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General introduction

Metastatic breast cancer is the most common cancer among women and presents a
poor prognosis. It requires constant monitoring, usually performed with 18F-FluoroDeoxy-
Glucose PET/CT acquisitions. On these images, physicians interpret the tumor response
to treatment following standardized guidelines, such as Response Evaluation Criteria In
Solid Tumors (RECIST) or Position Emission tomography Response Criteria In Solid
Tumors (PERCIST). However, these guidelines tend to focus only on a selection of lesions
representing tumor burden or, in the case of PERCIST, on only one lesion (the one showing
the highest uptake).

Assessing the total tumor burden would be challenging and time consuming. To help
physicians monitor all lesions and evaluate tumor evolution more accurately, research
has notably focused on image registration methods. Indeed, if PET images acquired at
different time points are precisely registered, the assessment of all lesions becomes much
easier.

This work was conducted in the context of the EPICUREseinmeta
1 project, in collabo-

ration with the Keosys company 2 and the “Institut de Cancérologie de l’Ouest” (ICO) 3.
The EPICUREseinmeta project aims to collect a wide range of data regarding the disease
and environment of patients presenting metastatic breast cancer.

This thesis focuses on the monitoring of metastatic breast cancer using registration and
deep learning-based (DL) approaches. The main objective is to assist physicians monitor
metastatic breast cancer patients with longitudinal Positron Emission Tomography (PET)
images, and improve tumor evaluation by providing them with tools to consider all regions
showing a high uptake.

1. https://projet-epicure.fr/
2. https://www.keosys.com/
3. https://www.institut-cancerologie-ouest.com/
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General introduction

Manuscript organization

We present the clinical context, and especially the metastatic breast cancer disease as
well as the main monitoring steps, in Chapter 1.

In Chapter 2, we introduce conventional and DL-based methods for medical image
registration. DL approaches perform deformable registration in almost real time thanks
to the benefit of large databases and computational resources. However, the slower con-
ventional registration methods still benefit from many years of development and perform
better in most applications.

On our EPICUREseinmeta dataset, composed of a baseline (pre-treatement) and two
follow-ups (early- or post-treatment) acquisitions for each patient, we aim to monitor
each individual lesion, manually delineated by ICO experts on the baseline image. As de-
scribed in Chapter 3 and in orange in Figure 1, we start with a conventional registration
method (SimpleElastix [112]) to perform this longitudinal registration task. Thanks to
the deformation field obtained by the registration algorithm, we are able to propagate the
baseline lesion segmentations to the follow-up images. We also perform this approach on
a public inspiration – expiration lung CT dataset in the context of the Learn2Reg 2020
challenge 4, held in conjunction with the MICCAI 2020 conference, which led to a con-
ference publication [57] and a journal paper under revision for Transactions on Medical
Imaging (TMI) [88]. To the best of our knowledge, on the EPICUREseinmeta dataset, we
are the first to perform multiple lesion tracking on full body PET images with a registra-
tion method. We implemented this conventional longitudinal registration method in the
software of the Keosys company to ease the lesion segmentation task on new follow-up
images.

Even though performing well, the registration method we used was not specifically
designed to perform accurate longitudinal image registration and lesion propagation. To
address the above issue, we propose in Chapter 4 a new registration approach called
MIRRBA for Medical Image Registration Regularized By Architecture. As illustrated in
blue in Figure 1, MIRRBA is a hybrid approach aiming to bridge the performance gap be-
tween conventional and DL registration methods using a Deep Image Prior (DIP) setup. It
parametrizes the deformation field between the images to register with a network inspired
by state-of-the-art DL registration methods. The main difference is that this network
is not optimized on a large database but solely on the pair of images to register, as

4. https://learn2reg.grand-challenge.org/
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General introduction

done with conventional methods. This is similar to a DIP setup, except the network is
trained to perform accurate registration until convergence. Thanks to this specific setup,
we were able to isolate, understand and interpret the impact of different components of
the network on registration, without being biased by a training database. MIRRBA is a
patient-specific registration method. As presented in the paper submitted to the journal
Physics in Medicine and Biology (PMB) and under review [54], our approach outperforms
both conventional and DL registration methods regarding the accuracy of the lesion seg-
mentations propagated through registration from one acquisition to the next. To evaluate
the registration performance on bigger and more homogeneous objects than lesions, we
also propagate high uptake organ segmentations, i.e. the brain and the bladder, with a
good accuracy. As a complementary study, we register the longitudinal brain MRI dataset
published in the context of the BraTSReg challenge 5 with promising results.

To further improve the propagation of segmentations, we expand MIRRBA introduc-
ing segmentation information within the pipeline. As shown in Chapter 5, we add this
segmentation information at several levels: i) as a new segmentation term in the loss func-
tion, in the form of a Dice loss between segmentations, and ii) as extra input channels
to the network, to directly integrate segmentation maps. Since traditional segmentation
methods segment all lesions together, as a whole, individual lesion monitoring between
acquisitions is not possible with these methods. Yet, we take advantage of the segmen-
tation results of our published work [56, 150] to obtain segmentations of the lesions and
high uptake organs on follow-up images. As illustrated in green in Figure 1, we use
these follow-up segmentations to optimize our new MIRRBA method and to refine the
propagated segmentations.

Finally, in Chapter 6, we extract several biomarkers from the propagated segmenta-
tions. These biomarkers, and especially the SULpeak, show a high correlation coefficient
with the biomarkers extracted from the manual segmentations. For each lesion, we compar
the SULpeak values of the baseline and follow-up acquisitions. If the SULpeak is decreasing,
the lesion is considered responsive and colored in green. On the contrary, if the SULpeak is
increasing, the lesion is considered non-responsive (i.e. in progression) and colored in red.
We finally ask physicians to use this visual tool to assess patient response with promising
results.

5. https://www.med.upenn.edu/cbica/brats-reg-challenge/
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General introduction

Figure 1 – Organization of the contributions. Chapters 3 (orange), 4 (blue), and 5 (green)
are three registration methods. All take as input baseline and follow-up, i.e. moving and
fixed, images. The method presented in Chapter 5 also takes the baseline and follow-up
segmentations as input for its optimization. All three methods produce registered PET
images and segmentations. From the registered segmentations, biomarkers are extracted
in Chapter 6 (pink) to obtain a response to treatment for each lesion.

Summary of contributions

This thesis describes three contributions:

• In this thesis, we formulate the segmentation of lesions in follow-up images as an
image registration problem. We first address longitudinal full-body PET image
registration with conventional optimization-based methods [57, 88], and secondly
with recent DL approaches. The first contribution of this thesis is the development
of a novel method called MIRRBA (Medical Image Registration Regularized By
Architecture), which combines the strengths of both conventional and DL-based
approaches within a Deep Image Prior (DIP) setup. Optimizing a network (as
DL-based method) on only the pair of images to register (as conventional methods),
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General introduction

MIRRBA aims to bridge the gap between both approaches. Since the optimization of
the network does not depend on a training database, we state that the architecture
of the network acts as the only implicit regularizer of our registration method.
We validate the three types of approaches (conventional, DL and MIRRBA) on a
private longitudinal PET dataset obtained in the context of the EPICUREseinmeta

project. Our proposed method performs better than all conventional and DL-based
approaches. This contribution is currently under review for the journal PMB [54].

• The second contribution is a method for the automatic segmentation of active organs
(brain, bladder, etc) based on a combination of superpixels and deep learning [56].
We show that combining superpixels and DL can improve specific medical tasks.
Even if produced at the beginning of the thesis, this contribution is integrated in
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Chapter 1 – Metastatic breast cancer monitoring: clinical context

1.1 Breast cancer management
According to the World Health Organization (WHO) [227], breast cancer is the most

frequent cancer among women, and was the cause of 15% of all female cancer deaths
worldwide in 2018. According to the French “Institut National du Cancer” [96], if breast
cancer is detected early enough, the five years survival rate is 99%. However, breast cancer
discovered at a later stage, when already presenting metastases, has a poor prognosis with
a survival rate of 25% (prognosis being the prospect of recovery from a disease [96]). Major
breast cancer risk factors include sex (breast cancer is roughly 100 times more common
in women than men), age (with increasing age, cells are more likely to mutate and cause
cancer), and genetics (5% to 10% of breast cancers are associated to genes linked to higher
risks).

1.1.1 Breast cancer types and sub-types

Harris et al. [77] describes multiple types of breast cancers. When planning breast
cancer treatment, to increase the probability of success against the disease, it is important
to first find out the type of cancer. The classification is done in two steps: i) assessment
of the type of the tumor according to the area of the breast affected, and ii) determination
of the cancer sub-type based on the mutation at the origin of the tumor. Different breast
cancer types can be diagnosed:

• In situ ductal carcinoma: This cancer type reaches the breast milk ducts only, i.e.
ducts conducting milk from mammary glands up to the nipple. It is characterized
as an early breast cancer because, at the time of the diagnosis, it is limited to the
breast.

• Invasive ductal carcinoma: As an situ ductal carcinoma, this cancer reaches the
milk ducts but is more invasive. It will grow and spread in the breast tissues and
can develop metastases. It is the most common type of breast cancer.

• In situ lobular carcinoma: With this type of cancer, abnormal cells will develop
in mammary glands, i.e. glands producing breast milk. It is not a tumor, but this
type of alteration increases the risks to develop a cancer afterwards.

• Invasive lobular carcinoma: This cancer type is less common. It starts in the
mammary glands before extending to other breast tissues. Like other invasive can-
cers, it can develop metastases.
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1.1. Breast cancer management

• Inflammatory breast cancer: It is a rare breast cancer type. Symptoms usually
include a red and swollen breast. This cancer is rather aggressive, growing and
spreading fast.

Once the breast cancer type has been defined, its sub-type must be determined. With
laboratory analysis such as blood analysis, blood cell count or liver function test, it is
possible to determine the mutation causing the development of the tumor:

• Hormone Receptor positive (HR+): Cell membranes have receptors enabling
them to receive messages from hormones to adapt their function. In the breast, Es-
trogen Receptor (ER) and Progesterone Receptor (PgR) can be found. With specific
analysis, it is possible to determine if the tumor is caused by an hyper-activation
of the response of these receptors. These tumors are respectively qualified as ER-
positive or PgR-positive. More generally, these cancers are called hormone-sensitive.
Cancers with positive hormonal receptors are more frequent in menopaused women.
This cancer sub-type represents 60% to 75% of all breast cancers.

• HER2-positive (HER2+): This sub-type represents 15% to 30% of all breast
cancers. HER2 is a receptor located on the surface membrane that, when activated,
transmits a growth signal to the cell. For this cancer sub-type, the HER2 receptor is
overexpressed on the cell membrane and is generally over-activated. Growth signals
transmitted to the cell are therefore multiplied excessively.

• Triple negative: When the analysis does not reveal any mutation on the above
cited genes (ER, PgR or HER2), the tumor is “triple negative”. Triple negative
breast cancers represent 15% of invasive breast cancers and are more frequent among
young women [53].

• BRCA (BReast CAncer): Most breast cancers are not hereditary, except for the
breast cancer sub-type BRCA. This tumor sub-type is less frequent as it represents
only 5% to 10% of all cases. It is caused by a gene called BRCA (existing under
the BRCA1 or BRCA2 form). People carrying this gene mutation present a pre-
disposition to develop breast cancer.

1.1.2 Diagnosis of breast cancer

To deliver the best suited treatment to a patient, physicians need to accurately diag-
nose the gravity of the breast cancer. This is done according to two major criteria: the
grade and the stage.
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1.1.2.1 Grade

As defined in [92], cancer grading is a first indicator of the possible evolution of
tumors. The higher it is, the faster the cancer is likely to grow and spread. It is used
to help predict the outcome (prognosis) of the disease and assist in deciding on the best
treatment to administer to the patient.

The grading of a cancer is done by looking at cells through a microscope. Indeed,
cancerous cells progressively lose the features of normal breast cells until they end up in a
state called undifferentiated. Hence, the grading system is based on how much the cancer
cells look like normal breast cells.

In practice, a scale ranging from 1 to 3 is used to grade the cancer:

• Grade 1 or well differentiated: Slow-growing cells, looking like normal breast
tissue.

• Grade 2 or moderately differentiated: Faster growing cells, which do not com-
pletely look like normal breast tissue.

• Grade 3 or poorly differentiated: Cancerous cells growing and spreading fast;
they look very different from normal breast cells.

1.1.2.2 Stage

Once the grade is reported, physicians then define the stage of the disease. Staging
defines how much the cancer has spread within the body. Looking at lesion size, as well as
local and distant metastases, the staging helps determine how serious the cancer is and,
consequently, what would be the best treatment. Staging is also used to estimate survival
statistics [92].

Cancer stage is defined by a value ranging from 0 to IV. The lower the number, the
less the cancer has spread. To help define it, the American Joint Committee on Cancer
(AJCC) Tumor Node Metastasis (TNM) system is the most commonly used. It is based
on the combination of seven elements:

• The tumor size (T): How extended is the cancer? Has it spread to nearby tissues?

• The lymph nodes (N): Has the cancer reached nearby lymph nodes? If so, how
many?

• The spread (or metastases) to distant sites: Has the cancer reached distant
parts of the body, such as the lungs, the liver or the bones?
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1.1. Breast cancer management

Figure 1.1 – Breast cancer stages, images adapted from an open knowledge project by
Cancer Research UK.

• The Estrogen Receptor status (ER): Does the cancer present proteins called
estrogen receptors?

• The Progesterone Receptor status (PgR): Does the cancer present proteins
called progesterone receptors?

• The HER2 status (HER2): Does the cancer present an excessive production of
proteins called HER2?

• The grade of the cancer value (G): How much do the breast cancer cells look
like normal breast tissue cells?

As shown in Figure 1.1, a stage 0 cancer will correspond to pre-cancerous cells,
such as in-situ carcinomas. Stages I to III will describe cancers spreading within
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the breast or to regional lymph nodes, while a stage IV cancer is a metastatic
one. This means the cancer has spread beyond the breast and the surrounding lymph
nodes to distant parts of the body. As already prsented in Section 1.1, stage IV breast
cancers present worse prognosis than lower stage cancers.

1.1.3 Treatment of breast cancer

The choice of breast cancer treatment depends on the tumor extent (or stage), as well
as the presence of hormone receptors (if the cancer is ER-positive or PgR-positive), the
amount of HER2 expression (if the cancer is HER2-positive), the global health of the
patient, the menopause status and the cancer growth rate (evaluated by the grade).

When diagnosed with a stage 0 cancer (non-invasive cancer limited to the inside of
the milk duct), women can choose, in most cases, between a Breast-Conservative Surgery
(BCS) or a mastectomy. They however would not need radiation nor drug therapies [158].

Treatments for stage I to III breast cancers usually include a mix of surgery and
radiation therapy, associated with chemotherapy and other drug therapies [161].

Women with a metastatic (stage IV) breast cancer are mainly treated with systemic
therapy [160], i.e. drugs that can reach and affect cells all over the body. This may
include a combination of hormonotherapy, chemotherapy and targeted therapy. Systemic
therapy is also often combined with local treatments, such as radiation or surgery. For such
metastatic cancers with poor prognosis, it is important to monitor the cancer and assess its
response to treatment. As presented hereafter, this can be done by acquiring at regular
time points a combination of functional and anatomical images. The analysis of these
images is the focus of this thesis. Indeed, this thesis is conducted in collaboration with
the “Institut de Cancérologie de l’Ouest” (ICO) in the context of the EPICUREseinmeta

project [32]. The EPICURE project focuses, among other, on stage IV metastatic breast
cancer and on the evaluation of treatment response.

1.2 Imaging modalities for the monitoring of meta-
static breast cancer

Different imaging techniques are used to diagnose breast cancer, assess the presence
of metastases and evaluate response to treatment.

Since it is inexpensive, easy to set up and generates little amount of radiation, breast
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radiography (mammography) is usually the modality employed to screen and detect breast
cancer at an early stage [59]. However, other imaging modalities such as Positron Emission
Tomography (PET) are needed when physicians suspect that the cancer has spread outside
the breast, as it is the study case in this thesis. Therefore, in the following sections, we
describe the general principles of PET imaging (see Sections 1.2.1 and 1.3). In Section 1.4,
we review current methods used to assess response to treatment with PET images.

1.2.1 PET imaging

PET is a functional medical imaging modality. It acquires data based on the body’s
metabolism, rather than on physical shapes and forms (see Figure 1.2.A). This imaging
modality was originally used as a research tool for neurology and cardiology, but in recent
years it has increasingly been integrated in clinical routine for the follow up of cancer
patients. PET is currently employed to localize tumors, evaluate a cancer’s stage, plan
the treatment and determine its effects [19].

Figure 1.2 – CT (A), PET (B) and PET–CT (C) images from the EPICUREseinmeta study.

To acquire PET images, the patient is injected with a specific molecule, named tracer,
which travels intravenously throughout the body. To be easily integrated into functional
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body processes, the tracer must be analogue to a molecule already present in the body.
It should also present relevant physical and chemical properties, such as accumulating
in tissues where the metabolic process of interest takes place, i.e. in cancerous lesions
in our case [170]. To be able to quantify the local concentrations of this tracer in vivo,
the tracer is combined with a beta+ emitting radioisotope. This combined component is
named a radiotracer. The choice of radioisotope is important, since it should not disturb
the tracer’s chemical activity.

1.2.1.1 Photon emission

In the case of PET imaging, the tracer is labeled with a radioisotope emitter of
positrons. This radioelement is characterized by an excess of protons in the nucleus that
decays through disintegration to a stable state. The disintegration of the radioelement is
accompanied by the emission of a positron and a neutrino.

After a disintegration in human tissues, an emitted positron only travels a short dis-
tance (few millimeters, depending on the radioisotope’s energy spectrum and the density
of the matter crossed by particles) before colliding with an electron of a nearby atom, i.e.
its thermalization. This short distance is called the positron range. A positron being the
anti-particle of an electron (same mass and opposite charge), the two particles annihilate
each other to generate two 511-keV gamma-rays emitted at 180 degrees from each other
(see Figure 1.3) [10]. These photons escape from the human body in opposite directions
and can be recorded by external detectors (see Section 1.2.1.2).

The positron emitters used in nuclear medicine as radiotopes present short half-lives
(from 1.26 min for the 82Rb to 109.8 min for the 18F), imposing a limited period of time
between their production and use. However, these short half-lives also simplify radiopro-
tection procedures, since the radioactivity emitted by the patient decays fast enough to
pass the exposition threshold guidelines a few hours after the injection. Depending on
the organs the physician wants to visualize, the type of radiotracer introduced will differ.
18F-FluoroDeoxyGlucose (18F-FDG) particularly suits the staging of breast cancer [64,
71].

1.2.1.2 Photon detection

PET detection consists in identifying the signal coming from two annihilation photons
emitted at 180° with the same energy. These photons strike two opposite detectors,
forming a Line Of Response (LOR). The location of the annihilation site is thus on this

28



1.2. Imaging modalities for the monitoring of metastatic breast cancer

Figure 1.3 – Positron annihilation: the emitted positron collides with an electron in the
patient’s tissues after a distance called the positron range. Both anti-particles annihilate
and generate the emission of two 511-keV photons in opposite directions (180°). A neutrino
νe is also emitted. For readability, the figure is not on scale.

LOR. However, the distance from the positron emission site to the LOR depends on the
positron range distance. The positron range is then one of the PET imaging limitations,
since PET seeks to find the location of the emission of positrons from the collection of
LORs, and the positron range adds an uncertainty to the LOR measurements.

The PET detection system is composed of detector blocks assembled as a ring. The
complete PET system is made of several of such rings to cover a 15 - 20 cm field of
view [205]. Detector blocks are composed of scintillation crystals associated with pho-
tomultiplier tubes. In scintillation crystals, photons are collected and converted into an
electrical signal amplified by the photomultiplier tubes.

Specific PET systems, called Time Of Flight (TOF) PET, exploit the temporal infor-
mation of two photons detection to constrain, during the reconstruction, the location of
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Figure 1.4 – In PET imaging systems. Left: Detector block composed of scintillation
crystals receiving an emitted photon and photomultiplier tubes. Right: Detector ring
composed of detector blocks. The line of response between two emitted photons is also
represented.

the annihilation. Indeed, if the annihilation takes place at equal distance from the two
detectors, both annihilation photons will be received simultaneously. However, if the an-
nihilation is closer to one of the detectors, photons will be detected with a temporal gap,
which brings additional information to the reconstruction and helps to better localize the
emission site.

The overall quantitative information and radioactivity distribution represented by
PET images are affected by several bias sources caused by the interaction between the
photons and the surrounding environment, such as attenuation and diffusion. Some of
these biases are addressed, in clinical practice, during the reconstruction process (see Sec-
tion 1.2.1.3), or by correcting the data using information obtained with another imaging
modality (see Section 1.2.2.2).

1.2.1.3 PET image reconstruction

PET reconstruction aims to generate, from all detected events on considered LORs, the
tridimensional image of the radiotracer’s distribution. Let f be the 3D discrete represen-
tation of the continuous object of interest. Most common PET reconstruction algorithms
define R, a mathematical operator modeling the transformation between the object f and
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its projections p, called the system matrix. Knowing R and projections p measured in
every direction, i.e. LOR, the log-likelihood L is maximized to compute f :

L(f) = ∑I
i=1(pi log(pi(f))− pi(f))

p(f) = Rf
(1.1)

The radiotracer’s activity distribution showing the best correspondence with the mea-
sured projections is then identified, voxel by voxel. The inversion of the projection matrix
R is not possible: the inverse problem is ill-posed, given the acquisition’s limited angular
sampling and the measurement’s noise. Thus, there is no unique solution.

There is a vast literature on PET image reconstruction [172]. Algorithms used to
achieve the reconstruction task can be divided into two main types: analytic and it-
erative. Most reconstruction methods used in clinical practice are based on iterative
approaches [69]. To retrieve f , the distance between projections that would match the
estimated activity distribution and the effectively acquired projections is defined with the
log-likelihood defined in Eq. 1.1 and iteratively optimized. The system matrix R can
model not only the geometry of detectors, but also physical phenomenons such as the
positron range, the attenuation or the limited spatial resolution.

PET exams presented and used for analysis in the following parts of this manuscript are
all reconstructed using the iterative Ordered Subset Expectation Maximization (OSEM)
algorithm [237], taking in consideration TOF.

1.2.1.4 PET image limitations

Even though PET has become a standard imaging modality in oncology, it presents
several limitations inherent to the acquisition process, which reduce the accuracy of the
estimated tumoral activity. These limitations raise challenges that are addressed by the
problematics of this thesis, as we are interested in delineating organs and lesions on PET
images to help cancer monitoring.

Spatial resolution, sampling and partial volume effects PET images present
poor spatial resolution (around 4 mm per voxel), while anatomic imaging modalities
such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) can reach
submillimetric spatial resolutions.

Indeed, PET image resolution depends on the spatial sampling of the acquired projec-
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tions, themselves depending on the field of view’s width and orientation, as well as on the
location of each detector block. In addition, due to the positron’s range (few millimeters),
it is not possible to know the exact location of the positron emission, reducing PET image
precision.

A sampling effect is added to the limited spatial resolution of the imaging system: PET
image voxels used in clinical practice are about 4 mm cubes. Thus, the detected intensity
information contained in a voxel can come from different tissues and tissue borders are
poorly defined. This phenomenon is called the tissue fraction effect.

The combined effects of poor spatial resolution and rough image sampling are called
Partial Volume Effect (PVE) [198]. PVE causes a mutual contamination of structures
that have different activities. For instance, if high tracer uptake tissues are close to a
structure of interest, a part of this high activity could artificially increase the structure’s
visible activity. The PVE impact on how a lesion is represented on an image depends on
the object’s size and compactness [198]. Small structures are more subject to PVE, espe-
cially those smaller than three times the spatial resolution. Various methods have been
developed to correct the PVE [198, 201], applied either on raw data or on reconstructed
images.

Noise PET images present an important noise level, making cancerous volumes difficult
to precisely segment. The noise first comes from the random nature of radioactive decays
and is related to the number of photons detected. It is usually modeled as a Poisson
distribution. The chosen reconstruction algorithms also impact PET image noise as they
modify its statistical distribution.

Patient motion In clinical practice, full body PET exams can last for about 20 min.
Thus, the resulting PET image represents the average activity distribution acquired over
several respiratory cycles. When a patient breathes, the motion of the chest, lungs and
diaphragm results in additional blurring of the reconstructed images. Breathing motion
is inherent to the modality acquisition process and makes the detection of lesions in the
chest area challenging. Moreover, respiratory motion is different for every patient, and
even for a given patient thoracic structures may deform non-homogeneously. Despite the
fact that approaches based on the synchronization of gated PET acquisitions with the
respiratory cycle have been developed [159, 219], PET–CT systems are currently used to
help localize more precisely the lesions in blurred area, as shown in Section 1.2.2.2 [165].
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1.2.2 PET–CT imaging

All PET images used for analysis were acquired with hybrid PET–CT systems. We
present hereafter the working principle of CT imaging systems alone, before presenting
hybrid systems.

1.2.2.1 CT imaging system

CT is the 3D generalization of X-ray and was the first imaging modality enabling the
volumetric exploration of the body. Its first version was developed in 1972 with a brain
scanner [61].

Through several technological and computational improvements over the years, the
fourth CT scan generation was developed in 2000 (see in Figure 1.5). This Multi-Detector
Computed Tomophraphy (MDCT) scan is integrated into clinical routine to visualize
different body elements such as bones, organs or soft tissues.

Figure 1.5 – 4th generation of CT systems, with a stationary detector ring and an emitter
in continuous rotation.

To obtain a CT scan, the patient lies down on a table that moves inside the CT system.
The main physical processes of CT are attenuation, projection and image reconstruction.
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The attenuation is defined by the relation:

log
(
I0

I

)
= νx (1.2)

with I0 and I respectively the input (before crossing the body) and output (after crossing
the body) beam intensities, ν the attenuation coefficient and x the object thickness. The
input beam is sent by an X-ray tube. This emitter is a rotating anode with a thin source
enabling the emission of a stable, continuous and homogeneous X-ray beam during the
acquisition. The rotating MDCT system X-ray source spins in less than 500 ms around
the patient, and makes slices thinner than 1 mm.

The projection is performed by the detector, which is made of a combination of scin-
tillators, photo-diodes and photo-amplificators transforming the attenuated output X-ray
beam into an amplified electrical signal proportional to the beam intensity.

Finally, the image reconstruction step solve an inverse problem to compute tomo-
graphic images from the amplified electrical signals. Each pixel of the tomographic image
corresponds to an attenuation value and is measured in Hounsfield units (HU), which is
related to the linear attenuation factor for a given X-ray tube energy spectrum. The CT
scan being a transmission imaging modality, tissues are differentiated according to their
attenuation properties. A windowing processing is applied to better visualize specific
tissues, since νwater = 0HU, νbone = 1000HU, and νair = −1000HU (see in Figure 1.6).
Given their ability to differentiate tissues by their densities, CT scanners are categorized
as anatomical imaging systems (see Figure 1.2.B).

Limited by mechanical constraints on spinning elements, the emitter rotation speed
is currently 270 - 350 ms for most systems and the temporal resolution is 135 to 175 ms.
CT temporal resolution depends on the displacement speeds of studied structures. Since
the whole image acquisition process lasts around 15 min, the patient should remain as
still as possible to obtain clear and informative images.

Even if CT is an irradiating imaging modality which often requires iodine injections
to improve the contrast, the multiple evolutions from which it has benefited makes it
a very efficient imaging system. CT is currently the most versatile diagnostic tool to
visualize anatomical information. The advantages of CT are its high spatial resolution
(less than 1 mm), almost isotropism, technical accessibility and moderate cost compared
to alternative methods.

34



1.2. Imaging modalities for the monitoring of metastatic breast cancer

Figure 1.6 – Diagnostically relevant range of CT Hounsfield values depending on the
organs to visualize. Adapted from Kalender [105] with EPICURE images.

1.2.2.2 Hybrid PET–CT imaging

PET–CT principle Since 18F-FDG PET scans only allow to visualize areas of high
FDG radiotracer uptake, it is considered as a functional or metabolic imaging modal-
ity, as visible in Figure 1.2.A. Because of their low spatial resolution, the precise location
of objects of interest and the detection of very small tumors (< 3 - 4 mm) is challenging
(see Section 1.2.1.4). Therefore, combining PET and CT information [58] is a popular
solution (see figure 1.2.C). Indeed, the combination provides the physician with informa-
tion on areas of increased cell activity (with PET), as well as details on the structures
found within these areas (with CT).

When anatomical and functional images are acquired on different systems, their com-
bined use is only possible if they are precisely overlaid, i.e. registered, which presents a
major challenge. In contrast, hybrid PET–CT systems acquire both exams sequentially,
with the patient laying still on a single table (see Figure 1.7). Such hybrid systems pro-
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vide a good correlation between the PET functional information and the CT anatomical
information [4, 106]. The CT information acquired jointly with the PET helps correct
some of PET image main drawbacks, such as image attenuation or the Partial Volume
Effect (see Section 1.2.1.4).

PET–CT and cancer monitoring In the context of cancer evaluations, the areas
explored by PET–CT hybrid system depends on the location of the primary tumor: for
head and neck lesions the exam usually includes the views from the head to the abdomen,
but for most other cancers the acquisition covers the area from the top of the head to the
knees. For melanoma patients, the whole body is explored. After acquisition, images are
automatically reconstructed and interpreted by a physician.

The fusion of both types of information allows to better distinguish a benign from a
malign FDG fixation, as well as to localize and measure lesions without the need for an
invasive intervention. Moreover, by comparing PET–CT scans acquired longitudinally,
i.e. at different time points, physicians can follow the cancer evolution during the patient
treatment. PET–CT scans can also help radiotherapists in positioning target lesions
during a treatment plan, and are also useful for early detection of potential relapse.

Figure 1.7 – PET–CT sequential scanner. Image taken at the Nantes ICO.
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1.3 Metabolic activity on PET images

1.3.1 18F-FDG radiotracer

In oncology, 18F-FDG is a widely-used radiotracer to diagnose and visualize the ex-
tension of a cancer, including breast cancer [4, 64, 71].

As previously presented in Section 1.2.1, the PET image principle relies on the accu-
mulation of a radiotracer in tissues where the metabolic process of interest takes place.
In the case of cancer, the metabolic process of interest is the consumption of glucose.
Indeed, body cells take in different amounts of sugar, depending on how fast they are di-
viding. Since cancerous cells present a high division activity, they consume an important
amount of glucose compared to their healthy neighbors. When using a molecule analogue
to glucose combined with a radiotope, tissues presenting an important metabolic activity
show up on PET images as “hot spots” [60], enabling the analysis of the metabolic process
in-vivo.

When injected into the patient’s body, the 18F-FDG radiotracer is transported into
cells. There, instead of being degraded by the glycolysis chemical reactions as the glucose
molecule would normally undergo, the FDG tracer will remain trapped in the cells and
accumulate. In order to let the FDG accumulate, a delay of an hour is respected between
radiotracer injection and PET image acquisition.

The FDG tracer is consumed by all cells and accumulates within tissues presenting
a high glucose uptake [243]: the amount of trapped 18F-FDG is proportional to their
uptake. Even though cancerous cells present a very disturbed metabolic activity with an
inefficient glycolysis, this behavior is balanced by a high concentration of glucose receptors
on their membrane [195]. For these reasons, cancerous but also brain cells present a high
FDG uptake. The FDG accumulation within the patient’s heart depends on the insulin
level and the fatty acid intake: after a fasting period, the heart degrades acids rather than
glucose, thus presents a low FDG accumulation. In clinical practice, it is recommended to
fast for 4 to 6 hours before a PET exam to limit artifacts caused by a strong heart FDG
uptake. Since the radiotracer is eliminated through urine, the kidneys and the bladder
may also present high fixation. The FDG uptake of other organs, such as the liver or the
bowel, is limited but varies between patients. Cells presenting infections or inflammatory
processes may also present a high radiotracer accumulation.

While the accumulation of FDG in cancerous cells is called pathological hyperfixations,
other uptakes in the body are named physiological hyperfixations. Since physicians aim
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at identifying pathological hyperfixations on PET exams, the presence of physiological
hyperfixations due to the non-specificity of the FDG tracer complicates the automatic
completion of the task. We treat this problem in Chapter 5, where we propose an auto-
matic method to segment these high uptake organs. Additionally, some cancer cells can
sometimes not be identified by FDG uptake on PET exams because of their low glucose
consumption. See Figure 1.8 for a visual representation of pathological and physiological
hyperfixations on a PET image.

Figure 1.8 – PET high 18F-FDG uptake sites: brain, heart, bladder and lesions. Image
from the EPICUREseinmeta study.

1.3.2 Tumoral metabolic activity

To quantitatively characterize 18F-FDG metabolic activity, several scores have been
proposed and are used in clinical routine. The Standardized Uptake Value (SUV) was
defined for every tracer and is the most used semi-quantitative index [109, 228]. Working
with SUV values instead of image intensities allows to compare values across acquisi-
tions. The SUV is defined as the ratio of the mean radiotracer activity in a defined area
Alocal_mean (kBq/mL), over the injected 18F-FDG activity at acquisition time corrected
by the radioactive decay Atotal (kBq), itself normalized by the body volume V (mL) (see
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Eq. 1.3). The SUV is unitless.

SUV = Alocal_mean
Atotal

V

(1.3)

Since the SUV is easy to compute, it is available on all interpretation consoles used in
clinical routine. However, SUV relies on several approximations.

SUV is computed from a single uptake measure, which depends on the post-injection
duration. Yet, 18F-FDG uptake only reaches a plateau two hours after the injection [75],
while SUV is generally measured 1h after the injection, at a time of increasing tracer
concentration in the body. Besides, SUV measures the 18F-FDG metabolized by the
tumor as well as the circulating one, which leads to an overestimation of the glucose
metabolized by the lesions [62]. SUV also does not take into account the competition
between glucose and 18F-FDG. To reduce the influence of blood sugar on the lesion’s
tracer uptake [117], patients are asked to fast before PET acquisition, though glucose
levels can remain high if patients suffer from severe diabetes.

The uniform tracer dilution hypothesis is also a coarse approximation. The tracer body
distribution can noticeably vary depending on the patient’s body composition, especially
its adipose cell proportion. Since fat presents a very low metabolic activity, lesions of
a patient presenting a high fat ratio will have a higher 18F-FDG uptake than lesions
from another patient. To take the patient’s body composition in consideration, Morgan
et al. [154] and Sugawara et al. [203] proposed to replace the volumetric normalization
in Eq. 1.3 by a mass normalization. The Lean Body Mass (LBM) is used to perform
this normalization (Standardized Uptake value Lean body mass (SUL)), as detailed in
Eq. 1.4 and 1.5, with weight in kg and size in m.

Woman: LBM = 1.07 · weight− 148 ·
(
weight

size

)2

(1.4)

Man: LBM = 1.10 · weight− 120 ·
(
weight

size

)2

(1.5)

Indeed, considering the patient volumetric mass is identical to that of water (1 g/cm3),
the volume value in mL is the same as the mass in g. The body surface area (SUVbsa)
could also be used to normalize the activities ratio.

Despite all studies focusing on SUV, no consensus has emerged about its optimal
computation area [132]. It can be computed on a fixed region around the lesion maximum
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(SUVmean) or in the maximum intensity voxel (SUVmax), and this choice has a major
impact on the estimated value [20]. For instance, SUVmean computed on manually defined
fixed areas with a 50% or 75% threshold from the SUVmax can be respectively 35% or
15% lower than the SUVmax [114].

To address these disagreements, standardized guidelines have been proposed to mea-
sure the tumoral metabolic activity homogeneously from one center to another (see Sec-
tion 1.4). These guidelines are widely used in clinical routine to monitor treatment re-
sponse to cancer.

1.4 Response to treatment evaluation

1.4.1 Evaluation criteria principle

Response evaluation helps determine if a patient benefits from a treatment [23], al-
lowing to regularly reevaluate prognosis during therapy. With imaging, cancer evolution
at a lesion level can be observed even before a change in symptoms is reported. Evalu-
ation criteria have therefore been established to measure treatment response from image
data. These criteria should be quantitative, objective and reproducible. Criteria allow to
categorize patients in three main categories:

• Complete Response (CR) or Partial Response (PR): Patients presenting an
objective response to treatment;

• Progressive Disease (PD): Patients presenting a tumoral progression;

• Stable Disease (SD): Patients presenting neither response nor progression.

CR, PR or SD patients benefit from the treatment: physicians consider that without
it, tumoral progression would have been observed. PD patients do not benefit from the
treatment. In these cases, the treatment is then suspended and adapted. During a clinical
trial, evaluation criteria can also be used to characterize the efficiency of a treatment
compared to another.

Since we focus in this work on metastatic breast cancer, we present hereafter the main
therapeutic evaluation criteria used for the monitoring of solid tumors.
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1.4.2 Morphological criteria

Morphological imaging evaluation criteria assess the change in lesion size over time to
evaluate therapeutic response. These methods are easy to use and standardized.

While the objective treatment response is evaluated in comparison to the baseline
acquisition (the one obtained just before the start of treatment), tumoral progression is
evaluated against the nadir acquisition (see in Figure 1.9). This nadir corresponds to the
acquisition for which the best treatment response was obtained. It may not be the last
obtained exam.

Figure 1.9 – Acquisitions obtained before treatment (left), after 3 cycles (middle) and
after 9 cycles (right). Lesions are marked in yellow. The pre-treatment acquisition is the
baseline, and here the acquisition after 3 cycles of treatment is the nadir. Images adapted
from [140].

1.4.2.1 WHO criteria

The first imaging interpretation criteria were studied by the WHO [142], who proposed
to measure lesions in 2D and to compute the sum of the product of the lesions’ short and
long axis. Several modifications have followed the WHO criteria, leading to the Response
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Evaluation Criteria In Solid Tumors (RECIST) guidelines [206].

1.4.2.2 RECIST

RECIST guidelines are defined as a simple 2D evaluation method [206]. RECIST
evaluate change in tumor diameters on CT exams acquired at different time points. A
revised version, RECIST 1.1, was presented in Eisenhauer et al. [46]. RECIST 1.1 was
then updated and clarified by Schwartz et al. [188]. The main goal of RECIST guidelines
are to standardize and simplify the evaluation of tumor response to treatment. They are
the most common morphological criteria used in clinical trials.

To evaluate treatment response, RECIST defines three categories of lesions: target,
non-target and new lesions.

Target lesions Target lesions measure more than 1 cm diameter. A maximum of five
target lesions can be selected per patient, with a maximum of two per organ. For example,
if a patient only presents lesions in the liver, only two target lesions can be considered.
If metastases can be found in the lymph nodes, liver and lungs, up to five target lesions
representative of the patient’s overall disease can be chosen. The 1 cm limit is not applied
to lymph node lesions, which should measure at least 1.5 cm to be considered as target
lesions [187]. Some target lesions are illustrated in Figure 1.10.

Target lesions are assessed quantitatively and therefore heavily contribute to tumoral
evaluation. The sum of the small axis for nodal lesions and of the large axis for non-nodal
lesions is computed at each visit. The result is used to determine target lesion response
or progression:

• Lesion disappearance: CR;

• Diminution of the diameters sum of at least 30% compared to baseline: PR;

• Increase of the diameters sum of at least than 20% compared to nadir: PD;

• Neither responsive nor progressive: SD.

Only the evaluation of target lesions allows to draw the conclusion of partial response.

Non-target lesions Non-target lesions are all lesions which cannot be considered as
target lesions: non-nodal lesions with a diameter smaller than 1 cm, nodal lesions with
a small axis between 1 cm and 1.4 cm, as well as infiltrating or difficult to measure
lesions. Lesions that fulfill the target lesion size requirements, but can’t be selected as
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Figure 1.10 – Visceral (yellow and red, left) and lymph node (blue, right) diameters
measurements on target lesion for RECIST. Images adapted from [140].

such because the maximum number of target lesions has already been reached should also
be followed as non-target lesions. Primary digestive tumors are generally considered as
non-target lesions as they are difficult to measure in a reproducible manner at different
time points. Some non-target lesions are illustrated in Figure 1.11.

Non-target lesion are assessed qualitatively to determine the non-target lesion re-
sponse:

• If all non-target lesions disappeared: CR;

• If lesions progressed unequivocally: PD;

• If there is no progression or disappearance, non-target lesions response is Non-
CR/Non-PD.

Figure 1.11 – Visceral non-target lesions for RECIST. Image adapted from [140].
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New lesions New lesions indicate a progression: it is thus very important to be sure of
their existence. New lesions are lesions that appeared unequivocally. The apparition of a
pleural, pericardial or ascite effusion cannot be alone considered as a progression criteria.
The apparition of condensing bone lesions should also be treated cautiously: they may
indicate the healing process of lesions non detected on a first exam.

Overall response The combination of the responses of target and non-target lesions,
as well as the presence or absence of new lesions, leads to the determination of an overall
response, as defined in Table 1.1.

Table 1.1 – Overall RECIST response depending on the target and non-target lesion
responses, as well as on the absence or presence of new lesions. CR = Complete Response,
PR = Partial Response, SD = Stable Disease, PD = Progressive Disease. Any stands for
any of the possible response of the considered lesions. Table from [46].

Target lesions Non-target lesions New lesions Overall response
CR CR No CR
CR Non-CR/ Non-PR No PR
CR Not evaluated No PR
PR Non-PR or not all evaluated No SD
Not all evaluated Non-PD or not all evaluated No Inevaluable
PD Any Yes or No PD
Any PD Yes or No PD
Any Any Yes PD

Progressive disease The categorization of a patient as PD is important since it may
impact the patient’s medical care [39]. It can be assessed:

• By the increase of the sum of the target lesion diameters of at least 20% (in that
case, a 5 mm absolute increase is also necessary to avoid ambiguity on small lesions);

• By an unequivocal progression of non-target lesions;

• By the unequivocal appearance of new lesions.

Since the term “unequivocal” is subjective, progression is often considered uncertain
when first observed. In those cases, physicians compare the imaging results with the rest
of the exams and with all other available information. It is frequent for a patient in a
good medical condition tolerating well the treatment to continue it, despite the presence of
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questionable lesions, until the next imaging evaluation. On the next time point, physicians
will carefully look for confirmation of progression. This caution is needed as certain
manifestations can be misinterpreted as tumoral progression, such as the modification of
the liver morphology due to steatosis or a pulmonary infection.

RECIST limitations The criteria presented above are subject to inter- and intra-
reader variability [13, 124, 204]. In addition, the measuring techniques and the size
thresholds used to define response or progression are still debated.

With these criteria, measurements are done on a single slice in 2D, and thus only con-
sider the axial dimension of the lesion(s). To improve the precision of response evaluation,
Buerke et al. [22] and Heckel et al. [81] proposed to replace the 1D measurement by a 3D
volumetric evaluation. However, with a 3D evaluation, part of the standardization is lost.
These 3D measurements also slow down the image analysis process, which is problematic
considering the increasing number of exams acquired in oncology. Software programs to
help radiologists delineate volumes have been developed, but they do not yet provide
fast, automatic and reliable segmentations. Indeed, while automatic segmentation meth-
ods provide good results for lung lesions, the delineation of the liver, pathological lymph
nodes or infiltrating tumors remains challenging.

Tumor size measurements are an indirect reflection of their development. Yet, they
often under-estimate the real response for two reasons. First, when treated, tumoral tissue
can partially be replaced by necrotic or fibrous tissue, without causing any change in the
global size of the lesion. Secondly, tumor size may remain stable even if its metabolism
decreases or stops. Indeed, measurements taken on anatomical CT images are used for
lesion monitoring because it is implied that change in lesion diameter is a marker for
treatment response: as the treatment kills tumoral cells, cell retraction occurs. However
this tumor shrinkage is often only observed at the end of the therapeutic action. Cell
retraction (and subsequent death) are caused by functional changes disturbing metabolic
cell functions such as glycolysis; anatomical changes are thus the consequence of metabolic
changes in lesions. As described in Section 1.3, modifications in glucose metabolism are
translated by less 18F-FDG uptake in the cells: changes induced by therapy will thus be
first visible on PET images, and then only after on CT images [213].
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1.4.3 Metabolic criteria

PET imaging modality is now commonly used in oncology to monitor lesion evolu-
tion [43]. Since treatment response is visible on metabolic images before being visible
on anatomic images, metabolic criteria to evaluate therapeutic response have been devel-
oped for 18F-FDG PET images: the European Organization for Research and Treatment
of Cancer (EORTC) [236] and, by analogy to RECIST, the Position Emission tomography
Response Criteria In Solid Tumors (PERCIST) [223].

1.4.3.1 EORTC

EORTC guidelines are the first metabolic evaluation criteria developed for 18F-FDG
PET in the context of solid tumors [236]. They are based on the variation of the maximum
SUVbw (see Section 1.3.2). In practice, radiologists measure the maximum SUVbw in 5 to
7 target lesions [189, 194], even if this number is not explicitly specified in the original
EORTC paper [236].

The EORCT guidelines state that:

• Complete metabolic response (CR) is defined by the complete disappearance of FDG
uptake in the tumoral volume, non visible within the surrounding background noise.

• Metabolic progression (PD) can be defined i) by an increase of at least 25% of
the maximum SUVbw, or ii) by a visible increase of the size of the metabolic site
(increase of the large axis by at least 20%), or iii) by the appearance of at least one
new metabolic site corresponding to a new lesion.

• Partial metabolic response (PR) is defined by a decreasing maximum SUVbw value
of at least 25% (or at least 15% after a chemotherapy cycle).

• Metabolic stability (SD) corresponds to cases not defined above: between partial
response and progression.

These recommendations have been formulated based on a small study number (10)
and only on five cancer types: six of these studies were done on glioma and medul-
loblastoma (central nervous system lesions), two on breast cancer, one on head and neck
cancer, and the last one on liver metastases from colorectal cancer. All these cancers
have been treated with different chemotherapy strategies. Yet, EORTC guidelines are
recommended for all types of cancer and chemotherapy, which is questionable [210]. In
addition, EORTC guidelines suffer from inter- and intra-center variability because of their
lack of standardization [93].
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1.4.3.2 PERCIST

In analogy to the RECIST guidelines defined for anatomical images, PERCIST was
developed and explained in [223] to evaluate the metabolic response of cancers to treat-
ment with PET images. Contrary to the EORTC criteria, PERCIST use the SUL value
(see Section 1.3.2). Since it is based on the lean body mass computation, it is not influ-
enced by the patient’s body weight. PERCIST guidelines are based on a meta-analysis of
more than 3000 publications.

The metric used in PERCIST guideline is the SULpeak. Considering a 1 cm3 sphere in
the lesion presenting the highest fixation, i.e. the target lesion, SULmean is computed
for every sphere position. SULpeak corresponds to the maximum value of these SULmean

values. The variation of SULpeak is measured with FDG PET acquisitions in 3D. In
clinical practice, this measurement is now automatically computed: SULpeak presents a
high inter-reader reproducibility. In addition, it does not suffer from the background noise
influence, compared to SUVmax or SULmax for which measurements are very sensible to
noise, especially for small lesions.

To be considered as the target lesion for measurement, the selected lesion should have
the highest FDG uptake and should have a SULpeak higher than 1.5 times the threshold
value of the liver background noise added to two times its standard deviation. The
threshold value of the liver background noise is defined by the SULmean measured in a
3 cm diameter sphere on an homogeneous (without lesion) part of the liver (see in Figure
1.12). These minimum uptake thresholds limit interpretation errors and allows to better
assess metabolic response. It is also recommended that the target lesion has a long axis
of at least 1.5 cm to limit the partial volume effect (see Section 1.2.1.4). These thresholds
were chosen empirically by authors [102].

To evaluate treatment response, the measurement of SULpeak is performed on the tar-
get lesion at each time point and it may not be the same lesion from one PET acquisition
to the other:

• A complete metabolic response (CR) is defined by the visual disappearance of all le-
sions. This means that their metabolic activities are lower than the liver background
noise threshold, and that they are non detectable from the surrounding background
noise.

• A metabolic progression (PD) can be defined i) by an increase of the SULpeak of
at least 30% and of 0.8 points in respect to the nadir exam, or ii) by a visible
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Figure 1.12 – Liver 3 cm diameter sphere placed in the liver as a reference for PERCIST
background noise measure. Image from our EPICURE dataset.

increase of the metabolic site, or iii) by the apparition of at least one new lesion.
Assessments are done on the target lesions. In case of a progression caused by the
SULpeak increase (without new lesion), the progression should be confirmed by a
another acquisition once month later, except if a RECIST progression is confirmed.

• A partial response (PR) is defined by the decrease of at least 30% of the SULpeak

and 0.8 units.

• A stability (SD) is neither a partial response nor a progression.

In addition to these response evaluation criteria, criteria ensuring the comparability
of acquisitions are also defined. The non-respect of these quality control criteria should
be detailed in the clinical report.

• The difference between liver SULmean values in the liver should not exceed 20% and
0.3 units.

• The duration between the radiotracer injection and the image acquisition should
not differ by more than 15 min between exams. Acquisition time should lie between
50 min and 70 min after the injection.

• The same imaging systems and acquisition protocols should be used for all PET
image acquisition.

• Injected doses should not differ by more than 20%.
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• Patients should be fasting for at least 4h and present a blood sugar lower than 2g/L.

Min et al. [144] showed that PERCIST and EORTC criteria present very similar
performances, either regarding the patient’s categorization [189, 241], or the overall sur-
vival [194]. Because of the quality control criteria, PERCIST guidelines are more difficult
to integrate in clinical routine than EORTC’s. Yet PERCIST standardization makes its
results more reproducible: inter-reader variability is relatively low [51], below the simple
visual analysis.

Comparing RECIST to PERCIST, PERCIST categorized more patients in CR or
PD [144]. Hence, PERCIST is able to provide an earlier response to treatment. However,
SUL measured according to the PERCIST criteria recommendations suffers from approx-
imations (see Section 1.3.2). The relative variation of these indexes is subject to bias and
precautions should be taken when comparing to fixed thresholds.

1.4.4 Criteria limitations

With most imaging criteria, the correlation between what is observed and what actu-
ally happens in tumors is not guarantied. For instance, if a patient is categorized CR, it
does not mean that the tumor disappeared at the histologic level. In most cases, tumoral
cells persist at a microscopical level and are at the origin of recurrence if the treatment is
stopped [65]. This is especially important if a surgical treatment is considered, because
non-removed lesions, even if mophologically disappeared, will cause local recurrence. This
phenomenon is called “missing metastases”. To avoid it, the surgical intervention should
be planned while small isolated metastases are still visible.

These criteria should be used to monitor cancers and to evaluate a response to treat-
ment. They are not meant to determine whether a patient has improved or not, as they are
tumor-centered and not patient-centered. More information, such as global health, age,
physical symptoms and biological markers should also be considered to provide the best
treatment possible to the patient, and decide if there is a need for treatment adaptation.
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1.5 Our clinical dataset: the EPICUREseinmeta data
This thesis is part of the ongoing prospective multicentric EPICUREseinmeta study 1

(NCT03958136) [32], in collaboration between the Keosys company 2 and the “Institut de
Cancérologie de l’Ouest” (ICO) 3. To better understand and describe breast cancers, the
EPICURE project aims to collect diverse data about patients presenting breast metas-
tases, such as clinical, biological, imaging and histological data, as well as personal and fa-
milial history and global environment. This prognostic study was approved by the French
Agence Nationale de Sécurité du Médicament et des produits de santé (ANSM, #2018-
A00959-46) and the Comité de Protection des Personnes (CPP) IDF I, Paris, France
(#CPPIDF1-2018-ND40-cat.1), and a written informed consent was obtained from all
patients.

In this large multidisciplinary project, we focused on the monitoring of the cancer’s
evolution, working on metastatic breast cancer images. Patients underwent between two
to three PET–CT acquisitions (see in Figure 1.2). They correspond to pre-, early- (after
about a month) and mid-treatment (after about three months) time points. Pre-treatment
acquisitions correspond to the initial baseline images, while the early- and mid- treatment
acquisitions to the follow-up ones.

Images were acquired in two different centers. In the Angers center, images were
obtained using a Philips Vereos or a GE Discovery PET–CT imaging systems, while in
the Nantes center images were acquired with two different dual-slice Siemens Biograph
PET–CT scanners. Since this is a prospective study, the number of available images is
still increasing. For this reason, we specify for each application the number of processed
images, as well as their acquisition center.

As shown useful for metastatic breast cancer monitoring [8, 27], we worked only on
PET images normalized by the SUV [109]. Ground truth segmentations of all lesions were
manually delineated by expert physicians from ICO on all PET images.

1.6 Conclusion
Metastatic breast cancer is a disease with poor prognosis. To monitor its evolution and

evaluate its response to treatment, PET–CT imaging is acquired at regular time points.

1. https://projet-epicure.fr/
2. https://www.keosys.com/
3. https://www.institut-cancerologie-ouest.com/
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1.6. Conclusion

While the CT part brings anatomical information, the PET part provides information on
metabolic activity.

Using a glucose-based radiotracer, PET images help visualize high glucose uptake
areas, i.e. cancerous lesions (pathological hyperfixations) and specific organs (physiolog-
ical hyperfixations). These physiological hyperfixations can cause confusion, creating a
challenge for disease monitoring.

For the monitoring of tumor response and progression, standardized evaluation criteria
have been proposed. Yet, they only consider few lesions and can present reproducibility
limitations. In this thesis, we address this issue by proposing an automatic tool which i)
propagates lesion segmentations maps from baseline to follow-up images using registration
(see Chapters 3, 4 and 5), and ii) extracts biomarkers to monitor each lesion individually
(see Chapter 6). The methodological context of medical image registration is presented
in Chapter 2.

! Despite several limitations, PET images are widely used for
metastatic breast cancer monitoring.
! One of the limitations of PET imaging is that 18F-FDG uptake
is not specific to cancerous cells.
! Metastatic breast cancer evaluation and monitoring through
morphological and metabolic criteria is time consuming and subject
to inter- and intra-reader variability.

Summary
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Chapter 2

Medical image registration:
methodological context
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2.1 Introduction
There is an extensive literature studying the image registration problem (see Fig-

ure 2.1), in particular its non-rigid form [91, 137, 139, 164, 171, 200, 214, 244]. Despite
these efforts, deformable registration is still considered an unsolved problem [28].

Figure 2.1 – Publication count in PubMed between 1992 and 2021 with the keywords
“Image registration” and “Medical image registration”.

Registration plays an important role in medical image analysis. Its goal is to find
corresponding functional or anatomical locations in two or more images. Depending on
the application, registration can be mono-modal or multi-modal, as well as intra-subject
or inter-subject:

• Mono-modal intra-patient registration (see Figure 2.2.A) may be used to spatially
compensate for geometric (e.g. patient position) or intensity variations between
different views. On longitudinal data taken at relatively long time intervals, regis-
tration has for instance been used in the oncological context to detect, characterize,
quantify and monitor lesions or diseases (see Chapters 3 and 4).

• Multi-modal intra-patient registration (see Figure 2.2.B) allows the fusion of anat-
omical and/ or functional information obtained from different imaging modalities
acquired from a single patient. These imaging modalities can be anatomic such
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Figure 2.2 – A. Mono-modal intra-patient image registration. B. Multi-modal intra-
patient image registration. C. Mono-modal inter-patient image registration. First row
shows the overlay of the fixed and moving images (columns A and B) or segmentations
(column C), while the second row displays the overlaid fixed and warped data. Images
from Siebert et al. [191].

as CT, MRI, angiography or UltraSound (US). They can also be functional such
as PET, Single-Photon Emission Computed Tomography (SPECT) or functional
Magnetic Resonance Imaging (fMRI). Multi-modal intra-patient registration helps
to interpret images, as well as to plan (pre-operative) or perform (intra-operative)
a surgery.

• Mono-modal inter-patient data registration (see Figure 2.2.C) is developed to find
correspondences between real and generic patient models. It is used to automatically
index anatomical structures and construct atlases.

In this thesis, we model patient response quantification in terms of a mono-modal intra-
patient registration problem for longitudinal whole-body PET images. In this chapter, we
introduce and formalize the general image registration problem (Section 2.2). Then we
introduce conventional and learning-based approaches for registration (Section 2.3). We
define here conventional registration methods as the non-learning-based ones, i.e. the
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ones not taking advantage of several images to perform registration. As we will see later,
DL-based methods share some commonalities with conventional approaches. We will
therefore mention how these commonalities have been transferred to DL-based methods
while introducing conventional approaches. These will serve as a basis to our proposed
method presented later in Chapter 4.

2.2 Conventional medical image registration

Medical image registration consists in finding a spatial transformation to align a mov-
ing image to another fixed or target image, as illustrated in Figure 2.3.

Figure 2.3 – Image registration principle: the moving image M is warped by the spatial
transformation φ to match the fixed image F . The deformation is represented by an
overlaid grid. PET images from our EPICUREseinmeta dataset [32].

LetM be the moving image and F the fixed one, both defined on the image domain Ω.
Registering M on F consists in finding the spatial transformation φ : Ω → Ω such that
the warped image W = M ◦ φ is similar to F according to a predefined criterion. φ is
the spatial transformation, while ◦ describes the warping operation. In the more general
case, the transformation φ can be defined using a displacement or deformation field u for
every position x ∈ Ω: φ(x) = x + u(x). Thus, for every x ∈ Ω, we look for a field u such
that W (x) = W (x + u(x)) is similar to F (x).

Registration can be seen as an optimization problem aiming to find the optimal de-
formation field φ. Given S, a dissimilarity measure between the moving image M and
the fixed image F , registration algorithms aim at minimizing an objective function of the
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form:
arg min

φ
S(F,M ◦ φ) (2.1)

The problem stated Eq. 2.1 is ill-posed, i.e. it belongs to the non-linear transformation
class [156]. To constrain the domain of admissible transformations and obtain plausible
deformation fields, a regularizer R and its hyperparameter λ are added to Eq. 2.1 to
enforce transformation properties, such as the desired level of transformation smooth-
ness [200]:

arg min
φ

S(F,M ◦ φ) + λR(φ) (2.2)

The regularization term can be interpreted as prior knowledge about the expected
transformation, whereas the similarity measure, i.e. the opposite of the dissimilarity
measure, can be viewed as a likelihood expressing the probability of a match between
images [181].

Most image registration algorithms are composed of:

• A cost function, formed by chosen dissimilarity S and regularization R terms;

• A deformation/ transformation model, which determines the set of possible trans-
formations T ;

• An optimization strategy suitable to minimize the cost function.

As presented in the following sections, similarity measures (Section 2.2.1), transfor-
mation models (Section 2.2.2), regularization terms (Section 2.2.3), optimization schemes
(Section 2.2.4) and validation techniques (Section 2.2.5) are usually adapted to best ad-
dress the medical registration problem at hand (mono- or multi-modal, intra- or inter-
patient).

2.2.1 Similarity measures

2.2.1.1 Feature-based similarity measures

The first family of similarity measures are the feature-based similarities, which aim
to match landmarks present in the images to register (see Figure 2.4). These landmarks
correspond to salient structures in the images, such as points, contours or surfaces ex-
tracted either manually [155] or automatically [103]. The choice of landmark should be
guided by properties, such as being easily and precisely detectable, being distributed on
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Figure 2.4 – Feature-based similarity measures compute the distance between matching
landmarks placed on salient features (colored dots) of the two images to register F and
M (green stars) providing a deformation field φ.

the whole image, as well as being robust to noise, artifacts and different changes inherent
to the acquisition [244].

The main advantage of feature-based similarities is the manipulation of a compact
image representation carrying high-level information based on anatomical considerations.
As a consequence, the computation load is smaller than for the other family of similarity
measures, e.g. intensity-based measures (see Section 2.2.1.2).

While there are numerous algorithms for landmark detection [33], the main drawback
of feature-based similarities is the imprecision of the extracted landmarks. To address
this issue, landmark extraction error can be included in the deformation model estima-
tion [176]. Another limit regards the registration precision, which is guarantied only
around landmarks. Since the obtained deformation field is sparse, i.e. computed only
on landmark pixels, feature-based measures are usually employed to perform rigid trans-
formation (see Section 2.2.2). In the case of non-rigid registration, the deformation field
can also be extrapolated to the whole image, typically resulting in a loss in registration
accuracy. These limitations explain the decreasing popularity of feature-based similarity
measures for conventional registration methods [200]. Yet, DL-based registration meth-
ods developed lately have taken advantage of landmarks to improve the training of Neural
Networks (NNs) (see Section 2.3.5).
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2.2.1.2 Intensity-based similarity measures

The second similarity-measure family relies on image intensities. These similarities
have become the reference to measure image alignment, largely due to their robustness
and accuracy. Contrary to feature-based methods, intensity-based similarity measures
compare the images intensity values either directly or after processing them (using for
instance image differential statistics or a Fourier transform). The main advantage of
intensity-based registration methods is therefore the use of the whole image information.
Depending on the assumed relation between the intensities of the images to register,
different measures can be used.

For mono-modal registration, assumptions on the relation between intensities and on
the type of noise dictate the choice of the measure. For instance, the Sum of Squared
Distances (SSD) measure assumes that both images (F,M) present the intensity and
illumination consistency. If images are correctly aligned, the SSD between them should
be zero, except for the noise. If this noise is Gaussian distributed, Viola et al. [218]
demonstrated that SSD is the optimal similarity measure. With F and W respectively
the fixed and warped images, and N the number of pixels or voxels:

SSD(F,W ) = 1
N

N∑
i=1

(Fi −Wi)2 (2.3)

When a linear relation between image intensities is assumed, the Cross Correlation
(CC) or Normalized Cross Correlation (NCC) measures can be used to express the similar-
ity between both images. Registration algorithms maximize correlation-based measures.
With x and σx respectively the mean and standard deviation, NCC can be defined as:

NCC(F,W ) = 1
N

N∑
i=1

(Fi − F )(Wi −W )
σFσW

(2.4)

In multi-modal registration, similar structures are acquired with different imaging
modalities. They may present very different intensity values, making mono-modal mea-
sures not suitable to perform accurate registration. The most popular measure in multi-
modal registration is the Mutual Information (MI) [134, 218]. MI assumes a non-para-
metric statistical relationship between image intensities. Instead, MI is defined in terms
of the images individual and joint entropies. Joint entropy being minimal when images
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are perfectly registered, a registration algorithm will seek to maximize the MI similarity:

MI(F,W ) = H(F ) + H(W )−H(F,W ) (2.5)

with:  H(I) = −∑ pi log(pi)
H(I, J) = −∑ pi,j log(pi,j)

(2.6)

and pi and pi,j respectively the probability and co-occurence probability of i and j in term
of gray values.

Despite their wide use, SSD, NCC or MI intensity-based measures suffer from draw-
backs such as sensitivity to noise and image artifacts and may require pre-processing steps
like image filtering [207]. They also present a high computational cost since they usu-
ally consider a large amount of image pixels or voxels, and the optimization problem is
challenging to solve because often presenting several local minima. To decrease this cost
and help solve the optimization problem, hierarchical approaches building image pyra-
mids have been proposed (see Section 2.2.4). Moreover, some hybrid similarity measures
were also proposed, using for instance feature-based measures to constrain intensity-based
approaches [100, 199].

For our application, i.e. performing intra-patient PET image registration, we assume
a linear relation between image intensities and use the intensity-based NCC similarity
measure.

2.2.2 Transformation models

Once the similarity measure describing accurately the registration problem at hand is
chosen, the transformation model should be defined. Spatial image transformations can
model global or local transformations. A global transformation is uniformly applied to the
whole image, while with a local one, image sub-sections present their own transformations.
Most transformation models require a more or less complex interpolation step to effectively
warp all image pixels into the fixed image grid.

The choice of the transformation model is very important as it determines the Degrees
of Freedom (DoF) and complexity of the estimated deformation. This choice is guided by
the application at hand and by prior information available on the nature of the deforma-
tion. Indeed, the transformation model can limit the set of admissible transformations T
through different parametrizations. As shown hereafter, parametrizations of T can vary
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from having a small number to millions of parameters.

2.2.2.1 Rigid transformation models

Rigid transformation is the simplest global geometric model. It consists in the estima-
tion of translations and rotations to reposition an object supposed rigid, while conserving
distances, angles and parallelism (see Figure 2.5). The number of DoF is three in 2D (two
translations and a rotation) and six in 3D (three translations and three rotations). It is
commonly used in the context of medical image mono-modal intra-patient registration to
correct position errors when no soft tissue deformation occurred [52], or as an initialization
step for more complex transformations [173]. However, rigid transformation is generally
not sufficient to perform accurate inter-subject registration [91].

2.2.2.2 Affine transformation models

An affine global transformation allows, in addition to rotations and translations, to
correct the scaling and the shearing (see Figure 2.5). This transformation preserves par-
allelism. The number of DoF is six in 2D and twelve in 3D, representing translation,
rotations, scaling and shearing. This model may be used for multi-modal inter-patient
registration [99], even though its low number of DoF does not allow to precisely model
anatomical variability.

2.2.2.3 Deformable transformation models

Since rigid and affine transformations only allow a small number of DoF, they are
not suitable to represent complex deformations, e.g. in soft tissues such as the liver or
breasts. Transformations using a higher number of DoF and which are able to locally
modify the image are needed. These models, called non-rigid or deformable, can be
used to perform inter-patient or atlas registration, as well as intra-subject registration if
anatomical movement occurred between acquired images [52] (see Figure 2.5). Deformable
models can be categorized as parametric or non-parametric.

Non-parametric deformable transformation models Non-parametric models are
defined on the largest possible space of transformations. Their dense deformation fields
are described by displacement fields, where an independent 2D or a 3D vector describes
the motion of each pixel or voxel in the image. These displacement fields can be obtained
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Figure 2.5 – The first row displays the fixed (red) and moving (blue) images, while the
second row shows the fixed (red) and registered (blue), i.e. warped, images. The overlay
of both images is visible in pink. From left to right, a rigid (translation and rotation),
affine (translation, rotation, scaling and shearing), and non-rigid registration method was
applied to the moving image so that the warped image matches the fixed one. Images
from https://simpleelastix.readthedocs.io/.

either directly [91] or through the integration of a Stationary Velocity Field (SVF) over-
time [5, 146]. Non-parametric deformable models include, for instance, the elastic model
[40, 169], the fluid model [30] or the optical flow model [207]. Yet, they are complex and
expensive to optimize.

Parametric deformable transformation models To parametrize the deformation
field, the Free-Form Deformations (FFDs) model, for instance, is commonly used in med-
ical image registration [175, 182, 185]. FFDs’ main advantage lies in their aptitude to
estimate very localized deformations.

From the subset of control points, the parametric transformation is interpolated to
all the points of the image to obtain the global transformation. Several interpolation
functions were developed for parametric deformable transformation models. Some apply
to the whole image, such as the Radial Basis Functions (RBFs) [21], the Thin-Plate
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Splines (TPS) function (a subset of RBFs), as well as polynomial [101], Gaussian [118] or
trigonometric [6] functions. B-spline functions [182], on the contrary, do not apply to the
whole image but only on an specific area of the image.

Diffeomorphic transformations, i.e. transformations reversible and which preserve the
topology, can be parameterized by Large Deformation Diffeomorphic Metric Mappings
(LDDMMs) [15, 26, 238], or Stationary Velocity Fields (SVFs) [5, 129, 215].

As detailed in Chapter 3, we perform deformable registration with a conventional
method using a B-spline interpolation to address our intra-patient mono-modal registra-
tion problem.

2.2.3 Regularization

To cope with the ill-posed nature of the image registration problem and to reduce
the range of admissible transformations, different explicit regularization terms R (see
Eq. 2.2) have been proposed. In the medical image field, regularization helps produce
plausible deformations, which means they help avoid problems such as non-smoothness,
non-invertibility or folding. Moreover, it may be important for some applications to
maintain tissue properties, e.g. bones rigidity, which can be included as prior knowledge.

To help produce a smooth deformation field, regularization terms based on the deriva-
tives of the deformation field have been often proposed. Indeed, smooth deformations
are related to small gradient values. Li et al. [123], for instance, used a Total Variation
(TV) regularization on the deformation field aiming to reduce spatial incoherence, while
Christodoulidis et al. [31] constrained the objective function using the L1-norm for more
robustness to image noise. Also to enforce a smooth transformation and put more em-
phasis on avoiding large deformation values, Klein et al. [112] used the L2-norm on the
gradients of the deformation field. This L2-norm regularization term, also called bending
energy, is commonly employed in DL-based methods [11, 28] to enforce smoothness (see
Section 2.3).

To obtain inverse consistent deformations, symmetric algorithms optimize the objec-
tive function in both directions: from the moving towards the fixed image and vice versa
[7, 129, 216]. DL-based methods also seek reversible transformations by using similar
objective functions, where fixed and moving images are both warped to match each other,
and then deformed back to the original images [72, 108, 136].

Obtaining diffeomorphic transformations is interesting to avoid implausible foldings
when performing medical image registration. Indeed, diffeomorphic transformations are
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reversible and preserve the topology. To avoid undesired foldings, the determinant of the
Jacobian of the deformation field J 1 may be considered, since its negative values indicate
folding areas. Thus, a positiveness constrain on J is a common strategy to limit the
folding problem [63].

The determinant of the Jacobian of the deformation field can also be used to impose
incompressibility constrains [175], for tissues such as the bones. Indeed, J > 1 reflects a
dilation and 0 < J < 1 a compression of the area.

In this thesis, we exploit the L2-norm on the gradients of the deformation to impose
smoothness constrains, and add anti-fold regularization in our latter experiments. In
addition to these explicit regularization terms and inspired by the implicit regularization
imposed by parametric deformable transformation models (see Section 2.2.2), we state
and develop in Chapter 4 that the architecture of DL network also acts as an implicit
regularizer to parametrize the transformation.

2.2.4 Optimization

The image registration problem can be seen as an optimization problem aiming to
minimize an energy function E defined as in Eq. 2.2:

E = S(F,M ◦ φ) + λR(φ) (2.7)

Since φ depends on the parameters θ of the transformation T , optimizing E is equiv-
alent to retrieving the optimal parameters θ∗. While rigid and affine models depend only
on a small number of parameters (from three to twelve), this number rises to thousands
for deformable models. For instance the number of parameters depends on the amount
of chosen control points for parametric deformable models.

As presented hereafter, these optimal parameters θ∗ are typically determined with
continuous or discrete optimization schemes. Moreover, both optimization schemes can
be performed in a mono- or multi-resolution setups. Mono-resolution setups are performed
on full resolution images, which can be computationally expensive on large and/ or 3D
data. Multi-resolution setups, on the contrary, optimize the transformation model on
low resolution images before moving on full resolution ones. This is often referred as a
pyramidal optimization strategy [244].

1. J = det(dT /dx) = det(I + du/dx), with T the transformation, x spatial positions, I the identity
matrix, and u a displacement field.
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2.2.4.1 Continuous optimization

Continuous optimization approaches correspond to gradient-based methods. Even
though the choice of an optimizer is not trivial [113], commonly used methods in contin-
uous optimization have emerged over the years.

The simplest approach is the Gradient Descent (GD) method, which only requires
the computation of the gradient of E to search for the steepest descent direction, and
was used for instance by Johnson et al. [100] and Rueckert et al. [182]. The Conjugate
Gradient (CG) method converges faster than GD and takes advantage of prior knowledge
from gradient descent [208]. To speed up convergence and reach a higher convergence
rate than CG, the Quasi-Newton (QN) method uses second-order information [128]. The
Levenberg-Marquardt (LM) method combines the advantages of the GD and QN methods
[104]. Finally, the widely used Stochastic Gradient Descent (SGD) method allows to
reduce the burden of heavy calculation [202].

These methods reach a high accuracy. However, they require a differentiable func-
tion E, are difficult to control, and may converge to a local minima.

2.2.4.2 Discrete optimization

Discrete optimization is performed only on a discrete subset of the parameter space.
It presents several advantages, such as the possibility to find a strong minima more often,
a high computational efficiency, as well as a full control on the research space. However,
the accuracy of the optimization is bounded by the discretization [67].

In medical image registration, discrete optimization methods commonly refer to the
use of Markov Random Fields (MRFs) to conduct the optimization [68, 196]. The trans-
formation parameters are represented by nodes in a fully connected graph where the edges
model pairwise dependencies. Parameters are estimated through iterative discrete label-
ing and discrete optimization. Contrary to gradient-based methods, MRFs are robust to
initialization [242].

In the remainder of this thesis, we use the SDG optimizer to solve our registration
problem because of its interesting convergence and computational properties. As shown
in Section 2.2.6, this optimizer is used for most conventional registration pipelines.
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2.2.5 Validation

The validation of a registration algorithm is fundamental for clinical applications.
While the comparison of computed segmentations with ground truth segmentations per-
formed by experts makes the validation of medical image segmentation straightforward,
registration methods are more challenging to validate.

Registration performed on simulated transformations can be validated directly by
comparing the computed and the ground truth deformation fields. However, it is usually
not possible to know the true motion of a patient/ organ, and whether such movements
affect the clinical usefulness of the data [50]. Most registration methods are therefore
validated indirectly, e.g. comparing the fixed and warped images using similarity measures
such as SSD, NCC or MI. Yet, these measures evaluate the overall alignment of the images,
not the local registration accuracy.

To evaluate the registration locally, landmarks placed manually or automatically can
be used. However, they may be imprecise and are difficult to use in practice for whole
body image registration.

Another indirect validation approach relies on segmentation masks: ground truth
mask (on the fixed image) and warped mask (from the moving image) can be compared
to evaluate the registration. Even though obtaining segmentation masks can be time
consuming, this method allows to evaluate the registration precision on structures of
interest, such as anatomical objects.

It is also interesting to evaluate the smoothness and diffeomorphism of the produced
deformation fields, for instance through the analysis of their Jacobian determinants [28]
(see Section 2.2.3). A high standard deviation of the Jacobian determinant translates into
a non-smoothness of the deformation field. Moreover, negative values in the Jacobian
determinant represent “folding” areas in the warped images, a phenomena that should be
avoided in most medical image registration applications.

2.2.6 Conventional registration methods today

Through the years, several conventional methods have emerged and are commonly
used as reference to validate new registration approaches. SimpleElastix 2 [112], for in-
stance, is an intensity-based registration method using cubic B-spline optimized by the
SGD algorithm in a multi-resolution optimization strategy. Using a similar optimization

2. https://simpleelastix.readthedocs.io/
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scheme, ANTS 3 [7] computes transformations from velocity fields. NiftyReg 4 [182] gen-
erates the deformation field with FFDs and optimizes its objective function with a CG
algorithm. Among the four discussed here, Deeds 5 is the only using a MRF-based discrete
optimization strategy [86].

Depending on the application at hand, each method presents its strengths and weak-
nesses. In this thesis, we aim to register 3D whole body longitudinal PET images, i.e. to
perform intra-patient mono-modal registration. As previously presented, we use the NCC
intensity-based similarity measure because we assume a linear relationship between the
intensities of our images. Moreover, since we want to perform precise local registration,
especially around the lesions, we compute deformable transformations, and choose the B-
spline parametric method because of the large size of our images. To compute a smooth
transformation, we add a bending energy term to the loss function, optimized using the
SGD algorithm. These choices led us to use the SimpleElastix method, as detailed in
Chapter 3.

Overall, conventional methods reach good registration performance. Yet, the choices of
similarity measure, transformation function, regularization term or optimization scheme
are not always straightforward. Moreover, they are often time-consuming and the choice
of optimal parameters tends to be different for different pairs of images. To address some
of these limitations and take advantage of large databases, learning-based methods are
being developed, as presented in the remainder of this chapter.

2.3 Learning-based medical image registration

In the past seven years, learning-based and especially deep learning-based image reg-
istration methods have emerged to take advantage of large databases and faster compu-
tational resources (see Figure 2.6) [28, 63, 78, 209, 225]. DL registration methods have
became an important research topic, with several workshops and challenges having taken
place recently on this theme, such as the Workshop on Biomedical Image Registration
(WBIR) 6 or the Learn2Reg 7 and BraTS-Reg 8 challenges.

3. https://antspy.readthedocs.io/en/latest/
4. https://sourceforge.net/p/niftyreg/git/ci/master/tree/
5. https://github.com/mattiaspaul/deedsBCV
6. https://www.wbir.info/
7. https://learn2reg.grand-challenge.org/
8. https://www.med.upenn.edu/cbica/brats-reg-challenge/
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Figure 2.6 – Publication count in PubMed between 2015 and 2021 with the keywords
“Deep learning image registration” and “Deep learning medical image registration”.

In the following sections, we first present some Machine Learning (ML) registration
methods (Section 2.3.1), before moving to DL-based approaches. We first explain the
main characteristics of a Convolutional Neural Network (CNN) used to perform DL-
based image registration (Section 2.3.2), before presenting different kinds of DL-based
registration methods, such as supervised (Section 2.3.3), unsupervised (Section 2.3.4), as
well as dual and weakly-supervised (Section 2.3.5) approaches.

2.3.1 Machine learning and image registration

Statistical Deformation Models (SDMs) can be considered as the first data-based un-
supervised registration approaches. They reduce the deformation’s dimensionality to be
able to solve a simpler registration problem. Yet, SDMs need to be trained on a database,
and are thus biased by the observations in this training set. Their goal is to find a compact
representation of the plausible deformations by measuring them on a population database
and identify the most representative directions of deformation, e.g. by using Principal
Component Analysis (PCA) [180].

Later, learning-based approaches were developed to learn optimal similarity measures.
Lee et al. [121], for instance, learned a similarity measure for multi-modal image registra-
tion using an algorithm derived from max-margin structured output learning. In Michel
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et al. [141], authors used boosted learning algorithms to embed data from different modal-
ities into a common metric space. The metric of this space was then used to parametrize
the similarity. Similarly, Simonovsky et al. [192] explored the use of supervised methods
to learn similarity measures from a set of aligned examples. They presented a metric
based on a CNN, which can be trained from scratch even from a few aligned image pairs.

Although the focus of learning-based approaches has been on approximating similarity
measures, Gutiérrez-Becker et al. [74], proposed a regression method to learn optimization
updates to perform multimodal registration.

Another approach consists in learning registration features, and inject them later into
conventional registration algorithm to obtain deformation fields. Wu et al. [229], for
instance, used a in-house conventional registration method with features learned using an
auto-encoder instead of being manually extracted. Features obtained using a CNN were
also used by Eppenhof et al. [48] to estimate the registration error.

These learning-based methods showed potential to outperform hand-crafted metrics.
Yet, they learn only one element of the overall registration process, i.e. the similarity
measure, the optimization step or the extraction of features, while recent computational
developments allow the use of networks to produce deformation fields and perform fast
and accurate registration. In the remainder of this chapter, we present such DL-based
methods.

2.3.2 Convolutional neural network for image registration

While conventional registration methods rely on the pair of images to register, DL-
based registration methods exploit larger amounts of data. These data are used to identify
registration patterns to train a neural network. In general, a neural network can be
considered as a function parameterized by a large number of parameters θ, i.e. the network
weights. The straightforward DL-based approach to model the registration problem is to
predict a deformation field φ given the image pairs (F,M) by training a function fθ, such
that:

φ = fθ(F,M) (2.8)

With this setup, the registration of a new image pair is possible in almost real-time,
which is considered as one of the major benefits of DL-based registration. The selection
of the optimal network parameters θ∗ to learn the parameterized registration function fθ
is done optimizing a cost function, usually from a database {Fk,Mk 7→ φk}Kk=1 with K
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the number of image pairs in the database. As presented next, the cost function can be
adapted to address the problem at hand [63].

The main type of neural networks used to perform image registration are CNNs. We
next present these networks main characteristics. For an introduction about deep learning,
we refer to the Annex A and to LeCun et al. [120]. The adverted reader may jump to
Section 2.3.3, where we discuss specifically CNNs for registration.

2.3.2.1 Convolutional neural network layers

A CNN is a feed-forward network designed to process structured arrays of data. When
fed as input to a CNN, images are represented in the form of matrices of pixel values.
Images usually first go through a convolutional layer, which stacks convolution operations.
A convolution is a simple mathematical operation generally used for image filtering (see
Annex A.3). The values of the convolutional kernels are updated during the training
phase of the network and the main function of a convolution layer is to extract feature
from images.

Then, an activation layer applies a non-linear function to the feature maps extracted
by the convolutional layer. The ReLU function is often chosen [235]. To better extract
information and locate features, images are processed with multiple convolution filters in
parallel and alternating convolution and ReLU layers (see an example in Figure 2.7).

Every feature map usually goes through a pooling layer after the activation layer.
Pooling operations are used to down-sample feature maps. Reducing the dimensions of the
feature map, and thus the number of network parameters, accelerates the computational
time and improves the network generalization. The main pooling operations are max-
pooling and mean-pooling [157]. Sliding a kernel (usually of size 2x2 or 2x2x2 with step 2)
in the image, max-pooling takes the maximum value of each image tile, while mean-pooling
returns a mean value for each image tile.

Finally, the output layer is designed to have the desired output dimension and range.

2.3.2.2 From CNN architectures to registration

Early CNNs architectures for classification include AlexNet [115], VGG [193], ResNet
[79] or DenseNet [95]. In 2015, Ronneberger et al. [177] proposed the most widely used and
studied architecture in medical image segmentation, the U-Net. This network is composed
of an encoder and a decoder path (giving it its U shape), and skip-connections between
the paths (see Figure 2.7). While the encoder reduces the input image dimensions with
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Figure 2.7 – U-Net architecture. The encoder path is on the left (blue blocks and red ar-
rows) and the decoder path on the right (blue blocks and green arrows). Skip connections
are visible in gray. Adapted from [177].

convolutional and pooling layers (down-layers), the same number of convolutional and
upsampling layers (up-layers) compose the decoder, which reconstructs feature maps to
original size of the input image. U-Net uses several down- and up-layers to learn features
at different resolutions. Skip-connections transfer image information from the encoding
to the decoding paths.

Today, U-Net is also the backbone for most state-of-the-art DL-based registration
methods. However, other early attempts aimed to predict spatial geometric transforma-
tions. Spatial Transformer Networks (STNs), for instance, is a module designed to be
incorporated into any existing network architecture to spatially manipulate data within
the network. This module learns to spatially transform feature maps [98]. Even though
it was not their initial purpose and because they are fully differentiable, STNs are now
commonly used to warp the deformation field obtained in output of the CNN on the
moving image in registration network.

Next, we discuss how the parameters of a registration network are learned in a super-
vised or unsupervised manner.
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2.3.3 Supervised methods

In supervised registration, ground truth deformation fields φGT are available during
training. They are either estimated using traditional registration methods or known
from simulated transformations. This idea of working directly with ground truth dense
deformation fields comes from optical flow, where large datasets with ground truth flow
fields exist [42, 226]. In registration, the available ground truth deformation fields are used
to guide the learning process. For all training image pairs (F,M) and associated φGT , the
transformation φ = fθ(F,M) is predicted. These deformation fields can be represented as
images with two or three channels (in 2D and 3D respectively). To compare the predicted
and the ground truth deformation fields, a distance-based measure Sφ such as SSD is used
(see Figure 2.8). Thereby, the loss function to optimize takes the form:

arg min
θ

Sφ(φGT , φ) (2.9)

Once the network is trained, supervised end-to-end approaches reach close to real-
time performance. They can use ground truth deformation fields created either with
random [48, 197] or statistically sampled [212] simulated transformations, or obtained
with existing registration algorithms such as done by Cao et al. [25] with ANTs [7], or by
Rohé et al. [174] with LCC log-Demons [129].

Figure 2.8 – Supervised registration. The predicted transformation φ, depending on θ, is
directly compared to the ground truth φGT .

Supervised approaches do not need the definition of intensity similarity measures and
may not require the definition of a regularization term. Their performance depends on
the quality of the ground truth deformations. These transformations are difficult to ob-
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tain: while simulated deformation fields may not be realistic, creating them with existing
registration algorithms is time consuming and depends on the performance of the baseline
algorithm.

2.3.4 Unsupervised methods

Despite their relatively good performance, supervised methods suffer from the diffi-
culty to obtain reliable ground truth transformations. Unsupervised approaches, on the
contrary, do not depend on the need for deformation ground truth nor any expert labels.

Thanks to STNs [98], end-to-end DL-based methods can directly integrate transfor-
mation models in neural networks to perform an efficient and differentiable warping of
the moving image (see Figure 2.9). These transformation models are based on B-splines
or linear interpolation to produce dense deformation fields. The process being fully train-
able, the registration objective function (see Eq. 2.2) optimizes the network parameters θ
through the warped image W = M ◦ φ with φ = fθ(F,M). Contrary to conventional reg-
istration methods, the registration parameters θ are not optimized over the image pair to
register, but on all training image pairs (F,M), and any differentiable similarity measure
S and regularization term R:

arg min
θ

S(F,W ) + λR(φ) (2.10)

Figure 2.9 – Unsupervised registration. The fixed and warped images (F,W ) are compared
through S. W is obtained with a Spatial Transformer Network (STN) and depends on θ
through φ. A regularization term R and its hyperparameter λ are often added.
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Obtaining an optimal deformation field using an unsupervised learning setup has gen-
erated significant interest from the research community recently. In this field, the Voxel-
Morph network [12] is now considered as a reference registration architecture. It is based
on a U-Net shape network, which produces a deformation field enabling a spatial trans-
former to warp the moving image to the fixed one on brain MR volumes. VoxelMorph
was further improved by Dalca et al. [37], who took advantage of SVFs to produce dif-
feomorphic deformation fields, as for instance the conventional method proposed by Ash-
burner [5]. Also in the unsupervised registration field, Vos et al. [221] performed coarse-
to-fine registration staking affine and deformable image registration networks. Thereby,
they performed global (i.e. affine) registration refined by local (i.e. deformable) transfor-
mations. On cardiac cine MRI and on chest CT and at the cost of an increased complexity,
they reached performances similar to conventional registration methods, while being sig-
nificantly faster. As with the pyramidal optimization scheme of conventional methods,
multi-scale DL-based registration has been proposed by Mok et al. [149]. In this work,
authors also took advantage of the SVF approach proposed by Dalca et al. [37] to produce
diffeomorphic transformation.

All the above methods build on similarity measures and regularization terms taken
from conventional registration methods (see Sections 2.2.1 and 2.2.3). The MSE and CC
similarity measures were for instance used by Balakrishnan et al. [12], while Vos et al. [221]
and Mok et al. [149] used the NCC. Regarding regularization terms, the bending energy,
i.e. a smoothness constrain on the deformation field imposed by the gradients of the
displacements, was used by all approaches.

2.3.5 Dual and weakly-supervised methods

Dual supervision refers to the use of both the transformation similarity Sφ and the
similarity measure S from unsupervised methods. While Sφ is computed between the
obtained φ and ground truth transformations φGT , S quantifies the fixed and warped
(F,W ) image similarity, with W = M ◦ φ and φ = fθ(F,M) (see Figure 2.10). An
additional regularization term R on φ is often added:

arg min
θ

S(F,W ) + Sφ(φGT , φ) + λR(φ) (2.11)

In the dual supervision category, Fan et al. [49] predicted the deformation field for 3D
brain MR registration focusing first on learning from supervised deformation fields and
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later increasing the weight of the unsupervised objective S(F,W ) for fine-tuning. Yan et
al. [232] also used a dual approach with a Generative Adversial Network (GAN) to perform
rigid registration between 3D MRI and TransRectal UltraSound (TRUS) volumes.

Figure 2.10 – Dual supervised registration. The predicted transformation φ, depending
on θ, is compared to the ground truth φGT . The fixed and warped images (F,W ) are also
compared through S. W is obtained with a Spatial Transformer Network (STN) block
and also depends on θ through φ. A regularization term R on φ and its hyperparameter
λ are often added.

Instead of ground truth transformations, weakly supervision combines the similarity
measure between images S, with a similarity measure D between segmentation masks or
matching landmarks, here denoted (Flabels,Mlabels) (see Figure 2.11). Wlabels are warped
labels obtained similarly to warped images: Wlabels = Mlabels ◦ φ:

arg min
θ

S(F,W ) +D(Flabels,Wlabels) + λR(φ) (2.12)

Hu et al. [94] combined the optimization of label matching based on a multi-scale Dice
loss and a deformation regularization to perform MRI - TRUS registration. Building
upon these methods, Hering et al. [89] introduced a similarity and segmentation loss
respectively based on an edge-based normalized gradient fields distance measure and an
SSD to register 2D cine–MRI images.

Although dual supervised approaches do not fully depend on ground truth deforma-
tion fields, they still require a certain amount of simulated transformations. For weakly
supervised approaches, the anatomical guidance coming from segmentation masks or land-
marks helps improve registration performance, especially in areas of interest. Unlike con-
ventional methods using feature-based similarity measures, DL-based approaches require

75



Chapter 2 – Medical image registration: methodological context

Figure 2.11 – Weakly supervised registration. The fixed and warped images (F,W ) are
compared through S, while the fixed and warped segmentations (Flabels,Wlabels) are com-
pared through D. W and Wlabels are obtained with a Spatial Transformer Network (STN)
and depend on θ through φ. A regularization term R and its hyperparameter λ are often
added.

extra label information only at the training stage, and not for testing [28], and performing
registration with a trained network is still done almost in real time.

Overall, DL-based registration methods are inspired by elements of conventional meth-
ods, such as the similarity measures, the regularization terms of the optimization schemes.
Even if promising and reaching performances comparable to conventional methods in a
shorter computational duration, DL-based methods present some limitations. Indeed,
since deformations are learned by a network over a large database, it is important that
this database represents the whole range of possible transformations. Moreover, it is eas-
ier to train a network on simple and homogeneous registration task than on complex and
very variable deformations for which generalization may be a problem [67]. Last but not
least, as for conventional methods, choices of the similarity measure, regularization term,
optimization scheme or even on the network architecture need to be decided according to
the considered registration problem.

2.4 Conclusion

Image registration is a fundamental problem in the field of medical image analysis. In
oncology, it is used clinically to help physicians assess changes in lesions over time and
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to combine information captured by different imaging modalities. Image registration is
complex and a major area of research where both conventional and DL-based registrations
are today studied.

Yet, both approaches are challenged by the tuning of hyperparameters for the differ-
ent applications. Moreover, conventional approaches require a consequent computational
time, even though they are now commonly used in clinical practice. DL-based approaches,
on the contrary, perform registration in almost real time but need a large database repre-
sentative of the problem at hand. Moreover, image registration is one of the fields where
DL-based methods do not largely surpass the performances of conventional methods.

In Chapter 4 of this thesis, we present a new registration method for lesion and organ
tracking from full body PET images. This method, called Medical Image Registration
Regularized By Architecture (MIRRBA), aims to bridge the gap between conventional
and DL-based registration approaches.

! Cancer evolution can be formulated as a longitudinal image
registration problem.
! Image registration has been an active research field for over 30
years and DL-based registration for about 7 years.
! Conventional and DL-based methods reach comparable results,
but DL-based methods are faster.
! Most state-of-the-art DL-based methods use features inspired
by conventional method to a great extent.
! The performance of DL-based methods depends significantly on
the size and representativeness of the training database.

Summary:
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Chapter 3 – PET image registration and label propagation using conventional registration

3.1 Introduction
Metastatic breast cancer is usually monitored using the PERCIST guidelines presented

in Section 1.4. Yet, these criteria suffer from some limitations, such as the need for manual
lesion delineation. Moreover, PERCIST only considers the lesion presenting the highest
uptake, which can be different from one acquisition to another.

To help better assess disease evolution at a global level, i.e. on the whole body and for
each lesion, our goal is to follow the individual evolution of every lesion on all the acqui-
sitions. However, performing lesion segmentations manually and finding correspondences
between acquisitions is time consuming and unpractical. For this reason, we propose in
this chapter a method to automatically obtain segmentations of cancerous lesions on a
longitudinal dataset.

3.1.1 Related work: longitudinal data segmentation

“Longitudinal data” refers to data acquired on the same patient at different time
points. They are, for instance, acquired in the context of disease monitoring or radio-
therapy planning. While radiotherapy planning may involve the manual segmentation of
Organs At Risk (OARs), disease monitoring may require the segmentation of cancerous
lesions. Since manual delineations are time consuming and error-prone, automatic meth-
ods have been developed to specifically segment longitudinal data [190]. As presented in
the following sections, these methods can be divided into two categories: segmentation
and registration-based methods. Next, we review some recent DL contributions in both
directions.

3.1.1.1 Segmentation-based methods

Segmentation-based methods seek to propagate a segmentation mask from one image
to the next.

In the context of video processing, several recent approaches address the segmentation
propagation problem in contiguous video frames [234]. In Oh et al. [163], for instance,
a deep siamese encoder-decoder network was designed to take advantage of mask prop-
agation and object detection at the same time. Mask propagation was also used in Xu
et al. [230]. Both methods yielded good results, especially in the case of missing objects
from one frame to the following. Lai et al. [116] propagated annotations, when given
the first frame annotations. In practice, they exploited the spatio-temporal coherence
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of the annotations, and improved the model robustness using forward - backward con-
sistency (training the network from t to t + 1 and vice versa). This approach was later
followed by some medical image registration methods to obtain consistent deformations
(see Section 2.2.3).

However, while small changes occur between consecutive video frames, important mod-
ifications can be observed between images from a patient acquired at different time points.
For this reason, video frame to frame segmentation methods are difficult to apply to
disease monitoring and treatment planning. Moving to the medical image field, most
pipelines comparing images perform registration as a preprocessing step. They often use
conventional methods, such as ANTs [7] or Elastix [112] to this end.

Designing patient-specific networks, i.e. a network per set of images acquired on a
single patient, Wang et al. [224] segmented lung tumors on longitudinal MRI sequences.
Each network was trained on t0, t1, ..., tn-1 images and corresponding segmentations
(n ∼ 10 in the paper), while the inference was ran on the tn image to automatically
obtain its segmentation. A similar approach was used in Elmahdy et al. [47], who pre-
trained a CNN on a large CT prostate database. Then, the network was fine-tuned on
images of the patient of interest only. The resultant patient-specific network was used
to segment the new incoming image. Yet, with this method, there is no correspondence
between the segmented regions, i.e. no per lesion follow-up monitoring.

Even though promising, these patient-specific networks require either at least 10 seg-
mented acquisitions, or a large database to pre-train the network. During this thesis, we
had access on average to two to three metastatic breast cancer acquisitions per patient,
and to the best of our knowledge, no segmented public database was available for pre-
training. Beside, these segmentation-based propagation methods are computed in two
steps: a prior registration and a subsequent segmentation. This two-staged approach is
error prone, since a non accurate registration will result in a poor segmentation.

3.1.1.2 Registration-based methods

In the radiotherapy planning field, Ghose et al. [66] reviewed methods to propagate
prostate segmentations on longitudinal datasets. Several registration-based approaches
have been used, such as Rueckert et al. [179] on MRIs with consecutive affine and de-
formable cubic B-spline registrations, as well as Acosta et al. [2] on CT images using affine
and deformable parametric registrations. Later, Paganelli et al. [166] reviewed DL-based
registration algorithms used to propagate the segmentations of OARs between acquisi-
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tions. Yet, authors insisted on the lack of accurate and efficient patient-specific validation
of the registration accuracy.

Regarding disease monitoring, Zhuang et al. [240] developed a two-step conventional
registration for the automatic determination of patients’ cardiac morphology evolution.
On MRIs, a first affine registration provides the correspondence of anatomical substruc-
tures, while the second free-form registration refines the local details using a constrained
optimization scheme. Similarly, Calmon et al. [24] automatically measured changes in
the volume of a structure of interest in successive 3D brain MR images using a two steps
registration method. First a rigid registration was performed, followed by a deformable
registration. Later, Heckemann et al. [83] also used nonrigid free-form deformations but
to register healthy brain anatomical structures.

According to various reviews [28, 63, 78], few DL-based registration methods have been
specifically developed and tested on longitudinal data. The recently proposed BraTS-
Reg 1 challenge may reveal interesting approaches in this specific field of research at the
publication of the results.

In Kemp et al. [107], the authors compared different methods (no registration, slice
match and 3D rigid registration) to follow longitudinal changes in bone density and struc-
ture. The 3D registration approach best captured physiological longitudinal changes. Eij-
natten et al. [45] performed registration between longitudinal CT images presenting bone
metastasis from breast cancer. After removing the CT table and other extra-corporal
components from the images, they used the registration network VoxelMorph [12]. To
improve the network’s results, the approach relies on an incremental learning strategy
based on simulated deformations of consecutive CT images of the longitudinal dataset.
The strategy consists in learning from a constantly arriving data-stream, which means
that deformed CT images are sequentially presented to the network in chronological mini-
batches per patient. Because of the small amount of data available, i.e. 5 to 10 acquisitions
per patient, authors used simulated deformations, which may have limited the ability of
registration algorithm to produce realistic transformations.

Longitudinal patient follow-up can be decomposed into a segmentation and registration
component. Therefore, joint segmentation–registration approaches have been proposed.
Li et al. [122] trained two networks, i.e. one for segmentation and one for registration,
optimized jointly through a global loss. This loss presented segmentation and registration
specific terms, as well as a regularization term. From 8045 longitudinal brain MRI of 3249

1. https://www.med.upenn.edu/cbica/brats-reg-challenge/
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individuals, the method aimed to segment white matter tracts, however the specificity of
each patient was not considered or exploited.

Even though promising, DL-based approaches are not applicable to our metastatic
breast cancer dataset and lesion monitoring goal. Indeed, the full body, multiple hetero-
geneous lesions and images acquired several months apart images of the EPICUREseinmeta

dataset are challenging to register. Since we would like to avoid the limitations implied
by synthetic transformations, our small number of available data (between two and three
acquisitions per patient) is a challenge to accurately train a registration network that gen-
eralizes across patients. Yet, as shown by Paganelli et al. [166], most registration methods
currently used to propagate segmentations on longitudinal data are based on conventional
registration methods and are not specifically designed for this task.

3.1.2 Contributions

We formulate the longitudinal follow-up of metastatic breast cancer patients from
whole body PET images as an image registration problem and propose a first solution
based on conventional methods. For generality, we evaluate the performances on two
datasets of 3D real data.

The proposed approach was first ran on a inhale–exhale lung CT public database.
In this setup, the goal is to perform intra-patient registration from inhale (moving) to
exhale (fixed) images, to propagate landmarks located in lung salient features. This work
was presented in a conference paper [57] published in the context of the Learn2Reg 2020
challenge 2, held in conjunction with the MICCAI 2020 conference.

We then ran our longitudinal conventional registration pipeline on the private metas-
tatic breast cancer dataset EPICUREseinmeta. The proposed approach enables us to propa-
gate segmentations previously obtained on the baseline acquisitions to the following ones,
for each patient.

Our objective is to get a high performing conventional approach to compare later
against DL-based methods (see Chapter 4). The main novelty of our method is the
application domain, since conventional registration methods have not yet been used in
EPICUREseinmeta clinical protocol, neither in research. We integrated the proposed con-
ventional longitudinal image registration pipeline in the software of the Keosys company,
to facilitate the segmentation of lesions on new follow-up data.

2. https://learn2reg.grand-challenge.org/
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3.2 Intra-patient longitudinal registration
The objective of intra-patient longitudinal registration is to find a warping function

relying on an intensity-based similarity measure that aligns the fixed F and moving M
images.

First global, i.e. rigid and affine, transformations are sough and optimized minimiz-
ing the cost function Lnon_deformable using an adaptive stochastic gradient descent opti-
mizer [112]. Since both fixed and moving images (F , M) are from the same modality, S
corresponds to the NCC measure:

Lnon_deformable(φ) = −S(F,M ◦ φ) (3.1)

To refine the global registration and obtain accurate local transformations, the de-
formable registration method minimized the loss function Ldeformable also with the adap-
tive SGD optimizer. Moreover, to ensure smooth and realistic-looking deformable defor-
mations, the similarity metric S is regularized by Rsmooth. It is a bending energy penalty
term which corresponds to the second derivative of the deformation φ [182]:

Ldeformable(φ) = −S(F,M ◦ φ) + λRsmooth(φ) (3.2)

with:
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Our iterative registration method uses a B-spline transformation with several pyra-
midal resolutions. Using a pyramidal strategy refers to a coarse-to-fine optimization of
the registration cost function, i.e. the optimization is performed first on low resolution
images and then on higher resolution ones. Usually, the resolution of images is divided
by two for each new pyramidal level.

Let’s consider a strategy with three pyramidal levels, i.e. low, mid and high. The pa-
rameters of the registration function f are first optimized through the cost function on low
resolution images (Flow_res,Mlow_res) for a fixed number of iterations to obtain a low reso-
lution deformation field φlow_res (see Eq. 3.4). Then, the cost function is again optimized
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on higher resolution images (Fmid_res,Wmid_res), withWmid_res = Mmid_res ◦ φlow_res_up

and φlow_res_up the deformation field previously obtained upsampled φlow_res (see Eq. 3.5).
This process is followed until original resolution images are registered (see Eq. 3.6).

φlow_res = f(Flow_res,Mlow_res) (3.4)

φmid_res = f(Fmid_res,Wmid_res) (3.5)

φhigh_res = f(Fhigh_res,Whigh_res) (3.6)

Once the optimal full resolution transformation φ∗ is computed, it is applied to the
moving image to get the warped one: W = M ◦φ∗. Similarly, φ∗ is applied to the moving
segmentation Mseg to get the warped segmentation: Wseg = Mseg ◦ φ∗.

3.3 Experimental setup

3.3.1 Datasets

Lung CT Learn2Reg MICCAI 2020 satellite event is a registration challenge [38] con-
sisting of four different tasks covering a wide range of medical image registration topics:
multi-modality, noisy annotations, small datasets and large deformations. We focused on
Task 2, which consists in registering the inhale (moving) to the exhale (fixed) image, thus
to perform intra-subject inhale–exhale lung CT scans registration.

The dataset of the Task 2 of Learn2Reg challenge consists of 60 mono-centric thorax
CT images from 30 subjects [90]. A pair of images (inhale and exhale scans) is available
per subject (see Figure 3.1). A segmentation mask of the lungs is also available for each
volume. Images size is 192 × 192 × 208 and spacing is 1.75 × 1.25 × 1.75 mm. Even if
the dataset was split by challenge organizers into 17 training, 3 validation and 10 testing
pairs, we treat every pair of images independently, since we do not use training images
under the conventional approach.

All images provided by challenge organizers were already preprocessed to the same
spatial dimension and voxel resolution, as well as affinely pre-registered.

As visible in Figure 3.1, the Field Of View (FOV) of exhale images is reduced compared
to the one of inhale images. To reduce registration unrealistic deformations, we decided to
align the FOV of both fixed and moving images. Thus, for each exhale image slice where
the body of the subject in not visible, we set values of the corresponding inhale slice to 0.
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Figure 3.1 – Exhale, inhale and overlay of both images (1st, 2nd and 3rd column respec-
tively) before and after (1st and 2nd row) cropping the inhale image.

Since we modified voxel values only for null slices, some small FOV misalignment can
persist in the image borders (see 3rd column, Figure 3.4).

EPICUREseinmeta Following the previously presented work on inhale–exhale lung CT
images, we performed deformable registration on our private EPICUREseinmeta dataset,
already presented in Section 1.5, to propagate lesion segmentations from the baseline ac-
quisitions to the follow-up ones. In this dataset, two to three PET images were acquired
per patient and all lesions were delineated by experts on all images. To perform intra-
patient registration, moving data corresponds to the baseline acquisitions and segmen-
tations, while fixed data are the corresponding follow-up acquisitions and segmentations
(see Figure 3.2).

Here, a total number of 115 image pairs were processed, with 61 image pairs corre-
sponding to pre- and early-treatment acquisition times, and 54 image pairs corresponding
to pre- and mid-treatment times. 58 and 57 pairs of images were respectively acquired in
the Angers and Nantes centers.
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Figure 3.2 – Fixed and moving PET images and segmentations (red) used to perform
registration with the EPICUREseinmeta dataset.

3.3.2 Implementation details

For both datasets, the number of resolutions was chosen according to the initial image
size and to ensure the main image features are visible even on the coarsest pyramidal
level.

On the EPICUREseinmeta longitudinal dataset, we performed intra-patient registration
in three steps. We first performed a rigid registration, followed by an affine and a de-
formable one. Both global registrations, i.e. rigid and affine, were performed with three
pyramidal resolutions optimized for 500 iterations each. For the deformable registration,
four pyramidal resolutions and 1000 iterations were used to better optimize the high
number of parameters.

Since lung CT images are already pre-registered by the challenge organizers, we only
performed the deformable registration step on this dataset, with similar setting as for the
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EPICUREseinmeta dataset.
Hyperparameters such as the number of iterations or the bending energy parameter λ

were determined empirically from the settings recommended in the state-of-the-art. The
parameter files used to obtain these transformations are visible in Annex B. On the both
datasets, we evaluated identity (i.e. no registration) and deformable registration.

3.3.3 Evaluation metrics

3.3.3.1 Lung CT

Two evaluation metrics were used within the scope of the challenge.
The Target Registration Error (TRE) evaluates registration precision. It is computed

on 100 landmarks automatically selected on fixed images, while correspondences in moving
images are manually annotated. The landmarks are extrapolated on lungs salient features,
like vessels or nodules. For each landmark k ∈ [1 : K], the TRE measures the distance
between the fixed Flandmarks and warped Wlandmarks landmarks:

TRE =

√√√√ K∑
i=1

(Flandmarks(k)−Wlandmarks(k))2 (3.7)

The registration smoothness is quantified by the standard deviation of the logarithm
of the Jacobian determinant of the deformation field (SDLogJ).

For both metrics, a lower value indicates a better registration.

3.3.3.2 EPICUREseinmeta

The first criterion used to evaluate registration accuracy on the EPICUREseinmeta

dataset is the detection rate. It is defined as the percentage of baseline and registered
follow-up segmentation maps presenting an overlap equal or greater than 50%, as illus-
trated in Figure 3.3 [151].

To evaluate more precisely the registered segmentations, we also computed the Dice
metric between the fixed Fseg and registeredWseg binary segmentation maps of the lesions:

Dice = 2|Fseg
⋂
Wseg|

|Fseg|+ |Wseg|
(3.8)

Both metric values lie between 0 and 1, the lower score being 0 and the best one 1.
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Figure 3.3 – Blue and green squares respectively represent two compared segmentation
masks. Left: the overlay of both masks is lower than 50%, so the detection rate for this
segmentation is 0. Right: the overlay of both masks is higher than 50%, so the detection
rate for this segmentation is 1.

The average computational time to obtain these registrations on an Intel Core i7-8750H
CPU is also given.

3.4 Results

3.4.1 Lung CT

With the proposed Elastix method, we obtained a TRE of 6.55 ± 2.69 mm and a
SDLogJ of 0.07 ± 0.03 on all the different image pairs of the test set. Subject-wise results
are visible Table 3.1. For reference, the initial error between fixed and moving images
(after affine registration only) was 10.24 ± 2.72 mm. Table 3.2 shows these results, in
comparison to DL-based methods participating to the challenge.

Table 3.1 – Results on the 10 subject from the test dataset.

Subject 1 2 3 4 5 6 7 8 9 10 Mean
TRE 7.78 6.84 7.42 5.19 9.57 11.70 5.19 1.35 5.61 4.82 6.55±2.69

SDLogJ 0.08 0.17 0.07 0.06 0.07 0.07 0.04 0.05 0.06 0.07 0.07±0.03

Our low value of SDlogJ confirms that the proposed method creates smooth deforma-
tions and realistic-looking images. However, the relatively higher TRE value reflects a
lack of precise registration inside the lungs, as illustrated, in the 6th row of Figure 3.4.
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Figure 3.4 – For three validation subjects (resp. each column), exhale image, inhale
image, overlay of exhale and inhale image, overlay of exhale and inhale images with the
deformation field from inhale to inhale in green and overlay of exhale and registered inhale
images (1st, 2nd, 3rd, 4th and 5th row resp.). The 6th row zooms inside white squares of
the 5th row images. In this last row, body parts seem accurately registered (blue circles),
but registration approximations are visible within the inner lung regions (green circles).
Larger registration errors due to misaligned initial fields of view are highlighted in the
bottom right image by red boxes.
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Table 3.2 – Comparison of our results with the ones obtained using deep learning-based
approaches for the Task 2 of the Learn2Reg challenge.

TRE SDLogJ
Identity 10.24 0.00
Tony (LapIRN) 3.24 0.06
Lasse (PDD-Net) 2.46 0.07
Niklas (Uppsala) 9.00 0.12
Elastix (ours) 6.55 0.07

3.4.2 EPICUREseinmeta

A visual representation of the results is shown in Figure 3.5. While the identity regis-
tration did not perform well, the rigid and affine warped segmentations were not precise
nor adapted to the lesions. The segmentation propagated with deformable registration,
on the contrary, was close to the the manual annotations.

Detection rates and Dice scores values are presented in Table 3.3. For both metrics,
the identity registration score is very low. Rigid and affine registrations present similar
low values, while the deformable registration reached the best results, demonstrating its
usefulness for the task.

As shown in Table 3.3, the computational time increased with the complexity of the
method. Identity registration is simpler than a rigid transformation (9 parameters), which
itself requires less parameters than an affine registration (12 parameters), while a de-
formable registration optimizes thousands of parameters. Deformable registration is thus
the slowest method.

Table 3.3 – Detection rate, Dice score and computation times values obtained after per-
forming identity, rigid, affine and deformable registration on 115 image pairs. Best detec-
tion rate and Dice score are marked in italic.

Detection rate Dice score Computation time
Identity 0.046 ± 0.210 0.054 ± 0.111 5 sec
Rigid 0.376 ± 0.487 0.292 ± 0.202 27 sec
Affine 0.385 ± 0.489 0.303 ± 0.200 110 sec
Deformable 0.835 ± 0.373 0.745 ± 0.272 3000 sec
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Figure 3.5 – Lesion segmentation (in red) on two EPICUREseinmeta follow-up acquisitions.
The manually performed segmentation is visible in the 1st column. In the remaining
columns, the manual segmentation of the initial image is propagated to the follow-up
using identity (2nd column), rigid (3rd column), affine (4th column) and deformable (5th

column) registration computed as described in Section 3.3.2.

3.5 Discussion

In this chapter, we propose a conventional registration method for the Task 2 of the
Learn2Reg challenge and for our EPICUREseinmeta dataset, based on a NCC measure and
a bending energy regularization term.

On the lung CT dataset, both fixed and moving images did not present the same FOV.
Hence, we cropped images slices to obtain more realistic registration results. Without
performing this prior FOV alignment, our method performs poorly, as illustrated on image
borders by red boxes, last row of Figure 3.4. Hence, it seems important to align the FOV
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of fixed and moving images to reach better registration results. With the proposed loss,
regularization and registration method, the TRE inside the lungs is high. Results could
be improved masking the body to focus the registration only on the lungs in a second
registration step.

With regards to the learning-based methods, our computation time is longer, yet
we do not require time-expensive prior training. Since the available training dataset is
relatively small, we show that a conventional method remains an option of interest. Also,
our results reach similar smoothness, but slightly lower accuracy over the testing dataset.
Regarding the use of hyperparameters, both conventional and learning-based methods
require appropriate values for the number of resolutions/network depth, the number of
iterations/number of epochs, the regularization weight, etc.

On the EPICUREseinmeta dataset, non-deformable registration methods do not accu-
rately register metastatic breast cancer lesions in an intra-patient setup. Indeed, rigid
registration only initiates global translations and rotations. Rigid global alignment may
be useful to improve the overall overlapping of the bodies to register, but lesions do not
globally translate or rotate within the body. Similarly, an affine transformation performs
global translation, rotation, scaling and shearing. Yet, individual lesions located in differ-
ent areas in a patient body may evolve differently, making a global registration method
inadequate to follow their evolution.

On the other hand, deformable registration produces local deformations. This type
of registration suits more the monitoring of individual lesions, since each one evolves
differently. This is highlighted by the high deformable registration scores.

Overall, our approach provides reasonable registration results and our code is publicly
available at: https://github.com/fconstance/Learn2Reg_Task2_SimpleElastix. We
provide all the implementation details, and hyperparameters, such that the proposed
method could serve as a non-learning based baseline for comparison.

3.6 Conclusion

Although not specifically designed to register longitudinal data, the proposed regis-
tration method to propagate landmark and segmentation obtained promising results.

Regarding the intra-patient lung registration, our conventional registration method
reached similar smoothness but slightly lower accuracy than DL-based methods, such as
Mok et al. [149] or Heinrich [84]. We also reached good accuracy on the EPICUREseinmeta
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data, successively performing conventional rigid, affine and deformable registrations.
One of the main advantages of using a conventional method to register data is the

possibility to register image pairs presenting heterogeneous deformation patterns. On
the contrary, trained DL-based registration methods are restricted by the deformation
patterns learned during the training step. If the training dataset is not representative of
the whole set of possible deformations, the registration of image pairs presenting unseen
deformations will be challenging for the trained network.

Even if DL-based methods require time-expensive prior training, they are able to
perform deformable registration in almost real-time, whereas our method requires about
an hour of processing for a pair of full-body PET volumes.

In the following chapters, we propose a method aiming to connect conventional and
DL-based methods by taking advantage of both approaches. Moreover, we aim to pro-
pose a registration method specifically developed for longitudinal data registration and
segmentation propagation.

We also demonstrat in Chapter 6 how to use the proposed convolutional registra-
tion method to define a computer-aided solution to assist the evaluation of multi-lesion
PERCIST criteria.

! We demonstrate on a public and a private dataset how conven-
tional registration methods can be used to propagate landmarks or
segmentations between volumes.
! Quantitative results on the PET data show the need of model-
ing the problem with a deformable transformation.
! Comparable results between conventional and DL-based method
for the challenge data show a trade-off between data and speed.
! We introduce direct and indirect criteria to evaluate the success
of the propagation tasks.

Summary:
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4.1 Introduction

As presented in Chapter 3, image registration is a widely used approach to propagate
segmentations between longitudinal data. Yet, only few methods have been specially
developed to monitor patient-specific evolution (see Section 3.1.1). Among these, DL-
based registration methods start to be competitive, but are still under development. In
addition, despite trained networks being faster than conventional methods, the training
step requires large databases which often restricts their use to a specific therapeutic
area for which enough training data is available. Therefore, Computer-Aided Diagnosis
(CAD) methods, if any, are based on conventional registration approaches in clinical
practice [166].

As an alternative, our approach is to develop a registration method i) specifically
designed for patient monitoring, and ii) that takes advantage of the strengths of both
conventional and DL-based registration methods. In this chapter, we propose a new
registration method formalized as a conventional registration approach, with a deforma-
tion field modeled by an untrained deep pyramidal network. We named our approach
MIRRBA for Medical Image Registration method Regularized By Architecture.

We applied MIRRBA on our longitudinal PET images acquired for the evaluation of
treatment response in patients with metastatic breast cancer and compared the results
to registrations obtained with standard approaches. We also studied the impact of dif-
ferent architecture configurations (16 configurations) on the deformation field. This work
was submitted and is currently under revision for publication in the journal Physics in
Medicine and Biology (PMB) [54].

In addition to the private longitudinal PET dataset, we tested our method on a lon-
gitudinal brain MRI public dataset. Even though MIRRBA was designed to propagate
metastatic breast cancer lesions, we did not make specific adaptations to our method for
this new dataset, showing the generality of the proposed approach.
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4.2 Related work

Longitudinal image registration can be a key step in lesion monitoring. As presented
in Section 2.1, many conventional registration methods were proposed [111, 200]. Among
the best performing ones, are the SimpleElastix method [112] based on cubic B-splines,
and the Advanced Normalization Tools (ANTs) [7] which parametrizes the velocity field
and enforces bi-directional diffeomorphisms. Both methods use a pyramidal coarse-to-
fine optimization scheme, which has inspired recent works on DL-based registration, as
presented hereafter. In this chapter, we use these two conventional registration methods
as reference approaches.

Using DL, the monitoring of metastatic breast cancer can be achieved through unsu-
pervised or weakly-supervised registration methods, avoiding the need for ground truth
deformation fields. Indeed, the deformation fields between longitudinal acquisitions are
not available. Among the unsupervised and weakly-supervised registration methods, var-
ious CNN architectures have been proposed, as presented in Section 2.3.4. Among them,
LapIRN [149] is a state-of-the-art architecture which won the Learn2Reg 2021 MICCAI
challenge 1. LapIRN uses a pyramidal network trained in a coarse-to-fine manner to mimic
best performing conventional approaches. Moreover, it regularizes the deformation field
through its gradient to impose a smoothness constraint, and enforces diffeomorphic trans-
formations using stationary vector fields under the Log-Euclidean framework, as in Dalca
et al. [37].

Despite these recent efforts, no major gain in registration performance was reported
when using DL-based registration techniques [85]. Larger databases may be needed to
learn the network parameters and produce more accurate deformation fields. Moreover,
we can argue that the generalization ability of the trained network is questionable when
the deformation patterns do not repeat consistently across the dataset.

To alleviate the dependency to a dataset and the need for repeated deformation pat-
terns, we adapted the Deep Image Prior (DIP) framework [211] to propose a learning-free
method for deformable medical image registration. Contrary to standard DL-based ap-
proaches, DIP does not learn from a database but relies on a single image. It uses a deep
architecture not to summarize the information across samples but as a prior. Effectively,
the architecture plays the role of a parametric model in an optimization problem restrict-
ing the solution space. While DIP was initially designed for denoising and inpainting

1. https://learn2reg.grand-challenge.org/
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tasks [211], we adapt it here to medical image registration.
Laves et al. [119] suggested image registration as a potential application of DIP, with

preliminary results in the context of 2D brain MR images. DIP has also been used on
medical data for the reconstruction of CT and PET images [9, 69]. To perform these
reconstructions, an untrained deep network was used as a denoiser and iteratively opti-
mized by a conventional algorithm. Apart from the use of an initial reconstruction and
classical regularization, images from other modalities were also given as input to condition
the network output.

With this work, we establish a link between conventional, deep learning and DIP-based
approaches. In particular, we focus on the role of the untrained network in parameterizing
the displacement field, showing that each architecture induces an implicit regularization
when used within a conventional optimization scheme. Similar observations have been
made in the context of DL for inverse problems [41, 131]. As a result, well-structured
architectures (e.g. Mok et al. [149]) provide better over-parameterizations for the defor-
mation fields, both in the trained and in the untrained cases. We also investigate the role
of the input (random, moving or moving and fixed images) and potential interactions of
the untrained network with conventional supervised approaches.

The contributions of this chapter are i) the proposition of a novel registration method
regularized by architecture MIRRBA, ii) an extensive comparative study of the effects of
different network components on the deformation field, and iii) a solution to register 3D
whole body longitudinal PET images without the need for prior registration to facilitate
the simultaneous monitoring of multiple lesions. We also briefly show that, without
specific adaptation, our DIP-based registration method performes well on longitudinal
brain MRI data.

4.3 Method

As in the previous chapter, we propose an approach for assisting the problem of
multiple lesion segmentation propagation by modeling it as an image registration problem.
Hence we seek the deformation field φ between the fixed F and moving M images, which
for the main application of interest are PET volumes acquired several months apart. As
presented hereafter, the main difference relies on the modelization of the deformation
field, which makes a link between DL-based registration methods (see Section 4.3.1) and
the DIP prior concept (see Section 4.3.2).
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4.3.1 Background on DL-based image registration

As presented in Section 2.3, DL-based registration approaches model the deforma-
tion φ to be the output of a CNN trained on a dataset of image pairs (F,M) (see Eq. 4.1).
The inputs of this network are the (F , M) pairs, and the operations to get warped im-
ages W are performed using a spatial transformer layer [98], handling the transformation,
the sampling and the interpolation. Regarding the regularization, DL-based registration
methods rely on a term enforcing the smoothness of the transformation Rsmooth, as done
in conventional approaches. Smoothness is often completed by Rdiffeo, which enforces
the diffeomorphism of the transformation by penalizing the determinant of the Jacobian
negative values. Regularization terms are weighted respectively by λsmooth and λdiffeo

(see Section 2.2.3).
Moreover, we state that two additional regularizing priors are also implicitly added

in the DL setup and influence the predicted deformation field φ: the first one Rdataset is
induced by training on a domain-specific dataset, while the second one Rarchi is entailed
by the network architecture choice (see Figure 4.2.B). Due to the dataset dependency, one
limitation of DL-based registration methods is the difficulty to generalize across organs
or modalities.

DL image registration can thus be seen as an optimization problem such as:

arg min
φ(Rdataset,Rarchi)

S(F,W ) + λsmoothRsmooth(φ) + λdiffeoRdiffeo(φ) (4.1)

Next, we recall the deep image prior concept, which removes the dataset dependency
in Section 4.3.2, and present our method for registration based on an untrained network
in Section 4.3.3.

4.3.2 Deep Image Prior

The DIP method proposed by Ulyanov et al. [211] uses a deep architecture to denoise
images using a network without any prior learning. Supposing X0 a distorted image and
X the network output, the fitting process is characterized by Eq. 4.2, with Rarchi the
implicit prior captured by the network architecture and SDIP a reconstruction function
on a single image.

arg min
X(Rarchi)

SDIP (X0, X) (4.2)

DIP reconstructs a noisy image (e.g. with JPEG compression noise) from a white

99



Chapter 4 – MIRRBA: a bridge between conventional and deep learning registration

Figure 4.1 – The MIRRBA method, which is regularized implicitly by its architecture and
directly by smoothing and diffeomorphic terms. The network architecture is visible with
the encoder path (blue), the residual blocks (green) and the decoder path (orange with a
blue layer from the encoder path). Input images are in 3D.

noise image by training a generator architecture to fit the noisy image. A denoised image
is obtained by stopping the training before completely fitting the noise. We propose to
adapt this idea to the registration of a pair of images, where we modify the moving image
to match the fixed one. Contrary to the original DIP, we are interested in fitting all the
way up to the finest deformations.

4.3.3 MIRRBA (Medical Image Registration method Regular-
ized by Architecture)

We argue here that deep architectures, as parametric models with high capacity, are
powerful representations for deformation fields. They can thus be exploited as implicit
priors for image registration in iterative optimization schemes without a training stage
[41, 82, 131]. Although DIP priors have been explored in the context of image reconstruc-
tion, there is no prior in-depth study of such architecture priors in the context of image
registration.

Since there is no learning step, the training dataset no longer influences the transfor-
mation. Thus, we transform Eq. 4.1 into Eq. 4.3 to directly optimize a patient-specific
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CNN for the pair of images of interest (F , M), as traditionally done with iterative opti-
mization methods (see Figure 4.1):

arg min
φ(Rarchi)

S(F,W ) + λsmoothRsmooth(φ) + λdiffeoRdiffeo(φ) (4.3)

By optimizing Eq. 4.3, we find the best warped image allowed by the over-parame-
trization of the architecture. Carefully designing the architecture to be used, it is possible
to integrate several of the tricks commonly used in conventional approaches [84]. We rely
here on the LapIRN architecture [149], which incorporates filtering through convolutions,
pyramidal coarse-to-fine refinement, and interpolation steps with down- and transpose
convolutions. Eq. 4.3 is optimized with an SGD for an input pair of images. Our scheme
applies to other architectures and optimization algorithms.

4.4 Experimental validation

4.4.1 Datasets description

EPICUREseinmeta dataset We ran our experiments on longitudinal PET images from
the metastatic breast cancer dataset acquired in the context of the EPICUREseinmeta

project and presented in Section 1.5. For this experiment, a total number of 110 pairs of
images were obtained, a pair being composed of a pre-treatment and either an early- or
a mid-treatment image (58 and 52 images respectively). 54 pairs of images were acquired
in Angers and 56 pairs come from the Nantes center.

Since we are interested in lesion monitoring in the context of metastatic breast cancer,
we worked only on full-body PET images, as shown useful in previous studies by Carlier
et al. [27] and by Avril et al. [8]. Expert physicians manually segmented all lesions.
469 lesions were present on both baseline and follow-up pair of images and 155 lesions
disappeared. Overall, a total of 624 lesions with a volume of 57.12 ± 189.65 cm3 and
6 ± 4 lesions per patient were studied. The brain and the bladder were also delineated,
since they can be useful to mask irrelevant regions for patient response assessment.

As preprocessing steps, all PET images were normalized by the SUV [109] and re-
shaped to size 200× 200× 200. The mean spacing is 3.66× 3.66× 4.96 mm. Besides, no
prior registration of any kind was performed.

101



Chapter 4 – MIRRBA: a bridge between conventional and deep learning registration

BraTSReg dataset We used the multi-institutional retrospective brain MRI data re-
lieved in the context of the BraTSReg challenge 2. The dataset is composed of pre-
operative and follow-up image pairs acquired on 140 patients diagnosed and treated for
brain glioma. For each time point, native (T1), Contrast-Enhanced T1-weighted (T1-CE),
T2-weighted (T2) and T2 Fluid Attenuated Inversion Recovery (FLAIR) MR images are
available. Here, we ran our method only on the FLAIR images. All images were de-
identified and pre-processed to isotropic images of size 240× 240× 155.

On this dataset, the goal is to perform intra-patient registration to establish corre-
spondence between pre-operative and follow-up brain MRIs. Indeed, pre-operative brain
tissues show heavy deformations because of the tumor pressure, which is relieved after
its resection during the surgery. These heavy deformations are not limited to the tumor
neighborhood but affect the whole brain. Moreover, treatment-induced changes, poten-
tial tumor recurrence, as well as modifications of the infiltrated tissue may also affect
the brain tissue elasticity. Yet, the resected brain area is the main registration challenge,
since it may cause missing correspondences between the pre- and post-operative scans.

To evaluate the registration accuracy, ground truth landmarks were placed on each pre-
operative scan and corresponding follow-up images by expert clinical neuro-radiologists.
These landmarks were placed on anatomical salient features, such as the anatomical shape
of the cortex, blood vessel bifurcations or the midline of the brain. The total number of
landmarks vary from case to case from 6 to 50 per scan.

4.4.2 Architectural implementation details

Our MIRRBA method relies on the LapIRN network architecture proposed in Mok
et al. [149]. LapIRN is a pyramidal network with N = 3 depth levels, each level being
composed of a feature encoder, a set of residual blocks and a feature decoder, as shown in
Figure 4.2. Two convolutional layers with stride 1 and a convolutional layer with stride 2
compose the encoder path. For each level, they are R = 5 residual blocks, each containing
two convolutional layers and a residual connection. The decoder path is composed of a
transpose convolutional layer and two convolutional layers with stride 1, followed by a
SoftSign activation. To prevent information loss, a skip connection from the encoder to
the decoder path is added. Each convolution layer has a kernel size of 3, 4 filters, and
is followed by a leaky rectified linear unit (LeakyReLU) activation [133] with a negative

2. https://www.med.upenn.edu/cbica/brats-reg-challenge/

102

https://www.med.upenn.edu/cbica/brats-reg-challenge/


4.4. Experimental validation

Figure 4.2 – Overview of A. MIRRBA, B. DL_LapIRN, C. MIRRBA_wo_Regu (MIRRBA without
the registration-specific regularization terms) and D. MIRRBA_wo_Archi (MIRRBA without
the network architecture and implicit regularization) methods. The network architecture
is visible with the encoder path (blue), the residual blocks (green) and the decoder path
(orange with a blue layer from the encoder path). Input images are in 3D.

slope of 0.2, except for the output convolution layers.
For each level Li∈{1,2,3}, input images are downsampled by a factor 2(N−i) using a

trilinear interpolation. Hence, for the coarsest level L1 the image resolution is divided
by 4, while for the finest, L3, it remains identical. Moreover, a scaling and squaring
module enforces diffeomorphic deformations [37]. Network levels were trained in a coarse-
to-fine manner, meaning the coarsest level L1 is first trained alone, and then higher levels
are progressively trained to refine the registration. To avoid unstable starts when training
levels Li>1, lower levels weights were frozen for a fixed number of epochs. Regarding the
optimization process, the learning rate was set to 10−4, and the Adam optimizer was used
for 1000 iterations on the two lower levels and 2000 iterations on the finest. This number
of iterations was chosen empirically as it allows the method to reach convergence.

We used the NCC similarity measure regularized by smooth and diffeomorphic terms.
λsmooth and λdiffeo were set to 0.1 and 1.0 respectively for MIRRBA methods. We choose
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hyperparameters that minimized the cost function Eq. 4.3 i) over all image pairs for
conventional and MIRRBA approaches, and ii) for each fold and across folds for DL-
based methods. We followed the same hyperparameter set strategy over all compared
methods (DL, conventional and MIRRBA) for fair comparison. Indeed, the loss function
is unsupervised for all compared methods and expected to correlate with the performance
measures.

Starting from the architecture in Figure 4.1, we performed an ablation study to mea-
sure the influence of each network component on the registration performance evaluated
on the the EPICUREseinmeta dataset. As detailed in Table 4.1, we:

(i) Changed the depth of the network (network with 1, 2, 3 or 4 depth levels);

(ii) Computed the results after optimizing each level during the coarse-to-fine registra-
tion i.e. the coarsest, the intermediate and the finest;

(iii) Deleted the residual connections of residual blocks to transform them into simple
convolutional blocks;

(iv) Replaced the down- and up-convolutions by respectively max-pooling and upsam-
pling operations;

(v) Used deformable convolutions [36] in the finest level;

(vi) Used a Gaussian noise image N (0, 1) (as in Laves et al. [119]), and used both the
fixed and moving images as input channels to the network;

(vii) Set both λsmooth and λdiffeo to 0 (individually and jointly) to remove the registration-
specific regularization terms (see Figure 4.2.C).

We registered the images from the BraTSReg dataset with the best performing MIR-
RBA configuration in terms of Dice scores and detection rate, i.e. MIRRBA_Best as pre-
sented hereafter.

4.4.3 Reference methods implementation details

Regarding the methods used as reference, we used a grid search on all image pairs to
find hyperparameters yielding best performance running the ANTs pipeline [7], i.e. with
a three resolutions coarse-to-fine optimization, a gradient step of 0.2 and a symmetry
transformation penalty. We used both MI and NCC as similarity measures, leading to
SyN and SyNCC methods respectively. The method refining the results of an initial SyNCC
registration with the best performing MIRRBA configuration is presented as Combined.
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Table 4.1 – Loss terms and structural setups of the methods presented in the chapter.
“Pyr. net.” stands for “Pyramidal network”, “Sym. diffeo. transfo.” for “Symmetric
diffeomorphic transformation”, “Max.” for “Maxpooling”, “Up.” for “Upsampling”, and
“Def. conv.” for “Deformable convolutions”. An absence of information in the Other
column indicates the use of setups described in Sections 4.4.2 and 4.4.3.

Loss terms Structural choices

Rdataset Rsmooth Rdiffeo Rarchi Model Depth Trained
levels

Input
images Other

MIRRBA x x x Pyr. net. 3 3 Moving -

DL_LapIRN x x x x Pyr. net. 3 3 Fixed &
moving -

DL_Voxelmorph x x x x U-shaped
network 1 1 Fixed &

moving -

Elastix x Cubic
B-splines 4 4 Moving -

SyN x Sym. diffeo.
transfo. 3 3 Moving -

SyNCC x Sym. diffeo.
transfo. 3 3 Moving -

Combined x x x
Sym. diffeo.
transfo. &
Pyr. net.

3 - 4 3 - 4 Fixed &
moving -

MIRRBA_wo_Smooth x x Pyr. net. 3 3 Moving -
MIRRBA_wo_Diffeo x x Pyr. net. 3 3 Moving -
MIRRBA_wo_Regu x Pyr. net. 3 3 Moving -
MIRRBA_wo_Archi x x Pyr. net. 3 3 Moving -
MIRRBA_Depth_1 x x x Pyr. net. 1 1 Moving -
MIRRBA_Depth_2 x x x Pyr. net. 2 2 Moving -
MIRRBA_Depth_4 x x x Pyr. net. 4 4 Moving -
MIRRBA_Level_1 x x x Pyr. net. 3 1 Moving -
MIRRBA_Level_2 x x x Pyr. net. 3 2 Moving -
MIRRBA_Max x x x Pyr. net. 3 3 Moving Max.
MIRRBA_Up x x x Pyr. net. 3 3 Moving Up.
MIRRBA_DefConv x x x Pyr. net. 3 3 Moving Def. conv.

MIRRBA_NoiseImg x x x Pyr. net. 3 3 White
noise -

MIRRBA_FixImg x x x Pyr. net. 3 3 Fixed &
moving -

MIRRBA_Best x x x Pyr. net. 4 4 Fixed &
moving

Max. Up.
Def. conv.
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We also ran the Elastix pipeline [112] to perform successive rigid, affine and deformable
image registration with four resolutions optimized with an adaptive SGD minimizing the
NCC similarity term for 1000 iterations (Elastix). As for our method, we used a penalty
on the bending energy as regularization to enforce smooth deformations (see Chapter 3
and Annex B for more implementation details).

To highlight the regularization power of the architecture in MIRRBA, we ran the regis-
tration pipeline without the network, optimizing directly the deformation field (initialized
from a Gaussian noise N (0, 0.001)) distribution with the Adam optimizer. The method
is referred as to MIRRBA_wo_Archi (see Table 4.1 and Figure 4.2.D).

Regarding deep learning-based methods, DL_LapIRN [149] was ran with a similar reg-
ularization balance as MIRRBA, i.e. with λsmooth = 0.1, while all other recommended
settings were used. For DL_Voxelmorph, we used the latest diffeomorphic version to
date [37], with the NCC loss and recommended settings. For methods relying on a train-
ing stage, we split our dataset into five folds, paying attention to balance data from
different acquisition centers among folds. For each fold, we refer to Dtrain and Dtest as the
train and test dataset respectively. We trained the DL-based approaches on Dtrain before
testing them on Dtest for the five folds. We report the average performance scores over
patients in each Dtest and then across folds.

All architectures were implemented with PyTorch [168] and trained from scratch on a
Nvidia V100 32GB SXM2 GPU.

4.4.4 Evaluation measures

On the EPICUREseinmeta dataset, the first criterion we used to evaluate the registration
accuracy is the detection rate, defined as the percentage of detected lesions. A lesion is
considered detected if the overlap between its warped and fixed segmentation maps is
greater than 50% [151] (see Figure 3.3 in Section 3.3.3). A high detection rate is sought.

To evaluate the registration of the objects of interest, we computed Dice scores be-
tween fixed and warped i) brain and bladder and ii) lesions segmentation masks. A Dice
score close to 1 suggests a precise local registration, while a Dice close to 0 is unsatisfac-
tory. Since the detection rate represents the percentage of lesions correctly detected, it is
positively correlated with the Dice score of the lesions. However, since some lesions (155)
are cured over time and disappear on PET images, we removed them from the Dice score
and detection rate computations to avoid erroneous null values. Instead, we evaluated the
capacity of a method to effectively make lesions disappear by computing its disappearing
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rate, or percentage of volume reduction of a lesion induced by the registration, where a
complete disappearance would mean a rate of 100%.

One of the interests of using the BraTSReg dataset is to have a direct registration
performance measure (as opposed to indirect measure through registration of segmenta-
tion maps). Indeed, as advised by the BraTSReg challenge organizers, we quantitatively
measured the performance of MIRRBA on the brain MRI dataset using the distance be-
tween the fixed Flandmark and corresponding warped Wlandmark landmarks using the Mean
Absolute Error (MAE) for each landmark i ∈ [1 : N ]:

MAE(Flandmark,Wlandmark) = 1
N

N∑
i=1
|Flandmark_i −Wlandmark_i| (4.4)

Moreover, we also evaluated the registration between the fixed and registered images
themselves with the NCC.

Registration smoothness was evaluated on both datasets by measuring, for every de-
formation field, the standard deviation of its Jacobian determinant SDJDet. Null values
indicate no transformation and high ones disorganized and incoherent displacements. Al-
though an optimal value is difficult to define, we seek to obtain small positive values,
known to characterize smooth deformations [149].

Finally, we evaluated the approximate running time of each approach, using a CPU
for SyN, SyNCC and Elastix, and a GPU for all other methods.

4.4.5 Statistical analysis

To evaluate the statistical significance of our results, we first studied their distribution.
According to the Shapiro-Wilk test (testing the null hypothesis that a sample comes from
a normal distribution), we cannot reject the null hypothesis. Hence, we ran a paired
sample t-test on our results and considered them statistically significant if p < 0.05.

4.5 Results and discussion

4.5.1 Regularization terms

In the first experiment, we looked at the influence of the different regularization terms
from Eq. 4.1, i.e. Rsmooth, Rdiffeo, Rdataset and Rarchi. On top of smoothness Rsmooth and
diffeomorphismsRdiffeo explicit regularization terms, DL-based methods rely on a dataset
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Figure 4.3 – Regularization terms – Overlay of the fixed (green) and warped (pink) images
on two different patients after performing No reg., MIRRBA, DL_Voxelmorph, DL_LapIRN,
MIRRBA_wo_Smooth, MIRRBA_wo_Diffeo, MIRRBA_wo_Regu, and MIRRBA_wo_Archi.
Grayscale color indicates good overlapping. It can be noticed that DL-based methods
have difficulties to register the bladder because of its important deformation. Even with-
out registration-specific regularization terms, MIRRBA_wo_Diffeo, MIRRBA_wo_Regu and
MIRRBA_wo_regu warped images look realistic, unlike MIRRBA_wo_archi.

Rdataset and architecture-based Rarchi implicit regularization. The MIRRBA method only
uses the latter, as detailed in Table 4.1, Figure 4.2 and Eq. 4.3.

Dataset regularization We trained two state-of-the-art DL-based methods DL_Voxelmorph
[37] and DL_LapIRN [149] with the four regularization terms from Eq. 4.1 (see Table 4.1
and Figure 4.2.B). Predictions were made on Dtest images.

Even if both methods reached similar results quantitatively (see Table 4.2) and qual-
itatively (see Figure 4.3), MIRRBA performed better than both of them. Indeed, from
Table 4.2, we note that running a patient-specific optimization, i.e. removing Rdataset and
optimizing an untrained network MIRRBA compared to DL_Voxelmorph and DL_LapIRN,
helps to improve the results, especially for the lesions. MIRRBA improved the organs’
Dice score by 6% and 5% and the Dice of the lesions improved by 52% and 65%, w.r.t.
DL_Voxelmorph and DL_LapIRN.
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Table 4.2 – Comparison of MIRRBA to DL-based methods (Section 4.5.1) – Dice scores
of the organs and of the lesions, detection and disappearing rates of the lesions, SDJDet
and approximate computational time. Both training and inference computational times
are indicated for DL-based methods. All pipelines were computed on GPU. Statistically
significant improvement of our MIRRBA method over the others with p < 0.05 is indicated
with *. Best results are marked in bold, except for SDJDet since no ideal value is defined.

Dice
organs ↑

Dice
lesions ↑

Detec.
rate (%) ↑

Disap.
rate (%) ↑ SDJDet ↓ Time

(min) ↓

No reg. 0.626 ± 0.138* 0.090 ± 0.115* 5.00 0.00* 0.000 ± 0.000 0
MIRRBA 0.918 ± 0.126 0.425 ± 0.207 33.04 9.36 0.124 ± 0.988 55
DL_LapIRN 0.878 ± 0.076* 0.258 ± 0.198* 11.76 19.15 0.464 ± 1.367 1450 – 3
DL_Voxelmorph 0.865 ± 0.077* 0.279 ± 0.192* 14.13 5.67 0.224 ± 0.186 1200 – 2

Moreover, MIRRBA presented lower SDJDet values, hence produced smoother deforma-
tions than training-based approaches.

These results show that not learning registration patterns from a dataset helps to
obtain precise segmentations, especially at a lesion level. Indeed, while the size of organs
and their locations are relatively consistent across patients, this is not the case with
the lesions. Hence, fewer deformation patterns can be learned from a database. Since
performing locally precise registration with a DL-based method is very challenging in this
situation, our patient-specific method manages to adapt to each subject.

Registration-specific regularization To study the influence of the registration-spe-
cific regularization terms Rsmooth and Rdiffeo, we removed them individually and jointly
from Eq. 4.3 respectively in MIRRBA_wo_Smooth, MIRRBA_wo_Diffeo and MIRRBA_wo_Regu
(see Table 4.1 and Figure 4.2.C).

As quantitatively shown in Table 4.3, MIRRBA presented Dice scores for the organs and
lesions which are respectively 6% and 4% higher compared to MIRRBA_wo_Regu. Yet, the
detection and disappearing rates were increased for MIRRBA_wo_Regu over MIRRBA. More-
over, the SDJDet of MIRRBA_wo_Regu was higher than the ones of all other configurations.

Regarding MIRRBA_wo_Smooth and MIRRBA_wo_Diffeo, both configurations presented
similar results as MIRRBA_wo_Regu for the organs Dice score. For the measures of the
lesions, the results of MIRRBA_wo_Smooth were slightly better than MIRRBA_wo_Diffeo
and comparable to MIRRBA, except for the disappearing rate which was higher for the
latter. Qualitative results are visible in Figure 4.3.
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For similar Dice scores and detection rate, MIRRBA_wo_Regu has higher SDJDet than
MIRRBA, indicating Rsmooth and Rdiffeo help smooth the deformation field, even though
they have less impact than the regularization of the architecture. The SDJDet lower scores
of MIRRBA_wo_Smooth and MIRRBA_wo_Diffeo confirm that even one of the regularization
term independently improves the smoothness of the deformation. Moreover, it seems that
removing the smooth regularization term helps with the registration around lesions.

As presented in Section 2.2, removing the registration-specific regularization terms
is equivalent to solve an ill-posed problem in conventional registration methods. In our
case, since we use a network to perform registration, Rarchi is still present when running
MIRRBA_wo_Regu, which may explain why the registration method converged to a plausi-
ble solution. Letting lesions disappear (which does not correspond to regular nor smooth
deformations) and obtaining a smooth deformation field could be considered as antago-
nist goals. Because of the convergence of our method even without registration-specific
regularization terms, further studies focusing on lesion disappearance may be pursue.

Architecture regularization Finally, to understand the impact of the regulariza-
tion power of the network architecture on the registration, we looked at the results of
MIRRBA_wo_Archi, which directly optimizes the deformation field without including any
specific architecture, hence not including Rarchi (see Table 4.1 and Figure 4.2.D).

Qualitative results visible in Figure 4.3 show that the lack of architecture negatively
impacts the registration smoothness, as well as its detection rate and Dice scores, making
questionable the convergence of the method without architecture.

According to Table 4.3, MIRRBA_wo_Archi was outperformed by MIRRBA for both organ
and lesion segmentations by 22% and 78% respectively. Although MIRRBA_wo_Archi dis-
appearing rate was higher than MIRRBA’s, the method without architectural regularization
presented a low detection rate confirming the structural bias of convolutional generators.

Hence, we confirm that the architecture has a regularization effect on the registration,
which helps to find an admissible solution.

4.5.2 Architectural choices

To study the regularization effect of a network architecture on registration, we com-
pared the results of various architectural choices built from the pyramidal network pre-
sented in Mok et al. [149] (see Table 4.1). Quantitative results are presented in Table 4.3,
while qualitative ones are visible in Figures 4.4 and 4.5.
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Table 4.3 – Ablation study on the regularization terms, architectural choices and inputs
(Sections 4.5.1 & 4.5.2) – Dice scores of the organs and of the lesions, detection and
disappearing rates of the lesions, SDJDet and approximate computational time. All
pipelines were computed on GPU. Statistically significant improvement of our MIRRBA
method over the others with p < 0.05 is indicated with *. Best results are marked in
bold, except for SDJDet since no ideal value is defined.

Dice
organs ↑

Dice
lesions ↑

Detec.
rate (%) ↑

Disap.
rate (%) ↑ SDJDet ↓ Time

(min) ↓

No reg. 0.626 ± 0.138* 0.090 ± 0.115* 5.00 0.00* 0.000 ± 0.000 0
MIRRBA 0.918 ± 0.126 0.425 ± 0.207 33.04 9.36 0.124 ± 0.988 55
MIRRBA_wo_Smooth 0.832 ± 0.168* 0.420 ± 0.217 33.71 18.61 0.177 ± 0.554 55
MIRRBA_wo_Diffeo 0.838 ± 0.112* 0.418 ± 0.203 33.68 15.11 0.051 ± 0.117 55
MIRRBA_wo_Regu 0.868 ± 0.199* 0.407 ± 0.219* 33.70 16.84 6.655 ± 30.709 55
MIRRBA_wo_Archi 0.753 ± 0.144* 0.239 ± 0.223* 20.54 59.95 1.247 ± 0.475 20
MIRRBA_Depth_1 0.748 ± 0.169* 0.239 ± 0.211* 11.74 4.82 0.016 ± 0.047 30
MIRRBA_Depth_2 0.873 ± 0.135* 0.364 ± 0.211* 23.26 7.56 0.038 ± 0.174 45
MIRRBA_Depth_4 0.945 ± 0.012 0.466 ± 0.199 40.22 15.12 0.057 ± 0.058 60
MIRRBA_Level_1 0.722 ± 0.091* 0.221 ± 0.157* 4.35 0.00* 0.013 ± 0.010 2
MIRRBA_Level_2 0.869 ± 0.114* 0.371 ± 0.198* 19.78 0.00* 0.035 ± 0.173 10
MIRRBA_Max 0.922 ± 0.098 0.426 ± 0.213 33.26 8.34 0.316 ± 2.934 55
MIRRBA_Up 0.922 ± 0.112 0.439 ± 0.204* 33.04 8.84 0.056 ± 0.309 55
MIRRBA_DefConv 0.487 ± 0.463* 0.257 ± 0.275* 35.22 12.23 0.027 ± 0.020 130
MIRRBA_NoiseImg 0.892 ± 0.081* 0.381 ± 0.194* 22.44 0.00* 0.007 ± 0.009 55
MIRRBA_FixImg 0.941 ± 0.017 0.451 ± 0.197 36.03 20.52 0.071 ± 0.095 60
MIRRBA_Best 0.947 ± 0.010 0.467 ± 0.202 40.94 19.48 0.080 ± 0.085 60

Depth of the pyramidal network Modifying the number of coarse resolution levels,
i.e. the depth of the pyramidal architecture, we studied the impact of global structural
choices to optimize the whole network. First, we modified the architecture to optimize a
simple U-Net-shaped network (MIRRBA_Depth_1), and pyramidal ones with two (MIRRBA_
Depth_2), three (MIRRBA), and four (MIRRBA_Depth_4) resolutions. MIRRBA_Depth_1 was
optimized on full resolution images, while all other architectures were trained using a
coarse-to-fine strategy (see Section 4.4.2).

Results show that increasing the network depth improves the Dice results, as well
as the detection and disappearing rates. Indeed, MIRRBA_Depth_4 presented the second
highest Dice scores for both the organs and the lesions among all MIRRBA setups. This
is confirmed by the visual results from Figure 4.4, which show that a deeper pyramidal
architecture reaches qualitative better results. Indeed, with four resolutions, the receptive
field of the coarsest level of MIRRBA_Depth_4 captures the whole image (i.e. 200× 200×
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Figure 4.4 – Ablation study – Overlay of the fixed (green) and warped (pink) images
on two different patients after performing No reg., MIRRBA (corresponding to depth
3 and level 3), MIRRBA_Depth_1, MIRRBA_Depth_2, MIRRBA_Depth_4, MIRRBA_Level_1
and MIRRBA_Level_2. Grayscale color indicates good overlapping. We can see that
the higher the depth, the more precise the registration. A simple U-Net-shaped archi-
tecture as MIRRBA_Depth_1 produces transformations of very low accuracy, while the
more resolutions are used, the more precise the registration. We can also note that the
coarsest level (MIRRBA_Level_1) performs global registration, while finest ones refine it
(MIRRBA_Level_2) and achieve more precise registration (MIRRBA).

200), explaining the high Dice scores, as well as detection and disappearing rates. Indeed,
successful conventional pipelines such as Elastix [112] or ANTs [7] also use this type of
pyramidal strategy.

The higher SDJDet values obtained when more resolutions are used could be explained
by the generation of more local transformations, hence a globally less regular deformation
field, as illustrated in Figure 4.4 around the bladder.

Trained network level To understand the amount of information brought by each
network level during the coarse-to-fine training strategy, we computed the registration
after optimizing only the lower level (MIRRBA_Level_1) on coarse resolution images, both
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lower levels (MIRRBA_Level_2) on coarse and medium resolution images, and the whole
network (MIRRBA) with the complete coarse-to-fine training strategy.

According to Table 4.3, training on all three levels of the network improved the regis-
tration accuracy over training only on low resolution images. Indeed, Dittmer et al. [41]
affirms that an architecture ran in a DIP pipeline acts as a low-pass filter in the begin-
ning of the optimization, allowing higher frequencies to pass only after lower ones. We
observe similar results over the coarse-to-fine training strategy (see Figure 4.4), where low
frequencies are registered first by the lower level, which performs a global registration.
Higher frequencies are registered later by higher levels to refine the global registration
with a local one. Moreover, the disappearing rate was very low when the optimization
only occurred on low resolution images. In the same way, looking at the intermediate
results during the 4-depth pyramidal optimization of Elastix (see in Figure 4.6), we
observe a tendency to register global features before local ones.

Max-pooling and upsampling operations For each network level, we replaced the
down-convolution (convolution with stride 2) by a max-pooling operation in MIRRBA_Max,
and the transpose convolution by an upsampling in MIRRBA_Up. This reduced the amount
of parameters to learn in the network.

As presented in Table 4.3 and in Figure 4.5, using these learning-free operations im-
proved the registration accuracy both in terms of detection rate and Dice score. The
disappearing rate was however slightly reduced. Indeed, even if the learnable down- and
up-convolutions are now common to respectively increase or decrease image dimensions
within a network, max-pooling and upsampling operations were originally used. As in
conventional registration methods, these operations are not learnable. Hence, their re-
sults do not depend on optimization parameters, and they help to control the overfitting
in a traditional trainable setup. Therefore, the good results obtained using max-pooling
and upsampling operations in MIRRBA_Max, MIRRBA_Up and MIRRBA_Depth_4_Max_Up may
be explained by the fewer number of parameters to fit (see Figure 4.6).

Residual blocks We removed the residual connections of the residual blocks (MIRRBA_
wo_RB) to understand their influence in our architecture. Without them, we obtained
null Dice scores and detection rate, as well as very high SDJDet value. Besides, warped
images did not look realistic (see Figure 4.5).

Residual blocks can be related to diffeomorphic registration according to Rousseau
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Figure 4.5 – Ablation study – Overlay of the fixed (green) and warped (pink) images
on two different patients after performing No reg., MIRRBA, MIRRBA_Max, MIRRBA_Up,
MIRRBA_wo_RB, MIRRBA_Def_Conv, MIRRBA_NoiseImg, MIRRBA_FixImg and MIRRBA_Best.
Grayscale color indicates good overlapping. The all green MIRRBA_wo_RB image is due to
the non-convergence of the registration algorithm and a warped image not registered to
the fixed one. MIRRBA_NoiseImg does not reach local precise registration. All other ap-
proaches produce realistic looking and coherent transformations, even if MIRRBA_DefConv
lacks a bit of precision around the bladder.

et al. [178]. Indeed, stacking residual blocks in ResNets [80] aims to incrementally map
the embedding space to a new unknown space, each block being defined as y = F (x) + x,
with x and y the respective input and output of the residual blocks, and F the residual
mapping to be learned. Similarly, diffeomorphic registration models [15, 200] address
the registration issue by piling up incremental diffeomorphic mappings. Making the link
between ResNets and registration, the function F can be seen as a parametrization of an
elementary deformation flow, and training a series of residual blocks as learning continuous
and integral diffeomorphic operator. With our deep architecture, MIRRBA_wo_RB results
indicate that the registration without residual blocks fails to converge. As explained
above, residual blocks allow incremental diffeomorphic mappings, and removing them
leads to gradient vanishing for our patient-specific method.

Deformable convolutions Regarding the convolutions, Heinrich [84] suggested de-
formable convolutions [36] to capture larger deformations. These convolutions add 2D
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or 3D offsets to the regular grid sampling of standard operations. If these offsets are set
to zero, deformable convolutions become standard convolutions, otherwise they modify
the receptive field. Since these offsets are learnable, deformable convolutions are trained
to adapt their receptive fields, in order to focus on objects of interest in classification
problems for instance.

Hence, to adapt the receptive field of the convolutions to the local scale of objects to
be registered, we replaced those of the highest resolution level (i.e. level 3) by deformable
convolutions (MIRRBA_DefConv).

According to the high detection rate compared to MIRRBA, MIRRBA_DefConv focused
on main objects of interest. Yet, qualitative results in Figure 4.5 are not very precise,
and the resulting low Dice scores show that MIRRBA_DefConv did not achieve precise local
registration. This can be explained by the low SDJDet value, showing that only smooth
and regular deformations occurred instead of locally irregular ones. Indeed, deformable
convolutions might need a more complex integration in the architecture [127]. Moreover,
the additional learnable parameters and adaptive receptive field of deformable convolu-
tions are to some extent redundant with the pyramidal structure, and make it harder to
train.

Input images Regarding the network inputs, instead of conditioning the network with
the moving image, we fed it with a Gaussian noise, as in Laves et al. [119]. In Table 4.3,
MIRRBA_NoiseImg shows worse results than MIRRBA, except for the SDJDet. This is
confirmed by the visual result in Figure 4.5, where the bladder for instance is not correctly
registered.

We also provided more information to the network by concatenating the fixed to
the moving image in MIRRBA_FixImg, which significantly improved all MIRRBA results,
especially the disappearing rate and reached visual accurate results (see Figure 4.5).

Contrary to Ulyanov et al. [211] and Laves et al. [119], Gong et al. [69] and Baguer et
al. [9] respectively improved CT and PET DIP-based image reconstructions by providing
acquisitions from other modalities to their networks. We made similar observations, as
MIRRBA_NoiseImg reached less accurate results than when we conditioned the model with
PET images, as in MIRRBA. Moreover, feeding the network with more patient information,
i.e. using the fixed image as additional input to the moving image in MIRRBA_FixImg,
improved the results by increasing the network conditioning on a single patient.
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Figure 4.6 – Comparison to reference methods – Overlay of the fixed (green) and
warped (pink) images on two different patients after performing No reg., MIRRBA,
Elastix_Level_1, Elastix_Level_2, Elastix_Level_3, Elastix (correponding to level
4), SyN, SyNCC and Combined. Grayscale color indicates good overlapping. The pyramidal
optimization of Elastix acts as a progressive registration: global features are registered
before more local and precise ones. SyN and SyNCC warped images look coherent, even if
missing a bit of precision around the bladder, while Combined performs nice registration.

Combining best practices MIRRBA Dice scores were improved by the use of the fixed
image as an additional input channel, as well as be max-pooling and upsampling op-
erations. Moreover, adding a fourth depth to MIRRBA statistically improved its results.
Hence, we combined the best architectural variations presented above to perform registra-
tion with four resolutions, both fixed and moving images as input channels, max-pooling
and upsampling operations, as well as residual blocks, leading to the best performing
MIRRBA-based method in terms of Dice scores. This configuration is called MIRRBA_Best
hereafter. The SDJDet of MIRRBA_Best was smaller or similar to either one of the three
other methods, while the disappearing rate lied between their values. Images of lesions
registered with MIRRBA_Best are visible Figure 4.7, while whole-body images are visible
in Figure 4.5.
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Table 4.4 – Comparison of the reference MIRRBA configuration to conventional methods
(Section 4.5.3) – Dice scores of the organs and of the lesions, detection and disappearing
rates of the lesions, SDJDet and approximate computational time. While ANTs and
Elastix pipeline were computed on CPU, MIRRBA ran on GPU. Statistically significant
improvement of our MIRRBA method over the others with p < 0.05 is indicated with *.
Best results are marked in bold, except for SDJDet since no ideal value is defined.

Dice
organs ↑

Dice
lesions ↑

Detec.
rate (%) ↑

Disap.
rate (%) ↑ SDJDet ↓ Time

(min) ↓

No reg. 0.626 ± 0.138* 0.090 ± 0.115* 5.00 0.00* 0.000 ± 0.000 0
MIRRBA 0.918 ± 0.126 0.425 ± 0.207 33.04 9.36 0.124 ± 0.988 55
Elastix 0.868 ± 0.124* 0.350 ± 0.191* 20.54 9.59 0.096 ± 0.044 25
SyN 0.936 ± 0.023 0.386 ± 0.210* 24.57 0.00 0.016 ± 0.018 5
SyNNC 0.944 ± 0.014 0.477 ± 0.211 39.57 4.26* 0.073 ± 0.066 60
Combined 0.945 ± 0.012 0.481 ± 0.197 44.71 25.11 0.077 ± 0.072 115

4.5.3 Comparison to conventional methods

Conventional registration According to Table 4.4, even after rigid and affine pre-
registration, locally precise deformable registration is challenging on whole-body images
for the conventional Elastix [112] pipeline (see Figure 4.6).

On the other hand, both SyN and SyNCC [7] statistically performed better than MIRRBA
(our reference configuration, which used the NCC measure) on organ segmentation, while
the NCC similarity measure allowed SyNCC to also reach a better accuracy on lesion
segmentation. Regarding the disappearing rate, MIRRBA performed better than both SyN-
based methods, whereas their SDJDet was lower than ours. Visually, SyN and SyNCC
results are very similar (see Figure 4.6).

Combination of DIP and conventional registration Finally, we pushed the analy-
sis by combining our best MIRRBA-based method with the best performing conventional
SyNCC approach. To do so, we optimized MIRRBA_Best, using as input the deformation
fields and already registered images obtained by SyNCC. Our assumption was that the
conventional pre-registration would be improved by our method.

Results of this Combined pipeline are shown in Table 4.4 and in Figure 4.6. In terms
of detection rate and Dice scores, the combined approach outperformed both SyNCC and
MIRRBA_Best. In addition, the disappearing rate was significantly improved for both
methods.
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4.5.4 Lesion segmentation

Regarding lesion registration, Figure 4.7 shows different lesion evolution scenarios. We
can see that the moving masks adapt to the fixed ones when the lesion does not disap-
pear. Although the disappearing lesion from the first row was not deleted with MIRRBA,
it was reduced by the registration algorithm and almost deleted with MIRRBA_Best. In-
deed, lesion disappearance implies deformations which are not smooth nor diffeomorphic,
hence the good disappearing rate of MIRRBA_wo_Regu and the probable need to adapt our
registration strategy to the specific problem of lesion disappearance in future work.

Regarding other kind of lesion evolutions, i.e. diminution, stability or augmentation,
it can be noticed that overall MIRRBA performs accurate registration and MIRRBA_Best
seems slightly more precise.

Figure 4.7 – Overlay of PET images and lesions (in columns) disappearing (1st row),
reducing (2nd row), stable (3rd row) and growing (last row) without registration (No
registration) and after performing MIRRBA and MIRRBA_Best. Fixed lesions can be
viewed in green, while moving and warped ones in pink. White and gray-scale colors
indicates overlapping.

4.5.5 BraTSReg dataset

To evaluate the generalization of our MIRRBA method, we tested it on the public
BraTSReg dataset of pre- and post-operative brain MR images. Qualitative and quanti-
tative results are respectively visible in Figure 4.8 and in Table 4.5. For state-of-the-art
results, we will follow the results of the BraTSReg challenge in September 2022.
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Figure 4.8 – No registration (left) and MIRRBA (right) registration results on three
BraTSReg image pair (images A, B and C). The blue circle shows a resected area.

Table 4.5 – Mean Absolute Error (MAE) in mm, Normalized Cross Correlation (NCC)
and standard deviation of the Jacobian determinant of the deformation field obtained
after performing identity and MIRRBA registration on 140 flair MRI image pairs. Best
MAE and NCC values are marked in italic.

Method MAE (mm) ↓ NCC ↑ SDJDet
No registration 1.426 ± 0.962 0.058 ± 0.008 0.000 ± 0.000
MIRRBA 1.347 ± 1.518 0.089 ± 0.011 0.103 ± 0.070

Qualitative results show that MIRRBA_Best is able to correct the shift between images
(see Figure 4.8). Yet, images do not seem perfectly registered in the resected area (blue
circle in Figure 4.8). The MAE and NCC values reflect the visual analysis: MIRBRA_Best
reduces the MAE and increases the NCC measure. The SDJDet value is small, meaning
the produced deformation fields are relatively small.

Overall, MIRRBA improved the registration of MR FLAIR images. Yet, some areas
with important modifications, such as the resected areas, are not very well registered.
Since we did not make any adaptation to our MIRRBA method for this specific pre- and
post-operative MR images intra-patient registration task, this is not surprising and could
be improved in future work by learning the adapted hyperparameters for the task at hand,
as in [148].
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4.6 Conclusion

In this chapter, we propose an alternative method to perform image registration us-
ing a neural network without the typical learning stage on a database. We formalize
the registration problem by following the conventional approaches relying on image-based
similarities and regularization terms, but also explicitly consider the dataset and archi-
tecture bias. Indeed, our study is motivated by recent work on DIP, implying that neural
networks create an inductive bias when learning from a database, but also create an in-
trinsic structural bias induced by the architecture [82]. These biases are shown sufficient
to solve certain image processing tasks. Our proposition also resonates with Dittmer
et al. [41], who suggested that deep convolutional neural networks process low-frequency
information first, to later focus on the finer deformations, both desirable properties for
a registration algorithm. We integrate the LapIRN network from Mok et al. [149], who
developed an effective pyramidal architecture, tested in the DL-based registration set-up.
Here, we further demonstrate that beyond any prior coming from the dataset learning
step, the architecture design has an important effect on the registration results, acting
as an implicit regularizer. Our study also shows the impact of some of the architecture
components, particularly the residual blocks, and we justify this behavior by making a
link with findings from Rousseau et al. [178]. Moreover, we find that for our application,
a pyramidal architecture capturing the whole image with a limited amount of parameters
to optimize, as conventional registration methods, provides precise registration results.

The architectural prior seems to be a better option than learning from data in cases
where there are no positional consistency, which is the case with metastatic breast cancer
lesions, which arbitrarily vary in position, size and number. Indeed, finding a set of
network parameters allowing precise registration for a whole dataset is a challenging task.
Our approach enables to correctly register active organs such as the brain and the bladder,
which could be used to automatically propagate annotations masking regions irrelevant
for patient response evaluation. Although the Dice scores are relatively low for the lesions,
we obtain good detection values and improve the disappearance rate.

Our approach makes a step in bridging conventional and DL-based methods for image
registration, and provides several suitable approaches for the challenging 3D full-body
longitudinal registration problem. We demonstrated the possibility to perform both global
and local registration on whole body medical images using a network but without suffering
from dataset bias. In future work, we would study the feasibility of extracting registration-
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based feature from our method to monitor lesion evolution without depending on manually
performed segmentations (see Chapter 6).

Moreover, it would be interesting to speed-up the overall process (currently lasting
about an hour). Since the longer step is the optimization of the higher network level
and, we want the registration to be especially precise around the lesions at this level, we
could perform precise registration only on these very specific areas instead of performing
deformable registration on the whole body.

! MIRRBA is a registration method optimizing a CNN only on a
pair of images in a Deep Image Prior setup.
! The choice of the network architecture impacts the registration
results.
! To register heterogeneous objects, MIRRBA benefits from the
flexibility of neural networks and from the absence of the training
database bias.
! MIRRBA is generalizable, as shown by our preliminary results
on pre- and post-operative brain MR images.
! MIRRBA links DL-based and conventional image registration
methods, and can be used or combined with both.

Summary:
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and label propagation using

segmentations

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Automatic organ segmentation using superpixels . . . . . . . 125

5.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . . 129

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 MIRRBA registration with segmentation masks . . . . . . . . 133

5.4.1 Segmentation integration . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . . 135

5.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1 Introduction

Our registration method presented in the previous chapter, MIRRBA, enables the
registration of longitudinal data. Evaluated on both physiological high 18F-FDG uptake
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organs (brain and bladder), as well as on metastatic breast cancer lesions, it reaches
results comparable to conventional methods and outperforms DL-based ones.

To better monitor cancer, it is useful to accurately follow the individual evolution of
each lesion. In addition, obtaining the individual segmentations of the physiological high
18F-FDG uptake organs on longitudinal PET data enables i) to evaluate the registration
accuracy more globally, and ii) to locate organs presenting similar uptake values as lesions.
In this chapter, we focus on improving the registration accuracy around the cancerous
lesions and high uptake organs, when performing longitudinal registration.

5.2 Related work

As introduced in Sections 2.3.5 and 3.1.1.2, it is possible to integrate segmentation in-
formation into a DL-based registration method to improve registration accuracy around
segmentation masks. Several approaches integrate such segmentation masks into DL-
based registration methods, either i) in the loss function alone, or ii) both in the archi-
tecture and in the loss.

In the loss function alone, weakly-supervised registration methods combine the classi-
cal registration similarity term with a label matching one (see Section 2.3.5), e.g. a Dice
loss term [28]. Balakrishnan et al. [12] and Mok et al. [149], for instance, showed that
adding segmentation information during the training step of their methods improved the
overall registration performance of brain structures on MRI data.

Most joint segmentation–registration methods train two networks, respectively ded-
icated to the segmentation and registration tasks. Beljaards et al. [16], for instance,
proposed “cross-stitch” units to linearly combine features maps from registration and seg-
mentation branches using learnable parameters with good results. Reducing the need of
a fully annotated dataset, Xu et al. [231] proposed to jointly perform weakly-supervised
registration and semi-supervised segmentation. Unlabeled moving images were segmented
by the segmentation network to get weak supervision for every training registration pair,
while the registration similarity loss guided the segmentation learning on unlabeled data.

Note that none of the above methods [12, 16, 149, 231] fed segmentations directly into
the network. Indeed, feeding the network with segmentations during training implies to
also provide segmentations to the network during the inference. These segmentations can
be obtained manually, but it is time consuming, subject to inter-operator variability and
impractical in the particular case of multiple lesion tracking. One may also rely on auto-
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matic DL segmentation methods, for which there is an abundant literature in automatic
medical image segmentation [145]. In the specific case of our EPICUREseinmeta dataset,
we proposed in Moreau et al. [150] a method to automatically obtain segmentations of
metastatic breast cancer lesions, feeding a U-Net-shaped network with the follow-up im-
ages, as well as with the image and lesion segmentations of the baseline acquisition. Even
though the approach reached good precision, all lesions are segmented together, as a
whole. The main drawback of such automatic segmentation method is its inadequacy
to individually monitor lesions along time. Indeed, metastatic breast cancer may signifi-
cantly evolve between acquisitions, making it challenging to match corresponding lesions
for individual monitoring.

In the remainder of this chapter, we evaluate different approaches to improve longi-
tudinal registration around objects of interest, i.e. metastatic lesions and active organs.
We expand our MIRRBA method by integrating segmentation information both at the
loss and architectural levels. While we use the conventional Dice score in the loss, we
also directly feed the network architecture with segmentation maps as additional input
channels.

To automatically obtain these delineations, lesions can be segmented by our approach
presented in Moreau et al. [150] and published in the journal Cancers, while we propose
an automatic segmentation method using superpixels [56] to delineate the high 18F-FDG
uptake organs (see Section 5.3). Then, we present the integration of the segmentations
into the MIRRBA pipeline and the drawn conclusions respectively in Sections 5.4 and 5.5.

5.3 Automatic organ segmentation using superpixels

In clinical practice, metastatic breast cancer monitoring is performed using PERCIST
guidelines through semi-automatic threshold-based measurements [70]. To avoid time-
consuming interactions, automatic lesion segmentation algorithms on PET images have
been developed [19, 87]. However, these approaches mostly focus on specific body parts,
as the lungs or the brain, while metastatic breast cancer may spread over the entire body.

One of the challenges of automatic whole-body lesion segmentation on PET images
is that areas of abnormal 18F-FDG uptake can be obscured by active sites, presenting
normal physiological uptake (brain, heart) and excretion (bladder) of the radioactive
marker. Most methods proposing to localize and segment these organs use anatomical
imaging techniques, such as MRI, CT [222, 130], or combine them with PET [18, 17].
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However, methods based solely on PET images are less common: while PET imaging
is recognized for metastatic activity characterization, it is considered lacking the spatial
resolution required for precise organ segmentation. Hence, while segmenting directly on
PET images is a challenge, it removes the dependence on error prone multi-modal PET–
CT registration.

Unlike methods developed in Afshari et al. [3] and Vos et al. [222], we did not create
bounding boxes around the target organs. Though more challenging, we seek a pixel-
wise segmentation of the organ in order to preserve lesions close to the organs of interest
for subsequent analysis. Moreover, our approach represents one of the first attempts to
perform active organ segmentation using 3D CNNs.

One of the main limitation of developing DL-based methods to medical imaging prob-
lems is the lack of large datasets with expert annotations to train networks [126]. One
alternative to by-pass this problem is to rely on larger but more heterogeneous datasets,
collected e.g. from different sites and/or with different imaging systems [29, 76]. To cope
with the resultant domain shift, and inspired by the work in Zhang et al. [239], we rely on
a superpixel representation for segmenting active organs from whole-body PET volumes,
in the context of metastatic breast cancer. Our hypothesis is that lesions often appear
smaller than the normal active organs. Therefore, to segment active organs, it is enough
to summarize the important anatomical information while blurring away other changes
in image intensities coming from lesions or domain differences.

Our main contribution is the proposition of two approaches to segment active organs
on 3D full-body PET images. Both approaches combine a classical deep segmentation
network with a superpixel algorithm, but integrate it at different levels of the CNN: either
as input to the network or within the loss function. To the best of our knowledge, this
work is the first to perform automatic segmentation of high 18F-FDG uptake on PET
images and to take advantage of superpixel information to enforce networks to focus on
the target objects.

5.3.1 Methods

Given a full body 18F-FDG PET image, we aim to automatically determine which
image voxels belong to the active organs (i.e. brain, heart and bladder). The selection
of these sites is challenging due to potential surrounding tumors presenting a similar
intensity, and to the variable tracer uptake amounts across the acquisitions and patients.
In this section, we describe the baseline 3D U-Net method and propose two variants
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Figure 5.1 – Left: PET image and ground truth maps of the target organs (red). Right:
Superpixelized PET image.

including superpixel information.
To segment the target organs, we rely on the 3D U-Net branch of the nnU-Net

pipeline [97] as baseline. The training loss is a balanced combination of a cross-entropy
SCE and a Dice loss SDice:

LTotal = SCE + SDice, (5.1)

with SCE as in Ronneberger et al. [177] and:

SDice = − 2
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(5.2)

as in Isensee et al. [97], where u is the output map of the network, v the ground truth
segmentation, i ∈ I pixels in the training batch and k ∈ K the classes. This loss reduces
the influence of class imbalance of the labels [143].

To reduce the risk of confusing target active organs with other structures, especially
tumors, we propose to incorporate superpixel information at different levels of the network:
as input to the baseline model (U-Net-SP-Input) and in the loss function to train it
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(U-Net-SP-Loss). An advantage of superpixel representations is they tend to smooth
differences between images. Hence, using them in the training step of a CNN will increase
the ability of the network to adapt from a dataset distribution to a similar yet different
one (domain adaptation).

For the first approach, U-Net-SP-Input, we trained the reference network U-Net
on superpixelized images (Figure 5.1, right). These superpixelized images were created
using the reference Simple Linear Iterative Clustering (SLIC) algorithm [1] in 3D on the
whole-body PET images. This method clusters voxels based on their gray level similarity
and spatial proximity in the image, minimizing the following distance with a k-means
algorithm:

D = dcolor + m

S
dimage (5.3)

where D is the weighted sum of two pixel pairwise Euclidean distances, dcolor for the
color-space and dimage for the coordinate-space. S represents the approximate size of the
superpixels, whilem is introduced to control their compactness. Choosing the appropriate
superpixel size and compactness parameters is important to emphasize the normal 18F-
FDG uptake on organs while blurring small lesions and objects.

In a second approach, U-Net-SP-Loss, we introduced superpixel information in
the optimization of the reference network. The global loss is modified by balancing the
cross-entropy loss with a superpixel-inspired regularization term:

LTotalSP
= SCE + SSP , (5.4)

where:
SSP (u,C) = MSE(arg max(u),Ψ(arg max(u), C)), (5.5)

with MSE the classical Mean Squared Error, u the softmax output of the network and C
the correspondence map between pixels and superpixels. Ψ computes superpixel corrected
segmentation maps, forcing all pixels within a superpixel to belong to the same class, as
illustrated Figure 5.2.

The regularization term, inspired by Papadomanolaki et al. [167], enforces voxels be-
longing to the same superpixel to be associated with the same semantic object. In images,
superpixels blur object smaller than their size, and highlight patterns of similar or bigger
volumes. Since the organs to segment present homogeneous sizes in all images, we claim
superpixels help networks to learn weights more generalizable across datasets.
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Figure 5.2 – From left to right: PET image; network softmax layer output map; and map
corrected by the transformation Ψ. Superpixels 1., 2., 3. and 4. are also visible. On the
transformed map, all pixels within a superpixel belong to the same class.

5.3.2 Experimental validation

5.3.2.1 Dataset description

The superpixel methods for active organ segmentation were developed at the beginning
of this thesis and later connected to the MIRRBA method. In this context, we tested
our methods on 60 images from the prospective EPICUREseinmeta study presented in
Section 1.5, where 24 patients were recruited in the Angers center and 36 in the Nantes
center.

All processed PET images where normalized by the SUV [109] (see Section 1.3.2).

5.3.2.2 Implementation details

The SLIC [1] algorithm was run in 3D, and the free parameters of the method, i.e.
the superpixel size and the compactness, were set according to preliminary grid search
results to 12×12×10 mm and 5, respectively, to enhance target organs and to blur small
lesions.

We followed the recommendations from Isensee et al. [97] regarding the preprocessing
steps of the U-Net network, namely, cropping the input images to nonzero values, resam-
pling them to the median voxel spacing of the dataset and applying a z-score normalization
on each image. This helps to reduce the discrepancy between data domains. Considering
the network itself, the architecture is similar to the benchmark U-Net [177] for 3D images,
but uses leaky ReLU activation and instance normalization. All deep learning architec-
tures were trained from scratch on a NVIDIA GeForce GTX 1080 Ti GPU. The input
patch size (128×128×128) and the number of pooling operations (4 in each branch) were
computed according to the preprocessed image size. The Adam optimizer was used for
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training. An epoch corresponded to an iteration over 250 training batches, each composed
of two images. The learning rate was initialized at 3.10−4 and reduced by a factor 5 if the
loss did not improve by at least 5.10−3 within the last 30 epochs. Once the learning rate
reached 10−6, the training stopped if the loss did not get better by at least 5.10−3 within
the last 50 epochs. Random rotations, scaling, elastic deformations, gamma corrections
and mirroring were performed on the fly for data augmentation purposes.

5.3.2.3 Evaluation metrics

The resulting segmentation maps of the three approaches were compared to ground
truth masks containing the target organs (Figure 5.3, left), manually delineated with the
Keosys Viewer 1 on PET images.

Since the outcome of our networks facilitates the posterior segmentation of lesions, it
is essential that resulting segmentation maps do not contain any tumor located out of the
target organs. Hence, the evaluation is two-fold.

Results were first assessed computing the Dice score between the segmented and refer-
ence masks of the normal uptaking sites, considering all three organs of interest together.

Moreover, the CNNs ability to segment target organs rather than other anatomical
structures, i.e. to avoid false positive results, was assessed using the Positive Predictive
Value (PPV). Indeed, this metric points out the ratio of True Positive (TP) pixels among
all the positive predictions, characterized here by the sum of TP and False Positive (FP):

PPV = TP

TP + FP
(5.6)

5.3.2.4 Intra-domain experiment

To counteract the limited size of our dataset and maintain a reasonable computational
time, all DL segmentation networks were initially validated on the images from the Nantes
center using a 3-fold cross validation.

In that intra-domain experiment, the three CNNs present similarly high resulting Dice
scores: 0.97 ± 0.01, 0.96 ± 0.01 and 0.96 ± 0.01 for the U-Net, U-Net-SP-Input and
U-Net-SP-Loss approaches respectively. Hence, the three approaches accurately segment
the target organs.

1. https://www.keosys.com/
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Figure 5.3 – PET image of a patient from the Angers center with overlaid masks cor-
responding to ground truth, U-Net, U-Net-SP-Input and U-Net-SP-Loss segmentations
from left to right respectively. Blue circle marks a lesion erroneously segmented by the
U-Net network.

5.3.2.5 Domain adaptation experiments

Over a second phase, the networks trained on the images from the Nantes center
were tested on the images from Angers to evaluate their adaptability and generalization
abilities. While slightly lower in the intra-domain case, the Dice scores obtained with the
three approaches still remain high, with 0.92 ± 0.07, 0.92 ± 0.05 and 0.93 ± 0.05 for
the U-Net, U-Net-SP-Input and U-Net-SP-Loss networks respectively.

Since we aim to remove the normal high 18F-FDG uptake organs before segmenting
lesions, we evaluated the methods ability to avoid the surrounding anatomical structures.
Considering first a qualitative approach, the Figure 5.3 shows that networks using super-
pixel information are better suited to segment only the target organs. Quantitatively, we
computed the PPV for the images from the Angers center. As illustrated in Figure 5.4,
networks integrating superpixels information produce less FP than the reference U-Net
network.
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Figure 5.4 – Boxplot of the Positive Predictive Value (PPV) of the segmentations predicted
by the U-Net, U-Net-SP-Input and U-Net-SP-Loss networks on the images from the
Angers dataset.

5.3.3 Discussion

As shown by the obtained Dice scores, when the train and test datasets come from
the same data distribution, the three approaches present similar results. In contrast,
the superpixel regularization smooths variations between images acquired with different
acquisition systems, improving segmentation performance on test data coming from a
center unseen during training, showing the possibility of better generalization effect on
unseen data. Moreover, according to the PPV measure, the integration of superpixel
information in the training of a segmentation network reduces the amount of FP when
using this network on unseen images.

From a computational point of view, the training time of the U-Net-SP-Input ap-
proach resulted to be faster (∼ one day) than the one of U-Net-SP-Loss (∼ two days).
Indeed, superpixel computation is performed only once in the preprocessing step of the
former network, while the latter requires superpixel computation for each epoch. However,
the integration of the superpixel computation inside the training loop of U-Net-SP-Loss
makes the process end-to-end, and potentially leaves room to integrate an automatic
superpixel hyperparameters learning.

In the second part of this chapter, we integrate superpixel information at several levels
of a deep learning approach to segment high 18F-FDG uptake organs on PET images. The
strength of this method is to enforce the network to focus on the organs of interest.
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5.4 MIRRBA registration with segmentation masks

5.4.1 Segmentation integration

In the remainder of this chapter, we aim to improve the best performing MIRRBA
configuration from Chapter 4. MIRRBA_Best corresponds to a 4-depth pyramidal network
adapted from [149], optimized in a coarse-to-fine manner on a pair of fixed and moving
images for a fixed number of iterations. Max-pooling and upsampling operations are used
in this configuration. For more details, see Section 4.4.2.

To improve MIRRBA_Best registration performances around the objects of interest,
we evaluate different integration strategies of the segmentations, as illustrated in Fig-
ure 5.5 and summarized in Table 5.1. These segmentations are obtained automatically,
respectively with the method previously presented for the active organs [56], and with the
method presented in [150] for the lesion segmentation.

For the integration of the segmentation maps in the loss function, we use an additional
Dice score term SDice to evaluate the similarity between the fixed and warped segmentation
maps (Fseg,Wseg):

arg min
φ(Rarchi)

S(F,W ) + SDice(Fseg,Wseg) + λsmoothRsmooth(φ) + λdiffeoRdiffeo(φ) (5.7)

At the architecture level, we integrate segmentation maps as additional input channels
to the network. These integration strategies can be used together of separately.

In the methods names, the integration of the Dice loss is specified with the suffix
“_Dice”, while the addition of input channels is noted with the suffixes “_Fix” and
“_Mov”, respectively for the fixed and moving segmentation maps.

Table 5.1 – Integration of the segmentations in the MIRRBA method to produce the
MIRRBA_Dice, MIRRBA_Dice_Fix, MIRRBA_Fix_Mov and MIRRBA_Dice_Fix_Mov methods
depending on the use of a Dice loss, as well as fixed and/ or moving segmentations as
additional network channels.

Dice loss Fixed seg Moving seg
MIRRBA
MIRRBA_Dice x
MIRRBA_Dice_Fix x x
MIRRBA_Fix_Mov x x
MIRRBA_Dice_Fix_Mov x x x
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As for MIRRBA, all architectures were implemented with PyTorch [168] and trained
from scratch.

Figure 5.5 – Integration strategies of the organ (top image) and lesion (bottom image)
segmentation maps in the MIRRBA method. The integration strategies are shown with
the blue arrows. Segmentation maps can be integrated as additional input channels to the
CNN. They can also be integrated through an additional loss function term in the form
of a Dice score between the fixed and warped segmentations maps (Fseg,Wseg). These
integration strategies can be used together or separately.
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5.4.2 Experimental validation

5.4.2.1 Dataset description

To expand our MIRRBA method with segmentations, we used the EPICUREseinmeta

dataset as in Chapter 4 and presented in details in Section 1.5. This dataset is composed
of 110 pairs of PET images of patients presenting metastatic breast cancer. Brain, bladder
and lesion segmentation maps were manually performed on all acquisitions.

All images were reshaped to size 200×200×200 and their intensities were normalized
by the SUV [109].

5.4.2.2 Evaluation metrics

We used the same evaluation metrics as the ones introduced in Section 4.4.4. While
lesion registration is evaluated by the detection rate and the Dice score, the large defor-
mations caused by their disappearance is quantified by the disappearing rate. Regarding
the organ segmentations, they are also evaluated by the Dice score. The smoothness of
the deformation field is measured by the standard deviation of its Jacobian determinant
(SDJDet). Moreover, we measure the approximate running time of our method on a
Nvidia V100 32GB SXM2 GPU.

5.4.3 Results and discussion

The quantitative results of the segmentation-based MIRRBA extension are presented
in Table 5.2. Overall, Dice score values of the configurations including organ segmenta-
tions are very similar from one another. Indeed, the spatial shape and intensity distri-
butions of the brain and the bladder make these organs easier to register than the more
heterogeneous lesions.

The use of the Dice loss to integrate organ segmentation masks in the optimization
process of the MIRRBA registration network does not improve the Dice scores nor the
detection rate for neither the lesions nor the organs. Yet, the disappearing rate of the
lesions increased, showing that this additional loss term may help register objects when
large deformations occur.

Adding both the fixed and moving lesion segmentation maps as additional input
channels to the network (MIRRBA_Fix_Mov_Les and MIRRBA_Dice_Fix_Mov_Les) leads
to significantly better Dice scores for the lesions when compared to those obtained with
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Table 5.2 – Dice score of the organs and of the lesions, detection and disappearing rates
of the lesions and SDJDet. All pipelines were computed on GPU. Best results are marked
in bold, except for SDJDet since no ideal value is defined.

Dice
organs ↑

Dice
lesions ↑

Detec.
rate (%) ↑

Disap.
rate (%) ↑ SDJDet ↓

No registration 0.626 ± 0.138 0.090 ± 0.115 5.00 0.00 0.000 ± 0.000
MIRRBA_Best 0.947 ± 0.010 0.467 ± 0.202 40.94 19.48 0.080 ± 0.085
MIRRBA_Dice_Les 0.947 ± 0.010 0.466 ± 0.203 40.69 24.57 0.077 ± 0.069
MIRRBA_Dice_Fix_Les 0.947 ± 0.011 0.485 ± 0.204 44.35 24.26 0.081 ± 0.078
MIRRBA_Dice_Fix_Mov_Les 0.947 ± 0.010 0.489 ± 0.204 47.12 35.65 0.078 ± 0.070
MIRRBA_Fix_Mov_Les 0.948 ± 0.010 0.490 ± 0.202 46.37 36.66 0.090 ± 0.117
MIRRBA_Dice_Org 0.947 ± 0.010 0.466 ± 0.201 42.00 24.46 0.080 ± 0.070
MIRRBA_Dice_Fix_Org 0.948 ± 0.010 0.465 ± 0.207 40.94 25.03 0.084 ± 0.077
MIRRBA_Dice_Fix_Mov_Org 0.948 ± 0.010 0.468 ± 0.197 41.11 25.18 0.087 ± 0.084
MIRRBA_Fix_Mov_Org 0.948 ± 0.010 0.468 ± 0.203 42.95 26.06 0.096 ± 0.128

MIRRBA_Best. Indeed, providing the location of the lesions through their segmentations
maps indicates the network the areas to mainly focus on and improves the registration.
Moreover, both these methods improve the detection and the disappearing rate of the
lesions compared to MIRRBA_Best, highlighting the help brought by segmentations as
additional input channels.

Looking at the qualitative results of the segmentation-based extensions of the MIR-
RBA methods on whole body PET images, all images seem correctly registered, and no
major differences can be noticed between the compared configurations (see Figure 5.6).
For instance, all configurations manage to accurately register the deformed bladder. In
conclusion, bringing any available segmentation information seems useful, regardless of
the configuration (as additional input or in the Dice Loss).

Since we aim to accurately propagate lesion segmentations between acquisitions to help
monitoring metastatic breast cancer, Figure 5.7 show some qualitative results of lesion
registration using MIRRBA_Best and MIRRBA_Fix_Mov_Les (the best performing MIRRBA
configuration including segmentation information, according to Dice scores and the disap-
pearing rate Table 5.2). We can notice that the results of both MIRRBA-based methods
are very similar: they make lesions disappear, diminish, translate or increase. However,
MIRRBA_Fix_Mov_Les is slightly more accurate, especially to make lesion disappear (see
1st row in Figure 5.7).

Regarding computation times, all methods converged in about an hour. Hence, in-
cluding the processing of segmentation information in MIRRBA does not significantly
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5.4. MIRRBA registration with segmentation masks

Figure 5.6 – Overlay of the fixed (green) and warped (pink) images on two different
patients after performing No reg., MIRRBA, MIRRBA_Dice_Les, MIRRBA_Dice_Fix_Les,
MIRRBA_Fix_Mov_Les, MIRRBA_Dice_Fix_Mov_Les, MIRRBA_Dice_Org, MIRRBA_
Dice_Fix_Org, MIRRBA_Fix_Mov_Org and MIRRBA_Dice_Fix_Mov_Org. Grayscale
color indicates good overlapping. All the evaluated approaches including segmentation
masks improve registration results. Qualitative differences are not perceptible to the
human eye.
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Chapter 5 – Improving PET image registration and label propagation using segmentations

Figure 5.7 – Overlay of PET images and lesions (in columns) disappearing (1st row),
reducing (2nd row), stable (3rd row) and growing (last row) without registration (No
registration) and after performing MIRRBA_Best and MIRRBA_Fix_Mov_Les. Fixed le-
sions can be viewed in green, while moving and warped ones in pink. White and gray-scale
colors indicates overlapping.

increases the overall computation time.

5.5 Conclusion

In this chapter, we first develop an automatic method to segment active organs (i.e.
brain, heart and bladder) on whole-body PET images. Combining superpixels with a DL-
based segmentation approach, both in the loss or as input of the network, we manage to
accurately segment active organs on PET images, as well as to train networks generalizable
across datasets. In a future work, it may be interesting to evaluate the performances of
both superpixel-based approaches on a more significant dataset. Overall, our segmentation
method is an important step towards bringing anatomical information and avoiding the
confusion between high 18F-FDG uptake organs and lesions, especially when they are
contiguous.

In this thesis, we propose to take advantage of these automatically obtained or-
gan segmentations as well as the lesion segmentations computed with our segmentation
method [150] to improve the MIRRBA registration method. We found that including
both the moving and the fixed segmentations to the registration pipeline effectively im-
proves its performances, especially for the challenging task of the propagation of lesion
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segmentation. In future work, it would be interesting to develop a trainable end-to-end
and simultaneous segmentation and registration approach to better take advantage of
both methods.

In the last chapter of this thesis, we take advantage of the propagated segmentations
masks to extract imaging biomarkers in order to help the monitoring of metastatic breast
cancer in the clinical practice.

! Combining superpixel and DL helps with the generalization
ability of DL-based segmentation methods, in the context of TEP
imaging.
! Prior information brought in the form binary segmentation
masks improve the results of registration results. Such masks can
be obtained with manual or automatic approaches.

Summary:
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Chapter 6

Metastatic breast cancer monitoring
through registration
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6.1 Introduction

In metastatic breast cancer, treatment response is often assessed using several infor-
mation, such as markers from blood analysis, the patient general state, as well as the
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Chapter 6 – Metastatic breast cancer monitoring through registration

PERCIST guidelines on 18F-FDG PET images. These guidelines focus on appearing le-
sions and on changes in the SULpeak of the single hottest tumor identified on the baseline
and follow-up images (which may be different from an acquisition to another). In this
sense, PERCIST does not consider the response of the multiplicity of tumors that char-
acterize metastatic breast cancer (see Section 1.4.3.2 for more details).

In this context, we question the fact that PERCIST represents the whole body re-
sponse to treatment, and we propose a method to follow each lesion individually to
monitor metastatic breast cancer locally. Moreover, ICO physicians hypothesized that
acquisitions obtained early in the metastatic breast cancer course of treatment carry rel-
evant information about patients’ prognostics.

In this chapter, we automatically extract three biomarkers, i.e. the SULpeak, the
Metabolic Tumor Volume (MTV) and the Total Lesion Glycosis (TLG) from lesion
segmentations obtained with registration, and evaluate their significance compared to
biomarkers extracted from ground truth (manual) segmentations. From these biomark-
ers, we propose a protocol to evaluate tumor response on early- and mid-treatment ac-
quisitions in the case where patients present multiple metastatic lesions, and compare it
against the response determined by physicians in the clinical routine. Our method pro-
vides a new tool for the monitoring of metastatic breast cancer using only PET images,
and was accepted for an on-line publication to the 2022 ASCO conference [55]. The re-
maining of this chapter is divided in two parts, one dedicated to the biomarker extraction
(see Section 6.3.1), and the second to the evaluation response (see Section 6.3.2).

6.2 Related work

The response criteria obtained with PERCIST guidelines showed to be a good predictor
for early therapeutic response to chemotherapy and prognosis of several types of cancer,
such as esophageal cancer [233], non-small-cell lung cancer [189], metastatic prostate
cancer [73], bone metastases [34].

Despite its good predictions of early treatment response, several authors have pro-
posed some updates to the PERCIST system. As presented in Section 1.4.3.2, original
PERCIST criteria classifies the response to a treatment within four categories: “complete
response”, “partial response”, “stable disease” or “progression”, according to the change
of the SULpeak values between baseline and follow-up acquisitions. Maffione et al. [135]
proposed to modify PERCIST guidelines into the PET Residual Disease in Solid Tumor
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(PREDIST) criteria, for patients affected by rectal cancer. PREDIST considers two pos-
sible classes: the Complete Response to therapy (CRt) and the Residual Disease (RD),
looking only at follow-up images. To this end, PREDIST compares PET FDG uptake
on follow-up images to the SUV of the liver (i.e. to 1.5 × SUVmean_liver + 2 SD with
SUVmean_liver the mean SUV in the liver and SD its standard deviation in 3 cm of di-
ameter spherical ROI). Maffione et al. showed that, contrary to PERCIST, PREDIST
classification is statistically correlated to the Tumor Regression Grade (TRG) score, itself
reflecting tumor response following a histopathological analysis [138].

On the other hand, Viglianti et al. [217] discussed the fact that brain and cardiac
muscle store some of the injected FDG, which affects the distribution of the FDG marker
in the organs and tissues of interest, i.e. tumors in our case. This effect is known and
taken into consideration in PERCIST guidelines by measuring the uptake in a reference
tissue (usually the liver or the aorta). If the difference between the reference uptakes
of the studied acquisitions is not significant, PERCIST guidelines are considered valid,
indicating the comparison between lesion uptakes is reliable. Yet, this condition is not
always met. To diminish the FDG storage effect, and thus increase the amount of cases
on which PERCIST guidelines are valid, Viglianti et al. [217] proposed to normalize the
FDG uptake values of PET images by the uptake of the reference tissue, with promising
results.

Focusing on metastatic breast cancer, Vogsen et al. [220] studied the feasibility and
benefits of using the PERCIST guidelines on a retrospective study. In daily clinical prac-
tice, they found moderate agreement between PERCIST and visual assessment. Indeed,
PERCIST is more sensitive than visual assessment to the detection of disease progression.
This is important because an early identified progression may lead to the modification of a
toxic and ineffective treatment. Yet, an early definition of a progressive state presents the
risk of discarding a treatment too soon. Authors suggested that future studies should aim
at comparing one-lesion against five-lesions PERCIST, to find a more optimal approach
for the very widespread metastatic breast cancer disease.

Inspired by these updates, we propose here a computer aided automatic approach
that considers for the first time all metastatic lesions, extracts biomarkers from them,
and evaluates the response from 18F-FDG PET acquisitions.
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6.3 Method
On the EPICUREseinmeta dataset, baseline and follow-up PET images were acquired,

and all baseline lesions were manually segmented by experts. In the approach presented in
this chapter, we propagate these segmentation maps to the follow-up images, and extract
biomarkers from each individual lesion segmentation to evaluate lesion-wise response to
treatment. Finally we represent these responses through a visual tool. On overview of
the proposed approach is visible Figure 6.1.

Figure 6.1 – Pipeline to obtain images representing the response to treatment of each
lesion. Lesion segmentations from baseline images are propagated to follow-up images.
Then biomarkers are extracted from each lesion on baseline and follow-up images. These
biomarkers are finally compared to obtain the lesion-wise response to treatment and rep-
resent it visually.

6.3.1 Extraction of biomarkers

To individually monitor metastatic breast cancer lesions, we extracted three biomark-
ers from each lesion segmentation: the SULpeak, the MTV and the TLG. We computed
the SULpeak as in Section 1.4.3.2, i.e. seeking the 1 mm3 sphere presenting the highest
mean SUL, and extracting the maximum SUL value from this sphere. The MTV is eval-
uated as the number of voxels in a lesion mask multiplied by the voxel size. The TLG is
a combination of the SULpeak and MTV biomarkers and represent both of them together:
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TLG = SULpeak × MTV.
The biomarkers were extracted from lesions present in both baseline and warped seg-

mentations maps (see Figure 6.1). These warped segmentations correspond to lesion seg-
mentations propagated from baseline to follow-up images with four registration methods,
i.e. Affine, SyN, MIRRBA_Best and MIRRBA_Seg:

• Affine is a global registration method performed in about a minute. We used a
conventional registration implementation based on the SimpleElastix pipeline [110],
as detailed in Chapter 3 with the registration parameters described in Annex B.2.

• SyN is a conventional registration method based on the ANTs pipeline using the
MI similarity measure with a symmetry transformation penalty [7], as described
in Section 4.4.3. In addition to good registration results, SyN performs deformable
registration between two images in about 10 min, which is interesting for a potential
integration of the tool in clinical routine.

• MIRRBA_Best refers here to the best configuration of our registration method, as
described in our paper [54]. MIRRBA_Best performs registration overfitting deliber-
ately a network on the pair of images to register. This network is pyramidal with
four depths, considers fixed and moving image as inputs, and uses max-pooling and
up-sampling operations. At the moment, the computation requires about an hour,
which would need a pre-computation during clinical routine. Since PET is not a
real time imaging system, this would not be a significant issue.

• MIRRBA_Seg expands MIRRBA_Best configuration integrating both fixed and mov-
ing segmentation maps automatically obtained as additional network channels, as
described in Chapter 5 with the configuration MIRRBA_Fix_Mov_Les. The compu-
tation also requires about an hour.

As ground truth segmentation maps, we considered the lesion segmentations manually
performed by expert physicians on follow-up images.

6.3.2 Response evaluation

In this section, we propose a new automatic tool to help physicians monitor metastatic
breast cancer. From the SULpeak values previously extracted, we classify each follow-
up lesion as “Responsive” or “Non-responsive”, and colored them accordingly. Through
this tool, we aim to study the clinical outcome information carried by early-treatment
acquisitions.
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Moreover, for each patient, we had access to the clinical outcome determined during the
clinical routine by oncologists. This clinical outcome is defined according to i) tumoral
markers visible through blood analysis, ii) the patient general state (eventual pain or
masses during palpation), iii) RECIST guidelines, and iv) PERCIST guidelines applied
by specialized physicians on the pre- and mid-treatment acquisitions. A unique feature
of this study is the early-treatment images, which are usually not acquired nor used in
clinical practice.

Once the SULpeak is extracted from every baseline and follow-up after lesion segmen-
tation, we used its values to evaluate the response to treatment of every individual lesion.
Thus, we computed the differences between baseline and follow-up SULpeak values. As
presented in [55], our method also includes a visualization step, to facilitate the identi-
fication of responsive and progressive lesions. An example of the colored segmentation
provided to physicians is visible Figure 6.2. On the baseline image, lesion segmentations
are colored in blue. In follow-up images, lesions with a decreasing SULpeak compared to
the baseline are represented in green, while lesion with an increasing SULpeak are visible
in red. Since the representation is interactive, it is possible to move inside the patient to
analyze different body parts.

6.4 Experimental validation

6.4.1 Dataset

We extracted biomarkers from the same 110 pairs of images on which we ran our
MIRRBA registration method, as already introduced in Section 1.5 and presented in
Chapter 4. These image pairs are composed of a baseline and a follow-up image, and
were acquired in two different centers (Angers and Nantes). On these pairs of images, we
registered the baseline image to the follow-up one.

Then, from the 110 pairs of images used to evaluate the pertinence of extracted
biomarkers, we randomly choose 20 pairs of images, corresponding to 10 patients from
the Nantes center. For each patient, two pairs of images are available: a pre- and early-
treatment image pair, as well as a pre- and mid-treatment image pair.
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6.4.2 Experiments

In this chapter, our first experiment consists in extracting biomarkers carrying infor-
mation about the tumoral response to treatment from automatically propagated lesion
segmentation maps.

Since there is no straightforward metric to evaluate the pertinence of the extracted
biomarkers, we opted for a correlation measure with biomarkers extracted from man-
ually performed segmentation maps, considered as a reference. First, to evaluate the
normality of each biomarker distribution for all lesions, we used the statistical Shapiro-
Wilk test [147]. Because distributions are not normally distributed, we measured the
correlation between the ground truth and the registration-based biomarkers with the Lin
correlation coefficient [125].

In our second experiment, we asked two expert physicians to blindly evaluate treat-
ment response while seeing only these colored segmentations (and without any additional
information about the patients). They evaluated the patient states as in “Responsive”,
“Stable” or in “Progressive”.

Both expert physicians assessed the 18F-FDG PET image, evaluating for each patient
the baseline and one of the corresponding follow-ups, without knowing if they were work-
ing on the early- or on the mid-treatment follow-up. We then i) first compared early- to
mid-treatment response, to study the information (similar or not) carried by both acquisi-
tions; and ii) we then compared every follow-up response to the patient’s clinical outcome
determined in clinical routine. Finally, we also compared both physicians answer to study
their coherence.

6.5 Results and discussion

6.5.1 Biomarkers and registration method

Table 6.1 shows the Lin correlation coefficients for the studied methods (i.e. Affine,
SyN, MIRRBA_Best and MIRRBA_Seg) and biomarkers (i.e. SULpeak, MTV and TLG).
Overall, biomarkers extracted from the propagated segmentations were similar to the
ones extracted from the manual segmentations, with high Lin correlation coefficients.

Comparing biomarkers, the SULpeak shows the highest correlation coefficient values
and MTV the lowest correlation values among all registration methods. Since TLG is a
combination of the SULpeak and the MTV, its correlation coefficients are in between, as
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expected. Given SULpeak’s higher correlation (see Table 6.1) and the familiarity of doctors
with it, we retain this biomarker for the remainder of this chapter.

Table 6.1 – Lin correlation coefficients between the biomarkers obtained from the ground
truth manual segmentations and the registration-based propagated segmentations for non
appearing/disappearing lesions. Best result is highlighted in bold.

Affine SyN MIRRBA_Best MIRRBA_Seg

SULpeak 0.890 0.892 0.979 0.986
MTV 0.770 0.787 0.864 0.867
TLG 0.824 0.869 0.921 0.922

Focusing now on the registration methods, all methods reached quite high results, even
the global registration method Affine. Yet, both MIRRBA-based registration methods
obtained higher Lin correlation coefficients than Affine and SyN for all biomarkers. Com-
paring MIRRBA-based methods, MIRRBA_Seg slightly outperforms MIRRBA_Best. This
was expected, since the use of segmentations within MIRRBA_Seg registration pipeline
helped the network to focus on areas of segmentation maps. Yet, the computational time
of SyN is about 10 min, while MIRRBA_Best and MIRRBA_Seg require about an hour of
computation. Having in mind this time and a potentially simpler integration within an
industrial software, we worked with the SyN registration method in the remainder of this
chapter.

We conclude that with segmentations derived automatically from registration algo-
rithms, we can extract biomarkers well correlated to the ones obtained with manual
segmentations, which suggests that both segmentations carry similar information. SyN
fast registration and SULpeak computation can make it a useful tool in clinical routine, as
shown hereafter.

6.5.2 Early- and mid-treatment acquisitions evaluation

For each patient, Table 6.2 shows each physician’s evaluation for every follow-up image,
as well as the clinical outcome. With the use of colored segmentations, early follow-
up evaluations were predictive of mid-treatment response in 65% of the cases. This is
especially the case if early follow-up were evaluated as responsive. In that case, the
agreement between early- and mid-treatment evaluations is 100%. However, an early
follow-up evaluated as “Stable” can either evolve to “Responsive” or “Progressive”, as
well as remain “Stable”.
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Figure 6.2 – Visual response evaluation. From left to right, pre-, early- and mid-treatment
images. The pre-treatment image is the baseline and the early- and mid-treatment the
follow-ups. On the baseline image, manually performed segmentations are visible in light
blue. On the two follow-up images, propagated lesions are visible in green and red,
respectively presenting a decreasing (responsive lesion) and an increasing (non-responsive
lesion) SULpeak.

6.5.3 Proposed visualization tool and clinical outcome

Physicians’ follow-up readings are in accordance with the clinical outcome in 45%
(physician 1) and 70% (physician 2) of the cases. The variable results are caused by
the inter-operator variability. Indeed, as shown in Table 6.2, both physicians were given
similar guidelines, but agreed only for 45% of the pairs of images. Physician 1 evaluated
many images as “Stable” while the second one interpreted them as “Responsive”.

Despite the variability, the results of the tool are deemed promising, since it could
complement other information usually available in clinical routine. Indeed, the routine
clinical outcome is determined according to several information, such tumoral biomarkers,
RECIST and PERCIST guidelines and the patient global health state. On the contrary, in
our experiment, physicians evaluated the state of patient looking only at a 3D image with
color-coded segmentations. Therefore, further evaluation considering the combination of
both complementary types of information is an interesting idea for future work.
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Table 6.2 – For each of the 20 studied pairs of images, evaluations performed by physicians
1 and 2 according to the colored segmentation visual representation, as well as the clinical
outcomes from the clinical routine.

Patient Physician 1 Physician 2 Clinical outcome

001_early Responsive Responsive Responsive001_pre Responsive Responsive
002_early Stable Responsive Responsive002_pre Responsive Responsive
003_early Progressive Stable Stable003_pre Progressive Progressive
004_early Stable Responsive Responsive004_pre Responsive Responsive
005_early Stable Responsive Responsive005_pre Stable Responsive
006_early Stable Stable Responsive006_pre Stable Responsive
007_early Stable Responsive Responsive007_pre Responsive Responsive
008_early Stable Stable Responsive008_pre Stable Responsive
009_early Stable Progressive Stable009_pre Stable Stable
010_early Stable Responsive Stable010_pre Stable Responsive

6.6 Conclusion
In this chapter, we propose a new automatic tool providing lesion-wise visual infor-

mation about the tumor response to treatment.
From segmentations of the baseline acquisition propagated to follow-up images thanks

to registration methods, we extract the SULpeak biomarker. Then, for each lesion, the
comparison of the biomarker values between baseline and follow-up segmentations allows
the local evaluation of the response to treatment. This evaluation is represented through
colored segmentation maps overlaid on the PET images. Finally, this colorful represen-
tation is shown to physicians to assist them during the monitoring of metastatic breast
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cancer.
The inter-expert variability of the response evaluations was high, while the agreement

with the clinical outcome is relatively low. Such variability call for more precise definitions
of the “Responsive”, “Stable” and “Progressive” response states. Moreover, PERCIST
guidelines evaluate a patient as stable if he is not responsive nor in progression. Hence,
it may be interesting to add a “Stable” state in our colored representation of the lesions.

Overall, lesion coloring helped evaluate treatment response, even though it should be
noted that predicting the outcome from early- and mid-treatment images is a very difficult
task [162]. In this sense, our method has a comparable performance to human experts,
while being fully quantitative and reproducible. Moreover, early-treatment follow-up
images were shown to be predictive of pre-treatment response, especially in the case of a
responsive patient. Our study serves as a proof of concept, but similar experiments with
more images and with more detailed qualitative feedback from the physicians are required
in the future to develop a useful monitoring tool.

! Biomarkers extracted from manually and automatically propa-
gated segmentations are correlated, with the SULpeak showing the
highest correlation.
! Preliminary results show that automatic propagation applied to
pre-treatment for predicting early-treatment response is a promis-
ing research direction.
! We propose a proof of concept visualization tool representing
all individual lesion responses to assist the monitoring of metastatic
breast cancer.

Summary:
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Conclusion and perspectives

In this thesis, we focused on improving the monitoring of metastatic breast cancer
with longitudinal Positron Emission Tomography (PET) images. The main contributions
of this thesis are summarized hereafter.

Our first and main contribution is a new registration method called Medical
Image Registration Regularized By Architecture (MIRRBA), described in Chapter 4. It
was designed to perform longitudinal registration on PET images. Based on the Deep
Image Prior (DIP) scheme, our method optimizes the weights of a Convolutional Neural
Network (CNN) (as in Deep Learning-based (DL) registration methods) but only for
the pair of images to register (as in conventional registration methods). By design, our
approach helps to bridge the gap between conventional and DL-based approaches. We
provide an exhaustive experimental validation of our method on a private longitudinal
metastatic breast cancer PET dataset, and to show its generality, on the public brain
Magnetic Resonance Imaging (MRI) images.

MIRRBA reached results comparable to conventional registration methods, proving
the efficiency of our approach. Regarding DL-based methods, we state that the training
database and the neural network architecture introduce implicit regularization terms to
the deformation model. MIRRBA is only implicitly regularized by the network architec-
ture, since it is not optimized on a training database. The lack of data inductive biais
may explain why MIRRBA reaches better results than DL-based methods on the private
EPICUREseinmeta dataset. Indeed, metastatic breast cancer lesions are highly heteroge-
neous in shape, size and location across patients, making the learning of global registration
patterns with full DL-based methods very challenging. Moreover, MIRRBA allows study-
ing the parallel between components of conventional methods and architectural blocks,
and we point at literature to support this parallel. Finally, we also show the possibility
to combine MIRRBA with conventional or DL-based pre-computed deformation fields, to
refine the registration.
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Given its generality, MIRRBA could be studied on different registration problems, such
as mono- or multi-modal, as well as intra- or inter-patient. The definition of an optimal
neural network architecture as an over-parameterized representation of the deformation
fields need further theoretical investigation.

Our second contribution is a method to automatically segment active organs on
full body 3D PET images, bringing the concept of superpixels inside a DL framework
either as input or in the loss function. We experimentally show that, in the context
of PET imaging, superpixels provide an unsupervised way to focus the attention of a
network towards objects of particular size. Superpixels also help homogenizing noise and
differences across sites, improving generalizability.

The obtained segmentation can be used for different purposes, such as improving the
automatic segmentation of cancerous regions in PET images by discarding high uptake
organs, or enhancing the robustness of Position Emission tomography Response Criteria
In Solid Tumors (PERCIST) guidelines.

In this thesis, we use the unsupervised superpixel-based segmentation approach to
refine our in-house MIRRBA registration method, as described in Chapter 5. Indeed,
cancerous regions, i.e. pathological 18F-FluoroDeoxy-Glucose (18F-FDG) uptake areas,
present an uptake of similar intensity to the active organs, i.e. physiological 18F-FDG
uptake areas. If the locations of physiological 18F-FDG uptake are known, we can ease
the process of cancerous region detection by discarding the segmentations associated with
active organs.

Going into another direction, Viglianti et al. [217] proposed to use the physiological
18F-FDG uptake of the liver to normalize the Standardized Uptake Value (SUV) value and
suggested updated PERCIST guidelines robust to uptake variations between acquisitions.
Since our algorithm identifies active organs, it would be interesting to investigate the
normalization of the SUV by 18F-FDG uptake values w.r.t. other organs to see if it
further improves the monitoring guidelines currently used.

Our third contribution is a new tool for the evaluation of biomarkers extracted
from lesion segmentations. In Chapter 6, we propose an approach to extract biomarkers
from the segmentations propagated between intra-patient acquisitions with a registration
pipeline. We then propose a new visualization tool for the monitoring of metastatic
breast cancer. This tool color-codes all metastatic breast cancer lesions according to their
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individual response to treatment. Even though tested on only 10 patients, this preliminary
experiment showed promising results. It would be interesting to pursue a more thorough
analysis to assess the tool’s usefulness in clinical practice, and to further improve it by
collaborating with physicians to include, for instance, stable lesions.

Moreover, for a patient presenting multiple lesions, it may be possible to develop a
protocol to describe the global state of the patient from the individual responses of each
lesion. Contrary to PERCIST which only consider the hottest lesion, this protocol could
determine tumor response more accurately. This would be especially interesting when a
patient presents heterogeneous metastatic lesions, i.e. lesions which do not belong to the
same cancer sub-type and respond differently to treatments.

With these three contributions we achieved our goal of developing tools to improve the
monitoring of metastatic breast cancer. We however consider the following limitations.

Overall, we mainly focused our registration methods on lesions which are always
present (i.e. on lesions which neither appeared nor disappeared between two images).
Indeed, from the registration point of view, lesion disappearance is not a smooth nor
diffeomorphic problem since important modifications occur within the patient’s body
between two acquisitions. In the images, these modifications are translated as large de-
formations, which may correspond to folding areas. Hence, one of the trivial solutions
would be to remove the smoothness and anti-folding regularization terms from our regis-
tration pipelines, at least locally around lesions. Full-removal is not an optimal solution,
since a registration problem without regularization is ill-posed and the optimal solution
is almost impossible to retrieve. Taking advantage of the known lesion locations thanks
to segmentation methods, we could refine deformable registration very locally to improve
the precision of our lesion propagation method. Another solution would be to develop
a registration method allowing large displacement, such as Christensen et al. [30] who
overcame the limitations of small deformation models by ensuring that transformations
computed between images are diffeomorphic.

Regarding the appearance of new lesions, we found out that none of the registration
pipelines could detect them. Addressing the challenge of registration and change detec-
tion, Dufresne et al. [44] proposed a change loss jointly optimized with a registration loss
to monitor the evolution of multiple sclerosis lesions on brain MRI data. We adapted
and implemented this loss in our MIRRBA pipeline. We obtained promising preliminary
results so far, but a throughout analysis would be needed to evaluate the performances
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of this approach on the monitoring of metastatic breast cancer lesions.

As a conclusion, we made a first research step towards demonstrating the usefulness of
early-acquired 18F-FDG PET–CT images in the context of metastatic breast cancer. We
hope this work will help physicians monitor patients presenting metastatic breast cancer.
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Appendix A

Deep learning introduction

This annex aims at introducing DL. For more details and mathematical considerations,
we refer to [120].

DL is a subset of Machine Learning (ML), which is a part of Artificial Intelligence
(AI) (see Figure A.1). AI are programs which can learn, reason, act and adapt like
humans. ML are algorithms with the ability to learn when exposed to more data over
time, without much supervision. While ML uses simpler concepts, DL is an application
of ML using algorithms in which Neural Networks (NNs) are trained on vast amounts of
data to return accurate results. Until recently, NNs were limited in complexity by the
computing power of available processors. Technological advancements have permitted
larger and more sophisticated NNs, allowing computers to learn by example and improve
on their own.

Figure A.1 – Deep Learning (DL) is a subset of Machine Learning (ML) which is also a
subset of Artificial Intelligence (AI).
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Chapter A – Deep learning introduction

DL has a wide application range, from weather prediction to real-time bidding and
targeted display advertising. DL has been developed to address problems such as im-
age classification, language translation, speech recognition, pattern recognition,... with
minimal human intervention.

A.1 Deep learning principle

To better grasp the DL principle, we consider hereafter a “pathological”/ “not-patho-
logical” image classification problem.

“Pathological” and “non-pathological” images form together the dataset. This dataset
is split into a training dataset and a testing dataset. For these images, the “pathological”
and “non-pathological” classification is known: it is called the ground truth. This ground
truth can be for instance manually determined. A large and diversified training dataset
is recommended to train a more robust network.

Once the training dataset is created, images are converted into data and fed into
the NN. These data move through the network, which delivers an output per image:
“pathological” or “non-pathological”. This output is determined according to the network
parameters, i.e. the weights and biases (see Section A.2 for more details).

NN output classifications are compared to the ground truth ones through the cost
function. If they match, the output is confirmed. If not, the error is back-propagated
through the network and parameters are adjusted to minimize the cost function, e.g. the
accuracy in our example. Through multiple iterations and parameter updates, the NN
tries to improve its classification performances, i.e. to optimize the cost function. Weights
are adjusted until reaching a training limit such as a required performance criteria or a
maximum number of iterations.

The next step is to test our trained NN. Without updating its parameters, the testing
dataset images are fed to the trained network for a phase called the inference. Output
classifications are again compared to the ground truth ones, but this time, testing images
were not seen by the network during training. Hence, if the network performs well on this
dataset, it proves its generalization performances and opens up the possibility to use it to
classify as “pathological” or “not-pathological” images for which the ground truth is not
known.

This type of training is called supervised learning, because ground truth classifications
are provided to the network during training.
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A.2. What are neural networks?

A.2 What are neural networks?
NN are made of layers. The first is the input layer, which receives the input data

and transmits it to the next layer. Then, often more than one hidden layer is present. A
network presenting more than two hidden layer is call a deep neural network. The output
layer delivers the final result. This structure is illustrated in Figure A.2.

Figure A.2 – Networks are structured in layers: the input layer (orange), the hidden layers
(blue) and the output layer (green). Layers are made of nodes (circles), transmitting
information from one layer to the next one.

The layers of a NN are composed of neurons (or nodes). The term “neuron” was
inspired by biological neurons, which receive information from thousands of other neurons
through the dendrites, process this information in the cell body, and send the output signal
to other neurons with the axon, to let the information flow. Just like the human brain
made up of neurons, NNs are composed of nodes receiving, processing and transmitting
information from one layer to another (see Figure A.2).

To process the information, each NN node performs the operations presented in Fig-
ure A.4. Let’s consider a node j. First, each input value xi for i ∈ [1 : n], e.g. each pixel
value in image analysis, is multiplied by a weight wij. A heavier weighted node will have
more effect on the next layer. All weighted products are then summed and a bias value b
is added to all of them. An activation function f is finally applied to this biased weighted
sum. The activation function is often non-linear to better represent complex data.

Frequently used non-linear activation functions are the sigmoid function (see Eq. A.1),
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Figure A.3 – A biological neuron receives inputs from its dendrites, the information is
processed in the cell body and output by the axon.

Figure A.4 – Operations in the node j: inputs xi for i ∈ [1 : n] are multiplied by a
corresponding weight wij. These products are summed, and a bias b is added. This bias
weighted sum is finally fed to an activation function f to obtain the node output oj.

used for probability prediction, and the hyperbolic tangent function (see Eq. A.2), similar
to the sigmoid function with a range of -1 to 1. The ReLU (rectified linear unit) function is
the most commonly used these days, especially in Convolutional Neural Networks (CNNs)
(see Section 2.3.2). ReLU performs an element-wise operation and sets all negative pixels
to 0 (see Eq. A.3).

f(x) = 1
1 + e−x

(A.1) f(x) = 2
1 + e−2x − 1 (A.2)

f(x) =

0 if x < 0

x if x >= 0
(A.3)

We have previously presented the generic elements of a network: its layers and nodes.
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A.3. Convolution operation

Yet, many combinations of these elements can be chosen depending on the application at
hand.

Feed-forward networks [14], the simplest form of NN, are for instance used by almost
all vision and speech recognition applications. In Recurrent Neural Networks (RNNs)
[186], hidden layers save their outputs to be used for future prediction and become part
of the new inputs. Their applications include text-to-speech conversion. Spatial Trans-
former Networks (STNs) learn to spatially transform feature maps [98], while Generative
Adversial Networks (GANs) are the most widely used generative models for image synthe-
sis and are used in the medical domain as tools for data augmentation [35]. As presented
in the following section, CNNs are mainly used to process images.

A.3 Convolution operation
Convolution is the basic operation of any CNN. It is a simple mathematical operation

generally used for image processing, acting as a filter. Convolution steps are detailed in
Figure A.5 and hereafter:

Figure A.5 – Convolution operation. The kernel (red) slides in an image (blue) by a step
(step = 1 here) to obtain a feature map.
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1. The kernel (top left red square Figure A.5) is first defined. Its size is generally 3x3
or 5x5 in 2D (and 3x3x3 or 5x5x5 in 3D). In figure A.5, the kernel size is 3x3.

2. The kernel progressively slides from left to right and from top to bottom with a
pre-defined step until the whole image has been considered. Figure A.5, step = 1.
The overlap of the considered image sub-parts, or tiles, improves the representation
of the image.

3. A dot product is performed between the kernel and each image tile. As a result of all
these operations, a feature map is obtained: it is an abstract representation of the
image showing feature locations in images. Its values depend on the convolutional
kernel parameters and on the pixel values of the input image. In the case of a CNN,
the parameters of the kernel are learned during the training phase.
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Appendix B

Elastix registration parameters

B.1 Rigid registration parameters

// ********** Image Types **********
(FixedInternalImagePixelType "float")
(FixedImageDimension 3)
(MovingInternalImagePixelType "float")
(MovingImageDimension 3)

// ********** Components **********
(Registration "MultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "EulerTransform")
(AutomaticScalesEstimation "true")
(Metric "AdvancedNormalizedCorrelation")

// ********** Pyramid **********
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Chapter B – Elastix registration parameters

// Total number of resolutions
(NumberOfResolutions 3)
(ImagePyramidSchedule 4 4 4 2 2 2 1 1 1)

// ********** Transform **********
(AutomaticTransformInitialization "true")
(AutomaticTransformInitializationMethod "CenterOfGravity")
(HowToCombineTransforms "Compose")

// ********** Optimizer **********
(MaximumNumberOfIterations 500)
(AutomaticParameterEstimation "true")
(UseAdaptiveStepSizes "true")

// ********** ImageSampler **********
//Number of spatial samples used to compute the mutual information in each
resolution level:
(ImageSampler "Random")
(NumberOfSpatialSamples 1500)
(NewSamplesEveryIteration "true")
(UseRandomSampleRegion "true")
(NumberOfHistogramBins 64)

// ********** Interpolator and Resampler **********
//Order of B-Spline interpolation used in each resolution level:
(BSplineInterpolationOrder 2)

//Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)

// ********** Other **********
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B.2. Affine registration parameters

(ErodeMask "false")
(UseDirectionCosines "true")

B.2 Affine registration parameters

// ********** Image Types **********
(FixedInternalImagePixelType "float")
(FixedImageDimension 3)
(MovingInternalImagePixelType "float")
(MovingImageDimension 3)

// ********** Components **********
(Registration "MultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "AffineTransform")
(Metric "AdvancedNormalizedCorrelation")

// ********** Pyramid **********
// Total number of resolutions
(NumberOfResolutions 3)
(ImagePyramidSchedule 4 4 4 2 2 2 1 1 1)

// ********** Transform **********
(AutomaticTransformInitialization "false")
(FinalGridSpacingInPhysicalUnits 15.0 15.0 15.0)
(HowToCombineTransforms "Compose")
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// ********** Optimizer **********
(MaximumNumberOfIterations 500)
(AutomaticParameterEstimation "true")
(UseAdaptiveStepSizes "true")

// ********** ImageSampler **********
//Number of spatial samples used to compute the mutual information in each
resolution level:
(ImageSampler "Random")
(NumberOfSpatialSamples 500)
(NewSamplesEveryIteration "true")
(UseRandomSampleRegion "true")
(NumberOfHistogramBins 64)

// ********** Interpolator and Resampler **********
//Order of B-Spline interpolation used in each resolution level:
(BSplineInterpolationOrder 2)

//Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)

// ********** Several **********
(ErodeMask "false")
(UseDirectionCosines "true")

B.3 Deformable registration parameters

// ********** Image Types **********
(FixedInternalImagePixelType "float")
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B.3. Deformable registration parameters

(FixedImageDimension 3)
(MovingInternalImagePixelType "float")
(MovingImageDimension 3)

// ********** Components **********
(Registration "MultiMetricMultiResolutionRegistration")
(Interpolator "BSplineInterpolator")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedRecursiveImagePyramid")
(MovingImagePyramid "MovingRecursiveImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")
(Transform "BSplineTransform")
(Metric "AdvancedNormalizedCorrelation" "TransformBendingEnergyPenalty")
(Metric0Weight 1.0)
(Metric1Weight 1.0)

// ********** Pyramid **********
// Total number of resolutions
(NumberOfResolutions 4)
(ImagePyramidSchedule 8 8 8 4 4 4 2 2 2 1 1 1)

// ********** Transform **********
(AutomaticTransformInitialization "false")
(FinalGridSpacingInPhysicalUnits 15.0 15.0 15.0 15.0)
(HowToCombineTransforms "Compose")

// ********** Optimizer **********
(MaximumNumberOfIterations 1000)

// ********** ImageSampler **********
//Number of spatial samples used to compute the mutual information in each
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resolution level:
(ImageSampler "Random")
(NumberOfSpatialSamples 2048)
(NewSamplesEveryIteration "false")
(NumberOfHistogramBins 32)

// ********** Interpolator and Resampler **********
//Order of B-Spline interpolation used in each resolution level:
(BSplineInterpolationOrder 1)

// Order of B-Spline interpolation used for applying the final deformation:
(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)

// ********** Several **********
(ErodeMask "false")
(UseDirectionCosines "true")
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Titre : Suivi de l’évolution du cancer du sein métastasé via le recalage et la segmentation
d’images TEP en utilisant des réseaux entraînés et non-entraînés

Mot clés : Cancer du sein métastasé, Recalage d’images, TEP, Apprentissage profond

Résumé : Le cancer du sein métastasé né-
cessite un suivi régulier. Au cours du traitement,
des images de TEP- scan sont régulièrement ac-
quises puis interprétées selon des recommanda-
tions telles que PERCIST pour décider d’un éven-
tuel ajustement thérapeutique. Cependant, PER-
CIST se concentre seulement sur la lésion pré-
sentant l’activité tumorale la plus élevée. L’objectif
de cette thèse est de développer des outils per-
mettant de prendre en compte toutes les zones
actives à l’aide du TEP-scan, afin de suivre au
mieux l’évolution du cancer du sein. Notre pre-
mière contribution est une méthode pour la seg-
mentation automatique d’organes actifs (cerveau,
vessie). Notre deuxième contribution formule la
segmentation de lésions sur les images de suivi

comme un problème de recalage d’images. Pour
résoudre le recalage longitudinal d’images TEP
corps entier, nous avons développé une nouvelle
méthode nommée MIRRBA (Medical Image Re-
gistration Regularized By Architecture), qui com-
bine les avantages des méthodes conventionnelles
et de celles utilisant l’apprentissage profond. Nous
avons validé trois approches (conventionnelle, ap-
prentissage profond et MIRRBA) sur une base de
données privées d’images TEP longitudinales ob-
tenues dans le contexte de l’étude EPICURE. Fi-
nalement, notre troisième contribution est l’évalua-
tion de biomarqueurs extraits des segmentations
de lésions obtenues grâce au recalage. Nous pro-
posons donc un nouvel outil automatisé pour amé-
liorer suivi du cancer du sein métastasé.

Title: Longitudinal monitoring of metastatic breast cancer through PET image registration and
segmentation based on trained and untrained networks

Keywords: Metastatic breast cancer, Image registration, PET, Deep learning

Abstract: Metastatic breast cancer requires
constant monitoring. During follow-up care, PET
images are regularly acquired and interpreted ac-
cording to specific guidelines, such as PERCIST,
to decide whether or not the treatment should be
adapted. However, PERCIST focuses only on one
lesion representing tumor burden. The objective
of this PhD thesis is to assist physicians monitor
metastatic breast cancer patients with longitudinal
PET images and improve tumor evaluation by pro-
viding them tools to consider all regions showing
a high uptake. Our first contribution is a method
for the automatic segmentation of active organs
(brain, bladder, etc). Our second contribution for-
mulates the segmentation of lesions in the follow-

up examination as an image registration problem.
The longitudinal full-body PET image registration
problem is addressed, in this thesis, with our novel
method called MIRRBA (Medical Image Registra-
tion Regularized By Architecture), which combines
the strengths of both conventional and DL-based
approaches within a Deep Image Prior (DIP) setup.
We validated the three types of approaches (con-
ventional, DL and MIRRBA) on a private longitu-
dinal PET dataset obtained in the context of the
EPICURE project. Finally, the third contribution is
the evaluation of the biomarkers extracted from le-
sion segmentations obtained from the lesion regis-
tration step. We propose a new tool for the moni-
toring of metastatic breast cancer.
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