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Abstract

Many new applications, such as connected cars, augmented reality, virtual reality, mixed re-

ality, three-dimensional video, ultra-high definition video, industrial internet of things, smart

cities, connected healthcare, and so on, will emerge in the next decade. These applications

necessitate connecting a large number of new devices and exchanging more data. For exam-

ple, between 2018 and 2024, global mobile traffic is predicted to climb by 30% yearly, while

capacity demand is expected to increase 1000-fold in the next decade. When compared to

fourth generation (4G), fifth generation (5G) objectives is to boost user data rate by 10 to

100 (up to 10 Gbit/s), reduce latency by 10, increase connectivity density by 10, and lower

cost and power usage. Researchers are attempting to suggest innovative solutions in response

to the rapidly expanding need for data traffic and large connectivity, as well as the scarcity

of sub-6 GHz radio spectrum. These are mostly based on novel signal processing techniques,

network densification, or the use of extra frequency bands.

Regarding new bands, the millimeter-wave (mmWave) spectrum is between 30 GHz and

300 GHz, and the large unused bandwidth in these bands can allow wireless systems to

support massive increases in capacity demand, as capacity of wireless systems increases as

exploited bandwidth increases. As a result, mmWave communications will be critical in

5G and future cellular network generations. However, implementing mmWave and large

multiple-input multiple-output (MIMO) advantages in practice is fraught with difficulties.

The fundamental obstacles in realizing mmWave are three key challenges: hardware limita-

tions, channel acquisition costs, and precoding design complexity.

To address these difficulties,precoding and channel estimation algorithms for both

mmWave and massive MIMO are developed in this dissertation. The suggested methods im-

plement filter-bank multicarrier offset-quadrature amplitude modulation (FBMC-OQAM)

viii



ABSTRACT ix

and hybrid analog/digital architectures that divide precoding and combining processing

across the radio-frequency (RF) and baseband domains, resulting in cost and power sav-

ings. Furthermore, to reduce precoder design complexity and training cost, the developed

algorithms take advantage of the structure and features of mmWave and massive MIMO

channels. The following are the dissertation’s major contributions: (a) developing hybrid

precoding algorithms and codebooks for frequency-selective (FS) mmWave systems, (b) in-

vestigating the viability of using the FBMC-OQAM signaling waveform for next-generation

mmWave communications, and (c) developing a channel estimation algorithm for hybrid

architecture-based mmWave systems that takes advantage of the sparse nature of mmWave

channels.

Keywords— Millimeter-wave communications, MIMO, FBMC, OFDM, hybrid precoding,

channel estimation.



Résumé

De nombreuses nouvelles applications, telles que la voiture connectée, la réalité augmentée, la

réalité virtuelle, la réalité mixte, la vidéo tridimensionnelle, la vidéo ultra-haute définition, l’internet

industriel des objets, les villes intelligentes, la santé connectée, etc., verront le jour dans la prochaine

décennie. Ces applications nécessitent de connecter un grand nombre de nouveaux appareils et

d’échanger davantage de données. Par exemple, entre 2018 et 2024, le trafic mobile mondial devrait

augmenter de 30% par an, tandis que la demande de capacité devrait être multipliée par 1 000 au

cours de la prochaine décennie. Par rapport à la quatrième génération (4G), la cinquième génération

(5G) promet d’augmenter le débit de données utilisateur de 10 à 100 (jusqu’à 10 Gbit/s), de

réduire la latence de 10, d’augmenter la densité de connectivité de 10 et de réduire les coûts et la

consommation d’énergie. Les chercheurs tentent de proposer des solutions innovantes en réponse au

besoin croissant de trafic de données et de connectivité étendue, ainsi qu’à la rareté du spectre radio

inférieur à 6 GHz. Celles-ci reposent principalement sur de nouvelles techniques de traitement du

signal, la densification du réseau ou l’utilisation de bandes de fréquences supplémentaires. En ce qui

concerne les nouvelles bandes, le spectre des ondes millimétriques (mmWave) se situe entre 30 GHz

et 300 GHz, et la large bande passante inutilisée dans ces bandes peut permettre aux systèmes

sans fil de supporter des augmentations massives de la demande de capacité. Par conséquent,

les communications mmWave seront essentielles dans la 5G et les futures générations de réseaux

cellulaires.

Cependant, la mise en œuvre des communications millimétriques avec les antennes multiples

MIMO (multiple-input multiple-output) reste un challenge. Ainsi, trois défis majeurs sont à sur-

monter à savoir : 1) la limitation matérielle, 2) le coût d’acquisition des canaux et 3) la com-

plexité de la conception du précodage. Afin de faire face à ces difficultés majeures, des algo-

rithmes de précodage et d’estimation de canal pour mmWave et MIMO massif sont développés

dans cette thèse. Les méthodes proposées mettent en œuvre une modulation multiporteuse

d’amplitude en quadrature décalée à banque de filtres (FBMC-OQAM) et des architectures hy-

x



RÉSUMÉ xi

brides analogiques/numériques qui divisent le précodage et combinent le traitement dans les do-

maines RF et en bande de base, ce qui résute en une économie de coûts et d’énergie. De plus, pour

réduire la complexité de conception du précodeur et les coûts de formation de voies, les algorithmes

développés dans la thèse tirent parti de la structure et des fonctionnalités des canaux mmWave et

MIMO massifs.

Ainsi, les principales contributions de la thèse sont : (a) le développement d’algorithmes de

précodage hybrides et des livres de codes pour les systèmes mmWave sélectifs en fréquence (FS),

(b) l’étude de la viabilité de l’utilisation de la forme d’onde de signalisation FBMC-OQAM pour

les communications mmWave de prochaine génération, et (c) le développement d’un algorithme

d’estimation de canal pour les systèmes à ondes millimétriques basés sur une architecture hybride

profitant de la nature parcimonieux des canaux à ondes millimétriques.

Keywords— Millimeter-wave communications, MIMO, FBMC, OFDM, hybrid precoding,

channel estimation.
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General Introduction

Context and Motivations

MIMO communication is predicted to play a prominent role in future wireless systems through

the deployment of a large number of antennas at the transmitters and receivers. Massive MIMO

provides large multiplexing gains in low-frequency systems, boosting system spectral efficiency. To

ensure sufficient received signal power in millimeter-wave (mmWave) systems, massive antenna

arrays must be deployed at both the base station and mobile users. However, putting these meth-

ods into practice necessitates addressing a number of significant issues: (i) Fully digital solutions

are expensive and power-hungry, (ii) precoders design optimization problems are complex, (iii) and

channel training and estimation processes have a large overhead. In this dissertation, precoding and

channel estimation techniques for both mmWave and massive MIMO are developed to overcome

these issues. The proposed solutions adopt FBMC-OQAM and use hybrid analog/digital archi-

tectures that split precoding and combining processing between the RF and baseband domains,

resulting in cost and power reductions. Furthermore, the developed techniques take advantage of

the structure and properties of mmWave and massive MIMO channels to reduce precoder design

complexity and training overhead.

Thesis contributions

• Building hybrid precoding algorithms and codebooks for FS mmWave systems

• Examining the viability of using the FBMC-OQAM signaling waveform for next-generation

mmWave communications

• Developing a channel estimation solution for hybrid architecture-based mmWave systems

that takes use of the sparse nature of mmWave channels

2
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The proposed solutions’ promising performance is demonstrated by numerical simulations, es-

tablishing them as enabling technologies for mmWave and massive MIMO systems.

Thesis Organization

In chapter 1, the reader will be introduced to mmWave communications and all of its support-

ing technologies. Thereafter, the viability of adopting the FBMC-OQAM signaling waveform for

next-generation mmWave communications was investigated in chapter 2. Orthogonal matching

pursuit (OMP)-based hybrid precoding and combining algorithms have been developed to utilize

FBMC-OQAM filter banks in mmWave hybrid MIMO systems. Afterwards, in chapter 3, both algo-

rithms are presented, the first is a proposed approach for developing an FS hybrid multi-resolution

codebook which is based on OMP technique, and the second is a proposed FS channel estimation

algorithm for next-generation mmWave communications. As we shall discuss in the conclusions

and perspectives, more research and analysis are still needed and envisioned for future studies.

Publications

The following is a list of publications in refereed journals and international conference proceedings,

and other publications produced during my Ph.D. candidature.

International Journal papers

• Hassan, Kais, Mohammad Masarra, Marie Zwingelstein, and Iyad Dayoub. ”Channel estima-

tion techniques for millimeter-wave communication systems: Achievements and challenges.”

IEEE Open Journal of the Communications Society 1 (2020): 1336-1363.

• M. Masarra, K. Hassan, M. Zwingelstein, and I. Dayoub, “Hybrid precoding and channel es-

timation for frequency-selective mmWave MIMO OFDM systems”, in IEEE Sensors Letters,

Submitted.
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Chapter1

Fundamentals And Background Of

MmWave Communications

1.1 Introduction and Background

The next decade will encounter many emerging applications such as connected cars, augmented

reality, virtual reality, mixed reality, three-dimensional (3D) video, ultra-high definition video,

industrial internet of things (IoT), smart cities, connected healthcare, etc. These applications

require to massively connect new devices and to exchange more data. For instance, the global

mobile traffic is expected to grow annually by 30 percent between 2018 and 2024, and the capacity

demand in the next decade is expected to witness a 1000-fold increase [1]. Among the future

communication systems promises, when compared to fourth generation (4G), is to increase user

data rate by 10 to 100 (up to 10 Gbit/s), to reduce latency by 10, to increase connectivity density

by 10, and also to reduce the cost and power consumption [2]. Due to this hugely increasing demand

for data traffic and massive connectivity as well as to the scarcity in the sub-6 GHz radio spectrum,

researchers are trying to propose new solutions. These are mainly based either on the new signal

processing techniques, or on densifying the network, or on exploiting additional frequency bands.

In regards of exploiting new bands, the mmWave spectrum is between 30 GHz and 300 GHz (i.e.

wavelengths between 1mm to 10mm) where the large unused bandwidth in these bands can allow the

6
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wireless systems to support the enormously increase in capacity demand since capacity of wireless

systems increases when the exploited bandwidth increases. Hence, mmWave communications will

play an essential role in upcoming future generations of cellular networks [3, 4, 5, 6].

Despite their bandwidth attractivity, mmWave communications systems suffer from high free-

space path-loss when compared to the sub-6 GHz ones. In addition, a substantial attenuation

is observed in some mmWave bands due to atmospheric absorption, and rain and snow effects.

Therefore, the mmWave signal risks to propagate over a few meters in some scenarios, and hence

mmWave communications may be only suitable for very close-range communications such as in

indoor applications. This difficulty can be overcome for outdoor mobile communications, where

a greater transmission range is expected, by either increasing the transmission power or by using

high-gain, high-directional antennas. Since the transmission power is always limited by regulations,

mmWave systems must enable narrow steering beams such as the transmitter (TX) and the receiver

(RX) steer towards each other which results in high directional gain in the wanted directions and low

gain in the unwanted ones. The desirable high directivity is based on signal processing techniques

such as beamforming which requires to increase the number of antennas of the antenna arrays at the

TX and/or RX, i.e. massive antenna arrays are needed. This approach is facilitated by the short

wavelength of mmWave signals which makes possible to compact more antennas while keeping the

array size small. Another aspect of mmWave system design comes from the impossibility to directly

apply the traditional digital transceiver architectures, which are employed in sub-6 GHz, directly

to mmWave systems because of the high power consumption of mmWave RF chains. Recently,

new tailored MIMO architectures were proposed to solve this problem namely fully-analog, hybrid

and few-bit analog to digital converters (ADC) architectures. The objective is to reduce the total

consumed power by either reducing the number of RF chains or the power consumption per each

one.

Hence, mmWave communications are a key technology enabler for the upcoming future gener-

ations of cellular networks, not only thanks to the huge available bandwidth, but also by means

of its complementary with other fifth generation (5G) technologies such as ultra-dense networks

(UDNs) and massive MIMO. MmWave links are suitable for wireless backhauling and short-range

communications in the small cells of UDNs while still capable of mitigating interferences by using
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the high-directional antenna arrays. This high directivity is enabled by the beamforming ability

of massive MIMO. However, the evolution of mmWave communications is hindered by challenges

that require more insight to propose the needed solutions to reach their full potential. Some of

these challenges come from the propagation characteristics in the mmWave bands (the path-loss,

penetration loss, and the atmospheric attenuation), others come from the high power consumption

and the hardware impairments of mmWave circuits. As can be concluded, mmWave systems will

play a crucial role in the structure of next-generation communication systems, this has shaped the

motivations beyond later analysis and developments in this Ph.D thesis. In this chapter, the reader

will be introduced to mmWave communications with all its enabling technologies. In the upcoming

section, an illustration of the organization of this chapter is given.

Scope and Organization

This chapter is organized as follows:

• First, in section 1.2 the characteristics of mmWave channels such as the differences between

the propagation behavior in the mmWave bands and in the sub-6 GHz ones are illustrated.

This will help to understand the technical potential of mmWave communications, the chal-

lenges which have to be addressed to reach this potential, and the enabler-technologies to

reply to these challenges.

• Then in section 1.3, we discuss the different existing system architectures which are proposed

for massive MIMO mmWave systems. The spatial MIMO channel models which present

the special nature of highly-directive mmWave communications are also introduced before

presenting the massive MIMO system model.

• In section 1.4 we present multi-carrier modulation (MCM) techniques alongside with the

modulation waveforms that have been used in this Ph.D. thesis. FBMC-OQAM waveform has

been used in chapter 2, and orthogonal frequency-division multiplexing (OFDM) waveform

has been used in 3.

• Afterwards, compressive sensing (CS) as a mathematical tool for channel estimation is intro-
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duced in section 1.5. This tool is crucial for the proposed channel estimation algorithm in

chapter 3.

• Finally, the conclusions of this chapter are given in section 1.6.

1.2 Characteristics of MmWave Communications

An increased attention has recently been drawn to the huge spectrum in the mmWave frequency

bands to meet the increase in the global mobile data traffic and to achieve up to hundreds of times

more capacity compared to 4G cellular networks [7, 8, 9].

MmWave communications have been employed for applications such as radar and point-to-

point communication for 100 years ago [10] . In the last decade, some mmWave standards have

emerged including IEEE 802.15.3c [11], IEEE 802.11ad [12] and WirelessHD [13] which are intended

to wireless personal area networks, wireless local area networks and wireless HDMI, respectively.

Recently, the mobile network research community dedicated a lot of attention to the sub-100 GHz

systems operating in the 28 GHz, 38 GHz, 60 GHz, 71 GHz and 81 GHz bands, while the band above

100 GHz has been studied by only a few very recent papers [14]. Some proof of concept studies had

been conducted in the last years. In May 2013, Samsung realized a 1.056 Gb/s transmission in the

28 GHz band to a distance of up to 2 km [15]. In April 2015, a peak rate of 15 Gbps at 73 GHz

was achieved by Nokia in collaboration with National Instruments [5]. In February 2018, Deutsche

Telekom and Huawei have successfully completed the world’s first multi-cell field tests at 73 GHz

[16].

However, the propagation characteristics at mmWave frequencies are different from that at the

traditional sub-6 GHz ones, that is why we will show in the following subsections the main technical

advantages and challenges of the mmWave technology.
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1.2.1 Propagation Characteristics

Amajor difference between sub-6 GHz and mmWave systems in terms of propagation characteristics

is in their free-space path-loss (ϱFS) [17] which is described by,

ϱFS ∝
dς

λ2
, (1.1)

where d is the distance between the TX and RX, ς is the path-loss exponent which typically equals 2,

and λ is the wavelength of the signal. However, ς is less than 2 in some scenarios of cellular networks

and indoor applications [18]. On the other hand, path-loss exponent can reach the value of 6 in

some severe environments of propagation [19]. A comparison between the microwave propagation

in the 1.8 GHz GSM band and the mmWave one in the 73 GHz bands, under the same configuration

(transmission distance, propagation environment, antenna array), shows an additional loss of 32

dB in the mmWave band [20]. Recent urban model experiments also show a degradation of 40

dB in path-loss at 28 GHz compared to 2.8 GHz [21, 19]. Thus, the severe path-loss of mmWave

propagation required to be compensated by a strong directionality.

The atmospheric attenuation of mmWave signals, which is caused particularly by the absorption

of oxygen and water vapor, as well as the scattering of rain, must be added to the path-loss. The

atmospheric attenuation depends on the operating frequency. The atmospheric oxygen absorption

is especially severe at 60 GHz and 120 GHz, and the water vapor absorption is particularly very

high at 180 GHz [22]. Also, rain attenuation at mmWave frequencies is much greater than that of

sub-6 GHz frequencies [23].

Another factor which affects the propagation of mmWave signals is their severe penetration loss

which results in susceptibility to the static and dynamic blockage effect. In fact, some obstacles,

such as human bodies, doors, glass and walls, attenuate and even can block mmWaves signals.

For instance, attenuation of a 28 GHz signal can be as high as 24 dB and 45 dB if penetrating

respectively through two walls and four doors [24]. Hence, it is not realistic to employ outdoor base

stations (BS)s to serve indoor users for example.

The severe path-loss, the vulnerability of mmWave transmissions to blockages, and the atmo-

spheric attenuation affect the choice of the operating frequencies, and require important changes to



FUNDAMENTALS AND BACKGROUND OF MMWAVE COMMUNICATIONS 11

the system design and architecture. however, even after removing many of the unusable frequency

bands due to the aforementioned challenges, it is anticipated that mmWave bands may provide 100

GHz of new bandwidth for mobile communications, which is more than 200 times the spectrum

now allocated for this purpose below 3 GHz [25].

1.2.2 Technical Potential

Despite the challenging characteristics of the mmWave channel, mmWave communications is an

important part of the 5G cellular system and beyond. This is due to the potential of mmWave

communications in terms of large bandwidth availability and short wavelength.

Large Bandwidth

The requirements of upcoming telecommunications systems in terms of very high data rate may

not be achievable by focusing only on the heavily-occupied conventional sub-6 GHz frequency

bands. On the contrary, an abandon of the mmWave bands is available to be exploited opening the

door to multi-Gigabit data exchange in spite of the low spectral efficiency (SE) since a very large

bandwidth is hopefully sufficient to support very high data rates [26]. For instance, more than

12 GHz of bandwidth is available between 60 GHz and 90 GHz which is also called the E-band.

Furthermore, the low SE means less complexity and more robustness making mmWave systems

more feasible. Actually, the 3rd Generation Partnership Project (3GPP) Release 15 selected the

24∼29 GHz and 37∼43 GHz frequency bands for the deployment of 5G mmWave systems [27]. The

International Telecommunication Union (ITU) and the 3GPP will allocate two frequency bands

around 40 GHz and 100 GHz for commercial use [28]. In July 2016, the Federal Communications

Commission (FCC) dedicated several mmWave bands for wireless services including around 28 GHz

and 39 GHz for licensed allocation, and 64∼71 GHz for unlicensed usage [29].

Short Wavelength

The short wavelength is the main reason behind the strong path-loss of mmWave signals and hence

the need for high directivity antennas which can be realised with antenna arrays and beamforming
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techniques. Narrower beams require higher number of antennas in the array which is compatible

with mmWave communications thanks to the short wavelength. Indeed, the shorter the wavelength

is, the smaller the antenna arrays’ sizes are (since the distance between any two antennas in the

array is basically half of the wavelength) and thus the higher the number of antennas to be packed

into the same physical array size is, and also the higher the beamforming gain is [7, 5, 28]. It is

worth noting that a typical antenna length at 60 GHz is less than 2.5 mm for example [28]. Another

benefit of highly directional communications, based on narrow beams at the TX and at RX, is that

it helps to secure the mmWave communication link against eavesdropping and jamming as well as

to increase the interference immunity [5, 30].

1.2.3 Enabling Technologies

The mmWave communications technology is, at the same time, enabled by and complementary to

some other technologies such as massive MIMO, advances in signal processing, network densification

and finally advances in circuit design and integration.

Massive MIMO

The use of a large number of antennas at BSs and for mobile stations MSs is called Massive MIMO

and is an essential technology to increase the capacity of cellular networks. Massive MIMO has

been studied for conventional sub-6 GHz systems, and is also very crucial for mmWave systems

where high directivity is mandatory [31]. Higher frequency bands offered by mmWave systems

grant the ability to design antenna arrays with a huge number of antennas [32]. However, this will

not be possible without the recent advances in complementary metal oxide semiconductor (CMOS)

circuits which increase the capacity of circuit integration [33].

Enhanced Signal Processing Techniques

It is clear that the conventional fully-digital MIMO system, in which one RF chain is dedicated

to each antenna, is infeasible for mmWave systems because of the high implementation cost and

high energy consumption [34, 9, 35]. Indeed, it has been shown that RF components can consume
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up to 70% of the total transceiver power consumption [36]. For these reasons, several mmWave

hybrid architectures were proposed as alternatives to the fully-digital one, see section 1.3.1. These

solutions offer a good balance between system performance and hardware complexity. However,

they require to develop new signal processing techniques for beamforming, channel estimation, and

more generally for improving system performance.

Network Densification

Network densification means increasing the density of BSs deployment in the network via several

tiers and an hierarchy of macro, micro, pico and femto cells, and leads to a multi-tier heterogeneous

network [37]. Increasing the small cells density increases capacity and SE of served users at the

expense of increasing the cost of interference management [38]. MmWave communications are a

very good candidate for small cell deployment mainly for three reasons i) a small cell means a short-

range communication which makes the high path-loss of mmWave communications less unfavorable,

ii) the larger bandwidth of mmWave frequencies means higher capacity which is the main goal of

small cells deployment, iii) and the high directivity of mmWave communications, at the TX and

RX, results in better interference control.

1.3 Massive MIMO for MmWave Systems

Millimeter-wave communication systems need to employ a large number of antennas at the TX

and RX sides. Some early research works suggested arrays of 32 to 256 antennas at BSs and 4

to 16 ones at MSs [39, 8]. Fortunately, it is now possible to pack such number of antennas into

small packages [40, 41]. However, other aspects such as the power consumption and cost influence

the maximum number of antennas that can be integrated in the mmWave system. If digital signal

processing techniques are employed for baseband precoding at the TX and combining at the RX

then one dedicated RF chain per antenna is needed, where each RF chain includes an ADC. These

techniques are usually used for sub-6 GHz systems. However, they are not affordable actually at

mmWave frequencies as the bandwidths become wider and the antenna arrays become larger. This

results in high-resolution ADCs and high energy consumption of each RF chain. For instance, 30
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Figure 1.1: General system architecture of mmWave transceiver.

mW per RF chain is consumed at sub-6 GHz frequencies, while 250 mW per RF chain is needed

at mmWave frequency bands [9].

Figure 1.1 is a block diagram that illustrates the general architecture of a hybrid mmWave

transceiver. Without loss of generality, a BS equipped with NRF RF chains and NBS antennas

(NRF < NBS) is assumed to communicate with an MS equipped with NRF RF chains and NMS

antennas (NRF < NMS) in order to exchange some data streams [4]. In practice, the number

of RF chains at the MSs is usually less than that at the BSs. A point to point communication

is considered here, however, this architecture could be easily extended to the case of multi-users

(MU)s. The combined role of the baseband digital processing and the analog circuit of the hybrid

architecture is to direct the beams at the TX or/and RX. In contrast with the traditional fully-

digital architecture that does not consider an analog circuit behind (before) the RF chains at the

TX (RX) and considers one RF chain per antenna, i.e. NRF = NBS = NMS [5, 42]. For this reason,

fully-digital architecture must be avoided nowadays when it comes to mmWave communication

systems although it could be possible at some point in the future. This leads to introducing some

new hybrid architectures in order to make the massive MIMO mmWave systems feasible. The idea

is to figure out how to reduce the number of RF chains and/or the resolution of the ADCs which

consequently will reduce the total power consumption and the total cost. Different transceiver

architectures for mmWave communication will be introduced in the following subsection.
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Figure 1.2: Different MIMO architectures (a) fully-analog architecture; (b) hybrid architec-
ture; (c) lens array architecture (d) few-bit ADCs architecture .

1.3.1 MIMO Architectures for MmWave Communications

Fully-Analog Architecture

One solution is to reduce the number of RF chains to one and to perform beamforming entirely

using the analog processing. As illustrated in figure 1.2(a) [5, 42], this is achieved by analog shifters

employed in the RF domain to adjust the phase of the RF signals at each antenna. This solution

drastically reduces the hardware cost and power consumption.

Many studies have been carried out on the fully-analog architecture. A codebook-based analog

beamformer for mmWave wireless personal area networks via beam switching is discussed in [43].

[44, 45] which propose an alternative codebook-based beamforming for outdoor backhaul based

on a joint TX-RX beam scanning employing a tree-structured codebook. Moreover, an iterative

channel estimation and analog beamforming algorithm has been investigated in [46, 47, 48, 49],

where the coefficients at the TX and RX sides are calculated to reach asymptotically singular value

decomposition (SVD) elements.
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Unfortunately, these solutions suffer from hardware limitations due to the constant modulus

constraint imposed by the implementation of the phase shifters, hence the signals can only be

partially adjusted [5, 42]. Another drawback of the fully-analog architecture is that it supports only

one data stream, which makes its usage for MU communications tricky. However, this architecture

is still a good fit for some standards such as WirelessHD for instance.

Hybrid Architecture

The hybrid architecture represents a compromise between the fully-digital architecture (where the

number of RF chains equals that of the antennas) and the fully-analog one (where only one RF

chain is employed). Precoding (at the TX) and combining (at the RX) are performed in both the

analog and the digital domains as shown in figure 1.2(b). The idea is to employ a dimension-reduced

precoder/combiner with a small number of RF chains (NRF,BS ≪ NBS, NRF,MS ≪ NMS) while still

relying on full-size analog precoder/combiner, where NRF,BS, NRF,MS stand for the number of RF

chains at BS and MS, respectively. Despite the reduced number of RF chains, the performance

of these architectures has been shown to be not far from the fully-digitally ones [39, 9, 50]. This

can be explained by the sparse nature of the mmWave channel (since the number of scatters is

small), which makes the channel matrix low-rank [51, 6], see section 1.5 for further illustration

about sparsity. In addition, this solution supports easily several users/data streams, their number

being equal or less than the number of RF chains. The 3GPP included the hybrid architecture in

its recommendation for 5G systems in 2016 [52].

Furthermore, the analog processing (precoding/combining) can be realized through differ-

ent analog networks with phase shifters, namely the fully-connected networks [53] and the sub-

connected ones [39, 54]. The idea is either to connect each RF chain to all the antennas, or to

connect it to a subset of them. It seems that the sub-connected choice could be practically more

interesting since it reduces the cost and complexity while still achieving a good performance when

compared to the fully-connected network [39, 54, 55]. Another alternative is to replace the phase

shifters (and all the required complementary components such as power combiners/splitters, control

lines) with switches [55, 56]. Using switching networks could reduce the power consumption and

complexity at the expense of lesser spectral-efficiency. One perspective is to combine switches and



FUNDAMENTALS AND BACKGROUND OF MMWAVE COMMUNICATIONS 17

phase shifters to obtain an advantageous trade-off between them [57].

Lens Array Architecture

All the above mentioned architectures consider one-dimensional (1D) or two-dimensional (2D)

planar antenna arrays. An attractive emerging approach is to combine lens antenna arrays with

switching networks [58, 59]. A lens array is an electromagnetic lens with feed antennas located on

the focal surface of the lens, which allows to concentrate the signal arriving from different directions

on different antennas as depicted in figure 1.2(c). Hence, the spatial model of the channel can be

seen as a beamspace model. Furthermore, the beamspace of mmWave channels is sparse since

the scattering is not rich and the power is propagated over a small number of paths [51, 6]. Due

to the sparsity of the mmWave channel, a reduced-size switching network is used to select the

dominant beams in the beamspace, which greatly reduces the number of RF chains [58, 59]. The

authors in [59] had shown that the number of required switches (or RF chains) to achieve near-

optimal capacity in lens array systems depends on the number of signal beams (and not on the

number of antennas on the lens), and they proposed a spatial multiplexing scheme for mmWave

communications, namely the path-division multiplexing.

Few-Bit ADCs Architecture

Reducing the power consumption can be done either by reducing the number of RF chains (as

proposed in the above presented architectures) and/or by reducing the energy consumed per RF

chain. The latest is the key motivation behind proposing to replace the high-resolution ADCs

with few-bit (e.g., 1 to 4 bit) ADCs, since high-frequency high-resolution ADCs are well known to

consume a lot of power [9, 60, 61]. The mmWave system with few-bit ADCs is shown in figure 1.2(d).

Using few-bit ADCs could even open the door to the feasibility of fully-digital mmWave systems

[9]. However, the high non-linearity errors of quantization and the wide bands of mmWave channels

pose a lot of challenges to the design of signal processing solutions for mmWave communications

despite some recent research works [62, 63].
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Conclusion

In this subsection, we have presented the different MIMO architectures for mmWave communi-

cations, and the differences between them. In this Ph.D. thesis, we have developed our work in

chapters 2 and 3 based on the hybrid architecture.

1.3.2 Spatial MmWave MIMO Channel Modeling

MmWave channel models are classified into two categories [6], physical models and analytical mod-

els. The physical models are based on the electromagnetic characteristics of the signal propagation

between the transmit and receive antenna arrays. They can efficiently reflect the measured param-

eters and they are popular for MIMO channels, hence they are a good choice for mmWave MIMO

channels. On the other hand, the analytical models are based on the mathematical analysis of the

channel, and they are convenient for algorithm development and system analysis. The physical

channel models are divided into two categories. Deterministic models, which characterize the real

effects of the environment on the system, but need high computational complexity, and stochastic

channel models, which require low computational complexity, hence they are the popular choice for

mmWave system design and simulation. Thus the considered channel model for this thesis is the

Saleh-Valenzuela stochastic channel model.

Since the number of scatters is limited [51, 6], most research works had adopted the geometric

channel model to describe mmWave channels [4, 53, 54]. Let us consider again the system pre-

sented in figure 1.1. In the geometric channel model, the NMS ×NBS complex matrix HDL of the

narrowband downlink (DL) channel is expressed as,

HDL =

√
NBSNMS

LϱDL

L∑
l=1

αl,DLaMS (θl,MS, ϕl,MS)a
∗
BS (θl,BS, ϕl,BS) , (1.2)

HDL = AMSHαA
∗
BS, (1.3)

where ϱDL is the DL path-loss, αl,DL is the DL complex gain of path l. ABS ∈ CNBS×L and

AMS ∈ CNMS×L are, respectively, the aggregation of the L steering vectors aBS (θl,BS, ϕl,BS) and

aMS (θl,MS, ϕl,MS) for l = 1, 2, · · · , L, and
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Hα =
√

NBSNMS
Lαϱ

diag (α1,DL, α2,DL, · · · , αL,DL).

The channel is FS when the system is wideband, hence equation (1.2) must be rewritten to

represent the D-delay DL channel model. The d-th delay tap is given by [64],

HDL,d =

√
NBSNMS

LϱDL

L∑
l=1

αl,DLpps (dTs − τl)aMS (θl,MS, ϕl,MS)a
∗
BS (θl,BS, ϕl,BS) , (1.4)

where pps(.) is the combination of pulse shaping filter and other filters, Ts, τl are the sampling

period and the delay. For OFDM modulation, the MIMO channel frequency response matrix at

each subcarrier k follows the expression [64],

HDL[k] =

√
NBSNMS

LϱDL

L∑
l=1

αl,DLql[k]aMS (θl,MS, ϕl,MS)a
∗
BS (θl,BS, ϕl,BS) , (1.5)

where ql[k] is given by,

ql[k] =

D∑
d=1

pps (dTs − τl) e−
2πjkd

K , (1.6)

and K is the number of subcarriers.

The response vectors for the uniform linear planar array (ULPA) is given as follows.

ULPA Response Vector

A ULPA is a rectangular array that consists of Nh antennas in each row and Nv antennas in each

column, in the horizontal and vertical directions, uniformly separated by a distance dA. Typically,

dA = λ/2 where λ is the signal wavelength. The total number of antennas within the array is

N = Nh × Nv, and each row or column is a uniform linear array (ULA) which is considered as a

special case of ULPA. The response vector of an N -element ULA is given by,

aULA (θ) =
1√
N

[
1 ej2π

dA
λ

sin(θ) · · · ej(N−1)2π
dA
λ

sin(θ)
]T

(1.7)

The array response for the ULPA configuration is given by [65],

aULPA (θ, ϕ) = ah (θ)⊗ av (ϕ) (1.8)
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where θ and ϕ are, respectively, the azimuth and elevation angles, and ah and av are the horizontal

and vertical steering vectors which are derived from (1.7) with the corresponding angle and number

of antennas, and ⊗ is the Kronecker product.

Recently, 3D beamforming techniques for mmWave communications had been introduced [66,

67, 68]. However, few papers studied the estimation of the 3D mmWave channel [69, 70, 71]. On

the other hand, most existing research works had considered only the 2D beamforming case, i.e.

the elevation is neglected and only the horizontal scattering is taken into consideration. Under

these assumptions, the ULPA response is rewritten as,

aULPA (θ) = ah (θ)⊗ 1Nv (1.9)

where 1Nv is an Nv × 1 unity vector.

1.3.3 MmWave MIMO System Model

Let us first consider a narrowband system model for a hybrid architecture. The downlink is de-

scribed by the NMS × 1 received signal vector at the MS, which is given by

r = HDLFs+ n, (1.10)

where HDL is the DL channel matrix as defined in equation (1.2), s is the NS × 1 normalized

transmitted symbols vector with E
[
ssH

]
= (PBS/NS) INS

, and PBS is the average transmission

power of the BS. F = FRFFBB is the NBS × NS precoding matrix of the BS which combines the

baseband precoder FBB ∈ CNRF×NS and the RF precoder FRF ∈ CNBS×NRF . Finally, the vector n

of size NMS × 1 is the additive white Gaussian noise (AWGN). The received vector r is processed

at the MS such as,

y = W∗HDLFs+W∗n, (1.11)

where W = WRFWBB is the NMS ×NS combiner matrix of the MS which is assumed to consec-

utively apply the RF combiner WRF ∈ CNMS×NRF and the baseband combiner WBB ∈ CNRF×NS .

It is worth noting that the constant modulus constraint must be applied to the RF precoder and
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to the RF combiner when analog shifters are used, that is all the entries of the matrix must have

the same magnitude.

The same logic can be employed for the uplink (UL) by replacingHDL by the UL channel matrix

HUL and by reversing the combiners and precoders roles. Under the widely-adopted assumption

of channel reciprocity [72], the UL channel is a Hermitian transposition of the DL channel HUL =

H∗DL, and one between them must be estimated to have channel state information (CSI) [73]. In

practice, it is not obvious how to guarantee the channel reciprocity in mmWave communications,

even for time-division duplexing (TDD) systems (where the same carrier frequency is used for both

DL and UL), due to different issues, for instance the synchronization and calibration errors of RF

chains [73]. However, it should be pointed out that the number of paths and the angle-of-arrivals

(AoAs), angle-of-departures (AoDs) for each path are strongly correlated for both DL and UL

channels even for frequency-division duplexing (FDD) communication systems where separated DL

and UL frequencies are employed. This property is called the path reciprocity [74].

Assuming the path reciprocity, the NBS×NMS complex matrix HUL of the UL channel is given

by,

HUL =

√
NBSNMS

LϱUL

L∑
l=1

αl,ULaMS (θl,MS, ϕl,MS)a
∗
BS (θl,BS, ϕl,BS) , (1.12)

where αl,UL is the complex gain of the lth path in the UL channel, and is in general different from

αl,DL as introduced in Equation (1.2). ϱUL is the UL path-loss

For wideband systems, equation (1.11) is reformulated to express the received signal at each

subcarrier k. It is rewritten as

y[k] = W∗[k]HDL[k]F[k]s[k] +W∗[k]n[k], (1.13)

where HDL[k] is given by (1.5).

In section 1.5, we explain why compressive sensing techniques are good candidates to estimate

the sparse mmWave channels.
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1.4 Multi-Carrier Modulation Techniques

In the previous sections, we explored the different mmWave enabling technologies. On the other

hand, the MCM techniques are regarded crucial for ensuring optimum exploitation of limited time

and frequency resources. In this section, we look at the MCM in depth, as well as some of the

MCM techniques that have been used in this work.

1.4.1 Multi-Carrier Modulation History and Motivations

The MCM approach was first developed in the late 1950s [75]. The concept was to split data into

many bit streams and modulate each stream with a distinct subcarrier. Different steep bandpass

filters completely separate these subcarriers. The so-called frequency division multiplexing (FDM)

technology was born as a result of this. A US patent [76] from 1970 offered a high data rate FDM

variant with closely spaced subcarriers and overlapped spectrum. Despite the fact that OFDM

waveforms provided for complete SE while dealing with FS challenges, single carrier technologies

dominated early communication systems. MCM in general, and OFDM in particular, have gen-

erated significant attention only with the full digitization of the deployed IFFT/FFT modem [77,

78].

The OFDM technology was developed to combat single carrier techniques’ vulnerability to FS

channels [79]. This is owing to the fact that in single carrier techniques, the symbol length must

be as short as feasible in order to convey high data rates in a given bandwidth. In FS channel

settings, however, the symbol duration is substantially shorter than the channel coherence time,

resulting in severe inter-symbol interference (ISI). This necessitates the use of non-linear complex

receivers. OFDM was a crucial solution for achieving the desired high data rate for a FS channel

while keeping the RX simple. This is accomplished by breaking the allocated bandwidth into a

number of sub-channels (subcarriers) with narrow bandwidth for each one. As a result, the FS

channel becomes roughly flat per each sub-channel.

A cyclic-prefix (CP) addition was added to OFDM to prevent ISI, resulting in the CP-OFDM

waveform. CP- OFDM has seen widespread acceptance in a variety of wireless and wireline stan-
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dards, including VDSL, IEEE 802.11a/g, IEEE 802.16, 4G, and, more recently, 5G. CP-OFDM, on

the other hand, has two major flaws. Due to its rectangular pulse structure, it has poor spectral

confinement. Second, the duplicated CP component degrades SE directly. As a result, the urgent

necessity for a novel MCM approach has lately surfaced [80]. Many MCM strategies have been

presented while presenting various tradeoffs, which has resulted in an intriguing quantity of studies

[81, 81, 82, 83]. Various methods have been used to make minor changes to the (CP)-OFDM.

Another viewpoint utilized the filtering view point to better reduce out-of-band (OOB) emission.

Subband and subcarrier based filtering methods are two types of filtering techniques used in MCM.

Subband filtering divides the system bandwidth into many subbands, with each subband performing

a standard OFDM operation. As a result, different settings may be used in different subbands to

meet the needs of different applications. Different subband-based filtering MCM approaches, such

as the universal filtered multicarrier (UFMC) [84] and the filtered OFDM (F-OFDM), have been

suggested in the literature [85].

Filter-bank multicarrier (FBMC) waveforms, on the other hand, take the extreme situation of

filtering each subcarrier separately. This yields the best frequency localisation, but at the expense

of other features [83]. For example, FBMC systems based on quadrature amplitude modulation

(QAM) forfeit SE while FBMC systems based on offset-QAM (OQAM) suffer from a new built-in

interference. Several works [86, 83] have been undertaken in the literature to compare various

aspects of different MCM approaches. Waveforms based on the FBMC have been shown to have

the best spectral confinement, making them ideal for efficient spectrum reuse and asynchronous

communications.

1.4.2 Multi-Carrier Modulation Principles

In MCM schemes, the messages to be sent are first mapped into a 2-dimensional space, such as

a frequency-time (FT) space. They are then converted into signal space using the basis function

χ[k, n]{m} of the kth subcarrier and the nth time symbol defined as:

χ[k, n]{m} = p{m− nT}ej2πkm/Kejψ[k,n], (1.14)
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where p{m} is the impulse response of the prototype filter of the system, and it is different for each

MCM technique, and m denotes the sampling index. T = 1
F is the symbol duration while F is the

subcarrier spacing. The phase factor ψ[k, n] is different for each MCM technique.

The TX and RX prototype filters’ overall goal will be to better combine the transmitted symbol’s

dispersed energy in the FT grid. As a result, the combined impacts of the analysis and synthesis

filters might be used to determine the performance of an MCM approach.

Balian Low Theorem

According to the Balian low theorem (BLT) [83], three main characteristics are used to determine

the overall performance of an MCM system:

1. Orthogonality: The basis functions are said to be orthogonal if they satisfy the following

orthogonality condition

+∞∑
m=−∞

χ[k, n]{m}χ∗[k̄, n̄]{m} = δk,k̄δn,n̄, (1.15)

where δl1,l2 is the Kronecker delta with δl1,l2 = 1 if l1 = l2 and zero otherwise. While orthog-

onality demands that the TX and RX utilize the same prototype filters, bi-orthogonality is

more flexible and allows for the use of alternative prototype filters.

2. Time frequency localization (TFL): A pulse shape’s time and frequency localization (σt and

σf ) define the time and frequency variance of its energy, respectively. This can be expressed

in the FT continuous domain as follows:

σt =

√∫ +∞

−∞
(t− t̄)|p(t)|2dt (1.16)

σf =

√∫ +∞

−∞
(f − f̄)|P (f)|2df (1.17)

where P (f) is the Fourier transformation of p(t), and t̄ and f̄ are the mean time and mean

frequency of the pulse p(t), respectively. The MCM system is referred to as having TFL

localized filters if σtσf <∞; otherwise, they are non-localized.
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3. Symbol density: The SE of an MCM technique is expressed by its symbol density. In other

words, how effective the MCM technique is at utilizing the given time and frequency re-

sources. The MCM technique is designed to achieve maximum SE by setting F = 1/T ,

which corresponds to a symbol density of TF = 1.

The BLT states that no MCM approach can attain all these three features at the same time.

Depending on the required characteristics, trade-offs must be made.

1.4.3 Multi-Carrier Modulation Techniques for MmWave Systems

Different waveforms have been proposed based on the BLT. The two MCM techniques that have

been used in this work, are presented in this subsection. First we present the well-known OFDM

waveform, afterwards, we present the subcarrier filtering-based waveform which is known as FBMC-

OQAM.

OFDM

For analysis and synthesis filtering, the OFDM waveform uses a rectangular pulse shape

ptx(t) = prx(t) =


1
T0
, −T0

2 ≤ t ≤
T0
2

0, otherwise

where ptx(t), prx(t) are the TX and RX pulse shaping filters respectively.

The OFDM waveform can preserve two key advantages by using these pulse forms with a sym-

bol duration of T = T0 and subcarrier spacing of F = 1/T0. First, being the complex orthogonality

condition. The full symbol density (TF = 1) is the second. However, the receiver’s complex or-

thogonality is conditioned by the channel’s frequency selectivity. In other words, the channel within

each subcarrier must be flat, with the channel maximum delay spread (τmax) being significantly

lower than the symbol duration τmax ≪ T ). This isn’t always the case, though. An enhanced

variant of the OFDM waveform, known as CP-OFDM, is utilized to manage this.

In CP-OFDM each OFDM symbol’s last TCP part is copied and attached to the beginning of

the same symbol, where TCP denotes the duration of the cyclic prefix. We ensure that the FS
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induced ISI will reside in the TCP section exclusively by creating the CP TCP > τmax. Before the

demodulation procedure, the redundant and ISI-polluted CP is removed at the RX. As a result, it

ensures the complex orthogonality criterion once more.

The main advantage of the CP-OFDM waveform is the simplicity with which its modem

(IFFT/FFT) is implemented. Furthermore, because to the CP-OFDM complex orthogonality crite-

rion, basic one-tap equalizers function effectively. CP-OFDM, on the other hand, suffers from a loss

in SE due to the use of the CP, where TF = 1+TCP/T0. Furthermore, the CP-rectangular OFDM’s

pulse form translates to poor frequency localisation, i.e., σf =∞ with strong OOB emission.

FBMC

FBMC waveforms have the best spectrum confinement characteristics since each subcarrier is fil-

tered separately. There are two types of FBMC waveforms: QAM based FBMC (FBMC-QAM)

and Offset QAM (OQAM) based FBMC (FBMC-OQAM).

FBMC-QAM

The prototype filter p(t) in FBMC-QAM is designed to achieve the TFL property and the complex

orthogonality condition at the expense of a significant decrease in symbol density. The time and

frequency separation between FBMC-QAM symbols is depicted in Fig. 1.3. This mapping results

in a symbol density of TF = 2 where the loss is due to the large frequency spacing F = 2/T0.

PHYDYAS, Hermite, and the root raised cosine prototype filters are among the TFL prototype

filters utilized for FBMC-QAM waveform [83]. We illustrate the PHYDYAS prototype filter which

has been used in this work, for the other prototype filters please refer to [83]. The PHYDYAS

prototype filter is described as follows:

p(t) =


1+2

∑O−1
i=1 ai cos(

2πt
OT0

)

O
√
T0

, −OT0
2 ≤ t ≤

OT0
2

0, otherwise

PHYDYAS coefficients ai depend on the overlapping factor O.
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Complex QAM symbol

All Complex QAM symbols
are orthogonal to each others

𝐹 = 2/𝑇0

𝑇 = 𝑇0

𝑓

𝑡

Figure 1.3: FBMC-QAM resource grid structure

FBMC-OQAM

The goal of FBMC-OQAM is to keep the entire symbol density (TF = 1) as well as the TFL

property (σtσf <∞). This is accomplished by substituting the complex orthogonality criteria with

a real-domain-only orthogonality. To do so, FBMC-OQAM is constructed from the FBMC-QAM

waveform as follows:

1. The prototype filter is developed in the same way as the FBMC-QAM filter, which guarantees

complex orthogonality for T = T0 and F = 2/T0.

2. The time and frequency spacings are reduced to obtain the desired symbol density TF = 1,

where FFBMC-OQAM =
FFBMC-QAM

2 = 1/T0, and TFBMC-OQAM =
TFBMC-QAM

2 = T0/2. As a

result, TF = 1/2 is obtained, as well as a new built-in interference.

3. Two procedures are taken to eliminate the new built-in interference component:
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Real PAM symbols

𝐹 = 1/𝑇0

𝑇 = 𝑇0/2

𝑓

𝑡

Symbols with different shapes 
interfere with each others.

Figure 1.4: FBMC-OQAM resource grid structure

(a) Real PAM symbols are used instead of complex QAM symbols.

(b) The interference caused by the Step 2’s new time and frequency spacings is shifted to

the imaginary part. This is done by defining the phase factor ψ[k, n] as π
2 (k+n)−πkn

in (1.14).

The structure of the FBMC-OQAM resource grid is depicted in Fig. 1.4. By comparing Fig.

1.4 and Fig. 1.3, we can see that the time and frequency spacing in FBMC-OQAM is half that of

FBMC-QAM. As a result, the spectral density of FBMC-OQAM is equal to TF = 1/2. However,

because FBMC-OQAM sends real symbols, the equivalent complex symbol density is equal to 1,

as in the case of OFDM.
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1.5 Compressive Sensing : Mathematical Tool for

Channel Estimation

In this section, we present the compressive sensing tool which is crucial for hybrid precoding and

channel estimation techniques that have been used in this Ph.D. thesis.

The multi-path signal components of mmWave systems tend to be distributed into few clusters

such as mmWave channels look sparse [65, 87]. This sparsity characteristic is also verified by

measurements, for instance, [88, 21, 19, 89] showed that mmWave channels typically exhibit only

3-4 scattering clusters in dense-urban non-line-of-sight (NLOS) environments. Thus a convenient

representation of such channels needs a comprehensive study of sparsity. The traditional training-

based channel estimation methods seem to be not optimal under these sparse conditions due to

the huge channel size (big number of antennas at the TX and RX) and the fact that most of

what we get will be thrown away. Hence, the aim is to estimate the non-zero elements of the

channel and one approach to solve this type of problems is to use CS techniques [90, 91, 92]. CS is

widely employed in wireless communication applications like channel estimation, spectrum sensing

for cognitive radio, and localization among others [93]. CS tools handle the problem of estimating

any sparse signal by directly acquiring a compressive signal representation with a lot fewer number

of samples than that required by the Shannon-Nyquist theorem, and from which the sparse signal

can be recovered through an optimization process [94, 91].

A signal represented by an Nn × 1 vector s ∈ CNn is said to be exactly Nk-sparse signal if all

but just Nk ≪ Nn values in the vector are zeros, in other words, there is a very small number

of non-zero values in the vector and the rest are zero value elements. Mathematically, we can

represent it as ∥s∥0 ≤ Nk. The same idea can be generalized to 2D and 3D signals. Consider a

discrete-time signal x, which can be represented by an Nn × 1 vector in CNn . If x is not sparse, it

can be transformed into another domain via a transformation matrix Ψ ∈ CNn×Nn as follows

x = Ψs (1.18)

such as s represents an exactly Nk-sparse signal. It is very essential to employ a careful transfor-
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mation matrix which can further expose the sparse nature of the original signal.

The objective of CS tools is to compress the dimension of measurements by projecting the

high-dimensional sparse signals of dimension Nn into a reduced-dimension spaces of dimension

Nm ≪ Nn via a measurement or sensing matrix Φ such as

y = Φx = ΦΨs = Θs (1.19)

where Θ = ΦΨ is an Nm×Nn matrix. This requires first to design a stable sensing (measurement)

matrix Φ, and consequently a matrix Θ, before proposing a reconstruction algorithm to recover

the signal x from only Nm ≈ Nk measurement vector y with the best reconstruction reliability and

hence the minimum information loss. This problem is ill-posed in general, but can be resolved for

the class of signals that have a sparse expansion. This requires that the design of the compression

matrix Θ respects some properties such as the restricted isometry property and the small coherence

one [95, 96, 97]. The first represents a necessary and sufficient condition for the CS problem to be

well conditioned, while the later makes the CS technique more effective.

Many algorithms have been proposed to recover Nk-sparse signals with high probability [98],

where some of them used tractable mixed-norm optimization methods [99, 100, 101], efficient greedy

algorithms [102, 97, 103, 104], fast iterative thresholding methods [105], statistical sparse recovery

[106], and many more [94, 97, 107, 93]. We give a glance and point out some of these algorithms.

The non-convex ℓ0-norm problem is transformed into a convex ℓ1-norm one, and basis pursuit (BP)

solutions [99], such as least absolute shrinkage and selection operator (LASSO) [101], are used.

However, the BP approach is rarely implemented in real-time wireless applications because of its

high computational cost. OMP is a greedy algorithm [97] which was proposed as an effective al-

ternative to the BP ones [99]. In [104], compressive sampling matching pursuit (CoSaMP), which

is a parallel greedy algorithm, was introduced. Moreover, the authors in [103] proposed a modified

version of the OMP, called multi-grid OMP (MG-OMP), in order to reduce the complexity, and

to make the reconstruction more adaptive. Another low-complexity approach, which tries to solve

the problem by iteratively refining the sparse estimate, is a thresholding approach illustrated in

[105]. Three algorithms were proposed in [108, 109, 110] that select more than one candidate per
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iteration to decrease the running time, while for OMP one candidate is selected per each itera-

tion. An algorithm termed as multipath matching pursuit (MMP) was proposed in [108], where it

performs the tree search, in which all combinations of k-sparse indices are the candidates in the

tree, and the algorithm tries to find the best candidate from this tree that minimizes the residual.

The aforementioned algorithm imposes reasonable computational overhead while achieving better

performance over existing greedy algorithms. A generalization algorithm of the OMP was proposed

in [109] termed as generalized OMP (GOMP) that selects more than one index per iteration corre-

sponding to largest correlation in magnidute with the residual. Similar to the MMP and GOMP, a

stage-determined matching pursuit (SdMP) was proposed in [110] that aims at selecting more than

one index per iteration that surpass a carefully designed threshold. A small difference compared to

MMP and GOMP is that the StMP adds a pruning step after the end of some latter iterations (after

satisfying a certain sparsity level condition) in order to refine the selection. Finally, approximate

message passing (AMP) algorithm, which combines the thresholding methods with the message

passing ones, performs well for highly structured measurement matrices [92].

A Sparse Formulation of the MmWave Channel Estimation Problem The

mmWave system model is described in equation (1.11). In what follows, some indices will be

omitted for simplicity. Let us consider the received signal at Q successive instants when the same

precoder, F, and the same combiner, W, are employed. To exploit the sparse nature of the channel,

the concatenated Q × NS matrix is vectorized, the resultant vectorrized vector, yv, can then be

written as [111, 89],

yv =
√
PFTA∗

BS,DzBS ⊗W∗A∗
MS,DzMS + nv, (1.20)

where the N ×1 sparse vectors, zBS and zMS, have non-zero elements that correspond to the actual

AoDs and AoAs. ABS,D and AMS,D are, respectively, the NBS × N and NMS × N beamforming

dictionary matrices at the BS and MS. Each dictionary consists of column vectors which represent

the complex antenna steering vectors corresponding to the N spatially quantized directions, i.e.

it is assumed that each direction is defined by an angle which is taken from {0, 2πN , · · · ,
2π(N−1)

N }.

Equation (1.20) introduces a sparse formulation of this problem by employing a compression matrix

which can be expressed as a function of beamforming dictionaries, precoder and combiner matrices
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[111, 89], this formulation will be reused in chapter 3 when it comes to propose a new method to

estimate the mmWave channel. This allows to estimate the channel by detecting and estimating

the non-zero elements of zBS and zMS with a small number of measurements. The CS tools will

be able to guarantee that if only the compression matrix is well-designed which in turn requires an

efficient design of the precoder and the combiner.

Hence, the estimation of mmWave channels is enabled by reformulating the matrix system

model into a sparse problem, before compressing the sparse matrices into reduced-size ones, and

finally employing the appropriate CS reconstruction method. Basically, CS-based methods have a

significant improvement over most traditional ones, a conclusion made in almost all recent studies

on mmWave channel estimation [9]. Such conclusion motivated the practical usage of CS solutions

for estimating mmWave channels as will be shown in the upcoming sections [111, 103, 87, 112, 113,

114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 64, 124, 125, 62, 126].

1.6 Conclusions

This chapter provided an overview of mmWave communications and the technologies that enable

it. The features of mmWave channels, such as the variations between propagation behavior in

mmWave bands and sub-6 GHz bands, are first illustrated in section 1.2. This will aid in compre-

hending the technical promise of mmWave communications, the problems that must be overcome

in order to realize their potential, and the enabler technologies that will address these challenges.

Then, in section 1.3, we went over the various existing system architectures for massive MIMO

mmWave systems. Before presenting the huge MIMO system model, the spatial MIMO channel

models have been presented, which demonstrate the unique character of highly-directive mmWave

communications. In section 1.4, we have described MCM techniques and presented the modulation

waveforms utilized in this Ph.D. thesis, such as the FBMC-OQAM waveform in chapter 2 and the

OFDM waveform in chapter 3. Finally, section 1.5 introduced compressive sensing as a mathemat-

ical method for channel estimation. This will pave the way for the proposed channel estimation

algorithm in chapter 3, on which such an algorithm is based.
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Chapter2

Hybrid Precoding For Frequency-

Selective MmWave MIMO FBMC-

OQAM Systems

2.1 Introduction

The hardware complexity of implementing the conventional fully-digital architecture for mmWave

MIMO systems is too expensive. An eminently compromised solution is to use the hybrid MIMO

architecture [127], where precoding and combining are performed in both the analog and digital

domains as to decrease the number of the costly RF chains in the system. Despite the reduced

number of RF chains, the performance of this architecture has been shown to be not far from the

fully-digital ones [128]. Moreover, it supports easily several users/data streams.

For simplicity, the initial works on mmWave systems have adopted frequency-flat (FF) mmWave

channels [127, 129], which turned out to be not realistic. In fact, mmWave channels are wideband

channels, having a sparse behavior with few available paths that can be used to send data [25].

To cope with this behavior and to combat multipath fading, OFDM waveform has been commonly

used for such mmWave systems [130, 25]. Nevertheless, OFDM has its drawbacks: The utilization

of OFDM leads to significant OOB radiation owing to the rectangular time-domain window pulse.

In addition, the limited frequency localization characteristic of such pulse makes it vulnerable to

synchronization errors, and turns out to be undesirable for high-velocity mobile scenarios, where

34
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Table 2.1: Summary of existing works on mmWave hybrid OFDM and MIMO-FBMC-OQAM
systems.

References [127, 132] [130] [133] [134]
[86, 135, 136, 137,

138]
[139, 140, 141, 142,

143] [144] [145]
Pro-
posed

FBMC ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OFDM ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓

MmWave ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Hybrid ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
MIMO ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Wideband ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Narrowband ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Doppler shifts aren’t easy to track [131]. Nonetheless, the main transmission technology considered

in almost all mmWave hybrid MIMO studies so far is OFDM, please refer to Table-2.1. The

reasons behind this popularity are the simplicity of implementing OFDM and the adequacy of such

waveform to cope with multipath fading channels. These two reasons clarify why OFDM has been

the favorite modulation choice for mmWave hybrid MIMO systems until now.

FBMC-OQAM is an alternative to OFDM waveform, which has some advantages due to the

characteristics of its prototype filter [83]. The FBMC-OQAM prototype filter is localized in both

time and frequency domains, which makes such filter immune to the OOB emission. In contrast

to the OFDM filter, the FBMC-OQAM filter meets the desired synchronization requirements for

systems with high mobility and Doppler shifts [131]. Therefore, FBMC-OQAM can be a feasible

challenger of OFDM for future mmWave hybrid MIMO systems.

In this chapter, the viability of using the FBMC-OQAM signaling waveform for next-generation

mmWave communications is studied. To incorporate FBMC-OQAM filter banks in mmWave hybrid

MIMO systems, OMP-based hybrid precoding and combining techniques have been developed. Ac-

cording to simulation studies, the FBMC-OQAM waveform could be a good fit for future mmWave

MIMO communication systems, especially when SE is a top priority. Before delving into the details

of this work, we first brief the recent contributions in the regard of FBMC-OQAM for mmWave

systems.
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2.2 Review of Existing Works

In this paragraph, we focus our review on mmWave hybrid MIMO systems. There are a lot of works

that have treated this topic in details. The authors in [127] proposed a novel hybrid precoding

algorithm based on OMP compressive sensing technique to design the precoders’ and combiners’

matrices for narrowband mmWave MIMO systems. A minimum sum mean-square error (MSE)

hybrid precoding algorithm to improve the bit error rate (BER) for narrowband mmWave MIMO

systems was proposed in [132]. Novel codebook design and Gram Schmidt based hybrid precoding

algorithms for FS mmWave MIMO systems have been proposed in [130]. Finally, the authors in

[146] have theoretically revealed the optimality of FF precoding for FS mmWave MIMO systems.

In fact, none of the works mentioned earlier has apoted FBMC-OQAM signaling.

In this paragraph we briefly illustrate some existing works on FBMC-OQAM systems. The

performance of FBMC-OQAM with other OFDM’s versions for high speed railway channels was

evaluated in [133]. In addition, an efficient equalization technique using the Wiener filter for

FBMC-OQAM system for very high-speed scenarios was proposed in [134]. In [86] a detailed signal

processing study has been conducted for MIMO-FBMC-OQAM (MFO) systems. In [139, 140]

Singh et al. studied the performance of a minimum mean-square error (MMSE) RX for MFO

systems with perfect and imperfect channel state information, respectively. In [135] a study has

been conducted on Alamouti’s encoder and decoder for FBMC system in highly FS channels. In

[141] Singh et al. proposed a two-step preamble-based approach to estimate the channel and carrier

frequency offset for MFO systems. The same authors proposed also in [136] semiblind, training, and

data-aided channel estimation schemes for MFO. A sparse channel estimation for MFO in smart

city applications has been proposed in [142]. Some further studies have been conducted in [137,

143, 138] on the benefits of FBMC compared to OFDM waveform.

Few works have been proposed on MFO for mmWave systems as can be seen from Table-2.1.

A very recent study on FBMC-OQAM for mmWave hybrid MIMO systems has been published by

Srivastava et al. [144]. The authors proposed two novel channel estimation techniques, one is based

on Bayesian learning, and the other is based on OMP. In [145] Nissel et al. tested FBMC-OQAM

over real world 60 GHz 2× 1 multiple-input single-output mmWave channels. The authors showed
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Figure 2.1: Architecture of mmWave hybrid MIMO FBMC BS and MS.

that FBMC-OQAM works fine for mmWave systems once they spread symbols in time. Clearly,

a small spot of light was given to FBMC-OQAM signaling for mmWave MIMO systems, which

supports our motivation to investigate in this regard.

2.3 FS MmWave Hybrid FBMC-OQAM MIMO Sys-

tem Model

Consider the FBMC system model given in Fig. 2.1 where we have a BS with NBS antennas and

NRF RF chains is communicating with a MS with NMS antennas and NRF RF chains. We will

examine the proposed algorithms for the DL system model. The same work, however, can be

directly applied to the UL system. We assume that the BS is using NS streams of data, where

each stream is length-K symbol block as seen in Fig. 2.1, such that NS ≤ NRF ≤ NBS and

NS ≤ NRF ≤ NMS. Actually, the number of RF chains at the BS is usually greater than that of

the MS’s, but for simplicity we do not assume this fact.

Let ci[k, n] denote the QAM symbol in the ith data stream, at subcarrier k, and time instant n.

The function Φ(ci[k, n]) separates from the complex QAM symbol ci[k, n] the real and imaginary

parts to extract real OQAM symbols di[k, 2n] and di[k, 2n + 1] [144]. If TS is the QAM symbols’

duration, then TS
2 is the OQAM symbols’ duration. The real and imaginary parts of the QAM

symbol are assumed to be spatially and temporally independent and identically distributed (i.i.d.)
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with power E[di[k, 2n](di[k, 2n])∗] = P . Let d[k, n] ∈ CNS×1 be the symbol vector defined as

d[k, n] = [d1[k, n], d2[k, n], . . . , dNS [k, n]]T (2.1)

After performing digital precoding on the vector d[k, n], we get the vector d̃[k, n] = F[k]d[k, n],

where F[k] is an NRF ×NS digital precoding matrix at subcarrier k. The baseband signal sq{m}

at the output of the qth transmit RF chain 1 ≤ q ≤ NRF can be expressed as

sq{m} =
K∑
k=1

∑
n∈Z

d̃q[k, n]χ[k, n]{m}, (2.2)

wherem denotes the sample index corresponding to the sampling interval TSK , d̃q[k, n] is qth element

of d̃[k, n], and χ[k, n]{m} is the basis function of the FBMC system and which is defined as

χ[k, n]{m} = p{m− nK/2}ej2πkm/Kejψ[k,n], (2.3)

where p{m} is the impulse response of the prototype filter of the FBMC system. The phase factor

ψ[k, n] is defined as π
2 (k + n) − πkn, which will guarantee shifting the interference caused by the

neighboring symbols to the imaginary part. The basis functions are required to satisfy the following

real field orthogonality condition

R{
+∞∑

m=−∞
χ[k, n]{m}χ∗[k̄, n̄]{m}︸ ︷︷ ︸

ξk̄,n̄k,n

} = δk,k̄δn,n̄, (2.4)

where δl1,l2 is the Kronecker delta with δl1,l2 = 1 if l1 = l2 and zero otherwise. Hence, we have

ξk̄,n̄k,n = 1 if (k, n) = (k̄, n̄), and ξk̄,n̄k,n = j⟨ξ⟩k̄,n̄k,n if (k, n) ̸= (k̄, n̄), where ⟨ξ⟩k̄,n̄k,n denotes the imaginary

part of ξk̄,n̄k,n [144], please refer to section 1.4.3 for more details. The discrete-time transmitted

complex baseband signal can be written as

s̃{m} = FRFs{m}, (2.5)

where s{m} = [s1{m}, s2{m}, . . . , sNRF{m}]T . As can be seen that the baseband digital precoders
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F[k] are FS matrices, thus can be different for each subcarrier, while the analog precoder FRF is

an FF matrix. Indeed the analog precoder FRF is implemented using analog phase shifters, hence

the entries of FRF should be of constant modulus. In the following, we take normalize values

|[FRF]m,n
2| = 1. Furthermore, we impose a quantized set of angles for the phase shifters, by having

[FRF]m,n = ejϑm,n , where ϑm,n is a quantized angle, since in practice we only have quantized

values. We consider in this paper a unitary power constraint, such that the hybrid precoders

satisfy FRFF[k] ∈ UNBS×NS
, k = 1, . . . ,K, with the set of semi-unitary matrices UNBS×NS

= {U ∈

CNBS×NS |U∗U = I}. The unitary power constraint requires that the transmit power be distributed

equally among the subcarriers and data streams on each subcarrier. Despite the fact that the

unitary power constraint causes some performance loss when compared to the more relaxed total

power constraint, the unitary power constraint usually results in more efficient codebooks and

codeword selection algorithms for restricted feedback systems [130]. The total power constraint

is a power constraint that enables the transmit power to be spread non-uniformly among the

subcarriers and data streams on each subcarrier. At the MS, assuming perfect carrier and frequency

offset synchronization, the received signal is combined using the analog and digital combiners

WRF ∈ CNMS×NRF ,W[k] ∈ CNRF×NS , respectively. The received signal after analog combining can

be expressed as [144]

f̃[k̄, n̄] = W∗
RFH[k̄]FRFb̃[k̄, n̄] + η̃[k̄, n̄], (2.6)

where Hk denotes the NMS ×NBS mmWave MIMO channel frequency response (CFR) matrix for

the kth subcarrier, and η̃[k̄, n̄] = [η̃1[k̄, n̄], η̃2[k̄, n̄], . . . , η̃NRF [k̄, n̄]]T ∈ CNRF×1 is the noise vector

corrupting the received signal, such that E[η̃[k̄, n̄]η̃∗[k̄, n̄]] = σ2ηW
∗
RFWRF. The vector b̃[k̄, n̄] =

[b̃1[k̄, n̄], b̃2[k̄, n̄], . . . , b̃NRF [k̄, n̄]]T ∈ CNRF×1 contains the precoded virtual symbols {b̃q[k̄, n̄]}NRF
q=1

that obey b̃q[k̄, n̄] = d̃q[k̄, n̄] + jĨq[k̄, n̄]. Where the term Ĩq[k̄, n̄] consists of the ISI and inter-

carrier interference (ICI) coming from the adjacent FT symbols in the neighborhood of the desired

symbol d̃q[k̄, n̄] in the FT grid. This is a fundamental difference compared to OFDM system,

where the ISI and ICI are tackled by adding cyclic prefix and through the orthogonality among the

subcarriers, respectively. This term is known as the intrinsic interference component which is from
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the characteristics of FBMC systems. It can be expressed as

Ĩq[k̄, n̄] =
∑

(m,n)∈Ωk̄,n̄

d̃q[k, n]⟨ξ⟩k̄,n̄k,n, (2.7)

where Ωk̄,n̄ = {(k̄ ± 1, n̄± 1), (k̄ ± 1, n̄), (k̄, n̄± 1)} is the first-order neighborhood of the FT point

(k̄, n̄).

2.4 Spatially Sparse Precoding

The major goal of this chapter is to create efficient RF and baseband precoding matrices for hybrid

analog/digital precoding architectures with limited feedback. In this chapter, we assume perfect

channel knowledge at the MS with a limited feedback between the BS and MS [127]. Moreover, to

simplify the channel equalization task and use the demonstrated algorithms, we assume that the

CFR is sufficiently smooth in the passband region of each subcarrier. The complete calculations of

the precoders’ matrices are done at the MS, afterwards, the calculated precoders are quantized and

fed back to the BS via the limited feedback. The detailed quantization procedure of the calculated

precoders can be found in [127].

When transmitting Gaussian symbols over the mmWave channel, the SE attained by the system

is given by [147]

I(FRF, {FBB[k]}Kk=1,WRF, {WBB[k]}Kk=1) =

1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
R−1

n [k]W∗
BB[k]W

∗
RFH[k]FRFFBB[k]F

∗
BB[k]F

∗
RFH

∗[k]WRFWBB[k]

∣∣∣∣∣, (2.8)

where ρ = P
Kσ2

η
is the signal-to-noise ratio (SNR), and Rn[k] = W∗

BB[k]W
∗
RFWRFWBB[k] is the

noise covariance matrix after combining.

To gain a further simplification of the hybrid precoders design, we assume that the MS can

perform optimal nearest neighbor decoding based on theNMS-dimentional received signal with fully-

digital hardware. This assumption allows to decouple the transceiver design problem, hence focusing

only on designing the precoders. Therefore, instead of maximizing SE, we design FRF, {FBB[k]}Kk=1
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to maximize the mutual information achieved by Gaussian signaling over the mmWave channel as

[130]

I(FRF, {FBB[k]}Kk=1) =
1

K

K∑
k=1

log2

∣∣∣∣∣I+ ρ

NS
H[k]FRFFBB[k]F

∗
BB[k]F

∗
RFH

∗[k]

∣∣∣∣∣ (2.9)

We emphasize here that by abstracting RX operation, and concentrating on mutual information

rather than the SE expression in (2.8), successfully yields to accepting that the RX can perform

ideal nearest-neighbor decoding based on the NMS-dimensional received signal. Tragically, such

a decoder is impractical to realize with actual mmWave systems, in which decoders don’t have

access to the NMS-dimensional signal. In practical mmWave systems, the received signals must be

combined in the analog domain, before possibly combining in the digital domain. Thus, we will

revisit this problem of designing feasible mmWave receivers in section 3.5.

Focusing only on the design of FRF, {FBB[k]}Kk=1, the precoder optimization problem under the

unitary power constraint can be written as

(F⋆RF, {F⋆BB[k]}Kk=1) = argmax
FRF,{Fk}Kk=1

I(FRF, {FBB[k]}Kk=1),

s.t. FRF ∈ FRF,

∥FRFFBB[k]∥2F ∈ UNBS×NS
, k = 1, 2, . . . ,K, (2.10)

where FRF is the set of possible RF precoders, in other words, it is the set of NBS ×NRF matrices

with constant modulus elements.

To our humble knowledge, no general solutions to problem (2.10) with the non-convex feasibility

constraint FRF ∈ FRF has been proposed yet. Hence, we propose to solve an approximation to

(2.10) for the sake of finding practical near-optimal precoders which can be implemented in the

system of Figure 2.1. We solve this problem, using a combination of the spatially sparse precoding

design algorithm proposed for narrowband mmWave channels in [127], and the FS precoding design

algorithm proposed for OFDM mmWave systems in [130].

We begin by considering the mutual information achieved by the hybrid precoders

FRF, {FBB[k]}Kk=1 and rewriting (2.9) in terms of the distance between the hybrid precoders
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FRF, {FBB[k]}Kk=1 and the channel’s optimal unconstrained precoders Fsvd[k]. Thus, we start by

defining the SVD of the channel as H[k] = U[k]Σ[k]V∗[k], where U[k] is an NMS × rank(H[k])

unitary matrix, Σ[k] is a rank(H[k]) × rank(H[k]) diagonal matrix of singular values arranged in

decreasing order, and V∗[k] is an NBS × rank(H[k]) unitary matrix.

Using the SVD of the channel and standard mathematical manipulation, (2.9) can be rewritten

as

I(FRF, {FBB[k]}Kk=1) =
1

K

K∑
k=1

log2

∣∣∣∣∣I+ ρ

NS
Σ2[k]V∗[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV[k]

∣∣∣∣∣ (2.11)

Furthermore, let’s define the following two partitions of the matrices Σ[k] and V[k] as

Σ[k] =

Σ1[k] 0

0 Σ2[k]

 , V[k] =

[
V1[k] V2[k]

]
, (2.12)

where Σ1[k] is of dimension NS ×NS and V1[k] is of dimension NBS ×NS, note that the optimal

unconstrained unitary precoder of H[k] is simply Fsvd[k] = V1[k]. Another important observation

is that the precoder V1[k] cannot in general be expressed as FRF, {FBB[k]}Kk=1 with FRF ∈ FRF,

hence cannot be implemented in the mmWave hybrid architecture under consideration. Neverthe-

less, if we can make FRF, {FBB[k]}Kk=1 sufficiently close to the optimal precoder V1[k], in other

words if we can make them roughly equal each others, then the mutual inforamtion resulting

from F[k] and FRF, {FBB[k]}Kk=1 can be made comparable. Indeed, to facilitate our handling of

I(FRF, {FBB[k]}Kk=1), we make the following system assumption:

Approximation1: We assume that the mmWave system parameters (NS, NRF, NBS, NMS), as

well as the mmWave channel (L,Nray, . . . ), are such that the assumption of the hybrid precoders

FRFFBB[k] are very close to the optimal unitary precoders Fsvd[k] = V1[k], where Nray is the

number of sub-paths per each path l. Mathematically, this can be described as follows:

1. The eigenvalues of the matrix INS
−V∗

1[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV1[k] are very small. In other

words, and in the context of mmWave precoding, this means that V∗
1[k]FRFFBB[k] ≈ INS

.
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2. The singular values of the matrix V∗
2[k]FRFFBB[k] are very small, in other words,

V∗
2[k]FRFFBB[k] ≈ 0.

This assumption is reasonable in our mmWave system under consideration, where we have: (1)

a large number of antennas NBS, (2) a number of transmit chains NS ≤ NRF ≤ NBS, (3) and

correlated channel matrices H[k].

Basically, Approximation 1 grants us the ability to further simply the expression of the mutual

information I(FRF, {FBB[k]}Kk=1). With the aim of doing that, we need to use the expressions

defined in (2.12), over and above we need to define the following new partition of the matrix

V∗[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV[k] as

V∗[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV[k]

=

V
∗
1[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV1[k] V∗

1[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV2[k]

V∗
2[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV1[k] V∗

2[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV2[k]



=

Q11[k] Q12[k]

Q21[k] Q22[k]

 , (2.13)
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using this partition, we can express the mutual information as

I(FRF, {FBB[k]}Kk=1)

=
1

K

K∑
k=1

log2

∣∣∣∣∣I+ ρ

NS
Σ2[k]V∗[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV[k]

∣∣∣∣∣
=

1

K

K∑
k=1

log2

∣∣∣∣∣I+ ρ

NS

Σ
2
1[k] 0

0 Σ2
2[k]


Q11[k] Q12[k]

Q21[k] Q22[k]


∣∣∣∣∣

(a)
=

1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]Q11[k]

∣∣∣∣∣+ 1

K

K∑
k=1

log2

∣∣∣∣∣I+ ρ

NS
Σ2

2[k]Q22[k]

− ρ2

N2
S

Σ2
2[k]Q21[k]

(
INS

+
ρ

NS
Σ2

1[k]Q11[k]

)−1

Σ2
1[k]Q12[k]

∣∣∣∣∣
(b)
≈ 1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]V
∗
1[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV1[k]

∣∣∣∣∣,
(2.14)

where in (a) we have used the Schur complement identity for matrix determinants, and (b) is a

result of using Approximation 1 which implies that Q12[k], Q21[k] and Q22[k] are approximately
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zero. Continuing with (2.14), we can further simplify the mutual information as

I(FRF, {FBB[k]}Kk=1)

(a)
≈ 1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]

∣∣∣∣∣+ 1

K

K∑
k=1

log2

∣∣∣∣∣INS
−

(
INS

+
ρ

NS
Σ2

1[k]

)−1

× ρ

NS
Σ2

1[k]

(
INS
−V∗

1[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV1[k]

)∣∣∣∣∣
(b)
≈ 1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]

∣∣∣∣∣− 1

K

K∑
k=1

tr

((
INS

+
ρ

NS
Σ2

1[k]

)−1

× ρ

NS
Σ2

1[k]

(
INS
−V∗

1[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV1[k]

))
(c)
≈ 1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]

∣∣∣∣∣
− 1

K

K∑
k=1

tr

(
INS
−V∗

1[k]FRFFBB[k]F
∗
BB[k]F

∗
RFV1[k]

)

=
1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]

∣∣∣∣∣
− 1

K

K∑
k=1

(
NS− ∥ V∗

1[k]FRFFBB[k] ∥2F

)
,

(2.15)

where (a) is obtained given (2.14) and by defining the matrices B = ρ
NS

Σ2
1[k] and A =

V∗
1[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV1[k] and using I + BA = (I + B)(I − (I+B)−1B(I−A)). Step

(b) follows from Approximation 1 which implies that the eigenvalues of the matrix X = ((INS
+

ρ
NS

Σ2
1[k])

−1 ρ
NS

Σ2
1[k](INS

− V∗
1[k]FRFFBB[k]F

∗
BB[k]F

∗
RFV1[k])) are small, hence this grants us the

ability to use this following approximation log2 |INS
−X| ≈ log2(1−tr(X)) ≈ −tr(X). Lastly, (c) is a

result from assuming a high effective-SNR approximation which leads to (I+ ρ
NS

Σ2
1[k])

−1 ρ
NS

Σ2
1[k] ≈

INS
which provides the final result in (2.15). It’s important to note that the nominal SNR ρ = P

Kσ2
η
,

isn’t the one that’s assumed to be high. In mmWave systems, this might be a problematic assump-

tion. However, only the effective-SNRs in the channel’s dominant NS subspaces, are believed to be

high enough. Because these effective SNRs incorporate the huge array gain from mmWave beam-
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forming, this is a realistic assumption [127]. We observe that the first term after the last equality

sign of (2.15)

1

K

K∑
k=1

log2

∣∣∣∣∣INS
+

ρ

NS
Σ2

1[k]

∣∣∣∣∣
is the mutual information achieved by the optimal precoder Fsvd[k] = V1[k] and that the depen-

dence of I(FRF, {FBB[k]}Kk=1) on the hybrid precoders FRFFBB[k] is now captured in the second

term following the last equality sign in (2.15)

1

K

K∑
k=1

(
NS− ∥ V∗

1[k]FRFFBB[k] ∥2F

)
. (2.16)

We note that the term in (2.16) is the squared chordal distance between the two points Fsvd[k] =

V1[k] and FRFFBB[k] on the Grassmann manifold. Using Approximation 1 which states that

these two points are close enough, we can utilize the manifold’s locally Euclidean property to

substitute the chordal distance by the Euclidean distance ∥Fsvd[k] − FRFFBB[k]∥F [148]. Thus,

near-optimal hybrid precoders that approximately maximize I(FRF, {FBB[k]}Kk=1) can be obtained

by instead minimizing ∥Fsvd[k] − FRFFBB[k]∥F. Actually, we can infer from Approximation 1

that ∥V∗
1[k]FRFFBB[k]∥2F and consequently (2.15), can be approximately maximized by instead

maximizing tr(V∗
1[k]FRFFBB[k]). This is due to the fact that the magnitude of the off-diagonal

elements of V∗
1[k]FRFFBB[k] is insignificant, and all the diagonal elements of V∗

1[k]FRFFBB[k] must

be made close to one. Hence, ∥V∗
1[k]FRFFBB[k]∥2F, or the ℓ2 norm of V∗

1[k]FRFFBB[k]’s diagonals

can be maximized by optimizing tr(V∗
1[k]FRFFBB[k]), i.e., the ℓ1 norm of the diagonals [149, 150,

151].

Since maximizing tr(V∗
1[k]FRFFBB[k]) is much the same as minimizing ∥Fsvd[k]−FRFFBB[k]∥F,

the precoder design problem can be reformulated as

(F⋆RF, {F⋆BB[k]}Kk=1) = argmin
FRF,{Fk}Kk=1

∥Fsvd[k]− FRFFBB[k]∥F,

s.t. FRF ∈ FRF,

∥FRFFBB[k]∥2F ∈ UNBS×NS
, k = 1, 2, . . . ,K, (2.17)
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which is now the problem of finding the projections of Fsvd[k] onto the set of hybrid precoders of

the form FRFFBB[k] with FRF ∈ FRF, where this projection is realized with respect to the standard

Frobenius norm ∥ · ∥2F. Unluckily, the feasible set FRF is complex and non-convex, hence it makes

finding such a projection both algorithmically and analytically troublesome [152].

Nevertheless, to deliver near-optimal solutions to the problem in (2.17), we suggest to make

use of the structure of the mmWave MIMO channels which are generated by the clustered channel

model that has been introduced in section 1.3.2. Specifically, we exploit the following observations

on mmWave precoding:

1. Structure of optimal precoders: The optimal unitary precoder is Fsvd[k] = V1[k], and that

the columns of the unitary matrix V[k] form an orthonormal basis for the channel’s row

space.

2. Structure of clustered mmWave channels: Observing the channel model in 1.3.2, we notice

that the array response vectors aBS(θl),∀l, form a finite spanning set for the channel’s row

space as well. Indeed, if we have LNray ≤ NBS, we assure that the array response vectors

are linearly independent with probability one, thus they form another minimal basis for the

channel’s row space for LNray ≤ min(NBS, NMS). To realize the fact of linear independence

of the array response vectors aBS(θl), let us consider the typical ULAs case. For the case

of ULAs, the NBS × LNray matrix established by gathering the vectors aBS(θl), ∀l, will be a

Vandermonde matrix that has full rank whenever the angles θl are different. This happens

with probability one once the angles θl are generated from a continuous distribution. The

same thing can be realized for the case of uniform planar arrays (ULPA)s, where linear

independence can be established by expressing the response vectors as a Kronecker product

of two ULPA response vectors [153].

3. Relation between Fsvd[k] and aBS(θl): Through examining observation 1, No matter if

LNray ≤ NBS or not, we notice that the columns of the optimal precoders Fsvd[k] = V1[k] are

connected to the vectors aBS(θl) through a linear transformation. Consequently, the columns

of Fsvd[k] can be expressed as linear combinations of aBS(θl),∀l.

4. Vectors aBS(θl) as columns of FRF: Notice that the entries of the vectors aBS(θl) are constant-
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magnitude phase-only, this allows the vectors aBS(θl) to be applied by the analog phase

shifters. As a result, we can apply NRF different vectors of aBS(θl) at the TX via the RF

precoder, and constructing arbitrary linear combinations of them using its digital precoder

FBB[k]. Therefore, we can establish our main goal and build the linear combinations that

minimizes ∥Fsvd[k]− FRFFBB[k]∥F.

Thus, by exploiting the structure of H[k], we can find near-optimal hybrid precoders by limiting

the feasible set FRF to take values from the set of vectors of the form aBS(θl), and futher solving

(F⋆RF, {F⋆BB[k]}Kk=1) = argmin
FRF,{Fk}Kk=1

∥Fsvd[k]− FRFFBB[k]∥F,

s.t. F
(i)
RF ∈ {aBS(θl),∀i},

∥FRFFBB[k]∥2F ∈ UNBS×NS
, k = 1, 2, . . . ,K, (2.18)

which can be interpreted as finding the best low dimensional representation of Fsvd[k] utilizing the

basis vectors aBS(θl). It is good to notice that we can extend the basis vectors to include array

response vectors in directions other than {aBS(θl)|1 ≤ l ≤ L}, and the effect of such basis extension

is negligible. Therefore, the problem has been diminished to find the best NRF array response

vectors, and find their optimal baseband combinations. Lastly, we can establish the constraint

of the analog precoder in the optimization problem to get the next equivalent simplified sparsity

constrained matrix reconstruction problem

{F⋆BB[k]}Kk=1 = argmin
FBB[k]

∥Fsvd[k]−ABSFBB[k]∥F,

s.t. ∥diag(FBB[k]F
∗
BB[k])∥0 = NRF,

∥ABSFBB[k]∥2F ∈ UNBS×NS
, k = 1, 2, . . . ,K, (2.19)

where ABS = [aBS(ϕ1),aBS(ϕ2), . . . ,aBS(ϕL)] is an NBS × L matrix of array response vectors.

aBS(ϕ) = 1√
NBS

[1, ej(
2π
λ
)d sin(ϕ), . . . , ej(NBS−1)( 2π

λ
)d sin(ϕ)] for a ULPA, where λ is the signal wave-
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length, and d is the distance between antenna elements. FBB[k] is an L×NS matrix, and L is the

number of clusters in the channel.

Basically, the jointly non-trivial optimization problem given in (2.10) is simplified into a sparsity

constrained matrix reconstruction problem with one variable. To solve the sparse problem in (2.19)

we use the well-known OMP sparse recovery technique [25, 127]. This technique tries to find the

best matching projections of multidimensional data onto the span of an over-complete dictionary.

To grasp it more easily, let’s assume that we have the simplest case of single stream beamforming,

the problem in (2.19) simplifies to

{f⋆BB[k]}Kk=1 = argmin
fBB[k]

∥fsvd[k]−ABSfBB[k]∥F,

s.t. ∥fBB[k]∥0 = NRF,

∥ABSfBB[k]∥2F ∈ UNBS×NS
, k = 1, 2, . . . ,K, (2.20)

in which the sparsity constraint is now on the vector fBB[k]. Such beamforming problem can now

be solved through relaxing the sparsity constraint and through exploiting convex optimization to

solve the ℓ2, ℓ1 relaxation. Accordingly, (2.20) can be solved using tools from [97, 154, 155], please

refer to section 1.5 for more details.

The pseudo-code of the proposed FS hybrid precoding design algorithm is given in Algorithm

1, which is similar to [127] with some modifications to be well suited for FS systems. Algorithm 1

is divided into three main parts. In the initialization part, we set the residual RF precoding matrix

Frf to an empty matrix in step 1. Then in step 2 we propose to stack the optimal SVD precoders

obtained from the channels {H[k]}Kk=1 in a column-wise manner in matrix FH. Afterwards, we

initialize the residual matrix Fres to FH in step 3. Subsequently, the second part of the algorithm

which is the RF precoder design part starts. The essential steps of algorithm 1 are step 5 and step

6, in which for each RF chain in the system, the algorithm aims to find the best vector aBS(ϕl) in

ABS that has the maximum projection on Fres. After that, the chosen column vector is column-wise

appended to the residual matrix Frf in step 7. In step 9, the least squares (LS) solution is used

from step 8 to delete the contribution of the selected vector from Fres, along with a normalization
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process. The RF precoder design procedure is continued by going back to step 5 until all NRF

beamforming vectors are selected. In step 11, the quantization of the angles of Frf is performed

to meet the constraint on the available angles of the practical phase shifters. Finally, the digital

precoder design part is made up of a for loop, for each subcarrier k, steps 13 and 14 are performed.

These steps calculate the digital precoders and ensure that the transmit power constraint is exactly

satisfied, respectively.

Algorithm 1 Spatially Sparse Precoding for FS MmWave Channel via Orthogonal Matching
Pursuit
Require: {H[k]}Kk=1,ABS

Initialization
1: Frf = Empty Matrix
2: FH = [Fsvd[1],Fsvd[2], . . . ,Fsvd[K]] ∈ CNBS×NSK

3: Fres = FH

RF Precoder Design
4: for i = 1, 2, . . . , NRF do
5: Ψ = A∗

BSFres

6: u∗ = argmaxu=1,2,...,L∥[Ψ]:,u∥2
7: Frf = [Frf|A(u∗)

BS ]
8: FLS = (F∗

rfFrf)
−1F∗

rfFH

9: Fres =
FH−FrfFLS

∥FH−FrfFLS∥F
10: end for
11: FRF ← Approximate the angles of Frf to the closest quantized angles of the available

phase shifters and save them in FRF

Digital Precoder Design
12: for k = 1, 2, . . . , K do
13: F[k] =

F∗
rfFrf

F∗
rfFsvd[k]

14: F[k] =
√
NSK( F[k]

∥FrfF[k]∥F
)

15: end for

2.5 Spatially Sparse MMSE Combining

In order to simplify the precoding design in section 2.4, we have decoupled the transceiver design

to only concentrate on the precoding part. Basically, we have assumed that the RX can perform

optimal nearest neighbor decoding based on the NMS-dimentional received signal with fully-digital
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hardware. In practice, such an assumption imposes prohibitively high complexity for MIMO sys-

tems, thus it is unrealistic for practical mmWave systems.

A compromised solution for such problem can be offered by the well-known linear MMSE RX

design. This solution relaxes the constraint for a fully-digital hardware, and utilizes both the digital

and analog processing. The MMSE solution aims to design the hybrid combiners WRF, {W[k]}Kk=1

that minimize the MSE between the transmitted and received signals. The MMSE combining

design problem can be expressed as

(W⋆
RF, {W⋆[k]}Kk=1) = argmin

WRF,{W[k]}Kk=1

E[∥d[k]−W∗[k]W∗
RFỹ[k̄]∥22],

s.t. WRF ∈ WRF, (2.21)

where WRF is the set of feasible RF combining matrices, that means the set of matrices having

elements satisfying the phase shifters’ constraints of constant modulus and only phase values. ỹ[k̄]

is the received vector of symbols after performing digital combining at frequency k, d[k] is the

transmitted vector at frequency k as in (2.1), where we have dropped the time index for simplicity.

Assuming no hardware limitations, the exact solution of (2.21) is given as [127]

W∗
MMSE[k] =

1√
P
(F∗[k]F∗

RFH
∗[k]H[k]FRFF[k] +

NS

ρ
INMS

)−1F∗[k]F∗
RFH

∗[k] (2.22)

However, the optimal unconstrained MMSE combiner W∗
MMSE[k] in (2.22) is not a combination

of digital and analog combiners, hence it is not suitable for our hybrid system. Nonetheless,

W∗
MMSE[k] will still be used in the combining method that we will show in the upcoming sequel.

Following the same demonstrations as in [127], the optimal feasible solution of the MMSE

problem given in (2.21) is provided as
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W⋆[k] = argmin
W[k]

∥E[ỹ[k̄]ỹ∗[k̄]]
1
2WMMSE[k]

− E[ỹ[k̄]ỹ∗[k̄]]
1
2AMSW[k]∥F,

s.t. ∥diag(W[k]W∗[k])∥0 = NRF, (2.23)

where AMS = [aMS(θ1),aMS(θ2), . . . ,aMS(θL)] is an NMS×L matrix of array response vectors, and

W[k] is an L×NS matrix.

Therefore, as seen from (2.23), the MMSE combining problem is transformed to a sparse signal

recovery problem again as in (2.19). The solution is once more done via OMP method. The pseudo-

code of the MMSE combining design algorithm is illustrated in Alogorithm 3. The procedure and

steps of this algorithm are similar to Algorithm 1, please refer to section 2.4. We shall notice that

we propose to stack the covariance matrices E[ỹ[k̄]ỹ∗[k̄]] in one big matrix YH in a colume-wise

manner as we have done for FH in Algorithm 1.
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Figure 2.2: The BER versus SNR of the proposed hybrid algorithms for mmWave 32 × 16
MIMO FBMC-OQAM system, compared to the OFDM counterpart, NS = 2, NRF = 4.

Algorithm 2 Spatially Sparse MMSE Combining For FS MmWave Channel Via Orthogonal
Matching Pursuit

Require: YH,WMMSE,AMS

Initialization
1: Wrf = Empty Matrix
2: Wres = YH

RF Combiner Design
3: for i = 1, 2, . . . , NRF do
4: Ψ = A∗

MSWres

5: u∗ = argmaxu=1,2,...,L∥[Ψ]:,u∥2
6: Wrf = [Wrf|A(u∗)

MS ]
7: WLS = (W∗

rfWrf)
−1W∗

rfYH

8: Wres =
YH−WrfWLS

∥YH−WrfWLS∥F
9: end for
10: WRF ← Approximate the angles of Wrf to the closest quantized angles of the available

phase shifters and save them in WRF

Digital Combiner Design
11: for k = 1, 2, . . . , K do
12: W[k] =

W∗
rfWrf

W∗
rfWMMSE[k]

13: W[k] =
√
NS(

W[k]
∥W∗[k]W∗

rf∥F
)

14: end for
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Figure 2.3: The SEs of the proposed hybrid precoding and digital SVD algorithms versus
SNR for mmWave 32× 16 MIMO FBMC-OQAM system, NS = NRF = 3.

2.6 Results

We evaluate by simulation the performance of FBMC-OQAM with the proposed FS hybrid pre-

coding and combining designs for mmWave MIMO systems. NBS = 32, NMS = 16, unless stated

otherwise. We assume in these simulations that both the BS and MS have a ULPA. The data

symbols are drawn from the real and imaginary parts of 4-QAM symbols. We adopt a wideband

mmWave channel model with L = 6 clusters. Furthermore, concerning the dynamics of the chan-

nel, we restricted our work to scenarios where the channel is invariant over several FBMC-OQAM

symbols. The number of subcarriers is K = 512, with 16 MCM symbols and 6 quantization bits

for the phase shifters, unless stated otherwise. We assume that the center AoAs/AoDs of the L

clusters θl, ϕl are uniformly distributed over [0, 2π). We adopt the so called PHYDYAS prototype

filter for the pulse shaping function for the FBMC-OQAM system [83], with O = 4 overlapping

factor.

Fig. 2.2 represents the BER versus SNR of the proposed algorithms for mmWave hybrid MIMO

FBMC-OQAM system compared with OFDM system as a benchmark. These systems have been

compared with NS = 2, NRF = 4, and K = 64, where 20000 Monte Carlo repetitions have been

conducted over 20000 new channel realizations. Fig. 2.2 shows that the BER achieved by the
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Figure 2.4: The SEs of the proposed hybrid precoding and digital SVD algorithms versus
the number of quantization bits for mmWave 32× 16 MIMO FBMC-OQAM system, NS =
1, NRF = 2, SNR = 0 dB.

OFDM system is slightly better in comparison to the FBMC-OQAM system, this was expected

due to the intrinsic interference in FBMC-OQAM system [145]. This interference can be fully

eliminated using interference cancellation techniques, or it can be totally ignored without loss in

performance if we assume that the CFR is the same for each three consecutive subcarriers [86].

In Figures 2.3, 2.4, 2.5, the SEs achieved by the proposed hybrid algorithms are compared with

the optimal unconstrained SVD technique for mmWave hybrid MIMO FBMC-OQAM system over

100 different channel realizations for 16 MCM symbols. In Fig. 2.3, the SEs are plotted versus SNR

with NS = NRF = 3. As can be seen, the SE achieved by the proposed algorithms is close to the

optimal SVD technique. The SE performance attained by the proposed algorithm for our FBMC

system is the same for the OFDM system counterpart. This was expected, since we are using the

same number of subcarriers and hence the same bandwidth. However, if the system is restricted

to low OOB emission, then FBMC should be chosen over OFDM. For the sake of clarity, the SEs

for OFDM system have not been presented in the figure. In Fig. 2.4, the SEs are plotted versus

the number of quantization bits with NS = 1, NRF = 2 and for SNR = 0 dB. As can be concluded

from the figure, 4 to 6 quantization bits would be enough to have good performance.

In Fig. 2.5, the SEs are shown for different numbers of transmitted data streams. We adopt

the same setup as before but with NMS = 8, and the number of RF chains equals to the number
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Figure 2.5: The SEs of the proposed hybrid precoding and digital SVD algorithms versus
the number of streams for mmWave 32× 8 MIMO FBMC-OQAM system, NS = NRF, SNR
= 0 dB.

of data streams and for SNR = 0 dB. First, Fig. 2.5 shows that the performance of both the

unconstrained precoding and the hybrid precoding increases then decreases again with the number

of data streams. This decrease with large numbers of transmitted data streams is a result of the

sparse mmWave channels and the equal power allocation among the different streams, which causes

some power to be allocated to less important multi-path components. Furthermore, observation

of the figure shows that the gap between the proposed hybrid precoding algorithms and digital

SVD solution is small when the number of streams is large, which also follows from the sparsity of

mmWave channels.

2.7 Conclusions

In this chapter, we considered single-user precoding and combing and investigated the feasibility of

adopting FBMC-OQAM signaling waveform for next generation mmWave communications, where

the strong dependency on RF precoding makes typical MIMO solutions unfeasible. We created a

low-hardware-complexity precoding approach by utilizing the structure of realistic mmWave chan-

nels. We formulated the problem of mmWave precoder design as a sparsity-constrained signal
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recovery problem, then we offered an algorithmic solution employing OMP. The same approach

may be used to solve the problem of designing realistic MMSE combiners for mmWave systems,

as we demonstrated. We showed that the proposed precoders can be efficiently quantized, and the

precoding technique is well-suited for restricted feedback systems. Finally, numerical results on the

performance of spatially sparse mmWave processing were provided, demonstrating that it allows

systems to operate more efficiently. Furthermore, simulation results showed that FBMC-OQAM

waveform can be a convenient candidate for future mmWave MIMO communication systems, es-

pecially when high SE is the primary goal. Future extensions of this work may explore the high

mobility scenarios, such as vehicular mmWave systems, and MU communications scenarios.
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Chapter3

Hybrid Precoding And Channel Es-

timation For Frequency-Selective

MmWave MIMO OFDM Systems

3.1 Introduction

Several works have been proposed to estimate the mmWave channel with its new hybrid architec-

ture. Most of these works assume an FF narrowband mmWave channel model [156, 157]. However,

mmWave channels are wideband FS in reality, hence some recent papers have been published

considering this aspect [158, 159].

In this chapter we propose two algorithms for FS OFDM mmWave systems under the hybrid

architecture: 1) An FS codebook design algorithm based on the OMP technique. 2) An FS channel

estimation algorithm that generalizes the work in [156] to FS channels. The design of the FS hybrid

codebook is based on the well-known OMP technique. On the other hand, the proposed channel

estimation algorithm is inspired by the novel FF channel estimation algorithm proposed in [156].

The main contributions of this chapter can be summarized as follows:

• The design of an FS hybrid codebook to train precoders. In the proposed codebook, in

contrast to other works, our designed baseband training precoders are FS matrices, and not

FF matrices as usual, thus can be different for each subcarrier.

60
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• The design of an adaptive compressive sensing based algorithm that efficiently estimates the

multi-path mmWave channel using the proposed FS codebook.

Before delving into the codebook design and our proposed channel estimation algorithm, we pro-

vide in the following section a detailed comprehensive review of the channel estimation techniques

for mmWave systems.

3.2 Review of Channel Estimation Techniques for Hy-

brid Architecture Systems

For the sake of attaining more precoding gains as well as to be able to precode simultaneously mul-

tiple data streams, numerous studies have been proposed to split the precoding process into analog

and digital domains [111, 53]. Moreover, to overcome the limitations of analog-only beamforming

mmWave systems, constrained by the analog phase shifters amplitude which has to be constant,

and by the potentially low-resolution signal phase control, several works have adopted the joint

analog-digital hybrid architecture. Some channel estimation methods with this hybrid architecture

have been proposed taking into account the aforementioned constraints. Most of these works as-

sume a FF narrowband mmWave channel model [55, 160, 161, 111, 162, 103, 163, 164]. However,

several papers have been proposed focusing on the FS channel case [118, 119, 120]. In the following

paragraphs, we will first present the different approaches for mmWave channel estimation with

hybrid architecture when the system is narrowband, before presenting the research works under

the FS channel assumption.

3.2.1 Techniques for Narrowband Systems

Different approaches are employed to estimate the FF mmWave channel including divide-and-

conquer, ping-pong, mode-by-mode approaches and many others. These approaches are explained

below in addition to other methods, and they are listed in Table 3.1 with their respective references.
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Table 3.1: Channel estimation algorithms for narrowband hybrid mmWave systems.
Reference Year Approach Scenario UL/DL 2D/3D Complexity Description

Alkhateeb et
al. [111]

2014
Divide-and-
conquer

Single-
user

DL 2D O(V L2⌈V L/NRF⌉ logV (N/L))
OMP, LSE

Lee et al.
[103]

2014 Open-loop
Single-
user

Not
specified

2D O(LV 2N2) OMP, MG-OMP, LSE

He et al. [165] 2014
Mode-by-
mode

Single-
user

UL/DL 2D Not specified
A temporally correlated NLOS
channel, based on the TDD

correlation statistics

Schniter et al.
[87]

2014
Aperture
shaping

Not
specified

Not
specified

2D Not specified LASSO, LMMSE

Alkhateeb et
al. [112]

2014 Ping-ping
Single-
user

UL/DL 2D O(V L2NBS logV (N/L))
OMP, no feedback is needed

Payami et al.
[166]

2015 Ping-pong
Single-
user

Not
specified

2D
⌈N/NRF⌉

measurements to scan
all N directions

The training time doesn’t scale
with the number of multi-path

components

Kokshoorn et
al. [167]

2015
Overlapped

beam
patterns

Single-
user

Not
specified

2D
V 2

log2
2(V+1)

reduction

compared to [111]

MRC, used to track fast changing
channels

Peng et al.
[113]

2015 AAVE
Single-
user

UL 2D 2NRF time slots
CS-based technique, enhances the
angular estimation resolution

Montagner et
al. [168]

2015 2D DFT
Single-
user

Not
specified

2D ⌈ NDT
NRF,MS

⌉⌈ NDB
NRF,BS

⌉NRF,BS

time slots

DFT, iterative cancellation
method

Mendez-rial et
al. [114]

2015 Switches
Single-
user

DL 2D Not specified OMP, M-OMP

Chiang et al.
[115]

2016
SVD

avoidance
Single-
user

Not
specified

Not
specified

Not specified
OMP, it exploits the

orthogonality between the array
propagation vectors

Lu et al. [169] 2016
Adaptive
DFT

Single-
user

DL 2D ⌈ NDT
NRF,MS

⌉⌈ NDB
NRF,BS

⌉NRF,BS

time slots

DFT, a feedback is adopted to
improve the accuracy

Han et al.
[116]

2016
Two-stage
asymmetric

Multi-
user

DL 2D Not specified Exhaustive search, CS

Park et al.
[117]

2016
Spatial

covariance
Single-
user

UL
Not

specified
Not specified

OMP, S-OMP, C-OMP, DS-OMP,
DC-OMP

Zhou et al.
[170]

2016

CANDE-
COMP/-
PARAFAC

(C/P)

Multi-
user

UL 2D O(G2
1G

2
2+T

′TNRF,BS)
C/P, referred to as tensor rank

decomposition

Guo et al.
[171]

2017
2D

beamspace
MUSIC

Single-
user

Not
specified

2D

The main complexity
comes from (i) the

eigenvalue
decomposition:

O(N3
RF,BSN

3
RF,MS) (ii)

the grid search:
O(G2G1N

2
RF,BSN

2
RF,MS)

MUSIC, LSE, it exploits the
large-scale fading property of

path directions

Guo et al.
[172]

2019
Dimension-
deficient

Single-
user

UL 2D O(NRFNBS(NMSL)
3)

CoSaMP, it reduces the influence
of accidental errors
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Figure 3.1: An example of the beam patterns adopted in the first (a) and second (b) stages
in [111] when K = 3, where Sk, k ∈ {1, . . . , K} denotes the sub-ranges in each stage.

Divide-and-conquer approach

In [111] a low-complexity adaptive channel estimation algorithm has been proposed for narrowband

mmWave channel with large antenna arrays and a few number of RF units at both the BS and MS

sides. The authors assumed that the amplitude of phase shifters is constant, and that the phases

are quantized. The algorithm divides the estimation process into several stages as shown in figure

3.1. At each stage, the AoAs/AoDs angular ranges are divided into V non-overlapped angular

sub-ranges, V beam patterns are used to send the pilot signal and V beam patterns are used to

combine the signal at the RX. So each beam pattern at the TX is combined by V beam patterns at

the RX, as a result, each stage needs V 2 time slots to span all the combinations of transmit-receive

beam patterns. The beam patterns are taken from a predefined codebook designed and proposed

by the authors. The process is then continued by calculating the magnitudes of the V 2 received

signals to determine or conquer the next AoAs/AoDs angular sub-range for the next stage. At

each stage, the process pursues the same way as in the previous stage, in which it divides the

chosen AoDs sub-range at the TX and AoAs sub-range at the RX into V sub-ranges. It proceeds

this way until it achieves the desired AoAs/AoDs resolution. This algorithm, initially proposed

for single-path and multi-path cases, needs V 2⌈logV (max(NBS, NMS))⌉ time slots for each channel

path. Such algorithm is not fast enough to track the rapid variations of mmWave channels which

could be a major drawback. Moreover, this algorithm requires an exclusive feedback channel.
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Ping-pong approaches

Based on the same codebook design of [111], the authors appended their work in [112] by proposing

another estimation algorithm that doesn’t need feedback. The developed algorithm uses ping-pong

iterations and requires a complexity of O(V L2NBS logV (N/L)), to acquire the channel parameters,

where the AoAs, and AoDs are taken from a uniform grid of N points. Two ping-pong stages

are done in each stage of the adaptive algorithm in [112]. In the first stage, the BS utilizes a

relatively wide beamforming vector, while the MS uses a number of beamforming vectors to sense

the received signal. The BS-MS rules are switched in the second ping-pong stage, allowing the BS to

choose a narrower beamforming vector. In [166] a two-stage algorithm for single-user (SU) channel

estimation is presented as well as a codebook design which is similar to that in [112]. The algorithm

is characterized by a two-stage handshaking between the TX and the RX. During the first stage,

the TX uses one transmit antenna to send an omni-directional signal and correspondingly the RX

senses and scans its multiple directions to detect the AoAs, subsequently the roles are exchanged at

the second stage such that the RX sends a pilot signal at the detected angles only. The two-stage

estimation algorithm is illustrated in figure 3.2. It needs ⌈N/NRF⌉ measurements to scan all N

required directions, where NRF is the number of the RF chains in the system. Moreover, its training

time doesn’t scale with the number of multi-path components, unlike the channel estimation method

in [112].

Overlapped beam patterns approach

[167] outlined a fast channel estimation algorithm by proposing the overlapped beam patterns esti-

mation concept. This concept reduces the time slots needed to estimate the channel by V 2

log22(V+1)

compared to [111], with a slight degradation in performance. This small sacrifice in degradation

can be accepted when tracking fast changing channels is required. Indeed, the concept is to use a

smaller number of overlapped beam patterns for the same number of sub-ranges to estimate the

channel, instead of assigning one beam pattern for each sub-range as in [111] in which the number

of beam patterns should be equal to the number of sub-ranges. The algorithm is illustrated in

figure 3.3.



HYBRID PRECODING AND CHANNEL ESTIMATION FOR FS MMWAVE MIMO
OFDM SYSTEMS 65

Figure 3.2: Illustration of the two-stage estimation algorithm in [166], the blue colored arrows
represent the AoAs and AoDs at the BS and MS; (a) the BS sends an omni-directional signal
over all directions, (b) the MS scans the directions, in this case we have two AoAs at MS at
135◦ and 180◦, (c) the MS sends through its AoDs, (d) the BS scans the directions, in this
case we have two AoAs at BS at 0◦ and 45◦.
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Figure 3.3: The overlapped beam patterns adopted in the first (a) and second (b) stages
when V = 3

Open-loop approach

An open-loop channel estimation technique that doesn’t need a feedback loop was proposed in

[103]. The algorithm is provided for an SU mmWave system, and is based on CS techniques. As

for many channel estimation algorithms, the authors used the OMP and least-squares estimation

(LSE) techniques to perform the estimation of the AoAs/AoDs and gains, respectively. However,

they also proposed the adaptive MG-OMP, this new version of OMP enhances the estimates of

AoAs/AoDs by refining these estimates just around the regions where the AoAs/AoDs are present

which reduces MG-OMP complexity over OMP. Through their computer simulations, the authors

showed that CS techniques, OMP and MG-OMP, outperforms the LSE ones. In addition, the

complexity reduction gained by the MG-OMP was estimated.
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Mode-by-mode approach

Another scheme was proposed in [165] to estimate a temporally correlated NLOS mmWave MIMO

channel. The authors, first modified the parametric channel model to an evolution temporally

correlated MIMO channel model to successfully track the channel variations. The system is based

on the TDD correlation statistics and it exploits the reciprocity of the channel. The proposed

algorithm updates each column of the analog precoder and combiner, this approach is called the

mode-by-mode approach, in which each mode represents one column of the analog precoder and

combiner. For each mode, a codebook is built using a group of rotation matrices that rotate

the previous mode to reconstruct the new mode, then the algorithm chooses the codeword that

maximizes the received power. The digital precoder and combiner are then constructed using

conventional pilot-aided estimation of the effective channel.

Aperture shaping approach

In [87], P. Schniter and A. Sayeed proposed a technique termed as aperture shaping to enhance

the sparsity of the mmWave MIMO channel. Briefly, aperture shaping is performed by applying

a fixed gain at each antenna at both the TX and RX. The shaping coefficients are optimised

to maximize the signal-to-interference ratio. In addition, they implemented a mmWave system

that uses modulation and demodulation techniques based on FFT to further expose the channel

sparsity. They solved the sparsity problem using LASSO [101], where it was shown that their

procedure approaches the perfect-CSI capacity for a mmWave system.

AAVE approach

Based on the same assumptions as in [111], the authors in [113] proposed a new concept called

antenna array with virtual elements (AAVE), that extends the real antenna arrays at both the

TX and RX to a new one by appending some Av virtual antennas without affecting the physical

array. The idea behind AAVE is to add some virtual antennas to the real physical antennas at

both the BS and MS, in order to enhance the angular estimation resolution. However, the scheme

assures that no data is sent over the virtual antennas to guarantee that no physical change has been
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introduced to the antenna arrays. Based on AAVE, [113] develops a CS angle estimation method

with less overhead and delay than [111]. The proposed method with AAVE can obtain a resolution

of O(1/Av) which is better than O(1/N) in [111, 173, 167], remind that N is the number of points

of the uniform grid.

2D DFT approach

In [168], a mmWave channel estimation method was proposed based on the 2D DFT of the two-

dimensional complex modes based on the AoDs and AoAs. The estimation of the channel parame-

ters is done using the iterative cancellation method. In detail, the approach estimates the channel

parameters for each path using the DFT samples, after cancelling the previous estimated parameters

in each iteration. This technique requires a training sequence of NTS = ⌈ NDT
NRF,MS

⌉⌈ NDB
NRF,BS

⌉NRF,BS

time slots, where NRF,BS, NRF,MS are the number of RF chains at the BS and MS, respectively. ND

and MD are two suitable integer parameters to be chosen depending on the length of the training

sequence NTS. The method showed low complexity and performed close to a known channel system.

Another channel estimation algorithm for a DL SU mmWave system was proposed in [169] based

on the DFT algorithm in [168]. The algorithm uses exactly the same DFT technique provided

in [168], while adopting a feedback to the BS to improve the estimation accuracy. The algorithm

is illustrated as follows: First, the BS sends its training sequence to the MS, the MS estimates

the channel using the DFT technique, and determines if the estimation is accurate based on an

adjustable threshold. Second, the MS returns YES or NO to the BS depending on the accuracy of

its estimation. Third, the BS readjusts the length of the training sequence adaptively according to

the feedback.

Switches approach; SVD avoidance approach

In [114], the authors proposed a new hybrid architecture for a DL SU mmWave system using

switches as an alternative for phase shifters, to reduce cost, complexity and power consumption,

especially at MSs where these parameters are crucial. Figure 3.4 depicts the proposed hybrid

architecture which is slightly different from the aforementioned one as it was presented in figure

1.2(b). A new CS-based channel estimation algorithm was also developed. A multiple measurement
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Figure 3.4: Hybrid mmWave MS architecture implementing switches instead of phase shifters

vector OMP (M-OMP) was considered in [174] instead of the single measurement vector OMP.

Phase shifters architecture versus switches architecture were compared, the results showed a slight

better performance of the architecture implementing switches over phase shifters one. A modified

version of the aforementioned algorithm was proposed in [115] for an SU mmWave system. The

authors intended to reduce the computational complexity and feedback overhead to the TX. The

algorithm is also based on the OMP, but unlike to [114] it avoids the computation of the channel

SVD at the RX by exploiting the orthogonality between the array propagation vectors. In contrast

to [114], where the whole reconstructed precoder is sent back to the TX through the feedback link,

the algorithm in [115] diminishes the feedback overhead, since it aims to reconstruct the precoder

at the TX, after obtaining the codebook indices through the feedback link.

Two-stage asymmetric approach

An asymmetric channel estimation approach was proposed in [116] for a DL MU mmWave system.

The MU system is characterized by a hybrid BS and analog-only beamforming at the MSs with one

RF chain for each MS. The proposed algorithm is a two-stage asymmetric approach, an exhaustive

search stage, followed by a CS estimation stage. At the first phase, the BS sends the omni-directional

training signals to the MSs, the MSs search in exhaustive manner for the best combining vectors

to find the AoAs. Following the first phase, a second phase of CS estimation is performed, where

the MSs fix their receiving beams to the best ones found at the first phase, while utilizing CS tools

to estimate their channel parameters. The two-stage algorithm is depicted in figure 3.5.
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Figure 3.5: The two-stage asymmetric estimation approach in [116]
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Figure 3.6: Different sparse matrix types (a) unstructured sparse matrix (b) sparse rows
matrix (c) sparse Hermitian matrix.

Spatial covariance approach

In [117], a channel estimation algorithms based on estimating the spatial covariance for a TDD

UL SU mmWave channel were proposed. Unlike the two-step approach, where first it is needed

to estimate the channel, followed by a second step of channel covariance calculation. The authors

proposed to estimate the channel covariance directly, and without estimating the channel explicitly.

To overcome the need for estimating the channel explicitly, the authors exploited the Hermitian

property of the spatial covariance channel matrix. A sparse Hermitian matrix is shown in figure

3.6(c). Furthemore, the authors designed the covariance OMP (C-OMP) algorithm, which is based

on the OMP and simultaneous OMP (S-OMP), to exploit this property and to estimate the covari-

ance of the channel. C-OMP employs a quadratic form in its covariance calculations unlike OMP

and S-OMP where a linear form is used. As known, for a perfect recovery using CS techniques,

many measurements are required especially for time-varying channels. Accordingly, the authors

also proposed dynamic S-OMP (DS-OMP), which was inspired by S-OMP, to mitigate the num-

ber of measurements, similarly, dynamic C-OMP (DC-OMP) was introduced. Both DS-OMP and

DC-OMP can be applied to a time-varying analog combining matrix in a time-varying channel.
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Over-complete dictionary approach

Another channel estimation algorithm for a fully-connected UL SU mmWave system has been

developed in [172]. The authors described the channel estimation problem by dimension-deficient

which results from the fact that the number of RF chains is a lot smaller than the number of

antennas, hence the received signal does not contain full CSI. The authors treated this issue by

adopting an adaptive over-complete dictionary, then by estimating the channel parameters using

CoSaMP which improves the OMP technique by reducing the influence of accidental errors. The

proposed algorithm showed more robustness against noise, better performance compared with non-

adaptive CS techniques, with SE close to perfect CSI.

Other approaches

Some works tried to compete with CS algorithms in estimating the mmWave channel. Based on

a technique termed CANDECOMP/PARAFAC (C/P) decomposition, an interesting method was

carried out in [170] and was also compared to some CS techniques. In this regard, the UL MU

mmWave channel can be estimated by means of the C/P decomposition method. This procedure

also referred to as tensor rank decomposition, can be viewed as a generalisation of the matrix

SVD to tensors. Please refer to [175] for more details. The authors stated that the C/P method

can be advantageous when compared to CS techniques in terms of computational complexity due

to the utilization of tensors. In addition, while it is somewhat troublesome to examine the right

recovery condition for generic dictionaries, this is not the case for the C/P method, hence it is

more easier to analyze and find the exact size of training overhead. Moreover, unlike CS methods,

the C/P doesn’t require the quantization of the continuous parameter space, consequently, no grid

quantization errors. The overall computational complexity of the proposed C/P method was shown

to be O(G2
1G

2
2+T

′TNRF,BS), where T and T ′ are respectively the number of frames and sub-frames

(each frame is divided into a number of sub-frames), and G2 and G1 are respectively the search

grid sizes within the considered beamforming sectors.

Another contribution to estimate an SU mmWave channel was achieved in [171] based on a 2D

beamspace multiple signal classification (MUSIC) method. The MUSIC method is used to estimate
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Table 3.2: Channel estimation algorithms for wideband hybrid mmWave systems.
Reference Year Scenario UL/DL 2D/3D Complexity Description

Venugopal et al. [118] 2017

Single-
user or
multi-
user

DL 2D Not specified CS, LSE, high complexity

Venugopal et al. [119] 2017

Single-
user or
multi-
user

Not
speci-
fied

2D or
3D

Not specified
OMP, DGMP, LSE, MMSE,

SC-FDE or OFDM are
considered

Rodriguez-fernandez et al. [120] 2017
Single-
user

Not
speci-
fied

2D Not specified

OMP, MSE, LSE, exploits
the common support

between the subcarriers to
reduce complexity

Rodriguez-fernandez et al. [121] 2018
Not

specified

Not
speci-
fied

2D

SW-OMP:
O(NRF,MST (K(G1G2 −

(j − 1))));
SS-SW-OMP+Th:

O(NRF,MST (Kp(G1G2 −
(j − 1))))

SW-OMP, SS-SW-OMP+Th,
provides a trade-off between
complexity and achievable

rate

Gao et al. [122] 2016
Multi-
user

UL 2D Not specified
DGMP, exploits the

angle-domain sparsity of FS
fading channels

Zhou et al. [176] 2017
Multi-
user

DL 2D O(T ′TK)
C/P, higher estimation

accuracy compared to OMP

Araujo et al. [123] 2014
Single-
user

DL 3D O(log(NRF,BS))
OMP, search region, a coarse

stage followed by a
refinement stage

Gonzalez-coma et al. [64] 2018
Multi-
user

UL 2D
O(NRF,MST (K(G1G2 −

(j − 1))))
SW-OMP

the path directions while the LSE one estimates the path gains. The suggested algorithm reduces

the computational overhead by exploiting the large-scale fading property of the path directions

which are believed to remain unchanged for each frame according to the measurement results

obtained in [20]. Hence the costly computation of path directions is executed only once per each

frame. The main computational complexity analysis of the algorithm brings out two major tasks

(i) the eigenvalue decomposition whose complexity is O(N3
RF,BSN

3
RF,MS) (ii) the grid search whose

complexity is O(G2G1N
2
RF,BSN

2
RF,MS).

3.2.2 Techniques for Wideband Systems

Most of the work done on mmWave channels estimation assumed the narrowband case. Such

assumption was found to be not realistic for aforementioned channels, but was considered as a first

step in the development of mmWave channel estimation. MmWave channels are wideband channels

in reality, and to be useful, channel estimation algorithms have to take this into consideration.

Recently, some works have been proposed to estimate the FS channels for mmWave hybrid systems,
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we review these works in the following. Table 3.2 provides a list of these research works.

Time-domain approach

In [118] a time-domain channel estimation algorithm was proposed for both single- and multi-user

fully-connected hybrid single-carrier mmWave systems. The authors have taken into account the

bandlimitting filter and the time required to reconfigure RF circuits. The proposed algorithm is

based on CS to estimate the AoAs/AoDs, and on the LSE or the MMSE to estimate the path gains.

Simulation results showed that the proposed algorithm provides low estimation error using small

training overhead, but the main drawback of this algorithm lies into its complexity.

Frequency-domain approaches

In [121], two frequency-domain channel estimation algorithms for a fully-connected OFDM

mmWave system were proposed based on the S-OMP method [177] and tested on real FS channel

models. The proposed algorithms provide a trade-off between complexity and achievable rate, and

consider the effects of the bandlimitting filter and the time required to reconfigure RF circuits. The

first algorithm termed as the simultaneous weighted OMP (SW-OMP) provides the best perfor-

mance compared to the second one since it exploits the information on the support coming from

every subcarrier of the OFDM system. While the second algorithm termed as subcarrier selection

SW-OMP + thresholding (SS-SW-OMP+Th) aims to exploit information from a reduced number

of subcarriers, hence it provides a lower complexity compared to SW-OMP. Both algorithms achieve

the Cramer-Rao lower bound. Comparisons were done for the proposed algorithms and other FS

mmWave channel estimation algorithms including structured sparsity adaptive matching pursuit

(SSAMP) [178] and distributed grid matching pursuit (DGMP) [122]. The simulation results show

a very good performance of the proposed algorithms.

Another frequency-domain algorithm was developed in [120], for a fully-connected OFDM

mmWave system. The algorithm was compared with the time-domain algorithm proposed in [118],

where it provides the same estimation error as the time-domain one, however with a lesser com-

plexity. The authors opted to use OMP and LSE techniques to estimate the sparse channel, and

exploited the common support between the subcarriers to gain more reduction in estimation com-
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plexity. In addition, they proposed to refine more the estimates using an algorithm they termed as

the joint channel estimation + local search (JCE+LS), which is based on MSE to know whether

an improvement of the estimates is needed or not.

In [122], a frequency-domain CS-based UL MU channel estimation algorithm was proposed

for OFDM mmWave system. The proposed DGMP algorithm aims to exploit the angle-domain

sparsity of FS fading channels, and solves the problem of the leakage power caused by the continuous

AoAs/AoDs. The simulation results showed a good performance of the proposed algorithm.

Based on the SW-OMP algorithm developed in [121], the authors in [64] proposed a joint

UL MU channel estimation method for an OFDM mmWave system. Afterwards, the UL channel

estimates and the reciprocity of TDD scheme were exploited to jointly design the precoders and

combiners in the DL.

Two-stage approach

A two-stage channel estimation algorithm has been proposed in [123] for an indoor SU DL mmWave

system, implementing FDD and OFDM, and operating at 60 GHz. The estimation algorithm is

based on two stages, a coarse stage followed by an amelioration stage. The first stage of the al-

gorithm is performed based on the OMP CS technique, which estimates the parameters of the

channel coarsely. Subsequently, the second stage is carried out to refine the estimates based on the

maximization of the energy of the received signal and using the so-called search region algorithm

as described in the paper. The proposed method can achieve a low pilot overhead of O(logNBS)

compared to the traditional LSE that requires a length of O(NBS), and shows a quite well perfor-

mance.

Other approaches

The authors in [119] developed channel estimation algorithms in the frequency-domain, in the

time-domain, as well as in the combined time/frequency domain. The basic concept is to use

compressive sensing in the frequency domain to estimate the AoAs/AoDs, and then use those

estimates to evaluate the channel gains and path delays in the time domain to acquire the full

channel. Both single- and multi-user fully-connected hybrid mmWave systems implementing either
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single carrier-frequency domain equalization (SC-FDE) or OFDM are considered. The estimators

are based on CS, where OMP is the dominant technique used to estimate AoAs/AoDs, while LSE

is used to estimate channel gains, whether for the time-domain or the frequency-domain. However,

for the combined time/frequency domain, OMP or DGMP [122] are used to estimate AoAs/AoDs,

and LSE or MMSE to recover the gains. The results showed a good error performance with low

overhead, and a further reduction in complexity offered by the combined time/frequency algorithm.

Similarly to the CANDECOMP/PARAFAC narrowband mmWave channel estimation algo-

rithm proposed in [170], a MU DL channel estimation technique for OFDM mmWave systems

was proposed in [176]. The authors developed the Cramer-Rao bound results to describe the best

asymptotically achievable performance of the algorithm, then they compared the proposed algo-

rithm to the OMP method, where it was shown to provide a complexity similar to the OMP method,

but with higher estimation accuracy.

3.2.3 Conclusions

The usage of analog-only beamforming for channel estimation in mmWave systems is constrained

by many limitations, which can be avoided using the hybrid architecture. In this section we have

seen different channnel estimation techniques for both narrowband and wideband hybrid mmWave

OFDM systems. Clearly the aim of most of the work that has been delivered so far for hybrid

architecture was for 2D channel estimation, this work should be extended to the 3D case also.

It can be also observed that there exist plenty of research works on channel estimation for the

narrowband case, while only few papers have been proposed for the wideband one. It is known

that mmWave channels are wideband in nature, hence some further future steps have to be taken

in this regard which supported our motivation to study more in this regard.

3.3 System Model

Consider the OFDM system model given in Figure 3.7, where we have a BS with NBS antennas

and NRF RF chains is communicating with a MS with NMS antennas and NRF RF chains. We

assume that the BS is using NS = 1 stream of data, where the stream is length-K symbol block as
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Figure 3.7: Architecture of mmWave hybrid MIMO OFDM TX and RX.

seen in Figure 3.7, such that NS ≤ NRF ≤ NBS and NS ≤ NRF ≤ NMS. During the training phase,

we assume that the BS uses the digital precoders FBB[k] ∈ CNRF×NS , and the analog precoder

FRF ∈ CNBS×NRF , with training symbols satisfying E[s[k]s∗[k]] = 1
NS

INS
. Note that, in contrast

to other works, our baseband training precoders FBB[k] are FS matrices, thus can be different for

each subcarrier, and, as usual, the analog precoder FRF is an FF matrix.

At the MS, assuming perfect carrier and frequency offset synchronization, after combining with

the analog and digital combiners WRF ∈ CNMS×NRF ,WBB[k] ∈ CNRF×NS , respectively, the received

signal can be expressed as

y[k] = W∗
BB[k]W

∗
RFH[k]FRFFBB[k]s[k] + n[k], (3.1)

where n[k] is the noise vector corrupting the received signal, such that E[n[k]n[k]∗] =

σ2W∗
BB[k]W

∗
RFWRFWBB[k], and σ is the noise variance. The main objective of the proposed

channel estimation algorithm is to estimate H[k] by estimating its parameters.
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3.4 Frequency-Selective Hybrid Training Codebook

Design

A lot of studies have been conducted on designing a multi-resolution codebook as in [43, 179, 45,

180, 181]. These works concentrated on analog-only beamforming and on the physical design of

the beam patterns. Analog-only beamforming is not optimal and has some drawbacks, especially

for mmWave systems, we list some of them:

1. Designing non-overlapping beam patterns is troublesome due to the quantized phase shifters,

thus it may require to perform an exhaustive search over a large space of the large number

of antennas.

2. For non-ULAs, designing the analog-only beamforming vectors is not intuitive and compli-

cated compared to systems with ULAs.

In this section, we present the design of a multi-resolution beamforming codebook based on the

approach used in [182]. While the algorithm in [182] assumes perfect channel state information

(PCSI), this work handles mmWave systems without a prior knowledge of the channel. We explain

the proposed algorithm for the DL model, the same algorithm, however, can be directly applied to

the UL system. Here, we focus on the design of the BS training precoding codebook F , a similar

approach can be followed to construct the MS training codebookW. Absolutely, the RF limitations

including the constant amplitude phase shifters with quantized phases is considered. The codebook

is general for ULAs/non-ULAs, and its complexity is low, furthermore, it performs better than the

analog-only beamforming codebooks due to the additional digital processing.

3.4.1 Codebook Structure

The multi-resolution codebook as the name tells is made up of S levels with different resolutions,

Fs, s = 1, 2, . . . , S. For each level, specific designed beamforming vectors with specific beamwidths

will be used in the corresponding training stage to estimate the mmWave channel. An example of

the beam patterns for the apoted codebook has been shown in Fig. 3.1.



HYBRID PRECODING AND CHANNEL ESTIMATION FOR FS MMWAVE MIMO
OFDM SYSTEMS 77

For each codebook level s, the beamforming vectors are divided into V s−1 subsets of V beam-

forming vectors. A certain range of AoDs is provided for each subset v in each level s. This AoDs

range is further partitioned into V sub-ranges, such that each of the V beamforming vectors for

each subset is designed to have an almost equal projection on the vectors aBS(ϕ̄u), with u in this

sub-range, and zero projection on the other vectors. Physically, this entails the creation of a beam-

forming vector with a specific beamwidth given by these sub-ranges and directed in predetermined

directions.

While this codebook structure is similar to that of [43, 45], which also contain many levels with

beamforming vectors of varying beamwidths, this codebook’s strategy defines each beamforming

vector in terms of the set of quantized angles which it covers in a different way. This differs

from prior work [43, 45], which defined each vector in terms of the center beamforming angle and

beamwidth. This distinction leads to a new formulation of the arbitrary beamwidth beamforming

design problem, as well as an entirely new method for generating these vectors using analog/digital

architecture, as will be discussed shortly. As mentioned earlier, this codebook design incorporates

the digital layer along with the analog one, this additional digital processing layer provides greater

levels of freedom to the beamforming design problem which can be leveraged to obtain better

performance in the beamforming patterns.

3.4.2 Design of the Codebook Beamforming Vectors

For each codebook level s, and subset v, we have M beamforming vectors [F(s,v)]:,m, m =

1, 2, . . . ,M , which are designed such that

[F(s,v)]:,maBS(ϕ̄u) =


Cs if u ∈ I(s,v,m)

0 if u /∈ I(s,v,m)

,

where

I(s,v,m) =

{
N

LV s
(V (v − 1) +m− 1) + 1, . . . ,

N

LV s
(V (v − 1) +m)

}
,
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is the set that defines the sub-range of AoDs associated with the beamforming vector [F(s,v)]:,m,

and Cs is a normalization constant that satisfies ∥ F(s,v) ∥F= V .

The design objective of the beamforming vectors F(s,v) in (3.4.2) can be expressed in a more

compact form as

A∗
BS,DF(s,v) = CsG(s,v)[k], (3.2)

where G(s,v)[k] is an N × V matrix in which for each column m, it contains 1’s in the locations u,

u ∈ I(s,v,m), and nulls in the locations u, u /∈ I(s,v,m). Notice that the BS AoDs matrix ABS,D is

an over-complete dictionary with N ≥ NBS, where N is the resolution of the codebook also defined

in section 1.5. In other words, (3.2) represents an inconsistent system of which the approximate

solution is provided by

F(s,v)[k] = Cs(ABS,DA
∗
BS,D)

−1A∗
BS,DG(s,v)[k], (3.3)

As every beamforming vector will be individually utilized in a particular time instant, we will

design each of them independently in terms of the hybrid analog/digital precoders. In consequence,

the design of the hybrid analog and digital training precoding matrices is accomplished by solving

[127]

(F⋆RF,(s,v), [F
⋆
BB,(s,v)[k]]:,m) =

argmin ∥[F(s,v)[k]]:,m − FRF,(s,v)[FBB,(s,v)[k]]:,m∥F,

s.t. [FRF,(s,v)]:,i ∈ {[Acan]:,q|1 ≤ q ≤ Ncan},

i = 1, 2, . . . NRF

∥FRF,(s,v)[FBB,(s,v)[k]]:,m∥2F = 1,

(3.4)
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where

[F(s,v)[k]]:,m = Cs(ABS,DA
∗
BS,D)

−1A∗
BS,D[G(s,v)[k]]:,m, (3.5)

and the beamforming candidate matrix Acan is an NBS × Ncan matrix carrying the finite set of

possible analog beamforming vectors. In fact, the columns of the candidate matrix Acan can be

generated to satisfy arbitrary analog beamforming constraints. We consider on our simulation a

candidate matrix Acanthat has elements satisfying the NQ-bit quantized phase shifts as ejkQ2π/2
NQ

,

kQ = 1, 2, . . . 2NQ − 1, and Ncan is the number of possible analog beamforming vectors.

We solve this problem using the same methodology given in chapter 2 in section 2.4. Therefore

the solution is provided in Algorithm 1 illustrated in chapter 2.

3.5 Channel Model

In this section we propose an algorithm that uses the proposed codebook developed in section 2.4

to estimate the multi-path mmWave channel. We will explain the proposed algorithm for the DL

model. The same algorithm, however, can be directly applied to the UL system.

3.5.1 Channel in the Time-Domain

We assume that the MIMO channel between the BS and MS is FS mmWave channel, with a delay

tap length Nc in the time domain. The d-th delap tap of the channel is represented by an NRF×NBS

matrix denoted as Hd, d = 1, . . . , Nc−1, which can be represented according to the geometric model

[129]

Hd =

√
NBSNMS

Lϱ

L∑
l=1

αlprc (dTs − τl)aBS(ϕl)a
∗
MS(θl), (3.6)

where ϱ denotes the path-loss between the BS and MS, L denotes the number of paths, prc(τ)

is a filter that includes the effects of pulse-shaping and other lowpass filtering evaluated at τ , Ts

and τl are the sampling period and the delay, respectively. αl ∈ C is the complex gain of the lth

path, θl ∈ [0, 2π) and ϕl ∈ [0, 2π) are the AoAs/AoDs, of the lth path, and aMS(θl) ∈ CNMS×1 and

aBS(ϕl) ∈ CNBS×1 are the array steering vectors for the receive and transmit antennas, respectively.
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We can further exhibit each of the channel matrices in eq (3.6) in a more compact form as

Hd = AMS∆dA
∗
BS, (3.7)

where ∆d ∈ CL×L is diagonal with non-zero complex entries, and AMS ∈ CNMS×L and ABS ∈

CNBS×L contain the receive and transmit array steering vectors aMS(θl) and aBS(ϕl), respectively.

3.5.2 Channel in the Frequency-Domain

On the other hand, the channel in the frequency-domain for each subcarrier k can be expressed in

terms of the different delay taps as

H[k] =

Nc−1∑
d=0

Hde
−j 2πk

K
d = AMS∆[k]A∗

BS, (3.8)

where ∆[k] contains the path gains, pulse shaping filter, and delays of the channel in the frequency-

domain.

3.5.3 Grid Quantization

We assume in out system that the AoAs/AoDs are taken from a uniform grid of points. Math-

ematically, we can describe this as follows: ϕl ∈ {0, 2π/GBS, . . . , 2π(GBS − 1)/GBS}, θl ∈

{0, 2π/GMS, . . . , 2π(GMS − 1)/GMS}, l = 1, 2, . . . , L, where GBS, GMS are the number of points

in the unform grid at BS and MS, respectively.

Channel in the Time-Domain with Grid Quantization

Now by neglecting the grid quantization error, and using the quantization development which has

been just described, we can approximate the channel in (3.7) using the extended virtual channel

model defined in [65]

Hd ≈ ÃMS∆
v
dÃ

∗
BS, (3.9)

where ∆v
d ∈ CGMS×GBS is a sparse matrix which contains the path gains of the quantized spatial
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frequencies in the non-zero elements. The dictionary matrices ÃBS and ÃMS contain the TX and

RX array response vectors evaluated on a grid of size GMS for the AoAs and a grid of size GBS for

the AoDs.

Channel in the Frequency-Domain with Grid Quantization

The matrix in (3.8) can be expressed in terms of the sparse matrices ∆v
d and the dictionaries

H[k] ≈ ÃMS

(
Nc−1∑
d=0

∆v
de

−j 2πk
K
d

)
Ã∗

BS ≈ ÃMS∆
v[k]Ã∗

BS, (3.10)

to aid exhibit the sparse structure later.

3.6 A Sparse Formulation of the mmWave Channel Es-

timation Problem

Consider the system described in section 3.3. It is important to rewrite again equation (3.1)

y[k] = W∗
BB[k]W

∗
RFH[k]FRFFBB[k]s[k] + n[k], (3.11)

Using the result vec {AXC} = (CT ⊗A) vec {X}, the received signal in (3.11) can be written

as

yvec[k] = vec {W∗
BB[k]W

∗
RFH[k]FRFFBB[k]s[k]}+ vec {n[k]} (3.12)

=(s[k]TFBB[k]
TFT

RF ⊗W∗
BB[k]

∗W∗
RF) vec {H[k]}+ vec {n[k]}, (3.13)

now, again using the result vec {AXC} = (CT ⊗A) vec {X}, with the frequency-domain channel

in (3.8), equation (3.13) can be rewritten as

yvec[k] = (s[k]TFBB[k]
TFT

RF ⊗W∗
BB[k]W

∗
RF)(A

T
BS ◦AMS) vec {∆[k]}+ vec {n[k]}, (3.14)
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the matrix (AT
BS ◦AMS) is an NBSNMS × L matrix in which each column has the form (a∗BS(ϕl)⊗

aMS(θl)), l = 1, 2, . . . , L, i.e., each column l represents the Kronecker product of the BS and MS

array response vectors associated with the AoAs/AoDs of the lth path of the channel, and ◦

represents the matrix entrywise product.

To complete the problem formulation, we utilize the quantization process defined in subsection

3.5.3 for a uniform grid of GBS = GMS = N points, with N ≫ L. Neglecting the grid quantization

error, we can approximate vec {y[k]} in (3.14) as

yvec[k] =(s[k]TFBB[k]
TFT

RF ⊗W∗
BB[k]W

∗
RF)(Ã

T
BS ◦ ÃMS) vec {∆v[k]}+ vec {n[k]} (3.15)

=(s[k]TFBB[k]
TFT

RF ⊗W∗
BB[k]W

∗
RF)ADz[k] + vec {n[k]}, (3.16)

where AD = (ÃT
BS ◦ ÃMS) is an NBSNMS × N2 dictionary matrix that consists of the column

vectors of the form (a∗BS(ϕ̄u) ⊗ aMS(θ̄v)), in which ϕ̄u, and θ̄v the uth, and vth points, re-

spectively, of the angles uniform grid, in other words, ϕ̄u = 2πu/N, u = 1, 2, . . . , N − 1, and

θ̄v = 2πv/N, v = 1, 2, . . . , N − 1. z[k] = vec {∆v[k]} is an N2 × 1 vector that contains the path

gains of the corresponding quantized directions. Note that in order to detect the AoAs and AoDs

of the dominant paths of the channel, we need to detect the columns of AD that correspond to non-

zero elements of z[k]. Afterwards, the values of the path gains can be obtained through computing

the values of the corresponding elements in z[k].

The formulation of the vectorized received signal, which is given in (3.16), is a sparse formulation

of the channel estimation problem, since z[k] has L non-zero elements out of N elements, where

L ≪ N . Basically, the number of measurements needed to detect z[k] is very small compared to

N2. Given the obtained formulation in (3.16), CS tools as described in chapter 1 section 1.5 can

be exploited to design estimation algorithms to obtained the quantized AoAs/AoDs.

In order to make things less complex, we prefer to utilize the Kronecker product properties and

rewrite ((3.16)) as [181]
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yvec[k] =(s[k]TFBB[k]
TFT

RFA
T
BS,D ⊗W∗

BB[k]W
∗
RFAMS,D)ADz[k] + vec {n[k]} (3.17)

=s[k]TFBB[k]
TFT

RFA
T
BS,DzBS[k]⊗W∗

BB[k]W
∗
RFAMS,DzMS[k] + vec {n[k]}, (3.18)

where zBS[k], and zMS[k] are two N × 1 sparse vectors that have non-zero elements in the

locations that correspond to the AoDs, and AoAs, respectively. ABS,D, and AMS,D are NBS ×N ,

and NMS×N dictionary matrices that consist of column vectors of the form a∗BS(ϕ̄u), and aMS(θ̄v),

the quantized AoDs, and AoAs, respectively.

The standard CS theory tells us that the number of measurements needed to assure the detection

of the L-sparse vector with high probability is of order O(L log(N/L)) [183]. In fact, as these

results are theoretically proved, unfortunately, they lake extensive implementations for practical

applications. Hence, we focus on adaptive CS tools which provides some ideas on the design of the

training vectors.

3.7 Channel Estimation for Frequency-Selective

MmWave Channels

In this section, we examine the sparse channel estimation problem formulated in (3.6), and we

propose an algorithm that adaptively uses the proposed hierarchical codebook developed in section

2.4 to estimate the multi-path mmWave channel. We explain the proposed algorithm for the DL

model. The same algorithm, however, can be directly applied to the UL system.

As mention earlier, we focus on adaptive CS [161, 184, 185], in which the training process is

partitioned into a number of stages. For each stage, the precoding and combining matrices are

calculated using the output of the earlier stages, hence they are so called ’adaptive’ CS. Basically,

if we divide the training process into S stages, then the vectorized received signals of these stages

are
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y(1)[k] =(s[k]T(1)FBB,(1)[k]
TFT

RF,(1)A
T
BS,D ⊗W∗

BB,(1)[k]W
∗
RF,(1)AMS,D)ADz[k] + n1[k]

y(2)[k] =(s[k]T(2)FBB,(2)[k]
TFT

RF,(2)A
T
BS,D ⊗W∗

BB,(2)[k]W
∗
RF,(2)AMS,D)ADz[k] + n2[k]

...

y(S)[k] =(s[k]T(S)FBB,(S)[k]
TFT

RF,(S)A
T
BS,D ⊗W∗

BB,(S)[k]W
∗
RF,(S)AMS,D)ADz[k] + nS [k] (3.19)

As mentioned earlier, the design of the training precoding and measurements matrices for each

stage s, depend on the previous vectorized received vectors y(1)[k],y(2)[k], . . . ,y(s)[k]. Adaptive CS

algorithms performs better compared to standard CS tools for low SNR [161, 184, 185], which is

the typical case for mmWave systems. In addition, these adaptive CS tools, especially those rely in

successive bisections, provide some insights that can be used to design the training precoding and

combining matrices.

In the proposed channel estimation algorithm presented in subsection 3.7, the training precoding

and combining matrices are adaptively designed based on the codebook defined in section 3.4.

Basically, the algorithm begins initially by splitting the received vector in (3.19) into a number of

partitions, which in turns divides the AoAs/AoDs range into a number of intervals, then design the

training precoding and combining matrices of the first stage to sense those partitions. Afterwards,

the algorithm tries to find the partition(s) which contain the non-zero element(s), which in turns

will be further divided into smaller partitions in the later stages until all the non-zero elements,

with the AoAs/AoDs with the required resolution are found.

Adaptive Estimation Algorithm for MmWave Channels

The pseudo-code of the proposed channel estimation algorithm is given in Algorithm 3. As opposed

to the algorithm in [156], which was mainly proposed for narrowband mmWave channels with

FF codebook, our proposed algorithm handles FS mmWave systems and uses our proposed FS

codebook.

Algorithm 3 has two main parts. In the initialization part, the history matrices TBS and TMS
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are initialized. These matrices are used to save the trajectories of the obtained paths at the BS and

MS, respectively, in order to remove the contributions of these obtained paths in the next iterations.

Moreover, the algorithm divides the estimation process into S stages, which is calculated at step 2

of the initialization part.
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Figure 3.8: SEs of a 64× 32 MIMO OFDM mmWave system, based on the proposed hybrid
precoding and channel estimation algorithms, as a function of SNR.
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Algorithm 3 Proposed Channel Estimation For Frequency-Selective MmWave Channels

Require: BS and MS know N, V, L, and have F ,W

Initialization
1: TBS

1,1[k] = {1, . . . , 1}, TMS
1,1 [k] = {1, . . . , 1}

2: S = logV (N/L)

Channel Estimation Procedure
3: for l ≤ L do
4: for s ≤ S do
5: for k ≤ K do
6: for mBS ≤ V L do
7: BS uses [FBB,(s,TBS

l,s [k])
[k]]:,mBS

8: BS uses FRF,(s,TBS
l,s [k])

9: for mMS ≤ V L do
10: MS uses WRF,(s,TMS

l,s [k])

11: MS uses [WBB,(s,TMS
l,s [k])[k]]:,mMS

12: end for
13: After MS measurements:
14: ymBS

[k] = W∗
BB,(s,TMS

l,s [k])
[k] . . .

W∗
RF,(s,TMS

l,s [k])
H[k]FRF,(s,TBS

l,s [k])
[FBB,(s,TBS

l,s [k])
[k]]:,mBS

+ n[k]

15: end for
16: After BS measurements:
17: y(s)[k] = [yT

1 [k],y
T
2 [k], . . . ,y

T
V [k]]

T

18: for p = 1 ≤ l − 1 do
19: Remove previous path contributions from the history matrix T
20: g = s[k]TFT

BB,(s,TBS
p,s[k])

[k]FT
RF,(s,TBS

p,s[k])
. . .

[AT
BS,D]:,TBS

p,s[k](1)
⊗W*

BB,(s,TMS
p,s [k])

[k]W*
RF,(s,TMS

p,s [k])
[AMS,D]:,TMS

p,s [k](1)

21: y(s)[k] = y(s)[k]− y∗
(s)[k]g(g

∗g)g
22: end for
23: Y[k] = matrix(y(s)[k]), return y(s)[k] to the matrix form
24: (m⋆

BS,m
⋆
MS) = argmax

∀mBS,mMS=1,2,...V
[Y[k]⊙Y∗[k]]mBS,mMS

25: TBS
l,s+1[k](1) = V (m⋆

BS − 1) + 1
26: TMS

l,s+1[k](1) = V (m⋆
MS − 1) + 1

27: for p = 1 ≤ l − 1 do
28: TBS

l,s+1[k](p) = TBS
p,s+1[k](1)

29: TMS
l,s+1[k](p) = TMS

p,s+1[k](1)
30: end for
31: end for
32: end for
33: end for
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34: for k ≤ K do
35: for l ≤ L do
36: AoDs and AoAs estimation:
37: ϕ̂l[k] = ϕ̄TBS

l,S+1[k](1)
, θ̂l[k] = θ̄TMS

l,S+1[k](1)

38: ∆[k] estimation:
39: g = s[k]TFT

BB,(S,TBS
l,S [k])

[k]FT
RF,(S,TBS

l,S [k])
[AT

BS,D]:,TBS
l,S [k](1)

⊗
W*

BB,(S,TMS
l,S [k])

[k]W*
RF,(S,TMS

l,S [k])
[AMS,D]:,TMS

l,S [k](1)

40: ∆l[k] = y∗
(S)[k]g/g

∗g
41: end for
42: end for

Subsequently, the second part of the algorithm starts, in which the estimation process is done.

The process makes L outer iterations to detect each path. During each outer iteration, S inner

iterations or stages are carried out. At each stage, the AoAs/AoDs angular ranges are divided into

V non-overlapped angular sub-ranges, V beam patterns are used to send the pilot signal and V

beam patterns are used to combine the signal at the RX. Hence, each stage needs V 2 time slots to

span all the combinations of transmit-receive beam patterns. The beam patterns are taken from the

predefined codebook designed in section 2.4. Afterwards, the contributions of the detected paths

that are stored in TBS and TMS are projected out at step 20. The process is then continued by

calculating the magnitudes of the V 2 received signals at step 24 to determine the next AoAs/AoDs

angular sub-range for the next stage. At each stage, the process pursues the same way as in the

previous stage, in which it divides the chosen AoDs sub-range at the TX and AoAs sub-range at

the RX into V sub-ranges. It proceeds this way until it achieves the desired AoAs/AoDs resolution

N .

3.8 Results

We evaluate by simulation the performance of the proposed FS hybrid precoding and combining

designs, along with the proposed channel estimation algorithm for mmWave MIMO OFDM systems

with NBS = 64, NMS = 32. We assume in these simulations that both the BS and MS have a ULA.

We adopt a wideband mmWave channel model with L = 3 paths. Furthermore, concerning the

dynamics of the channel, we restricted our work to scenarios where the channel is invariant over



HYBRID PRECODING AND CHANNEL ESTIMATION FOR FS MMWAVE MIMO
OFDM SYSTEMS 88

several OFDM symbols. We assume that the center AoAs/AoDs of the L paths are uniformly

distributed in [0, 2π). The number of subcarriers is K = 64, with 7 quantization bits, unless stated

otherwise. The results are conducted over 100 different channel realizations for 16 symbols.

In Figure 3.8, the SEs achieved employing the proposed channel estimation algorithm are plotted

versus SNR for different number of RF chains. The SEs achieved by the hybrid precoding and

channel estimation algorithms are compared with both 1) the hybrid precoding with PCSI mmWave

hybrid MIMO OFDM system, and 2) the optimal unconstrained SVD (fully-digital SVD precoder)

with PCSI mmWave hybrid MIMO OFDM system. As expected, as the number of RF chains at

the BS and MS increases, the SEs increase, and the performance becomes very close to the hybrid

precoding with PCSI system for the case of 16 RF chains at the BS and MS, this illustrates the

validity of the proposed channel estimation algorithm for practical mmWave systems. The SEs for

the SVD optimal solution with PCSI are also presented as a benchmark.

In Figure 3.9, the improvement of the precoding gains achieved by the proposed algorithm

versus the number of grid points is simulated for SNR = −10 dB. These results indicate that a

wise choice of the desired resolution parameter is needed in order to have a good performance. For

example, the figure shows that doubling the number of grid points, i.e., from 96 to 192, achieves

an improvement of only 1 bps/Hz in the SE.

In Figure 3.10, the SEs are plotted versus the number of quantization bits for SNR = −13

dB. As expected and as can be seen from the figure that the performance increases as the number

of quantization bits increases, and that 7 to 8 quantization bits would be enough to have good

performance. The SE in the case of unconstrained precoding with PCSI has been presented for

comparison.
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Figure 3.9: SEs of a 64×32 MIMO OFDM mmWave system employing the proposed hybrid
precoding and channel estimation algorithms versus the number of resolution N when SNR
= 10 dB.
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3.9 Conclusions

This chapter has presented two algorithms, the first being a proposed approach for designing an FS

hybrid multi-resolution codebook, the second being a proposed FS channel estimation algorithm

for next generation mmWave communications. An FS OMP-based codebook has been proposed

to design the hybrid precoders. Afterwards, a channel estimation algorithm has been proposed

for mmWave MIMO FS channels. Simulation results showed that the proposed algorithms can

perform well compared to mmWave systems with PCSI when employing an appropriate number

of RF chains with a wise choice of the desired resolution parameter. Basically, we have seen that

the performance of the proposed algorithms approaches that of the hybrid precoding with PCSI

system, demonstrating the applicability of the proposed channel estimation algorithm for actual

mmWave systems. Furthermore, the proposed algorithm can be convenient for future mmWave

MIMO communication systems which will use the mmWave bands.
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General Conclusions and Perspectives

Through the deployment of a high number of antennas at the transmitters and receivers, MIMO

communication is expected to play a key role in future wireless systems. Massive MIMO improves

the spectral efficiency of low-frequency systems by providing huge multiplexing improvements.

Massive antenna arrays must be deployed at both the base station and mobile users in mmWave

systems to ensure sufficient received signal power. However, putting these approaches into prac-

tice entails overcoming many major challenges, such as hardware limitations, channel acquisition

overhead, and precoding design complexity. The goal of this dissertation was to propose precoding

and channel estimating methods to address these key challenges in mmWave systems. First, we

proposed frequency-selective hybrid analog/digital precoding algorithms adpoting FBMC-OQAM

signaling for MIMO mmWave systems. Second, we introduced efficient mmWave channel estimation

technique that exploits the channels’ sparse characteristics.

The following sections detail the major topics explored in this Ph.D. thesis, as well as our major

contributions and conclusions. Following that, we present the many options and perspectives that

could be explored.

Summary and Conclusions

In chapter 1, the features of mmWave channels, such as the differences between propagation

behavior in mmWave bands and sub-6 GHz bands, are first illustrated in section 1.2. This

is important to aid in comprehending the technical promise of mmWave communications, the

problems that must be overcome in order to realize this potential, and the enabler technologies

that will address these challenges. Then, in section 1.3, we went over the various existing system

architectures for massive MIMO mmWave systems that have been proposed. Before presenting the

massive MIMO system model, the spatial MIMO channel models are presented, which demonstrate

the unique character of highly-directive mmWave communications. We introduce multi-carrier
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modulation techniques in section 1.4, and we have showed the modulation waveforms that have

been used in this Ph.D. thesis, such as the FBMC-OQAM waveform in chapter 2 and the OFDM

waveform in chapter 3. After that, section 1.5 introduced compressive sensing as a mathematical

method for channel estimation, in which the suggested channel estimation algorithm in chapter 3

is based.

In chapter 2, we looked at single-user precoding and combing, as well as the viability of

using the FBMC-OQAM signaling waveform for next-generation mmWave communications, where

standard MIMO solutions aren’t possible due to the high reliance on RF precoding. Using the

structure of realistic mmWave channels, we developed a low-hardware-complexity precoding

technique. We rephrased the mmWave precoder design problem as a sparsity-constrained

signal recovery problem, and then proposed an algorithmic solution based on OMP. As we

demonstrated, the problem of constructing realistic MMSE combiners for mmWave systems may

be solved using the same approach using OMP method. We demonstrated that the suggested

precoders can be quantized efficiently, and that the precoding technique is well-suited for

restricted feedback systems. Finally, numerical results on the performance of spatially sparse

mmWave processing were presented, revealing that adopting FBMC-OQAM with our proposed

algorithms improves the efficiency of mmWave systems, hence, FBMC-OQAM waveform could be a

good fit for future mmWave MIMO communication systems, particularly when high SE is a priority.

In chapter 3, both algorithms have been provided, the first is a proposed approach for develop-

ing an FS hybrid multi-resolution codebook, and the second is a proposed FS channel estimation

algorithm for next-generation mmWave communications. To design the hybrid precoders, an FS

OMP-based codebook has been proposed. Following that, a channel estimation algorithm for

mmWave MIMO FS channels was suggested. The suggested algorithms outperform mmWave sys-

tems with PCSI, with performance approaching that of the hybrid precoding with PCSI system,

highlighting the importance of the proposed channel estimation technique for actual mmWave sys-

tems. Hence, the suggested technique may be useful for future mmWave MIMO communication

systems that employ the mmWave bands.
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Perspectives

In this section, we provide our visions and perspectives for future problems and research that need

to be addressed and investigated. We have classified the perspectives into short-term perspectives

and long-term perspectives.

Short-term Perspectives

• High mobility : Accurate alignment of narrow beams of mmWave transmission is essential

to avoid a significant loss in received power in the high mobility scenarios, such as vehicular

mmWave systems, since the high mobility will increase the beam training and alignment

overhead. In order to establish a stable link between the BS and the MS, the channel

estimation, and hence the beam alignment, must be completed or joined with a beam tracking

scheme in order to track the variations in AoDs/AoAs at the receiver. We didn’t study the

effect of mobility on our FS systems, which is not practical, since mmWave channel are time-

variant channels having high mobility for some scenarios. Hence, some extensive research is

needed to adapt our channel estimation technique to practical and fast estimation/tracking

mmWave channels.

• Quantization errors: The beam steering directions are assumed to be quantized, i.e. the

AoAs/AoDs are considered discrete against continuous ones in practice, which leads to quan-

tization errors in channel estimation algorithms. The impact of this quantization errors on

the performance of the proposed algorithms must be evaluated and new improved ones must

be proposed if necessary. In other words, the values of the AoAs/AoDs are continuous in

practice, hence, some other more realistic off-grid based algorithms can be used to reduce

the quantization error, like continuous BP [186], Newton refinement ideas [187], sparse reg-

ularized total least squared [188]. In our work, we only exploited the case of quantized

AoAs/AoDs, letting possible improvements for future work.

• Multi-user scenario: The application of mmWave communications to cellular systems implies

to consider multi-user communications. This also requires to employ some multiple access
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scheme such as orthogonal frequency-division multiplexing access, semi-orthogonal multiple

access scheme [189], or non-orthogonal multiple access [190]. Our work has been done for

single-user scenario, which is not realistic. The employed multiple access scheme must be

taken into consideration in the design of channel estimation techniques. Furthermore, an

additional effort must be dedicated to the pilot contamination problem which could limit the

number of scheduled users and degrades the channel estimation accuracy.

Long-term Perspectives

• Other mmWave architectures and waveforms: The wide bandwidth available in the mmWave

bands leads inevitably to frequency-selective channels since the different frequency compo-

nents will experience independent fadings. This problem is traditionally solved by employing

appropriate waveforms such as OFDM, FBMC or UFMC, among others. Our channel es-

timation technique for wideband systems has been mainly proposed for hybrid architecture

with OFDM. This area must be further explored to cover all the architectures and all the

waveforms in order to propose tailored channel estimation solutions and to try to keep up

with the latest advances in this domain.

• Graphical models: The channel estimation problem can be reformulated such as it can be

represented in factor graph models which allows to employ the message passing algorithms

as a powerful solution. This approach was exploited in the literature especially for the

systems with few-bit ADCs. It is promising to extend this effort to hybrid architecture

systems and incorporate it in our system, and to use also other variations of message passing

algorithms such as expectation-propagation algorithms and belief-propagation algorithms

and their different approximations.

• Machine learning: It is not complicated to collect a large amount of wireless communications

data which makes worth investigating if machine learning tools are capable to inspect the

structure of the received signal and hence to estimate the mmWave channel. This idea be-

comes more legitimate with the recent advances in machine learning fields especially the deep

learning which proposes several efficient tools such as deep convolutional neural networks,
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recurrent neural Networks, and Bayesian neural networks, and their different variations. We

didn’t exploit these promising techniques in our channel estimation technique, that is why it

is deemed as promising and attractive to propose new channel estimation techniques based

on these deep learning tools.

• 3D : A 3D channel estimation means that neither the elevation scattering nor the horizontal

scattering is neglected. Indeed, it is more practical to know the AoAs and the AoDs in

both the horizontal and the vertical plans. In our work we only explored the 2D channel

estimation case. This work can be developed by introducing new 3D estimation solutions for

hybrid architectures which will make these estimation techniques more robust and realistic.

• Antenna array design: Beamforming gains are enabled by antenna arrays which are composed

of several antenna elements that can be distributed via different geometrical configuration

(linear, planar, circular) [191] and array layouts (uniform and non-uniform) [192]. We adopted

ULAs for our system. It will be useful to adopt different antenna configurations and study

their impacts.

• Cognitive radio: One solution to increase the spectral efficiency and to reply to the increasing

traffic demand is to combine cognitive radio and mmWave communications, this perspective

had been studied in several recent research works [193, 194, 195]. In this context, the problem

of joint channel estimation and spectrum sensing for the secondary and the primary users

must be further investigated.
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