & be functions R! R where � 0 is nonnegative (possibly zero)
and continuous, & 0 is negative, and & 00 does not vanish, and consider the function
��;&:R�R� (¡1; 0]!R defined by

��;&(y; v; z) =(1¡�)¡1 (�(y)¡ �(v))++ �(v)
+& 0(z) (z¡ v¡ (1¡�)¡1 (y¡ v)+)¡ &(z):

(3.75)

Then for every integrable c.d.f. F satisfying Assumption 3.35, (F¡1(�)\ [a; b])�fES(F)g
is the set of minimizers of the function

��;&(y; �; �) � F (d y): [a; b]�R!R: (3.76)

Proof. The derivative of (3.76) with respect to v is

(�0(v)¡ & 0(z)) (1¡ (1¡�)¡1 (1¡F (v))) (3.77)

which equals zero if and only if v 2F¡1(�) by the assumptions on �0 and & 0.
By a similar calculation and using & 00=/ 0, the derivative of (3.76) with respect to z is

zero if and only if

z= v+(1¡�)¡1
Z
R
(y¡ v)+F (d y);

which, as justified in the proof of Lemma 3.38, gives z=ES(F) if v 2F¡1(�).
It follows that (F¡1(�)\ [a; b])� fES(F)g is the set of critical points of (3.76). The

fact that these critical points are indeed minimizers of (3.76) follows by an argument akin
to the proof of Lemma 3.37 (consider z =ES(Y) fixed and the expression (3.77) for the
derivative with respect to v). �

3.A Value-at-Risk and Expected Shortfall Representations 149

3.B The Role of Data Transformations and Trunca-
tions

The functions hk(x; y) (k=1;2) in Algorithm 3.1 serve at least two purposes: to uniformly
bound and normalize the data, in particular to make it fit to the theory of [Barrera,
2022], and to open the room for profiting from a priori information about the conditional
distributions of Y given X.

Let us discuss the functions involved in the estimation of ES: the reason for restricting
ourselves to conditionally affine transformations

h(x; y)= � (x) y+ �(x) (a(x)> 0) (3.78)

is that, as explained in Remark 3.34, only these satisfy (in general) the equation

ES(h(X;Y)jX)=h(X;ES(Y jX)); (3.79)

thus allowing us to compute ES(Y jX) by solving the right hand side of (3.79) for X fixed
(which corresponds to the definition of r̂ in Algorithm 3.1).

Now, conditionally affine transformations (3.78) are the ones used for �centering and
normalizing�: typically, one would use h2(x; y) = (y ¡ �̂(x))/ �̂(x) where �̂(x) and �̂2(x)
are estimates of the conditional mean and variance of Y given that X =x.

It may be convenient to say some additional words about this traditional normalization:
if Z 2LP1 has �-quantiles, then integrating the inequality

VaR(Z)1fZ�VaR(Z)g�Z1fZ�VaR(Z)g (3.80)

and applying Hölder's inequality we obtain the following: for every p2 [1;1] (p0= p/(p¡1))

VaR(Z) (1¡�)� jjZ jjP;p (1¡�)1/p
0
:

Now, if FZ(t) :=P[Z � t] is continuous and increasing in [VaR(Z);VaR(Z)+ �) (for some
� > 0) then

¡VaR�(Z)=VaR(1¡�)(¡Z)

where VaR�(�) indicates the corresponding VaR at level � (Definition 3.1), and the previous
argument with ¡Z in place of Z and 1¡� in place of � leads to

¡VaR(Z)�� jjZ jjP;p�1/p
0
: (3.81)

Interpreting (3.80), (3.81) in a conditional context and going back to our conventions we
obtain that if p>1 and FY jX is continuous and increasing in [VaR(Y jX);VaR(Y jX)+�(X))
then

¡�¡1/p� VaR(Y jX)
jjY jjPX ;p

� (1¡�)¡1/p (3.82)

which combined with the identity3.10

ES(Y jX)= 1
1¡�

Z
�

1

VaR�(Y jX) d � (3.83)
gives that

¡ p0 (1¡�1/p0) (1¡�)¡1� ES(Y jX)
jjY jjPX ;p

� p0 (1¡�)¡1/p: (3.84)

provided that FY jX is strictly increasing and continuous in [VaR(Y jX);1).

3.10. The equality (3.83) is known as Acerbi's formula. It was generalized to the case of noncontinuous dis-
tributions in [Acerbi and Tasche, 2002, Proposition 3.2]. For the case in consideration a quick proof follows by the
change of variable y=FY jX

¡1 (�)=VaR�(FY jX) in (3.2).

150 Learning Value-at-Risk and Expected Shortfall

The inequalities (3.82) and (3.84) carry at least two important messages: first, the
integrability properties of Y are inherited by VaR(Y jX) and ES(Y jX); and second, the
(conditional) moments of Y control the value of these risk measures. It follows in particular
that if x 7!M̂p(x)>0 is (say) an estimate of x 7!Mp(x) := jjY jjPx;p and C>0 is a constant
such that

P[Mp(X)�CM̂p(X)] = 1; (3.85)

then the specification in Algorithm 3.1 given by

h1(x; y)=h (y/M̂p(x))

where h(y) is a continuous and increasing bounded function equal to the identity if

jy j�C (�^ (1¡�))¡1/p;
permits to assume that

B1=C (�^ (1¡�))¡1/p;
giving (by the definition of h) that

q̂(x)= M̂p(x)f̂(x):

As for the computation of ES¡VaR, choosing the conditionally affine transformation

h2(x; y)= y/M̂p(x)
permits to fix the bound

C (p0 (1¡�)¡1/p+�¡1/p): (3.86)

for the hypotheses G and to truncate by any B3 larger than or equal to (3.86) when carrying
the regression in Step 4.

Following this line of reasoning, notice that the truncation by B3 gives rise to a �tail
error� of the form

E[((jW j ¡B3)+)2]; (3.87)

where W =(1¡�)¡1 (h2(X;Y)¡h2(X; q(X)(X)))+ is the random variable whose condi-
tional expectation (given X) we are trying to estimate.

To justify our belief in the necessity of a priori controls on tail bounds on Y (or Y jX)
for the estimation of ES (e.g. upper bounds to (3.87)), consider the following claim:

Claim: For every increasing, integrable distribution function F and every (C; �)2R� (0;
1), there exists an increasing and integrable distribution function G coinciding with F in
(¡1; C] and such that ES(F)+ � <ES(G).3.11

According to this claim, no inference can be made in general about ES(F) only from
information on F (y) up to some upper bound y �C <1. Being this is the only kind of
information available through finite observations Y1(!);:::;Yn(!) of Y �F , it does not seem
possible in general to infer statistical bounds on the approximation error for estimations
of ES(F) which are based only on finite samples of F .3.12

3.11. This can be proved easily via the following observation: assumewithout loss of generality that VaR(F)<C,
consider a random variable Y with the distribution F and random variables

Yk=Y 1fY �Cg+(C +2k (Y ¡C))1fY >Cg;

and notice that limkES(Yk) =1 by the monotone convergence theorem. The sought for G corresponds to some of
these Yk.

3.12. This is also an obstruction to obtaining in general, from finite samples of (X; Y), a function satisfying
(3.85): we have seen that this implies bounds for ES in the case of continuous distributions.

3.B The Role of Data Transformations and Truncations 151

Chapter 4

Pathwise XVAs: The Direct Scheme

This chapter, also submitted as a paper, was co-authored with Lokman Abbas-Turki, Stéphane
Crépey and Wissal Sabbagh.

Motivated by the equations of cross valuation adjustments (XVAs) in the realistic
case where capital is deemed fungible as a source of funding for variation margin, we
introduce a simulation scheme for a class of anticipated BSDEs where the coefficient entails
a conditional expected shortfall of the martingale part of the solution. The scheme is
explicit in time and uses neural net least-squares and quantile regressions for the embedded
conditional expectations and expected shortfall computations. An a posteriori Monte Carlo
procedure allows assessing the regression error of the scheme at each time step. The supe-
riority of this scheme with respect to Picard iterations is illustrated in a multi-factor and
hybrid market/default risks XVA use-case.

4.1 Introduction

Crépey et al., 2020 showed the existence of a unique solution4.1 to an anticipated BSDE
(ABSDE) in the line of Peng and Yang, 2009, where the coefficient entails a conditional
risk measure of a future increment of the martingale part of the solution. Such a coeffi-
cient occurs in the equations of cross valuation adjustments (XVAs), accounting for the
possibility to use capital at risk as a source of funding for variation margin. In the present
paper we address the numerical solution of these equations and its XVA application.

Numerical schemes for BSDEs include backward dynamic programming based on Euler
[Bouchard and Touzi, 2004; Zhang, 2004] or higher order [Chassagneux and Crisan, 2014]
schemes, combined with regression [Gobet et al., 2005; Huré et al., 2020], Malliavin [Crisan
et al., 2010] or cubature [Lyons and Victoir, 2004] methods to estimate the embedded
conditional expectations. These admit extensions to jump-diffusions [Bouchard and Élie,
2008], reflected BSDEs [Chassagneux and Richou, 2019], forward-backward SDEs [Delarue
and Menozzi, 2006], quadratic BSDEs [Chassagneux and Richou, 2016] or McKean-Vlasov
BSDEs [Chassagneux et al., 2019]. Alternative machine learning schemes [E et al., 2017;
Teng, 2021] open the door to the numerical solution of BSDEs in dimensions 100 to 1000
(instead of, say, 10 otherwise), however their convergence analysis is still very incomplete.
Numerical schemes for BSDEs also include Monte Carlo branching [Henry-Labordere et
al., 2017] or Multilevel Picard [Weinan et al., 2019] schemes, but these only provide time
0 estimates (unless they are applied in a nested fashion at each outer node of a nested
simulation), making them unsuitable for our (XVA) purpose in this work.

4.1. for square integrable data and solutions.

153

There is not much literature on the numerical treatment of ABSDEs. As in the present
paper (but in a purely Brownian setup), Agarwal et al., 2019 consider an ABSDE involving
a conditional expected shortfall as anticipated term (by contrast with a conditional expec-
tation in the previous ABSDE literature). Exploiting the short horizon of the anticipation
in the equation (one week in their case versus one year in ours), they devise approximations
by standard BSDEs, which allows them to avoid the difficulty posed by the regression
of the anticipated terms4.2. The XVA ABSDEs received a first numerical treatment in
Albanese et al., 2017 on a nested Monte Carlo4.3 basis, using Picard iteration to decouple
the solution from the embedded conditional risk measures and ignoring the conditionings
in the latter4.4 to avoid multiply nested Monte Carlo. The other natural approach to
address such problems numerically is regression-based Monte Carlo as introduced above,
i.e. iterated regressions (or more general supervised learning algorithms) that are used for
cutting the recursively nested levels of Monte Carlo to which a naive implementation of the
equations conducts. A first take in this direction, still using Picard iterations for decoupling
purposes, was implemented in Albanese et al., 2021, leveraging on the elicitability of the
embedded risk measures for learning not only the XVAs, but also these risk measures:
conditional value-at-risk for dynamic initial margin calculations and conditional expected
shortfall4.5 for dynamic economic capital calculations. Proceeding in this way allowed
Albanese et al., 2021 to learn the embedded conditional risk measures, instead of treating
them numerically as constants in Albanese et al., 2017.

In the present paper we introduce an explicit time-discretization scheme which, in
conjunction with a refined neural net regression approach for the embedded conditional
expectations and expected shortfalls, leads to a direct algorithm for computing the XVA
metrics, without Picard iterations. A numerical benchmark of both schemes in a realistic
XVA setup emphasizes the superiority of the explicit scheme.

The paper is outlined as follows. Section 4.2 recasts the generic ABSDE of Crépey et
al., 2020 in a Markovian setup amenable to numerical simulations. Section 4.3 introduces
the related regression-based explicit and implicit/Picard simulation schemes. Section 4.4
provides a numerical benchmark in an XVA setup. Section 4.5 discusses the outputs of the
paper in relation with the literature and introduces future research perspectives.

4.1.1 Standing Notation

We denote by:

� j�j, an Euclidean norm in the dimension of its arguments;

� T 2 (0;1), a constant horizon;

� (
;A;F ;Q), a filtered probability space, for a probability measure Q on the mea-
surable space (
;A) and a complete and right-continuous filtration F =(Gt)0�t�T
of sub-� fields of A;

� E, the Q expectation, and Pt, Et, and ESt, the (Gt; Q) conditional probability,
expectation, and expected shortfall (see (4.1)) at some given quantile level �2 (1

2
;1),

4.2. cf. the beginning of Section 3.2 in Agarwal et al., 2019.

4.3. cf. also Abbas-Turki et al., 2021.

4.4. i.e. computing unconditional risk measures instead of conditional ones.

4.5. that is elicitable jointly with value-at-risk.

154 Pathwise XVAs: The Direct Scheme

where, for each GT -measurable, Q-integrable, random variable `,

ESt(`)=Et(`j`� qt�(`)); (4.1)

in which qt
�(`) denotes the (Gt;Q) conditional left-quantile of level �4.6 of `. We recall4.7

that, for any GT measurable, Q integrable random variables ` and `0,

jESt(`)¡ESt(`0)j � (1¡�)¡1Et[j`¡ `0j]: (4.2)

4.2 Limiting Equations

We specify the stochastic differential equations adressed from a numerical viewpoint in
later sections.

4.2.1 Spaces and Martingale Representation
Given nonnegative integers d and q, we denote by W , an (F ; P) standard d variate

Brownian motion, and � = (�k), an integer valued random measure4.8 on f0; 1gq, with P
compensatrix

d�t
k= d �tk¡ tkd t; k2f0; 1gq;

for some nonnegative real valued predictable process k, k 2 f0; 1gq. Given any positive
integer l, we introduce:

� S2l, the space of Rl valued F adapted càdlàg processes Y such that

kY kS2l
2 =E

�
sup

0�t�T
jYtj2

�
<+1;

� H2l , the space of Rl
d valued F progressive processes Z such that

kZkH2
l

2 =E
�Z

0

T

jZtj2 d t
�
<+1;

� H~2l , the space of Rl
2q valued F predictable processes U such that

kU kH~2l
2 =E

�Z
0

T

jU jt2 d t
�
<+1, where jU jt2=

X
k

t
k jUtkj2:

In the case where l=1 we drop the index l, e.g. we write S2 instead of S21.

Assumption 4.1. Every (F ;P) martingale in S2 starting from 0 has a representation of
the form4.9 Z

0

�
Zt dWt+

Z
0

�
Ut dNt; (4.3)

4.6. value-at-risk.

4.7. additionally assuming ` and `0 atomless given Ft, without harm for the XVA applications targeted in this
work; cf. e.g. [Barrera et al., 2019](Lemma A.6, Eq. (A.16)).

4.8. see Jacod, 1979.

4.9. using
R
0

t
Us dNs as shorthand for

P
k2f0;1gq

R
0

t
Us
k dNs

k.

4.2 Limiting Equations 155

for some Z 2H2 and U 2H~2.

4.2.2 The Markovian Anticipated BSDE

Given a positive integer p, let X in S2
p satisfy

dXt= b(t;Xt) d t+�(t;Xt) dWt; (4.4)

for coefficients b(t; x) and �(t; x) Lipschitz in x uniformly in t 2 [0; T] and with linear
growth in x, so that the SDE (4.4) is classically well-posed in S2

p, for any constant initial
condition x2Rp. We write X =(X;J), where a f0; 1gq valued �Markov chain like" model
component J4.10 satisfies

dJt=
X

k2f0;1gq
(k¡Jt¡) d �tk (4.5)

and t= (t;Xt¡) holds for some continuous functions k(t; x) of (t; x), where we write
f(t;Xt; � � �) as a shorthand for fJt(t;Xt; � � �), for any function f = fk(t; x; � � �). Hence �tk
counts the number of transitions of J to the state k on (0; t].

Given a positive integer l, let �= �k(x) define for each k an Rl valued continuous
function on Rp (and we write �(XT) as a shorthand for �JT(XT)), f = fk(t; x; y; %) define
for each k an Rl valued continuous function on [0; T]�Rp�Rl�R, and M 7!ES�(� ��(M))
denote a random map from S2l into the space of F predictable4.11 processes, where

�t�(M) :=�(t;X[t;t�];M[t;t�]¡Mt); (4.6)

for some deterministic maps t� of time t satisfying t�2 [t; T]4.12 and � of time t and càdlàg
paths x and m on [t; t�] such that mt=0. We consider the following anticipated BSDE for
Y in S2l:

Yt=Et
�
�(XT)+

Z
t

T

f(s;Xs; Ys;ESs(�s0(M))) d s
�
; (4.7)

whereM , also required to belong to S2l, is the canonical Doob-Meyer martingale component
of the special semimartingale Y .

Assumption 4.2. (i) The function f = fk(t; x; y; %) is �f Lipschitz in (y; %) ;
(ii) The processes ES�j� ��(0)j and f(�;X�; 0; 0) are in H2;
(iii) � is Lipschitz with respect to its last argument in the sense that for every t2 [0;T],

j�(t;x;m)¡�(t;x;m0)j ��� jmt�¡mt�
0 j (4.8)

holds for all càdlàg paths x;m;m0 on [t; t�] such that mt=mt
0=0.

Remark 4.3. Assumption 4.2(iii) points out to the case where �t�(M) only depends on
M throughMt�¡Mt, which indeed corresponds to our XVA use case later below. However,
Assumption 4.2(iii) is only a sufficient condition for Lemma 4.5 below to hold, and the
algorithms of Section 4.3 are not restricted to this case.

4.10. but with transition probabilities modulated by X.

4.11. assuming the raw process �t�(M) càdlàg in t, see [Crépey et al., 2020](Lemma 2.1).

4.12. e.g. t�= (t+1)^T in our XVA use case of Section 4.4.

156 Pathwise XVAs: The Direct Scheme

Lemma 4.4. There exists a positive constant �� such that

jESt(�t�(M))¡ESt(�t�(M 0))j2���2Et
�Z

t

t�

(jZs¡Zs0j2+ jU ¡U 0js2) d s
�

(4.9)

holds for any M;M 02S2l , where (Z;U) and (Z 0; U 0) in H2l �H~2l are the integrands in the
martingale representations (4.3) of M ¡M0 and M 0¡M0

0.

Proof. By (4.2), we have

(1¡�)2 jESt(�t�(M))¡ESt(�t�(M 0))j2�
(Et[�(t;X[t;t�];M[t;t�]¡Mt)¡�(t;X[t;t�];M[t;t�]

0 ¡Mt
0)])2�

Et[(�(t;X[t;t�];M[t;t�]¡Mt)¡�(t;X[t;t�];M[t;t�]
0 ¡Mt

0))2];

by the (conditional) Jensen inequality. Moreover, the Lipschitz condition (4.8) yields with
�M =M ¡M 0

(�(t;X[t;t�];M[t;t�]¡Mt)¡�(t;X[t;t�];M[t;t�]
0 ¡Mt

0))2���2 j�Mt�¡ �Mtj2;

where, with �Z=Z ¡Z 0 and �U =U ¡U 0,

�Mt�¡ �Mt=
Z
t

t�

�Zs dWs+
Z
t

t�

�Usd�s;

hence

j�Mt�¡ �Mtj2=
X
k=1

l �Z
t

t�

�Zs
k dWs+

Z
t

t�

�Us
k d�s

�
2

:

Therefore,

(1¡�)2 jESt(�t�(M))¡ESt(�t�(M 0))j2���2 Et
X
k=1

l �Z
t

t�

�Zs
k dWs+

Z
t

t�

�Us
k d�s

�
2

:

As a local martingale in S2, each process
R
t

�
� Zs

k dWs+
R
t

�
� Us

k d �s is a square integrable
martingale over [t; t�]. The (conditional) Burkholder inequality applied to this process then
yields

Et
�Z

t

t�

�Zs
k dWs+

Z
t

t�

�Us
k d�s

�
2

�CEt
�Z

t

t�

(j�Zsk j2+ j�Ukjs2) d s
�
;

so that (4.9) entails (4.9). �

Lemma 4.5. The ABSDE (4.7) has a unique special semimartingale solution Y in S2l with
martingale component M in S2l. The process Y is the limit in S2l of the Picard iteration
defined by Y (0)=0 and, for j � 1,

Yt
(j)=Et

�
�(XT)+

Z
t

T

f
¡
s;Xs; Ys

(j¡1)
;ESs(�s�(M (j¡1)))

�
d s

�
; (4.10)

where M (j¡1)2S2l is the martingale part of the special semimartingale Y (j¡1)2S2l.

Proof. Assumptions 4.2(i) and (ii) imply that the processes

sup
jy j�c
jf(�;X�; y;ES�� ��(0))¡ f(�;X�; 0;ES�� ��(0))j

1

2

4.2 Limiting Equations 157

(for every c>0), as well as jf(�;X�;0;ES�� ��(0))j, are in H2, which is [Crépey et al., 2020],
whereas [Crépey et al., 2020] are implied by our Assumption 4.2(i) and the Lipschitz prop-
erty of the functions �k combined with the standard bound estimate kXkS2p

2 �C (1+ jxj2)
on X (with constant initial condition x). Moreover, (4.9) corresponds to [Crépey et al.,
2020]. Hence [Crépey et al., 2020] hold and the result follows by an application of [Crépey
et al., 2020](Theorem 3.1). �

4.3 Approximation Schemes

4.3.1 Time Discretizations

Let there be given a deterministic time-grid 0= t0<t1< � � �<tn=T with mesh size4.13 h.
We write � ti+1= ti+1¡ ti. Let t�i denote an approximation on the grid of ti�4.14. Let there
also be given, on this time grid, simulatable approximations X h to X 4.15 and �t�i

h (Mh) to
�t�(M), with �t�i

h (Mh) of the form4.16

�h(ti;Xfti; � � �; t�ig
h ;Mfti; � � �; t�ig

h ¡Mti
h); (4.11)

for some deterministic map �h of grid times ti and discrete paths xh and mh on fti; �� �; t�ig
such that mti

h=0.
The explicit time discretization for (Y ;ES�� ��(M)) (with M the martingale part of the

solution Y to (4.7)) is the process (Y h; �h) defined at grid times by Ytn
h=�(XTh); �tn

h =�Th(0)
and, for i decreasing from n¡ 1 to 0,

Yti
h=Eti[Yti+1

h + f(ti;Xti
h; Yti+1

h ; �ti+1
h)� ti+1]

�ti
h =ESti�t�i

h

Ytl
h+
X
k<l

f(tk;Xtk
h ; Ytk+1

h ; �tk+1
h)� tk+1; l=0; : : : ; n

!
:

(4.12)

The Picard iteration for the implicit time discretization for (Y ;ES�� ��(M)) is defined by
the sequence of discrete time processes (Y 0;�; �0;�)= (0;0) and, for each j increasing from
1 to 1: Ytn

j;h= �(XTh); �tn
j ;h=�Th(0) and, for i decreasing from n¡ 1 to 0,

Yti
j;h=Eti[Yti+1

j;h+ f(ti;Xti
h; Yti

j¡1;h; �ti
j¡1;h)� ti+1];

�ti
j ;h=ESti�t�i

h

Ytl
j ;h+

X
k<l

f(tk;Xtk
h ; Ytk

j¡1;h; �tk
j¡1;h)� tk+1; l=0; : : : ; n

!
:

(4.13)

The time-consistency of these schemes, i.e. the convergence of the Y h (resp. Y h;j) to Y as
h goes to 0 (resp. h goes to 0 and j goes to infinity) will be studied elsewhere. Our focus
hereafter is the discretization in space of (4.12), (4.13).

4.13. maximum time step.

4.14. cf. after (4.6).

4.15. e.g. the Euler scheme for X and a related approximation for J.

4.16. cf. (4.6).

158 Pathwise XVAs: The Direct Scheme

4.3.2 Fully Discrete Algorithms
Whenever a process Mh on the time grid is such that

Mft=ti; � � �; t�ig
h ¡Mti

h is a measurable functional of (ti;Xti
h); : : : ; (t�i;Xt�i

h) (4.14)

in view of [Barrera et al., 2022](Theorem 2.3)4.17, we have (with '='k(t; x) and �= �k(t;
x) below): ESt(�t�h(Mh))= (1¡�)¡1 ��(t;Xth), where

��
�(t; �)= argmin

��(t;�)2B
E[(�t�h(Mh) 1f�t�h(Mh)�'�(t;Xth)g¡ �(t;Xt

h))2]; (4.15)

in which

'�
�(t; �)= argmin

��(t;�)2B
E[('(t;Xth)+ (1¡�)¡1 (�t�h(Mh)¡ '(t;Xth))+]; (4.16)

both minimizations bearing over the set B of the Borel functions of (x; k).
As estimates of '�(t; Xth) and ��(t; Xth) we use the functions '̂�(t; �) and �̂�(t; �)

obtained by solving the respective problems (4.16) and (4.15) with B replaced by a to-
be-specified hypothesis space of functions, E by the sample mean over a sufficiently large
number of independent realizations of X h, minimization by (approximate) numerical min-
imization through Adam stochastic gradient descent [Kingma and Ba, 2014], and '� in
(4.15) by '̂�.

The fully (time and space) discrete counterparts of (4.12) and (4.13) follow by estima-
tion of the embedded conditional expectations (resp. expected shortfalls) through nonpara-
metric least-squares (resp. quantile as explained above) regressions of suitable features,
which we write: Ŷtn

h= �(XTh); �̂tn
h =�Th(0) and, for i decreasing from n¡ 1 to 0,

Ŷti
h= Êti[Ŷti+1

h + f(ti;Xti
h; Ŷti+1

h ; �̂ti+1
h)� ti+1]

�̂ti
h =ESb ti�t�i

h

Ŷtl
h+
X
k<l

f(tk;Xtk
h ; Ŷtk+1

h ; �̂tk+1
h)� tk+1; l=0; : : : ; n

!
;

(4.17)

respectively Ŷtn
j;h= �(XTh); �̂tn

j ;h=�Th(0) and, for i decreasing from n¡ 1 to 0,

Ŷti
j;h= Êti[Ŷti+1

j;h+ f(ti;Xti
h; Ŷti

j¡1;h; �̂ti
j¡1;h)� ti+1];

�̂ti
j ;h=ESb ti�t�i

h

Ŷtl
j ;h+

X
k<l

f(tk;Xtk
h ; Ŷtk

j¡1;h; �̂tk
j¡1;h)� tk+1; l=0; : : : ; n

!
:

(4.18)

As in [Abbas-Turki et al., 2021], given weight matrices A[L+1]2R1�u; : : : ; A[`]2Ru�u; : : : ;
A[1] 2Ru�(p+q), biases b[L+1]2R; : : : ; b[`]2Ru; : : : ; b[1]2 Ru, and a scalar nonlinearity &
applied element-wise, let, for every z 2Rp+q,

� [0](z;A; b)= z

� [`](z;A; b)= & (A[`]� [`¡1](z;A; b)+ b[`]); `=1; : : : ; L

� [L+1](z;A; b)=A[L+1]�(L)(z;A; b)+ b[L+1];

where A and b denote the respective concatenations of the A[`] and of the b[`]. The function
Rp+q 3 z 7! � [L+1](z;A; b) 2 R then implements a neural network with L hidden layers,
u neurons per hidden layer, & as an activation function applied on each hidden unit,
and no nonlinearity at the output layer. We can then introduce Algorithms 4.2 (for the

4.17. additionally assuming �t�
h(Mh) atomless given Ft.

4.3 Approximation Schemes 159

explicit scheme) and 4.3 (for the implicit/Picard scheme), both using Algorithm 4.1 as
an elementary learning block. At the beginning of the algorithms, i.e. before any learning
is performed, weights are initialized randomly according to classic weight initialization
schemes ([Goodfellow et al., 2016]). In our numerical experiments, we use Softplus activa-
tion functions in the hidden layers, in combination with the related weight initialization
scheme by [He et al., 2015].

Remark 4.6. Assuming the same number of epochs during each run of the elementary
learning block of Algorithm 4.1 for all schemes, the Picard scheme with j Picard iterations
implies j times more regressions than the explicit scheme. Hence, by design, it is at a
computational disadvantage compared to the explicit scheme of Algorithm 4.2. In order to
try and make the Picard scheme more competitive, we propose to modify Algorithm 4.3 by
leveraging its iterative nature through Picard iterations. Namely, given a computational
budget equivalent to ntrain training epochs in the explicit scheme, assuming that we have a
target of j Picard iterations in the implicit scheme, we only train for only ntrain/j epochs
at each Picard iteration, reusing the obtained neural network weights as an initialization for
the neural networks at the next Picard iteration, versus the next time step in Algorithms
4.2 and 4.3. This ensures that the total computational cost of j Picard iterations is roughly
the same as the cost of learning in the explicit scheme.

This modification is achieved by changing the i+1 in lines 12, 14 and 18 of Algorithm
4.3 to I, where I= i+1fpicard_iter=1g, then ensuring that the weights of the previous Picard
iteration, as opposed to the previous time step of the same Picard iteration in Algorithm
4.3, are used to initialize each learning.

Algorithm 4.1
Elementary learning block

name: BaseAlg
input: f(X�; Y �); �2Ig, a partition B of I, a number of epochs E 2N?, a learning rate
� > 0, initial values for the network parameters A and b, type of regression regr
output: Trained parameters A and b

1 define

2

L(A; b; batch)=8>>>>>><>>>>>>:
1

jbatchj
X

�2batch
(� [L+1](X�;A; b)¡Y �)2 if regr=L2

1
jbatchj

X
�2batch

(Y �¡ � [L+1](X�;A; b))++(1¡�) � [L+1](X�;A; b) if regr=quantile

3
4 for epoch=1: : :E do
5 // loop over epochs
6 for batch2B do
7 // loop over batches
8 for `=1: : :L+1 do
9 A[`] A[`]¡ �rA[`]L(A; b;batch)

10 b[`] b[`]¡ �rb[`]L(A; b; batch)
11 end
12 end
13 end

160 Pathwise XVAs: The Direct Scheme

Algorithm 4.2
Explicit backward learning scheme

name: ExplicitBackwardAlg
input: ffXti

h;�;1� i�ng; �(XT
h;�); �2Ig, a partition B of I, a number of epochs E 2N?,

a learning rate � > 0
output: '̂1; : : : ; '̂n

1 For all �2I, let y�;M �2Rl
2 Initialize parameters f(An+1;k; bn+1;k); k 2 f1; : : : ; lgg of the networks, indexed by
k2f1; : : : ; lg, at terminal time-step n

3 Initialize parameters f(An;VaR; bn;VaR); (An;ES; bn;ES)g of the networks approximating the
VaR and ES at terminal time-step n

4 for k=1: : :l do
5 // can be skipped if one already has the terminal values in functional

form
6 An;k; bn;k BaseAlg(f(Xtn

h;�; �(XT)h;�); �2Ig;B; E; �;An+1;k; bn+1;k;L2)
7 end
8 Let y�2Rl such that its k-th component is � [L+1](Xtn

h;�;An;k; bn;k) for all k=1 : : : l
9 Mn

� 0
10 for i=n¡ 1: : :1 do
11 // Learn the VaR and the ES in two-steps
12 // The VaR is first learned using a quantile regression

13 foreach �2I do �� �(ti+1; (Xtj
h;�)j2fi+1; : : : ;ng; (Mj

�)j2fi+1; : : : ;ng)

14 Ai;VaR; bi;VaR BaseAlg(f(Xti
h;�; ��); �2Ig;B; E; �; Ai+1;VaR; bi+1;VaR;quantile)

15 // The ES is then deduced using an L2 regression
16 �� 1

1¡� �
� 1f����[L+1](Xti

h;�;Ai;VaR;bi;VaR)g

17 Ai;ES; bi;ES BaseAlg(f(Xti
h;�; ��); �2Ig;B; E; �; Ai+1;ES; bi+1;ES;L2)

18 // We compute the integrand � that needs to be projected to get the
solution of the BSDE at the current time step

19 %� � [L+1](Xti+1
h;� ;Ai+1;ES; bi+1;ES)

20 �� y�+ f(ti;Xti
h;�; y�; %�)� ti+1

21 for k=1 : : : l do
22 Ai;k; bi;k BaseAlg(f(Xti

h;�; [��]k); �2Ig;B; E; �; Ai+1;k; bi+1;k;L2)
23 end
24 // Update M to have Mi=Ytn

h¡Yti
h+
P

k=i
n¡1 f(tk;Xtk

h ; Ytk+1
h ; �tk+1

h)� tk+1
25 for �2I do
26 for k=1 : : : l do
27 [y�]k � [L+1](Xti

h;�;Ai;k; bi;k)
28 end
29 Mi

� Mi+1
� + ��¡ y�

30 end
31 end

4.3 Approximation Schemes 161

Algorithm 4.3
Picard backward learning scheme

name: PicardBackwardAlg
input: ffXti

h;�;1� i�ng; �(XT
h;�); �2Ig, a partition B of I, a number of epochs E 2N?,

a learning rate � > 0 and number picard_iters of picard iterations
output: '̂1; : : : ; '̂n

1 For all �2I, let y�;M �2Rl
2 Initialize parameters f(An+1;k; bn+1;k); k 2 f1; : : : ; lgg of the networks, indexed by
k2f1; : : : ; lg, at terminal time-step n

3 Initialize parameters f(An;VaR; bn;VaR); (An;ES; bn;ES)g of the networks approximating the
VaR and ES at terminal time-step n

4 // The following can be skipped if one already has the terminal values in
functional form

5 foreach k=1:::l doAn;k;bn;k BaseAlg(f(Xtn
h;�;�(XT)h;�);�2Ig;B;E;�;An+1;k;bn+1;k;L2)

6 foreach i=n¡ 1: : :1 and i2I do Mi;prev
� 0

7 for picard_iter=1: : :picard_iters do
8 foreach �2I do Mn;current

� 0
9 for i=n¡ 1: : :1 do

10 // Learn the VaR and the ES in two-steps
11 // The VaR is first learned using a quantile regression
12 foreach �2I do �� �(ti; (Xtj

�)j2fi; : : : ;ng; (Mj;prev
�)j2fi; : : : ;ng)

13 Ai;VaR; bi;VaR BaseAlg(f(Xti
h;�; ��); �2Ig;B ; E; �;Ai+1;VaR; bi+1;VaR; quantile)

14 // The ES is then deduced using an L2 regression
15 �� 1

1¡� �
� 1f����[L+1](Xti

h;�;Ai;VaR;bi;VaR)g

16 Ai;ES; bi;ES BaseAlg(f(Xti
h;�; ��); �2Ig;B ; E; �;Ai+1;ES; bI ;ES;L2)

17 // We compute the integrand � that needs to be projected to get the
solution of the BSDE at the current time step

18 for �2I do
19 foreach k=1 : : : l do [y�]k � [L+1](Xti+1

h;� ;Ai+1;k; bi+1;k)
20 �� y�

21 if picard_iter> 1 then
22 foreach k=1 : : : l do [y�]k � [L+1](Xti

h;�;Ai;k; bi;k)
23 else
24 y� 0
25 end
26 %� � [L+1](Xti

h;�;Ai;ES; bi;ES)

27 �� ��+ f(ti;Xti
h;�; y�; %�)� ti+1

28 end
29 foreach k=1: : :l do
30 Ai;k; bi;k BaseAlg(f(Xti

h;�; [��]k); �2Ig;B; E; �;Ai+1;k; bi+1;k;L2)
31 // Update Mcurrent to have
32 // Mcurrent;i=Ytn

p;h¡Yti
p;h+

P
k=i
n¡1 f(tk;Xtk

h ; Ytk
p;h; �tk

p;h)� tk+1
33 // where p is the current Picard iteration
34 foreach �2I do Mi;current

� Mi+1;current
� + ��¡ y�

35 end
36 foreach i=n¡ 1: : :1 and i2I do Mi;prev

� Mi;current
�

37 end

162 Pathwise XVAs: The Direct Scheme

4.3.3 A Posteriori Analysis of the Regression Error

A well-established BSDE spatial error analysis strategy consists in analysing the accu-
mulation, over (discrete) time i decreasing from n ¡ 1 to 0, of three error components
[Gobet, 2016]: (i) a bias between (the function representing) Yih (as uih(Xi

h) for a suitable
measurable function ui(x)) and the hypothesis space of functions in which Ŷih is sought
after, (ii) a �variance" in the sense of the regression estimation error, and (iii) a term
of propagation at time i of the error at time i+ 1. This is at least the strategy in the
standard case where the embedded conditional expectations are estimated by linear least-
squares regressions that can be performed exactly, for instance by singular value decompo-
sition [Gobet, 2016]. Neural net parameterizations for the targeted functions (conditional
expectations or expected shortfalls in the case of our ABSDEs) instead lead to �nonlinear
regressions" that can only be performed by numerical, nonconvex minimization. When
state-of-the-art, fine-tuned, Adam variants of stochastic gradient descents are used in this
regard, the ensuing minimization can be very efficient numerically. However, there is no
known learning algorithm solving such nonconvex minimization problems with an a priori
error bound. Hence, when the learning iteration terminates, we do not have any guarantee
on the quality of the approximation. In other words, there is a fourth numerical minimiza-
tion error component on top of the three other ones in the above and this fourth error
component cannot be controlled ex ante.

However, we can still assess the local regression error of the schemes by an a posteriori
Monte Carlo procedure, as follows. For concreteness we assume l=1 and a uniform time
step � t, in the XVA motivated case4.18

t�= (t+1)^T and �t�(M)=Mt�¡Mt (4.19)

The following developments are done in the case of the explicit scheme, but similar com-
putations would yield similar outputs in the case of the implicit/Picard scheme. Letting
m=b 1

� t
c , the time-explicit fully discrete scheme (4.17) here reduces to Ŷtn

h=�(XTh); �̂tn
h =0

and, for k decreasing from n¡ 1 to 0,

Ŷtk
h=Êtk [Ŷtk+1

h + f(tk;Xtk
h ; Ŷtk+1

h ; �̂tk+1
h)� t]

�̂tk
h =ESb tk[Ŷt(k+m)^n

h ¡ Ŷtk
h+

X
i=k

(k+m¡1)^(n¡1)

f(ti;Xti
h; Ŷti+1

h ; �̂ti+1
h)� t]:

We also define the following auxiliary scheme: Y~tn
h= �(XTh); �~tn

h =0 and, for k decreasing
from n¡ 1 to 0,

Y~tk
h=Etk [Ŷtk+1

h + f(tk;Xtk
h ; Ŷtk+1

h ; �̂tk+1
h)� t]

�~tk
h =EStk [Ŷt(k+m)^n

h ¡ Ŷtk
h+

X
i=k

(k+m¡1)^(n¡1)

f(ti;Xti
h; Ŷti+1

h ; �̂ti+1
h)� t]:

Let

�ti= jY~ti
h¡ Ŷti

hj: (4.20)

Proceeding as in [Abbas-Turki et al., 2021](Section 5.1), one can estimate E[�tk
2] without

computing Y~tk
h, by Monte Carlo using a so-called twin simulation trick, based on the fol-

lowing identity involving two copies Ŷtk+1
h;1 and Ŷtk+1

h;2 of Ŷtk+1
h =uk+1

h (Xtk+1
h) and �̂tk+1

h;1 and

4.18. cf. Section 4.4.

4.3 Approximation Schemes 163

�̂tk+1
h;2 of �̂tk+1

h = vk+1h (Xtk+1
h), where uh and vh are the regressed functional forms of Ŷtk+1

h

and �̂tk+1
h , with all copies independent conditionally4.19 on Xtk

h:

E[�tk
2] =E[jŶtk

hj2¡2 Ŷtk
h (Ŷtk+1

h + f(tk;Xtk
h ; Ŷtk+1

h ; �̂tk+1
h)� t)+

(Ŷtk+1
h;1 + f(tk;Xtk

h ; Ŷtk+1
h;1 ; �̂tk+1

h;2)� t) (Ŷtk+1
h;2 + f(tk;Xtk

h ; Ŷtk+1
h;2 ; �̂tk+1

h;2)� t)]:
(4.21)

As detailed in [Barrera et al., 2022](Section 4.4), the eti= j�~ti
h ¡ �̂ti

h j can also be estimated
by twin simulation, without having to compute the Y~tk

h and �~tk
h .

Proceeding in this way, we obtain an a posteriori Monte Carlo procedure to assess,
at least locally in time, the spatial error of our ABSDE numerical schemes. In the case
where the error is not good enough, one can improve the stochastic gradient descent, in
first attempt, and then act on the hypothesis spaces, e.g., in the case of neural networks,
try to train with more layers/units or better architectures.

Remark 4.7. In the standard BSDE case where fk(t; x; y; %)= fk(t; x; y), i.e. there is no
dependence of the coefficient of the BSDE on �, by �f-Lipschitz continuity of fk(t; x; y)
with respect to y, we have:

E[jYtk
h¡Y~tk

hj]� (1+�f� t)E[jYtk+1
h ¡ Ŷtk+1

h j]

and the triangular inequality yields

E[jYtk
h¡ Ŷtk

hj]� (1+�f � t)E[jYtk+1
h ¡ Ŷtk+1

h j] +E[jŶtk
h¡Y~tk

hj]: (4.22)

Hence, using the inequality E[�tk]� E[�tk
2]

q
:

E[jYtk
h¡ Ŷtk

hj]�
X
i=k

n¡1

(1+�f� t)i¡k E[�ti
2]

q
: (4.23)

Each E[�ti
2] in (4.23) can be computed by twin Monte Carlo based on (4.21)4.20, for two

copies Ŷtk+1
h;1 and Ŷtk+1

h;2 of Ŷtk+1
h that are independent conditionally on Xtk

h.
In the anticipated case, the analogous propagation of the local regression error terms �ti

and eti into global regression error controls for E[jYtk
h¡ Ŷtk

hj] and E[j�tk
h ¡ �̂tk

h j] is currently
under study.

4.4 XVA Application
We consider a bank dealing financial derivatives with multiple counterparties indexed by
c, with default times � (c), where all portfolios are uncollateralized with zero recovery in
the case of defaults (all assumed instantaneously settled). For notational simplicity we
assume no contractual cash flows between the bank and client c at � (c). We denote by T >0
the final maturity of the derivative portfolio of the bank and by MtM(c) the aggregated
mark-to-market process (counterparty-risk-free valuation) of the portfolio of the bank with
counterparty c. The bank, with risky funding spread process , is required to maintain a
minimum amount of capital at risk, at the level of an economic capital (EC) defined below
as an expected shortfall of the bank trading loss over one year at a confidence level �2 (1

2
;

4.19. hence, one simply simulates two independent realizations of Xtk+1
h given the same starting point Xtk

h and
then takes their images by the learned functionals uk+1

h and vk+1
h .

4.20. ignoring the �̂tk+1
h there.

164 Pathwise XVAs: The Direct Scheme

1). The bank is assumed perfectly hedged in terms of market risk, hence its trading loss
reduces to the one of the CVA and FVA desks. For the sake of brevity in notation, we omit
the discountings at the risk-free rate in the equations (in other terms, we use the risk-free
asset as a numéraire), while preserving them in the numerical codes. We assume a KVA risk
premium, i.e. bank shareholders earn a hurdle rate r>0 on their capital at risk. Finally we
assume that the bank can use its capital as a risk-free funding source [Crépey et al., 2020].

As in [Albanese et al., 2021], we define the CVA (credit valuation adjustment), FVA
(funding valuation adjustment), EC (economic capital) and KVA (capital valuation adjust-
ment) via the following continuous-time coupled XVA equations, where Jt

(c)=1ft<� (c)g (so
that ¡d Jt

(c)= �� (c) (d t), with �� (c) the Dirac measure at time � (c)):

CVAt=
X
c

Et
�Z

t

T

(MtMs
(c))+ �� (c) (d s)

�
FVAt=Et

"Z
t

T

s

 X
c

Js
(c)MtMs

(c)¡CVAs¡FVAs¡max (ECs;KVAs)

!
+

d s

#

KVAt=Et
�Z

t

T

r e¡r(s¡t)max (ECs;KVAs) d s
� (4.24)

where, with t�= (t+1)^T ,
ECt=ESt [Lt�¡Lt]; (4.25)

in which the loss process L satisfies (starting from 0 at time 0)

dLt=dCVAt+
X
c

(MtMt
(c))+ �� (c) (d t)+dFVAt

+ s

 X
c

Jt
(c)MtMt

(c)¡CVAt¡FVAt¡max (ECt;KVAt)

!
+

d t:
(4.26)

All random variables Jt
(c)
;MtMt

(c), CVAt defined by the first line in (4.24), as well the
(pre-)default intensity t of the bank, are assumed to be �(Xt)-measurable random vari-
ables. The FVA and the KVA equations in (4.24) can then be written in the form (4.7), for

Yt =
�

FVAt

e¡rtKVAt

�

fk(t; x; y; %) =

2664k(t; x) (
X
c

Jk
(c)(t; x)MtMk

(c)(t; x)¡CVAk(t; x)¡ y1¡max (%; ert y2))

rmax (e¡rt %; y2)

3775
� ��(M) =

Z
�

��

dCVAt+

X
c

(MtMt
(c))+ �� (c) (d t)+ dMt

1

!
:

(4.27)

where we denote Zk(t; x) = E[ZtjXt= x; Jt= k], for any process Z. In fact, for (Y ; M)
solving the ABSDE (4.7) corresponding to the specification (4.26), we have

dMt
1=dFVAt+ t

 X
c

Jt
(c)MtMt

(c)¡CVAt¡FVAt¡max (ECt;KVAt)

!
+

d t;

hence, by (4.26),
�t�(M)=Lt�¡Lt:

4.4 XVA Application 165

Note that
j�(t;x;m)¡�(t;x;m0)j � jmt�¡mt�

0 j;

so that Assumption 4.2(iii) holds with ��=1. The other conditions in Assumption 4.2 are
not hard to check.

In view of the first line in (4.24), the CVA process can be estimated by nonparametric
regression in space, at each grid pricing time ti, of Monte Carlo simulated values of the
forward process X 4.21 at ti. The exercise is made delicate by the hybrid nature of X ,
which includes both diffusive (market risk) and discrete (default risk) components. This
difficulty can be solved by adopting the hierarchical simulation scheme of Abbas-Turki et
al., 2021, whereby an optimized number of default trajectories is simulated conditional on
each simulated trajectory of the market. As a consequence, hereafter, the CVA process is
treated as a given (already estimated) process.

The FVA, EC, and KVA are challenging due to their coupling via the loss process L.
However, this coupling can be overcome by a combination of time discretization schemes
and (or not) Picard iterations as presented in a more general context in Section 4.3. The
specification of both schemes to the XVA case, as well as a direct variant of the implicit
scheme4.22 which is also available in this case, are detailed in Section 4.A. The embedded
regressions and quantile regressions are implemented using a neural network of one hidden
layer with 38 neurons4.23, the way detailed in Section 4.3.2.

Remark 4.8. In practice, for variance reduction purposes, we use a default intensities
based reformulation of the CVA, instead of the definition based on default indicators in
(4.24). The default indicators based CVA was used in [Abbas-Turki et al., 2021] mainly for
benchmarking reasons. However, we still use the hierarchical simulation scheme of [Abbas-
Turki et al., 2021] to simulate several default paths given each realization of the diffusion
processes, in order to help with learnings where we do not have the convenience of using
default intensities (given in particular the presence of default terms in the loss (4.26) that
occur nonlinearly in EC computations).

4.4.1 Numerical Results
For our numerical experiments, we assume 10 economies, each represented by a short-rate
process with Vasicek dynamics, 9 cross-currency rate processes with log-normal dynamics
(and stochastic interest rates), 8 counterparties each with a stochastic default intensity
process following CIR dynamics, which in total yields 28 stochastic risk factors when
accounting for the spread of the bank which is also assumed to be driven by a CIR process.

In order to have analytic mark-to-markets, we assume that the portfolio of the bank
is comprised of 100 interest rate swaps, all of whom are assumed to be at-par at time 0.
The characteristics of the swaps (notional, maturity, counterparty and currency) are drawn
randomly, and in particular their maturities are between 0.9375 and 10 years, hence T =10.

For the purpose of a time discretization analysis, we consider multiple time discretiza-
tions (h(�))� such that:

h(�)= fti
(�) := i T

2�
; i=0; : : : ; 2�g

(nested with respect to �, in order to have common cash-flow dates over the different time
discretizations). In figures 4.1, 4.2 and 4.5, we tested for � 2 f5; 6; 7; 8g (� in the figures
then corresponds to T

28
).

4.21. or its time-discretized version Xh.
4.22. without need for Picard iterations, but at the cost of a shift of time step in EC.

4.23. for experimentation with the network architecture see [Albanese et al., 2021](Section 5.1, Figure 2).

166 Pathwise XVAs: The Direct Scheme

Figures 4.1-4.2 and Table 4.1 show the convergence of the Picard iterates, using Algo-
rithm 4.3, of the FVA process toward a solution visually very close, already for j=4, to
the one provided by the explicit scheme in Figure 4.5, but at a higher computational cost.
We also attempted to improve the Picard scheme using less epochs and reusing weights
across Picard iterations as discussed in Remark 4.6, but the resulting iterates exhibited a
slight instability when using finer time step, i.e. for �=8: see the bottom graphs in Figures
4.3-4.4 and Table 4.2. A possible explanation is that Algorithms 4.5 and 4.3 accumulate
a large number of stochastic gradient descents via the weights reused across pricing times,
with integrands involving the same stochastic processes just observed at different but close
time steps. With weights reused across Picard iterations in the modified Picard scheme,
instead, the integrands are not guaranteed to be close. The results obtained in Figures 4.1
and 4.2 and Table 4.1 using the standard Picard scheme with reuse of the weights across
time steps, i.e. Algorithm 4.3, support this conjecture. These results mutually validate the
explicit and the standard Picard scheme against each other. However, the standard Picard
scheme is not competitive with respect to the explicit scheme in terms of computation
times (cf. Remark 4.6).

In conclusion, the explicit scheme dominates Picard iterations, whether that a common
computation time is allocated to both schemes and the explicit scheme is more accurate, or
that both schemes converge but this is then at the cost of j=3-4 times longer computations
in the case of the Picard iterations (for reference the explicit scheme takes 7mins48secs
using the finest time grid, i.e. �=8, on an NVidia A100 GPU).

Figures 4.6, 4.7, 4.8 and 4.9 show plots of profiles for respectively the CVA, FVA, KVA
and EC when using the explicit scheme. Figure 4.10 illustrates the convergence in time of
the scheme. The solid purple curves in Figures 4.11 and 4.12 exhibit the local regression
errors E[�ti

2]
q

of the scheme4.24 for the FVA and the KVA. The dashed grey curves rep-

resent the corresponding L2 training losses. The comparison between the grey and purple
curves shows the benefit of our a posteriori Monte Carlo local regression error estimate
with respect to the L2 training losses that would be used as a naive (but overconservative)
error estimate.

t
0

100
200
300
400
500
600
700 using dT = 8

t

using dT = 4

0 2 4 6 8 10
t

0
100
200
300
400
500
600
700 using dT = 2

0 2 4 6 8 10
t

using dT=

Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.1. FVA profiles obtained after j=1 Picard iteration for the implicit scheme.

4.24. cf. (4.20).

4.4 XVA Application 167

t
0

100

200

300

400

500

600

700
using dT = 8

t

using dT = 4

0 2 4 6 8 10
t

0

100

200

300

400

500

600

700
using dT = 2

0 2 4 6 8 10
t

using dT=

Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.2. FVA profiles obtained after j=4 Picard iteration for the implicit scheme.

t
0

200

400

600

800 using dT = 8

t

using dT = 4

0 2 4 6 8 10
t

0

200

400

600

800 using dT = 2

0 2 4 6 8 10
t

using dT=

Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.3. FVA profiles obtained after j=1 Picard iteration for the implicit scheme, using less
SGD steps and reusing the weights of the previous Picard iteration at each learning.

168 Pathwise XVAs: The Direct Scheme

t
0

100

200

300

400

500

600

700 using dT = 8

t

using dT = 4

0 2 4 6 8 10
t

0

100

200

300

400

500

600

700 using dT = 2

0 2 4 6 8 10
t

using dT=

Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.4. FVA profiles obtained after j=4 Picard iterations for the implicit scheme, using less
SGD steps and reusing the weights of the previous Picard iteration at each learning.

t
0

100

200

300

400

500

600 using dT = 8

t

using dT = 4

0 2 4 6 8 10
t

0

100

200

300

400

500

600 using dT = 2

0 2 4 6 8 10
t

using dT=

Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.5. FVA profiles using an explicit scheme.

4.4 XVA Application 169

0 2 4 6 8 10
t

0

100

200

300

400

500

600

700

800 Mean of learned CVA, out-of-sample
97.5 quantile of learned CVA, out-of-sample
99 quantile of learned CVA, out-of-sample

97.5 quantile of learned CVA, out-of-sample
1 quantile of learned CVA, out-of-sample

Figure 4.6. CVA profiles using an explicit scheme and a fine time discretization (�= 10).

0 2 4 6 8 10
t

0

100

200

300

400

500

600
Mean of learned FVA, out-of-sample
97.5 quantile of learned FVA, out-of-sample
99 quantile of learned FVA, out-of-sample

97.5 quantile of learned FVA, out-of-sample
1 quantile of learned FVA, out-of-sample

Figure 4.7. FVA profiles using an explicit scheme and a fine time discretization (�= 10).

0 2 4 6 8 10
t

0

25

50

75

100

125

150

175 Mean of learned KVA, out-of-sample
97.5 quantile of learned KVA, out-of-sample
99 quantile of learned KVA, out-of-sample

97.5 quantile of learned KVA, out-of-sample
1 quantile of learned KVA, out-of-sample

Figure 4.8. KVA profiles using an explicit scheme and a fine time discretization (�= 10).

0 2 4 6 8 10
t

0

100

200

300

400

500

600

700 Mean of learned EC, out-of-sample
97.5 quantile of learned EC, out-of-sample
99 quantile of learned EC, out-of-sample

97.5 quantile of learned EC, out-of-sample
1 quantile of learned EC, out-of-sample

Figure 4.9. EC profiles using an explicit scheme and a fine time discretization (�= 10).

170 Pathwise XVAs: The Direct Scheme

100

200

300

CVA

50

100

150

200

250

300

FVA

8 4 2

50

100

150

200

250

300

350

EC

8 4 2

10

20

30

40

KVA

Mean of learned XVA, out-of-sample
97.5 quantile of learned XVA, out-of-sample
99 quantile of learned XVA, out-of-sample

2.5 quantile of learned XVA, out-of-sample
1 quantile of learned XVA, out-of-sample

Figure 4.10. Mean and quantiles of learned CVA, FVA, KVA and EC at t= T

2
for different sizes

of the time step.

0.0 2.5 5.0 7.5
t

0

5

10

15

20

0.0 2.5 5.0 7.5
t

0.000
0.025
0.050
0.100

0.200

0.300

L2 error against labels at time t
L2 error against conditional expectation at time t

Figure 4.11. Local regression errors E[(�tifva)2]
q

(solid purple) vs. L2 training losses (dashed

grey). Left panel: raw errors. Right panel: errors normalized by the FVAd ti
h .

0.0 2.5 5.0 7.5
t

0.0

0.5

1.0

0.0 2.5 5.0 7.5
t

0.000

0.025

0.050

0.075

0.100

L2 error against labels at time t
L2 error against conditional expectation at time t

Figure 4.12. Local regression errors E[(�tikva)2]
q

(solid purple) vs. L2 training losses (dashed

grey). Left panel: raw errors. Right panel: errors normalized by the KVAd ti
h .

4.4 XVA Application 171

j=1 j=2 j=3 j=4 Explicit

h= T

25
463.279938 433.832031 434.391296 433.753998 434.65167

h= T

26
461.329926 433.141876 434.036011 433.835052 433.60974

h= T

27
461.031097 432.506531 433.631531 431.789215 433.18683

h= T

28
460.326050 433.123596 431.992859 432.098328 434.29538

Table 4.1. FVA0 under the Picard iteration scheme with reuse of weigthts across time steps (i.e.
Algorithm 4.3) vs. the explicit scheme.

j=1 j=2 j=3 j=4 Explicit

h= T

28
498.9785 416.31674 464.44170 386.07004 434.295380

h= T

27
481.9461 443.68940 440.41504 449.64874 433.186829

h= T

26
449.9881 435.35910 429.49142 424.67087 433.609741

h= T

25
462.9291 438.05840 435.67453 437.58957 434.651672

Table 4.2. FVA0 under the modified Picard vs the explicit scheme.

4.5 Conclusion

The recent and fastly growing machine learning literature on the solution of high-dimen-
sional nonlinear BSDEs(/PDEs) contains, at least, two branches. The first one, in the
line of E et al., 2017, consists in learning together the time-0 value of the solution and
the gradient-process of the latter through a single learning task. Examples in the XVA
space include Henry-Labordère, 2017 or Gnoatto et al., 2021. The former reference pro-
vides insightful PDE views on the CVA and MVA, while it is very tempting to adopt an
approach, as in the second reference, where the XVAs and their sensitivities are obtained
simultaneously. However, the equations considered by Henry-Labordère, 2017 are only very
distantly related to actual XVA equations. The XVA equations of Gnoatto et al., 2021 are
more realistic, but they are still restricted to computations at the level of one netting set
(or client) of the bank, and handled by reduction of filtration in the line of Crépey and
Song, 2015, so that the default times ultimately disappear from the equations. Such an
approach does not leverage to several clients and default times of the bank, that enter the
XVA equations in a nonlinear fashion (and therefore have to be simulated). The second
stream of literature, see e.g. Huré et al., 2020, learns the solution time step after time step
(in backward time), much like in classical dynamic programming algorithms, except that
modern machine learning techniques are used for solving the local equations which then
arise at each successive decreasing pricing time step.

In the case of our ABSDE XVA equations, on the one hand, the global approach would
not be viable on realistic problems stated at the portfolio level, because of the huge RAM
memory demand of the corresponding global training task. On the other hand, the local
approach benefits from a particular synergy between the successive local training tasks
involved. In fact, as all XVA equations are endowed with zero terminal conditions, the

172 Pathwise XVAs: The Direct Scheme

variance of the labels, i.e. the cash flows entering the successive learning tasks as input
data at the decreasing pricing time steps, increases progressively (pricing time step after
pricing time step), whereas the variance of the features, i.e. the risk factors, decreases. As
a result, the difficulty of the training tasks gradually increases throughout the course of
the algorithm4.25. But the next training task also greatly (and increasingly) benefits from
all previous ones, via the use of the weights trained at a time step as initialization for the
weights at the next time step. This is probably one of the reasons behind the robustness of
the local machine learning approach on our problem�provided the hierarchical simulation
technique of Abbas-Turki et al., 2021 and the best practice risk measure estimators of
Barrera et al., 2022 are used,�when a global approach would fail on unsolvable memory
occupation issues.

Regarding the comparison between the direct explicit scheme and the implicit scheme
solved by Picard iteration, the explicit scheme emerges from the present study as the
preferred alternative (at the level of this paper, implementing the two schemes was of course
useful from a mutual numerical validation viewpoint4.26).

From an algorithmic viewpoint, work in progress aims at demonstrating how the regres-
sion-based XVA simulation framework of the present paper can be leveraged to also
encompass XVA sensitivities, or hedging ratios more generally. Note that AAD sensi-
tivities computational techniques à la Baydin et al., 2018; Savine, 2018 are not a viable
alternative in our setup, where the XVA metrics are the output of optimization training
procedures (AAD sensitivities techniques can only be available in much more rudimen-
tory XVA setups). From a mathematical viewpoint, the establishment of a Feynman-
Kac representation for the limiting ABSDE (4.7), as well as the study of the time-con-
sistency of both schemes, and of the propagation of the local into global spatial regression
errors4.27, are challenging open issues.

4.A XVA Numerical Schemes

We assume a uniform time step � t=h to alleviate the notation. By least squares (resp.
quantile) regressions below, we actually mean neural net least squares (resp. quantile)

4.25. In order to see this in a simplified setup, consider linear regression instead of neural networks. When
close to t=0, the variances of the features tend to 0, which leads to ill-conditioned covariance matrices, while the
variance of the labels increases, which makes the regression even more unstable.

4.26. Moreover, for a suitable initialization, the output of the first Picard iteration (2 or 3 are typically enough
in practice) is interesting in itself from a financial interpretation viewpoint in an XVA setup, as this first iteration
corresponds to the XVA numbers ignoring the possibility to use capital at risk for variation margin funding purposes
[Albanese et al., 2017].

4.27. cf. the end of Remark 4.7.

4.A XVA Numerical Schemes 173

regressions, in the sense detailed in Section 4.3.2.

4.A.1 Explicit scheme

Here we use the following time-discretization, skipping indices �h to alleviate the notation
and writing t�k= tk+1/h^ tn: CVAtn=FVAtn=KVAtn=0 followed by, for k=n¡ 1 � � � 0,

CVAtk=Etk

"X
c

X
k�i�n¡1

(MtMti+1
(c))+1fti<� (c)�ti+1g

#
FVAtk=Etk [FVAtk+1+

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk+1¡max (ECtk+1;KVAtk+1)

!
+
#

KVAtk= exp (¡r h)Etk [KVAtk+1+ r hmax (ECtk+1;KVAtk+1)]
ECtk=EStk [Lt�k¡Ltk], where

Ltk+1¡Ltk=CVAtk+1¡CVAtk+(MtMtk
(c))+1ftk<� (c)�tk+1g+FVAtk+1¡FVAtk+

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk+1¡max (ECtk+1;KVAtk+1)

!
+

:

The explicit scheme naturally lifts the coupling visible in (4.24)�(4.26) between EC, KVA,
and FVA. Let k 2f1; n¡ 1g and assume one has already estimated the introduced XVAs
at all times fk+1; : : : ; ng. We compute:

1. CVA, by a least-squares regression of
P

c

P
k�i�n¡1 (MtMti

(c))+1fti<� (c)�ti+1g (or
equivalent variance-reduced cash flows formulated in terms of the default intensities
as explained after (4.26)) against the market risk factors at time tk;

2. FVAtk, through a least-squares regression of

FVAtk+1+

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk+1¡max (ECtk+1;KVAtk+1)

!
+

against all risk factors (market risk factors and client default indicators) at time tk;

3. KVAtk, through a least-squares regression of

exp (¡r h) (KVAtk+1+ r hmax (ECtk+1;KVAtk+1))

against all risk factors at time tk;

4. ECtk, through quantile regression of Lt�k¡Ltk followed by a least-squares regression
to deduce the expected shortfall as detailed in Section 4.3.2, both regressions being
against all the risk factors at time tk.

4.A.2 Picard scheme

We define and compute the CVA as in the explicit scheme. For the rest of the XVAs, we
introduce Picard iterations, starting from FVA(0)=KVA(0)=0 followed by, for increasing

174 Pathwise XVAs: The Direct Scheme

j � 1: FVAtn
(j)=KVAtn

(j)=0 and, for k=n¡ 1 � � � 0,

FVAtk
(j)=Etk

�
FVAtk+1

(j) +

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk

(j¡1)¡max (ECtk
(j¡1)

;KVAtk
(j¡1))

!
+
#

KVAtk
(j)= exp (¡r h)Etk [KVAtk+1

(j) + r hmax (ECtk
(j)
;KVAtk

(j¡1))]

ECtk
(j)=EStk [Lt�k

(j)¡Ltk
(j)], where

Ltk+1
(j) ¡Ltk

(j)=CVAtk+1¡CVAtk+(MtMtk
(c))+1ftk<� (c)�tk+1g+FVAtk+1

(j) ¡FVAtk
(j)+

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk

(j¡1)¡max (ECtk
(j¡1)

;KVAtk
(j¡1))

!
+

:

In this scheme the coupling between EC, KVA, and FVA is removed by the Picard iterations
in j. In the above, assuming that all the XVA(j) have already been computed at times
fk+1; : : : ; ng, we compute:

1. FVAtk
(j), by least-squares regression of

FVAtk+1
(j) +

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk

(j¡1)¡max (ECtk
(j¡1)

;KVAtk
(j¡1))

!
+

against the risk factors at time tk;

2. KVAtk
(j), through a least-squares regression of

exp (¡r h) (KVAtk+1
(j¡1)+ r hmax (ECtk

(j¡1)
;KVAtk

(j¡1)))

against all risk factors at time tk;

3. ECtk
(j), through quantile regression of Lt�k

(j)¡Ltk
(j) followed by a least-squares regres-

sion to deduce the expected shortfall as detailed in Section 4.3.2, both regressions
being against all the risk factors at time tk.

Remark 4.9. Shifting by one time step the discretization of L in EC, one can also
introduce a hybrid scheme which is implicit in the FVA and the KVA, while not requiring
Picard iterations: FVAtn=KVAtn=0 followed by, for k=n¡ 1 � � � 0,

ECtk=EStk [Lt�k+1¡Ltk+1]
KVAtk= exp (¡r h) (Etk[KVAtk+1]+ r hmax (ECtk;KVAtk))
FVAtk=Etk [FVAtk+1+

h tk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk¡max (ECtk;KVAtk)

!
+
#

Ltk+1¡Ltk=CVAtk+1¡CVAtk+(MtMtk
(c))+1ftk<� (c)�tk+1g+FVAtk+1¡FVAtk

+htk

 X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡FVAtk¡max (ECtk;KVAtk)

!
+

:

4.A XVA Numerical Schemes 175

The shift by one time step in the discretization of EC is what makes it possible to define
an implicit FVA in this scheme without resorting to Picard iteration. Indeed, FVAtk in
this scheme is the solution of a semi-linear equation in FVAtk and is given by:

FVAtk = Etk[FVAtk+1] +
h tk

1+h tk X
c

MtMtk
(c)1f� (c)>tkg¡CVAtk¡Etk[FVAtk+1]¡max (ECtk;KVAtk)

!
+

:

Similarly, we have for the KVA:

KVAtk= exp (¡r h) (Etk[KVAtk+1] + r hmax fECtk;
exp (¡r h)

1¡ r h exp (¡r h) KVAtkg)

176 Pathwise XVAs: The Direct Scheme

Chapter 5
Fast Calibration using Complex-Step
Sobolev Training

This chapter was single-authored.

We present a new fast calibration technique where we propose to train neural networks
to directly perform the orthogonal projection of simulated payoffs of the calibration instru-
ment with randomized model parameters and we enrich the learning task by including path-
wise sensitivities of the payoffs with respect to model and product parameters. We show
that this particular instance of Sobolev training can be reformulated in a way that requires
computing only (stochastic) directional derivatives and we provide a fast, memory-efficient
and numerically stable approach to compute those using complex-step differentiation. Our
experiment with a fixed-grid piece-wise linear local volatility example demonstrates that
one can get competitive price approximations without having to train the neural network
on Monte Carlo prices and that both data-set construction and training can be done in
reasonable time while preserving a very general framework that can be applied to a broad
range of pricing models.

We provide a highly optimized C++ code based on libtorch which includes all the
necessary extensions for AAD on holomorphic neural networks on: https://github.com/
BouazzaSE/TorchCSD.

5.1 Introduction
With the emergence of pricing models such as rough volatility models [Bayer et al., 2016]
which do not have closed-form solutions for vanilla option prices and are slow to simulate
using Monte Carlo methods, the need to accelerate the calibration of these models arose
as one would otherwise have to repeatedly call a slow Monte Carlo pricing procedure
during the calibration phase [McCrickerd and Pakkanen, 2018], which is often implemented
using iterative optimization algorithms, rendering the models challenging to implement
in practice. Notable recent contributions in this area involve the use of Machine Learning
methods to provide fast approximations for the pricing function, and then using the learned
approximation instead of a Monte Carlo pricer during the calibration phase, effectively
accelerating the model calibration as the learned approximation is usually fast to compute.
In [De Spiegeleer et al., 2018] for instance, the authors propose to approximate the mapping
from model and product parameters to vanilla prices using Gaussian Process regression
[Rasmussen and Williams, 2006]. Neural network based price approximations have also
been proposed [Bayer and Stemper, 2018; Horvath et al., 2021], mainly motivated by the
Universal Approximation Theorem [Cybenko, 1989; Kidger and Lyons, 2020]. Another
approach [Hernandez, 2016] consists in directly approximating the inverse function which
maps prices to model parameters, effectively skipping the calibration phase altogether.

177

https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD

All of these approaches suffer from the need to construct data-sets of sufficiently accu-
rate Monte Carlo prices which can take days depending on the complexity of the pricing
model. While this can be done off-line for general and fixed classes of pricing models and
thus the time spent can be considered as a one-off upfront cost, it cannot be neglected when
having to frequently deal with very custom pricing models where we may have to frequently
reconstruct the pricing approximation from scratch. A slow data-set construction process
also severely limits the ability to iterate effectively in research and development as one
cannot afford the luxury to test out different time discretization schemes, time step sizes,
variance reduction techniques or random number generators.

Different from these approaches, we propose a new fast calibration method which does
not require generating data-sets of Monte Carlo prices and instead needs only realizations
of payoffs corresponding to random model parameters and their path-wise sensitivities. We
dub the proposed training procedure Complex-Step Sobolev training , which we recognize
could be applied to more general problems outside of pricing model calibration and quan-
titative finance. We highlight the main contributions of this paper as follows:

� We propose to learn a fast vanilla pricing function using a special instance of Sobolev
training by learning to orthogonally project both payoffs and path-wise sensitivities
of payoffs corresponding to randomized model parameters;

� We propose a method to accelerate our Sobolev training procedure using only direc-
tional derivatives in random directions. We also show and prove how to optimally
choose the distribution of this random direction such that the induced variance is
minimized;

� We accelerate further the computation of the directional derivatives in an AAD-dif-
ferentiable way using complex-step differentiation while attaining machine precision
and preserving numerical stability;

� We give a posteriori L2 error estimates that can be computed without having access
to ground-truth prices;

� Benchmarks and a fixed-grid local volatility example demonstrating the strength
of our method are provided. All the simulation codes and the necessary extensions
to implement complex-step differentiation in an AAD-differentiable manner with
libtorch have been made public on https://github.com/BouazzaSE/TorchCSD
under a GPLv3 license.

5.2 Learning to Project Payoffs

Consider a stochastic risk-neutral pricing basis (
;A; (Ft)t�0;Q) and an Rd-valued stan-
dard Brownian motion (Bt)t�0 for some d�1. Let f :R+�Rd�Rn!Rd and g:R+�Rd�
Rn!Rd�m be two piece-wise continuously differentiable functions such that we have for
all t� 0, x; y 2Rd and �; � 02Rn:

kf(t; x; �)¡f(t; y; �)k+ kg(t; x; �)¡g(t; y; �)k � K kx¡ yk
kf(t; x; �)¡f(t; x; � 0)k+ kg(t; x; �)¡g(t; x; � 0)k � K (1+ kxk) k�¡ � 0k

kf(t; x; �)k+ kg(t; x; �)k � K (1+ kxk)

178 Fast Calibration using Complex-Step Sobolev Training

https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD
https://github.com/BouazzaSE/TorchCSD

for some K>0, where the norms are the usual Euclidean and Frobenius norms for vectors
and matrices respectively. For every � 2Rn, we define (Xt

�)t�0 to be a strong solution to
the following multi-dimensional stochastic differential equation:

dXt
�= f(t;Xt; �) dt+ g(t;Xt; �) dBt (5.1)

We assume the same deterministic initial value X0 for all �2Rn. In a pricing context, the
vector � represents model parameters.

Example 5.1. (Fixed-grid local volatility) Consider a local volatility model described
by the following SDE:

8t > 0; dSt= r Stdt+�(t; log(St))St dBt

where r2R, B is a standard Brownian motion and for all t2 [t(i); t(i+1)] and s2 [s(j); s(j+1)]:

�(t; s) = �i;j+
s¡ s(j)

s(j+1)¡ s(j)
(�i;j+1¡�i;j)

+ t¡ t(i)

t(i+1)¡ t(i)

�i+1;j¡�i;j+

s¡ s(j)

s(j+1)¡ s(j)
(�i+1;j+1¡�i;j+1¡�i+1;j+�i;j)

!

and for all t>0 and s2R, �(t; s)=�(�(t); �(s)), where � (t)=

8>><>>:
t if 9k: t2 [t(k); t(k+1)]

t(m) if t� t(m)
t(0) if t < t(0)

and �(s)=

8<:
s if 9k: s2 [sk; sk+1]

s(M) if s� s(M)

s(0) if s<s(0)
, and 0<t(0)< ���<t(m), s(0)< ���<s(M) and �i;j>0

for all i2f1;:::;mg and j 2f1;:::;M g. For consistency of the interpolation formula above
at the extremes, t(m+1) and s(M+1) will be taken to be any values respectively different
from t(m) and s(M), their values having no impact on the value of �(t; s). We can again
recast this model into the general form with the following mapping, with � by construction
also a function of �:8>><>>:

� := (r; �0;0; : : : ; �i;j ; : : : �m;M)>

Xt
� := St

f(t;Xt
�; �) := r St

; g(t;Xt
�; �) := �(t; log(Xt

�))Xt
�

�

We assume in what follows that the calibration instruments are vanilla European calls.
Let �, K, T be F0-measurable random variables supported on respectively Rn, R+ and R+?
such that K and T are mutually independent and independent of �. We are interested in
pricing, conditional on randommodel parameters �, random strikeK and randommaturity
T , a product paying Z� = ((XT

�) ¡K)+ where : Rd! R is piece-wise continuously
differentiable and Lipschitz continuous. If we consider for simplicity5.1 a numéraire (ert)t�0
with r an F0-measurable risk-free rate which we will assume to be the first component of
�, then the price is given by E[e¡rTZ�j�; K; T] and satisfies:

E[e¡rTZ�j�; K; T]= '?(�;K; T)

5.1. This does not limit the generality of the method in any way. Numéraires with stochastic interest rates can
also be used without any issues.

5.2 Learning to Project Payoffs 179

with

'?2 argmin
'2B

E[('(�; K; T)¡ e¡rTZ�)2] (5.2)

where B is the space of Borel functions ': Rn+2! R such that '(�; K; T) is square
integrable. Here we exploited the characterization of a conditional expectation as an L2

projection. Indeed, we have for any such ':

E[('(�; K; T)¡ e¡rTZ�)2] = E[('(�;K; T)¡E[e¡rTZ�j�;K; T])2]
+E[var(e¡rTZ�j�; K; T)]||| |{z}}} }

independent of '

We propose to restrict the search space in (5.2) to the space of neural networks with a
given architecture.

Definition 5.2. Let � be a non-affine continuously differentiable activation function,
applied element-wise, and let m; p; q 2 N?. Define NNm;p;q;� to be the set of functions
Rn+23 x 7! �p+1(x;W; b) such that W12Rm�(n+2), W2; : : : ; Wp2Rm�m, Wp+12Rq�m,
b1 : : : ; bp2Rm, bp+12Rq and:

�0(x;W ; b) = x
�i(x;W ; b) = �(Wi�i¡1(x;W ; b)+ bi); 8i2f1; : : : ; pg
�p+1(x;W ; b) = Wp+1 �p(x;W; b)+ bp+1

(5.3)

NNm;p;q;� is then called the set of neural networks with p hidden layers, m neurons per
hidden layer, n+2 inputs and q outputs, and � as its activation function.

Let N be such a set with q=1 (i.e. only one output neuron). An approach to approx-
imate the pricing function '? would then be to find '~ such that:

'~2 argmin
'2N

E[('(�;K; T)¡ e¡rTZ�)2]

where the optimization becomes parametric as the neural networks inN are parameterized
by their weights and biases, and the optimization can be done using vanilla stochastic
gradient descent (SGD) or more elaborate accelerated SGD optimizers like Adam [Kingma
and Ba, 2014]. The approximation of E[e¡rTZ�j�; K; T] would then be '~(�; K; T).

The restriction to neural networks is mainly motivated by the following density result:

Theorem 5.3. (Universal Approximation Theorem for Deep Narrow Net-
works[Kidger and Lyons, 2020]) Let � be a non-affine continuously differentiable
activation function, q 2 N? and let K � Rn+2 be compact. Then

S
p2N?NNq+n+4;p;q;�

is dense in C(K;Rq) with respect to the topology of uniform convergence.

5.3 Regularizing with Sobolev Training
The learning task however will suffer from increased variance compared to price interpola-
tion approaches and stochastic gradient descent will yield noisy updates because of gradient
estimators having high variances. The high variance can be overcome by producing a large
enough data-set and using large batch sizes during the SGD iterations. In addition to the
potential variance problem, regularization may be needed when considering large neural
networks to avoid over-fitting payoffs. This is usually [LeCun et al., 2015] done by imposing
generic restrictions on the neural network weights such as L1 or L2 regularization.

180 Fast Calibration using Complex-Step Sobolev Training

In [Huge and Savine, 2020], the authors propose to tackle both issues by instead adding
a regularizing term which penalizes the error when projecting the path-wise derivatives
of the payoff, which will have the effect of both artificially increasing the size of the data-
set (while profiting from the common computations for the path-wise derivatives) and
regularizing the learning procedure by adding constraints on the behavior of the network
locally around sample points. Although the authors focused on randomizing only the initial
value of the SDE and not its parameters, when recast in our calibration setting it leads to
having to solve the following learning problem:

'~~2 argmin
'2N

E[('(�;K; T)¡ e¡rTZ�)2]+
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @k(e¡rTZ�))2] (5.4)

where �2 (R+?)n+2 and @k is the partial derivative with respect to the k-th component of
the concatenation of � and (K;T). More precisely:

Definition 5.4. (Point-wise gradient of a parameterized random variable) If Y (�)
is a real valued random variable that is parameterized by � 2Rn then we define the point-
wise gradient rY (�) of Y (�) with respect to � as rY (�) = (@1Y (�); : : : ; @nY (�))> where
for every i2f1; : : : ; ng we have:

@iY (�) := lim
"!0

1
"
(Y (�+ " ei)¡Y (�))

with (e1;:::; en) being the canonical basis in Rn, where the limit is taken point-wise over
.

We give below sufficient assumptions in our randomized pricing framework so that
these point-wise (or path-wise in our case) derivatives exist and are unbiased estimators
of the respective derivatives of the price. We refer the reader to [Broadie and Glasserman,
1996; Glasserman, 2004] for a more general and comprehensive treatment of path-wise
sensitivities.

Assumption 5.5. lim"!0
1

"
(XT

�+"ei¡XT
�) exists with probability 1 for all i2 f1; : : : ; ng

and � 2Rn.

Assumption 5.6. Q((XT
�)=K)= 0 for all � 2Rn.

Assumption 5.7. There exists �> 0 such that for all �1; �22Rn we have

E[kXT
�1¡XT

�2k]�� k�1¡ �2k

Assumptions 5.5 and 5.6 in particular imply that the point-wise gradient of the call
payoff with respect to model parameters exists with probability 1 and justify why it is
enough to assume piece-wise differentiability. Assumption 5.75.2 along with the Lipschitz
regularity of the positive part and of implies that the call payoff is Lipschitz continuous
with respect to the model parameters. All these assumptions together with the Vitali
convergence theorem ensure the existence of the point-wise gradients with probability 1
and that we can interchange gradients and expectations, i.e.

rE[e¡rTZ�j�; K; T]=E[r(e¡rTZ�)j�;K; T] (5.5)

5.2. We have chosen to express Assumption 5.7 such that we can use the Vitali convergence theorem, this is in
contrast with the choice in [Broadie and Glasserman, 1996; Glasserman, 2004] to write the assumption in an almost-
sure manner which allows the use of the dominated convergence theorem but makes it hard to verify it in very
general pricing models. Assumption 5.7 can easily be verified by first bounding E[kXT

�1¡XT
�2k2] using Itô isometry

and Grönwall's lemma.

5.3 Regularizing with Sobolev Training 181

The extension to the differentiation with respect to the strike and the maturity is trivial.
Note that in discrete-time the payoff will be by construction not differentiable with respect
to the maturity. However, one can circumvent this issue by deducing the partial derivative
of the price with respect to the maturity using spatial derivatives thanks to the Fokker-
Planck equation (see Appendix 5.A).

Hence, the learning problem statement in (5.4) explicitly seeks to orthogonally project
not only payoffs but also their path-wise sensitivities, motivated by (5.5), which is consis-
tent with our calibration context as a desired feature in the price approximation is access
to accurate gradients so that one can use gradient-based optimizers during the calibration
phase.

Example 5.8 shows how path-wise derivatives can be computed in a time-discretized5.3

version of our model in Example 5.1; one can notice in particular the amount of reusable
common sub-expressions which make path-wise derivative calculations cheaper than sim-
ulating new trajectories of payoffs.

Example 5.8. (Path-wise sensitivities in a fixed-grid local volatility model)
Assume an Euler-Maruyama scheme for the log-dynamics of the model described in Example
5.1:

ŝi+1= ŝi+
�
r¡ 1

2
�(ti; ŝi)2

�
h+�(ti; ŝi) h

p
Gi+1 ; 8i2f0; : : : ; I ¡ 1g

for some time-grid 0 = t0< : : : < ti= i h < : : : < tI = T with constant step size h > 0, a
sequence of independent standard Gaussian variables (Gi)i�1, and random F0-measurable
local volatility nodes (�i;j)1�i�m

1�j�M
and random F0-measurable risk-free rate r. The discrete

process (ŝi)0�i�I is then a time-discretized approximation of (log(St))t�0 at the discrete
time steps t0; : : : ; tI. Let i2 f0; : : : ; I ¡ 1g. By differentiating both the LHS and RHS in
the discretized equation above and setting �i+1= h

p
(Gi+1¡�(ti; ŝi) h

p
) @s�(ti; ŝi), one

can write5.4:

@rŝi+1 = @rŝi+h+�i+1@rŝi
@�u;vŝi+1 = @�u;vŝi+�i+1 @�u;vŝi

for all 1�u�m and 1� v�M . It then remains to evaluate @s�(ti; ŝi), for which we defer
the calculations to Appendix 5.B.
�

This class of learning problems, where one is given not only values of the function
to be approximated (or, in our case, the random variable to be projected) but also par-
tial derivatives was, to our knowledge, first formulated by [Czarnecki et al., 2017] who
coined the name Sobolev training and has been ubiquitous in Machine Learning research
involving physical phenomena [Son et al., 2021; Vlassis and Sun, 2021], where the learning
is augmented by either values of the partial derivatives, or relationships between partial
derivatives using domain-specific PDEs.

5.3. The assumptions 5.5, 5.6 and 5.7 also apply to the discrete case and the notion of path-wise differentiation
and the unbiasedness (i.e. Equation (5.5)) of the path-wise derivatives readily extend to time-discretized models.

5.4. This approach to computing derivatives by iterating through time in a forward way is more attractive when
considering an implementation on GPUs. Indeed, at any time-step, all the calculations in Example 5.8 are done
locally and registers and GPU caching can be used efficiently. This is in opposition to the traditional backward
AAD where one would have to write to the global memory at each time-step and then later read from those same
memory locations again which severely hurts performance in GPU implementations.

182 Fast Calibration using Complex-Step Sobolev Training

5.4 Complex-step Sobolev Training

5.4.1 Restricting to Stochastic Directional Derivatives

Evaluating the partial derivatives of the neural network in (5.4) can be a time-consuming
process depending on how the computation is done. We give two classical approaches with
which those derivatives can be computed exactly. The calculations outlined here form the
backbone of modern algorithmic differentiation and we refer the reader to [Baydin et al.,
2018] for a more comprehensive survey and more technical discussions and to [Savine, 2018]
for a reference in the context of computing sensitivities of the price of financial derivatives.

Assume N =NNm;p;1;� for some m; p 2N? and a non-affine twice continuously dif-
ferentiable activation function � and let ' 2N , i.e. there exist W12Rm�(n+2), W2; : : : ;
Wp2Rm�m, Wp+12R1�m, b1 : : : ; bp2Rm, bp+12R such that '(x)= �p+1(x;W ; b) for all
x2Rn+2. Denoting by J: and r the jacobian matrix and gradient with respect to x and
by �0 the derivative of the activation function � (applied element-wise), we have:

J�0(x;W; b) = In+2
J�i(x;W ; b) = diag(�0(Wi�i¡1(x;W; b)+ bi))WiJ�i¡1(x;W; b);8i2f1; : : : ; pg
r�p+1(x;W; b) = J�p(x;W ; b)>Wp+1

>
(5.6)

This naturally defines the so-called forward approach to compute the gradient r�p+1(x;
W ; b). Indeed one starts with J�0(x;W ; b) and recursively computes J�i(x;W; b) given
J�i¡1(x;W ; b) for all i2 f1; : : : ; pg to deduce r�p+1(x;W ; b) at the end, effectively per-
forming the product of jacobian matrices from left to right.

Another approach would be to introduce �0; : : : ; �p as follows:

�0(x;W ; b) = Wp+1

�i(x;W ; b) = �i¡1(x;W ; b) diag(�0(Wp¡i+1 �p¡i(x;W ; b)+ bp¡i+1))Wp¡i+1;
8i2f1; : : : ; pg

r�p+1(x;W; b) = �p(x;W ; b)>

(5.7)

This defines a backward , or reverse, approach to compute the gradient r�p+1(x;W ; b),
since we are in effect doing a product of jacobian matrices from right to left.

The major difference between both approaches lies in the fact that the backward
approach consists, at least in theory, of less arithmetic operations for the same result
as the forward approach. Indeed, by counting in terms of m, n and p the additions and
multiplications involved in the matrix operations5.5 and the evaluations of the deriva-
tive of the activation function and discounting the evaluations of pre-activations5.6, one
can show that the forward approach performs �(m2 n p) operations5.7 while the back-
ward approach performs only �(m2 p) operations. Indeed, during the forward approach,
one iteratively computes products of full jacobian matrices and more precisely matrix-
matrix products, while in the backward approach one computes only vector-matrix prod-
ucts given that the neural network has only one output neuron.

5.5. One should pay attention to the fact that the multiplication of an arbitrary square matrix A with a
diagonal matrix B on the left (resp. on the right), i.e. AB (resp. BA), should be implemented by multiplying the
i-th column (resp. row) of A by the i-th entry on the diagonal of B instead of using generic matrix multiplication.
This is taken into account in the complexity calculations.

5.6. i.e. the calculation of the terms Wi�i¡1(x;W ; b) + bi which are assumed to have already been computed
during a forward pass to compute the neural network's outputs.

5.7. Given two real-valued sequences (un)n and (vn)n, we say that un=�(vn) if un=O(vn) and vn=O(un).

5.4 Complex-step Sobolev Training 183

However, this complexity analysis neglects the memory occupation and time spent
during loads and stores from and in memory that are necessary for the backward phase as
one has to store the pre-activations of each layer during the forward phase in order to later
load them and use them during the backward computation. The iterates �0; : : : ; �p in the
backward computations are also stored in memory so that another backward differentiation
with respect to the weights of the neural network (and not its inputs), more commonly
called back-propagation, can be performed in order to be able to make an SGD step towards
solving (5.4). This second layer of backward differentiation is done automatically by all
major neural network libraries using adjoint algorithmic differentiation (AAD) [Abadi et
al., 2016; Bradbury et al., 2018; Paszke et al., 2019]. This memory cost, both in occupied
space and in access times, is further exacerbated by the need to compute the gradient
r�p+1(x;W ; b) separately for each point x in the sample when performing empirical risk
minimization.

In [Czarnecki et al., 2017], the authors point out that it is possible to reformulate the
loss function in such a way that one would need only directional derivatives instead of full
gradients in order to address the previous computational issue. We propose a more general
result in the same spirit.

Proposition 5.9. Let u be an L2-integrable random vector supported on Rn+2 with zero-
mean components such that cov(u)=diag(�1; : : : ; �n+2) and assume that u is independent
of �; K; T ;Z�. We have:

E[(u>r'(�;K; T)¡u>r(e¡rTZ�))2]=
X
k=1

n+2

�kE[(@k'(�; K; T)¡ @k(e¡rTZ�))2] (5.8)

Proposition 5.9 suggests that one can perform stochastic gradient descent to solve (5.4)
by computing only one directional derivative along a random direction instead of having to
compute full gradients during each SGD iteration. The authors in [Czarnecki et al., 2017]
suggested to draw u from a uniform distribution on the unit sphere but no discussion of
the motivation behind this choice was provided. We give the optimal distribution among
those verifying the assumptions of Proposition 5.9 when seeking to minimize the additional
variance created by randomizing the direction of differentiation:

Proposition 5.10. Denote ` :=r'(�;K;T)¡r(e¡rTZ�) and Z=�(�;K;T ;Z�). Under
the assumptions of Proposition 5.9, u minimizes E[var((u> `)2jZ)] iff:

u�
¡

�1
p

R1; : : : ; �n+2
p

Rn+2
�

where R1; : : : ; RN are i.i.d Rademacher variables, i.e. Q(Ri=¡1)=Q(Ri=1)= 1

2
.

Proof. We have:

var((u> `)2jZ) = E[(`>(uu>¡ diag(�)) `)2jZ]

= E

240@X
i=1

n+2

`i
2 (ui2¡�i)+ 2

X
1�i<j�n+2

`i `juiuj

1A2������������Z
35

Denote A :=
P

i=1
n+2 `i

2 (ui2¡�i) and B :=
P

1�i<j�n+2 `i `jui uj. We then have:

var((u> `)2jZ) = E[A2+4B2+4AB jZ]

184 Fast Calibration using Complex-Step Sobolev Training

and

A2 =
X
i=1

n+2

`i
4 (ui2¡�i)2+2

X
1�i<j�n+2

`i
2 `j

2 (ui2¡�i)(uj2¡�j)

B2 =
X

1�i<j�n+2
`i
2 `j

2ui
2uj

2+
X

1�i<j�n+2
1�{<|�n+2
(i;j)=/ ({;|)

`i `{ `j `|uiu{uju|

AB =
X
r=1

n+2 X
1�i<j�n+2

`r
2 `i `j (ur2¡�r)ui uj

Notice that whenever i=/ j, we have:

E[`i2 `j2 (ui2¡�i)(uj2¡�j)jZ] = `i
2 `j
2E[ui2¡�i]E[uj2¡�j] = 0

E[`i2 `j2ui2uj2jZ] = `i
2 `j
2�i�j

Let i; {; j ; | be integers such that 1� i < j �n+2 and 1� { < |�n+2 and (i; j)=/ ({; |).
We have the following:

� if i= { and j=/ |: E[`i `{ `j `|ui u{uju|jZ] = `i2 `j `|E[ui2]E[uj]E[u|]=0

� if i=/ { and j= |: E[`i `{ `j `|ui u{uju|jZ] = `i `{ `j2E[ui]E[u{]E[uj2]=0

Let r be an integer such that 1� r�n+2. We can distinguish the following cases:

� if r=/ i and r=/ j: E[`r2 `i `j (ur2¡�r)uiuj jZ] = `r2 `i `jE[ur2¡�r]E[ui]E[uj]=0

� if r= i: E[`r2 `i `j (ur2¡�r)uiuj jZ]= `r3 `jE[(ur2¡�r)ur]E[uj]=0

� if r= j: E[`r2 `i `j (ur2¡�r)uiuj jZ]= `r3 `iE[(ur2¡�r)ur]E[ui]=0

Hence,

var((u> `)2jZ)=
X
i=1

n+2

`i
4E[(ui2¡�i)2] + 4

X
1�i<j�n+2

`i
2 `j

2�i�j (5.9)

which is minimized iff ui
2=�i a.s. for all i2f1; : : : ; n+2g. Assume this is verified. Since u

is centered, we have Q(ui= �i
p

)=Q(ui=¡ �i
p

)= 1

2
for every i2f1; : : : ; n+2g and this

concludes the proof. �

Remark 5.11. The expectation of the conditional variance in (5.9) also happens to be
the additional variance caused by the introduction of a random direction of differentiation.
Indeed, reusing the notation of Proposition 5.10 and setting ~̀:='(�;K;T)¡ e¡rTZ�, we
have:

var(~̀2+(u> `)2)= var(~̀2)+ var((u> `)2)+ 2 cov(~̀2; (u> `)2)

Using the tower property one can show that:

cov(~̀2; (u> `)2)= cov(~̀2;E[(u> `)2jZ])

We also have from the total variance formula that:

var((u> `)2) = E[var((u> `)2jZ)]+ var(E[(u> `)2jZ])

5.4 Complex-step Sobolev Training 185

Hence:

var(~̀2+(u> `)2)= var(~̀2+E[(u> `)2jZ]) +E[var((u> `)2jZ)]

and the conclusion is immediate by noticing that:

~̀2+E[(u> `)2jZ]= ('(�;K; T)¡ e¡rTZ�)2+
X
k=1

n+2

�k (@k'(�;K; T)¡ @k(e¡rTZ�))2

Hence, the computational gain provided by differentiating along random directions instead
of computing full gradients comes at the cost of a necessarily higher variance. In this regard,
Proposition 5.10 helps reduce this additional variance as much as possible by judiciously
choosing the distribution of u. By choosing the optimal distribution, the added variance
is then:

E[var((u> `)2jZ)]= 4
X

1�i<j�n+2
�i�jE[`i2 `j2]

�

One can then compute the directional derivatives using a forward approach, yielding
similar complexity to the backward approach in terms of the arithmetic operations, while
performing less memory accesses as no jacobians need to be stored in the forward approach.
Indeed, one can iterate jointly on the forward approach and the calculation of the neural
network output and share pre-activation values between both computations. Although the
same directional derivatives computation can be done using the backward approach, even in
terms of solely the arithmetic operations it is sub-optimal to do so. Figure 5.1 shows that
when the number of inputs is greater than the number of outputs (i.e. d0>d2 in the figure),
vector-matrix multiplications from left to right perform less work and are thus faster.

Figure 5.1. Jacobian multiplications when differentiating a neural network with 3 hidden layers
having d0 inputs, d1 neurons per hidden layer and d2 outputs, with respect to its inputs along a
fixed direction.

5.4.2 Faster Directional Derivatives with Complex-step Differenti-
ation

Notice that for a given direction u, the directional derivative u>r'(�;K; T) can also be
approximated using a finite difference along the direction u at the cost of two5.8 evaluations
for both the output of the network and its directional derivative and would have to perform

5.8. or three when using a centered finite difference approximation.

186 Fast Calibration using Complex-Step Sobolev Training

less work than an exact directional derivative with the forward approach given that the
latter will have the additional overhead of the diagonal matrix multiplication in (5.6), which
has quadratic complexity in the number of hidden units, while the forward pass using (5.3)
doesn't.

However, the finite difference method suffers from round-off errors when implemented
using finite precision arithmetic because of the substraction involved. In particular, the
approximation can become unstable as shown in the example of Figure 5.2 and can fail
for step sizes that are less than � �

p
(� �3p if using the central finite difference method)

where � is the machine epsilon [Sauer, 2011]. This is further exacerbated by the fact that
computations on the GPU are preferably done in single precision (where the machine
epsilon is of the order of 10¡7) as switching to double precision (the machine epsilon
becoming then �10¡16) comes with a performance penalty. This greatly limits the degree
to which one can reduce the approximation error by reducing the step size if one wants to
preserve the computational advantage5.9 of single precision, especially on GPUs.

In [Martins et al., 2003; Squire and Trapp, 1998], it is shown that if the function
that is being differentiated admits an analytic extension, then these numerical issues can
be overcome using a so-called complex-step differentiation instead of a finite difference
approximation. We first present the result in scalar form, which can easily be verified using
a Taylor expansion for holomorphic functions (we refer the reader to [Lang, 2003] for a
classic treatment of complex analysis):

Proposition 5.12. (Complex-step differentiation) Let x2R and let F :R!R be thrice
differentiable on a neighborhood V of x and assume that F can be extended analytically on
V. By identifying F with its analytic extension on V, we have:

1
"
Im(F (x+ i "))=F 0(x)+O("2)

where i is the imaginary unit and Im is the imaginary part operator.

Notice that the approximation in Proposition 5.12 does not involve a difference, hence
being less subject to the round-off errors encountered in finite difference implementations,
and is of order two, having thus the same order as a central finite difference but with better
numerical stability. In practice, the complex step size can be taken to be as small as the
machine epsilon, yielding an approximation that is almost indistinguishable from the exact
value of the derivative in finite precision. In the example of Figure 5.2, the absolute error is
of the order of the machine epsilon when " is sufficiently small. Switching to holomorphic
functions on Cn+2, and assuming that the neural network ' admits an analytic extension
with which we identify it, we can finally write:

u>r'(x)= 1
"
Im('(x+ i " u))+O("2)

5.9. Not only are double-precision arithmetics, in theory, twice as slow as single-precision arithmetics, recent
NVidia GPUs give even more advantage to single-precision (albeit in a specialized TensorFloat32 format) with
speedups up to �8 with respect to regular single-precision (i.e. floats or FP32) on the A100 GPU thanks to Tensor
cores, at least according to NVidia's official specifications [NVIDIA Corporation, 2020a]. Of course, in addition to
the computational speed, there is also the difference in memory storage, as double-precision will necessarily use twice
as much memory as single-precision, and also involve twice as many memory exchanges which can be penalizing in
situations that are memory-bound.

5.4 Complex-step Sobolev Training 187

where Im is applied element-wise. Notice that the output of the neural network can be
deduced immediately without performing any additional evaluation, with the same order
of error:

'(x)=Re('(x+ i " u))+O("2)

with Re being the real part operator applied element-wise. Hence both values and direc-
tional derivatives can be computed at the same time with low approximation error.

10 6 10 4 10 2
10 7

10 5

10 3

10 1

101

er
ro

r

10 6 10 4 10 2
10 6

10 4

10 2

100

102

Finite Difference 1 ((x + u) (x))
Central Finite Difference 1

2 ((x + u) (x u))
Complex-step Differentiation 1 Im((x + i u))

Figure 5.2. Sample average of the absolute value of absolute (left) and relative (right) errors,
when approximating the directional derivative of a randomly initialized neural network ', with 28
inputs, 6 hidden layers, 112 hidden units per layer and a Softplus activation, with respect to its
inputs, using each of the finite difference, central finite difference and complex-step differentiation
methods. The average is done over an i.i.d sample of 214= 16384 errors each corresponding to a
network input vector x with components drawn independently from U([¡ 3

p
; 3
p

]) and a direction
u drawn as in Proposition 5.10 with �1= � � �=�28=1. Plots are in log-log scale.

In practice, a neural network can be rendered analytic by choosing activation functions
that can be extended analytically, since the affine layers admit trivial analytic extensions.

Example 5.13. (Analytic Softplus activation) Consider the Softplus activation func-
tion:

�(x)= log(1+ exp(x)); 8x2R

and which is applied element-wise when supplied with a vector in its input. It can
be extended naturally to a holomorphic function by extending log with z 7! logjz j +
i Arg(z) on C n f0g, with Arg being the principal argument on (¡�; �], and exp with
x+ i y 7! exp(x) (cos(y) + i sin(y)) on C. Hence, except where undefined5.10, we can use
the following5.11 extension for all x; y 2R:

�(x+iy)=1
2
log(1+exp(2x)+2exp(x)cos(y))+iatan2(exp(x)sin(y);1+exp(x)cos(y))

where atan2(y; x) =Arg(x+ i y) and is implemented in most math libraries. One then
extends � to vectors in Cn+2 by applying it element-wise.

5.10. which is not an issue as the set of such points is of measure zero.

5.11. One still needs to treat overflow issues, caused by the exponential, based on the sign of x in the imple-
mentation.

188 Fast Calibration using Complex-Step Sobolev Training

Re(z) 1050510
Im(z)

1.00.50.00.51.0

Re
(

(z
))

2
4
6
8
10

Re(z) 1050510
Im

(z)

1.0
0.5

0.0
0.5

1.0

Im
(

(z
))

0.5

0.0

0.5

Figure 5.3. An analytic extension of the Softplus activation. Left: real part, right: imaginary
part.

�

The main difficulty then resides in implementing support for complex-valued inputs for
neural networks in such a way that the library's automatic differentiation with respect to
the network weights remains possible. At the time of this writing, this is done in pytorch
for instance using the notion of Wirtinger differentiation [Bouboulis, 2010] which is more
general than holomorphic differentiability. However, we chose to specialize in holomorphic
functions as these enjoy the Cauchy-Riemann property, which we recall below in the scalar
case, as opposed to general Wirtinger differentiable functions.

Theorem 5.14. (Cauchy-Riemann equations) Let v: z=x+ i y 7!v0(x; y)+ i v1(x; y)
be defined in a neighborhood V of z0= x0+ i y0 and assume v is holomorphic on V. Then
the partial derivatives @xv0, @yv0, @xv1 and @yv1 exist at (x0; y0) and we have:

@xv0(x0; y0) = @yv1(x0; y0)
@yv0(x0; y0) = ¡@xv1(x0; y0)

The Cauchy-Riemann equations in particular allow one to compute only two partial
derivatives (e.g. the partial derivatives of the real part of the output with respect to the
real and imaginary parts of the input) and deduce the other two partial derivatives with at
most a change of sign. This in particular allows us to directly hard-code5.12 the fact that one
needs to store only two partial derivatives and use those to immediately get all four partial
derivatives (of the real and imaginary parts of the output with respect to the real and
imaginary parts of the inputs) at all intermediate layers during the back-propagation, while
Wirtinger differentiation requires in principle keeping track of all four partial derivatives
as the Cauchy-Riemann equations are not necessarily verified for a Wirtinger differentiable
function.

Using our custom holomorphic implementation in C++ yields speed-ups between �1.4
and �2 compared to PyTorch's Wirtinger-based back-propagation5.13 in our benchmarks of
back-propagation times in 5.5.2. We also get speed-ups between �3.6 and �7.6 compared
to an exact calculation of directional derivatives using the forward approach.

5.12. We do this using the C++ libtorch library by reimplementing the needed neural network blocks, such as
activations and layers, by inheriting from the torch::autograd::Function class and exploiting the Cauchy-Riemann
property in our custom torch::autograd::Function::backward implementation.

5.13. We used PyTorch's just-in-time (JIT) compilation mechanism when benchmarking the vanilla complex
implementation on Python, which removes in practice most of the Python overhead. Hence the speed-up is mostly
explained by our specialization to holomorphic functions and not merely by switching to C++. The switch to C++ was
needed only because our custom implementation using CUDA kernels could not, at the moment of this writing, be
used with the JIT mechanism, thus severely penalizing it on Python.

5.4 Complex-step Sobolev Training 189

5.5 Numerical Case-study: Fixed-grid Local Volatility

5.5.1 Setup of The Experiments

We consider the problem of fitting a 5� 5 fixed-grid local volatility model, as described
in Example 5.1, on observed quotes of call and put prices. We set X0 = 1 and for

the local volatility grid we use a time grid
n
1

12 +
(2¡ 1/12) k

4

o
0�k�4

and a spatial gridn
log(0.25)+ log(2.1/0.25) k

5

o
0�k�4

.

In this example then, we have d= 1, = Id and n= 26 corresponding to 25 local
volatility nodes and the risk-free rate.

We generate 223�8 million Monte Carlo samples of (�; K; T ; Z) assuming a time dis-
cretization with an Euler-Maruyama scheme. We sample each factor as in Table 5.1, which
essentially amounts to seeking an approximation of the pricing function for parameters
in the described ranges. Since the simulations are fast (see 5.5.2), we also use a modest
variance reduction by replacing the payoffs with an average over 32 realizations5.14 of the
payoff conditional on the same parameter realization, since both have the same expectation
conditional on (�;K; T ; Z).

Factor Description Distribution
r risk-free rate U([0; 0.05])
K strike price U([0.25; 2.1])
T maturity U([0.05; 2.5])
�i;j local volatility at node (i; j) U([0.1; 2.0])

Table 5.1. Distributions of product and model parameters.

We used a neural network with p=6 layers, m= 56 hidden units per hidden layer, an
analytic Softplus activation and, because we are specializing in call prices, q=2 outputs
constrained to be valued on [0;1], on which an inner-product with (X0;¡e¡rTK)> is then
performed to get an estimate of the call price. More precisely, let N =NN56;6;2;� and
denote by [:]k the k-th coordinate of its argument (with k zero-indexed). Define:

H := fRn�R�R3 (�; k; �) 7!X0 s([�(�; k; �)]0)¡ e¡[�]0� k s([�(�; k; �)]1): �2N g

where s:R3 x 7! 1

1+ exp(¡x) . Then the minimization is carried over H instead of N . This

helps ensure proper scaling for the price approximation with no need to rescale the outputs
by hand and is motivated by the following observation:

E[e¡rTZ�j�; K; T] =X0E
�
e¡rT

XT
�

X0
1fXT��Kgj�;K; T

�
||| |{z}}} }

2[0;1]

¡ e¡rTKQ(XT
��K j�;K; T)

5.14. From a GPU programming perspective, a size of 32 is attractive, especially for Nvidia GPUs since a warp
is of size 32 [NVIDIA Corporation, 2020b], as it gives the possibility to have threads inside the same warp work
on the same model and product parameters and thus prevent thread divergences that would otherwise occur if for
example two threads of the same warp worked on two different realizations of the maturity T . It also allows to
compute the empirical average over the 32 conditional realizations using only warp intrinsics and without resorting
to shared memory or synchronization barriers.

190 Fast Calibration using Complex-Step Sobolev Training

5.5.2 Execution Times and Benchmarks

The experiments are done on a single Nvidia V100 GPU, although one could readily extend
our implementation to multi-GPU training using lock-free approaches such as Hogwild
training [Recht et al., 2011]. The simulations are fast as no pricing is being performed and
path-wise sensitivities of the payoffs are computed with the forward approach described in
Example 5.8. Both are implemented on GPU in CUDA and take �1min20 secs.

To demonstrate the effectiveness of our approach in terms of speed and memory foot-
print, we reported in tables 5.2 and 5.3 the execution time and memory usage when
performing one iteration of back-propagation, i.e. the library's AAD with respect to net-
work weights, through a neural network with 5 layers and respectively 64 and 128 neurons
per layer, using a loss function involving either a sum of errors of each derivative of the
network with respect to its inputs (i.e. similarly to the second sum in (5.4)) or one error
involving a random directional derivative (i.e. as in the LHS of (5.8)). The last two rows
correspond to our proposed complex-step differentiation approach and refer to respec-
tively using pytorch's Wirtinger-based AAD for complex functions and our custom C++
implementation specializing in holomorphic functions. For the sake of accuracy, the other
rows are all implemented in C++ but very similar timings were also achieved using simply
pytorch's just-in-time compilation mechanism in plain Python.

Training for 300 epochs, with 512 batch iterations per epoch (amounting in total to
153600 SGD iterations), takes �13mins (compared to at least hours for equivalent accuracy
when training using full gradients). Evaluating 1024 prices along with their 28 derivatives
during inference takes �5ms on an Nvidia T4 GPU, which is very appealing for model
calibration routines.

Time Cumul. speedup Mem. usage
Full gradients, backward 17.01(0.40) 2365.68
Full gradients, forward 16.56(0.48) �1.03 1330.74
Exact directional derivatives 6.42(0.14) �2.65 433.07
CSD directional derivatives 2.60(0.19) �6.54 139.74
CSD directional derivatives, C++ 1.75(0.27) �9.72 90.20

Table 5.2. Time spent (in ms), cumulative speed-ups and memory usage (in MB) during 1
iteration of back-propagation for different differentiation procedures for a neural network with 64
neurons/layer and 5 hidden layers, assuming 28-dimensional input and scalar outputs.

Time Cumul. speedup Mem. usage
Full gradients, backward 59.65(1.00) 8834.49
Full gradients, forward 48.42(0.48) �1.23 3169.55
Exact directional derivatives 18.86(0.16) �3.16 1343.92
CSD directional derivatives 5.17(0.04) �11.54 276.92
CSD directional derivatives, C++ 2.49(0.28) �23.95 178.00

Table 5.3. Time spent (in ms), cumulative speed-ups and memory usage (in MB) during 1
iteration of back-propagation for different differentiation procedures for a neural network with 128
neurons/layer and 5 hidden layers, assuming 28-dimensional input and scalar outputs.

5.5 Numerical Case-study: Fixed-grid Local Volatility 191

5.5.3 Validation Without Ground-truth Values
Even though we don't compute ground-truth prices, e.g. using a dedicated Monte-Carlo
simulation for each set of model and product parameters, as we are only simulating payoffs
(or a conditional sample average over a very small sample), one can still estimate an L2

distance to the ground-truth prices by following a twin-simulation procedure introduced
in [Abbas-Turki et al., 2021]. The idea is to notice that if ' is our neural network, then:

E[('(�;K; T)¡E[e¡rTZ�j�; K; T])2] = E['(�;K;T) ('(�;K;T)¡e¡rT (Z�;1+Z�;2))]
+E[e¡2rTZ�;1Z�;2]

where Z�;1 and Z�;2 are two conditionally independent copies of Z� given (�; K; T).
Hence, via two sub-simulations conditional on each realization of the model and product
parameters, one can estimate the L2 distance between the neural network approximation
and the ground-truth price without ever computing the latter. Assuming a sample of sizeN
independent of the trajectories which were used for training, we can estimate this distance
using the following unbiased estimator:

MSEN
twin := 1

N

X
i=1

N

'(�(i); K(i); T (i))
¡
'(�(i);K(i); T (i))¡ e¡r(i)T (i)

¡
Z�

(i);1+Z�
(i);2
��

+ e¡2r
(i)T (i)Z�

(i);1Z�
(i);2

where ((�(i); K(i); T (i)))1�i�N is an i.i.d sample of (�; K; T) and for each i2 f1; : : : ; N g,
Z�

(i);1 and Z�
(i);2 are two conditionally independent copies of Z� given (�;K; T)= (�(i);

K(i); T (i)) and the sample
¡¡
�(i); K(i); T (i); Z�

(i);1; Z�
(i);2
��
1�i�N is independent of the

sample that was used for the training.
In Table 5.4, we list the estimates we obtain for our method along with alternative

approaches using only payoffs, i.e. approaches not seeking to project path-wise sensitivities.

MSEN
twin

q
stdev of MSEN

twin

Projecting both payoffs and path-wise sensitivities 4.9 � 10¡4 1.7 � 10¡6
Projecting only payoffs, same # of samples 7.06 � 10¡3 1.7 � 10¡6
Projecting only payoffs, 2� as many samples 4.30 � 10¡3 1.7 � 10¡6
Projecting only payoffs, 4� as many samples 1.42 � 10¡3 1.7 � 10¡6

Table 5.4. MSENtwin estimates for different approaches for projecting payoffs.

5.5.4 Calibration Example
We consider the problem of fitting our fixed-grid local volatility nodes by using the price
approximation learned by our neural network in the calibration phase. More precisely, we
seek local volatility nodes (�i;j)1�i�m

1�j�M
such that:

(�i;j)i;j 2 argmin
(�i;j)i;j2[0.1;2]J1;mK�J1;MK

X
l=1

L ¡
'((r; �0;0; : : : ; �i;j ; : : : �m;M); k(l); � (l))¡ pmkt

(l) �2
where we assume that we have access to L market prices of vanilla calls pmkt

(1)
; : : : ; pmkt

(L)

corresponding to strikes k(1); : : : ; k(L) and maturities � (1); : : : ; � (L), and for simplicity of the
experiment a flat term structure of risk-free rates.

192 Fast Calibration using Complex-Step Sobolev Training

Using the same grid of size 5�5 for the local volatility as previously, we solve the above
calibration problem using Tesla's stock (Nasdaq:TSLA) as our underlying on 2022/02/14
using a vanilla gradient descent with respect to the local volatility nodes. We show in
Figure 5.4 the smiles resulting from the model parameters obtained through the neural
network pricing proxy. Under given model parameters, the smiles are constructed using a
slow Monte-Carlo pricing to ensure a validation that is independent of the neural network
approximation. We obtain close to perfect fits when compared to the implied volatilities
of the market prices.

0.55

0.60

0.65

0.70 residual maturity = 0.34 years residual maturity = 0.59 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.55

0.60

0.65

0.70 residual maturity = 0.94 years

0.50 0.75 1.00 1.25 1.50 1.75 2.00

residual maturity = 1.96 years

Figure 5.4. Fit of TSLA implied volatility smiles on 2022/02/14 using a 5�5 local volatility model
calibrated using our proxy pricer. Blue dots: market prices, purple curve: implied volatility
smile of fitted local volatility model, x-axis: moneyness, y-axis: implied volatility levels.

Although this is not the goal of the present article, notice that the flexibility to specify
for instance custom grids for the local volatility, and easily by extension stochastic-local
volatility models [Guyon and Henry-Labordere, 2011; Tian et al., 2015], gives a new pos-
sibility to regularize calibration problems by enforcing parsimony directly at the grid level.

The calibration approach is entirely orthogonal to the procedure presented in this
paper. One can imagine more elaborate calibration procedures based on Levenberg-Mar-
quardt or other algorithms. The main idea remains that inside the calibration procedure,
the pricing function is replaced by the approximation given by our neural network, and,
whenever derivatives are needed, these can be computed either explicitly or using auto-
matic differentiation.

5.A Derivatives with respect to time to maturity in dis-
crete time models

Let � 2 Rn and r; � ; k > 0. In our general SDE (5.1) we will assume one single spatial
dimension in Xt (i.e. d=1) and we will consider the payoff of a vanilla call with time to
maturity � and assume risk-free rate r. Let h(x)=(x¡k)+. For every t>0, let x 7! p(t; x)
be the probability density of Xt

�. Then, for all x2R, the density p follows the following
Fokker-Planck equation at (� ; x):

@�p(� ; x)=¡@x(f(� ; x; �) p(� ; x))+
1
2
@xx(g(� ; x; �)2 p(� ; x)) (5.10)

5.A Derivatives with respect to time to maturity in discrete time models 193

We will assume in the following that X�
� is at least L3-integrable. In this case the Lipschitz

regularity of f and g in their second argument yields:

lim
x!+1

xf(� ; x; �) p(� ; x) = 0

lim
x!+1

g(� ; x; �)2 p(� ; x) = 0

lim
x!+1

x @x(g(� ; x; �)2 p(� ; x)) = 0

Then using integration by parts, we have:Z
¡1

+1
h(x)@x(f(� ; x; �) p(� ; x)) dx = e¡r�

Z
¡1

+1
(x¡ k) @x(f(� ; x; �) p(� ; x)) dx

= ¡e¡r�E
�
f(� ;X�

�; �) 1fX���kg
�

(5.11)

andZ
¡1

+1
h(x) @xx(g(� ; x; �)2 p(� ; x)) dx = e¡r�

Z
¡1

+1
(x¡ k) @xx(g(� ; x; �)2 p(� ; x)) dx

= e¡r� g(� ; k; �)2 p(� ; k)

We also have via the Breeden-Litzenberger formula that p(� ; k)= @kkE[(X�
�¡ k)+], thus:Z

¡1

+1
h(x) @xx(g(� ; x; �)2 p(� ; x)) dx= e¡r� g(� ; k; �)2@kkE[(X�

�¡ k)+] (5.12)

Notice now that we have:

@�(e¡r�E[(X�
�¡ k)+]) =¡r e¡r�E[(X�

�¡ k)+]+e¡r�
Z
k

+1
(x¡ k) @�p(� ; x) dx (5.13)

Plugging the expressions of (5.11), (5.12) and (5.13) into the Fokker-Planck equation in
(5.10), we get:

@�(e¡r�E[(X�
�¡ k)+]) = ¡r e¡r�E[(X�

�¡ k)+] +e¡r�E
�
f(� ;X�

� ; �) 1fX���kg
�

+1
2
e¡r� g(� ; k; �)2 @kkE[(X�

�¡ k)+] (5.14)

Finally notice that for any 0<h<� , applying the tower property and the Breeden-Litzen-
berger formula conditionally at � ¡h we have:

@kkE[(X�
�¡ k)+] = E[@kkE[(X�

�¡ k)+jX�¡h
�]]

= E[ph(� ; k jX�¡h
�)]

where x 7! ph(� ; xjx0) is the density of X�
� conditional on X�¡h

� =x0.
Thus, going back to randommodel parameters, thanks to (5.14) one can write the deriv-

ative of the price with respect to time to maturity as a conditional expectation involving
either only one second spatial derivative, or no derivatives at all if one knows the conditional
density ph(� ; :j:) of X�

� jX�¡h
� . The latter can in practice be replaced, given sufficiently

small h, with the closed-form available in discrete time given that increments in an Euler
scheme for example are Gaussian (or log-normal if one discretizes the log-dynamics). We
refer to works such as [Bally and Talay, 1996] for a quantification of the error when using
the density of the discrete solution instead of that of the continuous time solution.

194 Fast Calibration using Complex-Step Sobolev Training

We used this approach in our implementation for the derivative with respect to time
to maturity, by considering this integrand:

r e¡r�
�
¡(X�

�¡ k)++ f(� ;X�
�; �)1fX���kg+

1
2
g(� ; k; �)2 ph(� ; k jX�¡h

�)
�

as a fictitious path-wise sensitivity with respect to time to maturity.

5.B Differentiation of the local volatility function in
Example 5.8

We resume here the calculations of Example 5.8. We have:

� If there exist p2f1; : : : ; m¡ 1g and q 2 f1; : : : ;M ¡ 1g such that t(p)� ti< t(p+1)

and s(q)� ŝi<s(q+1), then:

@u;v�(ti; ŝi)=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(t(p+1)¡ t)(s(q+1)¡ ŝi)
(t(p+1)¡ t(p))(s(q+1)¡ s(q))

if (u; v)= (p; q)

(t¡ t(p)) (s(q+1)¡ ŝi)
(t(p+1)¡ t(p)) (s(q+1)¡ s(q))

if (u; v)= (p+1; q)

(t(p+1)¡ t) (ŝi¡ s(q))
(t(p+1)¡ t(p)) (s(q+1)¡ s(q))

if (u; v)= (p; q+1)

(t¡ t(p)) (ŝi¡ s(q))
(t(p+1)¡ t(p)) (s(q+1)¡ s(q))

if (u; v)= (p+1; q+1)

0 otherwise

� If t� t(m) and there exists q 2f1; : : : ;M ¡ 1g such that s(q)� ŝi<s(q+1), then:

@u;v�(ti; ŝi)=

8>>>>>>>>>><>>>>>>>>>>:

s(q+1)¡ ŝi
s(q+1)¡ s(q)

if (u; v)= (m; q)

ŝi¡ s(q+1)

s(q+1)¡ s(q)
if (u; v)= (m; q+1)

0 otherwise

� If t < t(0) and there exists q 2f1; : : : ;M ¡ 1g such that s(q)� ŝi<s(q+1), then:

@u;v�(ti; ŝi)=

8>>>>>>>>>><>>>>>>>>>>:

s(q+1)¡ ŝi
s(q+1)¡ s(q)

if (u; v)= (0; q)

ŝi¡ s(q+1)

s(q+1)¡ s(q)
if (u; v)= (0; q+1)

0 otherwise

� If s� s(M) and there exists p2f1; : : : ;m¡ 1g such that t(p)� ti< t(p+1), then:

@u;v�(ti; ŝi)=

8>>>>>>>>>><>>>>>>>>>>:

t(p+1)¡ t
t(p+1)¡ t(p)

if (u; v)= (p;M)

t¡ t(p)

t(p+1)¡ t(p)
if (u; v)= (p+1;M)

0 otherwise

5.B Differentiation of the local volatility function in Example 5.8 195

� If s< s(0) and there exists p2f1; : : : ;m¡ 1g such that t(p)� ti<t(p+1), then:

@u;v�(ti; ŝi)=

8>>>>>>>>>><>>>>>>>>>>:

t(p+1)¡ t
t(p+1)¡ t(p)

if (u; v)= (p; 0)

t¡ t(p)

t(p+1)¡ t(p)
if (u; v)= (p+1; 0)

0 otherwise

196 Fast Calibration using Complex-Step Sobolev Training

Bibliography
[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., et al. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16),
pages 265�283, 2016.

[Abbas-Turki et al., 2021] Abbas-Turki, L., Crépey, S., and Saadeddine, B. Hierarchical Sim-
ulation for Learning With Defaults, 2021. Working paper available on https://www.lpsm.paris/
pageperso/crepey.

[Abbas-Turki et al., 2018] Abbas-Turki, L. A., Crépey, S., and Diallo, B. XVA principles, nested
Monte Carlo strategies, and GPU optimizations. International Journal of Theoretical and Applied
Finance , 21(06):1850030, 2018.

[Abbas-Turki et al., 2014] Abbas-Turki, L. A., Vialle, S., Lapeyre, B., and Mercier, P. Pricing
derivatives on graphics processing units using Monte Carlo simulation. Concurrency and Com-
putation: Practice and Experience , 26(9):1679�1697, 2014.

[Abu-El-Haija et al., 2016] Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G.,
Varadarajan, B., and Vijayanarasimhan, S. Youtube-8m: A large-scale video classification
benchmark. arXiv preprint arXiv:1609.08675 , 2016.

[Acerbi and Tasche, 2002] Acerbi, C. and Tasche, D. On the coherence of expected shortfall.
Journal of Banking and Finance , 26:1487�1503, 2002.

[Adomavicius and Tuzhilin, 2005] Adomavicius, G. and Tuzhilin, A. Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions
on knowledge and data engineering , 17(6):734�749, 2005.

[Agarwal et al., 2019] Agarwal, A., Marco, S. D., Gobet, E., López-Salas, J., Noubiagain, F.,
and Zhou, A. Numerical approximations of McKean Anticipative Backward Stochastic Differential
Equations arising in Initial Margin requirements. ESAIM: Proceedings and Surveys , 65:1�26, 2019.

[Akiba et al., 2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining , pages 2623�2631, 2019.

[Albanese et al., 2020] Albanese, C., Armenti, Y., and Crépey, S. XVA Metrics for CCP optimi-
sation. Statistics & Risk Modeling , 37(1-2):25�53, 2020.

[Albanese et al., 2017] Albanese, C., Caenazzo, S., and Crépey, S. Credit, Funding, Margin, and
Capital Valuation Adjustments for Bilateral Portfolios. Probability, Uncertainty and Quantitative
Risk , 2(7):26 pages, 2017.

[Albanese et al., 2021] Albanese, C., Crépey, S., Hoskinson, R., and Saadeddine, B. XVA
Analysis From the Balance Sheet. Quantitative Finance , 21(1):99�123, 2021.

[Andersen et al., 2019] Andersen, L., Duffie, D., and Song, Y. Funding Value Adjustments.
Journal of Finance , 74(1):145�192, 2019.

[Andersen et al., 2017] Andersen, L., Pykhtin, M., and Sokol, A. Rethinking the margin period
of risk. Journal of Credit Risk , 13(1):1�45, 2017.

[Artzner et al., 2020] Artzner, P., Eisele, K.-T., and Schmidt, T. No arbitrage in insurance and
the QP-rule, 2020. Working paper available as arXiv:2005.11022.

[Bally and Talay, 1996] Bally, V. and Talay, D. The law of the Euler scheme for stochastic dif-
ferential equations: II. Convergence rate of the density. Monte Carlo Methods and Applications ,
2(2):93�128, 1996.

[Barrera, 2022] Barrera, D. Confidence intervals for nonparametric regression. arXiv preprint
arXiv:2203.10643 , 2022.

[Barrera et al., 2019] Barrera, D., Crépey, S., Diallo, B., Fort, G., Gobet, E., and Stazhynski,
U. Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations.
ESAIM: Proceedings and Surveys , 65:182�218, 2019.

[Barrera et al., 2022] Barrera, D., Crépey, S., Gobet, E., Nguyen, H.-D., and Saadeddine,
B. Learning Value-at-Risk and Expected Shortfall, 2022. Working paper available on https://
www.lpsm.paris/pageperso/crepey.

[Baydin et al., 2018] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research ,

197

https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey
https://www.lpsm.paris/pageperso/crepey

18:1�43, 2018.
[Bayer et al., 2016] Bayer, C., Friz, P., and Gatheral, J. Pricing under rough volatility. Quanti-

tative Finance , 16(6):887�904, 2016.
[Bayer and Stemper, 2018] Bayer, C. and Stemper, B. Deep calibration of rough stochastic volatility

models. arXiv preprint arXiv:1810.03399 , 2018. https://arxiv.org/abs/1810.03399.
[Beck et al., 2019] Beck, C., Becker, S., Cheridito, P., Jentzen, A., and Neufeld, A. Deep

splitting method for parabolic PDEs, 2019. ArXiv:1907.03452.
[Becker, 2020] Becker, L. FVA losses back in spotlight after coronavirus stress, 2020. https://

www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-
stress.

[Becker et al., 2019] Becker, S., Cheridito, P., and Jentzen, A. Deep optimal stopping. Journal
of Machine Learning Research , 20:74, 2019.

[Bengio et al., 2016] Bengio, Y., Courville, A., and Goodfellow, I. Deep learning . MIT press
Cambridge, 2016.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. Random search for hyper-parameter
optimization. Journal of machine learning research , 13(Feb):281�305, 2012.

[Bichuch et al., 2018] Bichuch, M., Capponi, A., and Sturm, S. Arbitrage-Free XVA. Mathematical
Finance , 28(2):582�620, 2018.

[Bielecki and Rutkowski, 2002] Bielecki, T. and Rutkowski, M. Credit Risk: Modeling, Valuation
and Hedging . Springer Finance, Berlin, 2002.

[Bielecki and Rutkowski, 2015] Bielecki, T. R. and Rutkowski, M. Valuation and Hedging of
Contracts with Funding Costs and Collateralization. SIAM Journal on Financial Mathematics ,
6:594�655, 2015.

[Bondell et al., 2010] Bondell, H., Reich, B., and Wang, H. Noncrossing quantile regression curve
estimation. Biometrika , 97(4):825�838, 2010.

[Borthakur, 2007] Borthakur, D. The hadoop distributed file system: Architecture and design.
Hadoop Project Website , 11(2007):21, 2007.

[Bottou, 2010] Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT'2010 , pages 177�186. Springer, 2010.

[Bouboulis, 2010] Bouboulis, P. Wirtinger's calculus in general Hilbert spaces. arXiv preprint
arXiv:1005.5170 , 2010.

[Bouchard and Élie, 2008] Bouchard, B. and Élie, R. Discrete time approximation of decoupled
forward-backward SDE with jumps. Stochastic Processes and Applications , 118(1):53�75, 2008.

[Bouchard and Touzi, 2004] Bouchard, B. and Touzi, N. Discrete-time approximation and Monte-
Carlo simulation of backward stochastic differential equations. Stochastic Processes and their appli-
cations , 111(2):175�206, 2004.

[Bozinovski, 2020] Bozinovski, S. Reminder of the first paper on transfer learning in neural networks,
1976. Informatica , 44(3), 2020.

[Bradbury et al., 2018] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C.,
Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. JAX: composable transformations of Python+NumPy programs, 2018. http://github.com/
google/jax.

[Brigo and Capponi, 2010] Brigo, D. and Capponi, A. Bilateral counterparty risk with applica-
tion to CDSs. Risk Magazine , pages March 85�90, 2010. Preprint version available at https://
arxiv.org/abs/0812.3705.

[Brigo and Pallavicini, 2014] Brigo, D. and Pallavicini, A. Nonlinear consistent valuation of CCP
cleared or CSA bilateral trades with initial margins under credit, funding and wrong-way risks.
Journal of Financial Engineering , 1:1�60, 2014.

[Broadie and Glasserman, 1996] Broadie, M. and Glasserman, P. Estimating security price deriv-
atives using simulation. Management science , 42(2):269�285, 1996.

[Buehler et al., 2019] Buehler, H., Gonon, L., Teichmann, J., and Wood, B. Deep hedging.
Quantitative Finance , 19(8):1271�1291, 2019.

[Burgard and Kjaer, 2011] Burgard, C. and Kjaer, M. In the balance. Risk Magazine , pages
October 72�75, 2011.

[Burgard and Kjaer, 2013] Burgard, C. and Kjaer, M. Funding Costs, Funding Strategies.
Risk Magazine , pages December 82�87, 2013. Preprint version available at https://ssrn.com/
abstract=2027195.

[Burgard and Kjaer, 2017] Burgard, C. and Kjaer, M. Derivatives funding, netting and accounting.
Risk Magazine , pages March 100�104, 2017. Preprint version available at https://ssrn.com/
abstract=2534011.

198 Bibliography

https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://arxiv.org/abs/1810.03399
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
https://www.risk.net/derivatives/7526696/fva-losses-back-in-spotlight-after-coronavirus-stress
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://arxiv.org/abs/0812.3705
https://ssrn.com/abstract=2027195
https://ssrn.com/abstract=2027195
https://ssrn.com/abstract=2027195
https://ssrn.com/abstract=2027195
https://ssrn.com/abstract=2027195
https://ssrn.com/abstract=2534011
https://ssrn.com/abstract=2534011
https://ssrn.com/abstract=2534011
https://ssrn.com/abstract=2534011
https://ssrn.com/abstract=2534011

[Cannon, 2018] Cannon, A. J. Non-crossing nonlinear regression quantiles by monotone composite
quantile regression neural network, with application to rainfall extremes. Stochastic environmental
research and risk assessment , 32(11):3207�3225, 2018.

[Carmona and Crépey, 2010] Carmona, R. and Crépey, S. Particle methods for the estimation
of credit portfolio loss distributions. International Journal of Theoretical and Applied Finance ,
13(04):577�602, 2010.

[Castagna, 2014] Castagna, A. Towards a theory of internal valuation and transfer pricing of prod-
ucts in a bank: Funding, credit risk and economic capital, 2014. Available at http://ssrn.com/
abstract=2392772.

[Cesari et al., 2010] Cesari, J., Aquilina, J., and Charpillon, N. Modelling, Pricing, and Hedging
Counterparty Credit Exposure . Springer, 2010. ISBN 9783642044847. https://books.google.com/
books?id=kb38tDwznN4C.

[Chalapathy and Chawla, 2019] Chalapathy, R. and Chawla, S. Deep learning for anomaly detec-
tion: A survey. arXiv preprint arXiv:1901.03407 , 2019.

[Chan et al., 1999] Chan, P. K., Fan, W., Prodromidis, A. L., and Stolfo, S. J. Distributed
data mining in credit card fraud detection. IEEE Intelligent Systems and Their Applications ,
14(6):67�74, 1999.

[Chassagneux and Crisan, 2014] Chassagneux, J.-F. and Crisan, D. Runge�Kutta schemes for
backward stochastic differential equations. The Annals of Applied Probability , 24(2):679�720, 2014.

[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. Numerical method
for FBSDEs of McKean-Vlasov type. The Annals of Applied Probability , 29(3):1640�1684, 2019.

[Chassagneux and Richou, 2016] Chassagneux, J.-F. and Richou, A. Numerical simulation of
quadratic BSDEs. The Annals of Applied Probability , 26(1):262�304, 2016.

[Chassagneux and Richou, 2019] Chassagneux, J.-F. and Richou, A. Rate of convergence for the
discrete-time approximation of reflected BSDEs arising in switching problems. Stochastic Processes
and their Applications , 129(11):4597�4637, 2019.

[Chen et al., 2016] Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. Revisiting
distributed synchronous SGD. arXiv preprint arXiv:1604.00981 , 2016.

[Chen, 2007] Chen, X. Large sample sieve estimation of semi-nonparametric models. Handbook of
econometrics , 6:5549�5632, 2007.

[Cohen et al., 2016] Cohen, N., Sharir, O., and Shashua, A. On the expressive power of deep
learning: A tensor analysis. In Conference on learning theory , pages 698�728. PMLR, 2016.

[Collin-Dufresne et al., 2004] Collin-Dufresne, P., Goldstein, R., and Hugonnier, J. A gen-
eral formula for valuing defaultable securities. Econometrica , 72(5):1377�1407, 2004.

[Committee of European Insurance and Occupational Pensions Supervisors, 2010] Com-
mittee of European Insurance and Occupational Pensions Supervisors. QIS5
Technical Specifications, 2010. https://eiopa.europa.eu/Publications/QIS/QIS5-
technical_specifications_20100706.pdf.

[Crépey, 2013] Crépey, S. Financial Modeling: A Backward Stochastic Differential Equations Perspec-
tive . Springer Finance. Springer, 2013. ISBN 9783642371127.

[Crépey, 2015] Crépey, S. Bilateral counterparty risk under funding constraints. Part I: Pricing, fol-
lowed by Part II: CVA. Mathematical Finance , 25(1):1�22 and 23�50, 2015. First published online
on 12 December 2012.

[Crépey, 2022] Crépey, S. The Cost-of-Capital XVA Approach in Continuous Time�Part I: Pos-
itive XVAs, and Part II: Cash Flows Arithmetics, 2022. Working papers available at https://
perso.lpsm.paris/�crepey.

[Crépey et al., 2014] Crépey, S., Bielecki, T. R., and Brigo, D. Counterparty Risk and Funding:
A Tale of Two Puzzles . Taylor & Francis, New York, 2014. Chapman & Hall/CRC Financial
Mathematics Series.

[Crépey et al., 2020] Crépey, S., Sabbagh, W., and Song, S. When Capital Is a Funding Source:
The Anticipated Backward Stochastic Differential Equations of X-Value Adjustments. SIAM Journal
on Financial Mathematics , 11(1):99�130, 2020.

[Crépey and Song, 2015] Crépey, S. and Song, S. BSDEs of Counterparty Risk. Stochastic Processes
and their Applications , 125(8):3023�3052, 2015.

[Crépey and Song, 2016] Crépey, S. and Song, S. Counterparty Risk and Funding: Immersion and
Beyond. Finance and Stochastics , 20(4):901�930, 2016.

[Crépey and Song, 2017] Crépey, S. and Song, S. Invariance Times. The Annals of Probability ,
45(6B):4632�4674, 2017.

[Crisan et al., 2010] Crisan, D., Manolarakis, K., and Touzi, N. On the Monte Carlo simulation
of BSDEs: An improvement on the Malliavin weights. Stochastic Processes and their Applications ,

Bibliography 199

http://ssrn.com/abstract=2392772
http://ssrn.com/abstract=2392772
http://ssrn.com/abstract=2392772
http://ssrn.com/abstract=2392772
http://ssrn.com/abstract=2392772
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://books.google.com/books?id=kb38tDwznN4C
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf
https://perso.lpsm.paris/∼crepey
https://perso.lpsm.paris/∼crepey
https://perso.lpsm.paris/∼crepey
https://perso.lpsm.paris/∼crepey
https://perso.lpsm.paris/∼crepey

120(7):1133�1158, 2010.
[Cybenko, 1989] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics

of control, signals and systems , 2(4):303�314, 1989.
[Czarnecki et al., 2017] Czarnecki, W. M., Osindero, S., Jaderberg, M., Swirszcz, G., and

Pascanu, R. Sobolev training for neural networks. Advances in Neural Information Processing
Systems , 30, 2017.

[De Spiegeleer et al., 2018] De Spiegeleer, J., Madan, D. B., Reyners, S., and Schoutens, W.
Machine learning for quantitative finance: fast derivative pricing, hedging and fitting. Quantitative
Finance , 18(10):1635�1643, 2018.

[Delarue and Menozzi, 2006] Delarue, F. and Menozzi, S. A forward�backward stochastic algo-
rithm for quasi-linear PDEs. The Annals of Applied Probability , 16(1):140�184, 2006.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09 , 2009.

[Dimitriadis and Bayer, 2019] Dimitriadis, T. and Bayer, S. A joint quantile and expected short-
fall regression framework. Electronic Journal of Statistics , 13(1):1823�1871, 2019.

[Duffie and Huang, 1996] Duffie, D. and Huang, M. Swap Rates and Credit Quality. The Journal
of Finance , 51(3):921�949, 1996.

[Duffie and Sharer, 1986] Duffie, D. and Sharer, W. Equilibrium and the Role of the Firm
in Incomplete Market, 1986. Stanford University, Working Paper No. 915, available at
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-
incomplete-markets.

[Dybvig, 1992] Dybvig, P. Hedging non-traded wealth: when is there separation of hedging and invest-
ment. In Hodges, S. (editor), Options: recent advances in theory and practice , volume 2, pages
13�24. Manchester University Press, 1992.

[E et al., 2017] E, W., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential equations.
Communications in Mathematics and Statistics , 5(4):370�398, 2017.

[Ekvall, 1996] Ekvall, N. A lattice approach for pricing of multivariate contingent claims. European
Journal of Operational Research , 91(2):214�228, 1996.

[El Karoui et al., 1997] El Karoui, N., Peng, S., and Quenez, M.-C. Backward stochastic differ-
ential equations in finance. Mathematical Finance , 7:1�71, 1997.

[Eldan and Shamir, 2016] Eldan, R. and Shamir, O. The power of depth for feedforward neural
networks. In Conference on learning theory , pages 907�940. PMLR, 2016.

[Elouerkhaoui, 2007] Elouerkhaoui, Y. Pricing and hedging in a dynamic credit model. Interna-
tional Journal of Theoretical and Applied Finance , 10(4):703�731, 2007.

[Elouerkhaoui, 2017] Elouerkhaoui, Y. Credit Correlation: Theory and Practice . Palgrave Macmillan,
2017.

[Fissler et al., 2016] Fissler, T., Ziegel, J., and Gneiting, T. Expected Shortfall is jointly elicitable
with Value at Risk�Implications for backtesting. Risk Magazine , page January, 2016.

[Fissler and Ziegel, 2016] Fissler, T. and Ziegel, J. F. Higher order elicitability and Osband's
principle. The Annals of Statistics , 44(4):1680�1707, 2016.

[Föllmer and Schied, 2016] Föllmer, H. and Schied, A. Stochastic Finance: An Introduction in
Discrete Time . De Gruyter Graduate, Berlin, 4th edition, 2016.

[Gasthaus et al., 2019] Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas,
D., Flunkert, V., and Januschowski, T. Probabilistic forecasting with spline quantile func-
tion RNNs. In The 22nd international conference on artificial intelligence and statistics , pages
1901�1910. PMLR, 2019.

[Glasserman, 2004] Glasserman, P. Monte Carlo methods in financial engineering , volume 53.
Springer, 2004.

[Gnoatto et al., 2021] Gnoatto, A., Reisinger, C., and Picarelli, A. Deep xVA solver�a neural
network based counterparty credit risk management framework. arXiv:2005.02633 , 2021.

[Gobet, 2016] Gobet, E. Monte-Carlo methods and stochastic processes: from linear to non-linear .
Chapman and Hall/CRC, 2016.

[Gobet et al., 2005] Gobet, E., Lemor, J.-P., and Warin, X. A Regression-based Monte Carlo
method to solve Backward Stochastic Differential Equations. The Annals of Applied Probability ,
15(3):2172�2202, 2005.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning . MIT
Press, 2016.

[Gottardi, 1995] Gottardi, P. An analysis of the conditions for the validity of Modigliani-Miller
Theorem with incomplete markets. Economic Theory , 5:191�207, 1995.

200 Bibliography

https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets
https://www.gsb.stanford.edu/faculty-research/working-papers/equilibrium-role-firm-incomplete-markets

[Goudenege et al., 2020] Goudenege, L., Molent, A., and Zanette, A. Machine learning for
pricing American options in high-dimensional Markovian and non-Markovian models. Quantita-
tive Finance , 20(4):573�591, 2020.

[Green et al., 2014] Green, A., Kenyon, C., and Dennis, C. KVA: capital valuation adjustment by
replication. Risk Magazine , pages December 82�87, 2014.

[Guyon and Henry-Labordere, 2011] Guyon, J. and Henry-Labordere, P. The smile calibration
problem solved. Available at SSRN 1885032 , 2011.

[Han et al., 2018] Han, J., Jentzen, A., and Weinan, E. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences , 115(34):8505�8510,
2018.

[Hatalis et al., 2017] Hatalis, K., Lamadrid, A. J., Scheinberg, K., and Kishore, S. Smooth
pinball neural network for probabilistic forecasting of wind power. arXiv preprint arXiv:1710.01720 ,
2017.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international con-
ference on computer vision , pages 1026�1034, 2015.

[He, 1997] He, X. Quantile curves without crossing. The American Statistician , 51(2):186�192, 1997.
[Henry-Labordère, 2017] Henry-Labordère, P. Deep primal-dual algorithm for BSDEs: applications

of machine learning to CVA and IM, 2017. Available at SSRN: http://ssrn.com/abstract=3071506.
[Henry-Labordere et al., 2017] Henry-Labordere, P., Tan, X., and Touzi, N. Unbiased simula-

tion of stochastic differential equations. The Annals of Applied Probability , 27(6):3305�3341, 2017.
[Hernandez, 2016] Hernandez, A. Model calibration with neural networks. Available at SSRN 2812140 ,

2016.
[Hoeting et al., 1999] Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.

Bayesian Model Averaging: A Tutorial. Statistical Science , 14(4):382�417, 1999.
[Hornik, 1991] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural net-

works , 4(2):251�257, 1991.
[Horvath et al., 2021] Horvath, B., Muguruza, A., and Tomas, M. Deep learning volatility: a deep

neural network perspective on pricing and calibration in (rough) volatility models. Quantitative
Finance , 21(1):11�27, 2021.

[Huge and Savine, 2020] Huge, B. N. and Savine, A. Differential machine learning. Available at
SSRN 3591734 , 2020.

[Hull and White, 2012] Hull, J. and White, A. The FVA debate, followed by The FVA debate
continued. Risk Magazine , pages July 83�85 and October 52, 2012.

[Huré et al., 2020] Huré, C., Pham, H., and Warin, C. Deep backward schemes for high-dimensional
nonlinear PDEs. Mathematics of Computation , 89(324):1547�1579, 2020.

[Huré et al., 2020] Huré, C., Pham, H., and Warin, X. Deep backward schemes for high-dimensional
nonlinear PDEs. Mathematics of Computation , 89(324):1547�1579, 2020.

[International Financial Reporting Standards, 2013] International Financial Reporting Stan-
dards. IFRS 4 insurance contracts exposure draft, 2013.

[Jacod, 1979] Jacod, J. Calcul Stochastique et Problèmes de Martingales . Lecture Notes Math. 714.
Springer, 1979.

[Janai et al., 2020] Janai, J., Güney, F., Behl, A., Geiger, A., et al. Computer vision for
autonomous vehicles: Problems, datasets and state of the art. Foundations and Trendsr in Com-
puter Graphics and Vision , 12(1�3):1�308, 2020.

[Kallenberg, 2006] Kallenberg, O. Foundations of modern probability . Springer, 2006.
[Kidger and Lyons, 2020] Kidger, P. and Lyons, T. Universal approximation with deep narrow

networks. In Conference on learning theory , pages 2306�2327. PMLR, 2020.
[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 , 2014.
[Kjaer, 2019] Kjaer, M. In the balance redux. Risk Magazine , (November), 2019.
[Koenker, 2004] Koenker, R. Quantile regression for longitudinal data. Journal of Multivariate

Analysis , 91(1):74�89, 2004.
[Koenker, 2017] Koenker, R. Quantile regression: 40 years on. Annual Review of Economics , 9:155�176,

2017.
[Koenker and Park, 1996] Koenker, R. and Park, B. J. An interior point algorithm for nonlinear

quantile regression. Journal of Econometrics , 71(1-2):265�283, 1996.
[Kuznetsova et al., 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-

Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., et al. The open images
dataset v4. International Journal of Computer Vision , 128(7):1956�1981, 2020.

Bibliography 201

http://ssrn.com/abstract=3071506
http://ssrn.com/abstract=3071506
http://ssrn.com/abstract=3071506
http://ssrn.com/abstract=3071506
http://ssrn.com/abstract=3071506

[Lakshman and Malik, 2010] Lakshman, A. and Malik, P. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review , 44(2):35�40, 2010.

[Lang, 2003] Lang, S. Complex analysis , volume 103. Springer Science & Business Media, 2003.
[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature ,

521(7553):436�444, 2015.
[Lessmann et al., 2015] Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. Bench-

marking state-of-the-art classification algorithms for credit scoring: An update of research. European
Journal of Operational Research , 247(1):124�136, 2015.

[Li et al., 2017] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyper-
band: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine
Learning Research , 18(1):6765�6816, 2017.

[Liu and Wu, 2011] Liu, Y. and Wu, Y. Simultaneous multiple non-crossing quantile regression esti-
mation using kernel constraints. Journal of nonparametric statistics , 23(2):415�437, 2011.

[Longstaff and Schwartz, 2001] Longstaff, F. A. and Schwartz, E. S. Valuing American options
by simulation: A simple least-squares approach. The Review of Financial Studies , 14(1):113�147,
2001.

[Luebke, 2008] Luebke, D. CUDA: Scalable parallel programming for high-performance scientific com-
puting. In 2008 5th IEEE international symposium on biomedical imaging: from nano to macro,
pages 836�838. IEEE, 2008.

[Lyons and Victoir, 2004] Lyons, T. and Victoir, N. Cubature on Wiener space. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences ,
460(2041):169�198, 2004.

[Magoulas and Lorica, 2009] Magoulas, R. and Lorica, B. Big data: Technologies and techniques
for large scale data. Jimmy Guterman, Release , 2:125, 2009.

[Martins et al., 2003] Martins, J. R., Sturdza, P., and Alonso, J. J. The complex-step derivative
approximation. ACM Transactions on Mathematical Software (TOMS), 29(3):245�262, 2003.

[McCrickerd and Pakkanen, 2018] McCrickerd, R. and Pakkanen, M. S. Turbocharging Monte
Carlo pricing for the rough Bergomi model. Quantitative Finance , 18(11):1877�1886, 2018.

[Meinshausen and Ridgeway, 2006] Meinshausen, N. and Ridgeway, G. Quantile regression forests.
Journal of Machine Learning Research , 7(6), 2006.

[Merton, 1974] Merton, R. On the pricing of corporate debt: the risk structure of interest rates. The
Journal of Finance , 29:449�470, 1974.

[Modigliani and Miller, 1958] Modigliani, F. and Miller, M. The cost of capital, corporation
finance and the theory of investment. Economic Review , 48:261�297, 1958.

[Mohri et al., 2018] Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine
learning . MIT press, 2018.

[Moon et al., 2021] Moon, S. J., Jeon, J.-J., Lee, J. S. H., and Kim, Y. Learning Multiple Quan-
tiles with Neural Networks. Journal of Computational and Graphical Statistics , pages 1�11, 2021.

[Myers, 1977] Myers, S. Determinants of corporate borrowing. Journal of Financial Economics ,
5:147�175, 1977.

[Nickolls and Dally, 2010] Nickolls, J. and Dally, W. J. The GPU computing era. IEEE micro,
30(2):56�69, 2010.

[NVIDIA Corporation, 2020a] NVIDIA Corporation. NVIDIA A100 Datasheet, 2020a.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet.pdf.

[NVIDIA Corporation, 2020b] NVIDIA Corporation. Programming Guide: CUDA Toolkit Doc-
umentation. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, 2020b.
Accessed: 2020-04-28.

[Omar et al., 2013] Omar, S., Ngadi, A., and Jebur, H. H. Machine learning techniques for anomaly
detection: an overview. International Journal of Computer Applications , 79(2), 2013.

[Padilla et al., 2020] Padilla, O. H. M., Tansey, W., and Chen, Y. Quantile regression with ReLU
Networks: Estimators and minimax rates. arXiv preprint arXiv:2010.08236 , 2020.

[Pan and Yang, 2009] Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering , 22(10):1345�1359, 2009.

[Pardoux and Peng, 1990] Pardoux, E. and Peng, S. Adapted solution of a backward stochastic
differential equation. Systems & Control Letters , 14(1):55�61, 1990.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems , 32, 2019.

202 Bibliography

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[Peng and Yang, 2009] Peng, S. and Yang, Z. Anticipated backward stochastic differential equa-
tions. The Annals of Probability , 37(3):877�902, 2009.

[Piterbarg, 2010] Piterbarg, V. Funding beyond discounting: collateral agreements and derivatives
pricing. Risk Magazine , pages August 57�63, 2010.

[Raissi, 2018] Raissi, M. Forward-backward stochastic neural networks: Deep learning of high-dimen-
sional partial differential equations. arXiv preprint arXiv:1804.07010 , 2018.

[Rasmussen and Williams, 2006] Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning . MIT Press, 2006.

[Recht et al., 2011] Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems , 24,
2011.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. A stochastic approximation method. The
annals of mathematical statistics , pages 400�407, 1951.

[Rockafellar and Uryasev, 2000] Rockafellar, R. and Uryasev, S. Optimization of conditional
value-at-risk. Journal of risk , 2:21�42, 2000.

[Rodrigues and Pereira, 2020] Rodrigues, F. and Pereira, F. C. Beyond expectation: Deep joint
mean and quantile regression for spatiotemporal problems. IEEE transactions on neural networks
and learning systems , 31(12):5377�5389, 2020.

[Samuel, 1959] Samuel, A. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development , 3(3):210�229, 1959.

[Sangnier et al., 2016] Sangnier, M., Fercoq, O., and d'Alché Buc, F. Joint quantile regression
in vector-valued RKHSs. In Neural Information Processing Systems , 2016.

[Sauer, 2011] Sauer, T. Numerical analysis . Addison-Wesley Publishing Company, 2011.
[Savine, 2018] Savine, A. Modern computational finance: AAD and parallel simulations . John Wiley

& Sons, 2018.
[Schönbucher, 2004] Schönbucher, P. A measure of survival. Risk Magazine , 17(8):79�85, 2004.
[Shahriari et al., 2015] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas,

N. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE ,
104(1):148�175, 2015.

[Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. Understanding
machine learning: From theory to algorithms . Cambridge university press, 2014.

[Shapiro et al., 2014] Shapiro, A., Dentcheva, D., and Ruszczynski, A. Lectures on Stochastic
Programming - Modeling and Theory, Second Edition . SIAM, 2014.

[Shapiro et al., 2021] Shapiro, A., Dentcheva, D., and Ruszczynski, A. Lectures on stochastic
programming: modeling and theory . SIAM, 2021.

[Shen et al., 2021] Shen, G., Jiao, Y., Lin, Y., Horowitz, J. L., and Huang, J. Deep Quan-
tile Regression: Mitigating the Curse of Dimensionality Through Composition. arXiv preprint
arXiv:2107.04907 , 2021.

[Shi et al., 2016] Shi, S., Wang, Q., Xu, P., and Chu, X. Benchmarking state-of-the-art deep learning
software tools. In 2016 7th International Conference on Cloud Computing and Big Data (CCBD),
pages 99�104. IEEE, 2016.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. A survey on image data
augmentation for deep learning. Journal of Big Data , 6(1):60, 2019.

[Sidorov et al., 2020] Sidorov, O., Hu, R., Rohrbach, M., and Singh, A. Textcaps: a dataset for
image captioning with reading comprehension. In European Conference on Computer Vision , pages
742�758. Springer, 2020.

[Sirko et al., 2021] Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E.,
Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., and Quinn, J. Continental-scale building
detection from high resolution satellite imagery. arXiv preprint arXiv:2107.12283 , 2021.

[Slivkins, 2019] Slivkins, A. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272 ,
2019.

[Son et al., 2021] Son, H., Jang, J. W., Han, W. J., and Hwang, H. J. Sobolev Training for
Physics Informed Neural Networks. arXiv preprint arXiv:2101.08932 , 2021. https://arxiv.org/
abs/2101.08932.

[Squire and Trapp, 1998] Squire, W. and Trapp, G. Using complex variables to estimate derivatives
of real functions. SIAM review , 40(1):110�112, 1998.

[Stone et al., 2010] Stone, J. E., Gohara, D., and Shi, G. OpenCL: A parallel programming stan-
dard for heterogeneous computing systems. Computing in science & engineering , 12(3):66, 2010.

[Swiss Federal Office of Private Insurance, 2006] Swiss Federal Office of Private Insur-
ance. Technical document on the Swiss solvency test, 2006. https://www.finma.ch/FinmaArchiv/

Bibliography 203

https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://arxiv.org/abs/2101.08932
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf

bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf.
[Takei, 2020] Takei, R. Flattening the (Funding) Curve, 2020. https://ihsmarkit.com/research-

analysis/flattening-the-funding-curve.html.
[Takeuchi et al., 2006] Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. Nonparametric

Quantile Estimation. Journal of Machine Learning Research , 7:1231�1264, 2006. ISSN 1532-4435.
[Teng, 2021] Teng, L. Gradient boosting-based numerical methods for high-dimensional backward sto-

chastic differential equations. arXiv preprint arXiv:2107.06673 , 2021.
[The Bank for International Settlements, 2011] The Bank for International Settlements.

Capital treatment for bilateral counterparty credit risk finalised by the Basel Committee, 2011.
https://www.bis.org/press/p110601.htm.

[Tian et al., 2015] Tian, Y., Zhu, Z., Lee, G., Klebaner, F., and Hamza, K. Calibrating and
pricing with a stochastic-local volatility model. The Journal of Derivatives , 22(3):21�39, 2015.

[Tsitsiklis and Van Roy, 2001] Tsitsiklis, J. N. and Van Roy, B. Regression methods for pricing
complex American-style options. IEEE Transactions on Neural Networks , 12(4):694�703, 2001.

[Vapnik, 1991] Vapnik, V. Principles of risk minimization for learning theory. Advances in neural
information processing systems , 4, 1991.

[Vershynin, 2018] Vershynin, R. High-dimensional probability: An introduction with applications in
data science , volume 47. Cambridge university press, 2018.

[Vlassis and Sun, 2021] Vlassis, N. N. and Sun, W. Sobolev training of thermodynamic-informed
neural networks for interpretable elasto-plasticity models with level set hardening. Computer Methods
in Applied Mechanics and Engineering , 377:113695, 2021.

[Voulodimos et al., 2018] Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis,
E. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience ,
2018, 2018.

[Weinan et al., 2019] Weinan, E., Hutzenthaler, M., Jentzen, A., and Kruse, T. On multi-
level Picard numerical approximations for high-dimensional nonlinear parabolic partial differential
equations and high-dimensional nonlinear backward stochastic differential equations. Journal of
Scientific Computing , 79(3):1534�1571, 2019.

[Wolf et al., 2019] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al. Huggingface's transformers: State-
of-the-art natural language processing. arXiv preprint arXiv:1910.03771 , 2019.

[Young et al., 2018] Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent trends in deep
learning based natural language processing. ieee Computational intelligenCe magazine , 13(3):55�75,
2018.

[Zaharia et al., 2016] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave,
A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., et al. Apache spark: a unified
engine for big data processing. Communications of the ACM , 59(11):56�65, 2016.

[Zenati et al., 2018] Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chandrasekhar,
V. R. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222 , 2018.

[Zhang, 2004] Zhang, J. A numerical scheme for BSDEs. The Annals of Applied Probability ,
14(1):459�488, 2004.

[Zhang et al., 2019] Zhang, S., Yao, L., Sun, A., and Tay, Y. Deep learning based recommender
system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1�38, 2019.

204 Bibliography

https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://ihsmarkit.com/research-analysis/flattening-the-funding-curve.html
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm
https://www.bis.org/press/p110601.htm

Titre : Apprentissage sur données simulées en finance : XVAs, mesures de risque et calibration
Mots clés : apprentissage statistique, finance quantitative, calcul sur GPU, calibration, mesures de
risque, XVA

Résumé : L’émergence de cadres XVA complexes
et de modèles d’évaluation coûteux en temps de
calcul a encouragé les chercheurs et les prati-
ciens de la finance à se pencher sur les méthodes
d’apprentissage statistique pour accélérer leurs cal-
culs. Cette thèse vise à proposer de nouvelles ap-
proches basées sur les réseaux de neurones. Tout
d’abord, nous proposons un cadre XVA cohérent et
une implémentation pratique utilisant des régres-
sions par moindres carrés et des régressions quan-
tiles/expected shortfall avec des réseaux de neu-
rones et le calcul sur GPU. Notre implémentation
évite les simulations Nested Monte Carlo et n’a
pas besoin des approximations habituelles utilisées
par les praticiens. Ensuite, nous abordons la ques-
tion de l’apprentissage des espérances ou des me-
sures de risque conditionnelles en présence d’évé-
nements de défaut dans un cadre général. Nous
proposons pour cela un nouveau schéma de simu-
lation et fournissons une analyse de convergence

statistique et des expériences numériques démon-
trant son efficacité. Nous étudions également la
convergence statistique d’une approche d’appren-
tissage de quantile et expected shortfall en deux
étapes et nous proposons des schémas d’apprentis-
sage basés sur des réseaux de neurones pour les cas
à un et plusieurs quantiles. Nous abordons aussi la
question du croisement des quantiles. Motivés par
le fait que la fongibilité du capital à risque avec
la marge de variation dans les calculs XVA donne
lieu à des équations différentielles stochastiques ré-
trogrades anticipées, nous proposons un schéma
d’apprentissage explicite pour de telles équations.
Enfin, nous proposons une approche de projection
pour approximer le prix des options vanilles dans un
contexte de calibration de modèles pour accélérer
cette dernière. Notre méthode, basée sur la diffé-
renciation à pas complexe, enrichit l’apprentissage
en cherchant à projeter des dérivées directionnelles
stochastiques.

Title : Learning From Simulated Data in Finance : XVAs, Risk Measures and Calibration
Keywords : statistical learning, quantitative finance, GPU computing, calibration, risk measures, XVA

Abstract : The emergence of complex XVA fra-
meworks and time-consuming pricing models has
encouraged researchers and finance practitioners
to look at statistical learning methods to accele-
rate their calculations. The present thesis aims to
contribute new approaches based on neural net-
works. First, we propose a consistent XVA fra-
mework along with a practical implementation
using neural networks least-squares and quan-
tile/expected shortfall regressions and GPU com-
puting. Our implementation avoids Nested Monte
Carlo simulations and does not need the usual ap-
proximations used by practitioners. Then, we ad-
dress the issue of learning conditional expectations
or risk measures in the presence of default events
in a general framework. For this, we propose a
new simulation scheme and provide a statistical

convergence analysis and numerical experiments
demonstrating its effectiveness. We also study the
statistical convergence of a two-step quantile and
expected shortfall learning approach and provide
learning schemes based on neural networks for the
single and multiple quantile learning cases. We ad-
dress the quantile crossing issue as well. Motivated
by the fact that the fungibility of the risk capi-
tal with variation margin in XVA calculations gives
rise to anticipated backward stochastic differential
equations, we devise an explicit learning scheme for
such equations. Finally, we provide a projection ap-
proach to approximate the price of vanilla options
in the context of model calibration to accelerate
the latter. Our method, based on complex-step dif-
ferentiation, augments the learning by seeking to
project stochastic directional derivatives.

	Acknowledgements
	Introduction
	1 Context
	1.1 The Era of Big Data and Machine Learning
	1.2 A Brief XVA Intermezzo
	1.3 Projections, Not Function Fitting
	1.4 Non-Stationarity and Access to the Generating Process
	1.5 Related Generic Issues

	2 Chapter Summaries
	2.1 Chapter 1 – XVA Analysis From the Balance Sheet
	2.2 Chapter 2 – Pathwise CVA Regressions With Oversimulated Defaults
	2.3 Chapter 3 – Learning Value-at-Risk and Expected Shortfall
	2.4 Chapter 4 – Pathwise XVAs: The Direct Scheme
	2.5 Chapter 5 – Fast Calibration using Complex-Step Sobolev Training

	Introduction \(français\)
	1 Contexte
	1.1 L'ère du Big Data et de l'apprentissage automatique
	1.2 Un bref intermezzo sur les XVAs
	1.3 Des projections et non pas des ajustements de courbes
	1.4 Non-stationnarité, accès au processus générateur des données
	1.5 Questions génériques connexes

	2 Résumés des chapitres
	2.1 Chapitre 1 – XVA Analysis From the Balance Sheet
	2.2 Chapitre 2 – Pathwise CVA Regressions With Oversimulated Defaults
	2.3 Chapitre 3 – Learning Value-at-Risk and Expected Shortfall
	2.4 Chapitre 4 – Pathwise XVAs: The Direct Scheme
	2.5 Chapitre 5 – Fast Calibration using Complex-Step Sobolev Training

	1 XVA Analysis From the Balance Sheet
	1.1 Introduction
	1.1.1 Contents
	1.1.2 Outline and Contributions

	1.2 Balance Sheet and Capital Structure Model of the Bank
	1.2.1 Run-Off Portfolio

	1.3 XVA Analysis in a Static Setup
	1.3.1 Cash Flows
	1.3.2 Contra-assets and Contra-liabilities
	1.3.3 Capital Valuation Adjustment
	KVA Risk Premium and Indifference Pricing Interpretation

	1.3.4 Collateral With Clients and Fungibility of Capital at Risk as a Funding Source
	1.3.5 Funds Transfer Price
	Wealth Transfer Analysis
	Connection With the Modigliani-Miller Theory

	1.4 XVA Analysis in a Dynamic Setup
	1.4.1 Case of a Run-Off Portfolio
	1.4.2 Trade Incremental Cost-of-Capital XVA Strategy
	1.4.3 Computational Challenges
	1.4.4 Deep \(Quantile\) Regression XVA Framework

	1.5 Swap Portfolio Case Study
	1.5.1 Validation Results
	1.5.2 Portfolio-wide XVA Profiles
	1.5.3 Trade Incremental XVA Profiles
	1.5.4 Trade and Hedge Incremental XVA Profiles
	1.5.5 Scalability

	1.6 Continuous-Time XVA Equations
	1.6.1 Cash Flows
	1.6.2 Valuation
	1.6.3 The XVA Equations are Well-Posed
	1.6.4 Collateralization Schemes

	2 Pathwise CVA Regressions With Oversimulated Defaults
	2.1 Introduction
	2.1.1 Outline

	2.2 Neural Regression Setup
	2.2.1 Neural Net Parameterization
	2.2.2 Local Training Algorithm
	2.2.3 Backward Learning
	2.2.4 Separable Case
	2.2.5 A Posteriori Twin Monte Carlo Validation Procedure
	2.2.6 Python/CUDA Optimized Implementation Using GPU

	2.3 Hierarchical Simulation and its Analysis
	2.3.1 Identification of the Variance Contributions Using Automatic Relevance Determination
	2.3.2 Learning on Hierarchically Simulated Paths
	2.3.3 Choosing the Hierarchical Simulation Factor
	2.3.4 Statistical Convergence Analysis

	2.4 CVA Case Study
	2.4.1 Market and Credit Model
	2.4.2 Learning the CVA
	2.4.3 Preliminary Learning Results Based on IID Data
	2.4.4 Learning Results Based on Hierarchically Simulated Data
	2.4.5 Conclusion

	2.5 Technical Proofs
	2.5.1 Proof of Theorem
	2.5.2 Proof of Theorem

	2.6 Market and Credit Model in Continuous Time

	3 Learning Value-at-Risk and Expected Shortfall
	3.1 Introduction
	3.2 A learning algorithm for VaR and ES
	3.2.1 VaR and ES as optimization problems
	3.2.2 The algorithm

	3.3 Convergence Analysis of the Learning Algorithm
	3.3.1 The approximation error of the estimator of VaR
	3.3.2 A confidence interval for the estimator of VaR
	3.3.3 A Rademacher confidence interval for the estimator of ES-VaR
	3.3.4 VC confidence interval for the estimator of ES-VaR
	Rademacher vs VC: from “small” to “big” data

	3.3.5 Multiple-α learning
	3.3.5.1 Related literature
	3.3.5.2 Extension of the bounds to multiple-α learning

	3.4 Learning Using Neural Networks
	3.4.1 Error bound of the learning algorithm with one-layer neural networks
	3.4.2 Learning the VaR
	3.4.2.1 Single-α learning
	3.4.2.2 Multiple-α learning
	Learning for a continuum of α's
	Learning for a discrete set of α's

	3.4.3 Learning the ES using a two-steps approach
	3.4.4 Validating VaR and ES learners without groundtruth values

	3.5 Conditionally Gaussian Toy Model
	3.5.1 Results

	3.6 Dynamic Initial Margin Case Study
	3.6.1 Estimating IM_t using a nested Monte Carlo
	3.6.2 Results
	Conclusion

	3.A Value-at-Risk and Expected Shortfall Representations
	3.B The Role of Data Transformations and Truncations

	4 Pathwise XVAs: The Direct Scheme
	4.1 Introduction
	4.1.1 Standing Notation

	4.2 Limiting Equations
	4.2.1 Spaces and Martingale Representation
	4.2.2 The Markovian Anticipated BSDE

	4.3 Approximation Schemes
	4.3.1 Time Discretizations
	4.3.2 Fully Discrete Algorithms
	4.3.3 A Posteriori Analysis of the Regression Error

	4.4 XVA Application
	4.4.1 Numerical Results

	4.5 Conclusion
	4.A XVA Numerical Schemes
	4.A.1 Explicit scheme
	4.A.2 Picard scheme

	5 Fast Calibration using Complex-Step Sobolev Training
	5.1 Introduction
	5.2 Learning to Project Payoffs
	5.3 Regularizing with Sobolev Training
	5.4 Complex-step Sobolev Training
	5.4.1 Restricting to Stochastic Directional Derivatives
	5.4.2 Faster Directional Derivatives with Complex-step Differentiation

	5.5 Numerical Case-study: Fixed-grid Local Volatility
	5.5.1 Setup of The Experiments
	5.5.2 Execution Times and Benchmarks
	5.5.3 Validation Without Ground-truth Values
	5.5.4 Calibration Example

	5.A Derivatives with respect to time to maturity in discrete time models
	5.B Differentiation of the local volatility function in Example

	Bibliography

